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ABSTRACT OF THE DISSERTATION

On the Questions of Local and Global Well-Posedness for

the Hyperbolic PDEs Occurring in Some Relativistic

Theories of Gravity and Electromagnetism

by Jared R. Speck

Dissertation Directors: Michael K.-H. Kiessling and A. Shadi

Tahvildar-Zadeh

The two hyperbolic systems of PDEs we consider in this work are the source-free

Maxwell-Born-Infeld (MBI) field equations and the Euler-Nordström system for gravi-

tationally self-interacting fluids. The former system plays a central role in Kiessling’s

recently proposed self-consistent model of classical electrodynamics with point charges,

a model that does not suffer from the infinities found in the classical Maxwell-Maxwell

model with point charges. The latter system is a scalar gravity caricature of the in-

credibly more complex Euler-Einstein system. The primary original contributions of

the thesis can be summarized as follows:

• We give a sharp non-local criterion for the formation of singularities in plane-

symmetric solutions to the source-free MBI field equations. We also use a domain

of dependence argument to show that 3-d initial data agreeing with certain plane-

symmetric data on a large enough ball lead to solutions that form singularities

in finite time. This work is an extension of a theorem of Brenier, who studied

singularity formation in periodic plane-symmetric solutions.
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• We prove well-posedness for the Euler-Nordström system with a cosmological

constant (ENκ) for initial data that are an HN perturbation (not necessarily

small) of a uniform, quiet fluid, for N ≥ 3. The method of proof relies on the

framework of energy currents that has been recently developed by Christodoulou.

We turn to this method out of necessity: two common frameworks for showing

well-posedness in HN , namely symmetric hyperbolicity and strict hyperbolicity,

do not apply to the ENκ system, while Christodoulou’s techniques apply to all

hyperbolic systems derivable from a Lagrangian, of which the ENκ system is an

example.

• We insert the speed of light c as a parameter into the ENκ system (and designate

the family of systems ENc
κ) in order to study the non-relativistic limit c → ∞.

Taking the formal limit in the equations gives the Euler-Poisson system with

a cosmological constant (EPκ). Using energy currents, we prove that for fixed

initial data, as c→∞, the solutions to the ENc
κ system converge uniformly on a

spacetime slab [0, T ]× R3 to the solution of the EPκ system.
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1

0.1 Introduction

The point of departure for this work is a nonlinear model of electromagnetism devel-

oped by Born and Infeld in the early 1930’s (consult e.g. [5]) and which is now known

as the Born-Infeld (BI) model. Different scientific communities have expressed renewed

interest in the BI model for a variety of reasons, the most pertinent of which to the au-

thor’s interests being that the theory features point charges with finite classical energy.

This property distinguishes BI theory from many accepted “effective theories” of point

charges and fields that suffer from divergence problems, including classical Maxwell-

Maxwella theory with point charge sources and quantum electrodynamics. This topic

is explored in detail in the work [28], in which Kiessling proposes a self-consistent

model of classical electrodynamics with point charges that does not suffer from diver-

gence problems or require regularization/renormalization. Kiessling’s model couples the

Maxwell-Born-Infeldb (MBI) field equations to his newly-proposed relativistic guiding

law for point charges whose guiding field satisfies a Hamilton-Jacobi PDE; the guid-

ing law is truly a necessary addition to the theory, for the classical Lorentz force is

ill-defined at the location of point charges, despite the finiteness of the electrostatic

energy of point charges.

Because of the newness of Kiessling’s theory, and because of the inherent complexity

of nonlinear systems, many basic mathematical questions in his model are open. In fact,

important questions concerning the source-free MBI field equations remain unanswered;

i.e., even without a coupling of it to Kiessling’s guiding law for point charges. The

source-free MBI system is the subject matter of Chapter 1, which begins with a review

of the structure of relativistic theories of source-free electromagnetism derivable from a

Lagrangian. In particular, I discuss the classical Maxwell-Maxwell (MM) field equations

and the MBI field equations. I then describe some special solutions to the source-free

MBI system.

aSection 1.1 contains a discussion of our use of the terminology “Maxwell-Maxwell” and “Maxwell-
Born-Infeld.”

bWe refer to the field equations in the Born-Infeld model as the “MBI field equations” or “MBI
system,” while the term “BI model” is used to refer to the Born-Infeld model in its entirety.
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The second topic I discuss in Chapter 1 is the formation of singularities in solutions

to the source-free MBI field equations with smooth initial data. The physically rele-

vant question is whether or not generic smooth initial data having finite energy launch

solutions to the MBI system that form singularities in finite time. Some progress was

made by Chae and Huh, who in [11] showed global existence for small initial datac by

adapting a paper of Lindblad [35] that uses the null condition of Klainerman [31], [32]

and Christodoulou [13]. The question of generic blowup for large data is not settled at

this point. However, for periodic solutions with planar symmetry, Brenier [7] provides

a sharp condition under which singularities form in finite time. These singularities are

not shock waves: infinities already occur in the field variables themselves, rather than

only in their gradients. I extend Brenier’s criterion to the case of non-periodic plane-

symmetric solutions in Theorem 1.3.1. Serre and Neves [41] have also contributed to

the analysis of the MBI system by proving some general blowup results that hold for

2× 2 totally linearly degenerate systems of conservation laws, of which a subsystem of

the Augmented-Maxwell-Born-Infeld system is an example as discussed in Chapter 1.

Since therefore the evolution of solutions to the MBI system with planar symme-

try is by now well-understood, it might seem that the next logical class of solutions

to investigate is the class of spherically symmetric solutions. However, the curl of any

radially-directed vectorfield vanishes, and a simple consequence of this fact is that there

are no non-trivial spherical wave solutions to the source-free MBI system. Therefore,

to make further progress on the question of blowup, one must confront either axially-

symmetric solutions or the full 3-dimensional problem; both of these classes of solutions

are significantly more complicated than solutions with planar symmetry. However, hy-

perbolic systems on spacetime manifolds exist that do feature spherically symmetric

wave solutions, including models of so-called scalar gravity. Among the various possi-

bilities, one of the putatively simplest such systems is formed by coupling Nordström’s

theory of gravity [43] to the relativistic Euler equations to form the Euler-Nordström

(EN) system. We regard the analysis of solutions to the EN system as a primer for

cChae and Huh considered initial data f̊ in the class C∞0 and showed that if ε is small enough, then
the solution to the source-free MBI field equations with initial data εf̊ has a global solution. No explicit
estimates of smallness constants were provided in this paper.
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studying the question of blowup in the MBI field equations.

Before attempting a proof of blowup for spherically symmetric data for the EN sys-

tem, it is natural to first study its Cauchy problem. Because the EN system is not

symmetric hyperbolic or strictly hyperbolic, classes of systems for which the Cauchy

problem is well-understood, alternate techniques are required to make progress on the

analysis of its Cauchy problem. Fortunately, such techniques have recently been de-

veloped by Christodoulou [15], [16]. It turns out that these techniques are both rich

in structure and versatile, so that the remainder of this thesis is dedicated to applying

them to the EN system.

I now give a brief description of Nordström’s theory before outlining the remaining

chapters of the thesis. In 1913, the Finnish physicist Gunnar Nordström published a pa-

per [43] in which he formulated one of the earliest consistent relativistic field theories of

gravity. This theory was the result of an extensive correspondence between Nordström

and Einstein. Interested readers may consult [44] for a detailed historical account of

their exchanges. The historical significance of [43] is as follows. First of all, it contains

for the first time an equation relating a purely geometric quantity, the Ricci scalar, to

a purely physical quantity, the trace of the energy momentum tensor. Secondly, soon

after its publication, Einstein and Fokker noted that the Lagrangian for the motion of

test particles in Nordström’s theory is the geodesic Lagrangian for a curved Lorentzian

manifold with a conformally flat metric [22]. Two years later, Einstein published [20]

“The Foundation of the General Theory of Relativity,” the first systematic exposition

of his theory of General Relativity, considered by many to be our gold standard theory

of gravitation.

In view of these remarks, we may consider the EN system as a relativistic primer

for studying the Euler-Einstein (EE) system, which is the coupling of Einstein’s field

equations to the relativistic Euler equations, and which is formidably complicated.

This point of view is explored in [50] in which Shapiro and Teukolsky discuss numerical

simulations of the EN system in the spherically symmetric case; they expect that the

numerical schemes developed in their paper can be adapted to allow for the calculation

of accurate wave forms in the EE model. Therefore, in addition to providing a starting
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point for studying 3-d blowup in the MBI field equations, the EN system also provides

insight that might be useful for studying the EE system.

I begin Chapter 2 by describing the coupling of Nordström’s theory to the relativistic

Euler equations. The resulting theory of curved spacetime is shown to be mathemat-

ically equivalent to a theory in Minkowski spacetime that features conservation laws

derivable from an energy momentum tensor. Additionally, I introduce a cosmologi-

cal constant κ2 into the system (and designate the system ENκ) in order to study

perturbations of a quiet uniform fluid, for without a cosmological constant, the only

constant solutions are bound by the physically undesirable constraintd ρ̄ = 3p̄, where

the positive constants ρ̄ and p̄ denote the energy density and pressure respectively of

the unperturbed, quiet, uniform fluid. Without the cosmological constant, this con-

straint places severe restrictions on the admissible equations of state. The situation is

analogous to Einstein’s addition of the cosmological constant to General Relativity in

order to obtain non-trivial static universes [21].

After placing the ENκ system in context in a hierarchy of existing models of self-

gravitating fluids, I discuss the well-posedness of its Cauchy problem. I provide a

detailed discussion of the geometry of the ENκ system and apply the techniques recently

developed by Christodoulou in [15] and [16] to generate energy currents. The energy

currents provide L2 estimates that are analogous to the estimates available in the theory

of symmetric hyperbolic PDEs, a class of systems for which local existence is well-

known. I provide a complete proof of local existence for perturbations of a quiet uniform

fluid belonging to the Sobolev space HN for the ENκ system using the method of energy

currents, where N ≥ 3 is an integer. I then adapt some work by Kato to show that the

solution depends continuously on the data, which completes the proof of well-posedness.

In Chapter 3, I introduce the speed of light c as a parameter into the ENκ system;

I denote the resulting system of equations by ENc
κ. Taking a limit c → ∞ in the ENc

κ

dConstant solutions to the ENκ system also must satisfy a constraint, but the point is that with
the addition of κ > 0, p̄ can be chosen freely, and the constraint can be viewed as a restriction on
the background potential Φ̄ that can be satisfied by arbitrary equations of state. A similar difficulty
arises in the Euler-Poisson system with a cosmological constant, but unlike in the ENκ system, Φ̄ is
un-physical in the sense that only ∇(1)Φ appears in the equations for the evolution of the fluid. A more
thorough discussion of this topic in the context of the EPκ system can be found in [30].



5

system, one formally obtains the Euler-Poisson system with the cosmological constant

κ2 (EPκ). The ENc
κ system is hyperbolic for all finite positive c, while the EPκ system is

not. Therefore, c→∞ is a singular limit. Nevertheless, Christodoulou’s techniques can

be used to generate energy currents, even in the EPκ case, that produce useful Sobolev

estimates. I use these estimates to prove a theorem showing that for N ≥ 4 and initial

data in HN , solutions to the ENc
κ system converge in HN−1 to solutions of the EPκ

system as the speed of light c tends to infinity, thus vindicating the ENc
κ system as a

genuine relativistic generalization of the EPκ system. A similar analysis is performed

for the Euler-Einstein system in [45]. Therefore, we expect that in certain limiting

situations, solutions to the EP, EN, and EE systems should share some qualitative and

quantitative features.
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Chapter 1

The Maxwell-Born-Infeld Electromagnetic Field

Equations

In this chapter, we discuss the 3-d source-free Maxwell-Born-Infeld (MBI) electromag-

netic field equations. After describing the structure of a relativistic electromagnetic

theory, we discuss a few results concerning special solutions to the MBI system, most

notably a blowup criterion for solutions with planar symmetry.

1.0.1 Notation

The electromagnetic theories discussed in this chapter take place in Minkoswki space-

time M. Although we have included the parameter Born-Infeld parameter β in the

MBI model, we work in units where the speed of light is unity. Furthermore, we work

in a fixed Lorentz coordinate system, and for this preferred time-space splitting, we

identify t = x0 with time and s = (x1, x2, x3) with space and use the notation (1.0.1.1)

to denote the components of x relative to this fixed coordinate system:

x = (x0, x1, x2, x3). (1.0.1.1)

The Minkwoski metric g has components gµν = diag(−1, 1, 1, 1) in this coordinate

system.

1.1 Relativistic Lagrangians and the Field Equations

In this section we discuss the structure of the class of electromagnetic field theories in

M that are derivable from a relativistic Lagrangian. Let us begin by recalling that

a relativistic Lagrangian for source-free electrodynamics in M can be written as a
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function L of the two invariants of the Faraday tensor, |B|2 − |E|2 and E · B, where

E :M→ R3 is the electric field and B :M→ R3 is the magnetic inductiona.

Varying the action ∫
M
L(E,B) d4x (1.1.0.2)

with respect to E and B subject to the constraintsb

∂tB +∇×E = 0 (1.1.0.3)

∇ ·B = 0 (1.1.0.4)

gives the equations

∂tD = ∇×H (1.1.0.5)

∇ ·D = 0, (1.1.0.6)

where

D def=
∂L
∂E

(E,B) (1.1.0.7)

H def= − ∂L
∂B

(E,B). (1.1.0.8)

D : M → R3 and H : M → R3 are the electric displacement and magnetic field

respectivelyc.

Our reason for the use of the names “Maxwell-Maxwell” and “Maxwell-Born-Infeld”

for the two systems discussed below, as opposed to “Maxwell” and “Born-Infeld,” is

that equations (1.1.0.3) - (1.1.0.6) are already featured in Maxwell’s work, while the two

systems (1.1.0.3) - (1.1.0.8) are distinguished by their constitutive relations (1.1.0.7),

(1.1.0.8) which derive from their Lagrangians (1.2.0.12) and (1.3.1.1) respectively.

The Hamiltonian density H(D,B) is given by taking the Legendre transformation

of L with respect to E :

H(D,B) def= sup
E

(
E ·D− L(E,B)

)
. (1.1.0.9)

aRecall that E and B are (up to − signs) components of the antisymmetric Faraday tensor Fαβ and
are thus subject to the associated transformation laws under coordinate changes.

bEquivalently, one may express the Lagrangian in terms of the 4-vector potential Aν and perform
unconstrained variations on Aν .

cMany authors refer to B as “the magnetic field.”
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We may recover E and H from H through the relations

E =
∂H
∂D

(D,B), (1.1.0.10)

H =
∂H
∂B

(D,B). (1.1.0.11)

1.2 Maxwell-Maxwell (MM) Electromagnetic Field Equations

As is well-known, the source-free Lagrangian density in classical MM electromagnetic

field theory is given by

LM
def=
|E|2 − |B|2

2
. (1.2.0.12)

In this case, (1.1.0.7) and (1.1.0.8) give

D = E (1.2.0.13)

H = B. (1.2.0.14)

Taking into account (1.1.0.3), (1.1.0.4), (1.1.0.5), and (1.1.0.6), the Maxwell-Maxwell

system comprises the evolution equations

∂tB = −∇×D (1.2.0.15)

∂tD = ∇×B (1.2.0.16)

supplemented by the constraints

∇ ·B = 0 (1.2.0.17)

∇ ·D = 0, (1.2.0.18)

which are propagated in time if satisfied by initial data.

It is easy to verify that “right-travelling” plane-symmetric fields of the form

D = f(x1 − t)e2 + g(x1 − t)e3 (1.2.0.19)

B = −g(x1 − t)e2 + f(x1 − t)e3 (1.2.0.20)

where ei denotes the ith standard basis vector in R3 and f, g are differentiable functions,

are solutions to the MM system. Furthermore, D·B = 0 and |D| = |B| hold for solutions

belonging to this family. We will make use of these facts in Section 1.3.2.
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1.3 Maxwell-Born-Infeld (MBI) Electromagnetic Field Equations

1.3.1 Introduction to the MBI Field Equations

The Born-Infeld model was proposed by Born and Infeld in the 1930’s (consult e.g.

[5]), with [4] a precursor by Born, in an effort to eliminate the singularities present in

classical Maxwellian electrodynamics with point charges. In [4], Born calculates the

electromagnetic field created by a single stationary point charge and shows i) that the

associated field energy is finite. If one also imposes the additional conditions ii) that

the field equations are covariant under the Poincaré group, iii) that the field equations

reduce to the Maxwell-Maxwell field equations in the weak field limit, iv) that the

field equations are covariant under a Weyl (gauge) group, and (v) that solutions to

the field equations are not birefringentd, then as discussed in [28], one arrives at the

unique one parameter family of models proposed by Born and Infeld. The uniqueness of

the MBI family under these assumptions has enticed Kiessling to incorporate the MBI

field equations into his proposed fundamental model for point charge electrodynamics

[28], [29]. In this section, we discuss the source-free field equations and add to the

body of known special solutions, and then elaborate upon some recent work by Brenier

concerning the formation of singularities in the case of solutions with planar symmetry.

The Born-Infeld Lagrangian density is given by

LBI(E,B) def=
1
β4
− 1
β4

(
1− β4(|E|2 − |B|2)− β8(E ·B)2

)1/2
, (1.3.1.1)

where β is a parameter in the theory.

Equation (1.1.0.9) and omitted calculations give that the Born-Infeld Hamiltonian

density is

HBI(D,B) =
(
1 + β4(|B|2 + |D|2) + β8|P|2

)1/2 − 1, (1.3.1.2)

where

P def= D×B. (1.3.1.3)

dBy this, we mean that in the “local rest frame” in which E and B are parallel, all of the characteristic
speeds coincide in magnitude. More information on this topic can be found in [2] and [3].
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Some omitted calculations using (1.1.0.10) and (1.1.0.11) give that

E =
D + β4B×P
hBI(D,B)

(1.3.1.4)

H =
D− β4D×P
hBI(D,B)

, (1.3.1.5)

where

hBI
def= HBI + 1 =

(
1 + β4(|B|2 + |D|2) + β8|P|2

)1/2
. (1.3.1.6)

By (1.1.0.3), (1.1.0.4), (1.1.0.5),(1.1.0.6), (1.3.1.4), and (1.3.1.5), the Maxwell-Born-

Infeld system therefore comprises the evolution equations

∂tB = −∇×
(D + β4B×P

hBI(D,B)

)
(1.3.1.7)

∂tD = ∇×
(D− β4D×P

hBI(D,B)

)
(1.3.1.8)

supplemented by the constraints

∇ ·B = 0 (1.3.1.9)

∇ ·D = 0, (1.3.1.10)

which are propagated in timee if satisfied by initial data.

1.3.2 On MM Solutions that are Also MBI Solutions

Consider a solution (E,B) = (D,H) to the MM system that also has the properties

|E| = |B| = |D| = |H| and E · B = D ·H = 0. For such solutions, a simple algebraic

calculation gives that

D + β4B×P
hBI(D,B)

= D (1.3.2.1)

D− β4D×P
hBI(D,B)

= B. (1.3.2.2)

It follows that (1.3.1.7) and (1.3.1.8) are satisfied by (D,B), so that (E,B) = (D,H)

is also a solution the MBI system. It has long since been observed by Schrödinger [48]

ei.e., ∂t(∇ ·B) = −∇ · ∇(×E) = 0, and similarly for ∇ ·D.
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that monochromatic plane waves of the form

E = Êexp(ωt− kjxj) (1.3.2.3)

B = B̂exp(ωt− kjxj), (1.3.2.4)

where Ê, B̂, and (k1, k2, k3) are mutually perpendicular unit vectors, have the above

properties, and therefore also solve the MBI systemf. Furthermore, Kiessling notes

that this result can be extended to include the case of a linearly polarized plane wave of

arbitrary pulse shape (not necessarily monochromatic) in [28]. It has apparently gone

unobserved in the literature that in fact any member of the family (1.2.0.19), (1.2.0.20),

which includes pulses of arbitrary shape and polarization, is also a solution to the MBI

systemg.

1.3.3 Criteria for Blowup of Solutions with Planar Symmetry

In this section, we extend Brenier’s results [7] on the blowup of solutions to the MBI

system featuring planar symmetry, that is, solutions D and B depending only on t

and x1. Of course, the globally-existing plane waves of the form discussed in Section

1.3.2 fail to meet the blowup criteria. This section is heavily influenced by Brenier’s

paper, to which I refer the reader for a more through discussion. Let us begin with

the following lemmah, which lists the continuity equations for the energy momentum

tensori associated to the LBI Lagrangian:

Lemma 1.3.1. Differentiable solutions to the source-free MBI system satisfy the con-

servation laws

∂thBI + ∂kPk = 0 (1.3.3.1)

∂tPj + ∂k
(PkPj −BkBj −DkDj

hBI

)
= ∂j

( 1
hBI

)
(j = 1, 2, 3). (1.3.3.2)

fSchrödinger in fact showed that these monochromatic plane waves are solutions to any field equa-
tions derivable from a relativistic Lagrangian, provided that they reduce to the MM field equations in
the weak field limit.

gIt is also true “left-travelling” plane-symmetric solutions can be constructed using functions of the
form f(x1 + t), g(x1 + t) and adjusting the minus signs. However, arbitrary superpositions of both left
and right-moving plane-symmetric fields are not in general solutions to the MBI field equations.

hHere, ∂k = ∂k, and the repeated index k is summed from 1 to 3.

iWe do not give an expression for the energy momentum tensor here.
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Based on Lemma 1.3.1, Brenier’s idea is to study the Augmented Maxwell-Born-

Infeld (AMBI) system, in which the quantities hBI and P are not constrained by the

relations (1.3.1.3) and (1.3.1.6), but are instead treated as independent quantities. The

6 × 6 MBI system can be recovered from the 10 × 10 AMBI system by restricting the

initial data to the “Born-Infeld” manifold, which is the submanifold of R10 on which

the relations (1.3.1.3) and (1.3.1.6) hold. This augmentation lends many advantages to

a study of the Cauchy problem. For example, calculations of the characteristic speeds

are relatively easy in the AMBI system. Furthermore, Brenier shows that the AMBI

system admits a smooth, strictly convex “entropy” functionj of the state-space variables

that is featured in an additional conservation law, which implies that the AMBI system

is symmetrizable and hyperbolic [18]. The simplification of greatest relevance to our

work here is that for solutions to the AMBI system with planar symmetry, there is a

remarkable decoupling of the system (1.3.3.1), (1.3.3.2), from the remaining unknowns.

The resulting system, which happens to be 2×2 because of the symmetry assumptions,

is simple enough that one can understand its evolution through calculations involving

the linear wave equation.

We now discuss the derivation of this decoupling and its consequences. By the SO(3)

covariance of the equations, it is sufficient to consider solutions that are functions of t

and x1, so that ∂2 = ∂3 = 0. By (1.3.1.7), (1.3.1.9), (1.3.1.8), and (1.3.1.10), we have

that

∂tB1 = ∂1B1 = ∂tD1 = ∂1D1 = 0, (1.3.3.3)

so B1 and D1 are constants. Exactly following Brenier, we define for later use the

constant

Z
def= (1 +B2

1 +D2
1)1/2. (1.3.3.4)

jThe terminology “entropy” is used in this context because in some applications (although not in
our work here!) the strictly convex function is, in the words of Dafermos [15], “intimately connected to
the Second Law of thermodynamics.”
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From these facts, the decoupling of the system (1.3.3.1), (1.3.3.2) is immediate:

∂th+ ∂1P1 = 0 (1.3.3.5)

∂tP
1 + ∂1

((P1)2 − Z2

h
= 0
)
, (1.3.3.6)

where h is the unconstrained variable in the AMBI system replacing hBI and P1 is also

unconstrainedk The remaining equations in the AMBI system are given by

∂tD2 + ∂1

(B3 +D2P1 −D1P2

h

)
= 0 (1.3.3.7)

∂tD3 + ∂1

(−B2 +D3P1 −D1P3

h

)
= 0 (1.3.3.8)

∂tB2 + ∂1

(−D3 +B2P1 −B1P2

h

)
= 0 (1.3.3.9)

∂tB3 + ∂1

(D2 +B3P1 −B1P3

h

)
= 0 (1.3.3.10)

∂tP2 + ∂1

(P1P2 −D1D2 −B1B2

h

)
= 0 (1.3.3.11)

∂tP3 + ∂1

(P1P3 −D1D3 −B1B3

h

)
= 0. (1.3.3.12)

If h and P1 are known functions, the system (1.3.3.7) - (1.3.3.12) is linear symmetric

hyperbolic in (D2, D3, B2, B3, P2, P3). Consequently, ifl 1/h, P1 ∈ CNb ([0,∞)×R) for a

large enough N, then (1.3.3.7) - (1.3.3.12) is globally well-posed in the Sobolev space

HN (R) through the energy principle for linear symmetric hyperbolic systems [36]. The

question of global existence for plane-symmetric solutions to the MBI system is there-

fore reduced to studying the 2 × 2 system (1.3.3.5), (1.3.3.6), the solutions of which

are characterized by the following theorem, which is an extension of Brenier’s blowup

criterion for periodic solutions with planar symmetry:

Theorem 1.3.1. Let h̊(x1), P̊1(x1) denote C1 initial data for the system (1.3.3.5)

(1.3.3.6) constructed from C1 plane-symmetric initial data D̊, B̊ for the MBI system.

Then h̊(x1), P̊1(x1) launch a globally bounded C1 solution (h, P1) if and only if there

kTo avoid adding to the list of symbols, we do not introduce an additional symbol to denote the
unconstrained variable P1. Instead, we allow context to determine if P1 is unconstrained or if it is
determined through D and B by (1.3.1.3).

lSection 2.2 of Chapter 2 explains the notation we use for function spaces.
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exists a constant µ such that

sup
x1∈R

|P̊1(x1)− µ̊h(x1)| < Z. (1.3.3.13)

Theorem 1.3.1 is of particular interest because of the fact that the MBI, AMBI, and

2×2 systems are totally linearly degenerate. Before proving the theorem, we will discuss

the definition of and a conjecture surrounding totally linearly degenerate systems. In

order to define “totally linearly degenerate,” we begin by writing the system (1.3.3.5)

(1.3.3.6) using standard matrix notation, in which V def= (h, P1) is the solution array:

A0(V)∂tV +A1(V)∂1V = 0, (1.3.3.14)

(1.3.3.15)

where

A0(V) =

1 0

0 1

 , A1(V) =

 0 1(
Z2 − (P1)2

)
/h2 2P1/h.

 . (1.3.3.16)

The characteristic subsetm of T ∗xM for this 2× 2 system is the set of (ξ0, ξ1) satisfying

the following equation: det
(
ξ0A

0(V) + ξ1A
1(V)

)
= 0, where

det = ξ2
0 + 2

ξ0ξ1P1

h
+
ξ2

1(P 2
1 − Z2)
h2

=
[
ξ0 + ξ1

(P1 − Z
h

)][
ξ0 + ξ1

(P1 + Z

h

)]
.

(1.3.3.17)

The characteristic speeds are found by setting |ξ1| = 1 and solving for ξ0 in (1.3.3.17).

Labelling the two speedsn as λ− and λ+, we have that

λ− =
P1 − Z
h

(1.3.3.18)

λ+ =
P1 + Z

h
. (1.3.3.19)

We now compute the right eigenvectors V−,V+ associated to λ−, λ+,

V− =

 1

λ−

 , V+ =

 1

λ+

 , (1.3.3.20)

mThe term “characteristic subset” is defined and discussed in detail in Chapter 2.

nIn the “local rest frame” in which E and B are parallel, it follows that P1 = 0, and the characteristic
speeds coincide in magnitude; this implies the “no birefringence” of the 2×2 system property mentioned
in [2].
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and calculate that

∇Vλ− = h−1

−λ−
1

 , ∇Vλ+ = h−1

−λ+

1

 . (1.3.3.21)

It therefore follows that

V− · ∇Vλ− = 0 = V+ · ∇Vλ+, (1.3.3.22)

so that λ−(t, x1) is constant along the integral curves of the vectorfield V−, and similarly

for λ+. The system (1.3.3.5), (1.3.3.6) is said to be totally linearly degenerate precisely

because property (1.3.3.22) holds. It was conjectured in Chapter 3 of [36] that such

systems should not form shock waves for smooth initial data and suggested that it

might be reasonable to expect global solutions for smooth initial data. Nevertheless,

Theorem 1.3.1 shows that L∞ singularities can form in finite time, even if the data

are smooth. This observation has been made independently in [41], in which Neves

and Serre discuss the ill-posedness of the Caucy problem for totally linearly degenerate

systems of conservation laws. We now return to the proof of Theorem 1.3.1.

Proof. We abbreviate x def= x1 throughout the proof. Since h̊(x) ≥ 1 for data in the BI

manifold, the formula

s =
∫ X̊(s)

0
h̊(y)dy (1.3.3.23)

implicitly defines a C1 diffeomorphism s → X̊(s) from R to R. By (1.3.3.23), we have

that

h̊(X̊(s)) =
1

X̊ ′(s)
. (1.3.3.24)

We also define

Ů(s) =
P̊1(X̊(s))

h̊(X̊(s))
(1.3.3.25)

and solve the linear wave equation

−∂2
tX(t, s) + Z2∂2

xX(t, s) = 0 (1.3.3.26)
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with initial conditions X(t = 0, s) = X̊(s), ∂tX(t = 0, s) = Ů(s), applying d’Alembert’s

formula to obtain

X(t, s) =
1
2

[X̊(s+ Zt) + X̊(s− Zt)] +
1

2Z

∫ s+Zt

s−Zt
Ů(s′)ds′, (1.3.3.27)

∂sX(t, s) =
1
2

[X̊ ′(s+ Zt) + X̊ ′(s− Zt)] +
1

2Z
[Ů(s+ Zt)− Ů(s− Zt)]. (1.3.3.28)

Simple calculations show that if condition ∂sX(t, s) > 0 holds, then the formulas

h(t,X(t, s)) def=
1

∂sX(t, s)
(1.3.3.29)

P1(t,X(t, s)) def= h(t,X(t, s))∂tX(t, s) =
∂tX(t, s)
∂sX(t, s)

(1.3.3.30)

implicitly define a solution to (1.3.3.5), (1.3.3.6) existing at the spacetime point

(t,X(t, s)). With this fact and formulas (1.3.3.24) and (1.3.3.25) in mind, we observe

that X(t, ·) is a C1 diffeomorphism from R to R (i.e. ∂sX(t, s) > 0 for all s ∈ R) for

all t if and only if

P̊1(X̊(s1)) + Z

h̊(X̊(s1))
>
P̊1(X̊(s2))− Z
h̊(X̊(s2))

for all s1, s2 ∈ R. (1.3.3.31)

We therefore define

µ−
def= sup

s∈R

P̊1(X̊(s))− Z
h̊(X̊(s))

(1.3.3.32)

µ+
def= inf

s∈R

P̊1(X̊(s)) + Z

h̊(X̊(s))
(1.3.3.33)

and consider separately the following 3 cases:

1. µ+ > µ−

2. µ+ < µ−.

3. µ+ = µ−.

Case 1 is equivalent to the existence of a µ ∈ R such that (1.3.3.13) holds. In this case,

1/|∂sX(t, s)| is uniformly bounded on R × R, so by formulas (1.3.3.29) and (1.3.3.30),

there is a global solution h(t, x), P1(t, x) to (1.3.3.5), (1.3.3.6) that is uniformly bounded

on R× R.
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In case 2, there exist numbers s1, s2 with

Ů(s1) + ZX̊ ′(s1) = Ů(s2)− ZX̊ ′(s2), (1.3.3.34)

and h(t, x) necessarily blows up in L∞ at the spacetime point

(t, x) =
(
(s1− s2)/2Z,X((s1− s2)/2Z, (s1 + s2)/2)

)
. Consequently, the lifespano of the

solution is

inf
{ |s1 − s2|

2Z

∣∣∣ s1, s2 ∈ R and
P̊1(x1) + Z

h̊(x1)
=
P̊1(x2)− Z
h̊(x2)

}
, (1.3.3.35)

where xi
def= X̊(si), for i = 1, 2.

Remark 1.3.1. It is a simple exercise to algebraically verify that case (2) never occurs

for the global plane wave solutions defined by (1.2.0.19), (1.2.0.20).

In case 3, we may only conclude that there is a pair of sequences {rn}, {sn} such

that

lim
n→∞

[
Ů(rn) + ZX̊ ′(rn)

]
−
[
Ů(sn)− ZX̊ ′(sn)

]
= 0. (1.3.3.36)

We therefore have that

lim
n→∞

h(tn, xn) =∞, (1.3.3.37)

where

(tn, xn) def=
(
(rn − sn)/2Z, X̊((rn − sn)/2Z, (rn + sn)/2)

)
, (1.3.3.38)

so there is no global L∞ bound for the solution, which may or may not exist globally.

Case 3 can be further broken down into subcases depending on whether or not the

sup or inf in (1.3.3.32), (1.3.3.33) is achieved; we leave these details to the interested

reader.

As a partial extension of Theorem 1.3.1, we state the following 3-d blowup result

and sketch its proof:

oBy lifespan, we mean the smaller of the two numbers sup{t | h(t, ·), P1(t, ·) exist globally in space}
and sup{t | h(−t, ·), P1(−t, ·) exist globally in space}.
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Corollary 1.3.2. There exist finite energy solutions to the 3-d source-free MBI field

equations with smooth initial data that form singularities in finite time.

Proof. A computation gives that the characteristic speeds in the 3-d MBI model are

bounded in magnitude by 1p. Therefore, two solutions agreeing on a ball of radius R at

t = 0 must agree on a ball of radius R− t at later times t. We may now define smooth,

compactly supported initial data for the 3-d MBI system that agrees on a ball of radius

R with a plane-symmetric solution that blows up at the origin at time t∗ via theorem

1.3.1. By the above argument, if R is large enough, then the 3-d solution generated by

these data must also blowup at the origin at time t∗.

In order for Corollary 1.3.2 to be physically relevant, one must extend it to show

blowup for a neighborhood of generic initial data; the blowup-producing data that

agree with plane-symmetric data on a ball may be degenerate cases that are unstable

under perturbations. This is a difficult open problem that we have in mind for future

investigation.

pThis computation is performed, for example, by Bialynicki-Birula [2] in a Lorentz frame in which
E and B are parallel.
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Chapter 2

The Euler-Nordström System with Cosmological Constant

This chapter is devoted to the application of Christodoulou’s method of energy currents

to the Cauchy problem for the Euler-Nordström (EN) system. Although most of the

technical estimates involve energy currents, we use a separate argument inspired by

Kato’s work to complete the proof of continuous dependence on initial conditions.

2.1 Introduction

It is well-known that for symmetric hyperbolic systems of PDEs, an energy principle

is available that implies well-posedness (local existence, uniqueness, and continuous

dependence on initial data) for initial data belonging to an appropriate Sobolev space.

Consult [17], [18], [23], [36], or [49] for the definition of a symmetric hyperbolic system

and a detailed proof of local existence in this case. A full proof of well-posedness

is difficult to locate in the literature, but Kato [27] supplies one using a very general

setup that applies to symmetric hyperbolic systems in a Banach space. Additionally, for

strictly hyperbolic (not necessarily symmetric) systems, well-posedness follows from the

availability of a generalization of the energy principle for symmetric hyperbolic systems.

For strictly hyperbolic systems, there are a variety of methods due to Petrovskii, Leray,

G̊arding, and Calderón for generating energy estimates; consult [17] or [34] for details

on these methods.

We consider here the Cauchy problem for the Lorentz covariant Euler-Nordström

(EN) system, which is a scalar caricature of the general covariant Euler-Einstein system

describing a gravitationally self-interacting fluid. The EN system is a quasilinear hyper-

bolic system of PDEs that is not manifestly symmetric hyperbolic. Moreover, because

of the repeated factors in the expression for Q(x; ·) in equation (2.5.1.7) below, it is not
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strictly hyperbolic. Therefore, well-posedness for the EN system does not follow from

either of these two well-known frameworks.

Fortunately, alternate techniques recently developed by Christodoulou [15], which

are applied to the study of relativistic fluids in Minkowski spacetime in particular in

[16], offer a viable approach to studying the Cauchy problem for the EN system. The

central advantage afforded by Christodolou’s techniques, which provide energy currents

for equations derivable from a Lagrangian, is that they bypass the physically artificial

requirement of symmetry in the equations: even though the EN system is not manifestly

symmetric, its energy currents allow for precisely the same energy estimates to be made

as in the theory of symmetric hyperbolic systems. Once one has these estimates, the

proof of well-posedness for the EN system mirrors the well known proof for symmetric

hyperbolic systems. Our main goal is to use the method of energy currents to prove the

following theorem (stated loosely here), which is divided into parts and stated rigorously

in Section 2.7:

Theorem (Well-Posedness). Let N ≥ 3 be an integer. Assume that the initial data

V̊ for the EN system are an HN perturbation of a constant background solution V̄.

Then these data launch a unique solution V possessing the regularity property V− V̄ ∈

C0([0, T ], HN ) ∩ C1([0, T ], HN−1). Furthermore, the map from the initial perturbation

V̊− V̄ to V− V̄ is a continuous map from an open subset of HN into C0([0, T ], HN ).

While Christodoulou’s methods are not the only techniques available for proving

the well-posedness of the EN system, they are powerful and natural in the sense that

they exploit the inherent geometry of the equations and apply to all physical equations

of statea. In contrast, one may sometimes proceed by a change of state-space variables

that renders the system symmetric hyperbolic. For example, Makino applies the sym-

metrizing technique to the Euler-Poisson equations in [37]. In fact, the EN system is

symmetrizable under some equations of state if we assume isentropic conditions. This

follows from the fact that the left-hand sides of (2.4.1.19) - (2.4.1.20) have the symbolic

aWe list the hypotheses that a “physical” equation of state must satisfy in Section 2.3.3.
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formb of the relativistic Euler equations, which, under barotropic equations of state (in

which the pressure is a function of the energy density alone), are symmetrized in [38]

and [39]. Further discussion of symmetrization appearing in the literature can be found

in sections 2.3.1 and 2.3.2.c Yet the symmetrizing method is not without disadvantages:

one must solve a formally over-determined system of equations to find the symmetrizing

variablesd, and the resulting state-space variables, if they exist, may place un-physical

and/or mathematically unappealing restrictions on the function spaces with which one

would like to work. However, it should be noted that for certain equations of state,

Makino’s symmetrization allows one to prove local existence for a restricted class of

compactly supported data, while the techniques applied here cannot yet handle such

data due to singularities in the energy current (2.5.5.1) when the proper energy density

ρ of the fluid vanishes.

2.2 Notation

We introduce here some notation that is used throughout this article, some of which

is non-standard. We assume that the reader is familiar with standard notation for the

Lp spaces and the Sobolev spaces Hk. Unless otherwise stated, the symbols Lp and Hk

refer to Lp(R3) and Hk(R3) respectively.

2.2.1 Notation and Assumptions Regarding Spacetime

In the Euler-Poisson system with cosmological constant introduced below, we use t ∈ R

to denote the time variable and s ∈ R3 to denote the space variable. In the Euler-

Einstein and EN systems (which we also equip with a cosmological constant below), we

assume that spacetime is a 4-dimensional, time-orientable Lorentzian manifold M and

bBy “symbolic form,” we mean that the form of the left-hand sides of (2.4.1.19) - (2.4.1.20) is the
same as that of the relativistic Euler equations as presented in [16]. However our symbols P and R
represent the quantities defined in (2.4.1.5) and (2.4.1.6), whereas in the relativistic Euler equations,
these symbols would represent the pressure and energy density respectively.

cThe references given are far from exhaustive; we merely wish to provide the reader with some
examples of the application of well-known techniques.

dConsult Chapter 3 of [18] for a discussion of symmetrization.
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use the notation

x = (x0, x1, x2, x3) (2.2.1.1)

to denote spacetime points. For the EN system with cosmological constant, we assume

the existence of a global system of rectangular coordinates (an inertial frame), and for

this preferred time-space splitting, we identify t = x0 with time and s = (x1, x2, x3)

with space and use the notation (2.2.1.1) to denote the components of x relative to this

fixed coordinate system.

2.2.2 Notation Regarding Differential Operators

For ν = 0, 1, 2, 3, we use the notation ∂ν to denote differentiation with the respect to

xν , where xν is defined in (2.2.1.1). We sometimes write ∂t in place of ∂0.

If F is a scalar or finite-dimensional array-valued function on R1+3, then DF denotes

the array consisting of all first-order spacetime partial derivatives (including the partial

derivative with respect to time) of every component of F, while ∇(a)F denotes the array

of consisting of all ath order spatial partial derivatives of every component of F ; this

should not be confused with ∇, which represents covariant differentiation.

2.2.3 Index Conventions

We adopt Einstein’s convention that repeated Latin indices are summed from 1 to 3,

while repeated Greek indices are summed from 0 to 3. Indices are raised and lowered

using a relevant spacetime metric, which in our discussion below is either the Einstein

metric gµν or the Minkowski metric gµν , depending on context.

2.2.4 Notation Regarding Norms and Function Spaces

If F is a scalar-valued or finite-dimensional array-valued quantity, we denote its Eu-

clidean norm by |F |; we explain one exception to this rule just beneath equation

(2.2.4.6). If such an F is a function on a subset A of R3 and 1 ≤ p ≤ ∞, then we
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use the notation

‖F‖Lp(A)
def=
(∫

A
|F (s)|p d3s

)1/p

(1 ≤ p <∞) (2.2.4.1)

‖F‖L∞(A)
def= inf{b ∈ R | µ{s ∈ A | |F (s)| ≥ b} = 0}, (2.2.4.2)

where µ denotes Lebesgue measure, to denote the usual Lp norm of F on the set A.

If V̄ is a constant array, we use the notation

‖F‖Lp
V̄

(A)
def= ‖F − V̄‖Lp(A), (2.2.4.3)

and we denote the set of all Lebesgue measurable functions F such that ‖F‖Lp
V̄

(A) <∞

by Lp
V̄

(A). Unless we indicate otherwise, we assume that A = R3 when the set A is not

explicitly written.

If F is a map from [0, T ] into the normed function space X, we use the notation

||| F |||X,T
def= sup

t∈[0,T ]
‖F (t)‖X . (2.2.4.4)

We also use the notation Ck([0, T ], X) to denote the set of k-times continuously differ-

entiable maps from (0, T ) into X that, together with their derivatives up to order k,

extend continuously to [0, T ].

If A ⊂ Rd (d frequently equals 3 or 10 in this article) and A is open, then Ckb (Ā)

denotes the set k−times continuously differentiable functions (either scalar or array-

valued, depending on context) on A with bounded derivatives up to order k that extend

continuously to the closure of A. The norm of a function F ∈ Ckb (Ā) is defined by

|F |k,A
def=
∑
|~α|≤k

sup
z∈A
|∂~αF (z)|, (2.2.4.5)

where ∂~α represents differentiation with respect to the arguments z of F (which may

be spacetime variables or state-space variables, depending on the context).

If F (s) is a function on a subset A of R3, and N ′ is any integer, we use the notation

‖F‖HN′ (A)
def=
( ∑
|~α|≤N ′

‖∂~αF (s)‖2L2(A)

)1/2
(2.2.4.6)

to denote the usual HN ′ norm of F on the set A. In (2.2.4.6), in keeping with the PDE

convention, we are breaking with the convention that |~α| is the Euclidean norm, instead

defining |~α| def= α1 + α2 + α3 if ~α = (α1, α2, α3).
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Analogous to definition (2.2.4.3), we use the notation

‖F‖
HN′

V̄
(A)

def= ‖F − V̄‖HN′ (A), (2.2.4.7)

and we denote the set of all Lebesgue measurable functions F such that ‖F‖
HN′

V̄
(A)

<∞

by HN ′

V̄
(A).

In the case A = R3, we sometimes consider non-integer values of N ′, in which case

we define ‖F‖HN′ in the standard way using the Fourier transform of F.

If F (t, s) is a function on R1+3, we write ‖F (t)‖HN′ (A) to denote the HN ′ norm of

the function F (t, ·) on the set A with t held fixed, and similarly with the HN ′ norm

replaced by the HN ′

V̄
norm, the Lp norm, or the Lp

V̄
norm.

We use the symbol S to denote the Schwartz functions on R3, the set of all C∞

functions that together with all of their derivatives vanish at infinity faster than any

power of |s|.

2.2.5 Notation Regarding Operators

If X and Y are normed function spaces, then L(X,Y ) denotes the set of bounded linear

maps from X to Y. If U ∈ L(X,Y ), we denote the operator norm of U by

‖U‖X,Y
def= sup

x∈X

‖U(x)‖Y
‖x‖X

. (2.2.5.1)

When X = Y, we use the notation L(X) def= L(X,X) and ‖U‖X
def= ‖U‖X,X .

If U(t, t′) is an operator-valued map from the triangle 4T
def= {0 ≤ t′ ≤ t ≤ T} into

L(X), then we adopt the notation

||| U |||X,4T
def= sup

(t,t′)∈4T
‖U(t, t′)‖X . (2.2.5.2)

2.2.6 Notation Regarding Tempered Distributions

If F and G are tempered distributions (that is, continuous linear functionals on S), we

denote the Fourier transform of F by F̂ , and the inverse Fourier transform of F by F∨.

We use the notation

[F,G] def=
∫
F∨Ĝ. (2.2.6.1)
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Here, if F∨ and Ĝ are functions, the right-hand side is the usual integral over R3. If F∨

is a distribution and G ∈ S, then the right-hand side is defined to be the action of the

distribution F∨ on Ĝ, which agrees with the integral definition in the former case.

2.2.7 Notation Regarding Constants

We use the symbol C to denote a generic constant in the estimates below which is free

to vary from line to line. If the constant depends on quantities such as real numbers N ′,

subsets A of Rd, functions F of the state-space variables, etc., that are peripheral to

the argument at hand, we sometimes indicate this dependence by writing C(N ′,A, F ),

etc. We frequently omit the dependence of C on functions of the state-space variables

below in order to conserve space, but we explicitly show the dependence when it is

(in our judgment) illuminating. Occasionally, we shall use additional symbols such as

CŌ2
, L,K, etc., to denote constants that play a distinguished role in the discussion

below.

2.3 Models in Context

The EN system is an intermediate model in between the Galilean covariant Euler-

Poisson (EP) and the general covariant Euler-Einstein (EE) systems for self-gravitating

classical fluids. Although it is the most fundamental of these models for self-gravitating

Eulerian fluids, the EE system presents numerous technical difficulties that make a de-

tailed analysis of the system’s evolution, through either numerical or analytical meth-

ods, extremely difficult. In addition to the usual difficulties involved in studying quasi-

linear systems of PDEs, the EE system does not exhibit spherically-symmetric solutions

featuring the propagation of gravitational waves.e Consequently, in order to study wave

phenomena in the EE model, one must work with systems involving at least two space-

like independent variables and one timelike independent variable. Further complicating

matters is that there is no known law of local conservation of gravitational field energy

in General Relativity. Our main motivations for studying the EN system are to bridge

eThis result is known as Birkhoff’s Theorem.
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the gap between the EP and the EE systems and to provide a special relativistic primer

for studying the EE system.

Since it is based on Nordström’s theory of gravity, it should be stressed that the

EN system is physically wrong. However, since both the EN and the EE systems are

relativistic generalizations of the EP system, we expect, at least in some limiting cases,

that there are some qualitative similarities between solutions to the three systems. A

rigorous result along these lines is stated and proved as Theorem 3.9.2. Furthermore,

in [50], Shapiro and Teukolsky discuss numerical simulations of the EN system in the

spherically symmetric case; they expect that the numerical schemes developed in their

paper can be adapted to allow for the calculation of accurate wave forms in the EE

model.

Before discussing the EN system in detail, we briefly recall the EP and EE systems,

endowing both with a cosmological constant f denoted by κ2. We also briefly discuss some

local existence proofs for these systems in the case κ = 0, emphasizing their dependence

on the symmetric hyperbolic setup or the method of Leray (strict) hyperbolicity.

We introduce a positive cosmological constant out of mathematical necessity: the

EN system generally failsg to have non-zero constant solutions without it.h We empha-

size the presence of the cosmological constant κ2 in the models by referring to them as

the EPκ, EEκ, and ENκ systems; note that EP=EP0, and similarly for the other two

models.

fWe deviate from Einstein’s notation; he denoted the cosmological constant by Λ.

gWe provide some elaborating remarks on the existence of constant solutions in the ENκ system in
Section 0.1.

hThis is similar to the reasoning that led Einstein to introduce the cosmological constant into General
Relativity; he sought a static universe, and General Relativity without a cosmological constant features
only Minkowski space as a static solution (see [21]).
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2.3.1 The Euler-Poisson System with Cosmological Constant (EPκ)

In units with Newton’s universal gravitational constant equal to 1, the equations gov-

erning the dynamics in this case are

∂tη + vk∂kη = 0 (2.3.1.1)

∂tρ+ ∂k(ρvk) = 0 (2.3.1.2)

ρ
(
∂tvj + vk∂kv

j
)

+ ∂jp+ ρ∂jΦ = 0 (j = 1, 2, 3), (2.3.1.3)

where

∆Φ− κ2Φ = 4πρ (2.3.1.4)

and

p = P(ρ, η). (2.3.1.5)

The unknowns in (2.3.1.1) - (2.3.1.4) are the cosmological Newtonian gravitational

scalar potential Φ(t, s), and the state-space variablesi mass density ρ(t, s), velocity

v(t, s) = (v1, v2, v3), pressure p(t, s), and entropy density η(t, s).j The equation that

specifies p as a function P of ρ and η is known as the equation of state. This system of

equations is discussed in [30], in which, under an isothermal equation of state (p = c2
sρ,

where the constant cs denotes the speed of sound), Kiessling derives the Jeans dis-

persion relation that arises from linearizing (2.3.1.2) - (2.3.1.4) about a static state in

which the background mass density ρ̄ is non-zero, followed by taking the limit κ→ 0.k

In [37], Makino studies the Cauchy problem for the EP0 system with compactly

supported initial data belonging to an appropriate Sobolev space. He considers isen-

tropic conditions (η ≡ constant)l and an adiabatic equation of state (p = Aργ , where

iIn the EPκ system, Φ is not a state-space variable because it is uniquely determined by ρ under
the assumption of appropriate decay conditions on Φ and ρ at infinity.

jWe are influenced by Boltzmann’s notation in denoting the entropy density by η.

kEntropy is not a relevant concept for the topics discussed Kiessling’s paper, so equation (2.3.1.1)
is not included in the system of equations he studies.

lEquation (2.3.1.1) is therefore not included in Makino’s paper either.
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A is a positive constant) under the mathematical assumption 1 < γ < 3. After finding

symmetrizing variablesm, he proves local existence.

2.3.2 The Euler-Einstein System with Cosmological Constant (EEκ)

We work in units with Newton’s universal gravitational constant and the speed of light

both equal to 1. Given T, the energy-momentum tensor of the contemplated matter

model, the gravitational spacetime with cosmological constant is determined by the

Einstein field equations,

Gµν + κ2gµν = 8πTµν (0 ≤ µ, ν ≤ 3), (2.3.2.1)

where G is the Einstein tensor of the spacetime metric g. As a consequence of (2.3.2.1),

T has to satisfy the admissibility condition

∇µTµν = 0 (0 ≤ ν ≤ 3), (2.3.2.2)

where the ∇ denotes the covariant derivative induced by the spacetime metric g. Equa-

tion (2.3.2.2) follows from the twice contracted Bianchi identity, which implies that

∇µGµν = 0, (2.3.2.3)

together with

∇λgµν = 0 (0 ≤ λ, µ, ν ≤ 3), (2.3.2.4)

which follows from the fact that ∇ is the Levi-Civita connection on spacetime.

For a perfect fluid model, the components of the energy-momentum tensor of matter

readn

Tµν
def= (ρ+ p)uµuν + pgµν . (2.3.2.5)

Here the scalar ρ ≥ 0 is the proper energy density, the scalar p ≥ 0 is the pressure, and

the vector u is the four-velocity, a future-directed timelike vectorfield which is subject

mVanishing mass densities typically produce singularities in the expression for the energy, but
Makino’s choice of symmetrizing variables allows him to handle a class of compactly supported data.

nConsult [1] for a discussion on the form of the energy-momentum tensor for a perfect fluid.
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to the normalization condition

gµνu
µuν = −1. (2.3.2.6)

When g is given and T is defined by (2.3.2.5), equations (2.3.2.2) are 4 of the 5 Euler

equations for a general-relativistic perfect fluid, the 5th Euler equation being given by

∇µ(nuµ) = 0, (2.3.2.7)

where n ≥ 0 is the proper number density. Equation (2.3.2.7) is a consequence of the

variational formulation of fluid mechanics as described in [15]. We also introduce the

thermodynamic variable η ≥ 0, the entropy density.

In general, when both g and T are unknowns, (2.3.2.1), its consequence (2.3.2.2),

together with (2.3.2.5), (2.3.2.6), and (2.3.2.7) form the EEκ systemo for u, ρ, p, g and η,

up to closure, for instance by an equation of state relating ρ, p, and η. In the special case

of barotropic fluids, the equation of state is a relationship between ρ and p alone, and

the system is closed without considering (2.3.2.7). Local existence for barotropic perfect

fluids has been discussed by several authors under various additional assumptions on

the equation of state and initial data. For example, in [12], Choquet-Bruhat showed

that the EE0 system with barotropic perfect fluid sources forms a well-posed Leray-

hyperbolic system, and in [47], Rendall adapted Makino’s symmetrization (as discussed

in section 2.3.1) of the EP0 system to handle a subclass of compactly supported initial

data for the EE0 system under an adiabatic equation of state with γ > 1. Similar results

are also proved in [6], in which Brauer and Karp write the equations as a symmetric

hyperbolic system in harmonic coordinates.

2.3.3 The Euler-Nordström System with Cosmological Constant (ENκ)

We base our discussion here on Calogero’s derivation of the Vlasov-Nordström system

[8].p Consult sections 2.2.1 and 2.2.3 for some remarks on our assumptions concerning

oInterested readers may also consult the first few pages of [14] for a short introduction to general-
relativistic fluids.

pEach of the three Eulerian fluid models mentioned above has a kinetic theory counterpart. Collec-
tively known as the Vlasov models, these diffeo-integral systems describe a particle density function f
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spacetime and our use of index notation. As in the EEκ model, we work in units with

the speed of light and Newton’s universal gravitational constant both equal to 1.

Like the EEκ system, the ENκ system subsumes equations (2.3.2.2), (2.3.2.5),

(2.3.2.6), and (2.3.2.7), where ρ ≥ 0, p ≥ 0, n ≥ 0, η ≥ 0, and u are defined as in the

EEκ system. In contrast to the EEκ model, we do not assume Einstein’s field equations

(2.3.2.1); instead we turn to Nordström’s theory of gravity. We postulate that in our

global rectangular coordinate system, the conformally flat metric is given byq

gµν
def= e2φgµν , (2.3.3.1)

where φ is the Nordström scalar potential, and g = diag(−1, 1, 1, 1) are the components

of the Minkowski metric in the rectangular coordinate system. Following Nordström’s

lead [43], we also introduce the auxiliary energy-momentum tensor Taux with compo-

nents

Tµνaux

def= e6φTµν (2.3.3.2)

and postulate that φ is a solution to

�φ− κ2φ = −gµνTµνaux = −e4φ(3p− ρ). (2.3.3.3)

Note that �φ def= −∂2
t φ + ∆φ is the wave operator on flat spacetime applied to φ. The

virtue of the postulate (2.3.3.3) is that it provides us with continuity equations for an

energy-momentum tensor in Minkowski space which we label Θ and discuss below; see

equations (2.4.1.8) and (2.4.1.9).

on physical space × momentum space that evolves due to gravitational self-interaction. In particular,
the EN0 system is the Eulerian counterpart of the previously studied Vlasov-Nordström (VN) system
(which does not feature a cosmological constant). See e.g., [8] or [9].

qNordström’s theory of gravity [43] belongs to the class of theories known as scalar metric theories
of gravity. For theories in this class, gravitational forces are mediated by a scalar field (or “potential”)
φ that affects the spacetime metric. Furthermore, it is assumed that the effect of φ is to modify the
otherwise flat metric by a scaling factor that depends on φ. Therefore, the physical metric in such a
theory is given by gµν = χ2(φ)gµν , where g is the Minkowski metric. A metric of this form is said to be
conformally flat. Strictly speaking, the scalar theory of gravity we study in this paper is not identical
to the one published by Nordström in [43]. In his paper, Nordström makes the choice χ(φ) = φ, while
in our paper, we make the choice χ(φ) = eφ, a theory that appears as a homework exercise in the
well-known text “Gravitation” by Misner, Thorne, and Wheeler [40]. See [8] or [19] concerning the
significance of the choice χ(φ) = eφ, which has the property of scale invariance of the gravitational
interaction. Also consult [46] for a discussion of scalar theories of gravity, including the two mentioned
here.
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As in the EPκ and EEκ models, we may close the ENκ system by supplying an

equation of state. The basic postulates we adopt for a physical equation of state are as

follows (see e.g. [24]):

1. ρ ≥ 0 is a function of n ≥ 0 and η ≥ 0.

2. p ≥ 0 is defined by

p
def= n

∂ρ

∂n

∣∣∣∣
η

− ρ, (2.3.3.4)

where the notation |· indicates partial differentiation with · held constant.

3. A perfect fluid satisfies

∂ρ

∂n

∣∣∣∣
η

> 0,
∂p

∂n

∣∣∣∣
η

> 0,
∂ρ

∂η

∣∣∣∣
n

≥ 0 with “ = ” iff η = 0, (2.3.3.5)

As a consequence, we have that σ, the speed of sound in the fluid, is always real:

σ2 def=
∂p

∂ρ

∣∣∣∣
η

=
∂p/∂n|η
∂ρ/∂n|η

> 0. (2.3.3.6)

4. We also demand that the speed of sound is less than the speed of light:

0 < σ < 1. (2.3.3.7)

Remark 2.3.1. By (3.1.1.11), we can solve for σ and ρ as functions of p and η :

σ = S(η, p) (2.3.3.8)

ρ = R(η, p). (2.3.3.9)

As a typical example, we mention a polytropic equation of state, that is, an equation

of state of the form (see e.g., [24])

ρ = n+
A(η)
γ − 1

nγ , (2.3.3.10)

where 1 < γ < 2, and A is a positive, increasing function of η. In this case p = Anγ ,

∂p/∂ρ|η is increasing in ρ, and the speed of sound σ is bounded from above by
√
γ − 1.
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Remark 2.3.2. We note here a curious discrepancy that arises when, for the polytropic

equation of state under the isentropic condition η ≡ η0, we consider the Newtonian

limit, that is, the limit as the speed of light c goes to∞. In dimensional units, (2.3.3.10)

becomes ρ = m0c
2n+Ac(η)

γ−1 n
γ , and p = Ac(η)nγ , where m0 is the mass per fluid element,

and Ac(η) is a positive, increasing function of η indexed by the parameter c. The speed

of sound squared is given by σ2 def= c2 ∂p
∂ρ

∣∣∣
η

= γc2Ac(η0)nγ−1

c2m0+(γ/γ−1)Ac(η0)nγ−1 . Assuming that

limc→∞Ac(η0) def= A∞(η0) exists, we may consider the Newtonian limit c → ∞ of σ2

and p, obtaining σ2 = γm−1
0 A∞(η0)nγ−1 and p = A∞(η0)nγ , Newtonian formulas that

make mathematical sense and have physical interpretations for 1 ≤ γ < ∞. In the

Newtonian case, γ = 1 corresponds to isothermal conditions, while γ → ∞ yields the

rigid body dynamics. However, for finite values of c, not all values of the parameter γ

make mathematical or physical sense: there is a mathematical singularity in the formula

for ρ at γ = 1. This is physically reasonable since isothermal conditions require the

instantaneous transfer of heat energy. Thus, for finite c, the polytropic equations of state

do not allow for the case corresponding to the instantaneous transfer of heat energy over

finite distances, a feature which we find desirable in a relativistic model. Additionally,

we have that limn→∞ σ
2 = c2(γ − 1), so that for γ > 2, there is a γ−dependent critical

threshold for the number density above which the speed of sound exceeds the speed of

light. Since larger values of γ correspond to “increasing rigidity” of the fluid, and the

concept of rigidity violates the spirit of the framework of relativity, we are not surprised

to discover that large values of γ may lead to superluminal sound speeds. However, we

find ourselves at the moment unable to attach a physical interpretation to the fact that

the mathematical borderline case is γ = 2.

We summarize this section by stating that equations (2.3.2.2), (2.3.2.5), (2.3.2.6),

and (2.3.2.7), (3.1.1.1), (2.3.3.2), (2.3.3.3), (2.3.3.4), and (2.3.3.9) constitute the ENκ

system.
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2.4 Reformulation of the ENκ System, the Linearized ENκ System,

and the Equations of Variation

Because it is mathematically advantageous, in this section we reformulate the ENκ

system as a fixed-background theory in flat Minkowski space. This is a mathematical

reformulation only; the “physical” metric in the ENκ system is g from (3.1.1.1) rather

than the Minkowski metric g. We also discuss the linearization of the ENκ system

and the related equations of variation, systems that are central to the well-posedness

arguments.

2.4.1 Reformulating the ENκ System

For the remainder of this chapter, indices are raised and lowered with the Minkowski

metric, so for example, ∂λφ = gµλ∂µφ. To begin, we use the form of the metric (3.1.1.1)

to compute that in our fixed rectangular coordinate system (see Section 2.2.1), the

continuity equation (2.3.2.2) for the energy-momentum tensor (2.3.2.5) is given by

0 = ∇µTµν = ∂µT
µν + 6Tµν∂µφ− e−2φgαβT

αβ∂νφ

= ∂µT
µν + 6Tµν∂µφ− e−6φgαβT

αβ
aux∂

νφ (ν = 0, 1, 2, 3), (2.4.1.1)

where Tµνaux is given by (2.3.3.2). For this calculation we made use of the explicit form

of the Christoffel symbols in our rectangular coordinate system:

Γαµν = δαν ∂µφ+ δαµ∂νφ− gµνgαβ∂βφ. (2.4.1.2)

Under the postulate (2.3.3.3) for φ, (3.1.2.1) can be rewritten as

0 = e6φ∇µTµν = ∂µ
(
Tµνaux + ∂µφ∂νφ− 1

2
gµν∂αφ∂αφ−

1
2
gµνκ2φ2

)
. (2.4.1.3)

Equation (2.4.1.3) now illustrates the divergence-free energy-momentum tensor Θ men-

tioned in Section 2.3.3. Its components Θµν consist of the terms from (2.4.1.3) that are

inside the parentheses; we are thus afforded with local conservation laws in Minkowski

space.
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To simplify the notation, we make the change of field variables (recalling equation

(2.3.3.9) for the definition of the function R)

Uν
def= eφuν (ν = 0, 1, 2, 3) (2.4.1.4)

R
def= e4φρ = e4φR(p, η) (2.4.1.5)

P
def= e4φp (2.4.1.6)

throughout the ENκ system, noting that U is subject to the constraint

U0 = (1 + UkUk)1/2. (2.4.1.7)

Following the above substitutions, Θ has components

Θµν def= (R+ P )UµUν + Pgµν + ∂µφ∂νφ− 1
2
gµν∂αφ∂αφ−

1
2
gµνκ2φ2, (2.4.1.8)

and (2.4.1.3) becomes

∂µΘµν = 0 (ν = 0, 1, 2, 3). (2.4.1.9)

We perform the same changes of variables in the equation (2.3.2.7) and expand the

covariation differentiation in terms of coordinate derivatives and the Christoffel symbols

(2.4.1.2), arriving at the equation

∂µ

(
ne3φUµ

)
= 0. (2.4.1.10)

For our purposes below, we take as our equations the projections of (2.4.1.9) onto

the orthogonal complement of U and in the direction of U. In this formulation, the form

of the ENκ system is that of the ordinary relativistic Euler equations (as presented in

[16]) with inhomogeneous terms involvingDφ, supplemented by the linear Klein-Gordon

equation (2.3.3.3) for φ. Thus, we introduce Π, the projection onto the orthogonal

complement of U, given by

Πµν def= UµUν + gµν . (2.4.1.11)

Considering first the projection of (2.4.1.9) in the direction of U, we remark that

one may use (2.3.3.4) and (2.4.1.10) to conclude that for C1 solutions, Uν∂µΘµν = 0 is
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equivalent to

Uµ∂µη = 0, (2.4.1.12)

which implies that the entropy density η is constant along the integral curves of U.

The projection of (2.4.1.9) onto the orthogonal complement of U gives 4 equations,

only 3 of which are independent:

(R+ P )Uµ∂µUν + Πµν∂µP = −(�φ− κ2φ)Πµν∂µφ (ν = 0, 1, 2, 3). (2.4.1.13)

By (2.3.3.9), (2.4.1.5) and (2.4.1.6), we may solve for R as a function R of P, η, and

φ :

R = R(η, P, φ) def= e4φR(η, e−4φP ). (2.4.1.14)

We also introduce the nameless quantity Q and make use of (2.3.3.4), (2.3.3.6),

(2.3.3.8), (2.3.3.9), (2.4.1.5), and (2.4.1.6) to express it as a function Q of P, η, and φ :

Q = Q(P, η, φ) def= n
∂P

∂n

∣∣∣∣
η,φ

=
∂P

∂R

∣∣∣∣
n,φ

· n ∂R

∂n

∣∣∣∣
η,φ

= e4φS2(p, η)(ρ+ p) (2.4.1.15)

= S2(η, e−4φP, )[R(η, P, φ) + P ].

Then we use the chain rule together with (2.4.1.10), (2.4.1.12), and (2.4.1.15) to

derive

Uµ∂µP +Q∂µU
µ = (4P − 3Q)Uµ∂µφ, (2.4.1.16)

which we may use in place of (2.4.1.10).

Deleting the redundant equation from (3.1.2.21), using (2.4.1.7) to derive the rela-

tion

∂λU
0 =

Uk
U0

∂λU
k, (2.4.1.17)

and rewriting the linear Klein-Gordon equation for φ as an equivalent first order system,

the working form of the ENκ system that we adopt is
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Uµ∂µη = 0 (2.4.1.18)

Uµ∂µP +Q
Uk
U0

∂0U
k +Q∂kU

k = (4P − 3Q)Uµψµ (2.4.1.19)

(R+ P )Uµ∂µU j + Πµj∂µP = (3P −R)Πµjψµ (j = 1, 2, 3) (2.4.1.20)

−∂0ψ0 + ∂jψj = κ2φ+R− 3P (2.4.1.21)

∂0ψj − ∂jψ0 = 0 (j = 1, 2, 3) (2.4.1.22)

∂0φ = ψ0. (2.4.1.23)

Here, U0, R, and Q are expressed in terms of the unknowns through the relations

U0 = (1 + UkUk)1/2 (2.4.1.24)

Q = Q(η, P, φ) (2.4.1.25)

R = R(η, P, φ), (2.4.1.26)

where the function Q is defined in (2.4.1.15), and the function R is defined in (2.4.1.14).

In our rewriting of the linear Klein-Gordon as a first order system, we treat ψν
def= ∂νφ

as separate unknowns for ν = 0, 1, 2, 3. To simplify notation, we collect the unknowns

V together into an arrayr given by

V def= (η, P, U1, U2, U3, φ, ψ0, ψ1, ψ2, ψ3) (2.4.1.27)

and we refer to the first five components of V as

W def= (η, P, U1, U2, U3). (2.4.1.28)

2.4.2 Linearization and the Equations of Variation (EOV)

The standard techniques for proving well-posedness require the linearization of the ENκ

system around a known background solution, which we refer to as a “BGS.” Each BGS

Ṽ :M→ R10 we consider is of the form Ṽ = (η̃, P̃ , · · · , ψ̃2, ψ̃3). The resulting system is

rAlthough every array appearing in this work is a q × 1 column vector, we write them as if they
were row vectors to save space.
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known as the equations of variation (EOV). Thus, given such a Ṽ and inhomogeneous

terms f, g, · · · , l(4), we define the EOV by

Ũµ∂µη̇ = f (2.4.2.1)

Ũµ∂µṖ + Q̃
Ũk

Ũ0
∂0U̇

k + Q̃∂kU̇
k = g (2.4.2.2)

(R̃+ P̃ )Ũµ∂µU̇ j + Π̃µj∂µṖ = h(j) (j = 1, 2, 3) (2.4.2.3)

−∂0ψ̇0 + ∂jψ̇j = l(0) (2.4.2.4)

∂0ψ̇j − ∂jψ̇0 = l(j) (j = 1, 2, 3) (2.4.2.5)

∂0φ̇ = l(4), (2.4.2.6)

where

Ũ0 def= (1 + ŨkŨk)1/2 (2.4.2.7)

Π̃µν def= ŨµŨν + gµν (2.4.2.8)

Q̃
def= Q(η̃, P̃ , φ̃) (2.4.2.9)

R̃
def= R(η̃, P̃ , φ̃). (2.4.2.10)

Here, the function Q is defined in (2.4.1.15), and the function R is defined in (2.4.1.14).

The unknowns are the components of V̇ def= (η̇, Ṗ , · · · , ψ̇2, ψ̇3), and we label the first

five components of V̇ by Ẇ def= (η̇, Ṗ , U̇1, U̇2, U̇3).

Remark 2.4.1. We place parentheses around the superscripts of the inhomogeneous

terms h(j) and l(z) in order to emphasize that we are merely labelling them, and that

in general, they do not transform covariantly under changes of coordinates.

The EOV play multiple roles in this article. Except when discussing the space of

variations V̇ as an abstract vector-space isomorphic to R10, we use the symbol V̇ to

represent a quantity that solves the EOV. The quantity represented by V̇, the BGS

Ṽ, and the inhomogeneous terms will vary from application to application, but we will

always be clear about their definitions in the relevant sections.

In the case that we are discussing the linearization of the ENκ system around a

BGS Ṽ (a situation which we took as our motivation for introducing the EOV), the
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inhomogeneous terms take the form

f = F(Ṽ) def= 0 (2.4.2.11)

g = G(Ṽ) def= (4P̃ − 3Q̃)Ũµψ̃µ (2.4.2.12)

h(j) = H(j)(Ṽ) def= (3P̃ − R̃)Π̃µjψ̃µ (j = 1, 2, 3) (2.4.2.13)

l(0) = L(0)(Ṽ) def= κ2φ̃+ R̃− 3P̃ (2.4.2.14)

l(j) = L(j)(Ṽ) def= 0 (j = 1, 2, 3) (2.4.2.15)

l(4) = L(4)(Ṽ) def= ψ̃0, (2.4.2.16)

where F,G, · · · ,L(4) are functions of Ṽ.

It is quite important that the coordinate derivatives of solutions to (2.4.2.1) -

(2.4.2.6) also satisfy (2.4.2.1) - (2.4.2.6) with different inhomogeneous terms. This

may be seen by differentiating the equations and relegating all but the principal terms

to the right-hand side. Similarly, the difference of two solutions to (2.4.2.1) - (2.4.2.6)

also satisfies (2.4.2.1) - (2.4.2.6). Thus, the “·” is a suggestive placeholder that will

frequently represent “derivative” or “difference” depending on the application.

Notation. In reference to the inhomogeneous terms on the right-hand side of (2.4.2.11)

- (2.4.2.16), we often use matrix notation including but not limited to

b = (f, g, h(1), h(2), h(3)) (2.4.2.17)

l = (l(0), l(1), l(2), l(3), l(4)). (2.4.2.18)

When it is convenient, we will use different matrix notation to refer to the inhomoge-

neous terms, but we always use the notation f, g, · · · , l4 to refer to the inhomogeneous

terms in scalar form; our use of notation for the inhomogeneous terms will always be

made clear in the relevant sections.

Terminology. If V̇ is a solution to the system (2.4.2.1) - (2.4.2.6), we say that V̇ is a

solution to the EOV defined by the BGS Ṽ with inhomogeneous terms (b, l).

When the EOV describe the linearization of the ENκ system around a given BGS

Ṽ, in which case the inhomogeneous terms are given by (2.4.2.11) - (2.4.2.16), we say

that V̇ is a solution to the linearization of the ENκ system around Ṽ.
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Remark 2.4.2. Solutions V to the ENκ system (2.4.1.18) - (2.4.1.23) are also solutions

to the EOV defined by the BGS V with inhomogeneous terms given by the right-hand

side of (2.4.1.18) - (2.4.1.23).

Notation. We will often find it advantageous to abbreviate the “upper half” of the

various systemss in this work using matrix notation. For example, we sometimes write

(2.4.2.1) - (2.4.2.3) as

Aµ(Ṽ)∂µẆ = b (2.4.2.19)

where each Aµ(Ṽ) is a 5×5 matrix with entries that are functions of the BGS Ṽ, while

b is defined by (2.4.2.17). For instance,

A0(Ṽ) =



Ũ0 0 0 0 0

0 Ũ0 Q̃Ũ1/Ũ0 Q̃Ũ2/Ũ0 Q̃Ũ3/Ũ0

0 Π̃01 (R̃+ P̃ )Ũ0 0 0

0 Π̃02 0 (R̃+ P̃ )Ũ0 0

0 Π̃03 0 0 (R̃+ P̃ )Ũ0


, (2.4.2.20)

and similarly for the Ak(Ṽ), for k = 1, 2, 3.

Remark 2.4.3. As is suggested by the above notation, we find it useful to view the

matrices Aµ, for µ = 0, 1, 2, 3, as functions of the state-space variables, writing “Aµ(·)”

to emphasize this point of view. We state for emphasis that the functions Aµ(·) remain

fixed throughout this chapter.

Remark 2.4.4. A calculation gives that det
(
A0(Ṽ)

)
= −Q̃(R̃ + P̃ )2(Ũ0)3, and in the

Cauchy problem studied below, this formula will ensure that A0 is invertible.

2.5 The Geometry of the ENκ System

In this section, we discuss the geometry of the characteristics of the ENκ system and

relate the geometry to the speeds of propagation.

sWe reserve the use of matrix notation for the “upper half” for two reasons. The first is that the
“lower half” involves constant coefficient differential operators, so when differentiating the “lower half”
equations, we don’t have to worry about commutator terms, which are easily expressed using matrix
notation as in (2.7.2.21), arising from differential operators acting on the coefficients. The second reason
is that in Chapter 3, we study the “lower-half” in its original form as an inhomogeneous Klein-Gordon
equation, but we will still use matrix notation for the “upper-half.”
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2.5.1 The Symbol and the Characteristic Subset of T ∗xM

The symbol σξ of the equations of variation at a given covector ξ ∈ T ∗xM, the cotangent

space ofM at x, is a linear-algebraic operator (multiplication by a matrix) on the space

of variations V̇. This operator is obtained by making the replacements ∂λU −→ ξλU̇

on the left-hand side of the system (2.4.2.1) - (2.4.2.6). Here, U stands for any of the

unknowns. The characteristic subset of the cotangent space at x is defined to be the set

of all covectors ξ ∈ T ∗xM such that σξ has a nontrivial null space. Thus, ξ lies in the

characteristic subset of T ∗xM iff the following algebraic system has non-zero solutions

V̇ ⊂ R10 :

Ũµξµη̇ = 0 (2.5.1.1)

ŨµξµṖ + Q̃
Ũk

Ũ0
ξ0U̇

k + Q̃ξkU̇
k = 0 (2.5.1.2)

(R̃+ P̃ )ŨµξµU̇ j + Π̃µjξµṖ = 0 (j = 1, 2, 3) (2.5.1.3)

ξµψ̇
µ = 0 (2.5.1.4)

ξ0ψ̇j − ξjψ̇0 = 0 (j = 1, 2, 3) (2.5.1.5)

ξ0φ̇ = 0. (2.5.1.6)

The determinant of the linear operator σξ at x, known as the characteristic form of

the EOV and denoted by Q(x; ξ), is given by

Q(x; ξ) def= (ξ0)3
(
Ũλξλ

)3
(h̃−1)µνgαβξµξνξαξβ, (2.5.1.7)

where h̃−1 is the reciprocal acoustical metric defined by

(h̃−1)µν def= Π̃µν − σ̃−2ŨµŨν = gµν −
(
σ̃−2 − 1

)
ŨµŨν , (2.5.1.8)

σ̃
def= S(e−4φ̃P̃ , η̃), (2.5.1.9)

and the function S is defined by (2.3.3.8). The characteristic subset of T ∗x is therefore

equal to the level set

{ξ ∈ T ∗xM|Q(x; ξ) = 0}. (2.5.1.10)
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Consequently, ξ is an element of the characteristic subset of T ∗xM iff one of the following

four conditions holds.

ξµŨ
µ = 0 (2.5.1.11)

(h̃−1)µνξµξν = 0 (2.5.1.12)

gµνξµξν = 0 (2.5.1.13)

ξ0 = 0. (2.5.1.14)

Condition (2.5.1.11) defines a plane P ∗
x,Ũ

in T ∗xM, while conditions (2.5.1.12) and

(2.5.1.13) define cones C∗x,s(ound) and C∗x,l(ight), respectively, in T ∗xM. Condition (2.5.1.14)

also defines a plane P ∗x,0 in T ∗xM, and its presence is a consequence of our choice of ∂tφ

as a state-space variable in our rewriting of the linear Klein-Gordon equation as a first

order system. We refer to (2.5.1.11) - (2.5.1.14) as the four sheets of the characteristic

subset of T ∗xM. Figure 2.1 illustrates the characteristic subset of T ∗xM. In the illustra-

tion, we masquerade as if the domain of solutions to the EOV is R1+2, with the vertical

direction representing positive values of ξ0.

C∗
x,l

P ∗
x, eU

P ∗
x,0

C∗
x,s

Figure 2.1: The Characteristic Subset of T ∗xM

2.5.2 Characteristic Surfaces and the Characteristic Subset of TxM

A C1 surface S ⊂ M given as a level set of a function ϕ is said to be a characteristic

surface if at each point x ∈ S, the covector ξ with components ξν = ∂νϕ for ν = 0, 1, 2, 3,

is an element of the characteristic subset of T ∗xM. It is well-known (consult e.g. [17])

that jump discontinuities in weak solutions can occur across characteristic surfaces, and
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that characteristic surfaces play a role in determining a domain of influence of a region

of spacetime.

There is an alternative characterization of characteristic surfaces in terms of the

duals of the sheets P ∗x,U , P
∗
x,0, C

∗
x,s, and C∗x,l. The notion of duality we refer to is as

follows (consult e.g. [17]): To each covector ξ in the characteristic subset of T ∗xM there

corresponds the null space of ξ, which we denote by Nξ. This 3-dimensional plane is

a subset of TxM, the tangent space of M at x, and is described in coordinates as

Nξ
def= {X ∈ TxM|ξµXµ = 0}. We define the dual to a sheet of the characteristic subset

of T ∗xM to be the envelope in TxM generated by the Nξ as ξ varies over the sheet.

The characteristic subset of the tangent space at x is defined to be the union of the

duals to the sheets (2.5.1.11) - (2.5.1.14). A calculation of the envelopes gives that

the respective duals to (2.5.1.11), (2.5.1.12), (2.5.1.13), and (2.5.1.14) are the sets of

X ∈ TxM such that in our fixed rectangular coordinate system (see Section (2.2.1)),

X = λŨ for some λ ∈ R (2.5.2.1)

h̃µνX
µXν = 0 (2.5.2.2)

gµνX
µXν = 0 (2.5.2.3)

X = λ(1, 0, 0, 0) for some λ ∈ R, (2.5.2.4)

where

h̃µν
def= gµν + (1− σ̃2)ŨµŨν (2.5.2.5)

is the acoustical metric, a non-degenerate quadratic form on the tangent space at x. The

dual to P ∗
x,Ũ
, given by (2.5.2.1), is the linear span of Ũ , and the dual to the plane P ∗x,0,

given by (2.5.2.4), is the linear span of (1, 0, 0, 0). The dual to C∗x,s, given by (2.5.2.2)

and labeled as Cx,s, is the sound cone in TxM, while the dual to C∗x,l, given by (2.5.2.3)

and labeled as Cx,l, is the light cone in TxM. We refer to these subsets of TxM as the

four sheets of the characteristic subset of the TxM (noting that the degenerate cases

(2.5.2.1) and (2.5.2.4) are lines rather than “sheets”). See Figure (2.2) for the picture
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in R1+2, where the vertical direction represents positive values of X0.

Cx,l
Cx,s

span Uspan (1, 0, 0, 0)

Figure 2.2: The Characteristic Subset of TxM

It follows from the above description that for each ξ belonging to a fixed sheet

of the characteristic subset of T ∗xM, Nξ is tangent to the corresponding sheet of the

characteristic subset of TxM. Therefore, we may equivalently define a characteristic

surface as a surface S such that the tangent plane at each of its points x is tangent to

any of the four sheets of the characteristic subset of TxM.

Remark 2.5.1. Note that Cx,s lies inside Cx,l, but C∗x,l lies inside C∗x,s.

2.5.3 Inner Characteristic Core, Strict Hyperbolicity, Spacelike Sur-

faces

The inner characteristic core of the cotangent space at x, denoted I∗x, is the subset of

T ∗xM lying strictly inside the innermost sheet C∗x,l. I∗x comprises two components, and

we refer to the component such that each covector ξ belonging to it has ξ0 > 0 as the

positive component, denoted by I∗+x :

I∗+x
def= {ξ ∈ T ∗xM|ξµξµ < 0 and ξ0 > 0}. (2.5.3.1)

A covector ξ ∈ T ∗xM is said to be hyperbolic for Q at x iff for any covector υ not

parallel to ξ, Q(x;λξ+υ) = 0 has real roots in λ, where Q is given in (2.5.1.7). The set

of hyperbolic covectors at x is equal to I∗x; see Figure 2.1. A covector ξ ∈ T ∗xM is said to

be strictly hyperbolic for Q at x iff for any covector υ not parallel to ξ, Q(x;λξ+υ) = 0

has distinct t real roots in λ. As mentioned in Section 2.1, the EOV (and hence the ENκ

tFor PDEs derivable from a Lagrangian, the notion of hyperbolicity, characteristic subsets, etc., has
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system) are (is) not strictly hyperbolic because of the repeated factors in the expression

(2.5.1.7) for Q(x; ·).

A surface S ⊂ M is said to be spacelike (with respect to the light cone C∗x,l) if at

each x ∈ S, there is a covector ξ belonging to I∗x such that the tangent plane to S at x

is equal to Nξ. Based on the discussion above, it follows that S is spacelike at x iff the

tangent plane to S at x is the null space of a covector ξ that is hyperbolic for Q at x.

2.5.4 Speeds of Propagation

It is well-known that for first order symmetric hyperbolic systems, the speeds of propa-

gation are locally governed by the characteristic subsets. For example, in the case that

the characteristic subset of T ∗xM at each x includes an innermost sheet, the domain

of influence of a spacetime point x′ is contained in the interior of the forward conoid

traced out by the set of all curves emanating from x′ and remaining tangent to the

sheets of the characteristic subsets of the TxM that are dual to the innermost sheets

of the characteristic subsets of the T ∗xM as the curve parameter varies; consult [34] for

a detailed discussion of this fact.

We will later illustrate the occurrence of similar phenomena in the ENκ system.

In this case, the innermost sheet at x is C∗x,l, the dual of which is Cx,l, the light cone

in TxM. Therefore, the forward conoid emanating from a spacetime point x′ is the

forward light cone in M with vertex at x′. Thus, one would expect that the fastest

speed of propagation in the ENκ system is the speed of light. This claim is given

rigorous meaning below in the uniqueness argument (see section 2.7.5) which shows, for

example, that a solution that is constant in the Euclidean sphere of radius r centered

at the point s ∈ R3 at t = 0 remains constant in the Euclidean sphere of radius r − t

centered at s at time t > 0; see Remark 2.7.9.

We contrast this to the case of the ordinary relativistic Euler equations, in which

there is no Klein-Gordon equation governing the propagation of gravitational waves at

the speed of light, and the set C∗x,l does not belong to the characteristic subset of T ∗xM.

been generalized by Christodoulou [15] in a manner that allows one to handle characteristic forms that
possess multiple roots.
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The inner sheet at x in this case is C∗x,s, the dual of which is Cx,s, the sound cone in

TxM, and the methods applied below can be used to show that the fastest local speed

of propagation is dictated by the sound cones Cx,s. This case is studied in detail in [15]

and [16].

2.5.5 Energy Currents

The role of energy currents in the well-posedness proof is to replace the energy principle

available for symmetric hyperbolic systems. After providing the definition of an energy

current, we illustrate its two key properties, namely that it has the positivity property

(2.5.5.2) below, and that its divergence is lower order in the variation V̇.

The Definition of an Energy Current

Given a variation V̇ :M→ R10 and a BGS Ṽ :M→ R10 as defined in Section 2.4.2,

we define the energy current to be the vectorfield J̇ with components J̇0, J̇ j , j = 1, 2, 3,

in the global rectangular coordinate system given by

J̇0 def= Ũ0η̇2 +
Ũ0

Q̃
Ṗ 2 + 2

ŨkU̇
k

Ũ0
Ṗ + (R̃+ P̃ )Ũ0

[
U̇kU̇k −

(ŨkU̇k)2

(Ũ0)2

]
(2.5.5.1)

+
1
2
[
(φ̇)2 + (ψ̇0)2 + (ψ̇1)2 + (ψ̇2)2 + (ψ̇3)2

]
,

J̇ j
def= Ũ j η̇2 +

Ũ j

Q̃
Ṗ 2 + 2U̇ jṖ + (R̃+ P̃ )Ũ j

[
U̇kU̇k −

(ŨkU̇k)2

(Ũ0)2

]
− ψ̇0ψ̇j .

Notation. In an effort to avoid cluttering the notation, we sometimes suppress the direct

dependence of J̇ on V̇ and Ṽ and instead emphasize the indirect dependence of J̇ on

(t, s) through V̇ and Ṽ by writing “J̇(t, s).”

Terminology. We say that J̇ is the energy current for the variation V̇ with coefficients

defined by the BGS Ṽ.

Remark 2.5.2. The theory of hyperbolic PDEs derivable from a Lagrangian, and in

particular the derivation of energy currents, is developed by Christodoulou in [15].

For readers interested in studying Christodoulou’s techniques, we remark that the La-

grangian for (2.4.1.18) - (2.4.1.20) (the first 5 scalar equations of the ENκ system) is
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expressed in the original variables as ρe4φ. The energy current (2.5.5.1) is the sum of

an energy current for the linear Klein-Gordon equation (which supplies the terms in-

volving (φ̇)2 and (ψ̇ν)2) and an energy current used by Christodoulou in [16] to study

the relativistic Euler equations without gravitational interaction.

The Positive Definiteness of ξµJ̇µ for P̃ > 0 and ξ ∈ I∗+x

Given an energy current as defined by (2.5.5.1) and a covector ξ ∈ T ∗xM, the quantity

ξµJ̇
µ may be viewed as a quadratic form in the variations V̇ with coefficients defined

by the BGS Ṽ. We emphasize this quadratic dependence on the variations by writing

ξµJ̇
µ(V̇, V̇). One of the two key features of the energy current is that P̃ > 0 and ξ ∈ I∗+x

together imply that the form ξµJ̇
µ(V̇, V̇) is positive definiteu in V̇ :

ξµJ̇
µ(V̇, V̇) > 0 if ξ ∈ {ζ ∈ T ∗x (M) | ζµζµ < 0 and ζ0 > 0} and V̇ 6= 0. (2.5.5.2)

This fact will allow us to use the form ξµJ̇
µ(V̇, V̇) to estimate the L2 norms of the

variations, provided that we estimate the BGS Ṽ.

Remark 2.5.3. Although later in this article we make use of the fact that V̇ is a solution

to the EOV, the inequality in (2.5.5.2) does not rely on this fact; it is an algebraic

statement about ξµJ̇µ(V̇, V̇) viewed as a quadratic form on R10.

Remark 2.5.4. Note that according to the expression given in (2.5.5.1), the coefficients

of the quadratic form ξµJ̇
µ(V̇, V̇) depend smoothly on the BGS Ṽ.

The Divergence of the Energy Current

If the variations V̇ are solutions of the EOV (2.4.2.1) - (2.4.2.6) then we can compute

∂µJ̇
µ and use the equations (2.4.2.1) - (2.4.2.6) for substitution to eliminate the terms

containing the derivatives of V̇ :

uA direct verification of this fact can be done, for example, by calculating the eigenvalues of the
matrix of the quadratic form ξµJ̇

µ(·, ·). The eigenvalues depend on ξ and are positive whenever P̃ > 0
and ξ ∈ I+∗

x .
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∂µJ̇
µ = (∂µŨµ)η̇2 + ∂µ

(
Ũµ

Q̃

)
Ṗ 2 + 2∂0

(
Ũk

Ũ0

)
U̇kṖ

+ ∂µ[(R̃+ P̃ )Ũµ]

[
U̇kU̇k −

(ŨkU̇k)2

(Ũ0)2

]
− 2ŨkU̇k(R̃+ P̃ )

(
Ũµ

Ũ0

)
∂µ

(
Ũj

Ũ0

)
U̇ j

+ 2η̇f + 2
Ṗ g

Q̃
+ 2U̇kh(k) − 2

Ũjh
(j)ŨkU̇

k

(Ũ0)2
− ψ̇0l

(0) + ψ̇kl
(k) + φ̇l(4).

(2.5.5.3)

That the right-hand side of (2.5.5.3) does not contain any derivatives of the variations

is the second key property announced at the beginning of Section 2.5.5.

Remark 2.5.5. Given a spatial derivative multi-index ~α and an energy current J̇ as

defined in (2.5.5.1) such that the variation V̇ is a solution of (2.4.2.1) - (2.4.2.6) with

inhomogeneous terms (b, l), where b and l are defined by (2.4.2.17) and (2.4.2.18)

respectively, we define the higher-order energy current J̇~α to be the energy current for

the variation ∂~αV̇ with coefficients defined by the same BGS Ṽ. The variations ∂~αV̇

are solutions of (2.4.2.1) - (2.4.2.6) with inhomogeneous terms (b~α, ∂~αl), where b~α is

defined in terms of b below through (2.7.2.20). Consequently, the expression for ∂µJ̇
µ
~α is

given by taking the formula (2.5.5.3) for ∂µJ̇µ and making the replacements V̇→ ∂~αV̇

and (b, l)→ (b~α, ∂~αl).

2.6 Assumptions on the Initial Data

We now describe a class of initial data to which the energy methods for showing well-

posedness can be applied. The Cauchy surface we consider is {(t, s) ∈M | t = 0}.

2.6.1 An HN Perturbation of a Quiet Fluid

The initial data for the ENκ system are denoted by V̊ = V̊(s) def= (η̊, P̊ , Ů1, · · · , ψ̊3),

where ψ̊j
def= ∂jφ̊ for j = 1, 2, 3. We assume that the initial data V̊ for the ENκ system

are constructed from initial data (η̊, p̊, ů1, · · · , ψ̊3) in the original state-space variables

(η, p, u1, · · · , ψ3) according to the substitutions (2.4.1.4), (2.4.1.5), and (2.4.1.6). Ad-

ditionally, we assume that outside of the unit ball centered at the origin in the Cauchy
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surfacev

V̊ ≡ V̄ def= (η̄, P̄ , 0, 0, 0, φ̄, 0, 0, 0, 0), (2.6.1.1)

where φ̄ is the unique solution to

κ2φ̄+ e4φ̄ (R(η̄, p̄)− 3p̄) = 0, (2.6.1.2)

η̄ and p̄ are positive constants denoting the initial entropy and pressure of the fluid

outside of the unit ball, P̄ def= e4φ̄p̄, and the function R is defined in (2.3.3.9). An initial

state of this form is a perturbation of an infinitely extended quiet fluid, such that

the perturbation is initially contained in the unit ball. Here we need the cosmological

constant κ2 > 0 in order to ensure that the ENκ system has non-zero constant solutions

of the form V̄.

Because the standard energy methods require that the initial data belong to a

Sobolev space of high enough order, we assume that

‖η̊ − η̄‖HN + ‖p̊− p̄‖HN + ‖ůk‖HN + ‖φ̊− φ̄‖HN+1 + ‖ψ̊0‖HN <∞, (2.6.1.3)

where N ∈ N satisfies

N ≥ 3. (2.6.1.4)

Note that (2.6.1.3) implies that ‖ψ̊j‖HN < ∞ (j = 1, 2, 3). By Proposition B.0.2 and

Remark B.0.3, it follows from (2.6.1.3) that

‖V̊‖HN
V̄
<∞. (2.6.1.5)

2.6.2 The Admissible Subset of State-Space and the Uniform Positive

Definiteness of J̇0

The Definition of the Admissible Subset of State-Space

In order to avoid studying the free boundary problem and in order to avoid singularities

in the energy current, we assume that the initial pressure, energy density, and speed

vThis assumption is not necessary. It is sufficient to consider initial data V̊ that differ from V̄ by a
perturbation belonging to HN , such that that V̊(R3) is contained in a compact subset of O, where N
is given by (2.6.1.4) and O is defined in Section 2.6.2. We make this assumption because it is useful for
illustrating the speeds of propagation as discussed in Section 2.5.4, and because we plan to make use
of this setup in future work.
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of sound are uniformly bounded from below by a positive constant. According to our

assumptions (3.1.1.11) on the equation of state, it is sufficient to consider initial data

for the ENκ system such that V̊(R3) is contained in a compact subset of the following

open subset O of the state-space R10, the admissible subset of state-space:

O = {V ∈ R10|η > 0, P > 0}. (2.6.2.1)

Thus, we assume that V̄ ∈ O1 and V̊(R3) ⊂ O1, where O1 is a precompact, open,

convex setw with Ō1 b O. We then fix a precompact, open, convex subsetx O2 where

Ō1 b O2 b O; our goal is to show the existence of a solution that remains in Ō2 for

short times.

The Uniform Positive Definiteness of J̇0

Most of the technical exposition below is devoted to obtaining control over ‖V̇(t)‖HN ,

where V̇ is a solution to the EOV defined by a BGS Ṽ. Instead of trying to estimate

‖V̇(t)‖HN directly, it is advantageous to estimate ‖J̇0(t)‖L1 , where J̇ is an energy

current for V̇ with coefficients defined by the BGS Ṽ, since the divergence of J̇ is lower

order in V̇. ‖J̇0(t)‖L1 can be used to estimate ‖V̇(t)‖2L2 from above and below provided

that J̇0 is uniformly positive definite independent of the BGS Ṽ. More precisely, we

claim that there exists CŌ2
with 0 < CŌ2

< 1 such that for any variation V̇ and any

BGS Ṽ contained in Ō2, we have

CŌ2
|V̇|2 ≤ J̇0(V̇, V̇) ≤ 1

CŌ2

|V̇|2. (2.6.2.2)

To prove (2.6.2.2), recall that J̇ is defined by (2.5.5.1) and note that (1, 0, 0, 0) ∈ I+
x

by (2.5.5.2). The uniform continuity of J̇ (which we momentarily view as a function

of (Ṽ, V̇)) on the compact set Ō2 × {|V̇| = 1} implies that there exists CŌ2
with

0 < CŌ2
< 1 such that (2.6.2.2) holds whenever Ṽ(t, s) ∈ Ō2 and |V̇| = 1. Since the

inequalities in (2.6.2.2) are invariant under any rescaling of V̇, it follows that we may

remove the restriction |V̇| = 1.

wIn practice, O1 can be chosen to be a large, open cube.

xWe demand convexity because Proposition B.0.4 requires this hypothesis.
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2.7 The Well-Posedness Theorems

In this section, we state and prove the two main theorems of the chapter. We have

separated the proof of well-posedness into two theorems since the techniques used in

proving each are different. Statements of the technical estimates involving the Sobolev-

Moser calculus have been placed in the Appendix so as to not interrupt the flow of the

main argument.

Theorem 2.7.1. (Local Existence and Uniqueness) Let V̊(s) be initial data for the

ENκ system (2.4.1.18) - (2.4.1.23) that are subject to the conditions described in Section

2.6. Then there exists T > 0 such that (2.4.1.18) - (2.4.1.23) has a unique classical

solution V(t, s) on [0, T ] × R3 of the form V = (η, P, U1, U2, U3, φ, ∂0φ, ∂1φ, ∂2φ, ∂3φ)

with V(0, s) = V̊(s). The solution satisfies V([0, T ] × R3) ⊂ Ō2. Furthermore, V ∈

C0([0, T ], HN
V̄

) ∩ C1([0, T ], HN−1
V̄

), and φ ∈ C0([0, T ], HN+1
φ̄

) ∩ C1([0, T ], HN
φ̄

)

∩C2([0, T ], HN−1
φ̄

).

Remark 2.7.1. In the proof, we often refer to the solution from Theorem 2.7.1 as Vsol

for clarity.

Corollary 2.7.1. The interval of existence [0, T ] supplied by the Theorem 2.7.1 depends

only on the set Ō2 from Section 2.6, ‖(0)V̊‖HN+1
V̄

, and the constant Λ chosen in (2.7.2.7)

and (2.7.2.8) below. Here, (0)V̊ denotes the mollified initial data as described in Section

2.7.2. Furthermore, the set Ō2, the mollified initial data (0)V̊, and constant Λ can be

chosen to be independent of all initial data varying in a small HN neighborhood of V̊.

Therefore, if we define By(V̊) def= {˚̃V ∈ HN
V̄
| ‖˚̃V − V̊‖HN < y}, then there exist δ > 0

and T ′ > 0 (depending on V̊) such that any initial data ˚̃V belonging to Bδ(V̊) launch

a unique solution Ṽ that exists on the common time interval [0, T ′] and that has the

property Ṽ([0, T ′]× R3) ⊂ Ō2.

Proof. The corollary follows from the proof of Theorem 2.7.1. See in particular Remark

2.7.3 and Remark 2.7.4 below.

Corollary 2.7.2. The norms ||| V |||HN
V̄
,T and ||| ∂tV |||HN−1,T of the solution from

Theorem 2.7.1 depend only Ō2, ‖(0)V̊‖HN+1
V̄

, and Λ. Furthermore, there exists a K > 0



51

such that any initial data ˚̃V belonging to the set Bδ(V̊) defined in Corollary 2.7.1 launch

a unique solution Ṽ that satisfies the uniform bound

||| Ṽ |||HN
V̄
,T ′ , ||| ∂tṼ |||HN−1,T ′< K(N, Ō2, ‖(0)V̊‖HN+1

V̄

, δ). (2.7.0.3)

Proof. The estimates for ||| V |||HN
V̄
,T and ||| Ṽ |||HN

V̄
,T ′ follow from Corollary 2.7.1,

Proposition 2.7.3, and the fact that the sequence of iterates {(m)V̊(t)} constructed

below converges strongly in L2
V̄

and weakly in HN
V̄

to V(t); consult [36] for the missing

details. We then use the ENκ equations to solve for the time derivatives together with

Proposition B.0.2 and Remark B.0.3 to obtain the estimates for

||| ∂tV |||HN−1,T and ||| ∂tṼ |||HN−1,T ′ .

Theorem 2.7.2. (Continuous Dependence on Initial Data.) Let V̊(s) be ini-

tial data for the ENκ system (2.4.1.18) - (2.4.1.23) that are subject to the conditions

described in Section 2.6, and let V be the solution existing on the time interval [0, T ]

furnished by Theorem 2.7.1. Let Bδ(V̊) be as in Corollary 2.7.1. Let {V̊m} ⊂ Bδ be a

sequence of initial data with limm→∞ ‖V̊m−V̊‖HN = 0, and let Vm denote the solution

to (2.4.1.18) - (2.4.1.23) launched by V̊m. Then for all large m, the solutions Vm exist

on [0, T ], and limm→∞ ||| Vm −V |||HN ,T= 0.

Remark 2.7.2. It is unknown to the author whether or not the continuity statement from

Theorem 2.7.2 can be strengthened to one of Lipschitz continuity or Hölder continuity.

However, using Burger’s equation ∂tu+u∂xu = 0, Kato [27] provides a counter-example

in which the map from the initial data u0 ∈ Ha(R) to the solution u(t) is not Hölder

continuous with any positive exponent in the Ha norm; such a counterexample is ex-

plicitly constructed for a ≥ 2. On the other hand, inequality (2.7.5.37) below shows

that for the ENκ system, the map from the initial data to the solution is a Lipschitz

map from HN
V̄

into C([0, T ], HN−1
V̄

).

2.7.1 A Discussion of the Structure of the Proof of the Theorems

We prove local existence by following a standard method described in detail in Majda’s

book [36]: we construct a sequence of iterates {(m)V(t, s)} that converges to the solution
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Vsol(t, s). To construct the iterates, we first define a sequence of C∞ initial data {(m)V̊}

such that (m)V̊ b O2 and limm→∞ ||| (m)V̊− V̊ |||HN= 0. The advantage of smoothing

the data is that all of the iterates are C∞, thus allowing us to work with classical deriva-

tives during the approximation process. Then beginning with (0)V(t, s) def= (0)V̊(s),

we inductively define (m+1)V(t, s) as the unique solution to the linearization of the

ENκ system around (m)V(t, s) with initial data (m+1)V(0, s) = (m+1)V̊(s). As a con-

sequence of the theory of linear PDEsy (consult [17]), each iterate (m)V is known

to possess a classical solution on a slab [0, Tm] × R3, on which it satisfies, for every

real number N ′, (m)V ∈ C0([0, Tm], HN ′

V̄
). Additionally, we require of each Tm that

(m)V([0, Tm]×R3) ⊂ Ō2, which ensures that the sequence of proper energy densities is

bounded from below by a uniform constant and therefore precludes singularities in the

energy currents we use during the linearization process.

In order for the limiting function Vsol to be defined on a slab, it is obviously neces-

sary that we show that the sequence of time values {Tm} can be bounded from below by

a positive constant T∗. To this end, we examine the EOV satisfied by (m)V− (0)V̊ and

its partial derivatives, and we control the growth in T∗ of ||| (m)V − (0)V̊ |||HN ,T∗ uni-

formly in m using energy currents. According to the above paragraph and the Sobolev

imbedding result H2(R3) ⊂ C0
b (R3), it follows that if ||| (m)V − (0)V̊ |||HN ,T∗ is small

enough, uniformly in m, then T∗ may be selected as a uniform lower bound on the Tm.

Our detailed proof of the control of the terms ||| (m)V− (0)V̊ |||HN ,T∗ is given in Propo-

sition 2.7.3 below and uses the Sobolev-Moser calculus inequalities, which are refined

versions of the fact that for N ′ > 3
2 , H

N ′(R3) is a Banach algebra. Their purpose is to

control the L2 norms of terms of a product form, based on known Sobolev regularity of

each factor in the product. We state and prove the relevant Sobolev-Moser estimates

in the Appendix.

The next step in the proof is to show that {(m)V(t)} converges in L2
V̄

(R3) to a

limiting function Vsol(t) for t ∈ [0, T ], with an appropriate choice of T satisfying 0 <

yThe exposition on linear theory in [17] makes use of the symmetric hyperbolic setup to obtain
energy estimates for the linear systems. We may obtain similar energy estimates for the linearized ENκ

equations by using energy currents of the form (2.5.5.1); the proof of Proposition 2.7.3 below illustrates
the relevant techniques.
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T ≤ T∗. This is achieved by showing that
∑∞

m=0 ||| (m+1)V(t)− (m)V(t) |||L2,T<∞ if T

is small enough. We show the convergence of the sum by studying the EOV satisfied by

the differences (m+1)V−(m)V of successive iterates and their partial derivatives. Again,

we control ||| (m+1)V(t)− (m)V(t) |||L2,T using energy currents and the Sobolev-Moser

calculus, and by making use of the established bound on ||| (m)V − (0)V̊ |||HN ,T∗ .

After establishing the existence of the limiting function Vsol, we show that it is

a classical solution to the ENκ system (2.4.1.18) - (2.4.1.23). The key idea stems

from Lemma B.0.6, a standard Sobolev interpolation result that allows us to conclude

without much additional effort that (m)V→ Vsol in C0([0, T ], HN ′

V̄
(R3)), for every real

number N ′ such that N ′ < N. By Sobolev imbedding, H5/2+ε(R3) ⊂ C1
b (R3), and thus

(m)V → V in C0([0, T ], C1
b ). Combining this fact with Lemma 2.7.8, a simple result

from advanced calculus, we are able to pass to the limit in the linearized ENκ equations

to conclude that Vsol is a classical solution.

To finish the existence aspect of the proof, we show the additional regularity result

Vsol ∈ C0([0, T ], HN
V̄

) ∩ C1([0, T ], HN−1
V̄

). We first show that

Vsol − V̊ ∈ Cweak([0, T ], HN ), a function space that we define in Section 2.7.5, and

then use the Hilbert space structure of of HN together with a collection of norms on

HN (R3)10 defined through energy currents to conclude the additional regularity stated

in Theorem 2.7.1.

In Section 2.7.5 we show uniqueness and continuous dependence on initial data in

the HN ′ norm for N ′ < N. The methods used in this argument are similar to the

methods used to prove Proposition 2.7.3, so we provide fewer details. We consider

the EOV satisfied by the difference of two solutions V and Ṽ to the ENκ system.

For N ′ < N, we use an appropriately defined energy current to bound the growth of

||| V − Ṽ |||HN′ ,T by a constant times exponential growth in T. The constant depends

on the initial data and is shown converge to 0 as ‖V(0)− Ṽ(0)‖HN′ → 0, thus implying

uniqueness and HN ′ continuous dependence on the initial data. Our proof of Theorem

2.7.1 is complete at the end of this section.

Our proof of Theorem 2.7.2 requires some machinery from the theory of evolution

equations in a Banach space. The basic method is due to Kato [27], and most of the
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technical results we use in this section are merely quoted from his papers. We find

it worthwhile to prove Theorem 2.7.2 because aside from Kato’s work, we have had

difficulty locating this result in the literature.

2.7.2 Preliminary Estimates on the Iterates

As described in Section 2.7.1, we produce a sequence of iterates {(m)V(t, s)} that con-

verges to the solution Vsol(t, s).

Smoothing the Initial Data

We begin by smoothing the initial data, which we assume are of the form described in

Section 2.6, so that we can work with classical derivatives. Let χ(s) be a Friedrich’s

mollifier; i.e. χ ∈ C∞c (R3), supp(χ) ⊂ {s| |s| ≤ 1}, χ ≥ 0, and
∫
χ d3s = 1. For ε > 0,

we set χε(s) def= ε−3χ( s
ε ) and define χεV̊ ∈ C∞(R3) by

χεV̊(s) def=
∫

R3

χε(s− s′)V̊(s′) d3s′. (2.7.2.1)

The following properties of such a mollification are well-known:

lim
ε→0+

‖χεV̊ − V̊‖HN = 0 (2.7.2.2)

∃{ε0 > 0 ∧ C(V̊) > 0} � 0 < ε < ε0 ⇒ ‖χεV̊ − V̊‖H0 ≤ ε · C(V̊)‖V̊‖H1 . (2.7.2.3)

We will choose below an ε0 that is at least as small as the one in (2.7.2.3). Once chosen,

for a given m ∈ N, we define

εm
def= 2−mε0 (2.7.2.4)

(m)V̊ def= χεmV̊, (2.7.2.5)

(m)W̊ def= χεmW̊, (2.7.2.6)

where W̊ denotes the first 5 components of V̊.
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By Sobolev imbedding, by the assumptions on the initial data V̊, and by the mol-

lification properties above, ∃{Λ > 0 ∧ ε0 > 0} (at least as small as the ε0 in (2.7.2.3))

such that

‖V − (0)V̊‖HN ≤ Λ⇒ V ∈ Ō2, (2.7.2.7)

‖(m)V̊ − (0)V̊‖HN ≤ CŌ2

Λ
2

holds for m ≥ 0, (2.7.2.8)

where CŌ2
is defined in (2.6.2.2).

Remark 2.7.3. It is a standard result that if ε > 0 and N ′ is any real number, then

χεV̊ ∈ HN ′

V̄
(R3). We will make use of this remark below, for in the local existence

proof, we will need to differentiate the equations (2.7.2.14) - (2.7.2.19) N times and

utilize Sobolev estimates; since several terms from these undifferentiated equations

already contain one derivative of the smoothed initial data, our estimates will involve

‖(0)V̊‖HN+1
V̄

.

Remark 2.7.4. If we are considering initial data ˚̃V in a small enough HN neighborhood

N of the initial data V̊, we can use a fixed smoothed function (0)V̊ in place of each (0) ˚̃V

in Proposition 2.7.3 below, and choose Λ to be uniform over the neighborhood. For

what then enters into the proof of local existence for the initial data ˚̃V are the quantities

‖(0)V̊‖HN+1
V̄

and ‖(m) ˚̃V − (0)V̊‖HN , and the latter quantity is easily controlled by the

inequality

‖(m) ˚̃V − (0)V̊‖HN ≤ ‖(m) ˚̃V − ˚̃V‖HN + ‖˚̃V − V̊‖HN + ‖V̊ − (0)V̊‖HN ; (2.7.2.9)

once we fix an appropriately chosen smoothed function (0)V̊ and a corresponding Λ

satisfying (2.7.2.7), we may independently adjust the mollification of each ˚̃V in N so

that the right-hand side of (2.7.2.9) is ≤ CŌ2
Λ/2 for m ≥ 0. This remark is relevant

for Corollary 2.7.1 above.

Defining the Iterates

Consider the iteration scheme described in Section 2.7.1, and recall that it starts with

the seed (0)V(t, s) def= (0)V̊(s). Linear existence theory implies that each iterate (m+1)V
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is a well-defined, smooth function with ‖(m+1)V(t) − (0)V̊‖HN < ∞ for 0 ≤ t ≤ Tm.

Here, by (2.7.2.7), [0, Tm] is any time interval for which ||| (m)V − (0)V̊ |||HN ,Tm≤ Λ

holds. The components of the iterates are denoted by (m)V =
(

(m)s, (m)P , · · · , (m)ψ3

)
,

and we use the notation (m)W =
(

(m)s, (m)P , (m)U1, (m)U2, (m)U3
)

to refer to the first

five components of (m)V.

The Uniform Time Estimate

As discussed in Section 2.7.1, we show the existence of a fixed T∗ > 0 such that

||| (m)V − (0)V̊ |||HN ,T∗≤ Λ for m ∈ N, thus ensuring that each iterate is defined for a

uniform amount of time and remains inside of Ō2. We state a slightly stronger version

of this result as a proposition:

Proposition 2.7.3. Let Λ be defined by (2.7.2.7). Then there exists T∗ > 0 and L > 0

such that each of the iterates (m)V(t, s) satisfies

||| (m)V − (0)V̊ |||HN ,T∗≤ Λ (2.7.2.10a)

||| ∂t
(

(m)V
)
|||HN−1,T∗≤ L. (2.7.2.10b)

Proof. We proceed by induction, noting that (0)V(t, s) def= (0)V̊(s) satisfies (3.8.2.1a)

and (3.8.2.1b) with any T∗ > 0 and any positive number L. We thus assume that

(m)V satisfies (3.8.2.1a) and (3.8.2.1b) without first specifying the values of T∗ or L.

At the end of the proof, we will show that we can choose such a T∗ and an L, both

independent of m, such that energy estimates imply the inductive step. To obtain

the estimates stated in the proposition, it is convenient to work not with the iterates

themselves, but with the difference between the iterate and the smoothed initial value.

Thus, referring to the notation defined in (2.7.2.5) and (2.7.2.6) , for each m ∈ N we

define

V̇(t, s) def= (m+1)V(t, s)− (0)V̊(s) (2.7.2.11)

Ẇ(t, s) def= (m+1)W(t, s)− (0)W̊(s) (2.7.2.12)

Ṽ def= (m)V. (2.7.2.13)
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We have used the notation V̇ and Ṽ suggestively: it follows from the definition of

the iterates, definition (2.7.2.11), and definition (2.7.2.13) that V̇ is a solution to the

EOV (2.4.2.1) - (2.4.2.6) defined by the BGS Ṽ with initial data V̇(0, s) = (m+1)V̊(s)−
(0)V̊(s). Our notation (2.7.2.11) - (2.7.2.13) is therefore consistent with our notation

for the EOV introduced in Section 2.4.2. Recalling also the notation (2.4.2.17) and

(2.4.2.18) introduced in Section 2.4.2, the inhomogeneous terms in the EOV satisfied

by V̇ are given by (b, l) = (f, g, · · · , l(4)), where

f = −Ũk∂k[(0)η̊] (2.7.2.14)

g = −Ũk∂k[(0)P̊ ] − Q̃∂k[(0)Ůk] + (4P̃ − 3Q̃)Ũµψ̃µ (2.7.2.15)

h(j) = −(R̃+ P̃ )[Ũk∂k][(0)Ů j ] − Π̃kj∂k[(0)P̊ ] + (3P̃ − R̃)Π̃µjψ̃µ (j = 1, 2, 3)

(2.7.2.16)

l(0) = κ2φ̃+ R̃− 3P̃ − ∂k[(0)ψ̊k] (2.7.2.17)

l(j) = ∂j [(0)ψ̊0] (j = 1, 2, 3) (2.7.2.18)

l(4) = ψ̃0. (2.7.2.19)

As explained in Section 2.4.2, for each spatial derivative multi-index ~α with 0 ≤

|~α| ≤ N, we may differentiate the EOV with inhomogeneous terms (b, l) to which V̇ is

a solution, obtaining that ∂~αV̇ is also a solution to the EOV defined by the same BGS

Ṽ with inhomogeneous terms (b~α, ∂~αl). The inhomogeneous terms b~α are given by

b~α
def= A0∂~α

(
(A0)−1b

)
+ k~α, (2.7.2.20)

where

k~α
def= A0

[
(A0)−1Ak∂k(∂~αẆ)− ∂~α

(
(A0)−1Ak∂kẆ

)]
(2.7.2.21)

for 0 ≤ |~α| ≤ N.

As discussed in Section 2.6.2, we will use energy currents to control ||| V̇ |||HN ,T .

We state here as a lemma the key differential inequality that allows us to proceed with

our desired estimates.
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Lemma 2.7.4. Suppose r ≥ T > 0. For 0 ≤ t ≤ T, let Σt,r−t = {x ∈M|x0 = t, xkxk ≤

r − t} denote the Euclidean sphere of radius r − t centered at (t, 0, 0, 0) in the flat

hypersurface {x0 = t}, and let Mt,r = {x ∈ M|0 ≤ x0 ≤ t, xkxk = r − x0} denote the

mantle of the past directed, truncated light cone with lower base Σ0,r and upper base

Σt,r−t (see Figure 2.3). Let V̇ be a solution to the EOV (2.4.2.1) - (2.4.2.6) defined by

the BGS Ṽ, and assume that Ṽ([0, T ]× R3) ⊂ Ō2. Let J̇ be an energy current for the

variation V̇ defined by the BGS Ṽ, and define E(t; r) def=
( ∫

Σt,r−t

J̇0(t, s) d3s
)1/2

. Then

2E(t; r)
d

dt
E(t; r) ≤

∫
Σt,r−t

∂µJ̇
µ(t, s) d3s. (2.7.2.22)

Proof. By the Divergence Theorem, we have

E2(t; r) def=
∫

Σt,r−t

J̇0(t, s) d3s =
∫

Σ0,r

J̇0(0, s) d3s (2.7.2.23)

−
∫
Mt,r

〈n̂(x), J̇(x)〉E dH(x) +
∫ t′=t

t′=0

( ∫
Σt′,r−t′

∂µJ̇
µ(t′, s) d3s

)
dt′.Σt,r−t

Σ0,r

Mt,r

1

Σt,r−t

Σ0,r

Mt,r

1

Σt,r−t

Σ0,r

Mt,r

1

n̂(x)

Figure 2.3: The Surfaces of Integration in Lemma 2.7.4

Here, n̂(x) is the Euclidean outer normal at x ∈ Mt,r to the mantle of truncated

cone, 〈n̂(x), J̇(x)〉E denotes the Euclidean inner product of n̂(x) and J̇(x) as vectors

in R4, and H is the Hausdorff measure on the mantle of the cone. For each normal

vector n̂(x), let n̂(x)ξ denote the covector belonging to T ∗xM such that n̂(x)ξ(X) =

n̂(x)ξµX
µ = 〈n̂(x), X〉E holds for every X ∈ TxM. By the positivity condition (2.5.5.2),
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covectors ξ belonging to I+
x satisfy ξµJ̇

µ(V̇, V̇) > 0 for all non-zero variations V̇.

Since for each x ∈ Mt,r, the covector n̂(x)ξ belongs to the boundary of I+
x , which

is the positive component of the cone C∗x,l, continuity in the variable ξ implies that

〈n̂(x), J̇(x)〉E = n̂(x)ξµJ̇
µ(V̇, V̇) ≥ 0 holds for x ∈ Mt,r. Furthermore, if t1 < t2,

then Mt1,r ⊂ Mt2,r. From these facts it follows that −
∫
Mt,r

〈n̂(x), J̇(x)〉E dH(x) is a

decreasing function of t on [0, T ]. Lemma 2.7.4 now follows from differentiating each

side of (2.7.2.23) with respect to t and accounting for this decreasing term. Figure 2.3

illustrates the setup in R1+2, where the vertical direction represents positive values of

t.

Returning to the proof of the proposition and recalling that we are using definitions

(2.7.2.11) and (2.7.2.13) to define V̇ and Ṽ, we let J̇~α denote the energy current for the

variation ∂~αV̇ defined by the BGS Ṽ. For notational convenience, we allow ~α to take

on the value ~0, in which case J̇~0 is defined to be the energy current in the variation V̇

defined by the BGS Ṽ.

As in Lemma 2.7.4, we define for any T∗ > 0 and r > T∗ the following functions of

t on [0, T∗] :

E~α(t; r) def=
( ∫

Σt,r−t

J̇0
~α(t, s) d3s

)1/2
, (2.7.2.24)

E(t; r;N) def=
( ∑

0≤|~α|≤N

E2
~α(t; r)

) 1
2
. (2.7.2.25)

Then with CŌ2
defined in (2.6.2.2), we have

CŌ2
E(t; r;N) ≤ ‖V̇(t)‖2HN (Σt,r−t)

≤ 1
CŌ2

E(t; r;N). (2.7.2.26)

Additionally, by Lemma 2.7.4, we have the following inequality for 0 ≤ t ≤ T∗ :

2E(t; r;N)
d

dt
E(t; r;N) ≤

∑
0≤|~α|≤N

∫
Σt,r−t

∂µ

(
J̇µ~α(t, s)

)
d3s. (2.7.2.27)

The technically cumbersome aspect of the proof of Proposition 2.7.3 is bounding

the right-hand side of (2.7.2.27) by a constant times E(t; r;N) +E2(t; r;N), which then
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allows us to use Gronwall’s inequality to exponentially bound from above the growth

of E(t; r;N) in t. We prove some of the technical points in lemmas 2.7.6 and 2.7.7

below, so as to not disrupt the main argument. The keys to proofs of lemmas 2.7.6 and

2.7.7 are Sobolev-Moser calculus inequalities, special versions of which are stated in

the Appendix. In the following argument, C = C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ, L). By Lemma

2.7.6, we have that

∑
0≤|~α|≤N

∫
Σt,r−t

∂µ

(
J̇µ~α(t, s)

)
d3s ≤ C ·

[
‖V̇(t)‖HN (Σt,r−t) + ‖V̇(t)‖2HN (Σt,r−t)

]
(2.7.2.28)

≤ C ·
[
C
−1/2

Ō2
E(t; r;N) + C−1

Ō2
E2(t; r;N)

]
,

where in the second inequality we have used (2.7.2.26). Combining (2.7.2.27) with

(2.7.2.28), and applying Gronwall’s lemma, we have for 0 ≤ t ≤ T∗,

E(t; r;N) ≤
[
E(0; r;N) + C · (2CŌ2

)−1/2t
]
·
[
exp
(
C · (2CŌ2

)−1t
)]
, (2.7.2.29)

and consequently by (2.7.2.26),

‖V̇(t)‖HN (Σt,r−t) ≤ CŌ2

−1
[
‖V̇(0)‖HN (Σ0,r) + Ct

]
·
[
exp
(
Ct
)]
. (2.7.2.30)

Letting r →∞, taking the sup over t ∈ [0, T∗], and using (2.7.2.8), we have

||| V̇ |||HN ,T∗≤ C
−1
Ō2

[
‖V̇(0)‖HN + CT∗

]
· exp

(
CT∗

)
(2.7.2.31)

≤
[
Λ/2 + C(N, Ō2, ‖(0)V̊‖HN+1

V̄

,Λ, L)T∗
]
· exp

(
C(N, Ō2, ‖(0)V̊‖HN+1

V̄

,Λ, L)T∗
)
.

To make a viable choice of L,

we first assume that right-hand side of (2.7.2.31) is ≤ Λ, (2.7.2.32)

which implies the inductive step (3.8.2.1a) for (m+1)V. Using assumption (2.7.2.32) as

a hypothesis, Lemma 2.7.7 implies that there exists L(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ) > 0 such

that

||| ∂t
(

(m+1)V
)
|||HN−1,T∗≤ L. (2.7.2.33)
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For this fixed choice of L, we can implicitly solve for a T∗ > 0 such that the right-hand

side of inequality (2.7.2.31) is in fact ≤ Λ, thus justifying the assumption (2.7.2.32) and

the conclusion (2.7.2.33), thereby closing the induction argument.

Remark 2.7.5. Based on the above reasoning, we can remove the dependence of the

constant C on L; i.e., for T ≤ T∗, (2.7.2.31) becomes

||| V̇ |||HN ,T ≤
[
Λ/2 + CT

]
· exp(CT ), (2.7.2.34)

with C = C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ).

For later use, we now prove an important corollary to the proof of Proposition 2.7.3.

Corollary 2.7.5. For every m ∈ N, (m)V ∈ C0([0, T∗], HN
V̄

);

i.e. limt→t0 ||| (m)V(t) − (m)V(t0) |||HN= 0 for t0 ∈ (0, T∗), and similarly for the

one-sided limits at t0 = 0 and t0 = T.

Proof. Since the linearized ENκ system satisfied by (m+1)V is time translation invariant

and reversible in time, it is sufficient to prove the HN right continuity of (m+1)V(t).

We will give the proof only at t0 = 0, since the same argument applies for all t0 ∈

[0, T∗]. To achieve the desired result, we need only to redefine V̇(t, s) def= (m+1)V(t, s)−
(m+1)V̊(s),Ẇ(t, s) def= (m+1)W(t, s) − (m+1)W̊(s), so that V̇(t = 0) ≡ 0, and repeat

the proof of Proposition 2.7.3, making a few minor changes. We obtain the following

bound, analogous to (2.7.2.34), for T ∈ [0, T∗] :

||| V̇ |||HN ,T ≤ TC · exp (CT ) , (2.7.2.35)

where C = C(N, Ō2, ‖(m)V̊‖HN+1
V̄

,Λ). The proof of Corollary 2.7.5 now easily follows.

We now state and prove the two technical lemmas quoted in the proof of Proposition

2.7.3.
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Lemma 2.7.6. Assume the hypotheses and notation of Proposition 2.7.3. In addition,

assume that ‖∂tṼ(t)‖HN−1 ≤ L. Then

‖∂µJ̇µ~α(t)‖L1(Σt,r−t) ≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ, L)
(
‖V̇(t)‖HN + ‖V̇(t)‖2HN

)
.

(2.7.2.36)

Proof. We use here the notation (2.7.2.11) and (2.7.2.13) from Proposition 2.7.3. Recall

that ∂~αV̇ is a solution to the EOV defined by the BGS Ṽ with inhomogeneous terms

(b~α, ∂~αl), and that J̇~α is the energy current for ∂~αV̇ defined by the BGS Ṽ. Furthermore,

‖Ṽ − (0)V̊‖HN ≤ Λ (2.7.2.37)

holds by the induction assumption from the proposition.

By (2.5.5.3) and Remark 2.5.5, the expression for ∂µJ̇
µ
~α consists of terms that

are either precisely linear or precisely quadratic in the components of the variation

∂~αV̇. The coefficients of the quadratic variation terms are smooth functions with

arguments Ṽ and DṼ. Examining the particular form of these coefficients and us-

ing the fact that Ṽ([0, T ] × R3) ⊂ Ō2, we see that their L∞ norm is bounded by

C(Ō2)‖DṼ‖L∞ . By assumption, ‖Ṽ − (0)V̊‖HN ≤ Λ and ‖∂tṼ(t)‖HN−1 ≤ L. There-

fore, by Sobolev imbedding, ‖DṼ‖L∞ ≤ C(N, ‖(0)V̊‖HN
V̄
,Λ, L). These facts imply that

the L1(Σt,r−t) norm of the terms involving the quadratic variations is bounded from

above by C(N, Ō2, ‖(0)V̊‖HN
V̄
,Λ, L)‖∂~αV̇‖2L2(Σt,r−t)

.

The coefficients of the linear variation terms are linear combinations of products of

the components of the components of (b~α, ∂~αl), where b~α is defined in (2.7.2.20), with

smooth functions, the arguments of which are the components of Ṽ. Since Ṽ([0, T ] ×

R3) ⊂ Ō2, the smooth functions of Ṽ are bounded in L∞ by C(Ō2). Therefore, by the

Cauchy-Schwarz integral inequality for L2, the L1(Σt,r−t) norm of the terms depending

linearly on the variations is bounded from above by C(Ō2)‖(b~α, ∂~αl)‖L2‖∂~αV̇‖L2(Σt,r−t).

To complete the proof of (2.7.2.36), it remains to show that for 0 ≤ |~α| ≤ N, we have

‖(b~α, ∂~αl)‖L2 ≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ)
(
1 + ‖Ẇ‖HN

)
. (2.7.2.38)

The proof of (2.7.2.38) will follow easily from the propositions given in the Appendix.
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Concerning ourselves with the ‖b~α‖L2 estimate first, we claim that the term

A0∂~α
(
(A0)−1b

)
from (2.7.2.20) satisfies

‖A0∂~α
(
(A0)−1b

)
‖L2 ≤ C(N, Ō2, ‖(0)V̊‖HN+1

V̄

,Λ). (2.7.2.39)

We repeat for clarity that b = (f, g, h1, h2, h3), where the scalar-valued quantities

f, g, · · · , h3 are defined in (2.7.2.14) - (2.7.2.16). Since ‖A0(Ṽ)‖L∞ ≤ C(Ō2), to prove

(2.7.2.39), it suffices to control the L2 norm of ∂~α
(
(A0)−1b

)
. Using Proposition B.0.2

in the Appendix (see also Remark B.0.3), with (A0)−1 playing the role of F in the

proposition, and b playing the role of G, we have that

‖(A0)−1b‖HN ≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ)‖b‖HN . (2.7.2.40)

Furthermore, Proposition B.0.2 implies that

‖b‖HN ≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ). (2.7.2.41)

Combining (2.7.2.40) with (2.7.2.41) proves (2.7.2.39).

We next claim that the k~α from (2.7.2.21) satisfy

‖k~α‖L2 ≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ)‖Ẇ‖HN . (2.7.2.42)

Again, since ‖A0(Ṽ)‖L∞ ≤ C(Ō2), to prove (2.7.2.42), it suffices to control the L2 norm

of (A0)−1Ak∂k(∂~αẆ) − ∂~α
(

(A0)−1Ak∂kẆ
)
. By Proposition B.0.5 (see also Remark

B.0.5), with (A0)−1Ak playing the role of F in the proposition, and ∂kẆ playing the

role of G, we have that

‖(A0)−1Ak∂k(∂~αẆ)− ∂~α
(
(A0)−1Ak∂kẆ

)
‖L2 (2.7.2.43)

≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ)‖∇(1)Ẇ‖HN−1 ,

from which (2.7.2.42) readily follows.

To finish the proof of (2.7.2.38), we will show that

‖∂~αl(z)‖L2 ≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ) (z = 0, 1, 2, 3, 4). (2.7.2.44)

For l(1), l(2), l(3), defined in (2.7.2.18), the claim is trivial. To estimate the component

l(0), defined in (2.7.2.17), we first rewrite

l(0) = κ2(φ̃− φ̄) + (R̃− R̄)− 3(P̃ − P̄ )− ∂k[(0)ψ̊k], (2.7.2.45)
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where P̄ def= e4φ̄p̄ and R̄
def= e4φ̄R(e−4φ̄P̄ , η̄), the function R is defined in (2.4.1.5), and p̄

and η̄ are constants defined in Section 2.6. In equation (2.7.2.45), we have made use of

(2.6.1.2), which is the assumption that κ2φ̄+ R̄− 3P̄ = 0. Since

‖κ2(φ̃− φ̄)‖HN + 3‖(P̃ − P̄ )‖HN + ‖∂k[(0)ψ̊k]‖HN ≤ C(‖(0)V̊‖HN+1
V̄

,Λ), (2.7.2.46)

we only need to show that

‖∂~α(R̃− R̄)‖L2 ≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ). (2.7.2.47)

This follows immediately from definition (2.4.2.10), Proposition B.0.4, and Remark

B.0.3. We omit the argument for l(4), defined in (2.7.2.19), since it is similar to the

argument for l(0), and in fact simpler. This completes the proof of (2.7.2.44).

Inequality (2.7.2.38) now follows from combining (2.7.2.39), (2.7.2.42), and (2.7.2.44);

this completes the proof of (2.7.2.36).

Lemma 2.7.7. Assume the hypotheses and notation of Proposition 2.7.3. Also assume

the induction hypothesis ||| (m)V − (0)V̊ |||HN ,T∗≤ Λ from Proposition 2.7.3. Assume

further that ||| (m+1)V − (0)V̊ |||HN ,T∗≤ Λ. Then

||| ∂t
(

(m+1)V
)
|||HN−1,T∗≤ L(N, Ō2, ‖(0)V̊‖HN+1

V̄

,Λ). (2.7.2.48)

Proof. By Remark 2.4.4, we may solve for ∂t((m+1)W) :

∂t
(

(m+1)W
)

=
(
A0((m)V)

)−1(b−Ak((m)V)∂k((m+1)W)
)
, (2.7.2.49)

where the function b denotes the inhomogeneous terms from the linearized ENκ equa-

tions satisfied by (m+1)W; i.e., b=B((m)V), where

B(·) def=
(
F(·),G(·),H(1)(·),H(2)(·),H(3)(·)

)
(2.7.2.50)

is an array-valued function, the scalar-valued functions F,G, · · · ,H(3) are defined in

(2.4.2.11) - (2.4.2.13), and the Aµ(·) are defined in (3.3.0.16). See Remark 2.4.3 con-

cerning our use of function notation here.

Using the hypotheses of the lemma, we apply Proposition B.0.2 (see also Remark

B.0.3) to the right-hand side of (2.7.2.49), concluding that

||| ∂t
(

(m)W
)
|||HN−1,T∗≤ L(N, Ō2, ‖(0)V̊‖HN+1

V̄

,Λ). (2.7.2.51)
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Likewise, an argument similar to the one used to prove (2.7.2.44) gives that

||| ∂t
(

(m)φ, (m)ψ0,
(m)ψ1,

(m)ψ2,
(m)ψ3

)
|||HN−1,T∗≤ L(N, Ō2, ‖(0)V̊‖HN+1

V̄

,Λ).

(2.7.2.52)

Combining (2.7.2.51) and (2.7.2.52) proves (2.7.2.48).

2.7.3 The L2 Convergence of the Iterates

We now show that the sequence of iterates {(m)V} converges in L2
V̄

to function Vsol.

We accomplish this by making an appropriate choice of T > 0 such that

∞∑
m=1

||| (m+1)V − (m)V |||L2,T<∞. (2.7.3.1)

This finiteness of this sum shows that for 0 ≤ t ≤ T, the sequence of L2 functions

{(m)V(t)− V̄} is Cauchy and therefore converges in L2 to a function Vsol(t)− V̄. We

will use energy estimates to show the existence of a T > 0, an α with 0 < α < 1, and a

sequence of non-negative reals βm with
∑∞

m=1 βm <∞ such that for m ≥ 2,

||| (m+1)V − (m)V |||L2,T≤ α ||| (m)V − (m−1)V |||L2,T + βm, (2.7.3.2)

from which the convergence of the series (2.7.3.1) follows.

To begin the proof of (2.7.3.2), we examine the system satisfied by the difference of

two successive iterates; for m ≥ 2, the following system of equations is satisfied:

Aµ
(

(m)V
)
∂µ
(

(m+1)W − (m)W
)

= b1 + b2 (2.7.3.3)

−∂0ψ̇0 + ∂jψ̇j = L(0)
(

(m)V
)
− L(0)

(
(m−1)V

)
(2.7.3.4)

∂0ψ̇j − ∂jψ̇0 = L(j)
(

(m)V
)
− L(j)

(
(m−1)V

)
(j = 1, 2, 3)

(2.7.3.5)

∂0φ̇ = L(4)
(

(m)V
)
− L(4)

(
(m−1)V

)
, (2.7.3.6)
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where

b1 =
[
Aµ
(

(m−1)V
)
−Aµ

(
(m)V

)]
∂µ
(

(m)W
)

(2.7.3.7)

b2 = B
(

(m)V
)
−B

(
(m−1)V

)
, (2.7.3.8)

B(·) is the array-valued function defined in (2.7.2.50), the scalar-valued functions

L(0),L(1), · · · ,L(4) are defined in (2.4.2.14) - (2.4.2.16), and the Aµ(·) are defined in

(3.3.0.16); see Remark 2.4.3 concerning our use of function notation here.

By inspection, we see that the difference of two successive iterates satisfies the

equations of variation. Thus, consistent with our notation introduced in Section 2.4.2,

we suggestively define

V̇ def= (m+1)V − (m)V. (2.7.3.9)

Using definition (2.7.3.9) and referring to equations (2.7.3.3) - (2.7.3.6), we have that

V̇ is a solution to the EOV defined by the BGS (m)V with inhomogeneous terms(
b1 + b2,L((m)V)−L((m−1)V)

)
, where

L(·) def=
(
L(0)(·),L(1)(·),L(2)(·),L(3)(·),L(4)(·)

)
(2.7.3.10)

is an array-valued function.

By combining the uniform bound on theHN norms of the iterates obtained in Propo-

sition 2.7.3, Sobolev imbedding (applied to the ∂µ
(

(m)W
)

term in b1), and Taylor’s the-

orem, we obtain the following bound on the inhomogeneous terms for (t, s) ∈ [0, T ∗]×R3

(we suppress the dependence of the running constant C on N, Ō2,
(0)V̊, and Λ to avoid

notational clutter):∣∣∣(b1 + b2,L((m)V)−L((m−1)V)
)∣∣∣ ≤ C · ∣∣∣(m)V − (m−1)V

∣∣∣ . (2.7.3.11)

If we now define J̇ to be the energy current for the variation V̇ defined by the BGS

(m)V, then by applying the uniform bound on the HN norms of the iterates obtained

in Proposition 2.7.3, Sobolev imbedding, and (2.7.3.11) to the formula (2.5.5.3) for the

divergence of J̇ , we have, for (t, s) ∈ [0, T ∗]× R3, the pointwise bound∣∣∣∂µJ̇µ∣∣∣ ≤ C · (|V̇|2 + |V̇||(m)V − (m−1)V|
)
, (2.7.3.12)
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and the following consequence of (2.7.3.12):

‖∂µJ̇µ(t)‖L1 ≤ C ·
(
‖V̇(t)‖2L2 + ‖V̇(t)‖L2‖(m)V(t)− (m−1)V(t)‖L2

)
. (2.7.3.13)

Taking into account the initial condition V̇(0, s) = (m+1)V̊(s) − (m)V̊(s), where

(m)V̊(s) is defined in (2.7.2.5), but otherwise omitting the details, we may argue as in

the proof in Proposition 2.7.3 to conclude that for 0 ≤ T ≤ T∗

||| V̇ |||L2,T ≤ C · exp (CT )
(
T ||| (m)V − (m−1)V |||L2,T + ‖(m+1)V̊ − (m)V̊‖L2

)
.

(2.7.3.14)

We then select T ∈ (0, T∗] so that

α
def= C(N, Ō2, ‖(0)V̊‖HN+1

V̄

,Λ)exp
(
C(N, Ō2, ‖(0)V̊‖HN+1

V̄

,Λ)T
)
T < 1, (2.7.3.15)

noting that this choice of T and α are independent of m.

If we also define βm
def= T−1α · ‖(m+1)V̊ − (m)V̊‖L2 , then (2.7.2.3), (2.7.2.4), and

(2.7.2.6) imply that

∞∑
m=1

βm <∞. (2.7.3.16)

Recalling definition (2.7.3.9) and combining (2.7.3.14), (2.7.3.15), and (2.7.3.16)

proves (2.7.3.2), which shows that the series (2.7.3.1) converges.

Remark 2.7.6. Equation (2.7.3.7) illustrates why we cannot replace the L2 convergence

in (2.7.3.1) with HN convergence; the b1 term already involves one derivative of (m)W,

so its HN norm can only be controlled in terms of ‖(m)W‖HN+1
W̄

, which may be un-

bounded.

2.7.4 Vsol is a Classical Solution

Now that the iterates have been shown to converge, we will show that the limiting

function is a classical solution to the ENκ system. The basic idea is that by using

Sobolev estimates, the limiting function Vsol from Section 2.7.3 will be shown to inherit

a certain degree of regularity from the iterates. Following this, we will show that the

convergence is strong enough that we are able to take the pointwise limit of each term



68

in the linearized ENκ equations satisfied by the iterates, thus implying that Vsol is a

classical solution. We will use the following elementary result from calculus, which we

state here without proof.

Lemma 2.7.8. Let I ⊂ R be an interval, and let (m)F : I → R be a sequence of C1,

real-valued functions. Assume that there are two functions F,G such that (m)F → F

pointwise and (m)F ′ → G uniformly. Then F is differentiable and F ′ = G.

Proof that Vsol is a Classical Solution

First observe that (2.7.3.1) implies

lim
m→∞

||| (m)V −Vsol |||L2,T= 0. (2.7.4.1)

By Proposition 2.7.3 and Lemma (B.0.6), we have that for j, k ∈ N and 0 ≤ N ′ ≤ N,

||| (j)V − (k)V |||HN′ ,T ≤ C(N ′) ||| (j)V − (k)V |||1−N
′/N

L2,T
||| (j)V − (k)V |||N

′/N
HN ,T

(2.7.4.2)

≤ C(N ′,Λ) ||| (j)V − (k)V |||1−N
′/N

L2,T
.

Thus, if 0 ≤ N ′ < N and t ∈ [0, T ], the sequence {(m)V(t)} is uniformly (in t) Cauchy

in the HN ′

V̄
norm. Therefore, by the completeness of HN ′ , we have

lim
m→∞

||| (m)V −Vsol |||HN′ ,T= 0. (2.7.4.3)

Combining (2.7.4.3) with Corollary 2.7.5 and using an ε
3 argument, we have for 0 ≤

N ′ < N,

Vsol ∈ C0([0, T ], HN ′

V̄ ). (2.7.4.4)

By choosing 5
2 < N ′ < N and appealing to Sobolev imbedding, we have

(m)V→ Vsol in C0
(
[0, T ], C1

b

)
. (2.7.4.5)

Applying (2.7.4.5) and Lemma (2.7.8) (replacing the ′ from Lemma (2.7.8) with the

partial derivative operator ∂t) to the sequence of iterates (m)V, and using the facts

(2.7.2.2), (2.7.2.4), and (2.7.2.6) concerning the sequence of initial values (m)V̊, we
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take the limit as m → ∞ in the EOV satisfied by the (m)V and conclude that Vsol =

(η, P, U1, U2, U3, φ, ψ0, ψ1, ψ2, ψ3) is a classical solution to the ENκ system (2.4.1.18) -

(2.4.1.23) with the desired initial data V̊.

We furthermore claim that that the solution is of the form

Vsol = (η, P, U1, U2, U3, φ, ∂0φ, ∂1φ, ∂2φ, ∂3φ), (2.7.4.6)

implying that φ has continuous derivatives up to 2nd order. To see this, we first

observe that equation (2.4.1.23) and statement (2.7.4.5) imply that for j = 1, 2, 3, we

have ∂j∂0φ ∈ C0([0, T ]×R3), thus allowing us to interchange the derivatives ∂0 and ∂j .

Coupling this fact with equation (2.4.1.22), it follows that on [0, T ]×R3

∂0(ψj − ∂jφ) = 0 (j = 1, 2, 3). (2.7.4.7)

Since our assumptions on the initial data imply that ψj(0, s) − ∂j(φ(0, s)) = 0, we

conclude that on [0, T ]×R3

ψj(t, s) = ∂jφ(t, s). (2.7.4.8)

Combining equation (2.4.1.27) with (2.7.4.8) proves (2.7.4.6).

2.7.5 Further Results on the Regularity of Vsol

Showing that Vsol(t)− V̊ ∈ C0([0, T ], HN )

We have not yet shown the full statement of Theorem 2.7.1, in part because the regu-

larity result given in (2.7.4.4) is valid only for N ′ < N. Since the ENκ system is time

reversible and invariant under time translations, to show that

Vsol(t)− V̊ ∈ C0([0, T ], HN ), (2.7.5.1)

it is sufficient to show the HN right continuity of Vsol − V̊ at t = 0. Observe that

(2.7.5.1) is equivalent to Vsol ∈ C0([0, T ], HN
V̄

(R3)) and also to Vsol(t) − (0)V̊ ∈

C0([0, T ], HN (R3)). Our proof of (2.7.5.1) will be accomplished in three stages. The

first is to show that

Vsol − V̊ ∈ L∞([0, T ], HN ). (2.7.5.2)
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In our proof of (2.7.5.2), we make use of the following classical result concerning the

duality of HN ′ and H−N
′
.

Lemma 2.7.9. Let N ′ ∈ R. Then HN ′ and H−N
′

are dual through the pairing [·, ·].

To initiate the proof of (2.7.5.2), let G ∈ S. Then by Proposition (2.7.3) and Lemma

2.7.9, we have for t ∈ [0, T ] :

|[Vsol(t)− (0)V̊, G]| ≤ |[(m)V(t)− (0)V̊, G]|+ |[Vsol(t)− (m)V(t), G]| (2.7.5.3)

≤ C(N)‖(m)V(t)− (0)V̊‖HN ‖G‖H−N + C(N − 1)‖Vsol(t)− (m)V(t)‖HN−1‖G‖H−(N−1)

≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ)‖G‖H−N + C(N − 1)‖Vsol(t)− (m)V(t)‖HN−1‖G‖H−(N−1) .

Taking the lim supm→∞ of both sides of (2.7.5.3) and using (2.7.4.3), we have

|[Vsol(t)− (0)V̊, G]| ≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ)‖G‖H−N . (2.7.5.4)

Therefore, by the density of S in H−N , [Vsol(t)− (0)V̊, ·] extends to a continuous linear

functional on H−N . By Lemma 2.7.9, Vsol(t)− (0)V̊ ∈ HN (R3) and

‖Vsol(t)− (0)V̊‖HN ≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ), (2.7.5.5)

from which (2.7.5.2) follows.

The second stage of the proof of (2.7.5.1) is the proof of the claim

Vsol(t)− V̊ ∈ Cweak([0, T ], HN ), (2.7.5.6)

which means that for every G ∈ H−N (R3), [Vsol(t)− V̊, G] is a continuous function of

t on [0, T ]. To prove (2.7.5.6), first fix G ∈ H−N (R3), and let {Gk} ⊂ S be a sequence

of Schwartz functions such that Gk → G in H−N . Then, by Lemma 2.7.9, (3.8.2.1a),

and (2.7.5.5), we have

|[Vsol(t)− (m)V(t), G]| ≤ |[Vsol(t)− (m)V(t), G−Gk]|+ |[Vsol(t)− (m)V(t), Gk]|

(2.7.5.7)

≤ C‖Vsol(t)− (m)V(t)‖HN ‖G−Gk‖H−N + C‖Vsol(t)− (m)V(t)‖HN−1‖Gk‖H−(N−1)

≤ C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ)‖G−Gk‖H−N + C‖Vsol(t)− (m)V(t)‖HN−1‖Gk‖H−(N−1) .
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By taking k large enough, we can make the first term on the righthand side of (2.7.5.7)

arbitrarily small. For a fixed k, (2.7.4.3) implies that the second term on the right-hand

side of (2.7.5.7) can be made arbitrarily small, independent of all t ∈ [0, T ], by taking

m large enough. We thus conclude that

[(m)V(t)− V̊, G]→ [Vsol(t)− V̊, G] (2.7.5.8)

uniformly for t ∈ [0, T ] as m→∞. In particular, for each t ∈ [0, T ], we have

(m)Vsol(t)− V̊ ⇀ Vsol(t)− V̊ weakly in HN as m→∞, (2.7.5.9)

a result which we will quote later. Now, by Lemma 2.7.9, we have

|[(m)V(t)− (m)V(t0), G]| ≤ C(N)‖(m)V(t)− (m)V(t0)‖HN ‖G‖H−N . (2.7.5.10)

Combining Corollary 2.7.5 with (2.7.5.10), we conclude that for m ∈ N,

[(m)V(t)− V̊, G] is a continuous function of t. (2.7.5.11)

By (2.7.5.8) and (2.7.5.11), [Vsol(t) − V̊, G], viewed as a function of t, is the uniform

limit of continuous functions. Therefore,

[Vsol(t)− V̊, G] is a continuous function of t, (2.7.5.12)

which proves the claim (2.7.5.6).

The third stage in the proof of (2.7.5.1) relies on the following result from functional

analysis.

Lemma 2.7.10. If H is a Hilbert space with norm ‖ · ‖H, and {wj} ⊂ H is a sequence

of vectors that converges weakly to w ∈ H, then

‖w‖H ≤ lim sup
j→∞

‖wj‖H (2.7.5.13)

and furthermore,

lim
j→∞

‖w − wj‖H = 0 ⇐⇒ lim sup
j→∞

‖wj‖H ≤ ‖w‖H. (2.7.5.14)
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Remark 2.7.7. Suppose H is equipped with two equivalent norms, ‖ · ‖H and ‖ · ‖′H,

defined through inner products 〈·, ·〉 and 〈·, ·〉′ respectively. Then the notion of weak

convergence wm ⇀ w is independent of the inner product; i.e., limm→∞〈wm, v〉 = 〈w, v〉

holds for all v ∈ H ⇐⇒ limm→∞〈wm, v〉′ = 〈w, v〉′ holds for all v ∈ H. This is true

because the equivalence of the two norms, together with the Cauchy-Schwarz inequality,

imply that 〈·, v〉 is a linear functional bounded in the norm ‖·‖′H, while 〈·, v〉′ is a linear

functional bounded in the norm ‖ · ‖H.

In light of Lemma 2.7.10, we now define norms on HN (R3)10 that are equivalent to

the usual one. Given a BGS Ṽ as defined in Section 2.4.2, we define the norm

‖V̇‖
HN ,Ṽ(t)

def=
( ∑

0≤|~α|≤N

∫
R3

J̇0
~α(t, s) d3s

) 1
2
, (2.7.5.15)

where J̇~α is the energy current for the variation ∂~αV̇ defined by the BGS Ṽ. If

Ṽ(t)
(
R3
)
⊂ Ō2, then as a simple consequence of (2.6.2.2), we have that the norm in

(2.7.5.15) is equivalent to the usual norm on HN (R3)10. Here, the notation HN (R3)10

is used to emphasize that V̇ is a R10-valued function on M. This norm arises from an

inner product on HN (R3)10 obtained from treating the J̇0
~α as a sesquilinear form in two

variations (V̇, Ẏ) rather than a quadratic form in V̇ in the obvious manner.

By (2.7.5.6), Remark 2.7.7, and Lemma 2.7.10, applied to the equivalent norms

‖ · ‖HN and ‖ · ‖HN ,V̊, in order to prove (2.7.5.1), we only need to show that

lim supt→0 ‖Vsol(t)− (0)V̊‖HN ,V̊ ≤ ‖V̊ −
(0)V̊‖HN ,V̊. By Remark 2.5.4, definition

(2.7.5.15), and (2.7.4.5), demonstrating this inequality is equivalent to showing

lim sup
t→0

‖Vsol(t)− (0)V̊‖HN ,V(t) ≤ ‖V̊ − (0)V̊‖HN ,V̊. (2.7.5.16)

We prove (2.7.5.16) with the help of a modification to the proof of Proposition 2.7.3.

Making use of definition (2.7.5.15), we take the limit r →∞ in (2.7.2.29) and arrive the

following bound (in which we write C = C(N, Ō2, ‖(0)V̊‖HN+1
V̄

,Λ) for notational ease),

valid for t ∈ [0, T ] :

‖(m+1)V(t)− (0)V̊‖HN ,(m)V(t) ≤
(
‖(m+1)V̊ − (0)V̊‖HN ,(m)V̊ + Ct

)
· exp

(
Ct
)
.

(2.7.5.17)
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By (2.7.2.2), (2.7.2.4), (2.7.2.6), (2.7.4.5), definition (2.7.5.15), and Remark 2.5.4, we

have

lim sup
m→∞

(
‖(m+1)V̊ − (0)V̊‖HN ,(m)V̊ + Ct

)
· exp

(
Ct
)

(2.7.5.18)

=
(
‖V̊ − (0)V̊‖HN ,V̊ + Ct

)
· exp

(
Ct
)
.

Using (2.7.5.9) and Remark 2.7.7, we apply Lemma 2.7.10 to the norm ‖ · ‖HN ,Vsol(t)
,

obtaining

‖Vsol(t)− (0)V̊‖HN ,Vsol(t)
≤ lim sup

m→∞
‖(m+1)V(t)− (0)V̊‖HN ,Vsol(t)

. (2.7.5.19)

By Remark 2.5.4, definition (2.7.5.15) and (2.7.4.5), we also have that

lim sup
m→∞

‖(m+1)V(t)− (0)V̊‖HN ,Vsol(t)
= lim sup

m→∞
‖(m+1)V(t)− (0)V̊‖HN ,(m)V(t).

(2.7.5.20)

Combining (2.7.5.19), (2.7.5.20), (2.7.5.17), and (2.7.5.18) (in this order), we obtain

‖Vsol(t)− (0)V̊‖HN ,Vsol(t)
≤
(
‖V̊ − (0)V̊‖HN ,V̊ + Ct

)
· exp (Ct) . (2.7.5.21)

Taking lim supt→0 of both sides of (2.7.5.21) proves (2.7.5.16), which concludes the

proof of (2.7.5.1).

The Banach Space Differentiability of Vsol(t)

We first show that

∂tVsol ∈ C0([0, T ], HN−1(R3)). (2.7.5.22)

To prove, (2.7.5.22) we first solve for ∂tWsol, where Wsol denotes the first 5 components

of Vsol, using the equations (2.4.1.18) - (2.4.1.20). We have that

∂tWsol =
(
A0(Vsol)

)−1
[
b(Vsol)−Ak(Vsol)∂k (Wsol)

]
, (2.7.5.23)

where b(Vsol) denotes the right-hand side of (2.4.1.18) - (2.4.1.20) viewed as a function

of Vsol. From (2.7.5.23), (2.7.4.4), and Corollary B.0.3 in the Appendix, it immediately

follows that ∂tWsol ∈ C0([0, T ], HN−1). Applying similar reasoning to

(φ, ∂tφ, ∂1φ, ∂2φ, ∂3φ), we conclude (2.7.5.22).
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To finish the proof of the local existence aspect of the theorem, we must justify the

claims

Vsol ∈ C1([0, T ], HN−1
V̄

), (2.7.5.24)

φ ∈ C2([0, T ], HN−1
φ̄

). (2.7.5.25)

By statement (2.7.5.24), we mean that lim
h→0
‖Vsol(t+h)−Vsol(t)

h −∂tVsol(t)‖HN−1 = 0 holds

for every t ∈ (0, T ), and similarly for h → 0+ and h → T− at t = 0 and t = T

respectively; the analogous meaning is ascribed to statement (2.7.5.25). We give the

proof of right differentiability of Vsol at t = 0. For h small and positive, we have∥∥∥∥Vsol(h)−Vsol(0)
h

− ∂tVsol(0)
∥∥∥∥
HN−1

=
∥∥∥∥1
h

∫ h

0
∂tVsol(t′)− ∂tVsol(0) dt′

∥∥∥∥
HN−1

(2.7.5.26)

≤ 1
h

∫ h

0

∥∥∂tVsol(t′)− ∂tVsol(0)
∥∥
HN−1 dt

′ ≤ sup
t′∈[0,h]

∥∥∂tVsol(t′)− ∂tVsol(0)
∥∥
HN−1 .

The equal sign above is justified since Vsol is a classical solution, while the first in-

equality is a theorem from the theory of integration of Banach space valued functions

of t (see [52] for a discussion of integration in Banach spaces). Now we use (2.7.5.22)

to conclude that the right-hand side of (2.7.5.26) goes to 0 as h→ 0+; this proves the

claim (2.7.5.24). Note that since (2.7.4.6) shows that ∂tφ is one of the components of

Vsol, (2.7.5.24) implies that

lim
h→0

∥∥∥∥∂tφ(t+ h)− ∂tφ(t)
h

− ∂2
t φ(t)

∥∥∥∥
HN−1(R3)

= 0. (2.7.5.27)

This justifies the claim (2.7.5.25).

Uniqueness and HN−1−Continuous Dependence on Initial Data.

Let V̊ denote initial data that launch a solution V of the ENκ system as furnished by

the existence aspect of Theorem 2.7.1. Let δ,Bδ(V̊), T ′, and K(N, Ō2, ‖(0)V̊‖HN+1
V̄

, δ)

be as in corollaries 2.7.1 and 2.7.2. Assume that the initial data ˚̃V belong to Bδ, and

let Ṽ be a solution of the ENκ system with initial data ˚̃V existing on the interval [0, T ′]

guaranteed by Corollary 2.7.1. We now define

V̇ def= Ṽ −V. (2.7.5.28)
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It follows from definition (2.7.5.28) that V̇ is a solution to the EOV (2.4.2.1) - (2.4.2.6)

defined by the BGS Ṽ with inhomogeneous terms given by

f = (Uµ − Ũµ)∂µη (2.7.5.29)

g = (Uµ − Ũµ)∂µP +
[
QUk/U

0 − Q̃Ũk/Ũ0
]
∂0U

k (2.7.5.30)

+ (Q− Q̃)∂kUk + (4P̃ − 3Q̃)Ũµψ̃µ − (4P − 3Q)Uµψµ

h(j) =
[
(R+ P )Uµ − (R̃+ P̃ )Ũµ

]
∂µU

j + (Πµj − Π̃µj)∂µP (2.7.5.31)

+ (3P̃ − R̃)Π̃µjψ̃µ − (3P −R)Πµjψµ (2.7.5.32)

l(0) = κ2(φ̃− φ) + (R̃− 3P̃ )− (R− 3P ). (2.7.5.33)

l(j) = 0 (j = 1, 2, 3) (2.7.5.34)

l(4) = ψ̃0 − ψ0, (2.7.5.35)

and we denote them using the abbreviated notation b and l defined in (2.4.2.17) and

(2.4.2.18).

By combining propositions B.0.2, Remark (B.0.3), and B.0.4 of the Appendix, (not-

ing the particular manner in which the inhomogeneous terms depend on the difference

of V and Ṽ) we have that

||| (b, l) |||HN−1,T ′≤ C(N,K, Ō2,Λ) ||| V̇ |||HN−1
V̄

,T ′ . (2.7.5.36)

Without providing details, we reason as in our proof of Proposition 2.7.3, using (2.7.5.36)

in place of (2.7.2.41) and (2.7.2.44) to arrive at the following bound:

||| V̇ |||HN−1
V̄

,T ′ ≤ C
−1
Ō2
‖V̇(0)‖HN−1 · exp

(
CT ′

)
, (2.7.5.37)

where V̇(0) def= ˚̃V − V̊.

Inequality (2.7.5.37) is the analog of the first inequality in (2.7.2.31), but the “V̇(0)+

CT∗” term from (2.7.2.31) has been replaced with “V̇(0)” in (2.7.5.37). This change

occurs because unlike the estimate (2.7.2.38) used in obtaining (2.7.2.31), the estimate

(2.7.5.36), which is essential for obtaining (2.7.5.37), involves a linear bound in

||| V̇ |||HN−1
V̄

,T ′ .
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We now observe that (2.7.5.37) implies both the uniqueness statement in Theorem

2.7.1 and the Lipschitz-HN−1−continuous dependence on initial conditions mentioned

in Remark 2.7.2.

Remark 2.7.8. We cannot obtain an estimate analogous to (2.7.5.37) by using the HN
V̄

norm in place of the HN−1
V̄

norm; the inhomogeneous terms (2.7.5.29) - (2.7.5.35)

already contain 1 derivative of V, and therefore cannot be bounded in the HN norm.

However, for N ′ < N, we can obtain an estimate for the HN ′

V̄
norm by combining

Proposition B.0.6, (2.7.5.37) and the uniform bound provide by the constant K. The

inequality we obtain is

||| V̇ |||
HN′

V̄
,T ′ ≤ C‖V̇(0)‖1−N

′/N

HN′ · exp
(
CT ′

)
, (2.7.5.38)

where the constant C in (2.7.5.38) depends on N ′, Ō2 and K.

In particular, by fixing N ′ > 5/2, we obtain through Sobolev imbedding that

||| Ṽ −V |||C1
b ,T
′→ 0 as ‖˚̃V − V̊‖HN → 0 (2.7.5.39)

a result which we will quote below.

Remark 2.7.9. The estimate (2.7.5.37) is a limiting version of the “conical” estimate

‖V̇(t)‖HN−1(Σt,r−t) ≤ C
−1
Ō2
‖V̇(0)‖HN−1(Σ0,r) · exp (CT ) , (2.7.5.40)

where we are using notation defined in Lemma 2.7.4. A proof of (2.7.5.40) can be con-

structed using arguments similar to the ones used in our proof of (2.7.2.30). Inequality

(2.7.5.40) shows that two solutions that agree on Σ0,r also agree on Σt,r−t. By trans-

lating the cone from Lemma 2.7.4 so that its lower base is centered at the spacetime

point x, we may produce a translated version of the inequality. Thus, we observe that

a domain of dependence for x is given by the solid backward light cone with vertex at

x; i.e., the past (relative to x) behavior of a solution to the EOV outside of this cone

does not influence behavior of the solution at x. Similarly, a domain of influence of x

is the solid forward light cone with vertex at x; the behavior of a solution at x does not

influence the future (relative to x) behavior of the solution outside of this cone. In [15],

Christodoulou gives an advanced discussion of these and related topics for hyperbolic

PDEs derivable from a Lagrangian.
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This completes our proof of Theorem 2.7.1.

2.7.6 Proof of Theorem 2.7.2.

The Setup

Let {V̊m} be the sequence of initial data from the hypotheses of Theorem 2.7.2 converg-

ing in HN
V̄

to V̊ . By corollaries 2.7.1 and 2.7.2, for all large m, the initial data V̊m and

V̊ launch unique solutions Vm and V respectively to (2.4.1.18) - (2.4.1.23) that exist on

a common interval [0, T ′] and that have the property V([0, T ′]×R3),Vm([0, T ′]×R3) ⊂

Ō2. Furthermore, for all large m, with K = K(N, Ō2, ‖(0)V̊‖HN+1
V̄

, δ), we have the uni-

form (in m) bounds

||| V |||HN
V̄
,T ′ , ||| ∂tV |||HN−1,T ′ , ||| Vm |||HN

V̄
,T ′ , ||| ∂tV

m |||HN−1,T ′ < K. (2.7.6.1)

In this section, we will show that for all large m,Vm exists on [0, T ] and

lim
m→∞

||| Vm −V |||HN ,T= 0, (2.7.6.2)

where [0, T ] is the interval of existence for V.

The proof we give here is inspired by a similar proof given by Kato in [27]. We

use results and terminology from the theory of abstract evolution equations in Banach

spaces, an approach that streamlines the argument. We also freely use results from

the theory of integration in Banach spaces; a detailed discussion of this theory may be

found in [52]. We begin by rewriting the linearization of the ENκ system around Vm

and V as abstract evolution equations in the Banach space HN (R3)10. In this form, the

linearized systems are written as

∂tZ +A(V)Z = f(V), (2.7.6.3)

∂tZ +A(Vm)Z = f(Vm), (2.7.6.4)

where f(·) is a smooth function on O. Here, the symbol Z stands for all 10 components

of a solution to a linearized system, and the operator A(·) is a first order spatial dif-

ferential operator with coefficients that depend smoothly on its arguments. We state

for clarity that the first 5 components of the inhomogeneous terms f(Vm) are given by
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(
A0(Vm)

)−1 · (F(Vm),G(Vm), · · · ,H(3)(Vm))Transpose, where the matrix-valued func-

tion A0(·) is defined in (2.4.2.20) and the scalar-valued functions F,G, · · ·H3 are defined

in (2.4.2.11) - (2.4.2.13).

We will make use of the differential operator

S def= (1−∆)N/2, (2.7.6.5)

which is an isomorphism betweenHN and L2; i.e., S ∈ L(HN , L2) and S−1 ∈ L(L2, HN ).

Technical Estimates

For certain function spaces X, there exist evolution operators

U(t, t′), Um(t, t′) : X → X (2.7.6.6)

defined on 4T ′
def= {0 ≤ t′ ≤ t ≤ T ′} that map solutions (belonging to the space X) of

the corresponding homogeneous version of the linearized systems (2.7.6.3) and (2.7.6.4)

at time t′ to solutions at time t. The relevant spaces in our discussion are X = L2 and

X = HN . In the following three lemmas, we describe the properties of the operators

U(t, t′) and Um(t, t′). Complete proofs are given in [25], [26], and [27]; rather than

repeating them, we instead attempt to provide insight as to how one may prove them

using the methods described in this paper.

Lemma 2.7.11. U(·, ·) and Um(·, ·) (for m ≥ 0) are strongly-continuous maps from

4T ′ into L(L2) ∩ L(HN ). Furthermore, there exists C(K) > 0 such that ||| U |||L2,4T ′

, ||| Um |||L2,4T ′ , ||| U |||HN ,4T ′ , ||| U
m |||HN ,4T ′< C(K).

Remark 2.7.10. Lemma 2.7.11 is essentially a consequence of the fact that the uniform

bound (2.7.6.1) for V and Vm allows for uniform Sobolev estimates to be made on L2

(or HN ) norm of L2 (or HN ) solutions to the linearized equations.

Remark 2.7.11. By Theorem 2.7.1, Corollary B.0.3, Remark B.0.3, and (2.6.1.2), the

right-hand side (2.7.6.3) is an element of C0([0, T ′], HN ). Given initial data Z̊ ∈ HN
V̄
, it

follows from Lemma 2.7.11 and standard linear theory (via Duhamel’s principle) that

there exists a unique solution Z ∈ C0([0, T ′], HN
V̄

) to (2.7.6.3) with initial data Z̊. An

analogous result holds for solutions to (2.7.6.4).
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Lemma 2.7.12. Um(t, t′) converges to U(t, t′) strongly in L(L2) as m→∞. Further-

more, the strong convergence is uniform on 4T ′ .

Remark 2.7.12. By smoothing the initial data, a solution Z ∈ C0([0, T ], L2) to ∂tZ +

A(V)Z = 0 can be realized as the limit (in the norm ||| · |||L2,T ) of a sequence {Zm} ⊂

C0([0, T ], HN ). Therefore, to prove Lemma 2.7.12, one only needs to check that given

initial data Z̊ ∈ HN , we have that

lim
m→∞

||| (Um(·, 0)− U(·, 0)) Z̊ |||L2,T= 0. (2.7.6.7)

Based on Lemma 2.7.11 and (2.7.5.38), which shows that for N ′ < N we have Vm → V

in C0([0, T ′], HN ′

V̄
), (2.7.6.7) easily follows from the method of energy currents.

Lemma 2.7.13. There exist operator valued functions B,Bm : [0, T ′] → L(L2) such

that

SA(V(t))S−1 = A(V(t)) + B(t), (2.7.6.8)

SA(Vm(t))S−1 = A(Vm(t)) + Bm(t). (2.7.6.9)

For for all t′ with 0 ≤ t′ ≤ T ′, B and Bm satisfy the estimates

||| Bm − B |||L2,t′ ≤ C(K) ||| Vm −V |||HN ,t′ (2.7.6.10)

and ||| B |||L2,T ′ , ||| Bm |||L2,T ′ ≤ C(K). (2.7.6.11)

Lemma 2.7.14. Let Z̊ denote initial data in HN
V̄
, and let Z ∈ C0([0, T ′], HN

V̄
) denote

the unique solution to (2.7.6.3) with initial data Z̊ furnished by Remark 2.7.11. Then

S(Z− V̄) satisfies the Duhamel formula

S(Z(t)− V̄) = U(t, 0)S(Z̊− V̄)−
∫ t

0
U(t, t′)B(t′)S(Z(t′)− V̄) dt′ (2.7.6.12)

+
∫ t

0
U(t, t′)Sf(V(t′)) dt′. (2.7.6.13)

An analogous result holds for the linearization of the ENκ system around Vm.

Proof. We apply S to each side of the equation satisfied by Z − V̄ and use Lemma

2.7.13 to arrive at the equation

∂t
[
S(Z− V̄)

]
+A(V)S(Z− V̄) = −B(V)S(Z− V̄) + Sf(V). (2.7.6.14)
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Thus, S(Z − V̄) is a solution to the same linear equation that Z solves, except the

inhomogeneous terms for S(Z − V̄) are given by the right-hand side of (2.7.6.14) and

the initial data are given by S(Z̊− V̄). Equation (2.7.6.12) now follows from Duhamel’s

principle.

Proof

We will now demonstrate (2.7.6.2) by providing a proof of the equivalent statement

lim
m→∞

||| S (Vm −V) |||L2,T= 0. (2.7.6.15)

Lemma 2.7.14 gives the following equality, valid for 0 ≤ t ≤ T ′ :

S
(
Vm(t)−V(t)

)
= Um(t, 0)S

(
V̊m − V̊

)
+
(
Um(t, 0)− U(t, 0)

)
S(V̊ − V̄) (2.7.6.16)

+
∫ t

0
U(t, t′)B(t′)S(V(t′)− V̄) dt′ −

∫ t

0
Um(t, t′)Bm(t′)S(Vm(t′)− V̄) dt′

+
∫ t

0
Um(t, t′)Sf(Vm(t′)) dt′ −

∫ t

0
U(t, t′)Sf(V(t′)) dt′.

By Lemma 2.7.11, we have that

||| Um(t, 0)S
(
V̊m − V̊

)
|||L2,T ′≤ C(S,K) ||| V̊m − V̊ |||HN ,T ′ . (2.7.6.17)

We now rewrite the second line of (2.7.6.16) as∫ t

0
(U(t, t′)− Um(t, t′))B(t′)S(V(t′)− V̄) dt′ (2.7.6.18)

+
∫ t

0
Um(t, t′)

(
B(t′)− Bm(t′)

)
S(V(t′)− V̄) dt′

+
∫ t

0
Um(t, t′)Bm(t′)S

(
V(t′)−Vm(t′)

)
dt′.

By (2.7.6.1), Lemma 2.7.11 and Lemma 2.7.13, for 0 ≤ t ≤ T∗ ≤ T ′, the L2 norms

of the second term and third addends in (2.7.6.18) are each bounded from above by

C(S,K)T∗ ||| Vm −V |||HN ,T∗ .

We similarly split the third line of (2.7.6.16) into two terms and use (2.7.6.1), Lemma

2.7.11, Lemma 2.7.13, Proposition B.0.4, and Remark B.0.4 to bound the L2 norm of

one of them from above by C(S,K)T∗ ||| Vm −V |||HN ,T∗ .
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Combining these estimates with (2.7.6.17), we take the L2 norm of each side of

(2.7.6.16) followed by the sup over t ∈ [0, T∗] to arrive at the inequality

||| S (Vm −V) |||L2,T∗ ≤ C(S,K)‖V̊m − V̊‖HN + C(S,K)T∗ ||| Vm −V |||HN ,T∗

(2.7.6.19)

+
∫ T∗

0
sup

t∈[0,T∗]
‖(U(t, t′)− Um(t, t′))B(t′)S(V(t′)− V̄)‖L2 dt′

+
∫ T∗

0
sup

t∈[0,T∗]
‖(U(t, t′)− Um(t, t′))Sf(V(t′))‖L2 dt′.

We now choose T∗ small enough so that

C(S,K)T∗ ||| Vm −V |||HN ,T∗≤
1
2
||| S (Vm −V) |||L2,T∗ , (2.7.6.20)

from which it follows that

||| S (Vm −V) |||L2,T∗ ≤ 2C(S,K)‖V̊m − V̊‖HN (2.7.6.21)

+ 2
∫ T∗

0
sup

t∈[0,T∗]
‖
(
Um(t, t′)− U(t, t′)

)
B(t′)S(V(t′)− V̄)‖L2 dt′

+ 2
∫ T∗

0
sup

t∈[0,T∗]
‖
(
Um(t, t′)− U(t, t′)

)
Sf(V(t′))‖L2 dt′.

By (2.7.6.1), Lemma 2.7.11, Lemma 2.7.13, and Proposition B.0.2, the integrands

in (2.7.6.21) are uniformly bounded on [0, T∗]. Furthermore, by Lemma 2.7.12, the

integrands (viewed functions of t′) converge to 0 pointwise as m → ∞. Therefore, by

the dominated convergence theorem, the two integrals in (2.7.6.21) converges to 0 as

m→∞. Since we also have by hypothesis that limm→∞ ‖V̊m−V̊‖HN = 0, we conclude

that

lim
m→∞

||| S (Vm −V) |||L2,T∗= 0. (2.7.6.22)

To extend this argument to the interval [0, 2T∗], let ε > 0 and choose m0 large

enough so that m ≥ m0 implies that ||| Vm −V |||HN ,T∗<
ε

4C(S,K)
. Starting from time

T∗, we may argue as above to show that

lim sup
m→∞

sup
t∈[T∗,2T∗]

‖S (Vm −V) ‖HN ≤
1
2
ε. (2.7.6.23)
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Thus, we can choose m1 ≥ m0 such that ||| S (Vm −V) |||L2,2T∗≤ ε when m ≥ m1.

Continuing in this manner, we may inductively extend this argument to the interval

[0, T ′]. We state for emphasis that the size of T∗ required to satisfy the inequality

(2.7.6.20) depends only on C(S,K). Consequently, the length of the time interval of

extension T∗ may be chosen to be the same at each step in the induction.

We now show that this argument can be extended to the entire interval [0, T ] on

which V exists. Define

Tmax
def= sup{T ′ | V and the Vm exist on the interval (2.7.6.24)

[0, T ′] for all large m and lim
m→∞

||| Vm −V |||HN ,T ′= 0}.

We will show that the assumption Tmax < T leads to a contradiction.

By Theorem 2.7.1 and Corollary 2.7.1, for each t ∈ [0, T ], there exist an HN neigh-

borhood Bδt(V(t)) of V(t) with positive radius δt and a ∆t > 0 such that initial data

belonging to Bδt(V(t)) launch a unique solution that exists on the interval [t, t + ∆t]

(the term “initial” here refers to the time t). By continuity, V([0, T ]) is a compact

subset of HN
V̄
. Therefore, there exist δ > 0 and ∆ > 0 such that initial data belonging

to Bδ(V(t)) launch a unique solution that exists on the interval [t, t+∆]; we emphasize

that δ and ∆ are independent of t belonging to [0, T ].

The contradiction is now easily obtained. According to the above paragraph, initial

data belonging to Bδ(V(Tmax − 1
2∆)) launch a solution that exists on the interval

[Tmax − 1
2∆, Tmax + 1

2∆]. Furthermore, for all large m, Vm(Tmax − 1
2∆) is contained

in Bδ(V(Tmax − 1
2∆)). Therefore, for all large m, Vm can be extended to a solution

that exists on [0, Tmax + 1
2∆]. We can argue as before to show that limm→∞ ||| Vm −

V |||HN ,Tmax+ 1
2

∆= 0. This contradicts the definition of Tmax and completes the proof

of Theorem 2.7.2.
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Chapter 3

The Non-relativistic Limit of the Euler Nordström

System with Cosmological Constant

In this chapter, we study the Newtonian limit of the family of Euler-Nordström systems

indexed by the parameters κ and c (ENc
κ), where κ2 is the cosmological constanta and c

is the speed of light. The limit c→∞ is singular since the ENc
κ system is hyperbolic for

all finite c, while the limiting system is not hyperbolic. Using Christodoulou’s techniques

[15] to generate energy currents, we develop Sobolev estimates and use them to prove

the following theorem:

Theorem 3.0.3. As the speed of light c tends to infinity, solutions to the ENc
κ system

converge uniformly on a spacetime slab to solutions of the EPκ system.

This theorem is stated and proved rigorously as Theorem 3.9.2. There is a great

deal of overlap of this material with that of Chapter 2; for the sake of continuity of the

discussion, some of the material has been repeated.

3.0.7 A List of Important Notational Remarks for Chapter 3

• In general, we use the notation for function spaces, differential operators, etc.,

described in Section 2.2 of Chapter 2.

• We use the convention x0 = t, rather than the usual convention x0 = ct, in our

global coordinate system.

• The components of the symbols V, W, Ẇ, etc., have changed from Chapter 2

because of a change of variables involving the Newtonian velocity v.

aThe parameter κ > 0 is fixed throughout this chapter.
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• N now denotes an integer that is greater than or equal to 4.

• O denotes an open, convex set contained in the admissible subset of truncated

state-space, which is a subset of R5.

3.1 The Origin of the ENc
κ System

In this section, we describe the origin of the ENc
κ system, which was introduced in

Section 2.3.3 in dimensionless units. Our discussion here is quite similar, the differences

being that that we insert both the speed of light c and Newton’s universal gravitational

constant G into the system and perform a Newtonian change variables, which brings the

system into the form (3.2.1.1) - (3.2.1.4). A similar analysis for the Vlasov-Nordström

system is carried out in [10].

3.1.1 Deriving the Equations with c as a Parameter

We assume the existence of a global rectangular (inertial) coordinate system on the

spacetime manifoldM. The components of the Minkowski metric and its inverse in this

coordinate system are given by gµν = diag(−c2, 1, 1, 1) and gµν = diag(−c−2, 1, 1, 1)

respectively. We adopt Nordström’s postulate, namely that the spacetime metric is

related to the Minkowski metric by a conformal scaling factor:

gµν = e2φgµν . (3.1.1.1)

In (3.1.1.1), φ is the Nordström scalar potential, a dimensionless quantity.

We assume that a perfect fluid exists in M, the energy momentum tensor of which

has components Tµν that read

Tµν = c−2(ρ+ p)uµuν + pgµν = c−2(ρ+ p)uµuν + e−2φpgµν , (3.1.1.2)

where ρ is the proper energy density of the fluid, p is the pressure, and u is the four-

velocity, which is subject to the normalization constraint

gµνu
µuν = e2φgµνu

µuν = −c2. (3.1.1.3)
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The Euler equations for a perfect fluid are

∇µTµν = 0 (ν = 0, 1, 2, 3) (3.1.1.4)

∇µ(nuµ) = 0, (3.1.1.5)

where n is the proper number density and ∇ denotes the covariant derivative induced

by the spacetime metric g.

Nordström’s theory [43] provides the following evolution equation for φ : we define

an auxiliary momentum tensor

Tµνaux

def= e6φTµν = c−2e6φ(ρ+ p)uµuν + e4φpgµν , (3.1.1.6)

and postulate that φ is a solution to

�φ− κ2φ = −4πc−4Ge4φtrgT = −4πc−4GgµνT
µν
aux = 4πc−4Ge4φ(ρ− 3p). (3.1.1.7)

Note that

�φ
def= gµν∂µ∂νφ = −c−2∂2

t φ+4φ (3.1.1.8)

is the wave operator on flat spacetime applied to φ. The virtue of the postulate equa-

tion (3.1.1.7) is that it provides us with continuity equations (3.1.2.7) for an energy

momentum tensor Θ in Minkowski space.

We close the system by supplying an equation of state, which may depend on c. A

physical equation of state for a perfect fluid state satisfies the following criteria:

1. ρ ≥ 0 is a function of n ≥ 0 and η ≥ 0 :

ρ = ρ(n, η). (3.1.1.9)

2. p ≥ 0 is defined by

p = n
∂ρ

∂n

∣∣∣∣
η

− ρ, (3.1.1.10)

where the notation |· indicates partial differentiation with · held constant.
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3. A perfect fluid satisfies

∂ρ

∂n

∣∣∣∣
η

> 0,
∂p

∂n

∣∣∣∣
η

> 0,
∂ρ

∂η

∣∣∣∣
n

≥ 0 with “ = ” iff η = 0. (3.1.1.11)

As a consequence, we have that σ, the speed of sound in the fluid, is always real

for η > 0 :

σ2 def
= c2 ∂p

∂ρ

∣∣∣∣
η

= c2 ∂p/∂n|η
∂ρ/∂n|η

> 0. (3.1.1.12)

4. We also demand that the speed of sound is less than the speed of light:

0 < σ < c. (3.1.1.13)

By (3.1.1.11), we can solve for σ2 and c−2ρ as c−indexed functions S2
c and R∞ respec-

tively of η and p :

σ2 def= S2
c(η, p) (3.1.1.14)

c−2ρ
def= Rc(η, p). (3.1.1.15)

Remark 3.1.1. Note that c−2ρ has the dimensions of mass density. As we will see in

Section 3.4, limc→∞Rc(η, p) will be identified with the Newtonian mass density.

Remark 3.1.2. We will make use of the following identity implied by equation (3.1.1.12):

∂Rc

∂p
(η, p)

∣∣∣∣
η

= S−2
c (η, p). (3.1.1.16)

We summarize by stating that the equations (3.1.1.1) - (3.1.1.5), (3.1.1.7), (3.1.1.10),

and (3.1.1.15) constitute the ENc
κ system.

3.1.2 A Reformulation of the ENc
κ System in Newtonian Variables

Following the discussion in Section 2.4, we will reformulate the ENc
κ system as a fixed

background theory in flat Minkowski space. We then introduce a Newtonian change of

state-space variables and show that equations (3.2.1.1) - (3.2.1.4) are obtained.

To begin, we use the form of the metric (3.1.1.1) to compute that in our inertial

coordinate system, the continuity equation (3.1.1.4) for the energy momentum tensor
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(3.1.1.2) is given by :

0 = ∇µTµν = ∂µT
µν + 6Tµν∂µφ− gαβTαβ∂νφ

= ∂µT
µν + 6Tµν∂µφ− e−6φgαβT

αβ
aux∂

νφ (ν = 0, 1, 2, 3), (3.1.2.1)

where Tµνaux is given by (3.1.1.6). For this calculation we made use of the explicit form

of the Christoffel symbols in inertial coordinate system:

Γαµν = δαν ∂µφ+ δαµ∂νφ− gµνgαβ∂βφ. (3.1.2.2)

Using the postulate equation (3.1.1.7) for φ, (3.1.2.1) can be rewritten as

0 = e6φ∇µTµν = ∂µ

[
Tµνaux +

c4

4πG
(
∂µφ∂νφ− 1

2
gµν∂αφ∂αφ−

1
2
gµνκ2φ2

)]
. (3.1.2.3)

Recall that the coordinate derivative operators are raised and lowered with the

Minkowski metric g, so ∂λφ = gµλ∂µφ. Let us denote the terms from (3.1.2.3) that

are inside the square brackets as Θµν . Since the divergence of Θ vanishes, we are pro-

vided with local conservation laws in Minkowski space, and we regard Θ as an energy-

momentum tensor. We also introduce the following state-space variables that play a

mathematical role in the sequel:

Rc
def= c−2ρe4φ = e4φRc(η, p) (3.1.2.4)

P
def= pe4φ. (3.1.2.5)

Following this change of variables, the components of Θ read

Θµν def=
[
Rc + c−2P

]
e2φuµuν + Pgµν (3.1.2.6)

+
c4

4πG

(
∂µφ∂νφ− 1

2
gµν∂αφ∂αφ−

1
2
gµνκ2φ2

)
,

and we replace (3.1.1.4) with

∂µΘµν = 0 (ν = 0, 1, 2, 3). (3.1.2.7)

We also expand the covariation differentiation from (3.1.1.5) in terms of coordinate

derivatives and the Christoffel symbols (3.1.2.2), arriving at the equation

∂µ
(
ne4φuµ

)
= 0. (3.1.2.8)
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Our goal is to obtain the system in ENc
κ in the form (3.2.1.1) - (3.2.1.4) below. To

this end, we project (3.1.2.7) onto the orthogonal complement of u and in the direction of

u. Thus, we introduce the following rank 3 tensor Π, which has the following components

in our inertial coordinate system:

Πµν def= c−2e2φuµuν + gµν . (3.1.2.9)

Π is the projection onto the orthogonal complement of u :

Πµνuλgλµ = 0 (ν = 0, 1, 2, 3). (3.1.2.10)

We now introduce the following Newtonian change of state-space variablesb

vj
def=
uj

u0
(j = 1, 2, 3) (3.1.2.11)

Φ def= c2φ, (3.1.2.12)

where v = (v1, v2, v3) is the Newtonian velocity and Φ is the Klein-Gordon-Newtonian

potential. Relation (3.1.2.11) can be inverted to give

u0 = e−φγc (3.1.2.13)

uj = e−φγcv
j , (3.1.2.14)

where

γc(v) def=
c

(c2 − |v|2)1/2
. (3.1.2.15)

Remark 3.1.3. We provide here a few comments on the Newtonian change of variables.

Equation (3.1.2.11) provides the relationship between the Newtonian velocity and the

four-velocity: If xν(t) is a curve inM parameterized by x0 = t and τ denotes the proper

time parameter, then vj = ∂tx
j = (∂τ/∂t) · uj = uj/u0.

Dimensional analysis correctly identifies the relationship (3.1.2.12) between the

Nordström potential φ and Klein-Gordon-Newtonian potential Φ, and it justifies the

identification of R∞ from (3.2.2.1) - (3.2.2.4) with limc→∞Rc(η, p) in (3.1.1.15) (as-

suming that this limit exists). Furthermore, these changes of variables can be justified

bAs mentioned in Remark 3.1.1, equation (3.1.2.4) also represents a Newtonian change of variables.
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through a formal expansion φ = φ(0) + c−2φ(1) + · · · , R∞ = R(0) + c−2R(1) + · · · in

equations (3.2.1.1) - (3.2.1.4). Equating the coefficients of powers of c−2 on each side

of the equations implies the formal identificationc φ(0) = 0, (∆ − κ2)φ(1) = 4πGR(0).

It follows that c2φ ≈ φ(1) ≈ Φ. A similar analysis for the Vlasov-Nordström system

carried out in [10] .

Upon making the substitutions (3.1.2.11) - (3.1.2.12) and lowering an index with g,

the components of Π in our inertial coordinate system read (for 1 ≤ j, k ≤ 3):

Π0
0

def= −c−2γ2
c |v|2 (3.1.2.16)

Π0
j

def= c−2γ2
c v
j (3.1.2.17)

Πj
0

def= −γ2
c v
j (3.1.2.18)

Πj
k

def= c−2γ2
c v
jvk + δjk. (3.1.2.19)

Furthermore, we will also make use of the relation

∂λγc = c−2γ3
c vk∂λv

k (λ = 0, 1, 2, 3). (3.1.2.20)

Considering first the projection of (3.1.2.7) in the direction of u, we remark that

one may use (3.1.1.5) and (3.1.1.10) to conclude that for C1 solutions, uν∂µΘµν = 0 is

equivalent to the adiabatic condition (3.2.1.1).

We now project (3.1.2.7) onto the orthogonal complement of u, which, with the aid

of (3.1.1.7), gives the three equations Πj
ν∂µΘµν = 0, j = 1, 2, 3 :

0 = Πj
ν∂µΘµν = Πj

ν

[
Rc + c−2P

]
(eφuµ)∂µ(eφuν) + (Πj

ν∂
νφ)

c4

4πG
(�φ− κ2φ) (3.1.2.21)

= Πj
ν

[
Rc + c−2P

]
(eφuµ)∂µ(eφuν) + (Πj

ν∂
νΦ)(Rc − 3c−2P ).

After making the substitutions (3.1.2.12), (3.1.2.13), (3.1.2.14), and (3.1.2.15), and

using relation (3.1.2.20), it follows that for C1 solutions, (3.1.2.21) is equivalent to

(3.2.1.3).

cUpon expansion, the formal equation satisfied by φ(0) is (∆ − κ2)φ(0) = 0, and from vanishing
boundary conditions at infinity, we conclude that φ(0) = 0.
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We also introduce the nameless quantity Qc and make use of (3.1.1.10), (3.1.1.12),

(3.1.1.14), (3.1.1.15), (3.1.2.4), and (3.1.2.5) to express it in the following form:

Qc
def= n

∂P

∂n

∣∣∣∣
η,φ

=
∂P

∂R

∣∣∣∣
n,φ

· n ∂R

∂n

∣∣∣∣
η,φ

= Qc(η, p,Φ), (3.1.2.22)

where

Qc(η, p,Φ) def= S2
c(η, p)e

4Φ/c2 [Rc(η, p) + c−2p] = S2
c(η, p)[Rc + c−2P ]. (3.1.2.23)

Then we use the chain rule together with (3.1.1.5), (3.2.1.1), and (3.1.2.22) to derive

eφuµ∂µP +Qc∂µ(eφuµ) = (4P − 3Qc)eφuµ∂µφ, (3.1.2.24)

which we may use in place of (3.1.1.5). Upon making the substitutions (3.1.2.4),

(3.1.2.5), (3.1.2.12), (3.1.2.13), and (3.1.2.14), and using the relation (3.1.2.20), it fol-

lows that for C1 solutions, (3.1.2.24) is equivalent to (3.2.1.2).

3.2 The Formal Limit c→∞ of the ENc
κ System

For convenience, in this section we list the final form of the ENc
κ system as derived in

sections 3.1 and 3.1.2. We also take the formal limit c→∞ to arrive at the EPκ system

and introduce the equations of variation (EOVc).

3.2.1 A Recap of the ENc
κ System

The ENc
κ system is given by

∂tη + vk∂kη = 0 (3.2.1.1)

∂tP + vk∂kP +Qc∂kv
k + c−2γ2

cQc
(
vk∂tv

k + vkva∂kv
a
)

(3.2.1.2)

= (4P − 3Qc)
[
c−2∂tΦ + c−2vk∂kΦ

]
γ2
c (Rc + c−2P )

[
∂tv

j + vk∂kv
j + c−2γ2

c (vjva∂tva + vjvkva∂kv
a)
]

+ ∂jP (3.2.1.3)

+ c−2γ2
c (vj∂tP + vjvk∂kP ) = (3c−2P −Rc)

(
∂jΦ + γ−2

c vj [c−2∂tΦ + c−2vk∂kΦ]
)

− c−2∂2
t Φ + ∆Φ− κ2Φ = 4πG(Rc − 3c−2P ), (3.2.1.4)
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where j = 1, 2, 3,

γc(v) def=
c

(c2 − |v|2)1/2
(3.2.1.5)

Rc
def= e4Φ/c2Rc(η, p) (3.2.1.6)

Qc
def= Qc(η, p,Φ) def= S2

c(η, p)e
4Φ/c2 [Rc(η, p) + c−2p] (3.2.1.7)

P
def= e4Φ/c2p, (3.2.1.8)

Sc(η, p) is the speed of sound, c denotes the speed of light, and the functions Rc and

Sc derive from a c−indexed equation of state as discussed in Section 3.1. Note also the

relationship between Rc and Sc given by (3.1.1.16). The variables η, p,v = (v1, v2, v3),

and Φ denote the entropy density, pressure, (Newtonian) velocity, and Klein-Gordon-

Newtonian potential respectively. Section 3.4 contains a detailed discussion of the

c-dependence of the ENc
κ System.

3.2.2 The EPκ System as a Formal Limit

Taking the formal limit c→∞ in the ENc
κ system gives the Euler-Poisson system with

a cosmological constant:

∂tη + vk∂kη = 0 (3.2.2.1)

∂tp+ vk∂kp+Q∞∂kv
k = 0 (3.2.2.2)

∂tR∞ + ∂k(R∞vk) = 0 (3.2.2.2’)

R∞
(
∂tvj + vk∂kv

j
)

+ ∂jp = −R∞∂jΦ (j = 1, 2, 3) (3.2.2.3)

∆Φ− κ2Φ = 4πGR∞, (3.2.2.4)

where

R∞
def= R∞(η, p), (3.2.2.5)

Q∞
def= Q∞(η, p) def= S2

∞(η, p) · R∞(η, p), (3.2.2.6)

R∞(η, p) and S2
∞(η, p) are the limits as c→∞ of Rc(η, p) and S2

c(η, p) respectively (see

(3.4.3.1), (3.4.3.2), and (3.4.3.3)), and the quantity R∞ is the mass density. Note that

in Section 2.3.1, we used the symbol ρ instead of R∞ to denote the mass density in the
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EPκ system, whereas throughout Chapter 3, ρ denotes the proper energy density in the

ENc
κ system. Equation (3.1.1.16) and (3.4.3.3) imply that ∂R∞(η, p)/∂p = S−2

∞ (η, p),

so by the chain rule, it follows that equations (3.2.2.2) and (3.2.2.2’) are equivalent.

The solution to (3.2.2.4) is given by

Φ(t, s) = Φ̄∞ −G
∫

R3

(
e−κ|s−s′|

|s− s′|

)[
R∞(η(t, s′), p(t, s′))− R∞(η̄, p̄)

]
d3s′, (3.2.2.7)

where the constants Φ̄∞, η̄, and p̄, which are the values of Φ, η, and p respectively in

a constant background state, are discussed in Section 3.6. The boundary conditions

leading to this solution are that Φ(t, ·) − Φ̄∞ vanishes at ∞, and we view Φ(t, s) as a

(not necessarily small) perturbation of the constant potential Φ̄∞.

Remark 3.2.1. Consider the kernel K(s) = e−κ|s|/|s| appearing in (3.2.2.7). An easy

computation gives that K(s),∇(1)K(s) ∈ L1(R3). Therefore, a basic result from har-

monic analysis (Young’s inequality) implies that the map f → K ∗ f, where ∗ denotes

convolution, is a map from Hj(R3) to Hj+1(R3). From this fact and Remark B.0.4, it

follows that Φ(t, ·) ∈ HN+1
Φ̄

(R3) whenever η(t, ·), p(t, ·) ∈ HN
η̄ (R3), HN

p̄ (R3) respectively.

3.3 The Equations of Variation (EOVc)

As in Section 2.4.2, the EOVc are formed by linearizing the ENc
κ system (EPκ system

in the case c =∞) around a BGS Ṽ of the form Ṽ = (η̃, P̃ , ṽ1, · · · , Φ̃2, Φ̃3). Given such

a Ṽ and inhomogeneous terms f, g, · · · , l we define the EOVc by

∂tη̇ + ṽk∂kη̇ = f (3.3.0.8)

∂tṖ + ṽk∂kṖ + Q̃c∂kv̇
k + c−2γ̃2

c Q̃c
(
ṽk∂tv̇

k + ṽkṽa∂kv̇
a
)

= g (3.3.0.9)

γ̃2
c (R̃c + c−2P̃ )

[
∂tv̇

j + ṽk∂kv̇
j + c−2γ̃2

c (ṽj ṽa∂tv̇a + ṽj ṽkṽa∂kv̇
a)
]

(3.3.0.10)

+∂jṖ + c−2γ̃2
c (ṽj∂tṖ + ṽj ṽk∂kṖ ) = h(j)

−c−2∂2
t Φ̇ + ∆Φ̇− κ2Φ̇ = l, (3.3.0.11)

where γ̃c
def= c/(c2−|ṽ|2)1/2, R̃c

def= e4Φ̃/c2Rc(η̃, p̃), etc. The unknowns are the components

of Ẇ def= (η̇, Ṗ , v̇1, v̇2, v̇3) and Φ̇.
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Remark 3.3.1. We place parentheses around the superscripts of the inhomogeneous

terms h(j) in order to emphasize that we are merely labelling them, and that in general,

they do not transform covariantly under changes of coordinates.

We find it useful to analyze both the dependent variable p and the dependent vari-

able P when discussing solutions to the above system, and we will make use of all four

of the following arrays:

W def= (η, P, v1, v2, v3) (3.3.0.12)

V def= (η, P, v1, v2, v3, ∂tΦ, ∂1Φ, ∂2Φ, ∂3Φ) (3.3.0.13)

W
def= (η, p, v1, v2, v3) (3.3.0.14)

V
def= (η, p, v1, v2, v3, ∂tΦ, ∂1Φ, ∂2Φ, ∂3Φ), (3.3.0.15)

where P = e4Φ/c2p. We also use notation such as Ṽ = (η̃, P̃ , p̃1, · · · , ∂3Φ̃), where P̃ def=

e4Φ̃/c2 p̃, etc. Note that this notation disagrees with that of Chapter 2, in which the

arrays V and W contained the components of the U j rather than the Newtonian velocity

v. We may sometimes abuse terminology and refer to Ṽ = (η̃, p̃, ṽ1, · · · , Φ̃2, Φ̃3) as the

BGS. When c = ∞, we may also refer to W̃ = (η̃, p̃, ṽ1, ṽ2, ṽ3) as the BGS, since the

left-hand sides of (3.3.0.8) - (3.3.0.11) do not depend on Φ̃ in this case. Additionally,

we may refer to the unknowns as Ẇ
def= (η̇, ṗ, v̇1, v̇2, v̇3) when c =∞.

As in Chapter 2, we sometimes write (3.2.1.1) - (3.2.1.3) as

cA
µ∂µW = b, (3.3.0.16)

where each cA is a 5 × 5 matrix with entries that are functions of W,Φ, while b =

(f, g, · · · , h(3)) is the 5-component column array on the right-hand side of (3.2.1.1) -

(3.2.1.3).

Remark 3.3.2. For conceptual clarity, we will always view cA
ν as a function of W̃, Φ̃

and write “cAν(W̃, Φ̃),” as opposed to writing “cAν(W̃, Φ̃).”

It is instructive to see the form of the cA
ν , ν = 0, 1, 2, 3, for we will later concern

ourselves with their large-c asymptotic behavior. Abbreviating α(c)
def= Rc + c−2P,

β
(j)
(c)

def= 1 + c−2γ2
c (vj)2 we have
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cA
0(W,Φ) =



1 0 0 0 0

0 1 c−2γ2
cQcv

1 c−2γ2
cQcv

2 c−2γ2
cQcv

3

0 c−2γ2
c v

1
γ2
cα(c)

· β(1)
(c)

c−2γ4
cα(c)v

1v2 c−2γ4
cα(c)v

1v3

0 c−2γ2
c v

2 c−2γ4
cα(c)v

2v1
γ2
cα(c)

· β(2)
(c)

c−2γ4
cα(c)v

2v3

0 c−2γ2
c v

3 c−2γ4
cα(c)v

3v1 c−2γ4
cα(c)v

3v2
γ2
cα(c)

· β(3)
(c)



,

∞A0(W) =



1 0 0 0 0

0 1 0 0 0

0 0 R∞ 0 0

0 0 0 R∞ 0

0 0 0 0 R∞


,

cA
1(W,Φ) =



v1 0 0 0 0

0 v1 Qcβ
(1)
(c) c−2γ2

cQcv
1v2 c−2γ2

cQcv
1v3

0 β
(1)
(c)

γ2
cα(c)v

1

· β(1)
(c)

γ2
cα(c)(v

1)2

· c−2γ2
c v

2

γ2
cα(c)(v

1)2

· c−2γ2
c v

3

0 c−2γ2
c v

1v2
γ2
cα(c)(v

1)2

· c−2γ2
c v

2

γ2
cα(c)v

1

· β(2)
(c)

γ2
cα(c)v

1

· c−2γ2
c v

2v3

0 c−2γ2
c v

1v3
γ2
cα(c)(v

1)2

· c−2γ2
c v

3

γ2
cα(c)v

1

· c−2γ2
c v

3v2

γ2
cα(c)v

1

· β(3)
(c)



,

∞A1(W) =



v1 0 0 0 0

0 v1 Q∞ 0 0

0 1 R∞v
1 0 0

0 0 0 R∞v
1 0

0 0 0 R∞v
1


,

etc.
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3.4 On the c−Dependence of the ENc
κ System

3.4.1 Inequalities that Hold for All Large c

Let us begin by defining notation that will be heavily used throughout this chapter.

Notation. If Ac is a quantity that depends on the parameter c and X is any quantity,

then we write Ac . X if Ac ≤ X holds for all large c.

In addition to appearing directly as the term c−2, the constant c appears in the ENc
κ

system (3.2.1.1) - (3.2.1.4) through 4 terms: P = e4Φ/c2p, γc = c/(c2 − |v|2)1/2, Rc =

e4Φ/c2Rc(η, p), and Qc = S2
c(η, p)e

4Φ/c2 [Rc(η, p) + c−2p]. Because we want to recover

the EPκ system in the large c limit, the first obvious requirement we have is that the

function Rc(η, p) has a limit R∞(η, p) as c → ∞. For mathematical reasons, we will

demand convergence in the norm | · |N+1,K at a rate of order c−2, where K is a compact

subset of state-space that depends on the initial data. Although a construction of K

from the initial data is rigorously carried out in Section 3.6.2, let us now provide a

preliminary description: for given initial data, we will provide a compact set K and

a time interval [0, T ] so that for all large c, solutions Vc = (η, p, v1, · · · , ∂3Φ) to the

ENc
κ system launched by the initial data exist on [0, T ] × R3 and satisfy Vc([0, T ] ×

R3) ⊂ K′. Intuitively, the aforementioned 4 terms should converge to p, 1, R∞, and Q∞

respectively on K′. In this section, we make this intuition rigorous and specify what we

mean by “converge.”

3.4.2 Functions with c−Independent Properties

The main technical difficulty in this chapter is ensuring that the Sobolev estimates

provided by the propositions appearing in Appendix B can be made independently

of all large c. We introduce here some machinery that will allow us to easily discuss

uniform-in-c estimates. Following this, we use this machinery to prove some preliminary

lemmas that will be used in the proofs of Theorem 3.8.2 and Theorem 3.9.2.

Definition 3.4.1. Let j ≥ 2, and let q1, q2, · · · , qn be such that qi ∈ Hj
q̄i(R

3), where

the q̄i are constants and the spaces Hj
q̄i are defined in Section 2.2 of Chapter 2. Assume
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that the image set {
(
q1(s), q2(s), · · · , qn(s)

)
| s ∈ R3} is contained in the compact,

convex set D and that (q̄1, q̄2, · · · , q̄n) ∈ D. We define Rj(c−k; D; q1, · · · , qn) to be the

ring consisting of all expressions of the form Fc(q1, · · · , qn), where Fc is a c−indexed

family of functions of class Cjb on D satisfying

|Fc|j,D . c−kC(D). (3.4.2.1)

We emphasize that the constant C(D) is allowed to depend on the family Fc and the

domain D, but within a given family and on a fixed domain, C(D) must be independent

of all large c.

Remark 3.4.1. Although the qi and q̄i must satisfy the above criteria, we emphasize

that the qi and q̄i may depend on the parameter c, even though we do not explicitly

indicate this dependence. In our applications below, the qi will be quantities related to

solutions of the ENc
κ system, and the q̄i will typically be equal to the components of

either (3.6.1.2), (3.6.1.10), or (3.6.1.11).

Remark 3.4.2. We repeatedly use the fact that Rj(c−k; D; q1, · · · , qn) is a ring without

explicitly mentioning it; i.e., it is closed under products.

Remark 3.4.3. If Fc ∈ Rj(c−k; D; q1, · · · , qn) and for all large c, Fc doesn’t vanish on

D, then 1/Fc ∈ Rj(c−k; D; q1, · · · , qn).

Definition 3.4.2. For j ≥ 2, let Ij(c−k; D; q1, · · · , qn) denote the sub-ring contained

in Rj(D; q1, · · · , qn) consisting of all such expressions Fc(q1, · · · , qn) such that

‖Fc(q1, · · · , qn)‖Hj ≤ c−kC(D, ‖q1‖Hj
q̄1

, · · · , ‖qn‖Hj
q̄n

) (3.4.2.2)

holds for all (q1, · · · , qn) satisfying the hypotheses in Definition 3.4.1. The constant

C(D) is allowed to depend on Fc and D, but it can only depend on the q1, · · · , qn

through their Hj
q̄i norms.

Notation. If Fc ∈ Ij(c−k; D; q1, · · · , qn), then we sometimes write

Fc(q1, · · · , qn) = Oj(c−k; D; q1, · · · , qn). (3.4.2.3)
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Remark 3.4.4. We employ the following abuse of notation: in writing “Fc(q1, · · · , qn) ∈

Rj(c−k; D; q1, · · · , qn),” we assume in addition to the decay on Fc given in (3.4.2.1)

that the functions qi satisfy the above hypotheses; i.e., we assume that D is compact

and convex, that there are constants q̄i such that qi ∈ Hj
q̄i(R

3), that the image set

{
(
q1(s), q2(s), · · · , qn(s)

)
| s ∈ R3} is contained in D, and that (q̄1, q̄2, · · · , q̄n) ∈ D. We

employ a similar abuse of notation in writing “Fc(q1, · · · , qn) ∈ Ij(c−k; D; q1, · · · , qn).”

Remark 3.4.5. In the notation R(· · · ), I(· · · ), and O(· · · ), we often omit the argument

D. In this case, it is understood that there is an implied set D that is to be inferred

from context; frequently D is to be inferred from L∞ estimates on the qi that follow

from Sobolev imbedding. We omit the argument c−k when k = 0. Furthermore, we have

chosen to omit dependence on the constants q̄i since their definitions will be clear from

context. We will occasionally omit additional arguments when the context is clear.

Lemma 3.4.1. If j ≥ 2 and Fc(q1, · · · , qn) ∈ Rj(c−k; D; q1, · · · , qn), then

Fc(q1, · · · , qn)− Fc(q̄1, · · · , q̄n) ∈ Ij(c−k; D; q1, · · · , qn).

Proof. Lemma 3.4.1 follows immediately from (B.0.2.17).

Remark 3.4.6. Lemma 3.4.1 shows that if Fc(q̄1, · · · , q̄n) = 0, then

Fc ∈ Ij(c−k; D; q1, · · · , qn). In particular, if q̄ = 0, then any polynomial (of strictly

positive degree) in q is an element of Ij(q).

Lemma 3.4.2. Suppose that j ≥ 2, Fc ∈ Rj(c−k1 ; D; q1, · · · , qn), and

Gc ∈ Ij(c−k2 ; D; q1, · · · , qn). Then
(
Fc ·Gc

)
(q1, · · · , qn)· ∈ Ij(c−(k1+k2); D; q1, · · · , qn).

Proof. Lemma 3.4.2 follows immediately from (B.0.2.11).

Remark 3.4.7. Lemma 3.4.2 shows in particular that for k ≥ 0, Ij(c−k; D; q1, · · · , qn)

is an ideal in Rj(D; q1, · · · , qn).

Remark 3.4.8. If k ≥ 0 and there is a fixed function F∞ ∈ Rj(D; q1, · · · , qn) such that

Fc−F∞ ∈ Rj(c−k; D; q1, · · · , qn), then it follows that |Fc|j,D . |F∞|j,D + 1, so that the

family Fc is uniformly bounded in the norm | · |j,D for all large c. A similar remark using

the ‖ ·‖Hj norm applies if F∞ ∈ Ij(D; q1, · · · , qn) and Fc−F∞ ∈ Ij(c−k; D; q1, · · · , qn).
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Remark 3.4.9. As we change settings, it is sometimes useful to shift the point of view

as to what are the arguments of a family Fc(· · · ). For example, consider the expression

Fc = c−2∂tΦ, where Φ is a solution variable in the ENc
κ system depending on c through

the initial data V̊c and through the c dependence of the system itself. If it is known

that c−1‖∂tΦ‖H3 is uniformly bounded by L for all large c, then we may write Fc ∈

I3(c−1; c−1∂tΦ) since ‖c−2∂tΦ‖H3 . c−1L. If it also turns out that ‖∂tΦ‖H3 is uniformly

bounded for all large c, then we may write Fc ∈ I3(c−2; ∂tΦ) or Fc ∈ I3(c−1; c−1∂tΦ)∩

I3(c−2; ∂tΦ).

Remark 3.4.10. We are not always optimal in our estimates. For example, if D b R

contains the origin in its interior, we may on occasion write Fc ∈ R4(D; Φ) even if the

stronger claim Fc ∈ R4(D; c−2Φ) is true.

Lemma 3.4.3. Suppose that j ≥ 3, k1 + k2 = k0, and that

Fc(q1, · · · , qn) ∈ Rj(c−k0 ; D1; q1, · · · , qn). Assume further that for 1 ≤ i ≤ n, qi ∈

C0([0, T ], Hj
q̄i) ∩ C

1([0, T ], Hj−1
q̄i ) and that for all large c,

c−k2
(
∂tq1, · · · , ∂tqn

)
([0, T ]× R3) ⊂ D2. Then on [0, T ],

∂t

(
Fc(q1, · · · , qn)

)
∈ Ij−1(c−k1 ; D1×D2; q1, · · · , qn, c−k2∂tq1, · · · , c−k2∂tqn), or equiva-

lently, ∂t
(
Fc(q1, · · · , qn)

)
= Oj−1(c−k1 ; D1 ×D2; q1, · · · , qn, c−k2∂tq1, · · · , c−k2∂tqn).

Proof. Lemma 3.4.3 follows from the chain rule and Remark B.0.3.

Corollary 3.4.4. Let ∂a be a first-order spatial differential operator. Suppose that

j ≥ 3, k1 +k2 = k0, and that Fc(q1, · · · , qn) ∈ Rj(c−k0 ; D1; q1, · · · , qn). Assume that for

all large c, c−k2
(
∂aq1, · · · , ∂aqn

)
([0, T ]× R3) ⊂ D2. Then on [0, T ],

∂a

(
Fc(q1, · · · , qn)

)
∈ Ij−1(c−k1 ; D1 ×D2; q1, · · · , qn, c−k2∂aq1, · · · , c−k2∂aqn), or equiv-

alently, ∂a
(
Fc(q1, · · · , qn)

)
= Oj−1(c−k1 ; D1 ×D2; q1, · · · , qn, c−k2∂aq1, · · · , c−k2∂aqn).

Proof. Corollary 3.4.4 also follows from the chain rule and Remark B.0.3.

3.4.3 Application to the ENc
κ System

We will now apply these lemmas to the ENc
κ system. We begin by restating the hy-

potheses on the equation of state using our new notation:
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Hypotheses on the c−Depedence of the Equation of State.

Rc(η, p), R∞(η, p) ∈ RN+1(K′, η, p) (3.4.3.1)

Rc(η, p)− R∞(η, p) ∈ RN+1(c−2; K′, η, p), (3.4.3.2)

where the set K′ was introduced at beginning of the section. As a simple consequence

of (3.1.1.16), (3.4.3.1), and (3.4.3.2), we have that

S2
c(η, p)− S2

∞(η, p) ∈ RN (c−2; K, η, p). (3.4.3.3)

We also assume that R∞(η, p) and S2
∞(η, p) are “physical” as defined in Section 3.1.2;

i.e., we assume in particular that whenever η, p > 0, we have 0 < R∞(η, p) and 0 <

S2
∞(η, p).

Remark 3.4.11. Hypothesis (3.4.3.2) can be weakened; we do not pursue this matter

here since we are not striving for optimal results.

Lemma 3.4.5.

γ2
c − 1 ∈ RN+1(c−2; K′; v) (3.4.3.4)

e4Φ/c2 − 1 ∈ RN+1(c−2; K′; Φ) ∩RN (c−1; c−1Φ) (3.4.3.5)

Rc −R∞ = e4Φ/c2Rc(η, p)− R∞(η, p) ∈ RN+1(c−2; K′; W,Φ) (3.4.3.6)

Qc(η, p,Φ)−Q∞(η, p) ∈ RN (c−2; K′,W,Φ) (3.4.3.7)

W −W ∈ IN (c−2; K′;P,Φ) (3.4.3.8)

∂kW − ∂kW ∈ IN−1(c−2;P, ∂kP,Φ, ∂kΦ) (3.4.3.9)

∩ IN−1(c−1;P, ∂kP, c−1Φ, c−1∂kΦ).

Proof. (3.4.3.4), and (3.4.3.5) are easy Taylor estimates. (3.4.3.6) follows from (3.4.3.1),

(3.4.3.2), and (3.4.3.5). (3.4.3.7) then follows from follows from (3.1.2.23), (3.4.3.3), and

(3.4.3.6). Since P = e4Φ/c2p, (3.4.3.8) follows from (3.4.3.5), Lemma 3.4.2, and that

the fact that W and W differ only in that the second component of W is p, while

the second component of W is P. (3.4.3.9) then follows from (3.4.3.8) and Corollary

3.4.4.
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Lemma 3.4.6. Let cAν(W,Φ), ν = 0, 1, 2, 3, denote the matrices introduced in Section

3.3. Then

cA(W,Φ), ∞Aν(W) ∈ RN (K′; W) (3.4.3.10)

cA
ν(W,Φ)−∞Aν(W) ∈ RN (c−2; K′; W,Φ) (3.4.3.11)(

cA
0(W,Φ)

)−1 −
(
∞A0(W)

)−1 ∈ RN (c−2; K′; W,Φ). (3.4.3.12)

Proof. (3.4.3.10) follows from Hypothesis 3.4.3.1. (3.4.3.11) follows from Hypothesis

3.4.3.1, Hypothesis 3.4.3.2, and Lemma 3.4.5. (3.4.3.12) then follows from (3.4.3.11),

the adjoint formula for the inverse of a matrix, and Remark 3.4.3.

Lemma 3.4.7. Let

B∞(W,∇(1)Φ) def=
(

0, 0,−R∞(η, p)∂1Φ,−R∞(η, p)∂2Φ,−R∞(η, p)∂3Φ)
)

denote the right-

hand side of (3.2.2.1), (3.2.2.2), (3.2.2.3), and let Bc(W,Φ, DΦ) denote the right-hand

side (3.2.1.1) - (3.2.1.3). Then

Bc(W,Φ, DΦ) = B∞(W,∇(1)Φ) + Fc, (3.4.3.13)

where

Fc ∈ IN (c−2; W,Φ, DΦ) ∩ IN (c−1; W, c−1Φ, c−1∇(1)Φ, c−1∂tΦ). (3.4.3.14)

Proof. Lemma 3.4.7 follows from Lemma 3.4.2 and Lemma 3.4.5.

Example 3.4.1. As an enlightening example, we revisit the polytropic equation of state

from Remark 2.3.2 of Chapter 2, which has a non-relativistic limit if we assume that

Ac, A∞ ∈ RN+1(K′; η), that A∞ > 0 on K′, and that Ac−A∞ ∈ RN+1(c−2; K′; η). Some

omitted calculations show that Hypotheses 3.4.3.1 and 3.4.3.2 then hold, and that

Rc = e4Φ/c2Rc(η, p) =
m0P

1/γe4Φ/c2(1−1/γ)

A
1/γ
c (η)

+
P

c2(γ − 1)
(3.4.3.15)

Qc = Qc(η, p,Φ) = γP (3.4.3.16)

R∞ = R∞(η, p) =
m0p

1/γ

A
1/γ
∞ (η)

(3.4.3.17)

Q∞ = Q∞(η, p) = γp. (3.4.3.18)
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3.5 Energy Currents

The role of energy currents is to replace the energy principle available for symmetric

hyperbolic systems. Their two key properties are that for a fixed c, they are positive

definite in the variationsd when contracted against certain covectors, and that their

divergence is lower order in the variations. In this section we define the energy currents,

which exist even in the case c = ∞, and demonstrate their key properties. In Section

3.6.2, we will see that the positivity property is uniform for all large c.

3.5.1 The Definition of the Re-scaled Energy Current (c)J̇

Given a variation Ẇ : M → R5 and a BGSe Ṽ : M → R10 as defined in Section

3.3, we define the energy current to be the vectorfield (c)J̇ with components (c)J̇
0
, (c)J̇

j
,

j = 1, 2, 3, in the global rectangular coordinate system given by

(c)J̇
0 def= η̇2 +

Ṗ 2

Q̃c
+ 2c−2γ̃2

c (ṽkv̇k)Ṗ + γ̃2
c (R̃c + c−2P̃ )

[
v̇kv̇

k + c−2γ̃2
c (ṽkv̇k)2

]
(3.5.1.1)

(c)J̇
j def= ṽj η̇2 +

ṽj

Q̃c
Ṗ 2 + 2

[
v̇j + c−2γ̃2

c ṽ
j ṽkv̇

k
]
Ṗ

+ γ̃2
c (R̃c + c−2P̃ )ṽj

[
v̇kv̇

k + c−2γ̃2
c (ṽkv̇k)2

]
.

Note that energy currents can be defined when c =∞. In this case, we have

(∞)J̇
0 def= η̇2 +

ṗ2

Q̃∞
+ R̃∞v̇kv̇

k (3.5.1.2)

(∞)J̇
j def= ṽj η̇2 +

ṽj

Q̃∞
ṗ2 + 2v̇j ṗ+ R̃∞ṽ

j v̇kv̇
k.

The energy current (3.5.1.1) is very closely related to the energy current J̇ in

(2.5.5.1), where the following changes have been made. First, in the expression (3.5.1.1),

we have dropped the terms from (2.5.5.1) corresponding to the variations of the po-

tential Φ̇ and its derivatives, for we will bound these terms in a Sobolev norm using

a separate argument. Second, the expression for (c)J̇ is constructed using the velocity

dThe energy currents (∞)J̇ do not control the variations Φ̇ or DΦ̇; these terms are controlled through
a separate argument.

eRecall that we also refer to Ṽ (and also W̃ when c =∞) as the BGS.
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state-space variable v (3.1.2.11) and variations v̇, as opposed to the four-velocity com-

ponents U j and four-velocity variations U̇ j that appear in expression for J̇ . Finally, we

remind the reader that the formula for (c)J̇
ν

is provided in the coordinate system with

x0 = t, whereas in the formula for J̇ , the implicit coordinate system is x0 = ct, even

though c was set equal to unity in Chapter 2.

Remark 3.5.1. Viewed as a quadratic form, (∞)J̇
0

is manifestly positive definite in the

variations Ẇ if p̃ > 0, for our fundamental assumptions on the equation of state give

that p̃ > 0 =⇒ R̃∞ > 0. Furthermore, as a consequence of (3.4.3.1) and (3.4.3.2), for

a fixed BGS Ṽ, the map c→ (c)J̇ is continuous at c =∞.

3.5.2 The Positive Definiteness of ξµ(c)J̇
µ

for ξ ∈ Is∗+x

As in Section 2.5.5, for ξ belonging to a certain subset of T ∗xM, the quadratic formf

ξµ(c)J̇
µ
(Ẇ,Ẇ) is positive definite in Ẇ if P̃ > 0. Since the energy current (c)J̇ from

(3.5.1.1) does not contain terms involving the variations of the potential Φ̇,

ξµ(c)J̇
µ
(Ẇ,Ẇ) is positive definite in η̇, Ṗ , v̇ for ξ belonging to Is∗+x , the interior of

the positive component of the sound cone at x, which is larger than the light coneg.

Expressed in coordinates, this statement reads

ξµ(c)J̇
µ
(Ẇ,Ẇ) > 0 if Ẇ > 0, P̃ > 0, and ξ ∈ Is∗+x , (3.5.2.1)

where Is∗+x
def= {ζ ∈ T ∗x (M) | (h̃−1)µνζµζν < 0 and ζ0 > 0}, and h̃−1 is the reciprocal

acoustical metrich with components that read

h̃00 = −c−2 − γ̃2
c

[
S−2
c (η̃, p̃)− c−2

]
(3.5.2.2)

h̃0j = h̃j0 = −γ̃2
c

[
S−2
c (η̃, p̃)− c−2

]
ṽj (3.5.2.3)

h̃jk = δjk − γ̃2
c

[
S−2
c (η̃, p̃)− c−2

]
ṽj ṽk (3.5.2.4)

in the global rectangular coordinate system; recall that the function Sc is defined in

3.1.1.14. A proof of (3.5.2.1) can be given using the same methods as in our suggested

fWe write “ξµ(c)J̇
µ
(Ẇ,Ẇ)” to emphasize the point of view that ξµ(c)J̇

µ
is a quadratic form in Ẇ.

gRecall that the energy currents J̇ defined in Chapter 2 were positive definite only on the light cone,
since they also contained terms corresponding to the variations of φ̇ and its derivatives.

hThe reciprocal acoustical metric was introduced using dimensionless variables in Section 2.5.1 of
Chapter 2.
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proof of (2.5.5.2). This fact allows us to use the form ξµ(c)J̇
µ
(Ẇ,Ẇ) to estimate the

L2 norms of the variations Ẇ, provided that we that we estimate the BGS Ṽ. We

separately derive estimates for Sobolev norms of the terms Φ̇ and ∂tΦ̇ in the EOVc

using the lemmas in Appendix A.

Remark 3.5.2. For all large c, the covector with coordinates (1, 0, 0, 0) is an element of

Is∗+x . Therefore, (c)J̇
0
(Ẇ,Ẇ) is positive definite for all large c.

3.5.3 The Divergence of the Re-scaled Energy Current

As in Section 2.5.5, if the variations Ẇ are solutions of the EOVc (3.3.0.8) - (3.3.0.10)

then we can compute ∂µ(c)J̇
µ

and use the equations (3.3.0.8) - (3.3.0.10) for substitution

to eliminate the termsi containing the derivatives of Ẇ :

∂µ(c)J̇
µ

=
[
∂t

(
1

Q̃c

)
+ ∂j

(
ṽj

Q̃c

)]
Ṗ 2

+ 2c−2γ̃2
c Ṗ
[
v̇k∂tṽk + v̇kṽk∂j ṽ

j + v̇kṽj∂j ṽk + 2c−2γ̃2
c v̇
kṽk

(
ṽj∂tṽ

j + ṽj ṽa∂j ṽ
a
)]

+
{
∂t
[
γ̃2
c

(
R̃c + c−2P̃

)]
+ ∂j

[
γ̃2
c

(
R̃c + c−2P̃

)
ṽj
]}[

v̇kv̇
k + c−2γ̃2

c (ṽkv̇k)2
]

+ 2c−2γ̃4
c

[
R̃c +

P̃

c2

][
ṽkv̇

kv̇j∂tṽj + ṽkv̇
kv̇aṽj∂j ṽa + c−2γ̃2

c (ṽkv̇k)2
(
ṽj∂tṽ

j + ṽaṽ
j∂j ṽ

a
)]

+ 2η̇f + 2
Ṗ

Q̃c
g + 2v̇jh(j).

(3.5.3.1)

Remark 3.5.3. Equation 3.5.3.1 also holds in the case c =∞, where γ̃∞
def= 1.

3.6 Assumptions on the Initial Data

In this section we describe a class of initial data for which our energy methods allow us

to rigorously take the limit c→∞ in the ENc
κ system. The Cauchy surface we consider

is {(t, s) ∈M | t = 0}.

iShowing this via a calculation is quite arduous. The lower-order divergence property is a generic
feature of energy currents constructed in the manner described in [15].
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3.6.1 An HN Perturbation of a Quiet Fluid

Initial data for the EPκ system are denoted by

V̊∞(s) def= (η̊, p̊, v̊1, v̊2, v̊3, Φ̊∞, Ψ̊0, Ψ̊1, Ψ̊2, Ψ̊3), (3.6.1.1)

where Ψ̊0(s) def= ∂tΦ(0, s) and Ψ̊j
def= ∂jΦ̊∞(s).We assume that V̊∞ is anHN perturbation

of the constant state V̄∞, where

V̄∞
def= (η̄, p̄, 0, 0, 0, Φ̄∞, 0, 0, 0, 0), (3.6.1.2)

η̄, p̄ are positive constants, and the constant Φ̄∞ is the unique solution to

κ2Φ̄∞ + 4πGR∞(η̄, p̄) = 0. (3.6.1.3)

The constraint (3.6.1.3) must be satisfied in order for equation (3.2.2.4) to be satisfied

by V̄∞. By HN perturbation, we mean that

‖W̊∞‖HN
W̄∞

<∞, (3.6.1.4)

where we use the notation W̊∞ and W̄∞ to refer to the first 5 components of V̊∞ and

V̄∞ respectively. We note here that a further positivity restriction on the initial data is

introduced in Section (3.6.2). Throughout this chapter, N is a fixed integer satisfying

N ≥ 4. (3.6.1.5)

Remark 3.6.1. We require N ≥ 4 so that Corollary B.0.3 and Remark B.0.3 can be

applied to conclude that ∂2
t l ∈ C0([0, T ], HN−2(R3)), where l is defined in (3.8.2.12);

this is a necessary hypothesis for Proposition A.0.5, which we use in our proof of

Theorem 3.8.2.

Although we refer to Φ̊∞ and Ψ̊ν , ν = 0, 1, 2, 3, as “data,” in the EPκ system,

these 5 quantities are determined by η̊, p̊, v̊1, v̊2, v̊3 through the equations (3.2.2.2’) and

(3.2.2.4) together with vanishing conditions at infinity on Φ̊∞ − Φ̄∞ and Ψ̊0 :

∆Φ̊∞ − κ2(Φ̊∞ − Φ̄∞) = 4πG
[
R∞(η̊, p̊)− R∞(η̄, p̄)

]
(3.6.1.6)

∆Ψ̊0 − κ2Ψ̊0 = −4πG∂tR∞(η, p)|t=0 = −4πG∂k
(
R∞(η̊, p̊)̊vk

)
, (3.6.1.7)

where the integral kernel from (3.2.2.7) can be used to compute Φ̊∞ − Φ̄∞ and Ψ̊0. We

will nevertheless refer to the array V̊∞ as the “data” for the EPκ system.



105

Remark 3.6.2. Remark 3.2.1 implies that Φ̊∞ ∈ HN+1
Φ̄∞

.

We now construct data for the ENc
κ system from V̊∞. Depending on which set of

state-space variables we are working with, we denote the data for the ENc
κ system by

V̊c
def= (η̊, p̊, v̊1, v̊2, v̊3, Φ̊c, Ψ̊0, Ψ̊1, Ψ̊2, Ψ̊3) (3.6.1.8)

or V̊c
def= (η̊, e4Φ̊c/c2 p̊, v̊1, v̊2, v̊3, Φ̊c, Ψ̊0, Ψ̊1, Ψ̊2, Ψ̊3), (3.6.1.9)

where unlike in the EPκ case, Φ̊c, Ψ̊0, Ψ̊1, Ψ̊2, and Ψ̊3 are data in the sense that the

system is under-determined if they are not prescribed. We choose the data

η̊, p̊, v̊1, v̊2, v̊3, Ψ̊0, Ψ̊1, Ψ̊2, Ψ̊3 for the ENc
κ system to be the same as the data for the

EPκ system, but for technical reasons described below and indicated in (3.6.1.12) and

(3.6.1.14), our requirement that there exists a constant background state typically con-

strains the datum Φ̊c so that it differs from Φ̊∞ by a small constant that vanishes as

c→∞.

As in the EPκ system, we assume that V̊c is an HN perturbation of the constant

state of the form (depending on which collection of state-space variables we are working

with)

V̄c
def= (η̄, p̄, 0, 0, 0, Φ̄c, 0, 0, 0, 0) (3.6.1.10)

or V̄c
def= (η̄, P̄c, 0, 0, 0, Φ̄c, 0, 0, 0, 0) (3.6.1.11)

where η̄ and p̄ are the same constants appearing in V̄∞, Φ̄c is the unique solution to

κ2Φ̄c + 4πGe4c−2Φ̄c
[
Rc(η̄, p̄)− 3c−2p̄

]
= 0, (3.6.1.12)

and P̄c
def= e4c−2Φ̄c p̄. The constraint (3.6.1.12) must be satisfied in order for equation

(3.2.1.4) to be satisfied by p̄, η̄, and Φ̄c. Although the background potential Φ̄c for the

ENc
κ system is not in general equal to the background potential Φ̄∞ for the EPκ system,

it follows from the hypotheses (3.4.3.1) and (3.4.3.2) on the c-dependence of Rc that

lim
c→∞

Φ̄c = Φ̄∞. (3.6.1.13)

We now define the initial datum Φ̊c appearing in the arrays (3.6.1.8) and (3.6.1.9)

by

Φ̊c
def= Φ̊∞ − Φ̄∞ + Φ̄c, (3.6.1.14)
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which ensures that the deviation of Φ̊c from the background potential Φ̄c matches the

deviation of Φ̊∞ from the background potential Φ̄∞. We denote the first 5 components

of V̊c, V̊c, V̄c, and V̄c by W̊c,W̊c,W̄c, and W̄c respectively.

Remark 3.6.3. We could weaken the hypotheses by allowing the initial data for the

ENc
κ system to deviate from the data for the EPκ system by an HN perturbation that

decays to 0 rapidly enough as c → ∞. For simplicity, we will not pursue this line of

thought here.

3.6.2 The Set K

The Construction of K

In order to avoid studying the free boundary problem and in order to avoid singularities

in the energy current (3.5.1.1), we assume that the initial pressure, energy density, and

speed of sound are uniformly bounded from below by a positive constant. According to

our assumptions (3.1.1.11) on the equation of state and definition (3.1.2.23), to achieve

this uniform bound, it is sufficient to make the following further assumption on the

initial data: W̊∞(R3) is contained in a compact subset of the following open subset O

of the state-space R5, the admissible subset of truncated state-space:

O = {W ∈ R5|η > 0, p > 0}. (3.6.2.1)

Therefore, we assume that W̊∞(R3) ⊂ O1 and W̄∞ ∈ O1, where O1 is a convex

precompact open setj with Ō1 b O. By slightly enlarging O1 if necessary, property

(3.6.1.13) allows us to assume that for all large c, W̊c(R3) ⊂ O1 and W̄c ∈ O1; also

note that for all c, W̊∞ = W̊c. We then fix a convexk precompact open subset O2 with

Ō1 b O2 b O.

We now address the variables
(
Φ, ∂tΦ, ∂1Φ, ∂2Φ, ∂3Φ

)
. If equalities are achieved in

the inequalities (3.8.2.1b) and (3.8.2.1d) below by solution variables(
Φ, ∂tΦ, ∂1Φ, ∂2Φ, ∂3Φ

)
, then definition (3.6.1.14) and Sobolev imbedding imply that

jIn practice, O1 can be chosen to be a cube.

kProposition B.0.4 requires the convexity of Ō2.
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there is a cube of the form [−a, a]5 such that for all large c including c =∞,(
Φ, ∂tΦ, ∂1Φ, ∂2Φ, ∂3Φ

)
([0, T ]×R3) ⊂ [−a, a]5. Furthermore, the inequalities (3.8.2.1b)

and (3.8.2.1d) are constructed in a manner such that for all large c including c = ∞,(
Φ̊c, Ψ̊0, Ψ̊1, Ψ̊2, Ψ̊3

)
(R3) b [−a, a]5. We now define

K
def= Ō2 × [−a, a]5 (3.6.2.2)

and note that K is convex, and that furthermore, for all large c including c = ∞,

V̊c(R3) b Int(K) and V̄c ∈ Int(K). Our goal is to show that the solution Vc to (3.2.1.1)

- (3.2.1.4) launched by the initial data V̊c exists on a time interval [0, T ] that is inde-

pendent of (all large) c and remains in K.

Remark 3.6.4. By slightly enlarging Ō2, it easily follows from definitions (3.3.0.13)

and (3.3.0.15) that there is a compact, convex set K′ ⊂ R(10) such that for all large

c, V ∈ K =⇒ V ∈ K′. Additionally, we choose K′ so that V̊c(R3) b Int(K′) and

V̄c ∈ Int(K′).

The Uniform-in-c Positive Definiteness of (c)J̇
0

on K

As described in Section 2.6.2, we will use the quantity ‖(c)J̇
0
(t)‖L1 to control ‖Ẇ(t)‖2

HN ,

where (c)J̇ is an energy current for the variation Ẇ with coefficients defined by a BGS

Ṽ. Since we seek estimates that are uniform in c, it is important that (c)J̇
0

is uniformly

positive definite independent of both the BGS Ṽ and all large c. Let us now formulate

this precisely as a lemma.

Lemma 3.6.1. Let (c)J̇ be the energy current for the variation Ẇ defined by the BGS

Ṽ as defined in Section 3.5.1. Assume that Ṽ(t, s) ∈ K. Then there exists a constant

CK with 0 < CK < 1 such that

CK|Ẇ|2 ≤ (c)J̇
0
(Ẇ,Ẇ) ≤ C−1

K |Ẇ|
2 (3.6.2.3)

holds for all large c including c =∞.

Proof. The proof we give involves a slight modification of our proof of (2.6.2.2). It is

sufficient prove inequality (3.6.2.3) when |Ẇ| = 1 since it is invariant under any re-

scaling of Ẇ. Let Ṽ be the array related to the array Ṽ as in (3.3.0.13) and (3.3.0.15),
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and let K′ be the compact set defined in Remark 3.6.4. Recall that (∞)J̇ is defined in

(3.5.1.2) and that (∞)J̇
0

is manifestly positive definite in the variationsl Ẇ if p̃ > 0. If

we view (∞)J̇
0

as a function of (Ẇ,W̃), then by uniform continuity, there is a constant

0 < C(K′) < 1 such that C(K′)|Ẇ|2 ≤ (∞)J̇
0 ≤ C(K′)−1|Ẇ|2 holds on the compact

set {|Ẇ| = 1} × K′. Furthermore, if we also view (c)J̇
0

as a function of (Ẇ, Ṽ), then

by Lemma 3.4.5 and (3.5.1.1), we have that (c)J̇
0

= (∞)J̇
0

+ Fc · |Ẇ|2, where Fc ∈

RN (c−2; K′; Ṽ). (3.6.2.3) now easily follows: CK can be any positive number that is

strictly smaller than C(K′). Note that it may be considered a slight abuse of notation

that we label the constant “CK” rather than “CK′ .”

3.7 Smoothing the Initial Data

As in Section 2.7.2, we smooth the first 5 components W̊∞ of the data V̊∞ defined in

(3.6.1.1) with the mollifier χε, defining χεW̊∞ ∈ C∞ by

χεW̊∞(s) def=
∫

R3

χε(s− s′)W̊∞(s′) d3s′. (3.7.0.4)

This is necessary because we will need to estimate the HN norms of the right-hand

sides of (3.8.2.6) - (3.8.2.8) below. Without smoothing, this would in general lead to

infinite expressions. Note that we do not smooth the data Φ̊ or Ψ̊0.

The following property of such a mollification is well known:

lim
ε→0+

‖χεW̊∞ − W̊∞‖HN = 0. (3.7.0.5)

We will choose below an ε0 > 0. Once chosen, we define the smoothed data χε0W̊∞ by

(0)W̊
def=
(

(0)η̊, (0)p̊, (0)v̊
) def= χε0W̊∞, (3.7.0.6)

(0)W̊c
def=
(

(0)η̊, e4Φ̊c/c2 · (0)p̊, (0)v̊
)
, (3.7.0.7)

where Φ̊c is defined in (3.6.1.14). By Sobolev imbedding, the assumptions on the initial

data W̊c, which are the first 5 components of the data V̊c defined in (3.6.1.9), (3.4.3.5),

lTo be consistent the notation used in formula (3.5.1.2), we “should” use the symbol Ẇ to denote
the variations appearing as arguments in (∞)J̇. However, for the purposes of this proof, there is no harm

in identifying Ẇ = Ẇ since these placeholder variables merely represent the arguments of (∞)J̇ when
viewed as a quadratic form.
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Lemma 3.4.2, and the mollification properties above, ∃{Λ1 > 0 ∧ ε0 > 0} (at least as

small as the ε0 in (??)) such that

for all large c, ‖W − (0)W̊c‖HN ≤ Λ1 ⇒W ∈ Ō2 (3.7.0.8)

‖(0)W̊c − W̊c‖HN . CK
Λ1

2
, (3.7.0.9)

where Ō2 and K are defined in Section 3.6.2, and CK is from (3.6.2.3).

Remark 3.7.1. As in Remark 2.7.3, it is an important fact that ‖(0)V̊c‖HN+1
V̄c

and

‖(0)V̊c‖L∞ are uniformly bounded for all large c. Also see Remark 3.6.2 for a relevant

comment.

3.8 Uniform-in-Time Local Existence for ENc
κ

In this section we prove the first important theorem of this chapter, namely that there

is a uniform time interval [0, T ] on which solutions to the ENc
κ system having the initial

data V̊c exist, as long as c is large enough.

3.8.1 Local Existence and Uniqueness for ENc
κ Revisited

Let us recall the following local existence result provided by Theorem 2.7.1, in which it

is not yet shown that T can be chosen independently of all large c.

Theorem (Local Existence for ENc
κ). Let V̊c(s) be initial data for the ENc

κ system

(3.2.1.1) - (3.2.1.4) that are subject to the conditions described in Section 3.6. Then

for all large (finite) c, there exists Tc > 0 such that (3.2.1.1) - (3.2.1.4) has a unique

classical solution V(t, s) on [0, Tc]× R3 of the form

V = (η, P, v1, v2, v3,Φ, ∂tΦ, ∂1Φ, ∂2Φ, ∂3Φ) with V(0, s) = V̊c(s). The solution satisfies

V([0, Tc]× R3) ⊂ K, where the set K is defined in Section 3.6.2. Furthermore,

V ∈ C0([0, Tc], HN
V̄c

)∩C1([0, Tc], HN−1
V̄c

) ∩C2([0, Tc], HN−2
V̄c

) and Φ ∈ C0([0, Tc], HN+1
Φ̄c

)∩

C1([0, Tc], HN
Φ̄c

) ∩ C2([0, Tc], HN−1
Φ̄c

) ∩ C3([0, Tc], HN−2
Φ̄c

).

Remark 3.8.1. Although it is not explicitly stated in Theorem 2.7.1, the fact that V

is twice differentiable as a map from [0, Tc] to HN−2
V̄c

follows from our assumption that
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N ≥ 4. Also, by Corollary B.0.3, we have that p ∈ C0([0, Tc], HN
p̄ )∩C1([0, Tc], HN−1

p̄ )∩

C2([0, Tc], HN−2
p̄ ), since p = Pe−4Φ/c2 .

Remark 3.8.2. The case c =∞ is discussed separately in Theorem 3.9.1.

Remark 3.8.3. Strictly speaking, Theorem 2.7.1 was proved using the relativistic state-

space variables Uν . However, the form of the Newtonian change of variables made in

sections 3.1 and 3.1.2 and Corollary B.0.3 allow us to conclude Sobolev regularity in

one set of variables if the same regularity is known in the other set of variables.

Corollary 3.8.1. Assume that 5/2 < N ′ < N and that V(t, s) is a solution to the

ENc
κ system having the regularity property V ∈ L∞([0, T ], HN

V̄c
) ∩ C0([0, T ], HN ′

V̄c
) ∩

C1([0, T ], HN−1
V̄c

). Then

V ∈ C0([0, T ], HN
V̄c

). (3.8.1.1)

Proof. We apply Theorem 3.8.1 to conclude that there exists ε > 0 and a solution

Ṽ ∈ C0([T − ε, T ], HN
V̄c

) ∩ C1([T − ε, T ], HN−1
V̄c

) with Ṽ(T ) = V(T ). Furthermore, the

uniqueness argument in Section 2.7.5 can be easily modified to show that solutions to

the ENc
κ system are unique in the class C0([T−ε, T ], HN ′

V̄c
)∩C1([0, T ], HN−1

V̄c
). Therefore

V ≡ Ṽ on their common slab of spacetime existence.

3.8.2 The Uniform-in-Time Local Existence Theorem

We now state and prove the uniform time of existence theorem.

Theorem (Uniform-in-Time Existence). Let V̊c(s) be initial data for the ENc
κ sys-

tem that is subject to the conditions described in Section 3.6, and let (0)W̊c denote the

smoothing of the first 5 components of V̊c as described in Section 3.7. Let K be the sub-

set of R10 constructed from V̊c as described in Section 3.6.2. Then there exists c0 > 0

and T > 0, with T not depending on c, such that for c ≥ c0, V̊c launches a unique

classical solution V to (3.2.1.1) - (3.2.1.4) that exists on the slab

[0, T ]×R3 and that has the properties V(0, s) = V̊c(s), V([0, T ]×R3) ⊂ K. The solution

is of the form V = (η, P, v1, v2, v3,Φ, ∂tΦ, ∂1φ, ∂2Φ, ∂3Φ) and has the regularity prop-

erty V ∈ C0([0, T ], HN
V̄c

(R3)) ∩ C1([0, T ], HN−1
V̄c

(R3)), and Φ ∈ C0([0, T ], HN+1
Φ̄c

(R3)) ∩
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C1([0, T ], HN
Φ̄c

(R3)) ∩ C2([0, T ], HN−1
Φ̄c

(R3)). Furthermore, with p = Pe−4φ/c2 , there

exist constants Λ1,Λ2, L1, L2, L3, L4 > 0 such that

|||W − (0)W̊c |||HN ,T. Λ1 (3.8.2.1a)

||| Φ− Φ̊c |||HN+1,T. Λ2 (3.8.2.1b)

||| ∂tW |||HN−1,T. L1 (3.8.2.1c)

||| ∂tΦ |||HN ,T. L2 (3.8.2.1d)

||| ∂2
t η |||HN−2,T , ||| ∂2

t p |||HN−2,T. L3 (3.8.2.1e)

c−1 ||| ∂2
t Φ |||HN−1,T. L4. (3.8.2.1f)

Our proof has a lot in common with our proof of Proposition 2.7.3. For the sake

of appearances, we suppress the dependence of the running constants on N and K in

our proof. We indicate dependence on the initial data ‖(0)W̊c‖HN+1
W̄c

, ‖Φ̊c‖HN+1
Φ̄c

, and

‖Ψ̊0‖HN by writing C(id). By Remark 3.7.1, any constant C(id) can be chosen to be

independent of all large c. In our proof of Theorem 3.8.2, we also use an additional key

ingredient, namely a continuation principle for Sobolev norm-bounded solutions:

Proposition 3.8.2. Let V̊c(s) be initial data for the ENc
κ system (3.2.1.1) - (3.2.1.4)

that are subject to the conditions described in Section 3.6, and let T > 0. Let V be the

unique classical solution launched by V̊c(s), and assume that V ∈ C0([0, T ), HN
V̄c

) ∩

C1([0, T ), HN−1
V̄c

). Assume that there are constants M1,M2 > 0 and a compact set K

such that the following three estimates hold for any T ′ ∈ [0, T ) :

1. ||| V |||HN
V̄c
,T ′≤M1

2. ||| ∂tV |||HN−1,T ′≤M2

3. V([0, T ′]× R3) ⊂ K.

Then

V ∈ C0([0, T ], HN
V̄c

) ∩ C1([0, T ], HN−1
V̄c

) and V([0, T ]× R3) ⊂ K. (3.8.2.2)
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Proof. We will first show that there exists a V∗ ∈ HN
V̄c

(R3) such that

lim
n→∞

‖V(Tn)−V∗‖HN−1 = 0 (3.8.2.3)

holds for any sequence {Tn} of time values converging to T from below.

If {Tn} is such a sequence, then hypothesis 2 implies that ‖V(Tj)−V(Tk)‖HN−1 ≤

M2|Tj − Tk|. By the completeness of HN−1, there exists a V∗ ∈ HN−1 such that

(3.8.2.3) holds, and it is easy to check that V∗ does not depend on the sequence {Tn}.

By hypothesis 1, we also have that {V(Tn)} converges weakly in HN
V̄c

to V∗ and that

‖V∗‖HN
V̄
≤ M1. We now fix a number N ′ with 5/2 < N ′ < N. By Proposition B.0.6,

we have that limn→∞ ‖V(Tn) −V∗‖HN′ = 0. Consequently, if we define V(T ) def= V∗,

it follows that V ∈ L∞([0, T ], HN
V̄c

) ∩ C0([0, T ], HN ′

V̄c
) ∩ C1([0, T ], HN−1

V̄c
). The claim

(3.8.2.2) now follows from Corollary 3.8.1 and continuity.

Outline of the Structure of the Proof of Theorem 3.8.2

The inequalities (3.8.2.1a) - (3.8.2.1f) are derived from a variety of a-priori energy

estimates for the solution. As we will see, the difficulty is that each of the 6 estimates

in (3.8.2.1a) - (3.8.2.1f) depends on one or more of the others, and so one must carefully

arrange the order of the argument so that it is, heuristically speaking, of the form “Term

1 is bounded on [0, T ] =⇒ Term 2 is bounded on [0, T ] · · · =⇒ Term n is bounded on

[0, T ] =⇒ Term 1 is small on [0, T ] as long as T is small =⇒ Term 2 is small on [0, T ]

as long as T is small · · · =⇒ Term n is small on [0, T ] as long as T is small. This is

carried out in detail in (3.8.2.19) - (3.8.2.25) below, but to preserve the continuity of

the argument, we have placed all of the technical lemmas in a separate section. Once

we have chosen T small enough to imply such a chain of a-priori estimates, we apply

Proposition 3.8.2, which shows that a-priori smallness bounds on Sobolev norms of the

solution allow one to continue it and therefore preclude the possibility of blowup on

[0, T ]. In the opinion of the author, the most interesting of the a-priori estimates is

(3.8.2.25), in which ‖∂tΦ‖HN is shown to be small based in part on the hypothesis that

c−1‖∂tΦ‖HN is small (and c can be large!); this estimate is essential to the argument.
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Proof of Theorem 3.8.2

We begin our proof of Theorem 3.8.2 by introducing some notation. Let V denote the

local in time solution to the ENc
κ system (3.2.1.1) - (3.2.1.4) launched by the initial

data V̊c as furnished by Theorem 3.8.1. With W denoting the first 5 components of

V, we suggestively define

Ẇ(t, s) def= W(t, s)− (0)W̊c(s) (3.8.2.4)

Φ̇ def= Φ− Φ̊c, (3.8.2.5)

where Φ̊c is defined in (3.6.1.14) and (0)W̊c(s) is defined in (3.7.0.7).

It follows from the fact that W is a solution to (3.2.1.1) - (3.2.1.3) that Ẇ is a

solution to the EOVc (3.3.0.8) - (3.3.0.10) defined by the BGS V with initial data

Ẇ(0, s) = W̊c(s) − (0)W̊c(s). The inhomogeneous terms in the EOVc satisfied by Ẇ

are given by b = (f, g, · · · , h(3)), where for j = 1, 2, 3

f = −vk∂k[(0)η̊] (3.8.2.6)

g = (4P − 3Qc)[∂t(c−2Φ) + vk∂k(c−2Φ)]− vk∂k[e4Φ̊c/c2 · (0)p̊] (3.8.2.7)

−Qc∂k[(0)v̊k]− c−2γ̃2
cQcv

kva∂k[(0)v̊a]

h(j) =
(
3c−2P −Rc

)(
∂jΦ + γ−2

c vj [∂t(c−2Φ) + vk∂k(c−2Φ)]
)

(3.8.2.8)

− γ2
c (Rc + c−2P )

(
vk∂k[(0)v̊j ] + c−2γ̃2

c v
jvkva∂k[(0)v̊a]

)
− ∂j [e4Φ̊c/c2 · (0)p̊]− c−2γ̃2

c v
jvk∂k[e4Φ̊c/c2 · (0)p̊].

In order to show that the hypotheses of Proposition 3.8.2 are satisfied, we will need

to estimate ∂~αẆ in L2. Therefore, we will study the equation that ∂~αẆ satisfies: for

0 ≤ |~α| ≤ N, we differentiate the EOVc defined by the BGS V with inhomogeneous

terms b to which Ẇ is a solution, obtaining that ∂~αẆ satisfiesm

cA
µ(W,Φ)∂µ

(
∂~αẆ

)
= b~α, (3.8.2.9)

where

b~α
def= cA

0∂~α
(
(cA0)−1b

)
+ k~α (3.8.2.10)

mRecall the convention stated in Remark 3.3.2.
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and

k~α
def= cA

0
[
(cA0)−1

cA
k∂k(∂~αẆ)− ∂~α

(
(cA0)−1

cA
k∂kẆ

)]
. (3.8.2.11)

Thus, ∂~αẆ is a solution the EOVc defined by the same BGS V with inhomogeneous

terms b~α. Furthermore, Φ̇ is a solution to the EOVc (3.3.0.11), where

l
def= (κ2 −∆)Φ̊c + 4πG(Rc − 3c−2P ). (3.8.2.12)

We will return to these facts in Section 3.8.3 where we will use them in the proofs of

some technical lemmas.

As an intermediate step, we will prove the following weaker version of (3.8.2.1d):

c−1 ||| ∂tΦ |||HN ,T. L
′
2. (3.8.2.1d’)

We now define the constants Λ1,Λ2, L
′
2, and L4. We will then use a variety of energy

estimates to define L1, L2, and L3 in terms of these four constants and to show that

(3.8.2.1a) - (3.8.2.1f) are satisfied if T is small enough. Λ1 has been already defined in

(3.7.0.8). To motivate our definitions of L′2, L4, and Λ2, see inequalities (A.0.2.4) and

(A.0.2.6) of Lemma A.0.2 and inequality (A.0.2.20) of Corollary A.0.3, and let C0(κ)

denote the constant that appears throughout the lemma and its corollary. By Lemma

3.8.8, we have that

C0(κ)
(
c−1‖Ψ̊0‖HN + ‖l(0)‖HN−1

)
. C1(id, κ) (3.8.2.13)

C0(κ)
(
c‖l(0)‖HN−1 + ‖(∆− κ2)Ψ̊0 − ∂tl(0)‖HN−2 . C2(id, κ). (3.8.2.14)

Note also the trivial (and not optimal) estimate c−2C0(κ)‖Ψ̊0‖HN . 2C0(κ). We thus

define

Λ2
def= 2C0(κ) (3.8.2.15)

L′2
def= 2C1(id, κ) (3.8.2.16)

L4
def= 2C2(id, κ). (3.8.2.17)

Let Tmaxc be the maximal time for which the solution Vc exists, remains in K, and
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satisfies the estimates (3.8.2.1a), (3.8.2.1b), (3.8.2.1d’), and (3.8.2.1f); i.e.,

Tmaxc
def= sup

{
T |V ∈ C0([0, T ], HN

V̄c
(R3)) ∩ C1([0, T ], HN−1

V̄c
(R3)),

V([0, T ]× R3) ⊂ K, and (3.8.2.1a), (3.8.2.1b), (3.8.2.1d’), and (3.8.2.1f) hold
}
.

(3.8.2.18)

Lemmas 3.8.16, 3.8.4, 3.8.9, 3.8.13, 3.8.11, and inequality (3.8.3.33) of Lemma 3.8.12

supply the following estimates which are valid for 0 ≤ τ < Tmaxc :

||| Ẇ |||HN ,τ.
[
Λ1/2 + C(Λ1,Λ2, L1, L

′
2)τ
]
· exp

(
C(Λ1,Λ2, L1, L

′
2)τ
)

(3.8.2.19)

||| ∂tW |||HN ,τ. L1(Λ1,Λ2, L
′
2) (3.8.2.20)

||| ∂2
t p |||HN−2,τ , ||| ∂2

t η |||HN−2,τ. L3(Λ1,Λ2, L1, L
′
2, L4) (3.8.2.21)

||| Φ̇ |||2HN+1,τ. (Λ2)2/4 + τ · C(Λ1,Λ2, L1, L
′
2) + τ2 · C(Λ1,Λ2, L1, L

′
2, L3, L4)

(3.8.2.22)

c−1 ||| ∂tΦ |||HN ,τ. L
′
2/2 + τC(Λ1,Λ2, L1, L

′
2) (3.8.2.23)

c−1 ||| ∂2
t Φ |||HN−1,τ. L4/2 + τ · C(Λ1,Λ2, L1, L

′
2, L3, L4). (3.8.2.24)

We apply the following sequence of reasoning to interpret the above inequalities: first

L1 in (3.8.2.20) is determined through the known constants Λ1,Λ2, and L′2. Then L3

in (3.8.2.21) is determined through the known constants Λ1,Λ2, L1, L
′
2 and L4. Then

the remaining constants C(· · · ) in (3.8.2.19) - (3.8.2.24) are all determined through

Λ1,Λ2, L1, L
′
2, L3, L4.

We now choose T so that when 0 ≤ τ ≤ T, it algebraically follows that the right-

hand sides of (3.8.2.19), (3.8.2.22), (3.8.2.23), and (3.8.2.24) are strictly less than

Λ1, (Λ2)2, L′2, and L4 respectively. Note that T may be chosen independently of (all

large) c.

Following this, inequality (3.8.3.32) of Lemma 3.8.12 gives the bound

||| ∂tΦ |||HN ,τ . L2(id,Λ1,Λ2, L1, L
′
2)/2 + τC(Λ1,Λ2, L1, L

′
2, L3, L4). (3.8.2.25)

By shrinking T if necessary, we may assume that when 0 ≤ τ ≤ T, it algebraically

follows that the right-hand side of (3.8.2.25) is strictly less than L2. We now show that

Tmaxc < T is impossible.
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Assume that Tmaxc < T. Then by Proposition 3.8.2, we have

Vc ∈ C0([0, Tmaxc ], HN
V̄c

)∩C1([0, Tmaxc ], HN−1
V̄c

), and by continuity, inequalities (3.8.2.19)

- (3.8.2.25) hold for τ = Tmaxc . Since the right-hand sides of (3.8.2.19), (3.8.2.20),

(3.8.2.22) - (3.8.2.24), and (3.8.2.25) are strictly less than Λ1, (Λ2)2, L′2, L4, and L2

respectively when τ = Tmaxc , Sobolev imbedding implies that Vc([0, Tmaxc ] × R3) is

contained in the interiornof K. Consequently, we may apply Theorem 3.8.1, taking

Tmaxc as the initial time and Vc(Tmaxc ) as initial data, to produce an ε > 0 such that

Vc ∈ C0([0, Tmaxc + ε], HN
V̄c

) ∩ C1([0, Tmaxc + ε], HN−1
V̄c

) and ||| Ẇ |||HN ,Tmaxc +ε. Λ1,

||| Φ̇ |||2
HN+1,Tmaxc +ε

. (Λ2)2, c−1 ||| ∂tΦ |||HN ,Tmaxc +ε. L
′
2, and

c−1 ||| ∂2
t Φ |||HN−1,Tmaxc +ε. L4. This contradicts the definition of Tmaxc and completes

the proof of Theorem 3.8.2.

3.8.3 Proofs of the Technical Lemmas

We now state and prove the technical lemmas quoted in the proof of Theorem 3.8.2.

We will require some auxiliary lemmas along the way. Throughout this section, we

assume the hypotheses and notation used in our proof of Theorem 3.8.2; i.e., V denotes

the solution, W denotes its first 5 components, Ẇ and Φ̇c are defined in (3.8.2.4) and

(3.8.2.5) respectively, l is defined in (3.8.2.12), and so forth.

We also assume that τ ∈ [0, Tmaxc ). By the definition of Tmaxc and the set K′ defined

in Remark 3.6.4, we have the following bounds:

|||W − (0)W̊c |||HN ,τ. Λ1 (3.8.3.1)

||| Φ− Φ̊c |||HN+1,τ. Λ2 (3.8.3.2)

c−1 ||| ∂tΦ |||HN ,τ. L
′
2. (3.8.3.3)

c−1 ||| ∂2
t Φ |||HN−2,τ. L4. (3.8.3.4)

V([0, τ ]× R3) ⊂ K (3.8.3.5)

V([0, τ ]× R3) ⊂ K′. (3.8.3.6)

nRecall that in Section 2.6.2, K was defined through Sobolev embedding based on the hypotheses
that ‖Ẇ‖HN = Λ1, ‖Φ̇‖HN+1 = Λ2, and ‖∂tΦ‖HN = L2.
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We make use of the bounds (3.8.3.1) - (3.8.3.6) in our arguments below without always

explicitly mentioning that we are doing so.

Remark 3.8.4. By Sobolev imbedding, (3.8.3.3) and (3.8.3.4) imply L∞ bounds on

c−1∂tΦ. and c−1∂2
t Φ respectively. As stated in Remark 3.4.5, we will make use of this

implied L∞ bound and the L∞ bounds (3.8.3.5), (3.8.3.6) on W,∇(1)W,W,∇(1)W,Φ,

and DΦ without explicitly mentioning them.

Lemma 3.8.3.

(4πG)−1l = R∞(η, p)− R∞(η̊, p̊) + Fc, (3.8.3.7)

(4πG)−1∂tl = ∂t
(
R∞(η, p)

)
+Gc (3.8.3.8)

(4πG)−1∂2
t l = ∂2

t

(
R∞(η, p)

)
+Hc, (3.8.3.9)

where

Fc ∈ IN (c−2; η, p,Φ) ∩ IN (c−1; η, p, c−1Φ) (3.8.3.10)

Gc ∈ IN−1(c−2; η, p, c−1Φ, ∂tη, ∂tp, c−1∂tΦ) (3.8.3.11)

∩ IN−1(c−1; η, p, c−1Φ, ∂tη, ∂tp, c−1∂tΦ)

Hc ∈ IN−2(c−1; η, p, c−1Φ, ∂tη, ∂tp, c−1∂tΦ, ∂2
t η, ∂

2
t p, c

−1∂2
t Φ). (3.8.3.12)

Proof. It follows from the discussion in Section 3.6 that

(4πG)−1l =
[
e4Φ/c2Rc(η, p)− e4Φ̄c/c2Rc(η̄, p̄)

]
+ 3c−2

(
e4Φ̄c/c2 p̄− e4Φ/c2p

)
(3.8.3.13)

+ R∞(η̄, p̄)− R∞(η̊, p̊).

Therefore, (3.8.3.7) follows from Lemma 3.4.1, Lemma 3.4.2, and Lemma 3.4.5. (3.8.3.8)

and (3.8.3.9) then follow from Remark 3.8.1 and Lemma 3.4.3.

Lemma 3.8.4.

||| ∂tW |||HN−1,τ. C(Λ1,Λ2, L
′
2) def= L1(Λ1,Λ2, L

′
2). (3.8.3.14)

Proof. By using the ENc
κ equations (3.2.1.1) - (3.2.1.3) to solve for ∂tW and applying

Lemma 3.4.2, (3.4.3.8), (3.4.3.9), Lemma 3.4.6, and Lemma 3.4.7, we have that

∂tW =
(
cA

0(W,Φ)
)−1[−cAk(W,Φ)∂kW + Bc(W,Φ, DΦ)] (3.8.3.15)

=
(
∞A0(W)

)−1[−∞Ak(W)∂kW + B∞(W,∇(1)Φ)
]

+ Fc,
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where

Fc ∈ IN−1(c−2; W,∇(1)W,Φ, DΦ) ∩ IN−1(c−1; W,∇(1)W, c−1Φ, c−1DΦ). (3.8.3.16)

Lemma 3.8.4 now follows from Proposition B.0.2, the bounds (3.8.3.1) - (3.8.3.3)

and the definition of IN−1(c−1; W,∇(1)W, c−1Φ, c−1DΦ), which implies that

||| Fc |||HN−1,τ. c
−1C(Λ1,Λ2, L

′
2).

Corollary 3.8.5.

∂tW =
(
∞A0(W)

)−1[−∞Ak(W)∂kW + B∞(W,∇(1)Φ)
]

+Gc, (3.8.3.17)

where

Gc ∈ IN−1(c−2; W,∇(1)W,Φ, DΦ) ∩ IN−1(c−1; W,∇(1)W, c−1Φ, c−1DΦ). (3.8.3.18)

Proof. Observe that ∂tp = ∂tP +(e4Φ/c2−1)∂tP−4∂tΦ/c2P, and that ∂tP is the second

component on the left-hand side of (3.8.3.15). The relation (3.8.3.17) now follows from

(3.8.3.15), Lemma 3.4.2, (3.4.3.5), (3.4.3.9), and the fact that W and W differ only in

that the second component of W is P, while the second component of W is p.

Corollary 3.8.6.

||| ∂tW |||HN−1,τ. C(Λ1,Λ2, L
′
2). (3.8.3.19)

Proof. Using the expression (3.8.3.17), the proof of (3.8.3.19) easily follows from the

proof of Lemma 3.8.4.

Corollary 3.8.7. The following relation for the solution is valid on [0, Tmaxc ) :

∂tp+ vk∂kp+ Q∞(η, p)∂kvk = Fc, (3.8.3.20)

where

Fc ∈ IN−1(c−2; W,∇(1)W,Φ, DΦ) ∩ IN−1(c−1; W,∇(1)W, c−1Φ, c−1DΦ). (3.8.3.21)

Proof. Corollary 3.8.7 immediately follows from the fact that ∂tp is the second entry of

∂tW in the expression (3.8.3.17).
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Lemma 3.8.8. There exists a constant C(id) > 0 such that

‖l(0)‖HN . c−2C(id) (3.8.3.22)

‖(∆− κ2)Ψ̊0 − ∂tl(0)‖HN−1 . c−2C(id). (3.8.3.23)

Proof. The estimate (3.8.3.22) follows from inequality (3.8.3.7) at t = 0.

To obtain the estimate (3.8.3.23), first recall that according to the assumption

(3.6.1.7) and the chain rule, we have that

(4πG)−1(κ2 −∆)Ψ̊0 = ∂k
(
R∞(η̊, p̊)̊vk

)
(3.8.3.24)

=
∂R∞
∂η

(η̊, p̊)̊vk∂kη̊ +
∂R∞
∂p

(η̊, p̊)̊vk∂kp̊+ R∞(η̊, p̊)∂kv̊k.

Furthermore, by (3.8.3.8), the chain rule, (3.2.1.1), (3.2.2.6), (3.8.3.20), and (3.1.1.16)

in the case c =∞, we have that

(4πG)−1∂tl(0) =− ∂R∞
∂η

(η̊, p̊)̊vk∂kη̊ −
∂R∞
∂p

(η̊, p̊)̊vk∂kp̊ (3.8.3.25)

− R∞(η̊, p̊)∂kv̊k + ON−1(c−2; id).

The estimate (3.8.3.23) now follows from (3.8.3.24) and (3.8.3.25).

Lemma 3.8.9.

||| ∂2
t η |||HN−2,τ , ||| ∂2

t p |||HN−2,τ . C(Λ1,Λ2, L1, L
′
2, L4) def= L3(Λ1,Λ2, L1, L

′
2, L4).

(3.8.3.26)

Proof. To obtain the bound for ∂2
t p, first isolate ∂tp in the expression (3.8.3.20), then

differentiate with respect to t and apply Lemma 3.4.3 to conclude that

∂2
t p = −∂t

[
vk∂kp+ Q∞(η, p)∂kvk

]
+Gc, (3.8.3.27)

where Gc ∈ IN−2(c−1; W,∇(1)W, ∂tW,∇(1)∂tW, c−1Φ, c−1DΦ, c−1∂2
t Φ). We now use

(3.8.3.1) - (3.8.3.4), the previously established bound (3.8.3.14) on ||| ∂tW |||HN−1,τ ,

the previously established bound (3.8.3.19) on ||| ∂tW |||HN−1,τ , and the definition of

IN−2(· · · ) to conclude the estimate (3.8.3.26) for ||| ∂2
t p |||HN−2,τ .

The estimate for ∂2
t η is similar, and in fact much simpler: use equation (3.2.1.1) to

solve for ∂tη, then differentiate with respect to t and reason as above.
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Lemma 3.8.10.

||| l |||HN ,τ . C(id,Λ1,Λ2) (3.8.3.28)

||| ∂tl |||HN−1,τ . C(Λ1,Λ2, L1, L
′
2) (3.8.3.29)

||| ∂2
t l |||HN−2,τ . C(Λ1,Λ2, L1, L

′
2, L3, L4). (3.8.3.30)

Proof. Recall that a convenient expression for l is given in (3.8.3.13). Lemma 3.8.10

follows from (3.8.3.1) - (3.8.3.4), Lemma 3.8.3, Lemma 3.8.4, and Lemma 3.8.9.

Lemma 3.8.11.

c−1 ||| ∂tΦ |||HN ,τ . L
′
2/2 + τC(Λ1,Λ2, L1, L

′
2). (3.8.3.31)

Proof. (3.8.3.31) follows from definition (3.8.2.16), Lemma 3.8.8, inequality (3.8.3.29)

of Lemma 3.8.10, and inequality (A.0.2.4) of Lemma A.0.2.

Lemma 3.8.12.

||| ∂tΦ |||HN ,τ . C(id,Λ1,Λ2, L1, L
′
2) + τC(Λ1,Λ2, L1, L

′
2, L3, L4) (3.8.3.32)

def= L2(id,Λ1,Λ2, L1, L
′
2)/2 + τC(Λ1,Λ2, L1, L

′
2, L3, L4)

c−1 ||| ∂2
t Φ |||HN−1,τ . C(id) + τC(Λ1,Λ2, L1, L

′
2, L3, L4) (3.8.3.33)

def= L4(id)/2 + τC(Λ1,Λ2, L1, L
′
2, L3, L4).

Proof. The estimate (3.8.3.32) follows from Lemma 3.8.8, inequalities (3.8.3.29) and

(3.8.3.30) of Lemma 3.8.10, and inequality (A.0.2.25) of Proposition A.0.5. The esti-

mate (3.8.3.33) follows from definition (3.8.2.17), Lemma 3.8.8, inequality (3.8.3.30) of

Lemma 3.8.10, and inequality (A.0.2.6) of Lemma A.0.2.

Remark 3.8.5. Inequality (3.8.3.32) is interesting in that it bounds ||| ∂tΦ |||HN ,τ from

above by a quantity that depends on ||| c−1∂tΦ |||HN ,τ —hence the appearance of L′2

on the right-hand side of (3.8.3.32).

Lemma 3.8.13.

||| Φ̇ |||2HN+1,τ.
(Λ2)2

4
+ τ · C(Λ1,Λ2, L1, L

′
2) + τ2 · C(Λ1,Λ2, L1, L

′
2, L3, L4).

(3.8.3.34)
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Proof. Inequality (3.8.3.34) follows from definition (3.8.2.15), (3.8.3.28), (3.8.3.32), and

inequality (A.0.2.20) of Corollary A.0.3.

Lemma 3.8.14. Let (c)J̇ be the energy current (3.5.1.1) for the variation Ẇ defined

by the BGS V, and let b def= (f, g, · · · , h(3)), where f, g, · · · , h(3) are the inhomogeneous

terms from the EOVc satisfied by Ẇ that also appear in the expression (3.5.3.1) for the

divergence of (c)J̇. Then on [0, Tmaxc ),

‖∂µ(c)J̇
µ‖L1 . C(Λ1,Λ2, L1, L

′
2) ·
[
‖Ẇ‖2L2 + ‖Ẇ‖L2‖b‖L2

]
. (3.8.3.35)

Proof. Lemma 3.8.14 follows from the expression (3.5.3.1), Hypotheses (3.4.3.1) and

(3.4.3.2), Lemma 3.4.5, Remark 3.4.8, the bounds (3.8.3.1) - (3.8.3.3), the bound

(3.8.3.14), Sobolev imbedding, and the Cauchy-Schwarz inequality for integrals.

We also state here the following corollary that will be used in the proof of Theorem

3.9.2. We do not give a proof, since it is similar to the proof of Lemma 3.8.14, and in

fact, simpler: c does not enter into the estimates.

Corollary 3.8.15. Let V be an HN solution to the EPκ system (3.2.2.1) - (3.2.2.4)

existing on the interval [0, T ], and let Ẇ be a solution to the EOV∞ (3.3.0.8) - (3.3.0.10)

defined by the BGS W with inhomogeneous terms b = (f, g, · · · , h(3)). Let (∞)J̇ be the

energy current (3.5.1.2) for the variation Ẇ defined by the BGS W. Then on [0, T ],

‖∂µ(∞)J̇
µ‖L1 . C(|||W |||HN

W̄
,T , ||| ∂tW |||HN−1,T ) ·

[
‖Ẇ‖2L2 + ‖Ẇ‖L2‖b‖L2

]
.

(3.8.3.36)

Lemma 3.8.16.

||| Ẇ |||HN ,τ.
[
Λ1/2 + C(Λ1,Λ2, L1, L

′
2)τ
]
· exp

(
C(Λ1,Λ2, L1, L

′
2)τ
)
. (3.8.3.37)

Proof. Our proof of Lemma 3.8.16 follows from a Gronwall estimate in the HN norm of

the variation Ẇ defined in (3.8.2.4). Rather than directly estimating the HN norm of

Ẇ, we instead estimate the L1 norm of (c)J̇
0

~α
, where (c)J̇~α is the energy current for the

variation ∂~αẆ defined by the BGS V. This is favorable because of property (3.5.2.1)

and because by (3.5.3.1), the divergence of (c)J̇ is lower order in Ẇ. We follow the
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method of proof of Proposition 2.7.3; the only difficulty is checking that our estimates

are independent of all large c. We will show that for 0 ≤ |~α| ≤ N and t ∈ [0, Tmaxc ), we

have

‖b~α‖L2 . C(id,Λ1,Λ2, L
′
2)
(
1 + ‖Ẇ‖HN

)
, (3.8.3.38)

where b~α is defined in (3.8.2.10). Let us assume (3.8.3.38) for the moment; we will

provide a proof at the end of the proof of the lemma.

We now let (c)J̇~α denote the energy current (3.5.1.1) for the variation ∂~αẆ defined

by the BGS V, and abbreviating J̇~α
def= (c)J̇~α to ease the notation, we define E(t) ≥ 0 by

E2(t) def=
∑
|~α|≤N

∫
R3

J̇0
~α(t, s) ds. (3.8.3.39)

By (3.6.2.3) and the Cauchy-Schwarz inequality for sums, we have that

CK‖Ẇ‖2HN . E2(t) . C−1
K ‖Ẇ‖

2
HN . (3.8.3.40)

Then by definition (3.8.3.39), Lemma 3.8.14, (3.8.3.38), (3.8.3.40), we have

2E
d

dt
E =

∑
|~α|≤N

∫
R3

∂µJ̇
µ
~α d

3s . C(Λ1,Λ2, L1, L
′
2) ·
(
‖∂~αẆ‖2L2 + ‖∂~αẆ‖L2‖b~α‖L2

)
(3.8.3.41)

. C(id,Λ1,Λ2, L1, L
′
2) ·
(
‖Ẇ‖2HN + ‖Ẇ‖HN

)
. C(id,Λ1,Λ2, L1, L

′
2) ·
(
E2 + E

)
.

We now apply Gronwall’s inequality to (3.8.3.41), concluding that

(with C
def= C(id,Λ1,Λ2, L1, L

′
2))

E(t) .
[
E(0) + C · t

]
· exp(Ct). (3.8.3.42)

Using (3.8.3.40) again, it follows from (3.8.3.42) that

‖Ẇ(t)‖HN .
(
C−1

K ‖Ẇ(0)‖HN
W̄c

+ Ct
)
· exp(Ct). (3.8.3.43)

Recalling that Ẇ(0) = W̊c − (0)W̊c and taking into account inequality (3.7.0.9), the

estimate (3.8.3.37) now follows.
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It remains to show (3.8.3.38). Our proof is based on the Sobolev-Moser lemmas

stated in Appendix B and the c−independent estimates of Section 3.4. We first claim

that the term cA
0∂~α
(
(cA0)−1b

)
from (3.8.2.10) satisfies

‖cA0∂~α
(
(cA0)−1b

)
‖L2 ≤ C(K; id,Λ1,Λ2, L

′
2), (3.8.3.44)

where all of the estimates we derive in this section are valid on [0, Tmaxc ). Because

Lemma 3.4.6 and (3.8.3.5) together imply that ‖cA0(W,Φ)‖L∞ . C(K), it suffices to

control the L2 norm of ∂~α
(
(cA0)−1b

)
. Then using Lemma 3.4.6, (3.8.3.5), Proposition

B.0.2, and Remark B.0.3 with (cA0)−1 playing the role of F in the proposition, and b

playing the role of G, we have that

‖(cA0)−1b‖HN . C(K; Λ1,Λ2)‖b‖HN . (3.8.3.45)

To estimate ‖b‖HN , we first split b into two terms:

b = Bc(W,Φ, DΦ) + Ic(id,W,Φ), (3.8.3.46)

where Bc is defined in Lemma 3.4.7 and the 5-component array Ic contains the terms

from (3.8.2.6) - (3.8.2.8) involving the smoothed initial data. By Lemma 3.4.2, Lemma

3.4.5, and (3.8.3.5), we have that

Ic ∈ IN (K; id,W,Φ), (3.8.3.47)

and from 3.8.3.47, (3.8.3.1), and (3.8.3.2), it follows that

‖Ic(id,W,Φ)‖HN . C(K; id,Λ1,Λ2). (3.8.3.48)

By Lemma 3.4.7, Proposition B.0.2, and (3.8.3.1) - (3.8.3.3), we have that

‖Bc(W,Φ, DΦ)‖HN . ‖B∞(W,∇(1)Φ)‖HN + C(K; Λ1,Λ2, L
′
2) . C(K; Λ1,Λ2, L

′
2).

(3.8.3.49)

Combining (3.8.3.46), (3.8.3.48) and (3.8.3.49), we have that

‖b‖HN . C(K; id,Λ1,Λ2, L
′
2). (3.8.3.50)

Now (3.8.3.45) and (3.8.3.50) together imply (3.8.3.44).
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We next claim that the k~α terms (3.8.2.11) satisfy

‖k~α‖L2 . C(K; id,Λ1,Λ2)‖Ẇ‖HN . (3.8.3.51)

Since ‖cA0(W,Φ)‖L∞ . C(K), to prove (3.8.3.51), it suffices to control the L2 norm

of (cA0)−1
cA

k∂k(∂~αẆ)− ∂~α
(

(cA0)−1
cA

k∂kẆ
)
. By Lemma 3.4.6, (3.8.3.1), (3.8.3.2),

(3.8.3.5), Proposition B.0.5, and Remark B.0.5, with (cA0)−1
cA

k playing the role of F

in the proposition, and ∂kẆ playing the role of G, we have that

‖(cA0)−1
cA

k∂k(∂~αẆ)− ∂~α
(
(cA0)−1

cA
k∂kẆ

)
‖L2 . C(K; id,Λ1,Λ2)‖∇(1)Ẇ‖HN−1 ,

(3.8.3.52)

from which (3.8.3.51) readily follows. This concludes the proof of Lemma 3.8.16.

A Corollary: ENc
κ is Well-Approximated by EPκ for Large c

Corollary 3.8.17. For all large c, the solutions V = (W,Φ, DΦ) from Theorem 3.8.2

satisfy

∞Aµ(W)∂µW = B∞(W,∇(1)Φ) + E1c (3.8.3.53)

∆(Φ− Φ̊c)− κ2(Φ− Φ̊c) = 4πG[R∞(η, p)− R∞(η̊, p̊)] + E2c, (3.8.3.54)

where

||| E1c |||HN−1,T . c
−2C(K; Λ1,Λ2, L2) (3.8.3.55)

||| E2c |||HN−1,T . c
−1C(K; Λ1,Λ2, L4), (3.8.3.56)

and T is from Theorem 3.8.2.

Remark 3.8.6. Note that the corollary is stated in terms of the state-space array V,

and not in terms of V.

Proof. The estimate (3.8.3.55) follows from Corollary 3.8.5 and the bounds (3.8.2.1a),

(3.8.2.1b), and (3.8.2.1d). The estimate (3.8.3.56) follows from the fact that

∆(Φ − Φ̊c) − κ2(Φ − Φ̊c) = c−2∂2
t Φ + l, where l is defined in (3.8.3.13), together with

(3.8.3.7), (3.8.2.1a), (3.8.2.1b), and (3.8.2.1f).
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3.9 The Non-relativistic Limit of the ENc
κ System

In this section, we state and prove our main theorem on the non-relativistic limit of the

ENc
κ system. Readers who are interested in further examples of the analysis of singular

limits in partial differential equations may consult [10], [33], or [45].

3.9.1 Local Existence for EPκ

Before stating our main theorem, we briefly discuss local existence for the EPκ system.

Theorem (Local Existence for EPκ). Let V̊∞ denote initial data for the EPκ system

(3.2.2.1) - (3.2.2.4) that are subject to the conditions described in Section 3.6. Then there

exists a T > 0 such that (3.2.2.1) - (3.2.2.4) has a unique classical solution V∞(t, s) on

[0, T ]×R3 of the form V∞ = (η∞, p∞, · · · , ∂3Φ∞) with V∞(0, s) = V̊∞(s). The solution

satisfies V∞([0, T ] × R3) ⊂ K′, where the compact set K′ is defined in Section 3.6.2.

Furthermore, V∞ ∈ C0([0, T ], HN
V̄∞

) ∩ C1([0, T ], HN−1
V̄∞

) and Φ ∈ C0([0, T ], HN+1
Φ̄∞

) ∩

C1([0, T ], HN
Φ̄∞

) ∩ C2([0, T ], HN−1
Φ̄∞

).

Proof. Theorem 3.9.1 can be proved by adapting the method of energy currents: energy

currents (∞)J̇ can be used to control ‖W∞(t)‖HN
W̄
, while ‖Φ∞(t)‖HN+1

Φ̄∞
can be controlled

using an easy estimate on the operator ∆− κ2. Such methods are applied in the proof

of the non-relativistic limit theorem below, so we don’t provide a proof here. See also

[37].

3.9.2 Statement and Proof of the Main Theorem

Theorem (Non-relativistic Limit). Let V̊∞ denote initial data for the EPκ sys-

tem (3.2.2.1) - (3.2.2.4) that are subject to the conditions described in Section 3.6.

Let V̊c denote the corresponding initial data for the ENc
κ system (3.2.1.1) - (3.2.1.4)

constructed from V̊∞ as described in Section 3.6. Let V∞
def= (η∞, p∞, v1

∞, · · · , ∂3Φ∞)(
Vc

def= (ηc, pc, v1
c , · · · , ∂3Φc)

)
denote the solution to the EPκ

(
ENc

κ

)
system launched by

V∞ as furnished by Theorem 3.9.1 (Theorem 3.8.2). By Theorem 3.9.1 and Theorem

3.8.2, we may assume that for all large c, V∞ and Vc exist on a common spacetime
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slab [0, T ]× R3, where T is the minimum of the two times from the conclusions of the

theorems. Let W∞ and Wc denote the first 5 components of V∞ and Vc respectively.

Then there exists a constant C > 0 such that

|||W∞ −Wc |||HN−1,T . c
−1 · C (3.9.2.1)

|||
(
Φ∞ − Φ̄∞

)
−
(
Φc − Φ̄c

)
|||HN ,T . c

−1 · C (3.9.2.2)

lim
c→∞

|Φ̄∞ − Φ̄c| = 0. (3.9.2.3)

Remark 3.9.1. (3.9.2.1), (3.9.2.2), (3.9.2.3), and Sobolev imbedding imply that Wc →

W∞ uniformly and Φc → Φ∞ uniformly on [0, T ]× R3 as c→∞.

Proof. Throughout the proof, we refer to the constants Λ1,Λ2, etc., from the conclusion

of Theorem 3.8.2. We also refer to the set K defined in Section 3.6.2. To ease the

notation, we drop the subscripts c from the solution Vc and its first 5 components Wc,

setting V
def= Vc, W

def= Wc, etc. We then define

Ẇ
def= W∞ −W (3.9.2.4)

Φ̇ def= (Φ∞ − Φ̄∞)− (Φ− Φ̄c) = (Φ∞ − Φ̊∞)− (Φ− Φ̊c). (3.9.2.5)

Our proof of Theorem 3.9.2 is similar to our proof of Lemma 3.8.16; we first use energy

currents obtain a Gronwall estimate for the HN−1 norm of the variation Ẇ defined in

(3.9.2.4).

From definitions (3.9.2.4) and (3.9.2.5), it follows that Ẇ, Φ̇ are solutions to the

following EOV∞ defined by the BGS W∞ :

∞Aµ(W∞)∂µẆ = b (3.9.2.6)

(∆− κ2)Φ̇ = l, (3.9.2.7)

where

b = B∞(W∞,∇(1)Φ∞)−B∞(W,∇(1)Φ) +
[
∞Aµ(W)−∞Aµ(W∞)

]
∂µW− E1c,

(3.9.2.8)

l = 4πG
[
R∞(η∞, p∞)− R∞(η, p)

]
− E2c, (3.9.2.9)
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B∞ is defined in Lemma 3.4.7, and E1c, E2c are defined in Corollary 3.8.17. The initial

condition satisfied by Ẇ is

Ẇ(0) = 0. (3.9.2.10)

Differentiating equation (3.9.2.6) with ∂~α, have that

∞Aµ(W∞)∂µ
(
∂~αẆ

)
= b~α, (3.9.2.11)

where (suppressing the dependence of ∞Aν on W∞)

b~α
def= ∞A0∂~α

(
(∞A0)−1b

)
+ k~α (3.9.2.12)

and

k~α
def= ∞A0

[
(∞A0)−1

∞Ak∂k(∂~αẆ)− ∂~α
(
(∞A0)−1

∞Ak∂kẆ
)]
. (3.9.2.13)

We will show that for 0 ≤ |~α| ≤ N − 1 and t ∈ [0, T ], we have that

‖b~α‖L2 . C(K; Λ1,Λ2, L1, L2, |||W∞ |||HN
W̄∞

,T ) · ‖Ẇ‖HN−1 + c−1C(K; Λ1,Λ2, L2, L4).

(3.9.2.14)

Let us assume (3.9.2.14) for the moment and proceed as in Lemma 3.8.16: we let

(∞)J̇~α denote the energy current (3.5.1.2) for ∂~αẆ defined by the BGS W∞, and define

E(t) ≥ 0 by

E2(t) def=
∑

|~α|≤N−1

∫
R3

J̇0
~α(t, s) d3s, (3.9.2.15)

where we have dropped the subscript (∞) on J̇ to ease the notation. By (3.6.2.3) and

the Cauchy-Schwarz inequality for sums, we have that

CK‖Ẇ‖2HN−1 . E2(t) . C−1
K ‖Ẇ‖

2
HN−1 . (3.9.2.16)

Then by definition (3.9.2.15), Corollary 3.8.15, and (3.9.2.16), and with

C = C(K; |||W∞ |||NHW̄∞ ,T
, ||| ∂tW∞ |||HN−1,T ,Λ1,Λ2, L1, L2, L4), we have

2E
d

dt
E ≤

∑
|~α|≤N−1

∫
R3

∂µJ̇
µ
~α d

3s . C ·
∑

|~α|≤N−1

(
‖∂~αẆ‖2L2 + ‖∂~αẆ‖L2‖b~α‖L2

)
(3.9.2.17)

. C · ‖Ẇ‖2HN−1 + c−1C‖Ẇ‖HN−1 . C · E2 + c−1CE.
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Taking into account (3.9.2.10), which implies that E(0) = 0, we apply Gronwall’s in-

equality to (3.9.2.17), concluding that for t ∈ [0, T ],

E(t) . c−1C · t · exp(Ct). (3.9.2.18)

From (3.9.2.16) and (3.9.2.18), it follows that

||| Ẇ |||HN−1,T. c
−1C · T · exp(CT ). (3.9.2.19)

We now return to the proof of (3.9.2.14). To prove (3.9.2.14), we show only that

the following bound holds for t ∈ [0, T ] :

‖b‖HN−1 . C(K; Λ1,Λ2, L1, L2)‖Ẇ‖HN−1 + c−1C(K; Λ1,Λ2, L2, L4). (3.9.2.20)

The remaining details, which we leave up to the reader, then follow as in the proof of

Lemma 3.8.16. By Proposition B.0.4, we have that

‖R∞(η∞, p∞)− R∞(η, p)‖HN−1 . C(K)‖Ẇ‖HN−1 , (3.9.2.21)

and combining (3.8.3.56), (3.9.2.7), (3.9.2.9), (3.9.2.21), and Lemma A.0.4, it follows

that

‖Φ̇‖HN . ‖l‖HN−1 . C(K) · ‖Ẇ‖HN−1 + c−1C(Λ1,Λ2, L4). (3.9.2.22)

Similarly, taking into account (3.9.2.22), we have that

‖B∞(η∞, p∞,∇(1)Φ∞)−B∞(η, p,∇(1)Φ)‖HN−1 . C(K) · (‖Ẇ‖HN−1 + ‖∇(1)Φ̇‖HN−1)

(3.9.2.23)

. C(K) · ‖Ẇ‖HN−1 + c−1C(Λ1,Λ2, L4).

Finally, by applying Corollary 3.4.4 to (3.4.3.8), by (3.4.3.9), by the bounds (3.8.2.1a)

- (3.8.2.1d), and by Proposition B.0.4, we have that

‖
[
∞Aµ(W)−∞Aµ(W∞)

]
∂µW‖HN−1 . C(K; Λ1,Λ2, L1, L2)‖Ẇ‖HN−1 . (3.9.2.24)

Inequality (3.9.2.20) now follows from (3.8.3.55), (3.9.2.8), (3.9.2.23), and (3.9.2.24).

The estimate (3.9.2.2) then follows from (3.9.2.19) and (3.9.2.22), while (3.9.2.3) is

merely a restatement of (3.6.1.13).
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Appendix A

Inhomogeneous Linear Klein-Gordon Estimates

In this section, we collect together some standard energy estimates for the linear Klein-

Gordon equation with an inhomogeneous term. We provide proofs for convenience.

The most important issue here is making sure that the factors of c have been put in

correctly!

Lemma A.0.1. Let l ∈ C0([0, T ], HN (R3)) and Ψ̊0(s) ∈ HN (R3), where N ∈ N. Then

there is a unique solution Φ̇(t, s) : R× R3 → R to the equation

−c−2∂2
t Φ̇ + ∆Φ̇− κ2Φ̇ = l (A.0.2.1)

with initial data Φ̇(0, s) = 0, ∂tΦ̇(0, s) = Ψ̊0(s). The solution has the property

Φ̇ ∈ C0([0, T ], HN+1(R3)) ∩ C1([0, T ], HN (R3)).

Proof. This is a standard result; consult [51] for a proof.

Lemma A.0.2. Assume the hypotheses of Lemma A.0.1. Assume further that that
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∂tl ∈ C0([0, T ], HN−1(R3)) and ∂2
t l ∈ C0([0, T ], HN−2(R3)). Then there exists a con-

stant C0(κ) > 0 such that

||| Φ̇ |||HN+1,T≤ C0(κ)
(
c−1‖Ψ̊0‖HN + cT ||| l |||HN ,T

)
(A.0.2.2)

||| ∂tΦ̇ |||HN ,T≤ C0(κ)
(
‖Ψ̊0‖HN + c2T ||| l |||HN ,T

)
(A.0.2.3)

||| ∂tΦ̇ |||HN ,T≤ C0(κ)
(
‖Ψ̊0‖HN + c‖l(0)‖HN−1 + cT ||| ∂tl |||HN−1,T

)
(A.0.2.4)

||| ∂2
t Φ̇ |||HN−1,T≤ C0(κ)

(
c‖Ψ̊0‖HN + c2‖l(0)‖HN−1 + c2T ||| ∂tl |||HN−1,T

)
(A.0.2.5)

||| ∂2
t Φ̇ |||HN−1,T (A.0.2.6)

≤ C0(κ) ·
(
c2‖l(0)‖HN−1 + c‖(∆− κ2)Ψ̊0 − ∂tl(0)‖HN−2 + cT ||| ∂2

t l |||HN−2,T

)
||| ∂3

t Φ̇ |||HN−2,T (A.0.2.7)

≤ C0(κ) ·
(
c3‖l(0)‖HN−1 + c2‖(∆− κ2)Ψ̊0 − ∂tl(0)‖HN−2 + c2T ||| ∂2

t l |||HN−2,T

)
.

(A.0.2.8)

Proof. Because ∇(k)Φ̇ is a solution to the Klein-Gordon equation −c−2∂2
t

(
∇(k)Φ̇

)
+

∆
(
∇(k)Φ̇

)
− κ2

(
∇(k)Φ̇

)
= ∇(k)l, we will use standard energy estimates for the linear

Klein-Gordon equation to estimate ||| Φ̇ |||HN+1,T . Thus, for 0 ≤ k ≤ N, we define

Ek(t) ≥ 0 by

E2
k(t) def= ‖κ∇(k)Φ̇(t)‖2L2 + ‖∇(k+1)Φ̇‖2L2 + ‖c−1∇(k)∂tΦ̇(t)‖2L2 . (A.0.2.9)

We now multiply each side the equation satisfied by ∇(k)Φ̇ by −∇(k)∂tΦ̇, integrate over

R3, and use Hölder’s inequality to arrive at the following chain of inequalities:

Ek(t)
d

dt
Ek(t) =

1
2
d

dt

(
E2
k(t)

)
=
∫

R3

(
−∇(k)∂tΦ̇

)
·
(
∇(k)l

)
ds (A.0.2.10)

≤ ‖∇(k)∂tΦ̇(t)‖L2‖∇(k)l(t)‖L2 ,

where
(
− ∇(k)∂tΦ̇

)
·
(
∇(k)l

)
denotes the array-valued quantity formed by taking the

component by component product of the two arrays −∇(k)∂tΦ̇ and ∇(k)l.

If we now define E(t) ≥ 0 by

E2(t) def=

(
N∑
k=0

E2
k(t)

)
= κ2‖Φ̇(t)‖2HN + ‖∇(1)Φ̇(t)‖2HN + c−2‖∂tΦ̇(t)‖2HN , (A.0.2.11)

it follows from (A.0.2.10) and the Cauchy-Schwarz inequality for sums that

E(t)
d

dt
E(t) =

1
2
d

dt
(E2(t)) ≤ ‖∂tΦ̇‖HN ‖l(t)‖HN ≤ cE(t)‖l(t)‖HN , (A.0.2.12)
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and so

d

dt
E(t) ≤ c‖l(t)‖HN . (A.0.2.13)

Integrating (A.0.2.13) over time, we have the following inequality, valid for t ∈ [0, T ] :

E(t) ≤ E(0) + ct ||| l |||HN ,T . (A.0.2.14)

From the definition of E(t) and the initial condition Φ̇ = 0, we have that

‖Φ̇(t)‖HN+1 ≤ C(κ)E(t) (A.0.2.15)

‖∂tΦ̇(t)‖HN ≤ cE(t) (A.0.2.16)

E(0) = c−1‖Ψ̊0‖HN . (A.0.2.17)

Combining (A.0.2.14), (A.0.2.15), (A.0.2.16), and (A.0.2.17), and taking the sup

over t ∈ [0, T ] proves (A.0.2.2) and (A.0.2.3).

To prove (A.0.2.4) - (A.0.2.7), we differentiate the Klein-Gordon equation with

respect to t (twice to prove (A.0.2.6) and (A.0.2.7)) and argue as above, taking into

account the initial conditions

∂2
t Φ̇(0) = −c2l(0) (A.0.2.18)

∂3
t Φ̇(0) = c2

[
(∆− κ2)Ψ̊0 − ∂tl(0)

]
. (A.0.2.19)

Corollary A.0.3. Assume the hypotheses of Lemma A.0.2. Then

||| Φ̇ |||2HN+1,T≤ C0(κ) ·
(
c−2‖Ψ̊0‖2HN + T · ||| ∂tΦ̇ |||HN ,T · ||| l |||HN ,T

)
. (A.0.2.20)

Proof. Inequality (A.0.2.12) gives that 1
2
d
dt(E

2(t)) ≤ ‖∂tΦ̇‖HN ‖l(t)‖HN . Taking into

account (A.0.2.17), the proof of (A.0.2.20) easily follows.

Lemma A.0.4. Let N ∈ N, and I ∈ HN−1(R3). Suppose that Φ̇ ∈ HN+1(R3) and that

∆Φ̇− κ2Φ̇ = I. Then

‖Φ̇‖HN+1(R3) ≤ C(N,κ)‖I‖HN−1(R3). (A.0.2.21)
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Proof. For use in this argument, we define the Fourier transform through its action on

integrable functions F by F̂ (ξ) def=
∫

R3 F (s)e−2πiξ·s ds. The following chain of inequalities

uses standard results from Fourier analysis, including Plancherel’s theorem:

‖Φ̇‖2H2 ≤ C‖(1 + |2πξ|2)2 ̂̇Φ‖2L2 ≤ C(κ)
∫

R3

(κ2 + |2πξ|2)2|̂̇Φ(ξ)|2 d3ξ (A.0.2.22)

= C(κ)‖(κ2 −∆)Φ̇‖2L2(R3) = C(κ)‖I‖2L2(R3),

and this proves (A.0.2.21) in the case N = 1. To estimate L2 norms of the kth order

derivatives of Φ̇ for k ≥ 1, we differentiate the equation k times to arrive at the equation

∆
(
∇(k)Φ̇

)
− κ2

(
∇(k)Φ̇

)
= ∇(k)I, and argue as above to conclude that

‖∇(k)Φ̇‖2H2 ≤ C(κ)‖∇(k)I‖2L2 . (A.0.2.23)

Now we add the estimate (A.0.2.22) to the estimates (A.0.2.23) for 1 ≤ k ≤ N − 1 to

conclude (A.0.2.21).

Remark A.0.2. The hypothesis Φ̇ ∈ HN+1(R3) does not follow from the remaining

assumptions. For example, consider g(x) = ex. Then g− d
dx2 g ∈ L2(R), but g 6∈ H2(R).

Proposition A.0.5. Assume the hypotheses of Lemma A.0.1. Assume further that that

l ∈ C0([0, T ], HN (R3)), ∂tl ∈ C0([0, T ], HN−1(R3)), and ∂2
t l ∈ C0([0, T ], HN−2(R3)).

Then

||| Φ̇ |||HN+1,T ≤ C(N,κ) (A.0.2.24)

·
(
c−1‖Ψ̊0‖HN + ‖l(0)‖HN−1+ ||| l |||HN−1,T + T ||| ∂tl |||HN−1,T

)
and

||| ∂tΦ̇ |||HN ,T ≤ C(N,κ) (A.0.2.25)

·
(
c‖l(0)‖HN−1 + ‖(∆− κ2)Ψ̊0 − ∂tl(0)‖HN−2+ ||| ∂tl |||HN−2,T +T ||| ∂2

t l |||HN−2,T

)
.

Proof. Define I
def= l + c−2∂2

t Φ̇ and observe that Φ̇ is a solution to

∆Φ̇− κ2Φ̇ = I. (A.0.2.26)
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By inequality (A.0.2.5) of Lemma A.0.2 and Lemma A.0.4, we have that

||| Φ̇ |||HN+1,T≤ C(N,κ) ||| l + c−2∂2
t Φ̇ |||HN−1,T (A.0.2.27)

≤ C(N,κ)
(
c−1‖Ψ̊0‖HN + ‖l(0)‖HN−1+ ||| l |||HN−1,T + T ||| ∂tl |||HN−1,T

)
,

which proves (A.0.2.24).

Because ∂tΦ̇ satisfies the equation −c−2∂3
t Φ̇ + ∆

(
∂tΦ̇
)
− κ2

(
∂tΦ̇
)

= ∂tl, we may use

a similar argument to prove (A.0.2.25); we leave the simple modification, which makes

use of (A.0.2.7), up to the reader.
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Appendix B

Sobolev-Moser Calculus

In this Appendix, we use notation that is as consistent as possible with our use of

notation in the body of the paper. With the exception of Proposition B.0.6, which is a

standard Sobolev interpolation inequality that we don’t prove, the proofs we give are

based on the following version of the Gagliardo-Nirenberg inequality [42], together with

repeated use of Hölder’s inequality and/or Sobolev imbedding:

Lemma B.0.1. If k, i ∈ N with 0 ≤ i ≤ k, and V is a scalar-valued or array-valued

function on Rd with V ∈ L∞(Rd) and ‖∇(k)V‖L2(Rd) <∞, then

‖∇(i)V‖L2k/i ≤ C(k)‖V‖1−
i
k

L∞ ‖∇
(k)V‖

i
k

L2 . (B.0.2.1)

Proposition B.0.2. Let O2 ⊂ Rn be an open set, and let j, d ∈ N with j > d
2 . Let

V : Rd → Rn be an element of Hj(Rd), and assume that V(Rd) ⊂ Ō2. Let F ∈ Cjb (Ō2)

be a q × q matrix-valued function and let G ∈ Hj(Rd) be a q × q (1× q, q × 1) matrix-

valued (array-valued) function. Then the q×q (1×q, q×1) matrix-valued (array-valued)

function (F ◦V)G is an element of Hj(Rd) and

‖(F ◦V)G‖Hj(Rd) ≤ C(j, d)|F |j,Ō2
(1 + ‖V‖j

Hj(Rd)
)‖G‖Hj(Rd). (B.0.2.2)

Proof. We will assume for simplicity that n = q = 1 and since the general argument

requires more burdensome notation but is similar. Let k be an integer with 0 ≤ k ≤ j,

and let ~α be a spatial derivative multi-index with |~α| = k. By the definition of ‖ · ‖Hj ,

it is sufficient to show that

∂~α ((F ◦V)G) ∈ L2(Rd) (B.0.2.3)
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for all such k and ~α. For notational simplicity, we do not distinguish between partial

differentiation with respect to Cartesian coordinates, instead indicating each derivative

by the symbol |∂|. We thus write |∂|k in place of ∂~α. By the product and Faà di Bruno

(chain) rules,

|∂|k ((F ◦V)G) =
∑
a+b=k

(
a+ b

a

)
|∂|a(F ◦V) · |∂|bG (B.0.2.4)

and

|∂|a(F ◦V) =
∑

C(m1, · · · ,ma)(F (m1+···+ma) ◦V)
a∏
i=1

(|∂|iV)mi
∣∣
mi 6=0

, (B.0.2.5)

where the sum in (B.0.2.5) is taken over all non-negative integers m1,m2, · · · ,ma such

that
∑a

i=1 imi = a,
(
a+b
a

)
is the binomial coefficient,

C(m1, · · · ,ma)
def= a!/(m1 · · ·ma!(1!)m1 · · · (a!)ma), and F (p) denotes the pth derivative

of F.

We first consider (B.0.2.5) in the case a = k, where k ≥ 1. We claim that∏k
i=1(|∂|iV)mi

∣∣
mi 6=0

∈ L2(Rd). To see this, define γi
def= k

imi
. Then by Hölder’s inequality

and Lemma B.0.1 for mi 6= 0,∫
Rd

k∏
i=1

(|∂|iV)2mi dx ≤
k∏
i=1

[∫
Rd

(|∂|iV)2k/i dx
]1/γi

=
k∏
i=1

‖|∂|iV‖2mi
L2k/i (B.0.2.6)

≤ C(j)
k∏
i=1

‖V‖2mi−2imi/k
L∞ ‖|∂|kV‖2imi/k

L2 = C(j)
(
‖V‖−2+2

∑k
i=1 mi

L∞

)(
‖|∂|kV‖2L2

)
,

which proves the claim.

Since F ∈ Cjb Ō2), it now easily follows from (B.0.2.5) and (B.0.2.6) that |∂|k(F◦V) ∈

L2(Rd) and

‖|∂|k(F ◦V)‖L2 ≤ C(j)|∂F/∂V|k−1,Ō2
(1 + ‖V‖k−1

L∞ )(‖|∂|kV‖L2). (B.0.2.7)

We also note that from the assumption Ṽ(Rd) ⊂ Ō2, (B.0.2.5), and Sobolev imbed-

ding, it follows that

‖(F ◦V)‖L∞ ≤ |F |j,Ō2
. (B.0.2.8)

We now show that each term in the summation in (B.0.2.4) is an element of L2(Rd),

and we argue by considering separately the cases 1 ≤ k and k = 0. By Hölder’s inequal-

ity, Lemma B.0.1, (B.0.2.8), (B.0.2.7), and Sobolev imbedding (in this order), we have
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for 1 ≤ k ≤ j :

‖|∂|a(F ◦V) · |∂|bG‖L2 ≤ ‖|∂|a(F ◦V)‖L2k/a‖|∂|bG‖L2k/b (B.0.2.9)

≤ C(j)‖F ◦V‖1−a/kL∞ ‖|∂|k(F ◦V)‖a/k
L2 ‖G‖

1−b/k
L∞ ‖|∂|kG‖b/k

L2

≤ C(j)|F |j,Ō2
(‖V‖Hj + ‖V‖j

Hj )‖G‖Hj .

For the case k = 0, we have

‖(F ◦V) ·G‖L2 ≤ ‖F ◦V‖L∞‖G‖L2 ≤ |F |j,Ō2
‖G‖Hj . (B.0.2.10)

Statement (B.0.2.3) follows from (B.0.2.9) and (B.0.2.10). This demonstrates (B.0.2.2)

and completes the proof of Proposition B.0.2.

Corollary B.0.3. Assume the hypotheses of Proposition B.0.2 with the following

changes: V, G ∈ C0([0, T ], Hj(Rd)). Then the q× q (1× q, q× 1) matrix-valued (array-

valued) function (F ◦V)G is an element of C0([0, T ], Hj(Rd)).

Proof. We do not give details here, since the proof may be obtained without much

additional work by modifying the proof of Proposition B.0.2.

Remark B.0.3. We often make use of a slight modification of Proposition B.0.2 in

which the assumption V ∈ Hj(Rd) is replaced with the assumption V ∈ Hj
V̄

(Rd),

where V̄ ∈ Rn is a constant array. Under this modified assumption, the conclusion of

Proposition B.0.2 may be modified as follows:

‖(F ◦V)G‖Hj ≤ C(j, d)|F |j,Ō2
(1 + ‖V‖j

Hj

V̄

)‖G‖Hj . (B.0.2.11)

A similar modification can be made to Corollary B.0.3.

To prove (B.0.2.11), simply define F̃ (Y) def= F (V̄ + Y) and apply the proposition

using F̃ in place of F and using Y def= V− V̄ in place of V. A similar modification can

be made to Corollary B.0.3.

Proposition B.0.4. Let O2 ⊂ Rn be an open, convex set, and let j, d ∈ N with j > d
2 .

Let F ∈ Cjb (Ō2) be a scalar or array-valued function. Let V, Ṽ : Rd → Rn, and
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assume that V, Ṽ ∈ Hj(Rd). Assume further that that V(Rd), Ṽ(Rd) ⊂ Ō2. Then

F ◦V − F ◦ Ṽ ∈ Hj(Rd) and

‖F ◦V − F ◦ Ṽ‖Hj ≤ C(j, d, |F |j+1,Ō2
, ‖V‖Hj , ‖Ṽ‖Hj ) · ‖V − Ṽ‖Hj . (B.0.2.12)

Proof. The proof given here is a modification of the proof of Proposition B.0.2; we adopt

the same notation as we did in this proposition. Let k be an integer with 0 ≤ k ≤ j,

and let ~α be a spatial derivative multi-index with |~α| = k. By the definition of ‖ · ‖Hj ,

it is sufficient to show that

‖∂~α
(
F ◦V − F ◦ Ṽ

)
‖L2 ≤ C(j, |F |j+1,Ō2

, ‖V‖Hj , ‖Ṽ‖Hj ) · ‖V − Ṽ‖Hj (B.0.2.13)

for all such k and ~α. We consider the quantity ∂~α

(
F ◦V − F ◦ Ṽ

)
, which can be

written in the form∑
C(m1,m2, · · · ,ma)

(
X0X1 · · ·Xp − X̃0X̃1 · · · X̃p

)
(B.0.2.14)

using the expression (B.0.2.5). Here, we have broken up the each product in (B.0.2.5)

into its linear factors, so that p = m1 +m2 + · · ·ma. Furthermore, our convention is that

X0 denotes the factor F (m1+m2+···+ma)◦V, and X̃0 denotes the factor F (m1+m2+···+ma)◦

Ṽ. Therefore, the generic case is to consider is X0 = F (m1+m2+···+ma) ◦ V, X̃0 =

F (m1+m2+···+ma) ◦ Ṽ, X1 = |∂|j1V, X̃1 = |∂|j1Ṽ, · · · , Xp = |∂|jrV, X̃p = |∂|jrṼ. We

now make use of the algebraic identity

p∏
i=0

Xi −
p∏
i=0

X̃i = (X0 − X̃0)
p∏
i=1

Xi + X̃0(X1 − X̃1)
p∏
i=2

Xi + · · ·+

(
p−1∏
i=0

X̃i

)
(Xp − X̃p).

(B.0.2.15)

We will establish the inequality (B.0.2.13) by showing that each of the p+ 1 products

of p+ 1 linear factors on the right-hand side of (B.0.2.15) is bounded from above in the

L2 norm by the right-hand side of (B.0.2.13).

We consider as a special case the expression (X0−X̃0)
∏p
i=1Xi. By Taylor’s theorem

(this is where we use the hypothesis that O2 is convex) and Sobolev imbedding, ‖X0−

X̃0‖L∞ ≤ |F |j+1,Ō2
‖V − Ṽ‖Hj . The L2 norm of the remaining factors

∏p
i=1Xi can be

bounded from above by C(j, ‖V‖Hj ) using the same reasoning as in (B.0.2.6) together

with Sobolev imbedding. This establishes inequality (B.0.2.13) in this case.
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We now discuss terms of the form
(∏m

i=0 X̃i

)
(Xm+1− X̃m+1)

(∏p
i=m+2Xi

)
. It suf-

fices to consider the illuminating case X̃0X̃1(X2−X̃2)
∏p
i=3Xi since the remaining cases

are similar. Because X0 is bounded in L∞ by |F |0,Ō2
, it is sufficient to bound the L2

norm of X̃1(X2 − X̃2)
∏p
i=3Xi from above by the right-hand side of (B.0.2.13). This

may be done using similar reasoning to that which we used in (B.0.2.6) (except that we

now apply a version of Hölder’s inequality to the linear factors rather than monomial

factors) together with Sobolev imbedding; we leave the simple modification up to the

reader. We remark that the ‖V − Ṽ‖Hj term from the righthand side of (B.0.2.13) is

derived from the (X2 − X̃2) factor.

Remark B.0.4. As in Remark B.0.3, we may replace the hypotheses V, Ṽ ∈ Hj(Rd)

from Proposition (B.0.4) with the hypotheses V, Ṽ ∈ Hj
V̄

(Rd), where V̄ is a constant

array, in which case the conclusion of the proposition is:

‖(F ◦V)− (F ◦ Ṽ)‖Hj ≤ C(j, d, |F |j+1,Ō2
, ‖V‖

Hj

V̄

, ‖Ṽ‖
Hj

V̄

) · ‖V − Ṽ‖Hj . (B.0.2.16)

Furthermore, a careful analysis of the special case Ṽ = V̄ gives the bound

‖F ◦V − F ◦ V̄‖Hj ≤ C(j, d)|F |j,Ō2
(1 + ‖V‖j−1

Hj

V̄

)(‖V‖
Hj

V̄

), (B.0.2.17)

in which we require less regularity of F than we do in the general case. We leave these

details to the reader.

Proposition B.0.5. Assume the hypotheses of Proposition B.0.2 with the following

two changes:

1. Assume j > d
2 + 1.

2. Assume that G ∈ Hj−1(Rd).

Let k ∈ N with 1 ≤ k ≤ j, and let ~α be a spatial derivative multi-index with |~α| = k.

Then

‖∂~α ((F ◦V)G)− (F ◦V)∂~αG‖L2 (B.0.2.18)

≤ C(j, d)|∂F/∂V|j−1,Ō2
(‖V‖Hj + ‖V‖j

Hj )‖G‖Hj−1 .
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Proof. We use here the same notation as we did in the proof of Proposition B.0.2. The

quantity on the left-hand side of (B.0.2.18) that we must estimate in the L2 norm is the

same as the expression on the right-hand side of (B.0.2.4), except the term (F ◦V)|∂|kG

corresponding to a = 0, b = k is not present. We define a′ = a−1 and k′ = k−1 so that

a′ + b = k′ ≤ j − 1, and we mirror the steps in (B.0.2.9) to obtain for 1 ≤ k′ ≤ j − 1 :

‖|∂|a′ (|∂|(F ◦V)) · |∂|bG‖L2 (B.0.2.19)

≤ C(j)‖|∂|(F ◦V)‖1−a
′/k′

L∞ ‖|∂|k(F ◦V)‖a
′/k′

L2 ‖G‖
1−b/k′
L∞ ‖|∂|k′G‖b/k

′

L2

≤ C(j)|∂F/∂V|j−1,Ō2
(‖V‖Hj + ‖V‖kHj )‖G‖Hj−1 .

For the case k′ = 0, we have

‖|∂|(F ◦V) ·G‖L2 ≤ ‖|∂|(F ◦V)‖L∞‖G‖L2 ≤ |∂F/∂V|j−1,Ō2
‖V‖Hj‖G‖Hj−1 .

(B.0.2.20)

Inequality (B.0.2.18) now follows easily from (B.0.2.19) and (B.0.2.20).

Remark B.0.5. As in Remark B.0.3, we may replace the assumption V ∈ Hj(Rd) in

Proposition B.0.5 with the assumption V ∈ Hj
V̄

(Rd), where V̄ is a constant array, in

which case we obtain

‖∂~α ((F ◦V)G)− (F ◦V)∂~αG‖L2 (B.0.2.21)

≤ C(j, d)|∂F/∂V|j−1,Ō2
(‖V‖

Hj

V̄

+ ‖V‖j
Hj

V̄

)‖G‖Hj−1 .

Proposition B.0.6. Let N ′, N ∈ R be such that 0 ≤ N ′ ≤ N, and assume

F ∈ HN (Rd). Then

‖F‖HN′ ≤ C(N ′, d)‖F‖1−N
′/N

L2 ‖F‖N
′/N

HN . (B.0.2.22)
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