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ABSTRACT OF THE DISSERTATION

New Results in Probability Bounding, A Convexity

Statement and Unimodality of Multivariate Discrete

Distributions

by Munevver Mine Subasi

Dissertation Director: Professor András Prékopa

This report constitutes the Doctoral Dissertation for Munevver Mine Subasi and consists

of three topics: sharp bounds for the probability of the union of events under unimodal-

ity condition, convexity theory in probabilistic constrained stochastic programming and

strong unimodality of multivariate discrete distributions.

We formulate a linear programming problem for bounding the probability of the union

of events, where the probability distribution of the occurrences is supposed to be unimodal

with known mode and some of the binomial moments of the events are also known. Using

a theorem on combinatorial determinants we fully describe the dual feasible bases of a

relaxed problem. We present closed form lower and upper bounds for the probability of the

union based on two (not necessarily consecutive) as well as first three binomial moments

of the random variables involved. We also present upper bounds for the probability of the

union based on first four binomial moments. We give a dual method to find customized

algorithmic solution of the LP’s involved. Numerical examples show that by the use of

our bounding methodology, we obtain tighter bounds for the probability of the union.
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Next we investigate the convexity theory of programming under probabilistic con-

straints. Prékopa [63, 74] has proved that if T is an r × n random matrix with indepen-

dent, normally distributed rows such that their covariance matrices are constant multiples

of each other, then the function h(x) = P (Tx ≤ b) is quasi-concave in Rn, where b is a

constant vector. We prove that, under same condition, the converse is also true, a special

quasi-concavity of h(x) implies the above-mentioned property of the covariance matrices.

Finally we present sufficient conditions that ensure the strong unimodality of a mul-

tivariate discrete distribution and give an algorithm to find the maximum of a strongly

unimodal multivariate discrete distribution. We also present examples of strongly uni-

modal multivariate discrete distributions.
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Chapter 1

Introduction

Our work consists of three topics: sharp bounds for the probability of the union of events,

convexity theory of probabilistic constrained stochastic programming problems and mul-

tivariate discrete unimodality.

The problem to find or approximate probabilities of Boolean functions of events has

important applications in reliability theory, statistics, probability theory and stochastic

programming. Since the problem is of practical importance it has extensively been studied

in literature. Bonferroni [11] proved lower and upper bounds for the probability of the

union of events in terms of binomial moments. For the case where only two binomial

moments: S1, S2 are used, Dawson and Sankoff [22] proved a lower bound that is sharp in

the sense that no better inequalities can be given if only S1 and S2 are known. Later on

other sharp probability bounds have been proved using binomial moments. Prékopa [67,

68, 69, 70] has discovered that the sharp binomial moments based probability inequalities

can be formulated as discrete moment problems. Earlier sharp Bonferroni inequalities

have been recognized as special cases of binomial moment problems. The central results

in this respect are those that concern the structure of the dual feasible bases. Any dual

feasible basis provides us with a bound for the optimum value of the objective function.

The bound is sharp if the basis is primal feasible as well. The combination of a dual

feasible basis structure theorem and the dual method of linear programming is a powerful

tool to find the sharp bound for the optimum value of the objective function. Boros and

Prékopa [15] presented a variety of closed-form bounds, the derivations of which are based

on the above-mentioned dual feasible basis structure theorems.

The paper by E. Subasi, M. Subasi and A. Prékopa [88] is the first, where sharp

bounds are presented for the probability of the union under unimodality constraint for
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the probability distribution of the occurrences. In that paper the discrete moment problem

was used, with the above-mentioned additional shape constraint of the distribution for the

case where the first two power and binomial moments are known. Bounds for expectations

as well as the probabilities of the unions of events were given by the use of formulas. In

another paper by E. Subasi, M. Subasi and A. Prékopa, bounding formulas have been

obtained for the probabilities that at least r and exactly r out of n events occur, under

the same conditions (see [89]).

This dissertation is based on the papers [83, 82, 90]. Chapter 2 is devoted to derive

a general theorem in connection with the binomial moment problem with unimodal dis-

tributions that characterizes the dual feasible bases of a relaxed version of the problem,

further, to present closed form and algorithmic bounds for the probability of the union.

The closed form bounds are based on any two binomial moments as well as the first three

binomial moments. We also present upper bound for the probability of the union based

on the knowledge of first four binomial moments of the random variables involved. For

larger m values we give a specially designed dual algorithm that is applicable to cases

with consecutive and non-consecutive moments. We finally present numerical examples

to show that by the use of our bounding methodology, we obtain tighter bounds for the

probability of the union of events.

In Chapter 3 we investigate the convexity theory of the probabilistic constrained

stochastic programming problem. An important problem is the convexity of the set of

feasible solutions, where in the stochastic (linear) constraints the coefficients are random

variables, that is the convexity of the set D = {x | h(x) ≥ p}, where h(x) = P (Tx ≤ ξ),

p, (0 < p < 1), is a fixed probability, T a random matrix and ξ a random vector. The

first results in this respect are due to Kataoka [42] and van de Panne and Popp [57] as

well as those presented in Prékopa [74]. Prékopa [64] has proved that if T has indepen-

dent, normally distributed rows such that their covariance matrices are convex multiples

of each other, then the function h(x) is quasi-concave. The next important results are

due to Henrion [36]. Our contribution is the theorem where we prove that under some

conditions the quasi concavity of the constraining function implies that the covariance

matrices of the rows of T are constant multiples of a covariance matrix for the case where
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expectations of the random row vectors are supposed to be zero.

The last topic, multivariate discrete unimodality, is studied in Chapter 4. Unimodal-

ity of a continuous multivariate distribution means that its p.d.f. is quasi-concave. Here

we are interested in unimodal multivariate discrete distributions. In both cases the dis-

tribution is called strongly unimodal if it is logconcave (see later the definitions). While

continuous unimodal multivariate distributions enjoy a number of useful properties (see,

e.g., [74]), many of them do not carry over to the discrete case. For example the convolu-

tion of two logconcave multivariate probability densities is logconcave, but the convolution

of two logconcave multivariate probability functions is not logconcave in general.

Classical papers on unimodality for discrete distributions are Fekete [29] and Barndorff-

Neilsen [5]. Pedersen [58] gave sufficient conditions for a bivariate discrete distribution

to be strongly unimodal. He also proved that the trinomial distribution is logconcave

and the convolution of any finite number of these distributions with possibly different

parameter sets is also logconcave.

Favati and Tardella [28] introduced a notion of integer convexity. They analyzed

some connections between the convexity of a function on Rn and the integer convexity

of its restriction to Zn. They also presented a polynomial time algorithm to find the

minimum of a submodular integrally convex function. A further paper in this respect is

due to Murota [56]. He developed a theory of discrete convex analysis for integer-valued

functions defined on integer lattice points.

The notion of discrete unimodality is of interest in connection with statistical physics

where a typical problem is to find the maximum of a unimodal probability function.

In Section 4.2 we present sufficient conditions for a trivariate discrete distribution to be

strongly unimodal. We then give a sufficient condition that ensures the strong unimodality

of a multivariate discrete distribution and prove the strong unimodality of the negative

multinomial distribution, the multivariate hypergeometric distribution, the multivariate

negative hypergeometric distribution and the Dirichlet (or Beta) compound multinomial

distribution. These theoretical investigations lead to some practical suggestion on how to

find the maximum of a strongly unimodal multivariate discrete distribution. We use the

results of the paper by Prékopa and Li [75] and present a dual type algorithm to find the
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maximum of a strongly unimodal multivariate discrete distribution.

The three concepts that we are concerned with in this dissertation are connected.

Probability bounds are used in probabilistic constrained stochastic programming prob-

lems. Prékopa [78] showed how the probability bounds can be incorporated in probabilistic

constrained stochastic programming models in order to obtain approximate solutions for

them. Discrete logconcavity also plays important role in stochastic programming. To see

this we refer to the papers on programming under probabilistic constraints with discrete

random variables: Prékopa, Vizvári and Badics [77], Dentcheva, Prékopa and Ruszczyński

[23, 24, 25], Vizvári [95], Dentcheva, Lai, Ruszczyński [26], Beraldi and Ruszczyński [8].

Many others have been published during the past few years.
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Chapter 2

Bounds for the Probability of the Union of Events Under
Unimodality Condition

2.1 Introduction

The problem to find or approximate the probability of the union, intersection and other

Boolean functions of random events has important applications in reliability theory, statis-

tics, probability theory and stochastic programming. Typical examples are the reliability

evaluations of multistate networks such as oil and gas supply systems, communication

systems, power generation and transmission systems, etc. The reliability of the system is

simply the probability of the union of all events that yield system success. Similarly, the

unreliability is the probability of the union of all events that yield system failure. In [72]

Prékopa and Boros presented sharp lower and upper bounds for the probability that a

feasible flow exists in a stochastic transportation network. Another application is due to

Prékopa, Boros and Lih [73] where they presented bounds for the communication network

reliability. Prékopa, Long and Szántai [80] used probability bounds in PERT problem.

Subasi et al. [88] presented an application in reliability theory. In another paper they

presented bounds for the probability distribution of the length of the critical path and

bounds for the European call option price. Another interesting application was presented

by Boros and Prékopa [16]. They showed that even a deterministic problem (maximum

satisfiability) can be solved by the use of probability bounds. For further applications we

refer to Barlow and Proschan [4], N. H. Roberts et al. [85], and F. Roberts et al. [84].

Since the problem is of practical importance, intensive research efforts have been

made in this field. Boole [12, 13, 14] was the first to suggest algebraic methods to find the

bounds for the probability of the union of events. The classical Boole inequality asserts
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that the probability of the union of a finite number of events is smaller than or equal

to the sum of the probabilities of the individual events. For approximation purposes it

is unsatisfactory in most practical applications. Hailperin [35] gave the modern linear

programming formulation for the Boolean probability bounding of the union of events

and showed that Boole’s method is equivalent to Fourier-Motzkin elimination.

Given arbitrary events A1, ..., An in an arbitrary probability space Ω the kth binomial

moment of them is designated by Sk and is defined by the equation:

Sk =
∑

1≤i1<...<ik≤n

P (Ai1 ...Aik) , k = 1, ..., n .

Let S0 = 1. It is well known that (see, e.g., Prékopa [74])

Sk = E

[(
ν

k

)]
, k = 0, ..., n , (2.1.1)

where ν is the number of those events that occur.

If we introduce the notation pk = P (ν = k), k = 0, ..., n, then we can write (2.1.1) in

the following more detailed form:

Sk =
n∑

i=0

(
i

k

)
pi , k = 0, ..., n .

To compute the probability of the union of the events the inclusion-exclusion formula

is available:

P (A1 ∪ ... ∪An) = S1 − S2 + ... + (−1)n−1Sn .

For the history of this formula see Takács [91]. If n is large, we may not be able to

compute all the binomial moments, still, we may be able to compute a few of them.

Given that, and further information about the probability of the random variable ν, we

can give lower and upper bounds for the probability of the union. The bounds may serve

for approximation of that probability provided that they are close to each other.

The well-known bounds in this respect are due to Bonferroni [11]. He created the

following lower and upper bounds for the probability of the union based on the knowledge

of first m binomial moments, S1, ..., Sm for some m < n:

P (A1 ∪ ... ∪An) ≥ S1 − S2 + ... + (−1)m−1Sm if m is even,

P (A1 ∪ ... ∪An) ≤ S1 − S2 + ... + (−1)m−1Sm if m is odd .
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However, in general, Bonferroni bounds are not the best possible bounds.

Dawson and Sankoff [22] proposed a sharp lower bound for the probability of the

union of events using the first two binomial moments of the occurrences and a linear

programming formulation. For the case of m ≤ 3, Kwerel [47] used linear programming

to obtain sharp bounds for the probability of the union. He fully described the dual

feasible bases of the problem, also in the cases, where we are bounding the probabilities

that at least r and exactly r events occur, reproduced known formulas this way and gave

special dual type algorithms to solve the problems. Prékopa [67, 68, 69] discovered that

the sharp Bonferroni bounds can be formulated as discrete binomial moment problems

and presented linear programming problems, with input data S1, ..., Sm, the optimum

values of which provides us with the bounds. As special cases he obtained the sharp

Bonferroni inequalities of Dawson and Sankoff and some others bounds. He presented dual

type algorithms for the solution of the general bounding problems. Boros and Prékopa

[15] exploited the linear programming methodology and derived a variety of closed form

bounds for the probability of the union as well as the probabilities that at least r and

exactly r out of n events occur.

A classical upper bound is due to Hunter [38] which is based on a special graph

structure called spanning tree. Bukszár and Prékopa [17] presented bounds of degree

three by the use of graph structure called cherry-tree. Vizvari [96] generalized Hunter’s

upper bound using graph structures. Other papers presenting bounds along this line are

Bukszár [19], Bukszár and Szántai [18], Veneziani [94].

Prékopa and Gao [81] used aggregation-disaggregation in linear programs to obtain

bounds for the probability of the union. For other closed form probability bounds see

Galambos and Mucci [31], Galambos and Simonelli [32], Alajaji, Kuai and Takahara [1].

In this chapter we assume that Sk1 , ..., Skm are known for some 1 ≤ k1 < ... < km,

m < n. We call the attention that the binomial moments are not necessarily consecutive.

We do not assume the knowledge of the probability distribution {pi} but we assume that

it is unimodal, i.e., there exists an integer M (0 ≤ M ≤ n) such that p0 ≤ ... ≤ pM and

pM ≥ ... ≥ pn. The number M may be equal to 0 or n, or satisfy 0 < M < n. If we

assume unimodality without specifying where the mode is, we solve a problem for each
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possible mode location and then optimize over the solutions.

To obtain lower and upper bounds for the probability of the union of events we for-

mulate the LP:

min(max)
n∑

i=1

pi

subject to

n∑

i=0

(
i

kj

)
pi = Skj , j = 0, ..., m (2.1.2)

p0 ≤ ... ≤ pM

pM ≥ ... ≥ pn

pi ≥ 0 , i = 0, ..., n ,

where k0 = 0. In problem (2.1.2) the p0, ..., pn are unknown variables. If m < n, then

there are infinitely many probability distributions satisfying the constraints of problem

(2.1.2). One of them is the true distribution of ν. This implies that the optimum value

of the min (max) problem (2.1.2) is a lower (upper) bound for the probability of the

union. These bounds have the property that, given Sk1 , ..., Skm and the knowledge of the

unimodality of {pi}, no better bounds can be given for P (A1 ∪ ... ∪ An). In view of this

fact, we call them sharp bounds. The binomial moment problem, without the unimodality

constraint, has extensively been studied in [67, 68, 69, 70].

The paper by E. Subasi, M. Subasi and A. Prékopa [88] is the first, where sharp

bounds are presented for the probability of the union under unimodality constraint for

the distribution of the random variable ν. In that paper problem (2.1.2) was used for the

case of m = 2, k1 = 1, k2 = 2 and bounds are given by the use of formulas as well as

by the dual algorithm of linear programming. In another paper by E. Subasi, M. Subasi

and A. Prékopa, bounding formulas have been obtained for the probability that at least

r and exactly r out of n events occur, under the same conditions.

Our purpose is to derive a general theorem in connection with problem (2.1.2) that

characterizes the dual feasible bases of a relaxed version of the problem, further, to present

closed form and algorithmic bounds for the probability of the union.
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As it is known in linear programming theory, the objective function value correspond-

ing to any dual feasible basis in the minimization (maximization) problem provides us

with a lower (upper) bound for the optimum value of the problem.

First we reformulate problem (2.1.2) by introducing new variables v0, ..., vn. This can

be done in two different ways:

p0 = v0 , p1 = v0 + v1 , ... , pM = v0 + ... + vM

pM+1 = vM+1 + ... + vn , pM+2 = vM+2 + ... + vn , ... , pn = vn , (2.1.3)

and

p0 = v0 , p1 = v0 + v1 , ... , pM−1 = v0 + ... + vM−1

pM = vM + ... + vn , pM+1 = vM+1 + ... + vn , ... , pn = vn . (2.1.4)

The case M = n is included in (2.1.3) and the case M = 0 included in (2.1.4).

If we use representation (2.1.3) in problem (2.1.2), we obtain the following problem:

min(max) {Mv0 +
M∑

i=1

(M − i + 1)vi +
n∑

i=M+1

(i−M)vi}

subject to
M∑

i=0

(M − i + 1)vi +
n∑

i=M+1

(i−M)vi = 1 (2.1.5)

M∑

i=0

[(
i

kj

)
+ ... +

(
M

kj

)]
vi +

n∑

i=M+1

[(
M + 1

kj

)
+ ... +

(
i

kj

)]
vi = Skj

,

j = 1, ...,m

v0 + ... + vM − vM+1 − ...− vn ≥ 0 (2.1.5a)

vi ≥ 0 , i = 0, ..., n .

In case of representation (2.1.4) the problem can be formulated as follows:

min(max) {(M − 1)v0 +
M−1∑

i=1

(M − i)vi +
n∑

i=M

(i−M + 1)vi}

subject to
M−1∑

i=0

(M − i)vi +
n∑

i=M

(i−M + 1)vi = 1 (2.1.6)
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M−1∑

i=0

[(
i

kj

)
+ ... +

(
M − 1

kj

)]
vi +

n∑

i=M

[(
M

kj

)
+ ... +

(
i

kj

)]
vi = Skj

,

j = 1, ..., m

vM + ... + vn − v0 − ...− vM−1 ≥ 0 (2.1.6a)

vi ≥ 0 , i = 0, ..., n .

Problem (2.1.5) without constraint (2.1.5a) and problem (2.1.6) without (2.1.6a) will

be called relaxed problems. For both relaxed problems A = (a0, ..., an) will designate

the matrix of the equality constraints, b the right hand side vector and c the vector of

coefficients of the objective function.

The organization of this chapter is as follows. In Section 2.2 we characterize the dual

feasible bases of the relaxed problem. In Section 2.3 bounding formulas are derived for

the probability of the union, for the case of m = 2 and general k1, k2 (1 ≤ k1 < k2 ≤ n).

In Section 2.4 we present closed form bounds for the case of m = 3 and k1 = 1, k2 = 2,

k3 = 3. In Section 2.5 upper bound formulas are derived for the probability of the union

for the case of m = 4 and k1 = 1, k2 = 2, k3 = 3, k4 = 4. In Section 2.6 general algorithms

are presented to obtain algorithmic bounds. Finally, numerical examples are presented in

Section 2.7.

2.2 Characterization of Dual Feasible Bases of The Relaxed Problem

In what follows we make use of a general theorem for the Pascal matrix, i.e., the matrix

P consisting of binomial coefficients:

P =




1 1 1 1 · · · 1 1

1 2 3 · · · n− 1 n

1

(
3

2

)
· · ·

(
n− 1

2

) (
n

2

)

. . .
...

...

1

(
n

n− 1

)

1




,
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where there are zeros in the unfilled positions.

The term “minor” of a matrix will be used in the following sense: it is the determinant

of a submatrix crossed out arbitrarily by the same number of rows and columns.

Theorem 1. [34, 67] Any minor of P that has all positive entries in its main diagonal,

is positive.

In the next theorem we characterize the dual feasible bases of the relaxed version of

problems (2.1.5), (2.1.6). For basic notions, facts and algorithms in connection with linear

programming the reader is referred to the paper by Prékopa [76].

Theorem 2. Any dual feasible basis of any of the relaxed problems (2.1.5), (2.1.6) has

one of the following structures, presented in terms of the subscripts:

m + 1 even m + 1 odd

min problem {0, i, i + 1, ..., j, j + 1, n} {0, i, i + 1, ..., j, j + 1}
max problem {0, 1, i, i + 1, ..., j, j + 1} {0, 1, i, i + 1, ..., j, j + 1, n}

or IB ⊂ {1, ..., n} or IB ⊂ {1, ..., n}

Table 2.1: Dual feasible bases of problems (2.1.5), (2.1.6)

where IB is the set of subscripts of the vectors that are in the basis B. In addition all

dual feasible bases are dual nondegenerate, except for those with IB ⊂ {1, ..., n} which are

dual degenerate.

Proof. We carry out the proof for the relaxed problem (2.1.5). The proof of the assertion

for problem (2.1.6) is the same. For the sake of simplicity we prove the assertion for the

case of kj = j, j = 1, ..., m. The reasoning is, however applicable for the general case.

Let us write up in detailed form the matrix A of the equality constraints of problem

(2.1.5), with the objective function coefficients on top of it:
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If M = n, then the columns below M+1, ..., n do not exist. A basis B in the minimization

problem (2.1.5) is dual feasible if the following inequalities hold:

cT
BB−1ap ≤ cp for any nonbasic p .

For the maximization problem the dual feasibility of a basis is defined by the reversed

inequalities. A basis B is dual degenerate if there is at least one nonbasic p such that

cp − cT
BB−1ap = 0. Since we have


 1 cT

B

0 B





 cp − cT

BB−1ap

B−1ap


 =


 cp

ap


 ,

the first component of the solution of this equation can be expressed as

cp − cT
BB−1ap =

1
|B|

∣∣∣∣∣∣
cp cT

B

ap B

∣∣∣∣∣∣
.

We are interested in the sign of |B| and
∣∣∣∣∣

cp cT
B

ap B

∣∣∣∣∣. In connection with them we prove the

following.

Lemma. We have the inequality |B| > 0 and if 0 ∈ IB, then the determinant that

comes out of

∣∣∣∣∣
cp cT

B

ap B

∣∣∣∣∣, if we put

(
cp

ap

)
in its right place (the column subscripts are in

increasing order), is also positive, where p is a nonbasic subscript.

Proof of the Lemma. Since B is a basis, it follows that |B| 6= 0. We prove that this value

is positive.

The entries in the first row can be written up as sum of 1’s so that the number of terms

in any position in that row is equal to the number of terms in any entry in its column.

Then we apply a column subtraction procedure, further, split the obtained determinant

into a sum of determinants. Any determinant in the obtained sum is either zero, or

positive, by Theorem 1, because they are minors, crossed out of the matrix P . At least

one term must be positive because |B| 6= 0. It follows that |B| > 0.

Now we prove the second assertion. If

(
cp

ap

)
is put in its right place, then the first

column of

(
cT

A

)
will be the first column of the new determinant. If we subtract the

first row from the second row in the determinant, then the first entry in the second row
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becomes −1 and the others 0. If we develop the determinant according to the second row,

then, due to the special structure of the determinant, we obtain a minor of order m + 1

crossed out of the matrix A. If IB = {0, i1, ..., im}, where 1 ≤ i1 < ... < im, then the

subscript set of the columns of the minors is {i1, ..., p, ..., im}, where i1 < ... < p < ... < im.

Thus, 0 is removed from IB and p is included. It is not difficult to see that the positivity

of |B| implies the positivity of the minor. We have proved the Lemma.

Returning to the proof of the Theorem 2, consider first the case 0 /∈ IB. Then |B| > 0

and ∣∣∣∣∣∣
cp cT

B

ap B

∣∣∣∣∣∣
=





0 if p 6= 0

< 0 if p = 0 .

Hence, B is a dual feasible basis in the maximization problem.

If, on the other hand, 0 ∈ IB, then still |B| > 0 and by the Lemma, the determinant∣∣∣∣∣
cp cT

B

ap B

∣∣∣∣∣ is equal to the (m + 1) × (m + 1) minor taken from A, corresponding to the

columns {i1, ..., p, ..., im}, multiplied by (−1)h(p), where h(p) is the number of subscripts

in B that are smaller than p. The minor is positive by the Lemma. We want to ensure

the positivity of

∣∣∣∣∣
cp cT

B

ap B

∣∣∣∣∣ for any nonbasic p. Now, if it is a minimization problem, then

h(p) must be even for any nonbasic p which implies that {i1, ..., im} = {i, i+1, ..., j, j +1}
if m is even (m + 1 is odd) and {i1, ..., im} = {i, i + 1, ..., j, j + 1, n} if m is odd (m + 1

is even). If it is a maximization problem, then h(p) must be odd for any nonbasic p

which implies that {i1, ..., im} = {1, i, i + 1, ..., j, j + 1, n} if m is even (m + 1 is odd)

and {i1, ..., im} = {1, i, i + 1, ..., j, j + 1} if m is odd (m + 1 is even). This proves the

theorem.

Remark. If kj = j, j = 1, ..., m, then all (m + 1) × (m + 1) submatrices of A are

nonsingular. This is, however, not necessarily the case if {k1, ..., km} 6= {1, ..., m}. Thus,
when picking a dual feasible basis satisfying the structure in Theorem 2, we have to check

on their independence as well.
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2.3 Closed Form Bounds for The Probability of The Union Based on

Sk1 , Sk2

Let m = 2 and assume that the binomial moments Sk1 , Sk2 , 1 ≤ k1 < k2 ≤ n, are known.

If C(n, k) =

(
n

k

)
, then we have the following recurrence relation known as Pascal’s

rule:

C(n + 1, k + 1) = C(n, k) + C(n, k + 1) .

By the use of these the coefficients of the equality constraints in the relaxed problems can

be given as follows:

j∑

s=i


 s

k


 =


 j + 1

k + 1


−


 i

k + 1


 . (2.3.1)

In view of (2.3.1) the relaxed version of problem (2.1.5) can be written in the form:

min(max) {Mv0 +
M∑

i=1

(M − i + 1)vi +
n∑

i=M+1

(i−M)vi}

subject to
M∑

i=0

(M − i + 1)vi +
n∑

i=M+1

(i−M)vi = 1 (2.3.2)

M∑

i=0





 M + 1

k1 + 1


−


 i

k1 + 1





vi +

n∑

i=M+1





 i + 1

k1 + 1


−


 M + 1

k1 + 1





vi = Sk1

M∑

i=0





 M + 1

k2 + 1


−


 i

k2 + 1





vi +

n∑

i=M+1





 i + 1

k2 + 1


−


 M + 1

k2 + 1





vi = Sk2

vi ≥ 0 , i = 0, ..., n .

Theorem 2 provides us with the following dual feasible bases for the above problem:

Bmin = {0, i, i + 1} , 1 ≤ i ≤ n− 1 ,

Bmax = {0, 1, n} or Bmax ⊂ {1, ..., n} .
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In order to present our formulas in compact forms we introduce the notations:

Σr
i,j = (j − i + 1)

(
i− 1

r

)
−

(
j + 1

r + 1

)
+

(
i

r + 1

)

Σr,t
i,j =

(
i− 1

r

)[(
j + 1

t + 1

)
−

(
i

t + 1

)]
−

(
i− 1

t

)[(
j + 1

r + 1

)
−

(
i

r + 1

)]

γr
i,j = i

[(
j + 1

r + 1

)
−

(
i

r + 1

)]
− (j − i + 1)

(
i

r + 1

)

γr,t
i,j =

(
i

r + 1

)[(
j + 1

t + 1

)
−

(
i

t + 1

)]
−

(
i

t + 1

)[(
j + 1

r + 1

)
−

(
i

r + 1

)]

βr
i,j = (j + 1)

(
j + 1

r

)
−

(
j + 1

r + 1

)
+

(
i

r + 1

)

βr,t
i,j =

(
j + 1

r

)[(
j + 1

t + 1

)
−

(
i

t + 1

)]
−

(
j + 1

t

) [(
j + 1

r + 1

)
−

(
i

r + 1

)]

αr
i,j = (j − i + 1)

(
j + 1

r

)
−

(
j + 1

r + 1

)
+

(
i

r + 1

)

αr,t
i,j =

(
j + 1

r

)[(
j + 1

t + 1

)
−

(
i

t + 1

)]
−

(
j + 1

t

)[(
j + 1

r + 1

)
−

(
i

r + 1

)]

δr
i,j = (i− 1)

[(
j + 1

r + 1

)
−

(
i

r + 1

)]
− (j − i)

(
i

r + 1

)

Table 2.3: Notations

We use problem (2.3.2) to present lower and upper bounds for P (ν ≥ 1). To do this

we find the optimal bases for the minimization and maximization problems, respectively.
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We already have a full description of the dual feasible bases. What we need is to find

those (one for the min problem and one for the max problem) that are also primal feasible.

Three cases will be considered.

Closed Form Lower Bounds

Case 1. Let 1 ≤ i ≤ M − 1. The primal feasibility conditions for Bmin are given below:

Sk1Σ
k2
i+1,M − Sk2Σ

k1
i+1,M + Σk1,k2

i+1,M ≥ 0 ,

Sk1γ
k2
i+1,M − Sk2γ

k1
i+1,M − γk1,k2

i+1,M ≥ 0 ,

Sk1γ
k2
i,M − Sk2γ

k1
i,M + γk1,k2

i,M ≤ 0 .

In this case the closed form lower bound for P (ν ≥ 1) is expressed by

1 −
Sk1Σ

k2
i+1,M − Sk2Σ

k1
i+1,M + Σk1,k2

i+1,k

i Σk1,k2

i+1,M +

(
i

k1 + 1

)
Σk2

i+1,M −
(

i

k2 + 1

)
Σk1

i+1,M

≤ P (ν ≥ 1) , (2.3.3)

where Σr
i,j , Σ

r,t
i,j , γ

r
i,j , γ

r,t
i,j are given in Table 2.3.

Case 2. Let i = M . The conditions that ensure the primal feasibility of Bmin =

{0,M, M + 1} are as follows:

Sk1

(
M

k2 − 1

)
− Sk2

(
M

k1 − 1

)
− k2 − k1

M − k2 + 1

(
M + 1

k1

)(
M

k2

)
≥ 0 ,

Sk1β
k2
1,M − Sk2β

k1
1,M + βk1,k2

1,M ≥ 0 ,

Sk1β
k2
1,M−1 − Sk2β

k1
1,M−1 + βk1,k2

1,M−1 ≥ 0 .

The corresponding closed form lower bound for P (ν ≥ 1) is given by
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1 −
Sk1

(
M

k2 − 1

)
− Sk2

(
M

k1 − 1

)
− k2−k1

M−k2+1

(
M + 1

k1

)(
M

k2

)

βk1,k2

1,M−1 − M (k2−k1)
M−k2+1

(
M + 1

k1

)(
M

k2

) ≤ P (ν ≥ 1) ,

(2.3.4)

where βr
i,j , β

r,t
i,j are given in Table 2.3.

Case 3. Let M + 1 ≤ i ≤ n− 1. Bmin is primal feasible if and only if i is determined by

the following conditions:

Sk1α
k2
M+1,i − Sk2α

k1
M+1,i + αk1,k2

M+1,i ≥ 0 ,

Sk1γ
k2
M+1,i+1 − Sk2γ

k1
M+1,i+1 − γk1,k2

M+1,i+1 ≥ 0 ,

Sk1γ
k2
M+1,i − Sk2γ

k1
M+1,i − γk1,k2

M+1,i ≥ 0 .

Then the closed form lower bound is the following:

1 − Sk1α
k2
M+1,i − Sk2α

k1
M+1,i + αk1,k2

M+1,i(
M + 1

k1 + 1

)
αk2

M+1,i −
(

M + 1

k2 + 1

)
αk1

M+1,i + (M + 1) αk1,k2

M+1,i

≤ P (ν ≥ 1) , (2.3.5)

where αr
i,j , α

r,t
i,j , γ

r
i,j , γ

r,t
i,j are given in Table 2.3.

Closed Form Upper Bounds

If Bmax ⊂ {1, ..., n} is primal feasible in the relaxed version of the maximization

problem (2.3.2), then the upper bound for the probability of the union is equal to 1.

The basis Bmax = {0, 1, n} is primal feasible if and only if the following conditions

hold:

Sk1δ
k2
M+1,n − Sk2δ

k1
M+1,n − γk1,k2

M+1,n ≤ 0 ,
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Sk1γ
k2
M+1,n − Sk2γ

k1
M+1,n − γk1,k2

M+1,n ≥ 0 ,

Sk1

(
M + 1

k2 + 1

)
≤ Sk2

(
M + 1

k1 + 1

)
.

The corresponding closed form upper bound for P (ν ≥ 1) is given below:

P (ν ≥ 1) ≤ Sk1δ
k2
M+1,n − Sk2δ

k1
M+1,n

γk1,k2

M+1,n

, (2.3.6)

where δr
i,j , γ

r
i,j , γ

r,t
i,j are given in Table 2.3.

If we use the relaxed version of problem (2.1.6), rather than that of problem (2.1.5),

then the lower and upper bounds change in such a way that we have to replace M − 1 for

M in the formulas of Section 2.3.

2.4 Closed Form Bounds for The Probability of The Union Based on

S1, S2, S3

We look at the relaxed versions of problems (2.1.5), (2.1.6) and create bounds for the

probability of the union, based on the knowledge of the binomial moments S1, S2, S3.

Since m + 1 is even, then by the use of Theorem 2, we derive that any dual feasible basis

Bmin of the relaxed version of the minimization problem (2.1.5) has the form:

Bmin = {0, i, i + 1, n} , i = 1, ..., n− 2 .

Similarly, any dual feasible basis Bmax of relaxed version of the maximization problem

has the form:

Bmax = {0, 1, i, i + 1}, i = 2, ..., n− 1, or Bmax ⊂ {1, ..., n} .

Below we present conditions that ensure the primal feasibility of Bmin as well as the

corresponding lower bounds for P (ν ≥ 1), i.e., the probability of the union of the events.
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Closed Form Lower Bounds

Case 1. Let 1 ≤ i ≤ M − 1. Bmin is primal feasible if and only if i is determined by the

conditions

2[iM + (n− 1)(i + M − 1)]S1 − 6(n + i + M − 3)S2 + 24S3 ≥ Mni ,

2[M(i− 1) + (n− 1)(i + M − 2)]S1 − 6(n + i + M − 4)S2 + 24S3 ≤ Mn(i− 1) ,

2(i− 1)(i + 2M − 2)S1 − 6(2i + M − 4)S2 + 24S3 ≥ Mi(i− 1) ,

2[i(n + 2M + i) + (n− 1)(i + M − 1)]S1 − 6(n + 2i + M − 3)S2 + 24S3

≤ i[M(2n + i + 1) + (i + 1)(n + 1)] .

In this case the lower bound for P (ν ≥ 1) is obtained as follows:

2[i(n + 2M + i) + (n− 1)(i + M − 1)]S1 − 6(n + 2i + M − 3)S2 + 24S3

(n + 1)(M + 1)(i + 1)i

+
Mn(i− 1)

(n + 1)(M + 1)(i + 1)
≤ P (ν ≥ 1) . (2.4.1)

Case 2. Let i = M . Basis Bmin = {0, M, M + 1, n} is primal feasible if and only if the

following conditions are satisfied:

2M(2n + M − 1)S1 − 6(n + 2M − 2)S2 + 24S3 ≥ M(M + 1)n ,

2(M − 1)(2n + M − 2)S1 − 6(n + 2M − 4)S2 + 24S3 ≤ (M − 1)Mn ,

6M(M − 1)S1 − 18S2 + 24S3 ≥ (M − 1)M(M + 1) ,

6M(n + M)S1 − 6(n + 3M − 2)S2 + 24S3 ≤ (M + 1)(3n + M + 2) .

The corresponding lower bound for P (ν ≥ 1) is given below:

6M(n + M)S1 − 6(n + 3M − 2)S2 + 24S3

M(M + 1)(M + 2)(n + 1)
+

n(M − 1)
(M + 2)(n + 1)

≤ P (ν ≥ 1) . (2.4.2)
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Case 3. Let M + 1 ≤ i ≤ n − 2. Bmin is primal feasible if and only if i satisfies the

following conditions:

2[nM + i(n + M − 1)]S1 − 6(n + i + M − 2)S2 + 24S3 ≥ Mn(i + 1) ,

2[iM + (n− 1)(i + M − 1)]S1 − 6(n + i + M − 3)S2 + 24S3 ≤ Mni ,

2i(i + 2M − 1)S1 − 6(2i + M − 2)S2 + 24S3 ≥ i(M + 1)M ,

2[i(n + 2M + i) + (n + 1)(i + M + 1)]S1 − 6(n + 2i + M − 1)S2 + 24S3

≤ (i + 1)[iM + (n + 1)(i + 2M + 2)] .

In this case the lower bound is obtained as follows:

2[i(n + 2M + i) + (n + 1)(i + M + 1)]S1 − 6(n + 2i + M − 1)S2 + 24S3

(i + 1)(i + 2)(M + 1)(n + 1)

+
niM

(i + 2)(M + 1)(n + 1)
≤ P (ν ≥ 1) . (2.4.3)

Closed Form Upper Bounds

In order to obtain an upper bound for P (ν ≥ 1) we consider the relaxed version of the

maximization problem (2.1.5). Note that if the dual feasible basis Bmax ⊂ {1, ..., n} is

also primal feasible, then the optimum value of the maximization problem, i.e., the upper

bound for the probability of the union, is equal to 1. As before, we have three cases for

the choice of i.

Case 1. Let 2 ≤ i ≤ M − 1. The primal feasibility conditions for the basis Bmax =

{0, 1, i, i + 1} are as follows:

2(i− 1)(i + 2M − 2)S1 − 6(2i + M − 4)S2 + 24S3 ≥ M(i− 1)i ,

2(i− 1)(M − 1)S1 − 6(i + M − 3)S2 + 24S3 ≤ 0 ,

2(i− 2)(M − 1)S1 − 6(i + M − 4)S2 + 24S3 ≥ 0 ,

2[i(i + M) + (i− 1)(M − 1)]S1 − 6(2i + M − 3)S2 + 24S3 ≤ i(i + 1)(M + 1) .

The corresponding upper bound for P (ν ≥ 1) is presented below:
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P (ν ≥ 1) ≤ 2[i(i + M) + (i− 1)(M − 1)]S1 − 6(2i + M − 3)S2 + 24S3

i(i + 1)(M + 1)
. (2.4.4)

Case 2. Let i = M . The basis Bmax = {0, 1, M, M + 1} is primal feasible if and only if

6M(M − 1)S1 − 18(M − 1)S2 + 24S3 ≥ (M − 1)M(M + 1) ,

2M(M − 1)S1 − 12(M − 1)S2 + 24S3 ≤ 0 ,

2(M − 1)(M − 2)S1 − 12(M − 2)S2 + 24S3 ≥ 0 ,

6M2S1 − 6(3M − 2)S2 + 24S3 ≤ M(M − 1)(M + 1) .

The corresponding upper bound for P (ν ≥ 1) is

P (ν ≥ 1) ≤ 6M2S1 − 6(3M − 2)S2 + 24S3

M(M + 1)(M + 2)
. (2.4.5)

Case 3. Let M + 1 ≤ i ≤ n − 1. The basis Bmax is primal feasible if and only if i is

determined by the following conditions:

2i(i + 2M − 1)S1 − 6(2i + M − 2)S2 + 24S3 ≥ i(i + 1)M ,

2i(M − 1)S1 − 6(i + M − 2)S2 + 24S3 ≤ 0 ,

2(i− 1)(M − 1)S1 − 6(i + M − 3)S2 + 24S3 ≥ 0 ,

2[i(i + M) + (i + 1)(M + 1)]S1 − 6(2i + M − 1)S2 + 24S3 ≤ (i + 1)(i + 2)(M + 1) .

With i satisfying these inequalities we have the upper bound given by:

P (ν ≥ 1) ≤ 2[i(i + M) + (i + 1)(M + 1)]S1 − 6(2i + M − 1)S2 + 24S3

(i + 1)(i + 2)(M + 1)
. (2.4.6)

If we replace M − 1 for M in the formulas of Section 2.4, then we obtain the closed form

bounds that come out of the relaxed version of problem (2.1.6).
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2.5 Closed Form Upper Bounds for The Probability of The Union

Based on S1, S2, S3, S4

In this section we present upper bound formulas for the probability of the union of events

based on the first four binomial moments.

Since m + 1 is odd, then by Theorem 2, any dual feasible basis Bmax of the relaxed

version of the maximization problem (2.1.5) or (2.1.6) is of the form:

Bmax = {0, 1, i, i + 1, n}, i = 2, ..., n− 1, or Bmax ⊂ {1, ..., n} .

If Bmax ⊂ {1, ..., n}, then the upper bound for P (ν ≥ 1) is 1. In order to determine the

index i that ensures the primal feasibility of the basis of the form Bmax = {0, 1, i, i+1, n}
we consider the following cases.

Case 1. Let 2 ≤ i ≤ M − 1. The primal feasibility conditions are:

2[i(i− 1)(n + M)− (M − 1)(n− 1) + 2i(nM + 1)]S1

−6(3n + 3M − nM − i2 + 5i− 2iM − 2ni− 7)S2 + 24(n + 2i + M − 6)S3 − 120S4

≤ i(i + 1)(n + 1)(M + 1) ,

2(i− 1)(ni + iM + 2nM − 2n− i− 2M + 2)S1 − 6[nM + (i− 2)(2n + 2M + i− 5)]S2

+24(n + 2i + M − 7)S3 − 120S4 ≥ (i− 1)inM ,

2(M − 1)(n− 1)(i− 1)S1 − 6(ni + iM + nM − 3n− 3i− 3M + 7)S2

+24(n + i + M − 6)S3 − 120S4 ≤ 0 ,

2(M − 1)(n− 1)(i− 2)S1 − 6(ni + iM + nM − 4n− 3i− 4M + 10)S2

+24(n + i + M − 7)S3 − 120S4 ≥ 0 ,

2(M − 1)(i− 1)(i− 2)S1 − 6(i− 2)(i + 2M − 5)S2

+24(2i + M − 7)S3 − 120S4 ≤ 0 .
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Under these conditions the corresponding upper bound is given below:

P (ν ≥ 1) ≤ 2[i(i− 1)(n + M)− (M − 1)(n− 1) + 2i(nM + 1)]S1

(M + 1)i(i + 1)(n + 1)

− 6(3n + 3M − nM − i2 + 5i− 2iM − 2ni− 7)S2

(M + 1)i(i + 1)(n + 1)
(2.5.1)

+
24(n + 2i + M − 6)S3 − 120S4

(M + 1)i(i + 1)(n + 1)
.

Case 2. Let i = M . The basis Bmax = {0, 1,M, M + 1, n} is primal feasible if and only

if

2M(3nM + M2 + 2)S1 − 6(3M2 + (3M − 2)(n− 2))S2 + 24(n + 3M − 5)S3 − 120S4

≤ M(M + 1)(M + 2)(n + 1) ,

2M(M − 1)(3n + M − 2)S1 − 18(M − 1)(n + M − 2)S2 + 24(n + 3M − 6)S3 − 120S4

≥ M(M − 1)(M + 1)n ,

2M(M − 1)(n− 1)S1 − 6(M − 1)(2n + M − 4)S2 + 24(n + 2M − 5)S3 − 120S4 ≤ 0 ,

2(M − 1)(M − 2)(n− 1)S1− 6(M − 2)(2n+M − 5)S2 +24(n+2M − 7)S3− 120S4 ≥ 0 ,

2M(M − 1)(M − 2)S1 − 18(M − 1)(M − 2)S2 + 72(M − 2)S3 − 120S4 ≤ 0 .

The closed form upper bound for P (ν ≥ 1) is given by

P (ν ≥ 1) ≤ 2M(3nM + M2 + 2)S1 − 6(3M2 + (3M − 2)(n− 2))S2

M(M + 1)(M + 2)(n + 1)

+
24(n + 3M − 5)S3 − 120S4

M(M + 1)(M + 2)(n + 1)
. (2.5.2)

Case 3. Let M + 1 ≤ i ≤ n − 2. Bmax is primal feasible if and only if i satisfies the

conditions:

2[(i+1)(ni+nM +iM +1)+n+i+M ]S1−6[(i−1)(i−2)+2i(n+M)+(n−1)(M−1)]S2

+24(n + 2i + M − 4)S3 − 120S4 ≤ (i + 1)(i + 2)(M + 1)(n + 1) ,
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2i[n(i + M) + (M − 1)(n + i− 1)]S1 − 6[(i− 1)(2n + 2M + i− 4) + nM ]S2

+24(n + 2i + M − 5)S3 − 120S4 ≥ ni(i + 1)M ,

2i(M − 1)(n− 1)S1 − 6[(n− 2)(i + M − 2) + i(M − 1)]S2

+24(n + i + M − 5)S3 − 120S4 ≤ 0 ,

2(i− 1)(M − 1)(n− 1)S1 − 6[(n− 3)(i + M − 1) + iM − 2n + 4]S2

+24(ni + M − 6)S3 − 120S4 ≥ 0 ,

2i(i− 1)(M − 1)S1 − 6(i− 1)(i + 2M − 4)S2 + 24(2i + M − 5)S3 − 120S4 ≤ 0 .

The corresponding upper bound for P (ν ≥ 1) is given by

P (ν ≥ 1) ≤ 2[(i + 1)(ni + nM + iM + 1) + n + i + M ]S1

(i + 1)(i + 2)(n + 1)(M + 1)

− 6[(i− 1)(i− 2) + 2i(n + M) + (n− 1)(M − 1)]S2

(i + 1)(i + 2)(n + 1)(M + 1)
(2.5.3)

+
24(n + 2i + M − 4)S3 − 120S4

(i + 1)(i + 2)(n + 1)(M + 1)
.

As before, if we apply our bounding technique on the relaxed problem (2.1.6), rather than

(2.1.5), then the just derived formulas provide us with the upper bounds if we replace

M − 1 for M .

2.6 Algorithmic Bounds

In Sections 2.3, 2.4 and 2.5 we have derived closed form bounds for the probability of the

union, by the use of the relaxed problems (2.1.5), (2.1.6) for the cases of m = 2, 3, 4. For

larger m values the solution of the relaxed problems can be obtained by specially designed

dual algorithms of linear programming. Once an algorithm of this kind terminates, the

solutions for the non-relaxed problem can be continued again by the dual algorithm. In

fact, as it is well known in linear programming, the dual algorithm can efficiently be used,
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as a reoptimization technique, whenever the optimal basis has already been found but a

further constraint is introduced into the problem.

The algorithm presented below works in this way and is applicable to cases with

consecutive and non-consecutive moments. We remark that it is more practical to carry

out the algorithms to obtain the bound, rather than to apply a complicated closed form

formula.

Algorithmic solutions of problems (2.1.5), (2.1.6)

Step 0. Find an initial dual feasible basis B to the relaxed problem. Any basis that has

the structure presented in Theorem 2 is suitable.

Step 1. Check for primal feasibility. If B−1b ≥ 0, then the solution of the relaxed

problem terminates. Go to Step 4. Otherwise go to Step 2.

Step 2. If (B−1b)j < 0, then the jth vector in B (not necessarily equal to aj) is a

candidate to leave the basis. Choose arbitrarily among the candidates to leave the basis.

Go to Step 3.

Step 3. Include the vector al into the basis that restores the dual feasible basis structure.

Go to Step 1.

Step 4. If the additional constraint v0 + ... + vM ≥ vM+1 + ... + vn (or vM + ... + vn ≥
v0 + ... + vM−1) is satisfied, then the solution of problem (2.1.5) (or (2.1.6)) terminates.

Otherwise go to Step 5.

Step 5. Reoptimize the problem with the additional constraint (2.1.5a) or (2.1.6a):

introduce slack variable into the additional inequality constraint, prescribe nonnegativity

relation for the slack variable, set up the new dual tableau and carry out the dual method.

If the sequence of probabilities p0, ..., pn is increasing or decreasing, i.e., if M = n

or M = 0, then the solution of problem (2.1.5) or (2.1.6) terminates with Step 3. No

reoptimization is needed. The relaxed problem is equivalent to the original problem (2.1.5)

or (2.1.6).

Suppose that the additional constraint (2.1.5a) is added to the problem. If the original

solution to the original problem (2.1.5) satisfies the added constraint, it is then obvious

that the point is also an optimal solution of the new problem. If, on the other hand, the
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point does not satisfy constraint (2.1.5a), we can use the dual simplex method to find the

new optimal solution.

Let B be the optimal basis before the constraint

v0 + ... + vM ≥ vM+1 + ... + vn ,

or equivalently

v0 + ... + vM − vM+1 − ...− vn − vn+1 = 0 , (2.6.1)

where vn+1 is slack variable, is added. The corresponding canonical system is as follows:

z + (cBB−1N − cN )vN = cBB−1b (2.6.2)

vB + B−1NvN = B−1b . (2.6.3)

Let a be the coefficient vector of the new constraint (2.6.1), i.e., a = (1, ..., 1,−1, ...,−1,−1)

is an (n+1)-vector. Then a can be decomposed into (aB,aN ). Therefore equation (2.6.1)

can be written as

aBvB + aNvN + vn+1 = 0 .

Multiplying equation (2.6.3) by aB and subtracting from the new constraint gives the

following system:

z + (cBB−1N − cN )vN = cBB−1b

vB + B−1NvN = B−1b

(aN − aBB−1N)vN + vn+1 = −aBB−1b .

These equations give us a basic solution of the new system. The only possible violation of

optimality of the new problem is the sign of −aBB−1b. So if, in case of minimization prob-

lem, −aBB−1b ≥ 0, then the current solution is optimal. Otherwise, if −aBB−1b < 0,

then the dual simplex method is used to restore feasibility. Similar modifications can be

done for the case of maximization problem. Note that if constraint (2.1.6a) is added to

the problem, then a = (−1, ...,−1, 1, ..., 1,−1) and the rest of the calculations remains the

same. For more information about reoptimization using dual simplex method the reader

is referred to, e.g., [76].
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2.7 Numerical Examples

We present numerical examples to show that if the probability distribution is unimodal

with known mode, M , then by the use of our bounding methodology, we can obtain

tighter bounds for the probability of the union, P (ν ≥ 1). In the following examples LB

and UB stand for lower and upper bounds, respectively.

Example 1. We give an illustration of the algorithm that we have presented in Section

2.6. Assume that the probability distribution is unimodal and its mode is 5. Let n = 10,

S1 = 5.3568245, S2 = 16.2332237, S3 = 32.377332.

We consider the relaxed version of the minimization problem (2.1.6) and choose the

initial basis B = {0, 2, 3, 10}, which is dual feasible by Theorem 2.

Iteration 1

Step 0. Initial dual feasible basis: B = {0, 2, 3, 10}.
Step 1. Since

B−1b =




0.070527273

−0.024297844

0.06646205

0.097888845




� 0 ,

it follows that B is not primal feasible.

Step 2. The second vector in B, that is a2, leaves the basis since (B−1b)2 < 0.

Step 3. The vector a4 restores the dual feasible basis structure, hence it enters the basis.

We proceed to the second iteration with the updated basis, B = {0, 4, 3, 10}.
Iteration 2

Step 1. We have

B−1b =




0.068539267

0.046860129

0.0117919

0.097809956




> 0 .
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Thus B is optimal and the optimum value of the relaxed problem (2.1.6) is 0.931460733.

The solution of the relaxed problem terminates.

Step 4. The additional constraint (2.1.6a) is equivalent to

v5 + ... + v10 − v0 − ...− v4 = −0.02938134 < 0 .

The optimal solution to the relaxed problem does not satisfy constraint (2.1.6a).

Step 5. In order to ensure the mode of the distribution is 5 we prescribe (2.1.6a) as an

additional constraint:

v5 + ... + v10 − v0 − ...− v4 ≥ 0 .

Let us rewrite the constraint in the form

v5 + ... + v10 − v0 − ...− v4 − v11 = 0 ,

where v11 ≥ 0 is slack variable. We use the dual method to reoptimize the problem (see,

e.g., [76]) After applying the dual method to the new problem, we obtain the optimal

basis and the optimum value of problem (2.1.6), i.e., the lower bound for the probability

of the union as given below:



v0

v3

v4

v5

v10




=




0.0685393

0.0117919

0.0468601

0.0097938

0.09780996




and 0.931905905 ≤ P (ν ≥ 1) .

Example 2. We assume that the first m binomial moments of the events are known. In

Table 2.4 we present bounds for P (ν ≥ 1) with and without unimodality condition.

The bounds for P (ν ≥ 1), obtained by the use of the relaxed problems (2.1.5) and

(2.1.6), are presented in Table 2.5.
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Example 3. Table 2.7 and Table 2.6 show bounds for P (ν ≥ 1) based on Sk1 , Sk2 .

Table 2.6: Bounds based on any two binomial moments, without unimodality condition

Table 2.7: Bounds based on any two binomial moments, under unimodality condition
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Chapter 3

Programming Under Probabilistic Constraints:
A Convexity Theorem

3.1 Introduction

Probabilistic constrained programming belongs to the major approaches for dealing with

random parameters in optimization problems. Typical areas of application are economic

planning, engineering design, finance, where uncertainties like product demand, meteo-

rological or demographic conditions, currency exchange rates, stock prices etc. enter the

inequalities describing the proper working of a system under consideration. The main

difficulty of such models is due to (optimal) decisions that have to be taken prior to the

observation of random parameters. In this situation, one can hardly find any decision

which would definitely exclude later constraint violation caused by unexpected random

effects.

Programming under probabilistic constraints was initiated by Charnes, Cooper and

Symonds [21] under the title of “chance constrained programming”. They imposed individ-

ual probabilistic constraint on each stochastic constraint. Joint probabilistic constraints

for independent random variables were used first by Miller and Wagner [53]. The gen-

eral probabilistic constrained stochastic programming model was introduced and studied

by Prékopa [60, 62]. The stochastically dependent random elements created challenging

mathematical and computational problems.

The basic problems can be formulated in the following manner:
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min h(x)

subject to

h0(x) = P (g1(x, ξ) ≥ 0, ..., gr(x, ξ) ≥ 0) ≥ p

h1(x) ≥ p1, ..., hm(x) ≥ pm ,

(3.1.1)

and

max h0(x) = P (g1(x, ξ) ≥ 0, ..., gr(x, ξ) ≥ 0) ≥ p

subject to

h1(x) ≥ p1, ..., hm(x) ≥ pm ,

(3.1.2)

where g1(x, y),...,gr(x, y) are functions of x ∈ Rn, y ∈ Rq; h(x), h1(x), ..., hm(x) are

functions of x ∈ Rn; p, p1, ..., pm are constants, 0 < p < 1 and ξ = (ξ1, ..., ξq)T is a

random vector.

An important special case of problem (3.1.1) is

min cTx

subject to

P (Tx ≥ ξ) ≥ p

Ax ≥ b

x ≥ 0 .

(3.1.3)

In [60, 62, 74, 79] convexity theorems and algorithms have been presented for the

solution of problem (3.1.3) and the companion problem

max P (Tx ≥ ξ) ≥ p

subject to

Ax ≥ b

x ≥ 0 .

(3.1.4)

In the above problem formulations we allow T and ξ to be random.

This chapter is devoted to programming under probabilistic constraints with random

coefficient matrix. The diet problem is of this type and is to find the cheapest combination
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of foods that will satisfy all the daily nutritional requirements of a person (see Balintfy

and Amstrong [3]).

In the theory of programming under probabilistic constraints an important problem

is the convexity of the set {x | h0(x) ≥ p}. More specifically we are interested in the

behavior of the function h0(x) from the point of view of the concavity or quasi-concavity.

Before we formulate our statement we need some definitions.

3.2 Preliminary Notions and Theorems

A real function f , defined on a convex set A ⊂ Rn is said to be quasi-concave, if for every

pair x, y ∈ A and 0 ≤ λ ≤ 1, we have

f(λx + (1− λ)y) ≥ min[f(x), f(y)] . (3.2.1)

If the inequality in (3.2.1) is reversed, then f is said to be quasi-convex.

One special case is logconcavity. A nonnegative function f defined on a convex subset

A of the space Rn is said to be logconcave if for any pair x, y ∈ A and 0 < λ < 1 we have

the inequality

f(λx + (1− λ)y) ≥ [f(x)]λ[f(y)]1−λ . (3.2.2)

If f is positive valued, then this means that log f is a concave function on A. If the

inequality in (4.1.1) is reversed, then f is said to be logconvex on A.

Any logconcave (logconvex) function is quasi-concave (quasi-convex) on the same set.

A function is quasi-concave (quasi-convex) on A if and only if all sets of the type

{x | f(x) ≥ b} ({x | f(x) ≤ b})

are convex, where −∞ < b < ∞.

The following theorem proved by Prékopa [61, 63] is the following.

Theorem 3. If g1(x,y), ..., gr(x,y) are concave functions in Rn+q, where x ∈ Rn,y ∈ Rq

and the random vector ξ ∈ Rq has logconcave probability distribution, then the function

h0(x) = P (g1(x, ξ) ≥ 0, ..., gr(x, ξ) ≥ 0)

is logconcave.
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Tamm [92, 93] has observed that the concavity property can be replaced by the weaker

quasi-concavity.

Now consider the set

D = {x | h(x) ≥ p} ,

where

h(x) = P (Tx ≤ ξ) ,

p is a fixed probability (0 < p < 1), T a random matrix and ξ a random vector.

The theorems mentioned above guarantee the quasi-concavity of h0(x) in problem

(3.1.1). However, having a probabilistic constraint of type

h(x) = P (Tx ≤ ξ) ≥ p

with random ξ and T , the above theorems do not apply in a direct manner because the

functions T1x− ξ1,...,Trx− ξr are not quasi-concave.

For constant T and continuously distributed random ξ with logconcave p.d.f. Prékopa

[61, 63] has proved that h(x) is also a logconcave function. This fact clearly implies the

convexity of the set D.

For the case of a random technology matrix a few convexity theorems are also known.

Let r = 1 and consider the function

h(x) = P (Tx ≤ b) ,

where T is a random vector and b is a constant. The following theorem was first proved

by Kataoka [42] and van de Panne and Popp [57].

Theorem 4. If T has normal distribution, then the function h(x) is quasi-concave on

the set {
x | P (Tx ≤ b) ≥ 1

2

}
.

The next theorem and its corollary have been obtained by Prékopa [64].
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Theorem 5. Let ξ be constant and

T =




T1

...

Tr




a random matrix with independent, normally distributed rows such that their covariance

matrices are constant multiples of each other. Then h(x) is a quasi-concave function in

Rn.

Corollary 1. If just one column of T is random and its elements have a joint normal

distribution, then the set of x vectors satisfying

P (Tx ≤ 0) ≥ p (3.2.3)

is convex, provided that p ≥ 1/2.

Burkauskas [20] has observed that the independence assumption is superfluous.

Note that the set of x vectors satisfying

P (Tx ≤ ξ) ≥ p (3.2.4)

is the same as those, satisfying

P


(T,−ξ)





 x

xn+1





 ≤ 0


 ≥ p ,

where xn+1 = 1. Hence a statement for the constraint (3.2.3) can be carried over to the

constraint (3.2.4).

The quasi-concavity of h(x) implies the convexity of the set D. Similar theorem

holds if the columns of T satisfy the condition that their covariance matrices are constant

multiples of each other. The right hand side vector ξ may also be random. In this case

we assume that it is independent of T and its covariance matrix is a constant multiple of

any of the other covariance matrices. For more detailed information the reader is referred

to [74].

Recently Henrion [36] proved the convexity of the set D for independent T1, ..., Tr

under same condition.



38

Theorem 6. Assume that the rows Ti of T are pair-wise independent and normally dis-

tributed with mean µi and variance Σi. Then D is convex for

p > Φ(max{
√

3, u∗}) ,

where Φ is the one-dimensional standard normal distribution function,

u∗ = max
i=1,...,m

4λ(i)
max[λ(i)

min]−3/2||µi|| ,

and λ
(i)
max, λ

(i)
min refer to the largest and smallest eigenvalue of Σi, respectively.

In Section 2.3 we show that under same conditions the converse of Theorem 3 is also

true.

While the sum of concave functions is also concave, the same is not true, in general, for

quasi-concave functions. However, we can define a special class of quasi-concave functions

such that the sums and products, within the class, are also quasi-concave.

Definition. Let h1(x), ..., hr(x) be quasi-concave functions in a convex set E. We say

that they are uniformly quasi-concave if for any x, y ∈ E either

min(hi(x), hi(y)) = hi(x) , i = 1, ..., r

or

min(hi(x), hi(y)) = hi(y) , i = 1, ..., r .

Obviously, the sum of uniformly quasi-concave functions, on the same set, is also

quasi-concave and if the functions are also nonnegative, then the same holds for their

product as well. The latter property is used in the next section, where we prove our main

result.

3.3 The Main Theorem

Consider the set

D = {x|P (Tx ≤ b)} , (3.3.1)

where T is a random matrix with independent, normally distributed rows and b is a

constant vector.
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Let r be an arbitrary positive integer and introduce the function:

hi(x) = P (Tix ≤ bi) , i = 1, ..., r .

If µi = E(Ti) = 0 , i = 1, ..., r and p ≥ 1/2, then the inequality

P (Tix ≤ bi) ≥ P (Tx ≤ b) ≥ p

shows that we have to assume bi ≥ 0 , i = 1, ..., r, otherwise the set (3.3.1) is empty. So,

let bi ≥ 0 , i = 1, ..., r.

Let Φ designate the c.d.f. of the N(0, 1)-distribution. We also see that, under the

same condition, for any x that satisfies xT Cx > 0

A =
r⋂

i=1

{x | P (Tix ≤ bi) ≥ p}

=
r⋂

i=1

{
x | P

(
Tix

xT Cix
≤ bi

xT Cix

)
≥ p

}

=
r⋂

i=1

{
x | Φ

(
bi

xT Cix

)
≥ p

}

=
r⋂

i=1

{
x |

√
xT Cix ≤ bi

Φ−1(p)

}
,

(3.3.2)

where Ci is covariance matrix of Ti, i = 1, ..., r. Hence

hi(x) = Φ
(

bi√
xT Cx

)
, i = 1, ..., r

and

Φ−1(p)
√

xT Cix ≤ bi , i = 1, ..., r . (3.3.3)

Since Φ−1(p) ≥ 0 and
√

xT Cx is a convex function in Rn, it follows that inequality (3.3.3)

determines a convex set. Thus each function hi is quasi-concave on the set (3.3.2).

Theorem 7. Let bi > 0 , i = 1, ..., r and E(Ti) = 0 , i = 1, ..., r. If the functions h1, ...hr

are uniformly quasi-concave on the set A, defined by (3.3.2), and Ci 6= 0 , i = 1, ..., r,

then each Ci is a constant multiple of a covariance matrix C.

Proof. We already know that the functions h1, ..., hr are all quasi-concave on the set

(3.3.2) and that

hi(x) = Φ
(

bi√
xT Cx

)
, i = 1, ..., r .
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It is enough to show that if we take two functions hi, hj , i 6= j, then the corresponding

covariance matrices Ci, Cj are constant multiples of each other. Let h1 and h2 be the two

functions.

Since h1 and h2 are uniformly quasi-concave on A, it follows that for any two vectors

y, z ∈ E, the inequality

Φ

(
b1√

yT C1y

)
≥ Φ

(
b1√

zT C1z

)

implies that

Φ

(
b2√

yT C2y

)
≥ Φ

(
b2√

zT C2z

)
.

An equivalent form of the statement is that the inequality

zT C1z ≥ yT C1y (3.3.4)

implies that

zT C2z ≥ yT C2y . (3.3.5)

From linear algebra we know that for any two quadratic forms, in the same variables,

there exists a basis such that both quadratic forms are sums of squares if the variables

are expressed in that basis. In our case this means that there exist linearly independent

vectors a1, ..., an such that the transformation

x = a1u1 + ... + anun = Au ,

applied to the quadratic forms xT C1x and xT C2x, takes them to the forms

xT C1x = uT AT C1Au = λ1u
2
1 + ... + λnu2

n

xT C2x = uT AT C2Au = γ1u
2
1 + ... + γnu2

n ,

where λi, γi ≥ 0 , i = 1, ..., n and λ1 + ... + λn > 0 , γ1 + ... + γn > 0.

The transformation x = Au transforms the set A into a set H that is the intersection

of ellipsoids with centers in the origin and main axes lying in the coordinate axes.



41

If

u = A−1y and v = A−1z ,

then the statement that (3.3.4) implies (3.3.5) can be formulated in such a way that if

u,v ∈ H, then

λ1v
2
1 + ... + λnv2

n ≥ λ1u
2
1 + ... + λnu2

n

implies that

γ1v
2
1 + ... + γnv2

n ≥ γ1u
2
1 + ... + γnu2

n .

This, in turn, is the same as the statement:

λ1(v2
1 − u2

1) + ... + λn(v2
n − u2

n) ≥ 0

implies that

γ1(v2
1 − u2

1) + ... + γn(v2
n − u2

n) ≥ 0 .

Let us introduce the notation wi = v2
i − u2

i , i = 1, ..., n. Then a further form of the

statement is:

λ1w1 + ... + λnwn ≥ 0 (3.3.6)

implies that

γ1w1 + ... + γnwn ≥ 0 . (3.3.7)

The above implication is true for any w = (w1, ..., wn) in an open convex set around

the origin in Rn. It follows that it is also true without any limitation for the variables

w1, ..., wn.

By Farkas’ theorem there exists a nonnegative number α such that

γ = (γ1, ..., γn) = α(λ1, ..., λn) = αλ . (3.3.8)

Since γ 6= 0, λ 6= 0, the number α must be positive. The relation can be written in matrix

form: 


γ1 0
. . .

0 γn




= α




λ1 0
. . .

0 λn




. (3.3.9)
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If we take into account that



λ1 0
. . .

0 λn




= AT C1A




γ1 0
. . .

0 γn




= AT C2A ,

and combine it with (3.3.9), we can derive the equation

AT C2A = α AT C1A .

Since A is a nonsingular matrix, we conclude that

C2 = α C1 .

This proves the theorem.
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Chapter 4

Strong Unimodality of Multivariate Discrete Distributions

4.1 Introduction

A probability measure P , defined on Rn, is said to be logconcave if for every pair of

nonempty convex sets A,B ⊂ Rn (any convex set is Borel measurable) and we have the

inequality

P (λA + (1− λ)B) ≥ [P (A)]λ[P (B)](1−λ),

where the + sign refers to Minkowski addition of sets, i.e.,

λA + (1− λ)B = {λx + (1− λ)y|x ∈ A,y ∈ B}.

The above notion generalizes in a natural way to nonnegative valued measures. In this

case we require the logconcavity inequality to hold for finite P (A), P (B). The notion of

a logconcave probability measure was introduced in [61, 63].

In 1912 Fekete [29] introduced the notion of an r-times positive sequence. The sequence

of nonnegative elements . . . , a−2, a−1, a0, . . . is said to be r-times positive if the matrix

A =




. . . . . . . . .

. . . a0 a1 a2

. . . a−1 a0 a1
. . .

a−2 a−1 a0
. . .

. . . . . . . . .




has no negative minor of order smaller than or equal to r.

Twice-positive sequences are those for which we have
∣∣∣∣∣∣

ai aj

ai−t aj−t

∣∣∣∣∣∣
= aiaj−t − ajai−t ≥ 0. (4.1.1)
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for every i < j and t ≥ 1. This holds if and only if

a2
i ≥ ai−1ai+1 .

Fekete [29] also proved that the convolution of two r-times positive sequences is r-times

positive. Twice-positive sequences are also called logconcave sequences. For this, Fekete’s

theorem states that the convolution of two logconcave sequences is logconcave.

A discrete probability distribution, defined on the real line, is said to be logconcave if

the corresponding probability function is logconcave.

In what follows we present our results in terms of probability functions. They gener-

alize in a straightforward manner for more general logconcave functions.

Let Zn designate the set of lattice points in the space. The convolution of two logcon-

cave distributions on Zn is no longer logconcave in general, if n ≥ 2.

Another notion is strong unimodality. Following Barndorff-Nielsen [5] a discrete prob-

ability function p(z), z ∈ Zn is called strongly unimodal if there exists a convex function

f(x), x ∈ Rn such that f(x) = − log p(x) if x ∈ Zn. If p(z) = 0, then by definition

f(z) = ∞. This notion is not a direct generalization of that of the one-dimensional case,

i.e., of formula 4.1.1. However in case of n = 1 the two notions are the same (see, e.g.,

[74]). It is trivial that if p is strongly unimodal, then it is logconcave. The joint probabil-

ity function of a finite number of mutually independent discrete random variables, where

each has a logconcave probability function is strongly unimodal.

Pedersen [58] gave the following two sufficient conditions for a bivariate discrete dis-

tribution to be strongly unimodal. Let p be a discrete probability function on Z2 and pij

denote the value of p on (i, j) ∈ Z2. It is sufficient for p to be strongly unimodal if it

satisfies one of the following conditions (a) and (b):

(a) pi−1,jpi,j−1 ≥ pijpi−1,j−1 , (b) pijpi−1,j−1 ≥ pi−1,jpi,j−1 ,

pi−1,jpij ≥ pi,j−1pi−1,j+1 , pijpi−1,j ≥ pi,j+1pi−1,j−1 ,

pijpi,j−1 ≥ pi−1,jpi+1,j−1 , pijpi,j−1 ≥ pi+1,jpi−1,j−1 .

Pedersen [58] also proved that the trinomial probability function is logconcave and the

convolution of any finite number of these distributions with possibly different parameter
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sets is also logconcave.

The notion of discrete unimodality is of interest in connection with statistical physics

where a typical problem is to find the maximum of a unimodal probability function.

A function f(z), z ∈ Rn is said to be polyhedral (simplicial) on the bounded convex

polyhedron K ⊆ Rn if there exists a subdivision of K into n-dimensional convex polyhedra

(simplices), with pairwise disjoint interiors such that f is continuous on K and linear on

each subdividing polyhedron (simplex). Prékopa and Li [75] presented a dual method

to solve a linearly constrained optimization problem with convex, polyhedral objective

function, along with a fast bounding technique, for the optimum value. Any f(x) , defined

by the use of a strongly unimodal probability function p(x), is a simplicial function and can

be used in the above-mentioned methodology. In an earlier paper [71] Prékopa developed

a dual type method for the solution of a one-stage stochastic programming problems. The

method was improved and implemented in [27].

In Section 4.2 we give sufficient conditions for a trivariate discrete distribution to be

strongly unimodal. In Section 4.3 we present a sufficient condition that ensures the strong

unimodality of a multivariate discrete distribution. In Section 4.4 we use the results of

the paper by Prékopa and Li [75] and present a dual type algorithm to find the maximum

of a strongly unimodal multivariate discrete distribution. In Section 4.5 we present four

multivariate discrete distributions that are strongly unimodal.

4.2 Sufficient Conditions for a Trivariate Discrete Distribution to be

Strongly Unimodal

In this section we give sufficient conditions for a discrete probability function defined on

Z3 that ensure its strong unimodality. The function f defined on R3 that we fit to the

values of − log p(.) is piecewise linear. We accomplish the job in such a way that we

subdivide R3 into simplices with disjoint interiors such that the function f(x) is linear on

each of them. First we subdivide R3 into unit cubes and then subdivide each cube into six

simplices with disjoint interiors. In each cube the same type of subdivision is used. On

each simplex we define f(x) by the equation of the hyperplane determined by the values
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of − log p(x) at the vertices. Next we ensure that f(x) is convex on any two neighboring

simplices (two simplices having a common facet). The resulting function f(x) is convex

on the entire space.

Any cube in R3 can be subdivided into simplices with disjoint interiors (such that the

vertices of the simplices are those of the cube) in six different ways as in Figures 4.6-??.

In the following we present vertices of the subdividing simplices.

Subdivision 1. Let T1c(i, j, k), c = 1, ..., 6 be the simplices in R3 defined by

T11(i, j, k) = conv{(i, j, k), (i + 1, j, k), (i + 1, j + 1, k), (i + 1, j + 1, k + 1)},

T12(i, j, k) = conv{(i, j, k), (i + 1, j, k), (i + 1, j, k + 1), (i + 1, j + 1, k + 1)},

T13(i, j, k) = conv{(i, j, k), (i, j + 1, k), (i + 1, j + 1, k), (i + 1, j + 1, k + 1)},

T14(i, j, k) = conv{(i, j, k), (i, j + 1, k), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)},

T15(i, j, k) = conv{(i, j, k), (i, j, k + 1), (i + 1, j, k + 1), (i + 1, j + 1, k + 1)},

T16(i, j, k) = conv{(i, j, k), (i, j, k + 1), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)}.

Figure 4.1: Subdivision 1
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Subdivision 2. Let T2c(i, j, k), c = 1, ..., 6 be the simplices in R3 defined by

T21(i, j, k) = conv{(i, j, k), (i, j, k + 1), (i + 1, j, k + 1), (i + 1, j + 1, k + 1)},

T22(i, j, k) = conv{(i, j, k), (i, j, k + 1), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)},

T23(i, j, k) = conv{(i, j, k), (i, j + 1, k), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)},

T24(i, j, k) = conv{(i, j, k), (i + 1, j, k), (i + 1, j, k + 1), (i + 1, j + 1, k + 1)},

T25(i, j, k) = conv{(i, j, k), (i + 1, j, k), (i, j + 1, k), (i + 1, j + 1, k + 1)},

T26(i, j, k) = conv{(i + 1, j, k), (i, j + 1, k), (i + 1, j + 1, k), (i + 1, j + 1, k + 1)}.

Figure 4.2: Subdivision 2
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Subdivision 3. Let T3c(i, j, k), c = 1, ..., 6 be the simplices in R3 defined by

T31(i, j, k) = conv{(i, j, k), (i, j, k + 1), (i + 1, j, k + 1), (i, j + 1, k + 1)},

T32(i, j, k) = conv{(i, j, k), (i + 1, j, k + 1), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)},

T33(i, j, k) = conv{(i, j, k), (i + 1, j + 1, k), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)},

T34(i, j, k) = conv{(i, j, k), (i, j + 1, k), (i + 1, j + 1, k), (i, j + 1, k + 1)},

T35(i, j, k) = conv{(i, j, k), (i + 1, j, k + 1), (i + 1, j, k), (i + 1, j + 1, k + 1)},

T36(i, j, k) = conv{(i, j, k), (i + 1, j + 1, k), (i + 1, j, k), (i + 1, j + 1, k + 1)}.

Figure 4.3: Subdivision 3
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Subdivision 4. Let T4c(i, j, k), c = 1, ..., 6 be the simplices in R3 defined by

T41(i, j, k) = conv{(i, j, k), (i, j, k + 1), (i + 1, j, k + 1), (i, j + 1, k + 1)},

T42(i, j, k) = conv{(i, j, k), (i + 1, j, k + 1), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)},

T43(i, j, k) = conv{(i, j, k), (i, j + 1, k), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)},

T44(i, j, k) = conv{(i, j, k), (i, j + 1, k), (i + 1, j + 1, k), (i + 1, j + 1, k + 1)},

T45(i, j, k) = conv{(i, j, k), (i + 1, j, k), (i + 1, j, k + 1), (i + 1, j + 1, k + 1)},

T46(i, j, k) = conv{(i, j, k), (i + 1, j, k + 1), (i + 1, j, k), (i + 1, j + 1, k + 1)}.

Figure 4.4: Subdivision 4
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Subdivision 5. Let T5c(i, j, k), c = 1, ..., 6 be the simplices in R3 defined by

T51(i, j, k) = conv{(i, j, k), (i, j, k + 1), (i + 1, j, k + 1), (i, j + 1, k + 1)},

T52(i, j, k) = conv{(i, j, k), (i + 1, j, k + 1), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)},

T53(i, j, k) = conv{(i, j, k), (i + 1, j + 1, k), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)},

T54(i, j, k) = conv{(i, j, k), (i, j + 1, k), (i, j + 1, k + 1), (i + 1, j + 1, k)},

T55(i, j, k) = conv{(i, j, k), (i + 1, j + 1, k), (i + 1, j, k + 1), (i + 1, j + 1, k + 1)},

T56(i, j, k) = conv{(i, j, k), (i + 1, j, k), (i + 1, j + 1, k), (i + 1, j, k + 1)}.

Figure 4.5: Subdivision 5
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Subdivision 6. Let T6c(i, j, k), c = 1, ..., 6 be the simplices in R3 defined by

T61(i, j, k) = conv{(i, j, k), (i, j, k + 1), (i + 1, j, k + 1), (i, j + 1, k + 1)},

T62(i, j, k) = conv{(i, j, k), (i + 1, j, k + 1), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)},

T63(i, j, k) = conv{(i, j, k), (i, j + 1, k), (i, j + 1, k + 1), (i + 1, j + 1, k + 1)},

T64(i, j, k) = conv{(i, j, k), (i + 1, j, k), (i + 1, j, k + 1), (i + 1, j + 1, k + 1)},

T65(i, j, k) = conv{(i, j, k), (i + 1, j, k), (i, j + 1, k), (i + 1, j + 1, k + 1)},

T66(i, j, k) = conv{(i + 1, j, k), (i + 1, j + 1, k), (i, j + 1, k), (i + 1, j + 1, k + 1)}.

Figure 4.6: Subdivision 6

Let p be the probability function of a discrete probability distribution defined on

R3 and pijk the value of p at (i, j, k) ∈ Z3. Let S denote the support of p. Define

Ct, t = 1, ..., 6 as the collection of the simplices Ttc(i, j, k), c = 1, ..., 6, (i, j, k) ∈ Z3, all

vertices of which belong to S.



52

Theorem 8. If p satisfies one of the following conditions (a), (b), (c), (d), (e), (f) for

all (i, j, k) ∈ Z3 , then it is strongly unimodal.

(a) C1 is the collection of the simplices T1c(i, j, k), c = 1, 2, ..., 6 and

(1) pi+1,jkpi,j+1,k ≤ pijkpi+1,j+1,k,

(2) pi+1,jkpij,k+1 ≤ pijkpi+1,j,k+1,

(3) pi,j+1,kpij,k+1 ≤ pijkpi,j+1,k+1,

(4) pi+1,j+1,kpi+1,j,k+1 ≤ pi+1,jkpi+1,j+1,k+1,

(5) pi+1,j+1,kpi,j+1,k+1 ≤ pi,j+1,kpi+1,j+1,k+1,

(6) pi+1,j,k+1pi,j+1,k+1 ≤ pij,k+1pi+1,j+1,k+1,

(7) pi−1,jkpi+1,j+1,k+1 ≤ pijkpi,j+1,k+1,

(8) pi,j−1,kpi+1,j+1,k+1 ≤ pijkpi+1,j,k+1,

(9) pij,k−1pi+1,j+1,k+1 ≤ pijkpi+1,j+1,k,

(10) pijkpi+2,j+1,k+1 ≤ pi+1,jkpi+1,j+1,k+1,

(11) pijkpi+1,j+2,k+1 ≤ pi,j+1,kpi+1,j+1,k+1,

(12) pijkpi+1,j+1,k+2 ≤ pij,k+1pi+1,j+1,k+1.

(b) C2 is the collection of the simplices T2c(i, j, k), c = 1, 2, ..., 6 and

(13) pi+1,j,k+1pi,j+1,k+1 ≤ pij,k+1pi+1,j+1,k+1,

(14) pi+1,jkpij,k+1 ≤ pijkpi+1,j,k+1,

(15) pij,k+1pi,j+1,k ≤ pijkpi,j+1,k+1,

(16) pi,j+1,k+1pi+1,jk ≤ pijkpi+1,j+1,k+1,

(17) pi+1,j,k+1pi,j+1,k ≤ pijkpi+1,j+1,k+1,

(18) pi+1,j+1,kpijk ≤ pi+1,jkpi,j+1,k,

(19) pi,j−1,kpi+1,j+1,k+1 ≤ pijkpi+1,j,k+1,

(20) pi+1,j+2,k+1pijk ≤ pi,j+1,kpi+1,j+1,k+1,

(21) pi−1,j+1,kpi+1,j+1,k+1 ≤ pi,j+1,kpi,j+1,k+1,
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(22) pi+2,j+1,k+1pijk ≤ pi+1,jkpi+1,j+1,k+1,

(23) pi+1,j−1,kpi+1,j+1,k+1 ≤ pi+1,jkpi+1,j,k+1,

(24) pi−1,jkpi+1,j+1,k+1 ≤ pijkpi,j+1,k+1,

(25) pi+1,j+2,k+1pi+1,jk ≤ pi+1,j+1,kpi+1,j+1,k+1,

(26) pi+2,j+1,k+1pi,j+1,k ≤ pi+1,j+1,kpi+1,j+1,k+1.

(c) C3 is the collection of the simplices T3c(i, j, k), c = 1, 2, ..., 6 and

(27) pij,k+1pi+1,j+1,k+1 ≤ pi,j+1,k+1pi+1,j,k+1,

(28) pi+1,j+1,kpi+1,j,k+1pi,j+1,k+1 ≤ pijkp
2
i+1,j+1,k+1,

(29) pi,j+1,kpi+1,j+1,k+1 ≤ pi+1,j+1,kpi,j+1,k+1,

(30) pi+1,jkpi,j+1,k+1 ≤ pijkpi+1,j+1,k+1,

(31) pi+1,j+1,kpi+1,j,k+1 ≤ pi+1,jkpi+1,j+1,k+1,

(32) pi−1,jkpi+1,j,k+1 ≤ pijkpij,k+1,

(33) pi+2,j,k+1pijk ≤ pi+1,jkpi+1,j,k+1,

(34) pi+2,j+1,kpijk ≤ pi+1,jkpi+1,j+1,k,

(35) pi−1,jkpi+1,j+1,k ≤ pijkpi,j+1,k.

(d) C4 is the collection of the simplices T4c(i, j, k), c = 1, 2, ..., 6 and

(36) pij,k+1pi+1,j+1,k+1 ≤ pi,j+1,k+1pi+1,j,k+1,

(37) pi+1,j,k+1pi,j+1,k ≤ pijkpi+1,j+1,k+1,

(38) pi+1,j+1,kpi,j+1,k+1 ≤ pi,j+1,kpi+1,j+1,k+1,

(39) pi+1,jkpi,j+1,k+1 ≤ pijkpi+1,j+1,k+1,

(40) pi+1,jkpi,j+1,k ≤ pijkpi+1,j+1,k,

(41) pi+1,j+1,kpi+1,j,k+1 ≤ pi+1,jkpi+1,j+1,k+1,

(42) pi−1,jkpi+1,j,k+1 ≤ pijkpij,k+1,

(43) pi,j+2,k+1pijk ≤ pi,j+1,kpi,j+1,k+1,

(44) pi−1,jkpi+1,j+1,k+1 ≤ pijkpi,j+1,k+1,



54

(45) pijkpi+1,j+2,k+1 ≤ pi,j+1,kpi+1,j+1,k+1,

(46) pijkpi+2,j,k+1 ≤ pi+1,jkpi+1,j,k+1,

(47) pi,j−1,kpi+1,j+1,k+1 ≤ pijkpi+1,j,k+1,

(48) pijkpi+2,j+1,k+1 ≤ pi+1,jkpi+1,j+1,k+1.

(e) C5 is the collection of the simplices T5c(i, j, k), c = 1, 2, ..., 6 and

(49) pij,k+1pi+1,j+1,k+1 ≤ pi,j+1,k+1pi+1,j,k+1,

(50) pi+1,j+1,kpi+1,j,k+1pi,j+1,k+1 ≤ pijkp
2
i+1,j+1,k+1,

(51) pi+1,j+1,k+1pi,j+1,k ≤ pi,j+1,k+1pi+1,j+1,k,

(52) pi+1,jkpi+1,j+1,k+1 ≤ pi+1,j+1,kpi+1,j,k+1.

(f) C6 is the collection of the simplices T6c(i, j, k), c = 1, 2, ..., 6 and

(53) pij,k+1pi+1,j+1,k+1 ≤ pi,j+1,k+1pi+1,j,k+1,

(54) pi,j+1,kpi+1,j,k+1 ≤ pijkpi+1,j+1,k+1,

(55) pi+1,jkpi,j+1,k+1 ≤ pijkpi+1,j+1,k+1,

(56) pi+1,j+1,kpijk ≤ pi+1,jkpi,j+1,k,

(57) pijkpi+1,j+1,k+2 ≤ pi+1,j,k+1pi,j+1,k+1,

(58) pi−1,jkpi+1,j,k+1 ≤ pijkpi,j+1,k+1,

(59) pi,j−1,kpi,j+1,k+1 ≤ pijkpij,k+1,

(60) pijkpi,j+2,k+1 ≤ pi,j+1,kpi,j+1,k+1,

(61) pi−1,j+1,kpi+1,j+1,k+1 ≤ pi,j+1,kpi,j+1,k+1,

(62) pijkpi+2,j,k+1 ≤ pi+1,jkpi+1,j,k+1,

(63) pi+1,j−1,kpi+1,j+1,k+1 ≤ pi+1,jkpi+1,j,k+1,

(64) pij,k−1pi+1,j+1,k+1 ≤ pi+1,jkpi,j+1,k,

(65) pi,j+1,kpi+2,j+1,k+1 ≤ pi+1,j+1,kpi+1,j+1,k+1,

(66) pijkpi+1,j+2,k+1 ≤ pi+1,j+1,kpi+1,j+1,k+1.
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Proof. We prove the sufficiency of (a). We subdivide R3 into unit cubes and then sub-

divide each cube into six simplices with disjoint interiors. We assume that in each cube

Subdivision 1 is used.

Let L(c, i, j, k), (i, j, k) ∈ Z3, c = 1, 2, ..., 6 designate the linear function on R3 that

coincides with − log p(.) on the vertices of T1c(i, j, k) and define

f(y) =





L(c, i, j, k) if y ∈ T1c(i, j, k), (i, j, k) ∈ Z3

∞ if y /∈ C1

Obviously, f coincides on Z3 with − log p(.).

Claim: Conditions (1), ..., (12) ensure that the restriction of f to any two simplices in Z3,

having a facet in common, is convex.

Proof of the claim: We prove that for any two neighboring simplices f satisfies the con-

vexity property. On each simplex we define a linear function. In case of any simplex a

linear piece is determined by the vertices of the simplex and the corresponding values of

− log p(.). The collection of these linear pieces form the function f .

The function f is convex on any two neighboring simplices with a common facet if for

any lattice points

zi = (zi1, zi2, zi3), i = 0, 1, 2, 3 and y0 = (y1, y2, y3)

such that zi are the vertices of a simplex in Subdivision 1 and y is the vertex of a

neighboring simplex which does not belong to the current one, we have the relation
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(y) f(z0) f(z1) f(z2) f(z3)

1 1 1 1 1

y1 z01 z11 z21 z31

y2 z02 z12 z22 z32

y3 z03 z13 z23 z33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

z01 z11 z21 z31

z02 z12 z22 z32

z03 z13 z23 z33

∣∣∣∣∣∣∣∣∣∣∣∣∣

≥ 0 . (4.2.1)
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First note that any simplex of type T1c, c = 1, ..., 6 has four neighbors: two in the

same cube and two in different cubes. We prove that inequalities (1), ..., (6) ensure the

convexity of f within a cube and inequalities (7), ..., (12) within two neighboring simplices

that are in different cubes.

We consider simplex T11(i, j, k) whose neighbors are:

conv{(i, j, k), (i + 1, j, k), (i + 1, j, k + 1), (i + 1, j + 1, k + 1)},
conv{(i, j, k), (i, j + 1, k), (i + 1, j + 1, k), (i + 1, j + 1, k + 1)},
conv{(i + 2, j + 1, k + 1), (i + 1, j, k), (i + 1, j + 1, k), (i + 1, j + 1, k + 1)},
conv{(i, j, k − 1), (i, j, k), (i + 1, j, k), (i + 1, j + 1, k)}.

Note that the first two simplices and T11(i, j, k) are in the same cube whereas the last

two are in two different cubes.

Let zi, i = 0, 1, 2, 3 be the vertices of simplex T11 and y the vertex of its first neighbor

that does not belong to T11. In this case inequality (4.2.1) can be written as
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(y) f(z0) f(z1) f(z2) f(z3)

1 1 1 1 1

i + 1 i i + 1 i + 1 i + 1

j j j j + 1 j + 1

k + 1 k k k k + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

i i + 1 i + 1 i + 1

j j j + 1 j + 1

k k k k + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

≥ 0 , (4.2.2)

where f = − log p(.). Since the denominator in (4.2.2) is equal to 1 the convexity of f is

satisfied if the numerator is nonnegative. Therefore we need to ensure that
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(y) f(z0) f(z1) f(z2) f(z3)

1 1 1 1 1

i + 1 i i + 1 i + 1 i + 1

j j j j + 1 j + 1

k + 1 k k k k + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(y)− f(z0) f(z0) f(z1)− f(z0) f(z2)− f(z1) f(z3)− f(z2)

0 1 0 0 0

1 i 1 0 0

0 j 0 1 0

1 k 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≥ 0 .

It follows that f(y) + f(z2) ≥ f(z1) + f(z3) . This is, however, the same as

p(y)p(z2) ≤ p(z1)p(z3) or pi+1,j,k+1pi+1,j+1,k ≤ pi+1,jkpi+1,j+1,k+1

which is inequality (4) of condition (a). Taking y = (i, j + 1, k) we obtain inequality (1)

of condition (a). Inequalities (2), (3), (5), (6) can be obtained by considering any two

neighboring simplices having a common facet in the same cube.

Now, let y = (i + 2, j + 1, k + 1) and zi, i = 0, 1, 2, 3 defined as before. In this case

(4.2.1) provides us with the following inequality:

pijkpi+2,j+1,k+1 ≤ pi+1,jkpi+1,j+1,k+1 ,

that is inequality (10). If we take y = (i, j, k − 1), then we obtain inequality (9).

We remark that in case of Subdivision 1, there are 12 possible layouts of neighboring

simplices in different cubes. However, they only provide us with six additional conditions,

i.e., inequalities (7), ..., (12). For example, inequality (10) is also obtained if we consider

the following two simplices

conv{(i, j, k), (i + 1, j, k), (i + 1, j, k + 1), (i + 1, j + 1, k + 1)},
conv{(i, j, k), (i + 1, j, k), (i + 1, j, k + 1), (i + 2, j + 1, k + 1)}.

Thus, the claim is true.

As C1 is the collection of the simplices T1c(i, j, k), (i, j, k) ∈ Z3, c = 1, ..., 6 and f

is convex on any two neighboring simplices, it is convex on the entire space. If (a) is

satisfied, then p is strongly unimodal. The sufficiency of (b), (c), (d), (e), (f) can be

proved similarly.

Consider a lattice point (x, y, z) ∈ Z3. For the sake of simplicity assume that x, y, z ∈
{0, 1}. We have the following six (3!) possibilities in connection with the components of
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the lattice point (x, y, z):

x ≤ y ≤ z , x ≤ z ≤ y ,

y ≤ x ≤ z , y ≤ z ≤ x ,

z ≤ x ≤ y , z ≤ y ≤ x .

(4.2.3)

The binary vectors satisfying (4.2.3) are the vertices of the simplices in Subdivision 1.

For example, the relation x ≤ y ≤ z provides us with the lattice points:

(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)

that are the vertices of the simplex of type T15. In the following section we use this idea

to find a subdivision of a hypercube and we present the conditions that ensure the strong

unimodality of a multivariate discrete distribution.

4.3 A Sufficient Condition for a Multivariate Discrete Distribution to

be Strongly Unimodal

We present a sufficient condition that ensures the strong unimodality of a discrete prob-

ability function defined on Zn. The function f defined on Rn that we fit to the values

of − log p(.) is piecewise linear. In view of this we need a subdivision of Rn into non-

overlapping convex polyhedra such that f(x) = − log p(x), x ∈ Zn, is linear on each of

them.

We consider a lattice point (i1, i2, ..., in) and the n! possibilities in connection with

the values of its components. Each of those n! relations provides us with the vertices of

a subdividing simplex as we have discussed in Section 4.2. Let S1, ...,Sn! designate the

resulting subdividing simplices of a hypercube:

S1 = conv{(i1, ..., in), (i1 + 1, i2, i3, i4, ..., in), (i1 + 1, i2 + 1, i3, i4, ..., in),

(i1 + 1, i2 + 1, i3 + 1, i4, ..., in), . . . , (i1 + 1, ..., in + 1)},

S2 = conv{(i1, ..., in), (i1 + 1, i2, i3, i4, ..., in), (i1 + 1, i2, i3 + 1, i4, ..., in),

(i1 + 1, i2 + 1, i3 + 1, i4, ..., in), . . . , (i1 + 1, ..., in + 1)},
...
Sn = conv{(i1, ..., in), (i1 + 1, i2, i3, ..., in−1, in), (i1 + 1, i2, i3, ..., in−1, in + 1),

(i1 + 1, i2 + 1, i3, ..., in−1, in + 1), . . . , (i1 + 1, ..., in + 1)},
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Sn+1 = conv{(i1, ..., in), (i1, i2 + 1, i3, i4, ..., in), (i1 + 1, i2 + 1, i3, i4, ..., in),

(i1 + 1, i2 + 1, i3 + 1, i4, ..., in−1, in), . . . , (i1 + 1, ..., in + 1)},

Sn+2 = conv{(i1, ..., in), (i1, i2 + 1, i3, ..., in), (i1, i2 + 1, i3 + 1, i4, ..., in),

(i1 + 1, i2 + 1, i3 + 1, i4, ..., in−1, in), . . . , (i1 + 1, ..., in + 1)},
...
S2n = conv{(i1, ..., in), (i1, i2 + 1, i3, ..., in), (i1, i2 + 1, i3, ..., in−1, in + 1),

(i1 + 1, i2 + 1, i3, ..., in−1, in + 1), . . . , (i1 + 1, ..., in + 1)},
...
Sn! = conv{(i1, ..., in), (i1, ..., in−1, in + 1), (i1, ..., in−2, in−1 + 1, in + 1),

(i1 + 1, i2, ..., in−2, in−1 + 1, in + 1), . . . , (i1 + 1, ..., in + 1)}.

Note that |S1| = ... = |Sn!| = n+1 and simplices Si, Sj , i 6= j have a common facet if they

have n common vertices. The sufficiency condition for a multivariate discrete probability

function to be strongly unimodal is given by the use of any two neighboring simplices

with one common facet.

Let p be the probability function of a discrete distribution on Zn and p(i1, ..., in) the

value of p at (i1, ..., in) ∈ Zn . Let C denote the collection of simplices S1, ...,Sn!.

Theorem 9. Suppose that p satisfies the following conditions:

Condition I.

p(x)p(y) ≤ p(x ∨ y)p(x ∧ y) (4.3.1)

where x = (i1 + ε1, ..., in + εn), y = (i1 + δ1, ..., in + δn) and

x ∨ y = (max(i1 + ε1, i1 + δ1), ...,max(in + εn, in + δn))

x ∧ y = (min(i1 + ε1, i1 + δ1), ...,min(in + εn, in + δn))

and εj , δj ∈ {0, 1}, j = 1, ..., n defined such that for k = 2, ..., n

n∑

j=1

εj =
n∑

j=1

δj = k − 1 ,

n∑

j=1

εjδj = k − 2 .
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Condition II.

p(i1+γ1+1, ..., in+γn+1)p(i1, ..., in) ≤ p(i1+1, ..., in+1)p(i1+γ1, ..., in+γn) , (4.3.2)

where γj ∈ {0, 1}, j = 1, ..., n and
n∑

j=1

γj = 1.

Condition III.

p(i1−α1, ..., in−αn)p(i1+1, ..., in+1) ≤ p(i1, ..., in)p(i1−α1+1, ..., in−αn+1), (4.3.3)

where αj ∈ {0, 1}, j = 1, ..., n and
n∑

j=1

αj = 1.

Then p is strongly unimodal.

Proof. Let L(c, i1, i2, ..., in), (i1, i2, ..., in) ∈ Zn, c = 1, 2, ..., n! denote the linear function

on Rn which coincides on the vertices of C with − log p(.) and define

f(y) =





L(c, i1, i2, ..., in) if y ∈ Sc(i1, i2, ..., in), (i1, i2, ..., in) ∈ Zn ,

∞ if y /∈ C .

It is easy to see that f coincides on Zn with − log p(.).

Claim: Condition (4.3.1) ensures the convexity of f within a hypercube and conditions

(4.3.2), (4.3.3) in different hypercubes.

Proof of the Claim: On each simplex we define a linear function as the equation of the

hyperplane determined by the vertices of the simplex and the corresponding values of

− log p(.). The collection of these linear pieces form the function f . We also ensure

convexity of the function f on any two neighboring simplices with a common facet, i.e.,

the following is satisfied: for any zi = (zi1, ..., zin) , i = 0, 1, ..., n and y = (y1, ..., yn)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(y) f(z0) f(z1) f(z2) . . . f(zn)

1 1 1 1 . . . 1

y1 z01 z11 z21 . . . zn1

...
...

...
...

...

yn z0n z1n z2n . . . znn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

z01 z11 z21 . . . zn1

...
...

...
...

z0n z1n z2n . . . znn

∣∣∣∣∣∣∣∣∣∣∣∣∣

≥ 0 (4.3.4)
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where f = − log p(.).

First note that both (i1, ..., in) and (i1 +1, ..., in +1) are the vertices of simplex Sj for

any j. Therefore any Sj has n + 1 neighbors: n − 1 of them are in the same hypercube

and two in different hypercubes. For the sake of simplicity let (i1, ..., in) = (0, ..., 0) and

consider the simplex S1:

conv{(0, ..., 0), (1, 0, 0, ..., 0), (1, 1, 0, 0, ..., 0), (1, 1, 1, 0, 0, ..., 0), . . . , (1, ..., 1, 1, 0), (1, ..., 1)}

whose neighbors in the same hypercube are:

conv{(0, ..., 0), (0, 1, 0, ..., 0), (1, 1, 0, 0, ..., 0), (1, 1, 1, 0, 0, ..., 0), . . . , (1, ..., 1, 1, 0), (1, ..., 1)},
conv{(0, ..., 0), (1, 0, 0, ..., 0), (1, 0, 1, 0, ..., 0), (1, 1, 1, 0, 0, ..., 0), . . . , (1, ..., 1, 1, 0), (1, ..., 1)},
conv{(0, ..., 0), (1, 0, 0, ..., 0), (1, 1, 0, 0, ..., 0), (1, 1, 0, 1, 0, ..., 0), . . . , (1, ..., 1, 1, 0), (1, ..., 1)},
...

conv{(0, ..., 0), (1, 0, 0, ..., 0), (1, 1, 0, 0, ..., 0), (1, 1, 1, 0, 0, ..., 0), . . . , (1, ..., 1, 0, 1), (1, ..., 1)},

and those in two different hypercubes are:

conv{(2, 1, ..., 1), (1, 0, ..., 0), (1, 1, 0, 0, ..., 0), (1, 1, 1, 0, ..., 0), . . . , (1, ..., 1, 1, 0), (1, ..., 1)},
conv{(0, ..., 0), (1, 0, ..., 0), (1, 1, 0, 0, ..., 0), (1, 1, 1, 0, ..., 0), . . . , (1, ..., 1, 1, 0), (0, ..., 0,−1)}.

Here the first n−1 neighbors of S1 are listed in such a way that in the first neighboring

simplex of S1 only the second vertex, in the second neighboring simplex only the third

vertex, ..., and finally in the (n−1)st neighboring simplex only the nth vertex is different

than the one in S1. In the nth neighboring simplex the first and in the (n+1)st neighboring

simplex the last vertex is different than the one in S1.

Let zi, i = 0, ..., n be the vertices of S1 in the same order given above and y the vertex

of the neighboring simplex, that does not belong to S1. Note that exactly k components

of vertex zk are 1. We will alternatively use the notation fk instead of f(zk).

Since the denominator of (4.3.4) is 1, the convexity of f is ensured if its numerator is

nonnegative. We consider the following cases:
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Case 1. Let y = (0, 1, 0, ..., 0). The numerator of (4.3.4) is equivalent to:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(y) f0 f1 f2 . . . fn

1 1 1 1 . . . 1

0 0 1 1 . . . 1

1 0 0 1 . . . 1

0 0 0 0 . . . 1

0 0 0 0 . . . 1
...

...
...

...
...

0 0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.3.5)

If we subtract (n+1)st column from the (n+2)nd column, nth column from the (n+1)st

column, ..., the second column from the third and finally from the first one and develop

the determinant according to the second row, we obtain
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(y)− f0 f1 − f0 f2 − f1 f3 − f2 . . . fn − fn−1

0 1 0 0 . . . 0

1 0 1 0 . . . 0

0 0 0 1 . . . 0

0 0 0 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.3.6)

It follows that

f(y) + f1 ≥ f0 + f2 . (4.3.7)

Since f = −logp(.), we have

p(0, 1, 0, ..., 0)p(1, 0, 0, ..., 0) ≤ p(0, 0, ..., 0)p(1, 1, 0, ..., 0) .
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Case 2. Let y = (1, 0, 1, ..., 0). The numerator of (4.3.4) is:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(y) f0 f1 f2 . . . fn

1 1 1 1 . . . 1

1 0 1 1 . . . 1

0 0 0 1 . . . 1

1 0 0 0 . . . 1

0 0 0 0 . . . 1
...

...
...

...
...

0 0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (4.3.8)

We apply a column subtraction method similar to the one used in Case 1. We subtract

(n + 1)st column from the (n + 2)nd column, nth column from the (n + 1)st column, ...,

the second column from the third and finally from the first one. Next we develop the

determinant according to the second row and subtract the second column from the first

column of the resulting determinant. In this case (4.3.8) is equivalent to the following

determinant:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f(y)− f1 f1 − f0 f2 − f1 f3 − f2 . . . fn − fn−1

0 1 0 0 . . . 0

0 0 1 0 . . . 0

1 0 0 1 . . . 0

0 0 0 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.3.9)

which provides us with the result

f(y) + f2 ≥ f1 + f3 . (4.3.10)

This is the same as

p(1, 0, 1, 0, ..., 0)p(1, 1, 0, ..., 0) ≤ p(1, 0, ..., 0)p(1, 1, 1, 0, ..., 0) .
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If exactly k components of y are 1, then, by the use of the column subtraction method

described above, the numerator of (4.3.4) can be obtained as

f(y) + fk ≥ fk−1 + fk+1 . (4.3.11)

Hence, we obtain all conditions of type (4.3.1) for the case of simplex S1.

Case 3. Now, let y = (2, 1, ..., 1), which is the vertex of the nth neighbor of the simplex

S1 in different hypercube. In this case we use the following column subtraction method:

subtract the (n+2)nd column from the first one, the (n+1)st column from the (n+2)nd

one, the nth column from the (n + 1)st one, ..., and finally the second column from the

third one. The resulting determinant is equivalent to:
∣∣∣∣∣∣

f(y)− fn f1 − f0

1 1

∣∣∣∣∣∣
. (4.3.12)

In this case we obtain

f(y) + f0 ≥ f1 + fn , (4.3.13)

which is the same as

p(2, 1, ..., 1)p(0, 0, ..., 0) ≤ p(1, 0, ..., 0)p(1, ..., 1) .

Case 4. Let y = (0, ..., 0,−1). If we use the column subtraction method in Case 1, the

numerator of (4.3.4) is obtained as follows:
∣∣∣∣∣∣

f(y)− f0 fn − fn−1

−1 1

∣∣∣∣∣∣
. (4.3.14)

Hence, we have

f(y) + fn ≥ f0 + fn−1 , (4.3.15)

that is equivalent to

p(0, ..., 0,−1)p(1, ..., 1, 1) ≤ p(0, ..., 0, 0)p(1, ..., 1, 0)

Thus, we obtain all conditions of type (4.3.2) and (4.3.3) for the case of simplex S1.
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Let zk , k = 0, ..., n designate the vertices of a simplex Sj for any j, whose k com-

ponents are equal to 1 and y the vertex of the neighboring simplex that does not belong

to Sj . In case of a simplex Sj , the determinant in denominator of (4.3.4) is either 1 or

−1. Moreover, by the use of elementary row operations, the numerator of (4.3.4) can be

transformed into one of the determinants in Cases 1-4. Hence, the convexity conditions

for f are of the forms (4.3.11), (4.3.13), (4.3.15) which provide us with conditions (4.3.1),

(4.3.2) and (4.3.3). Thus, p is strongly unimodal.

4.4 Maximization of a Strongly Unimodal Multivariate Discrete Dis-

tribution

We want to find the maximum of a strongly unimodal probability function p(x), x ∈ Zn.

The problem is the same as the minimum value of the function

− log p(x) if x ∈ Zn

that we will be looking at.

In addition to the strongly unimodality of p(x), x ∈ Zn we assume that there exists

a subdivision of Rn into simplices with pairwise disjoint interiors such that all vertices of

all simplices are elements of Zn and a function f(x), x ∈ Rn that is linear on each of

them, otherwise convex in Rn and f(x) = − log p(x) if x ∈ Zn.

Probability functions frequently take zero values on some points of Zn. If p(x) = 0,

then by definition f(x) = ∞ and therefore any x with this property can be excluded

from the optimization. We can also restrict the optimization to bounded sets. In fact,

since
∑

x∈Zn

p(x) = 1, it follows that there exists a vector b such that the minimum of f

is taken in the set {x | |x| ≤ b}. Such a b can easily be found without the knowledge

of the minimum of f , we simply take a b with large enough components. For simplicity

we assume that the minimum of f is taken at some point of the set {x | 0 ≤ x ≤ b} and

such a b is known.

Probability functions sometimes are of the type where the nonzero probabilities fill

up the lattice points of a simplex. An example is the multinomial distribution where
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p(x1, ..., xn) > 0 for the elements of the set

{x ∈ Zn | x ≥ 0, x1 + ... + xn ≤ n}.

Taking this into account, we will be looking at the problems

min f(x)

subject to

0 ≤ x ≤ b, x integer

(4.4.1)

where b has positive integer components and

min f(x)

subject to

x1 + ... + xn ≤ b

x ≥ 0, x integer

(4.4.2)

where b is a positive integer.

Our assumption regarding the subdivision of Rn into simplices and the function

f(x), x ∈ Rn carry over to the feasible sets in problems (4.4.1) and (4.4.2) in a natural

way.

The integrality restriction of x can be removed from both problems (4.4.1) and (4.4.2).

In fact, our algorithm not only produces an optimal x but also a subdividing simplex of

which x is an element and at least one of the vertices of the resulting simplex also is an

optimal solution.

First we consider problem (4.4.1). Let N be the number of lattice points of the

set {x | 0 ≤ x ≤ b}. Any function value f(x), 0 ≤ x ≤ b can be obtained by λ-

representation, as the optimum value of a linear programming problem:
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f(x) = min
λ

N∑

k=1

f(zk)λk

subject to
N∑

k=1

zkλk = x

N∑

k=1

λk = 1

0 ≤ x ≤ b

λ ≥ 0 .

(4.4.3)

By the use of problem (4.4.3), problem (4.4.1) can be written in the following way:

minx f(x) = min
λ,x

N∑

k=1

f(zk)λk

subject to
N∑

k=1

zkλk = x

N∑

k=1

λk = 1

x ≤ b

λ ≥ 0 , x ≥ 0.

(4.4.4)

Introducing slack variables we rewrite the problem as

min
x

f(x) = min
λ,x

N∑

k=1

f(zk)λk

subject to
N∑

k=1

zkλk − x = 0

N∑

k=1

λk = 1

x + u = b

λ ≥ 0 , x ≥ 0 , u ≥ 0.

(4.4.5)

In order to construct an initial dual feasible basis to problem (4.4.5) we use the fol-

lowing theorem by Prékopa and Li [75] (Theorem 2.1).
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Theorem 10. Suppose that z1, ..., zk are elements of a convex polyhedron K that is sub-

divided into r-dimensional simplices S1, ..., Sh with pairwise disjoint interiors and the set

of all of their vertices is equal to {z1, ..., zk}. Suppose further that there exists a convex

function f(z), z ∈ K, continuous on K and linear on any of the simplices S1, ..., Sh with

different normal vectors on different simplieces such that fi = f(zi), i = 1, ..., k. Let

B1, ..., Bh be those (n + 1) × (n + 1) parts of the matrix of equality constraints of prob-

lem (4.4.3), the upper n× (n + 1) parts of which are the sets of vertices of the simplices

S1, ..., Sh, respectively. Then B1, ..., Bh are the dual feasible bases of problem (4.4.3) and

each of them is dual nondegenerate

If the above-mentioned normal vectors are not all different, the assertion that the

vertices of any simplex form a dual feasible basis, remains true but these bases are no

longer all dual nondegenerate, as it turns out from the proof of the theorem.

Let S1, ..., Sn! designate the subdividing simplices. Let us rewrite problem (4.4.5)

into more detailed form:

min
N∑

k=1

f(zk)λk

subject to

x1 + u1 = b1

...

xn + un = bn

N∑

k=1




zk1

...

zkn




λk −




x1

...

0



− ...−




0
...

xn




=




0
...

0




N∑

k=1

λk = 1

λ ≥ 0 , x ≥ 0 , u ≥ 0.

(4.4.6)
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0 · · · 0 0 · · · 0 f(z1) · · · f(zn)
1 · · · 0 1 · · · 0 0 · · · 0 b1
... · · · ...

... · · · ...
... · · · ...

...
0 · · · 1 0 · · · 1 0 · · · 0 bn

-1 · · · 0 0 · · · 0 z11 · · · zN1 0
... · · · ...

... · · · ...
... · · · ...

...
0 · · · -1 0 · · · 0 z1n · · · zNn 0
0 · · · 0 0 · · · 0 1 · · · 1 1

Block 0 Block 1

Table 4.1: Coefficient matrix of problem (4.4.6), together with the objective function
coefficients and the right-hand side vector

It is easy to see that the rank of the matrix of equality constraints in (4.4.6) is 2n+1. Let

v1, v2, ... , vn, y1, y2, ... , yn, w designate the dual variables. The coefficient matrix of

problem (4.4.6) has a special structure illustrated in Table 4.1.

First, let us introduce the notations:

A =




1 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...

0 . . . 1 0 . . . 1




, T =




−1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . −1 0 . . . 0




, b =




b1

...

bn




To initiate the dual algorithm we compose a dual feasible basis for problem (4.4.6).

To accomplish this job we pick an arbitrary simplex Si whose vertices are zi1 , ..., zin+1

and form the 2n + 1-component vectors




0
...

0

zi1

1




, ... ,




0
...

0

zin+1

1




. (4.4.7)
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Then we compute the dual variables y and w by using the equation:

zT
ik
y + w = f(zik), k = 1, ..., n + 1 .

Next we solve the linear programming problem

min − yT T


 x

u




subject to

x1 + u1 = b1

...

xn + un = bn

x ≥ 0 , u ≥ 0,

(4.4.8)

by a method that produces a primal-dual feasible basis. Let B be this optimal basis and

d a dual vector corresponding to B, i.e., any solution of the equation dT B = −yT TB,

where TB is the part of T which correspond to the basis subscripts. Since A has full rank

B and d is uniquely determined.

Problem (4.4.9), however, is equivalent to

min y1x1 + ... + ynxn

subject to

x1 + u1 = b1

...

xn + un = bn

x ≥ 0 , u ≥ 0

(4.4.9)

which can be solved easily: if yi ≤ 0, we take the column of xi otherwise we take the

column of ui into the basis. We have obtained a dual feasible basis for problem (4.4.6). It

consists of those vectors that trace out B from A and TB from T in Block 0, furthermore

the previously selected vectors (4.4.7) in Block 1. The dual feasibility is guaranteed by

the theorem of Prékopa and Li in [75] (Theorem 2.2).

The next step is to check the primal feasibility of basis. The first n constraint in

problem (4.4.6) ensure that in case of any basis the basic xi, uj , (i 6= j) variables are
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positive, since we have the inequality b > 0. Thus, if the basis is not primal feasible, then

only the λ variables can take negative value.

If λj < 0, then the column of zij can be chosen to be the outgoing vector. The

incoming vector is either a nonbasic column from Block 0 or a nonbasic column from

Block 1. The algorithm can be described in the following way.

Dual algorithm to maximize strongly unimodal functions

Let us introduce the notations:

H = {1, 2, ..., h}, K = {1, 2, ..., k},

Zj = {zk | zk is a vertex of the simplex Sj , k ∈ K}, j ∈ H,

Lj = {k | zk ∈ Zj}, j ∈ H.

Step 0. Pick arbitrarily a simplex Sj and let zi, i ∈ {i1, ..., in+1} be the collection of its

vertices and

I(0) ← Lj = {i1, ..., in+1}

Go to Step 1.

Step 1. Solve for y, w the system of linear equations:

zT
ik
y + w = f(zik), k ∈ I(0),

where y ∈ Rn, w ∈ R Go to Step 2.

Step 2. Compose a dual feasible basis B by including the vectors (4.4.7), any column of

xi if yi ≤ 0 and any column of ui if yi > 0. Go to Step 3.

Step 3. Check the primal feasibility of basis B. If λ ≥ 0, stop, the basis is optimal. If

λ � 0, then pick λq < 0 arbitrarily and remove zq from the basis. Go to Step 4.

Step 4. Determination of incoming vector. The following columns may enter:

(1) A nonbasic column from Block 0.

(2) A nonbasic column zj from Block 1.
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Updating formulas

(1) Given I(k), in order to update a column from Block 0 which traces out the nonbasic

column ap from A, solve the following system of linear equations:

ABdp = ap

TBdp +
∑

i∈I(k)

zidi = tp (4.4.10)

∑

i∈I(k)

di = 1 ,

where AB, TB are the parts of A and T , respectively, corresponding to basis B; dp is a

vector with suitable size and tp is the p column of the matrix T .

Compute the reduced costs:

c̄p =
∑

i∈I(k)

f(zi)di .

(2) Assume that a nonbasic column zj from Block 1, where |I(k)| < n + 1, j 6= q and

{j} ∪ I(k)\{q} is a subset of Ll for some l ∈ H, enters the basis. Let Î(k) designate the

set of all possible j from Block 1 satisfying above requirements. To update the column

containing zj , j ∈ Î(k), we solve the system of linear equations:

ABrj = 0

TBrj +
∑

i∈Î(k)

zidi = zj (4.4.11)

∑

i∈Î(k)

di = 1 ,

where rj is a vector with suitable size.

Compute the reduced costs:

f̄j = −f(zj) .

Determination of the vector that enters the basis

Let d̃ T = (dT
p , di1 , ..., din+1) and d̃(q) be the qth component of d̃ in (4.4.10). Let

r̃ T = (rT
j , di1 , ..., din+1) and r̃(q) be the q component of r̃ in (4.4.11). Then the incoming

vector is determined by taking the minimum of the following minima:
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mind̃(q)<0

{∑
i∈I(k) f(zi)di

d̃(q)

}
, (4.4.12)

minr̃(q)<0

{−f(zj)
r̃(q)

}
. (4.4.13)

If the minimum is attained in (4.4.12), let

I(k+1) = I(k)\{q} .

Update the basis B by replacing the outgoing vector by the column of ap in Block 0.

If the minimum is attained in (4.4.13), then the column of zj is the incoming vector.

Let

I(k+1) = I(k) ∪ {j}\{q} .

Update the basis B by replacing the outgoing vector by the column of zj in Block 1. Go

to Step 3.

If no two linear pieces of the function f(x) are on the same hyperplane, then cycling

cannot occur, i.e., no simplex that has been used before returns. Otherwise an anti-cycling

procedure has to be used: lexicographic dual algorithm (see, e.g., [76]) or Bland’s rule

[10].

We can also find bounds for the optimum value of problem (4.4.6) by the use of the

fast bounding technique by Prékopa and Li [75]. First we construct a dual feasible basis

as described before. If v, y, w are the corresponding dual vectors, then bTv+w is a lower

bound for the optimum value of problem (4.4.6). In order to find an upper bound we use

any method that produces a pair of primal and dual optimal solutions (not necessarily

an optimal basis). Having the optimal (x̂T , ûT ), we arbitrarily pick a simplex Sk and

represent (x̂T , ûT ) as the convex combination of the vertices of Sk. If all coefficients

are nonnegative, then we stop. Otherwise we delete the corresponding vertex from the

simplex and update the basis by including the vertex of the neighboring simplex into the

basis which is not a vertex of the current simplex. If the representation of the vector

−T (x̂T , ûT ) is

−T (x̂T , ûT ) =
∑

zj∈S
zjλj ,
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where
∑

j

λj = 1 , λj ≥ 0, then the upper bound is given by

−yT T (x̂T , ûT ) +
∑

j

f(zj)λj .

The solution of problem (4.4.2) can be accomplished in the same way, only trivial

modifications are needed. If the minimum of f is taken in the set {x ∈ Zn | x >

0, x1 + ... + xn ≤ b}, then we assume that f(x) = M (M > 0) for every x that does not

belong to this set, where M is large enough (or ∞). In this case, problem (4.4.2) can be

solved by the use of above-mentioned methods.

In continuous optimization one of the important properties of convex functions is the

coincidence between their local and global minima. A function is g : Zn → R called

integrally convex if and only if its extension g̃ : Rn → R is convex. In this case a global

minimum for (continuous) function g̃ is a global minimum for (discrete) function g, and

vice versa.

4.5 Examples

We present four multivariate discrete distributions that are strongly unimodal. The prop-

erties of the distributions in the examples of this section can be found in [39].

Example 1. A function f : X = X1 ×X2 × ...×Xn → [0,∞) is said to be multivariate

totally positive of order 2, MTP2, if for all x, y ∈ X (see [41])

f(x ∨ y)f(x ∧ y) ≥ f(x)f(y),

where

x ∨ y = (max(x1, y1), max(x2, y2), ...max(xn, yn)),

x ∧ y = (min(x1, y1),min(x2, y2), ... min(xn, yn)) .

It is easy to see that if p is MTP2, then condition (4.3.1) of Theorem 2 is satisfied.

Consider the negative multinomial distribution with the probability function:

p(x1, ..., xn) =
(k − 1 +

∑n
i=1 xi)!

(k − 1)!
pk
0

n∏

i=1

pxi
i

xi!
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xi = 0, 1, 2, ... i = 1, 2, ..., n

n∑

i=0

pi = 1, 0 < pi < 1, i = 1, 2, .., n.

Karlin and Rinott [41] proved that the negative multinomial distribution is MTP2. There-

fore p satisfies condition (4.3.1) of Theorem 2.

Conditions (4.3.2) and (4.3.3) are satisfied if

n− 1− 2x1 + x2 + ... + xn ≥ 0,

n− 1 + x1 − 2x2 + x3 + ... + xn ≥ 0,

...

n− 1 + x1 + x2 + ... + xn−1 − 2xn ≥ 0 .

(4.5.1)

Thus, the negative multinomial distribution is strongly unimodal if (4.5.1) holds.

Example 2. The multivariate hypergeometric distribution has the following probability

function:

p(x1, ..., xn−1) =
n−1∏

i=1


 mi

xi





 m−m1 − ...−mn−1

k − x1 − ...− xn−1





 m

k




0 ≤ xi ≤ mi, i = 1, 2, ..., n− 1
n−1∑

i=1

xi ≤ k,

n−1∑

i=1

mi ≤ m .

One can show that p satisfies the conditions of Theorem 2. Thus, the multivariate

hypergeometric distribution is strongly unimodal.

Example 3. The multivariate negative hypergeometric distribution has probability func-

tion:

p(x) =
k!Γ(m)Γ(m−m1 − ...−mn−1 + k − x1 − ...− xn−1)

Γ(k + m)Γ(m−m1 − ...−mn−1)(k − x1 − ...− xn−1)!

n−1∏

i=1

Γ(mi + xi)
Γ(mi)xi!

0 ≤ xi ≤ mi, i = 1, 2, ..., n− 1
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n−1∑

i=1

xi ≤ k,
n−1∑

i=1

mi ≤ m .

Since p satisfies the conditions of Theorem 2 it is strongly unimodal.

Example 4. Consider the Dirichlet (or Beta)-compound multinomial distribution

Multinomial(k; p1, ..., pn−1)
∧

p1,...,pn−1

Dirichlet(α1, ..., αn−1)

The probability mass function of this compound distribution is:

p(x1, ..., xn−1) =
k!Γ(α)Γ(αn + k − x1 − ...− xn−1)

Γ(k + α)Γ(αn)(k − x1 − ...− xn−1)!

n−1∏

i=1

Γ(αi + xi)
Γ(αi)xi!

.

αn = α−
n−1∑

i=1

αi,
n−1∑

i=1

xi ≤ k, xi ≥ 0 .

The function p satisfies conditions (4.3.1), (4.3.2) and (4.3.3) of Theorem 2. Thus, it is

strongly unimodal.
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