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The main target of our research is to investigate powder mixing, particularly 

continuous mixing.  Continuous mixing is considered as an efficient alternative to batch 

mixing processes that in principle allows for easier on-line control and optimization of 

mixing performance.  In order to illustrate the benefits of this process we have 

demonstrated the effectiveness of continuous mixing for powders. A number of operating 

and design parameters including processing angle, rotation rate, fill level, convective 

design, APAP concentration, and residence time have been investigated to consider their 

effects on mixing performance and on the content uniformity.  Statistical analysis has 

been applied to examine the significance of the effects of processing parameters and 

material properties on the mixing rate.  In addition to mixing experiments, the particle 

trajectory within a continuous mixer has been studied for different cohesion levels, 

flowrates, and rotation rates using Positron Emission Particle Tracking (PEPT).  The 

approach was beneficial in providing particle trajectories and, as a result, allowing us to 

obtain axial dispersion coefficients quantitatively.  The experimental methods have been 

 ii



used to verify computational approaches as well as study some important areas that are 

difficult to examine experimentally such as online homogeneity measurements. 

Notably, powder-mixing models are restricted due to computational limitations 

and obstacles associated with correlating simulation-time to real-time. We have 

developed efficient modeling approaches that will enable the simulation, optimization, 

and control of mixing processes.  One method is compartment modeling, a method that 

discretizes the blender into finite regions.  We have adapted the approach to mixing 

processes (v-blender, a horizontal drum, and continuous blenders).  Another approach we 

propose is the use of a hybrid methodology that utilizes compartment modeling and the 

Discrete Element Method.  The effectiveness of the methodology will be demonstrated 

by modeling particle mixing under the influence of an impeller in the continuous blender, 

which for usual modeling methods typically lead to extremely high computational costs.   
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Chapter 1  

Introduction 

1.1 Motivation 

The main target of our research is to investigate continuous mixing as an effective 

method for powder mixing. Continuous mixing is considered as an efficient alternative to 

batch mixing processes that allows for on-line control and optimization of mixing 

performance.  Toward this objective we have identified the following specific aims: 

Specific Aim 1: Demonstrate the effectiveness of continuous mixing for powders using a 

continuous mixing process. A number of operating and design parameters including 

residence time, rotation rate, processing angle, convective design, and feed variability, 

will be investigated to consider their effects on mixing performance.  

Specific Aim 2:  Apply a quality by design approach using statistical analysis to examine 

the impact of all the processing parameters and minimize the number of parameters to be 

examined in detail.  This allows the design parameters to be focused on minimizing in-

homogeneities in the system output stream.   

Specific Aim 3: Develop efficient modeling approaches that will enable the simulation of 

powder mixing processes.  Notably, powder mixing models are restricted due to 

computational limitations and obstacles associated with correlating simulation-time to 

real-time. Thus, we are proposing the use of a compartment model and a hybrid 

methodology that utilizes compartment modeling to simulate the areas within the mixing 

system that do not require a detailed description and the Discrete Element Method for the 

areas where a more comprehensive description is needed (for example areas around the 

impeller). The effectiveness of the proposed methodologies will be demonstrated by 
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modeling mixing within continuous blenders, which for pre-existing modeling methods 

typically lead to extremely high computational costs. 

1.2 Powder Mixing 

Powder mixing has been the subject of substantial research, motivated by 

applications in a variety of industrial sectors including pharmaceuticals, food, ceramics, 

catalysts, metals, and polymer manufacturing. Understanding mixing mechanisms and 

identifying critical process and material parameters is often a crucial step during process 

development. In the pharmaceutical context, inefficient blending can lead to increased 

variability of the active component, threatening the health of patients. Content uniformity 

problems have four main root causes: (i) Weight variability in the finished dose, which is 

often related to flow properties of the powder stream, (ii) poor equipment design or 

inadequate operation, (iii) particle segregation (driven by differences in particle 

properties), and (iv) particle agglomeration, driven by electrostatics, moisture, softening 

of low melting point components, etc. 

A perennial concern in pharmaceutical process development is the scale-up of 

mixing operations. Process scale-up can drastically reduce production costs, but in order 

to change scale reliably, the effects of powder manufacturing processing parameters on 

the properties of intermediate and finished product properties must be known.  In many 

cases, for a new powder formulation, processing conditions are thoroughly examined at 

small scales during process development. However, the design and scale up of blending 

operations is essentially multivariate: when the blending process is transferred to a larger 

scale for manufacturing purposes, the relative magnitudes of shear, dispersion, and 

convective forces can be altered.  
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This issue is particularly important because several critical variables such as shear 

rate and total strain, which are known to affect blend microstructure (and, consequently, 

degree of ingredient agglomeration, blend flow properties, and finished product hardness 

and dissolution) are usually not addressed by any of the usual criteria during blender 

scale-up.  This can lead to failures during scale-up; for example, if the intensity of shear 

(per revolution of blender) increases during scale-up, a frequent undesired result is blend 

over-lubrication.  In engineering mechanics, shear rate is a measure of the rate of shear 

deformation (deformation is a change in shape) due to an applied force.  Shear rate is 

calculated as the magnitude of the velocity gradient in a flowing material.  Process 

parameters such as rotation rates affect the shear rate since a powder experiences faster 

shear in a given time interval.  The rate of which powder is blended affects the velocity 

gradient in the blender and was found to change degree of homogeneity (Arratia et al., 

2006).  The effect of the velocity gradient is also affected by the powder cohesion, 

because interparticle forces vary the powder bed density by dilation, affecting subsequent 

tableting and capsule filling stages.   

1.3 Batch Mixing 

One of the most common processes used in the pharmaceutical industry is batch 

mixing in tumbling blenders. Optimization of the blending process requires an 

understanding of mechanisms and critical variables. Although powder cohesion and 

mixer size and geometry may not be modifiable due to other constraints, operating 

conditions such as rotation rate and fill level are often easier to modify. Thus, an 

understanding of interactions among variables is essential.  
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V-blenders, tote-blenders, and double-cone blenders are examples of batch 

blenders that vary in geometric design.  For these systems, variables such as mixer size 

and fill level can affect mixing behavior (Alexander et al., 2001; Alexander et al., 2003; 

Sudah et al., 2002a). Mixing in tumbling blenders is often limited by component 

segregation, usually caused by variations in particle characteristics such as size or shape 

(Alexander et al., 2004).  The effects of tote size have previously been examined, and it 

has been shown that the mixing performance was more significantly affected for cohesive 

than a free-flowing pharmaceutical formulations (Sudah et al., 2002b).  A number of 

process problems are caused by cohesive phenomena, for example, when inter-particle 

forces result in API agglomeration.  In previous experimental studies Top/Bottom and 

Left/Right starting configurations of the API and excipients affected the mixing rate 

(Muzzio et al., 2004). 

Brone and coworkers (1998) examined the effect of changing the rotation rate 

from 8 to 24 rpm for glass beads in a V-blender. This study illustrated that for such free 

flowing materials, increasing the rotation rate did not change the mixing mechanism but 

did reduce the total mixing time. In addition, Sudah and coworkers (2002b) varied the 

rotation rate from 5 to 15 rpm for art sand in a rectangular tote blender, demonstrating 

that in earlier stages of the mixing process (up to 64 revolutions of the blender) the 

mixing rate (per revolution) was not affected by rotation rate, but the effect of rotation 

rate affected the asymptotic variance plateau (total achievable homogenization). The 

studies also showed that for a cohesive blend, rotating the vessel at 10 rpm resulted in the 

smallest asymptotic variance, suggesting the presence of competing mechanisms. Later 
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on, Arratia and coworkers (2006) examined the effects of blender fill level, finding that 

for a Bohle-Bin blender, the higher the fill level, the slower the mixing rate. 

Thus, in summary, the main variables known to affect mixing performance 

include: (1) the design of the mixing system, (2) its size, (3) the fill level employed, (4) 

the blender loading mode, (5) the speed of rotation of the blender, and (6) the material 

properties of the ingredients being mixed (particle size, shape, and density, etc.) typically 

affecting either the nature of the flow and the mixing rate through cohesive interactions, 

or the final homogeneity through segregation tendencies. 

1.4 Continuous Mixing 

Powder mixing is crucial for many processing stages within the pharmaceutical, 

catalysis, food, cement, and mineral industries, to name a few.  A significant problem 

hindering process design is the paucity of information about the effects of changing 

process parameters on mixing efficiency (Laurent and Bridgwater, 2002d).  The main 

target of this research is to investigate continuous mixing, examining the effects of 

different process and design parameters.  Interestingly, continuous processing has been 

utilized extensively by petrochemical, food, and chemical manufacturing but has yet to 

reach the pharmaceutical industry to a meaningful extent. Recent research efforts indicate 

that a well-controlled continuous mixing process illustrates the capability of scale-up and 

ability to integrate on-line control ultimately enhancing productivity significantly 

(Muerza et. al, 2002; Marikh et. al, 2005).   

Previous studies on continuous mixing include the work for zeolite rotary 

calciners (Sudah et al., 2002c), chemical processes (SiC or Irgalite and Al(OH)3) 

(Weinekötter and Reh, 1994), food processes (Couscous/Semolina) (Marikh et al., 2005), 
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and a pharmaceutical system (CaCO3 - Maize Starch) (Kehlenbeck and Sommer, 2003).  

Prior work points to the fact that a batch system that can be run in continuous mode can 

be expected to possess similar mixing mechanisms (Williams, 1976; Pernenkil and 

Cooney, 2006).  This is because in continuous blending systems, a net axial flow is 

superimposed on the existing batch system to yield a continuous flow.  

Williams and Rahman (1971a) proposed a numerical method to predict the 

Variance Reduction Ratio (VRR), a performance measurement of continuous mixing.  

The method utilizes results obtained from a residence time distribution test for an “ideal” 

and “non-ideal” mixer.  The ideality of the mixer was defined by a mixing efficiency 

proposed by Beaudry (1948).  Unlike the mixing apparatus presented in this work, the 

mixing mechanism was the horizontal drum rotating.  In another publication Williams 

and Rahman (1971b) investigated their numerical method using a salt/sand formulation 

of different compositional ratios.  They validated the predicted VRR with experiments 

and suggested that the results where comparable although replicating the experiments 

varied by 10-20%.  They also illustrated that the drum speed and VRR were directly 

correlated, but as the speed escalated over 120 revolutions per minute the VRR began to 

descend as drum speed increased.  Williams (1976) reviewed the previous work 

examining the mixing performance using variance reduction ratio (VRR) and recognized 

that additional work was needed considering different materials.  

Harwood et al. (1975) studied the performance of seven continuous mixers as 

well as the outflow sample size effect of sand and sugar mixtures.  Their objective was to 

develop a method to predict mixing performance by applying an impulse disturbance.  

They investigated the mixing performance of different convective mixers and sample 
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sizes, although no correlations were proposed.  Weinekötter and Reh (1995) introduced 

purposely-fluctuated tracers into the processing unit in order to examine how well the 

unit eliminated the feeding noise. In chapter 2 we examined a number of parameters 

including residence times, rotation rate, processing angle for two continuous mixers.  

Chapter 3 applied statistical analysis to the experimental results to determine the 

influence of the parameters on residence time and content uniformity.   

Other studies have focused on the flow patterns formed by the different 

convective mechanisms within horizontal mixers.  Laurent and Bridgwater (2002a) 

examined the flow patterns by using a radioactive tracer, which generated the axial and 

radial displacements as well as velocity fields with respect to time.  Using the same 

approach, chapter 4 focuses particle mobility within a continuous mixer.  Marikh et al. 

(2005) focused on the characterization and quantification of the stirring action that takes 

place inside a continuous mixer of particulate food solids where the hold up in the mixer 

was empirically related to the flow rate and the rotational speed.   

1.5 Powder Mixing Models 

Many industrial sectors rely heavily on granular mixing to manufacture a large 

variety of products.  In the pharmaceutical industry, it is very important to ensure 

homogeneity of the product.  The pharmaceutical industry is one of the most 

representative examples, where homogeneity is cited to ensure product quality and 

compliance with strict regulations. Modeling can play an important role in improving 

mixing process design by reducing mixing time as well as manufacturing cost, and 

ensuring product quality.  The main difficulty in modeling powder-mixing processes is 

that granular materials are complex substances that cannot be characterized either as 
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liquids or solids (Jaeger and Nagel, 1992).  Moreover, granular mixing can be described 

by multiple mixing regimes due to convection, dispersion, and shear (Gayle et al., 1958).  

Fan et al. (1970) reviewed a number of publications where powder mixing is modeled in 

an attempt to reduce the production cost and improve product quality.  

The existing approaches used to simulate granular material mixing processes can 

be categorized as 1) heuristic models, 2) models based on kinetic theory, 3) particle 

dynamic simulations, and 4) Monte Carlo simulations (Riley et al., 1995). Geometric 

arguments and ideal mixing assumptions are some common features of heuristic models. 

Although these models can generate satisfactory results, they are restricted to batch 

processes and are case dependent (Hogg et al., 1966; Thýn and Duffek, 1977). Kinetic–

theory-based models are used to simulate mixtures of materials with different mechanical 

properties (size, density and/or restitution coefficient), where each particle group is 

considered as a separate phase with different average velocity and granular energy. These 

models typically address shear flow of binary and ternary mixtures based on the kinetic 

theory of hard and smooth spherical particles (Jenkins and Savage, 1983; Iddir et al., 

2005; Lun et al., 1984).  The main shortcoming of these models is that they focus on the 

microscopic interactions between particles, neglecting the effects due to convection and 

diffusion.   

Particle dynamic simulations, which apply molecular dynamic concepts to study 

liquids and gases, are extensively used to simulate powder mixing (Zhou et al., 2004; 

Yang et al., 2003; Cleary et al., 1998).  A discrete element method (DEM) examines the 

interactions between solid particles with different physical properties, monitoring the 

movement of every single particle in the system.  DEM proceeds by dividing the particles 
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in the system into discrete entities defined by their size and geometric location.  The 

model is able to predict the collision probability of particle-particle interaction with every 

particle within the grid and neighboring grid.  The collisions caused by the forces of the 

process are solved using the spring latch model Walton and Braun (1986). The main 

limitations of particle dynamic simulations are (a) the maximum number of particles 

required to model the system is restricted due to the computational complexity of the 

involved calculations, and (b) the lack of realistic particle morphology (Wightman et al., 

1998; Bertrand et al., 2005).  

Monte Carlo (MC) simulations begin with an initially random configuration, 

which is driven to an energetically feasible equilibrium. One limitation of such an 

approach is that it cannot provide information about time-dependent characteristics, since 

it does not follow a realistic dynamic trajectory.  

In order to model granular mixing processes accurately and efficiently, we 

explore compartment modeling.  Compartment modeling has been utilized in 

bioprocesses to study the effects of mixing in large-scale aerated reactors (Vrábel et al., 

1999) and stirred reactors (Cui et al., 1996) with satisfactory results (both qualitatively 

and quantitatively). Curiously, this approach has not been used to model powder mixing.  

The main idea of compartment modeling is to spatially discretize the system into a 

number of homogeneous subsections containing a fixed number of particles.  Discretizing 

also the time domain, a number of particles are allowed to flow from each compartment 

to the neighboring ones at each time step.   

The main advantages of compartment modeling are that (a) it incorporates all 

associated forces responsible for particle movement within the vessel, using a flux term 
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that can be experimentally determined and (b) it allows the simulation of a large number 

of particles. Although the exact particle position cannot be determined the changes in 

composition can be captured by including the flow of particles entering and exiting each 

compartment.  Chapters 5 will focus more on the details required and results obtained 

from Compartment Modeling for batch mixing processes and chapter 6 for continuous 

mixing processes.  In cases where Compartment Modeling cannot be solely used, the 

hybrid methodology may serve as an alternative, the details of this approach can be found 

in chapter 7.  In order to validate mixing models experimental information is needed, so 

in the next chapter we will identify and examine some process parameters and material 

effects for continuous mixers. 
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Chapter 2 

Continuous Mixing Experiments 

In this chapter, the two continuous mixing systems, the feeding 

mechanisms, and blend formulations are described.  A number of studies 

illustrating the effects of the operating parameters, processing angle and 

rotation rate, on the residence time and mixing performance of the 

continuous mixers are examined.  The effects of design parameters are 

discussed, and the effect of material properties on the mixing performance 

are investigated.  

2.1 Continuous Mixer 1 

Among emerging technologies for improving the performance of blending 

operations, continuous mixing (and continuous processing in general) currently 

commands enormous interest at Pharmaceutical companies. Continuous processing has 

numerous known advantages, including reduced cost, increased capacity, facilitated scale 

up, mitigated segregation, and more easily applied and controlled shear. However, 

development of a continuous powder blending process requires venturing into a process 

that has a large and unfamiliar parametric space.  

2.1.1 Description 

The continuous blender device used in this dissertation is shown in Figure 2.1.1.  

The mixer has a 2.2 KW motor power, rotation rates range from 78 revolutions per 

minute (RPM) at a high speed to 16 RPM at a low speed.  The length of the mixer is .74 

meters and the diameter is .15 meters.  An adjustable number of flat blades are placed 

within the horizontal mixer.  The length of each blade is .05 m and the width is .03.  
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Convection is the primary source of mixing, the components have to be radially mixed 

which is achieved by rotation of the impellers (Weinekötter and Reh, 1995).  The 

convective forces arising from the blades drive the powder flow. As the blades rotate, the 

powders are mixed and agglomerates are broken up.  The powders are fed at the inlet and 

removed from the outlet as illustrated in Figure 2.1.1.  The powder is discharged through 

a weir in the form of a conical screen.  This feature ensures that the agglomerates are 

hindered from leaving the mixer.  Thus, by varying the mesh of this screen, different 

degrees of micro-homogeneity can be accomplished.  The particulate clusters become 

lodged in the screen, were they are broken up by the last impeller, the one closest to the 

outflow, before exiting the blender.   

 
Inflow 

Outflow 

 
Figure 2.1.1: GEA Buck Systems Continuous Dry Blender 

2.1.2 Feeding Mechanisms/Blend Formulations 

Independent of the mixing performance, the outflow concentration may fluctuate 

due to the inflow composition variability.  Thus it is crucial to ensure that the variability 

that exists in the feeding system be minimized so that the fluctuations that arise are 

handled within the mixer.  In the system used in this study, the powder ingredients are fed 

using two vibratory powder feeders.  The two vibratory feeders were manufactured by 
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Eriez and feed powder directly into the mixer inlet. Built-in dams and powder funnels 

were used to further control the feed rate of each feeder.  Case studies consist of one 

active and one excipient.   

Model blends have been formulated using the following materials: DMV 

Ingredients Lactose (100) (75-250mm), DMV International Pharmatose® Lactose (125) 

(55mm), and Mallinckrodt Acetaminophen (36mm).  The compositions of the 

formulations used are as follows: 

Formulation 1: Acetaminophen 3%, 97% Lactose 100. 

Formulation 2: Acetaminophen 3%, 97% Lactose 125. 

The formulation is split into two inflow streams both at the same mass flowrate.  

One flow stream supplies a mass composition of 6% Acetaminophen and 94% of Lactose 

and the other stream consists entirely of 100% Lactose.  Both feeders are identical and 

process powders with a total a mass rate of 15.5 g/s with a standard deviation of 2.53 g/s. 

After the feed is processed, the material entering the mixer should contain: 3% 

Acetaminophen and 97% Lactose. 

2.1.3 Continuous Mixer Characterization 

The main mechanisms responsible for blending in a continuous mixer are the 

powder flow and the particle dispersion. Dispersion is the main driver for axial mixing, 

and the magnitude is dependent on the power input.  In the case studies presented in this 

work two methods are used to characterize mixing, the residence time and the degree of 

homogeneity as described in the next sections.  
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2.1.3.1 Residence Time 

The residence time distribution is an allocation of the time different elements of 

the powder flow remain within the mixer.  To determine the residence time distribution, 

the following assumptions are made:  (a) the particulate flow in the vessel is completely 

mixed, so that its properties are uniform and identical with those of the outflow as also 

noticed by Berthiaux et al. (2004) in their recent work; (b) the elements of the powder 

streams entering the vessel simultaneously, move through it with constant and equal 

velocity on parallel paths, and leave at the same time (Danckwerts, 1953).   

In this study the residence time is measured as follows: 

A quantity of a tracer substance is injected into the input stream; virtually 

instantaneous samples are then taken at various times from the outflow.  

After the injection, the concentrations of the injected material in the exit stream samples 

are analyzed using Near Infrared (NIR) Spectroscopy (EL-Hagrasy et al., 2001).  Sample 

concentrations are expected to change since the tracer is fed at one discrete time point 

and not continuously. 

The residence time distribution is determined both as a function of time and 

number of blade passes.  The average number of blade passes is used to measure the 

shear intensity the powder experiences and its effect on blending and is measured using 

the following equation: η=ω×τ  where η is the number of blade passes, ω is the 

impeller’s rotation rate, and τ the mean residence time.  The mean residence time is 

determined using the mass-weighted average of the residence time distribution. 
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2.1.3.2 Homogeneity  

The effect of processing parameters on the homogeneity of the output steam is 

determined by analyzing a number of samples retrieved from the outflow as a function of 

time.  The samples are analyzed to calculate the amount of tracer (in our case 

Acetaminophen) present in the sample using Near Infrared (NIR) Spectroscopy.  The 

homogeneity of samples retrieved from the outflow is measured by calculating the 

variability in the samples tracer concentration.  The Relative Standard Deviation (RSD) 

of tracer concentration measures the degree of homogeneity of the mixture at the sample: 

2n
i

i=1

(X - X)
n -1RSD =

X

∑
   (1) 

where Xi is the sample tracer concentration retrieved at time point ti; n is the number of 

samples taken; and X is the average concentration over all samples retrieved. Lower RSD 

values mean less variability between samples, which implies better mixing.  

Another important characteristic of the mixer is to what extent variability of feed 

composition can be eliminated within the unit.  In order to measure this characteristic, the 

Variance Reduction Ratio is used, which is defined as VRR = in

out

2

2

σ

σ
, where in

2σ is the 

inflow variance calculated from samples collected at the entrance of the mixer, using the 

following equation:  

n
2 2

i
i 1

1 (X X)
n =

σ = −∑   (2)   

out
2σ , the outflow variance, is calculated collecting samples from outflow of the mixer and 

using equation 2.  VRR is discussed in Danckwerts (1953) and Weinekötter and Reh 
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(2000).  The larger the VRR, the more efficient the mixing system, since inflow 

fluctuations are reduced.  As will be shown in the next section, both metrics (RSD and 

VRR) lead to the same conclusion regarding which parameters result in better mixing 

performance.   

2.1.4 First Continuous Mixer – Results 

The first continuous mixer used in this study has two operating parameters, 

processing angle and impeller rotation rate.  The mixer’s function is to simultaneously 

blend two or more inflow streams radially as the powder flows axially.  Adjusting the 

mixer processing angle modifies the axial flow whereas the impeller’s rotation rate 

results in higher shear rate, which affects the degree of material dispersion throughout the 

mixer.  The following sections examine the effects of these two operating parameters in 

mixing performance of the mixer.  

2.1.4.1 Processing Angle  

Residence Time 

Since axial flow is affected by adjusting the processing angle it is reasonable to 

assume that the residence time distribution will also be changed.  The residence time 

distribution of Acetaminophen was determined for three processing angles (shown in 

Figure 2.1.2) and two rotation rates.  The residence time distribution curves are shown in 

Figures 2.1.3a for the higher RPM and 3b at the lower RPM.  
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Figure 2.1.2: Mixer Schematic at three different processing positions 
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Figure 2.1.3 Residence Time Distribution plots from Acetaminophen tracer particles of 
Vessel as a function of Position and Rotation Rate: (a) High Speed (b) Low Speed 
 

At the upward processing angle shown in Figure 2.1.2a, an upward angle of 30° is 

used.  Mixing occurs due to the convective forces induced by the series of impellers.  The 
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additional processing time incurred due to the gravitational forces results in larger strain 

being applied as a result powder flow is retained for a longer period of time within the 

mixer (shown in Figure 2.1.3a and 2.1.3b).   

At the horizontal position, the mixer operates at a 0° incline (as shown in Figure 

2.1.2b).  Powder flow is neither promoted nor hindered by gravitational forces along the 

drums axial direction.  Particles are moving downstream due to the convective 

mechanism caused by the impellers and mixing is solely based on radial mixing.  The 

horizontal processing angle distribution curve has similar slope to that of the upward 

angle, with the exception that the distribution exists in a lower time range.   

In the downward angle the mixer is positioned at a -30° incline (Figure 2.1.2c).  

The convective motion and gravitational forces promote particles shifting downstream 

along the mixer, referred to as axial mixing (Gupta et al., 1991).  The result is a broaden 

residence time distribution profile for the downward angle as shown in Figure 2.1.3a for 

the high rotation rate and 3b lower rotation rate.  The wider residence time distribution, 

the larger the difference between each powder flow time element, as a result for the 

determination of the mean residence time the geometric mean is used (Kenney and 

Keeping, 1962). 

The mean residence time is the average time the powder remains within the 

mixer.  As previously mentioned in Section 2.1.3.1, the mean residence time is 

determined using the weighted average of the residence time distributions.  The mean 

residence time is affected by processing angle, due to changing gravitational forces.  

Figure 2.1.4 illustrates the Acetaminophen residence time for both the high and low 

impeller rotation rates at all three processing angles. Increasing the processing angle to 



19 

the upward slope increases the mean residence time since additional gravitational forces 

are acting on the powder, hindering the powder’s axial transport.  The downward angle 

shows the lowest mean residence time due to the additional force that results in 

accelerating flow, whereas the horizontal position results in intermediate mean residence 

Figure 2.1.4: Mea

time as expected. 

n Residence Time as a function of Seconds for Acetaminophen tracer 
particles of Vessel as a function of Processing Position at a Low and High Impeller 

 to characterize and quantify the effects of processing angle in mixer 
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obtaining the target concentration at the powder outflow.  

 

0
20
40
60
80

100
120
140
160
180

Upward Horizontal Downward

Se
co

nd
s

Low Speed High Speed

 

Rotation Rate 
 
Homogeneity 

In order

eneity, the outflow variability is examined in this section.  It is also important to 

mention that a built-up of powder deposits is observed, presumably by electrostatic 

agglomeration at the bottom of the mixer and between the blades.  Samples were 

retrieved from the powder outflow and dead zones within the mixer.  Notably the 

concentration of Acetaminophen was always larger within the mixers dead zones than the 

powder outflow.  The loss of Acetaminophen within the mixer dead zones prevent from 
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Table 2.1.1 illustrates the processing conditions of the three experimental settings 

used.  Each case is examined at the three processing angles previously discussed.  Table 

2.1.2 d

Experiment Pure Lactose fed Processing 
Speed 

Blade 
Angle 

No. of 
Blades 

isplays the RSD and VRR of 3 independent experiments conducted with varying 

processing angles.  The results shown in Table 2.1.2 illustrate that the upward position 

gives the best mixing performance in terms of RSD and VRR.  The upward position 

results in the lowest RSD and highest VRR, as shown in Table 2.1.2.  At the lower 

position, the highest RSD and lowest VRR is obtained, the intermediate values are 

obtained for the horizontal processing angle.  In comparison to the other three operating 

positions the upward processing angle is the most effective and the operating condition 

with the longest residence time.   

Table 2.1.1: Experiments Processing Conditions 

in one Feeder 
1 125 High 15° 29 
2 100 Low 45° 29 
3 100 High 45° 34 
 

Table 2.1.2: Experiments illustr the RSD d V profile as a function of 
ocessing po  
xperiment RSDUpper RSDHorizontal RSDLower VRRUpper VRRHorizontal VRRUpper

ating  an RR 
pr sition
E
1 .010 .027 .030 8.99 3.45 3.13 
2 .076 .098 .116 1.20 .936 0.794 
3 .038 .048 .071 2.42 1.93 1.30 
 

2.1.4.2 Rotat te  

esidence Time 

, and c show that increasing the impeller rotation rate reduces the 

e time distribution range for all processing angles.  However, the effect 

of impeller speed does more than just change the residence time. At high speeds, the 

ion Ra

R

Figures 2.1.5a, b

powder’s residenc
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powder

es a rate of 78 RPM (revolutions per minute) and a low impeller 

rotation

affect the slope, the lower 

impelle

 experiences greater shear forces, promoting mixing in the radial direction, for all 

processing angles.  

The residence time distribution of Acetaminophen was determined for three 

processing angles (shown in Figure 2.1.2) and two rotation rates.  The high impeller 

rotation rate signifi

 rate of 16 RPM, the residence time distributions for the upward angle is 

illustrated in Figure 2.1.5a, the horizontal 2.1.5b, and for the downward 2.1.5c.  As 

shown in Figures 2.1.5a, b, and c independent of the processing angle at the high impeller 

rotation rate the distributions shift to the right and range from 5 to 75 (s), a narrower span 

than at the low impeller gyration rate of 50 to 200 (s).   Clearly, at the lower speed, the 

powder remains within the system for a longer time period.   

Another factor that changes is the rate at which the powder leaves the unit, which 

is captured as the slope of the residence time distribution.  As illustrated in Figures 2.1.3 

a and b, both processing angle and impeller rotation rate 

r rotation rates elucidate higher slopes as does the upward processing angles.  The 

higher slope signifies that the different elements of the powder tend to leave closer 

together in time.  The effects of rotation rate on the mean residence time are shown in 

Figure 2.1.4.  The figure illustrates that independent of impeller rotation rates the 

processing angle affects the mean residence time. At both rotation rates, the upward angle 

is the longest followed by the horizontal and downward angle.  
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Figure 2.1.5: Residence Time Distribution at High RPM and Low RPM (a) Upward (b) 
Horizontal (c) Downward 
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Varying impeller rotation rate and processing angle also modify the number of 

blade passes.  As discussed in Section 2.2.3.1, the average number of revolutions the 

powder flow experiences during its residence time in the mixer is dependent on the 

processing angle and the impeller rotation rate.  Although at a higher RPM powder 

remains within the mixer for a shorter time (Figure 2.1.5), the actual number of blade 

passes the powder is subject to be greater as shown in Figure 2.1.6 than at the lower 

impeller RPM.  This occurs because the number of blade passes is dependent on the 

powder residence time and impeller rotation rate.  In the upward processing angle the 

powder experiences additional blade passes than at the horizontal or downward angle.  

Residence time and the number of blade passes both increase as the processing angle 

slope moves toward the positive incline.   
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Figure 2.1.6 Residence Time as a function of Revolutions for Acetaminophen tracer 
particles of Vessel as a function of Processing Position at a Low and High Impeller 
Rotation Rate. 
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Homogeneity  

In this section the effects of the varying residence time on the mixing 

performance are presented.  As previously discussed, the average number of revolutions 

the powder flow experiences during its residence time in the mixer is dependent on the 

processing angle and the impeller rotation rate.  Figures 2.1.5a, b, and c show that 

increasing the impeller rotation rate reduces the powder’s residence time distribution 

range for all processing angles.  However, the effect of impeller speed does more than 

just change the residence time.  At high speeds, the powder experiences greater shear 

forces shown in Figure 2.1.6, promoting mixing in the radial direction, for all processing 

angles.  As shown in Figure 2.1.7 the variability of powder composition is greater when 

the system uses the higher impeller rotation rate, independent of processing angle.  Table 

2.1.3 illustrates additional experiments using different convective designs where the 

effect of rotation rate was examined for the three previously described processing angle.  

The results shown in Table 2.1.4 again illustrate that the lower RSD values are obtained 

for the low impeller RPM than for the higher RPM.  This is surprising, since as discussed 

before the higher rotation rate results in a greater number of blade passes during the 

residence time.  One explanation for this result is that this effect is due to triboelectric 

forces.  Electrostatic forces have not been extensively studied in pharmaceutical powder 

processing but have been recently noticed by other researchers (Bailey, 1984; Dammer et 

al., 2004).  Electrostatic forces are created from the accumulation of surface charges that 

are developed when the powders are continuously stirred or shaken with other powders 

and/or surfaces.  This might explain why at the higher rotation rate there are larger 

powder deposits within the mixer that result in larger variability between the samples.   
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Figure 2.1.7: RSD plots for experiments conducted at two different speeds (High and 
Low Speed) and at the following processing angles (Downward, Horizontal, Upward). 
The experiments used 29 blades at a 45° degree angle. 
 
Table 2.1.3: Experiments Processing Conditions 
Experiment Pure Lactose fed 

in one Feeder 
Processing 
Speed 

Blade 
Angle 

No. of 
Blades 

4 100 Both 45º 29 
5 100 Both 45º 34 
6 100 Both 60º 29 
 
Table 2.1.4: Experiments illustrating the RSD profile as a function of processing position 
Experiment Speed RSDUpper RSDHorizontal RSDLower  

Low 0.073 0.082 0.106 4 High 0.178 0.236 0.251 
Low 0.051 0.063 0.097 5 High 0.090 0.124 0.160 
Low 0.063 0.080 0.106 6 High 0.128 0.181 0.217 

 

Design Parameters 

There are several design parameters that affect the mixing performance of the 

continuous convective mixer.  Shear is induced by blade motion and, as a result, 

modifying the blade design affects the shear intensity and powder transport.  In this study 

the effect of changing the number of blades, blade spacing, and blade angle is consider.  
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In addition the effects of increasing the mixing time by incorporating a recycle stream 

back into the continuous mixer is investigated in section 2.1.4.4.  

2.1.4.3 Convective Design 

2.1.4.3.1 Number of Blades 

In the experiments described in this section, the mixer was initially mounted with 

the original number of blades, 29.  In a separate set of experiments five more blades were 

added into the mixing vessel to minimize the formation of stagnant zones in the mixer 

and to increase the intensity of transport mechanisms in the axial direction.  A larger 

number of blades increase the rate of energy dissipation, and thus the shear forces in the 

mixer.  In cases were the feed is agglomerated, increasing the intensity of mixing 

mechanism can reduce the size of the agglomerates, thus increasing the homogeneity of 

the powder outflow.  However, a completely different outcome might be observed if 

agglomerates form within the mixer, possibly due to the development of electrostatic 

effects as discussed in the previous section.  In such a case, increasing shear and/or the 

total metal surface within the mixer might lead to an increase in the formation of 

agglomerates (Laurent and Bridgwater, 2002a).  

Based on our previous experience with Acetaminophen (a material that 

agglomerates readily) both effects might be present in our system.  The effect of blending 

powders using 29 and 34 blades at a 45º blade angle was studied for high and low 

impeller rotation rate.  As shown in Figures 2.1.8a and b, increasing the number of blades 

did improve the outflow homogeneity since the RSD is decreased with the addition of 

blades independent of processing angle and impeller rotation rate.   



27 

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

Upward Horizontal Downward
Processing Angle

R
SD

29 Blades 34 Blades

b 

0.00
0.02
0.04
0.06
0.08

0.10
0.12
0.14
0.16
0.18
0.20

Upward Horizontal Downward
Processing Angle

R
SD

29 Blades 34 Blades

a 

Figure 2.1.8: RSD from experiments conducted with 29 and 34 blades at an a) low speed 
and b) high speed 
 
2.1.4.3.2 Blade Angle 

Another important convective design parameter investigated is the blade angle, 

which affects powder transport (as shown by Laurent and Bridgwater, 2002b).  The 

purpose of the impeller is to propel the powder within the vessel.  The motion of the 

particulates is affected by the blade angle.  Varying the blade angle affects the particle’s 

spatial trajectory, thus altering the radial and axial dissipation.  Laurent and Bridgwater 

(2002b) illustrated that increasing the blade angle promoted additional dispersion forces 

leading to increasing radial mixing (Laurent and Bridgwater, 2002b).  In this study all 29 

blades within the mixer were positioned to a specified blade angle.  Figure 2.1.9 displays 

the results derived from varying the blade angle keeping all other processing parameters 

constant.  The five blade angles examined were 15°, 45°, 60°, 90° and 180°.  Since the 

dispersion of material is reduced from a 60° to 15° angle, it is not surprising to observe 

that the RSD of the outflow stream is the highest for the lower 15° angle followed by the 

45° angle design, and the lowest at the higher 60° angle, which is experimentally 

validated in Figure 2.1.9.  However, there are limitations in further increasing the angle to 

90°. This is mainly because at the 90° angle there is not enough axial transport to transfer 
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the material out of the blender at the upward processing angle.  Figure 2.1.10, depicts an 

axial and radial view of the blades at a 90º angle and at the 180º degree angle.  At the 90º 

angle the distances between the blades decreases to the point where axially the 

neighboring blades are right next to each other. At the 180º (or 0º) angle the 1.2” blade 

widths are perpendicular to the axis of rotation (y-axis).  As shown in Figure 2.1.9, at the 

180° angle, axial powder transport only occurred at the downward position mainly due to 

the gravitational forces acting on the particles.  The RSD are higher for the 90º and 180º 

angles mainly due to the hindrance of the axial transport.  Consequently based on the 

results obtained for different blade angles, the 60º blade angle performed better in terms 

of the investigated mixing characteristics.   

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Upright Horizontal Downward

Processing Angle

R
SD

15 Degree Angle 45 Degree Angle 60 Degree Angle 90 Degree Angle 180 Degree Angle

 
Figure 2.1.9: RSD plot from experimental data from a Baffle Angle of 15° to 180° at a 
low speed. 
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Figure 2.1.10: Schematic of blade angles at the axial view a) 90ºand b) 180º angle. 
Radial view is c) 90º angle and d) 180º angle. 
 
2.1.4.4 Powder Recycle 

One of the main benefits of transitioning from batch to continuous mixing is the 

number of adjustable parameters that facilitate integration capability with several other 

manufacturing processes such as mixing, encapsulation, milling, and coating in series.  

However, in an integrated system, lags and recycles are often part of the overall 

dynamics.  The effects of recycling are considered using the scheme shown in Figure 

2.1.11.  The material used (Acetaminophen formulation) is reprocessed into the same 

continuous mixer using the same processing parameters, 15°-29 blades, horizontal 

processing angle, and high impeller rotation rate.  
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Figure 2.1.11: Schematic illustrating the addition of mixing processing stages a) Visual 
Depiction of the powder leaving and re-entering the mixer b) Illustration of the number of 
processing stages examined. 
 

The recycle is implemented as follows: powder is collected in a cylinder and once 

the cylinder fill level is reached the material is poured into the inflow of the continuous 

mixer.  As the number of recycles increases the, total mixing time increases.  At the end 

of each processing stage samples are withdrawn from the outflow and analyzed using 

NIR.  The RSD at each stage is calculated, as expected the results show a RSD 

decreasing profile as illustrated in Figure 2.1.12.  
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Figure 2.1.12: RSD profile of an Acetaminophen formulation as a function of processing 
stages. 
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2.1.4.5 Material Properties  

Particle characteristics also affect mixing efficiency (Porion et al., 2004). Mixing 

is affected particularly by variations in particle size distributions, which impact both the 

flow properties and segregation tendencies of powder blends (Alexander et al., 2001; Liss 

et al., 2004; Conway et al., 2005).  Particle size also affects the relative importance of 

triboelectric forces within powders, since the average charge per unit mass and the 

Coulomb forces decrease with increasing particle size (Dammer et al., 2004).  As 

discussed in section 2.2.2, two vibratory feeders were utilized to deliver powder into the 

continuous mixer.  One fed a pre-blend mixture of powder containing Lactose and 

Acetaminophen and the other fed pure Lactose.  To investigate the effects of powder 

cohesion in mixing, the particle size of one of the powders is decreased since typically, 

the smaller the particle size, the higher the cohesion level (Orband and Geldart, 1997).  

Two grades of Lactose varying in particle size are utilized, Lactose 100 (130 µm) and 

Lactose 125 (55 µm).  Figure 2.13 illustrates the results of mixing with the two different 

grades of Lactose. The experiments used 29 blades with 15° angle at a low rotation rate 

for all processing angles. As shown in Figure 2.1.13, decreasing the particle size did not 

affect the mixing performance of the process at either low or high speed.  Cohesive 

materials readily form powder agglomerates.  However, when the agglomerates come in 

contact with the crossing slip planes created by the passing blades, the particulate clusters 

breakup and disperse (Liss et al., 2001).  As a result, the more cohesive Lactose does not 

affect the mixing performance and an advantage of utilizing convective mixers for 

cohesive mixtures certainly exists. 
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Figure 2.1.13: RSD plots for experiments conducted at low speed and at the following 
processing angles (downward, Horizontal, Upward) for two different cohesion levels high 
cohesion Lactose 125 and low cohesion Lactose 100. 
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2.2 Continuous Mixer 2 

Experimental work published so far focuses on operating conditions such as 

rotation rate, mixing inclination, and flowrate.  While many types of continuous mixers 

have been built, and many more can easily be conceived, only a few geometric designs 

have been examined in the literature.  A second continuous blender with a different 

geometric design was examined for a broader set of operating conditions.  

2.2.1 Description 
 

The mixing system examined in this section is manufactured by GEA Buck 

Systems and shown in Figure 2.2.1.  The blender varies in diameter and length from the 

first blender (Figure 2.1.1).  The first blender has a diameter that is 3 fold that of the 

second blender (Figure 2.2.1).  Moreover, the first blender has an axial vessel than is 2.4 

times longer than the second blender.  Geometric parameters of each blender are shown 

in Table 2.2.1.  Figure 2.1.10 and 2.2.2 shows the blade design for each of the continuous 

mixers. Other then geometrical differences, the systems work similarly, except that the 

smaller mixer is capable of much higher impeller speeds.  The blenders have three main 

adjustable parameters that determine the degree of operational flexibility (operational 

space): the vessel angle, impeller rotation rate, and the blade pattern.   

 

 
 
 
 
 
 
 
Figure 2.2.1: 2nd Continuous Mixer 
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Figure 2.2.2: Convective Design of the Continuous Mixer  
 
Table 2.2.1: Continuous Mixing geometrical descriptions 

Mixer 
Diameter 

(m) 
Length 

(m) 
No. of 
Blades 

Blade length 
(m) Blade Type 

Speed 
(RPM) 

1 0.15 0.74 0-34 0.05 Rectangular with a circular tip 16-87 

2 0.05 0.31 0-14 0.02 Triangular with a circular tip 16-340 
 
2.2.2 Results 
 
2.2.2.1 Effect of Vessel Angle  

The preceding section illustrated that the mixing inclination was the most 

significant parameter among variations in rotation rate and cohesion.  In this section, the 

second, smaller continuous blender with a different geometric design is examined for a 

broader set of operating conditions.  We first provide an individual discussion of the 

observed effects of the main parameters, followed by a full statistical analysis of the data 

set.   

The effects of vessel angle on the content uniformity of the outgoing powder are 

shown in Figure 2.2.3a for experiments using 3%APAP and the rest consisting of Lactose 

125M at a rate of 50 RPM, at a total flow rate of 16 grams per second.  This figure 

illustrates the results from 5 different mixing angles.  Results indicate that the higher the 

vessels angle from the horizontal position, the better the content uniformity.  This can be 

an effect of the larger residence time the powder experiences at higher inclinations.  

Residence times at each vessel angle are shown in Figure 2.2.3b.  Clearly both residence 

time and content uniformity are affected by the vessel angle; the data suggests that more 
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effective mixing occurs at the upward angle, which, as shown in Figure 2.2.3b 

corresponds to the highest residence time.   
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Figure 2.2.3a RSD versus Mixing Angles at 50 RPM using Lactose 125M 
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Figure 2.2.3b Residence Time versus Mixing Angles at 50 RPM using Lactose 125M 
 
2.2.2.2 Effect of Rotation Rate  

As discussed for the first mixer, the rotation rate of the blades determines the rate 

of shear and the intensity of material dispersion throughout the mixer, potentially 

affecting mixing performance.  For the second mixer we examine six different levels of 
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impeller speed (or process shear rate) at the horizontal vessel position for a Lactose 125M 

blend.  The RSD results are shown in Figure 2.2.4a and indicate that, once again, better 

content uniformity is observed at the lower shear rates.  This might be a result of the 

effect of rotation rate on residence time, shown in Figure 2.2.4b, which illustrates to be 

higher at lower rotation rates (since the total strain the powder experiences is proportional 

to the total number of blade passes).  However the total number of blade passes is 

actually larger for the highest shear rate.  Figure 2.2.5 shows the number of passes as a 

function of RPM, confirming that at higher shear rates the powder experiences a greater 

total amount of strain.  In fact, the relationship between the total number of blade passes 

and rotation rate can be considered a fairly linear function with a regression coefficient of 

.94.  As shown in Table 2.2.1, both total strain (total blade passes) and shear rate (RPM) 

affect the content uniformity in a similar manner.   
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Figure 2.2.4a RSD versus Rotation Rate (RPM) at a horizontal mixing angle for Lactose 
125M 
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Figure 2.2.4b Residence Time (seconds) versus Rotation Rate (RPM) 
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Figure 2.2.5 Number of blade passes Lactose 125 M experiences as a function of rotation 
(RPM) 
 
Table 2.2.2: The content uniformity as a function of rotation rate and blade passes  

RPM Blade Passes RSD 
25 9 8.03E-02
50 16 1.08E-01

100 22 9.06E-02
175 14 9.09E-02
275 43 1.12E-01
300 37 1.32E-01
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2.2.2.3 Effect of Powder Cohesion  

In addition to operating conditions such as rotation rate and mixing inclination, 

material properties have shown to affect the blending performance of batch mixing 

systems (Muzzio et al., 2004). For a continuous convective system, Harwood et al. 

(1975) examined the same formulation composed of sand and sugar for several 

convective continuous mixing systems, varying cohesion by sifting the materials into 

different particle sizes ranges, but failed to observe a significant effect. Bridgwater and 

coworkers (1993) for a closed convective mixing system found that the motion of varying 

size of tracer particles from 2 to 4 mm, processing at 4 Hz showed no discernible effect in 

terms of particle trajectories. The case studies presented in this work examine the mixing 

performance between two different Lactose materials that vary in cohesion.  Table 2.2.2 

illustrates the results obtained from mixing Milled Acetaminophen with Lactose 100 and 

Lactose 125, at the horizontal mixing inclination.  The new results presented here reveal 

that an effect indeed exists, although of moderate intensity.  

In fact, the effects of cohesion can be system-dependent.  Since cohesion can 

affect the degree of variability in the flow rate delivered by a powder feeder, it should be 

expected that cohesion could have impact on the performance of the integrated system, 

including feeders, mixers, and downstream finishing equipment.  However, the 

differences in relative standard deviation between the two powders are small. The lack of 

a large observed effect could be due to the fact that shear rates are typically higher in 

convective systems than in tumblers (in fact convective blenders are often used for 

cohesive materials because they impart more shear), and it is possible that for both 

materials considered here, cohesion is simply to small to affect the outcome of the 
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convective mixing process to a large degree.  However, an ANOVA can be helpful in 

order to determine whether or not the small-observed effect of cohesion is statistically 

significant.   

Table 2.2.3: Continuous Mixing RSD Results from Lactose 100 and Lactose 125.   
RSD 

RPM Lactose 100 Lactose 125
25 0.060±.014 0.080±.025
50 0.108±.024 0.117±.016
75 0.051±.024 0.087±.022
125 0.070±.024 0.079±.032

 
2.3 Summary and Conclusions 

Continuous mixing has been an area of particular interest for many industries 

including pharmaceutical manufacturing.  The results indicate that the powder’s 

residence time and number of blade passes it experiences was affected by rotation rate 

and processing angle.  Although at all the processing angles, the underlying normal 

forces the powder experiences fluctuate.  Interestingly, what was observed is that the 

upward processing angle and low impeller rotation rate are the optimal processing 

settings, and these parameters result in the longest residence time.  On the other hand, 

high sample variability is observed for the short residence times that are associated with 

the downward processing angle and high impeller rotation rate.  This suggests that one of 

the main variables affecting mixing performance is residence time.   

The results also illustrated the importance of blade design in mixing performance 

that is in agreement with the previous studies of Laurent and Bridgwater (2002a,b,c) that 

have demonstrated that blade structure has a significant effect on altering flow patterns, 

thereby affecting mixing performance.  In our case study it was found that the addition of 

blades and the increase of the blade angle until it reaches a limit improved mixing 

performance.  Particle properties have also been known to affect mixing performance.  
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However, in these studies, decreasing the particle size of one of the materials did not 

show a clear affect on the mixing performance (based on the RSD of the samples 

obtained at the outflow). In this case, an ANOVA can be helpful in order to further 

determine whether the effect of cohesion is or is not statistically significant.  As a result 

in the next chapter, we will apply statistical analysis to the experimental results found in 

this chapter. 
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Chapter 3 

Statistical Analysis 

A statistical analysis on the effects of mixing angle, rotation rate, and 

cohesion for the mixers discussed in chapter 2 is considered in this 

chapter.  The method examines the effects these parameters have on 

mixing performance and residence time, variations between the two 

mixers will be seen.  A 4-way ANOVA is used to determine the 

significance of the differences between the two mixers; rotation rate will 

illustrate to be the least significant parameter.   

3.1 Introduction 

As part of their product development process, pharmaceutical companies carry 

out intensive research efforts focused on examining and optimizing the production of 

homogeneous solid mixtures. Minimizing variability in powder blends is critical to 

pharmaceutical (and many other) manufacturing operations because blend uniformity has 

direct impact on product quality and performance. Deviations from desired mixing 

performance, which often lead to batch failures, usually trigger costly process 

investigations and corrective actions required to maintain regulatory compliance (Muzzio 

et al., 2002).  Unfortunately, powder flow and powder mixing are topics that are far from 

being well understood.  Often, powder mixing processes are designed ad-hoc, based on a 

limited set of experimental information.  Not surprisingly, the need to understand 

blending has been a central focus of regulatory interest in the past 15 years, and remains a 

key target of QbD and PAT efforts.  In the recently issued Q8(R1) guidance, the FDA has 

recently published their current thinking on using QbD methods to identify critical 
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quality attributes (CQAs), stating that product quality should be studied and controlled by 

systematically identifying the material attributes and process parameters that can affect 

the products CQA.   

Among emerging technologies for improving the performance of blending 

operations, continuous mixing (and continuous processing in general) currently 

commands enormous interest at pharmaceutical companies. Continuous processing has 

numerous known advantages, including reduced cost, increased capacity, facilitated scale 

up, mitigated segregation, and more easily applied and controlled shear.  

However, development of a continuous powder blending process requires 

venturing into a process that has a large and unfamiliar parametric space. While 

continuous blending processes have been used in other industries, in general such 

applications operate at much larger flow rates and have less demanding homogeneity 

requirements than typical pharmaceutical applications. Experimental work published so 

far has focused on operating conditions such as rotation rate, mixer inclination angle, and 

flowrate. While several types of continuous mixers have been built, and many more can 

easily be conceived, only a few geometric designs have been examined in the literature.  

For example, in chapter 2 we examined a continuous mixing process and 

examined a set of operating and design parameters that were found to affect the content 

uniformity of the final product. The case studies illustrated in chapter 2 demonstrated that 

the powder’s residence time and content uniformity were affected by operating 

conditions (rotation rate and mixing angle). A second continuous blender was examined 

for a broader set of operating conditions. However, many more conditions remain to be 

examined, and for many interesting designs, performance has never been quantitatively 
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examined in the literature.  Thus, substantial work is necessary in order to develop the 

prior knowledge needed to enable companies to design continuous processes with 

confidence and economy. 

Given the magnitude of the task ahead, some consideration should be paid up 

front to the design of the methodology used to gather shareable information, and the 

statistical methods to be used to quantify performance and establish significance of 

various parameters. Due to the large experimental data set that arises from the various 

parameters, we propose systematic application of design of experiments and statistical 

analysis (specifically, analysis of variance - ANOVA) to examine the significance of 

main factors and their interactions.   

A reasonable starting point is to consider the system response that is of most 

interest.  A natural approach would be to extend to continuous mixers the methods 

typically used for batch processes, where a mixing index (typically, a Relative Standard 

Deviation, also known as the Coefficient of Variability) is computed at the “end” of the 

blending process based on samples extracted with a thief. Several other indexes have 

been used to quantify the mixing performance of particle processes; for example, Lacey 

(1943) developed a mixing index that considers several variances.  Approximately thirty-

five other mixing indices can be found in the excellent review by Fan and coworkers 

(1970), which outlines the criteria for selecting an index based on the different degrees of 

content uniformity that can be achieved.  These measurements have been applied to many 

systems, including various rotating horizontal cylinders (Wightman and Muzzio, 1998), 

V-blenders (Brone et al., 1997, 1998; Alexander et al., 2003, 2004; Lemieux et al., 

2007), double cones (Brone and Muzzio, 2000), bin blenders (Sudah et al., 2002b; 
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Arratia et al., 2006), and ribbon blenders (Muzzio et al., in press), and continuous 

blenders (Marikh et al., 2005; Harwood et al., 1975).   

Although indices can be used to quantify whether design and operating 

parameters and/or material properties affect mixing performance, by themselves they are 

poor tools when it comes to revealing which effects are more influential. For the typical 

number of samples used to characterize batch processes, RSDs are very “noisy”, and 

statistically significant differences between process responses for different parametric 

settings can be established only rarely.  

Rollins and coworker (1995) presented a theoretical discussion on the advantage 

of the ANOVA technique for Monte Carlo simulations.  ANOVA’s have also been used 

for particle processing such as nano-particle wet milling (Hou et al., 2007).  Walker and 

Rollins (1997) examined how well ANOVAs perform for detecting mixture in-

homogeneity with several non-normal distributions.  They found that the Kruskal-Wallis 

test was not superior to the ANOVA technique even when the assumption of normality 

was broken. Given that ANOVA is the essential tool used in design of experiments, 

which is one of the essential toolkit components of a modern QbD approach, it seems 

fitting to introduce the ANOVA technique for the characterization of developing 

technologies intended to be used in modern pharmaceutical manufacturing processes.   

3.2 Statistical Analysis 

A randomized experimental design was used to examine the four variables (mixer 

type, mixing angle, rotation rate, and powder cohesion), as well as their interactions.  For 

each mixer, we initially examine a three-way ANOVA considering mixing angle, speed, 

and type of powder.  Initially, all factors and interactions are considered, subsequently 
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reducing the statistical model to remove the non-significant effects.  It is important to 

mention that we examine some of these variables in more detail in order to illustrate the 

effect of mixing performance and residence times.  On the first mixer, a full factorial 

design is used, for the second a fractional factorial design, and when we examine the 

variability between both mixers a full factorial design that is built using only portion of 

the data.  The levels examined for the factorial design consider 3 mixing angles and 2 

rotation rates (16 RPM and 76 RPM) for the first mixer, reflecting speed limitations in 

the device.  A broader set of conditions is considered for the second mixer, including 5 

mixing angles and 9 rotation rates up to 300 RPM.  The section on rotation rate illustrates 

the effect of increasing the speed further for the second continuous mixer.  For both 

systems, 2 different Lactose powders, Lactose 100M and Lactose 125M, a slightly more 

cohesive powder, are examined.  

The methodology used in this study begins with the full statistical model for the 

three-way ANOVA of each mixer: 

jkl j k jk l jl kl jkl jkly = µ + α + β + αβ + γ + αγ + βγ + αβγ + ε  

In the above equation, the single-symbol terms in the model refer to the overall average µ 

and the main effects; α for mixing angle, β for rotation rate, γ for powder cohesion.  The 

terms with combination of symbols represent the interactions between main factors, and 

 ε represents the error term.  Data was analyzed under the usual assumptions of normality 

and independence. Since n=1 for the first mixer, not all interactions can be examined 

simultaneously.  Multivariate analysis requires assuming that some interactions do not 

exist in order to release degrees of freedom to construct an error term.  
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As terms are found to be non-significant (p>0.2) the initial model, in subsequent 

models non-significant terms are eliminated in order to form a new ANOVA.  This step is 

repeated until all the effects left are considered significant (p<0.05).   

The same analysis is performed for the 4-way ANOVA, where the additional 

main effect is η for the mixer  

ijkl i j i j k ik j k jk l il jl kl ijk ikl jkl ijkl ijkly = µ + η + α + ηα + β + ηβ + α β + αβ + γ + ηγ + αγ + βγ + ηαβ + ηβγ + αβγ + αβγη + ε  

Analysis of Variance (ANOVA) is a standard statistical procedure where the 

variability in a data set is properly calculated for each main effect and for each interaction 

retained for a given statistical model. An ANOVA table includes the different treatments 

examined.  The degrees of freedom, df, for each treatment reflects the number of 

different levels, g.  An appropriately formed F-statistic (or F-ratio), is computed for each 

effect and interaction, and the value obtained is compared to a critical value 

corresponding to a certain (pre-selected) probability that the observed “effects” be in fact 

due to chance. Results can be used for comparing models and, during post-ANOVA 

processing, to establish which groups within a data set typically represent the response of 

the system for a given set of treatment conditions) are actually different than others. 

Moreover, the p-value is defined as the probability of obtaining a result at least as 

extreme as a given data point, under the null hypothesis.   

Many equivalent commercial software packages exist for conducting ANOVA 

analysis of data sets.  The Sums of Squares were determined by giving the relative 

variance of powder streams for each experiment in SAS version 9.1. The p-value was 

calculated using M.S. Excel’s p-dist function.  The smaller the p-value, the larger the 

component has a significant contribution to the main effect.  



47 

The p-value is an indication of significance. A p-value lower than 0.05 is usually 

taken to mean that the effect is significant, because the probability that observed 

differences corresponding to different levels of the independent variable (or, for 

interactions, the combinations of levels of 2 or more variables) be due to chance are 

lower than p.  Thus, it is concluded that groups of observations for different levels of 

independent variables are significantly different from each other, and that the variable 

therefore has a statistically significant effect, and as a result, that the null hypothesis (that 

results for different levels are not different from each other) can be rejected with high 

probability (p>0.95) of correctness.  An example of a null hypothesis in this study would 

be that the mean variability of the content uniformity for different levels of cohesion be 

the same, i.e., that the levels of cohesion of the powder considered in the study do not 

have a statistically significant effect on the homogeneity of samples.   

Values of p greater than 0.05 do not mean that the null hypothesis is “true”, they 

simply mean that, given the amount of data available, we cannot assert with sufficient 

confidence that they are actually different from each other (i.e., that an effect actually 

exists). Moreover, given a certain data set, p values are customarily used to rank the 

relative significance of the multiple variables and their interactions. This practice is 

somewhat misleading, since the relative values of p can (and do) depend on the number 

of levels of a given variable that are explored, the number of replications, etc., and 

therefore, comparisons (and statistically based conclusions in general) should always be 

considered under the caveat “given available data”.   
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3.3 Results 

The results presented in chapter 2 described the mixing performance and 

residence time of the first continuous mixer.  In this study we supplement the results in 

chapter 2 with new results obtained for the second continuous mixer.  A summary of 

results for both systems is presented in Table 3.8. In the next section we compare the 

performance of both mixers and examine the significance of the various model 

parameters and their interactions. 

3.3.1. Statistical Analysis for Continuous Mixer 1 
 

As mentioned before, the three parameters specifically examined for the first 

mixing vessel (Figure 2.1.1) are vessel angle, impeller rotation rate, and blend cohesion.  

The three mixing angles that were examined were an upward, horizontal, and downward 

inclination.  Two impeller rotation rates (16 and 76 RPM) were examined, and two 

different grades of lactose; Lactose 100M and Lactose 125M.  The Hausner ratio 

illustrated that Lactose 100M was less cohesive than Lactose 125M.  The results are 

summarized in Table 3.1 using the compositional variance of powder samples taken at 

the discharge of the mixer as the main response.  For each treatment combination, about 

20 samples approximately 3 grams in weight were examined. Results readily showed that 

all the parameters play an important role on the mixing performance.  In what follows, 

the statistical analysis will be split into two parts one considers three main effects (mixing 

angle, rotation rate, and cohesion) on homogeneity and the effects of mixing angle and 

rotation rate on residence time. 
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3.3.1.1 Homogeneity 

Here we briefly recount three previous observations: (1) Between the two 

different rotation rates, on average, lower compositional variances are found for the lower 

rotation rates.  (2) A more cohesive powder did show different results than the less 

cohesive powder.  Interestingly, performance did not seem to improve when cohesion 

was reduced.  (3) The inclination of the vessel played a critical role on the content 

uniformity.  In order to establish the statistical significance of these observations, the 

results were analyzed using ANOVA. 

Table 3.1: Continuous Mixer 1 Experimental Variance Results obtained from varying 

 

materials, process inclination, and rotation rate (RPM). 

Initially, the statistical model used is: 

For n=1 this model is not fully solvable; in particular, the three-way interaction is 

confounded with the error.  Since the three-way interaction is the least likely to be 

significant, we neglect this term, (i.e., we assume that the three way interaction is not 

significant) and use the degrees of freedom of the three-way interaction to form an error 

term, which results in the following model: 

Observation Processing Angle Speed Cohesion R.Var
1 Upward 16 Lactose 100 0.0037
2 Horizontal 16 Lactose 100 0.0057
3 Downward 16 Lactose 100 0.0063
4 Upward 75 Lactose 100 0.0081
5 Horizontal 75 Lactose 100 0.0093
6 Downward 75 Lactose 100 0.0129
7 Upward 16 Lactose 125 0.0021
8 Horizontal 16 Lactose 125 0.0031
9 Downward 16 Lactose 125 0.0032
10 Upward 75 Lactose 125 0.0017
11 Horizontal 75 Lactose 125 0.0061
12 Downward 75 Lactose 125 0.0083

jkl j k jk l jl kl jkl jkly = µ + α + β + αβ + γ + αγ + βγ + αβγ + ε  
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jkl j k jk l jl kl jkly = µ + α + β + αβ + γ + αγ + βγ + ε  

For this model, the standard ANOVA table is shown in Table 3.2, where the 

sources are vessel angle, impeller rotation rate, and powder cohesion grades.  Three 

angles, two rotation rates, and two different powders that vary in cohesion were studied.  

As mentioned in the statistical analysis section, main effects are listed in order of 

increasing p-values, where the lowest p-value is the (statistically) most significant factor 

affecting the variance for the data set at hand.  In this case, the impeller rotation rate is 

the most significant factor, followed by powder cohesion; the least significant being 

vessel angle.   

Table 3.2: 3-way ANOVA on the blend uniformity variance for Continuous Mixer 1 
considering the treatments as: mixing angle, rotation rate, cohesion, and their 

 

interactions. 

The interactions are fairly insignificant with p-values greater than .2.  Thus, we 

re-examine the main effects using a 3-way ANOVA neglecting the interactions.  The 

resulting model is shown below: 

The ANOVA, for this model is shown in Table 3.3.  Clearly, all the main effects remain 

significant, displaying very small values of p.  The two most significant factors are 

rotation rate and cohesion.  The least significant factor, although still very significant, is 

the mixing angle. 

Source DF SS MS F p
Mixing Angle 2 2.87E-05 1.43E-05 11.71 0.079
Rotation Rate 1 4.14E-05 4.14E-05 33.83 0.028
Cohesion 1 3.85E-05 3.85E-05 31.44 0.030

Process Angle*Rotation Rate 2 7.67E-06 3.84E-06 3.13 0.242
Process Angle*Cohesion 2 7.10E-07 3.55E-07 0.29 0.775
Rotation Rate*Cohesion 1 3.97E-06 3.97E-06 3.24 0.214

Error 2 2.45E-06 1.23E-06

jkl j k l jkly = µ + α + β + γ + ε  
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Table 3.3: 3-way ANOVA on the blend uniformity variance for Continuous Mixer 1 
considering the treatments as: mixing angle, rotation rate, cohesion. 

ffected by rotation rate and vessel angle.  Here we examine the effect of rotation rate 

nd processing angle on the residence time.  The 12 observations used are shown in Table 

3.4, the resulting statistical model is: 

own in Table 3.5.  Clearly both main effects are 

significant, whereas the interaction can be considered insignificant with a p-value of 0.30.   

Table 3.4: Continuous Mixer 1 Residence time as a function of rotation rate and 

2 Upward 16 225

16 156
5 Downward 16 84
6 Downward 16 116
7 Upward 75 47
8 Upward 75 77
9 Horizontal 75 42
10 Horizontal 75 48
11 Downward 75 27
12 Downward 75 35

Source DF SS MS F p
Mixing Angle 2 2.87E-05 1.43E-05 6.78 0.023

Error 7 1.48E-05 2.11E-06

Rotation Rate 1 4.14E-05 4.14E-05 19.60 0.003
Cohesion 1 3.85E-05 3.85E-05 18.22 0.004

 
3.3.1.2 Residence Time 
 

In chapter 2, we showed that the residence time of powder in the blender was 

a

a

jk j k jk jk

The resulting ANOVA results are sh

y = µ + α + β + αβ + ε  

processing inclination for Lactose 100. 
Observation Processing Angle Rotation Rate (RPM) Residence Time (s)

1 Upward 16 164

3 Horizontal 16 99
4 Horizontal
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Table 3.5: 2-way ANOVA for residence time of the first continuous mixer examining 
mixing angle, rotation rate, and their interactions. 

Source DF SS MS F p
Mixing Angle 2 8176.2 4088.1 5.454436 0.04468
Rotation Rate 1 26885.3 26885.3 35.87098 0.000974

Mixing Ange * Rotation R 2 2238.2 1119.1 1.493129 0.297658

Error 6 4497 749.5  
 

In order to further examine the significance of the two main effects, the 

interaction term is eliminated, and the resulting model is: 

jk j k jky = µ + α + β + ε  

The ANOVA shown in Table 3.6 for this model clearly shows both process parameters 

are significant where rotation rate is partly more influential than mixing angle.  As 

expected, lower shear rates and vessel inclinations resulted in longer residence times, 

which have also been noticed in rotary calciners (Sudah et al., 2002c). 

Table 3.6: 2-way ANOVA for residence time of the first continuous mixer examining 
mixing angle, and rotation rate. 

Source DF SS MS F p
Mixing Angle 2 8176.2 4088.1 4.855802 0.041623
Rotation Rate 1 26885.3 26885.3 31.93408 0.000481

Error 8 6735.2 841.9   
 
3.3.2 Statistical Analysis (Second Continuous Mixer) 
 

In this section, an ANOVA analysis is conducted taking into account the effects 

of processing inclination, rotation rate, and cohesion on the homogeneity measurements 

of the second continuous mixer, followed by an investigation on the effects of mixing 

angle and rotation rate on the residence time.  The approach is essentially the same as the 

one used for the first mixer. 
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3.3.2.1 Homogeneity 
 

In this section, we examine the effect on blend homogeneity of the three 

parameters previously mentioned:  processing inclination, rotation rate, and cohesion.  As 

shown in Figures 2.2.3a and 2.2.4a, we have obtained a larger number of experimental 

results for the second mixer than for the first mixer for one grade of lactose.  Five mixing 

angles and seven rotation rates were considered where the mixing experiment was 

duplicated 2-5 times; the result was a total of 55 experimental observations.  Table 3.7 

lists all the observations from the main effects (mixing angle, rotation rate, and powder 

cohesion).   

Initially, the full model is used:   

jkl j k jk l jl kl jkl jkly = µ + α + β + αβ + γ + αγ + βγ + αβγ + ε  

Table 3.7: Continuous Mixer 2 Experimental Variance Results obtained from varying 
materials, process inclination, and rotation rate. 

Observation Processing Angle Speed Cohesion R.Var Observation Processing Angle Speed Cohesion R.Var
1 Upward 16 Lactose 100 0.006472 29 Horizontal 50 Lactose 125 0.012283
2 Horizontal 16 Lactose 100 0.020664 30 Horizontal 100 Lactose 125 0.007117
3 Downward 16 Lactose 100 0.013822 31 Horizontal 100 Lactose 125 0.010181
4 Upward 75 Lactose 100 0.004582 32 Horizontal 100 Lactose 125 0.006808
5 Horizontal 75 Lactose 100 0.010068 33 Horizontal 125 Lactose 125 0.016352
6 Downward 75 Lactose 100 0.011729 34 Horizontal 125 Lactose 125 0.005961
7 Upward 16 Lactose 125 0.003981 35 Horizontal 125 Lactose 125 0.004086
8 Horizontal 16 Lactose 125 0.004452 36 Horizontal 125 Lactose 125 0.00094
9 Downward 16 Lactose 125 0.006016 37 Horizontal 125 Lactose 125 0.014357
10 Upward 75 Lactose 125 0.001404 38 Horizontal 125 Lactose 125 0.004079
11 Horizontal 75 Lactose 125 0.011 39 Horizontal 175 Lactose 125 0.002537
12 Downward 75 Lactose 125 0.016232 40 Horizontal 175 Lactose 125 0.005838
13 Upward 50 Lactose 125 0.003274 41 Horizontal 175 Lactose 125 0.006226
14 Upward 50 Lactose 125 0.005742 42 Horizontal 175 Lactose 125 0.018245
15 Upward-Horizontal 50 Lactose 125 0.003995 43 Horizontal 275 Lactose 125 0.009789
16 Upward-Horizontal 50 Lactose 125 0.006523 44 Horizontal 275 Lactose 125 0.015561
17 Horizontal 50 Lactose 125 0.006282 45 Horizontal 300 Lactose 125 0.016316
18 Horizontal 50 Lactose 125 0.005164 46 Horizontal 300 Lactose 125 0.018742
19 Horizontal-Down 50 Lactose 125 0.098037 47 Horizontal 25 Lactose 100 0.002483
20 Horizontal-Down 50 Lactose 125 0.057224 48 Horizontal 25 Lactose 100 0.004858
21 Downward 50 Lactose 125 0.082521 49 Horizontal 50 Lactose 100 0.011611
22 Downward 50 Lactose 125 0.072285 50 Horizontal 50 Lactose 100 0.013591
23 Horizontal 25 Lactose 125 0.00879 51 Horizontal 50 Lactose 100 0.011036
24 Horizontal 25 Lactose 125 0.005947 52 Horizontal 75 Lactose 100 0.001136
25 Horizontal 25 Lactose 125 0.004858 53 Horizontal 75 Lactose 100 0.004599
26 Horizontal 25 Lactose 125 0.00361 54 Horizontal 125 Lactose 100 0.002825
27 Horizontal 50 Lactose 125 0.01323 55 Horizontal 125 Lactose 100 0.007639
28 Horizontal 50 Lactose 125 0.008261  

 
As previously discussed, blend variance appears to change as a function of all 

these parameters. However, the question that remains is whether the observed effects are 
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indeed significant. Table 3.8 illustrates the three-way ANOVA, where since n>1, it can 

be solved for all interactions.  Results show that mixing angle is the most significant 

contributor to the observed differences in blend variance. The following significant 

parameter is rotation rate, followed by cohesion, which is not significant for the available 

data, and is characterized by very high p-value of 0.70.  Only the interaction between 

angle and rate is significant; all interactions involving cohesion are also clearly non-

significant.  Using this information we simplify the model as:  

jkl j k jk jkly = µ + α + β + αβ + ε  

The results of this statistical model are shown in Table 3.9.  All three terms remain 

significant (p<0.0001), showing a lower value of p than in the full model.  One remaining 

question is whether differences between the mixers are significant.  Later on, a 4-way 

ANOVA will consider the results from both mixers, and reassess the significance of other 

parameters when considering both datasets.  Prior to that, in the next section we examine 

the behavior of the powder residence time in the second mixer.   

Table 3.8: Three-Way ANOVA on the blend uniformity variance for the second 
Continuous Mixer considering the treatments as: mixing angle, rotation rate, cohesion as 
well as 2-way and 3-way interactions. 

Source DF SS MS F p
Mixing Angle 4 1.23E-02 3.06E-03 64.42 0.000
Rotation Rate 8 1.72E-03 2.15E-04 4.52 0.001
Cohesion 1 7.16E-06 7.16E-06 0.15 0.701

Process Angle*Rotation Rate 4 4.37E-03 1.09E-03 22.95 0.000
Process Angle*Cohesion 2 5.18E-06 2.59E-06 0.05 0.947
Rotation Rate*Cohesion 4 1.55E-04 3.86E-05 0.81 0.528

Process Angle*Rotation*Cohes 2 6.99E-05 3.50E-05 0.74 0.488

Error 29 1.38E-03 4.76E-05  
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Table 3.9: Two-way ANOVA for variance of the second continuous mixer examining 

 

mixing angle, rotation rate, and 2-way interactions. 

.3.2.2 Residence Time 

In chapter 2 we found a direct correlation between improved mixing and higher 

residence times.  As shown in Figures 2.2.3b and 2.2.4b, both angle and rotation rate 

affect the residence time.  In the experiments reported here, five mixing angles and seven 

rotation rates where considered, each experiment was duplicated, resulting in a total of 24 

observations, the details are shown in Table 3.10.  Above, we considered whether the low 

significance of rotation rate on mixing is a result of rotation rate not statistically affecting 

residence time. Not enough data exists to determine the interaction of rotation rate and 

mixing angle but the main effects can be examined using the following statistical model: 

The 2-way ANOVA for this model is shown in Table 3.11, where we consider the 

sources of mixing angle and rotation rate on residence time.  The results clearly show that 

mixing angle has a more significant effect on residence time, with a p-value <0.001, but 

the effect of rotation rate is significant only to a lower degree, exhibiting a p-value of 

0.07.   

Source DF SS MS F p
Mixing Angle 4 1.23E-02 3.06E-03 72.04 0.000
Rotation Rate 8 1.72E-03 2.15E-04 5.06 0.000

Process Angle*Rotation Rate 4 4.37E-03 1.09E-03 25.67 0.000

Error 38 1.62E-03 4.25E-05

3

jk j k jky = µ + α + β + ε  
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Table 3.10: Continuous Mixer 2 Experimental Residence Time Results obtained from 

 

varying materials, process inclination, and rotation rate. 

able 3.11: 2-way ANOVA for residence time of the second continuous mixer 

xamined the mixing inclination, rotation rate, and cohesion for 

each in

Source DF SS MS F p
Mixing Angle 4 14076 3519 140.76 1.46E-10
Rotation Rate 6 395 65.83333 2.633333 0.067641

Error 13 325 25

Observation Mixing Angle Speed (RPM) Residence Time (s)
1 Upward 50 102
2 Upward 50 115.9
3 Upward-Hori 50 36.6
4 Upward-Hori 50 47.1
5 Horizontal 50 8.02
6 Horizontal 50 24.2
7 Horizont-Down 50 14.3
8 Horizont-Down 50 14.4
9 Downward 50 17
10 Downward 50 12
11 Horizontal 25 23.6
12 Horizontal 25 20.5
13 Horizontal 50 20.3
14 Horizontal 50 13.84
15 Horizontal 100 9.14
16 Horizontal 100 10.2
17 Horizontal 125 11.9
18 Horizontal 125 9.48
19 Horizontal 175 8
20 Horizontal 175 7.39
21 Horizontal 275 9
22 Horizontal 275 8.63
23 Horizontal 300 7.53
24 Horizontal 300 7.47

T
examining mixing angle and rotation rate. 

3.3.3 Four-way ANOVA 
 

Now that we have e

dividual mixer, we are in a position to conduct a general analysis that also 

examines the effect of the different mixers. This is an interesting approach when 

conducting design space studies and we wish to include in the study the effect of blender 

size. For batch rotating mixing systems, the scale-up of a mixer affects the shear rate 

primarily due to the fact that its dependence on the surface area.  For free flowing 
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powders this may be dismissed; however for cohesive mixtures, a reduction in shear can 

lead to a decrease of the mixing rate (Muzzio et al., 2004).  As previously mentioned, 

convective blenders impart high shear conditions particularly beneficial for cohesive 

materials, which may otherwise agglomerate. More intense shear can break and disperse 

agglomerates, enhancing homogeneity on a finer scale.  The observations used for the 

statistical model are shown in Table 3.12.  Initially the model is: 

ijkl i j i j k ik j k jk l il jl kl ijky = µ + η + α + ηα + β + ηβ + α β + αβ + γ + ηγ + αγ + βγ + ηαβ + ikl jkl ijkl ijklηβγ + αβγ + αβγη + ε  

Using the 4-way interaction as the error, since n=1, results with the following model: 

Table 3.12: Variance observations as a function of Mixer, Processing Angle, Speed, and 
Cohesion. 

ijkl i j i j k ik j k jk l il jl kl ijk ikl jkl ijkly = µ + η + α + ηα + β + ηβ + α β + αβ + γ + ηγ + αγ + βγ + ηαβ + ηβγ + αβγ + ε  

Observation Mixer Mixing Angle Speed Cohesion R.Var Observation Mixer Mixing Angl Speed Cohesion R.Var
1 1 Upward 16 Lactose 100 0.0037 35 2 Horizontal 25 Lactose 125 0.00879
2 1 Horizontal 16 Lactose 100 0.0057 36 2 Horizontal 25 Lactose 125 0.005947
3 1 Downward 16 Lactose 100 0.0063 37 2 Horizontal 25 Lactose 125 0.004858
4 1 Upward 75 Lactose 100 0.0081 38 2 Horizontal 25 Lactose 125 0.00361
5 1 Horizontal 75 Lactose 100 0.0093 39 2 Horizontal 50 Lactose 125 0.01323
6 1 Downward 75 Lactose 100 0.0129 40 2 Horizontal 50 Lactose 125 0.008261
7 1 Upward 16 Lactose 125 0.0021 41 2 Horizontal 50 Lactose 125 0.012283
8 1 Horizontal 16 Lactose 125 0.0031 42 2 Horizontal 100 Lactose 125 0.007117
9 1 Downward 16 Lactose 125 0.0032 43 2 Horizontal 100 Lactose 125 0.010181

10 1 Upward 75 Lactose 125 0.0017 44 2 Horizontal 100 Lactose 125 0.006808
11 1 Horizontal 75 Lactose 125 0.0061 45 2 Horizontal 125 Lactose 125 0.016352
12 1 Downward 75 Lactose 125 0.0083 46 2 Horizontal 125 Lactose 125 0.005961
13 2 Upward 16 Lactose 100 0.006472 47 2 Horizontal 125 Lactose 125 0.004086
14 2 Horizontal 16 Lactose 100 0.020664 48 2 Horizontal 125 Lactose 125 0.00094
15 2 Downward 16 Lactose 100 0.013822 49 2 Horizontal 125 Lactose 125 0.014357
16 2 Upward 75 Lactose 100 0.004582 50 2 Horizontal 125 Lactose 125 0.004079
17 2 Horizontal 75 Lactose 100 0.010068 51 2 Horizontal 175 Lactose 125 0.002537
18 2 Downward 75 Lactose 100 0.011729 52 2 Horizontal 175 Lactose 125 0.005838
19 2 Upward 16 Lactose 125 0.003981 53 2 Horizontal 175 Lactose 125 0.006226
20 2 Horizontal 16 Lactose 125 0.004452 54 2 Horizontal 175 Lactose 125 0.018245
21 2 Downward 16 Lactose 125 0.006016 55 2 Horizontal 275 Lactose 125 0.009789
22 2 Upward 75 Lactose 125 0.001404 56 2 Horizontal 275 Lactose 125 0.015561
23 2 Horizontal 75 Lactose 125 0.011 57 2 Horizontal 300 Lactose 125 0.016316
24 2 Downward 75 Lactose 125 0.016232 58 2 Horizontal 300 Lactose 125 0.018742
25 2 Upward 50 Lactose 125 0.003274 59 2 Horizontal 25 Lactose 100 0.002483
26 2 Upward 50 Lactose 125 0.005742 60 2 Horizontal 25 Lactose 100 0.004858
27 2 Upward-Horizontal 50 Lactose 125 0.003995 61 2 Horizontal 50 Lactose 100 0.011611
28 2 Upward-Horizontal 50 Lactose 125 0.006523 62 2 Horizontal 50 Lactose 100 0.013591
29 2 Horizontal 50 Lactose 125 0.006282 63 2 Horizontal 50 Lactose 100 0.011036
30 2 Horizontal 50 Lactose 125 0.005164 64 2 Horizontal 75 Lactose 100 0.001136
31 2 Horizontal-Down 50 Lactose 125 0.098037 65 2 Horizontal 75 Lactose 100 0.004599
32 2 Horizontal-Down 50 Lactose 125 0.057224 66 2 Horizontal 125 Lactose 100 0.002825
33 2 Downward 50 Lactose 125 0.082521 67 2 Horizontal 125 Lactose 100 0.007639
34 2 Downward 50 Lactose 125 0.072285  
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Table 3.13: Four-way ANOVA considering the treatments as: Mixer, Mixing Angle, 
Rotation Rate, Cohesion, and their interactions. 

Source DF SS MS F p
Mixer 1 5.43E-04 5.43E-04 11.41 0.002
Mixing Angle 4 1.12E-02 2.81E-03 59.11 0.000
Rotation Rate 8 1.75E-03 2.18E-04 4.59 0.001
Cohesion 1 3.06E-05 3.06E-05 0.64 0.429

Mixer*Mixing Angle 2 1.03E-03 5.15E-04 10.82 0.000
Mixer*Rotation Rate 1 1.62E-05 1.62E-05 0.34 0.564
Mixer*Cohesion 1 1.51E-05 1.51E-05 0.32 0.630
Mixing Angle*Rotation Rate 4 4.36E-03 1.09E-03 22.94 0.000
Mixing Angle*Cohesion 2 5.45E-06 2.73E-06 0.06 0.944
Rotation Rate*Cohesion 4 8.07E-05 2.02E-05 0.42 0.790

Mixer*Mix.Angle*Rotation R 2 1.51E-05 7.56E-06 0.16 0.854
Mixer*Mix.Angle*Coh. 2 5.10E-06 2.55E-06 0.05 0.948
Mixer*Rotation R.*Coh. 1 7.75E-05 7.75E-05 1.63 0.212
Mix.Angle*Rotation R.*Coh. 2 5.00E-05 2.50E-05 0.53 0.597

Mixer*Mix.Angle*Rot*Coh 2 0.00002224 1.11E-05 2.34E-01 0.793

Error 29 1.38E-03 4.76E-05  
 

The Four-way ANOVA for this model is shown in Table 3.13; the sources are the 

mixer, processing inclination, rotation rate, and cohesion.  The ANOVA showed that the 

cohesion is the least significant factor.  Mixing angle, rotation rate, followed by mixer, 

are the most significant parameters.  The interaction between the three effects (cohesion, 

mixing angle, and mixer) was also the most influential out of the interactions. The least 

influential main effect was cohesion.  All other interactions with the exception of the 

two-way interactions of mixing angle with rotation rate and cohesion, were also fairly 

insignificant with p-values greater than 0.2.  Further examining the effects of the three 

most significant factors we neglect the main effect of cohesion and all of its interactions, 

which results in the following model:  

ijkl i j l i j jl ijkly = µ + η + α + γ + ηα + αγ + ε  
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The ANOVA for this statistical model is shown in Table 3.14.  The ANOVA 

illustrates that mixer, processing angle, and cohesion are significant.   Harwood (1975) 

observed that the mixing performance of several different convective continuous mixers 

depended on the formulation.  This might lead to an assumption that convective 

continuous mixers will have the performance variations due to material properties, where 

the convective design and blender geometry may be important parameters to define.  

Previously we found that cohesion was an important parameter that statistically affected 

the mixing performance.  Clearly in this work we found that cohesion did affect blend 

performance.   

Table 3.14: Three-way ANOVA considering the treatments as: Mixer, Mixing Angle, 
and Cohesion. 

Source DF SS MS F p
Mixer 1 5.43E-04 5.43E-04 1.51E+01 3.227E-04
Mixing Angle 4 1.12E-02 2.81E-03 78.06 3.744E-20
Rotation Rate 8 1.75E-03 2.18E-04 6.06 2.394E-05

Mixer*Mixing Angle 2 1.03E-03 5.15E-04 1.43E+01 1.419E-05
Mixing Angle*Rotation Rate 4 4.36E-03 1.09E-03 30.30 1.744E-12

Error 47 1.69E-03 3.60E-05  
 
 
3.4 Summary and Conclusion 

A majority of the existing continuous mixing work examines the effect of the 

convective system and rotation rate on the mixing behavior and residence time.  In this 

work we extend this work by applying statistical analysis to investigate the effects of 

rotation rate, cohesion, and mixing inclination.  Several ANOVAs were presented in this 

chapter; a 3-way ANOVA for the first mixer showed that all processing and material 

parameters did influence performance.  In the 3-way ANOVA for the second mixer the 

mixing angle played a more significant role on mixing than the rotation rate.  Cohesion 
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did not have a significant effect on homogeneity when we examined two different 

cohesion levels.   

Given the difference in size and convective design of the blenders presented, 

dissimilarity between the results was to be expected.  A 4-way ANOVA examined the 

main effects of:  processing conditions, material parameters, and the mixers. The result 

illustrated that the mixer variability was a significant parameter and the more influential 

parameters were the mixing angle followed by rotation rate.  Cohesion showed to be the 

least significant factor, with a p-value of 0.429 in the 4-way ANOVA.   

Residence time was also examined and clearly illustrated to be influenced by 

rotation rate and mixing angle for both mixers.  For the first continuous mixer we 

examined two different speeds and 3 mixing angles, for that case study the most 

significant factor was rotation rate.  On the other hand for the smaller mixer, 5 mixing 

angles and 7 rotation rates were examined and mixing angle showed to be the more 

influential parameter. 

The objective of this chapter was to apply a statistical method to characterize the 

significance of design, operation, and material parameters.  Future work in continuous 

mixing will determine the most significant parameters and further increase the number of 

levels examined for that parameter.  We will further investigate the effects of rotation rate 

and cohesion on residence time, axial dispersion, and other important parameters using 

PEPT in the next chapter. 
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Chapter 4 

Positron Emission Particle Tracking 

In this chapter we first present, the properties of the materials used, 

processing units, and the experimental setup are discussed.  An example of 

the particle trajectories obtained from PEPT for a continuous mixing 

process is shown.  The residence time, axial dispersion coefficient, and 

path length at different processing parameters such as impeller rotation 

rate and different mass flowrates are determined and discussed.  

Statistically the variations between the axial dispersion coefficients of the 

two materials examined will be minor. 

4.1 Introduction 

The study of granular materials is a complex field that often exhibits poorly 

understood phenomena both in nature (Wang et al., 2002) and in industrial applications 

(Mehrotra et al., 2007).  The motion of granular materials is affected by the particle 

properties such as size and morphology (Jullien and Meakin, 1990), particle interactions 

(Hutton et al., 2004), and physical surroundings such as vessel design (Moakher et al., 

2000).  Several tracking techniques have been used in order to understand granular 

motion: MRI (Metcalfe et al., 1998), X-ray tomography (Powell and Nurck, 1996), 

impedance tomography (Williams and Xie, 1993) and positron emission particle 

tomography (PEPT).  PEPT is used in this chapter to examine a continuous powder 

mixer.   

PEPT is a non-invasive tomographic technique derived from medical applications 

of Position Emission Tomography (PET) (Yang et al., 2007). In PEPT, the motion of a 
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single positron-emitting particle within the flow of a typical bulk granular material is 

followed.  The technique yields spatial coordinates of the particle as a function of time. 

The method has been examined at the University of Birmingham for several blending 

systems: solid flow in the riser of a Circulating Fluidised Bed (Van de Velden et al., 

2007), rotating drums (Lim et al., 2003; Ingram et al., 2005), and a V-Blender (Kuo et 

al., 2005).  The system may track one, two, and up to three particles within the vessel at a 

time (Yang et al., 2006; Yang et al., 2007).  The method has been found useful to 

determine velocity distributions, shear gradients, occupancy diagrams (Laurent and 

Bridgwater, 2002b; Laurent and Bridgwater, 2002c).  However, previous publications 

investigating mixing vessels using PEPT examined closed systems.  Here, PEPT is used 

for the first time to examine continuous flow and mixing processes.   

While continuous powder mixing has been used for decades in food and cement 

industries, interest in the topic has been renewed by a recent emphasis placed on 

continuous pharmaceutical manufacturing applications. Two important questions that 

need to be addressed are (1) what are the critical parameters and (2) how to select values 

of these parameters that ensure content uniformity.  Previous work on continuous mixing 

has identified impeller speed (Marikh et al., 2005), blender inclination (Portillo et al., 

2008), powder flowrate (Marikh et al., 2005), and the convective design (Harwood et al., 

1975) as important variables.  Prior work has mainly examined the effect of content 

uniformity and residence time using tracer injection studies.  No published experimental 

work has examined the motion of a particle along the axial length of the mixer and the 

effects that cohesion, rotation rate, and flowrate have on residence time, axial dispersion, 

and on estimated total particle path length traveled by the particles. 
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4.2 Material Properties and Experimental Equipment 

4.2.1 Powder Properties 

The two materials examined were both common pharmaceutical ingredients that 

varied in cohesion grade: edible lactose (Dairy Crest) and free flowing lactose 

(Mallinckrodt).  Following recently published work, cohesion was characterized by 

measuring the extent of dilation of the powder flowing under unconfined conditions. In 

general, dilation increases with cohesion, this was further explained by Faqih et al. 

(2006), who developed a method where common pharmaceutical ingredients such as 

lactose dilated up to 30%. The changes in powder dilation are illustrated in Figure 4.2 for 

the two materials used in this study.  Clearly edible lactose has a higher dilation. In 

addition, a flow index that is proportional to the yield strength of the dilated powder was 

measured using the GDR (gravitational displacement rheometer).  The higher the flow 

index, the more cohesive the powder and the worse the flow properties (Faqih et al., 

2006).  As shown in Table 4.1, the edible lactose displays a higher dilation, a larger flow 

index values and a larger Hausner ratio.  All of these results agree in indicating that the 

more cohesive powder was the edible lactose in comparison to the free flowing lactose. 

Table 4.1: Density properties of Edible and Fast Flow Lactose  
Material Bulk Density 95 %Confidence Interval Tapped Density 95 %Confidence Interval Hausner Ratio Flow Index

F. Flow Lactose 0.626 [.615, .637] 0.704 [.692, .716] 1.125 24.9
Edible Lactose 0.629 [.612, .646] 0.981 [.963, .998] 1.559 34.8

 



64 

0
2
4
6
8

10
12
14
16
18

0 200 400 600 800 1000 1200

Revolutions

%
 o

f V
ol

um
e 

In
cr

ea
se

Edible Lactose Fast Flow Lactose

Figure 4.1 Dilation results for Edible and Fast Flow Lactose 
 
4.2.2 Vibratory Feeder 
 

The feeding system used was a vibratory mechanism (Eriez, Erie, PA).  Vibration 

speed, dam height, and spring thickness are the parameters used within the feeder to 

change flow rate.  The feeding flow rate is also dependent on the powders bulk density; 

therefore at the same processing conditions, flowrates vary as a function of bulk density 

as shown for the two materials in Table 4.2.  The average mass flowrates and confidence 

intervals shown in Table 4.2 were obtained from three trials.  Free Flowing Lactose was 

also studied for two additional flowrates used for a flowrate study.  

Table 4.2: Flowrates used in the inflow of the continuous mixer for Edible and Fast Flow 
Lactose  

Material Flowrates (g/s) 95% Confidence Interval (g/s)
Edible Lactose 8.300 [7.76, 8.85]
F. Flow Lactose 6.804 [6.59, 7.02]
F. Flow Lactose 4.139 [3.90, 4.38]
F. Flow Lactose 8.415 [8.02, 8.81]  

4.2.3 Continuous Mixer 

 The continuous mixer examined here is manufactured by Buck Systems in 

Birmingham, England.  The mixer is 0.31 meters long and the radius is 0.025 meters. The 
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continuous mixer was inclined at an upward angle of 17°.  The mixer’s rotation rate 

spans from 17 RPM to 340 RPM.  The mixer contains flat triangular blades with a 37° 

angle.  As material enters the mixer, the powder crosses the pathway of several impellers.  

The convective system of the continuous blender studied is illustrated in Figure 4.2.  As 

the blades rotate, the powders are mixed and agglomerates are broken up. Convection is 

the primary source of mixing in the cross-sectional direction. Dispersion is the main 

source of mixing in the axial direction, which is superimposed on the axial transport 

effect of the bulk flow, which conveys the powder toward the exit of the blender. 

 
Figure 4.2 Detail of the impeller design in the continuous blender used for PEPT 
experiments 

4.3 Measurement technique 

4.3.1 Method 

PEPT has been reviewed in several existing papers and in this work we briefly 

summarize the method.  A more detailed explanation on the technique can be found in 

Parker et al. (1997) and in Jones et al. (2007).  PEPT tracks a single radioactive tracer 

(130 µm resin tracer is composed of silica glass and is irradiated with F18 radioisotope) as 

a function of time.  During radioactive decay, a high-energy positron is emitted, an 

electron nearby annihilates the positron and two almost collinear gamma rays are 

generated.  The PEPT camera consists of two symmetric plates that detect the gamma 

rays between them.  If both gamma rays are absorbed by a detector element on each plate, 
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then two lines can be drawn between the detector elements (one line for each gamma ray) 

on which the tracer is expected to lie.  The intersection of the multiple pairs of lines gives 

the location of the tracer.  Unfortunately, due to the scattering of gamma rays, erroneous 

locations might be shown.  In order to filter erroneous locations, a position is considered 

accurate if the location is repeated 100 times and dismissed if found a lower number of 

times.  Consequently, the results are averaged (x,y,z) points that estimate the location of 

the tracer between the plates.  

4.3.2 Particle Trajectories 

In this section we discuss the details of obtaining one particle trajectory of the 

resin particle within Edible Lactose for the processing conditions (170 RPM, 8.3 g/s 

Flowrate, ~23 % Fill Level).  The occupancy diagram for the particle along the radial 

view of the vessel is shown in Figure 4.3a.  Figure 4.3b illustrates the corresponding 

velocity gradients using a radial view.  The corresponding trajectory of the particle along 

the radial area depicts the particle moving within a ring area, never occupying the center 

due to the presence of the shaft.   

If a vertical line slices the vessel from top to bottom into two adjoining 

semicircles, the right semicircle illustrates a greater degree of radial dispersion along the 

radial axis.  This occurs because when the particle exists in the left region, movement 

occurs due to the impeller lifting up the particles whereas at the right the particles are 

falling mainly due to gravity.  The particle trajectory at the axial view of the vessel is 

shown in Figure 4.4a, the velocity view is Figure 4.4b, and the 3-dimensional schematic 

is shown in Figure 4.5. All illustrations show that the particle follows a spiral path, due to 

the combination of axial transport and blade rotations.  Computation of the residence 
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time, axial dispersion coefficient, and total particle length will be discussed in the next 

section. 
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Figure 4.3a Radial view of PEPT particle trajectory in the continuous blender operated at 
170 RPM, 8.3 g/s flowrate, for edible lactose at ~23 % fill level 
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Figure 4.3b Radial view of PEPT particle velocity plot in the continuous blender 
operated at 170 RPM, 8.3 g/s flowrate, for edible lactose at ~23 % fill level 
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Figure 4.4a Axial view of PEPT particle trajectory in the continuous blender operated at 
170 RPM, 8.3 g/s flowrate, for edible lactose at ~23 % fill level.   
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Figure 4.4b Axial view of PEPT particle velocity plot in the continuous blender operated 
at 170 RPM, 8.3 g/s flowrate, for edible lactose at ~23 % fill level 
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Figure 4.5 3-D view of PEPT particle trajectory in the continuous blender operated at 
170 RPM, 8.3 g/s flowrate, for edible lactose at ~23 % fill level. 
 
4.4 Results 

4.4.1 Particle Residence Time 
 

The residence time was calculated for each particle trajectory at the given 

processing conditions.  Residence time is used to determine the strain and is an indirect 

indicator of the axial transport velocity the particle experiences within the vessel at 

varying processing and bulk material conditions.  Several particle trajectories were 

recorded for each set of operating conditions (speed, powder, and flowrate).  The average 

residence time was calculated from all the trajectories.  The experimental work presented 

in chapter 2 using Danckwerts’ RTD approach (1953) has measured residence times for 

continuous blending (Portillo et al., 2008), where a large number of tracer particles were 

injected at the entrance of the mixer and the residence time distribution was obtained as 
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the powder appeared at the mixer outflow.  The mean residence time can than be derived 

from the distribution using the preferred mathematical mean approach.   

In addition, the time a particle enters and departs an axial interval within the 

vessel has been examined using PEPT by Broadbent and coworkers (1995).  In this work 

we refer to such a measurement as the spatial residence time.  This measurement was 

particularly useful considering the horizontal cylinder is at an upward 17° degree incline 

and the residence time along the inclined cylinder can be determined and analyzed to 

determine whether the spatial residence time changes along the axis as the inclination 

increases, for example if the depth of the powder bed is position-dependent.  Here, spatial 

residence times are determined and the variability between the spatial residence times at 

different axial positions are statistically examined in order to determine if the residence 

time along the axial length is affected by the inclination.   

4.4.2 Effect of Impeller Rotation Rate 

The convective motion within a mixer has been shown to affect blending and 

axial transport (Laurent and Bridgwater, 2002b,c) in continuous mixers.  The issue has 

been examined in some detail for tumbling blenders.  For blending of batch systems, 

homogenization of free flowing powders is often unaffected by the rate of the convective 

motion.  On the other hand, cohesive powders have been affected by the vessel rotation 

rate (Sudah et al., 2002a).  For continuous mixing, on the other hand, the effect of 

agitation rate has been examined more sparsely.  Williams and Rahman (1971a), obtained 

enhanced mixing results for lower rates of agitation.  Moreover, in chapter 2 the rate of 

agitation for a continuous mixer found that mixing was best at the lower convective 

motion rates.   
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Intuitively, the rotation rate of the blades changes the rate of shear and the 

intensity of material dispersion throughout the mixer.  The effect of the work performed 

by the agitator is examined here to determine its effect on powder axial transport.  In 

chapter 2 we use Danckwerts RTD approach (1953), we reported that higher rotation 

rates resulted in lower residence times.  In this study, the rotation rate was adjusted to 

three different impeller rotation rates (16, 75, 170 RPM).  The quantitative measurements 

for the residence times at the three different rotation rates for free flowing lactose are 

illustrated in Table 4.3. In summary, the residence times correlated closely to those 

obtained using Danckwerts approach (1953), measuring noticeably higher residence 

times at lower impeller speeds (RPM).   

Table 4.3: Average Residence Time for free flowing lactose at a flowrate of 6.8g/s at 
three different rotation rates 

Rotation Rate 16 RPM 75 RPM 170 RPM 
Average Residence Time 143 66 10 
95 % Confidence Interval [118,168] [50, 82] [9, 11] 
 
4.4.3 Flowrate Comparison 
 

Fill level is an important parameter that has been intensively studied for batch 

mixing systems (Sudah et al., 2002b; Arratia et al., 2006), where it has been shown that 

mixing is often best at 40-60% fill level and it worsens substantially at fill levels greater 

than 70%.  Unlike batch mixers, for continuous mixers material is continuously fed into 

the vessel as a function of time.  Thus, the fill level or powder hold-up is affected by the 

material flowrate and residence time, thereby correlating flowrate variations to fill level.   

Three flowrates at two different rotation rates were examined.  At a constant 

rotation rate, variations in flowrate changed the residence time.  The results of the 6 

different processing conditions are shown in Table 4.4.  At 75 rpm we found that 
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increasing the flowrate resulted in lower residence times.  Thus, high throughout resulted 

in greater transport velocity.  On the other hand, at a higher rotation rate (170 rpm), 

increasing the throughput resulted in higher residence times.  The controlling factor for 

these two effects of flowrate variations is likely to be the powder hold-up.  As these two 

processing conditions change the powder hold-up within the vessel also changes, as 

shown in Figure 4.6; as the powder hold-up ratio increases, the residence time increases.   

Broadbent and coworkers (1995) found the same trend when they examined 

several tracer particles that ranged from 2 to 8 mm in size using a convective mixing 

system in a closed vessel.  The fill levels examined spanned from 10 to 70% and the 

resulting pattern was an increasing residence time with fill level.  In summary, the effect 

of flowrate on the residence time is dependent on the processing agitator rate since both 

flowrate and agitator rate affect fill level.   

Table 4.4: Residence Time as a function of flowrate 
Flowrate (g/s) RPM Res. Time (s) 95% Confidence Interval  

4.139 75 78 [89, 66] 
6.804 75 66 [82, 50] 
8.415 75 44 [52, 36] 
4.139 170 9.5 [10, 8.5] 
6.804 170 10 [11, 9] 
8.415 170 15 [17, 13] 
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Figure 4.6: Residence time as a function of powder hold-up. 
 
4.4.4 Effect of Cohesion 

Interparticle attraction forces (both frictional and adhesive) are usually referred to 

as “cohesion”.  Cohesion is an important parameter affecting powder flow, and the effect 

of cohesion on the mixing rate is by no means simple.  In this case study, edible lactose, 

was compared to the less cohesive Free Flowing Lactose.  As shown in Figure 4.7 both 

materials illustrate similar decreasing residence time as a function of impeller speed.  The 

more cohesive powder has greater residence times and a slightly higher slope.  Notably, 

differences between the residence time profiles for the two materials is greater at lower 

speeds and negligible at high speeds.  The agitator motion plays a vital role in the axial 

transport of the powder bed; at lower agitation speeds interparticle forces between the 

powders are likely to have a more dominant effect on the axial velocity than at higher 

rotation rates. 
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Figure 4.7: Logarithm of the average Residence Time as a function of impeller speed for 
Edible lactose and Free Flowing Lactose. 
 
4.4.5 Spatial Residence Time  

 The axial length of the vessel examined here is .31 meters.  However, as 

mentioned above, since a steep incline of 17° is used, the depth of the powder bed is 

likely to vary along the axis, and thus it is interesting to examine the residence time of the 

powder at different axial locations.  To this end, the vessel is discretized into 5 

subsections, as shown in Figure 4.8, each subsection has an axial length of .062 meters.  

The residence time corresponding to the ith spatial area is denoted τi.  For all the 

processing conditions examined here, each experiment is replicated 10 to 25 times, which 

results in total of 499 observations.  The results shown in Figure 4.9 depict the average 

spatial residence time as a function of spatial position for the 10 process settings.  From 

the figure, no direct relationship between the spatial residence time and axial interval is 

apparent.  In order to determine if statistically the particles remained within specific areas 

of the vessel longer than others, statistical analysis on all the trajectories was conducted.  

The null hypothesis was that the residence time of each of the spatial areas isn’t different, 
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hence:µ = .  In order to dismiss this hypothesis, the p-value 

obtained from an ANOVA is typically required to be a small value, usually smaller than 

.05.  Using SAS version 9.1, a one-way ANOVA summarized in Table 4.5 yields a p-

value of .545, which given the large number of results used in this study, inicates that the 

particles spatial residence time is not substantially affected by its axial position (i.e., no 

larger “dead zones” appear to be present).   

1 2 3 4

2 2 2 2
τ τ τ τ 5

2
τµ = µ = µ = µ

τ1 τ2 τ3 τ4 τ5

Figure 4.8: Detail of the continuous mixing vessel showing the five zones used to 
determine the possible dependence of residence time on axial location. 
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Figure 4.9: Average Residence Time as a function of 5 spatial regions within the vessel, 
where the 1st spatial region begins at the entrance (0-.062m), 2nd (.062-.124 m), 3rd (.124-
.186 m), 4th (.186-.248 m), and 5th (.248-.31 m) at 10 different processing conditions 
(Material, RPM, Flowrate). 
 
Table 4.5: Statistical Analysis on the hypothesis that the variance between the 5 axial 
residence time of 100 particle trajectories. 

Source DF Sum of Squares
Mean 
Square F p 

Spatial Area 4 1405 351 0.77 0.545 
      
Error 494 225113 456   
 

4.4.6 Axial Displacement 

The other parameter that evaluates particle mobility is the axial dispersion 

coefficient. Using the concepts of dispersion coefficient and Einstein’s law, axial 

displacement was investigated by Laurent and Bridgwater (2002b) using the relationship: 

2

axial

x
D lim 2 tt 0

∆
=

∆∆ →
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where is the mean square displacement.  Laurent and Bridgwater (2002b) have 

extensively examined the axial displacement for closed convective systems composed of 

1 and 6 blades for impellers rotation rates in the range of 25 to 45 rpm.  They found that 

for the 1 blade scenario, axial dispersion coefficients ranged from 10 to 22 mm

2x∆

2/s.  For 6 

blades the result was higher dispersion coefficients ranging from 10 to 45 mm2/s.  

Moreover, in terms of powder hold-up, the coefficients increased for low hold-ups and 

than lessened from higher hold-ups.   

The results communicated here confirm these trends.  Initially the coefficient 

increased to 174 mm2/s as the powder bed approached a 68.8 grams of holdup, and from 

there the coefficient decreased at higher hold up, as shown in Figure 4.10.   This probably 

occurs because the volumetric fill level of material within the mixer affects the ability for 

the blade to propel the powder to neighboring areas, thus changing value of the axial 

transport coefficient.   
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Figure 4.10: Axial dispersion coefficients as a function of powder hold-up. 
 

Rotation rate also affects the rate of shear and the intensity of material dispersion.  

Laurent and Bridgwater (2002b) found that axial dispersion increased at higher rotation 
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rates for two different closed convective designs. The system they examined were 

equipped with one and six blades, whereas we examine a vessel with 14 convective 

blades that gyrate from 16 to 170 rpm.  In agreement with the previous findings, we 

found that the axial dispersion coefficients increase at higher speeds (Figure 4.11).  These 

findings were based on two different lactose grades.  Very minor differences between the 

axial dispersions at the same rotation rate were found for the two materials. Furthermore, 

the dispersion coefficient we deduced from our study was greater than that found in 

previous literature using PEPT due to the additional blades in our mixing system.  In 

order to determine whether the variability of the axial dispersion between the two 

different materials is significant, ANOVA is used to test the null hypothesis that the axial 

dispersion coefficient for edible lactose µedible and free flowing lactose µfree at the three 

different rotation rates (shown in Figure 4.11) are equal, i.e. µedible=µfree.  Table 4.6 shows 

that the main effect of cohesion for 81 observations was fairly insignificant with a p-

value of 0.71, whereas rotation rate clearly affected the axial dispersion.  This suggests 

that the effects of interparticle forces on powder flow and mixing are not significant 

between these two materials under the conditions tested here.   



80 

0
20
40
60
80

100
120
140
160
180
200

0 50 100 150 200Speed (RPM)

A
xi

al
 D

is
pe

rs
io

n 
(m

m
2/

s)

Ed. Lactose F.Flow Lactose

12.6% 7.3%

14.6%

30.1%

3.6%

9.5%

 
Figure 4.11: Axial Dispersion Coefficient as a function of impeller rotation rate (RPM). 

Table 4.6: Statistical Analysis of cohesion on the Axial Dispersion Coefficient. 
Source DF SS MS F p 
Cohesion 1 310.1325 310.1325 0.144982 0.704426 
Rotation Rate 2 298163.3 149081.7 69.69313 0.000 
      
Error 77 164711.9 2139.116     

 

In batch rotating systems, residence time distributions are used to retrieve axial 

dispersion coefficients from the axial-dispersion model.  Sherritt and coworkers (2003) 

derived the dispersion coefficient under the assumption of large Péclet numbers (Pe>50).  

Large Péclet numbers are found in slow axial mixing vessels (such as rotating drums).  

The axial-dispersion coefficient, , is then obtained from the mean tracer residence 

time, 

zD

t , residence time standard deviation, 2
tσ , and axial length, Z, as: 

2 2

32
t

z
ZD

t
σ

=  

The data obtained from the experiments in this work is used to compute axial 

dispersion coefficient and residence time, as shown in Figure 4.12.  Along with this data 
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is the comparison of the theoretical axial dispersion using the residence time to the 

negative third power.  The function captures the experimental measurements fairly well 

at higher residence times.  For both the theoretical and approximated axial dispersion 

coefficients, the lower residence time, the higher the axial dispersion coefficient.  It is 

important to remember that this theoretical relationship between axial dispersion and 

mean residence time was found for low Péclet numbers.   

One approach used to determine Péclet numbers for continuous mixing processes 

was found by Weinekötter and Reh (1995) under the following assumptions: 

1) The powder is pushed through the mixer at a given axial velocity. 

2) Dispersion is superimposed on the convective transport. 

3) Dispersion is solely dependent on the external power input (agitator work). 

4)  Powders do not exhibit brownian motion. 

Given the assumptions, the resulting axial mixing model is followed as: 

2

z 2

c cv D
t z

∂ ∂
= − ⋅ + ⋅

∂ ∂ ∂
c

z
∂  

where Dz is the axial dispersion coefficient, v is the axial velocity, and Z axial length.  

Applying boundary conditions, this equation is solved, resulting in the following 

expression for the Péclet number:  

z

v Z Peclet number
D
⋅

=  

Given this definition for the Péclet number, the experiments examined in this 

work range from 8.09 to 137 with a mean average of 50.4.  The Péclet number can be 

used to describe accurately the relation between the convective and diffusive motions (Lu 

and Hsiau; in press) and the mixing mechanism.  For low residence times, the lower the 
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Péclet number, the greater the vessel performs in an ideal stirred vessel.  On the other 

hand, larger Péclet numbers correspond to plug flow characteristics (Weinekötter and 

Reh, 1995).  In the study, we find that lower residence time case studies, which occur at 

high rotation rates, result in flow characteristics closer to plug flow. 
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Figure 4.12: Axial Dispersion Coefficient as a function of Residence Time calculated 
from the PEPT data and estimated using Sherritt and Coworkers (2003) approximation. 
 
4.4.7. Path Length  

Einstein (1937) defined path length as the total distance covered by particles from 

the initial position (the entrance) to the final position.  This is distinct from “step length” 

which considers intermittent bursts of movement between still periods as the particle 

moves along the path.  The path length is important for two reasons: (1) it provides a 

basis for measurement and prediction of axial transport for a given fill level or powder 

hold-up; and (2) particle displacement is possibly impacted by electric charge particles 

may gain as they rub against other particles or vessels.  Therefore, it may be an indicator 

of their tribocharge effect (Dammer et al., 2004).  In this work, an estimated value for the 

total distance a particle travels within the continuous mixer is calculated as it descends 

along the axial direction and propagates toward the mixers outflow.  The different 
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particle paths obtained at the same processing positions are often different from one 

another because of the randomness of the particle movement due to the initial position 

and particle interactions.  Here we determine the distance the particle traveled 

considering the 3 spatial coordinates.  The initial particle position (x0,y0,z0) is obtained 

and at each time step the new spatial position of the particle (x,y,z) is found, at each 

proceeding time step, ∆t, the spatial change is obtained (∆x, ∆y, ∆z) and the total 

distance, , traveled between the time step is calculated as: k

k k k k k k= ∆x ×∆x +∆y ×∆y +∆z ×∆zk  
 
It is important to mention that the particles position may not be exact due to resolution 

issues in the PEPT camera and also because particle positions are captured at discrete 

time intervals; and a result, the path length calculated should be considered an estimate.  

In keeping with this statement, the path length traveled by the particle as it enters and 

leaves the vessel is estimated as the sum of all the distances traveled for all N times steps,  

N

k
k 1=

= ∑Path Length  

 In this section we examined and compared the total path length between two 

flowrates and three rotation rates.  We found that the particles covered a greater path 

length within the vessel at lower rotation rates.  Clearly the conditions that result in the 

highest path lengths are correlated to the residence time as shown in Figure 4.13.  At high 

impeller rotation rates, the residence time is lower, therefore a greater noise may exist in 

the measurements that might underpredict the particle path.   In order to determine if this 

is due to a lower resolution at high speeds and not a time step effect at low residence 

times.  The calculations shown in Figure 4.13 use a .0169s time step, we extend the 

calculations to two additional larger time steps .0336s and .0472s, in order to examine the 
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affect of time step on the particle path at low residence times.  Our findings are shown in 

Figure 4.14, increasing the time step by a multiple of two results in a lower prediction of 

the path length estimated, however increasing residence time clearly yields higher path 

lengths. 
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Figure 4.13: Total Particle Path Length as a function of Residence Time. 
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Figure 4.14 Total Particle Path Length as a function of Residence Time for high speed 
(170 RPM) impeller rotation rates. 
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Path length is also affected by powder hold-up. As shown in Table 4.7, path 

lengths increase for hold-ups up to 321.4 grams, followed by a decreasing path length as 

the hold-up increased further.  In the previous section we examined two different lactoses 

that vary in cohesion grade.  We found that for both grades of lactose the path length 

increased with rotation rate.  The axial dispersion coefficients for the two different 

materials shown in Figure 4.11 are fairly similar and their difference is not statistically 

significant (p=0.70).  On the other hand, the path length of these two materials was 

examined and a dramatic statistical difference (p<.0001) between both materials existed.  

Table 4.8 illustrates the path length at the different flowrates.  At different throughputs 

and agitator speeds, particles moving in free flowing lactose experienced a longer path 

length than those in edible lactose.  Statistically, as shown in Table 4.9, the total path 

length is affected by both cohesion and the speed.  At 170 rpm, path lengths were very 

similar.  Differences between the two cohesion levels, where each level was examined 14 

times for a total of 28 observations, were no longer significant (p= 0.6373) shown in 

Table 4.10. 

Table 4.7: Total Path Length at varying flowrates and rotation rates. 
Material Powder Holdup (g) Path Length (mm) 

F.Flo Lactose 39.2 4052.93±833.28 
F.Flo Lactose 68.6 4131.54±751.92 
F.Flo Lactose 123.4 4951.11±1902.19 
F.Flo Lactose 321.4 25307.95±8789.02 
F.Flo Lactose 373.4 12024.01±12049.87
F.Flo Lactose 450.2 14726.84±6107.98 
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Table 4.8: Total Path Length at varying rotation rates for both F. Flowing and Edible 
Lactose. 

Material 
Powder 

Holdup (g) Path Length (mm) Material 
F.Flo Lactose 39.2 4052.93±833.28 F.Flo Lactose 
F.Flo Lactose 68.6 4131.54±751.92 F.Flo Lactose 
F.Flo Lactose 123.4 4951.11±1902.19 F.Flo Lactose 
F.Flo Lactose 321.4 25307.95±8789.02 F.Flo Lactose 
F.Flo Lactose 373.4 12024.01±12049.87 F.Flo Lactose 
F.Flo Lactose 450.2 14726.84±6107.98 F.Flo Lactose 
 
Table 4.9: Statistical Analysis on the effect of cohesion and rotation on the Total Path 
Length. 
Source DF SS MS F p 
Cohesion 1 4.26E+09 4.26E+09 71.76818 1.51E-12 
Rotation Rate 2 1.31E+10 6.56E+09 110.5186 4.36E-23 
      
Cohesion*Rotation Rate 2 5.19E+09 2.59E+09 43.71334 2.60E-13 
      
Error 75 4.45E+09 5.93E+07    
 
Table 4.10: Statistical Analysis on the effect of cohesion on the total path length at 170 
RPM 
Source DF SS MS F p 
Cohesion 1 1.79E+05 1.79E+05 0.227533 0.637
      
Error 26 2.04E+07 7.86E+05    
 
4.5 Summary and Conclusion 

Apart from the experimental work examining the mixing performance, no 

previous work exists examining the trajectory of particles for continuous powder mixing 

processes.  In this work, we examined the particles journey along the continuous blender 

and found that powder holdup plays a critical role on the residence time.  Experimental 

work already existed measuring residence time within a continuous mixer.  However, the 

local residence time along the vessel axis had not been explored.  We found that particles 

move along the axial length at fairly the same pace everywhere, even when the vessel 
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was inclined upward 17°. Residence time showed an exponential trend with axial 

dispersion and a linear function with path length. 

The effect of rotation rate on the residence time, axial dispersion, and path length 

was complex.  The three agitator speeds examined were 16, 75, and 170 rpm. We found 

that greater speeds resulted in lower residence times, higher axial dispersions, and lower 

total path length.  The effects of powder holdup was a bit more complicated, increasing 

the powder holdup predominantly increased the residence time.  For higher powder 

holdups the coefficient initially increased, but then decreased.  In terms of the particle 

path length, at high powder holdups particles traveled a longer distance within the mixer.  

Slightly higher axial dispersion was observed for the less cohesive material but this result 

was statistically not significant.  However, the effect of cohesion on the particles path 

length was highly significant.  The seeming inconsistency between these two trends 

remains to be clarified. The answer probably lies in the fact that higher cohesion resulted 

also in longer residence times and lower path lengths, which implies that although the 

material remains in the mixer longer, the material does not travel a longer distance, but 

travels at a slower rate.  Clearly, the number of experiments that can be conducted is 

immense and lengthy. To further our investigation of granular mixing, a model can be an 

additional resource of information.  The following chapter will explore the benefits of 

using a compartment model for powder mixing.   
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Chapter 5 

Compartment Modeling 

In this chapter, the main concepts of compartment modeling and how it is 

used to model a V-Blender, which is used as a case study, are described.  

Compartment modeling is used to elucidate the effects of initial loading on 

the mixing process, and determine the optimal sampling protocol 

including the sampling locations, the number of samples, the number of 

particles per sample, and sampling time.  A summary of the results for the 

V-blender is presented.   

5.1 Introduction 

A number of approaches exist to model powder mixing processes, including 

Discrete Element Methods (DEM), Continuum Models, and Markov chains.  However 

due to computational limitations, uncertainty in material properties and limitations in 

terms of process representation, these approaches are only applicable to simplified cases.  

For example, mixing simulations using DEM (Bertrand et al., 2005; Ristow, 1996; 

Moakher et al., 2000, Kaneko et al., 2000) are common, yet the largest number of 

particles used within these simulations is 250,000 particles for 120 seconds (Lemieux et 

al., 2008).  Under these conditions, the CPU time on a Beowulf cluster (performed in 

parallel using up to 128, 3.6 GHz processors of a 1152-processor) was about 5 to 8 h per 

second of simulation.  This computational expense limits the number of particles that can 

be modeled, the details of the system geometry (Cleary et al., 1998), and the shape of the 

particles considered. Moreover, a model that takes longer than the process itself is poorly 

suited for process control purposes. Thus, the main purpose of this research is to 
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introduce an alternative modeling approach, which will require more input than particle 

dynamics methods, but is also much faster from a computational viewpoint and could be 

a feasible route for the development of models useful for real-time close-loop control of 

manufacturing processes. 

Consistent with the nature of pharmaceutical manufacturing, which proceeds 

largely in batch mode, a majority of the mixing processes modeled have kept the particles 

confined within a vessel. However, in recent years, a keen interest in continuous 

processes has arisen. In such systems, time-dependent inflow and outflow of materials 

results in fluctuations in total mass and species concentration within the system at a given 

time and causes unsteady flow and mixing performance.  Such systems have been 

modeled only in a handful of cases.  

Unsteady state flows have been examined for hoppers using particle 

dynamics/Discrete Element Modeling (DEM) (Zhu et al., 2006).  The advantages of 

DEM approaches are that the models use parameters with clear physical meaning 

(friction, adhesion, restitution) although the relatively small number of large particles 

used by these models negates some of its physical appeal. Nonetheless, DEM models can 

be used to consider mechanistic effects, such as the effects of geometry or flow rate on 

stress and shear along the flow. Their disadvantages, as mentioned above, are the 

excessive computational requirements and the fact that they are largely limited to 

spherical particles.  

The approach used here, compartment modeling, has been used to model fluid-

based systems for several decades (Correa (1993); Shah and Fox (1999)), but has been 

seldom applied to particulate systems. The main advantage of compartment models, 
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which is the main motivation for our interest in them, is the low computational time 

required to simulate motion and mixing of millions of particles, which results in fast 

calculated results that can be used for process control (Portillo et al., 2008). The essence 

of compartment modeling is to divide the mixer into multiple zones, and to simulate 

motion and mixing (and stagnation, and segregation) by prescribing fluxes of species 

between zones. Although stresses and strains on trajectories and wall collisions are not 

calculated explicitly, particles are still considered as discrete entities.   Because these 

models do not attempt to capture the actual physics of motion, but only motion itself, 

they are not limited by particle size or geometry, provided that fluxes can be measured or 

calculated (much in the same way as population balances and other statistically-

formulated models can make extensive predictions once aggregation and breakup kernels 

are formulated) (Ramkrishna et al., 2002). Once flux parameters are selected, the 

simulation can be used to provide extensive information about the dynamics and the 

outcome of the process, for example, it can be used to predict mixing performance (in 

terms of a relative standard deviation of sample composition) along the axial length or at 

the discharge. Even more important, the model can be used to predict response dynamics 

following an atypical event such as a burst of a given ingredient at the entrance of the 

mixer, thus providing the starting point for the development of control laws.  

5.2 Batch Mixing Methodology 

Compartment modeling of solid mixers is applied by spatially discretizing the 

system into a number of subsections that are assumed to be perfectly mixed locally (in 

good agreement with experimental observations) and contain a stipulated number of 

particles.  By also discretizing the time domain, the number of particles are required to 
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flow from each compartment to the neighboring ones at each time step defining the 

particle flux, F.  The number of particles transferred account for the convective and 

dispersive mixing occurring throughout the vessel.  Following the ideas of Fan et al. 

(1970), who described solid mixing as a random process, the particles selected to enter 

and leave each compartment are randomly selected. The change in the number of 

particles of species j, in compartment i, at time step k, is denoted as φ∆ ijk . All of the 

particles in the entire mixer are represented by the sum of all the interconnected 

compartments (w). Thus, the change in each species j throughout all compartments at 

every time step must equal zero as dictated by equation (1): 

1

0φ
=

∆ =∑
w

ijk
i

           (1) 

Compartment modeling can in principle be applied to any mixing process as long 

as there is enough information regarding fluxes to identify different mixing regimes, 

define the number of compartments needed, and model the particle flux between 

neighboring regions.  A V-blender is considered in this work as an illustrative case study 

(Figure 5.1a). The V-Blender rotates around the x-axis from the upright position to the 

downward position. The details of the process are given in Brone et al. (1998). Following 

the experimental observations of Brone et al. (1998), this blender can be modeled with 

five compartments as shown in Figure 5.1b.  We identify each compartment as V1, V2, 

V3, V4, and V5.  The particle flux between compartments V1 and V2 is defined as F1, and 

the flux between V2 and V3 is defined as F2, as illustrated in Figure 5.1b.   
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Figure 5.1: (a) A discretized V-blender (b) Compartment model of V-blender 

5.3 Mixing Analyses Results 

5.3.1 Vessel Composition (Initial load)  

Several studies show that mixing performance can be improved by perturbing the 

symmetry of the mixer (Cahn et al., 1965; Chang et al., 1992; Chang et al., 1995; Brone 

et al., 1997).  However, since this is not always a viable option for industrial scenarios, 

we examine the effects of initial loading.  It is well known from experiments that initial 

loading can substantially affect the mixing process (Brone and Muzzio; 2000). Thus, the 

main focus of this section is to change the initial distribution of the ingredients in the 

vessel and examine the resulting variance profiles as a function of time.  We compute the 

effects of initial concentration distribution on mixing time, defined as the time required to 

reach a homogenous state. The degree of homogenization, quantified by concentration 

variance, is used to characterize mixing.  



93 

The systems studied here consist of two groups of particles having different 

physical attributes such as chemical identity, size, and color. For the present analysis, a 

specific concentration is attributed to each particle group, such that the number of 

particles within each compartment determines the mixture concentration. Hence, in our 

study, one group of particles belongs to group 1 and another group of particles belong to 

group 2.  At every time point, 100 samples from each of the five compartments are 

considered, each having 200 particles (the effects of sampling parameters will be 

discussed in the next section).  In order to reflect blender symmetry, F1=F4 and F2=F3 

(Figure 5.1b).  Brone et al. (1997) showed that the main barrier to mixing in a V-blender 

is the axial flow of particles across the vertical plane of symmetry perpendicular to the V-

blender. Thus, in order to better represent geometric characteristics of this vessel, we 

assume that F2<F1 and F3<F4; i.e., F3 and F2 correspond to the lowest particle flux, the 

compartment they affect is compartment V3, which is considered the slowest mixing 

region (in comparison to all the other compartments).  As a case study, the particle flux is 

set to 1000 particles per time step between compartments V1-V2 and V4-V5 (i.e. 

F1=F4=1000 particles per time step).  The flux between V2-V3 and V3-V4 is F2=F3=100 

particles per time step.  The resulting mixing behavior is illustrated using the variance of 

the system, σ2, calculated using equation (2). 

2
2 (

1
i )x x
n

σ −
=

−∑                                       (2) 

where xi is the concentration of sample i; x  is the mean of sample concentrations; and n 

is the number of samples.   

In order to investigate the effects of initial loading, we analyze two systems with 

the same composition, i.e., they both contain the same total number of particles for both 



94 

groups 1 and 2.  As mentioned above, we are using 1 million particles in our study, and 

distribute evenly 200,000 particles throughout each compartment.  Although the total 

number of particles within a vessel may be constant, the initial distribution of each type 

of particle may vary.  For example, consider system A and system B, shown graphically 

in Figure 5.2a and 5.2b, respectively.  The numbers within the compartment represent the 

composition percentage of particles pertaining to group 1.  For example, system A has 

compartment V1 with 50% group 1 and 50% group 2, that means 100,000 particles of 

group 1 and 100,000 particles of group 2 initially exist within this compartment.  

Compartment V2 contains 100% of group 2, which signifies 200,000 particles of group 2 

initially exist within this compartment.  On the other hand, case B has 200,000 particles 

of group 2 within vessel V1, and 100,000 particles of group 1 and 100,000 particles of 

group of 2 within vessel V2.   Although both cases have the same composition (200,000 

particles of group 1 and 800,000 particles of group 2), the initial particle arrangement 

throughout the vessel varies.  Additional distributions that have the same composition are 

used for system C and system D, shown graphically in Figures 5.2c, d.  The subsequent 

mixing behavior of these systems is illustrated in Figure 5.3, which shows the variance of 

the composition of samples as a function of time.  
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Figure 5.2: The initial load distribution profiles for the following five compartment 
models:  (a) Case A (b) Case B (c) Case C (d) Case D (e) Case E.  The percentages 
within the compartment represent the percentage composition of particles pertaining to 
group 1.   
 

As shown in Figure 5.3, we significantly decrease the mixing time by varying the 

initial load distribution. The mixing time for system B is much lower than for system A.  

Thus, we conclude that system B exhibits superior mixing performance than system A.  

System B improves mixing because the initial load distribution of group 1, the material in 

the lowest concentration is closer to compartment V3.  Compartment V3 is the slowest 

mixing area of the mixer, and since for system B the material distributes earlier 

throughout compartment V3 than system A, and scheme B reaches equilibrium sooner.  

In order to further investigate the effects of initial load distribution, two additional 

cases are studied, case C and case D, shown in Figure 5.2c, and 5.2d.  Figure 5.3 shows 

that system C results in slower mixing compared to systems A and B.  This is interesting 
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because case C has the most uniform initial distribution of particles pertaining to group 1, 

since it is initially dispersed throughout three compartments. However, the initial 

distribution is not dispersed throughout the compartments.  This points to the fact that 

mixing time is strongly correlated to the initial load distribution.  The highest mixing 

time of the examined cases is shown by case D, where particles pertaining to group 1 are 

loaded to only one area of the mixer.  To further illustrate the effects of initial loading, a 

95% confidence interval of variance is calculated for all cases and shown in Table 5.1. 

The results illustrate that case B has the narrowest variance confidence interval whereas 

case D has the widest variance confidence interval.  As a result of changing the initial 

load distribution, the time required to reach homogeneity is reduced or increased as 

shown in Figure 5.3. 
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Figure 5.3: Unbiased variance as a function of time steps for five cases with different 
loading compositions as well as experimental data from Brone et al. (1997) 
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Table 5.1: The 95% of variance for the histogram of the variance frequencies for cases 
A-D for time steps [15,000, 20,000].  

Case Variance Confidence 
Interval 

∆ 

A [8.98E-04, 6.99E-04] 1.99E-04
B [1.09E-04, 4.76E-05] 6.16E-05
C [9.12E-04, 7.08E-04] 2.03E-04
D [9.16E-04, 7.11E-04] 2.05E-04

 

The mixing performance of a V-blender was studied by Brone et al. (1997) given 

an initial load distribution.  The experiment consists of two groups of particles, the 

materials are loaded symmetrically that is one side to the vertical plane of symmetry 

perpendicular to the V-blender is loaded with particles of group 1 and the other side with 

particles of group 2.  This system is simulated by case E (Figure 5.2e) and the results 

compared with the experimental results in Figure 5.3.  We load 200,000 particles of 

group 1 in compartments V1 and V2 and 100,000 particles of group 1 in compartment V3 

whereas 200,000 particles of group 2 are loaded in compartments V4 and V5 and 100,000 

particles of group 2 in compartment V3. The experimental results plotted in Figure 5.3 

from Brone et al. (1997) are obtained using one sample with 140 particles.  The 

homogeneity of the vessel as a function of discrete time is plotted for the simulation and 

experimental studies. They both exhibit similar variance profiles. Variations arise due to 

the limited number of samples taken under experimental conditions as well as the 

inaccuracy that arises from sampling.   

5.3.2 Sampling 

The most common technique used to characterize a mixture is sampling. In order 

to properly characterize a mixing process, the sampling parameters (sampling locations, 

sample size, number of samples, and sampling time) must be carefully chosen to provide 
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accurate information. In this section, compartment modeling is used to elucidate the role 

of sampling parameters on the characterization of mixing performance.  

5.3.2.1 Sampling Locations 

An important consideration when sampling is the sampling location. As pointed 

out by Allen (1981), the two “golden rules” of powder sampling are that: (1) a powder is 

sampled only when in motion, and (2) a sample be collected uniformly from the entire 

process stream.  Guidelines elucidate the importance of sampling uniformly throughout 

the mixer.  However, most process analytical technology (PAT) approaches to-date 

sample the blender at a single location.  

In this section, we examine the effects on variance of sampling at different 

locations within a mixing system.  Initially, we examine three of the sampling schemes 

shown in Figure 5.4 (Schemes A, B, and C).  Scheme A retrieves samples from only the 

middle compartment V3, scheme B retrieves two compartments, one at each end (V1 and 

V5), and scheme C uniformly retrieves samples from each compartment (V1 through V5).  

Figure 5.5 shows that using a single sampling location (Scheme A, of Figure 5.4) in the 

center compartment severely underestimates the variance whereas two sampling locations 

(Scheme B, of Figure 5.4) overestimates the variance.   In order to monitor the accuracy 

among the sampling schemes we develop an optimization model where the objective is to 

minimize the sum of the squared difference between the variance for the uniform 

sampling scheme (Scheme C, of Figure 5.4), σo, and the variance of the sampling scheme 

used, i, for n comparisons as shown in equation (3):  

2

1

( - )
J= i

n
o

i n
σ σ

=
∑                                                            (3) 
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In this study, the uniform sampling scheme (Scheme C, of Figure 5.4) is used as 

the standard for the variance distribution. The variance difference between the standard 

and the sampling scheme chosen indicates the variance error. The smaller the variance 

error, the closer the sampling scheme represents the results of the uniform sampling 

scheme.  The results show that case A has the largest variance error (Table 5.2) whereas 

case B has a much smaller objective function than case A, and as a result better 

approximates the variance distribution.  

 Scheme Scheme Depiction
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Figure 5.4: Four sampling location distribution possibilities (schemes A, B, C, D). 
 
Table 5.2: The objective function results for sampling location schemes A, B, and D. 
Scheme J 
A 6.2750 
B 0.0349 
D 0.6382 
 

Since in most practical cases there exists a limit in the number of sampling 

locations that are used (i.e. 2 to 10), we again use a compartment model to determine the 

optimal sampling locations.  Thus, given a constraint that only two sampling locations are 
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allowed, the question addressed in this section is where samples should be retrieved.  

Considering a limiting number of sampling locations (i.e. 2), two alternatives are further 

investigated as depicted in Figure 5.4 (Scheme B, and D).  As shown in Figure 5.5, these 

two schemes result in widely different variance estimates.  Scheme B shows a higher 

variance than scheme D before equilibrium is reached.  However, based on the objective 

function results (Table 5.2), scheme B is closer to the uniform sampling results than 

scheme D.  If the aim is to characterize the variance of the system as accurately as 

possible, the goal is to minimize J and scheme B should be favored.  Thus as illustrated 

by these results, sampling location is important, since distributing the same number of 

sampling locations differently shows dramatically different results.  Given that there 

exists a large number of sampling alternatives, compartment models offer an effective 

way of selecting the best sampling location for a specific system. 
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Figure 5.5: Variance as a function of time steps for the four sampling possibilities 
(schemes A, B, C and D). 
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5.3.2.2 Sample Size  

In pharmaceutical applications, the size of a single tablet is usually the scale of 

scrutiny where it is critical to ensure that the active ingredient is well mixed (Muzzio et 

al., 2004). Hence, an ideal number of particles in a sample should be equal to the number 

of particles in a tablet. However, this is not always possible and obtaining a microscopic 

sample can result in greater inaccuracy due to measurement errors, especially when using 

thief probes (Muzzio et al., 2003) to perform the sampling. To understand the effects of 

sampling methodology, the actual relationship between sample size and variance is 

further examined in this section.   

Consider the system in Figure 5.2e (case E), we assume three different sample 

sizes (200, 400 and 600 particles per sample).  In all cases, 50 samples are used and 

selected randomly at each time step and an equal number of samples are retrieved from 

each compartment. Although variance behavior over time is similar in all three cases 

(closely overlapping variance profiles), larger samples result in narrower variance 

distributions (Figure 5.6 and Table 5.3).  The results confirm that increasing the number 

of particles within each sample decreases the sample-to-sample concentration variability.  
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Figure 5.6: Normalized variance histogram for a) 200 particles/sample b) 400 
particles/sample c) 600 particles/sample for the time interval [15,000 to 20,000]. 
 

In terms of computational feasibility, using compartment models leads to very 

efficient calculations as shown in Table 5.4. The CPU times for the three cases examined 

are on a SUNW SPARC Desktop (2) 900 MHz Processors 2GB and our compartment 

modeling code is written in FORTRAN.  When we increase the number of particles per 

sample from 200 to 600, the simulation takes 600 CPU seconds longer to run due to 

increased number of iterations required to achieve convergence. Although increasing the 

sample size increases the CPU time due to additional calculations, the simulation time 

remains within a feasible range in comparison to existing mixing models.   

Table 5.3: The 95% confidence interval of variance for the variance frequency 
histograms of sample sizes 200, 400, and 600 particles per sample for the time interval 
[15,000, 20,000]. 
Particles 

per 
Sample 

Variance 
Confidence Interval 

∆ 
Interval 

200 [1.81E-03, 7.86E-04] 1.03E-03 
400 [9.37E-04, 3.96E-04] 5.41E-04 
600 [6.65E-04, 2.68E-04] 3.97E-04 
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Table 5.4: Computational results for 3 different sample sizes.  
Number of Particles per 
Sample CPU* (s) 

200 8084 
400 8093 
600 8692 
*SUN Blade 2000 

Analytical methods, such as near infrared (NIR) spectrometry, use a small number 

of particles in each sample (Berntsson et al., 2002), hence raising concerns about small 

sample sizes.  To further examine the effect of sample size, we explore cases involving 

extreme sample sizes.   

Thus, the same system is analyzed with the following four sampling sets: 2 

particles per sample, 4 particles per sample, 8 particles per sample, and 16 particles per 

sample. The number of samples taken is adjusted to keep a constant number of particles 

retrieved within one time step. Figure 5.7 shows a different variance profile for all the 

samples.  As expected, sampling an identical system with more numerous but smaller 

samples results in a larger variance than if sampled with fewer but larger samples.  As 

shown in Figure 5.7, once the system reaches the final mixed state, the final variance 

value is non-zero.  The higher the final variance value, the greater the variance at a mixed 

state. Thus, although our system is identical, each sample set displays a different final 

variance value.  This is especially important given that in order to satisfy the existing 

manufacturing criteria (CGMP’s, October 2003), the Relative Standard Deviation (RSD) 

value should be less than 4.0% to be “readily passing” and less than 6.0% to be 

“marginally passing” (Many of the samples in Figure 5.7 will not satisfy even the 

marginally passing criteria.).  In order to capture the variance as a function of sample size 

for a given system, we analyze the minimum variance attainable for several different 
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sample sizes of a given system. As shown in Figure 5.8, in agreement with the Central 

Limit Theorem, the minimum variance is inversely proportional to the sample size. 

Consequently as illustrated with the results in this section, the variance of the system can 

display a large range of values depending on the sample size.  Hence, setting a 

measurement requirement for homogeneity (such as σ ≤ 4-6%) is ambiguous unless 

sampling parameters are defined.  Thus, selection of the appropriate sample size is very 

important, especially for PAT methods that in practice sample very small amounts of 

material.  
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Figure 5.7: Unbiased variance as a function of time steps for four sample sizes for 
system E. 
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Figure 5.8: Minimal variance profiles as a function of particles per sample. 
 
5.3.2.3 Number of Samples 

In the previous section, a small number of samples were considered for all the 

calculations.  In this section, we investigate the selection of the number of samples.  For 

the same system, we vary the number of samples used to determine the variance.  The 

aim is to minimize the number of samples required to characterize mixing in order to 

reduce the adverse impact of invasive sampling (Muzzio et al., 1997).  To that end, we 

monitor the variance evolution for three identical systems, while varying the number of 

samples for each system.  Each case is as follows: from case 1 we take 100 samples, from 

case 2 we take 200, and from case 3 we take 500 samples; each sample with 200 

particles.  No substantial difference in variance between these three systems is observed 

(closely overlapping variance profiles).  However, the variance frequency reveals that 

increasing the number of samples leads to a narrower distribution (Figure 5.9 and Table 

5.5) that visibly approaches a χ2 chi-square) distribution.  It is also important to mention 
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that as the number of samples increase, the average variance decreases.  Variance is 

indirectly related to the skewness of the  χ2-distribution.  As shown in Figure 5.9, the 

skewness of the variance frequency increases as the number of samples increase.   
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Figure 5.9: Normalized variance histogram for a) 100 samples b) 200 samples c) 500 
samples. 
 
Table 5.5: The 95% confidence interval for the variance frequency histograms for 100, 
200, and 500 samples at the time interval [15,000,20,000] time steps. 
No. 
of 
Sample
s 

Variance 
Confidence Interval 

∆ 
Interval 

100 [1.67E-03, 9.35E-04] 7.31E-04 
200 [1.56E-03, 1.04E-03] 5.22E-04 
500 [1.47E-03, 1.13E-03] 3.49E-04 
 
Table 5.6: Compartment modeling computational results for 100, 200, and 500 samples. 
Number of 
Samples  CPU* (s) 

100 8026 
200 8636 
500 9859 
*SUN Blade 2000 
 

Increasing the number of samples does require additional calculations, causing an 

increase in computational intensity.  The additional samples prolong the simulation by 
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1,800 CPU seconds (see results in Table 5.6). This may be a feasible time period 

considering the time length of other mixing models.   

Since the number of samples is often minimized, it is important to consider the 

effects of a small number of samples. Thus, the following cases are considered for a 

constant number of particles: 5 samples of 4,000 particles per sample, 10 samples of 

2,000 particles per sample, 20 samples of 1,000 particles per sample, and 40 samples of 

500 particles per sample.  Although these cases showed similar variance behavior 

(closely overlapping variance profiles), the histograms evaluated for the time period 

between 15,000 and 20,000 time steps (Figure 5.10) show that a small number of samples 

are not sufficient to represent the  χ2 -distribution.  A small subset of it will have a 

different frequency distribution than the parent group. As the samples increase, the 

frequency distribution more closely resembles that of the large data set.   χ2  can be used 

to determine what sample size will provide a reasonable approximation of the larger set. 

Thus, a small number of samples may not sufficiently represent the homogeneity of the 

system as reported by Fan et al. (1970).  A contour plot is used to illustrate the 

relationship between the variance the number of samples, and the number of particles per 

samples as shown in Figure 5.11. It can be noted from this plot that the smallest variance 

is obtained for the largest number of particles within the sample.  Although increasing the 

number of samples also reduces the variance it is found that the number of particles per 

sample is the most effective factor.  
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Figure 5.10: Normalized variance histogram obtained from: a) 5 samples b) 10 samples 
c) 20 samples d) 40 samples.    

  
Figure 5.11: Surface contour graph for two sampling variables (Number of Samples, 
Number of particles per sample) as a function of variance.    
 

The results illustrate some of the existing problems with product specifications.  

One problem is that setting a measurement requirement for homogeneity (such as σ ≤ 4-
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6%) is ambiguous unless sampling parameters are defined.  Secondly, the homogeneity of 

the mixture is not solely dependent on the mean variance, since the significance of the 

mean variance is dependent on the variance distribution as well as the confidence 

intervals.  These confidence intervals are affected by the sampling set and although a 

homogenous mixture is present, an incorrect sampling basis will not distribute the 

variance as a larger sample set would. 

5.2.2.4 Sampling Time 

Determining when the mixture has reached homogeneity is obviously important.  

The focus of this section is to define when homogeneity is reached in order to determine 

when samples should be retrieved.  To investigate the effects of this parameter, we 

analyze the variance distributions at several time intervals.  As shown in the prior 

variance distributions, homogenous samples (uniform datasets) distribute variance as a 

chi-square distribution, given the appropriate sampling parameters.  However, non-

homogenous samples (non-uniform dataset) do not necessarily distribute the variance as a 

χ2 distribution; this can further be read on BookRags (2006). As shown in Figure 5.12, 

sampling at early time intervals results in variance distributions that deviate significantly 

from χ2 distributions.  This posses serious challenges to developing useful estimates of 

“goodness of fit” of measured values of σ2. 
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Figure 5.12: Variance histogram at the following time intervals: a) 1-100 b) 201-300 c) 
401-500 d) 601-700 e) 801-900 f) 901-1000. 
 

Quantitatively, we use the χ2 test to characterize mixing over time as proposed by 

Gayle et al.(1958).  The χ2 test is evaluated as follows: 

2
2 O E

E

(N -N )= 
N

χ ∑             (4) 

where NO, is the observed number of particles of a given physical attribute such as 

chemical identity, size, and color in a sample and NE, is the expected number of particles 

in the mixture of the given physical attribute.  When the mixture reaches a homogenous 

state, the χ2 value reaches the lower limit.  The lower limit is equal to the number of 

different components times the number of samples.  In this case study, two components 

exist (particles pertaining to group 1 and 2) and 500 samples are taken within the mixture, 

so the lower limit is 1,000.  Table 5.7 illustrates the χ2 values at different time steps.  The 

results show χ2 reaches the lower limit before the sample time has reached 15,000.  
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Sampling early can be prevented by utilizing a compartment model that predicts when χ2 

has reached the lower limit.  

Table 5.7: Chi-square results at varying time steps.  
No. of Particles labeled with 1 

at each Compartment 
Sample 
Time  

1 2 3 4 5 
χ2

5000 130348 128956 100060 71271 69365 35230 
10000 108896 108406 100245 91624 90829 3041 
15000 102367 102870 100150 97391 97222 284 
20000 101031 101099 99784 98878 99208 42 
25000 100362 100024 100062 99597 99955 3.0 
30000 100141 100165 100105 99810 99779 1.4  
 

5.4 Conclusions 

In this work a powder mixing process is simulated based on compartment 

modeling.  The main advantage of the proposed approach is that the computational time 

is significantly reduced, allowing the simulation of a large number of particles.  A V-

blender is considered as a case study blender and simulated using the proposed 

compartment model. In terms of variance, the effects of the sample location, number of 

samples, particles within the sample, and sampling time are examined.  It was shown that 

initial loading could substantially increase the required mixing time to reach a 

homogenous state. With respect to sampling, it was first determined that a small number 

of particles overestimate the variance of the system.  Second, a large number of samples 

decrease the variance histogram width at equilibrium. Third, sampling locations can 

dramatically offset variance distributions. Finally, sampling early will not exhibit the 

variance histogram as a χ2 distribution.  Utilizing compartment models we characterize 

the mixing behavior of several mixing processes under several different sampling 

conditions.  The integration of these models to existing powder mixing processes can 
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reduce any misrepresentation of variance profiles as well as improve mixing 

performance.  Given the advantages of compartment modeling illustrated in this chapter 

for a batch mixer, the following chapter applies compartment modeling to continuous 

powder mixing.  
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Chapter 6 

Compartment Modeling for Continuous Processing 

The compartment modeling described in the previous chapter, followed by 

the experimental setup used to examine the powder flow, is presented for 

continuous mixers in this chapter.  The method used to determine the 

fluxes from experimental data is explained.  The modeling parameters, the 

effects of sampling, and validation of processing conditions are also 

examined.  

6.1 Introduction 

As mentioned in the previous chapter, compartment models require substantial 

input (from experiments, or from particle dynamics calculations) to provide realistic 

predictions. Unfortunately, at the present time, little experimental work exists on 

continuous mixing, particularly for pharmaceutical applications.  Kehlenbeck and 

Sommer (2003) examined CaCO3 - Maize Starch mixture.  In our previous work (2008), 

an Acetaminophen (APAP) formulation was examined, and it was shown that mixing 

performance was strongly affected by blender operating parameters such as angle of 

incline and impeller speed. Some work exists indicating a well-controlled continuous 

mixing process can enhance productivity significantly (Muerza et al., 2002; Marikh et al., 

2005). However, in order to develop an effective control law the first requirement is the 

development of efficient predictive models that can be used for process optimization and 

control.  Moreover, the use of accurate models can reduce the need for sampling, which is 

difficult in continuous operation, always inconvenient, and an additional source of 

uncertainty often leading to Type I errors. 
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6.2 Mixing Model 

As mentioned in the introduction, several limitations hinder the application of 

existing modeling approaches (Stewart et al., 2001; Laurent, 2006) for real time 

optimization and control.  To overcome this problem we propose a method that predicts 

product homogeneity using the basic ideas of compartment modeling found in chapter 5.  

The main idea behind compartment modeling is that it discretizes the space of the mixing 

vessel into locally homogeneous compartments. Particles move from compartment to 

compartment to account for both convection and dispersion. In this work, a three-

dimensional compartment modeling approach is utilized.  As shown in Figures 6.1 and 

6.2 the mixer is discretized in both the axial and radial dimensions.  The axial 

compartments are denoted by the index i whereas the radial dimension is represented by 

index j, identifying each compartment as Sij.  The total number of radial compartments (at 

a given axial position) is represented as Nr and the number of axial discretizations as Na.  

The total number of particles in the vessel (Nt) is the sum of particles in all of the 

compartments; each compartment contains Nij particles so
Nr Na

t
i 1 j 1

N
= =

= ijN∑∑ .  The intensity 

of fluxes within the mixer depends on the number of compartments and the way that the 

compartments are connected.  For example in a binary system, two different types of 

particles are represented (Aij and Bij) and ijN ij ijA B= + . The effects of other particle 

properties (size, morphology etc) are captured by their fluxes. 

Two important comments need to be made at this point. The first major comment 

concerns the estimation of fluxes. As mentioned above, this is critical input for the 

model. In principle, flux information can be obtained in several ways: 
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• From comparisons with samples taken along the axis of the mixer 

• From comparisons with samples taken at the discharge 

• From Residence Time Distribution  

• From PEPT or PIV measurements 

• From DEM models run for as short period of time 
 

The goal is to introduce the approach, validate it, and demonstrate its use for 

evaluating sources of error associated to sampling, and only the first two sources of 

information are considered in this section. 

Another important point is that we assume all radial compartments to be equally 

filled. In reality, the mixer fill level is half-empty; however, during operation, particles 

moved quickly along the radial direction and although the mixer theoretically may have a 

low fill level, the material is largely uniformly distributed in the radial direction. For the 

mixer examined here, radial heterogeneity is not a concern, and transport in the radial 

direction is largely a minor concern. Radial compartments are retained as part of the 

model, only to lay the foundation for more complex situations where mixing in the radial 

direction could be an important issue.  

For the specific geometry of the continuous mixing system examined in this work, 

uniform fluxes between radial compartments are used since the convective blades rotate 

radially.  The axial fluxes are uniform along the horizontal length of the mixer since an 

equally distributed number of blades are located along the axis (as shown in Figure 6.1).  

Independent of the mixer inclination, due to mass conservation, powder flow will not 

vary along the axial position.  A weir is used to maintain a specified fill-level.   
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Once the number of particles that are interchanged between compartments is 

determined, the actual particles exchanged are randomly chosen among all particles 

within the compartment. 

 
Figure 6.1: Radial and Axial view of horizontal cylindrical mixing vessel investigated. 
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Figure 6.2: Schematic of a compartment diagram used to model the cylinder-mixing 
vessel.    
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6.3 Experimental Setup 

The continuous mixer modeled here is manufactured by Buck Systems in 

Birmingham, England.  The mixer is 0.31 meters long and the radius is 0.025 meters. The 

mixer’s rotation rate ranges from 17 RPM to 340 RPM.  An adjustable number of 

triangular flat blades are placed within the horizontal mixer.  The feeding system used in 

these experiments is composed of two vibratory mechanisms (Eriez, Erie, PA).  The 

variability in the flowrate depends on powder properties such as particle size, surface 

roughness, electrostatic charge, and other properties that affect cohesion (Bhattachar et 

al., 2004).  The processing parameters used within the feeder to change flow rate are 

vibration speed and spring thickness.  The feeding flow rate is also dependent on the 

powders bulk density (since the powder will not be compressed significantly by the 

gentle vibration used by the feeders).  The average bulk density of Lactose 125 and 

Acetaminophen/Lactose 125 blends are shown in Table 6.1.  The error in the estimation 

of the density is measured as standard deviation of ten samples.   

Table 6.1: Density of Powder Formulations 
Active % Density (g/ml) 

Lactose 125M 0.785±0.009  
Lactose 125M  and 8% 30 µm milled APAP 0.939±0.009 
Lactose 125M  and 9% 30 µm milled APAP 0.882±0.013 
Lactose 125M  and 10% 30 µm milled APAP 0.928±0.013 
Lactose 125M  and 12% 30 µm milled APAP 0.919±0.018 
Lactose 125M  and 15% 30 µm milled APAP 0.92±0.014 
Lactose 125M  and 16% 30 µm milled APAP 0.934±0.025 
  

The average flow rate and its variability are calculated by weighing the mass of 

powder discharged in one second, once the procedure has been performed multiple times.  

The deviation from the mean flow rate will affect the overall amount of each ingredient 

fed to the system.  In the flow studies conducted for this research, we found higher 

variability in the flowrate of the pre-blend composed of Acetaminophen and Lactose 125 
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compared to pure Lactose 125. This is probably due to electrostatic agglomeration of 

Acetaminophen in the vibratory feeder, as well as the increased cohesion of the blend 

containing Acetaminophen (Mehrotra et al., 2007). The Lactose feed mass flow rate was 

determined three times, and outflow variability was found to be 12.54±1.80gs-1, 

13.65±2.70 gs-1, 10.29±2.90 gs-1, with an overall average of 12.16±2.46gs-1.  The pre-

blend component flowrate was also determined three times, and outflow was found to be 

6.56±1.08 gs-1, 7.42±1.44 gs-1, 5.65±0.96 gs-1 with an overall average of 6.55±1.16 gs-1.   

Experimental measurements of the fluxes between compartments is a complicated 

task.  For batch mixers, fluxes can be estimated using specialized experimental 

procedures such as solidification (Wightman et al., 1996) and image analysis of a 

discretized mixer (Massol-Chaudeur et al., 2002).  However these approaches, which 

require sacrificing the mixing vessel are difficult to implement for continuous mixing 

experiments. Therefore, we decided to resort to sampling, which, while cumbersome, is 

easily carried out.   

The mixing vessel was constructed with openings on the top that allow for axial 

sampling as shown in Figure 6.3.  In order to measure mixture homogeneity as a function 

of axial length, samples were retrieved and analyzed using Near Infrared Spectroscopy 

(NIR).  The NIR System used to analyze the experimental data presented in this research 

is the Nicolet Antaris, Near-IR Analyzer from Thermo Electron Corp.  The calibration 

curve for the Acetaminophen and Lactose 125 blend is illustrated in Figure 6.4, the linear 

square fit for these data was R2=0.9932.   
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Figure 6.3: Axial sampling ports of the horizontal cylindrical vessel.  
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Figure 6.4: Near Infrared (NIR) spectroscopy calibration curve determined using Partial-
least squares method using 2nd order derivative equation of the absorbance versus 
wavelength spectra of the calibration samples. 
 

One of the difficulties of online sampling is that a stationary sample must be 

scanned multiple times in order to obtain an accurate reading. As illustrated in Figure 6.5, 

which shows the results of NIR spectroscopy as a function of the number of scans for 

three samples, respectively containing 0.6%, 3.5%, and 5% Acetaminophen.  Based on 

these three specific sample concentrations, the best number of scans based on the 

minimum error is 38, pointing to the importance of a large number of scans in order to 

get accurate results.  Given the current nature of NIR spectroscopy, in a continuous 

mixer, the powder moves too fast to allow a large number of scans directly online. Thus, 

we resort to invasive methods. While they have the disadvantage that powder is 

physically removed from the system, possibly disturbing the blend and affecting its 

composition distribution, they allow for multiple means of sample analysis, mitigating 
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the difficulties in validation of the analytical method that are characteristic of online PAT 

approaches. 
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Figure 6.5: Scans of three samples A) 0.6% B) 3.5% and C) 5% of tracer concentration 
analyzed with 6 to 68 scans.   
 
6.4 Homogeneity Measurements 

The homogeneity of a powder mixture is measured by calculating the variability 

of the samples retrieved.  For batch mixing vessels the samples are typically retrieved 

throughout the powder bed (Muzzio et al., 2003) whereas for continuous mixing the 

powder can be analyzed both at the outlet (Portillo et al., 2008) and along the axis (as 

presented in this work).  For binary mixtures measuring one of the components is 

sufficient to determine the distribution within each sample.  However, for a multi-

component mixture composed of r species, r-1 measurements per sample are required to 

determine the component distribution.  This is important in pharmaceutical applications 

because both the amounts of active and excipients must be consistent in order to achieve 

uniformity of dosage and dissolution (Chowhan and Chi, 1986). While customarily only 

the active ingredient is analyzed, in NIR spectroscopy, variability of excipients also needs 

to be measured in order to avoid errors in the method. 

Consider a set of n samples retrieved from a binary mixture where the amount of 

a minor component (the tracer) within the kth sample is represented by Xk. The average 
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tracer concentration of all the n samples is defined as X .  The homogeneity of the 

mixture is represented by the Relative Standard Deviation (RSD) of all the n samples 

tracer concentration. 

Xk={c1,…cm-1,cm} 

1 nX ......XX
n

+
=  

2n
k

k=1

(X - X)1RSD =
X n -1∑  

Each sample Xk, is composed of “m” number of particles, where the “lth” particle 

is represented by cl.  The greater the number of particles the larger the sample size.  In 

addition, the greater the number of samples, the higher the number of Xn
th terms.  Within 

each compartment, a number of samples are retrieved; the RSD of the ith radial 

compartment and jth axial compartment is denoted as RSDij. The variability within all the 

radial compartments at a fixed axial position “j” is denoted as RSDj.  This measurement is 

calculated by determining the relative standard deviation between all samples retrieved 

within all radial compartments at a fixed axial position j.  Sijk represents the tracer 

concentration of the kth sample from the ith radial and jth axial compartment. The total 

number of samples taken within the compartment is n.  The average of the n samples 

retrieved within all Nr radial compartments at a fixed axial (jth) position is represented by 

jX .   

rN n

j i
i 1 k 1r

1 1X X
N n= =

= ∑ ∑ jk  
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rN n
2

jijk
i 1 k=1r

j
j

1 (X - X )
N n

RSD =
X

=× ∑∑
  

Lower RSD values mean less variability between samples, which implies better 

mixing.  In order to obtain the RSD within the axial section, the RSD within all the radial 

sectors that lie within the axial compartment are measured.  Samples are retrieved from 

each of the radial slices and the RSD of all the samples within that axial portion are used 

to determine sample homogeneity.   

6.5 Powder Fluxes  

One of the most important parameters in setting up the compartment model is the 

determination of the flux, which is a function of the number of particles exchanged 

between compartments and number of compartments. The fluxes between compartments 

are fine-tuned in order to account for the varying powder flowrates as well as stagnant 

mixing regions.  The higher the rate, the larger the number of particles exchanged 

between compartments. The number of particles exchanged between two compartments 

 is denoted by , and represents a randomly selected number of particles 

that are transferred from compartment S

ij i ' j'(S S )→ ij i'j'→λ

ij to compartment Si’j’. It should be noted that this 

flow is between two compartments and compartments exist in a three-dimensional space, 

thus capturing a bi-directional flow.  The flux,  is defined as the ratio of number 

of particles transferred to a neighbor compartment  with respect to the total number 

of particles within the compartment.  The total number of particles within each 

compartment may remain constant (

ij i ' j'Flux →

i ' j'(S )

∆ Nij=0) or may change ( ∆ Nij≠0).   
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The compositional distribution of particles within a compartment may also remain 

constant.  This would require that at time point k and a subsequent time point k+1 the 

ratios between each species (for a binary system A and B) also remain constant, i.e., 

ij ij
k k 1 k k 1

ij ij

A B
0, 0

N N→ + → +∆ = ∆ = .  This is statistically very improbable (Ross, 2002); a more 

probable scenario is one where the distribution changes and the component distribution 

changes ij ij
k k 1 k k 1

ij ij

A B
0, 0

N N→ + → +∆ ≠ ∆ ≠ .  In these examples, the total number of particles 

within each compartment remains constant but the component ratio within each 

compartment changes.   

6.6 Effect of Compartment Modeling Parameters  

The modeling parameters examined in this section consists of the fluxes between 

the compartments, the number of radial and axial compartments, and the number of 

particles per compartment.  These parameters affect both the quality of the results and the 

computational time. Other parameters examined that are difficult to characterize 

experimentally but known to affect homogeneity estimates are the number of samples 

retrieved and the sample size. These parameters are examined in section 6.7. 

6.6.1 Compartment Fluxes 

In order to use the proposed compartment approach discussed in section 6.3 the 

fluxes between the compartments must be determined as follows: Samples are retrieved 

at the designated axial locations shown in Figure 6.3 and the slope of the sample 

variability along the axial length of the mixer is calculated.  Due to the symmetry of the 

convective motion and short axial distance ( ∆ k ), the change in variability between the 

designated locations is assumed to be linear.  Since the axial length ( ) is represented ∆ k
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by  compartments, the change in content uniformity along these compartments is 

represented as 

AkN

∆
⋅

k

Ak

m
N

. This describes a scale effect where  compartments are used 

to model the ∆  axial length of the vessel.   

AkN

k

Although the change in concentration that occurs along the axis is monitored, the 

content uniformity of the samples retrieved at a fixed axial position measure the radial 

variability.  In the model, the vessel diameter is discretized into (NR) radial slices and the 

particles fluxes are between NR –1 compartments.  Mixing occurs by the convective 

motion of the blades rotating 360° at a constant rate.  As a result, the rate of the number 

of particles exchanged within the radial compartments is uniformly expressed among the 

radial compartments as 
1

∆
⋅

=
−

A

R

m
N

N
ψ .  The flux depends on the number of particles 

exchanged between compartments relative to the total number of particles. Thus the 

radial  represents the fraction of the total number of particles exchanged from 

one compartments (ij) to another ( i ' ) to the total number of particles in compartment ij.   

' 'Flux →ij i j

j'

In the model developed here, the rate of mixing depends on the number of the 

particles exchanged between the compartments.  Increasing the number of particles 

exchanged between compartments results in higher fluxes and a faster mixing rate, which 

ultimately means that the mixed state is reached faster. The particles selected to transition 

to other compartments are random. The fluxes are defined as the ratio between the 

number of particles interchanged within two compartments (Sij, ) relative to the total 

number of particles within each compartment, 

i ' j'S

ij i ' j'
ij i ' j'

ij

Flux
N

→
→

λ
= .  The non-dimensional 
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flux can range between 0 and 1, depending on the level of exchange from no mixing 

where no particles are exchanged to a high degree of mixing where all particles are 

exchanged.  A total mixing rate, , can be defined 

considering the effect of the total number of particles within the vessel and the rate of 

interchanging them as a function of all the compartments in the vessel.  As Figure 6.6 

illustrates, increasing the flux results in lower RSD curves which in effect means faster 

mixing.   

R A R AN N N N

total ij i ' j'
i ' 1 j' 1 i 1 j 1

MR Flux →
= = = =

= ∑∑∑∑
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Figure 6.6: Effect of flux (0.1, 0.18 and 0.22) between compartments, all the other 
modeling parameters are kept constant. 
 

It is important to mention that in chapter we illustrated that increasing the rotation 

rate within the mixer did not improve the overall mixing performance. This occurs 

because at higher rotation rates, the particles also tend to spend less time in the mixer, 

they are dispersed for a shorter period of time within the vessel and as a result the 

dispersion is reduced leading to a lower total mixing rate for higher rotation rates.   

 



126 

6.6.2 Number of Radial Compartments 

The number of radial compartments has an effect on the estimate of radial 

variability of the flowing powder, in particular at or near the inflow region.  The greater 

the number of radial compartments, the higher the precision with which the radial 

component of the compositional variance can be determined. Moreover, the larger the 

number of compartments, the greater the number of fluxes between the compartments 

that must be defined.  Statistically, the lower the number of compartments the lower the 

initial variability since higher uniformity exists between a smaller number of larger 

compartments (averaging effect).   

Consider a binary formulation, where some of the compartments are loaded with 

one component and all other compartments are loaded with the other component.  Figure 

6.7 illustrates the effect of loading the exact percentage of tracer in each example but 

varying the number of radial compartments.  For example, in the case of 5 radial 

compartments, one is loaded with the tracer and the other 4 with non-tracer; in the case of 

10 radial compartments, two are loaded with tracer and the other 8 with non-tracer.  The 

flux is adjusted to account for the change in the number of fluxes as well as for the 

variation in the flux magnitude.  This keeps the percentage of the tracer constant, in order 

to keep the total number of particles dispersed between compartments constant.  For 

example, if a finite number of particles denoted as Ptotal exist, and they are divided among 

a number of radial compartments, Nradial.  The flux is expected to change along with the 

number of radial compartments. Thus, the greater the number of radial compartments 

Nradial, the lower the flux between the compartments given the greater the number of 
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fluxes between compartments.  At a fixed axial position the radial mixing rate can be 

found using the following equation:   

R R

new new

new

N N

ij i ' j ij
i ' 1 i 1

ij i ' j'
ij R

Flux N
Flux

N N

→
= =

→

×
=

×

∑∑
 ∀i 

In this case study the Relative Standard Deviation (RSD) between the radial 

compartments represents the radial degree of homogeneity of the mixture, where the 

number of samples is the number of compartments and the sample size is the number of 

particles per compartment.  The Central Limit Theorem states that for independent 

samples, sample variance is inversely proportional to sample size.  In agreement to the 

theorem, the case study with the lowest number of radial compartments contained the 

largest number of particles per radial compartments and resulted in the lowest variability. 

This in fact introduces a grid effect in the estimate of homogeneity. To avoid this grid 

dependence problem, the sample size should be the same, i.e., should contain the same 

number of particles, independent of the total number of compartments or the number of 

particles per radial compartment.  
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Figure 6.7: Effects of changing the number of radial partitions, while the number of axial 
partitions, total mixing rate, and the total number of particles are kept constant. 
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6.6.3 Axial Compartments 

In this section the effect of the number of axial compartments is examined while 

the number of radial compartments, the total dispersion, and the total number of particles 

are kept constant.  Ten, twenty, and thirty axial compartments are used to track the 

relative standard deviation along the axial trajectory.  At the horizontal mixer setting, the 

axial flux is the dominant axial rate of transport (ie. there is no back flow) and there is 

basically a uniform residence time.  In order to compare the results using a larger number 

of axial compartments, the flux between the compartments was reduced to maintain the 

same overall axial mixing rate.  When adjusting the number of axial compartments, the 

total number of compartments changes, which affects the total mixing rate.  In order to 

keep the total mixing rate constant, MRtotal=C2, when the number of axial compartments, 

NA, changes the fluxes must be adjusted to keep the sum of all the fluxes constant:   

A Anew newR A R A R RN NN N N N N N

2 ij i ' j'
i ' 1 j' 1 i 1 j 1 i ' 1 j' 1 i 1 j 1

C Flux Flux→ →
= = = = = = = =

= =∑∑∑∑ ∑ ∑ ∑ ∑ ij i ' j'  

Counter-intuitively, the reduction in the fluxes when the number of axial compartments 

changed from 10, 20, and 30 result in a reduction of the CPU time required even though a 

greater number of compartments were used. All simulations were conducted using a Sun 

Sparc 900 MHz Processor 2GB.  In summary, decreasing the number of axial 

compartments will decrease the accuracy of the models content uniformity predictions as 

visually illustrated in Figure 6.8.     
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Figure 6.8: Effects of changing the number of axial partitions from 10 to 30, keeping the 
radial partitions and total number of particles constant.  
 
6.6.4 Effect of Number of Particles 

Most of the existing simulation approaches suffer from limitations in the number 

of particles they can handle; for example simulating 4000 to 30000 particles in high-shear 

mixers that range in diameter from 8 mm to 200 mm (Bertrand et al., 2005; Cleary et al., 

2002) is far from the experimental conditions.  In reality, particle size of some common 

excipients such as lactose can be 30 to 50 µm, and for MgSt and SiO2 it can be as small 

as 1-5 µm (Bridson et al., 2007).  Calcium carbonates particles are found in the range of 

5-214 µm (Johansen and Schaefer, 2001). Therefore the actual number of particles 

involved is several orders of magnitude larger than that considered in particle dynamics 

simulations.  The question that still remains however is what is the minimum number of 

particles required in the simulation to represent the physics realistically. This is an open 

question that depends, at least in part, on flow properties such as cohesion. In some 

rotating drum case studies, decreasing the number of particles and increasing the particle 

size will still result in the same dilation effect or powder flow properties (Faqih et al., 

2006).  However, in mixing it is important to use a large enough number of particles to 

minimize effects of sampling parameters on the estimate on mixing performance.   
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In the modeling approach explored in this work we need to specify (a) the number 

of particles within each compartment, (b) the number of particles in the entire vessel, 

which reflects the sum of particles in each compartment, and (c) the fluxes between 

compartments.  Figure 6.9 illustrates the effect of changing the number of particles in 

each compartment by a factor of 10x while keeping the number of compartments 

constant.  The overall effect of increasing the number of particles is not substantial in 

terms of the RSD curve trend and slope.  However, the CPU time required for the larger 

number of particles was increased from 51 CPU seconds to 8005 CPU seconds, a factor 

of 157.  The difference between both RSD curves was measured by obtaining a 

polynomial for each of the RSD curves, as a function of the fractional axial position, x.  

The polynomials fit the RSD curves with a R2 greater than 0.99.  The area between both 

curves was calculated and resulted in relative standard deviation of 3.83%. 
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Figure 6.9: Effect of the number of particles per compartment on RSD profile 
considering 250 compartments in both cases. 
 
6.7 Experimental Sampling Results 

Sampling is very important in order to determine the quality of the pharmaceutical 

product.  FDA has established a “Guidance for Industry” (2003) that assesses powder 
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uniformity and correlates in-process dosage units with powder mixing for batch mixers 

(V-blenders, tote-blenders, etc.).  However, as of now the FDA has yet to establish any 

guidelines on sampling the continuous mixing process and many of the existing sampling 

issues mentioned in this work have not yet been addressed by regulatory language (or, in 

fact, discussed in the literature to any significant degree).  Thus, it is deemed important 

here to begin to examine the sampling parametric space for continuous mixing.   

One sampling question that arises is whether to increase the number of samples 

taken throughout the vessel or the sample size.  One difficulty that exists is a small 

number of powder samples results in greater variability (lower statistical power) of the 

homogeneity index. However, the effect of the sample size and the number of samples 

can be accurately predicted only for random mixtures (i.e., mixtures that are statistically 

homogeneous), to which the CLT applies. While the random mixture model is a useful 

limiting case, real systems, and, in particular, systems that show mixing problems deviate 

substantially from the random model. For such systems the main sources of heterogeneity 

(agglomeration, segregation, stagnation) all cause non-Normality in composition 

distributions. For such systems, which are precisely the systems that sampling is (or 

should be) designed to “catch”, the effect of sampling parameters cannot be easily 

predicted, and must be laboriously determined. 

Fortunately, compartment modeling is an excellent tool for simulating sampling 

of non-homogeneous systems, nicely adding an arrow to our QbD quiver. Thus, the focus 

of this section is to illustrate how compartment modeling predicts the behavior of the 

powder in the mixer as a function of sample size as well as compare the experimental 

data derived from retrieving samples from the continuous blender and analyzing them 
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using NIR, thereby illustrating the problems associated with obtaining an accurate 

sampling prediction for continuous processing as well as examining the effect of 

changing the size and number of samples.  

6.7.1 Sample Size  

Sample size is defined as the amount of powder within one sample.  The 

limitations that exist using a large sample size are that dead or segregated zones smaller 

than the sample space can remain hidden. Decreasing sample size can result in higher 

measurement errors from the true blend homogeneity.  However it is important to keep in 

mind, that the scale of scrutiny is based on the sample size of the target delivery system.  

Experimentally these effects can be noticed using advanced sampling techniques, 

particularly solidification of the powder bed (Brone et al., 1998) or vessel partitions 

(Massol-Chaudeur et al., 2002). However, these experiments are invasive and somewhat 

impractical; for example, using thief probes drags powders along the sampling path, thus 

altering the powder distribution prior to sampling.  As a result, it becomes more 

important to optimize sampling in order to maximize accuracy of characterization, while 

minimizing disturbance of the powder blend.  Online non-invasive sampling would be 

ideal but method validation is challenging, because the sample is not captured and cannot 

be analyzed by a corroborating method, and they require both fast data acquisition and an 

accurate and fast algorithm to filter the noise spectra in a short sampling time window. To 

the best of our knowledge, up to this point Near-Infrared Spectroscopy has not been 

successfully integrated online for continuous powder mixing processes.   

In this work the effect of changing the sample size on the axial measurements is 

examined using compartment modeling and experiments.  The sampling analysis includes 
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the effect of the sample size as well as the number of samples.  To determine the effect of 

sample size, we examine 250 compartments containing a total of 10,000 particles.  

Samples were taken from the radial compartments and used to calculate the RSD of the 

tracer concentration at a fixed axial position.  The total number of samples taken is kept 

the same but the number of particles in each sample is varied from 50 to 1000.   

Figure 6.10 illustrates the different curves for each of the sampling sizes in 

comparison to the RSD obtained from examining all the particles within the 

compartments.  Clearly, the variability for the small size (50 particles) is high. In fact, the 

average variability between the sample measurements and actual measurements for all 

the measured data points is 59% for 50 particles, followed by 17.1% for 500 particles and 

12.5 % for 1000 particles.  Increasing the number of particles further results in smaller 

fluctuation from the curve characterizing all the particles in the compartments. 

Computationally increasing the number of particles in the sample results in a very small 

increase in computational time e.g. for the 50 particles it takes about 51 CPU s, for the 

500 particles 56 CPUs, and for the 1000 particles 61 CPU s. 
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Figure 6.10: Effect of the number of particles per sample, keeping the number of 
samples constant on the homogeneity measurement.  
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The effect on the content uniformity measurements by increasing the sample size 

was examined experimentally for continuous mixing experiments where the percentage 

of APAP varied in the inflow.  The samples were analyzed using NIR under two confocal 

windows with a 10.8mm and a 30.8mm diameter. The effect of the larger window is a 

larger sample size.  The results shown in Table 6.2 illustrate that increasing the sample 

size for 6 different continuous mixing experiments resulted in a lower sample-to-sample 

variability.  The experiments illustrate that increasing the samples almost always reduced 

the variability between the samples.  Since these effects are a factor in content uniformity 

measurements, using compartment modeling the effect of sample size can be 

quantitatively captured to show how RSD values and sample noise are affected within a 

short computational time.  

Table 6.2: Effect of the sample size using two focal diameters under NIR absorbance.   
RSD RSD 
Focal Diameter Focal Diameter Experiment 

No. 
10.8 mm 30.8 mm 

Experiment 
No. 

10.8 mm 30.8 mm 
1 0.150 0.086 4 0.229 0.199 
2 0.156 0.176 5 0.183 0.092 
3 0.220 0.171 6 0.195 0.087 
 

6.7.2 Number of Samples 

In this sub-section we examine the effects of the number of samples. Increasing 

the number of samples expands the sampling space studied, moreover, reduces the 

probability of overlooking stagnant regions. It also increases the statistical power of the 

sample population estimates. The disadvantage is that invasive sampling requires 

removing more samples from the system thereby altering the powder distribution. Thus, 

the sampling objective is to determine the optimal number of samples. This requires a 

compromise between experimental limitations and reassurance that no unmixed zones are 
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overlooked within the entire vessel, and that the variability in population estimates are 

sufficiently low to give a high quality assessment of blend properties.   

Experimentally, the number of samples retrieved within the axial length of the 

mixer processed under identical conditions was studied.  The mixing system was rotated 

at an impeller speed of 50 RPM and inclined in the horizontal position (the experimental 

procedure was described in detail in the experimental approach section).  The results 

shown in Figures 6.11 clearly indicate that by varying the number of ~1.6 gram samples 

retrieved at each spatial area from 3 to 5 samples, experimentally and computationally, 

the variability in the measured degree of content uniformity decreased.  Using 3 or 5 

samples, compositional values showed oscillating behavior, but the mean values at each 

axial location were not dramatically different. However, for 3 samples the error bars for 

the three experiments conducted at the given process conditions were higher than for the 

5 samples. 
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Figure 6.11: Compartment model and experimental results RSD measurements for 3 and 
5 samples (model-100 particles per sample; experimental 30 mm diameter) taken 
throughout the axial length.  
 

The model showed lower RSD values than the experiments. In general, this is to 

be expected, since experiments are subjected to additional variability due to analytical 
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error, while simulations are not.  One question that therefore arises is what is the 

optimum number of samples and how accurately the model can capture the decreasing 

RSD profile measured in experiments.  The RSD behavior for a larger number of samples 

is shown in Figure 6.12, where the number of samples is varied while keeping fixed the 

number of particles per sample (100).  The percentage error change due to the number of 

samples from 37.3% for 25 samples, 39.5% for 50 samples, and 28.2% for 200 samples, 

shows that by increasing the number of samples the variability between the samples will 

not decrease as it did when the sample size increased (i.e, grid independence is achieved). 

This leads to the conclusion that fluctuations are mainly due to the sample size and not 

the number of samples. We should also mention that the computational time was trivially 

increased, 51.8 CPUs for 25 samples, 52.3 CPUs for 50 samples, and 55.5 CPUs for 200 

samples.  

For batch mixing, an important aspect of sampling is to identify dead zones and 

segregation.  Thus, increasing the number of samples is not sufficient, but is also 

necessary to evenly distributing sampling locations in order to prevent overlooking any 

area within the vessel. However, for continuous mixing, a variation in active distribution 

along the axial length is not necessary due to dead zones but due to the mass flowrate 

variability introduced by the feeding mechanism, which can be transported along the axis 

by “plug flow”. Thus, it is important to understand that taking more samples within larger 

axial areas should not be expected to result in a monotonically “improved” measured 

mixing performance even if mixing is improving.  However larger samples will have a 

greater probability of better characterizing the behavior that is actually taking place.  
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Figure 6.12: Effect of increasing the number of samples keeping the number of particles 
within each sample constant. 
 
6.8 Experimental Validation  

In this work, powder samples were extracted axially from the horizontal mixer as 

illustrated in Figure 6.3.  For the present study, the purpose of this data was to allow us to 

validate and fine-tune the compartment modeling results.  The experimental data is 

obtained by getting five samples from each of the spatial areas illustrated in Figure 6.3.  

Due to the hold-up limitations that arise as a result of processing inclination, rotation rate, 

and vessel design, five samples were retrieved per location.   

The computational data is obtained using radial and axial compartments and 

retrieving 5 samples of 100 particles each.  The experimental samples were ~1.6 grams, 

however it is important to mention that the NIR system will only examine a small 

fraction of this powder that reflects the incident light.  The impeller speed was 50 rpm for 

this experiment.  Computationally the mixing rate utilized was chosen to match the 

outflow variability.  However, as shown in the sampling section, the smaller the number 

of samples retrieved, the higher the noise frequency.  The results using 5 samples are 

illustrated in Figure 6.13 and compared to the computational results.  The computational 
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model is within the error values of the experimental data but does not illustrate the 

oscillations found in the experimental results, which may be due to sampling or to NIR 

analysis. This highlights another advantage of the compartment methodology, which is 

that it can offer a way to quantify the powder dispersion within the mixing vessel 

although the actual physicals are not explicitly described (or completely understood).   
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Figure 6.13: Relative standard deviation as a function of axial length within the mixer.   

6.8.1 Effects of Processing Angle  

In chapter 2 we illustrated the impact of processing angle on the relative standard 

deviation of the outflow content uniformity. What we showed was that increasing the 

processing angle to the upward position resulted in a longer residence time, which led to 

better mixing.  Up to this point, the experimental work presented here (specifically the 

results in Figures 6.11 and 6.13), was based on a horizontal processing angle. Here we 

examine the effect of using an upward processing inclination of +17°, and the processing 

impeller speed was 50 RPM. The experimental study consisted of determining the 
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relative standard deviation between the samples retrieved from five spatial areas. Six 

samples were retrieved for each spatial area.  

The experimental results and computational output utilizing compartment 

modeling are both shown in Figure 6.14.  At the upward inclination, the powder remains 

in the vessel the longest amount of time, which results in lower sample-to-sample 

variability early along the mixer.  The residence time pattern was exhibited in chapter 2 

were the results showed that at a constant speed the residence time was highest at the 

upward and lowest at the downward inclination.  The pattern correlates well with the 

findings in chapter illustrating that content uniformity is best (lowest RSD) in the upward 

inclination where the residence time is longer.  The lower RSD is observed throughout 

the axial length for the upward position as shown in Figure 6.14.  In addition, RSD values 

within the axial length are also fairly stable with low experimental error bars.  
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Figure 6.14: Experimental results obtained from changing the processing angle and 
Compartment modeling results at the upward processing angle. 
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6.8.2 Effects of Product Formulation 

A large array of publications exist dealing with the different physical properties 

such as particle size (Gilbertson and Eames, 2003), particle morphology, powder density, 

and surface structure, all of which affect powder flow (Alexander et al., 2006), mixing 

(Chaudhuri et al., 2006), and diagnostics (Beddow et al., 1980).  Unfortunately, lacking 

“mixing rules” for material properties, systematic characterization of the properties of all 

relevant powders that could be used in a continuous mixing process by the 

pharmaceutical, metallurgical, and environmental industries, to name but a few, is an 

immense task.  In this work we content ourselves with examining the effect of changing 

the APAP concentration in the blend, and showing that the compartment modeling 

approach can be refined to capture these effects. 

Experiments were conducted at various APAP concentrations using two sample 

sizes in the NIR analysis of the experimental data.  The larger sample size has 30 mm and 

the smaller a 10 mm confocal diameter.  The results showed that increasing APAP 

concentration decreased the sample-to-sample variance in the outflow, as illustrated in 

Figure 6.15.  In addition, the larger the sample size window the lower the measured 

standard deviation values.  One possibility is that for higher APAP concentrations, a 

greater number of tracer particles exist in each sample, thus reducing the variability in the 

individual sample concentration.  Using compartment modeling the variability was 

noticed to be a function of sampling size as shown in Figure 6.15.  The computational 

results illustrate that the outflow behavior is a function of sampling size.   As shown in 

the computational results, the RSD trend that corresponds to the experimental data is the 

profile with the smallest number of particles, i.e. the smallest sample size. This indicates 
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that the experimental data showing higher content uniformity for smaller APAP 

percentages maybe due to a small sampling window.  
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Figure 6.15: Experimental and Computational RSD results obtained from varying the 
percentage of Acetaminophen.  The computational results are shown as a function of 4 
different sample sizes 20 particles, 40 particles, 400 particles, and all the particles 
(concentration of the entire output).  
 

The effects of inflow APAP fluctuations are also examined in this section.  

Continuous mixing performance is sometimes assessed by computing the Variance 

Reduction Ratio (VRR), which accounts for the inflow fluctuations that arise due to the 

feeding mechanism.  Utilizing vibratory feeders we have demonstrated that feeding 

variations are present and limit the flowrate capacity.   

As a result, predicting the effect on the outflow of a given inflow variability has 

sparked interest in the pharmaceutical community.  The variability within the active mass 

is modeled with a pseudo-random flow rate calculated from the active experimental 

variability.  Using the methodology proposed in this work, the effect of the input 

variability on the outflow was calculated and is illustrated in Figure 6.16.  The top curve 

represents the mass fraction of active ingredient at a test point and the bottom curve is the 
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corresponding outflow.  The variance of the fluctuating inflow in Figure 6.16 is 1.82E-

04.  After mixing the resulting RSD profile has a variance of 3.02E-05 with a resulting 

VRR, defined as the inflow variance over the outflow variance, of 16.  The VRR is high 

which implies good mixing as discussed by Williams and Rahman (1971a) and Beaudry 

(1948).   
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Figure 6.16: Compartment model results showing the effect of variability in the active 
mass fraction of the inflow and the RSD of the outflow homogeneity of the powder. 
 
6.9 Summary and Discussion 

The focus of this work is to introduce a modeling method, based on compartment 

modeling, that provides a fast and convenient alternative to particle dynamics methods, 

and that is suitable for understanding the effects of sampling parameters, and, potentially, 

for control purposes toward process characterization. Given the current interest in 

continuous powder blending, the case study selected in this work focuses on the axial 

mixing behavior within a continuous mixer as a function of processing parameters.  

Experiments and computations are used to capture the mixing behavior of 

powders within a continuous mixer.  Experiments were carried out within the continuous 
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blender using a Lactose/APAP formulation.  The experiments were conducted to examine 

the effect of sampling in the outflow and within the vessel, illustrating that sampling 

effects on the measured mixing performance. The content uniformity as a function of 

processing angle on the mixing behavior was examined within the vessel, and illustrated 

that the upward angle results in better mixing performance compared to the horizontal 

inclination.  The effect of APAP concentration was also examined, and showed that 

content uniformity within the outflow was better when a higher percentage of APAP was 

used.  However, as shown with compartment modeling this may be due to experimental 

limitations that limit the sample size.   

The work outlined the suitability and flexibility of compartment modeling to 

capture the dynamics of continuous powder blending.  The advantages of this approach 

are (a) the sampling flexibility, which plays an important role in properly analyzing 

powder blends, particularly crucial for pharmaceutical applications; (b) the short 

computational time; (c) the ability to predict the axial and outflow variability given 

inflow fluctuations which can be used for on-line control and optimization. The modeling 

parameters examined include the number of axial and radial compartments, the number 

of particles, and particle fluxes between compartments. Results show that the 

compartment modeling approach is both feasible and quite convenient. Effects of sample 

size and number of samples were clearly captured by the model. Fluxes could be adjusted 

easily to account for differences in mixing performance resulting from changes in 

processing parameters such as the angle of inclination of the mixer. Effects of 

formulation (API content) and feed variability could be effectively captured. 
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Arguably, while having been extensively used for fluid processes, the approach 

presented here is in its infancy when it comes to powder processes. Much work remains 

to be done for the method to reach full blossom. To wit, multiple sources of information 

about fluxes need to be tested and incorporated into a general framework.  Given the 

advantages and limitations of compartment modeling other modeling sources may be 

beneficial as a result the next chapter will connect a DEM simulation and a compartment 

model to improve the computationally efficiency of DEM for powder mixing. 
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Chapter 7 

Hybrid Compartment-DEM Modeling Approach 

In this chapter a new methodology, the main ideas of compartment 

modeling and discrete element method approaches are outlined.  The new 

hybrid approach presented is used to examine a number of case studies for 

the horizontal mixer.  A discussion of the results is presented, where the 

effect of the number of compartments and time step will show to affect 

computational savings and accuracy. 

7.1 Introduction 

Powder mixing processes are typically difficult to characterize since powders 

cannot be classified as either solids or liquids (Jaeger and Nagel, 1992).  The unusual 

flow behavior of powders is of particular importance since segregation and 

agglomeration reduce the powder uniformity of powder blends used in a large number of 

applications. In order to model powder flow and improve the characterization of powder 

processes, several models have been proposed. Wightman and coworkers (1998); Ottino 

and Khakhar (2000) distinguished the following groups of mixing models:  Monte Carlo 

simulations, particle dynamic simulations, heuristic models, and models based on kinetic 

theory.  Although these models have proven successful in describing the mixing behavior 

in many case studies, there are a number of remaining challenges that are briefly 

summarized here.  In Monte Carlo simulations it is difficult to correlate real mixing time 

to simulation time.  In the case of particle dynamic simulations, the computational 

requirement for realistic mixing systems is extensive, thus the computational power 

required limits the beneficial usage. The main limitation of the heuristic models is that 
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they are based on ideal conditions whereas the models based on kinetic theory are 

capable of simulating only binary and tertiary mixtures. Another method well suited to 

model deforming solid materials is smoothed particle hydrodynamics (SPH) (Cleary and 

Prakash, 2004).  This method was originally developed for fluid mechanics, but has been 

applied to solid mechanic problems where there is fracturing, shattering, and possible 

phase change.  It has, however, not been used to model solid mixing except where 

particle fractures occur.  

In chapters 5 and 6, we demonstrated the use of compartment modeling as a tool 

to efficiently model and characterize powder mixing.  Although compartment modeling is 

a very powerful analysis tool for mixing characterization, it does not predict the details of 

particle behavior such as particle location and particle trajectory, which can be 

determined using a particle dynamic simulation such as discrete element method (DEM).  

Discrete element method (DEM) is a simulation methodology that predicts the 

trajectories of individual particles by solving Newton’s equations of motion (Pandey et 

al., 2005).  A number of studies have been performed using DEM, including modeling 

tumbling mixers (Cleary et al., 1998; Wightman et al., 1998; Zhou et al., 2004)), and 

convective mixers (Bertrand et al., 2005; Yang et al., 2003; Sinnott and Cleary, 2003).  

An excellent review of the recent advances in the field of powder mixing and DEM can 

be found in Bertrand et al. (2005).  However, as shown by Bertrand et al. (2005) the 

computational cost is significant since the equation of motion for each particle must be 

solved at each time step which limits the applicability of DEM models.  In order to 

overcome this limitation the particle morphology is approximated or the number of 

particles are reduced (Moreno-Atanasio et al., 2005; Li et al., 2005). However, in many 
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cases only a small area of the mixer has to be modeled using a detailed DEM simulation.  

This has been shown by Zhou and coworkers (2004) that illustrated that for sufficient fill 

levels, the physical actions of the impeller no longer affect the contents of the vessel 

within certain sections. The method proposed in this work takes advantage of this fact 

and combines the computational simplicity of compartment modeling with the detailed 

particle simulation of a mixing process achieved by DEM.  Along the same lines, 

McCarthy and Ottino (1998) proposed an approach based on the integration of geometric 

insight with particle dynamics to form a hybrid technique for a tumbler operating in the 

avalanching regime.   

In the proposed approach, the areas that need better characterization in order to 

model the mixing process are solved with DEM whereas` the rest of the system is 

captured with a compartment model.  For example, in the case of a horizontal stirred 

mixer, the impeller area is captured using DEM and the surrounding area is simulated 

using compartment modeling. The compartment and DEM simulations are run in parallel, 

interchanging particles for the desired mixing time.  The proposed framework results in a 

detailed description of the mixer with a substantial reduction of computational time 

compared with DEM simulation.   

7.2 Discrete Element Method (DEM) 

Discrete element method (DEM) was developed by Cundall and Strack (1979) 

and refined by Walton and Braun (1986).  The method is based on a finite number of 

discrete, semi-rigid spherical shaped particles interacting deterministically by means of 

contact or non-contact forces.  All the particles within the system have a known exact 

spatial position.  The system is spatially discretized into a number of 3-dimensional grids 
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and each particle is contained within at least one grid.  If a force is exerted on the particle, 

the particle will most likely collide with other particles that exist within its grid or 

neighboring grids.  The force model between two particles considers that the collision or 

interaction between two particles occurs either in a single point or a finite area (Zhu and 

Yu, 2006).  Walton and Braun's (1986) partially latching spring model is utilized for 

elastic particle collisions.  Once the collision takes place, the force on the particle is 

calculated using Newton’s equations of motion and the particle trajectory is determined.   

DEM models have been extended to account for the cases where a moving 

impeller is present in a mixing system.  One strategy is based on discretization of the 

boundary surfaces by means of a finite-element mesh that can be determined using a 

mesh generator known as multi-wall method established by Kremmer and Favier (2001).  

Another approach is developed by Cleary et al. (1998) that use a series of particles to 

represent a boundary domain. For the case of a rotating drum with a blade, the blade 

consists of an assemblage of particles with physical properties that mimic the interactions 

that the particles have with the impeller.  Due to the increasing number of interactions 

and particles, the simulations become computationally cumbersome.  As shown by 

Bertrand et al. (2005), the computational complexity increases exponentially with the 

number of particles in the vessel, which limits the applicability of DEM (Table 7.1).  

Another alternative to reducing the computational time of a DEM simulation is 

parallelizing the model algorithms. Parallel programming takes advantage of parallel 

computing systems by separating tasks, allocating and synchronizing tasks to different 

processors. As shown in Table 7.1 increasing the number of processors linearly decreased 

the computational time. 
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Table 7.1: CPU time/impeller revolution with DEM from Bertrand et al. (2005) 
Number of 
Particles Serial Computer 32 procs 

(speedup=16) 
64 procs 

(speedup=32) 
103 3 h 10 min 5 min 
104 1.25 days 2 h 1 h 
106 4 months 1 week 3.5 days 

 
 
7.3 Compartment Modeling and DEM Comparison 

A comparison between compartment and DEM modeling is performed in this 

section to illustrate the advantages and limitations of each method. A discrete element 

model was used by Wightman and coworkers (1998) to describe a horizontal cylindrical 

vessel undergoing rotational motion.  The study consisted of modeling the motion of 

identical particles, red and blue.  The vessel was initially loaded with side-by-side 

loading, one half of the cylinder filled with red particles and the other half with blue 

particles.  The granular mixing vessel was subjected to pure rotation, meaning the 

cylinder rotates along the horizontal axis.  Wightman and coworkers (1998) compared the 

results of the DEM simulation with experimental data (Wightman et al., 1996) obtained 

from solidifying the powder mixture at a moment in time. Once solidification occurred, 

slices of the mixture were taken and analyzed under image analysis.  The fraction of red 

particles throughout the vessel showed good agreement with the experimental study and 

DEM simulation. To compare with this study a 16-compartment-model, is used to 

simulate the horizontal cylindrical vessel (Figure 7.1).  The fraction of red particles is 

determined as a function of axial length at four different time points. The graph in Figure 

7.2 shows that the compartment model can very well capture the particle compositional 

behavior as a function of axial length.   
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Figure 7.1: Compartment Model representing a horizontal tumbling blender 
 

0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

1 2 3 4 5 6 7 8

Time 1 Time 2 Time 3 Time 4 DEM

Fr
ac

tio
n 

of
 R

ed
 P

ar
tic

le
s

Axial Position

 
Figure 7.2 Compartment model results for the red particle fraction at time points 1 
through 4 in comparison with a DEM simulation at one time point for a horizontal 
tumbling cylinder. 
 

The main advantage of compartment modeling is its computational speed.  For 

this case, the compartment simulation required 2,084 CPU sec on a Sun Sparc 900 MHz 

Processor 2GB whereas the DEM simulation performed by Wightman and coworkers 

(1998) required about 48 h of CPU time for every second of real time simulated on a Sun 

Sparc 20.6 Workstation thus, revealing huge computational savings. However, it should 

be pointed out that the DEM simulation results in the detailed characterization of particle 

behavior including particle position and trajectory which is not obtained using 

compartment modeling.  
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7.4 Hybrid Compartment-DEM modeling Approach 

As described in the previous section, DEM calculates the spatial trajectory of 

every particle under the effects of convective, shear, dispersive, and gravitational forces.  

The main drawback however is that DEM simulations can be computationally very 

expensive especially when complex geometries are considered.  Thus, the main objective 

of this work is to reduce the computational expense of powder mixing simulations by 

partitioning the mixing system into regions of higher complexity to be modeled by DEM 

and regions of lower complexity to be simulated using compartment modeling.   

Proposed Framework 

The steps of the proposed approach, which are shown in the flowchart depicted in Figure 

7.3 are as follows: 

Step 1: First, the mixing system is partitioned into different mixing regions depending on 

the level of complexity. Complexity is defined as the degree of variability within particle 

circulations that exists within that mixing region.  Regions of high complexity are 

modeled using DEM (or any other detailed simulation approach) and lower complexity 

regions are simulated using compartment modeling (or any other statistical model).  In 

the next section, two approaches are presented for partitioning the mixing system.  

Step 2:  In this step, the parameters needed to perform the numerical simulations are 

determined. For the areas described by DEM, the number of particles, particle diameter, 

and vessel geometry corresponding to each chemical or physical group within the vessel 

must be specified.  For the compartment model, the number of compartments, the number 

of different particles within each compartment, and the particle fluxes must be defined. 

The particle flux is defined as the number of particles exchanged, between compartments 
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per time step.  The particle flux is calculated based on the difference between the number 

of particles (N) that are within the region (i) at time (t+∆t) and the number of particles at 

the same region at time (t) divided by the elapsed time (∆t): N(i,t+ t)-N(i,t)
t

∆
∆

. 

Step 3: Once the system parameters are defined in the previous step, the DEM and 

compartment simulations are run in parallel.  The trajectory of particles leaving one 

mixing regime and entering another are captured as particle exchanges between the 

compartment and DEM simulations.  Thus, at selected time points, a designated number 

of particles located at the interface between DEM and compartment modeling are 

randomly exchanged.  The approach used to model the particle exchanges is described in 

the Exchanging Particles between Model section. 

Step 4: The simulations continue to run until the check point time is reached, tcheck. At 

this point, we check the hybrid results to those obtained from well-established methods 

(described in the Quantifying Model Accuracy and Validation section).  If the difference 

is within an acceptable tolerance level, which is pre-postulated by the user, the simulation 

continues to run and stops when the desired real-time has been modeled, tstop, otherwise 

parameters are adjusted and the simulations are repeated.   
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Figure 7.3: Proposed New Hybrid Algorithm 

7.5 Mixing Process Partition 

As mentioned in the previous section, the first step in the proposed hybrid 

approach is to determine the degree of complexity in each section in order to treat each 

section with the appropriate modeling tool. In this section, two methods are described 

that can be used to partition the mixing system.  The first approach is based on heuristics 
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and geometric arguments, whereas the second approach is centered on estimation of 

particle velocities.  

7.6 Partition Method I 

The first method involves the spatial discretization of the mixer given prior 

knowledge of the different mixing regimes.  Once the vessel is divided into regions, the 

particle flux defined as the slope of the number of particles at different time intervals (j) 

is denoted as mj.  This is determined for each section computationally or experimentally.  

Since the particle fluxes at each region vary as a function of time, the particle fluxes are 

evaluated at different time intervals. The standard deviation is evaluated based on the 

difference between the average particle fluxes with one region at different time points.  If 

the particle fluxes exhibit high variability in terms of the standard deviations (σ), a 

detailed model is used to account for the mixing behavior in that region.  On the other 

hand, if the particle fluxes show a small degree of variability at different time intervals, 

then a less expensive model such as a compartment model can be used to simulate this 

region. 

7.6.1 Partition Method I - Illustrative Example 

An illustrating example is used here to demonstrate the previously described 

approach. The system studied is a horizontal cylinder with an impeller with the 

parameters shown in Table 7.2.  The vessel is loaded with two types of particles 

distinguished by their color (red or blue).  The horizontal cylinder within an impeller 

attached to a rod, shown in Figure 7.4a, is divided into five regions all with the same 

diameter, d, and axial length, L/5, as shown in Figure 7.4b. Once the vessel is divided 

into the pre-selected number of regions, the particle flux (i.e., the number of particles 
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exchanged within each region, j, at each time step) is determined.  The fluxes denoted as 

m1, m2, and m3, for three different time intervals and all the regions, are displayed in 

Table 7.3. Regions 1 and 2 exhibit higher variability.  This is expected since these regions 

are closer to the moving blade. Thus, using the first approach regions 1 and 2 will be 

modeled using a discrete element method while regions, 3, 4, and 5, will be simulated 

using a compartment model. 

Table 7.2: Simulation Parameters for the DEM simulations of a horizontal cylinder with 
a blade. 
Number of Red Particles  700 
Diameter of Red Particle .01 m 
Number of Blue Particles 700 
Diameter of Blue Particle .01 m 
Radial Length of Vessel .1 m 
Axial Length of Vessel .5 m 
Length of Impeller Rod .45 m 
Diameter of Impeller .1 m 
Impeller thickness .05 m 
 

a

 

Figure 7.4: (a) A schematic of the mixer modeled in the case studies. 
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Figure 7.4: (b) A mixer partitioned into 5 regions with the same radial distance. 

 

L/5 L/5 L/5 L/5 L/5 D

b

 
Table 7.3: The particle fluxes for both red and blue particles in five regions within the 
horizontal cylinder. 

Particle Blue Red  
Region |m1| |m2| |m3| σ |m1| |m2| |m3| σ 

1 27.08 11.69 12.84 8.6 2.34 14.01 20.97 12.0 
2 2.48 6.82 7.50 5.6 0.13 2.36 10.10 9.9 
3 1.58 2.40 4.90 1.7 0.76 6.41 4.95 5.7 
4 3.78 4.92 9.54 3.1 3.26 3.48 10.10 3.9 
5 1.83 0.70 2.74 1.0 3.22 2.58 6.16 1.9 

 
7.7 Partition Method II 

The second approach partitions the mixer into separate regions depending on the 

particle velocities in comparison to the first approach that uses the variability in particle 

fluxes.  For conditions where no experimental measurements exist, the velocity profiles 

can be determined using a computer simulation.  In this case, in order to limit the 

computational requirements, the simulation time is reduced to the necessary time needed 

to characterize the system.  To determine whether reducing the modeling time affects 

vessel partitioning, the particle velocities at succeeding time intervals are evaluated.  For 

the system described in the previous section, the particle velocities as a function of axial 

length at different time intervals are obtained from a DEM simulation and displayed in 

Figure 7.5. The figure illustrates that as time increases, the particle velocities exhibit the 

same behavior with respect to axial length. The average velocity variance as a function of 

local axial area is shown in Figure 7.6 which also illustrates that as time increases the 
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variance does not pose significant changes, confirming that running the DEM simulations 

for a small period of time is sufficient to identify the areas of high complexity. 
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Figure 7.5: Velocity component profile at increasing time intervals (a) (.5s-.75s), (b) 
(.75s-1s), (c) (1s-1.25s), (d) (1.25s-1.5s), (e) (1.5s-1.75s), and (f) (1.75s-2s). 
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Figure 7.6: Velocity variability as a function of axial position for the following time 
intervals: Time 1 (.5s-.75s), Time 2 (.75s-1s), Time 3 (1s-1.25s), Time 4 (1.25s-1.5s), 
Time 5 (1.5s-1.75s), and Time 6 (1.75s-2s). 
 
7.7.1 Partition Method II - Illustrative Example 

This section focuses on illustrating the partitioning method that utilizes particle 

velocities obtained from a DEM simulation with the geometric specifications shown in 

Table 7.2. Using these parameters, the particles’ radial velocity is obtained and plotted in 

Figure 7.7 with respect to axial length.  As the figure shows the mixer can be partitioned 

into two areas, a region with an axial position greater than .25 m which is modeled with a 

detailed DEM simulation, whereas the rest of the vessel is simulated using compartment 

modeling.  Thus, the mixer was discretized into ten regions, considering that the mixer 

length is .5 m and the particle distribution at every .05 m needs to be monitored.  Thus 

five regions will be simulated using the DEM and the remaining five will be simulated 

using compartment modeling. Comparing the two partition methodologies, we observe 
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that the second method resulted in a larger percent of the total volume modeled using 

DEM, 50% compared to 40% with the first method. This is mainly because the second 

partition method utilizes a more accurate description of the particle behavior based on 

particle velocities compared to the first method, which is based on system knowledge.  
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Figure 7.7: The radial velocity of particles with respect to their axial position within the 
cylinder.  The solid line represents the point where we differentiate between two 
simulations. 
 
7.8 Exchanging Particles between Models 

Particles are exchanged between the different model simulations in order to 

account for the realistic trajectory of particles moving throughout the mixer.  The 

particles are randomly selected from the regions closer to the neighboring simulation 

boundaries.  However, a problem arises when exchanging particles between a DEM 

simulation and statistical model because the positions, velocities, and forces of the 
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particles entering the DEM simulation are unknown.  Defining these values is important 

since a detailed simulation like DEM requires the particles’ present conditions in order to 

calculate the particle’s future trajectory.  To address this problem, we tag each of the 

particles entering the DEM simulation with the exact position, velocity, and force of a 

randomly chosen particle exiting the DEM simulation.  For example, if particle l leaves 

the DEM simulation whereas particle k enters, particle k will replace the position 

occupied by particle l as shown in Figure 7.8.  It is important to point out that the 

physical identity of the particle does not change because the idea behind exchanging the 

particles is to account for the variation in composition.  
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                               (a)                                                 (b) 
Figure 7.8: Simulation interface exchanging particles between compartments (a) before 
an exchange (b) after an exchange. 
 
7.9 Quantifying Model Accuracy and Validation 

For many industrial products, processes need to be strictly characterized 

throughout the processing stages in order to guarantee product quality.  Typically the 

homogeneity of a powder mixture is measured via sampling within the actual process or 

model.  The variability within the samples must comply with guidelines that require that 

the variance does not exceed a certain limit. There are several factors that contribute to 

the variability of the mixture that are not a result of mixture in-homogeneities but other 
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inaccuracies such as the sampling parameters, and the uncertainty due to the method used 

to retrieve samples.  In order to minimize the error introduced due to modeling 

approximations, the variance is measured and bounded by a pre-specified tolerance as 

follows. 

 In order to determine how well the hybrid approach captures the overall flow in 

the mixing vessel we compare our results with a detailed particle dynamic model such as 

DEM.  The accuracy of the hybrid approach is quantified by calculating the difference 

between the compositional profiles determined in each iteration of the hybrid approach to 

ones obtained either from experimental data obtained using NIR or PEPT as described in 

the Compartment Modeling section, or through another computer simulation as a DEM 

model.  The results are used to validate the proposed hybrid approach; ideally the hybrid 

approach distributes the particles as closely to the realistic distribution in the mixing 

system examined.  In a given spatial domain (i), the number of particles of component (j) 

found using the hybrid approach is defined as Hij and the expected number of particles is 

denoted as Eij, using an experimental analysis or computer simulation. Thus the 

percentage error is defined as: ij ij

ij

(E -H )
e  =    100

Eij × .  Alternatively the sum of squares 

of deviations of different measurements 2
j ij i

i=1

1= (E -H )   
η

σ
η ∑ 2

j can be used to evaluate the 

accuracy of the proposed model where η are the total number of regions. 

A smaller time point is used to prognosticate the behavior of the system denoted 

as tcheck. The longer the time period modeled, the greater the computational requirement.  

As shown in the Partition Method II section the behavior does not change as time 

progresses leading us to believe varying the check time point will not necessarily 
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improve the validation of the results.  The metrics used to quantify the differences 

between the composition profiles obtained from the simulation and the results obtained 

either from experimental evidence or from simplified simulations are discussed in the 

previous section.  At tcheck, if the hybrid model obtains similar outcome to that of the 

substantiate results, the simulation continues until completion.  Otherwise, the number of 

particles interchanged between simulations, the number of particles within each 

simulation, and the area modeled with the detailed simulation approach are adjusted and 

the simulation is repeated using the new parameters.    

7.10 Case Study 

In this section the hybrid approach is applied to model a horizontal agitated mixer, 

which is the same as the one depicted in Figure 7.4a.  A similar horizontal mixing system 

was simulated by Müller and Rumph (1967), they demonstrated that the inclination of the 

blades promotes axial convection, likely by improving the flow of the material in the 

space above the blades.  Moreover, Laurent and Bridgwater (2002d) showed by using 

PEPT with two different tracers that the mixing of a horizontal mixer has two zones in 

the trans-axial plane, one immediately above the agitator shaft and the other beneath it.   

The geometric specifications of the horizontal mixer studied in this section are shown in 

Table 7.4.  The vessel was loaded with two types of particles distinguished by their color 

(red or blue).  The mixer was discretized into ten regions in order to track the particle 

distribution axially at every .05 m.  The vessel is partitioned using the method discussed 

in the Partition Method I section.  As a result, the variability that existed within the 

particle fluxes, showed that four regions should be modeled using DEM (Figure 7.9a, 

non-shaded area) and the remaining six (Figure 7.9a, shaded) can be simulated using 
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compartment modeling as shown in Figure 7.9b. The results were analyzed using the 

metrics discussed in the Quantifying Model Accuracy and Validation section by 

comparing the compositional distribution of the different types of particles with the 

results of a simulation, which is based entirely on DEM.  

Table 7.4: Simulation Parameters 

presentation shown on the top of the vessel (b) Compartment model using the 

 blue particles as a function of time for 3 

regions

 

Number of Red Particles  5000 
Diameter of Red Particle .055 m 
Number of Blue Particles 5000 
Diameter of Blue Particle .055 m 
Radial Length of Vessel .1 m 
Axial Length of Vessel .5 m 
Length of Impeller Rod .45 m 
Diameter of Impeller .1 m 
Impeller thickness .1 m 
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Figure 7.9: (a) Horizontal cylinder partitioned into regions tagged with a numerical 
re
partitioning strategy described in Section 7.6 
 

The compositional distribution of the

 (2,3, and 4) is shown in Figures 7.10a, and as a function of time for 2 regions (9 

and 10) 10b. It is important to point out that the compositional distribution behavior 

determined using a DEM simulation is accurately captured by the hybrid approach.  The 

percentage errors for both the red and blue particles in all ten regions are shown in Table 
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7.5.  The average error for all regions and components is 7.96%.  Notably, DEM 

simulations randomly distribute particles throughout the vessel, and as the particles 

collide at different positions on the impeller, the particles are deflected to neighboring 

regions.  Thus, it is expected that region 2, the region closest to the impeller, exhibits the 

largest error in comparison to other regions.   

Table 7.5: Average percentage errors using the first partitioning strategy described. 
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Figure 7.10: Results from the case study using the partitioning strategy described in 
Section 7.6.  The compositional distribution of a region detained from using an entirely 
based DEM simulation and the hybrid approach.   

 Region Red Particles 
Avg. % Error 

Blue Particles Avg. 
% Error 

1 1.60 3.47 
2 26.69 20.45 
3 2.42 10.89 
4 7.39 2.11 
5 12.87 9.60 
6 11.39 9.38 
7 10.60 11.24 
8 1.18 9.90 
9 1.32 2.95 

10 0.29 3.49 
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Figure 7.10: Results from the case study using the partitioning strategy described in 
Section 7.6.  The compositional distribution of a region detained from using an entirely 
based DEM simulation and the hybrid approach.   

ased on DEM took 16625 CPU sec using a Sun Sparc 900 MHz Processor 2GB.  

Although there is an approximation error introduced in the system description utilizing 

the hybrid approach compared with the DEM simulation, the computational requirement 

is significantly reduced which allows the simulation of more realistic mixing systems. 

The second partition strategy as described in the 7.2.2 Partition Method II section 

uses particle velocities in order to partition the mixing system.  The particle velocities 

shown in Figure 7.11 are determined with a DEM simulation modeled for a short time 

period as discussed in the Partition Method II section.  The velocity profile illustrates that 

the greatest particle velocity variability occurs for the particles that have an axial length 

greater than .4 m.  As a result, the particles with an axial length greater than .4 m are 

solved with DEM and a 16-compartment model is used for the remaining area.  Using the 

second partitioning strategy the system is simulated in 2540 sec of CPU time, in 

comparison to an entirely based DEM simulation that took 23820 sec of computational 

 
The hybrid approach required 2603 CPU sec to run, whereas a simulation entirely 

b
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time.  The additional computational time arises because this partition method predicts 

that a larger volume of the mixer be modeled with DEM.  The vessel was partitioned into 

ten regions in order to partition the mixing system as described in the Partition Method II 

section. Table 7.6 lists the percentage error for each region.  The average percentage error 

for all regions is 5.46%, which is considered marginal given the inherent errors that exist 

within DEM modeling.  DEM models assume several assumptions such as:  spherical 

particle morphology, large particle dimensions, and vessels filled with small particle 

quantities, given all these postulations the existing DEM model results in errors that make 

the hybrid approach’s 5.46% error seem marginal.  The hybrid approach clearly reduces 

the computational time, but it is important to consider the trade-offs between model 

accuracy and computational efficiency.  Using the first partition method the hybrid 

approach required 2603 CPU sec (computational savings were 84 % compared to DEM 

simulation) and the error of the solution is 7.96%, whereas the second partition method 

required a little more time 2540 sec for CPU time (87% computational savings) since an 

additional volume of the mixer is modeled with DEM but the error is reduced to 5.46%. 

Table 7.6: Percentages error results using the second partitioning strategy described. 
Region Blue Particles 

Avg. % Error 
Red Particles 
Avg. % Error 

1 3.99 7.35 
2 5.17 3.95 
3 15.79 10.60 
4 2.29 5.13 
5 11.83 3.26 
6 8.15 5.31 
7 9.45 3.38 
8 1.60 1.09 
9 1.46 2.02 
10 3.86 3.43 
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Figure 7.11: Radial velocities as a function of axial length using the partitioning strategy 
described in Section 7.7.   

Axial Length 

 
7.11 Effects of Space and Time Partitions 

In this section we examine the effects of time steps and number of partitions on 

the performance and computational time of the hybrid approach.  The cases examined use 

a similar vessel to the one mentioned in the previous sections which is horizontal cylinder 

(.5 m) with a horizontal blade (.05 m thick) held up by a rod (.01 in diameter and .5 in 

length) which is located at one end of the vessel as shown in Figure 7.4a.  The results 

shown in Tables 7.7 and 7.8 consider 40% of the vessel using a DEM simulation and 

60% using compartment modeling.   
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Table 7.7: Computational and Accuracy effect as a function of Time Steps. 

Time Step, 
∇t (s) 

DEM  
Cputime (min)

Hybrid 
Approach 

Cputime(min) 

% of 
Computational 

Reduction 

Average % of 
Error 

.01 638 289 55 5 

.02 277 148 47 6.3 

.03 183 108 41 8.04 
 

As shown in Table 7.7, increasing the time steps does reduce the computational 

requirements, however, within particle dynamic simulations the barrier that exists is that 

larger time steps result in imprecise particle trajectory predictions. Which is a result of 

inaccurate calculations of the forces acting on the particles that leads to smaller accuracy. 

Also, as shown in Table 7.7, as the time step decreases the computational time required to 

run the DEM simulation increases due to the additional number of calculations, although 

the computational cost decreases for the hybrid approach is not as large since only 40% 

of the system is simulated using DEM.   The computational cost increase in a DEM 

simulation is due to the fact that DEM simulations calculate particle positions and 

velocities as a first-order differential system, under the assumptions that the forces 

remain constant at each time step, particle positions are then calculated at each time step.  

Due to the constant force assumption during integration, the time step is kept small in 

order to achieve reasonable precision and conserve numerical stability (Wightman et al., 

1998). 

As mentioned in the previous paragraph, since 60% of the mixer is modeled using 

the compartment modeling, another important parameter of the system simulation is the 

number of compartments considered.  As the number of partitions increases the spatial 

area of each compartment decreases, which means that, there is a better tracking of the 

particle behavior within each region.  However, additional particle fluxes are required 
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between each compartment.  The computational efforts caused by increasing the number 

of compartments given that a constant number of particles exist is negligible in 

comparison to computational requirements of the spatial section modeled with DEM, as 

shown in Table 7.8.  Increasing the number of compartments improved the accuracy of 

the method at the expense of a slight computational increase.   

Table 7.8: Computational and Accuracy effect as a function of Partitions. 

# of 
Partitions 

DEM  
Cputime(min) 

Hybrid 
Approach 
Cputime(min) 

% of 
Computational 
Reduction 

Average % of 
Error 

10 277 104 63 6 
12 277 127 56 3 
16 277 125 55 1.1 
 
7.12 Discussion and Future Work 

 Although DEM modeling is well developed, the computational efficiency of 

DEM makes the applicability of this approach rather limiting.  As described in the 

Discrete Element Method section, Bertrand and coworkers (2005) showed that as the 

number of particles in the system increase, the computational intensity of a DEM 

simulation becomes prohibitive.  Moreover, modeling the mixing effects of a large 

number of particles under the influence of a moving boundary increases exponentially the 

computational burden since convective, dispersive, and shear mechanisms should be 

considered.  In response, DEM models are solved by embellishing the particle 

morphology (Moreno-Atanasio et al., 2005; Li et al., 2005) and reducing the number of 

particles in the system in order to trim down calculations (Cleary et al., 1998; Cleary et 

al., 1998), inarguably trading one type of model error for another.   

 In order to overcome computational complexity without sacrificing the accuracy 

of the calculations, a new approach is presented in this work to model powder mixing.  
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The main idea behind the proposed approach is to identify areas that can be solved using 

a statistical model and the areas that require a detailed particle dynamic model.  As a 

result the computational time is reduced by an order of magnitude while capturing the 

mixing behavior of the system. However, it is also important to note the limitations in the 

applicability of our model.  For example, Alexander and Muzzio (2001) showed that in a 

horizontal mixer the particle velocities are dependent on their axial position.  As a result, 

decreasing the axial length of the vessel examined under DEM will result in dramatically 

different velocity values.  Thus, if the exact velocity value for each particle is required, a 

detailed DEM should be used for the entire vessel.  However, it should be noticed that 

based on a recent comparison to experimental measurements performed by Kuo et al. 

(2004) it has been illustrated that even DEM simulations can over-predict the particle 

velocities.  Particle velocity calculations are affected using large time steps.  As a result 

reducing the computational complexity, implores the possibility of trimming down the 

time steps.  As a result, the hybrid approach can be utilized to reduce some of the 

computational complexity of the discrete element mixing models in order to improve the 

determination of particle velocities.  

 To our knowledge, no work has been published utilizing such a hybrid 

framework, but rather the common approach is to reduce the number of particles 

considerably.  The work presented here illustrates that the computational savings are very 

significant and no restrictions exist that hinder adapting this approach to other convective 

or tumbling mixers.  As a result the algorithm developed shows enormous potential to 

improve performance of powder mixing models.  The next and final chapter summarizes 

the work presented in this thesis as well as some suggestions for future work.  
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Chapter 8 

Summary Of Thesis Work and Suggestions For Future Work 

In this chapter, the work presented in the thesis is summarized followed by 

some suggestions for future experimental work.  Some preliminary results 

are presented utilizing a new approach to derive particle fluxes required at 

the compartment model from residence time distributions. Suggestions 

about extension of this work are also presented. 

8.1 Summary Of Thesis Work  

The work presented in this thesis focuses on the characterization of continuous 

mixing processes and the development of computational methods in order to efficiently 

used for modeling powder mixing.  Continuous mixing is affected by a number of 

parameters.  These parameters affect the content uniformity as well as the residence time 

and therefore the strain effects on the powders leaving the mixer.   

In chapter 2, we found that processing angle affected the content uniformity and 

residence time for two different continuous mixers.  Mixing angle and rotation rate 

affected residence time and increasing the residence time improved the mixing 

performance.  The number of blades and blade angle affected the axial transport.  In 

addition, increasing the axial transport resulted in lower residence times; this decreased 

the time inflow fluctuations could be diminished. 

In chapter 3, statistical analysis was used to show that mixing angle and cohesion 

both affected the mixing performance.  On the other hand, the effect of rotation rate was 

scale dependent.  This was further shown in the 4-way ANOVA, where the variability 

between the mixers was considered to be significant. 
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Using Danckwerts RTD method we were able to obtain residence time 

distributions that showed that increasing speed resulted in lower residence times.  In 

collaboration with the University of Birmingham, we used Positron Emission Particle 

Tracking (chapter 4).  We examined the time a radioactive particle traveled within a 

continuous mixer.  We confirmed that increasing the speed decreased the residence time.  

In addition, spatial residence time was examined inside the mixer.  We were able to find 

that although a particle traveled at an upward inclination, variations in the fill level along 

the axial length did not statistically affect the particles temporal mobility. We were also 

able to obtain the particles mobility, in terms of total particle distance and axial 

dispersion coefficient.  The findings showed that at a lower rotation rate, the particle 

traveled a much longer total particle distance. 

Discrete element methods can also used to map particles’ spatial trajectory, 

however, the method is computationally very intensive and limits the number of particles 

that can be modeled within the vessel.  To overcome this limitation, in this work we 

examine a more computationally feasible methodology based on the ideas of 

compartment modeling.  Chapters 5 and 6 present this approach to model powder mixing 

processes for batch and continuous systems.  The method showed to be useful in 

elucidating how important sampling parameters affect homogeneity measurements.  

Sampling location, sample size, and the number of samples are some of the parameters 

that showed effects on computed results.   

In chapter 7, we examined a new modeling approach that connects the DEM and 

Compartment Modeling and tested using a horizontal cylinder with two convective 

blades.  The methods used to discretize the mixers areas are discussed.  The results of the 
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case study show good agreement between a complete DEM model and the hybrid 

methodology discussed.  The big advantage of this hybrid method is that the 

computational time was decreased by almost 50 percent.  The important parameters that 

affected the computational time were the number of spatial regimes, the time steps, and 

the sizes of the areas modeled. 

8.2 Suggestions For Future Work 

Granular batch mixing has been examined for several decades.  However, 

continuous mixing has just started to be examined.  In this thesis, the focus was to 

examine different parameters including rotation rate, mixing angle, and cohesion affected 

the final content uniformity.  In order to further expand the knowledge of the effect of 

cohesion, additional excipients and actives should be examined.  Particularly grades of 

Avicel, Lactose, and MgSt, shown to agglomerate and segregate.  

In addition to content uniformity and residence time measurements, several other 

powder properties such as density, agglomeration, attrition, and electrostatics should be 

measured.  Measurements should be taken within the mixer as well as at the discharge, 

considering powder properties may change during operation handling and discharge.  The 

understanding of these powder properties can lead to findings used to further improve 

mixer design and define optimal operating conditions.   

Process synthesis is another important issue in pharmaceutical manufacturing, 

which may include recycling powder streams and unit process integration. For example 

considering the presence of agglomerates within APAP, the active was milled to prevent 

feeding agglomerates.  However, during powder handing, the intensity of shear within the 

mixer may induce the formation of agglomeration within the process itself.  In this case it 
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would beneficial to connect a mill at the outflow of the mixer to examine if content 

uniformity is improved.   

Validation of the content of these samples is also important.  In this study, the 

analysis was based on Near Infrared Spectroscopy.  However, this analytical method has 

been shown to be significantly affected by the number of scans as well as the sample size 

and in some cases, the extent of sample segregation.  In order to further validate the 

effectiveness of Near Infrared Spectroscopy additional work should focus on other 

analysis alternatives such as High Pressure Liquid Chromatography (HPLC) or Raman.  

Gathering additional alternatives, is essential in situations were Near Infrared 

Spectroscopy cannot accurately detect the presence of a chemical component, such as 

Citric Acid.  Once an accurate method has been established, the next step is to ensure the 

accuracy of the method for online usage.  Development of an efficient online method can 

be used as feedback information for control applications.  Control methods such as Model 

Predictive Control, can adjust the processing parameters to ensure product quality. 

The implementation of control methods such as Model Predictive Control, leads 

to future computational work suggestions. We have established that compartment 

modeling can capture mixing behavior and consider the effect of sampling in its 

predictions.  However, in order to effectively use compartment modeling, the fluxes 

between compartments are very important. 

Obtaining particle fluxes from residence time distributions is beneficial because 

of the ability to incorporate many of the physical properties that affect the transport 

phenomena.  As mentioned in chapters 5 and 6, compartment models require substantial 

input (from experiments, or from particle dynamics calculations) to provide realistic 
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predictions. Unfortunately, at the present time, little experimental work exists on 

continuous mixing, particularly for pharmaceutical applications.  Previously Claudel and 

coworkers (2003) have used residence time distributions to obtain fluxes.  Obtaining 

particle mobility from residence time is not a new concept, considering Sherritt and 

coworkers (2003) approximation that uses the mean and standard deviation of the 

residence time to obtain the axial dispersion coefficient.   

As explained in chapters 5 and 6, a compartment model can have several different 

structures.  Furthermore, increasing the number of compartments also results in an 

increase in the number of particle fluxes between compartments.  Here, an analytical 

approach to compartment specification is considered, where each compartment is 

considered to be a well-mixed vessel in order to illustrate the limitations of obtaining 

fluxes solely based on residence time distributions.  Consider a 4-compartment system, 

where material is only fed at a flowrate of Fin, in the first compartment with an outflow 

flowrate from the 4th compartment at Fout as shown in Figure 8.1.   

 

 

 

Figure 8.1: A Four-Compartment Model Schematic 
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The concentration within each compartment can be represented as a series of 

differential equations, as shown below:   

1
in f s 1 R 2 s 3

2
f 1 R s 2 s 4

3
s 1 f s 3 R 4

4
s 2 f 3 s R 4 out

c =F -(k +k )c +k c +k c
t
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t

c =k c -(k k )c k c
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c =k c k c -(k k )c F
t

∂
∂
∂
∂

∂
+ +

∂
∂

+ + −
∂

 

 
where ci, represents the concentration within compartment i, where i=1,2,3,4.  In this 

work we assume that the volume within each compartment is constant, in order to prevent 

including additional constraints on the fluxes to maintain a finite compartment volume.   

The fluxes can be found using a direct search method on a specific range for each 

of the fluxes. For example kf, kr, and ks exists in the space (t0:∆t:tf), where t0 is the initial 

time point, ∆t is the time interval, and tf is the final time point.  From there we find the 

fluxes that best fit the experimental residence time distributions.  These fluxes are the 

ones with the lowest deviation between the data and the compartment model for all the n 

points, as follows: 

n
2

model experiment
t 1

(y (t)-y (t))
Error

n
==

∑
  

The lowest error for the selected parameter range gives rise to the optimal fluxes, kfo, kro, 

and kso.  

As discussed in chapter 2, the residence time distribution is the probability 

distribution function that describes the time that the powder elements spend within the 

process, which in this case is a continuous powder mixer.  The effect of changing the 
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mixing inclination on the residence time is shown in Figure 8.2.  The upward angle 

results in a broader residence time distribution whereas as the angle is shifted from the 

horizontal to downward the distribution width decreases.   
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Figure 8.2: Experimental Residence Time Distributions for varying mixing angles. 
 
 In an example case study, using the five residence time distributions for different 

processing inclinations shown in Figure 8.4, the fluxes that “best-fit” the data were 

searched for the four-compartment model shown in Figure 8.1.  The parameter space of 

the fluxes was selected to be: kf =[0:.125:2.5], kr=[0:.125:2.5], ks=[0:.125:2.5].  The 

“best-fit” fluxes for the experimental results are shown in Table 8.1 and are shown to fit 

well the experimental data (Figure 8.3).   

Table 8.1: Mixing Angle Flux Results for the kf,kr,ks =[0:.125:2.5]  
Mixing Angle kf kr ks No. Points Error 
Upward (+14°) 0.75 0.75 1 14 .020 
Upward-Horiz. (+7.5°) 0.5 0.5 2 9 0.009 
Horizontal (0°) 2.125 2.125 0.625 5 0.005 
Hori-Downward (-7.5°) 1.5 1.5 0.375 6 0.058 
Downward (-14°) 2.25 2.25 0.375 6 .024 
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Figure 8.3: Experimental data and 4-compartment modeled (using the fluxes from Table 
8.1) data of varying mixing inclination. 

 
Expanding the space of fluxes kf =[0:.125:5], kr=[0:.125:5], ks=[0:.125:5] slightly 

changes the fluxes found as shown in Table 8.2 but still results in a very small fitting 

error.  We also decreased the interval step points to examine the subspace from 0.125 to 

0.01, which resulted in the subspace kf=[0:.01:2.5], kr=[0:.01:2.5], ks=[0:.01:2.5].  The 
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“best-fit” fluxes did change as shown in Table 8.3 but the error change remained 

negligible. 

Table 8.2: Mixing Angle Flux Results for the kf,kr,ks =[0:.125:5] 

Mixing Angle kf kr ks

No. 
Points Error 

Upward 5 5 .1250 14 0.02 
Upward-Horiz. .5 .5 2 9 0.009 
Horizontal 2.125 2.125 .6250 5 0.005 
Hori-Downward 1.5 1.5 .375 6 0.058 
Downward 2.25 2.25 .3750 6 0.024 

 
Table 8.3: Mixing Angle Flux Results for the kf,kr,ks =[0:.01:2.5]  

Mixing Angle kf kr ks

No. 
Points Error 

Upward .68 .68 2.05 14 0.019 
Upward-Horiz. 2.5 2.5 .11 9 0.008 
Horizontal 2.39 2.39 .54 5 0.004 
Hori-Downward 1.6 1.6 .370 6 0.058 
Downward 1.96 1.96 .420 6 0.023 

 

Considering the different number of fluxes that can be obtained by utilizing this 

approach, finding the correct fluxes will require additional information.  This additional 

information maybe obtained from positron emission particle tracking or discrete element 

methods, among other approaches.  In addition to discrete element methods, other 

modeling frameworks that can be connected to compartment modeling exist.  For 

example, population balance methods that account for particle agglomeration and 

attrition should also be investigated.  Given the advantages and limitations of the existing 

models, a new hybrid methodology that combines more than two methods may result in 

an ideal modeling method for granular materials.   
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