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ABSTRACT OF THE DISSERTATION
3-D Morphometry and Non-rigid Registration forQuantitative Analysis and Clinial Assessment inRadiologyby Gabriela NiulesuDissertation Diretor: Professor David J. ForanThe apaity to reliably trak, model and haraterize morphometri hanges inanatomi strutures and tumors from 3-D images sequenes is extremely valuable instaging disease progression and assessing response to treatment.We have designed, developed and evaluated two approahes to failitate linialassessment in diagnosti radiology. The �rst is a tool for performing omparative mor-phologi analysis and the seond is a registration strategy whih an ompensate forhanges in shape that our in deformable organs when assessing response to treatmentaross onseutive imaging studies. The �rst prototype system was used to haraterizethe morphology of ventriles from MR brain sans of patients who had been diagnosedwith Bipolar Disorder or Asperger's Syndrome. Preliminary studies demonstrated thatonventional volumetri measurements were insu�ient for deteting and haraterizingsubtle hanges in anatomi pro�les. We have investigated the use of a double elliptiFourier transform to disriminate among 3-D hanges of anatomi strutures. It wasshown that haraterization using low frequeny ellipti Fourier desriptors prov idedan aurate representation of the anatomial strutures while allowing for reliable groupseparation. The shape-based 3-D objet representation of brain strutures developedii



in this projet may provide insight regarding the underlying mehanisms leading to theonset and progression of these disorders.As an extension of these studies, a deformable registration tehnique was evaluatedfor traking tumor response to radiofrequeny ablation of patients with liver malignan-ies. The method exploits the ombined power of global and loal alignment of pre-and post-treatment CT images. The distinguishing harateristis of the system is thatit an infer volumetri deformation based upon surfae displaements using a linearlyelasti �nite element model (FEM). Using both 2-D syntheti phantoms and 3-D beefliver data we performed the simulation of gold standard registration by measuring theauray of non-rigid deformation. The voxel mean displaement error of deformationdemonstrates that the tehnique provides valuable information for surgial interventions.This approah is general methodology for traking deformable organs using non-rigidregistration with respet to FEM simulations. It provides a basis for monitoring tissueresponse and therapy planning for a range of medial appliations in the brain, breastor heart.
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1
Chapter 1IntrodutionModern imaging tehniques have beome invaluable linial and researh tools for vi-sualizing anatomi strutures, non-invasively, however, some of the tehnial hallengeswhih arise during post-aquisitional image analysis ause investigators to opt for semi-quantitative studies and/or subjetive interpretations of data. With the inreased useof 3-D imaging methods suh as omputed tomography (CT), magneti resonane (MR)imaging and ultrasonography (US) being used for diagnosis, therapy and surgial plan-ning the need for improved methods for image analysis has beome apparent. Thedevelopment of more reliable methods for shape analysis and registration ould lead tofurther insight as to the underlying biologial mehanisms and pathologial proesses ofdisease onset and progression.1.1 Problems Enountered in NeuroimagingIn neuroimaging appliations volumetri measurements are one of the most frequentlyutilized quantitative measurements used in assessing brain strutures. Enlarged ven-triular size has been ited as an important riteria for haraterizing Bipolar disorderand Asperger's syndrome [1, 2℄.Asperger's syndrome is a pervasive developmental disorder haraterized by ma-jor di�ulties in soial interation and unusual patterns of interest and behavior. Itsheritability remains questionable. Clinial features of the syndrome inlude diminishedexpression of empathy, poor ommuniation apaity, monotoni speeh, diminished mo-tor oordination, intense absorption of seemingly unusual information and a seeminglydiminished ability to develop soial skills [3℄.Bipolar disorder is a major a�etive disorder haraterized by a disorganization of



2Table 1.1: Volumetri measurements for LV - left ventrile RV- right ventrileLV RV Total ventrilesControlsMean 6380.47 5983.79 12364.26St. Dev. 2306.71 2138.67 4377.27Asperger's SyndromeMean 7891.46 7515.57 15407.03St. Dev. 3627.50 4344.30 7481.45Bipolar DisorderMean 7802.71 7340.11 15142.82St. Dev. 2745.43 4125.49 6288.81feelings. The key identifying feature of Bipolar disorder is the alternation of maniaepisodes with major depressive episodes in an unending roller oaster ride from thepeaks of elation to the depths of despair [4℄. Periods of depression are haraterized bytorpid speeh and movement, loss of appetite and disturbed sleeping patterns. Episodesof mania are haraterized by an unaountable euphoria, delusions of grandeur andexessive speeh and motor ativity. Average onset of the disease is around the ageof 21 years with similar rates in males and females throughout the world [5℄. Bipolardisorder is assoiated with a high level of morbidity, and it has been estimated thatapproximately 15% of patients eventually die by suiide [6℄.The standard method for evaluating imaging studies of those patients involves sys-temati slie-by-slie interative proessing of volumetri data. During feasibility ex-periments Analyze AVW software (Mayo Clini) was used to interatively segment andanalyze MR image data sets. Forty MRI brain sans were aquired using a 1.5Tesla GESigma sanner loated at the Laurie Imaging Center (UMDNJ-RWJMS). The studyonsisted of fourteen patients who had been diagnosed with Bipolar disorder, seventeenwho had been diagnosed with Asperger's Syndrome and nine patients served as ontrols.Patients ranged from 7 to 14 years of age and were predominantly male. Table 1 showsthe ventriular volumes that were omputed during preliminary studies.Although the numerial di�erene between the mean total ventriular volume for theontrol group and either disorder would seem su�ient to distinguish between "normal"and "abnormal" ventriles (3042.77 mm3 ontrol - Asperger's Syndrome, and 2778.56



3mm3 ontrol - Bipolar disorder), the large standard deviation for eah group in this studystrongly suggested that volumetri measurements alone were insu�ient for detetingabnormalities. The low disriminatory power may be attributed, in part, to the fatthat shape di�erenes among the strutures are not adequately aptured through thevolumetri haraterization of the morphology. Our preliminary studies indiate thatloal or global parameters may serve to improve auray of lassi�ations.1.2 Problems Enountered in Liver Therapy ImagingHepatoellular arinoma (HCC) is the ommon primary malignant tumor of the liver.Although resetion or liver transplantation are onsidered potentially urative or sur-vival enhaning treatment options, only 20%-30% of patients with HCC are andidatesfor intervention [7℄. Several minimally invasive imaging-guided ablative therapies usingthermal energy soures suh as lasers, mirowaves, radio�equeny (RF) and high inten-sity foused ultrasound (HIFU) are rapidly developing alternatives to surgial treatmentin primary liver malignanies [8, 9℄. Possible advantages of ablative therapies over opensurgery inlude exellent loal ontrol with less reovery times at a reasonable ost,with low morbidity and mortality rates. The main goal of thermal ablation therapy isto destroy an entire tumor by using heat to kill the malignant ells without damagingadjaent vital strutures. For most thermal ablation methods, energy is applied peru-naneously by using a needle-shaped appliators. Goldberg et al [10℄ desribed the basirelationship guiding thermal ablation indued oagulation nerosis as follows:
coagulation necrosis = energy deposited ∗ local tissue interactions − heat lossThe ability to produe a tumor nerosis is dependent on loal physiologi tissueharateristis and several tehnology-based fators given the multiple energy souresto ahieve thermal ablation, the di�erent strategies for applying them and the di�erentprobe devies inluding hooked eletrodes or internally ooled single or triple eletrodes.Per utaneous radiofrequeny ablation (RFA) is the method reeiving the greatestlinial attention to date, whih has proved very e�etive and safe in treating patientswith unresetionable hepati tumors. Patients with HCC are partiularly well-suited for



4

Figure 1.1: Pre and post RFA treatment CT imagesprimary treatment with radiofrequeny ablation (RFA) given the high rates of multipletumor appearane over time, onurrent hepatitis infetion and liver irrhosis. Multiplelinial studies have been performed to evaluate the use of RFA in the treatment ofHCC [11, 12, 13, 14℄. Results of early linial trials showed a omplete tumor nerosisin 83% of tumors less than 3m in patients with HCC who underwent RFA [15℄.Liver tumor ablation arried out by heating the tumor using radiofrequeny (RF)energy whih is delivered through an eletrode whih is atually, a thin needle that iseletrially insulated along all but the distal 1-3 m of the shaft. Conneted to theRF generator, the uninsulated distal portion of the probe tip emanates urrent waves.Heat is produed by ioni agitation surrounding the eletrode as the urrent �ows tothe ground resulting in oagulation nerosis. When mono polar RF generator is usedthe ground is a usually a foil pad plaed on the patient± bak, whereas in the bipolarsystem, a seond eletrode is used as ground. The deposition of the energy in the tissuegenerates a dark thermal lesion often surrounded by a bright edematous rim. The RFAproedure is onsidered tehnially suessful if the tumor and a safety margin of 5-10mm of normal hepati tissue are ompletely inluded in the ablation zone [16℄ as shownin the Figure 1.1.



5Loalization of tumors using CT imaging-guided tehniques and pre- and post-proedural analysis to ensure the auray of ablative margins are both extremely hal-lenging due to the following problems:� The liver is a highly deformable soft tissue organ. A signi�ant amount of non-linear motion or deformation ours in the liver in response to di�erenes in thepositioning of patients undergoing onseutive imaging studies. Deformation alsoarises due to respiratory motion, and surgial manipulations.� The shape and the size of the tumor appearane depends on the dynamis ofthe ontrast-enhaning agent used in CT images. Typially, standard CT imageswithout ontrast are obtained to plan the proedure and to guide the ablationappliator plaement. Contrast agents may be administrated only one during theproedure and the intensity of the image vary onsiderably between the arterialand the portal phases of the CT image protool. The majority of liver tumors mayappear lear only in the two minutes following the ontrast agent injetion. Theapparent boundaries of the tumor often hange dramatially during the ourse ofthis time.� Furthermore, real-time imaging an not be maintained throughout the entire RFAproedure. The intervention radiologist visually onsults the pre-proedure imagestudies during the ourse of the RFA proedure in an attempt to loate the enterof the same tumor. Beause there is no way to ompress the region of the liverwhere the tumor is loated when the tip of the needle reahes the interfae betweentwo di�erent types of tissue, further insertion tends to push the tissue rather thanpiering it, whih gives rise to unwanted deformations.All the above limitations make the RFA proedure very sensitive to the initial plaementof the needle. It would be very useful to develop tehniques to help the interventionalradiologist in prediting tumor displaement, thereby allowing aurate traking of lesionaross onseutive studies. To determine the suess of the treatment one an registerand ompare imaged tumor harateristis before and after treatment.



61.3 Spei� AimsIn the neuroimaging study we investigated the use of a double ellipti Fourier transformto disriminate among 3-D hanges of anatomi strutures in MR brain sans. Througha series of experiments it was shown that shape haraterization using low frequenyellipti Fourier desriptors (EFD) provided an aurate representation of anatomialstrutures. Whereas volumetri measurements did not provide the means for disrimi-nating between diseases and ontrol groups. Furthermore, our experiments showed that3-D shape signatures based upon a double EFD algorithm did provide aurate groupseparation among disorders and normals.In the liver imaging study we presented a surfae based non-rigid method for trakingtumor aross pre- and post-treatment CT liver images using a �nite element modelbased deformable system. The strategy of the algorithm is twofold: the �rst step is toalign the mesh surfaes, using a modi�ed Iterative Closest Point (ICP) algorithm thatdetermine the proper orrespondene of the boundary points to drive the transformation.The seond step is to model the volumetri deformation using a linearly elasti �niteelement model (FEM) that has boundary onditions generated from the registered data.Using both 2D syntheti phantom and real 3D beef liver data we introdued a set ofgold standard deformations to measure the auray of the newly developed non-rigidregistration.1.4 Thesis OutlineChapter II present the neuroimaging study:Setion I presents the bakground of shape analysis relevant to our work in neu-roimaging - the theory behind the boundary enoding.Setion II presents an overview of ellipti Fourier desriptors for 2-D boundaries.Setion III presents the enoding algorithm for 3-D Fourier desriptors. We de-sribe the approah for registering two data sets using the Iterative Closest Point (ICP)algorithm and the objet lassi�ation method is evaluated for performane.



7Setion IV presents the results obtained after applying 3-D Fourier enoding algo-rithm for the surfae reonstrution. Some data ompression, area and volume issuesare also addressed. Results from registration and re-setion algorithms are presentedand the image database design is desribed.Setion V draws the onlusions for the neuroimaging study and gives the perspetiveof future researh.Chapter III presents liver therapy study:Setion I presents the liver registration study starting with related work.Setion II presents three algorithms for �nding the orrespondene of two data sets:Curvature Sale Spae (CSS), a modi�ed Iterative Closest Point (ICP) algorithm, andRobust Point Mathing (RPM).Setion III presents a brie�y introdution in the theory behind Finite ElementMethod (FEM).Setion IV presents the tumor traking model based on the ombination of registra-tion and linearly elasti �nite element analysis.Setion V presents a 2D rubber phantom and a 3D real beef liver studies used tovalidate the performane of our model simulation for prediting the tumor displaement.We trak the position of several markers before and after di�erent deformations.Setion VI presents a linial study involving three di�erent patients with hepato-ellular arinomas. The lesion's displaement is traked for eah patient.Setion VII draws the onlusions for the liver therapy study and gives the perspe-tive of future researh.
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Chapter 2Neuroimaging Study2.1 Related Work for Shape AnalysisThe overall goal of shape analysis researh is to provide a reliable means for omparingarbitrary shapes in two or more dimensions. Shape is one of important features fordesribing and representing an objet. Even though it is oneptually easy to under-stand the notion of 2-D shape, it an sometimes be di�ult to represent, desribe andde�ne. Shape representation methods result in a non-numeri (e.g. graph or an image)representation whereas shape desription methods result in numerial desriptors whihfollow the shape representation [17℄. For many medial imaging appliations some of themost desirable properties of the shape desriptor vetor also alled the feature vetor isthat it be invariant to sale, translation, and rotation while simultaneously apturingthe essene the shape.Shape analysis algorithms an be lassi�ed aording to a variety of riteria. Pavlidis[18℄ proposed the following lassi�ation sheme. The �rst is based on shape bound-ary points alone, rather than on interior shape desriptions whih are onsidered asglobal algorithms. The seond sheme alled shape analysis algorithms are based oneither numeri results, in whih ase there is a salar transform, or non-numeri resultswhih pertain to spae domain tehniques. For example the hain ode desribed in[19, 20℄ is onsidered a spae domain tehnique beause it transforms one shape intoanother rather than into an array of salar features. The third lassi�ation sheme isbased on information preservation and information non-preserving methods whih de-pends on whether shape reonstrution is possible from onstituent desriptors or not.Non-preserving tehniques are desribed in terms of very loal harateristis suh assymmetry, elongation and angularity. An example of an information non-preserving



9method is the ratio of the square of the perimeter to the area [18℄.In order to analyze and manipulate arbitrarily shaped objets whih are embeddedin 3-D image staks a reliable, non-ambiguous means for desribing those shapes isneeded. It is often desirable to onvert the arbitrary shape into a representative formthat an be e�iently proessed in terms of both omputational time and memoryspae requirements. For suh appliations boundary representation is one of the mostpopular strategies. The boundary for any given imaged objet an be onsidered alosed sequene of suessive boundary pixels oordinates. If one needs to transmit anaurate desription of the ontour of a delineated tumor over a network, for example,the ontour must �rst be represented (enoded) in a fashion whih permits a reliabledeoding and pitorial reonstrution at the reeiving end.The following subsetions will provide an overview of the hain ode and salarFourier transform methods respetively, whih were used in preliminary feasibility ex-periments for boundary representation and boundary desription.2.1.1 Chain ode - Boundary Spae Domain MethodThe proess of adopting a symboli onvention and quantitatively identifying the de-sription proprieties of the approah in terms of the onvention is referred to as enoding.The following properties are desirable for any enoding sheme [19℄ :1. the enoding sheme for arbitrary geometri urves should be simple, highly stan-dardized and universally appliable to all ontinuous urves.2. the enoding sheme must faithfully preserve the information of interest.3. the enoding sheme should failitate digital omputer analysis of a given urve'sproperties.The method for oding line drawings alled hain ode was introdued in 1961 by HerbertFreeman [19℄. Chain odes are used to represent boundaries using a onneted sequeneof straight line segments of spei�ed diretion and length. Line strutures are generatedthrough quantization of traings with a grid-intersetion sheme, thus a boundary point
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Figure 2.1: Result of boundary re-sampling with superimposed gridis assigned to eah node of the grid, depending on the proximity of the original boundaryto a given node as shown in Figure 2.1.On the digital (retangular) grid, enoding is based on the fat that suessiveontour points are adjaent to one another. Freeman [19, 20℄ showed that if the 8-onneted grid is employed, the hain ode is de�ned as the digits from 0 to 7, assignedto the 8 neighboring grid points in a ounter-lokwise sense. Sine the auray ofthe resulting ode representation depends on the spaing of the sampling grid, severaldi�erent digitization methods have been suggested [21, 22℄.A diret straight-line segment onneting two adjaent grid points is alled a link. Aontinuous ontour an be approximated by a sequene of links ai. A link orrespondsto one of eight standardized straight -line segments oriented in the diretion (π/4)ai , asmeasured ounter-lokwise from the X axis of an Cartesian oordinate system. Eahbeing length 1 or √2 depending, respetively, on whether ai is even or odd. A hain isan ordered sequene of links written in the form:
C = a1a2...anAn example of hain ode C = 0010600106656553245443212 is shown in Figure 2.2
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Figure 2.2: (a) De�nition of the hain ode 8 - onneted (b) Chain ode of the urvefrom Figure 1.1The �exibility of the hain ode representation is illustrated by the ease with whihthe inverse, length, width and height of the hain an be omputed. The integral of afuntion with respet to the x axis, the �rst and seond moments about x and y axis,and the distane between two onneted points are also relatively simple operations[20℄. The hain oding sheme an be easily extended to 3-D line strutures quantizedon a ubi lattie by assigning a symbol for eah of the 26 possible diretions [20℄. Thederivative hain ode method given rise to numerous researh ativities implementedusing a variety of algorithmi approahes [23, 24, 25, 26℄.2.1.2 Fourier - Boundary Salar Transform MethodThe Fourier transform represents an orthonormal periodi signal whih an be expressedas a weighted sum of known funtions. An orthonormal set is desirable beause it makesthe parameters distint and failitates oe�ient determination by avoiding redundany.A general way, to deompose a funtion X(t) on the interval [a, b] is :
φ(t) : X(t) =

∞
∑

n=1

Cnφ(t) Cn =

∫ b

a
X(t)φn(t)dtwhere the oe�ients Cn are the orthogonal projetions of X(t) onto the subspaegenerated by the n basis funtions. In pratie the degree of the sum is restrited and



12the hoie of its value is a trade o� between desired auray and degree of smoothing.The usual basis funtions are the sinusoids [18℄ whih have the advantage of providinga notion of frequeny.Suppose that the boundary of a shape has N pixels numbered from 0 to N − 1. The
k-th pixel along the boundary has position (xk, yk) and we an desribe the ontour astwo parametri equations:

x(k) = xk

y(k) = ykThe ontour itself is periodi, therefore, it is possible to take the Fourier transformof eah funtion and obtain two frequeny spetra alled Fourier desriptors (FD):
ax(ν) = F (x(k))

ay(ν) = F (y(k))The major advantage of this method is that it is fairly straight forward to make slightmodi�ations to the FD so that it beomes invariant to sale, translation, rotation andstarting point of the ontour .The boundary salar transform algorithms desribe shape indiretly by means of a 1-D funtion whih in turn an be used to haraterize the shape of 2-D boundary. Thereare many di�erent methods for 1-D boundary funtion representation and in this setionwe present some of di�erent possible representations based on Fourier's parametrizationthat have been reported in the literature.The tangent angle θ(l) versus ar length funtion is the 1-D boundary representationwhih was developed by Zahn and Roskies [27℄. In this formulation if θ(l) is the angulardiretion of a lokwise oriented lose urve at point l then the umulative angularfuntion φ(l) is de�ned as the net amount of angular bend between starting point l = 0and point l. So φ(l) = θ(l) − θ(0), exept for a possible multiple of 2π, where θ(0) isthe absolute angular diretion at the starting point as shown in the Figure 2.3.
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(l)

X

Y

(X(0),Y(0))

(X(l),Y(l))
Φ

ΘΘ(l) (0)

0Figure 2.3: Parametri representation of a urve with tangential diretion θ(l) andumulative angular funtion φ(l)The domain of de�nition of funtion φ(l) is [0, L], where L is the perimeter of loseurve, then the funtion an be normalized and made dependent upon parameter t ∈
[0, 2π]. Letting φ∗(t) be the normalized variant φ∗(0) = φ∗(2π) = 0 :

φ∗(t) = φ(Lt
2π ) + tNote that φ∗(t) ≡ 0 for a irle, we map all the plane losed urves into the lassof periodi funtions on [0, 2π] in suh a way that all urves of idential shape andstarting point beome part of the same funtion φ∗[27℄. The boundary funtion φ∗(t) isexpanded as a Fourier series as:

φ∗(t) = µ0 +
∞
∑

k=1

(akcoskt+ bksinkt)If (Ak, αk) are the polar oordinates of (ak, bk) then the φ∗(t) expansion is given by:
φ∗(t) = µ0 +

∞
∑

k=1

Akcos(kt− αk)The oe�ients {µ0, ak, bk} or {Ak, αk}; k = 1..∞ are the k -harmoni Fourier de-sriptors (FD) whih are used for shape haraterization of the urve.



14The tangent angle funtion also alled the turning funtion has been used by Akinand his olleagues [28℄ to reliably represent and ompare polygonal shapes. The funtion
θA(s) measures the angle of the ounter-lokwise tangent as a funtion of ar length s,whih is measured from any given referene start point on the polygon's boundary. θA(s)beomes a funtion de�ned on [0, 1] interval, assuming that all polygons are normalizedso that their perimeter length is 1. Even though the turning angle method is invariantto sale and translation and an easily be made rotation invariant a drawbak of thisrepresentation it is sensitive to small variations in shape.Granlund [29℄, Rihard and Hemani [30℄, and Persoon and Fu [31℄ presented the 1-Domplex funtion of the form z(l) = x(l) + jy(l) where l is the ar length parameter.In this formulation any point moving along the boundary generates a periodi omplexfuntion z(l), whih implies z(l + nL) = z(l). Therefore the Fourier series expansion of
z(l) beomes:

z(l) =
∞
∑

−∞

ane
j2πnl/Lwhere z(l) is often referred to as a shape signature. The normalized Fourier oe�-ients are the Fourier desriptors :

an =
1

L

∫ L

0
z(l)e−j2πnl/LdlOne advantage of using the oordinates z(l) instead of tangent angle θ(l) represen-tation of the boundary urve is that the omplex oordinates funtion is less sensitiveto the inherent noise ontained within fuzzy boundaries. The tangent angle funtion isrelated to the derivative of the oordinate funtion, thus small variations in the oordi-nate values of the boundary points an give rise to large variations in the diretion ofthe tangent vetor.If z(0)(l) is the original boundary expression and a(0)

n is the nth Fourier oe�ient ofthe original shape then:



15� The hange of starting point an be expressed as z(l) = z(0)(l+ τ) is a phase shiftin the transform. The resulting Fourier oe�ients beome an = ejnτa
(0)
n whihare invariant to the starting point shift.� Assuming that shapes are entered about the origin of the oordinate system,then rotation around the origin with angle φ gives rise to the boundary expression

z(l) = z(0)(l)ejφ. As a result the invariant Fourier oe�ients are an = a
(0)
n ejφ.� Translation of a shape an be expressed as z(l) = z(0)(l)+c , wherein only the zero-frequeny omponent hanges. This implies that Fourier oe�ients are invariantto translation with the exeption of the �rst oe�ient whih only re�ets themean position:

an =











a
(0)
n n 6= 0

a
(0)
n + c n = 0� Saling of a shape an be expressed as z(l) = sz(0)(l), suh that it is a multiple ofthe Fourier oe�ients and a onstant: an = s a

(0)
n . This operation provides themeans for sale invariane.2.2 Fourier Transform of BoundaryThe hain ode desribed in Chapter 1 approximates a ontinuous ontour in 2-D bya sequene of pieewise linear �ts that onsists of 8 standardized line segments C =

a1, a2, a3...an.The time needed to traverse a partiular link ai of the hain ode at a onstant speedis given by:
∆ti = 1 + (

√
2 − 1

2
)(1 − (−1)ai) =











1 if ai ∈ {0, 2, 4, 6}
√

2 if ai ∈ {1, 3, 5, 7}The time required to traverse the �rst p links in the hain are:
tp =

p
∑

i=1

∆ti



16The hanges in the x and y projetions of the hain as the link ai is traversed are:
∆xi = sgn(6 − ai)sgn(2 − ai) =



























1 if ai ∈ {0, 1, 7}

0 if ai ∈ {2, 6}

−1 if ai ∈ {3, 4, 5}

∆yi = sgn(4 − ai)sgn(ai) =



























1 if ai ∈ {1, 2, 3}

0 if ai ∈ {0, 4}

−1 if ai ∈ {5, 6, 7}where
sgn(k) =



























1 if k > 0

0 if k = 0

−1 if k < 0Loating the starting point of the hain ode at the origin, the projetions on x and
y of the �rst p links of the hain are, respetively:

xp =
p

∑

i=1

∆xi

yp =
p

∑

i=1

∆yiThe Fourier series expansion for the x and y projetions of the omplete ontour ofthe hain ode t ∈ [0, T ] using the sinusoidal basis are de�ned as:
x(t) = A0 +

∞
∑

n=1

(ancos
2nπt

T
+ bnsin

2nπt

T
)

y(t) = C0 +
∞
∑

n=1

(cncos
2nπt

T
+ dnsin

2nπt

T
)where the Fourier oe�ients are:
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A0 =

1

T

∫ T

0
x(t)dt C0 =

1

T

∫ T

0
y(t)dt

an =
2

T

∫ T

0
x(t)cos

2nπt

T
dt bn =

2

T

∫ T

0
x(t)sin

2nπt

T
dt

cn =
2

T

∫ T

0
y(t)cos

2nπt

T
dt dn =

2

T

∫ T

0
y(t)sin

2nπt

T
dtFourier transform of the boundary Φ(t) = (x(t), y(t)) represents the smooth form ofthe hain ode C = a1a2a3...an.2.2.1 Ellipti Fourier desriptorsThe ellipti Fourier deomposition is readily apparent when the projetions are expressedin matrix form:







x(t)

y(t)






=







A0

C0






+

∞
∑

n=1







an bn

cn dn













cos nt

sin nt





A geometri interpretation, in terms of ellipses, an be developed from this deom-position.The matrix 





an bn

cn dn






is a parametri form for an ellipse whereas an, bn, cn, dndetermine the harateristis of the ellipse. The ellipse of degree n is ompletely de-sribed by its vetor path





cos nt

sin nt






.The oe�ients A0, C0 are the mean values ofthe oordinates and determine the overall translation of the geometri enter of thelosed ontour. The parameters set(A0, C0, an, bn, cn, dn;n = 1..∞) represents the ellip-ti Fourier desriptors.The ellipti Fourier desriptors an and bn orresponding to the nth harmoni aregiven by:

an =
T

2n2π2

K
∑

p=1

∆xp

∆tp
[cos

2nπtp
T

− cos
2nπtp−1

T
]
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bn =

T

2n2π2

K
∑

p=1

∆xp

∆tp
[sin

2nπtp
T

− sin
2nπtp−1

T
]

A0 =
1

T

K
∑

p=1

∆xp

2∆tp
(t2p − t2p−1) + ξp(tp − tp−1)where

ξ1 = 0, ξp =
p−1
∑

j=1

∆xj −
∆xp

∆tp

p−1
∑

j=1

∆tjThe ellipti Fourier desriptors cn and dn orresponding to the nth harmoni aregiven by:
cn =

T

2n2π2

K
∑

p=1

∆yp

∆tp
[cos

2nπtp
T

− cos
2nπtp−1

T
]

dn =
T

2n2π2

K
∑

p=1

∆yp

∆tp
[sin

2nπtp
T

− sin
2nπtp−1

T
]

C0 =
1

T

K
∑

p=1

∆yp

2∆tp
(t2p − t2p−1) + δp(tp − tp−1)where

δ1 = 0, δp =
p−1
∑

j=1

∆yj −
∆yp

∆tp

p−1
∑

j=1

∆tjNote that:
tp =

p
∑

j=1

∆tj T =
K
∑

p=1

tp

∆tp =
√

∆x2
p + ∆y2

p ∆xp = (xp − xp−1) ∆yp = (yp − yp−1)
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Figure 2.4: The �rst 3 phasors of the ellipti approximation to a ontourThe urve an be viewed as a sum of rotating phasors, alled harmoni loi, eahindividually de�ning an ellipse and rotating with a speed proportional to their har-moni number n. The larger the number of ellipses involved, the more aurate therepresentation beomes as showed in Figure 2.4
2.2.2 Normalization of Fourier desriptorsEah ellipse an be desribed by four geometri properties: semi-major axis length,semi-minor axis length, rotation and phase shift. The rotation is the angle from thex-axis to the major axis of the ellipse. The phase shift is the di�erene in phase fromthe major axis to the position of the starting point t = 0. Based only on the intrinsigeometri properties we desribe an intuitive way of normalizing the Fourier oe�ients
an, bn, cn and dn obtained in the previous subsetion. The resulting Fourier desriptors



20are invariant with regard to sale, rotation, translation and starting point on the ontour.Normalizing a Fourier ontour representation means plaing the �rst harmoni pha-sor of the Fourier series in a standard position. This means translating the origin of theX, Y oordinate system to the enter of the �rst harmoni phasor and rotating the X, Yoordinate axes into a new U, V oordinate axes de�ned by the major and minor axesof the ellipse as showed in Figure 2.4Consider the trunated Fourier series approximation to a losed ontour:
x(t) = A0 +

N
∑

n=1

Xn(t)

y(t) = C0 +
N

∑

n=1

Yn(t)where the omponents of the projetions Xn, Yn(1 ≤ n ≤ N), t ∈ [0, T ] are
Xn(t) = ancos

2nπt

T
+ bnsin

2nπt

T

Yn(t) = cncos
2nπt

T
+ dnsin

2nπt

TA di�erene in the starting point, λ units in the diretion of rotation around ontouris displayed in the projeted spae as a phase shift and an be expressed as Xn(t∗ +

λ).Expanding Xn(t) and Yn(t) where t = t∗ + λ







X∗
n

Y ∗
n






=







a∗n b∗n

c∗n d∗n













cos2nπt∗

T

sin2nπt∗

T





we obtain a new set of oe�ients a∗n, b∗n, c∗n and d∗n whih ompensate for the arbi-trary position of the starting point. This is showed by introduing a rotational operatorthat relates Fourier oe�ients at any starting point an, bn, cn and dn to the oe�ients
a∗n, b

∗
n, c

∗
nand d∗n for another stating point displaed with λ.
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a∗n b∗n

c∗n d∗n






=







an bn

cn dn













cos2nπλ
T −sin2nπλ

T

sin2nπλ
T cos2nπλ

T





The rotation of X,Y oordinates axes through ψ degree into the U,V axes is aom-plished by the rotational operation and the projetions on U,V axes are:






un

vn






=







cosψ sinψ

−sinψ cosψ













X∗
n

Y ∗
n





Hene the two rotations are neessary to ahieve the invariane to the axial rotationand a shift in the starting point. The ombined e�ets, the invariant Fourier oe�ients
a#

n , b
#
n , c

#
n and d#

n an be expressed as:






a#
n b#n

c#n d#
n






=







cosψ sinψ

−sinψ cosψ













an bn

cn dn













cos2nπλ
T −sin2nπλ

T

sin2nπλ
T cos2nπλ

T





Ellipti 1st harmoni lousWhen the �rst harmoni lous is an ellipse the rotations are de�ned relative to thesemi-major axis of the lous then produe two related representations of the ontour:






a
#(1)
n b

#(1)
n

c
#(1)
n d

#(1)
n






=







cosψ1 sinψ1

−sinψ1 cosψ1













an bn

cn dn













cos nθ1 −sin nθ1
sin nθ1 cos nθ1





whereas the other semi-major axis is further rotated by π:






a
#(2)
n b

#(2)
n

c
#(2)
n d

#(2)
n






= (−1)n+1







a
#(1)
n b

#(1)
n

c
#(1)
n d

#(1)
n





The expression for the starting point displaement θ1 an be determined by di�eren-tiating the magnitude of the �rst harmoni (N = 1) of the Fourier series ( not inludingthe bias terms A0 and C0):
S =

√

x2
1 + y2

1 where
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x1(t) = a1cosθ + b1sinθ

y1(t) = c1cosθ + d1sinθ

θ = 2πt
TSetting the derivative to zero:

θ1 =
1

2
arctan

[

2(a1b1 + c1d1)

a2
1 + c21 − b21 − d2

1

]

θ1 ∈ [0, π)The expression of the rotation angle ψ1is determined from a∗1 and c∗1 Fourier oef-�ients that are already orret for the starting point displaement θ1. When the �rstharmoni phasor is aligned with the semi-major axis t∗ = 0 :
ψ1 = arctan

[

y∗
1
(0)

x∗
1
(0)

]

= arctan
c∗
1

a∗
1

ψ1 ∈ [0, 2π)Cirular 1st harmoni lousWhen �rst harmoni lous is a irle: a2
1 +b21+c21 +d2

1 = 2(a1d1−b1c1), the rotations aremade with the respet to the line de�ned by the entroid of the ontour and the pointon the ontour most distal from the entroid (A0, C0). Sine the most distal point p anbe non-unique, k related representations an result, orresponding to k sets of Fourieroe�ients, p = 1..k:






a
#(p)
n b

#(p)
n

c
#(p)
n d

#(p)
n






=







cosψp sinψp

−sinψp cosψp













an bn

cn dn













cos nθp −sin nθp

sin nθp cos nθp





The starting point rotation θp is de�ned relative to the pth most distant point:
θp =

2πtp
T

θp ∈ (0, 2π]and the axial rotation angle ψp is:
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ψp = arctan

[

yp−C0

xp−A0

]

ψp ∈ [0, 2π).Sale invariane is obtained by normalizing eah Fourier oe�ient by the magnitudeof the semi-major axis √

a∗21 + c∗21 when the �rst harmoni lous is ellipti, and by themagnitude of radius√a2
1 + c21 when the �rst harmoni lous is irular.Translation invariane is obtained by removing the bias terms A0, C0 from the Fourierseries. This indiates that Fourier desriptors are invariant to translation exept the �rstoe�ient whih only re�ets the mean position.The new parameters (A0, C0, a

#
n , b

#
n , c

#
n , d

#
n , θ1, ψ1...) are the invariant Fourier de-sriptors - FD and form a ompat representation of the ontour. A ontour an be re-onstruted from FD by the inverse Fourier transform. The low-frequeny omponentsor the low order harmonis of the Fourier desriptors apture the oarse representationof the boundary shape, whereas the high-frequeny omponents or the higher order har-monis apture the �ner details. Graphi examples of image ontour is displayed with

n- harmoni Fourier approximations in Figures 2.5 and 2.6.2.3 Design and MethodsThe image reord an provide the information neessary to assess the aner patient'sinitial presentation, staging of disease, therapy planning, response to treatment, andlong-term follow-up for outome assessment. Consequently, there is a tremendous needfor tools for searhing, retrieving and lassifying medial images e�iently in order totake advantage of their rih information ontent. Querying an image database anbe di�ult and one of the main di�ulties lies in designing appropriate features ordesriptors to represent and organize onstituent images. We have established a medialimaging database of delineated ventriles whih were segmented from the MR imageswith eah struture enoded using ellipti Fourier desriptors. In order to desribe thelosed surfae of a delineated 3-D objet (anatomi struture or tumor) we extended the2-D ellipti Fourier desriptors to a 3-D desriptor by developing an algorithm whih�rst omputes ellipti Fourier desriptors aross eah horizontal ross-setion, and thensubsequently performs a Fourier transform aross the resulting desriptors. The shape
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original ontour n=2 harmonis

n=7 harmonis n=12 harmonis

n=17 harmonis n=25 harmonisFigure 2.5: n -harmonis Fourier approximation of a ross-setion of a ventrile fromMRI brain san
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original ontour n=4 harmonis

n=8 harmonis n=16 harmonis

n=32 harmonis n=64 harmonisFigure 2.6: n -harmonis Fourier approximation of a ross-setion of a liver tumor fromCT image san



26desriptors were used to provide a reliable, objetive means for haraterizing hangesin shape and as a basis for onduting statistial omparisons of 3D objets. In orderto ahieve this apability it was neessary to develop and implement registration andre-setion algorithms to orret for di�erenes in patient positions during onseutiveimaging studies.2.3.1 Double Fourier TransformAn ordered set of ross-setions are sampled as a disrete representation of a ontinuousomplex funtion sz(t), 0 ≤ t ≤ T whih represents the losed surfae of the delineated3-D struture. The X − Y Cartesian oordinates of the ontour at the sampled pointsonstitute the real and the imaginary parts of the omplex funtion. Tz represents theontour length at height z and sine sz(t) is given only at P sample points , sz(t) issampled uniformly as:
tp = pTz/P p = 0, 1, ..., P − 1For a �xed height z and a spei� number n of harmonis, the Fourier desriptors

fd(n, z) are evaluated as:
fd(n, z) =

1

Tz

∫ Tz

0
sz(t)e

−j2πnt/Tz dt =
1

P

P−1
∑

p=0

sz(tp)e
−j2πntp/TzThe inverse Fourier transform an be applied to the resulting desriptors and thereonstruted ontour is then obtained:

sz(t) =
∞
∑

n=−∞

fd(n, z)ej2πnt/TzIn order to ompute the shape variation of ross-setions along the z-axis, for thepurpose of our studies, the Fourier transform was applied again, this time on fd(n, z).The losed urves in the z-axis were generated by mirroring the Fourier desriptors
fd(n, z), where range of z is between 0 andK. Therefore, the ontour length is uniformlysampled as:
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zq = qK/Q q = 0, 1, ...Q − 1Taking in aount that only Q ross-setions are possible, the new Fourier desriptorswere evaluated as :

FD(k, z) =
1

K

∫ K

0
fd(n, z)e−j2πkz/K dz =

1

Q

Q−1
∑

q=0

fd(n, zq)e
−j2πkzq/KPlanar Fourier desriptors were subsequently reonstruted by inverse Fourier trans-form as follows:

fd(n, z) =
∞
∑

k=−∞

FD(k, z)ej2πkz/KIn this formulation the losed surfae sz(t) was enoded in the shape desriptors bythe double Fourier transform:
FD(k, z) =

1

QP

Q−1
∑

q=0

P−1
∑

p=0

sz(tp)e
−j2π(kzq/K+ntp/Tz)and the reonstruted losed surfae was obtained based on these shape desriptorsas:

sz(t) =
∞
∑

n=−∞

∞
∑

k=−∞

FD(k, z)ej2π(kz/K+nt/Tz)Sine the double Fourier transform is a reversible linear transformation all the shapeinformation is aptured and preserved in the desriptors.2.3.2 Registration of 3-D objetsThe registration proess takes as input two (or more) images: one image is onsideredas the referene (or the data) image and the other one is the deformable (or the model)image. Given two sets of 3-dimensional points: data D = {dp} and model M = {mk},for eah data point di ∈ D it is neessary to �nd the index j of the orresponding point
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mj ∈M then reover the transformation mj = di+f(di) whih aligns the orrespondingpoints while minimizing some objetive error funtion E(di,mj).Suppose that the shapes of two di�erent 3-D data sets are given by N points asmeasured in two di�erent Cartesian oordinate systems - pa,i in system A and pb,i insystem B, 1 ≤ i ≤ N . Registration or the transformation between two Cartesianoordinate systems, an be thought of as a result of a rigid motion and thus, an bedeomposed into rotations and translations. The Iterative Closest Points - ICP [34℄aims to �nd the optimal set of transformations that register the two 3-D shapes byminimizing the sum of squares of residual errors between them:

e(R, t) =
N

∑

i=1

|| pa,i − sR(pb,i) − t ||2where R is the rotation transformation, s the saling fator and t the translation. Thisiterative method is applied repeatedly until the hange produed by the transformationbeomes negligible.The ICP algorithm allows freedom in the implementation of the losest point deter-mination (minimum distane) and in the way of �nding the optimal transformation ineah iteration step. Any optimization method suh as steepest desendent, onjugategradient, singular value deomposition (SDV) or unit quaternion algorithm an be usedto �nd the least squares rotation R, sale s and translation t. The di�ult part ofthe problem is �nding the rotation R. We implemented the losed-form solution [35℄ inwhih unit quaternions are used to represent the optimal orientation R. The losed-formsolution has the advantages that it provides the best possible transformation in a singlestep and that is no need to �nd a good initial guess as in iterative methods.A quaternion is a vetor with four omponents q = [q0, q1, q2, q3]
T , a salar q0 andan ordinary vetor [35℄. Any orientation an be represented by a single axis of rotationand a single angle. The unit quaternion spei�es a rotation from its referene positionthrough an angle θ = 2 arccos q0 around the rotation axis (q1, q2, q3)

T .The representationof an orientation is in the form of quaternion:
q = [cos

θ

2
, sin

θ

2
(q1, q2, q3)]



29The rotation is performed by multiplying together quaternions representing the axisof rotation and the �nal resulting quaternion is then onverted to the desired rotationmatrix R:
R =















q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q2q1 + q0q3) q20 + q22 − q21 − q23 2(q2q3 + q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 + q23 − q21 − q22













We an summarize the algorithm for �nding the rotation matrix. Both sets ofpoints, pa and pb are translated to their entroids ca and cb and from now one wedeal with these measurements: p′a,i = pa,i − ca and p′b,i = pb,i − cb. For eah pair ofoordinates we ompute the nine possible produts x′ax′b, x′ay′b, x′az′b...z′az′b then the sums
Sxx, Sxy, Sxz...Szz where:

Sxx =
N

∑

i=1

x′a,ix
′
b,iThe elements of the real symmetri 4X 4 matrix K are sums of produts of oor-dinates measured in the A system with oordinates measured in the B system and isde�ned as [35℄:

K =





















Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx −Sxx + Syy − Szz Syz + Szy

Sxy − Syx Szx + Sxz Syz+Szy
−Sxx − Syy + Szz



















To �nd the rotation that minimizes the sum of squares of errors e(R, t) , it is nees-sary to �nd the unit quaternion q that maximizes
qTKqThe solution for the desired quaternion is the eigenvetor orresponding to the mostpositive eigenvalue of the matrix K [35℄. The eigenvalues are obtained by solving theforth-order polynomial equation det(K − λI) = 0 where I is the 4X 4 identity matrix.After we selet the largest positive eigenvalue λm the orresponding eigenvetor em is



30founded by solving the equation [K−λmI]em = 0. The quaternion representing rotationis a unit vetor in the same diretion with eigenvetor em.In order to �nd translation t [35℄ the error term to be minimized an be written as:
e(R, t) = pa,i − sR(pb,i) − t = p′a,i − sR(p′b,i) − t′where t′ = t− ca + sR(cb), therefore the sum of the squares errors beomes:

e(R, t) =
N

∑

i=1

|| p′a,i − sR(p′b,i) − t′ ||2whih is minimized with t′ = 0 or
t = ca − sR(cb)The translation is just the di�erene between the entroid of the oordinates in onesystem and the rotated and saled entroid of the oordinates in the other system.The above formulation of the error term leads to an asymmetry in the determinationof the optimal sale fator. The �optimal � transformation from A to B oordinatesystem is not the exat inverse of the �optimal � transformation from B to A oordinatesystem.[35℄ Using a symmetrial expression for the error term:

e(R, t) =
1√
s
p′a,i −

√
sR(p′b,i)allows �nding the sale transformation without the need to �nd the rotation as:

s =

√

√

√

√

∑N
i=1 ||p′a,i||2

∑N
i=1 ||p′b,i||2The sale is equal to the ratio of the root-mean-square deviations of the oordinatesfrom their entroids in the two systems.Iterative Closest Point (ICP) algorithmThe iterative losest point algorithm (ICP) is able to register a �data� shape P with

Np points to a �model� shape X with Nx primitives [34℄. The model shape may berepresented in any of the allowable form suh as point sets, line sets, triangle sets,



31parametri urves, but for our purposes the model shape was deomposed into a pointset. The method �nds the nearest positions on one surfae to a olletion of pointson the other surfae and then transforms one surfae so as to minimize the olletivedistane. This proedure is iterate until onvergene.The distane d(p,X) between an individual point p and the set points X = {xi}, i ∈

{1..Nx} is de�ned as the Eulidean distane:
d(p,X) = mini∈{1...Nx}||p− xi||Let Y denote the resulting set of losest points that yields the minimum distane ,and let C be the losest point operator Y = C(P,X). The least squares registration isomputed and let Q denote the quaternion operation. Given the resultant orrespondingpoint set Y and the data set P , equation (q, dm) = Q(P, Y ) means that q is theregistration vetor that best aligns P and Y , where dm is the point mathing meansquare error in this alignment [34℄. The registration vetors are de�ned relative tothe data set P thus the �nal registration represents the omplete transformation. If atolerane τ > 0 and an initial registration qi are given the following steps of the ICPalgorithm are applied until onvergene:1. Compute the losest points Yk = C(Pk,X).2. Compute the registration (qk, dk) = Q(P, Yk) .3. Apply the registration Pk+1 = qk(P ).4. If (dk−1 − dk) < τ , terminate. Else inrease k and go bak to step 1.ICP has the objetive of registering data that does not neessarily have the same numberof points as the model, and more importantly, data whose points doesn't have a pointto point assoiation with the model.2.3.3 Objet lassi�ationIn our experiments the 2D ellipti Fourier transform was applied to eah setion toperform a setion by setion omparison of 3D objets. We desribe the two distanes,



32ICP distane and Fourier distane used for objet omparison and their related issues.ICP distane is the distane resulting from the ICP registration algorithm, as the"best" distane between the data and the model. The distane is omputed for eahdata point by searhing for the losest point on the model, and averaged over the numberof points. The measure of similarity is obtained by running ICP with di�erent startingpoints and taking the best (minimum) value. The reason for the di�erent startingpoints is that ICP is known to fall in loal minima. The iterative operation used by ICPoverlaps the two objets through rotation and a sale transformation, thus ahieving aloal maximum similarity between data and model. The problem with this method isthat not only is very expensive omputationally, but also requires the expansion of theobjet to 3D format.The Fourier distane between two ross setions is de�ned as the Eulidean distanebetween their Fourier desriptors. The Fourier distane was used by Ferrario V. F andSforza C. [36℄ to analyze sex and age shape di�erenes of orpus allosum in hildhood.The Fourier distane between two objets is the weighted average of distanes betweenorresponding ross-setions. Comparing objets just based on their Fourier desriptorshas only a omplexity linear in the number of harmonis, and is therefore desirable forlarge objets that are enoded with few harmonis, a ondition satis�ed by the objetsin our database.In order to verify that this method an be used for lassi�ation purpose, we ompareits behavior against the well known, and more intuitive ICP distane. To verify theorrespondene between the two distanes, we use a non-parametri (distribution-free)rank statisti proposed by Spearman in 1904 [37℄. The Spearman rank orrelationoe�ient, that is 1 for omplete agreement and −1 for disagreement is de�ned by:
r = 1 − 6

n2 − 1
(

∑

i d
2
i

n
)where di represent the di�erene in statistial rank (the ordinal number of a valuein a list arranged in a spei�ed order) and n number of objets. The oe�ient isused to measure the strength of orrelation between two sets of data. Consequentlywe ompared a query ross-setion with 32 ross-setions from 11 di�erent objets from



33the database and the resultant rank orrelation oe�ient is 0.94. Thus, 2D Fourierdesriptors have the potential to aurately haraterize the shape and an be used toondut a systemati setion by setion lassi�ation of 3D objets.2.4 Results2.4.1 Data CompressionThe fat that the double Fourier desriptor transformation is reversible makes it pos-sible to utilize it as a means for e�ient storage of delineated objets. The reliabilityand auray with whih Fourier enoding proess aptures the essene of the shapeof an objet is haraterized by the number of harmonis used for xy enodings ofthe ross-setions, (azn, bzn, czn, dzn), and number of harmonis on z for the enodingof A(aiz, z), B(biz , z), C(ciz , z) and D(diz, z). The number of harmonis required forFourier reonstrution depends on the omplexity of the sanned data and the require-ments of the appliation.Experiments were onduted to determine the optimal number of harmonis requiredfor reonstrutions. The original (interatively traed) ontour of the objet of interest,brain struture or tumor, is de�ned by the data points
P− = [xi, yi, zi], i = 1..pand the n harmoni Fourier approximation of the ontour of the objet sz(t) = (x(t), y(t))were superimposed. Sine the original ontour is given only at p points, the objets werereonstruted at a very high resolution - p = 1000 points for eah ross-setion. Theentroid and the sale of eah ross-setion of the objet is de�ned as:

c =
1

p

p
∑

i=1

Pi scale =

√

√

√

√

1

p− 1

p
∑

i=1

||Pi − c||2The measure of auray was de�ned by subtrating the n harmoni Fourier ap-proximated ontour from the original ontour at spei� sample points. The averageEulidean error was omputed as:
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ǫ =

1

p ∗ scale

p
∑

i=1

mint∈Tz
||Pi − sz(t)||2The graphs of the average error versus number of harmonis on xy and z are shownin Figure 2.7.Based upon these studies it was determined that shape desription was su�ientlystable using only the �rst 12 harmonis on xy and 32 harmonis on z, respetively.The Fourier series for subsequent analysis was trunated at this number of harmonis,aordingly sine it was shown that most of the dimensional information was aptured bythe low order desriptors. The low order harmonis enodes the oarse representationof the three-dimensional objet, whereas the higher harmonis adds details of objetsurfae. Figure 2.8 shows the objet reonstrutions whih are produed by varying thedegree of approximation.The data redution e�et of performing elliptial Fourier transform is illustrated inthe following example. If delineated objets onsists of 100 setions, on average, with100 points for eah setion, about 30000 numbers would be required to store the x, y, zoordinates for all 100 points. In ontrast, using 12 x 32 harmonis -representation ofthe same objet would require 12 x 32 x 4=1536 numbers whih was shown to ontainenough detail to restore the objet with high auray. Fourier enoding provides aform of lossy ompression, as a result, eah objet is desribed by a set of desriptorsand an be reliable reonstruted with adjustable degree of approximation.2.4.2 Surfae reonstrutionMR images were obtained from Laurie Imaging Center (UMDNJ - RWJ Medial Shool)and were aquired via 1.5 Tesla GE Sigma sanner. Eah ross-setional MR image wasdisplayed on a high resolution sreen while objet ontours were manually traed usingAnalyze AVW software (Mayo Foundation, Rohester Minnesota). The boundary ofeah anatomial struture (ventrile or tumor) was delineated based upon the intensityvalue of a partiular voxel relative to the intensities of eah neighboring voxel as shownin the Figure 2.9.
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Figure 2.7: Average error versus harmoni ontent: a) on xy b) on z
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(a) 1xy 1z (b) 4xy 4z

() 12xy 12z (d) 12xy 32zFigure 2.8: Fourier reonstrution of the normal left ventrile with di�erent number ofharmonis

Figure 2.9: Analyze AVW - boundary traing of the left ventrile



37Sometimes due to variations in image resolutions the resulting trae of the boundaryis not smooth. In regions exhibiting sudden hanges in urvature, the resulting shapeof the traed boundary presents a sawtooth form. In ontrast by performing forwardand reverse transformation through Fourier deomposition the resulting ontours aresmoothed onsiderably. Through systemati performane studies it was shown that thearea of an objet is enoded in a small number of harmonis, whereas the perimeterrequires a large number of harmonis to ahieve good auray as shown in the Figure2.10 (), respetively (d).In the reonstrution proess the degree of interpolation an be ontrolled not onlyin the ross-setions but also inter-ross-setions and the reonstruted volume is on-sequently more aurately represented. Figure 2.11 shows the reonstruted volume ofthe left ventrile (42 setions) for Bipolar disease using the same number of harmonison xy - 12.In order to provide more realisti anatomial surfaes representations Figure 2.12shows an example of a double ellipti Fourier reonstrution of the ventrile for As-perger's Syndrome with di�erent degrees of interpolation (the original ventrile has 40setions).2.4.3 RegistrationThe registration proedure was performed for all objets before they were added to thedatabase. Figure 2.13 shows in two views the results of registration of a ontrol leftventrile with a Bipolar left ventrile. The number of points in the �data� set (theBipolar ventrile) is Np = 583 and the number of points in the �model� set (the ontrolventrile) is Nx = 537. After 32 iterations if the tolerane value was τ = 0.001 then themean square error of the alignment was dm = 0.000001. If R3x3 = {rij} is the rotationtransformation, s the sale fator and t the translation, the resulted registration matrixfor the two ventriles is:
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(a) 20 setions (b) 90 setionsFigure 2.12: Left ventrile Asperger's Syndrome - Fourier reonstrution with di�erentdegrees of interpolation on z
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(a) side view (b) side viewFigure 2.13: Registration of a ontrol (gray) ventrile with a Bipolar (blak) ventrile
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2.4.4 Re-setionOur objet omparison proedure (distane de�ned on the objet spae) relies on planarlosed urves that were obtained from setioning along the same axis. It is not meaning-ful to ompare setions from di�erent objets unless they are taken at the same heightalong the same perpendiular axis. Usually setions obtained from the MRI proeduremight use slightly di�erent axis due to variations in positioning of the patient or anothertehnial aspets. The re-setion proedure rereates the outer hull of the objet basedon the initial setions, and then reates new parallel plane setions perpendiular onthe desired axis. This hange in the setioning axis omes with some resolution loss,
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(a) side view (b) side viewFigure 2.14: Re-setion of a ontrol (blak) ventrile with a Bipolar (red) ventrilebut produes ross-setions that are omparable as 2D objets. This is a pre proess-ing phase and is performed only one, at the time when the objet is added to thedatabase. Figure 2.14 shows in two views the results of re-setion algorithm of a ontrolleft ventrile with a Bipolar left ventrile.2.4.5 Database ArhitetureThe 3D medial imaging system features lient-server arhiteture. The lient partis intended to be used by remote linial researh sites to aess the database at theserver site. The server is designed to permit simultaneous aess of several lients to thedatabase. At the server site the inoming data is be registered, re-setioned, enoded toellipti Fourier desriptors and saved as a new entry in the database. The lient retrievesthe Fourier enoding of the objet from the server, as a result of a query and performsloal reonstrution for 3D visualization and other measurements. Multiple tools are



42available for visualization slie by slie or volume, quantitative measurements and sta-tistial analysis are be performed at the lient site. The system supports distributedarhiving and visualization of objets over a TCP/IP network.2.5 SummaryThe shape desriptor presented has been shown to reliably represent and reonstrutanatomi strutures from ross-setional ontours. The oe�ients derived in omput-ing this shape harateristis were implemented using a double ellipti Fourier transformwhih provides a ompat representation of the delineated struture. The medial imag-ing database that was presented has three main features:� Compression: the algorithms that we utilized have the potential of ompressingimage based information while preserving the essential shape harateristis of theanatomi strutures.� E�ient querying: while the preliminary results were onduted utilizing a limitedsize database, it appears that 3D objet lassi�ation methods based on Fourierdesriptors provide the same auray as slower more omputationally intensivemethods, suh as Iterative Closest Point.� Distributed aess: the prototype feature a TCP/IP based lient-server arhi-teture whih divide the tasks between lients whih perform visualizations andstatistial operations, and a entralized server whih servies queries and performsdata pre proessing inluding registration and re-setion. Preliminary results ona brain san database shows promising arhival and lassi�ation performane.Our �ndings suggest the potential bene�t of inluding shape desriptors for improvedauray of di�erential diagnoses and linial assessment.2.5.1 Future workHaving developed and evaluated the fundamental algorithms and methodology a naturalextension of this work inludes the development of algorithms for 3-D objet reognition



43based on fully automated 3-D Fourier analysis. Another long-term goal of this projetis to integrate the software with a relational database and develop tools for improvedvisualization and statistial analysis to onstrut as a tool for linial assessment anddiagnosis.The development of algorithms whih reliably perform automated segmentation ofimaged liver studies using a mean-shift lustering approah has already begun. In thenext phase of development a database of delineated liver lesions will be established,and 3-D Fourier desriptors will be generated to determine the reliability of the systemfor deteting and assessing volumetri and shape hanges of tumors over the ourse oflongitudinal studies.
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Chapter 3Liver Therapy Evaluation3.1 Related Work for Registration in Medial ImagingMedial imaging is essential for a range of linial ativities inluding rendering a di-agnosis, staging disease progression, assessing response to treatment, and for surgialplanning. Registration is the proess of mathing two or more images (or volumes) withone another. These images may have been obtained at di�erent times from di�erentsanners or from di�erent viewpoints. Registration requires a spatial transformation,so that eah loation in one image an be mapped to the orresponding loation in theseond image. A ombination of four key omponents are identi�ed in the developmentof the any registration algorithm: a feature spae, where features to be mathed are se-leted, a transformation model, a similarity measure and an optimization module. Thegoal is to �nd an optimal transformation that provides the maximum similarity betweenimages.Medial image registration has been the topi of extensive researh beause of itsimportane in various appliation areas as well as of its omplex nature. Maintz andViergever lassi�ed the medial image registration methods [38℄ aording to a modelbased on nine di�erent riteria, whih will be brie�y explained in the Table 2.In general, similarity between images an be lassi�ed into feature-based methods,intensity methods and a ombination of the two approahes . Geometri or feature-based methods rely on reliably extrating and mathing salient anatomial struturessuh as point landmark points, urves and surfae information in order to de�ne thetransformation from one image set to an other. The algorithm for feature mathingiteratively updates the transformation parameters and the orresponding solution. In-tensity or voxel-based methods are used diretly to math image intensities by operating
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Table 3.1: Criteria for registration lassi�ationCriteria SubdivisionsDimensionality Spatial dimensions: 2D/2D, 2D/3D, 3D/3DTime series/spatial dimensions: 2D/2D, 2D/3D, 3D/3D

Registration basis Extrinsi Invasive Stereo tati frameFiduials (srew markers)Non-invasive Mould, frame, dentalFiduials (skin markers)Intrinsi Landmark based AnatomialGeometrialSegmentation based RigidDeformableVoxel property based Salars/vetorsFull imageNon-imageNature of transformation RigidA�neProjetiveCurvedDomain of transformation LoalGlobalDegree of user interation Interative Initialization suppliedNo initialization supplieSemi-automati User initializationUser sterring/orretingBothAutomatiOptimization proedure Parameters omputedParameters searhed forModalities involved Mono modalMultimodalModality to modelPatient to modalitySubjet IntrasubjetIntersubjetAtlasStruture imaged HeadThoraxAbdomenLimbsPelvis and perineumSpine and vertebrae



46on the whole image and are generally semi-automati. To make the registration pro-ess more robust and to allow user interation hybrid methods are developed. Eah ofthese methods are disussed in greater detail in the following omprehensive surveys[38, 39, 40, 41, 42, 43, 44℄. There is no single method whih outperforms all other meth-ods and whih an be used in all situations. The registration result is always a trade-o�between auray and speed.The pioneering work of Terzopoulos et al. [45℄ and Bajsy & Kovai [46℄ have shownthe advantages of introduing physis-based models to simulate volumetri deformation.The physis-based deformable surfae models do not use any similarity measures expli-itly and, feature mathing and mapping funtion steps of the registration proedure aredone simultaneously. The basi idea is to model an objet while traking it over timeuntil ahieving equilibrium between internal fores as de�ned by physial material prop-erties, and external onstrains based on the initial and �nal states of the objet. Oneof the most widely used physial methods is the mass-spring model, whih is a disreterepresentation of matter onsisting of nodes onneted by elasti links [58, 59, 60, 61℄.Although real- time performane an be ahieved using a mass-spring model, the be-havior an often be unstable and unrealisti. Mass-spring methods are often used forsurgery simulations due to their lower omputational omplexity and simpliity [63, 64℄.More realisti deformable 3-D models are ahieved by introduing ontinuum mehan-is for linear elastiity. Linear elasti and viso-elasti registration models have beenextensively desribed in the literature. The partiular behavior of an elasti body isa funtion of both the internal stress and strain and the external fores applied, a-ording to the physial priniples. Broit [47℄ was the �rst to study elasti registration,where the images were viewed as two di�erent observations of an elasti body, one be-fore and one after the deformation. The displaement of the elasti body is derivedusing a linear elastiity model. A survey on elasti registration methods with empha-sis on landmark-based shemes has been presented by Roth [48℄. In the viso-elastiframework the Navier-Stokes visous-�uid partial derivative (PDEs) equations desrib-ing the physial medium are solved on a disrete partial grid. This model, introdued byChristensen [49, 50℄ and Bro-Nielsen [51, 52℄ is topology preserving and gives exellent



47results allowing both large displaements and nonlinearities. Unfortunately, this on-tinuous transformation it is no longer guaranteed when solving the PDE on the disreteimage grid. The viso-elasti model proved to be faster than optial �ow based foremodel [53℄. Other possible physis-based models inlude tensor-mass methods [54, 55℄whih allows real-time topology hanges and impliit surfaes [62℄. Piinbono et. al[56, 57℄. This approah was developed an extension of tensor-mass method integratinggeometrial non-linearity, whih is a requirement for most surgial appliations suh asutting, tearing or perforating.The most widely used representations for deformable volumes are parametri modelswith thin plates-splines representation [65℄ and �nite element models (FEM) introduedfor omputer engineering by Zienkiewiz [66℄. Finite element methods (FEM) are usedto �nd an approximation for a ontinuous equilibrium equation. In FEM framework,the surfae´s mesh of the deformable objet is deomposed into disrete �nite elementsjoined at disrete node points. The 3D displaement of any element´s point is approxi-mated as a linear ombination of the omponents of the interpolation funtions appliedto the node displaements. An equilibrium expression is derived for eah element andis assembled in a large and sparse linear system whih has to be solved. The �nite ele-ment model approah to the numerial solution of deformable surfae models was �rstintrodued by Terzopoulos & Metaxas [67℄ and later by MInerney & Terzopoulos [68℄.Finite element analysis is a powerful omputational tool for modeling soft tissue defor-mations. An extensive amount of researh has yielded positive results for intra-patientnonrigid image registration by using biomehanis and �nite element models (FEM) inneurosurgery [71, 72, 73, 74℄, breast [75, 76, 77℄, prostate [78, 79, 80℄, heart's ventrile[81, 82℄ as well as in radiotherapy settings [83, 84℄ .In the ontext of liver therapy, several image registration methods has been investi-gated for alignment of serial data sets. Previous researh has shown that the magnitudeof liver deformation is typially 10-30 mm during relaxed respiration [85, 86℄. To a-ount for motion and deformation of the liver aused by respiration researh has beendone to register sparse intra operative ultrasound data to preoperative images of theliver using statistial models [87℄ and intensity-based methods [88℄. Boes group [89℄



48have attempted to generate a geometri patient spei� liver model by using manuallyidenti�ed anatomi landmarks and thin-plate splines, whih ould be mathed to a stan-dard liver using the same registration tehnique. Unfortunately, this method based on anormalized surfae model requires substantial user interation and has the limitation ofusing disrete landmarks rather than volumetri data. Reently �nite element method(FEM) has been investigated in reating a biomehanial model of the liver [90℄, inmulti-organ deformable image registration [91℄, for intra-operative soft tissue deforma-tion of the liver using inomplete surfae data [92℄. A FEM was used to simulate thedi�erenes in distribution of temperature and the eletri �eld potential at the end of a12 min radiofrequeny ablation proedure [93℄.There have been many liver deformation studies, but only few have been reported ontraking metastases and primary tumors in the liver. Charnoz et al. [94℄ registered thesegmented vasular network of the liver for the follow-up of tumor evolution. However,the blood vessel branh points are di�ult to identify when di�erent aquisition timesare used and registering the vasular system alone does not take in aount any informa-tion regarding surfae liver deformation. Carrillo et al.[95℄ used a rigid intensity-basedalgorithm to perform registration of MR liver images aquired before thermal ablationand following treatment and reported an auray of approximately 3 mm.Traking of tumors to support surgial interventions or radiotherapy planning re-quires the aurate mapping of every volume position among multiple images series.Deformable organ registration an not be aomplished using image information alone,intrinsi properties of tissue mehanis must also be introdued into the registrationproess. As level of omputational power ontinues to grow, deformable registrationoupled with �nite element analysis is beoming a muh more aessible tool for medi-al image appliations.



493.2 Correspondene Methods for RegistrationThe 3-D registration problem an be deomposed into two parts by estimating the pointorrespondenes and the transformation. Sine solving for either one without informa-tion regarding the other is very di�ult, most non-rigid registration approahes use aniterated estimation framework. Given an estimate of the orrespondene, the trans-formation may be estimated whih in-turn an be used to update the orrespondene.In this Thesis we introdue a, Modi�ed Iterative Closest Point (m-ICP) method, andompare it with two di�erent orrespondene methods.3.2.1 Curvature Sale Spae (CSS)Curvature sale spae was �rst introdued by Mokhtarian and Maworth [96℄ as a newshape representation for planar urves. The Curvature Sale Spae representation isbased on the evolution onept - the proess of desribing a urve at inreasing levelsof abstrations. The basi idea behind CSS representation is to onvolve a parametrirepresentation of the urve with a Gaussian funtion, as the standard deviation of theGaussian inreases, and to extrat the urvature zero-rossing points from the resultingurves.The urvature of a urve is de�ned as the derivative of the tangent angle to theurve. Considering the urve in the parametri form (x(u), y(u)), where u is an arbitraryparameter, the urvature an be expressed as:
k(u) =

ẋ(u)ÿ(u) − ẍ(u)ẏ(u)

(ẋ(u)2) + ẏ(u)2)
3

2Speial ases of parametrization result in simpli�ation of urvature's formula. Ifwe onsider a losed planar urve with normalized ar length parameter u ∈ [0, 1], theurvature formula will be k(u) = ˙x(u) ¨y(u)− ¨x(u) ˙y(u). An evolution of the urve an beahieved by Gaussian smoothing to ompute the urvature at varying levels of detail.If g(u, σ) is a Gaussian kernel of width σ de�ned by:
g(u, σ) =

1

σ
√

2π
exp− u2

2σ2
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Figure 3.1: Left) At σ = 50, 20 loations of urvature zero rossing for a planar urve.Right) Curvature sale spae imagean evolved urve is de�ned by Γσ = {(X(u, σ), Y (u, σ)), u ∈ [0, 1] where ⊗ denotesonvolution and:
X(u, σ) = x(u) ⊗ g(u, σ)

Y (u, σ) = y(u) ⊗ g(u, σ)Aording to the properties of onvolution, the derivatives ofX(u, σ) and Y (u, σ) anbe easily omputed. As σ inreases Γσ beomes smoother and the number of urvaturezero rossing points on it dereases. The binary image alled urvature sale spaeimage of a urve is obtained by displaying the resulting points in (u, σ) plane, where uis the normalized ar length and σ is the width of Gaussian kernel. Figure 3.1 shows aurvature sale spae image of a planar urve.Curvature sale spae image representation retain the loal information of the shapeand is robust to noise, sale, and hange of orientation.3.2.2 Modi�ed Iterative Closest Point (deform-ICP)For most surfaes registration strategies, losest point distanes are used as initial es-timate of the orrespondene. With the presene of deformation, the losest point
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Figure 3.2: Deformable registration proess.operator beomes less reliable as a means for determining orrespondene. The lassi-al solution for point registration is the Iterative Closest Point (ICP) algorithm [34℄ asdesribed in the Chapter IV. The binary point orrespondenes are based on a nearestneighbor heuristi. The algorithm iterates between the spatial mapping and the nearestneighbor orrespondenes until the hange in the objetive error funtion falls below apreset threshold.In attempt to overome the deformation, a modi�ed ICP-like registration based on aloal motion funtion was applied for eah point of interest. By implementing the motionfuntion, whih allows the points to move along the plane tangent to the surfae, thesurfae shift is better aommodated. Our method augments orrespondene funtionswith surfae properties by estimating the non-rigid motion using surfae normals. Inthe standard ICP algorithm, only 3-D point oordinates are used in the estimation oforrespondene resulting in a lak of interations between neighbor points. Instead ofassuming a trivial orrespondene, the searh for the losest points take into aountall the neighborhood points with a similar normal diretion to the point of interest.The 3-D point oordinates and normals are then put together in a 6-D spae and asquared error over the neighborhood around the point of interest is minimized. Figure3.2 illustrates this approah.If in the seletion of the losest point only the Eulidean distane are used, points aand b from the data set will be assoiated with point C from the model set. However, the



52points a and A from the data and orresponding model set have approximately similarnormal diretions. In suh ases, more weight must be given to the normal omponentand the proper hoie of the losest point is aomplished, a → A, and b → B. If wedeompose the deformation as a series of small inrements, the motion is estimated asa small displaement in the diretion of orresponding points. At every inrement, thesurfae of the pre-treatment liver data set is deformed to map on the surfae of the post-treatment liver data set, allowing all the points to move in the tangential diretion. Themain advantage of the algorithm that was developed as part of this Thesis is that theestimation of deformation is aomplished in small inremental steps, and the motionis applied to the orresponding point set at eah iteration.3.2.3 Robust Point Mathing (RPM)Parametri deformable models rely on linear deompositions taken aross basis funtionsand do not, themselves, enfore properties suh as one-to-one mapping. To overome thisproblem we utilized a Robust Point Mathing (RPM) algorithm [100℄. The Robust PointMathing (RPM) algorithm was previously developed and used for 2D rigid alignment[97℄. The tremendous �exibility of this algorithm was easily generalized to the 2D and 3Da�ne and pieewise-a�ne mappings [98, 99℄. Furthermore, the algorithm's frameworkwas extended to a general purpose, by inluding thin-plate spline as the parametrizationof the non-rigid mapping and the point-to-point orrespondene problem was solved byusing a softassign method [98℄ and deterministi annealing [101℄. The main idea of theRPM is to minimize the following fuzzy assignment least squares energy funtion for theorrespondene between point set A, with points a = {1, 2..K} and point set I, withpoints i = {1, 2..N}:
ERPM (M,f) =

N
∑

i=1

K
∑

a=1

mai||xi −f(va)||2 +λ||Lf ||2 +T
N

∑

i=1

K
∑

a=1

mailogmai − ζ
N

∑

i=1

K
∑

a=1

maiwhere mai are the elements of the fuzzy orrespondene matrix M , of point a topoint i, with mai ∈ [0, 1] and satisfying one-to-one orrespondene onditions:
∑N+1

i=1 mai = 1 for i = {1, 2..N}
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∑K+1

a=1 mai = 1 for a = {1, 2..K)The extra row N + 1 and extra olumn K + 1 are used to handle the outliers. Thenon-rigid transformation is represented by the mapping funtion f , a point va is mappedto a new loation f(va). The appropriate onstrains on the mapping are introdued byhoosing a spei� smoothness measure, L, as is re�eted in the seond term of theenergy funtion. The mapping funtion is hosen to be a thin plate spline (TPS), andits smoothness is measured in terms of the bending energy within a �nite window. Thethird term is an entropy funtion with the temperature parameter, T , whih ontrolsthe fuzziness of orrespondene. At higher temperatures, the entropy term fores theorrespondene to be more fuzzy. The last term with the weight parameter ζ ontrolthe robustness, preventing the rejetion of too many points as outliers. The, λ, term isoupled with the temperature, T , in the deterministi annealing proess.The RPM algorithm utilizes an alternating optimization sheme to iteratively up-dates the orrespondene parameter, M , and the spatial transformation funtion, f ,while gradually reduing the temperature, T , whih eah a funtion of the other. Thespatial mapping is solved in losed form, whih permits its use for data of any dimension,2D or 3D.3.3 Finite Element Method (FEM): TheoryIn the approah presented in this Thesis, deformation of soft tissue is modeled based onthe linear elastiity theory. The behavior of an elastially deformable objet is governedby a partial di�erential equations. Finite element methods (FEM) have been regardedas a versatile, e�etive and aurate tehnique for disretization of ontinuum models.In this setion, we brie�y introdue the linear Finite Element Method for deformableobjets.The total work Π of a deformable elasti system an be written as the sum of theexternally applied fores W and the elasti potential energy Λ due to the developmentof material stresses and strains Π = W + Λ [66℄. In order to determine the objetdeformation, the material is modeled as a linear elasti ontinuum in stati equilibrium,



54with no initial stresses or strains and the total work Π is expanded in terms of thematerial displaements:
W =

∫

V FudV and
Λ = 1

2

∫

V σ
T εdV = 1

2

∫

V ε
TDεdVwhere V represents the volume of the deformable objet, u = u(x, y, z) is the dis-plaement vetor, F = F (x, y, z) is the vetor representing all the fores applied, σ isthe Cauhy stress tensor and ε is the linear strain tensor. D is the material sti�nessmatrix relating the stress and strain in Hooke's generalized law:

σ = DεFor an isotropi material, the omponents of the matrix D depend only on twoelastiity parameters, Young's Modulus E and Poisson's ratio ν:
D = E

(1+ν)(1−2ν)
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If the ontinuum objet is disretized, it is intended to �nd an approximation for theequations relating the internal displaements and the external fores applied dependingon the material parameters of the model. Four general steps [102℄ are used in FEMframework :1. the deformable objet has to be disretized into a �nite set of elements e, assumedto be interonneted at nodal points on their boundaries. The hoie of elementse.g bar (or truss), triangle or tetrahedron, depends on the physial properties ofthe deformable objet under atual loading onditions and how lose to the atualbehavior the results must be.



552. the displaement funtions within eah element e has to be de�ned. Linear,quadrati and ubi polynomials are frequently used funtion. The displaementfuntions are often alled interpolation funtions or shape funtions. If n is thenumber of nodes in the element, the ontinuous displaement �eld u of any pointinside the element is approximated as a linear ombination of the omponents ofthe interpolation funtions Ni applied to the displaement at the element's nodalpoints ui:
ue =

n
∑

i

N e
i u

e
iTherefore we an express displaement of any point inside of deformable objet,from the element node displaements and the element shape funtions.3. strain displaement and stress/strain relationships must be de�ned. For a elastiobjet the di�erenes between the original and urrent positions of all objetpoints are represented by a ontinuous displaement �eld u = [u, v,w]T . For smalldisplaements, the relation between the strain ε and the displaement �eld u isapproximated with the linear Cauhy-Green tensor:
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Using nodal displaements ui of point i in x-y-z diretions the strain displaementis de�ned as: ε = Beu where
Be =
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564. derive the element sti�ness matrix and equations . An equilibrium expression isderived for eah element e and then assembled in a large and sparse linear system.The relation between the nodal fores fi and the nodal displaements ui whihhas to be minimized at every node i of eah element e, assuming that point loadsare ating on the nodes, an be expressed as :
∏

=
1

2

∫

V
σT εdV −

∑

i

ue
if

e
iIn the linear �nite element formulation beame:

∏

=
1

2
uT

e Keue −
∑

i

ue
if

e
iwith

Ke = BT
e DBeVe

Ke is the element sti�ness matrix and Ve volume of element. Equilibrium orre-sponds to a minimum of Π. To determine the extreme values, the partial derivativeof Π are solved with respet to nodal displaements ui and the relation betweendisplaement vetor u and the fore vetor f is obtained for eah element:
Keue − fe = 0The only remaining step is to assemble the global sti�ness from the element sti�-ness matries. The result is a large and sparse linear system, the solution of whihwill provide the deformation �eld orresponding to the global minimum of thetotal work:
F = Kuwhere K is the sti�ness matrix numerially integrated over the objet´s volume, uis a displaement vetor of all nodes and F is a vetor that ombines all externalfores and boundary onditions whih desribe the initial and the end states ofthe deformation proess. The dimension of global sti�ness matrix K is 3Nx3Nand the dimension of the global fore vetor F is 3N where N is the total numberof nodes.



57Hene, this method is one in whih a ontinuous quantity, suh as the displaementthroughout the body, is approximated by a disrete model omposed of a set of pieewise-ontinuous funtions de�ned within eah �nite element. The preision of the approxi-mation improves with the level of disretization, and the degree of interpolation hosen,but to the detriment of omputational time and memory size. A number of advantagesthat inlude the ability to: (1) model objets omposed of several di�erent materialsbeause the element equations are evaluated individually; (2) vary the size of elementswhere neessary; (3) manage unlimited number of boundary onditions; and (4) man-age nonlinear behavior existing with large deformations and nonlinear materials. All ofthese features have made the FEM very popular in the area of deformable models andsurgial simulations.3.4 Tumor Traking ModelWe present a surfae based non-rigid method for traking tumor aross pre- and post-treatment CT liver images using a �nite element model based deformable system. Thestrategy of the algorithm is twofold: the �rst step is to align the liver's mesh surfaesand the seond step is to model the volumetri deformation using a linearly elasti�nite element model (FEM) whih has boundary onditions generated from the result ofsurfae registration. When the liver is treated as a purely elasti body, at the equilibriumstate, the strain energy stored as tissue distortion is equivalent to the work of externalfores applied to its surfae. In this framework the major hallenge for traking tumorloation is not the tissue mehanial properties for FEM modeling but the evaluation ofboundary onditions de�ned by the orrespondene of liver boundary points on 3D imagesets taken at di�erent times. Di�erent registration algorithms, presented in Setion II,have been investigated to determine the proper orrespondene of the boundary pointswhih ultimately drive the transformation. To aommodate the loal deformation,the problem of traking tumor loation an be formulated as the bijetive relation ofreovering loation of any points from the pre-treatment images in the post-treatmentimage.In this formulation, surfae/volumetri based registration-deformation algorithm an
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Figure 3.3: Flow hart of the integrated proess to quantify tumor motionbe deomposed into three main omponents: extrating boundary points of interestingstrutures from images, mathing the data and model surfaes, and then extending thesurfae-based transformation to the full volume using FEM. Figure 3.3 desribes themain steps of our approah.3.4.1 Segmentation and 3D Mesh GenerationTwo data sets of tomographi images were aquired using GE Light Speed VCT sanner.The pre-treatment CT san was taken at normal exhale and inhale breath-hold and thepost-treatment ontrast was aquired at inhale. Contrast enhaned images providedetail allowing aurate de�nition of the margins for both liver and tumor. The dataset onsists of axial slies of 1.25 mm thikness and matrix size of 512 x 512 pixels ofthe entire body. The �st step in mesh generation is to extrat the liver and tumor'sontour shapes from these data sets. Segmentation proess generate a series of disreteontours whih are represented by a list of vertexes assoiated with eah transverselyimage slies. The ontour extration was performed using MIPAV software pakage [103℄using a two dimensional semi-automated ative ontrol model. The segmented ontourswere onverted to a volumetri binary mask. The data set for the liver was redued toapproximately 180 slies and while the tumor data set is patient spei�, varying between30-40 slies. The binary mask was onverted to a tri-element surfae mesh using the



59

Figure 3.4: Result of the original surfae with Marhing-ubes algorithmsub-voxel triangulation marhing ubes algorithm [104℄. The basi priniple behind themarhing ubes algorithm is to subdivide the data spae into a series of small ubes ona voxel-by-voxel basis. The algorithm 'marhes' through eah of the ubes testing theintersetion of the 3D ontour surfae with eah voxel and replaing the ube with anappropriate set of polygons. The total sum of all polygons generated will be furtherredued to a triangle surfae representation alled mesh, that approximates the one thedata set desribes. The result of marhing ubes algorithm on liver surfae mesh isshown in Figure 3.4.However, the resulting polygonal surfaes were too rough and the number of trianglesgenerated too large for further proessing. Using Visualization Toolkit [105℄, smoothingand deimation algorithms were developed in order to avoid stairase e�ets and tosimplify the mesh. The mesh was smoothed using a windowed sin funtion interpo-lation kernel [106℄. The basi idea of Taubin group [106℄ design was to approximatethe transfer funtions of the low-pass �lters by Chebyshev polynomials using standardsignal proessing low-pass �lters. As opposed to kernel onvolution, using Chebyshevpolynomials made possible to apply the �lters in an iterative di�usion proess. Themore smoothing iterations applied, the higher the degree of polynomial approximatingthe low-pass �lter transfer funtion. Eah smoothing iteration, therefore, applies thenext higher term of the Chebyshev �lter approximation to the polyhedron. This deou-pling of the �lter into an iteratively applied polynomial is possible sine the Chebyshev
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Figure 3.5: Windowed sin smoothing result : Left) The smoothed mesh superimposedwith the original one. Right) Smoothed meshpolynomials are orthogonal, i.e. inreasing the order of the approximation to the �ltertransfer funtion does not alter the previously alulated oe�ients for the low orderterms [105℄. The meshes for liver, were smoothed in 100 iterations with pass band valuefor the windowed sin �lter of 0.001. The tumors were smoothed with fewer iterationsto maintain the surfae irregularities. An example of the smoothing proess for the liveris illustrated in the Figure 3.5.The number of triangles in the mesh was redued by applying a quadri deimation�lter [107℄ allowing fast and aurate geometri simpli�ation of the mesh. This ap-proah de�nes for eah fae of the mesh a quadri equal to the squared distane of apoint to the plane ontaining the fae. For eah vertex in the mesh is assigned the sumof quadris on its adjaent faes weighted by the fae area. After the deimation proessis omplete less storage spae is required while maintaining an aurate desription ofvolume. The meshes were redued down to 10% of their original size. The ombinede�et of the smoothing and the deimation algorithms was to adjust the triangles ofthe mesh, making them more evenly distributed, improving the appearane while main-taining aurate mesh topology. An example of the proess of generating a liver surfaemesh is shown in the Figure 3.6.Based on the simpli�ed triangulation of the surfae, the volume of liver with the tu-mor embedded was deomposed into tetrahedral elements without hanging the surfaetopology. The goal was to generate suitable tetrahedral meshes for numerial simulation
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Figure 3.6: Quadrati �lter deimation: Left) The smoothed mesh superimposed withthe deimated one. Right) Deimated meshusing �nite element. We have hosen this element beause a tetrahedron does not self-penetrate, whereas a higher order element tends to deform and result in self-intersetion.We used a publi domain quality tetrahedral mesh generator TetGen [108℄, whih isbased on an implementation of Constrained Delaunay algorithm [109℄. A onstrainedtetrahedralization is a deomposition of a three-dimensional domain into a tetrahedralmesh, suh that the output boundary is enfored to the input boundary represented bythe faes of the mesh. This feature proved to be very useful, in our ase for ombiningtwo meshes whih share the same boundary, furthermore the boundary surfaes of theobjets represented in the mesh an be extrated from the mesh as triangulated sur-faes. In FEM numerial simulation, the mesh shape and mesh size are important forthe approximation error and onvergene of the numerial methods. TetGen performse�ient mesh re�nement, inserting new vertexes, to improve the overall mesh quality.For auray in the FEM it is neessary that the shapes of the elements have a smallradius-edge ratio and a maximum volume element onstraint. The radius-edge ratio ofan element is the ratio of the radius of the unique irumsphere to the length of theshortest edge. The resulting tetrahedral mesh is a �nite element mesh whih onsists ofgood-shaped tetrahedrons and the mesh size well onforms to the boundary size - themesh size is small lose to the boundary and is gradually inreased to the interior.
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Figure 3.7: A fully onneted and onsistent tetrahedral mesh for liver and tumor.The following �gure 3.7 illustrate a fully onneted tetrahedral mesh ontaining boththe liver and the tumor.3.4.2 Boundary Conditions from RegistrationFigure 3.8 left shows the result of the ICP registration algorithm. Beause of thenonlinear/deformation motion of the liver between onseutive studies, aurate surfaeregistration an not be obtained when only rigid registration algorithms are used. Figure3.8 right shows an example, where the tumor assoiated with the pre-treatment liverwas erroneously registered out of surfae of the post-treatment liver beause of the notedlimitations of suh algorithms.Our approah starts with a rigid registration step neessary to provide the bestalignment of the pre-treatment/data and the post-treatment/model surfae meshes fol-lowed by the deform-ICP registration method previously desribed. The liver's externalsurfaes are registered based on the hange in surfae positions leaving the deformationof the interior volume as the residual error to be aounted for by the �nite elementanalysis. The FEM will ompute the deformation of the tumor's surrounding nodes inthe mesh. This ombination of the registration whih provide the boundary onditionsassigned to surfae nodes and the �nite element modeling whih is used to infer tumorloation in subsequent studies has proven to be extremely reliable during the ourse of
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Figure 3.8: Left) Result of rigid ICP registration: light olored surfae shows the post-treatment, and dark olored is the liver pre-treatment. Right) Rigid registration teh-nique do not orret for the surfae deformation: post-treatment (light olor) and pre-treatment tumor.our experiments.3.4.3 Finite Element ImplementationOne the image sets are registered, the �nal step of our approah is to model the defor-mation based on the linear elastiity theory. Aurate predition of tumor loation relyon aurate representation of soft tissue. We assume that liver tissue is an elasti, in-ompressible material ( no volume hange during deformation), isotropi (no diretionalpreferene) and homogeneous (same tissue omposition). Given an elasti objet rep-resented as volumetri mesh, deformation indues the movement of every vertex withinthe objet. This an be modeled as a mapping funtion of the positions of all vertiesfrom the initial on�guration to those in the deformed on�guration.We take advantage of the tetrahedral volumetri mesh building in this struture our�nite element model with a 2-node element. Our resulting mesh struture is a onsistenttetrahedral mesh that ontains physially onneted liver and tumor. We have hosenthis 2-node element beause:� eah node has a relatively small number of neighbors resulting in fewer non-zeroelements in the sti�ness matrix and less expensive omputation.� it simpli�es the integration of the derivatives of the potential energy.



64Instead of using fores, whih are di�ult to determine aurately, we impose boundaryonditions to the liver objet by assigning �xed values to the displaement vetor, u.Boundary onditions are assigned to surfae nodes based on the hange in node posi-tions during registration. Material properties and these boundary onditions whih areintegrated over eah element of the mesh and distributed over the mesh's nodes drivethe deformation and the deformation propagates throughout the entire volume. Freesoftware pakage Z88 [110℄ was used to generate the solution of the linear system ofequations by a preonditioned onjugated gradient method. The solution of the linearsystem provide the displaements of all internal nodes of the volumetri mesh, allowingreliable traking of eah tumor's deformation.3.5 Phantom Validation of Deformable RegistrationQuantitative validation of the deformable registration algorithm has proved to be di�-ult beause of the general lak of ground truth information. Sine there is rarely if evera �gold standard� with whih to evaluate nonrigid registration results, semi-quantitativeevaluation by a human expert is often used as a substitute. To test the performaneof the algorithms we designed and evaluated both 2-D syntheti data and imaged beefliver ontaining phantoms to address this issue. Comparative performane analysis wasonduted using both rigid and non-rigid approahes.The basi idea omes from the fat that for an elasti objet, the strain energyof the objet equals the work done by the external fores applied. The e�et of thematerial parameters is limited if all the displaements are presribed from the results ofregistration.3.5.1 2D Rubber PhantomWe have reated a rubber balloon model that an be used to indue measurable defor-mations. The balloon was strethed over a irular ring with the diameter of 42 mm.A losed urve was drawn on the balloon in the shape of a 2-D liver setion and 21points of 1 mm diameter were drawn inside the losed urve with uniform distribution.



65

Figure 3.9: The base 2D rubber phantom model and three deformation representation.The entroids of these points served as targets while performing multiple deformationsof the urve to simulate onseutive visits. In all, the base model was deformed intothree di�erent representations that were generated by manually strething the balloonat di�erent loations. Figure 3.9 displays the balloon base model and the three deformedstates.The four-step algorithm previously presented was evaluated in order to predit theloation of the markers in all deformed data sets. Using the open soure software Auto-Trae [112℄ the ontours of the losed urve and the 21 marked points were automatiallysegmented from all four representations. A one-to-one orrespondene was assigned for



66

Figure 3.10: Boundary onditions and �nite element triangulation.the markers in all deformed states. In order to evaluate the proper orrespondene inthe applied boundary onditions, the losed urves were registered using three di�erentalgorithms: CSS, deform-ICP, RPM. The next step of our approah was to model de-formation using the �nite element method. The interior of the losed urve with all 21markers were tessellated using the two-dimensional �nite element mesh generator andDelaunay triangulator, Triangle [113, 114℄. The following Figure 3.10 illustrates the twosteps proedure: registration followed by the �nite element analysis.The degree of deformation of the 2D rubber phantom was haraterized as the lengthof the displaement vetors of all i = 1..21 markers. The entroid loations of the desti-nation markers in the image are cidest. When we register based on rigid-ICP, the entroidloations of the markers are cirigid−ICP and after applying our deformable surfae regis-tration model, the entroid loations of the markers in the deformed image are cideform.Therefore the auray of the deformation model an be quantitatively alulated bythe vetor length:
di =‖ cidest − cideform ‖
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rigid−ICP destination deformed

Figure 3.11: 2D phantom evaluation of the displaement vetor of the markers: theEulidean distane between the result of deformation and the destination state is om-puted.Figure3.11 graphially illustrates the results of deformation from our FEM model su-perimposed with the destination image. Di�erent amounts of deformation an be ex-periened in di�erent regions due to the smaller onentration of deformations in theentral regions and the larger amount at the periphery areas. Figure 3.11 shows thatthe deformations exhibit a greater e�et on peripheral markers as ompared to entralones.We have four instanes of deformation data sets and twelve registration-deformationresults are obtained, generating a distribution of displaement vetors. The minimum,average and maximum of displaement for all markers over all twelve results are shownin the Figure 3.12 and the mean value is reported in the table.The average error for the registration ahieved using a �nite element model wasslightly higher when deform-ICP algorithm was used (1 mm), than with Robust PointMathing (RPM) algorithm (0.7 mm). This error may be due to the lak of orrespon-dene information provided in the alulation of the boundary onditions.In order to further improve results we studied the manner in whih radiologist havetraditionally assessed onseutive imaging studies. Radiologists typially look for blood
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Figure 3.13: Deform-ICP registration errors with di�erent number of landmark points.vessels landmarks, but in trying to implement an analogous proedure using a omputer-based approah the di�ulties arose while extrating landmarks in the two images thatatually orrespond to the same physial point. To evaluate the potential of this ap-proah we have randomly hosen a small number of representative landmark points inthe original, undeformed image and spei�ally trak eah of them in the deformedimages. This approah was e�iently implemented by inluding the landmark pointsin the further deformation surfae registration proessing and analysis. To avoid anysimulation inonsistenies, the landmark points were hosen in the entral zone of theimage and we fore them to be part of the FEM node struture. Using deform-ICPalgorithm the deformation results when di�erent number of landmark points are usedare presented in the Figure 3.13. The average registration-deformation error is about0.5 mm when 3 landmark points are used, with maximum error between 0.7 mm and0.3 mm when 1 respetively 5 landmark points are used.A motivation for using this partiular solution is that it an be easily introdued intothe existing work �ow of radiologist. By having the radiologist indue a few landmarkpoints the auray is improved while at the same time the omputer-assisted tools addspeed and reliability to the radiologist´s assessment, helping them in the interventional



70and treatment planning proess.3.5.2 3D Beef Liver PhantomThe auray of the deformable model was evaluated using a real beef liver. To simulatethe internal abdominal environment and to minimize assumptions, the beef liver wasembedded in an agar gel to preserve the natural shape. Using a syringe 21 plasti beadswere uniformly distributed throughout the liver. All the markers had the same spherialshape with diameter of 5 mm. To enable aurate segmentation and position estimation,the diameter of the spheres were hosen to be slightly larger than the distane betweentwo suessive sanning planes. For our purposes Z spaing was 1 mm. The plastimarkers were easily identi�ed in all of the CT sans without reating any notieableimaging artifats. The markers are well suited to validate our model. The liver wasimaged, deformed and re-imaged to simulate hanges in shape of the liver that anour due to di�erenes in patient position aross onseutive imaging studies. Themarkers do not exhibit shape variations as an our in atual tumors whih have beenpartially ablated.The deformable registration omponent of our approah is based on hanges in sur-fae position, thus three deformation types harateristi for real patient aquisitionswere simulated by ompressing and tilting the ontainer with the beef liver. The beefliver phantom data sets were sanned with General Eletri LightSpeed CT sanner.Volumetri images were obtained using the following sanner settings: 120 kV, 180 mA,standard reonstrution type, and high quality san mode. The �eld of view was 230mm, produing a voxel size of 0.45 mm x 0.45 mm x 1mm. Eah CT san was omposedof 130 slies of 1 mm thik (512 x 512 pixels, 16 bits) exported in DICOM format. Fig-ure 3.14 displays the original setup of the beef liver and to illustrate the deformationdata sets that were generated we inlude two CT setions targeting the same marker.Using the open soure software MIPAV [103℄ the 3D surfaes of the beef liver andall markers were semi-automatially generated from the DICOM �les for all four repre-sentations. A one-to-one orrespondene was assigned for the markers in all deformedstates. Figure 3.15 shows all the markers uniformly distributed in the liver.
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Figure 3.14: 3D beef liver phantom: Upper row) initial setup with a CT setion. Lowerrow ) CT setion of two deformation data sets, targeting the same plasti bead marker.

Figure 3.15: 3D markers uniformly distributed inside the beef liver.
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Surfae mesh Volumetri meshData Sets Marhingubes Smoothing &DeimationPoints Faets Points Faets Points Faets TetrahedronsOriginal 270200 540000 2723 5401 3856 35412 16356Deformation 1 238400 476400 2405 4765 3372 31098 14358Deformation 2 221800 443200 2239 4433 3196 29618 13701Deformation 3 238900 477400 2410 4775 3457 32103 14858Table 3.2: Number of points generated in the onstrution of liver surfae and tetrahe-dral volumetri meshes.Using the three-dimensional mesh generator TetGen [108℄, a high quality tetrahedralmeshes were reated that onform to the input surfae meshes, so that some nodes ofthis model orresponded to the entroids of the markers. Table 3.2 summarizes thenumber of points generated for liver surfaes and for the tetrahedral volumetri meshes.In this tetrahedral mesh struture we built a �nite element model with 2-node el-ement, so that the markers share ommon mesh nodes with the liver, allowing thevolumetri displaements of the markers to be inferred from liver's surfae deformationsusing FEM. As mentioned in the previous setion the displaement of all verties in thevolumetri mesh an be reonstruted by the linear fore-deformation relation Ku = F ,for a sti�ness matrix K with parameters Young's modulus E and Poisson's ratio ν. Theliver is �lled with blood, whih implies that ex vivo tissues should not behave like invivo tissues. The elasti properties of the liver have shown a strong variability. Appro-priate linear elasti material parameter values for the beef liver were determined fromliterature [111℄. Most soft tissues are onsidered as roughly inompressible materialsand are assumed to have a Poisson's ration in the range of 0.45 < ν < 0.49. We assumethe model material properties as isotropi and linear with E desribing the sti�ness ofthe material of 11 kPa and ν desribing the ompressibility of the material of 0.47. Onlythe Poisson's ratio is important in our FEM analysis sine only displaement boundary



73Marker Rigid ICP Deform ICP RPM1 - peripheral 12.9683 6.6741 1.499182 - peripheral 11.5913 3.94894 2.413093 - peripheral 16.9037 8.70856 1.15064 - peripheral 8.09239 5.82661 3.155145 - entral 7.99102 2.67276 0.817796 - entral 7.65066 2.85603 2.439577 - entral 6.35848 4.72732 1.75357Table 3.3: Improvement of markers error [mm℄ as a result of �nite element modelingonditions were applied. Free software pakage Z88 [110℄ was used to generate the solu-tion of the linear system of equations by a preonditioned onjugate gradient method.The �nite element analysis was performed in a single step on a Centrino Duo 1GHz Dellwith 1GB of RAM and the average lok time was 10 seonds.The auray of the deformation depend on the deviation of the displaements andthe boundary onditions generated by the surfae registration. In order to evaluatethe proper orrespondene in the applied boundary onditions, the livers surfaes wereregistered using deform-ICP and Robust Point Mathing algorithms. The displaementvalues of deformation for some entral and peripheral markers are shown in the Table.There were four instanes of the deformation data sets and twelve registration-deformation results were obtained, generating a distribution of displaement vetors.The minimum, average and maximum of displaement for all markers over all twelveresults are shown in the Figure 3.16 and the mean value is reported in the table.The FEM model provides signi�ant improvement over results from rigid registrationalone. Sine the model is primarily driven by the surfae data, the method by whihboundary onditions are hosen for eah node an play a signi�ant role in the resultingauray. The maximum registration error when the deform-ICP algorithm was usedwas - 9 mm and at the ost of greater pre proessing time was 5 mm when Robust PointMathing (RPM) algorithm was used.The potential soures of errors an our from:� segmentation - surfae based registration algorithms su�ers from surfae segmen-tation errors.
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75� �nite element modeling - disretization errors resulted from geometri di�erenesbetween the boundaries of the model and its �nite element approximation, andmodeling errors due to numerial integration in solving the linear system.� material properties measurements - the same average values of experimentallyderived material properties for both liver and tumors are used in our �nite elementanalysis. One again, sine boundary onditions are used to drive the deformation,the auray involved in the material properties is not as important as the aurayinvolved in approximating the shape of the livers in the model.We did not take in aount the possible migration of the implanted markers, but theobtained mean displaement errors of deformation demonstrates very good results andis in agreement with previous studies done for these ases. The registration aurayand possible migration of internal �duial 2 mm gold markers implanted into 4 patientswith liver tumors and 14 patients with prostate aner were investigated by Kitamuraet al. [115℄. Using a real-time tumor-traking radiation therapy system, the relativerelationship between the oordinates of the enter of mass of the organs and those ofthe markers were alulated. Assuming that organs do not shrink, grow, or rotate themaximum standard deviation of migration error in eah diretion was estimated to beless than 2.5 mm for the liver and less than 2.0 mm for the prostate.3.6 Patients StudyThe proposed model for deformable liver surfae registration was used to predit theloation of the tumors in data sets orresponding to three patients with liver metas-tases whih have one hepatoellular arinoma. Before treatment planning eah patientunderwent to an intravenous ontrast CT imaging. The liver was imaged during breath-hold (reduing respiratory motion artifats) before and after the injetion of ontrastduring seleted phases of ontrast distribution, ( typially early and late hepati arterialphase and portal venous phase). All images used in our model were aquired duringthe portal venous phase beause the important details for deteting and haraterizinghypo vasular lesions and metastati deposits are apparent during this phase. At the



76time of radio-frequeny ablation treatment another CT san of the patient was obtainedin the exhale breath-hold position. A diagnosti ontrast inhale CT san was obtained1, 3 and 12 months after the ompletion of treatment. Volumetri images were obtainedwith General Eletri LightSpeed CT sanner, using the following sanner settings: 120kV, 180 mA, standard reonstrution type, and high quality san mode. The resolutionof the CT was 512 x 512 x n, where n varied to aommodate the patient extent and thevoxel size was 0.93 mm x 0.93 mm x 1.25 mm slightly varying between patients. Figure3.17 shows the pre-treatment, 1 and 3 month follow-us CT san and for the patients.The tumor loation is determined by visual omparison of the predited and atualpositions as shown in the Figure 3.18.Kitamura et al. [116℄ implanted a 2 mm gold marker near tumors to investigatethe impat of tumor loation, irrhosis and history of liver surgery on the motion oftumors throughout the liver in the trans axial diretion. They reported the averageamplitude of tumor motion in the 20 patients was 4±4 mm (range, 1-12 mm) in theright-left diretion, 9±5 mm (range, 2-19 mm) in the ranioaudal diretion, and 5±3mm (range, 2-12 mm) in the anteroposterior diretion.In general, rigid registration of the segmented liver reasonably aligned the entralarea of the organ, while the residual deformation, relatively larger in the periphery, wasevaluated by the FEM model. The liver deformation using linear elasti model graduallydeepens with an inreasing fore load. To demonstrate the potential of the proposedmodel we have applied it to test non-rigid registration of portal vein. We assume theCT data from 1 month follow-up as visit 1 and 3 month follow-up as visit 2. Beauseof the rami�ation of the shape of the portal vein it was broken into three regions, left,middle and right. Eah of whih was used as virtual tumor targets, as shown in theFigure 3.19.The boundary onditions were applied, while holding the entral parts of the liverin �xed position and foring displaements in the other regions that as ditated by theirdistanes resulted from deform-ICP algorithm. The registration deformation errorswere evaluated for portal vein by using root mean square residual error between thetwo targets. This metri used in the minimization proess of ICP registration algorithm



77

Figure 3.17: CT sans for three patients treated by per-utaneous radiofrequeny abla-tion of HCC : the �rst olumn the pre-treatment images, the seond olumn 1 monthfollow-up, and the third olumn 3 months follow-up. The last patient was re-evaluatedfor suspeted relapse, thus the pre-treatment image is onsidered after the �rst RFA.
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Figure 3.18: Visual omparison of tumor loation.

Figure 3.19: Left portal vein and middle portal vein.



79desribe the total error of �t between the two surfaes. The two meshes are omparedby alulating the mean and standard deviation of the distanes between the deformedsurfae from visit 1 and the original data from visit 2. The quantitative analysis resultsfor left and middle portal vein data are shown in the Figure 3.20.Figure 3.21 shows the result of deformation when both portal vein and the tumorare integrated in the model.3.7 SummaryPatient follow-up studies whih an reliable orrelate the spatial position of tumor re-urrenes and progression are very important in interventional proedures. In orderto aurately simulate soft-tissue hanges, physially motivated deformable models arerequired and the parameters of the tissue must be well de�ned. While is a hallengingproblem to obtain realisti material properties, suh as Young's modulus and Poissonratios, for all the tissues and strutures that onstitute the liver, we were able to design,develop and evaluate a reliable and e�ient method for prediting hanges in tumorloation aross pre- and post-treatment with radiofrequeny ablation using simple ap-proximations. The method inorporates a non-rigid registration and a linearly elasti�nite element model. Surfae mathing between pre- and post-treatment data was per-formed by the modi�ed ICP algorithm and the results were input as boundary onditionsfor the �nite element model to alulate the volumetri deformation. We demonstratedthe onvergene and robustness of this approah using both phantom data and atualpatient data sets.Deformable surfae registration is obviously a sine qua non for interventional radiol-ogy. Careful planning of RFA interventions is of great importane in order to limit thedamage of the healthy tissues. The results of the deformable registration model an beeasily integrated in the san reading work �ow performed by physiians. Using the ur-rent standard of are for CT sreening this proedure is performed without the bene�tand guidane of intravenous ontrast. Under these onditions it is possible to identifythe liver, but the tumor margins are often not visible. Through deformable registration,
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Figure 3.20: Left and middle portal vein results: mean and standard deviation of thedistanes between the deformed surfae from visit 1 and the original data from visit 2.
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Figure 3.21: Deformation results for both left portal vein and tumor: Left) in blak theresults of rigid-ICP and in pink the modeling results of deform-ICP and FEM. Right)in blue the atual positions from visit 2 ans in pink the modeling results of deform-ICPand FEM.the tumor position identi�ed on the CT san adapt and adjust to the new position of thepatient at the time of treatment. Figure 3.22 shows the auray of tumor deformationdetermined by visual omparison of the predited and atual ontour positions.The tumor phantom model that we developed using plasti beads and a bovine liveris simple, inexpensive and e�etive. This model may be useful for future algorithmdevelopment, for teahing and for ontinuing medial eduation.
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Figure 3.22: Cross-setion FEM deformation result : dark solid lines represents the pre-treatment, dotted lines represents post-treatment, and light gray (blue) the deformedpre-treatment tumor.
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Chapter 4ConlusionsTwo image-based monitoring approahes were ombined and evaluated for their apa-ity to haraterize and trak hanges in shape and positions of organs during treatmentwere evaluated. Image registration desribes the proess of establishing spatial orre-spondene between features in a dynami or temporal sequene of images, in order toobtain improved diagnosti disrimination and for therapy or surgial planning. Forrigid registration, feature alignment is desribed as di�erenes in global positioning.Qualitative assessment of shapes an haraterize hanges in 3-D images aross on-seutive studies thereby providing an objetive means for assessing stages of diseaseprogression and response to treatment. In non-rigid registration, the transformationan aommodate deformations due to surgial intervention, soft tissue properties, tem-poral hanges in tumor growth or due to radiotherapy treatment. In the ontext ofsurgial interventions or therapy planning realisti deformable registration models areessential for any approah to be aurate and reliable. Advaned linial appliationshave beome a ritial omponent of the work �ow of radiologists as well as the team ofother liniians who interat with the image data sets. Our vision was to leverage ourore expertise in detetion and registration to deliver appliations that diretly meetthese linial needs for various are areas.
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