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ABSTRACT OF THE DISSERTATION

Automatic Detection, Segmentation and Motion

Characterization of the Heart from Tagged MRI

by Zhen Qian

Dissertation Director: Dimitris N. Metaxas and Leon Axel

Cardiac disease is the leading cause of death in the developed countries. To reduce

the mortality, early diagnosis is critical. Tagged MRI is a non-invasive technique for

the study of cardiac deformation. It generates an MRI-visible tag pattern within the

heart that deforms with the tissue during the cardiac cycle in vivo, which gives motion

information of the myocardium. It has the potential of early diagnosis and quantitative

analysis of various kinds of heart diseases and malfunctions. The difficulty preventing

this technique from clinical use is the lack of efficient post-processing methods that au-

tomatically extract and analyze cardiac motion from tagged MRI data, which consists

of image analysis tasks such as image preprocessing, tagging lines enhancement and

tracking, tag removal, heart detection, cardiac boundaries segmentation, and motion

or strain estimation. In this dissertation, a system of accurate and reliable automatic /

semi-automatic tagged MR image analysis solutions will be given to all these problems.

The methodologies of this system involves the interplay between traditional image pro-

cessing techniques and state-of-the-art statistics, physics and machine learning based

methods. In addition, medical prior knowledge and practices have been incorporated

into the algorithms. In this research, a wavelet-like Gabor filter-based method has been

developed to solve tasks such as tag enhancement, tag removal, myocardial tracking,
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and strain estimation. Because of its wide applications, Gabor filtering has the poten-

tial to become a routine function in tMRI analysis systems. We are also the first that

introduced learning-based approaches into the detection and boundary segmentation of

the heart in cardiac tMRI, by integrating statistical shape analysis, learning-based local

appearance modeling, and sampling-based tracking techniques. For myocardial defor-

mation analysis, we developed both tracking and non-tracking-based strain estimation

algorithms, and conducted a quantitative comparison with registered ultrasound elas-

tography. Based on our strain estimates, a novel tensor-based classification framework

has been developed to identify and localize regional cardiac abnormalities in human

subjects. Experimental results show the automatic detection, segmentation and motion

characterization methods that we have developed in this dissertation can automate and

largely speed up the image analysis process of tMRI, and achieve robust and accurate

results. This research provides a promising avenue to make tMRI clinically accessible.

iii



Acknowledgements

First of all, I would like to thank my advisors, Professor Dimitris Metaxas and Professor

Leon Axel, for their constant support, encouragement and guidance in this research. I

have greatly benefited from Professor Metaxas’s keen appreciation of the frontiers and

challenges in Medical Image Analysis and Computer Vision. His insightful discussions

and advice significantly contributed to the smooth and successful completion of this

dissertation. I am grateful to Professor Axel who exposed me to the fascinating research

areas of Radiology, Medical Image Processing, and Cardiovascular Research. Always

friendly, patient, and willing to offer help, Professor Axel has been a wonderful source

of knowledge and support. I am very fortunate to have them as my mentors.

I would like to thank the other members of my doctoral committee: Prof. John

Li, Prof. Nada Boustany and Prof. Anant Madabhushi for their valuable advice, help

and suggestions regarding this dissertation. I am grateful to Prof. Li for being my

committee chair. I thank Prof. Madabhushi for his many enlightening discussions and

suggestions during my preparation for the dissertation proposal.

Thanks also go to Professor Elisa Konofagou and her student Wei-Ning Lee, and

Professor David Shreiber and his student Jason Maikos for our fruitful collaborations.

I thank my colleagues for the close team working environment and friendly atmo-

sphere at the Center for Computational Biomedicine Imaging and Modeling (CBIM). I

am grateful to Xiaolei Huang (now Professor) for her warm-hearted help and enlight-

ening discussions regarding this research. Thanks also go to Qingshan Liu, Rui Huang,

Xiaoxu Wang and Ting Chen, for our productive collaborations. I thank Rong Zhang,

Kyoungju Park, Atul Kanaujia, Zhiguo Li, Viorel Mihalef, Jinghao Zhou, Suejung

Huh, Chansu Lee, Peng Yang, Junzhou Huang, and Yuchi Huang for their friendship,

help, and the enjoyable research life together. Thanks also go to Tushar Manglik, Jöel
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular diseases (CVDs) are the leading cause of death globally. According to

a report of the World Health Organization [1], each year about 17.5 million people die

from CVDs, accounting for 30 percent of all global deaths. Although over 80% of CVD

deaths take place in developing countries, CVDs are more fatal in the western world.

Indeed, CVDs have been the number one killer for 80 years in the United States [2]. It

is estimated that one in three American adults has one or more types of CVDs. Each

year more than 800,000 people in the United States die from heart diseases, accounting

for more than 35 percent of all deaths.

Heart diseases usually begin and develop unnoticeably. Nesto et al [3] reported

that abnormal alternations in myocardial motion and contractility occur earlier than

patient’s feeling of uncomfortable or pathological symptoms’ showing up in electro-

cardiogram (ECG). Since the principal work of a heart is to pump blood, myocardial

motion and contractility are of the most important indicators of the cardiac function.

They are highly correlated to various cardiovascular diseases or disfunctions. To reduce

the mortality of cardiovascular diseases, early screening and diagnosis of myocardial

motion abnormality are of great importance.

Current cardiac tomographic imaging methods consist of echocardiography (ultra-

sound), high speed radiographic CT, conventional MRI, and tomographic radionuclide

imaging methods such as single photon emission computed tomography (SPECT) and

positron emission tomography (PET) [4]. Ultrasound imaging is non-invasive and eco-

nomical. But its image quality is relatively poor with the heavy speckle noises, where

detailed cardiac structures are difficult to observe. Speckle tracking-based myocardial
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strain estimator has been recently developed to quantify myocardial contracility. How-

ever there is still an inconclusive debate on this method’s validity, especially on the

validity of utilizing the speckle noise as the material markers.

CT-based tests are more expensive and invasive than ultrasound. At the same

time, a common drawback of current CT imaging methods is their relatively slow ac-

quisition procedure and weak ability of detecting motions. Recently multi-slice and

multi-detector CT techniques [5, 6, 7, 8, 9, 10] have been developed to increase the

temporal resolution of the CT acquisition. However, it results in a relatively high

radiation exposure, which is equivalent to approximately 100-600 chest X-rays.

On the other hand, magnetic resonance imaging (MRI) has also been widely used

in cardiac disease diagnosis [11, 12]. Not like CT, MRI has no ionizing radiation.

Comparing with ultrasound, MRI has higher spatial resolution and higher SNR. MR

images can be taken in any desired plane, and give excellent soft tissue contrast without

the application of a contrast agent. The short acquisition time of MRI makes cine MRI

possible. Cine MRI reconstructs about 20-30 images within a heart beat cycle, which

is much higher temporal resolution than current cine CT technique.

Both CT and MRI techniques are good at depicting the cardiac boundaries, i.e., the

inner and outer surfaces of the heart walls. By tracking the deformation of the heart

wall boundaries, we can estimate the heart’s global motion and assess the global cardiac

function, such as the ejection fraction. However, many disorders of cardiac function

do not affect the heart wall uniformly. It is thus essential to assess the detailed and

localized intramural motion pattern. The lack of reliable identifiable landmark points on

the heart wall boundaries or in the myocardium severely limits the localized myocardial

function assessment, where only the radial component of the myocardial motion can be

inferred from the heart wall motion; the circumferential and twisting components are

invisible by conventional CT or MRI. Hence, in order to quantify regional myocardial

motion, it is desirable to non-invasively label landmarks within the myocardial tissue

in-vivo and let the landmarks move with the heart muscle during heart beats. This

was not possible until MRI tagging technique was first developed about one and a half

decades ago.
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Tagging is a unique feature of MR imaging. In the tissue being imaged, specified

regions are un-magnetized at the beginning of the imaging process and remain un-

magnetized for a short period of time during imaging. The un-magnetized tissues have

dark appearance in MR images and serve as material markers in the resulting cine

MRI. Cardiac tagged MRI (tMRI) is the most important application of MRI tagging.

It labels the myocardium with tagging patterns of parallel lines or grids. By extracting

and tracking the tagging lines or grids through a heart beat, we can non-invasively

assess the localized intramural motion and deformation [13, 14].

Although MRI tagging has been invented for more than a decade, the development of

efficient image processing and analysis methods has lagged significantly behind those for

the imaging itself. The process of tagged MR image analysis is generally still too labor

intensive to be used for anything more than limited-scale studies of cardiac function. A

typical set of cardiac tMRI 4D data consists of 600-1000 images, which vary in imaging

positions, times, and tagging orientations. Manually processing this huge amount of

images is prohibitively time consuming. In order to put tMRI into routine clinical

use, or research applications that involve a large number of subjects, automated image

processing and analysis methods are essential.

1.2 Specific Goals

The principal goal of this dissertation is to develop automated image processing and

analysis techniques for cardiac tagged MRI. In order to make the technique of tMRI

available in routine clinical use, the developed image analysis methods must be highly

accurate and robust. To achieve these requirements, we have a set of inter-related

specific goals.

First, the myocardial motion information is extracted from the deformed tagged

pattern. We need to develop automated methods to extract and track the motion of

the tagging lines or grids in cine MRI. However, the saturated magnetization in the

myocardial tissue decreases quickly and largely disappears in about half of a heart

beat, due to T1 relaxation. Thus the first important image preparation step is tag
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enhancement, which will help us identify and track the tags. In a single 2D tMRI

image set, tracking is performed on the tagging lines or grids in the 2D imaging plane.

In a set of stacked 3D tMRI, tracking results in the neighboring slices should also

be considered to help with the tracking in the current slice because of the spatial

correlation. Therefore tracking the virtual tagging sheets in 3D is desirable.

Another goal of this research is to develop methods to segment the boundaries of

the myocardium. Finding myocardial boundaries is critical for accurate tag extraction

and tracking. Boundary segmentation confines the tracking region in the myocardium,

so as to avoid the effect from the tagged patterns off the myocardium. On the other

hand, myocardial segmentation is also required for 3D heart modeling. To incorporate

the three mutually orthogonal motion components, a 3D model of accurate geome-

try needs to be constructed and deformed in a finite element model framework. In

this dissertation, we will focus on two main approaches for boundary segmentation in

tMRI. First, we will investigate the tag-removal methods in tMRI. As stated before,

the tagged patterns are non-invasively added as material markers in the MR images to

track the myocardial motion. However they also add difficulties in boundary segmenta-

tion, because the dark tags interfere with the boundaries and the intensity-homogenous

regions, which makes the conventional edge or region based segmentation methods not

suitable for tMRI. If we remove the tagging lines or grids in tMRI, boundary segmen-

tation will be largely facilitated. Second, we will introduce machine learning methods

into the boundary segmentation problem. The myocardial boundaries consist of several

contours of the heart’s geometry. It is desirable to learn a statistical shape model to

help with the segmentation. Furthermore, although corrupted by the tagging patterns,

the boundaries are still distinguishable by observing the local appearance. We can use

machine learning methods to find certain local appearance features. In this way, we

will segment tagged image without the tag-removal step.

The primary goal of the image analysis in tMRI is to automatically assess the me-

chanical properties of the ventricular muscle from MRI tagging. Here we use myocardial

strain to describe this property. Strain is mathematically termed as the derivative of

material displacement. We propose two methods for the strain estimation. First, the
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strain calculation is based on the tag tracking results as described previously. Second,

strain is formulated as the change ratio of the local tagging lines’ or grids’ spacings.

To assess the strain estimate from tMRI, we will compare it with the strain result

from registered ultrasound elastography. The intermodal comparison can give deeper

insights into the both imaging modalities. Using the strain and motion estimation, we

will develop a spatio-temporal tensor-based linear classification method to detect and

localize the regional abnormalities in myocardial function.

The above three specific aims make up a concrete framework. Strain analysis (Aim

3) depends on the results from the tag tracking (Aim 1), and boundary segmentation

(Aim 2). Boundary segmentation (Aim 2) helps tracking algorithms (Aim 1) avoid

errors that come from outside of the boundaries. See Figure 1.1 as an illustration of

the framework.

Figure 1.1: The framework of the whole dissertation.

1.3 Structure of dissertation

The structure of this dissertation is organized as follows: In chapter 2, we give the

background knowledge of cardiac tagged MRI and literature review of image analysis

methods in tMRI. In chapter 3, we present tag extraction and tracking methods. In

chapter 4, tagging lines or grids removal methods are discussed. In chapter 5, we inves-

tigate the myocardial segmentation methods in tagged MRI. In chapter 6, myocardial

strain estimation methods are provided. Finally in chapter 7, a conclusion and future
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topics are presented.
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Chapter 2

Background

2.1 Brief Introduction of Tagged MRI

Cardiac MRI tagging is a well-developed method for estimation of localized myocardial

deformations. It was first introduced by Zerhouni [13] and Axel [14]. By spatial mod-

ulation of magnetization of the myocardium, this technique generates a set of equally

spaced parallel planes or grids of saturated magnetization within the myocardium as

temporary tags at end-diastole. Imaging planes are perpendicular to the tagging planes,

so that the tags appear as parallel dark stripes in MRI images. The magnetization of

the myocardium persists for a short period of time (on the order of the relaxation time)

after the modulation, so that we observe the dark tag strips deform with the underly-

ing myocardium during the cardiac cycle in vivo, which gives information on motion of

the myocardium normal to the tagging stripes. Some example images can be seen in

Figure 2.1.

(a) (b) (c) (d)

Figure 2.1: Some examples of the tagged cardiac MRI images.

Part of the tagged MR images being processed in this dissertation are acquired using
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the spatial modulation of magnetization (SPAMM) [14] technique, which uses non-

selective excitation to produce saturated parallel planes throughout the entire imaging

volume within a few milliseconds. One modification of this method to minimize the

tag fading effect is the use of complementary SPAMM (CSPAMM) [15]. This technique

acquires two tagged images with SPAMM patterns that are 180◦ out of phase with each

other and subtracts them.

Tagged MR imaging techniques have been developing and improving throughout this

dissertation work. Part of the tagged MR images used in this dissertation were acquired

with single- and multiecho steady-state free precession (MESSFP) sequence [16, 17, 18].

This MESSFP imaging method achieves excellent contrast between the myocardium and

the ventricular blood. See Fig. 2.1(c,d) for examples.

Most of the image processing and analysis algorithms in this dissertation are de-

veloped to work on various tagged MR techniques, such as the tag extraction and

boundary segmentation methods. However, some of the algorithms are specifically de-

signed for certain imaging settings. For example, the band-stop filtering based tag

removal method works only on the MESSFP images. In the following chapters, we will

discuss the algorithm’s applicable imaging setting if it is not a generic method.

2.2 Related work

Since cardiac MRI tagging was invented one and a half decades ago, much effort has

gone to the search for automated image processing and analysis methods for tagged

MRI. In the following, we will give a brief review of the related work in areas of im-

age preparation, tag segmentation and tracking, tag removal, myocardial boundary

segmentation, and strain estimation.

2.2.1 Image Preparation

Intensity inhomogeneity is a common problem in MR images, which means different

locations in the image have different intensity range. Several general methods have been

developed to suppress the background intensity variation in MR images [19, 20, 21, 22,
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23]. In [24, 25] Montillo et al., and Axel et al. developed two more specific methods for

tagged MRI. In [24] a histogram modification method was specially adapted for tagged

cardiac MRI based on the work in [26]. The author claimed that this method can help

suppress the effects of tag fading as well.

2.2.2 Tag Segmentation and Tracking

The tagging lines fade over time because the myocardial tissue starts to lose its altered

magnetization in less than 0.5 seconds. The major difficulty of tag tracking comes

from the tag fading effect. Several researchers have developed tag enhancement or

segmentation algorithms. Guttman et al. [27] extracted the tag using morphological

operations. Young et al. [28] and Amini et al. [29] developed matched filters to segment

the tag. Then tag tracking is performed on the tag extracted images. Dougherty

et al. [30] have developed algorithms to suppress the tag fading effects. Prince and

McVeigh [31, 32] proposed methods to model the tag fading portion of the variation

based on MRI physics.

For tag tracking, tagging lines or grids are modeled as a set of 1D splines in [33] or

2D splines in [29]. Chandrashetara et al. [34] superimposed a 2D free-form-deformation

(FFD) grid onto the tagged image, and used the approach of non-rigid registration to

track the tagging grids. This method actually tracks the whole FFD region, rather than

only the tagging grids. There are similar optical flow-based methods [35] that track the

whole myocardial region.

Another group of tag tracking methods is based on the HARP technique [36, 37].

Rather than tracking the tag or myocardium, it operates in the spectral domain by

tracking the phase angle of the tag pattern.

2.2.3 Tag Removal

To address the difficulty added by tagging lines, several researchers have proposed

image preprocessing methods to remove or suppress the tagging lines. Based on the

tagging line’s lower intensity and narrow structure, Guttman et al. and Montillo et

al. [27, 38] implemented gray-scale morphological operations to fill up the dark tagging
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lines. Other researchers proposed spectral filtering-based approaches. In [36] Osman

et al. developed a band-pass filtering method to enhance the tag-patterned region

and increase the blood-to-myocardium contrast in the HARP framework. Manglik et

al. [39] developed a Gabor filter bank-based method that is more adaptive to large local

deformations.

2.2.4 Myocardial Boundary Segmentation

Myocardial boundary segmentation is an essential step in tagged MRI analysis. How-

ever, it remains a very difficult task due to the common presence of cluttered objects,

complex object textures, image noise, intensity inhomogeneity, and especially the com-

plexities added by the tagging lines.

As a result, many researchers [40, 41, 42, 43] didn’t address this segmentation prob-

lem, just assuming the boundaries are known from manual input. Guttman et al. [27]

developed a LV segmentation framework that is operated on the tag-removed image,

using morphological operations. The segmentation is based on a dynamic programming

framework. Later, Guttman [44] modified this segmentation into a watershed frame-

work, still using the tag removal strategy. Montillo et al. [24] developed a bi-ventricular

automated segmentation work, which is based on tag removal methods using grayscale

morphological operations, and a 3D deformable model. The main disadvantage of mor-

phological operations is that they are insensitive to the orientations and patterns of the

tag structures, which may lead to filling up the interfaces between organs.

2.2.5 Strain Estimation

Strain estimation is the ultimate goal of tagged MR imaging. Many researchers have

proposed 3D motion reconstruction approaches to calculate the strains. Park et al. [42]

constructed a parametric superquadric model to estimate the detailed motion of LV,

which is driven by the tag displacement using FEM. Declerck et al. [43] used a 3D

B-spline model in modeling LV. Biventricular model has also been proposed in order to

estimate the motion of both LV and RV. Haber et al. [41] developed a patient-specific

FEM mesh to represent the ventricles. Park et al. [45, 46] proposed a superquadric
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model that consists of three surface models and represents both LV and RV. Model

(FEM) to estimate 3D ventricular deformation and strain. In this method, the cardiac

boundary segmentation results are used to fit the generic FEM model into the real heart

data. The tagging lines or grids are used as landmark points, which are registered to

each FEM element. Then the tracking results of the tagging lines or grids are used to

deform the FEM model. The 3D deformation and strain estimation can be obtained

by solving the FEM, i.e., the model converging to the desired shape when the external

forces diminish to zero and the residual motion is negligible. In [47, 48], cardiac stresses

and fiber orientations are obtained from the strain estimations using an EM scheme.

For 2D strain calculation, tracking-based methods are commonly used to derive the

myocardial strain. In [49], deformed tags are tracked and interpolated using a spline

method to obtain the displacement map. Then the 2D Lagrangian strain is calculated

from the horizontal and vertical displacement maps. HARP technique [36, 37] is also

applied in strain estimation, where the tag is tracked implicitly by accumulating the

phase changes in consecutive frames.
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Chapter 3

Tag Extraction and Tracking

3.1 Image Preprocessing

3.1.1 Background

Intensity inhomogeneity is a common problem in MR images, which means different lo-

cations in the image have different intensity range. For example, as shown in Figure 3.1,

the right top corner has much higher average intensity and contrast than the rest of

the image. This inhomogeneity mainly comes from the non-uniform RF fields in MR

imaging setting. Several general methods have been developed to suppress the intensity

variation in MR images [19, 20, 21, 22, 23]. In [24, 25] more specific mthods for tagged

MRI are developed. In [24] a histogram modification method was specially adapted

for tagged cardiac MRI. The author claimed that this method can help suppress the

effects of tag fading as well. We find that many of these methods are computationally

demanding, e.g., in [21] their method requires about 1 minute for a 2D MR image.

Since our data is fully 4D, which usually consists of more than 200 2D slices, these

methods are computational infeasible.

Figure 3.1: An example of intensity inhomogeneity in tagged cardiac MRI images.
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3.1.2 Methodology

Here we adapted the simpler and faster inhomogeneity correction method in [25], whose

results are not perfect but can greatly help the following tag segmentation and tracking.

For simplicity, we assume the MR image only consists of two layers: the foreground

and the background. First the intensity values I(x, y, z) of the input 4D image are

linearly scaled to the range of [0− 127]. Then its histogram H is calculated as:

H(i) =
∑
x,y,z

h(x, y, z), for 0 ≤ i ≤ 127 (3.1)

where,

h(x, y, z) =
{ 1, when i− 0.5 ≤ I(x, y, z) < i+ 0.5

0, otherwise
(3.2)

As shown in Fig. 3.2, the bins around the first histogram peak ip indicate the

background intensities. From H’s first derivative H ′, we find the first index i0 such

that H ′(i0) > 0 and i0 > ip as the threshold value. For a voxel (x, y, z) in the MR

image, if I(x, y, z) > i0 then we classify it as a foreground voxel, otherwise we classify

it as a background voxel.

For all the foreground voxels, we find their median intensity value Mf . Then we can

construct a foreground image If by replacing all the intensity values of the background

voxels by Mf :

If (x, y, z) =
{

Mf , if I(x, y, z) ∈ [0, i0]

I(x, y, z), otherwise
(3.3)

The foreground image If is blurred to Ib by convolving with a 4D Gaussian kernel,

whose standard deviation σ in the X − Y plane is empirically set to two times of the

tagging line spacing in a single 2D slice. For example, for an image set with tag spacing

equalling 10 pixels, we set σx,y = 20 pixels. In the Z direction, the standard deviation

is set to

σz =
σx,y ·Rz

Rx,y
(3.4)
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Figure 3.2: The histogram of the input 4D tagged MR image. i0 is the intensity
threshold to determine whether a voxel belongs to the foreground or the background.

where R is the spatial resolution in each coordinate. In the temporal direction, we

empirically set σt = σz. Furthermore, the blurring process does not require a high

resolution input. We down-sample the input 4D image in the X − Y coordinates to

achieve faster implementation. In experiments, we choose the down-sampling rate of 4

to 1. Then the inhomogeneity corrected image Ic is derived by normalizing the input I

with the blurred foreground Ib:

Ic(x, y, z) = I(x, y, z)/Ib(x, y, z) (3.5)

3.1.3 Experimental Results

We preprocess the tagged MRI as a routine before all the following image analysis pro-

cedures. As shown in Fig. 3.3, the intensity homogenized image has a better readability,

and therefore is easier to process and analysis.

The computation of this MR image inhomogeneity correction method is fast. We

implemented this method on a P4 2.8G Hz workstation using MatLab 6.5. For a
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1)

2)
(a) (b)

Figure 3.3: (1a) is the down-sampled 2D slice of a 4D input image set. The original
image can be found in 3.1; (1b) is the foreground image If . (2a) is the Gaussian blurred
foreground image; (2b) is the inhomogeneity corrected image Ib. Image (1a), (1b) and
(2a) are down-sampled to achieve faster implementation.

256× 256× 7× 20-sized 4D image, it takes less than 10s.

3.1.4 Other Applications

Although the image analysis methods developed or implemented in this dissertation

are mainly designed for the cardiac tMRI applications, many of them are generic meth-

ods, which are suitable for a large range of applications. We find that this intensity

homogenization method is suitable for conventional MR images as well. For example,

we applied this method in 3D abdominal MRI. The experimental settings are similar to

the previous tMRI case, except for the standard deviation in the X−Y plane, which is

much larger in abdominal MRI than in cardiac tMRI. See an example of the intensity

homogeneity correction of abdominal MRI in Fig. 3.4.

By observing the result in Fig. 3.4, we find that the image readability is much

improved, especially in the top and bottom areas. The intensity of the colon lumen,

including the rectal area, becomes more consistent. This will greatly help with region
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1)

2)
(a) (b)

Figure 3.4: (1a) is the 3D view of a down-sampled 3D abdominal MRI set; (1b) is
the 3D view of the foreground image If . (2a) is the 3D view of the Gaussian blurred
foreground image; (2b) is the 3D view of the inhomogeneity corrected image Ib. Image
(1a), (1b) and (2a) are down-sampled to achieve faster implementation.
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intensity-based colon segmentation method.

3.2 2D Tagging Lines Enhancement and Tracking Using Gabor Filter

Bank

3.2.1 Background

The tagging lines fade over time because the myocardial tissue starts to lose its altered

magnetization in less than 0.5 seconds. The effects of tag fading lead to blurred image

edges and valleys. When we try to track the tagging lines in tag faded images, this may

cause tagging lines mis-tracking. Therefore, we need a method to enhance the tagging

lines and suppress the fading effects, so as to facilitate the tracking process. At the

same time, it is desirable to automate this enhancement procedure and segment the

tagging lines.

There have been many methods developed for the tag extraction and motion ex-

traction problem. For example, HARP [50], which was developed in John Hopkins

University, is a technique that has been developed for rapid motion analysis of tagged

MR images. It generates phase angle images that roughly resemble the original tag

pattern. Tagged MR images have a regular tagging lines pattern, which leads to rela-

tively isolated peaks in their spectral domain. HARP is basically a bandpass filter that

selectively filters those isolated spectral peaks. Although it provides a good avenue to-

wards the automated tagging line segmentation, HARP has its limitations. Even with

the addition of a Gaussian roll-off outside [51], HARP’s bandpass filter is still a global

transform in the spatial domain (as shown in Figure 3.5), i.e., HARP’s spatial local

transform is affected by regions far away. Also it is not obvious how to automatically

design a bandpass filter that can simultaneously achieve good resolution in both the

spatial and the frequency domains. When the first harmonic peak is not well concen-

trated, HARP has to increase the bandwidth of its bandpass filter. In this case, if the

tagging lines deform a lot locally, it would not be robust to use such a wide bandpass

filter, which cannot treat regions with and without tag deformations differently. Due to

the phase-wrapping artifact [50], HARP is not suitable when large local deformations
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occur. Another limitation of HARP is that the synthetic tag lines obtained from the

phase angle are only an approximation to a tag line. Therefore it cannot represent the

exact tagging line shape, thickness and deformation.

Figure 3.5: Simplified 1D model of HARP and Gabor filters in frequency domain (left)
and spatial domain (right). Upper is HARP; lower is Gabor filter bank. A Gabor filter
bank uses the combination of a group of Gabor filters to selectively cover the whole
bandpass frequency range; each single filter can still get full constraints in its spatial
domain, but HARP cannot.

3.2.2 Methodology

Instead of HARP, we developed a method for the segmentation and extraction of tagging

lines based on 2D Gabor filters. Gabor filters have been widely used in image processing

applications, such as texture segmentation [52, 53, 54] and edge detection [55]. A

main advantage of Gabor filters, due to their Gaussian envelopes, is that they always

achieve the minimum space-bandwidth product which is specified in the uncertainty

principle [52]. This advantage helps Gabor filters to get full constraints in their spatial

domains (as shown in Figure 3.5) as well as in their frequency domain. However, a
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bandpass method like HARP cannot achieve this. Therefore Gabor filters are wavelet-

like local filters in the spatial domain, which makes it possible to design adaptive filters

with respect to different spatial patterns of different local regions. In this chapter

we design a bank of Gabor filters with different frequencies, directions and shapes

that are specified according to the tagging lines’ pattern in the input image. We then

convolve each Gabor filter in the filter bank with the input image, and derive our results

by seeking the optimum filter for those pixels whose output is greater than a certain

threshold. Therefore, our result is a combination of those outputs from several Gabor

filters (as shown in the lower-left part in Figure 3.5). Our Gabor filter-based algorithm

is adaptive because we specify the frequencies of interest locally, rather than using a

mixture of arbitrary frequencies as in HARP.

Basic definitions

The 2D Gabor filter was first introduced by Daugman [56]. It is basically a 2D Gaussian

multiplied by a complex 2D sinusoid [52], as shown below:

h(x, y) = g(x′, y′)s(x, y) (3.6)

where g(x′, y′) is a 2D Gaussian, and s(x, y) is a complex 2D sinusoid function, i.e.,

g(x′, y′) =
1

2πσx′σy′
e
− 1

2
[( x′

σx′
)2+( y′

σy′
)2]

(3.7)

s(x, y) = exp[−j2π(Ux+ V y)] (3.8)

In Equation 3.7,

x′ = xcosθ + ysinθ, y′ = −xsinθ + ycosθ (3.9)

are the spatial coordinates, which are rotated by an angle θ, and σx, σy gives the

approximate spatial extent of the 2D Gaussian. The 2D Gaussian envelope need not

be symmetric, i.e., σx and σy need not be equal. In Equation 3.8, (U, V ) are the 2D
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frequencies of the complex sinusoid, and its orientation is given by:

φ = arctan(V/U) (3.10)

The Fourier transform H(u, v) of h(x, y) is given by:

H(u, v) = e−2π2[(σx(u−U)′)2+(σy(v−V )′)2] (3.11)

Obviously, H(u, v) is also a Gaussian whose center frequencies are (U, V ) , and

its frequency extent is determined by σx and σy. Thus, H(u, v) actually works as

a bandpass filter. If we simplify our model to a symmetric Gaussian envelope, then

σx = σy = σ , and from Equation 3.11, we can getH(u, v)’s Gaussian standard deviation

σH as σH = 1/(2πσh). Thus:

σh · σH = 1/2π (3.12)

Therefore, the product of spatial resolution and frequency bandwidth achieves a

minimum constant. This is why Gabor filters can simultaneously achieve optimal res-

olutions in both the spatial and the spatial-frequency domains [52]. This makes Gabor

filters work better than HARP.

Gabor Filter Bank Design for Tagging Line Extraction

We use an ellipse-like 2D Gaussian envelope in our case (as shown in Figure 3.6), which

is more adaptable to the complicated geometries of cardiac tissues. We define the σ’s

of the 2D Gaussian as follows:

σx =
1√

(U2 + V 2)
(3.13)

σy =
1√

(U2 + V 2)
· 1
4

(3.14)

where (U, V ) are the frequencies of the first harmonic of the Fourier transformed

image. We obtain the (U, V ) automatically by finding the coordinates of the first

harmonic peaks in the spectral domain [51]. (As seen in Fig. 3.7)

The orientation angle θ of the Gaussian envelope is set equal to φ, as was specified

in Equation 3.10.
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Figure 3.6: Real part of a Gabor filter in the spatial domain.

With all the parameters specified above, we could set up a Gabor filter based on

Equation 3.6. Then we modifyparameters θ, U and V to generate a group of different

Gabor filters based on the deformed tagging line pattern of the input image. The

modified new θ′ is set by θ′ = θ + ∆θ, where ∆θ varies from −30◦ to 30◦ to match

different regions in the cardiac MRI (as shown in Fig. 3.8).

Because the images are acquired during a heart beat cycle, the spacings and orien-

tations of the tagging lines change along with the underlying myocardium, and may no

longer be parallel, as shown in Figure 3.1. These changes in the spatial domain lead to

the corresponding changes in the frequency domain. The new U ′ and V ′ are specified

as follows:

U ′ = <{(U + i · V ) ·m · exp(i ·∆φ)} (3.15)

V ′ = ={(U + i · V ) ·m · exp(i ·∆φ)} (3.16)

where m and ∆φ are the magnitude and angle modulations respectively. We mod-

ulate m corresponding to the changes of tag spacings, and modulate ∆φ corresponding

to the changes of the tag lines’ direction. For example, in Figure 3.1, we set m to the

range of [0.9, 1.2], because during systole, most tag lines get closer to each other in their
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Figure 3.7: The indicated pixel is the first harmonic peak of the tagged image in the
Fourier domain. By finding the location of this peak, (U, V ) can be determined by its
coordinates.

middle regions and farther in the two ends. And we set ∆φ to vary from −10◦ to 10◦

by our observation of the tag lines orientation changes. Gabor filters whose θ′ ·∆φ < 0

are excluded, because they cannot cover enough tagging lines, and may generate errors.

As shown in Equation 3.6, a Gabor filter is a Gaussian modulated by a sinusoid.

We find a sinusoidal modulation of the Gaussian would only be desirable for finding a

sinusoidal tag pattern. However, real tagging lines are not exactly sinusoidal. As shown

in Figure 3.1, the tagging lines are usually thinner than the spacing in between. This

is also why there are second, third, or more harmonics in the frequency domain. We

can modify the shape of the sinusoid by adding some higher harmonic components to

it. Thus s(x, y) is modified to:

s′(x, y) =


1
p
e
−jπ(Ux+V y)(1+p)

p ,
1

4π(1 + p)
< |Ux+ V y| ≤ 2p+ 1

4π(1 + p)

e−jπ(Ux+V y)(1+p),
1

4π(1 + p)
≥ |Ux+ V y|

(3.17)

and s′(x, y) is periodic with respect to Ux+ V y , whose period is 1/2π.

We use p to control the sinusoid modification. p is the ratio of the sinusoid’s negative
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Figure 3.8: Different θ fits different cardiac region.

domain to the positive domain. We set p based on the tagging patterns: p experimen-

tally equals two times the ratio of the tag spacing to the tag thickness. Therefore, with

respect to Figure 3.1, we approximately set p to 3.

Normalization

The optimal thresholds for different Gabor filters vary. To determine the threshold of

a certain Gabor filter, we must first do a normalization.

We assume that using different Gabor filters, the total number of pixels within

the tag lines is a constant. First, the total number T of the pixels in the tag lines is

estimated in a manual initialization step. Then, using different Gabor filters, for each

filter, we pick out the α · T number of pixels with the highest values. Experimentally

we set α = 90%. The final result is a combination of all the results from each Gabor

filter.

3.2.3 Experimental Results

Figure 3.10(a) shows three short-axis cardiac MRI images during systole. Figure 3.10(b)

shows the segmentation results using our method, where we set −30◦ ≤ ∆θ ≤ 30◦,
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Figure 3.9: A shape modified Gabor filter with p = 3 that has a more similar appearance
with the tagging line.

α = 90%, p = 3, and in (a1), 0.9 ≤ m ≤ 1.1, −10◦ ≤ ∆φ ≤ 10◦; in (a2), 0.9 ≤

m ≤ 1.2, −10◦ ≤ ∆φ ≤ 10◦; in (a3), 0.9 ≤ m ≤ 1.2, −10◦ ≤ ∆φ ≤ 10◦, based on

the input images’ tag patterns as described in section 3.2.2. This setting is easy and

straightforward. The directions, spacing, thickness, and shape of the resulting tag lines

fit those in the input image quite well. Figure 3.10(c) shows the results of HARP. The

myocardium contours are added manually for better readability. HARP’s results are

obtained by the method described in [51]. Here we find that our result is visually better

than that of HARP. The Gabor filter bank method can achieve higher resolution, and

is more robust for large local deformations compared to HARP.

3.2.4 Tagging Lines Tracking

The purpose of the tag enhancement and segmentation is to facilitate tagging lines

tracking. To avoid effects from the tag patterns off the myocardium, the tagging lines

need to be tracked only within the heart wall. In Chapter 5, we will discuss the details

of myocardial boundary segmentation. Here we assume that the images are segmented.

The tagging lines are modeled as a set of free-end 2D deformable models, Snakes [57].

Each Snake is represented by a set of ordered nodes:
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(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 3.10: (a) Three tagged cardiac MR images in short axis. They are taken from an
MRI sequence during systole. (b) The output results of our method. (c) HARP’s phase
angle result. The myocardium contours are drawn manually for better readability.

v(s) = (x(s), y(s))T (3.18)

where x and y are the coordinate functions and s ∈ [0, 1] is the parametric domain.

As shown in Fig. 3.11, for images with horizontal tagging lines, we initialize the

Snakes as a set of horizontal straight lines that are parallel and equally spaced with

an interval of 1/
√

(U2 + V 2), which is the initial spacing between the tagging lines.

Although we only need to track the tagging lines within the myocardium contours, we

add more Snakes outside the heart region. This is because the heart undergoes a 3D

motion. Myocardial tissues (including the tagged tissues) may move in or out of the

imaging plane. The extra Snakes serve as candidates. When new tagging lines appear

in the myocardium, they can move into the myocardial area and start to track the
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newly appeared tagging lines.

In order to find the initial position of the Snake set, in vertical direction, we move the

set of Snakes up and down in a range of 1/2
√

(U2 + V 2), and calculate the mean of the

pixel intensity values at the locations of the Snakes’ nodes that are on the myocardium.

We search for a minimum intensity mean to find the initial position in the vertical

direction of the horizontal Snake set.

Figure 3.11: Initialization of the Snake set.

Starting from time 0, we track the tagging lines by deforming the Snakes to find

the local maxima in the local vertical (in case of horizontal tagging lines) or horizontal

(in case of vertical tagging lines) profiles at the Snakes’ nodes in the tag enhanced

images, and at the same time preserve certain geometrical constraints. Therefore, the

external forces of Snakes push the Snakes nodes towards the high intensity pixels in the

tag-enhanced images. The internal forces of Snakes are used to regulate the curvatures

within each single Snake, and the distances between Snakes. The deformation of the

Snakes can be formulated as process of energy minimization:
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E(v) = Ei(v) + Ee(v) (3.19)

As seen in Fig. 3.12, besides the conventional internal energy terms of Snakes, we

add spring forces in between the neighboring Snakes to control their spacings. We

define spacing change as ∆d. Therefore, Ei can be formulated as:

Ei(v) =
∫ 1

0
(α|∂V

∂s
|2 + β|∂

2V

∂s2
|2 + γ(∆d)2)ds (3.20)

At the same time, tracking is done only within the myocardial contours, which are

obtained from boundary segmentation. As seen in Fig. 3.12, we have two kinds of

nodes of the Snakes. Nodes on the myocardium are active, which means they get

external forces from the underlying tag-enhanced image, and pull the rest of the nodes

to move. Their motion is regulated by internal forces, which are only from active nodes

themselves. Nodes off the myocardium are passive, which means they are pulled by the

active nodes. Their motion is regulated by internal forces from both active and passive

nodes. When tagging lines move in or out of the imaging plane, the nodes’ labels of

active or passive are inter-changeable.

Figure 3.12: The model of our tagging lines tracking Snakes.
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Tracking Results

The tracking process is limited by the fading effect of the tagging lines. Using different

imaging settings, the trackable frame number varies. In a typical tMRI data set, we

track the tagging lines from end-diastole to end-systole. In Fig. 3.13, we show one

intermediate and one end-systolic tracking results. Manual correcting is optional during

the tracking process, since in some local areas mis-tracking may occur.

Figure 3.13: Tracking results at phases of mid-systole (lhs) and end-systole (rhs).

3.3 3D Gabor Extension and 3D Tagging Sheets Tracking

3.3.1 Background

In order to examine the function of the complete ventricle, i.e., from the ventricular base

to the ventricular apex, 3D (spatially) tagged MR imaging is usually performed. For

example, 3D tMRIs in the short axis (SA) are actually a stack of 2D SA cine slices taken

at different positions along the central axis of the left ventricle. The imaging process

in each position is gated by the ECG signals, so that the whole ventricle is imaged

synchronously throughout a cardiac cycle. As stated in Chapter 2, tMRI generates a

set of parallel saturated tagging planes within the myocardium as material markers at



29

end-diastole by spatial modulation of magnetization. As shown in Fig. 3.14, the imaging

planes are perpendicular to the tagging planes, so that the tagging planes appear as a set

of parallel dark stripes in the MR images and deform with the underlying myocardium.

Intuitively, in order to segment or track the stripes in a 2D slice, the information of the

corresponding stripes in their neighboring slices could be helpful, especially when the

stripes in the current slice are unclear or corrupted.

Therefore, the 2D filtering approach in the previous section has limitations. It tracks

the tagging lines’ displacement only in a single spatial slice, and loses all the information

from the neighboring slices.

(a) (b)

Figure 3.14: (a) shows tagging lines are intersections of the tagging sheets and the
imaging planes. (b) shows a 3D tagged MR image dataset.

Observation of the 3D tagging sheets’ deformation could be more valuable in heart

wall motion modeling and analysis. However, because of the motion of heart wall, the

initial tagging planes are no longer true planes but turn to curved, bent or even twisted

tagging sheets. Finding the tagging lines’ correspondence across the imaging slices, i.e.,

which set of tagging lines belong to the same tagging sheet, is essential to recovering the

deformed tagging sheets. A 3D tracking approach is necessary in finding this tagging

line correspondence.
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3.3.2 Methodology

We extend our 2D Gabor filter bank method to employ a 3D Gabor filter bank, in

order to extract and track the deformed tagging sheets. The filter’s scale, orientation,

and shape are specified according to the geometric pattern of the tagging sheets. We

convolve the 3D Gabor filter bank with the 3D tagged MRI data, which are in a time

sequence. For each set of the 3D data, we extract the tagging sheets by combining the

strong outputs from the filter bank at each voxel. Then we impose a deformable 3D

mesh onto each of the tagging sheets to capture the tagging sheet deformation.

Basic Definitions: 3-D Gabor filter

We extend the 2D Gabor to 3D as following.

h(x, y, z) = g(x′, y′, z′) · s(x, y, z) (3.21)

where g(x′, y′, z′) is a 3-D Gaussian envelope, and s(x, y, z) is a complex sinusoid

function, i.e.,

g(x′, y′, z′) =
1

(2π)
3
2σx′σy′σz′

e
− 1

2
[( x′

σx′
)2+( y′

σy′
)2+( z′

σz′
)2]

(3.22)

s(x, y, z) = exp[−j2π(Ux+ V y +Wz)] (3.23)

In Equation 3.22: (x′, y′, z′)T = R × (x, y, z)T are the rotated spatial coordinates

of the Gaussian envelope. R is a rotation matrix. Note that σx′ , σy′ and σz′ need

not be the same. Thus the shape of this Gaussian envelope can be an ellipsoid. In

Equation 3.23, (x, y, z) is non-rotated spatial coordinates, which means the Gaussian

envelope and the sinusoid could have different orientations. However, for normalization

purposes, we set these two coordinates to the same value. (U, V,W ) are the 3D frequen-

cies of the complex sinusoid. They determine a Gabor filter’s orientation and spacing

in the spatial domain. As shown in Fig 2, a 3D Gabor filter has sets of iso-surfaces

such that all those voxels on the same iso-surface have a constant value, for instance, in
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Fig. 3.15(a), all the same colored voxels are on a same set of iso-surfaces; in Fig. 3.15(b),

one set of the iso-surfaces is drawn as the yellow pancakes. The parallel iso-surfaces

are geometrically similar with the 3D MR tagging sheets in the local regions. This

makes it suitable for extraction and segmentation of tagging sheets. The normal of

these iso-surfaces is a constant and set by:

~Nisosurface = (U, V,W ) (3.24)

At the same time, the spacing between two neighboring iso-surfaces is also a constant

and set by:

Sisosurface =
1√

U2 + V 2 +W 2
(3.25)

(a) (b)

Figure 3.15: (a) A slice view of a 3D Gabor filter. (b) An iso-surface view of a 3D
Gabor filter. Here σx′ = σy′ = σz′ , which makes the Gaussian envelope symmetric
and the iso-surfaces in (b) circle-shaped; the normal of these iso-surfaces are (1,1,1),
because U = V = W .

3D Gabor filters design

Tagging sheets are initialized and appear as a set of parallel and equally spaced dark

planes in the myocardium at the end of diastole. During systole, tagging sheets deform

with the underlying heart tissue so that the spacing and orientation of these tag sheets

change over time. For short axis (SA) view, for instance, see Figure 3.16(a), a tag sheet

T is initially perpendicular to the imaging plane I. For T , there are three possible
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rotation angles, φ, ψ, and ϕ with respect to the three rotation axes. ϕ is the rotation

angle w.r.t. the axis that is perpendicular to the tagging sheets. Thus ϕ measures the

in-tagging-sheet rotation, which is not observable from the motion of the tagging sheet.

So for SA images, we only consider the other two possible rotation angles: φ is the

rotation angle w.r.t. the z axis, and ψ is for the rotation w.r.t. the intersection line of

the tagging sheet and the imaging plane.

(a) (b)

Figure 3.16: (a) Tagging sheet’s rotation has three possible orientations. But only φ, ψ
are observable. The in-plane rotation ϕ is ignored. (b) The y axis is set to be parallel
to the initial tagging lines.

Since the initial tagging planes are perpendicular to the imaging planes, we set the

x − y plane parallel to the imaging planes, i.e., the 2D image slices. In the x − y

coordinates, we rotate the 2D image so that the y axis is parallel to the initial tagging

lines. See Figure 3.16(b).

In Equation 3.23, the Gabor sinusoid is specified by (U, V,W ). However, when we

design the Gabor filter to extract the tagging sheets, we are more interested in certain

meaningful parameters, such as the spacing S between the tagging sheets, and the

sheets’ observable orientations φ and ψ. From Equation 3.24 and 3.25, we are able to

use S, φ, and ψ to represent (U, V,W ):

V =
S√

(1 + tan2(φ)) · (1 + tan2(ψ))
(3.26)
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U = V · tan(φ) (3.27)

W = tan(ψ) ·
√
U2 + V 2 (3.28)

In Equation 3.22, we use an ellipsoid-shaped 3D Gaussian envelope, which is more

adaptable to the myocardial geometries and the tag patterns. The long axis of the 3D

Gaussian is set to be the same as the x axis so that it can cover more tag patterns. We

empirically define the σ’s in Equation 3.22 as follows.

σx =
1
S
, σy =

1
4S
, σz =

1
4S

(3.29)

The rotation matrix of the Gaussian envelope is given by:

R = Rz ×Rxy

=


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

×

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (3.30)

This rotation step is to make the Gaussian envelope have the same orientation as

the complex sinusoid, which is important for normalization purposes.

Figure 3.17: A Slice view of a 3D Gabor Filter used in our experiment.
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Interpolation and Parameter Tuning

Usually, the 3D MRI data have different sampling rates in each coordinate. For instance,

in one data set that we used, in the x and y coordinates, the pixel size equals 1.3 mm,

while in the z coordinate, the spacing between two neighboring slices is 5.2 mm. This

means the in-plane sampling rate is about 3 times higher than the inter-plane rate. To

solve this discrepancy, we consider our 3D image as a 3D volume that is contracted

by 4 times in the z direction. Thus contraction in the spatial domain will lead to an

expansion in the Fourier domain. We set the new W ′ = W × 4 , which represents that

the frequency in z direction is expanded by 4 times. At the same time, the Gaussian

envelope is also contracted in the z direction. We set the new σ′z = σz/4 and the

new ψ′ = arctan(tan(ψ) × 4), which is the new rotation angle for the Gaussian. See

Figure 3.17 for an example of the Gabor filter in this case.

The tunable parameters of the 3D Gabor filter bank are φ, ψ and S. The initial

φ0 and S0 are obtained by solving the inverse of the Equations 3.26 and 3.27. The

(U, V ) are obtained by finding the frequencies of the fundamental harmonic of a 2D

image slice at the beginning of the systole from the 3D dataset [58]. The initial ψ0

is set to zero, since the initial tagging sheets are perpendicular to the imaging plane.

In our experiments, we modulate the parameters φ, ψ and S based on the possible

deformations of the myocardium. For example, the spacing between two tagging sheets

may likely increase to up to double width or decrease to half width during myocardial

deformation, thus we tune S so that S0/2 ≤ S ≤ 2S0. The bank of Gabor filters is

made up of a sample of all possible filters whose parameters are in the tuning range.

3.3.3 Experimental Results

We tried our method on four 4D datasets, whose resolution are 96x96x18 pixels and

consist of 6 time sequences, i.e., each dataset contains 108 2D images. All our experi-

ments were coded in Matlab on a P4 1.5GHz desktop computer. The analysis of each

dataset took approximately 15mins. Figure 3.18(a) shows an extraction result at time
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(a) (b)

Figure 3.18: a) A slice view of the 3D Segmentation result. b) The two tagging sheets
that are tracked along time sequences. Tracking results of the sheets are shown in
Fig 3.20.

6. This result is a combination of all the responses of the Gabor filter bank. The com-

bination and normalization method is as follows: we assume that using Gabor filters,

the total number of voxels within the tag sheets is a constant. First, this total number

is estimated in an initialization step. Then using different Gabor filters, we pick out

for each filter the 90% number of pixels with the highest values. The final result is a

combination of all the results from each Gabor filter. As shown in Figure 3.18(a) it is

a binary image cube where the extracted tagging sheets have the value of one and the

else places are zero.

Figure 3.19: The rotation angle ψ at time t+ 1 is constrained by the angle ω and θ at
time t, which prevents tagging sheets aliasing.

The binary image does not give the tagging lines’ correspondences across the image

slices. In the tracking step, we impose a set of deformable meshes onto the initial
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tagging planes and let them deform according to the extracted tagging sheet results

over time. The above binary image cube gives the possible locations where the tagging

sheets may move to. As in Figure 3.19, the range of ψ at time t+ 1 is constrained by

the angles ω and θ, which equal ∠acb and ∠acd, where a and b are the middle points

between the current tagging line and its neighboring tagging lines in the same image

slice at time t, c is the neighboring tagging line which is in the same tagging sheet

as the current tagging line at time t, and d is the left hand side tagging lines on the

neighboring slice. The deformable mesh is also smoothed with an internal spring force.

(a1) (a2) (a3) (a4) (a5) (a6)

(b1) (b2) (b3) (b4) (b5) (b6)

Figure 3.20: Tracking results for two tagging sheets at different locations (from time
1 to time 6). The warm color in (a) represents the tagging sheet motion out of the
plane and away from the viewer, and the cold color in (b) represents the tagging sheet
motion out of the plane and towards the viewer. A deformable mesh is imposed onto
each tagging sheet at time 1, and captures the deformation over time.

Figure 3.20 shows the results of tracking the tagging sheets. Groups (a) and (b)

depict the tracking results of two different tagging sheets. The tag sheet in (a) is located

near the RV and the tag sheet in (b) is located near the LV (See Figure 3.18(b)). The

tagging sheets cover the whole heart, from the atria to the ventricle apex. The lower

parts of the both tagging sheets are relatively smooth and of big displacement. This is

because these two areas correspond to the left ventricle, which is thicker and deforms
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more than the right ventricles and the atria. From the right hand side portion of the

result images in (a) we observe a thin layer whose displacement is relatively big. This

corresponds to the right ventricle. Between the right ventricle and the left ventricle

we observe the mesh relatively smooth and of small displacement. This is because the

tagging sheets are flushed out in the blood pool soon after the systole begins, thus the

mesh deforms passively in this region. We also observe relatively irregular meshes in

the top portion of both tagging sheets, which is because the atria are very thin and

the tagging sheets are not observable. We find visual observation of the two tracking

results fits very well with the cardiac anatomy.

3.4 Conclusion

In this chapter, we presented a set of image precessing methods for tagged MRI, in-

cluding image preparation, tag extraction, and tag tracking in both 2D and 3D. The

fundamental method behind the extraction and tracking applications is the tunable

Gabor filter bank, which is a spatially localized filtering method that is more adaptive

to the tag pattern’s large local deformations. We find that the Gabor filter bank can

enhance and extract the tag patterns in both 2D and 3D tagged MR data, and helps

with the subsequent tag tracking.

The tag tracking method is based on a set of deformable models, either Snakes or

3D spring meshes. The tracking must be confined in the myocardial contours, so that

we are only tracking the tags on the myocardium.
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Chapter 4

Tag Removal

In tagged MRI, magnetically pre-saturated lines or grids are applied to the patient’s

whole thoracic area, including the heart and its neighboring organs, such as chest wall

and liver. As shown in Fig. 4.1, the anatomical structures in MR image are covered

by dark tag patterns, which will bring challenges to the following image processing and

analysis tasks, such as cardiac boundary segmentation. This is because most boundary

segmentation methods are based on information of intensity gradient (edges) and/or

intensity homogeneity (regions). However, in tagged MRI, intensity gradient at or-

gan boundaries, and intensity homogeneity within a single tissue, are corrupted in the

presence of tagging lines or grids.

(a) (b)

Figure 4.1: Tagged cardiac MR sample images in the short axis view. The heart is
located at the center of the image with deformed tag patterns. (a) is an example of line
pattern, and (b) is an example of grid pattern. Both tag patterns are routinely used in
research and clinical environments.

To address the difficulty added by tagging lines, several researchers have proposed

image preprocessing methods to remove or suppress the tagging lines. In [27, 38] the
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authors implemented gray-scale morphological operations to fill up the dark tagging

lines. In [36] the author developed a filtering method to enhance the tag-patterned

region and increase the blood-to-myocardium contrast.

In this chapter, we develop two tag removal methods to deal with tagged MRI with

different imaging settings. The first one is based on an extension of the previous Gabor

filter bank technique. The second one is based on a band-stop filtering technique.

Utilizing these two methods, we build up a system for tag removal tasks that works

well from the very first end-diastole frame to the end-systole frame in both tagging line

or grid image.

4.1 Gabor-based Tag Removal

4.1.1 Background

The Gabor-based tag removal method [39, 59] is based on the observation that after the

initial tagging modulation, the tag patterns in the blood pool are flushed out very soon.

As shown in Fig. 4.1, it is intuitive to utilize the texture pattern of the tags to separate

the myocardium from the blood pool and the surrounding lungs. This Gabor-based

method removes tagging line or grids by actually enhancing the tag-patterned region

and suppressing the non-tagged region. Thus the contrast between the myocardium

and its surrounding non-tagged organs is increased, which can be used to help with the

myocardial segmentation.

4.1.2 Methodology

As stated in the previous chapter, a 2D Gabor filter is defined as:

h(x, y) = g(x′, y′)s(x, y) (4.1)

where s(x, y) is a complex 2D sinusoid function. In the previous chapter, only the

real part of the Gabor filter is used, because we only need to enhance the tagging lines.

The comparison of the real part and the imaginary part can be found in Fig. 4.2. The

2D sinusoid of the imaginary part is shifted by π/2 comparing with the 2D sinusoid
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of the real part, which means its enhancing area is also shifted by π/2. Utilizing the

imaginary part, we can enhance the region at the edges between the dark strip and the

brighter un-tagged tissue.

Figure 4.2: The real and imaginary parts of a 2D complex Gabor filter. We can see the
2D sinusoid of the imaginary part is shifted by π/2 from that of the real part.

If the tagging pattern is a perfect 2D sinusoid, then we can get a smoothly dis-

tributed tag removed image by calculating the magnitude of the complex filter response,

as shown in Equation 4.2. As stated before, the imaginary part is actually a phase

shifted variation of the real part, so Equation 4.2 is actually using the combination of

the real part of Gabor filtering responses with phase shifts 0 and π/2.

Itag removed = |I ∗ h| =
√

(I ∗ <(h))2 + (I ∗ =(h))2 (4.2)

However, in many real cases, tagging lines are not a perfect sinusoid. In their spectral

domain, there are higher order harmonics that affect Itag removed. In order to get a more

smoothly distributed Itag removed, we introduce a phase modulation parameter ω. We

extend the Equations 3.15 and 3.16 to the following equations by adding the phase

modulation parameter ω, which represents the relative position of the current pixel

with respect to the nearby tagging line. Therefore, tuning ω makes the enhancement

shift away from the tagging lines.

U ′ = <{(U + i · V ) ·m · exp(i ·∆φ+ ω)} (4.3)
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V ′ = ={(U + i · V ) ·m · exp(i ·∆φ+ ω)} (4.4)

We are still only using the real part of the Gabor filter. By sampling a range of

discretized ω from 0 to π, we can specifically enhance every small region on and off the

tagging lines.

As stated in the previous chapters, tagging lines deform with the underlying my-

ocardium. The spacings and orientations of the tagging lines change over time. In

Equations 4.3 4.4, m and ∆φ are parameters being tuned to adapt to the local tag

spacing and orientation change. By tuning all the three parameters, m, ∆φ, and ω, of

the Gabor filter, we get high responses from Gabor filtering not only in those variously

deformed tagging lines, but also in the regions between or near these tagging lines. By

combining the enhancing results from each filter in the ”all-three-parameter-tunable”

Gabor filter bank, we can fill in the areas that are between or near the deformed tagging

lines, i.e., the tagging lines are removed and the tag-patterned areas are enhanced.

Itag removed =
∫

m

∫
∆φ

∫ π

ω=−π
I ∗ hm,∆φ,ωdmd∆φdω (4.5)

Practically, the convolution step is computed as an operation in the Fourier domain

for faster implementation:

I ∗ h = F−1{F{I} · F{h}} (4.6)

4.1.3 Preprocessing for Grid Tagging Data

Grid tagging data have two sets of perpendicular tagging lines that track horizontal

and vertical motions at the same time, which avoids the registration difficulty between

the images of horizontal and vertical tagging lines. However Gabor filter-based method

cannot handle the grid data.

We developed a preprocessing method to separate the grid tagging data into hor-

izontal and vertical tagging lines. This method is based on a 2D low-pass filtering

technique. As seen in Fig. 4.3, the initial tagging grids are rotated to be parallel to the

X − Y coordinates. The grid tagging image has four first harmonic peaks and other
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higher order harmonic peaks in its spectral domain. The harmonic peaks in the yellow

circles stand for the component of the horizontal lines, and the harmonic peaks in the

red circles stand for the vertical lines.

Figure 4.3: After Fourier transform, the grid tagging image has four first harmonic
peaks and other higher order harmonic peaks in its spectral domain.

We denote that the first harmonic peaks in the yellow and red circles have 2D fre-

quencies (0,±fhorizontal) and (±fvertical, 0), respectively. Then we can implement a

low-pass filtering precess to attenuate frequency energies of tagging lines in one direc-

tion, so as to extract the others. The low-pass filter Fhorizontal is designed as:

Fhorizontal(x, y) =

 0, y > fhorizontal
2

1, elsewhere
(4.7)

The low-pass filter Fvertical is designed as:

Fhorizontal(x, y) =

 0, x > fvertical
2

1, elsewhere
(4.8)

In order to make the low-pass filter more spatially localized, we add a roll-off edge

by convolving F with a 2D Gaussian whose σ is empirically set to a small value, e.g., 3.

Suppose A is the Fourier transformed spectral image of input image I: A = FFT (I).

Thus the filtered spectrum image A′ is defined as the entry-by-entry product of F and

A:
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A′ = F ×A (4.9)

We take the inverse Fourier transformation of A′ to get the tagging lines separated

results. Fig. 4.4 shows the whole framework.

Figure 4.4: The framework of the low-pass filtering method used to separate the grids
data into two sets of tagging lines.

Fig. 4.5 shows the representative results of the grid data separating method. The

tag removal process will be applied on these results. And the final tag removed image

from the grid data is a combination of the results from the tag removed images of the

two sets of tagging lines.

4.1.4 Experimental Results

Since this Gabor filter-based tag removal method enhances the areas with patten of

tagging lines, it works best on tMR images that are a few frames after the initial

presaturated lines or grids are administrated. It can enhance the blood-to-myocardium

contrast and facilitate myocardium segmentation. As shown in Figure 4.6, the de-tagged

images in mid-systolic phase make the boundary segmentation tasks easier.
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(1)

(2)

(3)

Figure 4.5: The results of the tagging lines image derived from the grid data. Row 1 is
the input grid data. Row 2 is the derived image with horizontal tagging lines. Row 3
is the derived image with vertical tagging lines.

4.2 Band-Stop Filtering-Based Tag Removal

4.2.1 Background

In the previous section, we developed a tag removal method based on Gabor filtering.

This method works best on frames in the mid-systole, when the tags in blood pool are

flushed away completely and the tags in myocardium still remain clear. Therefore, it

has a limitation in dealing with images taken at the beginning of the tagged MR imaging

process, when the tag patterns in the blood pool are not flushed away yet, which makes it

difficult to differentiate the blood pool and myocardium using the pattern information.

Another main limitation of the Gabor-based method is that the band-pass filtering

process severely blurs the boundaries of the tagged regions. It is difficult to restore the

detailed structures, such as of the papillary muscles, from the tag removed images.

MESSFP tMRI is a recently developed imaging technique that achieves excellent
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(a1)

(a2)

(b1)

(b2)

Figure 4.6: Tag removal results. Examples of original images (a1 and b1) with their tag
removed images (a2 and b2). Notice that the first image in (a1) is taken right after the
initial tagging administration, and the tagging lines in the blood pool are not flushed
way yet, which leads to an unsatisfactory tag removal results

contrast between myocardium and blood pool. It is a good practice to keep improving

the available methods in accordance with the advancing of the imaging techniques.

While the previously stated Gabor-based tag removal method still works, we develop

a novel tag removal method based on 2D band-stop filtering, which is operated in the

image’s 2D spatial-frequency domain. This method preserves the appearance of the

original images with high resolution.

As seen in Fig. 4.7, the tagging lines in the spatial domain appear as quasi-2D

sinusoid waves (but not perfect 2D sinusoid waves), therefore in the frequency domain

of the MRI, in addition to the low frequency peak at the origin, there are several

harmonic energy peaks placed symmetrically around the low frequency peak, including

the first and the higher order harmonics.

The purpose of the band-stop filtering is to attenuate these harmonic energies in the

2D frequency domain that are introduced by the spatial tag patterns, so that after the

2D inverse Fourier transform, the spatial pattern of the tagging lines can be removed.
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(a) (b)

Figure 4.7: (a) A tagged cardiac MR sample image in the short axis view. The heart
is located at the center of the image with deformed tagging lines. (b) The magnitude
spectrum image of (a). This image is symmetric w.r.t. the center origin. Besides the
low frequency region, it has four visible harmonic peaks, two first harmonics and two
second harmonics.

To design an optimal band-stop filter, we have two major concerns. First, in or-

der to remove the tag patterns, the harmonic frequency regions should be effectively

suppressed. Second, the other frequency components, such as the low frequencies and

the other high frequencies, should be preserved as much as possible, so that the filtered

image will not lose image details or be over smoothed. Therefore, the most important

task is to precisely delineate the harmonic regions from the power spectrum image.

However, as shown in Fig. 4.7(b), the harmonic regions are usually scattered over a

large range of frequencies around the harmonic peaks, and heavily mixed with each

other or with the low frequency region, which makes the delineation a hard task.

4.2.2 Methodology

In this section, we developed two techniques to solve the delineation task. First we

developed a Mean Shift-based [60, 61] clustering method to automatically partition the

spectrum image into regions that each contain a single dominant energy peak. Then, for

regions containing harmonic peaks, we implemented a Principal Component Analysis-

based multivariate fitting procedure to find an optimal sized 2D asymmetric Gaussian

to model this harmonic region.

We have implemented this band-stop filtering based tag removal method on more
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than 150 real tagged cardiac MR images acquired with different imaging settings. Com-

pared to the Gabor filtering based tag removal methods in the previous section, the

results of this method are more consistent with the original image appearances, and can

recover more detailed structures, such as the papillary muscles. This method is also

able to work on more frames, which are taken at the beginning of end-systole. Con-

ventional region based segmentation method [62] performs better on the tag removed

images by using the new tag removal method than by using the the previous [39, 59]

method. We also find this tag removal method makes the segmentation of the papillary

muscles in tagged MRI possible. To the best of our knowledge, there is no previous

work that achieved papillary muscle segmentation in tagged MRI.

Our tag removal framework is outlined by the flowchart in Fig. 4.8. As shown in

the flowchart, the input image first needs to be Flourier transformed to its frequency

domain, because the following steps are all operated on its spectrum image. However,

since raw MRI data are complex spectrum images before data parsing, our method can

directly be applied on raw MRI data and avoid the first 2D Flourier transform step.

Figure 4.8: The flowchart of our proposed framework. First the input image is trans-
formed to the frequency domain. Then the spectrum image is divided into regions based
on the spectral energy peaks. Third, for regions containing a harmonic peak (there are
the first and the second harmonic peaks in the image), we fit a 2D Gaussian to model
it. Finally the band-stop filters are designed to attenuate the 2D Gaussian regions. The
output image is from the inverse Fourier transform of the filtered spectrum image.
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Partition The Spectrum Image Via Mean Shift

Mean shift is a well known cluster analysis technique [63, 60, 61]. It has a wide range

of applications in image processing and analysis, such as image segmentation [61] and

object tracking [64]. In this section, in order to segment the harmonic regions from

the magnitude spectrum image, we adapted the mean shift method to find the energy

peaks and partition the magnitude spectrum image into several regions so that each

region contains only one energy peak. Mean shift method usually works as a mode

seeking procedure. However, for the magnitude spectrum image, the data points, i.e.,

the pixels, are evenly placed in the 2D Cartesian coordinates. Thus we add a weight

function in the formula which equals the intensity value I of the magnitude spectrum

image. Note that since I is symmetric w.r.t. the origin, the mean shift algorithm only

needs to be applied on half of the image. Let S denote the set of 2D coordinates of the

image pixels in the 2D Euclidean space X. Then at x ∈ X, the mean shift is defined

as:

m(x) =

∑
s∈S

e−
‖x−s‖2

2σ2 I(s)s

∑
s∈S

e−
‖x−s‖2

2σ2 I(s)
− x (4.10)

where σ is the standard deviation of a 2D symmetric Gaussian kernel.

Starting from a pixel x = s, the mean shift vector m(x) is calculated iteratively

and moves the data point until convergence. It is like a hill climbing procedure until it

finds the nearby dominant energy peak in the power spectrum image. See Fig. 4.9(a)

for an example. Every pixel in the magnitude spectrum image undergoes the mean

shift process. The pixels that converge to the same peak are partitioned into the same

region.

In the mean shift algorithm, σ is the only parameter that needs to be tuned. Here

σ is automatically adjusted by the partition results. If the number of the partitioned

regions is too big, e.g., in the case that the second harmonics partially or fully ap-

pear in the frequency image, and the partition number is greater than 5 (as shown in

Fig. 4.9(b)), we need to increase the value of σ. On the other hand, if the number is less
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(a) (b)

(c) (d)

Figure 4.9: (a) shows the mean shift tracks starting from four pixels, two of which
converge to the first harmonic peak, and the other two converge to the low frequency.
(b-d) are the partition results using σ = 3, 4, and 5.5 respectively.

than 5 (as shown in Fig. 4.9(d)), we will need to decrease the value of σ. For a 200×200

pixel-sized image, we initially set σ = 6. As seen in Fig. 4.9(b-d), the partition number

varies with σ’s value. In the case that the second harmonic is not separable from the

first one, we partition them with a center line in between.

Model Harmonic Peaks Via PCA Analysis

From the previous mean shift process, each partitioned harmonic region has only one

dominant energy peak. However, all the pixels in the region don’t necessarily belong to

the region’s scattered harmonic. If we band-stop filter the whole region, we may lose

the informative frequency components and over-smooth the image. Therefore, in order

to keep the image’s details as much as possible, we model the harmonic energy peak as

a 2D asymmetric Gaussian, and the band-stop filtering process is only applied in the

ranges constrained by the set of 2D Gaussians.

We let Si denote the set of 2D coordinates, which are denoted by sk = (xk, yk), k ∈
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[1, N ], of the image pixels within a partitioned region Ri. Let s0 denote the coordinate

of the dominant spectrum power peak within Ri, so that s0 = argmaxsk∈Si
I(sk). Then

we define the covariance matrix C as:

C =
1∑

sk∈Si
I(sk)

·B ·


I(s1) 0 . . .

0
. . . 0

... 0 I(sN )

 · BT (4.11)

where,

B =

 x1 − x0 . . . xk − x0 . . . xN − x0

y1 − y0 . . . yk − y0 . . . yN − y0

 (4.12)

Note that the dimension of C is 2 × 2. We apply principal component analysis on

C and get the eigenvectors v1 and v2, and the eigenvalues λ1 and λ2. Thus the 2D

Gaussian’s orientation φ is determined by v1:

φ = arctan
v1(2)
v1(1)

(4.13)

and its standard deviations in v1 and v2 directions are set as
√
λ1 and

√
λ2. Thus

the 2D Gaussian is defined by:

g(x, y) =
1

2π
√
λ1λ2

exp{−1
2
[
(x′)2

λ1
+

(y′)2

λ2
]} (4.14)

where,  x′
y′

 =

 cos(φ) sin(φ)

− sin(φ) cos(φ)

 ·
 x− x0

y − y0

 (4.15)

The band-stop filter Fi for the partitioned harmonic region Ri is designed to atten-

uate the frequencies in the range of the 2D Gaussian:

Fi(x, y) =

 0, g(x, y) > t

1, elsewhere
(4.16)

where t is a threshold value, which can be determined by the 2D Gaussian’s value

on the crossing point (xc, yc) of the partition edge and the center axis that links the low
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frequency peak and the harmonic peaks. For the first harmonic, we use the partition

edge between the low frequency region and the first harmonic. For the second harmonic,

we use the partition edge between the first and the second harmonics. Therefore t =

g(xc, yc). See the image on the lower right corner of Fig. 4.8 for an example. The red

circles represent the band-stop regions.

In order to make the band-stop filter more spatially localized, we add a roll-off edge

by convolving Fi with a 2D Gaussian whose σ is experimentally set to a small value,

e.g., 3. Suppose the original spectrum image is A (Note that A is complex). Thus the

filtered spectrum image A′ is defined by:

A′ =
∏

i

Fi ×A (4.17)

The tag-removed image can be achieved by inverse Fourier transforming A′.

4.2.3 Experimental Results and Applications

We have run our fully automatic tag removal algorithm on a set of tagged cardiac MR

images with different imaging settings, which includes 20 sequences that each contain

7 to 10 time frames. From the experimental results, we find this new method is robust

and very helpful for the following image segmentation tasks. As shown in Fig. 4.10,

comparing with the previous Gabor filtering based tag removal methods, this method

can work on more time frames and recover more image details. The computational

load is modest. Our implementation was coded in Matlab 7 on a PC with a P4 3.0GHz

CPU. The tag removal process takes less than 10 seconds for a 200 × 200 image on

average.

To test how conventional segmentation methods perform on the tag removed images,

we applied a hybrid segmentation method [62], which integrates the deformable model

and the Markov random field method, to segment the left ventricular (LV) endocardium

on the tag-removed images. As shown in the comparison work in Fig. 4.10, our new

method outperforms the previous Gabor filtering based one.

The shape and motion of the papillary muscles are critical to the cardiac function.
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Sequence 1

a)

b)

c)
Sequence 2

a)

b)

c)

Figure 4.10: We compare our new method with the previous Gabor-based method.
Here we listed two time sequences. Rows (a) show the input tagged MR images. Rows
(b) show the tag removed results from our new method. Rows (c) are results from the
previous Gabor-based method. The red curves are the segmentation results. Note that
for the first few frames in a time sequence, the previous method cannot help with the
segmentation, because the tag pattern still remains in the blood pool.
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However in tagged MRI, due to the relatively small size of the papillary muscle and

the complexity added by the tagging lines, segmentation of the papillary muscles re-

mains a tough task even for human experts. The tag removal process facilitates the

segmentations. Here we assume the LV endocardium has a circle shape. As shown in

Fig. 4.11, based on the segmentation results in Fig. 4.10, we can easily segment the

papillary muscles. To the best of our knowledge, this is the first work that achieves

papillary muscle segmentation in tagged MRI.

Figure 4.11: An example of the papillary muscle segmentation on the tag removed
images. The first row is the input image sequence. The papillary muscles are drawn in
red in the second row.

For grid tagging data, however, the MESSFP tMRI technique has not been success-

fully applied to grid tagging data. The myocardium and blood pool are not differen-

tiable even if the tagging pattern is removed by the band-stop filtering method. We

find that this is the main limitation of this band-stop filtering method. See Fig. 4.12

for an unsuccessful example.

4.3 Conclusion

In this chapter, we have developed two tag removal methods for tagged cardiac MRI,

whose outputs improve the image readability and greatly facilitate the following cardiac

segmentation.

The Gabor filtering based method essentially enhances regions with tag pattens. It

can differentiate myocardium from blood pool once the tagging patterns in the blood

pool are flushed away. A main advantage of this Gabor-based method is that it can

successfully deal with grid tagging data. The limitations of this method are: first, it
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Figure 4.12: An unsuccessful example of the band-stop filtering method applied on grid
tagging data. The contrast between the myocardium and blood pool is so low that it
is difficult to differentiate them even if the tagging grids are removed.

is not able to deal with the first few image frames of a tMRI series. Second, the tag

removed image has a very blurry appearance.

Using the band-stop filtering based method, the tag removed image has an appear-

ance consistent with the original image, except for the tag patterns. A main advantage

of this method is that it can recover very detailed cardiac structures, even the papil-

lary muscles. We have successfully segmented the LV endocardium and LV papillary

muscles on the new tag removed images. A main limitation of this method is that it

can only work on images taken with the MESSFP technique, which do not include grid

tagging data at this moment.

Both methods can be used as an image preprocessing routine before further image

segmentation and tracking tasks. Experimental results show they are helpful for semi-

automatic segmentation with possible manual corrections.
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Chapter 5

Boundary Segmentation

Myocardial boundary segmentation is an essential step in tagged MRI analysis. For

example, in order to accurately track the tagging lines or grids on the myocardium,

we have to constrain the tag tracking to only within the heart wall, and avoid effects

from the boundary edges and the tag patterns off the myocardium. This requires

accurate segmentation results. For many other image analysis tasks, such as 3D heart

modeling, ventricular shape analysis, and ventricular strain analysis, accurate boundary

segmentation also serves as a critical image preprocessing step.

However, it has been noted by several researchers that the rate-limiting step which

prevents tagged MR from clinical use is the robust segmentation of the myocardial

boundary. Although there have been many research efforts on automated contour

segmentation, it remains a very difficult task due to the common presence of cluttered

objects, complex object textures, image noise, intensity inhomogeneity, and especially

the complexities added by the tagging lines.

In this chapter, we develop two myocardial boundary segmentation methods. The

first is a semi-automatic approach with an efficient computer-user interface. It inte-

grates tag removal, Metamorph segmentation and myocardial tracking techniques to

alleviate user’s workload and speed up the whole segmentation process. Based on this

method, we developed a prototype software system, the ”Rutgers Heart Demo”, which

has been used to process a large amount of data in our group. The second method is a

fully automatic approach that is based on machine learning. Using the results from the

prototype system as the training input, we learned the shape priors, boundary criteria,

and motion patterns to achieve automatic, accurate and robust segmentation. This

automatic segmentation method is further extended into a non-parametric tracking
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framework.

5.1 Boundary Segmentation via Tag removal and 4D Spatio-temporal

Propagation

5.1.1 Background

To address the difficulty added by tagging lines, before the segmentation process, the

Gabor based tag removal technique stated in the previous chapter is applied to remove

the tagging lines and enhance the tag-patterned region. Because the tag patterns

in the blood are flushed out very soon after the initial tagging modulation, this de-

tagging technique actually enhances the blood-myocardium contrast and facilitates the

subsequent segmentation of the myocardium from the blood pool.

Our segmentation framework is based on a newly proposed deformable model, which

we call ”MetaMorphs” [65]. The key advantage of the MetaMorphs model is that it

integrates both shape and interior texture and its dynamics are derived coherently from

both boundary and region information in a common variational framework. These prop-

erties of MetaMorphs make it more robust to image noise and artifacts than traditional

shape-only deformable models.

A full set of conventional spatio-temporal(4D) tagged MRI consists of more than

one thousand images. Segmenting every image individually is a time-consuming process

that is not clinically feasible. We propose a new myocardium tracking technique which

enables temporal propagation of the heart wall boundaries over the heart beat cycle.

Through this propagation, we only need to do myocardium segmentation at one time,

then it will be propagated both spatially and temporally to segment the whole set

efficiently. This method is based on implementing a tunable Gabor filter bank to

observe the deformations of the tagging lines over time [66]. This is possible because

we can approximate the displacements (or deformations) of the tagging patterns by

estimating the changes in parameter values of the Gabor filters that maximize the Gabor

response over time. The motion of the tagging lines indicates the underlying motion

of the myocardium, and therefore, the motion of the heart wall boundaries. Spatial
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propagation of the heart wall boundaries is more difficult due to the complex heart

geometry and the topological changes of the boundaries at different positions of the

heart. Our solution is segmenting a few key slices first, which represent the topologies

of the rest of the slices. Then we let the key frames propagate to the remaining slices.

A prototype system was developed allowing us to efficiently process a large amount

of 4D tagged MRI data.

5.1.2 Methodology

MetaMorphs Segmentation on Tag Removed Image

The implementation details of the Gabor-based tag removal method can be found in

Chapter 4. The theoretical and implemental details of the MetaMorphs segmentation

method can be found in [67]. In the following, a brief introduction of MetaMorphs

segmentation on tag-removed image is presented.

In the MetaMorphs framework, the shape of an evolving model is implicitly embed-

ded as the zero level set of a higher dimensional distance function using the Euclidean

distance transform [68].

The model deformations are efficiently parameterized using a space warping tech-

nique, the cubic B-spline based Free Form Deformations (FFD)[69, 70]. The essence

of FFD is to deform an object by manipulating a regular control lattice F overlaid on

its volumetric embedding space. In this paper, we consider an Incremental Free Form

Deformations (IFFD) formulation using the cubic B-spline basis [67].

The interior intensity statistics of the models are captured using nonparametric

kernel-based approximations, which can represent complex multi-modal distributions.

Using this nonparametric approximation, the intensity distribution of the model interior

gets updated automatically while the model deforms.

When finding object boundaries in images, the dynamics of the MetaMorphs models

are derived from an energy functional consisting of both edge/boundary energy terms

and intensity/region energy terms.
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(1a) (1b) (1c) (1d)

(2a) (2b) (2c) (2d)

Figure 5.1: MetaMorphs segmentation on de-tagged images. (1) segmentation at time
7, slice position 7. (2) segmentation at time 7, slice position 10. (a) original image.
(b) image with tags removed by gabor filtering. (c) cardiac contours segmented by
MetaMorphs on de-tagged image. (d) contours projected on the original image.

In Fig. 5.1, we show the Left Ventricle, Right Ventricle, and Epicardium segmenta-

tion using MetaMorphs on de-tagged MR images. By having the tagging lines removed

using Gabor filtering, a MetaMorphs model can get close to the heart wall boundary

more rapidly. Then the model can be further refined on the original tagged image.

The MetaMorphs model evolution is computationally efficient, due to our use of the

nonparametric texture representation and FFD parameterization of the model defor-

mations. For all the examples shown, the segmentation process takes less than 200ms

to converge on a 2GHz PC station.

Myocardial tracking

Recall in Equations 4.3 and 4.4, the Gabor filter is modulated by tuning the parameters

m, ∆φ, and ω, and makes up a Gabor filter bank.

U ′ = <{(U + i · V ) ·m · exp(i ·∆φ+ ω)} (5.1)

V ′ = ={(U + i · V ) ·m · exp(i ·∆φ+ ω)} (5.2)
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The modulated Gabor filter is formulated as:

h(x, y) = g(x, y)× exp[−j2π(U ′x+ V ′y)] (5.3)

At each pixel in the input image, we apply the tunable Gabor filter bank and

find out a set of optimal filter parameters, m, ∆φ, and ω, that maximize the Gabor

filter response. The optimal parameter values at each pixel make up three parameter

maps that provide the region properties around the certain pixel. Figure 5.2 are the

parameter maps that consist of those optimal parameter values. The tagging lines’

spacing, orientations and the relative positions of each pixel are clearly illustrated. At

the same time, a threshold is applied based on the value of the maximum response of

the Gabor filter bank. When there are no tagging lines in a certain area, the Gabor

response becomes very weak and thus below a certain threshold, then this area will be

wiped out and we won’t consider it (as the green area shown in Figure 5.2).

From the m map and the ω map, we can learn the tissue’s relative distance with

respect to the nearby tagging lines, i.e., at a certain pixel, the distance between this

pixel and the nearby tagging line is determined by:

D = Doriginal · ω/(2π ·m) (5.4)

where Doriginal is the original spacing between two un-deformed tagging lines. If

the deformation of a certain material point in 2 intermediate time sequential MRI

is not bigger than a half of the spacing between two nearby tagging lines, which is

true in most of our tagging MRI images because of the high imaging speed and the

relatively slow heart deformation, the change of the ω maps coupled with the m maps

can approximately tell the displacement of the underlying tissue by:

∆D = Doriginal ·∆ω/(2π ·m)

= Dx original ·∆~ωx/(2π ·mx) +Dy original ·∆~ωy/(2π ·my) (5.5)

For conventional short axis(SA) tagged MRI sequences, we have two sets of data
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(a) (b)

Figure 5.2: (a) The upper left image is the original input MR image. The upper right
one is the spacing m map. The warm color indicates the spacing between tagging lines
is smaller, and the cold color indicates the spacing is bigger. The lower left image is
the orientation ∆φ map. The warm color means the orientation of the tagging lines is
from lower left to upper right; the cold color means the orientation is from lower right
to upper left. The lower right image is the phase ω map. The color varying from dark
to bright means the phase angles vary from −π to +π. The gray areas in the maps
mean the parameters are not changed or there is no tagging lines. (b) illustrates the
relationship between tag spacing and the phase shift.

whose tagging lines are initially perpendicular to each other. Thus we can use Equa-

tion 5.5 to calculate the deformations in two different orientations at each pixel in the

time sequence. When we combine the horizontal and vertical deformations from the

two data sets, we get the deformation of the myocardium.

According to the deformations of the tagging lines, the modulation ranges of the

Gabor filter bank parameters are empirically set by:

m ∈ [0.85, 1.3]

∆φ ∈ [−π/12, π/12] (5.6)

ω ∈ [−π, π]

In Figure 5.3 we show a set of myocardium tracking results from time 0 to time



61

9. We manually impose a 2D grid mesh onto the myocardium area and let it deform

with the underlying tissue. There are some irregular deformations in some local regions

because the tracking depends on the tag texture pattern alone, and MR images usually

have high level noise. However the overall movement matches the underlying tissue

motion properly. After smoothing, it is good enough for further tasks such as boundary

tracking and motion analysis.

(t0) (t1) (t2) (t3) (t4)

(t5) (t6) (t7) (t8) (t9)

Figure 5.3: A mesh is imposed on the myocardium area and deforms along time. We
can find the mesh contracts properly overall as the underlying heart tissue contracts.
But in local regions, the mesh deformation results are not accurate enough. This is
because our model is wholly based on the tag texture feature, which may very likely be
corrupted by the neighboring boundaries and the high level noise.

Integration and the Prototype System

We integrate the MetaMorphs segmentation with the myocardial tracking method to

construct our 4D spatio-temporal integrated MR analysis system. By using the two

techniques in a complementary manner, exploiting specific domain knowledge about the

heart anatomy and temporal characteristics of the tagged MR images, we can achieve

efficient, robust segmentation with minimal user interaction. The algorithm consists of

the following main steps. (The illustration of the spatio-temporal propagation can be

found in Figure 5.4).

1. Tag removal for images at the mid-systolic phase. Given a 4D spatio-temporal
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Figure 5.4: The framework of our automated segmentation in 4D spatio-temporal MRI-
tagged images. We start at a center time when the tag lines are flushed away in the
blood area while they remain clear in the myocardium. Boundary segmentation is
done in several key frames on the de-tagged images before the boundary contours are
spatially propagated to the other positions. Then at each position, the boundaries are
temporally propagated to other times.

tagged MR image dataset of the heart, we start by filtering using a tunable Gabor filter

bank on images of a 3D volume that corresponds to a particular time in the middle

of the systolic phase, which we term ’center time’. For a typical dataset in which the

systolic phase is divided into 13 time intervals, we apply the Gabor filtering on images

at time 7, when tag patterns in the endocardium are flushed out by blood but tag lines

in the myocardium are clearly visible.

2. MetaMorphs segmentation using the de-tagged images. Given the de-tagged

Gabor response images at time 7, we use MetaMorphs to segment the cardiac con-

tours including the epicardium, the LV and RV endocardium. Since the formulation

of MetaMorphs naturally integrates both shape and interior texture, and the model

deformations are derived from both boundary and region information, the MetaMorphs
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models can be initialized far away from the object boundary and efficiently converge

to an optimal solution. For each image, we first segment the LV and RV endocardium.

To do this, the user initializes a circular model by clicking one point (the seed point)

inside the object of interest, then the surrounding region intensity statistics and the

gradient information automatically drive the model to converge to the endocardium

boundaries. We then automatically initialize a metamophs model for the epicardial

contour by merging the endocardial contours and expanding the interior volume ac-

cording to myocardium thickness statistics. The model is then allowed to evolve and

converge to the epicardium boundary.

3. Spatial propagation at the mid-systolic center time. At the mid-systolic phase, we

do the segmentation at several key frames which represent the topologies of the rest of

the frames, then let the segmented contours propagate to their nearby frames. In short

axis cardiac MR images, from the apex to the base, the topology of the boundaries goes

through the following variations: 1. one epicardium; 2. one epicardium and one LV

endocardium (in some cases of the RV hypertrophy patients, one epicardium and one

RV endocardium are also possible); 3. one epicardium, one LV endocardium and one RV

endocardium; 4. one epicardium, one LV endocardium and two RV endocardium. The

key frames consist of one center frame of the third topology and three transition frames.

This spatial propagation actually provides a quick initialization method (rather than

manually clicking the seed points as mentioned in step 2) for the rest of the non-key

frames from the key frames.

4. Boundary tracking using the Gabor-based myocardial tracking over time. Once

we have segmented the cardiac contours at time 7, we keep tracking the motion of

the myocardium and the segmented contours over time. This temporal propagation

of the cardiac contours significantly reduces computation time, since it enables us to

do supervised segmentation at only one time, then fully automated segmentation of

the complete 4D dataset can be achieved. It also improves segmentation accuracy

because we capture the overall trend in heart deformation more accurately by taking

into account the temporal connection between segmented boundaries.

5. Boundary refinement using MetaMorphs. In practice, we provide the option to
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further refine the boundaries using MetaMorphs deformable models, which are auto-

matically initialized using the tracked contours. We also provide a manual correction

option to doctors during the whole segmentation process to ensure satisfactory results.

6. Tagging lines tracking within the heart wall. Tagging lines are straight lines at

time 0. They are equally spaced at an interval of 1/
√

(U2 + V 2). Starting from time

0, we keep tracking the tagging lines only within the heart wall from the results of the

boundary segmentation and boundary tracking steps above. The tagging lines’ model

is basically a set of Snakes whose external forces are from the original intensity images

and the tag-enhanced images.

5.1.3 Experimental Results

The prototype of our 4D segmentation system is developed in a Matlab 6.5 GUI en-

vironment. The user needs to load in the raw MRI data of the short axis and long

axis volumes first (Figure 5.5(1a)). Then the user is allowed to examine the whole

data sets, which consist of two short axes and one long axis, and determine the slice

index of the center time (Figure 5.5(1b,1c,2a)). The tag removal step is done on the

3D volume at the center time Figure 5.5(2b). Then the user has a option to determine

the indices of the key frames and do MetaMorphs segmentation on these key frames

(Figure 5.5(2c,3a,3b,3c)). The segmented contours are propagated spatially (optional)

and then temporally (Figure 5.5(4a,4b)). Practically, the spatial propagation step is

optional because for most clinical analysis one typical slice is enough, unless a fully 4D

model is required. Manual interaction is always available during the whole segmenta-

tion and propagation process to make corrections as needed. Figure 5.5(4c) shows a

segmentation result after manual correction.

5.1.4 Discussion

Several novel aspects of our proposed integration contribute to the effective nature of

our approach. First, we are the first to propose and evaluate the feasibility to use

deformable shape and texture models on tag-removed images for segmenting cardiac

objects. Second, we designed our algorithm based on our belief that, to achieve robust
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(1)

(2)

(3)

(4)
(a) (b) (c)

Figure 5.5: Screen snapshots of our segmentation and tracking system. (1a) read in
the SA and LA volumes. (1b,1c,2a) examine the data sets. (2b) de-tagged image
at the center time. (2c,3a) MetaMorphs segmentation based on de-tagged images.
(3b,3c) segmentation results. The papillary muscle is excluded from the myocardium
by manual interaction. (4a,4b) temporal propagation. (4c) a segmentation result after
manual correction.



66

and automated segmentation in 4-D, we have to use information from 4D. Hence the

temporal tracking and spatial segmentation are tightly coupled in our approach. The

deformable model-based segmentation at a mid-systolic phase provides initialization for

the tracking process, while the contour tracking returns close and reliable initialization

for deformable model-based segmentation at all other times. Third, the basis techniques

we use, i.e., the tunable Gabor filter bank and deformable shape and texture models

(MetaMorphs), are both cutting-edge techniques that have been recently developed

and recognized by the research community. Applying these techniques to the difficult

tagged-MR cardiac segmentation problem has posed new challenges to the techniques

themselves and in turn supported their improvements. The integration of tunable

Gabor filter bank and deformable shape and texture models has enabled us to develop a

generic, efficient framework for segmenting 4D spatial-temporal tagged MR images. The

software that resulted from this work requires minimal user interaction, and is robust

and accurate enough for clinical evaluation. Using this software, we have processed a

large amount of tagged MR data, which were used as training data in the following

learning based methods.

5.2 Learning-based Segmentation Approach

5.2.1 Background

The segmentation method described in the previous section has limitations. First,

the Gabor filtering step removes the tagging lines, but, at the same time, blurs the

boundaries, especially for the epicardial boundaries, which leads to inaccurate segmen-

tation. Second, the method consists of several independent contour segmentations, but

not a concrete shape, which likely leads to shape irregularity. Third, the method is

semi-automatic, which needs human interactions throughout the whole segmentation

process. For instance, during boundary tracking, the user has to make manual correc-

tion at each time. This makes this method still time consuming. Ideally we need a fully

automatic method.

Automatic segmentation in tagged MRI is difficult for several reasons. First, the
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myocardial boundaries are often obscured or corrupted by tagging lines, which makes

the conventional edge-based segmentation method infeasible. Although the Gabor-

based tag removal method enhances the contrast between myocardium and blood pool,

the filtering process makes the boundary severely blurred. Second, the intensity of the

tagging lines, the myocardium and the blood vary during the cardiac cycle, because

of the magnetic relaxation and the tag fading effect. It is thus difficult to come up

with a general edge or region based segmentation method. The last and the most

important reason is that, from the clinicians’ point of view, or for the purpose of 3D

modeling, accurate segmentation based solely on the MR image is usually not possible.

For instance, for conventional clinical practice, the endocardial boundary should exclude

the papillary muscles for the purpose of easier analysis. However, in the MR images, the

papillary muscles are often apparently connected with the endocardium and cannot be

separated if only the image information is used. Thus prior shape knowledge is needed

to improve the results of automated segmentation.

5.2.2 Methodology

In order to address the difficulties stated above, we proposed a novel and fully automatic

segmentation method based on three learning frameworks: 1. An active shape model

(ASM) is used as the prior heart shape model. 2. A set of confidence-rated local

boundary criteria are learned by Adaboost, a popular learning scheme (see 5.2.2), at

landmark points of the shape model, using the appearance features in the nearby local

regions. These criteria give the probability of the local region’s center point being

on the boundary, and force their corresponding landmark points to move toward the

direction of the highest probability regions. 3. An Adaboost detection method is used

to initialize the segmentation’s location, orientation and scale. The second component

is the most essential contribution of our method. We abandon the usual edge or region-

based methods because of the complicated boundary and region appearance in the

tagged MRI. It is not feasible to designate one or a few edge or region rules to solve the

complicated segmentation task. Instead, we try to use all possible information, such

as the edges, the ridges, and the breaking points of tagging lines, to form a complex
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rule. It is apparent that at different locations on the heart boundary, this complex rule

must be different, and our confidence in the complex rule varies too. It is impractical

to manually set up each of these complex rules and weight their confidence ratings.

Therefore, we implement Adaboost to learn a set of rules and confidence ratings at

each landmark point on the shape model. The first and the second frameworks are

tightly coupled. The shape model deforms under the forces from Framework 2 while

controlled and smoothed by Framework 1. To achieve fully automatic segmentation,

in Framework 3 the detection method automatically provides an approximate position

and size of the heart to initialize the segmentation step.

ASM Shape Modeling

There has been some previous research on ASM segmentation methods based on local

features modeling. In [71], a statistical analysis was performed, which used sequential

feature forward and backward selection to find the set of optimal local features. In [72],

an EM algorithm was used to select Gabor wavelet-based local features. These two

methods tried to select a small number of features, which is impractical for represen-

tation of complicated local textures such as in tagged MRI. In [73], a simple Adaboost

learning method was proposed to find the optimal edge features. This method didn’t

make full use of the local textures, and didn’t differentiate each landmark point’s con-

fidence level. In our method, similarly using Adaboost, our main contributions are:

the ASM deforms based on a more complex and robust rule, which is learned from the

local appearance, not only of the edges, but also of ridges and tagging line breakpoints.

In this way we get a better representation of the local appearance of the tagged MRI.

At the same time, we derive the confidence rating of each landmark point from their

Adaboost testing error rates, and use these confidence ratings to weight the image

forces on each landmark point. In this way the global shape is affected more by the

more confident points and we eliminate the possible error forces generated from the less

confident points.

Since the shape of the mid portion of the heart in short axis (SA) images is consistent

and topologically fixed (one left ventricle (LV) and one right ventricle (RV) ), it is
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reasonable to implement an active shape model [74] to represent the desired boundary

contours.

The training data sets were acquired from several normal subjects using slightly

different imaging techniques. The data sets were acquired in the short axis plane.

There are two sets of tagging line orientations (0◦ and 90◦, or −45◦ and 45◦) and slightly

different tag spacings. Each data set included images acquired at phases through systole

into early diastole, and at positions along the axis of the LV, from near the apex to

near the base, but without topological changes. An expert was asked to segment the

epicardium (Epi), the left ventricle (LV) endocardium and the right ventricle (RV)

endocardium from the datasets. In total, we obtained 220 sets (each set includes one

LV, one RV, and one Epi) of segmented contours to use as the training data.

Segmented contours were centered and scaled to a uniform size. Landmark points

were placed automatically by finding key points with specific geometric characteristics.

As shown in Figure 5.6(a), the black points are the key points, which were determined

by the curvatures and positions along the contours. For instance, P1 and P2 are the

highest curvature points of the RV; P7 and P8 are on opposite sides of the center axis of

the LV. Then, fixed numbers of other points are equally placed in between. In this way,

the landmark points were registered to the corresponding locations on the contours.

Here, we used 50 points to represent the shape.

(a) (b)

Figure 5.6: (a) Here we used 50 points to represent one set of contours. (b) shows the
the shape variations by the first six principle components. The 2nd and 5th columns
are the mean shapes. The shapes to the left and right sides of the mean shapes are the
variate shapes produced by adding or minus a certain amount of a principal component.
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For each set of contours, the 50 landmark points (xi, yi) were reshaped to form a

shape vector X = (x1, x2, ..., x50, y1, y2, ..., y50)T . Then Principal Component Analysis

was applied and the modes of shape variation were found. Any heart shape can be

approximately modeled by X = X̄ + Pb, where X̄ is the mean shape vector, P is

the matrix of shape variations, and b is the vector of shape parameters weighting the

shape variations. In Figure 5.6(b), the linear shape variations from PCA analysis are

illustrated.

After we find the image forces at each landmark point, as in Section 5.2.2, the

active shape model evolves iteratively. In each iteration, the model deforms under the

influence of the image forces to a new location; the image forces are then calculated at

the new locations before the next iteration.

Learning Boundary Criteria Using Adaboost

To capture the local appearance characteristics, we designed three different kinds of

steerable filters. We use the derivatives of a 2D Gaussian to capture the edges, we

use the second order derivatives of a 2D Gaussian to capture the ridges, and we use

half-reversed 2D Gabor filters [56] to capture the tagging line breakpoints.

Assume G = G((x−x0) cos(θ), (y−y0) sin(θ), σx, σy) is an asymmetric 2D Gaussian,

with effective widths σx and σy, a translation of (x0, y0) and a rotation of θ. We set

the derivative of G to have the same orientation as G:

G′ = Gx cos(θ) +Gy sin(θ) (5.7)

The second derivative of a Gaussian can be approximated as the difference of two

Gaussians with different σ. We fix σx as the long axis of the 2D Gaussians, and set

σy2 > σy1. Thus:

G′′ = G(σy1)−G(σy2) (5.8)

In the previous two equations, we set x0 = 0, and tune y0, θ, σx, σy, σy1 and σy2 to

generate the desired filters.
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The half-reversed 2D Gabor filters are defined as a 2D sine wave multiplied with

the 2D derivative of a Gaussian:

F = G′(x, y) · R{e−j[φ+2π(Ux+V y)]} (5.9)

where G′ is the derivative of a 2D Gaussian. U and V are the frequencies of the

2D sine wave, ψ = arctan(V/U) is the orientation angle of the sine wave, and φ is the

phase shift. We set:

x0 = 0,

σx = σy = σ,

−45◦ ≤ ψ − θ ≤ 45◦

(5.10)

and tune y0, θ, σ, φ, U and V to generate the desired filters.

For a 15x15 sized window, we designed 1840 filters in total. See Figure 5.7(a-c) for

some sample filters.

(a) (b) (c)

Figure 5.7: Sample sets of feature filters: (a) are the derivatives of Gaussian used for
edge detection, (b) are the second derivatives of Gaussian used for ridge detection, and
(c) are the half-reversed Gabor filters used for tag line breakpoint detection.

In the learning section, each training image is scaled proportionally to the scaling of

its contours. At each landmark point of the contours, a small window (15x15) around

it is cut out as a positive appearance training sample for this particular landmark

point. Then along the normal of the contour, on each side of the point, we cut out

two 15x15-sized windows as negative appearance training samples for this particular

landmark point. Thus for each training image, at a particular landmark point, we get
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one positive sample and four negative samples (shown in Figure 5.8) We also randomly

select a few common negative samples outside the heart or inside the blood area, which

are suitable for every landmark point. For image contrast consistency, every sample is

histogram equalized.

Figure 5.8: The illustration of the method to set the training data. The solid box is
the positive sample around the landmark points. The four dashed line boxes along the
normal are the negative samples. This way of setting the negative samples is chosen to
make the classifier more adaptive to the particular landmark position.

The function of the Adaboost algorithm [75, 76] is to classify the positive training

samples from the negative ones by selecting a small number of important features from

a huge potential feature set and creating a weighted combination of them to use as an

accurate strong classifier. During the boosting process, each iteration selects one feature

from the total potential features pool, and combines it (with an appropriate weight)

with the existing classifier that was obtained in the previous iterations. After many

iterations, the weighted combination of the selected important features can become a

strong classifier with high accuracy. The output of the strong classifier is the weighted

summation of the outputs of each of its each selected features, or, the weak classifiers:

F = Σtαtht(x) (5.11)
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where α are the weights of weak classifiers, and h are the outputs of the weak

classifiers.

We call F the boundary criterion. When F > 0, Adaboost classifies the point as

being on the boundary. When F < 0, the point is classified as off the boundary. Even

when the strong classifier consists of a large number of individual features, Adaboost

encounters relatively few overfitting problems [77]. We divided the whole sample set into

one training set and one testing set. The function of the testing set is critical. It gives

a performance measure and a confidence level that tells us how much we should trust

its classification result. Figure 5.9 shows the learning error curve versus the boosting

iteration numbers at two selected landmark points. Note that every landmark point i

has its own α, h and Fi.

(a) (b)

Figure 5.9: (a) and (b) show the training error (solid lines) and testing error (dash
lines) of two landmark points versus Adaboost iteration times. (a) is a point on the LV,
(b) is a point on the Epi. Note how the training and testing error decrease as Adaboost
iterates. Also note the testing error of (a) is higher than (b): we are more confident of
landmark point (b)’s classification result.

Segmentation Based On Confidence Ratings

In the segmentation stage, we first select an initial location and scale, and then overlay

the mean shape X̄, which is obtained from ASM, onto the task image. In section 5.2.3

we describe an automatic initialization method.
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At a selected landmark point i on the shape model, we select several equally spaced

points along the normal of the contour on both sides of i, and use their F values to

examine the corresponding windows centered on these points. In [77], a logistic function

was suggested to estimate the relative boundary probabilities:

Pr(y = +1|x) =
eF (x)

eF (x) + e−F (x)
(5.12)

We find a point j whose test window has the highest probability of being on the heart

boundary. Thus an image force ~f should push the current landmark point i toward j.

Recall that, as discussed in the previous subsection, Adaboost gives the errors of the

testing data ei. We define the confidence rating as:

ci = ln
1
ei

; (5.13)

Intuitively, when ci is big, we trust its classification and increase the image force ~f ,

and conversely. Thus, we define the image force at landmark point i as:

~f = µ · [~x(j)− ~x(i)] · c(i)
||~x(j)− ~x(i)||2

(5.14)

where µ is the step size that equals a small number.

The detailed algorithm to update the parameters of the ASM model with the image

force ~f can be found in [74].

5.2.3 Automatic Initialization: Heart Detection

Detection of the organ of interest in a medical image is often the first step of many

medical image processing tasks. When we are dealing with medical image processing

tasks, such as segmentation, registration, and tracking, first of all, we need to know

where the organ of interest is located and how much area the organ covers. Usually

this detection task is done manually by human experts clicking on the organ location

or cropping out the region of interest.

To achieve automatic initialization for the following segmentation, our goal is to

automatically detect the heart in the tagged MRI images. A closely related problem is
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face detection. We find the face detection problem shares many similarities with our

heart detection task. Usually there are a lot of variations among different faces, which

come from different facial appearance, lighting, expression, etc, while in heart detection,

we also have the same challenges: the heart has different tag pattern, shape, position,

rotation, phase, etc. We can adopt the ideas from the face detection techniques.

There are many existing face-detecting works. [78, 79] were using correlation-

templates-based methods. [80] used view-based eigenspaces to reduce the high dimen-

sional vector space of all possible face patterns to a low dimensional linear subspace.

[81] modeled a deformable templates. Sung, at el [82] generated two distribution models

of ’face-pattern’ and ’non-face-pattern’ from a set of training examples. The classifier

is based on the difference feature vector which is computed between the local image

pattern and the distribution-based model. Papageorgiou [83] set up an over-completed

Haar wavelet representation of the object class. Then they reduced the dimension and

selected the most important features. They trained a support vector machine as the

final classifier. Viola and Jones [84] used Adaboost method on over-completed Haar-

like features to generate an accurate strong classifier from a set of weak classifiers.

They also implemented a cascade detection method to achieve high computation speed.

Here we adopted Viola and Jones’s Adaboost learning framework, because a human’s

prior knowledge tends to add bias constraints on the detection model, and we hope

the algorithm will totally learn its rules from the training data without any a priori.

Furthermore, their implementation is accurate and relatively fast.

As mentioned in the previous section, Adaboost algorithm [75] selects a small num-

ber of important features from a huge feature set and generates an accurate strong

classifier. During the boosting process, each iteration selects one feature from the total

potential features, and weighted combines it with the existing classifier that obtained in

the previous iterations. After many iterations, the weighted combination of the selected

important features turns to be a strong classifier with high accuracy.
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Feature Design

The similar Haar wavelet functions in Viola’s paper are used as features of the weak

classifiers, as seen in Fig. 5.10. The filtered result of a feature is found by convolving the

input image with the feature window. These rectangle features have many advantages.

First, they are able to encode ad-hoc domain knowledge that is difficult to learn using

pixel-based features. Second, they can be computed very fast using Integral Image,

which is much faster than convolution.

Figure 5.10: Example features. They are two-rectangle and four-rectangle features with
different orientations. The white-colored pixels equal 1, the black-colored pixels equal
-1, and the gray equal 0. In total there are 62208 features in a (24x24) sized image.

The Integral Image at pixel x, y is the summation of the pixels above and to the left

of x, y, including x, y itself in the original input image, as seen in Fig. 5.11, 5.12:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′), (5.15)

Where ii is the integral image and i is the original image.

The Attentional Cascade Detection

In the detection process, the input image is divided into a huge number of sub-images,

e.g., a 192x192 sized image is divided into more than 120,000 sub-images. If each sub-

image goes through the strong classifier, which consists of hundreds or thousands of

weak classifiers, the computation is expensive. Alternatively, I used the attentional

cascade technique. This technique is based on three facts: 1st, the first few features

in the strong classifier have relatively lower classifying error; 2nd, we can lower the
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Figure 5.11: An illustration of integral image. Sum within rectangle D = ii4 + ii1 −
ii2 − ii3.

Figure 5.12: A feature example, whose filtered result = ii5 + ii1− ii2− ii4− (ii6 + ii2−
ii3 − ii5).

threshold of the weak classifier to achieve a very low false negative rate at the expense

of an increased false positive rate; 3rd, most of the sub-images don’t contain any heart.

(Actually there should be only one optimal detection). Thus by using the first few weak

classifiers, we can reject most of the sub-images, which saves a lot of time. Figure 5.13

is an example of the attentional cascade algorithm.

Detection Experiments and Results

In the experiment, the training data consist of 297 heart images and 459 non-heart

images; the testing data consist of 41 heart images and 321 non-heart images. All
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Figure 5.13: Five cascade stages with a total number of 100 features are used. At the
first stage which consists of only one feature, 124915 out of 127020 candidate sub-images
are rejected. At the second stage, 1865 sub-images are rejected, and so on. Finally in a
certain image we have total 44 detections. The highest boosting result is chosen as the
final detection. We can see during the first two stages, most sub-images are rejected,
which makes the computation faster.

images are resized to 24x24 pixels and rotated to the same angle. Image intensities and

contrasts are normalized. Figure 5.14 is a random sample from the heart training set.

The first few features Adaboost chooses are meaningful and easy to interpret. As

shown in figure 5.15, the first five features mostly represent the boundary information

of the heart, because the intensity inside the heart region varies too much and has no

obvious patterns. Figure 5.16, 5.17 and 5.18 are a comparison of the error of the weak

classifier, and the error of the strong classifier performing on the training data and the

testing data.

After the final stage of the attentional cascade, the final detector usually produces

a number of detections, because this strong classifier is insensitive to small changes in

translation and scale. However, as we know, there can be only one heart in a image. So

in the case of multiple detections, we have to discard most of the detections and keep

only one that we are most confident in. We select the detection with the highest boosting

result, which means it has the maximum margin and Adaboost is most confident that

it is a heart. If we rotate the task image by a set of discrete angles before the detection

procedure, and compare the probabilities across the discrete angles, we are also able to

detect hearts in rotated images (see Fig. 5.19).

This heart detection algorithm using Adaboost works quite well. For the (41 positive
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Figure 5.14: A random sample of the heart training set.

1 2 3

4 5 A training image

Figure 5.15: The first five features Adaboost selects compared with a training image.
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Figure 5.16: This figure shows the error of the weak classifier that Adaboost selects at
each boosting round. The error increases non-monotonously as the distribution of the
training examples becomes more difficult to classify.

Figure 5.17: This figure shows the error of the strong classifier on the training data.
The error drops to zero after five rounds.
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Figure 5.18: This figure shows the error of the strong classifier on the testing data.
The testing error continues to decrease after the training error approaches zero, which
means more iterations leads to larger margin and higher accuracy.

+ 321 negative)-sized testing data, our detector achieves a zero error rate.

5.2.4 Experimental Results and Validation

We applied our segmentation method to three data sets, one from the same subject

and with the same imaging settings as the training data (but excluding the training

data), and the other two novel data sets from two different subjects and with slightly

different imaging settings. Respectively, the three data sets each contained 32, 48

and 96 tagged MRI images, with different phases, positions and tagging orientations.

Each task image was rotated and scaled to contain a 80x80-pixel-sized chest-on-top

heart, using the detection method before the segmentation. Each segmentation took

30 iterations to converge. Our experiment was coded in Matlab 6.5 and run on a PC

with dual Xeon 3.0GHz CPUs and 2G memory. The whole learning process took about

20 hours. The segmentation process of one heart took 120 seconds on average. See

Figure 5.20 for representative results.

For validation, we used the manual segmentation contours as the ground truth for

the first and second data sets. For the third data set, because we don’t have independent
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(a) (b) (c)

Figure 5.19: Three representative detection results. For image (c), the image was
rotated by a set of discrete angles before the detection, and the final detection is of the
highest probability among all the discrete angles tested.

manual contours, we used cross validation, since we know that at the same position and

phase, the heart shapes in the vertical-tagged and horizontal-tagged images should be

similar. We denote the ground truth contours as T and our segmentation contours as

S. We defined the average error distance as:

D̄error = meansi∈S(min||T − si||2) (5.16)

Similarly the cross distance is defined as

D̄cross = meansvertical
i ∈Svertical(min||Shorizontal − svertical

i ||2) (5.17)

In a 80x80 pixel-sized heart, the average error distances between the automatically

segmented contours and the contours manually segmented by the expert of the first and

second data set can be found in Table 5.1.

Table 5.1: Average error distances.
LV (pixel) RV (pixel) Epicardium (pixel)

D̄error (data set 1) 1.12 1.11 0.98
D̄error (data set 2) 1.74 2.05 1.33

In the third data set, the cross distances can be found in Table 5.2.
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Table 5.2: Average cross distances
LV (pixel) RV (pixel) Epicardium (pixel)

D̄cross (data set 1) 2.39 1.40 1.94

The larger distance in the cross validation arises in part from underlying mis-

registration between the (separately acquired) horizontal and vertical images. Thus,

the true discrepancy due to the segmentation should be smaller. From the above quan-

titative results, we find that for a normal-sized adult human heart, the accuracy of our

segmentation method achieves an average error distance of less than 2mm. The cross

validation results of the third data set suggest that our method is very robust as well.

5.2.5 Discussion

In this section, we have proposed a learning scheme for fully automatic and accurate

segmentation of cardiac tagged MRI data. First we developed a semi-automatic system

to achieve efficient segmentation with minimal user interaction. Then the learning

based framework has three steps. In the first step we learn an ASM shape model as

the prior shape constraint. Second, we learn a confidence-rated complex boundary

criterion from the local appearance features to use to direct the detected contour to

move under the influence of image forces. Third, we also learn a classifier to detect

the heart. This learning approach achieves higher accuracy and robustness than other

previously available methods. Since our method is entirely based on learning, the way

of choosing the training data is critical. We find that if the segmentation method is

applied to images at phases or positions that are not represented in the training data,

the segmentation process tends to get stuck in local minima. Thus the training data

need to be of sufficient size and range to cover all possible variations that may be

encountered in practice.

An interesting property of our method is that it is not very sensitive to the initial-

ization conditions. As shown in Fig. 5.20, even if the initial contours are far away from

the target position, it can still eventually converge to the right position after a few it-

erations. This property makes automatic initialization feasible. The detection method
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1)

2)

3)

4)
(a) (b) (c) (d) (e)

Figure 5.20: The first and second rows of images come from the the first and second
dataset, respectively. For better representation, the images in the first row vary in
position and remain at the same phase, while the images in the second row vary in
phase but remain at the same position. The solid contours are from our automatic seg-
mentation method; the dashed contours are manual. Notice that the papillary muscles
in LV are excluded from the endocardium. The third and fourth rows are from the
third dataset. Manual contours are not available for this dataset, so we compare our
segmentation results between the the horizontal and vertical tagged images that are at
same position and phase. Qualitatively, the contours are quite consistent, allowing for
possible misregistration between the nominally corresponding image sets. In (3a), (3c)
and (3e) the dashed contours are testing examples of poor initializations, while the final
contours are solid. Although the initialization is far away from the target, the shape
model moves and converges well to the target.
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gives only a rough approximation of the heart’s location and size, but it is good enough

for our segmentation purposes.

5.3 Boosting and Nonparametric Based Boundary Tracking

5.3.1 Background

In this section, we will extend the previous section and formulate boundary segmenta-

tion as a tracking framework by adding the temporal information. It has been noted

by several researchers that incorporating temporal information would greatly help the

segmentation. When a human expert manually delineates the contours, it is common

practice to watch the MRI images as a movie and use other frames and their motion

to segment the current frame. Using this observation, in this section we propose a

dynamic segmentation approach. Several methods in the MRI literature have used

temporal information to help segmentation. Sun et al. [85] proposed a segmentation

and tracking method for the left ventricle by learning the ventricle dynamics. In [86],

tracking of the myocardium is embedded in a nonrigid image registration framework.

More myocardial boundary tracking methods can be found in the echocardiography

literature. Comaniciu et al. [87, 88] proposed a multi-model information fusion frame-

work to achieve robust myocardial boundary tracking. In [89, 90] shape-space based or

contour-matching based approaches are proposed.

In this section, we introduce a new framework for boundary tracking of short axis

(SA) tagged MRI sequences, including the boundary contours of the endocardium of

the left ventricle (LV), the endocardium of the right ventricle (RV) and the epicardium.

In this framework, in order to find strong image features, instead of visually tracking

the contour points via profile matching or optical flow related methods, we learn a more

complex boundary criterion using AdaBoost. Contour profile consistency between two

consecutive frames (the motion feature) is an important feature in tracking, but it has

limitations in handling the inherent appearance changes due to tag fading and my-

ocardial deformation, especially the boundary’s tangential movement (such as rotation

and sliding, see Fig. 5.22b) and myocardial motion through the imaging plane. Using



86

the boosting algorithm, we demonstrate that for more accurate boundary feature ex-

traction, the local boundary appearances in the current frame (the static feature) are

also important. The AdaBoost algorithm gives a natural way to combine both features

and generate better boundary criteria. Furthermore, through boosting error analysis,

we find the confidence ratings of each criterion and calculate the posterior probability

density function of the shape model. In order to lower the dimensionality and constrain

the shape variations, we project the shape into a Principal Component Analysis (PCA)

subspace [74], and update the PCA parameters instead of the contour points’ positions.

Since the heart motion has a cyclic contraction and expansion pattern, which exists in

both normal and diseased hearts, we treat the systole and diastole separately and find

two motion prediction matrices and error covariance matrices via multivariate linear re-

gression. We embed the shape tracking into a nonparametric-based sequential particle

filtering framework [91] for its ability of contour tracking through heavy clutter.

Our overall learning and tracking framework is outlined by the flow-chart in Fig. 5.21.

Our experimental results show the accuracy and effectiveness of the proposed algorithm.

5.3.2 Methodology

Shape Modeling and Boosting The Boundary Criteria

The shape model is the same as described in the previous section. It is a PCA linear

model that is represented by 50 ordered landmark points. Any heart shape can be

approximately modeled by X = X̄ + Pb, where X̄ is the mean shape vector, P is the

matrix of shape modes, and b is the vector of shape parameters weighting the shape

variations.

To reliably and accurately track the myocardial boundary, we try to use all possible

image cues, including the static features and the motion features, to make a strong

boundary criterion. This cue-integration is performed by Adaboost. Adaboost is a

well known classification algorithm [75] that incrementally selects a small number of

important features from a huge potential feature set and creates a linear combination

of them as an accurate strong classifier. In the learning stage, given training data
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Figure 5.21: The flow chart of our proposed framework illustrates the learning and
tracking processes. In the manual contour block, the red circles indicate the cusp
points between the septum and the RV endocardium. The green circle indicates the
location of papillary muscle. In the dynamic block, cooler color turning into warmer
color indicates the dynamic model’s evolution during systole.

(x1, y1)...(xm, ym), where xi ∈ X, yi ∈ {0,+1}, during the boosting process, each

iteration selects one feature, i.e., a weak classifier, ht from the total potential features

pool, and combines it (with an appropriate weight αt) with the existing classifier that

was obtained in the previous iterations.

ht : X → {0,+1} (5.18)

F = Σtαtht(x) (5.19)

After t iterations, the linear combination of the selected important features F makes

a stronger classifier H(x) with higher accuracy. We denote Γ = Σtαt/2 as the threshold

value for F . For a new input data x to be classified, if F > Γ, H classifies x as positive,
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and vice versa.

H(x) =
Sign(F − Σtαt/2)

2
+

1
2

(5.20)

We perform Adaboost boundary learning at each landmark point on the shape

model. Thus the boundary criteria vary according to each model point’s location. In

order to embed the Adaboost {0, 1} classifier into the sampling-based tracking frame-

work, we need to extend it to a probability representation. Influenced by [77], we use

a logistic function to estimate the probability of a point xk, along with its local ap-

pearance patch, being on the boundary at the location of landmark point k, with a

normalization term Γk the same as the threshold value:

Pr(yk = +1|xk) =
eFk(xk)/Γk

eFk(xk)/Γk + e−Fk(xk)/Γk
(5.21)

After the training process, Adaboost provides the error rates ek on the testing data.

We define the confidence rating of the boundary criterion at point k as:

ck = ln
1
ek

; (5.22)

Intuitively, when ck is big, we trust its probability prediction Pr(yk = +1|xk) more.

We incorporate the confidence rating into the probability Pr(yk = +1|xk) as a posteriori

knowledge. Then the probability density function of the shape model is estimated by:

p(Y = +1|X) ∝
∏
k

eFk(xk)ck/Γk

eFk(xk)ck/Γk + e−Fk(xk)ck/Γk
(5.23)

The boosting algorithm investigates a large number of weak feature candidates. At

each landmark point on the shape contour, the local appearance features are captured

by filtering methods in both static and motion cases.

To capture the static local appearance features, we design three different kinds of

steerable filters. We use the derivatives of a 2D Gaussian to capture the edges, we

use the second order derivatives of a 2D Gaussian to capture the ridges, and we use

half-reversed 2D Gabor filters to capture the tagging line breakpoints.
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The half-reversed 2D Gabor filters are defined as a 2D sine wave multiplied with

the one directional derivative of a 2D Gaussian:

F = G′(x, y) · R{e−j[φ+2π(Ux+V y)]} (5.24)

where G′ is the derivative of a 2D Gaussian. U and V are the frequencies of the 2D

sine wave, and φ is the phase shift.

To capture the motion local appearance features, we measure the intensity con-

sistency between two consecutive frames. In order to avoid the effect of boundary

tangential motion, before comparison, a set of Gaussian filters are designed to blur the

boundary local patch in a certain orientation and scale (See Fig. 5.22(b).

For a 15x15 sized filter patch, by tuning the filters’ scale, orientation and frequency,

we designed 1840 static filters and 121 motion filters in total. See Figure 5.22(a) for

some sample static filters.

In the manually segmented images, at each landmark point of the contours, a small

image patch around it is cut out as a positive appearance training sample for this

particular landmark point. Then, along the normal of the contour, on each side of

the point, we cut out another two patches as the negative appearance training samples

for this particular landmark point. (See boundary appearance box in Fig. 5.21) For

motion features, the consistencies are measured between the current frame sample with

the positive sample in the previous frame.

After the training process, the classification error rates on the testing data give

the measurement of the boosting performance. After 50 Adaboost iterations, we find

that the error rates using both static and motion features are much lower than using

either static or motion features alone. See Figure 5.23. This comparison validates our

boundary tracking scheme based on both motion and static features.

Nonparametric Shape Tracking

Sampling-based tracking algorithms have the ability to handle contour tracking prob-

lems with non-Gaussian probability density functions (pdfs). Our tracking method is
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(a) (b)

Figure 5.22: (a) shows 3 sample sets of static feature filters, from top to bottom, the
derivatives of Gaussian used for edge detection, the second derivatives of Gaussian
used for ridge detection, and the half-reversed Gabor filters used for tag line breakpoint
detection. (b) illustrates the function of the motion feature filter, which helps remove
the tangential motion.

based on a nonparametric particle filtering approach [91], where the pdf is represented

by factored sampled particles.

During myocardial wall tracking, we use a state vector s to represent the shape

model. s = [c, θ, tx, ty, b], where c is a scaling factor, θ is the orientation angle, (tx, ty) is

translation, and b is a 12-D variation vector of the PCA shape modes. The myocardial

wall tracking algorithm based on particle filtering is as in Table 5.3.

There are two main difficulties in implementing the algorithm. The first one is how

to find a proper dynamic model. The second is how to decide the sampling size N .

The motion pattern differs greatly among human hearts, especially between the

normal and the diseased. Our strategy is to find a common dynamic model whose

constraint is loose but can help in decreasing the sampling range. Since the tagged

MRI sequences are acquired with an ECG trigger, we are able to locate the end systolic
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Figure 5.23: The testing error rates of the boundary criteria boosting. The red curve
which integrates both motion and static features has lower error rates than the other
two.

(ES) frame. We train the dynamic model based on systole and diastole separately. For

a given state vector s(t) = [s(t)1 , s
(t)
2 , ..., s

(t)
n ]′ at time t, we make an assumption that it

can be approximated by a linear transform of s(t−1).

s
(t)
i = a0 + a1s

(t−1)
1 + a2s

(t−1)
2 + ...+ ans

(t−1)
n +N(0, r2i ) (5.25)

This is a multivariate linear regression problem. We solve it to getAi = [a0, a1, ..., an]

as the prediction vector of si and r2i as the error variance. Then the conditional prob-

ability of the prediction dynamic model is:

p(s(t)i |s(t−1)) =
1√
2πri

exp{−(s(t)i −Ai · s(t−1))2/2r2i } (5.26)

The sampling size N is empirically set. For 12 sequences of the testing data, we

find the tracking typically stops improving after N ≥ 1000. Thus we set N = 1000.
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Table 5.3: Myocardial wall tracking algorithm
1. Suppose the total sample number is N , total time frame number is T . At

time = 1, s(n)
1 is initialized as the manual contour shape at the first frame.

Weights π(n)
i = 1

N .
2. For time = 2 : T ,

Factored draw samples s′(n)
t from st−1 based on the weights π(n)

t−1.
Predict new s

(n)
t by sampling from a dynamic model p(xt|xt−1) = s′

(n)
t .

Measure and weight the new shape in term of the measurement yt by
Eq. 5.23. π(n)

t ∝ p(Yt|Xt = s
(n)
t ), and

∑
n π

(n)
t = 1

Estimate the solution via the strongest local mode.
End for

5.3.3 Experimental Settings and Results

We acquired 50 time sequences of short-axis tagged MR images from 5 normal subjects

and 3 patients. Each sequence contains 12 to 18 frames (images). In total, we collected

776 images. The spatial positions of these SA images vary from near the ventricle

apex to near the ventricle base, but their topologies, only one LV and one RV, are

consistent. The tagging line orientations are either 0◦, 90◦ or ±45◦. An expert was

asked to segment the epicardium, the LV endocardium and the RV endocardium from

the images. The manual segmentations were used as the training data, as well as

the ground truth in validation based on a leave-6-out scheme, in which each time 44

sequences were grouped as the training data while the other 6 were used for testing. If

two sequences were taken from the same subject and at the same spatial position, but

with different tag orientations, we grouped them in the same training or testing set. In

this way, we strictly separated the training and testing data.

Each training image is rotated and scaled to contain a 80x80-pixel image of the heart

with the interior chest wall on top. The size of the boundary appearance patches is set to

15x15 pixels. In the tracking process, the initial contour is set semi-automatically [92],

allowing manual correction. Our algorithm implementation is coded in Matlab 6.5 and

runs on a 3GHz PC workstation. For a tracker with a sampling size of 1000, it takes

60 seconds to track a frame on average.

See Fig. 5.24 for some representative tracking results. Since the resulting contours

are represented by 50 landmark points, we measure the tracking error by calculating the
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Figure 5.24: Snapshots from three example sequences of our experimental results. The
solid contours are from our tracking method, while the dashed are from manual seg-
mentations. The first 2 rows are data from 2 normal subjects. The last row is from
a patient with heart failure. Note that our tracking method can exclude the papillary
muscle from the ventricle endocardium, and always keep the cusp points at the RV-LV
junctions.

distances from the landmark points si to the expert’s manual contour C: error(si, C) =

minci∈C ‖ si − ci ‖. Fig. 5.25 shows the mean error in pixels for each time sequence;

the mean error for the LV. RV and epicardium are also drawn. In Table 5.4 some error

analysis are performed in millimeters.

5.3.4 Discussion

In this section, we have proposed a tracking framework for tagged MRI. Our method

integrates the boundary appearance (both static and motion), the shape constraints and

the dynamic model naturally in a boosting and nonparametric tracking framework.

We strictly test the algorithm on data that are excluded in the training set. The

experimental results show the accuracy. With the error analysis shown in Table 5.4,

we find that in general we have achieved sub-millimeter accuracy while MRI resolution

is approximately 1mm. Our method works slightly better on the mid-ventricle slices

and on normal hearts. In the future we will train more shape and motion models for
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Figure 5.25: The mean error for each time sequence measured in pixel. The red solid
curve represents the overall error. The blue dashed, black dash-dot and green dotted
curves represent the mean error distances in the LV, RV endocardium and epicardium
respectively.

different slice positions and extend up to the valve region, where the RV separates into

distinct inflow and outflow regions. We will also extend the method by training on

different diseases, where the shape and motion of the patient data can be very different

from the normal (see the last row of Fig. 5.24, which is from a patient with heart

failure).

5.4 Conclusion

In this chapter, we presented two boundary segmentation frameworks for tagged MRI.

The 4D spatio-temporal propagation-based segmentation framework is a semi-automatic

approach. The MetaMorphs segmentation method is implemented on tag-removed im-

ages. Then segmented contours are propagated spatio-temporally to the whole 4D image

data set, using myocardial tracking and spatial key frames. Based on this method, we
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Table 5.4: Error analysis in millimeters.

¯error(mm) σ̄(mm)
LV 1.24 0.66
RV 0.79 0.81

Epicardium 0.67 0.91
Near Base 0.77 0.89

Mid 0.71 0.81
Near Apex 0.87 0.99

Normal 0.76 0.86
Patient 0.89 1.03

developed a software system that can efficiently process images of full 4D data sets. It

has a user-friendly computer-user interface that allows manual interactions. The ad-

vantage of this system is that the spatio-temporal propagation strategy speeds up the

whole segmentation process, and the user can easily make corrections and achieve the

desired segmentation results using the user interface. The disadvantage of this method

is that it is not fully automatic. Manual interaction takes time.

The learning-based segmentation is fully automatic. We learn the shape, the ap-

pearance, and the motion pattern from a set of training data. The user does not need to

input any parameters or make any interactions. The main disadvantage of this method

is that the performance of this method totally relies on the completeness of the training

data. If the input image to be segmented has a big variation in shape, appearance

or motion, and has no similar representatives in the training data, this learning based

method might fail.

In practice, we use the first method to generate a large number of training data

for the second method. Once we segment new images by using the second method, we

also allow the user to make corrections by loading the results onto the first system and

using the user-interface.
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Chapter 6

Strain Estimation and Regional Cardiac Function Analysis

6.1 Introduction

Many cardiovascular diseases, such as ischemia and infarction, are associated with the

alteration of the global or local contractility of myocardium. Accurately assessing the

detailed myocardial deformation, such as the estimation of the local strain values, could

be critical for the early diagnosis of cardiac diseases and dysfunctions.

The technique of tagged MRI acquires short axis and long axis images at different

positions to capture the 3D motion of the heart. As long as the tagging pattern is

dense enough to capture the myocardial deformation, and the imaging planes are dense

enough in covering the whole heart, we are able to estimate the 3D deformation and

strain values of the whole heart. However, 3D strain estimation methods have been

mainly applied on the ventricles, because the atrial muscle is so thin that tagging

technique cannot place enough tagging patterns inside the atrial muscle. In [45, 46, 48],

several researchers in our group have developed a generic bi-ventricle Finite Element

Model (FEM) to estimate 3D ventricular deformation and strain. In their method, the

cardiac boundary segmentation results are used to fit the generic FEM model onto the

real heart data. The tagging lines or grids are used as landmark points, which are

registered to each FEM element. Then the tracking results of the tagging lines or grids

are used to deform the FEM model. The 3D deformation and strain estimation can

be obtained by solving the FEM, i.e., the model converging to the desired shape when

the external forces diminish to zero and the residual motion is negligible. In [47, 48],

cardiac stresses and fiber orientations are obtained from the strain estimations using

an EM scheme.

In imaging acquisition process, tMRI requires the patients to remain in still positions
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and hold their breaths for up to about 30 seconds at a single imaging position. In order

to acquire a full 3D tMRI scan that is dense enough to reconstruct the 3D FEM model

and calculate the complete 3D ventricular strains, it can be necessary to acquire images

at up to about 20 imaging positions, which makes the whole acquisition process last

about 45-60 minutes. Although 3D modeling is desirable to estimate and analyze 3D

ventricular strains, currently it is not clinically practical for patients with heart diseases,

who would have difficulties to stay still inside the MRI machine for such a long time.

Therefore, in clinical practice, the radiologists will choose a faster and more economical

way. Rather than a whole 3D scan, they only acquire 2D images at a limited number of

imaging positions that are likely to show the presence of heart diseases. Estimating 2D

deformation and strain in single a 2D image can be more relevant in clinical applications.

In this chapter, we will develop both tracking and non-tracking-based strain estima-

tion methods for 2D tMRI. We will also develop an inter-modal registration algorithm

that makes ultrasound elastography and tMRI comparable. In the last section of this

chapter, we will develop a tensor-based classification algorithm to detect and localize

myocardial abnormalities from the strain and motion estimation.

6.2 Tracking Based Strain Estimation in 2D tMRI

We focus on developing 2D strain estimation and analysis methods. In continuum kine-

matics, strain can be formulated as the derivative of displacement. Many researchers

have proposed tracking-based methods to first derive myocardial displacement. Then

strain can be calculated from the displacement field. In [49], deformed tags are tracked

and interpolated using a spline method to obtain the displacement map. Then the 2D

Lagrangian strain is calculated from the horizontal and vertical displacement maps.

In [93], 3D strain is derived from a 3D displacement map.

6.2.1 In Case of 1D Tagging Lines

As described in Chapter 3, we implement a set of free-end Snakes to track the 1D

tagging lines. Tagging lines are straight lines at time 0. They are equally spaced at
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an interval of 1/
√

(U2 + V 2). Starting from time 0, we keep tracking the tagging lines

only within the heart wall using the results of the boundary segmentation. The tagging

lines’ model is basically a set of Snakes whose external forces are from the original

intensity images and the tag-enhanced images. The internal forces are used to regulate

the curvatures within each single Snake, and the distances between Snakes.

(a) (b)

(c) (d)

Figure 6.1: Four sequential tracking examples (a to d) during systole.

6.2.2 In Case of 2D Tagging Grids

For 2D tagging grids data, we implemented a template-based tracking algorithm on

a 2D grid-shaped mesh to obtain the displacement vectors of the crossing points (or

nodes) on the tagging grids (Fig. 6.2). Each crossing point (or node) on the mesh is

tracked by calculating the similarity between templates, which are modeled using two

tunable Gabor filters and the underlying images. The crossing points on the mesh are

driven iteratively by forces from the neighboring image patches, whose texture patterns

are the most similar to a reference template. The coordinates of the crossing points in

a time sequence are further smoothed by a cubic spline function.
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(a) (b)

(c) (d)

Figure 6.2: Four sequential tracking examples (a to d) during systole. Note that only
the nodes inside the myocardium are tracked by spline-based method.

6.2.3 Strain Calculation From Tracking

After we track the tagging lines or grids, the displacements of the line nodes or grid

nodes can be calculated through subtraction. Finally, a cubic B-spline-based method

is used to interpolate the line or grid nodes in 2D to obtain the entire displacement

distribution within the myocardium.

Strain is defined in terms of the gradient of the displacement. A displacement vector

u, is written as u = uxex + uyey, where ux and uy are horizontal and vertical displace-

ment components, respectively, and ex and ey are the unit vectors in the horizontal

and vertical directions, respectively. The displacement gradient tensor G in Cartesian

coordinates (x, y) is thus defined as G = ∇u.

G = ∇u =

 ∂ux
∂x

∂ux
∂y

∂uy

∂x
∂uy

∂y

 (6.1)

The in-plane Lagrangian finite strain tensor, E , is formulated as in [94]:
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Vertical Displacement

time 2 time 4 time 6

time 8 time 10 time 12
Horizontal Displacement

time 2 time 4 time 6

time 8 time 10 time 12

Figure 6.3: Displacement in vertical and horizontal coordinates.

E =
1
2
(G + GT + GTG) (6.2)

Horizontal and vertical strains are the diagonal components of E, i.e., Exx and Eyy,

respectively. The off-diagonal terms are related to the corresponding sheering strains.

The above mentioned 2D (or, vertical and horizontal) Lagrangian finite strains are

dependent on the myocardial locations with respect to the centroid of the ventricle. This

angle-dependence may complicate the interpretation of the myocardial deformation in

the left ventricle. Therefore, radial and circumferential strains are obtained by defining

an angle, θ, about the centroid of the left ventricle and by transforming the finite
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Vertical Strain Map

time 2 time 4 time 6

time 8 time 10 time 12
Horizontal Strain Map

time 2 time 4 time 6

time 8 time 10 time 12

Figure 6.4: Strain map in vertical and horizontal coordinates.

strain tensor E into a radial-circumferential strain tensor Ė with a rotation matrix Q:

Ė = QEQT [94].

Ė = QEQT , where, Q =

 cos θ sin θ

− sin θ cos θ

 (6.3)

Positive and negative radial strains indicate myocardial thickening and thinning,

respectively, while myocardial stretching and shortening are represented by positive

and negative circumferential strains, respectively.
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Radial Strain Map

time 2 time 4 time 6

time 8 time 10 time 12
Circumferential Strain Map

time 2 time 4 time 6

time 8 time 10 time 12

Figure 6.5: Strain map in radial and circumferential coordinates.

6.3 Comparison With Registered Ultrasound Myocardial Elastogra-

phy

Ultrasound Myocardial Elastography (UME) is a radio-frequency (RF) based speckle

tracking technique [95]. Despite the low SNR nature of ultrasound signals, echocardio-

graphy enjoys widespread availability in the clinic, as well as its relatively low cost and

high temporal resolution. In UME, the two in-plane orthogonal displacement compo-

nents (lateral and axial) are estimated using 1D cross-correlation and recorrelation of

RF signals in a 2D search [96]. Then, the incremental displacements are integrated to
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obtain a cumulative motion estimation.

Tagged MRI is currently considered the most accurate noninvasive myocardial mo-

tion and strain estimator. Several studies have compared the estimates from ultrasound

with those from tMRI. Notomi et al. [97], Helle-Valle et al. [98] and Cho et al. [99] have

demonstrated that left-ventricular torsion measured from B-mode-based speckle track-

ing methods is consistent with that from tMRI in short-axis (SA) views. In [100] 2D

motion and strain estimates from UME are shown to be highly comparable with those

from tMRI. However due to the different characteristics of ultrasonic imaging and tMRI,

a main limitation of these comparisons is that the two modalities are not registered in

3D. Thus, the ultrasound and tMR images may not be acquired at the same SA slice

with the same orientation. To address this potential discrepancy, in this paper we have

developed a semi-automatic intensity and gradient-based mutual information registra-

tion framework that rigidly registers the 3D corresponding tagged MRIs with the 2D

ultrasonic images. Based on the two registered modalities, we are able to conduct more

detailed quantitative strain comparison of the RF-based UME technique and tagged

MRI.

6.3.1 Ultrasound And tMRI Data Acquisition

Both RF ultrasound and 3D tMRI images were acquired in 2D short-axis (SA) views

from two healthy subjects with breath-holding and ECG gating. A clinical echocardio-

graphy ultrasound scanner (GE Vivid FiVe, GE Vingmed Ultrasound, Horten, Norway)

with a phased array probe (FPA 2.5MHz 1C) was used to acquire cardiac ultrasound

in-phase and quadrature (I/Q) data at the papillary muscle level at a frame rate of 136

fps. The I/Q data were upsampled to retrieve the RF signals.

Tagged MR images were obtained from a Siemens Trio 3T MR scanner with 2D

grid tagging. The 3D tagged MR images consists of a stack of 6 equally spaced SA

image sets from near the left ventricle (LV) base to the LV apex. The SA orientation

of the ultrasound was approximately consistent with that of the tMRI, but was not

guaranteed to be the same. Both modalities utilized full ECG gating during the scans

so that they can be registered temporally in a heart beat cycle.
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6.3.2 Rigid-body Registration of 2D Elastography with 3D Tagged

MRI

For the purpose of inter-modal comparison, we assume that the overall pattern of the

heart shape, size and function of the same subject did not change between acquisi-

tion by the different imaging modalities. Previous work on inter-modal registration

of cardiac ultrasound (US) with MR images has been very limited [101]. It has two

main difficulties. First, the cardiac left ventricle (LV) in SA view has a circular shape

that lacks reliable anatomical landmarks. Second, the US images have very different

appearances compared to MR images. In [102], an approach combining intensity and

gradient information was proposed to address the registration of brain US with MR im-

ages. In [103] a dynamic cardiac US and MR image registration is achieved by optical

tracking of the US probe and fine-tuned by a mutual information registration method.

In our system, since the US probe is not tracked during the imaging process, the

semi-automatic registration has to rely on user interactions as well as the image infor-

mation from the myocardium and the neighboring anatomical structures. The main

idea of our registration framework is that we allow the user to freely translate and ro-

tate the US imaging plane w.r.t. the 3D tMRI data and manually find a proper initial

registration. Then, a 2D pseudo US image is reconstructed from tMRI, which has an

appearance comparable with the 2D US image, so that a mutual information based

method can automatically fine-tune the initial manual registration by optimizing the

translation (tx, ty, tz) and rotation (θx, θy, θz) of the imaging plane.

Both modalities are ECG gated, which makes them easily temporally aligned. First,

the tagged MR images at a mid-systolic phase undergo a Gabor filter bank-based tag

removal process [39], which essentially enhances the tag-patterned regions. The tag

patterns in the blood are flushed out very quickly after the initial tagging modulation,

as shown in Fig. 6.6. This tag removal method enhances the areas of the chest wall, the

myocardium and the other surrounding organs, and suppresses the areas of the blood

pools and lungs. This de-tagging process increases the image’s readability. It is helpful

for both the user initialization and the following mutual information-based registration
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Figure 6.6: The flowchart of the rigid-body registration framework. The stack of the
untagged images is interpolated using splines to achieve a 3D isotropic volume. The
user can freely tune the translation and rotation parameters of the US imaging plane.
After manual initialization, a pseudo US image is constructed from the untagged MRI.
The position of the simulated US probe gives the US beam direction. Finally a mutual
information-based registration procedure is performed to fine-tune the manual initial-
ization.

algorithm.

Both modalities are interpolated to achieve uniform and isotropic resolution. Then

the rigid registration problem becomes one of looking for the position and orientation

of the 2D UME imaging plane with respect to the 3D tMRI volume.

The characteristic appearance of cardiac US images comes from two main sources.

First, the speckle intensity levels vary in different tissues. For instance, we observe that

the blood pool area is darker than the myocardium. Second, because of the impedance

mismatch effect, US images usually enhance the interfaces between successive tissue

layers [102]. We further observe that the angles between the interfaces with the incoming

US beam affect the enhancement magnitude. Here we denote vector b as the direction

of the incoming US beam. Therefore we model the transformation T from the tag

removed tMRI, Iu, to the reconstructed image by:

T (Iu(x, y)) = αIu(x, y) + β∇Iu(x, y) · b(x, y) + γIv(x, y) (6.4)

The right hand side of the equation is a linear combination of three terms, where

the relative weighting parameters α, β and γ are experimentally determined. The first
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term is the tag-removed image. The second term is an edge detector, which is sensitive

to orientation . In order to detect the dark strips between the myocardium and the

neighboring liver, the third term Iv acts as a valley detector. Suppose H(x, y) is the

Hessian matrix at Iu(x, y), and λ1 and λ2 are the eigenvalues of H. If λ1 < −|λ2|, then

at pixel (x, y) an intensity valley exists, whose width is proportional to |λ1|, and its

orientation is determined by the eigenvector v1. Hence we model the valley detector

as:

Iv(x, y) =

 λ2
1v1(x, y) · b(x, y), if λ1 < −|λ2|

0, otherwise
(6.5)

The mutual information-based optimization of the translation and rotation param-

eters is found by using gradient decent. Since the tag-removed image Iu is heavily

blurred, the algorithm tends to get stuck in local maxima. Thus a proper manual

initialization is necessary. Multiple initializations are also helpful to find the global

maximum.

6.3.3 Strain Estimation

Ultrasound Myocardial Elastography

In the UME technique, the two in-plane orthogonal displacement components (lateral

and axial) were estimated using one-dimensional (1D) cross-correlation and recorre-

lation of RF signals in a 2D search [96]. The cross-correlation technique employed

a 1D matching kernel of 7.7 mm and 80% overlap. The reference and comparison

frames respectively contained the RF signals before and after deformation. An 8 : 1

linear interpolation scheme between two adjacent original RF signal segments of the

comparison frame within the 1D kernel was employed to improve the lateral resolu-

tion [96]. The maximal cross-correlated value yielded from the RF signal segment in

the comparison frame was considered the best match with the RF signal segment in

the reference frame. Cosine interpolation was then applied around this maximum of

the cross-correlation function for a more refined peak search.
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The correction (or, recorrelation) in axial displacement estimation [96], was per-

formed to reduce the decorrelation resulting from axial motion. In UME, recorrelation

was implemented by shifting RF signal segments according to the estimated axial dis-

placement in the comparison frame, prior to the second lateral displacement estimation.

Tagged MRI

The registered imaging plane may not be the same as one of the tMRI SA slices. Simply

interpolating in between the slices might blur the tagging grids and result in inaccurate

strain calculations. We observe that the 2D tagging grids are actually the intersections

of two sets of orthogonal tagging sheets and the tMRI imaging planes. If we recover the

geometry of the tagging sheets, then by finding their intersections with the registered

US imaging plane, we are able to calculate the strain values in the registered imaging

plane. Therefore we chose to track the tagging sheets over time as in Chapter 3 [104].

First we decompose the grid tagged images into two sets of horizontal and vertical

line tagged images by suppressing the component of one direction of the tagging grids

via band-stop filtering in the images’ Fourier domain. Then the two sets of 3D tagged

MR images are filtered with a tunable 3D Gabor filter bank so that the tagging sheets

can be enhanced, where the parameters of the 3D Gabor are adaptive to the spacing

and orientation of the local tagging sheets. In the tracking step, we impose a set of

deformable meshes onto the initial tagging sheets and let them deform according to the

enhanced tagging sheets over time. The tracking process is controlled by a dynamic

model, and the deformable mesh is smoothed with an internal spring force as well as

an inter-mesh spring force.

During tracking, the displacements u of the intersection points of the two sets of

perpendicular tagging sheets and the registered imaging plane are recorded. Then for

all the other pixels in the myocardial area, their displacements u are interpolated by a

spline interpolation method.

The strain calculations is the same as that employed in the previous UME section.

Horizontal, vertical, radial and circumferential strains are calculated.
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6.3.4 Experimental Results

In our experiments, active contraction (i.e., systole) was only considered for the assess-

ment of the contractility of cardiac muscle. The strain estimates of these two imaging

modalities have qualitatively good agreement. A visual comparison of the strain pat-

terns can be found in Fig. 6.7 and Fig. 6.8. For a normal subject (shown in Fig. 6.7),

the horizontal and vertical strains of this clinical data show similar patterns to those

of the theoretical framework proposed by Lee et al. [96].

Hori. tMRI
ED ES

Hori. UME
ED ES

Vert. tMRI
ED ES

Vert. UME
ED ES

Figure 6.7: Strain pattern comparison between tMRI and UME on a healthy sub-
ject. Horizontal and vertical strains of the left ventricle are displayed. For each strain
component, four time frames are shown from the end-of-diastole (ED) phase to the
end-of-systole (ES) phase. The pseudo color is displayed on a scale of the strain value
from −0.5 to 0.5.
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Furthermore, polar strains (shown in Fig. 6.8) show radial thickening and circum-

ferential shortening except for the anterior and septal walls in the ultrasound images

due to the low signal-to-noise (SNR) ratio, which results from shadowing by the rib

and the lung.

Rad. of tMRI
ED ES

Rad. UME
ED ES

Circ. tMRI
ED ES

Circ. UME
ED ES

Figure 6.8: Strain pattern comparison between tMRI and UME on a healthy subject.
Radial and circumferential strains of the left ventricle are displayed. For each strain
component, four time frames are shown from the end-of-diastole (ED) phase to the
end-of-systole (ES) phase. The pseudo color is displayed on a scale of the strain value
from −0.5 to 0.5.
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As shown in Fig. 6.3.4, for more spatially localized quantitative analysis, we divide

the LV into 6 sectors: the septum 1, the septum 2, the posterior wall, the lateral wall

1, the lateral wall 2, and the anterior wall.

Figure 6.9: Illustrates the division of the 6 sectors.

According to the quantitative results shown in Fig. 6.3.4, both modalities show that

the total radial and circumferential strains, from ED to ES, in six different myocardial

regions show similar trends of strain value accumulation. In tMRI results, we observe

that for intra-subject case, the mean strain values in each sector have similar shapes

and slopes, which means the myocardial strain grows evenly and stably over time. Even

for the inter-subject case, the strain patterns of the two subjects look similar, which

shows that tMRI strain estimation is quite robust. In addition, the relatively small and

stable standard deviations of tMRI strains also show the robustness of tMRI. In UME

results, for the case of subject 1, the mean strain values of sectors posterior, lateral 1

and lateral 2, which are opposite to the US probe, are higher than those of the tMRI,

while the other 3 sectors, which are near the chest wall and closer to the US probe, have

smaller strains. This suggests that UME may be affected by the US beam direction.

On the other hand, in general, ultrasound elastographic strain estimates exhibit higher

spatial resolution but larger noise. Even though the original pixel resolution in both

tagged MR and ultrasonic images is adjusted to the same scale, the overestimation

from ultrasound elastography for subject 1 may also come from its high resolution of

estimation.
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Subject 1

Subject 2

Figure 6.10: In each sector of the LV, the mean and standard deviation of the radial
and circumferential strain values are calculated from end-diastole to end-systole. We
find that the UME results have an overall trend which is similar with that of the tMRI.
However the standard deviation of the US results tends to keep growing quickly, while
that of the tMRI remains stable.
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As shown in Fig. 6.11, the mean strain discrepancies between UME and tMRI

increase over from ED to ES. In addition, the ultrasound elastographic estimation

errors accumulate during systole, as can also be depicted from the increasing standard

deviations. The circumferential strain estimates show the strongest agreement between

the two modalities.

Figure 6.11: The strain error mean of the UME technique compared with tMRI. We
find in UME modality, from ED to ES, the errors are also accumulative.

6.3.5 Discussion

Ultrasound Myocardial Elastography is qualitatively able to assess myocardial motion

and deformation with values well comparable to those obtained with tagged MRI in

normal subjects. However, for quantitative strain measurement, tMRI will provide

much more accurate and robust estimates. Future work will focus on the assessment

of the role of the sonographic SNR on the myocardial elastographic strain estimates

and study of the tradeoff between spatial resolution and strain accuracy for precise
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quantification in both normal and acute infarction patients. We will also carry out

more UME and tMRI comparisons.

6.4 Non-tracking Based Strain Estimation

A main difficulty of tag-tracking based methods is in balancing the internal and ex-

ternal forces of the deformable model that is used in the automated tracking process.

If the internal forces are too small, then irregular tracking results, such as tag jumps,

will be present. If the internal forces are too big, then over-smoothed tags will lead

to underestimated strain results. Another popular approach is using the HARP tech-

nique [36]. In [105, 106], myocardial velocity field and pathlines are calculated from the

phase map using the HARP technique. Then strain is obtained from the HARP phase

tracking results. A limitation of HARP-based methods is that they have difficulties in

handling tags with large deformation. In addition, phase tracking is done by adding

up the phase changes in each previous temporal frame. Therefore the tracking error is

prone to accumulation.

As described in the previous chapters, comparing with Fourier-transform-based

methods, such as HARP, Gabor filter is a spatially localized method, so that it is

more adaptive to large tag deformation. In this section, we propose a non-tracking

2D strain estimation method based on Gabor filters. At each pixel in the myocardium

area, we extract the local tag distances and orientations in both x− and y− coordi-

nates by searching for an optimal Gabor filter. Then the 2D strain and local rotation

angle at each pixel can be obtained by using the strain formula in terms of deformation

gradient. In this way, we don’t need to track the tags or phase angles over time, and

the limitations of tracking methods listed in the previous paragraph can be avoided.

We first test our method on a series of phantom images and study the effectiveness

of our Gabor-based strain estimation method. Then we apply this method on normal

and patient data. From the experiments, we find that our strain estimation method is

accurate and robust to noise. It has the potential to quantitatively diagnose cardiac

malfunctions or diseases.
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6.4.1 Gabor Filter Design

In this application, we use a symmetric Gaussian envelope with σx = σy = 1/
√
U2 + V 2,

so that the rotation of the Gabor filter is determined only by the 2D frequencies of the

complex sinusoid, which can be derived by φ = arctan(V/U). The spacing between

peaks of the sinusoid is determined by S = 1/
√
U2 + V 2. A Gabor filter in our appli-

cation can be defined with only two parameters U and V :

h(x, y) ==
U2 + V 2

2π
e−[

(x2+y2)(U2+V 2)
2

+j2π(Ux+V y)] (6.6)

Same as described in Chapter 5, the myocardial tracking section, at time 0 of the

tagged MR imaging process, when the tagging lines or grids are initially straight and

equally spaced with distance D, we set the initial parameters Ui and Vi of the Gabor

filter to be equal to the frequencies of the image’s first harmonic peaks in the spectral

domain [58]. During a heart beat cycle, the tagging lines or grids deform with the

underlying myocardium, and the spacing changes m = S/D and orientation changes

∆φ = φ − φi occur accordingly. We optimize U and V of the Gabor filter to fit

the deformed local tag patterns, which means by convolving the optimal Gabor filter

ho(Uo, Vo) with the local image patch I that centers at a certain pixel (x, y), we get the

highest magnitude response. Then, we can extract the local deformations m and ∆φ.

(Uo, Vo) = argmax
U,V

(|h(U, V ) ∗ I|) (6.7)

The optimization procedure can be performed using different strategies, such as

gradient descent or simplex method. Since we only need to optimize two parameters U

and V , in our experiment, the optimization converges very fast by using either method.

6.4.2 Strain Estimation

Instead of calculating the strain values in terms of the gradient of the displacement by

tracking the tag pattern, we directly analyze the local tag deformation. For simplicity,

we assume that the myocardium is incompressible, and it undergoes three possible

deformations: stretching, compression, and local rotation. The initial tag spacings and
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orientations are referred to as the initial state, so that Lagrangian strains in beating

myocardium can be obtained by comparing the deformed tags to the initial state.

For a myocardial element, we assume that in a certain coordinate system X its initial

length is dX. After deformation, the myocardial element’s length is dx in coordinate

X. At position x we can define the deformation gradient as in [94]:

F =
dx
dX

= ∇x (6.8)

For 2D deformation gradient, we have:

F =

 dx
dX

dx
dY

dy
dX

dy
dY

 (6.9)

As seen in Figure 6.12, the initial tag pattern has two sets of horizontal and vertical

tagging lines with spacings equal to Dx and Dy. After myocardial deformation, the

deformed tagging line spacings become Sx and Sy, and the orientation changes of the

tagging lines are ∆φx and ∆φy. Then from Equation 6.9, the deformation gradient

tensor F can be derived by:

F =

 Sx cos∆φy

Dx sin φ
Sy sin ∆φx

Dx sin φ

Sx sin ∆φy

Dy sin φ
Sy cos∆φx

Dy sin φ

 (6.10)

where φ = π
2 −∆φx −∆φy. From the previous subsection, the spacing parameter

m and orientation changes ∆φ of the Gabor filter can be directly used to derive F.

Figure 6.12: The illustration of F calculation. After tag deformation, dx =
Sx cos ∆φy/ sinφ, and dy = Sy cos ∆φx/ sinφ, which are used in Equation. 6.10.
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From F, we can derive the Lagrangian finite strain tensor E and local rotation

matrix R by:

E =
1
2
(FT · F− I) (6.11)

R = F(FT · F)−1/2 (6.12)

where I is an identity matrix.

6.4.3 Evaluation on Phantom Images

To evaluate our strain estimation method, we generate 5 frames of phantom images that

simulate the contraction process of the left ventricular (LV) muscle. A main advantage

of using phantom images is that our strain estimates can be easily compared with the

ground truth. As seen in the first and second rows of Fig. 6.15, we generate a 2D

LV phantom with both horizontal and vertical tagging lines in short axis, by adding

2D sinusoid patterns. Then the LV model undergoes incompressible deformation of

contraction and rotation. At time t4, based on the calculation of the 2D area, the

ejection fraction (EF) of this phantom is 75%, which is higher than human values in

most cases, so that we guarantee this model can fit most clinical circumstances (In

healthy heart, based on calculation of 3D volume, EF is about 55% − 70% [107]. In

diseased heart, this value tends to be smaller.)

In clinical tMRI imaging settings, the initial horizontal and vertical tag spacings are

equal: Dx = Dy = D. Using Equation 6.7, the local deformations Sx/D, Sy/D, ∆φx

and ∆φy can be obtained by optimizing the Gabor filter’s frequency parameters U and

V . In the third row of Fig. 6.15, the Gabor-estimated local deformation maps at time t4

are illustrated. For maps of S/D, the grey background equals 1, and brighter intensity

corresponds to bigger tag spacing. For maps of ∆φ, the grey background equals 0, and

brighter intensity stands for positive orientation change. We can find that our Gabor

filter optimization method achieves very smooth deformation maps that are consistent

with the deformed tag patterns. Then the deformation gradient tensor F, the strain
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tensor E and the local rotation matrix R can be derived from Equations 6.10, 6.11

and 6.12.

Rather than the 2D horizontal-vertical Lagrangian strain tensor in Equation 6.11,

in myocardial deformation research, we are more interested in the radial and circumfer-

ential strains. Positive and negative radial strains indicate myocardial thickening and

thinning, respectively, while myocardial stretching and shortening are represented by

positive and negative circumferential strains, respectively. As in the previous section,

we define an angle θ about the centroid of the LV, and transform E into a radial-

circumferential strain tensor Ė with a rotation matrix Q(θ), so that:

Ė = QEQT . (6.13)

t0 t1 t2 t3 t4

Figure 6.13: These two rows are the simulated phantom images with horizontal and
vertical tagging lines, which undergo an inward contraction with a rotation from t0 to
t4.

t4 Sx/D Sy/D ∆φx ∆φy

Figure 6.14: The deformations are extracted from the phantom images at t4 using our
Gabor filter method.

For quantitative evaluation, we calculate the means and standard deviations of

the 2D strain and rotation angle. As seen in Fig. 6.16, we find that our method is
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t1 t2 t3 t4

Figure 6.15: The comparison of the ground truth and our estimation. Circumferential
strain, radial strain and rotation angle at t1 to t4 are compared.

most accurate in estimating rotation angle. For circumferential strain, our estimation

matches with the ground truth well from t1 to t3, and tends to underestimate when

contraction gets bigger at t4 (EF = 75%, which is rare in real human data). For radial

strain, our method underestimates for every time frame, but still has the same trend

as the ground truth.

Our non-tracking method calculates the local deformation at each single pixel.

Therefore, in real data implementation, a major difficulty comes from the noisy nature

of tMRI, which usually leads to irregular deformation maps. To solve this problem,

we add a filtering loop to smooth out the noise. As illustrated in Fig. 6.19, in each

iteration of the filtering loop, at each pixel, the local image patch is convolved with
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Figure 6.16: Quantitative comparisons of the mean and standard deviation, at each
time frame, of the radial strain (left-hand-side), the circumferential strain (middle)
and the rotation angle (right-hand-side) show our estimations are consistent with the
ground truth.

the estimated optimal Gabor filter, and the convolution result is used to update the

pixel’s intensity, which is used in the next iteration. As seen in Fig. 6.17, the LV region

LV0 in the input image is noisy, thus without smoothing, the deformation maps Sx0/D

and ∆φx0 are corrupted with error estimations. After 3 iterations of filtering the LV

with the estimated Gabor filter at each pixel, the smoothed LV3 gives more regular

deformation maps Sx3/D and ∆φx3 .

Input Iter0 Iter1 Iter2 Iter3

Sx/D

∆φx

Figure 6.17: A representative of real world tagged MR images whose left ventricle in
the input image is noisy, which leads to irregular estimations of Sx0/D and ∆φx0 . After
3 smoothing iterations, we get a smoother LV area and better estimations of Sx3/D
and ∆φx3 .

However, smoothing the input image could be a dangerous strategy because it also

smoothes the myocardial deformations. Therefore we need to examine how smoothing



120

loops affect the strain estimation. In the phantom images, at time t4, we apply filtering

loops and observe how strain and rotation angle change. In Fig. 6.19, we see the

estimations of rotation angle and circumferential strain do not change much after 4

smoothing loops. But radial strain estimation decreases after the first loop, and tends

to be stable after a few iterations.

Figure 6.18: The flowchart of the smoothing method.

Figure 6.19: Quantitative analysis of the rotation angle (first row), the circumferential
strain (second row) and the radial strain estimations (third row) w.r.t. the iteration
number of the smoothing loop.
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6.4.4 Experiments On Real Data

We tested our novel strain estimation method on both normal and patient data. For

grid tagged MRI, we first separate the tag grids into 2 sets of tagging lines by a band-

stop filter [108]. We estimate the strain and rotation angle only within the LV contours.

To smooth out noise, we apply 3 iterations of the smoothing filter. In Fig. 6.20, we

show a visual comparison of our estimates in a normal subject and a patient. For

quantitative analysis, we divide the LV into 6 sectors, and calculate the means of

strain and rotation angle in each sector at each time frame. In Fig. 6.21 we show the

quantitative comparison. It is interesting to see that the magnitudes of the strain or

rotation angle value are not the only criteria to diagnose abnormality. Their spatial

and temporal distributions seem more important. Normal heart seems to have more

smoothly distributed strain and rotation angle values. On the other hand, the patient

heart seems to contract more vigorously at the 12 and 7 o’clock positions (indicated by

the high strain magnitudes). However, most of the contraction is turned into a rotating

motion (indicated by the big rotation angles), which makes the contractive efficiency

poor. This suggests that the myocardial function should be assessed on comprehensive

bases, including the strain magnitude, the regional strain pattern, and the regional

tissue rotation pattern. Our novel strain estimation method works well in capturing

the regional myocardial strain and rotation in tMRI.

6.4.5 Discussion

In this section, we developed a novel non-tracking-based strain estimation method in

tagged MRI. This method calculates strain by extracting the tag’s deformation gradi-

ent, and avoids the limitations of conventional tracking-based strain estimators. We

tested this method on both simulated and real world images. In simulated images, we

quantitatively evaluated the accuracy and robustness of our non-tracking estimator.

We also tested our method on both normal and patient data. We find that our esti-

mation results are highly consistent with simulated ground truth, and are potentially

valuable to distinguishing normal and abnormal data. In future work, we will develop
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t1 t2 t3 t4 t5 t6

Normal
StrainCirc

Patient
StrainCirc

Normal
StrainRad

Patient
StrainRad

Normal
Rotation

Patient
Rotation

Figure 6.20: Visual comparison of normal (left-hand-side) and patient’s (right-hand-
side) circumferential strain (first row), radial strain (second row) and rotation angle
(third row) estimations at time t1, t4 and t6. For quantitative analysis, we divide the
LV into 6 sectors, which is illustrated in the lower-left image.
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Figure 6.21: In each LV sector, at each time frame, we calculate the mean value of the
radial strain (left), the circumferential strain (middle) and the rotation angle (right).
Thus, the colored surfaces illustrate the temporal and spatial distributions of the es-
timated values. The first row is from normal data. The second row is from patient
data.

the analysis of the strain and rotation patterns, in order to extract useful information

to help with cardiac malfunction and disease diagnosis.

6.5 Identifying Regional Cardiac Abnormalities Using Tensor Analy-

sis

Some previous strain estimation methods [49, 47, 43] have been implemented to compare

normal and pathological data. Their results show noticeable differences in the strain

pattern of normal and abnormal hearts, which reveals the potential of using strain to

identify pathology in cardiac function. However, limited research has been conducted

to fulfill this potential in a quantitative manner. In [109], the percentage change in

end-systolic circumferential strain was used to detect acute ischemia in an animal heart

with experimentally induced coronary artery occlusion. However, this was not a study

of naturally developed pathology, and no inter-subject variation has been evaluated.

In this section, we will try to use the spatio-temporally distributed myocardial

strain pattern to identify and localize abnormal cardiac function in human subjects.

In [110], an exploratory normal contraction reference model has been set up based
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on the principal component analysis (PCA) of tMRI scans from 8 healthy subjects

using their spatio-temporal deformation. Abnormalities could be found by comparing

with the reference model in the PCA subspace. However, the main difficulty behind

this is the large strain variance among normal subjects, and the even larger variance

in patients, which make it difficult to define a normal or abnormal criterion. On the

other hand, the spatio-temporally distributed myocardial strain is far more complicated

to quantitatively interpret than the 1D ECG signal or the scalar ejection fraction.

Pathology develops with complicated and systematic consequences. For example, as

shown in the patient images in Fig. 6.23, a region of ischemia might cause the rest

of the heart to contract more vigorously to compensate. In this case, the spatial or

temporal pattern of the strain could be of more importance than strain value alone in

detecting cardiac malfunctions.

To solve these two difficulties, we formulate the detection of abnormality into a

novel spatio-temporal tensor-based linear discriminant analysis (LDA) classification

framework. In order to learn the classifier in a supervised fashion, we gathered a

group of normal and patient tMRI sequences in short axis (SA), and applied the non-

tracking-based strain estimation method in the previous section to extract the radial

strain, circumferential strain and tissue rotation angles to construct the training data.

Then a tensor-based LDA classifier is employed based on the Fisher criterion to find

an optimal linear projection that maximizes the between-class, i.e., the normal and

patient, scatter and minimizes the within-class scatter. Rather than the conventional

vector-based LDA that projects the feature space onto a scalar, the advantage of using

our spatio-temporal tensor based LDA is that its dimension reduction is separately

operated in the spatial and temporal domains, so that it conserves better the spatio-

temporal structure and the information of the training data. On the other hand, the

advantage of using a linear classifier rather than nonlinear approaches such as SVM, is

that using the pseudo-inverse matrix of the linear projection function, we are able to

back-project the abnormality found in the subspace to the original feature space, so as

to localize the regional cardiac abnormality in a more physically meaningful way. We

have tested our novel classification algorithm on a clinical dataset of forty one tMRI
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sequences from normal and patient subjects, and have achieved a higher or comparable

detection accuracy rate compared to conventional classification algorithms, such as

PCA, LDA and SVM. The recovered regional abnormalities from our algorithm agree

with the patient’s pathology and doctor’s diagnosis well and provide a promising avenue

to regional cardiac function analysis.

6.5.1 Quantitative data preparation

For quantitative regional cardiac function analysis, we divide the left ventricle at a

given base-apex level into two layers (endo- and epi-cardium) and ten sectors (septum

is equally divided into 3 sectors and the rest of the heart is divided into 7). This results

in 20 ordered regions in total, as can been seen in Fig. 6.22.

Figure 6.22: The left ventricle is divided into 20 regions.

Within each region, we use the median value of the radial strain, the circumferential

strain and the rotation angle that are calculated using the non-tracking based strain

estimation method to represent this region’s deformation, so as to remove outliers and

make the data preparation more robust. We denote them as Ei
R, Ei

C and θi (1 ≤ i ≤ 20),

respectively. Therefore, the myocardial deformation in a single time frame can be

represented by a 60× 1-sized vector:

V = (E1
R, ...,E

20
R ,E

1
C , ...E

20
C , θ

1, ..., θ20)T (6.14)

Due to the fading of the tags, myocardial deformation cannot be reliably extracted

from frames after the end of systole (ES). Therefore, we only consider the image frames
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from end of diastole (ED) to ES. In addition, the heart beat rate varies in human

subjects, so that the frame number from ED to ES ranges from 5 to 12 in our training

data. We implement a B-spline technique to interpolate them into 10 frames. Therefore,

the myocardial motion of a tMRI time sequence can be represented by a 60× 10-sized

feature tensor T = [V1, ..., V10]. As seen in Fig. 6.23, the feature tensor T exhibits

noticeable differences between normal subjects and patients.

Normal Patient

tED tMS tES
Feature

Tensor T

tED tMS tES
Feature

Tensor T

Figure 6.23: Visual comparison of normal (left-hand-side) and patient’s (right-hand-
side) radial strain (first row), circumferential strain (second row) and rotation angle
(third row) estimations at the time of ED, MS and ES. For regional cardiac function
analysis, we divided the left ventricle into 20 regions and interpolate the ED to ES
deformation sequence into 10 frames, so as to form a 60 × 10-sized feature tensor T,
which is illustrated as a pseudo-color bar.

6.5.2 Spatio-Temporal Tensor LDA

Learn the classifier

Suppose we have collected N samples (including normal and abnormal) for training

purposes. We can train a typical two-class classifier to make the normal samples far

away from the abnormal samples. LDA is a popular method to maximize the between-

class scatter and minimize the within-class scatter, but it is a vector-based method. If

we reshape the spatio-temporal tensor feature into a vector, it will collapse the spatio-

temporal structure information, which is very important for identification. Additionally,

the conventional LDA can only project the features into a scalar in the two-class case.

In this paper, we propose to use spatio-temporal tensor LDA to deal with the above

issues, which can preserve the spatio-temporal information well, and it also has no
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limitation on dimensionality reduction.

Let Ti, i ∈ [1, 2, ..., N ] be training tensor features with the labels of normal and

abnormal. Similar to LDA, the spatio-temporal tensor-based LDA (ST-LDA) also em-

ploys the Fisher criterion that maximizes the between-class scatter and minimizes the

within-class scatter, but it extends the vector-based norm into the Frobenius norm [111].

With the tensor features Ti ∈ R60×10, the between-class scatter Sb and the within-

class scatter Sw measured by the Frobenius norm are Sb =
∑2

i=1Ni‖Mi −M‖2
F and

Sw =
∑2

i=1

∑
Tj∈Xi

‖Tj −Mi‖2
F , where Ni means the number of i-th class sample, and

M is the mean matrix of all the Ti , and Mi represents the mean matrix of the i-th

class, and Tj ∈ Xi means that Tj belongs to the i-th class.

The goal is to find the optimal projection matrices L ∈ R60×dL and R ∈ R10×dR

which maximize Sb and minimize Sw in the low dimensional subspace of L
⊗
R, i.e.,

maximizing S′b =
∑2

i=1Ni‖LT (Mi−M)R‖2
F and minimizing S′w =

∑2
i=1

∑
Tj∈Xi

‖LT (Tj−

Mi)R‖2
F at the same time.

Because ‖X‖2
F = trace(XXT ), S′b and S′w can be written as S′b = trace(LTDR

b L)

and S′w = trace(LTDR
wL) when R is given, where

DR
b =

2∑
i=1

Ni(Mi −M)RRT (Mi −M)T (6.15)

DR
w =

2∑
i=1

∑
Tj∈Xi

(Tj −Mi)RRT (Tj −Mi)T (6.16)

Then we can get the optimal projection L by maximizing

trace((LTDR
wL)−1(LTDR

b L)), i.e., computing the eigenvectors of (DR
w)−1DR

b .

Similarly, if L is fixed, we can rewrite S′b and S′w as S′b = trace(RTDL
b R) and

S′w = trace(RTDL
wR), because of trace(AB) = trace(BA), where

DL
b =

2∑
i=1

Ni(Mi −M)TLLT (Mi −M) (6.17)

DL
w =

2∑
i=1

∑
Tj∈Xi

(Tj −Mi)TLLT (Tj −Mi) (6.18)
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Input: T1,T2,...,TN

Initialization: Set R0 = (IdR
, 0)T , and compute the mean Mi of the i-th

class for each class, and the global mean M .
Iteration: For t = 1 to tmax

1). For a given Rt−1, compute DR
w and DR

b using Equations 6.16
and 6.15, and get the optimal Lt by solving for the first dL leading eigen-
vectors of (DR

w)−1DR
b .

2). Based on , compute DL
w and DL

b as in Equations 6.18 and 6.17,
and get the optimal Rt by solving for the first dR leading eigenvectors of
(DL

w)−1DL
b .

3). If t > 1, ‖Lt−Lt−1‖ < ε and ‖Rt−Rt−1‖ < ε, break; else, continue.
End iteration.
Output: L = Ltmax and R = Rtmax

Table 6.1: The ST-LDA algorithm.

Then the optimal projection can be obtained by maximizing

trace((RTDL
wR)−1(RTDL

b R)), i.e., solving for the eigenvectors of (DL
w)−1DL

b .

Thus, the final optimal solution can be computed by an iterative procedure, as

shown in Table 6.1. It can be found that the ST-LDA algorithm not only avoids the

eigen-decomposition in the 600 dimensional space, but also well preserves the geometric

relations of row and column of Ti. In addition, in the conventional LDA, the available

dimension has the upper bound C − 1, which means it will project onto a scalar in our

normal/abnormal two classes situation, while ST-LDA has no such constraint and is

able to keep more information, which will be essential when we back-project the low

dimensional subspace feature to the original feature space and look for the ground of

the classification.

For a new myocardial deformation pattern Ttest ∈ R60×10, its projection in the

reduced dimensional subspace is: Ytest = LTTtestR ∈ RdL×dR . Classification is done in

this subspace using a k-nearest neighbor scheme, where we empirically set k = 3.

Regional abnormality analysis

Identifying and localizing abnormal cardiac regions could be of more clinical value

than just classifying a heart as normal or diseased. The intuition behind the ST-LDA

algorithm is that the high dimensional feature tensor can be projected into a lower
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dimensional subspace that is optimal for classification. Therefore, the tensor distance

between abnormal and normal features in the low dimensional subspace becomes a

concise but accurate description of the abnormality. If we back-project this feature

distance to the original space, we can recover the location of the pathology on the

original spatio-temporal structure in a more physically meaningful way.

Because the linear projection functions L and R are not orthogonal matrices, the

back-project operation needs to be done using their pseudo-inverse matrices L+ and

R+. Suppose Ta is a feature tensor, and Ya is its projection in the low dimensional

subspace, which is classified as abnormal using the ST-LDA classifier. Then the feature

distance in the original space can be derived by:

dT = (L+)T (Ya − Ȳnormal)R+ (6.19)

Since dT ∈ R60×10 and we are more interested in recovering the spatial distribution

of the cardiac function, we define an index of pathology Pi, i = 1, 2, ..., 20 that indicates

each cardiac region’s degree of functional abnormality. Note that P is a temporal and

functional (including radial strain, circumferential strain and rotation angle) combina-

tion of the abnormal distances, therefore, it is no longer a descriptor of local strain or

rotation angle, but rather a systematic indicator of the local cardiac function.

Pi =
10∑

t=1

(dT 2(i, t) + dT 2(20 + i, t) + dT 2(40 + i, t))
1
2 (6.20)

6.5.3 Experiments and Results

We acquired 41 time sequences of short-axis tagged MR images from 10 normal subjects

and 12 patients. The patient’s heart diseases varied from infarction or hypertrophy

to general loss of myocardial function. The spatial positions of these SA images are

confined to the mid-portion of the left ventricle, where the pathologies are usually

prominent. In the ST-LDA classification algorithm, we empirically set the iteration

number to 10, and the dimension of the subspace to 10 × 5, so that L ∈ R60×10 and

R ∈ R10×5. To make comparisons with other conventional classification methods, we
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Classification Algorithm PCA LDA SVM ST-LDA
Classification Accuracy Rate 73.17% 85.37% 87.80% 87.80%

Table 6.2: Comparison with other conventional classification algorithms.

applied PCA, LDA and SVM algorithms to the same data set. Their parameters are

also empirically set to be optimal.

The training and testing procedures are strictly done on a leave-one patient-out-

basis, i.e., we leave one patient data for testing, and use the rest for training. In

Table 6.2, we list the accuracy rate comparison of PCA, LDA, SVM and our proposed

ST-LDA. We find that our novel algorithm outperforms PCA and LDA in accuracy,

and has a similar accuracy rate with the nonlinear approach SVM. On the other hand,

PCA and ST-LDA is able to recover the regional abnormality by back-projecting the

subspace feature to the original feature space, while LDA and SVM cannot.

In Fig. 6.24, we show some representative results of the regional cardiac function

analysis. The regional abnormality is represented by the index P , which is encoded

in the pseudo color map. Column (a) is from a normal sequence. We can observe

that the P index is low and smoothly distributed. Column (b) is from an abnormal

subject. The warm color indicates possible abnormal regions, such as the 1 and 5

o’clock regions, which agree with doctor’s diagnosis. The high abnormality at the 7

o’clock region very likely comes from the LV-RV connecting area, whose motion is

affected by both ventricles and therefore sensitive to pathology. Columns (c) and (d)

are from a patient before and after a surgery, respectively. This patient had insertion of

a ”Coapsys” device to reduce functional mitral regurgitation. We can observe that the

doctor’s diagnosis (indicated by the surgical sites, which appear as dark dots in the MR

image, and depicted as black dots in the analysis results) coincides with the abnormal

regions from our analysis results very well. Furthermore, the overall performance is

more normal as depicted in the overall cooler color in (d), which shows the effectiveness

of this surgery. However, the myocardium at the two surgical sites were impaired in

the surgery, which is why the cardiac function is still (or even more) abnormal near the

surgical sites in (d). Our regional cardiac function analysis results perfectly agree with
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the patient’s pathologies before and after the operation.

Figure 6.24: Quantitative analysis of the regional abnormality from the back-projection.
Warm color represents high P value, which means high degree of abnormality. The first
row shows the sampling images at ES from 4 time sequences. The second row shows
the analysis results. Column (a) is from a normal sequence. Column (b) is from an
abnormal subject. (c) and (d) are from a patient before and after a surgery, respectively.
The black dots show the surgery sites.

6.5.4 Discussion

In this section, we proposed a novel spatio-temporal tensor-based LDA classification

framework to detect and localize regional cardiac abnormality. The advantage of the

proposed method is that its dimension reduction is separately operated in the spatial

and temporal domains, so that it conserves better the spatio-temporal structure and

information of the training data. In addition, in order to analyze regional cardiac func-

tion, we back-project the abnormality distance found in the subspace to the original

feature space, so as to localize the regional abnormality in a more physically meaningful

way. Our experimental results show our ST-LDA approach achieves a higher classifica-

tion rate than conventional linear approaches, and achieves comparable accuracy rate

to nonlinear method, such as SVM. The recovered regional abnormality agrees with

doctor’s diagnosis and patient’s pathology very well.
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6.6 Conclusion

In this chapter, we presented two 2D strain estimation methods in tagged MRI. We also

developed a inter-modality registration method and conducted a comparison between

tagged MRI and ultrasound elastography. The tracking-based methods track either the

tagging lines or phase angles over time, and get the displacement map accumulatively.

The strain value is derived from the displacement map. An advantage of this method is

that it can incorporate temporal information, such as estimating the local speed, into

tracking. Since it models the tagging lines or grids as deformable models, it is robust to

local image noise. The disadvantage of this method is that the errors in displacement

estimation from tracking are accumulative. Once the mis-tracking occurs, this method

will fail in all the following frames.

The non-tracking based method measures the local tag spacings and orientations.

The strain estimation is directly obtained from the tag’s deformation. Thus, it doesn’t

need to tracking the tag pattern from the very first frame. The advantage of this method

is that it is more efficient if we are only interested in a few frames of a full heart cycle.

If in a few frames, especially frame 1 or 2 at the beginning of ED, the myocardium

contracts at a very high speed, which leads to blurred tagging lines or grids, this method

can still recover the strain values in the other frames. The disadvantage of this method

is that it is sensitive to local image noise. Although after the filtering process, we can

achieve a smooth strain estimation, the filtering process may lead to under-estimated

strain values.

In practice, we have applied both methods on a large number of tagged MR images.

Since in MR imaging, there is a trade-off between spatial and temporal resolutions,

we found that the tracking-based method works better on images with high temporal

resolution, while the non-tracking-based method works better on images with high

spatial resolution.

The spatio-temporal tensor-based LDA classification works very well in detecting

and localizing the regional abnormalities in myocardial function. The advantage of this

method is that we formulate the abnormal detection into a classification problem, so
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that it aims to maximize the between-class scatter and minimize the in-class scatter.

Therefore, it is more efficient that training a normal or abnormal model from a lim-

ited number of training data sets. In addition, our tensor-based approach makes the

algorithm more accurate and able to back-project to find the regional abnormalities.
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Chapter 7

Conclusions and Future Topics

The main purpose of this dissertation involves developing automatic image analysis

algorithms for cardiac tMRI, as part of an effort in pushing this technique into clinical

use. Cardiac tMRI is well known for its ability of visualizing the myocardial intramu-

ral deformations in vivo. However, the lack of automated and reliable image analysis

methods has prevented this imaging technique from routine clinical use. In this disser-

tation, a full range of image processing methods, such as tag enhancing and tracking,

myocardial segmentation, and strain estimation for cardiac tMRI, have been developed.

To enhance and track the deformed tags, previous studies mainly focused on spectral

filtering operations in the Fourier domain. However, these methods encounter difficul-

ties in dealing with large myocardial deformation. In this research, a wavelet-like Gabor

filter-based method has been developed, which is more locally adaptive. This Gabor

based method was later extended to solve tasks such as tag removal, myocardial track-

ing, and strain estimation. Because of its wide applications, Gabor filtering has the

potential to become a routine procedure in tMRI analysis systems.

Segmentation of the myocardial boundaries is a challenging task because of the

complexity added by tagging. Previous studies mainly solved this problem by remov-

ing the tagging using spectral filtering or morphological operations, which are prone to

blurred or merged boundaries. To address this problem, in this research we are the first

that introduced statistical shape analysis, learning-based local appearance modeling,

and sampling-based tracking techniques into cardiac tMRI. Thus, the prior knowledge

of the anatomy (represented as the statistical shape model), the special tMRI image

characteristics (represented as the local appearance model), and the cardiac motion
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patterns (represented in the sampling-based tracking method) can be naturally inte-

grated into the segmentation framework. To automatically initialize the segmentation,

we also developed a heart detection and localization method based on machine learning

algorithms. The experimental results of our algorithm achieved highly accurate and ro-

bust segmentation of the left/right ventricular endocardium, and the epicardium. This

success indicates that prior knowledge is of great importance for solving medical image

analysis tasks, and machine learning methods provide good avenues to extract it.

A main goal of cardiac tMRI is to estimate myocardial strain. Some research groups

have recently been developing ultrasound-based strain estimation methods. It is of in-

terests for both MRI and ultrasound communities to conduct a comparison between

tMRI and ultrasound. For inter-modality comparison, the most difficult part is regis-

tration. In this research, we developed an inter-modality registration method for 3D

tMRI and 2D RF Ultrasound, by generating pseudo ultrasound images from tMRI so

that the mutual information-based registration method could work. This comparison

work gives valuable insights into the pros and cons of the two imaging modalities.

In medical image analysis, it is a good practice to keep improving the available

methods in accordance with the advancing of the imaging techniques. While the old

Gabor-based tag removal method still works, we developed a new Mean-Shift and band-

stop filtering based method to suppress the tagging specifically for MESSFP tMRI,

which is a recently developed imaging technique that achieves excellent contrast between

myocardium and blood pool. This new method preserves the appearance of the original

images with high resolution. Using a conventional Markov Random Field segmentation

method, we have achieved very accurate ventricular endocardium segmentation, from

which it is noticeable that the papillary muscles can be automatically segmented for

the first time in tMRI.

There are several directions that this research can be further developed in. First, I

plan to improve the statistics and learning-based segmentation methods by formulating

more sophisticated and efficient shape and appearance models, such as the nonlinear

shape models, which are more suitable for the highly nonlinear cardiac shape and mo-

tion. We can also implement incremental learning schemes, which are more efficient
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than the current offline learning method. Second, it is of great interest to analyze the

myocardial diastolic motion. Current research mainly focuses on the systolic process.

However, when many cardiovascular diseases take place, abnormality in diastolic mo-

tion appears earlier than in systolic. To achieve earlier heart disease detection, I would

like to modify the imaging cycle, and pay more attention to diastolic motion analysis.

Third, I plan to continue in developing diagnosis tools using myocardial motion infor-

mation. Certain pathologies correlate very closely to myocardial motion change. In this

dissertation, we developed a tensor-based classification method to detect and localize

the abnormalities in regional myocardial function. By acquiring and processing more

image data, from both normal and abnormal subjects with different diseases, I will be

able to diagnose pathologies using motion pattern classification algorithms for multiple

classes.
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