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ABSTRACT OF THE DISSERTATION
3-D Morphometry and Non-rigid Registration forQuantitative Analysis and Clini
al Assessment inRadiologyby Gabriela Ni
ules
uDissertation Dire
tor: Professor David J. ForanThe 
apa
ity to reliably tra
k, model and 
hara
terize morphometri
 
hanges inanatomi
 stru
tures and tumors from 3-D images sequen
es is extremely valuable instaging disease progression and assessing response to treatment.We have designed, developed and evaluated two approa
hes to fa
ilitate 
lini
alassessment in diagnosti
 radiology. The �rst is a tool for performing 
omparative mor-phologi
 analysis and the se
ond is a registration strategy whi
h 
an 
ompensate for
hanges in shape that o

ur in deformable organs when assessing response to treatmenta
ross 
onse
utive imaging studies. The �rst prototype system was used to 
hara
terizethe morphology of ventri
les from MR brain s
ans of patients who had been diagnosedwith Bipolar Disorder or Asperger's Syndrome. Preliminary studies demonstrated that
onventional volumetri
 measurements were insu�
ient for dete
ting and 
hara
terizingsubtle 
hanges in anatomi
 pro�les. We have investigated the use of a double ellipti
Fourier transform to dis
riminate among 3-D 
hanges of anatomi
 stru
tures. It wasshown that 
hara
terization using low frequen
y ellipti
 Fourier des
riptors prov idedan a

urate representation of the anatomi
al stru
tures while allowing for reliable groupseparation. The shape-based 3-D obje
t representation of brain stru
tures developedii



in this proje
t may provide insight regarding the underlying me
hanisms leading to theonset and progression of these disorders.As an extension of these studies, a deformable registration te
hnique was evaluatedfor tra
king tumor response to radiofrequen
y ablation of patients with liver malignan-
ies. The method exploits the 
ombined power of global and lo
al alignment of pre-and post-treatment CT images. The distinguishing 
hara
teristi
s of the system is thatit 
an infer volumetri
 deformation based upon surfa
e displa
ements using a linearlyelasti
 �nite element model (FEM). Using both 2-D syntheti
 phantoms and 3-D beefliver data we performed the simulation of gold standard registration by measuring thea

ura
y of non-rigid deformation. The voxel mean displa
ement error of deformationdemonstrates that the te
hnique provides valuable information for surgi
al interventions.This approa
h is general methodology for tra
king deformable organs using non-rigidregistration with respe
t to FEM simulations. It provides a basis for monitoring tissueresponse and therapy planning for a range of medi
al appli
ations in the brain, breastor heart.
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1
Chapter 1Introdu
tionModern imaging te
hniques have be
ome invaluable 
lini
al and resear
h tools for vi-sualizing anatomi
 stru
tures, non-invasively, however, some of the te
hni
al 
hallengeswhi
h arise during post-a
quisitional image analysis 
ause investigators to opt for semi-quantitative studies and/or subje
tive interpretations of data. With the in
reased useof 3-D imaging methods su
h as 
omputed tomography (CT), magneti
 resonan
e (MR)imaging and ultrasonography (US) being used for diagnosis, therapy and surgi
al plan-ning the need for improved methods for image analysis has be
ome apparent. Thedevelopment of more reliable methods for shape analysis and registration 
ould lead tofurther insight as to the underlying biologi
al me
hanisms and pathologi
al pro
esses ofdisease onset and progression.1.1 Problems En
ountered in NeuroimagingIn neuroimaging appli
ations volumetri
 measurements are one of the most frequentlyutilized quantitative measurements used in assessing brain stru
tures. Enlarged ven-tri
ular size has been 
ited as an important 
riteria for 
hara
terizing Bipolar disorderand Asperger's syndrome [1, 2℄.Asperger's syndrome is a pervasive developmental disorder 
hara
terized by ma-jor di�
ulties in so
ial intera
tion and unusual patterns of interest and behavior. Itsheritability remains questionable. Clini
al features of the syndrome in
lude diminishedexpression of empathy, poor 
ommuni
ation 
apa
ity, monotoni
 spee
h, diminished mo-tor 
oordination, intense absorption of seemingly unusual information and a seeminglydiminished ability to develop so
ial skills [3℄.Bipolar disorder is a major a�e
tive disorder 
hara
terized by a disorganization of



2Table 1.1: Volumetri
 measurements for LV - left ventri
le RV- right ventri
leLV RV Total ventri
lesControlsMean 6380.47 5983.79 12364.26St. Dev. 2306.71 2138.67 4377.27Asperger's SyndromeMean 7891.46 7515.57 15407.03St. Dev. 3627.50 4344.30 7481.45Bipolar DisorderMean 7802.71 7340.11 15142.82St. Dev. 2745.43 4125.49 6288.81feelings. The key identifying feature of Bipolar disorder is the alternation of mania
episodes with major depressive episodes in an unending roller 
oaster ride from thepeaks of elation to the depths of despair [4℄. Periods of depression are 
hara
terized bytorpid spee
h and movement, loss of appetite and disturbed sleeping patterns. Episodesof mania are 
hara
terized by an una

ountable euphoria, delusions of grandeur andex
essive spee
h and motor a
tivity. Average onset of the disease is around the ageof 21 years with similar rates in males and females throughout the world [5℄. Bipolardisorder is asso
iated with a high level of morbidity, and it has been estimated thatapproximately 15% of patients eventually die by sui
ide [6℄.The standard method for evaluating imaging studies of those patients involves sys-temati
 sli
e-by-sli
e intera
tive pro
essing of volumetri
 data. During feasibility ex-periments Analyze AVW software (Mayo Clini
) was used to intera
tively segment andanalyze MR image data sets. Forty MRI brain s
ans were a
quired using a 1.5Tesla GESigma s
anner lo
ated at the Laurie Imaging Center (UMDNJ-RWJMS). The study
onsisted of fourteen patients who had been diagnosed with Bipolar disorder, seventeenwho had been diagnosed with Asperger's Syndrome and nine patients served as 
ontrols.Patients ranged from 7 to 14 years of age and were predominantly male. Table 1 showsthe ventri
ular volumes that were 
omputed during preliminary studies.Although the numeri
al di�eren
e between the mean total ventri
ular volume for the
ontrol group and either disorder would seem su�
ient to distinguish between "normal"and "abnormal" ventri
les (3042.77 mm3 
ontrol - Asperger's Syndrome, and 2778.56



3mm3 
ontrol - Bipolar disorder), the large standard deviation for ea
h group in this studystrongly suggested that volumetri
 measurements alone were insu�
ient for dete
tingabnormalities. The low dis
riminatory power may be attributed, in part, to the fa
tthat shape di�eren
es among the stru
tures are not adequately 
aptured through thevolumetri
 
hara
terization of the morphology. Our preliminary studies indi
ate thatlo
al or global parameters may serve to improve a

ura
y of 
lassi�
ations.1.2 Problems En
ountered in Liver Therapy ImagingHepato
ellular 
ar
inoma (HCC) is the 
ommon primary malignant tumor of the liver.Although rese
tion or liver transplantation are 
onsidered potentially 
urative or sur-vival enhan
ing treatment options, only 20%-30% of patients with HCC are 
andidatesfor intervention [7℄. Several minimally invasive imaging-guided ablative therapies usingthermal energy sour
es su
h as lasers, mi
rowaves, radio�equen
y (RF) and high inten-sity fo
used ultrasound (HIFU) are rapidly developing alternatives to surgi
al treatmentin primary liver malignan
ies [8, 9℄. Possible advantages of ablative therapies over opensurgery in
lude ex
ellent lo
al 
ontrol with less re
overy times at a reasonable 
ost,with low morbidity and mortality rates. The main goal of thermal ablation therapy isto destroy an entire tumor by using heat to kill the malignant 
ells without damagingadja
ent vital stru
tures. For most thermal ablation methods, energy is applied per
u-naneously by using a needle-shaped appli
ators. Goldberg et al [10℄ des
ribed the basi
relationship guiding thermal ablation indu
ed 
oagulation ne
rosis as follows:
coagulation necrosis = energy deposited ∗ local tissue interactions − heat lossThe ability to produ
e a tumor ne
rosis is dependent on lo
al physiologi
 tissue
hara
teristi
s and several te
hnology-based fa
tors given the multiple energy sour
esto a
hieve thermal ablation, the di�erent strategies for applying them and the di�erentprobe devi
es in
luding hooked ele
trodes or internally 
ooled single or triple ele
trodes.Per 
utaneous radiofrequen
y ablation (RFA) is the method re
eiving the greatest
lini
al attention to date, whi
h has proved very e�e
tive and safe in treating patientswith unrese
tionable hepati
 tumors. Patients with HCC are parti
ularly well-suited for



4

Figure 1.1: Pre and post RFA treatment CT imagesprimary treatment with radiofrequen
y ablation (RFA) given the high rates of multipletumor appearan
e over time, 
on
urrent hepatitis infe
tion and liver 
irrhosis. Multiple
lini
al studies have been performed to evaluate the use of RFA in the treatment ofHCC [11, 12, 13, 14℄. Results of early 
lini
al trials showed a 
omplete tumor ne
rosisin 83% of tumors less than 3
m in patients with HCC who underwent RFA [15℄.Liver tumor ablation 
arried out by heating the tumor using radiofrequen
y (RF)energy whi
h is delivered through an ele
trode whi
h is a
tually, a thin needle that isele
tri
ally insulated along all but the distal 1-3 
m of the shaft. Conne
ted to theRF generator, the uninsulated distal portion of the probe tip emanates 
urrent waves.Heat is produ
ed by ioni
 agitation surrounding the ele
trode as the 
urrent �ows tothe ground resulting in 
oagulation ne
rosis. When mono polar RF generator is usedthe ground is a usually a foil pad pla
ed on the patient± ba
k, whereas in the bipolarsystem, a se
ond ele
trode is used as ground. The deposition of the energy in the tissuegenerates a dark thermal lesion often surrounded by a bright edematous rim. The RFApro
edure is 
onsidered te
hni
ally su

essful if the tumor and a safety margin of 5-10mm of normal hepati
 tissue are 
ompletely in
luded in the ablation zone [16℄ as shownin the Figure 1.1.



5Lo
alization of tumors using CT imaging-guided te
hniques and pre- and post-pro
edural analysis to ensure the a

ura
y of ablative margins are both extremely 
hal-lenging due to the following problems:� The liver is a highly deformable soft tissue organ. A signi�
ant amount of non-linear motion or deformation o

urs in the liver in response to di�eren
es in thepositioning of patients undergoing 
onse
utive imaging studies. Deformation alsoarises due to respiratory motion, and surgi
al manipulations.� The shape and the size of the tumor appearan
e depends on the dynami
s ofthe 
ontrast-enhan
ing agent used in CT images. Typi
ally, standard CT imageswithout 
ontrast are obtained to plan the pro
edure and to guide the ablationappli
ator pla
ement. Contrast agents may be administrated only on
e during thepro
edure and the intensity of the image vary 
onsiderably between the arterialand the portal phases of the CT image proto
ol. The majority of liver tumors mayappear 
lear only in the two minutes following the 
ontrast agent inje
tion. Theapparent boundaries of the tumor often 
hange dramati
ally during the 
ourse ofthis time.� Furthermore, real-time imaging 
an not be maintained throughout the entire RFApro
edure. The intervention radiologist visually 
onsults the pre-pro
edure imagestudies during the 
ourse of the RFA pro
edure in an attempt to lo
ate the 
enterof the same tumor. Be
ause there is no way to 
ompress the region of the liverwhere the tumor is lo
ated when the tip of the needle rea
hes the interfa
e betweentwo di�erent types of tissue, further insertion tends to push the tissue rather thanpier
ing it, whi
h gives rise to unwanted deformations.All the above limitations make the RFA pro
edure very sensitive to the initial pla
ementof the needle. It would be very useful to develop te
hniques to help the interventionalradiologist in predi
ting tumor displa
ement, thereby allowing a

urate tra
king of lesiona
ross 
onse
utive studies. To determine the su

ess of the treatment one 
an registerand 
ompare imaged tumor 
hara
teristi
s before and after treatment.



61.3 Spe
i�
 AimsIn the neuroimaging study we investigated the use of a double ellipti
 Fourier transformto dis
riminate among 3-D 
hanges of anatomi
 stru
tures in MR brain s
ans. Througha series of experiments it was shown that shape 
hara
terization using low frequen
yellipti
 Fourier des
riptors (EFD) provided an a

urate representation of anatomi
alstru
tures. Whereas volumetri
 measurements did not provide the means for dis
rimi-nating between diseases and 
ontrol groups. Furthermore, our experiments showed that3-D shape signatures based upon a double EFD algorithm did provide a

urate groupseparation among disorders and normals.In the liver imaging study we presented a surfa
e based non-rigid method for tra
kingtumor a
ross pre- and post-treatment CT liver images using a �nite element modelbased deformable system. The strategy of the algorithm is twofold: the �rst step is toalign the mesh surfa
es, using a modi�ed Iterative Closest Point (ICP) algorithm thatdetermine the proper 
orresponden
e of the boundary points to drive the transformation.The se
ond step is to model the volumetri
 deformation using a linearly elasti
 �niteelement model (FEM) that has boundary 
onditions generated from the registered data.Using both 2D syntheti
 phantom and real 3D beef liver data we introdu
ed a set ofgold standard deformations to measure the a

ura
y of the newly developed non-rigidregistration.1.4 Thesis OutlineChapter II present the neuroimaging study:Se
tion I presents the ba
kground of shape analysis relevant to our work in neu-roimaging - the theory behind the boundary en
oding.Se
tion II presents an overview of ellipti
 Fourier des
riptors for 2-D boundaries.Se
tion III presents the en
oding algorithm for 3-D Fourier des
riptors. We de-s
ribe the approa
h for registering two data sets using the Iterative Closest Point (ICP)algorithm and the obje
t 
lassi�
ation method is evaluated for performan
e.



7Se
tion IV presents the results obtained after applying 3-D Fourier en
oding algo-rithm for the surfa
e re
onstru
tion. Some data 
ompression, area and volume issuesare also addressed. Results from registration and re-se
tion algorithms are presentedand the image database design is des
ribed.Se
tion V draws the 
on
lusions for the neuroimaging study and gives the perspe
tiveof future resear
h.Chapter III presents liver therapy study:Se
tion I presents the liver registration study starting with related work.Se
tion II presents three algorithms for �nding the 
orresponden
e of two data sets:Curvature S
ale Spa
e (CSS), a modi�ed Iterative Closest Point (ICP) algorithm, andRobust Point Mat
hing (RPM).Se
tion III presents a brie�y introdu
tion in the theory behind Finite ElementMethod (FEM).Se
tion IV presents the tumor tra
king model based on the 
ombination of registra-tion and linearly elasti
 �nite element analysis.Se
tion V presents a 2D rubber phantom and a 3D real beef liver studies used tovalidate the performan
e of our model simulation for predi
ting the tumor displa
ement.We tra
k the position of several markers before and after di�erent deformations.Se
tion VI presents a 
lini
al study involving three di�erent patients with hepato-
ellular 
ar
inomas. The lesion's displa
ement is tra
ked for ea
h patient.Se
tion VII draws the 
on
lusions for the liver therapy study and gives the perspe
-tive of future resear
h.
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Chapter 2Neuroimaging Study2.1 Related Work for Shape AnalysisThe overall goal of shape analysis resear
h is to provide a reliable means for 
omparingarbitrary shapes in two or more dimensions. Shape is one of important features fordes
ribing and representing an obje
t. Even though it is 
on
eptually easy to under-stand the notion of 2-D shape, it 
an sometimes be di�
ult to represent, des
ribe andde�ne. Shape representation methods result in a non-numeri
 (e.g. graph or an image)representation whereas shape des
ription methods result in numeri
al des
riptors whi
hfollow the shape representation [17℄. For many medi
al imaging appli
ations some of themost desirable properties of the shape des
riptor ve
tor also 
alled the feature ve
tor isthat it be invariant to s
ale, translation, and rotation while simultaneously 
apturingthe essen
e the shape.Shape analysis algorithms 
an be 
lassi�ed a

ording to a variety of 
riteria. Pavlidis[18℄ proposed the following 
lassi�
ation s
heme. The �rst is based on shape bound-ary points alone, rather than on interior shape des
riptions whi
h are 
onsidered asglobal algorithms. The se
ond s
heme 
alled shape analysis algorithms are based oneither numeri
 results, in whi
h 
ase there is a s
alar transform, or non-numeri
 resultswhi
h pertain to spa
e domain te
hniques. For example the 
hain 
ode des
ribed in[19, 20℄ is 
onsidered a spa
e domain te
hnique be
ause it transforms one shape intoanother rather than into an array of s
alar features. The third 
lassi�
ation s
heme isbased on information preservation and information non-preserving methods whi
h de-pends on whether shape re
onstru
tion is possible from 
onstituent des
riptors or not.Non-preserving te
hniques are des
ribed in terms of very lo
al 
hara
teristi
s su
h assymmetry, elongation and angularity. An example of an information non-preserving



9method is the ratio of the square of the perimeter to the area [18℄.In order to analyze and manipulate arbitrarily shaped obje
ts whi
h are embeddedin 3-D image sta
ks a reliable, non-ambiguous means for des
ribing those shapes isneeded. It is often desirable to 
onvert the arbitrary shape into a representative formthat 
an be e�
iently pro
essed in terms of both 
omputational time and memoryspa
e requirements. For su
h appli
ations boundary representation is one of the mostpopular strategies. The boundary for any given imaged obje
t 
an be 
onsidered a
losed sequen
e of su

essive boundary pixels 
oordinates. If one needs to transmit ana

urate des
ription of the 
ontour of a delineated tumor over a network, for example,the 
ontour must �rst be represented (en
oded) in a fashion whi
h permits a reliablede
oding and pi
torial re
onstru
tion at the re
eiving end.The following subse
tions will provide an overview of the 
hain 
ode and s
alarFourier transform methods respe
tively, whi
h were used in preliminary feasibility ex-periments for boundary representation and boundary des
ription.2.1.1 Chain 
ode - Boundary Spa
e Domain MethodThe pro
ess of adopting a symboli
 
onvention and quantitatively identifying the de-s
ription proprieties of the approa
h in terms of the 
onvention is referred to as en
oding.The following properties are desirable for any en
oding s
heme [19℄ :1. the en
oding s
heme for arbitrary geometri
 
urves should be simple, highly stan-dardized and universally appli
able to all 
ontinuous 
urves.2. the en
oding s
heme must faithfully preserve the information of interest.3. the en
oding s
heme should fa
ilitate digital 
omputer analysis of a given 
urve'sproperties.The method for 
oding line drawings 
alled 
hain 
ode was introdu
ed in 1961 by HerbertFreeman [19℄. Chain 
odes are used to represent boundaries using a 
onne
ted sequen
eof straight line segments of spe
i�ed dire
tion and length. Line stru
tures are generatedthrough quantization of tra
ings with a grid-interse
tion s
heme, thus a boundary point
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Figure 2.1: Result of boundary re-sampling with superimposed gridis assigned to ea
h node of the grid, depending on the proximity of the original boundaryto a given node as shown in Figure 2.1.On the digital (re
tangular) grid, en
oding is based on the fa
t that su

essive
ontour points are adja
ent to one another. Freeman [19, 20℄ showed that if the 8-
onne
ted grid is employed, the 
hain 
ode is de�ned as the digits from 0 to 7, assignedto the 8 neighboring grid points in a 
ounter-
lo
kwise sense. Sin
e the a

ura
y ofthe resulting 
ode representation depends on the spa
ing of the sampling grid, severaldi�erent digitization methods have been suggested [21, 22℄.A dire
t straight-line segment 
onne
ting two adja
ent grid points is 
alled a link. A
ontinuous 
ontour 
an be approximated by a sequen
e of links ai. A link 
orrespondsto one of eight standardized straight -line segments oriented in the dire
tion (π/4)ai , asmeasured 
ounter-
lo
kwise from the X axis of an Cartesian 
oordinate system. Ea
hbeing length 1 or √2 depending, respe
tively, on whether ai is even or odd. A 
hain isan ordered sequen
e of links written in the form:
C = a1a2...anAn example of 
hain 
ode C = 0010600106656553245443212 is shown in Figure 2.2
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Figure 2.2: (a) De�nition of the 
hain 
ode 8 - 
onne
ted (b) Chain 
ode of the 
urvefrom Figure 1.1The �exibility of the 
hain 
ode representation is illustrated by the ease with whi
hthe inverse, length, width and height of the 
hain 
an be 
omputed. The integral of afun
tion with respe
t to the x axis, the �rst and se
ond moments about x and y axis,and the distan
e between two 
onne
ted points are also relatively simple operations[20℄. The 
hain 
oding s
heme 
an be easily extended to 3-D line stru
tures quantizedon a 
ubi
 latti
e by assigning a symbol for ea
h of the 26 possible dire
tions [20℄. Thederivative 
hain 
ode method given rise to numerous resear
h a
tivities implementedusing a variety of algorithmi
 approa
hes [23, 24, 25, 26℄.2.1.2 Fourier - Boundary S
alar Transform MethodThe Fourier transform represents an orthonormal periodi
 signal whi
h 
an be expressedas a weighted sum of known fun
tions. An orthonormal set is desirable be
ause it makesthe parameters distin
t and fa
ilitates 
oe�
ient determination by avoiding redundan
y.A general way, to de
ompose a fun
tion X(t) on the interval [a, b] is :
φ(t) : X(t) =

∞
∑

n=1

Cnφ(t) Cn =

∫ b

a
X(t)φn(t)dtwhere the 
oe�
ients Cn are the orthogonal proje
tions of X(t) onto the subspa
egenerated by the n basis fun
tions. In pra
ti
e the degree of the sum is restri
ted and



12the 
hoi
e of its value is a trade o� between desired a

ura
y and degree of smoothing.The usual basis fun
tions are the sinusoids [18℄ whi
h have the advantage of providinga notion of frequen
y.Suppose that the boundary of a shape has N pixels numbered from 0 to N − 1. The
k-th pixel along the boundary has position (xk, yk) and we 
an des
ribe the 
ontour astwo parametri
 equations:

x(k) = xk

y(k) = ykThe 
ontour itself is periodi
, therefore, it is possible to take the Fourier transformof ea
h fun
tion and obtain two frequen
y spe
tra 
alled Fourier des
riptors (FD):
ax(ν) = F (x(k))

ay(ν) = F (y(k))The major advantage of this method is that it is fairly straight forward to make slightmodi�
ations to the FD so that it be
omes invariant to s
ale, translation, rotation andstarting point of the 
ontour .The boundary s
alar transform algorithms des
ribe shape indire
tly by means of a 1-D fun
tion whi
h in turn 
an be used to 
hara
terize the shape of 2-D boundary. Thereare many di�erent methods for 1-D boundary fun
tion representation and in this se
tionwe present some of di�erent possible representations based on Fourier's parametrizationthat have been reported in the literature.The tangent angle θ(l) versus ar
 length fun
tion is the 1-D boundary representationwhi
h was developed by Zahn and Roskies [27℄. In this formulation if θ(l) is the angulardire
tion of a 
lo
kwise oriented 
lose 
urve at point l then the 
umulative angularfun
tion φ(l) is de�ned as the net amount of angular bend between starting point l = 0and point l. So φ(l) = θ(l) − θ(0), ex
ept for a possible multiple of 2π, where θ(0) isthe absolute angular dire
tion at the starting point as shown in the Figure 2.3.
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(l)

X

Y

(X(0),Y(0))

(X(l),Y(l))
Φ

ΘΘ(l) (0)

0Figure 2.3: Parametri
 representation of a 
urve with tangential dire
tion θ(l) and
umulative angular fun
tion φ(l)The domain of de�nition of fun
tion φ(l) is [0, L], where L is the perimeter of 
lose
urve, then the fun
tion 
an be normalized and made dependent upon parameter t ∈
[0, 2π]. Letting φ∗(t) be the normalized variant φ∗(0) = φ∗(2π) = 0 :

φ∗(t) = φ(Lt
2π ) + tNote that φ∗(t) ≡ 0 for a 
ir
le, we map all the plane 
losed 
urves into the 
lassof periodi
 fun
tions on [0, 2π] in su
h a way that all 
urves of identi
al shape andstarting point be
ome part of the same fun
tion φ∗[27℄. The boundary fun
tion φ∗(t) isexpanded as a Fourier series as:

φ∗(t) = µ0 +
∞
∑

k=1

(akcoskt+ bksinkt)If (Ak, αk) are the polar 
oordinates of (ak, bk) then the φ∗(t) expansion is given by:
φ∗(t) = µ0 +

∞
∑

k=1

Akcos(kt− αk)The 
oe�
ients {µ0, ak, bk} or {Ak, αk}; k = 1..∞ are the k -harmoni
 Fourier de-s
riptors (FD) whi
h are used for shape 
hara
terization of the 
urve.



14The tangent angle fun
tion also 
alled the turning fun
tion has been used by Akinand his 
olleagues [28℄ to reliably represent and 
ompare polygonal shapes. The fun
tion
θA(s) measures the angle of the 
ounter-
lo
kwise tangent as a fun
tion of ar
 length s,whi
h is measured from any given referen
e start point on the polygon's boundary. θA(s)be
omes a fun
tion de�ned on [0, 1] interval, assuming that all polygons are normalizedso that their perimeter length is 1. Even though the turning angle method is invariantto s
ale and translation and 
an easily be made rotation invariant a drawba
k of thisrepresentation it is sensitive to small variations in shape.Granlund [29℄, Ri
hard and Hemani [30℄, and Persoon and Fu [31℄ presented the 1-D
omplex fun
tion of the form z(l) = x(l) + jy(l) where l is the ar
 length parameter.In this formulation any point moving along the boundary generates a periodi
 
omplexfun
tion z(l), whi
h implies z(l + nL) = z(l). Therefore the Fourier series expansion of
z(l) be
omes:

z(l) =
∞
∑

−∞

ane
j2πnl/Lwhere z(l) is often referred to as a shape signature. The normalized Fourier 
oe�-
ients are the Fourier des
riptors :

an =
1

L

∫ L

0
z(l)e−j2πnl/LdlOne advantage of using the 
oordinates z(l) instead of tangent angle θ(l) represen-tation of the boundary 
urve is that the 
omplex 
oordinates fun
tion is less sensitiveto the inherent noise 
ontained within fuzzy boundaries. The tangent angle fun
tion isrelated to the derivative of the 
oordinate fun
tion, thus small variations in the 
oordi-nate values of the boundary points 
an give rise to large variations in the dire
tion ofthe tangent ve
tor.If z(0)(l) is the original boundary expression and a(0)

n is the nth Fourier 
oe�
ient ofthe original shape then:



15� The 
hange of starting point 
an be expressed as z(l) = z(0)(l+ τ) is a phase shiftin the transform. The resulting Fourier 
oe�
ients be
ome an = ejnτa
(0)
n whi
hare invariant to the starting point shift.� Assuming that shapes are 
entered about the origin of the 
oordinate system,then rotation around the origin with angle φ gives rise to the boundary expression

z(l) = z(0)(l)ejφ. As a result the invariant Fourier 
oe�
ients are an = a
(0)
n ejφ.� Translation of a shape 
an be expressed as z(l) = z(0)(l)+c , wherein only the zero-frequen
y 
omponent 
hanges. This implies that Fourier 
oe�
ients are invariantto translation with the ex
eption of the �rst 
oe�
ient whi
h only re�e
ts themean position:

an =











a
(0)
n n 6= 0

a
(0)
n + c n = 0� S
aling of a shape 
an be expressed as z(l) = sz(0)(l), su
h that it is a multiple ofthe Fourier 
oe�
ients and a 
onstant: an = s a

(0)
n . This operation provides themeans for s
ale invarian
e.2.2 Fourier Transform of BoundaryThe 
hain 
ode des
ribed in Chapter 1 approximates a 
ontinuous 
ontour in 2-D bya sequen
e of pie
ewise linear �ts that 
onsists of 8 standardized line segments C =

a1, a2, a3...an.The time needed to traverse a parti
ular link ai of the 
hain 
ode at a 
onstant speedis given by:
∆ti = 1 + (

√
2 − 1

2
)(1 − (−1)ai) =











1 if ai ∈ {0, 2, 4, 6}
√

2 if ai ∈ {1, 3, 5, 7}The time required to traverse the �rst p links in the 
hain are:
tp =

p
∑

i=1

∆ti



16The 
hanges in the x and y proje
tions of the 
hain as the link ai is traversed are:
∆xi = sgn(6 − ai)sgn(2 − ai) =



























1 if ai ∈ {0, 1, 7}

0 if ai ∈ {2, 6}

−1 if ai ∈ {3, 4, 5}

∆yi = sgn(4 − ai)sgn(ai) =



























1 if ai ∈ {1, 2, 3}

0 if ai ∈ {0, 4}

−1 if ai ∈ {5, 6, 7}where
sgn(k) =



























1 if k > 0

0 if k = 0

−1 if k < 0Lo
ating the starting point of the 
hain 
ode at the origin, the proje
tions on x and
y of the �rst p links of the 
hain are, respe
tively:

xp =
p

∑

i=1

∆xi

yp =
p

∑

i=1

∆yiThe Fourier series expansion for the x and y proje
tions of the 
omplete 
ontour ofthe 
hain 
ode t ∈ [0, T ] using the sinusoidal basis are de�ned as:
x(t) = A0 +

∞
∑

n=1

(ancos
2nπt

T
+ bnsin

2nπt

T
)

y(t) = C0 +
∞
∑

n=1

(cncos
2nπt

T
+ dnsin

2nπt

T
)where the Fourier 
oe�
ients are:
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A0 =

1

T

∫ T

0
x(t)dt C0 =

1

T

∫ T

0
y(t)dt

an =
2

T

∫ T

0
x(t)cos

2nπt

T
dt bn =

2

T

∫ T

0
x(t)sin

2nπt

T
dt

cn =
2

T

∫ T

0
y(t)cos

2nπt

T
dt dn =

2

T

∫ T

0
y(t)sin

2nπt

T
dtFourier transform of the boundary Φ(t) = (x(t), y(t)) represents the smooth form ofthe 
hain 
ode C = a1a2a3...an.2.2.1 Ellipti
 Fourier des
riptorsThe ellipti
 Fourier de
omposition is readily apparent when the proje
tions are expressedin matrix form:







x(t)

y(t)






=







A0

C0






+

∞
∑

n=1







an bn

cn dn













cos nt

sin nt





A geometri
 interpretation, in terms of ellipses, 
an be developed from this de
om-position.The matrix 





an bn

cn dn






is a parametri
 form for an ellipse whereas an, bn, cn, dndetermine the 
hara
teristi
s of the ellipse. The ellipse of degree n is 
ompletely de-s
ribed by its ve
tor path





cos nt

sin nt






.The 
oe�
ients A0, C0 are the mean values ofthe 
oordinates and determine the overall translation of the geometri
 
enter of the
losed 
ontour. The parameters set(A0, C0, an, bn, cn, dn;n = 1..∞) represents the ellip-ti
 Fourier des
riptors.The ellipti
 Fourier des
riptors an and bn 
orresponding to the nth harmoni
 aregiven by:

an =
T

2n2π2

K
∑

p=1

∆xp

∆tp
[cos

2nπtp
T

− cos
2nπtp−1

T
]
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bn =

T

2n2π2

K
∑

p=1

∆xp

∆tp
[sin

2nπtp
T

− sin
2nπtp−1

T
]

A0 =
1

T

K
∑

p=1

∆xp

2∆tp
(t2p − t2p−1) + ξp(tp − tp−1)where

ξ1 = 0, ξp =
p−1
∑

j=1

∆xj −
∆xp

∆tp

p−1
∑

j=1

∆tjThe ellipti
 Fourier des
riptors cn and dn 
orresponding to the nth harmoni
 aregiven by:
cn =

T

2n2π2

K
∑

p=1

∆yp

∆tp
[cos

2nπtp
T

− cos
2nπtp−1

T
]

dn =
T

2n2π2

K
∑

p=1

∆yp

∆tp
[sin

2nπtp
T

− sin
2nπtp−1

T
]

C0 =
1

T

K
∑

p=1

∆yp

2∆tp
(t2p − t2p−1) + δp(tp − tp−1)where

δ1 = 0, δp =
p−1
∑

j=1

∆yj −
∆yp

∆tp

p−1
∑

j=1

∆tjNote that:
tp =

p
∑

j=1

∆tj T =
K
∑

p=1

tp

∆tp =
√

∆x2
p + ∆y2

p ∆xp = (xp − xp−1) ∆yp = (yp − yp−1)
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Ψ
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t=0 original starting point

λ

1

2
3

harmonics

Figure 2.4: The �rst 3 phasors of the ellipti
 approximation to a 
ontourThe 
urve 
an be viewed as a sum of rotating phasors, 
alled harmoni
 lo
i, ea
hindividually de�ning an ellipse and rotating with a speed proportional to their har-moni
 number n. The larger the number of ellipses involved, the more a

urate therepresentation be
omes as showed in Figure 2.4
2.2.2 Normalization of Fourier des
riptorsEa
h ellipse 
an be des
ribed by four geometri
 properties: semi-major axis length,semi-minor axis length, rotation and phase shift. The rotation is the angle from thex-axis to the major axis of the ellipse. The phase shift is the di�eren
e in phase fromthe major axis to the position of the starting point t = 0. Based only on the intrinsi
geometri
 properties we des
ribe an intuitive way of normalizing the Fourier 
oe�
ients
an, bn, cn and dn obtained in the previous subse
tion. The resulting Fourier des
riptors



20are invariant with regard to s
ale, rotation, translation and starting point on the 
ontour.Normalizing a Fourier 
ontour representation means pla
ing the �rst harmoni
 pha-sor of the Fourier series in a standard position. This means translating the origin of theX, Y 
oordinate system to the 
enter of the �rst harmoni
 phasor and rotating the X, Y
oordinate axes into a new U, V 
oordinate axes de�ned by the major and minor axesof the ellipse as showed in Figure 2.4Consider the trun
ated Fourier series approximation to a 
losed 
ontour:
x(t) = A0 +

N
∑

n=1

Xn(t)

y(t) = C0 +
N

∑

n=1

Yn(t)where the 
omponents of the proje
tions Xn, Yn(1 ≤ n ≤ N), t ∈ [0, T ] are
Xn(t) = ancos

2nπt

T
+ bnsin

2nπt

T

Yn(t) = cncos
2nπt

T
+ dnsin

2nπt

TA di�eren
e in the starting point, λ units in the dire
tion of rotation around 
ontouris displayed in the proje
ted spa
e as a phase shift and 
an be expressed as Xn(t∗ +

λ).Expanding Xn(t) and Yn(t) where t = t∗ + λ







X∗
n

Y ∗
n






=







a∗n b∗n

c∗n d∗n













cos2nπt∗

T

sin2nπt∗

T





we obtain a new set of 
oe�
ients a∗n, b∗n, c∗n and d∗n whi
h 
ompensate for the arbi-trary position of the starting point. This is showed by introdu
ing a rotational operatorthat relates Fourier 
oe�
ients at any starting point an, bn, cn and dn to the 
oe�
ients
a∗n, b

∗
n, c

∗
nand d∗n for another stating point displa
ed with λ.



21






a∗n b∗n

c∗n d∗n






=







an bn

cn dn













cos2nπλ
T −sin2nπλ

T

sin2nπλ
T cos2nπλ

T





The rotation of X,Y 
oordinates axes through ψ degree into the U,V axes is a

om-plished by the rotational operation and the proje
tions on U,V axes are:






un

vn






=







cosψ sinψ

−sinψ cosψ













X∗
n

Y ∗
n





Hen
e the two rotations are ne
essary to a
hieve the invarian
e to the axial rotationand a shift in the starting point. The 
ombined e�e
ts, the invariant Fourier 
oe�
ients
a#

n , b
#
n , c

#
n and d#

n 
an be expressed as:






a#
n b#n

c#n d#
n






=







cosψ sinψ

−sinψ cosψ













an bn

cn dn













cos2nπλ
T −sin2nπλ

T

sin2nπλ
T cos2nπλ

T





Ellipti
 1st harmoni
 lo
usWhen the �rst harmoni
 lo
us is an ellipse the rotations are de�ned relative to thesemi-major axis of the lo
us then produ
e two related representations of the 
ontour:






a
#(1)
n b

#(1)
n

c
#(1)
n d

#(1)
n






=







cosψ1 sinψ1

−sinψ1 cosψ1













an bn

cn dn













cos nθ1 −sin nθ1
sin nθ1 cos nθ1





whereas the other semi-major axis is further rotated by π:






a
#(2)
n b

#(2)
n

c
#(2)
n d

#(2)
n






= (−1)n+1







a
#(1)
n b

#(1)
n

c
#(1)
n d

#(1)
n





The expression for the starting point displa
ement θ1 
an be determined by di�eren-tiating the magnitude of the �rst harmoni
 (N = 1) of the Fourier series ( not in
ludingthe bias terms A0 and C0):
S =

√

x2
1 + y2

1 where
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x1(t) = a1cosθ + b1sinθ

y1(t) = c1cosθ + d1sinθ

θ = 2πt
TSetting the derivative to zero:

θ1 =
1

2
arctan

[

2(a1b1 + c1d1)

a2
1 + c21 − b21 − d2

1

]

θ1 ∈ [0, π)The expression of the rotation angle ψ1is determined from a∗1 and c∗1 Fourier 
oef-�
ients that are already 
orre
t for the starting point displa
ement θ1. When the �rstharmoni
 phasor is aligned with the semi-major axis t∗ = 0 :
ψ1 = arctan

[

y∗
1
(0)

x∗
1
(0)

]

= arctan
c∗
1

a∗
1

ψ1 ∈ [0, 2π)Cir
ular 1st harmoni
 lo
usWhen �rst harmoni
 lo
us is a 
ir
le: a2
1 +b21+c21 +d2

1 = 2(a1d1−b1c1), the rotations aremade with the respe
t to the line de�ned by the 
entroid of the 
ontour and the pointon the 
ontour most distal from the 
entroid (A0, C0). Sin
e the most distal point p 
anbe non-unique, k related representations 
an result, 
orresponding to k sets of Fourier
oe�
ients, p = 1..k:






a
#(p)
n b

#(p)
n

c
#(p)
n d

#(p)
n






=







cosψp sinψp

−sinψp cosψp













an bn

cn dn













cos nθp −sin nθp

sin nθp cos nθp





The starting point rotation θp is de�ned relative to the pth most distant point:
θp =

2πtp
T

θp ∈ (0, 2π]and the axial rotation angle ψp is:
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ψp = arctan

[

yp−C0

xp−A0

]

ψp ∈ [0, 2π).S
ale invarian
e is obtained by normalizing ea
h Fourier 
oe�
ient by the magnitudeof the semi-major axis √

a∗21 + c∗21 when the �rst harmoni
 lo
us is ellipti
, and by themagnitude of radius√a2
1 + c21 when the �rst harmoni
 lo
us is 
ir
ular.Translation invarian
e is obtained by removing the bias terms A0, C0 from the Fourierseries. This indi
ates that Fourier des
riptors are invariant to translation ex
ept the �rst
oe�
ient whi
h only re�e
ts the mean position.The new parameters (A0, C0, a

#
n , b

#
n , c

#
n , d

#
n , θ1, ψ1...) are the invariant Fourier de-s
riptors - FD and form a 
ompa
t representation of the 
ontour. A 
ontour 
an be re-
onstru
ted from FD by the inverse Fourier transform. The low-frequen
y 
omponentsor the low order harmoni
s of the Fourier des
riptors 
apture the 
oarse representationof the boundary shape, whereas the high-frequen
y 
omponents or the higher order har-moni
s 
apture the �ner details. Graphi
 examples of image 
ontour is displayed with

n- harmoni
 Fourier approximations in Figures 2.5 and 2.6.2.3 Design and MethodsThe image re
ord 
an provide the information ne
essary to assess the 
an
er patient'sinitial presentation, staging of disease, therapy planning, response to treatment, andlong-term follow-up for out
ome assessment. Consequently, there is a tremendous needfor tools for sear
hing, retrieving and 
lassifying medi
al images e�
iently in order totake advantage of their ri
h information 
ontent. Querying an image database 
anbe di�
ult and one of the main di�
ulties lies in designing appropriate features ordes
riptors to represent and organize 
onstituent images. We have established a medi
alimaging database of delineated ventri
les whi
h were segmented from the MR imageswith ea
h stru
ture en
oded using ellipti
 Fourier des
riptors. In order to des
ribe the
losed surfa
e of a delineated 3-D obje
t (anatomi
 stru
ture or tumor) we extended the2-D ellipti
 Fourier des
riptors to a 3-D des
riptor by developing an algorithm whi
h�rst 
omputes ellipti
 Fourier des
riptors a
ross ea
h horizontal 
ross-se
tion, and thensubsequently performs a Fourier transform a
ross the resulting des
riptors. The shape
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original 
ontour n=2 harmoni
s

n=7 harmoni
s n=12 harmoni
s

n=17 harmoni
s n=25 harmoni
sFigure 2.5: n -harmoni
s Fourier approximation of a 
ross-se
tion of a ventri
le fromMRI brain s
an
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original 
ontour n=4 harmoni
s

n=8 harmoni
s n=16 harmoni
s

n=32 harmoni
s n=64 harmoni
sFigure 2.6: n -harmoni
s Fourier approximation of a 
ross-se
tion of a liver tumor fromCT image s
an



26des
riptors were used to provide a reliable, obje
tive means for 
hara
terizing 
hangesin shape and as a basis for 
ondu
ting statisti
al 
omparisons of 3D obje
ts. In orderto a
hieve this 
apability it was ne
essary to develop and implement registration andre-se
tion algorithms to 
orre
t for di�eren
es in patient positions during 
onse
utiveimaging studies.2.3.1 Double Fourier TransformAn ordered set of 
ross-se
tions are sampled as a dis
rete representation of a 
ontinuous
omplex fun
tion sz(t), 0 ≤ t ≤ T whi
h represents the 
losed surfa
e of the delineated3-D stru
ture. The X − Y Cartesian 
oordinates of the 
ontour at the sampled points
onstitute the real and the imaginary parts of the 
omplex fun
tion. Tz represents the
ontour length at height z and sin
e sz(t) is given only at P sample points , sz(t) issampled uniformly as:
tp = pTz/P p = 0, 1, ..., P − 1For a �xed height z and a spe
i�
 number n of harmoni
s, the Fourier des
riptors

fd(n, z) are evaluated as:
fd(n, z) =

1

Tz

∫ Tz

0
sz(t)e

−j2πnt/Tz dt =
1

P

P−1
∑

p=0

sz(tp)e
−j2πntp/TzThe inverse Fourier transform 
an be applied to the resulting des
riptors and there
onstru
ted 
ontour is then obtained:

sz(t) =
∞
∑

n=−∞

fd(n, z)ej2πnt/TzIn order to 
ompute the shape variation of 
ross-se
tions along the z-axis, for thepurpose of our studies, the Fourier transform was applied again, this time on fd(n, z).The 
losed 
urves in the z-axis were generated by mirroring the Fourier des
riptors
fd(n, z), where range of z is between 0 andK. Therefore, the 
ontour length is uniformlysampled as:
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zq = qK/Q q = 0, 1, ...Q − 1Taking in a

ount that only Q 
ross-se
tions are possible, the new Fourier des
riptorswere evaluated as :

FD(k, z) =
1

K

∫ K

0
fd(n, z)e−j2πkz/K dz =

1

Q

Q−1
∑

q=0

fd(n, zq)e
−j2πkzq/KPlanar Fourier des
riptors were subsequently re
onstru
ted by inverse Fourier trans-form as follows:

fd(n, z) =
∞
∑

k=−∞

FD(k, z)ej2πkz/KIn this formulation the 
losed surfa
e sz(t) was en
oded in the shape des
riptors bythe double Fourier transform:
FD(k, z) =

1

QP

Q−1
∑

q=0

P−1
∑

p=0

sz(tp)e
−j2π(kzq/K+ntp/Tz)and the re
onstru
ted 
losed surfa
e was obtained based on these shape des
riptorsas:

sz(t) =
∞
∑

n=−∞

∞
∑

k=−∞

FD(k, z)ej2π(kz/K+nt/Tz)Sin
e the double Fourier transform is a reversible linear transformation all the shapeinformation is 
aptured and preserved in the des
riptors.2.3.2 Registration of 3-D obje
tsThe registration pro
ess takes as input two (or more) images: one image is 
onsideredas the referen
e (or the data) image and the other one is the deformable (or the model)image. Given two sets of 3-dimensional points: data D = {dp} and model M = {mk},for ea
h data point di ∈ D it is ne
essary to �nd the index j of the 
orresponding point
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mj ∈M then re
over the transformation mj = di+f(di) whi
h aligns the 
orrespondingpoints while minimizing some obje
tive error fun
tion E(di,mj).Suppose that the shapes of two di�erent 3-D data sets are given by N points asmeasured in two di�erent Cartesian 
oordinate systems - pa,i in system A and pb,i insystem B, 1 ≤ i ≤ N . Registration or the transformation between two Cartesian
oordinate systems, 
an be thought of as a result of a rigid motion and thus, 
an bede
omposed into rotations and translations. The Iterative Closest Points - ICP [34℄aims to �nd the optimal set of transformations that register the two 3-D shapes byminimizing the sum of squares of residual errors between them:

e(R, t) =
N

∑

i=1

|| pa,i − sR(pb,i) − t ||2where R is the rotation transformation, s the s
aling fa
tor and t the translation. Thisiterative method is applied repeatedly until the 
hange produ
ed by the transformationbe
omes negligible.The ICP algorithm allows freedom in the implementation of the 
losest point deter-mination (minimum distan
e) and in the way of �nding the optimal transformation inea
h iteration step. Any optimization method su
h as steepest des
endent, 
onjugategradient, singular value de
omposition (SDV) or unit quaternion algorithm 
an be usedto �nd the least squares rotation R, s
ale s and translation t. The di�
ult part ofthe problem is �nding the rotation R. We implemented the 
losed-form solution [35℄ inwhi
h unit quaternions are used to represent the optimal orientation R. The 
losed-formsolution has the advantages that it provides the best possible transformation in a singlestep and that is no need to �nd a good initial guess as in iterative methods.A quaternion is a ve
tor with four 
omponents q = [q0, q1, q2, q3]
T , a s
alar q0 andan ordinary ve
tor [35℄. Any orientation 
an be represented by a single axis of rotationand a single angle. The unit quaternion spe
i�es a rotation from its referen
e positionthrough an angle θ = 2 arccos q0 around the rotation axis (q1, q2, q3)

T .The representationof an orientation is in the form of quaternion:
q = [cos

θ

2
, sin

θ

2
(q1, q2, q3)]



29The rotation is performed by multiplying together quaternions representing the axisof rotation and the �nal resulting quaternion is then 
onverted to the desired rotationmatrix R:
R =















q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q2q1 + q0q3) q20 + q22 − q21 − q23 2(q2q3 + q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 + q23 − q21 − q22













We 
an summarize the algorithm for �nding the rotation matrix. Both sets ofpoints, pa and pb are translated to their 
entroids ca and cb and from now one wedeal with these measurements: p′a,i = pa,i − ca and p′b,i = pb,i − cb. For ea
h pair of
oordinates we 
ompute the nine possible produ
ts x′ax′b, x′ay′b, x′az′b...z′az′b then the sums
Sxx, Sxy, Sxz...Szz where:

Sxx =
N

∑

i=1

x′a,ix
′
b,iThe elements of the real symmetri
 4X 4 matrix K are sums of produ
ts of 
oor-dinates measured in the A system with 
oordinates measured in the B system and isde�ned as [35℄:

K =





















Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy

Sxy − Syx Szx + Sxz Syz+Szy
−Sxx − Syy + Szz



















To �nd the rotation that minimizes the sum of squares of errors e(R, t) , it is ne
es-sary to �nd the unit quaternion q that maximizes
qTKqThe solution for the desired quaternion is the eigenve
tor 
orresponding to the mostpositive eigenvalue of the matrix K [35℄. The eigenvalues are obtained by solving theforth-order polynomial equation det(K − λI) = 0 where I is the 4X 4 identity matrix.After we sele
t the largest positive eigenvalue λm the 
orresponding eigenve
tor em is



30founded by solving the equation [K−λmI]em = 0. The quaternion representing rotationis a unit ve
tor in the same dire
tion with eigenve
tor em.In order to �nd translation t [35℄ the error term to be minimized 
an be written as:
e(R, t) = pa,i − sR(pb,i) − t = p′a,i − sR(p′b,i) − t′where t′ = t− ca + sR(cb), therefore the sum of the squares errors be
omes:

e(R, t) =
N

∑

i=1

|| p′a,i − sR(p′b,i) − t′ ||2whi
h is minimized with t′ = 0 or
t = ca − sR(cb)The translation is just the di�eren
e between the 
entroid of the 
oordinates in onesystem and the rotated and s
aled 
entroid of the 
oordinates in the other system.The above formulation of the error term leads to an asymmetry in the determinationof the optimal s
ale fa
tor. The �optimal � transformation from A to B 
oordinatesystem is not the exa
t inverse of the �optimal � transformation from B to A 
oordinatesystem.[35℄ Using a symmetri
al expression for the error term:

e(R, t) =
1√
s
p′a,i −

√
sR(p′b,i)allows �nding the s
ale transformation without the need to �nd the rotation as:

s =

√

√

√

√

∑N
i=1 ||p′a,i||2

∑N
i=1 ||p′b,i||2The s
ale is equal to the ratio of the root-mean-square deviations of the 
oordinatesfrom their 
entroids in the two systems.Iterative Closest Point (ICP) algorithmThe iterative 
losest point algorithm (ICP) is able to register a �data� shape P with

Np points to a �model� shape X with Nx primitives [34℄. The model shape may berepresented in any of the allowable form su
h as point sets, line sets, triangle sets,



31parametri
 
urves, but for our purposes the model shape was de
omposed into a pointset. The method �nds the nearest positions on one surfa
e to a 
olle
tion of pointson the other surfa
e and then transforms one surfa
e so as to minimize the 
olle
tivedistan
e. This pro
edure is iterate until 
onvergen
e.The distan
e d(p,X) between an individual point p and the set points X = {xi}, i ∈

{1..Nx} is de�ned as the Eu
lidean distan
e:
d(p,X) = mini∈{1...Nx}||p− xi||Let Y denote the resulting set of 
losest points that yields the minimum distan
e ,and let C be the 
losest point operator Y = C(P,X). The least squares registration is
omputed and let Q denote the quaternion operation. Given the resultant 
orrespondingpoint set Y and the data set P , equation (q, dm) = Q(P, Y ) means that q is theregistration ve
tor that best aligns P and Y , where dm is the point mat
hing meansquare error in this alignment [34℄. The registration ve
tors are de�ned relative tothe data set P thus the �nal registration represents the 
omplete transformation. If atoleran
e τ > 0 and an initial registration qi are given the following steps of the ICPalgorithm are applied until 
onvergen
e:1. Compute the 
losest points Yk = C(Pk,X).2. Compute the registration (qk, dk) = Q(P, Yk) .3. Apply the registration Pk+1 = qk(P ).4. If (dk−1 − dk) < τ , terminate. Else in
rease k and go ba
k to step 1.ICP has the obje
tive of registering data that does not ne
essarily have the same numberof points as the model, and more importantly, data whose points doesn't have a pointto point asso
iation with the model.2.3.3 Obje
t 
lassi�
ationIn our experiments the 2D ellipti
 Fourier transform was applied to ea
h se
tion toperform a se
tion by se
tion 
omparison of 3D obje
ts. We des
ribe the two distan
es,



32ICP distan
e and Fourier distan
e used for obje
t 
omparison and their related issues.ICP distan
e is the distan
e resulting from the ICP registration algorithm, as the"best" distan
e between the data and the model. The distan
e is 
omputed for ea
hdata point by sear
hing for the 
losest point on the model, and averaged over the numberof points. The measure of similarity is obtained by running ICP with di�erent startingpoints and taking the best (minimum) value. The reason for the di�erent startingpoints is that ICP is known to fall in lo
al minima. The iterative operation used by ICPoverlaps the two obje
ts through rotation and a s
ale transformation, thus a
hieving alo
al maximum similarity between data and model. The problem with this method isthat not only is very expensive 
omputationally, but also requires the expansion of theobje
t to 3D format.The Fourier distan
e between two 
ross se
tions is de�ned as the Eu
lidean distan
ebetween their Fourier des
riptors. The Fourier distan
e was used by Ferrario V. F andSforza C. [36℄ to analyze sex and age shape di�eren
es of 
orpus 
allosum in 
hildhood.The Fourier distan
e between two obje
ts is the weighted average of distan
es between
orresponding 
ross-se
tions. Comparing obje
ts just based on their Fourier des
riptorshas only a 
omplexity linear in the number of harmoni
s, and is therefore desirable forlarge obje
ts that are en
oded with few harmoni
s, a 
ondition satis�ed by the obje
tsin our database.In order to verify that this method 
an be used for 
lassi�
ation purpose, we 
ompareits behavior against the well known, and more intuitive ICP distan
e. To verify the
orresponden
e between the two distan
es, we use a non-parametri
 (distribution-free)rank statisti
 proposed by Spearman in 1904 [37℄. The Spearman rank 
orrelation
oe�
ient, that is 1 for 
omplete agreement and −1 for disagreement is de�ned by:
r = 1 − 6

n2 − 1
(

∑

i d
2
i

n
)where di represent the di�eren
e in statisti
al rank (the ordinal number of a valuein a list arranged in a spe
i�ed order) and n number of obje
ts. The 
oe�
ient isused to measure the strength of 
orrelation between two sets of data. Consequentlywe 
ompared a query 
ross-se
tion with 32 
ross-se
tions from 11 di�erent obje
ts from



33the database and the resultant rank 
orrelation 
oe�
ient is 0.94. Thus, 2D Fourierdes
riptors have the potential to a

urately 
hara
terize the shape and 
an be used to
ondu
t a systemati
 se
tion by se
tion 
lassi�
ation of 3D obje
ts.2.4 Results2.4.1 Data CompressionThe fa
t that the double Fourier des
riptor transformation is reversible makes it pos-sible to utilize it as a means for e�
ient storage of delineated obje
ts. The reliabilityand a

ura
y with whi
h Fourier en
oding pro
ess 
aptures the essen
e of the shapeof an obje
t is 
hara
terized by the number of harmoni
s used for xy en
odings ofthe 
ross-se
tions, (azn, bzn, czn, dzn), and number of harmoni
s on z for the en
odingof A(aiz, z), B(biz , z), C(ciz , z) and D(diz, z). The number of harmoni
s required forFourier re
onstru
tion depends on the 
omplexity of the s
anned data and the require-ments of the appli
ation.Experiments were 
ondu
ted to determine the optimal number of harmoni
s requiredfor re
onstru
tions. The original (intera
tively tra
ed) 
ontour of the obje
t of interest,brain stru
ture or tumor, is de�ned by the data points
P− = [xi, yi, zi], i = 1..pand the n harmoni
 Fourier approximation of the 
ontour of the obje
t sz(t) = (x(t), y(t))were superimposed. Sin
e the original 
ontour is given only at p points, the obje
ts werere
onstru
ted at a very high resolution - p = 1000 points for ea
h 
ross-se
tion. The
entroid and the s
ale of ea
h 
ross-se
tion of the obje
t is de�ned as:

c =
1

p

p
∑

i=1

Pi scale =

√

√

√

√

1

p− 1

p
∑

i=1

||Pi − c||2The measure of a

ura
y was de�ned by subtra
ting the n harmoni
 Fourier ap-proximated 
ontour from the original 
ontour at spe
i�
 sample points. The averageEu
lidean error was 
omputed as:
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ǫ =

1

p ∗ scale

p
∑

i=1

mint∈Tz
||Pi − sz(t)||2The graphs of the average error versus number of harmoni
s on xy and z are shownin Figure 2.7.Based upon these studies it was determined that shape des
ription was su�
ientlystable using only the �rst 12 harmoni
s on xy and 32 harmoni
s on z, respe
tively.The Fourier series for subsequent analysis was trun
ated at this number of harmoni
s,a

ordingly sin
e it was shown that most of the dimensional information was 
aptured bythe low order des
riptors. The low order harmoni
s en
odes the 
oarse representationof the three-dimensional obje
t, whereas the higher harmoni
s adds details of obje
tsurfa
e. Figure 2.8 shows the obje
t re
onstru
tions whi
h are produ
ed by varying thedegree of approximation.The data redu
tion e�e
t of performing ellipti
al Fourier transform is illustrated inthe following example. If delineated obje
ts 
onsists of 100 se
tions, on average, with100 points for ea
h se
tion, about 30000 numbers would be required to store the x, y, z
oordinates for all 100 points. In 
ontrast, using 12 x 32 harmoni
s -representation ofthe same obje
t would require 12 x 32 x 4=1536 numbers whi
h was shown to 
ontainenough detail to restore the obje
t with high a

ura
y. Fourier en
oding provides aform of lossy 
ompression, as a result, ea
h obje
t is des
ribed by a set of des
riptorsand 
an be reliable re
onstru
ted with adjustable degree of approximation.2.4.2 Surfa
e re
onstru
tionMR images were obtained from Laurie Imaging Center (UMDNJ - RWJ Medi
al S
hool)and were a
quired via 1.5 Tesla GE Sigma s
anner. Ea
h 
ross-se
tional MR image wasdisplayed on a high resolution s
reen while obje
t 
ontours were manually tra
ed usingAnalyze AVW software (Mayo Foundation, Ro
hester Minnesota). The boundary ofea
h anatomi
al stru
ture (ventri
le or tumor) was delineated based upon the intensityvalue of a parti
ular voxel relative to the intensities of ea
h neighboring voxel as shownin the Figure 2.9.
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(a) 1xy 1z (b) 4xy 4z

(
) 12xy 12z (d) 12xy 32zFigure 2.8: Fourier re
onstru
tion of the normal left ventri
le with di�erent number ofharmoni
s

Figure 2.9: Analyze AVW - boundary tra
ing of the left ventri
le



37Sometimes due to variations in image resolutions the resulting tra
e of the boundaryis not smooth. In regions exhibiting sudden 
hanges in 
urvature, the resulting shapeof the tra
ed boundary presents a sawtooth form. In 
ontrast by performing forwardand reverse transformation through Fourier de
omposition the resulting 
ontours aresmoothed 
onsiderably. Through systemati
 performan
e studies it was shown that thearea of an obje
t is en
oded in a small number of harmoni
s, whereas the perimeterrequires a large number of harmoni
s to a
hieve good a

ura
y as shown in the Figure2.10 (
), respe
tively (d).In the re
onstru
tion pro
ess the degree of interpolation 
an be 
ontrolled not onlyin the 
ross-se
tions but also inter-
ross-se
tions and the re
onstru
ted volume is 
on-sequently more a

urately represented. Figure 2.11 shows the re
onstru
ted volume ofthe left ventri
le (42 se
tions) for Bipolar disease using the same number of harmoni
son xy - 12.In order to provide more realisti
 anatomi
al surfa
es representations Figure 2.12shows an example of a double ellipti
 Fourier re
onstru
tion of the ventri
le for As-perger's Syndrome with di�erent degrees of interpolation (the original ventri
le has 40se
tions).2.4.3 RegistrationThe registration pro
edure was performed for all obje
ts before they were added to thedatabase. Figure 2.13 shows in two views the results of registration of a 
ontrol leftventri
le with a Bipolar left ventri
le. The number of points in the �data� set (theBipolar ventri
le) is Np = 583 and the number of points in the �model� set (the 
ontrolventri
le) is Nx = 537. After 32 iterations if the toleran
e value was τ = 0.001 then themean square error of the alignment was dm = 0.000001. If R3x3 = {rij} is the rotationtransformation, s the s
ale fa
tor and t the translation, the resulted registration matrixfor the two ventri
les is:
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(a) side view (b) side viewFigure 2.13: Registration of a 
ontrol (gray) ventri
le with a Bipolar (bla
k) ventri
le
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2.4.4 Re-se
tionOur obje
t 
omparison pro
edure (distan
e de�ned on the obje
t spa
e) relies on planar
losed 
urves that were obtained from se
tioning along the same axis. It is not meaning-ful to 
ompare se
tions from di�erent obje
ts unless they are taken at the same heightalong the same perpendi
ular axis. Usually se
tions obtained from the MRI pro
eduremight use slightly di�erent axis due to variations in positioning of the patient or anotherte
hni
al aspe
ts. The re-se
tion pro
edure re
reates the outer hull of the obje
t basedon the initial se
tions, and then 
reates new parallel plane se
tions perpendi
ular onthe desired axis. This 
hange in the se
tioning axis 
omes with some resolution loss,
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(a) side view (b) side viewFigure 2.14: Re-se
tion of a 
ontrol (bla
k) ventri
le with a Bipolar (red) ventri
lebut produ
es 
ross-se
tions that are 
omparable as 2D obje
ts. This is a pre pro
ess-ing phase and is performed only on
e, at the time when the obje
t is added to thedatabase. Figure 2.14 shows in two views the results of re-se
tion algorithm of a 
ontrolleft ventri
le with a Bipolar left ventri
le.2.4.5 Database Ar
hite
tureThe 3D medi
al imaging system features 
lient-server ar
hite
ture. The 
lient partis intended to be used by remote 
lini
al resear
h sites to a

ess the database at theserver site. The server is designed to permit simultaneous a

ess of several 
lients to thedatabase. At the server site the in
oming data is be registered, re-se
tioned, en
oded toellipti
 Fourier des
riptors and saved as a new entry in the database. The 
lient retrievesthe Fourier en
oding of the obje
t from the server, as a result of a query and performslo
al re
onstru
tion for 3D visualization and other measurements. Multiple tools are



42available for visualization sli
e by sli
e or volume, quantitative measurements and sta-tisti
al analysis are be performed at the 
lient site. The system supports distributedar
hiving and visualization of obje
ts over a TCP/IP network.2.5 SummaryThe shape des
riptor presented has been shown to reliably represent and re
onstru
tanatomi
 stru
tures from 
ross-se
tional 
ontours. The 
oe�
ients derived in 
omput-ing this shape 
hara
teristi
s were implemented using a double ellipti
 Fourier transformwhi
h provides a 
ompa
t representation of the delineated stru
ture. The medi
al imag-ing database that was presented has three main features:� Compression: the algorithms that we utilized have the potential of 
ompressingimage based information while preserving the essential shape 
hara
teristi
s of theanatomi
 stru
tures.� E�
ient querying: while the preliminary results were 
ondu
ted utilizing a limitedsize database, it appears that 3D obje
t 
lassi�
ation methods based on Fourierdes
riptors provide the same a

ura
y as slower more 
omputationally intensivemethods, su
h as Iterative Closest Point.� Distributed a

ess: the prototype feature a TCP/IP based 
lient-server ar
hi-te
ture whi
h divide the tasks between 
lients whi
h perform visualizations andstatisti
al operations, and a 
entralized server whi
h servi
es queries and performsdata pre pro
essing in
luding registration and re-se
tion. Preliminary results ona brain s
an database shows promising ar
hival and 
lassi�
ation performan
e.Our �ndings suggest the potential bene�t of in
luding shape des
riptors for improveda

ura
y of di�erential diagnoses and 
lini
al assessment.2.5.1 Future workHaving developed and evaluated the fundamental algorithms and methodology a naturalextension of this work in
ludes the development of algorithms for 3-D obje
t re
ognition



43based on fully automated 3-D Fourier analysis. Another long-term goal of this proje
tis to integrate the software with a relational database and develop tools for improvedvisualization and statisti
al analysis to 
onstru
t as a tool for 
lini
al assessment anddiagnosis.The development of algorithms whi
h reliably perform automated segmentation ofimaged liver studies using a mean-shift 
lustering approa
h has already begun. In thenext phase of development a database of delineated liver lesions will be established,and 3-D Fourier des
riptors will be generated to determine the reliability of the systemfor dete
ting and assessing volumetri
 and shape 
hanges of tumors over the 
ourse oflongitudinal studies.
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Chapter 3Liver Therapy Evaluation3.1 Related Work for Registration in Medi
al ImagingMedi
al imaging is essential for a range of 
lini
al a
tivities in
luding rendering a di-agnosis, staging disease progression, assessing response to treatment, and for surgi
alplanning. Registration is the pro
ess of mat
hing two or more images (or volumes) withone another. These images may have been obtained at di�erent times from di�erents
anners or from di�erent viewpoints. Registration requires a spatial transformation,so that ea
h lo
ation in one image 
an be mapped to the 
orresponding lo
ation in these
ond image. A 
ombination of four key 
omponents are identi�ed in the developmentof the any registration algorithm: a feature spa
e, where features to be mat
hed are se-le
ted, a transformation model, a similarity measure and an optimization module. Thegoal is to �nd an optimal transformation that provides the maximum similarity betweenimages.Medi
al image registration has been the topi
 of extensive resear
h be
ause of itsimportan
e in various appli
ation areas as well as of its 
omplex nature. Maintz andViergever 
lassi�ed the medi
al image registration methods [38℄ a

ording to a modelbased on nine di�erent 
riteria, whi
h will be brie�y explained in the Table 2.In general, similarity between images 
an be 
lassi�ed into feature-based methods,intensity methods and a 
ombination of the two approa
hes . Geometri
 or feature-based methods rely on reliably extra
ting and mat
hing salient anatomi
al stru
turessu
h as point landmark points, 
urves and surfa
e information in order to de�ne thetransformation from one image set to an other. The algorithm for feature mat
hingiteratively updates the transformation parameters and the 
orresponding solution. In-tensity or voxel-based methods are used dire
tly to mat
h image intensities by operating
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Table 3.1: Criteria for registration 
lassi�
ationCriteria SubdivisionsDimensionality Spatial dimensions: 2D/2D, 2D/3D, 3D/3DTime series/spatial dimensions: 2D/2D, 2D/3D, 3D/3D

Registration basis Extrinsi
 Invasive Stereo ta
ti
 frameFidu
ials (s
rew markers)Non-invasive Mould, frame, dentalFidu
ials (skin markers)Intrinsi
 Landmark based Anatomi
alGeometri
alSegmentation based RigidDeformableVoxel property based S
alars/ve
torsFull imageNon-imageNature of transformation RigidA�neProje
tiveCurvedDomain of transformation Lo
alGlobalDegree of user intera
tion Intera
tive Initialization suppliedNo initialization supplieSemi-automati
 User initializationUser sterring/
orre
tingBothAutomati
Optimization pro
edure Parameters 
omputedParameters sear
hed forModalities involved Mono modalMultimodalModality to modelPatient to modalitySubje
t Intrasubje
tIntersubje
tAtlasStru
ture imaged HeadThoraxAbdomenLimbsPelvis and perineumSpine and vertebrae



46on the whole image and are generally semi-automati
. To make the registration pro-
ess more robust and to allow user intera
tion hybrid methods are developed. Ea
h ofthese methods are dis
ussed in greater detail in the following 
omprehensive surveys[38, 39, 40, 41, 42, 43, 44℄. There is no single method whi
h outperforms all other meth-ods and whi
h 
an be used in all situations. The registration result is always a trade-o�between a

ura
y and speed.The pioneering work of Terzopoulos et al. [45℄ and Ba
jsy & Kova
i
 [46℄ have shownthe advantages of introdu
ing physi
s-based models to simulate volumetri
 deformation.The physi
s-based deformable surfa
e models do not use any similarity measures expli
-itly and, feature mat
hing and mapping fun
tion steps of the registration pro
edure aredone simultaneously. The basi
 idea is to model an obje
t while tra
king it over timeuntil a
hieving equilibrium between internal for
es as de�ned by physi
al material prop-erties, and external 
onstrains based on the initial and �nal states of the obje
t. Oneof the most widely used physi
al methods is the mass-spring model, whi
h is a dis
reterepresentation of matter 
onsisting of nodes 
onne
ted by elasti
 links [58, 59, 60, 61℄.Although real- time performan
e 
an be a
hieved using a mass-spring model, the be-havior 
an often be unstable and unrealisti
. Mass-spring methods are often used forsurgery simulations due to their lower 
omputational 
omplexity and simpli
ity [63, 64℄.More realisti
 deformable 3-D models are a
hieved by introdu
ing 
ontinuum me
han-i
s for linear elasti
ity. Linear elasti
 and vis
o-elasti
 registration models have beenextensively des
ribed in the literature. The parti
ular behavior of an elasti
 body isa fun
tion of both the internal stress and strain and the external for
es applied, a
-
ording to the physi
al prin
iples. Broit [47℄ was the �rst to study elasti
 registration,where the images were viewed as two di�erent observations of an elasti
 body, one be-fore and one after the deformation. The displa
ement of the elasti
 body is derivedusing a linear elasti
ity model. A survey on elasti
 registration methods with empha-sis on landmark-based s
hemes has been presented by Roth [48℄. In the vis
o-elasti
framework the Navier-Stokes vis
ous-�uid partial derivative (PDEs) equations des
rib-ing the physi
al medium are solved on a dis
rete partial grid. This model, introdu
ed byChristensen [49, 50℄ and Bro-Nielsen [51, 52℄ is topology preserving and gives ex
ellent



47results allowing both large displa
ements and nonlinearities. Unfortunately, this 
on-tinuous transformation it is no longer guaranteed when solving the PDE on the dis
reteimage grid. The vis
o-elasti
 model proved to be faster than opti
al �ow based for
emodel [53℄. Other possible physi
s-based models in
lude tensor-mass methods [54, 55℄whi
h allows real-time topology 
hanges and impli
it surfa
es [62℄. Pi
inbono et. al[56, 57℄. This approa
h was developed an extension of tensor-mass method integratinggeometri
al non-linearity, whi
h is a requirement for most surgi
al appli
ations su
h as
utting, tearing or perforating.The most widely used representations for deformable volumes are parametri
 modelswith thin plates-splines representation [65℄ and �nite element models (FEM) introdu
edfor 
omputer engineering by Zienkiewi
z [66℄. Finite element methods (FEM) are usedto �nd an approximation for a 
ontinuous equilibrium equation. In FEM framework,the surfa
e´s mesh of the deformable obje
t is de
omposed into dis
rete �nite elementsjoined at dis
rete node points. The 3D displa
ement of any element´s point is approxi-mated as a linear 
ombination of the 
omponents of the interpolation fun
tions appliedto the node displa
ements. An equilibrium expression is derived for ea
h element andis assembled in a large and sparse linear system whi
h has to be solved. The �nite ele-ment model approa
h to the numeri
al solution of deformable surfa
e models was �rstintrodu
ed by Terzopoulos & Metaxas [67℄ and later by M
Inerney & Terzopoulos [68℄.Finite element analysis is a powerful 
omputational tool for modeling soft tissue defor-mations. An extensive amount of resear
h has yielded positive results for intra-patientnonrigid image registration by using biome
hani
s and �nite element models (FEM) inneurosurgery [71, 72, 73, 74℄, breast [75, 76, 77℄, prostate [78, 79, 80℄, heart's ventri
le[81, 82℄ as well as in radiotherapy settings [83, 84℄ .In the 
ontext of liver therapy, several image registration methods has been investi-gated for alignment of serial data sets. Previous resear
h has shown that the magnitudeof liver deformation is typi
ally 10-30 mm during relaxed respiration [85, 86℄. To a
-
ount for motion and deformation of the liver 
aused by respiration resear
h has beendone to register sparse intra operative ultrasound data to preoperative images of theliver using statisti
al models [87℄ and intensity-based methods [88℄. Boes group [89℄



48have attempted to generate a geometri
 patient spe
i�
 liver model by using manuallyidenti�ed anatomi
 landmarks and thin-plate splines, whi
h 
ould be mat
hed to a stan-dard liver using the same registration te
hnique. Unfortunately, this method based on anormalized surfa
e model requires substantial user intera
tion and has the limitation ofusing dis
rete landmarks rather than volumetri
 data. Re
ently �nite element method(FEM) has been investigated in 
reating a biome
hani
al model of the liver [90℄, inmulti-organ deformable image registration [91℄, for intra-operative soft tissue deforma-tion of the liver using in
omplete surfa
e data [92℄. A FEM was used to simulate thedi�eren
es in distribution of temperature and the ele
tri
 �eld potential at the end of a12 min radiofrequen
y ablation pro
edure [93℄.There have been many liver deformation studies, but only few have been reported ontra
king metastases and primary tumors in the liver. Charnoz et al. [94℄ registered thesegmented vas
ular network of the liver for the follow-up of tumor evolution. However,the blood vessel bran
h points are di�
ult to identify when di�erent a
quisition timesare used and registering the vas
ular system alone does not take in a

ount any informa-tion regarding surfa
e liver deformation. Carrillo et al.[95℄ used a rigid intensity-basedalgorithm to perform registration of MR liver images a
quired before thermal ablationand following treatment and reported an a

ura
y of approximately 3 mm.Tra
king of tumors to support surgi
al interventions or radiotherapy planning re-quires the a

urate mapping of every volume position among multiple images series.Deformable organ registration 
an not be a

omplished using image information alone,intrinsi
 properties of tissue me
hani
s must also be introdu
ed into the registrationpro
ess. As level of 
omputational power 
ontinues to grow, deformable registration
oupled with �nite element analysis is be
oming a mu
h more a

essible tool for medi-
al image appli
ations.



493.2 Corresponden
e Methods for RegistrationThe 3-D registration problem 
an be de
omposed into two parts by estimating the point
orresponden
es and the transformation. Sin
e solving for either one without informa-tion regarding the other is very di�
ult, most non-rigid registration approa
hes use aniterated estimation framework. Given an estimate of the 
orresponden
e, the trans-formation may be estimated whi
h in-turn 
an be used to update the 
orresponden
e.In this Thesis we introdu
e a, Modi�ed Iterative Closest Point (m-ICP) method, and
ompare it with two di�erent 
orresponden
e methods.3.2.1 Curvature S
ale Spa
e (CSS)Curvature s
ale spa
e was �rst introdu
ed by Mokhtarian and Ma
worth [96℄ as a newshape representation for planar 
urves. The Curvature S
ale Spa
e representation isbased on the evolution 
on
ept - the pro
ess of des
ribing a 
urve at in
reasing levelsof abstra
tions. The basi
 idea behind CSS representation is to 
onvolve a parametri
representation of the 
urve with a Gaussian fun
tion, as the standard deviation of theGaussian in
reases, and to extra
t the 
urvature zero-
rossing points from the resulting
urves.The 
urvature of a 
urve is de�ned as the derivative of the tangent angle to the
urve. Considering the 
urve in the parametri
 form (x(u), y(u)), where u is an arbitraryparameter, the 
urvature 
an be expressed as:
k(u) =

ẋ(u)ÿ(u) − ẍ(u)ẏ(u)

(ẋ(u)2) + ẏ(u)2)
3

2Spe
ial 
ases of parametrization result in simpli�
ation of 
urvature's formula. Ifwe 
onsider a 
losed planar 
urve with normalized ar
 length parameter u ∈ [0, 1], the
urvature formula will be k(u) = ˙x(u) ¨y(u)− ¨x(u) ˙y(u). An evolution of the 
urve 
an bea
hieved by Gaussian smoothing to 
ompute the 
urvature at varying levels of detail.If g(u, σ) is a Gaussian kernel of width σ de�ned by:
g(u, σ) =

1

σ
√

2π
exp− u2

2σ2
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Figure 3.1: Left) At σ = 50, 20 lo
ations of 
urvature zero 
rossing for a planar 
urve.Right) Curvature s
ale spa
e imagean evolved 
urve is de�ned by Γσ = {(X(u, σ), Y (u, σ)), u ∈ [0, 1] where ⊗ denotes
onvolution and:
X(u, σ) = x(u) ⊗ g(u, σ)

Y (u, σ) = y(u) ⊗ g(u, σ)A

ording to the properties of 
onvolution, the derivatives ofX(u, σ) and Y (u, σ) 
anbe easily 
omputed. As σ in
reases Γσ be
omes smoother and the number of 
urvaturezero 
rossing points on it de
reases. The binary image 
alled 
urvature s
ale spa
eimage of a 
urve is obtained by displaying the resulting points in (u, σ) plane, where uis the normalized ar
 length and σ is the width of Gaussian kernel. Figure 3.1 shows a
urvature s
ale spa
e image of a planar 
urve.Curvature s
ale spa
e image representation retain the lo
al information of the shapeand is robust to noise, s
ale, and 
hange of orientation.3.2.2 Modi�ed Iterative Closest Point (deform-ICP)For most surfa
es registration strategies, 
losest point distan
es are used as initial es-timate of the 
orresponden
e. With the presen
e of deformation, the 
losest point
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Figure 3.2: Deformable registration pro
ess.operator be
omes less reliable as a means for determining 
orresponden
e. The 
lassi-
al solution for point registration is the Iterative Closest Point (ICP) algorithm [34℄ asdes
ribed in the Chapter IV. The binary point 
orresponden
es are based on a nearestneighbor heuristi
. The algorithm iterates between the spatial mapping and the nearestneighbor 
orresponden
es until the 
hange in the obje
tive error fun
tion falls below apreset threshold.In attempt to over
ome the deformation, a modi�ed ICP-like registration based on alo
al motion fun
tion was applied for ea
h point of interest. By implementing the motionfun
tion, whi
h allows the points to move along the plane tangent to the surfa
e, thesurfa
e shift is better a

ommodated. Our method augments 
orresponden
e fun
tionswith surfa
e properties by estimating the non-rigid motion using surfa
e normals. Inthe standard ICP algorithm, only 3-D point 
oordinates are used in the estimation of
orresponden
e resulting in a la
k of intera
tions between neighbor points. Instead ofassuming a trivial 
orresponden
e, the sear
h for the 
losest points take into a

ountall the neighborhood points with a similar normal dire
tion to the point of interest.The 3-D point 
oordinates and normals are then put together in a 6-D spa
e and asquared error over the neighborhood around the point of interest is minimized. Figure3.2 illustrates this approa
h.If in the sele
tion of the 
losest point only the Eu
lidean distan
e are used, points aand b from the data set will be asso
iated with point C from the model set. However, the



52points a and A from the data and 
orresponding model set have approximately similarnormal dire
tions. In su
h 
ases, more weight must be given to the normal 
omponentand the proper 
hoi
e of the 
losest point is a

omplished, a → A, and b → B. If wede
ompose the deformation as a series of small in
rements, the motion is estimated asa small displa
ement in the dire
tion of 
orresponding points. At every in
rement, thesurfa
e of the pre-treatment liver data set is deformed to map on the surfa
e of the post-treatment liver data set, allowing all the points to move in the tangential dire
tion. Themain advantage of the algorithm that was developed as part of this Thesis is that theestimation of deformation is a

omplished in small in
remental steps, and the motionis applied to the 
orresponding point set at ea
h iteration.3.2.3 Robust Point Mat
hing (RPM)Parametri
 deformable models rely on linear de
ompositions taken a
ross basis fun
tionsand do not, themselves, enfor
e properties su
h as one-to-one mapping. To over
ome thisproblem we utilized a Robust Point Mat
hing (RPM) algorithm [100℄. The Robust PointMat
hing (RPM) algorithm was previously developed and used for 2D rigid alignment[97℄. The tremendous �exibility of this algorithm was easily generalized to the 2D and 3Da�ne and pie
ewise-a�ne mappings [98, 99℄. Furthermore, the algorithm's frameworkwas extended to a general purpose, by in
luding thin-plate spline as the parametrizationof the non-rigid mapping and the point-to-point 
orresponden
e problem was solved byusing a softassign method [98℄ and deterministi
 annealing [101℄. The main idea of theRPM is to minimize the following fuzzy assignment least squares energy fun
tion for the
orresponden
e between point set A, with points a = {1, 2..K} and point set I, withpoints i = {1, 2..N}:
ERPM (M,f) =

N
∑

i=1

K
∑

a=1

mai||xi −f(va)||2 +λ||Lf ||2 +T
N

∑

i=1

K
∑

a=1

mailogmai − ζ
N

∑

i=1

K
∑

a=1

maiwhere mai are the elements of the fuzzy 
orresponden
e matrix M , of point a topoint i, with mai ∈ [0, 1] and satisfying one-to-one 
orresponden
e 
onditions:
∑N+1

i=1 mai = 1 for i = {1, 2..N}
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∑K+1

a=1 mai = 1 for a = {1, 2..K)The extra row N + 1 and extra 
olumn K + 1 are used to handle the outliers. Thenon-rigid transformation is represented by the mapping fun
tion f , a point va is mappedto a new lo
ation f(va). The appropriate 
onstrains on the mapping are introdu
ed by
hoosing a spe
i�
 smoothness measure, L, as is re�e
ted in the se
ond term of theenergy fun
tion. The mapping fun
tion is 
hosen to be a thin plate spline (TPS), andits smoothness is measured in terms of the bending energy within a �nite window. Thethird term is an entropy fun
tion with the temperature parameter, T , whi
h 
ontrolsthe fuzziness of 
orresponden
e. At higher temperatures, the entropy term for
es the
orresponden
e to be more fuzzy. The last term with the weight parameter ζ 
ontrolthe robustness, preventing the reje
tion of too many points as outliers. The, λ, term is
oupled with the temperature, T , in the deterministi
 annealing pro
ess.The RPM algorithm utilizes an alternating optimization s
heme to iteratively up-dates the 
orresponden
e parameter, M , and the spatial transformation fun
tion, f ,while gradually redu
ing the temperature, T , whi
h ea
h a fun
tion of the other. Thespatial mapping is solved in 
losed form, whi
h permits its use for data of any dimension,2D or 3D.3.3 Finite Element Method (FEM): TheoryIn the approa
h presented in this Thesis, deformation of soft tissue is modeled based onthe linear elasti
ity theory. The behavior of an elasti
ally deformable obje
t is governedby a partial di�erential equations. Finite element methods (FEM) have been regardedas a versatile, e�e
tive and a

urate te
hnique for dis
retization of 
ontinuum models.In this se
tion, we brie�y introdu
e the linear Finite Element Method for deformableobje
ts.The total work Π of a deformable elasti
 system 
an be written as the sum of theexternally applied for
es W and the elasti
 potential energy Λ due to the developmentof material stresses and strains Π = W + Λ [66℄. In order to determine the obje
tdeformation, the material is modeled as a linear elasti
 
ontinuum in stati
 equilibrium,



54with no initial stresses or strains and the total work Π is expanded in terms of thematerial displa
ements:
W =

∫

V FudV and
Λ = 1

2

∫

V σ
T εdV = 1

2

∫

V ε
TDεdVwhere V represents the volume of the deformable obje
t, u = u(x, y, z) is the dis-pla
ement ve
tor, F = F (x, y, z) is the ve
tor representing all the for
es applied, σ isthe Cau
hy stress tensor and ε is the linear strain tensor. D is the material sti�nessmatrix relating the stress and strain in Hooke's generalized law:

σ = DεFor an isotropi
 material, the 
omponents of the matrix D depend only on twoelasti
ity parameters, Young's Modulus E and Poisson's ratio ν:
D = E

(1+ν)(1−2ν)
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If the 
ontinuum obje
t is dis
retized, it is intended to �nd an approximation for theequations relating the internal displa
ements and the external for
es applied dependingon the material parameters of the model. Four general steps [102℄ are used in FEMframework :1. the deformable obje
t has to be dis
retized into a �nite set of elements e, assumedto be inter
onne
ted at nodal points on their boundaries. The 
hoi
e of elementse.g bar (or truss), triangle or tetrahedron, depends on the physi
al properties ofthe deformable obje
t under a
tual loading 
onditions and how 
lose to the a
tualbehavior the results must be.



552. the displa
ement fun
tions within ea
h element e has to be de�ned. Linear,quadrati
 and 
ubi
 polynomials are frequently used fun
tion. The displa
ementfun
tions are often 
alled interpolation fun
tions or shape fun
tions. If n is thenumber of nodes in the element, the 
ontinuous displa
ement �eld u of any pointinside the element is approximated as a linear 
ombination of the 
omponents ofthe interpolation fun
tions Ni applied to the displa
ement at the element's nodalpoints ui:
ue =

n
∑

i

N e
i u

e
iTherefore we 
an express displa
ement of any point inside of deformable obje
t,from the element node displa
ements and the element shape fun
tions.3. strain displa
ement and stress/strain relationships must be de�ned. For a elasti
obje
t the di�eren
es between the original and 
urrent positions of all obje
tpoints are represented by a 
ontinuous displa
ement �eld u = [u, v,w]T . For smalldispla
ements, the relation between the strain ε and the displa
ement �eld u isapproximated with the linear Cau
hy-Green tensor:
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Using nodal displa
ements ui of point i in x-y-z dire
tions the strain displa
ementis de�ned as: ε = Beu where
Be =
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564. derive the element sti�ness matrix and equations . An equilibrium expression isderived for ea
h element e and then assembled in a large and sparse linear system.The relation between the nodal for
es fi and the nodal displa
ements ui whi
hhas to be minimized at every node i of ea
h element e, assuming that point loadsare a
ting on the nodes, 
an be expressed as :
∏

=
1

2

∫

V
σT εdV −

∑

i

ue
if

e
iIn the linear �nite element formulation be
ame:

∏

=
1

2
uT

e Keue −
∑

i

ue
if

e
iwith

Ke = BT
e DBeVe

Ke is the element sti�ness matrix and Ve volume of element. Equilibrium 
orre-sponds to a minimum of Π. To determine the extreme values, the partial derivativeof Π are solved with respe
t to nodal displa
ements ui and the relation betweendispla
ement ve
tor u and the for
e ve
tor f is obtained for ea
h element:
Keue − fe = 0The only remaining step is to assemble the global sti�ness from the element sti�-ness matri
es. The result is a large and sparse linear system, the solution of whi
hwill provide the deformation �eld 
orresponding to the global minimum of thetotal work:
F = Kuwhere K is the sti�ness matrix numeri
ally integrated over the obje
t´s volume, uis a displa
ement ve
tor of all nodes and F is a ve
tor that 
ombines all externalfor
es and boundary 
onditions whi
h des
ribe the initial and the end states ofthe deformation pro
ess. The dimension of global sti�ness matrix K is 3Nx3Nand the dimension of the global for
e ve
tor F is 3N where N is the total numberof nodes.
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e, this method is one in whi
h a 
ontinuous quantity, su
h as the displa
ementthroughout the body, is approximated by a dis
rete model 
omposed of a set of pie
ewise-
ontinuous fun
tions de�ned within ea
h �nite element. The pre
ision of the approxi-mation improves with the level of dis
retization, and the degree of interpolation 
hosen,but to the detriment of 
omputational time and memory size. A number of advantagesthat in
lude the ability to: (1) model obje
ts 
omposed of several di�erent materialsbe
ause the element equations are evaluated individually; (2) vary the size of elementswhere ne
essary; (3) manage unlimited number of boundary 
onditions; and (4) man-age nonlinear behavior existing with large deformations and nonlinear materials. All ofthese features have made the FEM very popular in the area of deformable models andsurgi
al simulations.3.4 Tumor Tra
king ModelWe present a surfa
e based non-rigid method for tra
king tumor a
ross pre- and post-treatment CT liver images using a �nite element model based deformable system. Thestrategy of the algorithm is twofold: the �rst step is to align the liver's mesh surfa
esand the se
ond step is to model the volumetri
 deformation using a linearly elasti
�nite element model (FEM) whi
h has boundary 
onditions generated from the result ofsurfa
e registration. When the liver is treated as a purely elasti
 body, at the equilibriumstate, the strain energy stored as tissue distortion is equivalent to the work of externalfor
es applied to its surfa
e. In this framework the major 
hallenge for tra
king tumorlo
ation is not the tissue me
hani
al properties for FEM modeling but the evaluation ofboundary 
onditions de�ned by the 
orresponden
e of liver boundary points on 3D imagesets taken at di�erent times. Di�erent registration algorithms, presented in Se
tion II,have been investigated to determine the proper 
orresponden
e of the boundary pointswhi
h ultimately drive the transformation. To a

ommodate the lo
al deformation,the problem of tra
king tumor lo
ation 
an be formulated as the bije
tive relation ofre
overing lo
ation of any points from the pre-treatment images in the post-treatmentimage.In this formulation, surfa
e/volumetri
 based registration-deformation algorithm 
an
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Figure 3.3: Flow 
hart of the integrated pro
ess to quantify tumor motionbe de
omposed into three main 
omponents: extra
ting boundary points of interestingstru
tures from images, mat
hing the data and model surfa
es, and then extending thesurfa
e-based transformation to the full volume using FEM. Figure 3.3 des
ribes themain steps of our approa
h.3.4.1 Segmentation and 3D Mesh GenerationTwo data sets of tomographi
 images were a
quired using GE Light Speed VCT s
anner.The pre-treatment CT s
an was taken at normal exhale and inhale breath-hold and thepost-treatment 
ontrast was a
quired at inhale. Contrast enhan
ed images providedetail allowing a

urate de�nition of the margins for both liver and tumor. The dataset 
onsists of axial sli
es of 1.25 mm thi
kness and matrix size of 512 x 512 pixels ofthe entire body. The �st step in mesh generation is to extra
t the liver and tumor's
ontour shapes from these data sets. Segmentation pro
ess generate a series of dis
rete
ontours whi
h are represented by a list of vertexes asso
iated with ea
h transverselyimage sli
es. The 
ontour extra
tion was performed using MIPAV software pa
kage [103℄using a two dimensional semi-automated a
tive 
ontrol model. The segmented 
ontourswere 
onverted to a volumetri
 binary mask. The data set for the liver was redu
ed toapproximately 180 sli
es and while the tumor data set is patient spe
i�
, varying between30-40 sli
es. The binary mask was 
onverted to a tri-element surfa
e mesh using the
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Figure 3.4: Result of the original surfa
e with Mar
hing-
ubes algorithmsub-voxel triangulation mar
hing 
ubes algorithm [104℄. The basi
 prin
iple behind themar
hing 
ubes algorithm is to subdivide the data spa
e into a series of small 
ubes ona voxel-by-voxel basis. The algorithm 'mar
hes' through ea
h of the 
ubes testing theinterse
tion of the 3D 
ontour surfa
e with ea
h voxel and repla
ing the 
ube with anappropriate set of polygons. The total sum of all polygons generated will be furtherredu
ed to a triangle surfa
e representation 
alled mesh, that approximates the one thedata set des
ribes. The result of mar
hing 
ubes algorithm on liver surfa
e mesh isshown in Figure 3.4.However, the resulting polygonal surfa
es were too rough and the number of trianglesgenerated too large for further pro
essing. Using Visualization Toolkit [105℄, smoothingand de
imation algorithms were developed in order to avoid stair
ase e�e
ts and tosimplify the mesh. The mesh was smoothed using a windowed sin
 fun
tion interpo-lation kernel [106℄. The basi
 idea of Taubin group [106℄ design was to approximatethe transfer fun
tions of the low-pass �lters by Chebyshev polynomials using standardsignal pro
essing low-pass �lters. As opposed to kernel 
onvolution, using Chebyshevpolynomials made possible to apply the �lters in an iterative di�usion pro
ess. Themore smoothing iterations applied, the higher the degree of polynomial approximatingthe low-pass �lter transfer fun
tion. Ea
h smoothing iteration, therefore, applies thenext higher term of the Chebyshev �lter approximation to the polyhedron. This de
ou-pling of the �lter into an iteratively applied polynomial is possible sin
e the Chebyshev
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Figure 3.5: Windowed sin
 smoothing result : Left) The smoothed mesh superimposedwith the original one. Right) Smoothed meshpolynomials are orthogonal, i.e. in
reasing the order of the approximation to the �ltertransfer fun
tion does not alter the previously 
al
ulated 
oe�
ients for the low orderterms [105℄. The meshes for liver, were smoothed in 100 iterations with pass band valuefor the windowed sin
 �lter of 0.001. The tumors were smoothed with fewer iterationsto maintain the surfa
e irregularities. An example of the smoothing pro
ess for the liveris illustrated in the Figure 3.5.The number of triangles in the mesh was redu
ed by applying a quadri
 de
imation�lter [107℄ allowing fast and a

urate geometri
 simpli�
ation of the mesh. This ap-proa
h de�nes for ea
h fa
e of the mesh a quadri
 equal to the squared distan
e of apoint to the plane 
ontaining the fa
e. For ea
h vertex in the mesh is assigned the sumof quadri
s on its adja
ent fa
es weighted by the fa
e area. After the de
imation pro
essis 
omplete less storage spa
e is required while maintaining an a

urate des
ription ofvolume. The meshes were redu
ed down to 10% of their original size. The 
ombinede�e
t of the smoothing and the de
imation algorithms was to adjust the triangles ofthe mesh, making them more evenly distributed, improving the appearan
e while main-taining a

urate mesh topology. An example of the pro
ess of generating a liver surfa
emesh is shown in the Figure 3.6.Based on the simpli�ed triangulation of the surfa
e, the volume of liver with the tu-mor embedded was de
omposed into tetrahedral elements without 
hanging the surfa
etopology. The goal was to generate suitable tetrahedral meshes for numeri
al simulation
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Figure 3.6: Quadrati
 �lter de
imation: Left) The smoothed mesh superimposed withthe de
imated one. Right) De
imated meshusing �nite element. We have 
hosen this element be
ause a tetrahedron does not self-penetrate, whereas a higher order element tends to deform and result in self-interse
tion.We used a publi
 domain quality tetrahedral mesh generator TetGen [108℄, whi
h isbased on an implementation of Constrained Delaunay algorithm [109℄. A 
onstrainedtetrahedralization is a de
omposition of a three-dimensional domain into a tetrahedralmesh, su
h that the output boundary is enfor
ed to the input boundary represented bythe fa
es of the mesh. This feature proved to be very useful, in our 
ase for 
ombiningtwo meshes whi
h share the same boundary, furthermore the boundary surfa
es of theobje
ts represented in the mesh 
an be extra
ted from the mesh as triangulated sur-fa
es. In FEM numeri
al simulation, the mesh shape and mesh size are important forthe approximation error and 
onvergen
e of the numeri
al methods. TetGen performse�
ient mesh re�nement, inserting new vertexes, to improve the overall mesh quality.For a

ura
y in the FEM it is ne
essary that the shapes of the elements have a smallradius-edge ratio and a maximum volume element 
onstraint. The radius-edge ratio ofan element is the ratio of the radius of the unique 
ir
umsphere to the length of theshortest edge. The resulting tetrahedral mesh is a �nite element mesh whi
h 
onsists ofgood-shaped tetrahedrons and the mesh size well 
onforms to the boundary size - themesh size is small 
lose to the boundary and is gradually in
reased to the interior.



62

Figure 3.7: A fully 
onne
ted and 
onsistent tetrahedral mesh for liver and tumor.The following �gure 3.7 illustrate a fully 
onne
ted tetrahedral mesh 
ontaining boththe liver and the tumor.3.4.2 Boundary Conditions from RegistrationFigure 3.8 left shows the result of the ICP registration algorithm. Be
ause of thenonlinear/deformation motion of the liver between 
onse
utive studies, a

urate surfa
eregistration 
an not be obtained when only rigid registration algorithms are used. Figure3.8 right shows an example, where the tumor asso
iated with the pre-treatment liverwas erroneously registered out of surfa
e of the post-treatment liver be
ause of the notedlimitations of su
h algorithms.Our approa
h starts with a rigid registration step ne
essary to provide the bestalignment of the pre-treatment/data and the post-treatment/model surfa
e meshes fol-lowed by the deform-ICP registration method previously des
ribed. The liver's externalsurfa
es are registered based on the 
hange in surfa
e positions leaving the deformationof the interior volume as the residual error to be a

ounted for by the �nite elementanalysis. The FEM will 
ompute the deformation of the tumor's surrounding nodes inthe mesh. This 
ombination of the registration whi
h provide the boundary 
onditionsassigned to surfa
e nodes and the �nite element modeling whi
h is used to infer tumorlo
ation in subsequent studies has proven to be extremely reliable during the 
ourse of
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Figure 3.8: Left) Result of rigid ICP registration: light 
olored surfa
e shows the post-treatment, and dark 
olored is the liver pre-treatment. Right) Rigid registration te
h-nique do not 
orre
t for the surfa
e deformation: post-treatment (light 
olor) and pre-treatment tumor.our experiments.3.4.3 Finite Element ImplementationOn
e the image sets are registered, the �nal step of our approa
h is to model the defor-mation based on the linear elasti
ity theory. A

urate predi
tion of tumor lo
ation relyon a

urate representation of soft tissue. We assume that liver tissue is an elasti
, in-
ompressible material ( no volume 
hange during deformation), isotropi
 (no dire
tionalpreferen
e) and homogeneous (same tissue 
omposition). Given an elasti
 obje
t rep-resented as volumetri
 mesh, deformation indu
es the movement of every vertex withinthe obje
t. This 
an be modeled as a mapping fun
tion of the positions of all verti
esfrom the initial 
on�guration to those in the deformed 
on�guration.We take advantage of the tetrahedral volumetri
 mesh building in this stru
ture our�nite element model with a 2-node element. Our resulting mesh stru
ture is a 
onsistenttetrahedral mesh that 
ontains physi
ally 
onne
ted liver and tumor. We have 
hosenthis 2-node element be
ause:� ea
h node has a relatively small number of neighbors resulting in fewer non-zeroelements in the sti�ness matrix and less expensive 
omputation.� it simpli�es the integration of the derivatives of the potential energy.



64Instead of using for
es, whi
h are di�
ult to determine a

urately, we impose boundary
onditions to the liver obje
t by assigning �xed values to the displa
ement ve
tor, u.Boundary 
onditions are assigned to surfa
e nodes based on the 
hange in node posi-tions during registration. Material properties and these boundary 
onditions whi
h areintegrated over ea
h element of the mesh and distributed over the mesh's nodes drivethe deformation and the deformation propagates throughout the entire volume. Freesoftware pa
kage Z88 [110℄ was used to generate the solution of the linear system ofequations by a pre
onditioned 
onjugated gradient method. The solution of the linearsystem provide the displa
ements of all internal nodes of the volumetri
 mesh, allowingreliable tra
king of ea
h tumor's deformation.3.5 Phantom Validation of Deformable RegistrationQuantitative validation of the deformable registration algorithm has proved to be di�-
ult be
ause of the general la
k of ground truth information. Sin
e there is rarely if evera �gold standard� with whi
h to evaluate nonrigid registration results, semi-quantitativeevaluation by a human expert is often used as a substitute. To test the performan
eof the algorithms we designed and evaluated both 2-D syntheti
 data and imaged beefliver 
ontaining phantoms to address this issue. Comparative performan
e analysis was
ondu
ted using both rigid and non-rigid approa
hes.The basi
 idea 
omes from the fa
t that for an elasti
 obje
t, the strain energyof the obje
t equals the work done by the external for
es applied. The e�e
t of thematerial parameters is limited if all the displa
ements are pres
ribed from the results ofregistration.3.5.1 2D Rubber PhantomWe have 
reated a rubber balloon model that 
an be used to indu
e measurable defor-mations. The balloon was stret
hed over a 
ir
ular ring with the diameter of 42 mm.A 
losed 
urve was drawn on the balloon in the shape of a 2-D liver se
tion and 21points of 1 mm diameter were drawn inside the 
losed 
urve with uniform distribution.
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Figure 3.9: The base 2D rubber phantom model and three deformation representation.The 
entroids of these points served as targets while performing multiple deformationsof the 
urve to simulate 
onse
utive visits. In all, the base model was deformed intothree di�erent representations that were generated by manually stret
hing the balloonat di�erent lo
ations. Figure 3.9 displays the balloon base model and the three deformedstates.The four-step algorithm previously presented was evaluated in order to predi
t thelo
ation of the markers in all deformed data sets. Using the open sour
e software Auto-Tra
e [112℄ the 
ontours of the 
losed 
urve and the 21 marked points were automati
allysegmented from all four representations. A one-to-one 
orresponden
e was assigned for
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Figure 3.10: Boundary 
onditions and �nite element triangulation.the markers in all deformed states. In order to evaluate the proper 
orresponden
e inthe applied boundary 
onditions, the 
losed 
urves were registered using three di�erentalgorithms: CSS, deform-ICP, RPM. The next step of our approa
h was to model de-formation using the �nite element method. The interior of the 
losed 
urve with all 21markers were tessellated using the two-dimensional �nite element mesh generator andDelaunay triangulator, Triangle [113, 114℄. The following Figure 3.10 illustrates the twosteps pro
edure: registration followed by the �nite element analysis.The degree of deformation of the 2D rubber phantom was 
hara
terized as the lengthof the displa
ement ve
tors of all i = 1..21 markers. The 
entroid lo
ations of the desti-nation markers in the image are cidest. When we register based on rigid-ICP, the 
entroidlo
ations of the markers are cirigid−ICP and after applying our deformable surfa
e regis-tration model, the 
entroid lo
ations of the markers in the deformed image are cideform.Therefore the a

ura
y of the deformation model 
an be quantitatively 
al
ulated bythe ve
tor length:
di =‖ cidest − cideform ‖



67
rigid−ICP destination deformed

Figure 3.11: 2D phantom evaluation of the displa
ement ve
tor of the markers: theEu
lidean distan
e between the result of deformation and the destination state is 
om-puted.Figure3.11 graphi
ally illustrates the results of deformation from our FEM model su-perimposed with the destination image. Di�erent amounts of deformation 
an be ex-perien
ed in di�erent regions due to the smaller 
on
entration of deformations in the
entral regions and the larger amount at the periphery areas. Figure 3.11 shows thatthe deformations exhibit a greater e�e
t on peripheral markers as 
ompared to 
entralones.We have four instan
es of deformation data sets and twelve registration-deformationresults are obtained, generating a distribution of displa
ement ve
tors. The minimum,average and maximum of displa
ement for all markers over all twelve results are shownin the Figure 3.12 and the mean value is reported in the table.The average error for the registration a
hieved using a �nite element model wasslightly higher when deform-ICP algorithm was used (1 mm), than with Robust PointMat
hing (RPM) algorithm (0.7 mm). This error may be due to the la
k of 
orrespon-den
e information provided in the 
al
ulation of the boundary 
onditions.In order to further improve results we studied the manner in whi
h radiologist havetraditionally assessed 
onse
utive imaging studies. Radiologists typi
ally look for blood
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Figure 3.13: Deform-ICP registration errors with di�erent number of landmark points.vessels landmarks, but in trying to implement an analogous pro
edure using a 
omputer-based approa
h the di�
ulties arose while extra
ting landmarks in the two images thata
tually 
orrespond to the same physi
al point. To evaluate the potential of this ap-proa
h we have randomly 
hosen a small number of representative landmark points inthe original, undeformed image and spe
i�
ally tra
k ea
h of them in the deformedimages. This approa
h was e�
iently implemented by in
luding the landmark pointsin the further deformation surfa
e registration pro
essing and analysis. To avoid anysimulation in
onsisten
ies, the landmark points were 
hosen in the 
entral zone of theimage and we for
e them to be part of the FEM node stru
ture. Using deform-ICPalgorithm the deformation results when di�erent number of landmark points are usedare presented in the Figure 3.13. The average registration-deformation error is about0.5 mm when 3 landmark points are used, with maximum error between 0.7 mm and0.3 mm when 1 respe
tively 5 landmark points are used.A motivation for using this parti
ular solution is that it 
an be easily introdu
ed intothe existing work �ow of radiologist. By having the radiologist indu
e a few landmarkpoints the a

ura
y is improved while at the same time the 
omputer-assisted tools addspeed and reliability to the radiologist´s assessment, helping them in the interventional



70and treatment planning pro
ess.3.5.2 3D Beef Liver PhantomThe a

ura
y of the deformable model was evaluated using a real beef liver. To simulatethe internal abdominal environment and to minimize assumptions, the beef liver wasembedded in an agar gel to preserve the natural shape. Using a syringe 21 plasti
 beadswere uniformly distributed throughout the liver. All the markers had the same spheri
alshape with diameter of 5 mm. To enable a

urate segmentation and position estimation,the diameter of the spheres were 
hosen to be slightly larger than the distan
e betweentwo su

essive s
anning planes. For our purposes Z spa
ing was 1 mm. The plasti
markers were easily identi�ed in all of the CT s
ans without 
reating any noti
eableimaging artifa
ts. The markers are well suited to validate our model. The liver wasimaged, deformed and re-imaged to simulate 
hanges in shape of the liver that 
ano

ur due to di�eren
es in patient position a
ross 
onse
utive imaging studies. Themarkers do not exhibit shape variations as 
an o

ur in a
tual tumors whi
h have beenpartially ablated.The deformable registration 
omponent of our approa
h is based on 
hanges in sur-fa
e position, thus three deformation types 
hara
teristi
 for real patient a
quisitionswere simulated by 
ompressing and tilting the 
ontainer with the beef liver. The beefliver phantom data sets were s
anned with General Ele
tri
 LightSpeed CT s
anner.Volumetri
 images were obtained using the following s
anner settings: 120 kV, 180 mA,standard re
onstru
tion type, and high quality s
an mode. The �eld of view was 230mm, produ
ing a voxel size of 0.45 mm x 0.45 mm x 1mm. Ea
h CT s
an was 
omposedof 130 sli
es of 1 mm thi
k (512 x 512 pixels, 16 bits) exported in DICOM format. Fig-ure 3.14 displays the original setup of the beef liver and to illustrate the deformationdata sets that were generated we in
lude two CT se
tions targeting the same marker.Using the open sour
e software MIPAV [103℄ the 3D surfa
es of the beef liver andall markers were semi-automati
ally generated from the DICOM �les for all four repre-sentations. A one-to-one 
orresponden
e was assigned for the markers in all deformedstates. Figure 3.15 shows all the markers uniformly distributed in the liver.
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Figure 3.14: 3D beef liver phantom: Upper row) initial setup with a CT se
tion. Lowerrow ) CT se
tion of two deformation data sets, targeting the same plasti
 bead marker.

Figure 3.15: 3D markers uniformly distributed inside the beef liver.
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Surfa
e mesh Volumetri
 meshData Sets Mar
hing
ubes Smoothing &De
imationPoints Fa
ets Points Fa
ets Points Fa
ets TetrahedronsOriginal 270200 540000 2723 5401 3856 35412 16356Deformation 1 238400 476400 2405 4765 3372 31098 14358Deformation 2 221800 443200 2239 4433 3196 29618 13701Deformation 3 238900 477400 2410 4775 3457 32103 14858Table 3.2: Number of points generated in the 
onstru
tion of liver surfa
e and tetrahe-dral volumetri
 meshes.Using the three-dimensional mesh generator TetGen [108℄, a high quality tetrahedralmeshes were 
reated that 
onform to the input surfa
e meshes, so that some nodes ofthis model 
orresponded to the 
entroids of the markers. Table 3.2 summarizes thenumber of points generated for liver surfa
es and for the tetrahedral volumetri
 meshes.In this tetrahedral mesh stru
ture we built a �nite element model with 2-node el-ement, so that the markers share 
ommon mesh nodes with the liver, allowing thevolumetri
 displa
ements of the markers to be inferred from liver's surfa
e deformationsusing FEM. As mentioned in the previous se
tion the displa
ement of all verti
es in thevolumetri
 mesh 
an be re
onstru
ted by the linear for
e-deformation relation Ku = F ,for a sti�ness matrix K with parameters Young's modulus E and Poisson's ratio ν. Theliver is �lled with blood, whi
h implies that ex vivo tissues should not behave like invivo tissues. The elasti
 properties of the liver have shown a strong variability. Appro-priate linear elasti
 material parameter values for the beef liver were determined fromliterature [111℄. Most soft tissues are 
onsidered as roughly in
ompressible materialsand are assumed to have a Poisson's ration in the range of 0.45 < ν < 0.49. We assumethe model material properties as isotropi
 and linear with E des
ribing the sti�ness ofthe material of 11 kPa and ν des
ribing the 
ompressibility of the material of 0.47. Onlythe Poisson's ratio is important in our FEM analysis sin
e only displa
ement boundary



73Marker Rigid ICP Deform ICP RPM1 - peripheral 12.9683 6.6741 1.499182 - peripheral 11.5913 3.94894 2.413093 - peripheral 16.9037 8.70856 1.15064 - peripheral 8.09239 5.82661 3.155145 - 
entral 7.99102 2.67276 0.817796 - 
entral 7.65066 2.85603 2.439577 - 
entral 6.35848 4.72732 1.75357Table 3.3: Improvement of markers error [mm℄ as a result of �nite element modeling
onditions were applied. Free software pa
kage Z88 [110℄ was used to generate the solu-tion of the linear system of equations by a pre
onditioned 
onjugate gradient method.The �nite element analysis was performed in a single step on a Centrino Duo 1GHz Dellwith 1GB of RAM and the average 
lo
k time was 10 se
onds.The a

ura
y of the deformation depend on the deviation of the displa
ements andthe boundary 
onditions generated by the surfa
e registration. In order to evaluatethe proper 
orresponden
e in the applied boundary 
onditions, the livers surfa
es wereregistered using deform-ICP and Robust Point Mat
hing algorithms. The displa
ementvalues of deformation for some 
entral and peripheral markers are shown in the Table.There were four instan
es of the deformation data sets and twelve registration-deformation results were obtained, generating a distribution of displa
ement ve
tors.The minimum, average and maximum of displa
ement for all markers over all twelveresults are shown in the Figure 3.16 and the mean value is reported in the table.The FEM model provides signi�
ant improvement over results from rigid registrationalone. Sin
e the model is primarily driven by the surfa
e data, the method by whi
hboundary 
onditions are 
hosen for ea
h node 
an play a signi�
ant role in the resultinga

ura
y. The maximum registration error when the deform-ICP algorithm was usedwas - 9 mm and at the 
ost of greater pre pro
essing time was 5 mm when Robust PointMat
hing (RPM) algorithm was used.The potential sour
es of errors 
an o

ur from:� segmentation - surfa
e based registration algorithms su�ers from surfa
e segmen-tation errors.
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75� �nite element modeling - dis
retization errors resulted from geometri
 di�eren
esbetween the boundaries of the model and its �nite element approximation, andmodeling errors due to numeri
al integration in solving the linear system.� material properties measurements - the same average values of experimentallyderived material properties for both liver and tumors are used in our �nite elementanalysis. On
e again, sin
e boundary 
onditions are used to drive the deformation,the a

ura
y involved in the material properties is not as important as the a

ura
yinvolved in approximating the shape of the livers in the model.We did not take in a

ount the possible migration of the implanted markers, but theobtained mean displa
ement errors of deformation demonstrates very good results andis in agreement with previous studies done for these 
ases. The registration a

ura
yand possible migration of internal �du
ial 2 mm gold markers implanted into 4 patientswith liver tumors and 14 patients with prostate 
an
er were investigated by Kitamuraet al. [115℄. Using a real-time tumor-tra
king radiation therapy system, the relativerelationship between the 
oordinates of the 
enter of mass of the organs and those ofthe markers were 
al
ulated. Assuming that organs do not shrink, grow, or rotate themaximum standard deviation of migration error in ea
h dire
tion was estimated to beless than 2.5 mm for the liver and less than 2.0 mm for the prostate.3.6 Patients StudyThe proposed model for deformable liver surfa
e registration was used to predi
t thelo
ation of the tumors in data sets 
orresponding to three patients with liver metas-tases whi
h have one hepato
ellular 
ar
inoma. Before treatment planning ea
h patientunderwent to an intravenous 
ontrast CT imaging. The liver was imaged during breath-hold (redu
ing respiratory motion artifa
ts) before and after the inje
tion of 
ontrastduring sele
ted phases of 
ontrast distribution, ( typi
ally early and late hepati
 arterialphase and portal venous phase). All images used in our model were a
quired duringthe portal venous phase be
ause the important details for dete
ting and 
hara
terizinghypo vas
ular lesions and metastati
 deposits are apparent during this phase. At the



76time of radio-frequen
y ablation treatment another CT s
an of the patient was obtainedin the exhale breath-hold position. A diagnosti
 
ontrast inhale CT s
an was obtained1, 3 and 12 months after the 
ompletion of treatment. Volumetri
 images were obtainedwith General Ele
tri
 LightSpeed CT s
anner, using the following s
anner settings: 120kV, 180 mA, standard re
onstru
tion type, and high quality s
an mode. The resolutionof the CT was 512 x 512 x n, where n varied to a

ommodate the patient extent and thevoxel size was 0.93 mm x 0.93 mm x 1.25 mm slightly varying between patients. Figure3.17 shows the pre-treatment, 1 and 3 month follow-us CT s
an and for the patients.The tumor lo
ation is determined by visual 
omparison of the predi
ted and a
tualpositions as shown in the Figure 3.18.Kitamura et al. [116℄ implanted a 2 mm gold marker near tumors to investigatethe impa
t of tumor lo
ation, 
irrhosis and history of liver surgery on the motion oftumors throughout the liver in the trans axial dire
tion. They reported the averageamplitude of tumor motion in the 20 patients was 4±4 mm (range, 1-12 mm) in theright-left dire
tion, 9±5 mm (range, 2-19 mm) in the 
ranio
audal dire
tion, and 5±3mm (range, 2-12 mm) in the anteroposterior dire
tion.In general, rigid registration of the segmented liver reasonably aligned the 
entralarea of the organ, while the residual deformation, relatively larger in the periphery, wasevaluated by the FEM model. The liver deformation using linear elasti
 model graduallydeepens with an in
reasing for
e load. To demonstrate the potential of the proposedmodel we have applied it to test non-rigid registration of portal vein. We assume theCT data from 1 month follow-up as visit 1 and 3 month follow-up as visit 2. Be
auseof the rami�
ation of the shape of the portal vein it was broken into three regions, left,middle and right. Ea
h of whi
h was used as virtual tumor targets, as shown in theFigure 3.19.The boundary 
onditions were applied, while holding the 
entral parts of the liverin �xed position and for
ing displa
ements in the other regions that as di
tated by theirdistan
es resulted from deform-ICP algorithm. The registration deformation errorswere evaluated for portal vein by using root mean square residual error between thetwo targets. This metri
 used in the minimization pro
ess of ICP registration algorithm
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Figure 3.17: CT s
ans for three patients treated by per-
utaneous radiofrequen
y abla-tion of HCC : the �rst 
olumn the pre-treatment images, the se
ond 
olumn 1 monthfollow-up, and the third 
olumn 3 months follow-up. The last patient was re-evaluatedfor suspe
ted relapse, thus the pre-treatment image is 
onsidered after the �rst RFA.
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Figure 3.18: Visual 
omparison of tumor lo
ation.

Figure 3.19: Left portal vein and middle portal vein.



79des
ribe the total error of �t between the two surfa
es. The two meshes are 
omparedby 
al
ulating the mean and standard deviation of the distan
es between the deformedsurfa
e from visit 1 and the original data from visit 2. The quantitative analysis resultsfor left and middle portal vein data are shown in the Figure 3.20.Figure 3.21 shows the result of deformation when both portal vein and the tumorare integrated in the model.3.7 SummaryPatient follow-up studies whi
h 
an reliable 
orrelate the spatial position of tumor re-
urren
es and progression are very important in interventional pro
edures. In orderto a

urately simulate soft-tissue 
hanges, physi
ally motivated deformable models arerequired and the parameters of the tissue must be well de�ned. While is a 
hallengingproblem to obtain realisti
 material properties, su
h as Young's modulus and Poissonratios, for all the tissues and stru
tures that 
onstitute the liver, we were able to design,develop and evaluate a reliable and e�
ient method for predi
ting 
hanges in tumorlo
ation a
ross pre- and post-treatment with radiofrequen
y ablation using simple ap-proximations. The method in
orporates a non-rigid registration and a linearly elasti
�nite element model. Surfa
e mat
hing between pre- and post-treatment data was per-formed by the modi�ed ICP algorithm and the results were input as boundary 
onditionsfor the �nite element model to 
al
ulate the volumetri
 deformation. We demonstratedthe 
onvergen
e and robustness of this approa
h using both phantom data and a
tualpatient data sets.Deformable surfa
e registration is obviously a sine qua non for interventional radiol-ogy. Careful planning of RFA interventions is of great importan
e in order to limit thedamage of the healthy tissues. The results of the deformable registration model 
an beeasily integrated in the s
an reading work �ow performed by physi
ians. Using the 
ur-rent standard of 
are for CT s
reening this pro
edure is performed without the bene�tand guidan
e of intravenous 
ontrast. Under these 
onditions it is possible to identifythe liver, but the tumor margins are often not visible. Through deformable registration,
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Figure 3.20: Left and middle portal vein results: mean and standard deviation of thedistan
es between the deformed surfa
e from visit 1 and the original data from visit 2.
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Figure 3.21: Deformation results for both left portal vein and tumor: Left) in bla
k theresults of rigid-ICP and in pink the modeling results of deform-ICP and FEM. Right)in blue the a
tual positions from visit 2 ans in pink the modeling results of deform-ICPand FEM.the tumor position identi�ed on the CT s
an adapt and adjust to the new position of thepatient at the time of treatment. Figure 3.22 shows the a

ura
y of tumor deformationdetermined by visual 
omparison of the predi
ted and a
tual 
ontour positions.The tumor phantom model that we developed using plasti
 beads and a bovine liveris simple, inexpensive and e�e
tive. This model may be useful for future algorithmdevelopment, for tea
hing and for 
ontinuing medi
al edu
ation.
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Figure 3.22: Cross-se
tion FEM deformation result : dark solid lines represents the pre-treatment, dotted lines represents post-treatment, and light gray (blue) the deformedpre-treatment tumor.
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Chapter 4Con
lusionsTwo image-based monitoring approa
hes were 
ombined and evaluated for their 
apa
-ity to 
hara
terize and tra
k 
hanges in shape and positions of organs during treatmentwere evaluated. Image registration des
ribes the pro
ess of establishing spatial 
orre-sponden
e between features in a dynami
 or temporal sequen
e of images, in order toobtain improved diagnosti
 dis
rimination and for therapy or surgi
al planning. Forrigid registration, feature alignment is des
ribed as di�eren
es in global positioning.Qualitative assessment of shapes 
an 
hara
terize 
hanges in 3-D images a
ross 
on-se
utive studies thereby providing an obje
tive means for assessing stages of diseaseprogression and response to treatment. In non-rigid registration, the transformation
an a

ommodate deformations due to surgi
al intervention, soft tissue properties, tem-poral 
hanges in tumor growth or due to radiotherapy treatment. In the 
ontext ofsurgi
al interventions or therapy planning realisti
 deformable registration models areessential for any approa
h to be a

urate and reliable. Advan
ed 
lini
al appli
ationshave be
ome a 
riti
al 
omponent of the work �ow of radiologists as well as the team ofother 
lini
ians who intera
t with the image data sets. Our vision was to leverage our
ore expertise in dete
tion and registration to deliver appli
ations that dire
tly meetthese 
lini
al needs for various 
are areas.
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