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ABSTRACT OF THE DISSERTATION

3-D Morphometry and Non-rigid Registration for
Quantitative Analysis and Clinical Assessment in

Radiology

by Gabriela Niculescu

Dissertation Director: Professor David J. Foran

The capacity to reliably track, model and characterize morphometric changes in
anatomic structures and tumors from 3-D images sequences is extremely valuable in
staging disease progression and assessing response to treatment.

We have designed, developed and evaluated two approaches to facilitate clinical
assessment in diagnostic radiology. The first is a tool for performing comparative mor-
phologic analysis and the second is a registration strategy which can compensate for
changes in shape that occur in deformable organs when assessing response to treatment
across consecutive imaging studies. The first prototype system was used to characterize
the morphology of ventricles from MR brain scans of patients who had been diagnosed
with Bipolar Disorder or Asperger’s Syndrome. Preliminary studies demonstrated that
conventional volumetric measurements were insufficient for detecting and characterizing
subtle changes in anatomic profiles. We have investigated the use of a double elliptic
Fourier transform to discriminate among 3-D changes of anatomic structures. It was
shown that characterization using low frequency elliptic Fourier descriptors prov ided
an accurate representation of the anatomical structures while allowing for reliable group

separation. The shape-based 3-D object representation of brain structures developed
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in this project may provide insight regarding the underlying mechanisms leading to the
onset and progression of these disorders.

As an extension of these studies, a deformable registration technique was evaluated
for tracking tumor response to radiofrequency ablation of patients with liver malignan-
cies. The method exploits the combined power of global and local alignment of pre-
and post-treatment CT images. The distinguishing characteristics of the system is that
it can infer volumetric deformation based upon surface displacements using a linearly
elastic finite element model (FEM). Using both 2-D synthetic phantoms and 3-D beef
liver data we performed the simulation of gold standard registration by measuring the
accuracy of non-rigid deformation. The voxel mean displacement error of deformation
demonstrates that the technique provides valuable information for surgical interventions.
This approach is general methodology for tracking deformable organs using non-rigid
registration with respect to FEM simulations. It provides a basis for monitoring tissue
response and therapy planning for a range of medical applications in the brain, breast

or heart.
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Chapter 1

Introduction

Modern imaging techniques have become invaluable clinical and research tools for vi-
sualizing anatomic structures, non-invasively, however, some of the technical challenges
which arise during post-acquisitional image analysis cause investigators to opt for semi-
quantitative studies and/or subjective interpretations of data. With the increased use
of 3-D imaging methods such as computed tomography (CT), magnetic resonance (MR)
imaging and ultrasonography (US) being used for diagnosis, therapy and surgical plan-
ning the need for improved methods for image analysis has become apparent. The
development of more reliable methods for shape analysis and registration could lead to
further insight as to the underlying biological mechanisms and pathological processes of

disease onset and progression.

1.1 Problems Encountered in Neuroimaging

In neuroimaging applications volumetric measurements are one of the most frequently
utilized quantitative measurements used in assessing brain structures. Enlarged ven-
tricular size has been cited as an important criteria for characterizing Bipolar disorder
and Asperger’s syndrome [II, 2.

Asperger’s syndrome is a pervasive developmental disorder characterized by ma-
jor difficulties in social interaction and unusual patterns of interest and behavior. Its
heritability remains questionable. Clinical features of the syndrome include diminished
expression of empathy, poor communication capacity, monotonic speech, diminished mo-
tor coordination, intense absorption of seemingly unusual information and a seemingly
diminished ability to develop social skills [3].

Bipolar disorder is a major affective disorder characterized by a disorganization of



Table 1.1: Volumetric measurements for LV - left ventricle RV- right ventricle

‘ ‘ LV ‘ RV ‘ Total ventricles ‘
Controls
Mean 6380.47 | 5983.79 12364.26
St. Dev. 2306.71 | 2138.67 4377.27
Asperger’s Syndrome
Mean 7891.46 | 7515.57 15407.03
St. Dev. 3627.50 | 4344.30 7481.45
Bipolar Disorder
Mean 7802.71 | 7340.11 15142.82
St. Dev. 2745.43 | 4125.49 6288.81

feelings. The key identifying feature of Bipolar disorder is the alternation of maniac
episodes with major depressive episodes in an unending roller coaster ride from the
peaks of elation to the depths of despair []. Periods of depression are characterized by
torpid speech and movement, loss of appetite and disturbed sleeping patterns. Episodes
of mania are characterized by an unaccountable euphoria, delusions of grandeur and
excessive speech and motor activity. Average onset of the disease is around the age
of 21 years with similar rates in males and females throughout the world [3]. Bipolar
disorder is associated with a high level of morbidity, and it has been estimated that
approximately 15% of patients eventually die by suicide [6].

The standard method for evaluating imaging studies of those patients involves sys-
tematic slice-by-slice interactive processing of volumetric data. During feasibility ex-
periments Analyze AVW software (Mayo Clinic) was used to interactively segment and
analyze MR image data sets. Forty MRI brain scans were acquired using a 1.5Tesla GE
Sigma scanner located at the Laurie Imaging Center (UMDNJ-RWJMS). The study
consisted of fourteen patients who had been diagnosed with Bipolar disorder, seventeen
who had been diagnosed with Asperger’s Syndrome and nine patients served as controls.
Patients ranged from 7 to 14 years of age and were predominantly male. Table 1 shows
the ventricular volumes that were computed during preliminary studies.

Although the numerical difference between the mean total ventricular volume for the
control group and either disorder would seem sufficient to distinguish between "normal"

and "abnormal" ventricles (3042.77 mm3 control - Asperger’s Syndrome, and 2778.56



mm3 control - Bipolar disorder), the large standard deviation for each group in this study
strongly suggested that volumetric measurements alone were insufficient for detecting
abnormalities. The low discriminatory power may be attributed, in part, to the fact
that shape differences among the structures are not adequately captured through the
volumetric characterization of the morphology. Our preliminary studies indicate that

local or global parameters may serve to improve accuracy of classifications.

1.2 Problems Encountered in Liver Therapy Imaging

Hepatocellular carcinoma (HCC) is the common primary malignant tumor of the liver.
Although resection or liver transplantation are considered potentially curative or sur-
vival enhancing treatment options, only 20%-30% of patients with HCC are candidates
for intervention |[[]. Several minimally invasive imaging-guided ablative therapies using
thermal energy sources such as lasers, microwaves, radioflequency (RF) and high inten-
sity focused ultrasound (HIFU) are rapidly developing alternatives to surgical treatment
in primary liver malignancies [8, ©]. Possible advantages of ablative therapies over open
surgery include excellent local control with less recovery times at a reasonable cost,
with low morbidity and mortality rates. The main goal of thermal ablation therapy is
to destroy an entire tumor by using heat to kill the malignant cells without damaging
adjacent vital structures. For most thermal ablation methods, energy is applied percu-
naneously by using a needle-shaped applicators. Goldberg et al [I0] described the basic
relationship guiding thermal ablation induced coagulation necrosis as follows:
coagulation necrosis = energy deposited * local tissue interactions — heat loss
The ability to produce a tumor necrosis is dependent on local physiologic tissue
characteristics and several technology-based factors given the multiple energy sources
to achieve thermal ablation, the different strategies for applying them and the different
probe devices including hooked electrodes or internally cooled single or triple electrodes.
Per cutaneous radiofrequency ablation (RFA) is the method receiving the greatest
clinical attention to date, which has proved very effective and safe in treating patients

with unresectionable hepatic tumors. Patients with HCC are particularly well-suited for



Figure 1.1: Pre and post RFA treatment CT images

primary treatment with radiofrequency ablation (RFA) given the high rates of multiple
tumor appearance over time, concurrent hepatitis infection and liver cirrhosis. Multiple
clinical studies have been performed to evaluate the use of RFA in the treatment of
HCC [IT], 12}, [T3, [T4]. Results of early clinical trials showed a complete tumor necrosis
in 83% of tumors less than 3cm in patients with HCC who underwent RFA [T5].

Liver tumor ablation carried out by heating the tumor using radiofrequency (RF)
energy which is delivered through an electrode which is actually, a thin needle that is
electrically insulated along all but the distal 1-3 cm of the shaft. Connected to the
RF generator, the uninsulated distal portion of the probe tip emanates current waves.
Heat is produced by ionic agitation surrounding the electrode as the current flows to
the ground resulting in coagulation necrosis. When mono polar RF generator is used
the ground is a usually a foil pad placed on the patient§ back, whereas in the bipolar
system, a second electrode is used as ground. The deposition of the energy in the tissue
generates a dark thermal lesion often surrounded by a bright edematous rim. The RFA
procedure is considered technically successful if the tumor and a safety margin of 5-10

mm of normal hepatic tissue are completely included in the ablation zone [I6] as shown

in the Figure [C11



Localization of tumors using CT imaging-guided techniques and pre- and post-
procedural analysis to ensure the accuracy of ablative margins are both extremely chal-

lenging due to the following problems:

e The liver is a highly deformable soft tissue organ. A significant amount of non-
linear motion or deformation occurs in the liver in response to differences in the
positioning of patients undergoing consecutive imaging studies. Deformation also

arises due to respiratory motion, and surgical manipulations.

e The shape and the size of the tumor appearance depends on the dynamics of
the contrast-enhancing agent used in C'T images. Typically, standard CT images
without contrast are obtained to plan the procedure and to guide the ablation
applicator placement. Contrast agents may be administrated only once during the
procedure and the intensity of the image vary considerably between the arterial
and the portal phases of the CT image protocol. The majority of liver tumors may
appear clear only in the two minutes following the contrast agent injection. The
apparent boundaries of the tumor often change dramatically during the course of

this time.

e Furthermore, real-time imaging can not be maintained throughout the entire RFA
procedure. The intervention radiologist visually consults the pre-procedure image
studies during the course of the RFA procedure in an attempt to locate the center
of the same tumor. Because there is no way to compress the region of the liver
where the tumor is located when the tip of the needle reaches the interface between
two different types of tissue, further insertion tends to push the tissue rather than

piercing it, which gives rise to unwanted deformations.

All the above limitations make the RFA procedure very sensitive to the initial placement
of the needle. It would be very useful to develop techniques to help the interventional
radiologist in predicting tumor displacement, thereby allowing accurate tracking of lesion
across consecutive studies. To determine the success of the treatment one can register

and compare imaged tumor characteristics before and after treatment.



1.3 Specific Aims

In the neuroimaging study we investigated the use of a double elliptic Fourier transform
to discriminate among 3-D changes of anatomic structures in MR brain scans. Through
a series of experiments it was shown that shape characterization using low frequency
elliptic Fourier descriptors (EFD) provided an accurate representation of anatomical
structures. Whereas volumetric measurements did not provide the means for discrimi-
nating between diseases and control groups. Furthermore, our experiments showed that
3-D shape signatures based upon a double EFD algorithm did provide accurate group
separation among disorders and normals.

In the liver imaging study we presented a surface based non-rigid method for tracking
tumor across pre- and post-treatment CT liver images using a finite element model
based deformable system. The strategy of the algorithm is twofold: the first step is to
align the mesh surfaces, using a modified Iterative Closest Point (ICP) algorithm that
determine the proper correspondence of the boundary points to drive the transformation.
The second step is to model the volumetric deformation using a linearly elastic finite
element model (FEM) that has boundary conditions generated from the registered data.
Using both 2D synthetic phantom and real 3D beef liver data we introduced a set of
gold standard deformations to measure the accuracy of the newly developed non-rigid

registration.

1.4 Thesis Outline

Chapter II present the neuroimaging study:

Section I presents the background of shape analysis relevant to our work in neu-
roimaging - the theory behind the boundary encoding.

Section II presents an overview of elliptic Fourier descriptors for 2-D boundaries.

Section III presents the encoding algorithm for 3-D Fourier descriptors. We de-
scribe the approach for registering two data sets using the Iterative Closest Point (ICP)

algorithm and the object classification method is evaluated for performance.



Section IV presents the results obtained after applying 3-D Fourier encoding algo-
rithm for the surface reconstruction. Some data compression, area and volume issues
are also addressed. Results from registration and re-section algorithms are presented
and the image database design is described.

Section V draws the conclusions for the neuroimaging study and gives the perspective
of future research.

Chapter III presents liver therapy study:

Section I presents the liver registration study starting with related work.

Section II presents three algorithms for finding the correspondence of two data sets:
Curvature Scale Space (CSS), a modified Iterative Closest Point (ICP) algorithm, and
Robust Point Matching (RPM).

Section III presents a briefly introduction in the theory behind Finite Element
Method (FEM).

Section IV presents the tumor tracking model based on the combination of registra-
tion and linearly elastic finite element analysis.

Section V presents a 2D rubber phantom and a 3D real beef liver studies used to
validate the performance of our model simulation for predicting the tumor displacement.
We track the position of several markers before and after different deformations.

Section VI presents a clinical study involving three different patients with hepato-
cellular carcinomas. The lesion’s displacement is tracked for each patient.

Section VII draws the conclusions for the liver therapy study and gives the perspec-

tive of future research.



Chapter 2

Neuroimaging Study

2.1 Related Work for Shape Analysis

The overall goal of shape analysis research is to provide a reliable means for comparing
arbitrary shapes in two or more dimensions. Shape is one of important features for
describing and representing an object. Even though it is conceptually easy to under-
stand the notion of 2-D shape, it can sometimes be difficult to represent, describe and
define. Shape representation methods result in a non-numeric (e.g. graph or an image)
representation whereas shape description methods result in numerical descriptors which
follow the shape representation [I7]. For many medical imaging applications some of the
most desirable properties of the shape descriptor vector also called the feature vector is
that it be invariant to scale, translation, and rotation while simultaneously capturing
the essence the shape.

Shape analysis algorithms can be classified according to a variety of criteria. Pavlidis
[18] proposed the following classification scheme. The first is based on shape bound-
ary points alone, rather than on interior shape descriptions which are considered as
global algorithms. The second scheme called shape analysis algorithms are based on
either numeric results, in which case there is a scalar transform, or non-numeric results
which pertain to space domain techniques. For example the chain code described in
|19l 20] is considered a space domain technique because it transforms one shape into
another rather than into an array of scalar features. The third classification scheme is
based on information preservation and information non-preserving methods which de-
pends on whether shape reconstruction is possible from constituent descriptors or not.
Non-preserving techniques are described in terms of very local characteristics such as

symmetry, elongation and angularity. An example of an information non-preserving



method is the ratio of the square of the perimeter to the area [I8].

In order to analyze and manipulate arbitrarily shaped objects which are embedded
in 3-D image stacks a reliable, non-ambiguous means for describing those shapes is
needed. It is often desirable to convert the arbitrary shape into a representative form
that can be efficiently processed in terms of both computational time and memory
space requirements. For such applications boundary representation is one of the most
popular strategies. The boundary for any given imaged object can be considered a
closed sequence of successive boundary pixels coordinates. If one needs to transmit an
accurate description of the contour of a delineated tumor over a network, for example,
the contour must first be represented (encoded) in a fashion which permits a reliable
decoding and pictorial reconstruction at the receiving end.

The following subsections will provide an overview of the chain code and scalar
Fourier transform methods respectively, which were used in preliminary feasibility ex-

periments for boundary representation and boundary description.

2.1.1 Chain code - Boundary Space Domain Method

The process of adopting a symbolic convention and quantitatively identifying the de-
scription proprieties of the approach in terms of the convention is referred to as encoding.

The following properties are desirable for any encoding scheme |19] :

1. the encoding scheme for arbitrary geometric curves should be simple, highly stan-

dardized and universally applicable to all continuous curves.
2. the encoding scheme must faithfully preserve the information of interest.

3. the encoding scheme should facilitate digital computer analysis of a given curve’s

properties.

The method for coding line drawings called chain code was introduced in 1961 by Herbert
Freeman [19]. Chain codes are used to represent boundaries using a connected sequence
of straight line segments of specified direction and length. Line structures are generated

through quantization of tracings with a grid-intersection scheme, thus a boundary point
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Figure 2.1: Result of boundary re-sampling with superimposed grid

is assigned to each node of the grid, depending on the proximity of the original boundary
to a given node as shown in Figure 211

On the digital (rectangular) grid, encoding is based on the fact that successive
contour points are adjacent to one another. Freeman [IY, 20]] showed that if the 8-
connected grid is employed, the chain code is defined as the digits from 0 to 7, assigned
to the 8 neighboring grid points in a counter-clockwise sense. Since the accuracy of
the resulting code representation depends on the spacing of the sampling grid, several
different digitization methods have been suggested [21] 22].

A direct straight-line segment connecting two adjacent grid points is called a link. A
continuous contour can be approximated by a sequence of links a;. A link corresponds
to one of eight standardized straight -line segments oriented in the direction (7/4)a; , as
measured counter-clockwise from the X axis of an Cartesian coordinate system. Each
being length 1 or v/2 depending, respectively, on whether a; is even or odd. A chain is

an ordered sequence of links written in the form:

C = a1ag...Qy

An example of chain code C = 0010600106656553245443212 is shown in Figure
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5, 6

Figure 2.2: (a) Definition of the chain code 8 - connected (b) Chain code of the curve
from Figure 1.1

The flexibility of the chain code representation is illustrated by the ease with which
the inverse, length, width and height of the chain can be computed. The integral of a
function with respect to the x axis, the first and second moments about x and y axis,
and the distance between two connected points are also relatively simple operations
[20]. The chain coding scheme can be easily extended to 3-D line structures quantized
on a cubic lattice by assigning a symbol for each of the 26 possible directions [20]. The
derivative chain code method given rise to numerous research activities implemented

using a variety of algorithmic approaches 23], 24, 25, 26].

2.1.2 Fourier - Boundary Scalar Transform Method

The Fourier transform represents an orthonormal periodic signal which can be expressed
as a weighted sum of known functions. An orthonormal set is desirable because it makes
the parameters distinct and facilitates coefficient determination by avoiding redundancy.

A general way, to decompose a function X (¢) on the interval [a,d] is :

60 XM=Y Colt)  Cu= [ XWsa)a
n=1 a

where the coefficients C,, are the orthogonal projections of X (¢) onto the subspace

generated by the n basis functions. In practice the degree of the sum is restricted and
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the choice of its value is a trade off between desired accuracy and degree of smoothing.
The usual basis functions are the sinusoids [18] which have the advantage of providing
a notion of frequency.

Suppose that the boundary of a shape has N pixels numbered from 0 to N — 1. The
k-th pixel along the boundary has position (zj,yx) and we can describe the contour as

two parametric equations:

x(k) = xg

y(k) = yk

The contour itself is periodic, therefore, it is possible to take the Fourier transform

of each function and obtain two frequency spectra called Fourier descriptors (FD):

The major advantage of this method is that it is fairly straight forward to make slight
modifications to the FD so that it becomes invariant to scale, translation, rotation and
starting point of the contour .

The boundary scalar transform algorithms describe shape indirectly by means of a 1-
D function which in turn can be used to characterize the shape of 2-D boundary. There
are many different methods for 1-D boundary function representation and in this section
we present some of different possible representations based on Fourier’s parametrization
that have been reported in the literature.

The tangent angle §(1) versus arc length function is the 1-D boundary representation
which was developed by Zahn and Roskies [27]. In this formulation if (1) is the angular
direction of a clockwise oriented close curve at point [ then the cumulative angular
function ¢(1) is defined as the net amount of angular bend between starting point [ = 0
and point 1. So ¢(I) = 6(l) — 0(0), except for a possible multiple of 27, where 6(0) is

the absolute angular direction at the starting point as shown in the Figure 3]



13

0 X

Figure 2.3: Parametric representation of a curve with tangential direction 6(l) and
cumulative angular function ¢(1)

The domain of definition of function ¢(1) is [0, L], where L is the perimeter of close
curve, then the function can be normalized and made dependent upon parameter ¢ €

[0,27]. Letting ¢*(¢) be the normalized variant ¢*(0) = ¢*(27) =0 :

Note that ¢*(t) = 0 for a circle, we map all the plane closed curves into the class
of periodic functions on [0,27] in such a way that all curves of identical shape and
starting point become part of the same function ¢*[27]. The boundary function ¢*(t) is

expanded as a Fourier series as:

¢*(t) = po + Z(akcoskt + bsinkt)
k=1

If (Ag, o) are the polar coordinates of (ag,by) then the ¢*(¢) expansion is given by:

¢*(t) = po + Y Acos(kt — o)
h=1

The coefficients {pg, ag, br} or {Ag,ar}t; k = 1..00 are the k -harmonic Fourier de-

scriptors (FD) which are used for shape characterization of the curve.
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The tangent angle function also called the turning function has been used by Akin
and his colleagues [28] to reliably represent and compare polygonal shapes. The function
0.4 (s) measures the angle of the counter-clockwise tangent as a function of arc length s,
which is measured from any given reference start point on the polygon’s boundary. 4(s)
becomes a function defined on [0, 1] interval, assuming that all polygons are normalized
so that their perimeter length is 1. Even though the turning angle method is invariant
to scale and translation and can easily be made rotation invariant a drawback of this
representation it is sensitive to small variations in shape.

Granlund [29], Richard and Hemani [30], and Persoon and Fu [31] presented the 1-D
complex function of the form z(l) = z(l) + jy(I) where [ is the arc length parameter.
In this formulation any point moving along the boundary generates a periodic complex
function z(l), which implies z(l +nL) = z(l). Therefore the Fourier series expansion of

z(l) becomes:

Z(l) _ Zanej27rnl/L

where z([) is often referred to as a shape signature. The normalized Fourier coeffi-

cients are the Fourier descriptors :

1 (L .
an = —/ z(1)e 72 g
L Joy

One advantage of using the coordinates z(1) instead of tangent angle (l) represen-
tation of the boundary curve is that the complex coordinates function is less sensitive
to the inherent noise contained within fuzzy boundaries. The tangent angle function is
related to the derivative of the coordinate function, thus small variations in the coordi-
nate values of the boundary points can give rise to large variations in the direction of
the tangent vector.

If 2(0(1) is the original boundary expression and al is the nth Fourier coefficient of

the original shape then:
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e The change of starting point can be expressed as z(l) = 2(O) (1 + 1) is a phase shift
(0)

in the transform. The resulting Fourier coefficients become a,, = e/™ ay’ which

are invariant to the starting point shift.

e Assuming that shapes are centered about the origin of the coordinate system,
then rotation around the origin with angle ¢ gives rise to the boundary expression

(0)

2(1) = 20 (1)e7?. As a result the invariant Fourier coefficients are a,, = az’ e/?.

e Translation of a shape can be expressed as z(l) = z(0)(I)+¢ , wherein only the zero-
frequency component changes. This implies that Fourier coefficients are invariant
to translation with the exception of the first coefficient which only reflects the

mean position:

a%o) n#0
an =
ago)—i-c n=>0

e Scaling of a shape can be expressed as z(l) = sz(9) (1), such that it is a multiple of
(0)

the Fourier coefficients and a constant: a, = sa,’. This operation provides the

means for scale invariance.

2.2 Fourier Transform of Boundary

The chain code described in Chapter 1 approximates a continuous contour in 2-D by
a sequence of piecewise linear fits that consists of 8 standardized line segments C' =
a1,02,03...0n.

The time needed to traverse a particular link a; of the chain code at a constant speed

is given by:

V2—1 | 1 if a;€{0,2,4,6

At; =1+ ( 5 )1 —(=1)") =
V2 if a;€{1,3,57}

The time required to traverse the first p links in the chain are:

P
th=Y_ At;
i=1
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The changes in the x and y projections of the chain as the link a; is traversed are:

1 if a;€{0,1,7}
Az; = sgn(ﬁ —a;)sgn(2 —a;) = 0 if a;€ {2, 6}
-1 if a; €{3,4,5}

1 Zf a; € {17 27 3}
Ay; = sgn(4 —a;)sgn(a;) =4 0 if a;€{0,4}
1 if a;€{56,7)

where

1 if k>0
sgn(k) =< 0 if k=0

-1 if k<O

Locating the starting point of the chain code at the origin, the projections on x and

y of the first p links of the chain are, respectively:

2
Ty = Z Ax;
i=1
P
Yp = Z Ay;
i=1

The Fourier series expansion for the x and y projections of the complete contour of

the chain code ¢ € [0,T] using the sinusoidal basis are defined as:

o onmt onmt
x(t) = Ap + ngl(ancosT + bysin T )
e onmt onmt
t) = C — +d,si
y(t) 0+ nz::l(cncos T +dy,sin T )

where the Fourier coefficients are:
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2 (T 2nt 2 (T . 2nmt
ap, = T/o x(t)cos T dt by, = T/o x(t)sin 7 dt

2 (T 2nmt 2 (T _ 2nmt
Cn = T/o y(t)cos T dt dy, = T/o y(t)sin T dt

Fourier transform of the boundary ®(t) = (z(t), y(t)) represents the smooth form of

the chain code C = ajasasz...a,.

2.2.1 Elliptic Fourier descriptors

The elliptic Fourier decomposition is readily apparent when the projections are expressed

in matrix form:

_ N i an, by cosnt
n=1

y(t) Co

¢ dp sinnt

A geometric interpretation, in terms of ellipses, can be developed from this decom-

an  bn
position.The matrix is a parametric form for an ellipse whereas a,, by, ¢y, dy,

Cn dn
determine the characteristics of the ellipse. The ellipse of degree n is completely de-

cosnt
scribed by its vector path .The coefficients Ay, Cy are the mean values of

sinnt
the coordinates and determine the overall translation of the geometric center of the

closed contour. The parameters set(Ag, Co, Gy, by, Cn, dn;n = 1..00) represents the ellip-
tic Fourier descriptors.
The elliptic Fourier descriptors a, and b, corresponding to the n*" harmonic are

given by:

T X Az, 2nmty, 2nmt, 1
n = 553 p;l At [cos T s/ ]
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The elliptic Fourier descriptors ¢, and d,, corresponding to the n*" harmonic are

given by:
T & Ay, 2nmty, 2nmt, 1
T on2n? LAy, [cos == = cos—=—]
p=1
T & Ay, . . 2nrt, . 2nmt,—q
d,, = 522 z::l Al [sin T sin T ]
K

1 Ayp 0 o
Co = T pzz:l 2Atp (tp - tp—l) + 5p(tp - 751)—1)

where

A
51=0, 5, = ZAy, N ZAtJ
7j=1
Note that:

Atp = \/m Axp = (xp - il?p—l) Ayp = (yp - yp—l)
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Y A displacement of
starting point
\
1
2
3
harmonics
Y)riginal starting point

Figure 2.4: The first 3 phasors of the elliptic approximation to a contour

The curve can be viewed as a sum of rotating phasors, called harmonic loci, each
individually defining an ellipse and rotating with a speed proportional to their har-
monic number n. The larger the number of ellipses involved, the more accurate the

representation becomes as showed in Figure 241

2.2.2 Normalization of Fourier descriptors

Each ellipse can be described by four geometric properties: semi-major axis length,
semi-minor axis length, rotation and phase shift. The rotation is the angle from the
x-axis to the major axis of the ellipse. The phase shift is the difference in phase from
the major axis to the position of the starting point ¢ = 0. Based only on the intrinsic
geometric properties we describe an intuitive way of normalizing the Fourier coefficients

Gn, by, ¢, and d, obtained in the previous subsection. The resulting Fourier descriptors
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are invariant with regard to scale, rotation, translation and starting point on the contour.

Normalizing a Fourier contour representation means placing the first harmonic pha-
sor of the Fourier series in a standard position. This means translating the origin of the
X, Y coordinate system to the center of the first harmonic phasor and rotating the X, Y
coordinate axes into a new U, V coordinate axes defined by the major and minor axes

of the ellipse as showed in Figure 4]

Consider the truncated Fourier series approximation to a closed contour:

N
a(t) =Ag+ > Xu(t)

n=1

N
y(t) =Co+ Y Yu(t)

n=1

where the components of the projections X,,, Y, (1 <n < N),t € [0,T] are

2nmt 2nmt
X, (t) = ancos% + bnsin%
2nmt . 2nmt

Y, (t) = cpcos + dy,sin

A difference in the starting point, A units in the direction of rotation around contour
is displayed in the projected space as a phase shift and can be expressed as X, (t* +
A).Expanding X,,(t) and Y,,(t) where ¢t = ¢* + A

* * * 2nmt*
Xo | | o by, COS =~
* * * - 2nat*
Y ¢ dr sin=tr—

we obtain a new set of coefficients a;, b}, c;, and d; which compensate for the arbi-
trary position of the starting point. This is showed by introducing a rotational operator
that relates Fourier coefficients at any starting point a,, b,, ¢, and d, to the coefficients

ay, by, crand d) for another stating point displaced with A.
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at b

* 2nmA - 2nmA
v b an by cos=T=  —sin=gr=
* * o 2nTA 2nmA

c dar cn dp Sin=rg cos ==

The rotation of X,Y coordinates axes through 1 degree into the U,V axes is accom-

plished by the rotational operation and the projections on U,V axes are:

Uy cosy  siny X

Un —siny  cosy Yr

n
Hence the two rotations are necessary to achieve the invariance to the axial rotation
and a shift in the starting point. The combined effects, the invariant Fourier coefficients

aff, b ¢ and dff can be expressed as:

aff O

: 2nmA - 2nTA
B cosy  siny an by cos=s  —sin=rms
ct df —siny  cosy cn dp sz'n2"77f>‘ cos%

Elliptic 1st harmonic locus

When the first harmonic locus is an ellipse the rotations are defined relative to the

semi-major axis of the locus then produce two related representations of the contour:

oI p#D cosyn  sinahy a, by cosnf; —sinnb
C#(l) d#(l) —Sin¢1 COS¢1 Cp, dn sin n91 Ccos 7’1»01

whereas the other semi-major axis is further rotated by 7:
a#@) b#(Q) _ (_1)n+1 a#(l) b#(l)

FO ) FN

The expression for the starting point displacement 61 can be determined by differen-

tiating the magnitude of the first harmonic (N = 1) of the Fourier series ( not including

the bias terms Ag and Cj):

S = /2% + y} where
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x1(t) = aycosf + by sind

y1(t) = c1cosb + dysind

_ 27t
o= 3t
Setting the derivative to zero:
1 2(a1b1 + Cldl)
01 = 3 arctan S 61 € [0,7)

The expression of the rotation angle 1;is determined from aj and c¢] Fourier coetf-
ficients that are already correct for the starting point displacement #1. When the first

harmonic phasor is aligned with the semi-major axis t* =0 :

* 0 *
11 = arctan [%EO” = arctan % Y1 € [0, 2m)

Circular 1st harmonic locus

When first harmonic locus is a circle: a?+b? +c2 +d3 = 2(a1d; —bicy), the rotations are
made with the respect to the line defined by the centroid of the contour and the point
on the contour most distal from the centroid (Ag, Cp). Since the most distal point p can
be non-unique, k related representations can result, corresponding to k sets of Fourier

coefficients, p = 1..k:

o P #P) cos,  sinihy an by cosnb, —sinnb,
Fw) - # @) —sin, cosy cn dp sinnb, cosnb,

The starting point rotation @), is defined relative to the pt" most distant point:

and the axial rotation angle v, is:
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1, = arctan [“’%ﬁg} Yy €10, 2m).

Tp

Scale invariance is obtained by normalizing each Fourier coefficient by the magnitude
of the semi-major axis w/a“{2 + c’l‘2 when the first harmonic locus is elliptic, and by the
magnitude of radiusy/a? + ¢? when the first harmonic locus is circular.

Translation invariance is obtained by removing the bias terms Ay, Cy from the Fourier
series. This indicates that Fourier descriptors are invariant to translation except the first
coefficient which only reflects the mean position.

The new parameters (Ag, Co,alf, b, i, d,01,11...) are the invariant Fourier de-
scriptors - FD and form a compact representation of the contour. A contour can be re-
constructed from FD by the inverse Fourier transform. The low-frequency components
or the low order harmonics of the Fourier descriptors capture the coarse representation
of the boundary shape, whereas the high-frequency components or the higher order har-
monics capture the finer details. Graphic examples of image contour is displayed with

n- harmonic Fourier approximations in Figures and

2.3 Design and Methods

The image record can provide the information necessary to assess the cancer patient’s
initial presentation, staging of disease, therapy planning, response to treatment, and
long-term follow-up for outcome assessment. Consequently, there is a tremendous need
for tools for searching, retrieving and classifying medical images efficiently in order to
take advantage of their rich information content. Querying an image database can
be difficult and one of the main difficulties lies in designing appropriate features or
descriptors to represent and organize constituent images. We have established a medical
imaging database of delineated ventricles which were segmented from the MR images
with each structure encoded using elliptic Fourier descriptors. In order to describe the
closed surface of a delineated 3-D object (anatomic structure or tumor) we extended the
2-D elliptic Fourier descriptors to a 3-D descriptor by developing an algorithm which
first computes elliptic Fourier descriptors across each horizontal cross-section, and then

subsequently performs a Fourier transform across the resulting descriptors. The shape
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e

original contour n=2 harmonics
n—7 harmonics n—12 harmonics
n—17 harmonics n—25 harmonics

Figure 2.5: n -harmonics Fourier approximation of a cross-section of a ventricle from
MRI brain scan
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)

9

original contour n=4 harmonics

n—8 harmonics n—16 harmonics
n—32 harmonics n—64 harmonics

Figure 2.6: n -harmonics Fourier approximation of a cross-section of a liver tumor from
CT image scan
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descriptors were used to provide a reliable, objective means for characterizing changes
in shape and as a basis for conducting statistical comparisons of 3D objects. In order
to achieve this capability it was necessary to develop and implement registration and
re-section algorithms to correct for differences in patient positions during consecutive

imaging studies.

2.3.1 Double Fourier Transform

An ordered set of cross-sections are sampled as a discrete representation of a continuous
complex function s,(t), 0 <t < T which represents the closed surface of the delineated
3-D structure. The X — Y Cartesian coordinates of the contour at the sampled points
constitute the real and the imaginary parts of the complex function. T, represents the
contour length at height z and since s.(t) is given only at P sample points , s,(t) is

sampled uniformly as:

tp=pT./P p=0,1,...,P—1

For a fixed height z and a specific number n of harmonics, the Fourier descriptors

fd(n, z) are evaluated as:

1 T —j2mnt/T. 1 = —j2mnty /T
fd(n,z) = 7/ s.(t)e dt = B Z sy (tp)e P
p=0

The inverse Fourier transform can be applied to the resulting descriptors and the

reconstructed contour is then obtained:

5= 3. fdin, )i

n=—00

In order to compute the shape variation of cross-sections along the z-axis, for the
purpose of our studies, the Fourier transform was applied again, this time on fd(n, z).
The closed curves in the z-axis were generated by mirroring the Fourier descriptors
fd(n, z), where range of z is between 0 and K. Therefore, the contour length is uniformly

sampled as:
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2g=qK/Q ¢=0,1,..Q —1

Taking in account that only @ cross-sections are possible, the new Fourier descriptors

were evaluated as :

Q—l
FD(k, 2) / Fd(n, 2)e 71K g — Z F(n, 2g)e—2 el K
=0

Planar Fourier descriptors were subsequently reconstructed by inverse Fourier trans-

form as follows:

fd(n,z) Z FD(k, z)el?mk=/K

k=—o00
In this formulation the closed surface s.(t) was encoded in the shape descriptors by

the double Fourier transform:

Q- —
D k, Z _ QL Z Z —]27I’ (kzq/K+ntp/Tz)

and the reconstructed closed surface was obtained based on these shape descriptors

as:

s,(t) = Z Z FD(k’z)ejQW(kz/K—f—nt/Tz)

n=—00 k=—o00

Since the double Fourier transform is a reversible linear transformation all the shape

information is captured and preserved in the descriptors.

2.3.2 Registration of 3-D objects

The registration process takes as input two (or more) images: one image is considered
as the reference (or the data) image and the other one is the deformable (or the model)
image. Given two sets of 3-dimensional points: data D = {d,} and model M = {my},

for each data point d; € D it is necessary to find the index j of the corresponding point
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mj € M then recover the transformation m; = d;+ f(d;) which aligns the corresponding
points while minimizing some objective error function E(d;, m;).

Suppose that the shapes of two different 3-D data sets are given by N points as
measured in two different Cartesian coordinate systems - p,; in system A and py; in
system B, 1 < 4 < N. Registration or the transformation between two Cartesian
coordinate systems, can be thought of as a result of a rigid motion and thus, can be
decomposed into rotations and translations. The Iterative Closest Points - ICP [34]
aims to find the optimal set of transformations that register the two 3-D shapes by

minimizing the sum of squares of residual errors between them:

N
e(R,t) = Z || Payi — sR(py;) — t|?
i1

where R is the rotation transformation, s the scaling factor and ¢ the translation. This
iterative method is applied repeatedly until the change produced by the transformation
becomes negligible.

The ICP algorithm allows freedom in the implementation of the closest point deter-
mination (minimum distance) and in the way of finding the optimal transformation in
each iteration step. Any optimization method such as steepest descendent, conjugate
gradient, singular value decomposition (SDV) or unit quaternion algorithm can be used
to find the least squares rotation R, scale s and translation ¢. The difficult part of
the problem is finding the rotation R. We implemented the closed-form solution [35] in
which unit quaternions are used to represent the optimal orientation R. The closed-form
solution has the advantages that it provides the best possible transformation in a single
step and that is no need to find a good initial guess as in iterative methods.

A quaternion is a vector with four components ¢ = [qo, q1, g2, ¢3]” , a scalar g and
an ordinary vector [35]. Any orientation can be represented by a single axis of rotation
and a single angle. The unit quaternion specifies a rotation from its reference position
through an angle 6 = 2 arccos gy around the rotation axis (q1, g2, qg)T.The representation

of an orientation is in the form of quaternion:

6 0

q= [60857 32”5(Q17 92, q3)]
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The rotation is performed by multiplying together quaternions representing the axis
of rotation and the final resulting quaternion is then converted to the desired rotation

matrix R:

R+aE - -6 2(qe—q9) 2(q1q3 + qoq2)
R= 221 +9093) @A B -t — a3 2(qeq3 + qoq)

2(q193 — 90q2) 2(g2q3 + q0q1) @G+ d3— 4t — &3

We can summarize the algorithm for finding the rotation matrix. Both sets of
points, p, and p, are translated to their centroids ¢, and ¢, and from now one we
deal with these measurements: p:m- = Pai — Cq and pgm- = pp,; — . For each pair of
coordinates we compute the nine possible products x/,z}, x,,y;, Ti, 2, ..., 2, then the sums

Sexs Sy, Szz---Sz, where:

N
o
Siz = Z LaiTp,i
i=1

The elements of the real symmetric 4 X 4 matrix K are sums of products of coor-

dinates measured in the A system with coordinates measured in the B system and is

defined as [35]:
SCCCC + Syy + Szz Syz - Szy Sz:v - S:cz Sxy - Sy:v
K Syz - Szy Smm - Syy - Szz Smy + Syw Szx + sz
Sze — Szz Szy + Syz — Sz + Syy — S22 Syz + Sy
L Sxy - Sy:v Szx + sz Syz—l—Szy _SCCCC - Syy + Szz ]

To find the rotation that minimizes the sum of squares of errors e(R,t) , it is neces-

sary to find the unit quaternion ¢ that maximizes
¢"Kq

The solution for the desired quaternion is the eigenvector corresponding to the most
positive eigenvalue of the matrix K [B5]. The eigenvalues are obtained by solving the
forth-order polynomial equation det(K — AI) = 0 where I is the 4 X 4 identity matrix.

After we select the largest positive eigenvalue A, the corresponding eigenvector e, is
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founded by solving the equation [K — A, I]e,, = 0. The quaternion representing rotation
is a unit vector in the same direction with eigenvector ey,.

In order to find translation ¢ [35] the error term to be minimized can be written as:

e(R,t) = pai — sR(ppi) —t = p,; — sR(py,;) — '

where t' =t — ¢, + sR(cp), therefore the sum of the squares errors becomes:

N
e(R,t) = ||ph; — sR(py;) —t'[|?
=1
which is minimized with # = 0 or
t=cq— sR(cp)

The translation is just the difference between the centroid of the coordinates in one
system and the rotated and scaled centroid of the coordinates in the other system.

The above formulation of the error term leads to an asymmetry in the determination
of the optimal scale factor. The “optimal ” transformation from A to B coordinate
system is not the exact inverse of the “optimal ” transformation from B to A coordinate

system.[35] Using a symmetrical expression for the error term:

1
e(R,t) = %P&z — VsR(p},;)

allows finding the scale transformation without the need to find the rotation as:

S (1Pl

N
izt [1P5 17

The scale is equal to the ratio of the root-mean-square deviations of the coordinates

from their centroids in the two systems.

Iterative Closest Point (ICP) algorithm

The iterative closest point algorithm (ICP) is able to register a “data” shape P with
N, points to a “model” shape X with N, primitives [34]. The model shape may be

represented in any of the allowable form such as point sets, line sets, triangle sets,
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parametric curves, but for our purposes the model shape was decomposed into a point
set. The method finds the nearest positions on one surface to a collection of points
on the other surface and then transforms one surface so as to minimize the collective
distance. This procedure is iterate until convergence.

The distance d(p, X ) between an individual point p and the set points X = {x;}, i €

{1..N,} is defined as the Euclidean distance:

d(p, X) = minieq1..n,yllp — il

Let Y denote the resulting set of closest points that yields the minimum distance ,
and let C' be the closest point operator Y = C'(P, X). The least squares registration is
computed and let () denote the quaternion operation. Given the resultant corresponding
point set Y and the data set P , equation (¢,d,,) = Q(P,Y) means that ¢ is the
registration vector that best aligns P and Y, where d,, is the point matching mean
square error in this alignment [34]. The registration vectors are defined relative to
the data set P thus the final registration represents the complete transformation. If a
tolerance 7 > 0 and an initial registration g; are given the following steps of the ICP

algorithm are applied until convergence:

1. Compute the closest points Y = C (P, X).
2. Compute the registration (gx, di) = Q(P,Y%) .
3. Apply the registration P11 = qi(P).

4. If (dg—1 — dj) < 7, terminate. Else increase k and go back to step 1.

ICP has the objective of registering data that does not necessarily have the same number
of points as the model, and more importantly, data whose points doesn’t have a point

to point association with the model.

2.3.3 Object classification

In our experiments the 2D elliptic Fourier transform was applied to each section to

perform a section by section comparison of 3D objects. We describe the two distances,
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ICP distance and Fourier distance used for object comparison and their related issues.

ICP distance is the distance resulting from the ICP registration algorithm, as the
"best" distance between the data and the model. The distance is computed for each
data point by searching for the closest point on the model, and averaged over the number
of points. The measure of similarity is obtained by running ICP with different starting
points and taking the best (minimum) value. The reason for the different starting
points is that ICP is known to fall in local minima. The iterative operation used by ICP
overlaps the two objects through rotation and a scale transformation, thus achieving a
local maximum similarity between data and model. The problem with this method is
that not only is very expensive computationally, but also requires the expansion of the
object to 3D format.

The Fourier distance between two cross sections is defined as the Euclidean distance
between their Fourier descriptors. The Fourier distance was used by Ferrario V. F and
Sforza C. [36] to analyze sex and age shape differences of corpus callosum in childhood.
The Fourier distance between two objects is the weighted average of distances between
corresponding cross-sections. Comparing objects just based on their Fourier descriptors
has only a complexity linear in the number of harmonics, and is therefore desirable for
large objects that are encoded with few harmonics, a condition satisfied by the objects
in our database.

In order to verify that this method can be used for classification purpose, we compare
its behavior against the well known, and more intuitive ICP distance. To verify the
correspondence between the two distances, we use a non-parametric (distribution-free)
rank statistic proposed by Spearman in 1904 [37]. The Spearman rank correlation
coefficient, that is 1 for complete agreement and —1 for disagreement is defined by:

2
6 (EZ Z)

n2—1" n

r=1-—

where d; represent the difference in statistical rank (the ordinal number of a value
in a list arranged in a specified order) and n number of objects. The coefficient is
used to measure the strength of correlation between two sets of data. Consequently

we compared a query cross-section with 32 cross-sections from 11 different objects from
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the database and the resultant rank correlation coefficient is 0.94. Thus, 2D Fourier
descriptors have the potential to accurately characterize the shape and can be used to

conduct a systematic section by section classification of 3D objects.

2.4 Results

2.4.1 Data Compression

The fact that the double Fourier descriptor transformation is reversible makes it pos-
sible to utilize it as a means for efficient storage of delineated objects. The reliability
and accuracy with which Fourier encoding process captures the essence of the shape
of an object is characterized by the number of harmonics used for zy encodings of
the cross-sections, (G, bzn, Czn,dzn), and number of harmonics on z for the encoding
of A(a;z,z),B(biz, 2),C(¢iz,z) and D(d;,z). The number of harmonics required for
Fourier reconstruction depends on the complexity of the scanned data and the require-
ments of the application.

Experiments were conducted to determine the optimal number of harmonics required
for reconstructions. The original (interactively traced) contour of the object of interest,

brain structure or tumor, is defined by the data points
P~ =[xy, 2], i=1.p

and the n harmonic Fourier approximation of the contour of the object s,(t) = (z(t), y(¢))
were superimposed. Since the original contour is given only at p points, the objects were
reconstructed at a very high resolution - p = 1000 points for each cross-section. The

centroid and the scale of each cross-section of the object is defined as:

Ly S LE
c=— P, scale = ,| —— P, —c
P p-1I

The measure of accuracy was defined by subtracting the n harmonic Fourier ap-
proximated contour from the original contour at specific sample points. The average

Euclidean error was computed as:
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1 L
€= m ;mmteTzHPi — 52(1)|]2

The graphs of the average error versus number of harmonics on xy and z are shown
in Figure 271

Based upon these studies it was determined that shape description was sufficiently
stable using only the first 12 harmonics on zy and 32 harmonics on z, respectively.
The Fourier series for subsequent analysis was truncated at this number of harmonics,
accordingly since it was shown that most of the dimensional information was captured by
the low order descriptors. The low order harmonics encodes the coarse representation
of the three-dimensional object, whereas the higher harmonics adds details of object
surface. Figure shows the object reconstructions which are produced by varying the
degree of approximation.

The data reduction effect of performing elliptical Fourier transform is illustrated in
the following example. If delineated objects consists of 100 sections, on average, with
100 points for each section, about 30000 numbers would be required to store the x, y, z
coordinates for all 100 points. In contrast, using 12 x 32 harmonics -representation of
the same object would require 12 x 32 x 4=1536 numbers which was shown to contain
enough detail to restore the object with high accuracy. Fourier encoding provides a
form of lossy compression, as a result, each object is described by a set of descriptors

and can be reliable reconstructed with adjustable degree of approximation.

2.4.2 Surface reconstruction

MR images were obtained from Laurie Imaging Center (UMDN.J - RW.J Medical School)
and were acquired via 1.5 Tesla GE Sigma scanner. Each cross-sectional MR image was
displayed on a high resolution screen while object contours were manually traced using
Analyze AVW software (Mayo Foundation, Rochester Minnesota). The boundary of
each anatomical structure (ventricle or tumor) was delineated based upon the intensity

value of a particular voxel relative to the intensities of each neighboring voxel as shown

in the Figure ZZ0



0.1

average error

T
4xy harmonics
8xy harmonics --

12xy harmonics

16xy harmonics
32xy harmonics
64xy harmonics -

0.14

20

30 40
number of z harmonics
(a)

50

60 70

0.12 -

01

average error

0.04 -

0.02 -

0.08 -

T
4z harmonics
8z harmonics

12z harmonics

16z harmonics
32z harmonics
64z harmonics -

0.06 -

Figure 2.7:

30 40
number of xy harmonics

Average error versus harmonic content:

60 70

a) on xy b) on z

35



36

W
L\ nﬁE&*\\ N\
\ T ‘\m\‘“\i‘\\\
\\4‘ .‘\ NN R\ \ \
N

A
gy
A

(e

S

o
NIRRT
NRRARRY
NN S
R AS \Guigal
’*‘Y‘W&#}\\WJ"\“&‘?\ SR
e e
”"\‘S‘;‘«\‘\‘it%‘\&fﬁ‘.\‘i‘;»’:}!!“&?éﬁ he
NN R NSO
NG Y%

A
11'

(©) 12xy 127 (d) 12xy 322

Figure 2.8:
harmonics

Fourier reconstruction of the normal left ventricle with different number of

Figure 2.9: Analyze AVW - boundary tracing of the left ventricle



37

Sometimes due to variations in image resolutions the resulting trace of the boundary
is not smooth. In regions exhibiting sudden changes in curvature, the resulting shape
of the traced boundary presents a sawtooth form. In contrast by performing forward
and reverse transformation through Fourier decomposition the resulting contours are
smoothed considerably. Through systematic performance studies it was shown that the
area of an object is encoded in a small number of harmonics, whereas the perimeter
requires a large number of harmonics to achieve good accuracy as shown in the Figure
210 (c), respectively (d).

In the reconstruction process the degree of interpolation can be controlled not only
in the cross-sections but also inter-cross-sections and the reconstructed volume is con-
sequently more accurately represented. Figure EZTT] shows the reconstructed volume of
the left ventricle (42 sections) for Bipolar disease using the same number of harmonics
on xy - 12.

In order to provide more realistic anatomical surfaces representations Figure
shows an example of a double elliptic Fourier reconstruction of the ventricle for As-
perger’s Syndrome with different degrees of interpolation (the original ventricle has 40

sections).

2.4.3 Registration

The registration procedure was performed for all objects before they were added to the
database. Figure shows in two views the results of registration of a control left
ventricle with a Bipolar left ventricle. The number of points in the “data” set (the
Bipolar ventricle) is N, = 583 and the number of points in the “model” set (the control
ventricle) is N, = 537. After 32 iterations if the tolerance value was 7 = 0.001 then the
mean square error of the alignment was d,, = 0.000001. If R3%3 = {r;;} is the rotation
transformation, s the scale factor and ¢ the translation, the resulted registration matrix

for the two ventricles is:
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a) side view (b) side view

(

Figure 2.13: Registration of a control (gray) ventricle with a Bipolar (black) ventricle
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2.4.4 Re-section

Our object comparison procedure (distance defined on the object space) relies on planar
closed curves that were obtained from sectioning along the same axis. It is not meaning-
ful to compare sections from different objects unless they are taken at the same height
along the same perpendicular axis. Usually sections obtained from the MRI procedure
might use slightly different axis due to variations in positioning of the patient or another
technical aspects. The re-section procedure recreates the outer hull of the object based
on the initial sections, and then creates new parallel plane sections perpendicular on

the desired axis. This change in the sectioning axis comes with some resolution loss,
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Figure 2.14: Re-section of a control (black) ventricle with a Bipolar (red) ventricle

but produces cross-sections that are comparable as 2D objects. This is a pre process-
ing phase and is performed only once, at the time when the object is added to the
database. Figure EZT4] shows in two views the results of re-section algorithm of a control

left ventricle with a Bipolar left ventricle.

2.4.5 Database Architecture

The 3D medical imaging system features client-server architecture. The client part
is intended to be used by remote clinical research sites to access the database at the
server site. The server is designed to permit simultaneous access of several clients to the
database. At the server site the incoming data is be registered, re-sectioned, encoded to
elliptic Fourier descriptors and saved as a new entry in the database. The client retrieves
the Fourier encoding of the object from the server, as a result of a query and performs

local reconstruction for 3D visualization and other measurements. Multiple tools are
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available for visualization slice by slice or volume, quantitative measurements and sta-
tistical analysis are be performed at the client site. The system supports distributed

archiving and visualization of objects over a TCP /IP network.

2.5 Summary

The shape descriptor presented has been shown to reliably represent and reconstruct
anatomic structures from cross-sectional contours. The coefficients derived in comput-
ing this shape characteristics were implemented using a double elliptic Fourier transform
which provides a compact representation of the delineated structure. The medical imag-

ing database that was presented has three main features:

e Compression: the algorithms that we utilized have the potential of compressing
image based information while preserving the essential shape characteristics of the

anatomic structures.

e Efficient querying: while the preliminary results were conducted utilizing a limited
size database, it appears that 3D object classification methods based on Fourier
descriptors provide the same accuracy as slower more computationally intensive

methods, such as Iterative Closest Point.

e Distributed access: the prototype feature a TCP/IP based client-server archi-
tecture which divide the tasks between clients which perform visualizations and
statistical operations, and a centralized server which services queries and performs
data pre processing including registration and re-section. Preliminary results on

a brain scan database shows promising archival and classification performance.

Our findings suggest the potential benefit of including shape descriptors for improved

accuracy of differential diagnoses and clinical assessment.

2.5.1 Future work

Having developed and evaluated the fundamental algorithms and methodology a natural

extension of this work includes the development of algorithms for 3-D object recognition
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based on fully automated 3-D Fourier analysis. Another long-term goal of this project
is to integrate the software with a relational database and develop tools for improved
visualization and statistical analysis to construct as a tool for clinical assessment and
diagnosis.

The development of algorithms which reliably perform automated segmentation of
imaged liver studies using a mean-shift clustering approach has already begun. In the
next phase of development a database of delineated liver lesions will be established,
and 3-D Fourier descriptors will be generated to determine the reliability of the system
for detecting and assessing volumetric and shape changes of tumors over the course of

longitudinal studies.
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Chapter 3

Liver Therapy Evaluation

3.1 Related Work for Registration in Medical Imaging

Medical imaging is essential for a range of clinical activities including rendering a di-
agnosis, staging disease progression, assessing response to treatment, and for surgical
planning. Registration is the process of matching two or more images (or volumes) with
one another. These images may have been obtained at different times from different
scanners or from different viewpoints. Registration requires a spatial transformation,
so that each location in one image can be mapped to the corresponding location in the
second image. A combination of four key components are identified in the development
of the any registration algorithm: a feature space, where features to be matched are se-
lected, a transformation model, a similarity measure and an optimization module. The
goal is to find an optimal transformation that provides the maximum similarity between
images.

Medical image registration has been the topic of extensive research because of its
importance in various application areas as well as of its complex nature. Maintz and
Viergever classified the medical image registration methods [B8]| according to a model
based on nine different criteria, which will be briefly explained in the Table 2.

In general, similarity between images can be classified into feature-based methods,
intensity methods and a combination of the two approaches . Geometric or feature-
based methods rely on reliably extracting and matching salient anatomical structures
such as point landmark points, curves and surface information in order to define the
transformation from one image set to an other. The algorithm for feature matching
iteratively updates the transformation parameters and the corresponding solution. In-

tensity or voxel-based methods are used directly to match image intensities by operating
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Table 3.1: Criteria for registration classification

Criteria

Subdivisions

Dimensionality

Spatial dimensions: 2D /2D, 2D/3D, 3D/3D

Time series/spatial dimensions: 2D/2D, 2D /3D, 3D/3D

I . Stereo tactic frame
nvasive —
. Fiducials (screw markers)
Extrinsic
Noninvasive Mould, frame, dental
n-invasiv — -
Fiducials (skin markers)
Anatomical
. . . Landmark based na oml.ca
Registration basis Geometrical
Rigid
Intrinsic Segmentation based
ntrinsic egmentation base Deformable
Scalars/vectors
Voxel property based Full imé :‘;e
Non-image
Rigid
. Affi
Nature of transformation 1'1e -
Projective
Curved
Local
D in of transf ti
omain of transformation Global
Interactive Initialization supplied

Degree of user interaction

No initialization supplie

User initialization

Semi-automatic | User sterring/correcting

Both

Automatic

Optimization procedure

Parameters computed

Parameters searched for

Modalities involved

Mono modal

Multimodal

Modality to model

Patient to modality

Subject

Intrasubject

Intersubject

Atlas

Structure imaged

Head

Thorax

Abdomen

Limbs

Pelvis and perineum

Spine and vertebrae
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on the whole image and are generally semi-automatic. To make the registration pro-
cess more robust and to allow user interaction hybrid methods are developed. Each of
these methods are discussed in greater detail in the following comprehensive surveys
|38, 39, &0), A1), @21, @3], @4]. There is no single method which outperforms all other meth-
ods and which can be used in all situations. The registration result is always a trade-off
between accuracy and speed.

The pioneering work of Terzopoulos et al. [A5] and Bacjsy & Kovacic [46] have shown
the advantages of introducing physics-based models to simulate volumetric deformation.
The physics-based deformable surface models do not use any similarity measures explic-
itly and, feature matching and mapping function steps of the registration procedure are
done simultaneously. The basic idea is to model an object while tracking it over time
until achieving equilibrium between internal forces as defined by physical material prop-
erties, and external constrains based on the initial and final states of the object. One
of the most widely used physical methods is the mass-spring model, which is a discrete
representation of matter consisting of nodes connected by elastic links |58, B3Il 60, 1]
Although real- time performance can be achieved using a mass-spring model, the be-
havior can often be unstable and unrealistic. Mass-spring methods are often used for
surgery simulations due to their lower computational complexity and simplicity [63] 64].
More realistic deformable 3-D models are achieved by introducing continuum mechan-
ics for linear elasticity. Linear elastic and visco-elastic registration models have been
extensively described in the literature. The particular behavior of an elastic body is
a function of both the internal stress and strain and the external forces applied, ac-
cording to the physical principles. Broit 7] was the first to study elastic registration,
where the images were viewed as two different observations of an elastic body, one be-
fore and one after the deformation. The displacement of the elastic body is derived
using a linear elasticity model. A survey on elastic registration methods with empha-
sis on landmark-based schemes has been presented by Roth [A8]. In the visco-elastic
framework the Navier-Stokes viscous-fluid partial derivative (PDEs) equations describ-
ing the physical medium are solved on a discrete partial grid. This model, introduced by

Christensen [49], b(] and Bro-Nielsen |21l K2] is topology preserving and gives excellent



47

results allowing both large displacements and nonlinearities. Unfortunately, this con-
tinuous transformation it is no longer guaranteed when solving the PDE on the discrete
image grid. The visco-elastic model proved to be faster than optical flow based force
model [53]. Other possible physics-based models include tensor-mass methods [b4] Hhi
which allows real-time topology changes and implicit surfaces [62]. Picinbono et. al
|56l B7]. This approach was developed an extension of tensor-mass method integrating
geometrical non-linearity, which is a requirement for most surgical applications such as
cutting, tearing or perforating.

The most widely used representations for deformable volumes are parametric models
with thin plates-splines representation [65] and finite element models (FEM) introduced
for computer engineering by Zienkiewicz [66]. Finite element methods (FEM) are used
to find an approximation for a continuous equilibrium equation. In FEM framework,
the surface "s mesh of the deformable object is decomposed into discrete finite elements
joined at discrete node points. The 3D displacement of any element ‘s point is approxi-
mated as a linear combination of the components of the interpolation functions applied
to the node displacements. An equilibrium expression is derived for each element and
is assembled in a large and sparse linear system which has to be solved. The finite ele-
ment model approach to the numerical solution of deformable surface models was first
introduced by Terzopoulos & Metaxas [67] and later by McInerney & Terzopoulos [68].
Finite element analysis is a powerful computational tool for modeling soft tissue defor-
mations. An extensive amount of research has yielded positive results for intra-patient

nonrigid image registration by using biomechanics and finite element models (FEM) in

neurosurgery [T}, [72] [73, [74], breast [[(5 [76), [77], prostate [[(8, [[9, 8], heart’s ventricle
8T, B2] as well as in radiotherapy settings |83, 4] .

In the context of liver therapy, several image registration methods has been investi-
gated for alignment of serial data sets. Previous research has shown that the magnitude
of liver deformation is typically 10-30 mm during relaxed respiration [85, B6]. To ac-
count for motion and deformation of the liver caused by respiration research has been
done to register sparse intra operative ultrasound data to preoperative images of the

liver using statistical models [87] and intensity-based methods [88]. Boes group [89]
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have attempted to generate a geometric patient specific liver model by using manually
identified anatomic landmarks and thin-plate splines, which could be matched to a stan-
dard liver using the same registration technique. Unfortunately, this method based on a
normalized surface model requires substantial user interaction and has the limitation of
using discrete landmarks rather than volumetric data. Recently finite element method
(FEM) has been investigated in creating a biomechanical model of the liver [90], in
multi-organ deformable image registration [91], for intra-operative soft tissue deforma-
tion of the liver using incomplete surface data [02]. A FEM was used to simulate the
differences in distribution of temperature and the electric field potential at the end of a
12 min radiofrequency ablation procedure [93].

There have been many liver deformation studies, but only few have been reported on
tracking metastases and primary tumors in the liver. Charnoz et al. [94] registered the
segmented vascular network of the liver for the follow-up of tumor evolution. However,
the blood vessel branch points are difficult to identify when different acquisition times
are used and registering the vascular system alone does not take in account any informa-
tion regarding surface liver deformation. Carrillo et al.J95] used a rigid intensity-based
algorithm to perform registration of MR liver images acquired before thermal ablation
and following treatment and reported an accuracy of approximately 3 mm.

Tracking of tumors to support surgical interventions or radiotherapy planning re-
quires the accurate mapping of every volume position among multiple images series.
Deformable organ registration can not be accomplished using image information alone,
intrinsic properties of tissue mechanics must also be introduced into the registration
process. As level of computational power continues to grow, deformable registration
coupled with finite element analysis is becoming a much more accessible tool for medi-

cal image applications.
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3.2 Correspondence Methods for Registration

The 3-D registration problem can be decomposed into two parts by estimating the point
correspondences and the transformation. Since solving for either one without informa-
tion regarding the other is very difficult, most non-rigid registration approaches use an
iterated estimation framework. Given an estimate of the correspondence, the trans-
formation may be estimated which in-turn can be used to update the correspondence.
In this Thesis we introduce a, Modified Iterative Closest Point (m-ICP) method, and

compare it with two different correspondence methods.

3.2.1 Curvature Scale Space (CSS)

Curvature scale space was first introduced by Mokhtarian and Macworth [96] as a new
shape representation for planar curves. The Curvature Scale Space representation is
based on the evolution concept - the process of describing a curve at increasing levels
of abstractions. The basic idea behind CSS representation is to convolve a parametric
representation of the curve with a Gaussian function, as the standard deviation of the
Gaussian increases, and to extract the curvature zero-crossing points from the resulting
curves.

The curvature of a curve is defined as the derivative of the tangent angle to the
curve. Considering the curve in the parametric form (z(u), y(u)), where u is an arbitrary

parameter, the curvature can be expressed as:

oy — F) = i)

(#(u)?) + 9y (u)?)2

Special cases of parametrization result in simplification of curvature’s formula. If

we consider a closed planar curve with normalized arc length parameter u € [0,1], the

curvature formula will be k(u) = z(u)y(u) — z(u)y(u). An evolution of the curve can be

achieved by Gaussian smoothing to compute the curvature at varying levels of detail.
If g(u, o) is a Gaussian kernel of width o defined by:

1 _ w2
u,0) = exp 202
9(u,0) s P
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Figure 3.1: Left) At o = 50, 20 locations of curvature zero crossing for a planar curve.
Right) Curvature scale space image

an evolved curve is defined by T'y, = {(X(u,0),Y (u,0)),u € [0,1] where ® denotes
convolution and:

X(u,0) = z(u) ® g(u, o)

Y(u7 U) = y(u) ® Q(U, U)

According to the properties of convolution, the derivatives of X (u, o) and Y (u, o) can
be easily computed. As o increases I', becomes smoother and the number of curvature
zero crossing points on it decreases. The binary image called curvature scale space
image of a curve is obtained by displaying the resulting points in (u,o) plane, where u
is the normalized arc length and o is the width of Gaussian kernel. Figure Bl shows a
curvature scale space image of a planar curve.

Curvature scale space image representation retain the local information of the shape

and is robust to noise, scale, and change of orientation.

3.2.2 Modified Iterative Closest Point (deform-ICP)

For most surfaces registration strategies, closest point distances are used as initial es-

timate of the correspondence. With the presence of deformation, the closest point
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Figure 3.2: Deformable registration process.

operator becomes less reliable as a means for determining correspondence. The classi-
cal solution for point registration is the Iterative Closest Point (ICP) algorithm [34] as
described in the Chapter IV. The binary point correspondences are based on a nearest
neighbor heuristic. The algorithm iterates between the spatial mapping and the nearest
neighbor correspondences until the change in the objective error function falls below a
preset threshold.

In attempt to overcome the deformation, a modified ICP-like registration based on a
local motion function was applied for each point of interest. By implementing the motion
function, which allows the points to move along the plane tangent to the surface, the
surface shift is better accommodated. Our method augments correspondence functions
with surface properties by estimating the non-rigid motion using surface normals. In
the standard ICP algorithm, only 3-D point coordinates are used in the estimation of
correspondence resulting in a lack of interactions between neighbor points. Instead of
assuming a trivial correspondence, the search for the closest points take into account
all the neighborhood points with a similar normal direction to the point of interest.
The 3-D point coordinates and normals are then put together in a 6-D space and a
squared error over the neighborhood around the point of interest is minimized. Figure
illustrates this approach.

If in the selection of the closest point only the Euclidean distance are used, points a

and b from the data set will be associated with point C from the model set. However, the
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points @ and A from the data and corresponding model set have approximately similar
normal directions. In such cases, more weight must be given to the normal component
and the proper choice of the closest point is accomplished, a — A, and b — B. If we
decompose the deformation as a series of small increments, the motion is estimated as
a small displacement in the direction of corresponding points. At every increment, the
surface of the pre-treatment liver data set is deformed to map on the surface of the post-
treatment liver data set, allowing all the points to move in the tangential direction. The
main advantage of the algorithm that was developed as part of this Thesis is that the
estimation of deformation is accomplished in small incremental steps, and the motion

is applied to the corresponding point set at each iteration.

3.2.3 Robust Point Matching (RPM)

Parametric deformable models rely on linear decompositions taken across basis functions
and do not, themselves, enforce properties such as one-to-one mapping. To overcome this
problem we utilized a Robust Point Matching (RPM) algorithm [T00]. The Robust Point
Matching (RPM) algorithm was previously developed and used for 2D rigid alignment
[97]. The tremendous flexibility of this algorithm was easily generalized to the 2D and 3D
affine and piecewise-affine mappings [98, 99]. Furthermore, the algorithm’s framework
was extended to a general purpose, by including thin-plate spline as the parametrization
of the non-rigid mapping and the point-to-point correspondence problem was solved by
using a softassign method [08] and deterministic annealing [I0T]. The main idea of the
RPM is to minimize the following fuzzy assignment least squares energy function for the
correspondence between point set A, with points @ = {1,2..K} and point set I, with
points ¢ = {1,2..N }:

N K
Erpyv(M, f) :ZZ Mail|Ti — va)Hz+)\\|Lf|\2+TZmelogmm CZme

i=1a=1 i=1a=1
where my; are the elements of the fuzzy correspondence matrix M, of point a to

point i, with mg; € [0, 1] and satisfying one-to-one correspondence conditions:

SN e =1 fori={1,2.N}
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SEt g =1 fora={1,2.K)

The extra row N + 1 and extra column K + 1 are used to handle the outliers. The
non-rigid transformation is represented by the mapping function f, a point v, is mapped
to a new location f(vg). The appropriate constrains on the mapping are introduced by
choosing a specific smoothness measure, L, as is reflected in the second term of the
energy function. The mapping function is chosen to be a thin plate spline (TPS), and
its smoothness is measured in terms of the bending energy within a finite window. The
third term is an entropy function with the temperature parameter, T, which controls
the fuzziness of correspondence. At higher temperatures, the entropy term forces the
correspondence to be more fuzzy. The last term with the weight parameter ( control
the robustness, preventing the rejection of too many points as outliers. The, A, term is
coupled with the temperature, T', in the deterministic annealing process.

The RPM algorithm utilizes an alternating optimization scheme to iteratively up-
dates the correspondence parameter, M, and the spatial transformation function, f,
while gradually reducing the temperature, T, which each a function of the other. The
spatial mapping is solved in closed form, which permits its use for data of any dimension,

2D or 3D.

3.3 Finite Element Method (FEM): Theory

In the approach presented in this Thesis, deformation of soft tissue is modeled based on
the linear elasticity theory. The behavior of an elastically deformable object is governed
by a partial differential equations. Finite element methods (FEM) have been regarded
as a versatile, effective and accurate technique for discretization of continuum models.
In this section, we briefly introduce the linear Finite Element Method for deformable
objects.

The total work IT of a deformable elastic system can be written as the sum of the
externally applied forces W and the elastic potential energy A due to the development
of material stresses and strains II = W + A [66]. In order to determine the object

deformation, the material is modeled as a linear elastic continuum in static equilibrium,
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with no initial stresses or strains and the total work II is expanded in terms of the

material displacements:
W = [, FudV and
A=1[,0TedV =1 [, " DedV

where V' represents the volume of the deformable object, u = u(x,y, 2z) is the dis-
placement vector, F' = F(x,y,z) is the vector representing all the forces applied, o is
the Cauchy stress tensor and ¢ is the linear strain tensor. D is the material stiffness

matrix relating the stress and strain in Hooke’s generalized law:
o= De

For an isotropic material, the components of the matrix D depend only on two

elasticity parameters, Young’s Modulus E and Poisson’s ratio v:

_1—V 1% v 0 0 0 ]
v 1—v v 0 0 0
5 v v 1—v 0 0 0
D:7(1+y)(1_2y)
0 0 0 05—v 0 0
0 0 0 0 0.5 —v 0
i 0 0 0 0 0 05—1/_

If the continuum object is discretized, it is intended to find an approximation for the
equations relating the internal displacements and the external forces applied depending
on the material parameters of the model. Four general steps [102] are used in FEM

framework :

1. the deformable object has to be discretized into a finite set of elements e, assumed
to be interconnected at nodal points on their boundaries. The choice of elements
e.g bar (or truss), triangle or tetrahedron, depends on the physical properties of
the deformable object under actual loading conditions and how close to the actual

behavior the results must be.
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2. the displacement functions within each element e has to be defined. Linear,
quadratic and cubic polynomials are frequently used function. The displacement
functions are often called interpolation functions or shape functions. If n is the
number of nodes in the element, the continuous displacement field u of any point
inside the element is approximated as a linear combination of the components of
the interpolation functions IV; applied to the displacement at the element’s nodal
points u;:

n
Ue = Z Nfu§
i
Therefore we can express displacement of any point inside of deformable object,

from the element node displacements and the element shape functions.

3. strain displacement and stress/strain relationships must be defined. For a elastic
object the differences between the original and current positions of all object
points are represented by a continuous displacement field v = [u, v, w]”. For small
displacements, the relation between the strain ¢ and the displacement field u is

approximated with the linear Cauchy-Green tensor:
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Using nodal displacements u; of point ¢ in x-y-z directions the strain displacement

is defined as: € = Bou where
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4. derive the element stiffness matrix and equations . An equilibrium expression is
derived for each element e and then assembled in a large and sparse linear system.
The relation between the nodal forces f; and the nodal displacements u; which
has to be minimized at every node i of each element e, assuming that point loads

are acting on the nodes, can be expressed as :

H: %/ aTedV—Zufff
14 i

In the linear finite element formulation became:

H u TKoue — Z:uefZ

with

K.=BI'DB.V,

K, is the element stiffness matrix and V, volume of element. Equilibrium corre-
sponds to a minimum of II. To determine the extreme values, the partial derivative
of II are solved with respect to nodal displacements u; and the relation between

displacement vector u and the force vector f is obtained for each element:
e — fe =0

The only remaining step is to assemble the global stiffness from the element stiff-
ness matrices. The result is a large and sparse linear system, the solution of which
will provide the deformation field corresponding to the global minimum of the
total work:

F=Ku

where K is the stiffness matrix numerically integrated over the object s volume, u
is a displacement vector of all nodes and F' is a vector that combines all external
forces and boundary conditions which describe the initial and the end states of
the deformation process. The dimension of global stiffness matrix K is 3Nax3N
and the dimension of the global force vector F'is 3N where N is the total number

of nodes.
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Hence, this method is one in which a continuous quantity, such as the displacement
throughout the body, is approximated by a discrete model composed of a set of piecewise-
continuous functions defined within each finite element. The precision of the approxi-
mation improves with the level of discretization, and the degree of interpolation chosen,
but to the detriment of computational time and memory size. A number of advantages
that include the ability to: (1) model objects composed of several different materials
because the element equations are evaluated individually; (2) vary the size of elements
where necessary; (3) manage unlimited number of boundary conditions; and (4) man-
age nonlinear behavior existing with large deformations and nonlinear materials. All of
these features have made the FEM very popular in the area of deformable models and

surgical simulations.

3.4 Tumor Tracking Model

We present a surface based non-rigid method for tracking tumor across pre- and post-
treatment CT liver images using a finite element model based deformable system. The
strategy of the algorithm is twofold: the first step is to align the liver’s mesh surfaces
and the second step is to model the volumetric deformation using a linearly elastic
finite element model (FEM) which has boundary conditions generated from the result of
surface registration. When the liver is treated as a purely elastic body, at the equilibrium
state, the strain energy stored as tissue distortion is equivalent to the work of external
forces applied to its surface. In this framework the major challenge for tracking tumor
location is not the tissue mechanical properties for FEM modeling but the evaluation of
boundary conditions defined by the correspondence of liver boundary points on 3D image
sets taken at different times. Different registration algorithms, presented in Section I,
have been investigated to determine the proper correspondence of the boundary points
which ultimately drive the transformation. To accommodate the local deformation,
the problem of tracking tumor location can be formulated as the bijective relation of
recovering location of any points from the pre-treatment images in the post-treatment
image.

In this formulation, surface/volumetric based registration-deformation algorithm can
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Figure 3.3: Flow chart of the integrated process to quantify tumor motion

be decomposed into three main components: extracting boundary points of interesting
structures from images, matching the data and model surfaces, and then extending the
surface-based transformation to the full volume using FEM. Figure describes the

main steps of our approach.

3.4.1 Segmentation and 3D Mesh Generation

Two data sets of tomographic images were acquired using GE Light Speed VCT scanner.
The pre-treatment CT scan was taken at normal exhale and inhale breath-hold and the
post-treatment contrast was acquired at inhale. Contrast enhanced images provide
detail allowing accurate definition of the margins for both liver and tumor. The data
set consists of axial slices of 1.25 mm thickness and matrix size of 512 x 512 pixels of
the entire body. The fist step in mesh generation is to extract the liver and tumor’s
contour shapes from these data sets. Segmentation process generate a series of discrete
contours which are represented by a list of vertexes associated with each transversely
image slices. The contour extraction was performed using MIPAV software package [T03)]
using a two dimensional semi-automated active control model. The segmented contours
were converted to a volumetric binary mask. The data set for the liver was reduced to
approximately 180 slices and while the tumor data set is patient specific, varying between

30-40 slices. The binary mask was converted to a tri-element surface mesh using the
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Figure 3.4: Result of the original surface with Marching-cubes algorithm

sub-voxel triangulation marching cubes algorithm |[I04]. The basic principle behind the
marching cubes algorithm is to subdivide the data space into a series of small cubes on
a voxel-by-voxel basis. The algorithm 'marches’ through each of the cubes testing the
intersection of the 3D contour surface with each voxel and replacing the cube with an
appropriate set of polygons. The total sum of all polygons generated will be further
reduced to a triangle surface representation called mesh, that approximates the one the
data set describes. The result of marching cubes algorithm on liver surface mesh is
shown in Figure B4

However, the resulting polygonal surfaces were too rough and the number of triangles
generated too large for further processing. Using Visualization Toolkit [I05], smoothing
and decimation algorithms were developed in order to avoid staircase effects and to
simplify the mesh. The mesh was smoothed using a windowed sinc function interpo-
lation kernel [I06]. The basic idea of Taubin group [I06] design was to approximate
the transfer functions of the low-pass filters by Chebyshev polynomials using standard
signal processing low-pass filters. As opposed to kernel convolution, using Chebyshev
polynomials made possible to apply the filters in an iterative diffusion process. The
more smoothing iterations applied, the higher the degree of polynomial approximating
the low-pass filter transfer function. Each smoothing iteration, therefore, applies the
next higher term of the Chebyshev filter approximation to the polyhedron. This decou-

pling of the filter into an iteratively applied polynomial is possible since the Chebyshev
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Figure 3.5: Windowed sinc smoothing result : Left) The smoothed mesh superimposed
with the original one. Right) Smoothed mesh

polynomials are orthogonal, i.e. increasing the order of the approximation to the filter
transfer function does not alter the previously calculated coefficients for the low order
terms [I05]. The meshes for liver, were smoothed in 100 iterations with pass band value
for the windowed sinc filter of 0.001. The tumors were smoothed with fewer iterations
to maintain the surface irregularities. An example of the smoothing process for the liver
is illustrated in the Figure B3

The number of triangles in the mesh was reduced by applying a quadric decimation
filter [I07] allowing fast and accurate geometric simplification of the mesh. This ap-
proach defines for each face of the mesh a quadric equal to the squared distance of a
point to the plane containing the face. For each vertex in the mesh is assigned the sum
of quadrics on its adjacent faces weighted by the face area. After the decimation process
is complete less storage space is required while maintaining an accurate description of
volume. The meshes were reduced down to 10% of their original size. The combined
effect of the smoothing and the decimation algorithms was to adjust the triangles of
the mesh, making them more evenly distributed, improving the appearance while main-
taining accurate mesh topology. An example of the process of generating a liver surface
mesh is shown in the Figure

Based on the simplified triangulation of the surface, the volume of liver with the tu-
mor embedded was decomposed into tetrahedral elements without changing the surface

topology. The goal was to generate suitable tetrahedral meshes for numerical simulation



61

Figure 3.6: Quadratic filter decimation: Left) The smoothed mesh superimposed with
the decimated one. Right) Decimated mesh

using finite element. We have chosen this element because a tetrahedron does not self-
penetrate, whereas a higher order element tends to deform and result in self-intersection.

We used a public domain quality tetrahedral mesh generator TetGen [I08], which is
based on an implementation of Constrained Delaunay algorithm [T09]. A constrained
tetrahedralization is a decomposition of a three-dimensional domain into a tetrahedral
mesh, such that the output boundary is enforced to the input boundary represented by
the faces of the mesh. This feature proved to be very useful, in our case for combining
two meshes which share the same boundary, furthermore the boundary surfaces of the
objects represented in the mesh can be extracted from the mesh as triangulated sur-
faces. In FEM numerical simulation, the mesh shape and mesh size are important for
the approximation error and convergence of the numerical methods. TetGen performs
efficient mesh refinement, inserting new vertexes, to improve the overall mesh quality.
For accuracy in the FEM it is necessary that the shapes of the elements have a small
radius-edge ratio and a maximum volume element constraint. The radius-edge ratio of
an element is the ratio of the radius of the unique circumsphere to the length of the
shortest edge. The resulting tetrahedral mesh is a finite element mesh which consists of
good-shaped tetrahedrons and the mesh size well conforms to the boundary size - the

mesh size is small close to the boundary and is gradually increased to the interior.
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Figure 3.7: A fully connected and consistent tetrahedral mesh for liver and tumor.

The following figure B illustrate a fully connected tetrahedral mesh containing both

the liver and the tumor.

3.4.2 Boundary Conditions from Registration

Figure left shows the result of the ICP registration algorithm. Because of the
nonlinear/deformation motion of the liver between consecutive studies, accurate surface
registration can not be obtained when only rigid registration algorithms are used. Figure
right shows an example, where the tumor associated with the pre-treatment liver
was erroneously registered out of surface of the post-treatment liver because of the noted
limitations of such algorithms.

Our approach starts with a rigid registration step necessary to provide the best
alignment of the pre-treatment/data and the post-treatment/model surface meshes fol-
lowed by the deform-ICP registration method previously described. The liver’s external
surfaces are registered based on the change in surface positions leaving the deformation
of the interior volume as the residual error to be accounted for by the finite element
analysis. The FEM will compute the deformation of the tumor’s surrounding nodes in
the mesh. This combination of the registration which provide the boundary conditions
assigned to surface nodes and the finite element modeling which is used to infer tumor

location in subsequent studies has proven to be extremely reliable during the course of
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Figure 3.8: Left) Result of rigid ICP registration: light colored surface shows the post-
treatment, and dark colored is the liver pre-treatment. Right) Rigid registration tech-
nique do not correct for the surface deformation: post-treatment (light color) and pre-
treatment tumor.

our experiments.

3.4.3 Finite Element Implementation

Once the image sets are registered, the final step of our approach is to model the defor-
mation based on the linear elasticity theory. Accurate prediction of tumor location rely
on accurate representation of soft tissue. We assume that liver tissue is an elastic, in-
compressible material ( no volume change during deformation), isotropic (no directional
preference) and homogeneous (same tissue composition). Given an elastic object rep-
resented as volumetric mesh, deformation induces the movement of every vertex within
the object. This can be modeled as a mapping function of the positions of all vertices
from the initial configuration to those in the deformed configuration.

We take advantage of the tetrahedral volumetric mesh building in this structure our
finite element model with a 2-node element. Our resulting mesh structure is a consistent
tetrahedral mesh that contains physically connected liver and tumor. We have chosen

this 2-node element because:

e each node has a relatively small number of neighbors resulting in fewer non-zero

elements in the stiffness matrix and less expensive computation.

e it simplifies the integration of the derivatives of the potential energy.
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Instead of using forces, which are difficult to determine accurately, we impose boundary
conditions to the liver object by assigning fixed values to the displacement vector, u.
Boundary conditions are assigned to surface nodes based on the change in node posi-
tions during registration. Material properties and these boundary conditions which are
integrated over each element of the mesh and distributed over the mesh’s nodes drive
the deformation and the deformation propagates throughout the entire volume. Free
software package 788 |[I10]] was used to generate the solution of the linear system of
equations by a preconditioned conjugated gradient method. The solution of the linear
system provide the displacements of all internal nodes of the volumetric mesh, allowing

reliable tracking of each tumor’s deformation.

3.5 Phantom Validation of Deformable Registration

Quantitative validation of the deformable registration algorithm has proved to be diffi-
cult because of the general lack of ground truth information. Since there is rarely if ever
a “gold standard” with which to evaluate nonrigid registration results, semi-quantitative
evaluation by a human expert is often used as a substitute. To test the performance
of the algorithms we designed and evaluated both 2-D synthetic data and imaged beef
liver containing phantoms to address this issue. Comparative performance analysis was
conducted using both rigid and non-rigid approaches.

The basic idea comes from the fact that for an elastic object, the strain energy
of the object equals the work done by the external forces applied. The effect of the
material parameters is limited if all the displacements are prescribed from the results of

registration.

3.5.1 2D Rubber Phantom

We have created a rubber balloon model that can be used to induce measurable defor-
mations. The balloon was stretched over a circular ring with the diameter of 42 mm.
A closed curve was drawn on the balloon in the shape of a 2-D liver section and 21

points of 1 mm diameter were drawn inside the closed curve with uniform distribution.



Figure 3.9: The base 2D rubber phantom model and three deformation representation.

The centroids of these points served as targets while performing multiple deformations
of the curve to simulate consecutive visits. In all, the base model was deformed into
three different representations that were generated by manually stretching the balloon
at different locations. Figure B3 displays the balloon base model and the three deformed
states.

The four-step algorithm previously presented was evaluated in order to predict the
location of the markers in all deformed data sets. Using the open source software Auto-
Trace [I12] the contours of the closed curve and the 21 marked points were automatically

segmented from all four representations. A one-to-one correspondence was assigned for
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Figure 3.10: Boundary conditions and finite element triangulation.

the markers in all deformed states. In order to evaluate the proper correspondence in
the applied boundary conditions, the closed curves were registered using three different
algorithms: CSS, deform-ICP, RPM. The next step of our approach was to model de-
formation using the finite element method. The interior of the closed curve with all 21
markers were tessellated using the two-dimensional finite element mesh generator and
Delaunay triangulator, Triangle [IT3], [[T4]. The following Figure illustrates the two
steps procedure: registration followed by the finite element analysis.

The degree of deformation of the 2D rubber phantom was characterized as the length
of the displacement vectors of all # = 1..21 markers. The centroid locations of the desti-
nation markers in the image are cilest. When we register based on rigid-ICP, the centroid
locations of the markers are C:"igid—ICP and after applying our deformable surface regis-
tration model, the centroid locations of the markers in the deformed image are cfieform.
Therefore the accuracy of the deformation model can be quantitatively calculated by
the vector length:

d; :H cilest - cileform H
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destination ——

Figure 3.11: 2D phantom evaluation of the displacement vector of the markers: the
Euclidean distance between the result of deformation and the destination state is com-
puted.

Figurd3ITl graphically illustrates the results of deformation from our FEM model su-
perimposed with the destination image. Different amounts of deformation can be ex-
perienced in different regions due to the smaller concentration of deformations in the
central regions and the larger amount at the periphery areas. Figure BTl shows that
the deformations exhibit a greater effect on peripheral markers as compared to central
ones.

We have four instances of deformation data sets and twelve registration-deformation
results are obtained, generating a distribution of displacement vectors. The minimum,
average and maximum of displacement for all markers over all twelve results are shown
in the Figure and the mean value is reported in the table.

The average error for the registration achieved using a finite element model was
slightly higher when deform-ICP algorithm was used (1 mm), than with Robust Point
Matching (RPM) algorithm (0.7 mm). This error may be due to the lack of correspon-
dence information provided in the calculation of the boundary conditions.

In order to further improve results we studied the manner in which radiologist have

traditionally assessed consecutive imaging studies. Radiologists typically look for blood
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rigid-ICP 1.2 24
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Figure 3.12: 2D registration errors for different correspondence methods: deform-1CP,
RPM and CSS algorithms.
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Figure 3.13: Deform-ICP registration errors with different number of landmark points.

vessels landmarks, but in trying to implement an analogous procedure using a computer-
based approach the difficulties arose while extracting landmarks in the two images that
actually correspond to the same physical point. To evaluate the potential of this ap-
proach we have randomly chosen a small number of representative landmark points in
the original, undeformed image and specifically track each of them in the deformed
images. This approach was efficiently implemented by including the landmark points
in the further deformation surface registration processing and analysis. To avoid any
simulation inconsistencies, the landmark points were chosen in the central zone of the
image and we force them to be part of the FEM node structure. Using deform-ICP
algorithm the deformation results when different number of landmark points are used
are presented in the Figure BI3 The average registration-deformation error is about
0.5 mm when 3 landmark points are used, with maximum error between 0.7 mm and
0.3 mm when 1 respectively 5 landmark points are used.

A motivation for using this particular solution is that it can be easily introduced into
the existing work flow of radiologist. By having the radiologist induce a few landmark
points the accuracy is improved while at the same time the computer-assisted tools add

speed and reliability to the radiologist "s assessment, helping them in the interventional
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and treatment planning process.

3.5.2 3D Beef Liver Phantom

The accuracy of the deformable model was evaluated using a real beef liver. To simulate
the internal abdominal environment and to minimize assumptions, the beef liver was
embedded in an agar gel to preserve the natural shape. Using a syringe 21 plastic beads
were uniformly distributed throughout the liver. All the markers had the same spherical
shape with diameter of 5 mm. To enable accurate segmentation and position estimation,
the diameter of the spheres were chosen to be slightly larger than the distance between
two successive scanning planes. For our purposes Z spacing was 1 mm. The plastic
markers were easily identified in all of the CT scans without creating any noticeable
imaging artifacts. The markers are well suited to validate our model. The liver was
imaged, deformed and re-imaged to simulate changes in shape of the liver that can
occur due to differences in patient position across consecutive imaging studies. The
markers do not exhibit shape variations as can occur in actual tumors which have been
partially ablated.

The deformable registration component of our approach is based on changes in sur-
face position, thus three deformation types characteristic for real patient acquisitions
were simulated by compressing and tilting the container with the beef liver. The beef
liver phantom data sets were scanned with General Electric LightSpeed CT scanner.
Volumetric images were obtained using the following scanner settings: 120 kV, 180 mA,
standard reconstruction type, and high quality scan mode. The field of view was 230
mm, producing a voxel size of 0.45 mm x 0.45 mm x Imm. Each CT scan was composed
of 130 slices of 1 mm thick (512 x 512 pixels, 16 bits) exported in DICOM format. Fig-
ure BTl displays the original setup of the beef liver and to illustrate the deformation
data sets that were generated we include two CT sections targeting the same marker.

Using the open source software MIPAV [I03] the 3D surfaces of the beef liver and
all markers were semi-automatically generated from the DICOM files for all four repre-
sentations. A one-to-one correspondence was assigned for the markers in all deformed

states. Figure BT shows all the markers uniformly distributed in the liver.
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Figure 3.14: 3D beef liver phantom: Upper row) initial setup with a CT section. Lower
row ) CT section of two deformation data sets, targeting the same plastic bead marker.

Figure 3.15: 3D markers uniformly distributed inside the beef liver.



72

Surface mesh Volumetric mesh
Data Sets Marching Smoothing &
cubes Decimation

Points | Facets | Points | Facets | Points | Facets | Tetrahedrons

Original 270200| 540000| 2723 5401 3856 | 35412 16356
Deformation 1 | 238400| 476400| 2405 4765 3372 | 31098 14358
Deformation 2 | 221800| 443200| 2239 4433 3196 | 29618 13701
Deformation 3 | 238900| 477400| 2410 4775 3457 | 32103 14858

Table 3.2: Number of points generated in the construction of liver surface and tetrahe-
dral volumetric meshes.

Using the three-dimensional mesh generator TetGen [I0§], a high quality tetrahedral
meshes were created that conform to the input surface meshes, so that some nodes of
this model corresponded to the centroids of the markers. Table 3.2 summarizes the
number of points generated for liver surfaces and for the tetrahedral volumetric meshes.

In this tetrahedral mesh structure we built a finite element model with 2-node el-
ement, so that the markers share common mesh nodes with the liver, allowing the
volumetric displacements of the markers to be inferred from liver’s surface deformations
using FEM. As mentioned in the previous section the displacement of all vertices in the
volumetric mesh can be reconstructed by the linear force-deformation relation Ku = F,
for a stiffness matrix K with parameters Young’s modulus £ and Poisson’s ratio v. The
liver is filled with blood, which implies that ex vivo tissues should not behave like in
vivo tissues. The elastic properties of the liver have shown a strong variability. Appro-
priate linear elastic material parameter values for the beef liver were determined from
literature [TTT]. Most soft tissues are considered as roughly incompressible materials
and are assumed to have a Poisson’s ration in the range of 0.45 < v < 0.49. We assume
the model material properties as isotropic and linear with E describing the stiffness of
the material of 11 kPa and v describing the compressibility of the material of 0.47. Only

the Poisson’s ratio is important in our FEM analysis since only displacement boundary
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Marker | Rigid ICP | Deform ICP | RPM |

1 - peripheral 12.9683 6.6741 1.49918
2 - peripheral 11.5913 3.94894 2.41309
3 - peripheral 16.9037 8.70856 1.1506
4 - peripheral 8.09239 5.82661 3.15514
5 - central 7.99102 2.67276 0.81779
6 - central 7.65066 2.85603 2.43957
7 - central 6.35848 4.72732 1.75357

Table 3.3: Improvement of markers error [mm| as a result of finite element modeling

conditions were applied. Free software package Z88 [I10] was used to generate the solu-
tion of the linear system of equations by a preconditioned conjugate gradient method.
The finite element analysis was performed in a single step on a Centrino Duo 1GHz Dell
with 1GB of RAM and the average clock time was 10 seconds.

The accuracy of the deformation depend on the deviation of the displacements and
the boundary conditions generated by the surface registration. In order to evaluate
the proper correspondence in the applied boundary conditions, the livers surfaces were
registered using deform-ICP and Robust Point Matching algorithms. The displacement
values of deformation for some central and peripheral markers are shown in the Table.

There were four instances of the deformation data sets and twelve registration-
deformation results were obtained, generating a distribution of displacement vectors.
The minimum, average and maximum of displacement for all markers over all twelve
results are shown in the Figure and the mean value is reported in the table.

The FEM model provides significant improvement over results from rigid registration
alone. Since the model is primarily driven by the surface data, the method by which
boundary conditions are chosen for each node can play a significant role in the resulting
accuracy. The maximum registration error when the deform-ICP algorithm was used
was - 9 mm and at the cost of greater pre processing time was 5 mm when Robust Point
Matching (RPM) algorithm was used.

The potential sources of errors can occur from:

e segmentation - surface based registration algorithms suffers from surface segmen-

tation errors.
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Figure 3.16: 3D registration errors for different correspondence methods: deform-ICP

and RPM.
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e finite element modeling - discretization errors resulted from geometric differences
between the boundaries of the model and its finite element approximation, and

modeling errors due to numerical integration in solving the linear system.

e material properties measurements - the same average values of experimentally
derived material properties for both liver and tumors are used in our finite element
analysis. Once again, since boundary conditions are used to drive the deformation,
the accuracy involved in the material properties is not as important as the accuracy

involved in approximating the shape of the livers in the model.

We did not take in account the possible migration of the implanted markers, but the
obtained mean displacement errors of deformation demonstrates very good results and
is in agreement with previous studies done for these cases. The registration accuracy
and possible migration of internal fiducial 2 mm gold markers implanted into 4 patients
with liver tumors and 14 patients with prostate cancer were investigated by Kitamura
et al. [IT5]. Using a real-time tumor-tracking radiation therapy system, the relative
relationship between the coordinates of the center of mass of the organs and those of
the markers were calculated. Assuming that organs do not shrink, grow, or rotate the
maximum standard deviation of migration error in each direction was estimated to be

less than 2.5 mm for the liver and less than 2.0 mm for the prostate.

3.6 Patients Study

The proposed model for deformable liver surface registration was used to predict the
location of the tumors in data sets corresponding to three patients with liver metas-
tases which have one hepatocellular carcinoma. Before treatment planning each patient
underwent to an intravenous contrast CT imaging. The liver was imaged during breath-
hold (reducing respiratory motion artifacts) before and after the injection of contrast
during selected phases of contrast distribution, ( typically early and late hepatic arterial
phase and portal venous phase). All images used in our model were acquired during
the portal venous phase because the important details for detecting and characterizing

hypo vascular lesions and metastatic deposits are apparent during this phase. At the
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time of radio-frequency ablation treatment another CT scan of the patient was obtained
in the exhale breath-hold position. A diagnostic contrast inhale CT scan was obtained
1, 3 and 12 months after the completion of treatment. Volumetric images were obtained
with General Electric LightSpeed CT scanner, using the following scanner settings: 120
kV, 180 mA, standard reconstruction type, and high quality scan mode. The resolution
of the CT was 512 x 512 x n, where n varied to accommodate the patient extent and the
voxel size was 0.93 mm x 0.93 mm x 1.25 mm slightly varying between patients. Figure
BT1 shows the pre-treatment, 1 and 3 month follow-us CT scan and for the patients.

The tumor location is determined by visual comparison of the predicted and actual
positions as shown in the Figure

Kitamura et al. [IT6] implanted a 2 mm gold marker near tumors to investigate
the impact of tumor location, cirrhosis and history of liver surgery on the motion of
tumors throughout the liver in the trans axial direction. They reported the average
amplitude of tumor motion in the 20 patients was 444 mm (range, 1-12 mm) in the
right-left direction, 9£5 mm (range, 2-19 mm) in the craniocaudal direction, and 5+3
mm (range, 2-12 mm) in the anteroposterior direction.

In general, rigid registration of the segmented liver reasonably aligned the central
area of the organ, while the residual deformation, relatively larger in the periphery, was
evaluated by the FEM model. The liver deformation using linear elastic model gradually
deepens with an increasing force load. To demonstrate the potential of the proposed
model we have applied it to test non-rigid registration of portal vein. We assume the
CT data from 1 month follow-up as visit 1 and 3 month follow-up as visit 2. Because
of the ramification of the shape of the portal vein it was broken into three regions, left,
middle and right. Each of which was used as virtual tumor targets, as shown in the
Figure

The boundary conditions were applied, while holding the central parts of the liver
in fixed position and forcing displacements in the other regions that as dictated by their
distances resulted from deform-ICP algorithm. The registration deformation errors
were evaluated for portal vein by using root mean square residual error between the

two targets. This metric used in the minimization process of ICP registration algorithm
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Figure 3.17: CT scans for three patients treated by per-cutaneous radiofrequency abla-
tion of HCC : the first column the pre-treatment images, the second column 1 month
follow-up, and the third column 3 months follow-up. The last patient was re-evaluated
for suspected relapse, thus the pre-treatment image is considered after the first RFA.
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Figure 3.18: Visual comparison of tumor location.

Figure 3.19: Left portal vein and middle portal vein.
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describe the total error of fit between the two surfaces. The two meshes are compared
by calculating the mean and standard deviation of the distances between the deformed
surface from visit 1 and the original data from visit 2. The quantitative analysis results
for left and middle portal vein data are shown in the Figure

Figure B2 shows the result of deformation when both portal vein and the tumor

are integrated in the model.

3.7 Summary

Patient follow-up studies which can reliable correlate the spatial position of tumor re-
currences and progression are very important in interventional procedures. In order
to accurately simulate soft-tissue changes, physically motivated deformable models are
required and the parameters of the tissue must be well defined. While is a challenging
problem to obtain realistic material properties, such as Young’s modulus and Poisson
ratios, for all the tissues and structures that constitute the liver, we were able to design,
develop and evaluate a reliable and efficient method for predicting changes in tumor
location across pre- and post-treatment with radiofrequency ablation using simple ap-
proximations. The method incorporates a non-rigid registration and a linearly elastic
finite element model. Surface matching between pre- and post-treatment data was per-
formed by the modified ICP algorithm and the results were input as boundary conditions
for the finite element model to calculate the volumetric deformation. We demonstrated
the convergence and robustness of this approach using both phantom data and actual
patient data sets.

Deformable surface registration is obviously a sine qua non for interventional radiol-
ogy. Careful planning of RFA interventions is of great importance in order to limit the
damage of the healthy tissues. The results of the deformable registration model can be
easily integrated in the scan reading work flow performed by physicians. Using the cur-
rent standard of care for CT screening this procedure is performed without the benefit
and guidance of intravenous contrast. Under these conditions it is possible to identify

the liver, but the tumor margins are often not visible. Through deformable registration,
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Figure 3.20: Left and middle portal vein results: mean and standard deviation of the
distances between the deformed surface from visit 1 and the original data from visit 2.
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Figure 3.21: Deformation results for both left portal vein and tumor: Left) in black the
results of rigid-ICP and in pink the modeling results of deform-ICP and FEM. Right)
in blue the actual positions from visit 2 ans in pink the modeling results of deform-ICP
and FEM.
the tumor position identified on the CT scan adapt and adjust to the new position of the
patient at the time of treatment. Figure shows the accuracy of tumor deformation
determined by visual comparison of the predicted and actual contour positions.

The tumor phantom model that we developed using plastic beads and a bovine liver

is simple, inexpensive and effective. This model may be useful for future algorithm

development, for teaching and for continuing medical education.
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Figure 3.22: Cross-section FEM deformation result : dark solid lines represents the pre-
treatment, dotted lines represents post-treatment, and light gray (blue) the deformed
pre-treatment tumor.
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Chapter 4

Conclusions

Two image-based monitoring approaches were combined and evaluated for their capac-
ity to characterize and track changes in shape and positions of organs during treatment
were evaluated. Image registration describes the process of establishing spatial corre-
spondence between features in a dynamic or temporal sequence of images, in order to
obtain improved diagnostic discrimination and for therapy or surgical planning. For
rigid registration, feature alignment is described as differences in global positioning.
Qualitative assessment of shapes can characterize changes in 3-D images across con-
secutive studies thereby providing an objective means for assessing stages of disease
progression and response to treatment. In non-rigid registration, the transformation
can accommodate deformations due to surgical intervention, soft tissue properties, tem-
poral changes in tumor growth or due to radiotherapy treatment. In the context of
surgical interventions or therapy planning realistic deformable registration models are
essential for any approach to be accurate and reliable. Advanced clinical applications
have become a critical component of the work flow of radiologists as well as the team of
other clinicians who interact with the image data sets. Our vision was to leverage our
core expertise in detection and registration to deliver applications that directly meet

these clinical needs for various care areas.
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