
ROBUST STATISTICS OVER RIEMANNIAN
MANIFOLDS FOR COMPUTER VISION

BY RAGHAV SUBBARAO

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Peter Meer

and approved by

New Brunswick, New Jersey

May, 2008

ABSTRACT OF THE DISSERTATION

Robust Statistics over Riemannian Manifolds for

Computer Vision

by Raghav Subbarao

Dissertation Director: Peter Meer

The nonlinear nature of many compute vision tasks involves analysis over curved non-

linear spaces embedded in higher dimensional Euclidean spaces. Such spaces are known

as manifolds and can be studied using the theory of differential geometry. In this thesis

we develop two algorithms which can be applied over manifolds.

The nonlinear mean shift algorithm is a generalization of the original mean shift, a

popular feature space analysis method for vector spaces. Nonlinear mean shift can be

applied to any Riemannian manifold and is provably convergent to the local maxima

of an appropriate kernel density. This algorithm is used for motion segmentation with

different motion models and for the filtering of complex image data.

The projection based M-estimator is a robust regression algorithm which does not

require a user supplied estimate of the scale, the level of noise corrupting the inliers. We

build on the connections between kernel density estimation and robust M-estimators

and develop data driven rules for scale estimation. The method can be generalized to

handle heteroscedastic data and subspace estimation. The results of using pbM for

affine motion estimation, fundamental matrix estimation and multibody factorization

are presented.

A new sensor fusion method which can handle heteroscedastic data and incomplete

estimates of parameters is also discussed. The method is used to combine image based

pose estimates with inertial sensors.

ii

Acknowledgements

Thanks to: Peter Meer for his mentorship, patience and advice. Oncel Tuzel for all the

arguments, discussions and ideas. Yakup Genc for giving me an opportunity to work at

Siemens Corporate Research. All my friends for making the graduate school experience

a memorable one. My family for their support and understanding.

I would also like to thank Ioana and Peter Meer for all the dinners and movie

recommendations. They made these last four years so much more enjoyable.

iii

Dedication

To my parents

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . iv

List of Tables . ix

List of Figures . x

1. Introduction . 1

Contributions of this thesis . 5

2. Riemannian Geometry . 8

2.1. Basic Algebraic Concepts . 8

2.1.1. Groups . 9

2.1.2. Topological Space . 11

2.1.3. Homeomorphisms . 11

2.1.4. Analytic Functions . 12

2.2. Analytic Manifolds . 13

2.2.1. Manifolds . 13

2.2.2. Functions and Mappings . 14

2.2.3. Tangent Spaces . 15

2.3. Riemannian Manifolds . 16

2.3.1. Riemannian Metric . 17

2.3.2. Exponential and Logarithm Operators 18

2.3.3. Differential Operators on Manifolds 20

2.3.4. Covariant Derivatives . 22

v

2.3.5. Parallel Transport . 23

2.3.6. Function Optimization . 23

2.4. Types of Riemannian Manifolds . 24

2.4.1. Lie Groups . 24

2.4.2. Homogeneous Spaces . 26

2.4.3. Grassmann Manifolds . 28

2.4.4. Essential Manifold . 29

2.4.5. Symmetric Positive Definite (SPD) Matrices 34

3. Nonlinear Mean Shift . 36

3.1. Introduction . 36

3.2. The Original Mean Shift . 38

3.2.1. Mean Shift as Bounds Optimization 38

3.3. Nonlinear Mean Shift . 40

3.3.1. Kernel Density Estimation over Riemannian Manifolds 40

3.3.2. Mean Shift over Riemannian Manifolds 41

3.4. Computational Details of Nonlinear Mean Shift 42

3.5. Theoretical Properties . 44

3.5.1. Mean Shift and Expectation Maximization 46

3.6. Applications and Results . 48

3.6.1. Motion Segmentation . 48

3D Translational Motion . 49

Affine Motion . 51

Camera Pose Segmentation . 52

Multibody Factorization . 53

Epipolar Segmentation . 55

3.6.2. Robust Estimation . 56

Mean Shift versus RANSAC . 57

Camera Tracking System . 59

vi

3.6.3. Discontinuity Preserving Filtering 60

Chromatic Noise Filtering . 61

DT-MRI Filtering . 62

4. Projection Based M-Estimators . 64

4.1. Previous Work . 65

4.1.1. RANSAC and Robust Regression 66

4.1.2. Robust Subspace Estimation . 67

4.1.3. Scale Independent Robust Regression 69

4.2. Robust Heteroscedastic Linear Regression 70

4.2.1. The Scale in RANSAC . 72

4.2.2. Weighted Kernel Density Estimation 73

4.2.3. Reformulating the Robust Score 74

4.2.4. Projection Pursuit . 77

4.3. Robust Subspace Estimation . 78

4.4. The Projection Based M-estimator . 80

4.4.1. Data-driven Scale Selection . 80

4.4.2. Local Optimization . 82

4.4.3. Inlier-Outlier Dichotomy Generation 83

4.5. Results . 85

4.5.1. Synthetic Data . 85

4.5.2. Affine Motion Estimation . 87

4.5.3. Fundamental Matrix Estimation 89

Corridor Images . 90

Merton College Images . 92

Valbonne Images . 93

4.5.4. Affine Factorization . 95

Lab Sequence . 96

Toy Car Sequence . 98

vii

4.6. Connection to Nonlinear Mean Shift . 99

5. Fusion of Multiple Sources in Structure from Motion 100

5.1. Previous Work . 101

5.2. Heteroscedastic Errors-in-Variables Algorithm 104

5.2.1. An Approach Through Linearization 105

5.2.2. The Heteroscedastic Errors-in-Variables Algorithm 107

5.2.3. Enforcing Ancillary Constraints 108

5.2.4. Camera Pose Estimation . 109

5.2.5. Point Triangulation . 110

5.3. Camera Tracking System . 111

5.4. The Modified HEIV Algorithm . 115

5.4.1. Relationship to Kalman Filtering Approaches 117

5.4.2. Derivation . 118

5.4.3. Statistical Properties . 123

5.5. Experimental Results . 123

6. Conclusion and Future Work . 131

6.1. Future Work . 132

6.1.1. The Radon Transform . 132

6.1.2. Other Manifolds in Vision . 133

Appendix A. Conjugate Gradient over GN,k × Rk 135

References . 137

Vita . 145

viii

List of Tables

3.1. Formulae for exp and log operators over different manifolds 43

4.1. Kernel Density Estimation and M-Estimators 75

4.2. Performance Comparison - Affine Motion Estimation 89

4.3. Performance Comparison - Corridor Image Pair 91

4.4. Performance Comparison - Merton College Image Pair 93

4.5. Performance Comparison - Valbonne Image Pair 94

4.6. Segmentation Results of Factorization 97

4.7. Segmentation Results of Factorization 98

ix

List of Figures

2.1. Example of a two-dimensional manifold. Two overlapping coordinate

charts are shown. If the manifold is analytic, the transition map φ ◦ψ−1

(and ψ ◦ φ−1) from R2 to R2 should be analytic. 14

2.2. Example of a two-dimensional manifold and the tangent space at the

point x. 19

2.3. Four different camera geometries which give the same essential matrix. In each

row the geometries differ by changing the sign of the direction of translation.

Each column is a twisted pair. The image was taken from [57, p.241]. 30

3.1. 3D Translational Motion. Mean shift over G3,1. In the left figure all the points

are shown while on the right the inliers returned by the system. The table on

the left contains the properties of the first four modes. Only the first three

modes correspond to motions. The table on the right compares the results with

the manual segmentations. 50

3.2. Affine motion segmentation. Mean shift over A(2). In the left figure all the

points are shown, and on the right only the inliers are shown. The table on the

left contains the properties of the first four modes. Only the first three modes

correspond to motions. The table on the right compares the results with the

manual segmentations. 52

3.3. Camera Pose Segmentation. Images used to reconstruct 3D point clouds using

the OpenCV implementation of the calibration technique of [142] 53

3.4. Camera Pose Segmentation. Mean shift over SE(3). The figure shows inliers

for the different motions found. The table on the left contains the properties of

the first four modes. Only the first three modes are valid motions. The table

on the right compares the result with the manual segmentation. 54

x

3.5. Multibody Factorization. Mean shift over G10,3. The left figure shows the first

frame with all the points which are tracked. The middle and right images

show the second and fifth frames with only the inliers. The table on the left

contains the properties of the first four modes. Only the first three modes

correspond to motions. The table on the right compares the results with the

manual segmentations. 55

3.6. Mean shift over the Essential Manifold. The left figure shows the first frame

with all the points which are matched. The right image shows the second

frame with only the inliers returned by the segmentation. The table on the

left contains the properties of the first three modes. Only the first two modes

correspond to motions. The table on the right compares the results with the

manual segmentations. 56

3.7. Comparison of the error densities for RANSAC and averaging as given by (3.28)

and (3.29). (a) n = 10 for both curves. (b) n = 100 for both curves. (c) n = 100

for RANSAC and n = 25 for averaging. 58

3.8. Results of the camera tracking. The scene used is shown on the left. The

reconstructed point cloud and camera frames are on the right. 60

3.9. Chromatic Noise Filtering. The baboon image corrupted with chromatic noise

is shown on the left. The results of using standard mean shift filtering with

EDISON are in the middle and the results of our method are on the right. . . 61

3.10. Chromatic Noise Filtering. The jellybeans image corrupted with chromatic

noise is shown on the left. The results of using standard mean shift filtering

with EDISON are in the middle and the results of our method are on the right. 62

3.11. Real DTI data of a human heart before and after smoothing. The jitter in

the top image is due to noisy voxels having different anisotropies from their

surroundings. These are removed by the smoothing and more continuous regions

of uniform anisotropy are visible below. 63

4.1. Biweight loss function, ρ(u) and the biweight M-kernel function, κ(u).

Image (a) on the left is the biweight loss function and (b) is the corre-

sponding M-kernel function. 69

xi

4.2. The quasi-linear variation of M-estimator scores with scale. The param-

eters θ and α are set to their true values while the scale s is varied. The

dashed vertical line indicates the true scale of the noise corrupting the

inliers. 74

4.3. An example of projection pursuit. The 2D data points and the two

directions, θ1 and θ2 are shown in the middle image. The kernel density

estimate of the projections along θ1 is shown on the left. There is a

clear peak at the intercept. The projections along θ2 give a more diffuse

density, as seen in the right figure. 77

4.4. The pbM algorithm uses two different scales. Data-driven scales are used

for computing a robust M-scores. A new scale is then used to separate

the inlier from the outliers. 81

4.5. Scale selection experiment with synthetic data with k = 1. Figure (a)

compares the various scale estimators’ performance as the number of

outliers increase. Figure (b) shows the mode estimate computed on the

same data sets and (c) shows a zoomed-in version of (b). 85

4.6. Images used for affine motion estimation. All the 51 points (inliers and outliers)

matched in the two views are shown. 87

4.7. Results of affine motion estimation. The 19 inliers returned by pbM are shown

in the two images. 88

4.8. Fundamental matrix estimation for the corridor images. Frame 0 and frame 9

are shown along with all the 127 point matches (inliers and outliers). 90

4.9. Results of fundamental matrix estimation for the corridor images. The 66 inliers

returned by pbM and epipolar lines of the 8 outliers misclassified as inliers are

shown. The reason for the misclassifications is explained in the text. 91

4.10. Fundamental matrix estimation for the Merton College images. Frames 0 and

2 are shown along with all the 135 point matches (inliers and outliers). 92

xii

4.11. Results of fundamental matrix estimation for the Merton College images. The

68 inliers returned by pbM and epipolar lines of the 6 outliers misclassified as

inliers are shown. The reason for the misclassifications is explained in the text. 93

4.12. Fundamental matrix estimation for the Valbonne sequence. Both images are

shown along with the 85 point matches (inliers and outliers). 94

4.13. Results of fundamental matrix estimation for the Valbonne sequence. The 45

inliers returned by pbM and epipolar lines of the 3 outliers misclassified as

inliers are shown. 95

4.14. Lab sequence used for factorization. The three objects move independently and

define different motion subspaces. The left image shows the first frame with

all the points (inliers and outliers). The right shows the fifth frame with the

points assigned to the three motions marked differently. The first motion M1

corresponds to the paper napkin, the second motion M2 to the car and M3 to

the book. 97

4.15. Toy car sequence used for factorization. The three cars move independently

and define different motion subspaces, but the yellow and black cars define

subspaces very close to each other. The left image shows the first frame with all

the points (inliers and outliers). The right image shows the fourth frame with

the points assigned to the three cars marked differently. The first motion M1

corresponds to the blue car, M2 to the yellow car and M3 to the black car. . 98

5.1. Outline of the tracking system. 112

5.2. Camera paths for workspace scene. 113

5.3. Comparison of camera tracking at frame 623 for the workspace experiment. The

HEIV algorithm is used to get the pose and render the wireframe on the left

and the LM algorithm is used on the right. 114

5.4. Wireless Inertia Cube 3 and the wireless receiver. 115

xiii

5.5. Camera paths for experiment 1. The results of the simple HEIV algorithm are

compared with our fusion algorithm. The discontinuity in the position estimates

when the markers come back into view at frame 520 is an indication of the drift

suffered by the system. The fusion based system clearly suffers from lesser drift. 124

5.6. Comparison of camera tracking at frame 519 of experiment one. On the left

the fusion algorithm is used to get the pose and render the wireframe while the

HEIV algorithm is used on the right. 125

5.7. Comparison of camera tracking at frame 130 for the planar scene. The fusion

algorithm is used to get the pose and render the wireframe on the left and the

HEIV algorithm is used for the right image. 126

5.8. Camera paths results for experiment two. The simple HEIV algorithm breaks

down and loses track due to the planarity of reconstructed features. The fusion

algorithm presented has some jitter but is much more stable. The HEIV pose

estimate keeps flipping between the true pose and its mirror image. 127

5.9. Comparison of camera tracking at frame 471 for experiment three. The fusion

algorithm is used to get the pose and render the wireframe on the left and the

HEIV algorithm is used on the right. 128

5.10. Camera paths results for experiment three. The fusion algorithm presented here

clearly has a much more stable path and suffers from less drift. 129

xiv

1

Chapter 1

Introduction

Computer vision problems can be broadly classified into low-level, mid-level and high-

level tasks. The output of each stage is passed onto the next stage for further analysis.

Low-level tasks extract meaningful ‘image features’ from raw pixel data. These fea-

tures are then processed in the mid-level stage to obtain information about the scene.

Finally, at the high-level stage, the system tries to extract semantic information from

the geometric information obtained at the mid-level stage.

A common feature across these different levels of vision tasks is the nonlinear na-

ture of problems. Consequently, feature analysis and estimation in vision problems

involve curved nonlinear spaces embedded in higher dimensional Euclidean spaces.

These curved spaces exhibit a significant amounts of smoothness but they are not

vector spaces. Notions such as sums and differences of points in these spaces are not

well defined. Such smooth, curved surfaces are referred to as manifolds. Manifolds are

said to be Riemannian if they are endowed with a well defined notion of the distance

between two points lying on them. We are interested in practical applications where it

is possible to give a manifold a Riemannian structure based on geometric considerations

of invariance [92].

There exist many different examples of Riemannian manifolds which appear in fre-

quently in vision. In low level applications it is known that the space of color signals

forms a conical space with hyperbolic geometry [73, 74, 75]. Novel imaging methods,

especially in medical applications, also lead to new types of image data with their own

complex geometries [38, 28, 72, 132].

At the mid-level stage, manifolds are important for the analysis of the projection

relations between 3D scene points and 2D image points. Depending on the nature of

2

the camera, the type of object motions present in the scene and the type of available

information, these exist many different types of constraint equations relating 3D scene

points with their 2D projections. These equations are parameterized by pose of the

camera and the relative motion between the camera and scene. In most cases the space

of possible motion parameters forms a Riemannian manifold. Examples of such motion

manifolds include 2D and 3D rotations, 2D and 3D rigid transformations, image affine

motions, camera pose matrices and essential matrices.

In high-level applications, the analysis of shapes in 2D and 3D requires the working

with shape spaces. The space of faces and cyclic motions such as human gait also form

manifolds, although such manifolds are not very well understood. Use of histograms and

probability distributions as descriptors can be handled formally within the framework of

information geometry [2], which is the study of the differential geometry of the manifold

of probability distributions.

Most of these manifolds are well known outside vision and have been studied in

fields such as differential geometry and physics. However, the degeneracies of visual

data sometimes lead to manifolds, such as the essential manifold, which are specific to

computer vision and have not been analyzed previously

In the past, vision research has concentrated on developing techniques for filtering,

estimation and analysis over Euclidean spaces. Extending these algorithms to handle

Riemannian manifolds offers the advantages of theoretical consistency and practical

utility. In this thesis we present two algorithms which account for the nonlinear nature

of vision problems. The first is a generalization of the mean shift algorithm which was

originally derived for Euclidean space. The second is the projection based M-estimator

(pbM) which is a user independent robust regression algorithm.

Many vision tasks can be solved within the framework of feature space analysis. The

features are regarded as being drawn from some unknown probability distribution and

the required geometric information is encoded in the parameters of this distribution.

For the vision system to be completely autonomous, the feature space analysis algorithm

needs to satisfy some requirements.

3

• Firstly, making assumptions about the nature of the distribution in the feature

space can lead to incorrect results. This is because standard theoretical models,

such as the assumption of additive Gaussian noise or unimodality, are not valid.

Consequently, the feature space analysis should be nonparametric, i.e., it should

make no assumption about the nature of the unknown distribution.

• Secondly, the data being processed is noisy and the algorithm should have a

tolerance for these errors in the data.

• Finally, the data may include points which do not belong to the distribution being

estimated. This can occur either due to gross errors at earlier stages or due to the

presence of multiple geometric structures. Since the system is quasi-autonomous

it has no knowledge of which data points belong to which distribution. To account

for this the feature space analysis algorithm should be robust.

A popular nonparametric feature space analysis algorithm is the mean shift algo-

rithm [16, 25][42, p.535]. It satisfies all the above properties of being nonparametric,

showing a tolerance for noise and being robust. Since it was introduced to the computer

vision community [25], mean shift has been applied to numerous applications, such as

(non-rigid) tracking [8, 23, 26, 32, 55, 143], image segmentation [25], smoothing [25]

and robust fusion [15, 24].

This standard form of mean shift assumes that the feature space in which all the data

lies is a vector space. We extend the mean shift algorithm to the class of Riemannian

manifolds. We present the results of using this nonlinear mean shift algorithm for

motion segmentation with various motion models and for the filtering of complex image

data.

Another class of robust algorithms used in computer vision are robust regression

algorithms which perform regression in the presence of outlier data without affecting

the quality of the parameter estimate. We discuss a robust regression algorithm, the

projection based M-estimator (pbM) [111, 113], which is user-independent and exhibits

superior performance to other state-of-the-art robust regression algorithms. This is

done by exploiting the similarity between robust M-estimator cost functions and kernel

4

density estimation in Euclidean space. These advantages are particularly obvious in the

presence of large numbers of outliers and multiple structures. The pbM algorithm takes

into account the geometry of the parameter space in a local optimization step. The

parameter space forms a Riemannian manifold and the local optimization is adapted

to work over this space.

The thesis is organized as follows. In Chapter 2, we give an introduction to the

theory of Riemannian manifolds which is used in the rest of the thesis. We begin with

the definition of basic algebraic concepts such as groups and topologies. These are

used to give a formal definition of the term manifold. Next, Riemannian manifolds,

which are manifolds endowed with a distance metric, are introduced. Concepts such

as tangents, vector fields and covariant derivatives are defined. The notion of parallel

transport, which is necessary for the extension of gradient-based function optimization

methods to manifolds, is also introduced.

In Chapter 3 the nonlinear mean shift algorithm is derived. The original mean

shift over Euclidean space, has been justified in many different ways. Generalizing

each of these methods to manifolds leads to a different form of mean shift. However,

in deriving the nonlinear mean shift algorithm, we have concentrated on proposing an

algorithm which retains the properties which made the original mean shift so popular.

Namely, ease of implementation and good convergence properties. It is shown that

the nonlinear mean shift is provably convergent to a local maxima of an appropriately

defined kernel density. The nonlinear mean shift algorithm is used to develop a motion

segmentation method which is able to estimate the number of motions present in the

data and their parameters in a single step. The given data set is allowed to contain

outliers. The nonlinear mean shift algorithm is also used for the filtering of chromatic

noise from images and for the smoothing of diffusion tensor data, an important new

medical imaging representation.

In Chapter 4 the projection based M-estimator is presented. A major hurdle to

the deployment of robust regression algorithms in practical applications has been the

necessity for user supplied parameters which reflect some knowledge of the world. Here

we concentrate on one such parameter, the level of additive noise corrupting the inliers

5

which known as the scale of the noise. The performance of the system is sensitive to the

accuracy of these scale estimates. It is also possible that the scale varies over time and

it is necessary for the system to adapt itself to the varying levels of noise. For example,

in a real-time image based reconstruction system the amount of noise corrupting the

tracked corner features will change depending on how fast the camera is moving. The

projection based M-estimator is a user independent robust regression algorithm which

does not require user defined scale estimates but uses data driven rules to adapt itself

to the particular data set. The pbM algorithm builds on the equivalence between the

original mean shift algorithm and robust M-estimators to get estimates of the scale of

inlier noise. The various scale estimates used by pbM are completely nonparametric

and make minimal assumptions about the nature of noise. We present a general version

of the pbM algorithm which is able to handle heteroscedastic data and is also extended

to subspace estimation.

Some work on sensor fusion is presented in Chapter 5. Inertial sensors are in-

creasingly being combined with image based reconstruction systems to obtain higher

performance reconstruction and tracking. These fusion methods have to deal with two

problems. Firstly, the inertial sensors often give incomplete information about the pose

of the camera. Secondly, the heteroscedastic nature of the data has to be taken into

account. We propose a variation of the HEIV algorithm for heteroscedastic regression

which can combine the information from inertial sensors with the image based pose to

obtain improved tracking performance. The results are tested using a gyroscope rigidly

attached to the camera which returns estimates of the relative rotational motion of the

camera between frames.

Conclusions and directions for future work are presented in Chapter 6.

Contributions of this thesis

The following are some of the main contributions of this thesis.

• Generalization of the original mean shift algorithm to Riemannian manifolds. The

new algorithm is valid over any Riemannian manifold. (Section 3.3)

6

• Proof of convergence of the nonlinear mean shift algorithm and the conditions

necessary for this. Most practical examples of Riemannian manifolds satisfy these

conditions. (Section 3.5)

• The geometry of the essential manifold, which is the space of all essential matrices,

is discussed. (Section 2.4.4)

• Application of the nonlinear mean shift algorithm for

– Translation viewed by a calibrated camera (Section 3.6.1)

– Affine image motion (Section 3.6.1)

– Camera pose based segmentation (Section 3.6.1)

– Multibody Factorization (Section 3.6.1)

– Robust Camera pose estimation (Section 3.6.2)

– Chromatic Noise filtering (Section 3.6.3)

– Diffusion Tensor MRI filtering (Section 3.6.3)

• General form of projection based M-estimator to handle heteroscedastic data and

subspace estimation problems. (Section 4.4)

• We propose a novel robust cost function which gives improved performance, es-

pecially in the presence of heteroscedastic data. (Section 4.2.3)

• We use gradient based optimization to find local maxima over the search space for

regression and subspace estimation, which is a Riemannian manifold. (Appendix

A)

• Develop a new nonparametric user-independent method for inlier-outlier separa-

tion based on residual errors. (Section 4.4.3)

• Application of the pbM algorithm for

– Fundamental Matrix estimation (Section 4.5.3)

– Affine motion estimation (Section A)

7

– Multibody Factorization (Section 4.5.4)

• Sensor fusion with incomplete data for structure from motion. The algorithm is

tested in a structure from motion system with a gyroscope rigidly attached to

the camera. The gyroscope only returns estimates of the relative rotation of the

camera between frames. (Chapter 5)

8

Chapter 2

Riemannian Geometry

In this chapter we introduce some basic theory of differential geometry. These concepts

are used in the later chapters for the developing robust statistical techniques for Rie-

mannian manifolds. A thorough introduction to differential geometry can be found in

[9, 90].

At an intuitive level, manifolds can be though of as smooth, curved surfaces em-

bedded in higher dimensional Euclidean spaces. Riemannian manifolds are manifolds

endowed with a distance measure which allows us to measure how similar or dissimilar

(close or distant) two points are.

We follow the notation of [90] in this chapter for representing manifolds and their

associated algebraic structures.

M,N manifolds p,q points

U ,V open sets φ, ψ mappings

f, g real-valued functions V,W vector fields

Note, we represent the points on manifolds by small bold letters, e.g., x,y. In some

of our examples, the manifold is a set of matrices. Although matrices are conventionally

represented by capital bold letters, when we consider them to be points on a manifold,

we denote them by small letters.

2.1 Basic Algebraic Concepts

In this section basic algebraic concepts such as groups and topologies are introduced.

These concepts are used to formally define manifolds.

9

2.1.1 Groups

A set G endowed with a binary operation, ·, is called a group if it satisfies the following

properties:

• Closure: g · h ∈ G, for any g, h ∈ G

• Associativity : g · (h · k) = (g · h) · k for any g, h, k ∈ G

• Identity : There exists an e ∈ G such that g · e = e · g = g for any g ∈ G. The

element e is said to be the identity of the group.

• Inverse: For any g ∈ G, there exists a unique h ∈ G such that g · h = h · g = e.

The element h is said to be the inverse of g and denoted by g−1.

It is important to remember that the group is defined by the set G and the binary

operation ·. It is possible to define different binary operations on the same underlying

set of elements to obtain different groups. However, we often denote a group only by

the set of elements and the group operation is understood from the context.

The simplest example of a group is the set of integers, Z, under addition. The

identity is 0 and the inverse of any integer x is −x. If the binary operation is chosen to

be multiplication, the set of integers is no longer a group. For example the multiplicative

inverse of 2 is 1/2 which is not an integer.

Let Q denote the set of rational numbers. Then the set Q\{0} forms a group under

multiplication with identity 1. It is necessary to remove 0 since the multiplicative

inverse of 0 is not defined as there is no x such that 0.x = 1.

Although the group operation is associative, it is not necessarily commutative, i.e.,

it is not necessary for the condition

g · h = h · g (2.1)

to hold. All our previous examples were of commutative groups. An example of a

non-commutative group is the set of invertible n × n square matrices. This is an

important group known as the general linear group, GL(n) with the group operation

being matrix multiplication. It can be verified that closure and associativity hold. The

10

identity of GL(n) is the n × n identity matrix en. However, matrix multiplication is

not commutative and GL(n) is not a commutative group.

A subset H of G is called a subgroup if H satisfies all the properties of being a

group under the same binary operation. Since H has to satisfy the four properties of

the group, it must contain the identity and for any element h ∈ H it is necessary that

h−1 ∈ H. A necessary and sufficient condition for H to be a subgroup is that for any

h1, h2 ∈ H, h1h
−1
2 lies in H. For example the set of positive rational numbers, Q+ forms

a subgroup of Q under multiplication. However, the set of negative rational numbers,

Q− is not a subgroup since Q− does not contain the identity 1.

A more relevant example of a subgroup is the special linear group, SL(n) which is

the set of n× n matrices with unit determinant

SL(n) = {X ∈ Rn×n|det(X) = 1}. (2.2)

Since the matrices in SL(n) have a determinant of one, they are invertible and they

lie in GL(n). The identity en lies in SL(n) and the inverse of a matrix with unit

determinant also has a determinant of one. Therefore, for any X ∈ SL(n), X−1 also

lies in SL(n).

Let H be a subgroup of the group G and let g be an element of G. The set

{gh|h ∈ H} is known as a left coset of H and is denoted by gH. We can similarly

define right cosets, Hg. A basic results of group theory shows that the group G can be

divided into disjoint cosets of H. Suppose g1H and g2H share a common member g.

Then there exist h1 and h2 such that g1h1 = g2h2 = g. Now consider any element g1h

of the coset g1H. We have

g1h = g1h1(h−1
1 h) = g2h2(h−1

1 h) = g2(h2h
−1
1 h). (2.3)

Since H is a subgroup and h, h1, h2 ∈ H, h2h
−1
1 h ∈ H and g1h = g2(h2h

−1
1 h) ∈ g2H.

Therefore, g1H ⊆ g2H. We can reverse the process to show g2H ⊆ g1H. Therefore,

the two sets are equal. The factor space G/H is the space of all left cosets. Each point

in the factor space corresponds to a single coset.

11

2.1.2 Topological Space

Consider a set X and let T be a family of subsets of X. The pair (X, T) forms a

topological space if the following conditions hold.

• ∅ ∈ T and X ∈ T , where ∅ is the empty set.

• The union of any family of sets in T also lies in T

• The intersection of any finite number of sets in T belongs to T .

The family T is said to be a topology of X and the sets in T are called the open sets of

the topological space. A topological space is defined by the underlying set X and the

topology T and different topologies can be defined on the same X to obtain different

topological spaces. However, when the topology is clear from the context, a topological

space is denoted simply by the underlying set X. For a point x ∈ X, any open set

U ∈ T which contains x is said to be a neighbourhood of x.

A topological space X is said to be separated or Hausdorff if for any two points

x, y ∈ X, there exist neighbourhoods U and V of x and y respectively, such that

U ∩ V = ∅, i.e., any two points x and y can be separated by disjoint neighbourhoods.

The simplest example of a topology is the real line, R. We start be defining all open

intervals, (a, b) = {x ∈ R|a < x < b} to be open sets. We then add all the other sets

necessary to satisfy the axioms listed above which are required to make this a topology.

For example, sets of the form (a, b) ∪ (c, d) must be an open sets since they are the

unions of open sets. Adding all such sets we get the usual topology on R.

This idea can be extended to higher dimensional Euclidean spaces. For example the

real plane, R2 = R×R is the product of the real lines. Open sets in R2 are of the form

U × V = {(x, y)|x ∈ U , y ∈ V} where U and V are open sets in R.

2.1.3 Homeomorphisms

We will eventually be dealing with real valued functions defined over topological spaces.

For functions on the real line we can define notions such as continuity and differentia-

bility. It is not clear how to define continuity for functions over an abstract topological

12

space. For functions defined on a real line continuity is defined by saying that as we

move towards a point x, the value of the function gets closer to the value f(x). Over

a topological space, the idea of being ‘close’ to a particular point is captured by its

neighbourhoods and the continuity of a function is defined by how it maps open sets

of the topology. Given two topological spaces X and Y, a mapping f : X → Y is

continuous if for any open set V ∈ Y the set

f−1(V) = {x ∈ X|f(x) ∈ V } (2.4)

is an open set in X. The set f−1(V) is known as the pull-back of V . A mapping f is

called a homeomorphism if it is bijective (one-to-one and onto) and f : X → Y and

f−1 : Y → X are both continuous.

2.1.4 Analytic Functions

A real valued function f from an open set U ⊆ Rn to R is smooth if all its partial

derivatives with respect to each coordinate and of any order exist at every point in U .

A smooth function for which these derivatives can be arranged into a convergent Taylor

series is said to be analytic.

The natural coordinate functions, ui : Rn → R, i = 1, . . . , n are the functions which

map each point in Rn to its coordinates. For x = (x1, . . . , xn)

ui(x) = xi. (2.5)

The coordinate functions are trivially smooth and analytic. A function φ from Rn to Rm

is smooth provided each of its coordinate functions ui◦φ : Rn → R is smooth. Similarly,

a function φ from Rn to Rm is analytic provided each of its coordinate functions ui ◦φ :

Rn → R is analytic.

The use of superscripts and subscripts for indexing components follows the standard

rules based on whether they are covariant or contravariant tensors. However, we do not

discuss this matter any further here.

13

2.2 Analytic Manifolds

The simplest example of a manifold is the usual Euclidean n-space Rn. We are familiar

with this space and take a lot of notions for granted such as the Euclidean metric and

its connection with the natural inner product of vectors in Rn. Analytical manifolds

offer a formal algebraic structure to extend these properties to other spaces.

2.2.1 Manifolds

A manifold is a space that is locally similar to Euclidean space. This is achieved formally

by building mappings which make each small patch of a manifold similar to an open

set in Euclidean space. To do this, we need to answer the following questions. How

do we find these patches which look similar to Euclidean space? How are the different

patches related to each other?

Consider a topological space M. A coordinate chart of a topological space is a

neighborhood U ⊆M and an associated homeomorphism φ from U to some Euclidean

space Rm. By definition, φ(U) is an open set in Rm. This mapping is written as

φ(x) = [φ1(x), . . . , φm(x)] (2.6)

for each x ∈ U and the resulting functions φi, i = 1, . . . , n are the coordinate functions

of φ. We have the identity ui ◦ φ = φi, where ui are the natural coordinate functions

defined previously. The neighborhood U and its associated mapping φ together form a

coordinate chart. The value m is the dimension of φ.

Consider two different m-dimensional coordinate charts (U , φ) and (V, ψ) such that

U ∩ V is nonempty. The transition map φ ◦ ψ−1 is a mapping from the open set

ψ(U ∩ V) ∈ Rm to the open set φ(U ∩ V) ∈ Rm. These ideas are graphically illustrated

in Figure 2.1. The open sets U and V overlap. The image of the overlap region under

the mapping ψ is shaded light grey and the image under φ is shaded dark gray. The

transition map ψ−1 ◦ φ maps points from the light grey region to the dark grey region.

If the transition maps are smooth in the Euclidean sense defined above, then U and V

are said to overlap smoothly. Coordinate charts are said to compatible if they do not

overlap or overlap smoothly.

14

Figure 2.1: Example of a two-dimensional manifold. Two overlapping coordinate charts
are shown. If the manifold is analytic, the transition map φ ◦ ψ−1 (and ψ ◦ φ−1) from
R2 to R2 should be analytic.

An atlas, A, of dimension m is a set of m-dimensional coordinate charts such that

• Each point ofM is contained in some coordinate chart.

• Any two coordinate charts are compatible.

The value of m is said to be the dimension of the atlas. An atlas is said to be complete

if it contains all the coordinate charts which are compatible with the coordinate charts

of the atlas.

An analytic manifold is a Hausdorff, topological space furnished with a complete

atlas. From now on we restrict ourselves to analytic manifolds.

2.2.2 Functions and Mappings

Consider a real valued function f :M→ R on the manifold. Given a coordinate chart

(U , φ), the coordinate expression of f is the function f ◦ φ−1 which maps the open

set φ(U) ∈ Rm to R. The function f is said to be continuous, if, for all coordinate

charts, the coordinate expression is continuous in the Euclidean sense. Similarly, f is

said to be analytic if the coordinate expression is analytic for all coordinate charts. If

15

f, g :M → R are analytic, then fg and f + g are also analytic. The space of all real

valued analytic functions over M is denoted by F(M).

The idea of smooth mappings can be extended to mappings between manifolds. If

η is a mapping from a manifold M to N . Then η is smooth (analytic) if, for every

coordinate chart φ :M→ Rm and ψ : N → Rn, the mapping ψ ◦ η ◦ φ−1 : Rm → Rn is

smooth (analytic).

2.2.3 Tangent Spaces

The tangent space can be thought of as the set of allowed velocities for a point con-

strained to move on the manifold. Mathematically, it is a generalization of the idea

of a directional derivative in Euclidean space. A tangent of M at x is a real-valued

operator on continuous functions satisfying

∆(af + bh) = a∆(f) + b∆(h) (2.7)

∆(fh) = f∆(h) + h∆(f) (2.8)

for all continuous functions f, h and a, b ∈ R. The set of all tangents at x is denoted

by Tx(M). The real number assigned to f can be thought of as the derivative of f in

the direction represented by ∆. Properties (2.7) and (2.8) ensure that the mapping is

linear and satisfies the Leibniz product rule of derivatives.

The usual definitions of addition and scalar multiplication

(∆ + Γ)(f) = ∆(f) + Γ(f) (2.9)

(a∆)(f) = a∆(f) (2.10)

makes Tx(M) a vector space over R. For m-dimensional manifolds, the tangent space

is a m-dimensional vector space [90, Ch.1].

The value of any tangent acting on a particular function only depends on the be-

haviour of the function in a neighbourhood of the point. If there exists a neighbour-

hood U of x such that f(y) = g(y) for all y ∈ U , then for any tangent ∆ ∈ TM(x),

(∆f)|x = (∆g)|x.

16

When using the coordinate chart (U , φ), a convenient basis for Tx(M) is the set of

tangents ∂i|x, i = 1, . . . ,m

∂i|x(f) =
∂(f ◦ φ−1)

∂ui

∣∣∣∣
φ(x)

(2.11)

where, ui is the i-th coordinate function in Rm. That is, ∂i maps f to the directional

derivative of f̃ = f ◦ φ−1 along the i-th coordinate, computed at φ(x) ∈ Rm. Simple

algebra shows that these operators satisfy the properties (2.7) and (2.8) and therefore

lie in the tangent space Tx(M).

A vector field, V on a manifold is a function which assigns to each point x a tangent

Vx in Tx(M). If V is a vector field and f is any continuous function on the manifold,

V f denotes the real valued function on the manifold such that

(V f)(x) = Vx(f). (2.12)

The vector field V is said to be smooth if the function V f is smooth for all f ∈

F(M). The set of all smooth vector fields is denoted by X(M). For a coordinate

chart (U , φ), the vector field assigning the tangent ∂i|x to the point x is called the i-th

coordinate vector field. The coordinate vector fields are smooth and any vector field

can be expressed as a linear combination of these vector fields.

For two vector fields V,W ∈ X(M), define the bracket as

[V,W] = VW −WV. (2.13)

Therefore, [V,W] is the vector field which sends a function f to the real valued function

V (Wf)−W (V f).

2.3 Riemannian Manifolds

A Riemannian manifold is an ordered pair (M, g) consisting of the manifold and an as-

sociated metric. It is possible to define different metrics on the same manifold to obtain

different Riemannian manifolds. However, in practice there exists a standard metric

and the Riemannian manifold is denoted by the underlying manifold M. This metric

is chosen by requiring it to be invariant to some class of geometric transformations [92].

17

2.3.1 Riemannian Metric

A bilinear form on a vector space T is a mapping b from T × T to R which is linear in

both parameters. Therefore, for any u, v, w ∈ T and α, β ∈ R

• b(αu+ βv,w) = αb(u,w) + βb(v, w)

• b(w,αu+ βv) = αb(w, u) + βb(w, v).

A symmetric bilinear form also satisfies b(u, v) = b(v, u). A bilinear form is positive

definite if b(u, u) ≥ 0 with equality occurring if and only if u = 0. The dot product on

any Euclidean space is an example of a symmetric positive definite bilinear form.

Riemannian geometry adds further structure to an analytic manifold by defining an

symmetric, positive definite bilinear form gx(·, ·) on the tangent space at each point

x on the manifold. This set of bilinear forms is known as the metric tensor and acts

as a function which assigns to each point some bilinear form on its tangent space.

To maintain continuity we require that if V,W are two smooth vector fields then the

function f(x) = gx(Vx,Wx) is a smooth function on the manifold. This is sufficient

to ensure that the bilinear form varies smoothly as we move between points on the

manifold.

For computational purposes, we can compute an explicit expression for the metric

tensor. Given a coordinate chart (U , φ), take the basis of the tangent space to be the

coordinate basis ∂i, i = 1, . . . ,m defined earlier. In this basis the metric tensor can be

expressed as a m×m matrix whose ij-th value is given by

gij = g(∂i, ∂j). (2.14)

Any tangent can be expressed as a linear combination of the basis vectors as ∆ =∑
i ∆

i∂i. The inner product of two vectors, ∆ and Γ is given by

g(∆,Γ) =
m∑

i,j=1

gij∆iΓj . (2.15)

Choosing a different basis would lead to different coordinates for each vector and for

the metric tensor. However, since the inner product is an inherent geometric notion

that value of the inner product of ∆ and Γ would be the same.

18

A curve is a continuous mapping α from the interval [0, 1] to M. For a particular

t ∈ [0, 1], α(t) lies on the manifold and α′(t) is the tangent at α(t) which maps a

function f to ∂(f ◦ α)/∂t. It can be verified the α′(t) satisfies the conditions (2.7) and

(2.8) and lies in the tangent space at α(t). Physically α′(t) is the tangent which points

along the curve α(t). The norm of α′(t) gives the speed of the curve. The length of the

curve is given by ∫ 1

t=0

√
gα(t)(α′(t), α′(t))dt. (2.16)

Given two points x and y on the manifold, there will exist an infinite number of

curves from x to y, i.e., with α(0) = x and α(1) = y. The shortest such path from x to

y is the geodesic from x to y. The length of the geodesic is defined to be the Riemannian

distance between the two points. Geodesics have the property that gα(t)(α′(t), α′(t))

is constant for all t ∈ [0, 1], i.e., the velocity is constant along the geodesic [90, Ch.3].

This property of having zero acceleration is sometimes used to define a geodesic.

2.3.2 Exponential and Logarithm Operators

For Riemannian manifolds, tangents in the tangent space and geodesics on the manifold

are closely related. For each tangent ∆ ∈ Tx(M), there is a unique geodesic α : [0, 1]→

M starting at x with initial velocity α′(0) = ∆. The exponential map, expx, maps ∆

to the point on the manifold reached by this geodesic

expx(∆) = α(1). (2.17)

The origin of the tangent space is mapped to the point itself, expx(0) = x. For each

point x ∈M, there exists a neighborhood Ũ of the origin in Tx(M), such that expx is a

diffeomorphism from Ũ onto a neighborhood U of x [90, Ch.3]. Over this neighborhood

U , we can define the inverse of the exponential and this mapping from U to Ũ is known

as the logarithm map, logx = exp−1
x . Note that the exponential and logarithm operators

vary as the point x moves. This is made explicit by the subscript in the exponential and

logarithm operators. The above concepts are illustrated in Figure 2.2, where x, y are

points on the manifold and ∆ ∈ Tx(M). The dotted line shows the geodesic starting

19

Figure 2.2: Example of a two-dimensional manifold and the tangent space at the point
x.

at x and ending at y. This geodesic has an initial velocity ∆ and we have expx(∆) = y

and logx(y) = ∆. The specific forms of these operators depend on the manifold. We

present explicit formulae for certain manifolds in later sections.

The neighborhood Ũ defined above is not necessarily convex. However, Ũ is star-

shaped, i.e., for any point lying in Ũ , the line joining the point to the origin is contained

in Ũ [90, Ch.3]. The image of a star-shaped neighborhood under the exponential map-

ping is a neighborhood of x on the manifold. This neighborhood is known as a normal

neighborhood.

The radius of the largest open ball in Tx(M), centered at the origin over which

expx is invertible, is known as the injectivity radius at x and denoted by i(x,M). The

injectivity radius of the manifold, i(M), is the minimum of the injectivity radii at all

points on the manifoldM

i(M) = min
x∈M

i(x,M). (2.18)

For any open ball centered at the origin in Tx(M) with a radius less than i(M), the

exponential map is one-to-one and its inverse is given by the logarithm.

The exponential map can be used to define convenient coordinates for normal neigh-

borhoods, which simplify computation. Let Ũ be a star shaped neighborhood at the

origin in Tx(M) and let U be its image under the exponential map, i.e., U is a normal

20

neighborhood of x. Let, ei, i = 1, . . . ,m be any orthonormal coordinate system for

Tx(M). Therefore,

g(ei, ej) =

 0 if i 6= j

1 if i = j.
(2.19)

The normal coordinate system is the coordinate chart (U , φ) which maps y ∈ U to the

coordinates of logx(y) in the orthonormal coordinate system

logx(y) =
m∑

i=1

φi(y)ei (2.20)

where, φi(y) is the i-th coordinate of φ(y) ∈ Rm [90, Ch.3]. If we use (2.11) to define

a define a basis of Tx(M) based on normal coordinates, we get ∂i = ei.

2.3.3 Differential Operators on Manifolds

For a smooth, real valued function f :M→ R, the gradient of f at x, ∇f ∈ Tx(M),

is the unique tangent vector satisfying

gx(∇f,∆) = ∆f (2.21)

for any ∆ ∈ Tx(M). The gradient is the unique tangent such that the directional

derivative along any other tangent ∆ is equal to the inner product of ∆ with the gradi-

ent. It is possible to generalize higher order operators such as the Hessian and Laplacian

for functions on manifolds [90, Ch.3]. Using these operators the usual function opti-

mization techniques such as gradient ascent, Newton iterations and conjugate gradient

can be generalized to manifolds [31, 106].

For two points, x,y ∈ M let d(x,y) be the Riemannian distance between them.

Consider the function f(x) = d2(x,y) as a function of x measuring the squared distance

from y. This is a real function on the manifold and we have the following property,

Theorem 1. The gradient of the Riemann squared distance is given by

∇f(x) = ∇x d2(x,y) = −2 logx(y) . (2.22)

This property is well known, for example [7, 36].

21

Proof 1. Let α : [0, 1]→M be the geodesic from x to y. Then, the geodesic from y to

x is given by β(t) = α(1− t). For any t ∈ [0, 1], we have

β′(t) = −α′(1− t). (2.23)

It states that, for any point on the geodesic between x and y, the tangents along

the curves α(t) and β(t) differ by multiplication by −1. Specifically, at t = 1 we get

β′(1) = −α′(0). Recall that α′(0) and logx(y) are two different expressions for the

same initial velocity of the geodesic from x to y.Therefore, β′(1) = −logx(y) and it is

sufficient to prove

∇f(x) = 2β′(1). (2.24)

Let Ṽ be the star-shaped neighborhood of the origin in Ty(M) and (V, φ) be the

corresponding normal neighborhood of y ∈M. The function f(x) measures the squared

distance of x from y. Since, the velocity of the geodesic is constant, the length of the

geodesic is equal to the velocity along the geodesic

f(x) = gy(logy(x), logy(x)). (2.25)

We now define, f̃ = f ◦ φ−1 : Rm → R. Given a point u ∈ Rm, φ−1(u) ∈ M is a point

on the manifold. By definition, we have logy(φ−1(u)) =
∑

i u
iei, where ui is the i-th

coordinate of u and ei is the orthonormal basis of Ty(M). Therefore,

f̂(u) = f(φ−1(u))

= gy(logy(φ−1(u)), logy(φ−1(u)))

= gy

(∑
i

uiei,
∑

i

uiei

)
=

∑
i

(ui)2. (2.26)

In the final step, we used the orthonormality of the basis ei. From [90, p.85], the j-th

component of the gradient is given by

(∇f)j =
∑

i

gij ∂f̂

∂ui
=

∂f̂

∂uj
= 2uj (2.27)

where, we use the fact that the Riemannian metric matrix is the identity when expressed

in normal coordinates. By definition, uj is the component of the tangent logy(x) along

ej . Therefore, ∇f = 2β′(1) and (2.24) holds. The proof of the theorem follows.

22

2.3.4 Covariant Derivatives

Suppose the manifold under consideration is an open set S ∈ Rn. For Euclidean space

we have a global coordinate chart and the coordinate vector fields in this chart are the

vector fields

∂i =
d

dxi
, i = 1, . . . , n. (2.28)

Let V =
∑

i

V i∂i and W =
∑

i

W i∂i be vector fields on this manifold. We can differ-

entiate W with respect to V as

DVW =
∑

i

V (W i)∂i (2.29)

Therefore, the derivative of a vector field with respect to another vector field is itself a

vector field. However, the above definition uses the Euclidean coordinates of the space

and it is not clear how to extend this to arbitrary manifolds. This is done by defining

a connection on the manifold which can intuitively be understood as introducing a

correspondence between the tangent spaces at two points which are close to each other.

Algebraically a connection D on a smooth manifold M is a function D : X(M) ×

X(M)→ X(M) satisfying

DfU+hVW = fDUW + hDVW (2.30)

DV (fW) = (V f)DVW + fDVW (2.31)

for f, h ∈ F(M) are smooth functions and U, V,W ∈ X(M) are smooth vector fields.

The smooth vector field DV (W) is said to be the covariant derivative of W with respect

to V . An important property of covariant derivatives is that the value of DVW at the

point x depends only on the value of the vector field V at x. For two vector fields U, V

such that Ux = Vx, DVW |x = DUW |x. This is a consequence of (2.30) [90].

For a Riemannian manifold, there exists a unique connection D such that

[V,W] = DVW −DWV (2.32)

Xg(V,W) = g(DXV,W) + g(V,DXW). (2.33)

A connection that satisfies (2.32) is said to be symmetric and a connection that satisfies

(2.33) is said to be torsion-free. Therefore, for a Riemannian manifold, there exists a

23

unique symmetric, torsion-free connection and this is known as Levi-Civita connection

of the Riemannian manifold [90].

2.3.5 Parallel Transport

Let α(t) be a curve on the manifold. For any vector field V we can compute the

covariant derivative along the curve as Dα′(t)V . The value of the covariant derivative

Dα′(t)V only depends on the values of V along the curve [90].

A vector field V is said to be parallel to the curve α if Dα′(t)V = 0 for t ∈ [0, 1].

For vector fields that are parallel to α(t) the value of the vector field at α(0) uniquely

defines the value at every other point on the curve.

This property of being parallel establishes an explicit correspondence between the

tangents at different points. Given two points x and y we can use any curve between

x and y to parallel transport tangents from x to y. The result is a tangent at y,

although the exact tangent obtained depends on the curve followed to go from x to y.

For Riemannian manifolds we use parallel transport along geodesics to build a unique

correspondence between tangents at different points. This process of moving a tangent

from x to y while being parallel to the geodesic is known as parallel transport.

2.3.6 Function Optimization

The idea of parallel transport is important since it is used to extend derivative based

optimization methods such as Newton’s iterations and conjugate gradient optimization

to Riemannian manifolds [31, 106].

Gradient based minimization techniques proceed by iteratively improving the esti-

mate of the position of the local minimum of a function f . Let yj denote the estimate

of the minimum after the j iterations. The j+ 1-th iteration moves along the direction

−∇f(yj). This is known as the search direction. The estimate of the point is moved a

certain distance along the search direction to get the next estimate of the minimum and

these iterations are repeated till convergence. An important consideration in gradient

minimization methods is how far along the negative gradient to move. Different algo-

rithms propose different solutions to this. Newton iterations use the Hessian to build a

24

quadratic local approximation of the function and use this to decide the step size. This

method can be extended to manifolds by computing the Hessian over the manifold and

building a local quadratic approximation like in Euclidean space.

Another popular gradient based optimization method is conjugate gradient mini-

mization. In conjugate gradient, the search direction after j iterations is chosen to

be orthogonal to all previous search directions. This requires the inner product of

the current negative gradient with all previous search directions. Over manifolds, the

j+1-th search direction is given by a tangent in Tyj+1
(M). The previous search direc-

tions lie in different tangent spaces at Tyj
(M), Tyj−1

(M) . . . and it is not possible to

compute an inner product directly. This problem is solved by using parallel transport

to move previous search directions to yj+1 and then taking the inner product of the

current negative gradient with the parallel transported versions of the previous search

directions.

Both these optimization methods are known to have the same types of convergence

behaviour as their Euclidean versions [31, 106]. We will later show an example of using

conjugate gradient over a manifold for local function minimization in Chapter 4.

2.4 Types of Riemannian Manifolds

We briefly discuss the geometry of a few classes of Riemannian manifolds. Most fre-

quently occurring manifolds in computer vision lie in one of these classes.

2.4.1 Lie Groups

A Lie group is a manifold which is also a group such that the group operation is an

analytic mapping. The group operation gives Lie groups more algebraic structure than

a manifold.

The most frequently occurring Lie groups are sets of matrices, i.e., each element in

the group is a matrix and the group operation is matrix multiplication. Such groups

are called matrix Lie groups [97]. An alternative definition of matrix Lie groups is

that they are closed subgroups of the general linear group GL(n), the group of n × n

25

nonsingular matrices. Common examples of matrix Lie groups include

• Special Orthogonal Group. The special orthogonal groups, SO(n), is the set of

rotations in Rn. Elements of SO(n) are n× n orthogonal matrices.

• Special Euclidean Group. The special Euclidean group, SE(n), is the set of rigid

transformations in Rn. Matrices in SE(n) are (n + 1) × (n + 1) matrices of the

form  R t

0T 1

 (2.34)

where R ∈ Rn×n is orthogonal and t ∈ Rn.

• Affine Group. The affine groups A(n) consists of (n+1)× (n+1) matrices of the

form  H t

0T 1

 (2.35)

where H ∈ Rn×n is invertible and t ∈ Rn.

The tangent space at the identity of the group is known as the Lie algebra of the Lie

group. Lie algebras are important since the tangent space at any point on the manifold

can be expressed in terms of the Lie algebra [90, 97].

Lie groups are the most well known examples of Riemannian manifolds and the first

nonlinear mean shift algorithm was proposed for Lie groups in [130]. Let exp and log

be the matrix operators

exp(∆) =
∞∑
i=0

1
i!
∆i (2.36)

log(y) =
∞∑
i=1

(−1)i−1

i
(y − e)i (2.37)

where, e is the identity matrix. These are standard matrix operators which can be

applied to any square matrix and no subscript is necessary to define them. They should

not be confused with the manifold operators, expx and logx for Lie groups, which are

26

given by

expx(∆) = x exp
(
x−1∆

)
(2.38)

logx(y) = x log
(
x−1y

)
(2.39)

where, y is any point on the manifold and ∆ ∈ Tx(M) [90, Ch.11]. The distance

function is given by

d(x,y) = ‖log
(
x−1y

)
‖F (2.40)

where, ‖.‖F denotes the Frobenius norm of a matrix. This definition of d can be

shown to be the distance corresponding to an inner product on Tx(M), as necessary

for Riemannian manifolds [90, Ch.11].

There exist iterative techniques for computing the exp or log of general square ma-

trices [49]. In practice, computational efficiency can be improved by taking advantage

of the structure of the matrix Lie group under consideration. We show this with the

example of the special orthogonal group, SO(3). Let so(3) be the Lie algebra, i.e., the

tangent space at the identity. Elements of so(3) are 3 × 3 skew-symmetric matrices of

the form

[ω]× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.41)

where the vector ω = [ωx ωy ωz] is the axis of rotation and ‖ω‖ is the magnitude of

the rotation. The structure of SO(3) allows us to compute exp using the Rodriguez

formula

exp([ω]×) = e3 +
sin‖ω‖
‖ω‖

[ω]× +
1− cos‖ω‖
‖ω‖2

[ω]2× . (2.42)

where, e3 is the 3 × 3 identity matrix. The matrix logarithm can be computed by

inverting the above equation [102].

2.4.2 Homogeneous Spaces

The group action of a group G on a manifold M is a smooth mapping from G ×M

to M. For g ∈ G and x ∈ M, the mapping is written as (g,x) → g · x and satisfies

27

g ·(h ·x) = (gh) ·x and e ·x = x, where e is the identity of the group G. Just as matrices

are transformations of vector spaces, group actions are transformations of manifolds.

The orbit of a point x ∈M is

O(x) = {g · x|g ∈ G}. (2.43)

The group action divides the manifold into a set of disjoint orbits. For example, consider

the Euclidean plane R2 to be the manifold under the action of the rotation group SO(2).

The orbits consist of circles centered at the origin.

If the whole manifold forms a single orbit, thenM is said to be a homogeneous space

and the action is said to be transitive. Therefore, the action is transitive, if for any two

points x,y ∈M, there exists g ∈ G such that g ·x = y. The Euclidean plane R2 under

the action of the Euclidean motion group SE(2) would be a homogeneous space since

for any two points on the plane, there exists some transformation mapping one to the

other.

The isotropy subgroup of x is defined as

Gx = {g ∈ G|g · x = x}. (2.44)

The isotropy subgroup is the set of elements which leave x fixed. In our previous

example of SE(2) acting on R2, the isotropy subgroup of the origin would be the set of

rotations. The isotropy subgroup of any other point on the Euclidean plane would be

the set of rotations about that point.

If G is a Lie group and H is a subgroup of G, then the factor space G/H forms a

manifold known as a coset manifold. The coset manifold is a homogeneous space of G

with the natural group action

g · kH = (gk)H (2.45)

i.e., g acting on the coset of k gives the coset of gk.

The above result lets us represent a coset manifold as a homogeneous space. For

a manifold with a transitive Lie group action, it is possible to reverse the process and

think of it as a coset manifold. Let M be a homogeneous space under the Lie group

28

action of G. For any arbitrary point x ∈ M, the manifold M can be identified with

the homogenous space G/Gx, where Gx is the isotropy subgroup of x [90, Ch.9].

The reason for using this characterization of coset manifolds is that they inherit a lot

of their operators from the Lie group. Once the geometry of the Lie group is understood,

the geometry of its coset manifolds can be expressed in terms of the geometry of the

Lie group.

2.4.3 Grassmann Manifolds

A point on the Grassmann manifold, Gn,k, represents a k-dimensional subspace of Rn.

In practice an element of Gn,k is represented by an orthonormal basis as a n×k matrix,

i.e., xTx = ek. Since many basis span the same subspace, this representation of points

on Gn,k is not unique [31].

Consider any element U of the group SO(n). Its columns form an orthonormal

basis of the space Rn. A k-dimensional subspace can be obtained by taking the span of

the first k-columns of U and this is an element of Gn,k. However, rotations of the form Uk 0

0 Un−k

 (2.46)

where, Uk ∈ SO(k) and Un−k ∈ SO(n− k), leave the subspace spanned by the first

k-columns unchanged. Therefore, multiplication by elements of this form do not change

the point in Gn,k and the set of all such rotations is equivalent to SO(k)×SO(n− k).

We identify the Grassmann manifold Gn,k with the coset manifold SO(n)/(SO(k) ×

SO(n− k)).

The set of tangents at x ∈ Gn,k consists of n × k matrices ∆ satisfying xT ∆ = 0.

For a tangent ∆ ∈ Tx(M) the exponential at x is

expx(∆) = x v cos(s) vT + u sin(s) vT (2.47)

where, u s vT is the compact SVD of ∆ and the sin and cos act element-by-element

along the diagonal of s [31].

The log operator is the inverse of the exp operator. Let x and y be two points on

29

the manifold Gn,k. The logarithm of y at x is given by

logx(y) = u sin−1(s) vT (2.48)

where, usdT = y−xxTy and vcdT = xTy is the generalized SVD with cTc+sT s = ek

and the sin−1 acts element-by-element along the diagonal of s. It can be verified that

this tangent does satisfy the two properties, xT logx(y) = 0 and expx(logx(y)) = y as

required [31].

The distance between two points on the manifold is [1, 31]

d(x,y) = ‖logx(y)‖F (2.49)

where ‖ · ‖F is the Frobenius norm.

2.4.4 Essential Manifold

The epipolar constraint encodes a relation between feature correspondences across two

images of the same scene. In a calibrated setting, the epipolar constraint is parame-

terized by the essential matrix, a 3 × 3 matrix with certain algebraic properties [57,

Sec.8.6.1]. The essential matrix represents the relative motion between two cameras

[107], but due to the loss of depth information only the direction of translation can be

recovered.

Let p and q be the normalized coordinates of corresponding points and Q be the

essential matrix. The essential constraint is

pTQq = 0. (2.50)

Let E denote the essential space, the set of all essential matrices. The essential space is

an algebraic variety [86, 107] and a manifold of dimension six. Essential matrices have

some further algebraic properties. If Q = UΣVT is the singular value decomposition

of a 3× 3 matrix Q, then [57, Sec.8.6.1]

Q ∈ E ⇔ Σ = diag{λ, λ, 0} λ ∈ R+ (2.51)

i.e., an essential matrix has two equal, positive singular values and a zero singular

value. Essential matrices are homogeneous quantities and scaling does not change the

30

Figure 2.3: Four different camera geometries which give the same essential matrix. In each
row the geometries differ by changing the sign of the direction of translation. Each column is a
twisted pair. The image was taken from [57, p.241].

geometry. We use the scaling λ = 1 and define the normalized essential space, E1 as

the set of 3× 3 matrices with two unit singular values and one zero singular value

Q ∈ E1 ⇔ Σ = Σ1 (2.52)

where, Σ1 = diag{1, 1, 0}.

The relative pose between two cameras can be recovered from their essential matrix

except for two ambiguities. Firstly, since the epipolar geometry is a purely image based

concept, there is no scale information and the baseline between the cameras can only

be recovered up to a scale factor. Secondly, four different relative camera geometries

give rise to the same essential matrix [57, p.241]. This is shown in Figure 2.3. Given

an essential matrix the camera geometry can only be recovered up to this four-fold

ambiguity. Usually, further image information is required to disambiguate the four

geometries and choose the true geometry based on the positive depth constraint.

A common parametrization of the essential manifold is based on the fact that each

relative camera geometry corresponds to a tangent of SO(3) with unit norm. The

set of all tangents of a manifold itself forms a manifold known as the tangent bun-

dle. Therefore, the essential manifold can be identified with the unit tangent bundle

of SO(3) [80, 107]. Since each essential matrix corresponds to four different camera

geometries, and each camera geometry corresponds to a different tangent of SO(3), this

parametrization gives a four-fold covering of the essential manifold.

31

An alternate parametrization was proposed in [48]. This was based on a singular

value decomposition of the essential matrix. This parametrization makes the essential

manifold a homogeneous space under the action of the group SO(3)× SO(3).

Consider Q ∈ E1 with the singular value decomposition UΣ1VT , where Σ1 =

diag{1, 1, 0}, U and V are orthogonal and det(U), det(V) = ±1. As the third singular

value is zero, we can change the sign of the third columns of U and V to ensure

det(U), det(V) = 1 without changing the SVD.

Since SO(3) is a Lie group, the manifold SO(3) × SO(3) is also a Lie group with

the topology and group operation inherited from SO(3) [97, Sec.4.3]. We define the

mapping

Φ : SO(3)× SO(3)→ E1 (2.53)

which maps (U,V) ∈ SO(3) × SO(3) to UΣ1VT ∈ E1. The inverse mapping from E1

to SO(3)× SO(3) is not well defined as there is one degree of freedom in choosing the

basis of the space spanned by the first two columns of U and V. A rotation of the first

two columns of U can be offset by a rotation of the first two columns of V, such that

UΣ1VT does not change. Consider the rotations R1,R2 such that

R1 =

 A 0

0 det(A)

 R2 =

 ±A 0

0 det(A)

 .
and AAT = ±e2. Then,

UR1Σ1RT
2 VT = U

 ±AAT 0

0 0

VT = ±UΣ1VT (2.54)

which leaves the essential matrix unchanged and Φ maps (UR1,VR2) ∈ SO(3)×SO(3)

to the same point in E1.

Let HΦ be the group of transformations which leaves Φ invariant. It consists of

elements which leave the third columns of U and V unchanged, and rotate the first two

columns by angles which differ by kπ, k ∈ Z

HΦ = {(R1,R2)|R1,R2 ∈ Sz,RT
1 R2 = Rz(kπ)} (2.55)

32

where, Sz is the set of rotations around the z-axis and Rz(kπ) denotes a rotation by

kπ around the z-axis.

The manifold E1 is identified with the coset manifold SO(3) × SO(3)/HΦ, i.e.,

elements of SO(3)× SO(3) which differ by group multiplication by an element in HΦ

are considered to be the same on SO(3) × SO(3)/HΦ. Multiplication of (U,V) by

elements of HΦ generates the equivalence class of (U,V), and all the elements in an

equivalence class represent the same essential matrix.

The manifold SO(3)×SO(3) consists of two copies of SO(3) and the tangent space

of SO(3)×SO(3) will consist of two copies of the tangent space of SO(3). Since SO(3)

has three-dimensional tangent spaces, SO(3)×SO(3) will have six-dimensional tangent

spaces. Consider (U,V) ∈ SO(3)× SO(3) and a tangent represented as a six vector

∆ =
[
uT vT

]T
(2.56)

where, u = [ux uy uz]
T and v = [vx vy vz]

T . The exponential for SO(3) × SO(3) is

computed by performing the exponential of SO(3) twice, once each for U and V

exp(U,V)(∆) = (Uexp([u]×),Vexp([v]×)) (2.57)

where, the exp on the right represents the matrix exponential computed by the Ro-

driguez formula (2.42) and [·]× is defined by (2.41). The first three elements of the

tangent vector correspond to U and the last three to V. This ordering is equivalent to

choosing a basis for the tangent space.

The tangent space of SO(3)× SO(3) can be divided into two complementary sub-

spaces, the vertical and the horizontal space. The horizontal space contains tangents

of the form

[ux uy uz vx vy − uz], ‖uz‖ < π/2. (2.58)

The vertical space consists of tangents of the form

[0 0 uz 0 0 kπ + uz] (2.59)

which lie in the Lie algebra of HΦ [31]. When k = 0, the vertical and horizontal

spaces form complementary subspaces around the origin of the tangent space. Moving

33

along geodesics defined by tangents in the vertical space is equivalent to multiplying by

elements of HΦ and leaves the equivalence class unchanged. Vectors in the horizontal

space are tangent to the equivalence class and all tangents of SO(3)×SO(3)/HΦ must

lie in the horizontal space of SO(3)× SO(3). Given a tangent in the horizontal space,

its exponential can be computed like in (2.57) to get an element in another equivalence

class (which will be a different essential matrix).

Let (U,V) and (Û, V̂) represent two elements of SO(3)×SO(3)/HΦ. These can be

any points in their respective equivalence classes. The logarithm operator for SO(3)×

SO(3)/HΦ should give a tangent in the horizontal space. To do this we first compute

the logarithm on the manifold SO(3)× SO(3). Define

δU = UT Û δV = VT V̂. (2.60)

Taking the matrix logarithms of δU and δV, and rearranging the elements into a six-

vector, we get

[δux δuy δuz δvx δvy δvz]T (2.61)

which lies in the tangent space of SO(3)×SO(3). Since (U,V) and (Û, V̂) are arbitrary

elements of their equivalence classes, it is not necessary that this vector lie in the

horizontal space. We need to remove the component lying in the vertical space. Using

Givens rotations [57, App.3] δU and δV are decomposed into rotations around the

z-axis and rotations around axes in the xy-plane. Now, (U,V) is moved using z-

rotations differing by kπ, according to (2.57), so that on recomputing δU and δV, they

have opposite z-rotations less than π/2. This can be done in a single step and ensures

that for the new δU and δV, δuz ≈ −δvz up to a few degrees. Due to the nonlinearity

of the manifold δuz = −δvz will not hold exactly. This can be improved by moving

(U,V) along tangents of the form

[0 0 (δuz + δvz)/2 0 0 (δuz + δvz)/2]T (2.62)

and recomputing δU and δV. The tangents of (2.62) lie in the vertical space and do

not change the equivalence class of (U,V). After the initial step with Givens rotations,

34

δuz +δvz is very small. Three or four iterations generally give an acceptable accuracy of

the order of 10−4. Once the log has been computed to obtain a tangent in the horizontal

space, the intrinsic distance between (U,V) and (Û, V̂) is given by the norm of the

vector

d
(
(U,V), (Û, V̂)

)
= ‖δux δuy δuz δvx δvy‖2. (2.63)

2.4.5 Symmetric Positive Definite (SPD) Matrices

The set of n × n symmetric positive definite matrices forms a manifold known as the

symmetric manifold, Sym+
n . Recently, there has been a considerable amount of research

aimed at understanding the geometry of this manifold due to the development of dif-

fusion tensor MRI (DT-MRI) [6, 70], a widely used medical imaging method which

measures the diffusivity of the water molecules in three dimensional space [72, 132].

The diffusivity is encoded as a 3 × 3 SPD matrix and the image is a 3D grid of 3 × 3

SPD matrices. The filtering of these images is an important step in their processing

and requires an understanding of the noise model and the geometry of the manifold,

Sym+
3 .

The computation of the matrix exponential and logarithm can be simplified in the

case of the SPD matrices. Let usuT be the singular value decomposition of a symmetric

positive definite matrix x ∈ Sym+
n . Then the matrix logarithm is

log(x) = ulog(s)uT (2.64)

where, the log acts on element-by-element along the diagonal of s. Since the singular

values of a SPD matrix are always positive, the log can act along the diagonal. The

matrix exponential is computed similarly. Let ∆ be a symmetric matrix with SVD

given by ∆ = uduT . The matrix exponential becomes

exp(∆) = uexp(d)uT . (2.65)

where, the exp acts element-by-element along the diagonal of d. It is easy to see that

this form of the exponential is defined for any symmetric matrix and the result is a

SPD matrix.

35

A metric for this manifold was first proposed in [40]. Later, in [93] it was shown

that this metric is invariant to affine transformations and that Sym+
n is a Riemannian

manifold. A different Riemannian metric for this manifold was proposed in [4], and this

is the metric we use.

The idea behind the Riemannian metric of [4] is that the matrix log operator of

(2.64) is a diffeomorphism over the space Sym+
n . The range of the log is the space of

n× n symmetric matrices (not necessarily positive definite). All operations are carried

out by mapping SPD matrices to symmetric matrices using the log operator. Means

and interpolation can be done in the space of symmetric matrices, which is a vector

space, and mapped back to Sym+
n using the exp operator. It is shown in [4] that this

corresponds to giving Sym+
n a Lie group structure. However, the group operation is not

matrix multiplication and Sym+
n is not a matrix Lie group. The reason for using this

Riemannian framework as opposed to the one proposed in [93] is that the numerical

results are almost identical but the Lie group structure is more computationally efficient.

Let x and y be two n× n SPD matrices. The manifold logarithm is given by [4]

logx(y) = log(y)− log(x). (2.66)

Given a tangent ∆, the manifold exponential operator is

expx(∆) = exp(log(x) + ∆). (2.67)

The distance between x and y is given by

d(x,y) = ‖log(y)− log(x)‖. (2.68)

36

Chapter 3

Nonlinear Mean Shift

3.1 Introduction

The mean shift algorithm was first proposed in [43] and was further discussed in [16].

However, it became truly popular after [25, 26] used mean shift for color image segmen-

tation and motion tracking. Since then, mean shift has been applied to many different

problems including image segmentation [139, 140], tracking [8, 23, 32, 55] and robust

fusion [15, 24].

Mean shift is essentially a clustering technique for finding meaningful centers of

arbitrarily distributed points in a vector space. As it makes no assumptions about the

nature of the distribution which generated the points, mean shift belongs to the class

of nonparametric clustering methods. Mean shift has alternatively been shown to be

equivalent to gradient ascent optimization of a kernel density [25], bounds optimization

[35] and expectation-maximization [13]. In practice, the popularity of mean shift is due

to the fact that the algorithm is easy to implement while exhibiting good convergence

properties.

Here we present a generalized form of mean shift which can be used to cluster points

which do not lie on a vector space. For example, consider points lying on the surface of

a sphere. As we explain later, each iteration of mean shift requires the weighted sum

of the data points around our current estimate of the mode. However, the weighted

sum of points on the surface of the sphere does not lie on the sphere. In this case, it is

possible to use our geometric intuition to estimate a mean, but geometric constraints

often lead to much more complex curved surfaces where it is not possible to use our

intuition.

37

An example of a problem which requires clustering over manifolds is the motion

segmentation problem. It has been shown that robust estimation of motion parameters

through voting based techniques, where votes from different motion parameter hypoth-

esis are aggregated, give good results [87]. This would require the clustering of motion

hypotheses over the space of possible motion parameters. To use mean shift for this

purpose, we would need a formal definition of concepts such as the distance between

motions and the average of a set of motions. In most cases the space of possible motion

parameters is smooth and forms a Riemannian manifold.

Riemannian manifolds appear frequently in computer vision problems. In [80], ge-

ometric cost functions for reconstruction were treated as real valued functions on ap-

propriate manifolds and minimized over these manifolds. The idea of treating motions

as points on manifolds was used in [51] to smooth motions. In [92], it was shown that

distances and distributions over manifolds can be defined based on the geometry they

represent. The recent interest in the theory of manifolds is also due to the novel imaging

data of new medical systems. Diffusion tensor images measure the diffusivity of water

molecules and the smoothing of these images requires an understanding of the mani-

fold nature of diffusion matrices [4, 72, 93, 132]. New image representations have also

been developed for the statistical analysis of medical data using appropriate manifolds

[38, 39, 28].

In [130] mean shift was extended to matrix Lie groups. A similar, but more general

algorithm was proposed in [112], which could handle points lying on any Riemannian

manifold, not necessarily Lie groups. Simultaneously, [7] proposed a slightly different

mean shift algorithm for Grassmann manifolds.

We present a proper derivation of the nonlinear mean shift and discuss its theoretical

properties. In deriving nonlinear mean shift we have concentrated on issues such as

ease of implementation and computational efficiency. For example, a proper definition

of kernel densities over manifolds would be too complicated. Consequently, we choose

to define a reasonable approximation whose gradient can be easily computed.

38

3.2 The Original Mean Shift

The original mean shift algorithm is based on the theory of kernel density estimation.

Here we describe the derivation of mean shift as in [25].

Let xi ∈ Rd, i = 1, . . . , n be n independent, identically distributed points generated

by an unknown probability distribution f . The kernel density estimate

f̂k(y) =
ck,h

n

n∑
i=1

k

(
‖y − xi‖2

h2

)
(3.1)

based on a profile function k satisfying k(z) ≥ 0 for z ≥ 0 is a nonparametric estimator

of the density f(y) at y. The constant ck,h is chosen to ensure that f̂k integrates to

one.

Define g(·) = −k′(·). Taking the gradient of (3.1) we get

mh(y) = C
∇f̂k(y)

f̂g(y)
=

n∑
i=1

xig
(
‖y − xi‖2/h2

)
n∑

i=1

g
(
‖y − xi‖2/h2

) − y (3.2)

where, C is a positive constant and mh(y) is the mean shift vector. The expression

(3.2) shows that the mean shift vector is proportional to a normalized density gradient

estimate. The iteration

yj+1 = mh(yj) + yj (3.3)

is a gradient ascent technique converging to a stationary point of the density. Saddle

points can be detected and removed, to obtain only the modes.

3.2.1 Mean Shift as Bounds Optimization

In the previous section mean shift was derived as a gradient ascent technique. The

advantage of mean shift is that it avoids the computationally intensive line search step

which other gradient ascent techniques require. The magnitude of the mean shift step

adapts to the surrounding data and it can be shown that the mean shift iterations are

guaranteed to converge to a local maxima of the kernel density [25].

39

An alternative view of mean shift was proposed in [35]. It was shown that for

Epanechnikov kernels, the mean shift vector not only lies along the gradient but is in

fact a Newton step. Furthermore, when using a general kernel, the mean shift step

optimizes a lower bound on the kernel density function. This idea of mean shift as a

variational bounds optimization was further developed in [105].

In [13], it was shown that for Gaussian kernels, the mean shift step is the same as

Expectation-Maximization. In the M-step of the EM-algorithm a tight lower bound on

the function is computed and in the E-step this bound is maximized. For non-Gaussian

kernels, mean shift is equivalent to generalized EM.

All these approaches yield the same update rule when the data lies in Euclidean

space, but for Riemannian manifolds this is not true. Generalizing each of these different

algorithms to manifolds leads to different update rules. However, the reason for the

widespread use of mean shift is due to its ease of implementation. It offers a simple

iterative update rule with provable convergence behavior. We should take this into

consideration when developing a mean shift update rule for manifolds. For example,

using Newton iterations over manifolds to maximize a kernel density score would require

the computation of Hessians. This step can be computationally expensive depending

on the manifold. Therefore we propose a gradient based mean shift rule which does

not require Hessian computation. However, the convergence properties of mean shift

continue to hold for our nonlinear mean shift algorithm.

• Kernel density estimation over manifolds is more complex than in the Euclidean

case. It requires the computation of a point dependent volume density function

leading to a complex update rule.

• The weighted average of points on the manifold is well defined. Replacing a

point by the weighted mean of the data points in a neighborhood still leads to

convergence to the maxima of a cost function.

• For homogeneous spaces the nonlinear mean shift update rule is equivalent to

expectation-maximization.

40

3.3 Nonlinear Mean Shift

The reason the previous mean shift algorithm is not directly applicable to manifolds is

that manifolds are not vector spaces and the sum of points on the manifold, in general,

does not lie on the manifold. Consequently, the mean shift vector of (3.2) is not valid.

However, it is possible to define the weighted mean of points as the minimum of an

appropriate cost function [68]. In this section, we use this concept to derive the mean

shift vector as the weighted sum of tangent vectors. Since tangent spaces are vector

spaces, a weighted average of tangents is possible and can be used to update the mode

estimate. This method is valid over any Riemannian manifold.

3.3.1 Kernel Density Estimation over Riemannian Manifolds

Consider a Riemannian manifold with a metric d. Given n points on the manifold,

xi, i = 1, . . . , n, the kernel density estimate with profile k and bandwidth h is

f̂k(y) =
ck,h

n

n∑
i=1

k

(
d2(y,xi)

h2

)
. (3.4)

The bandwidth h can be included in the distance function as a parameter. However,

we write it in this form since it gives us a handle to tune performance in applications.

If the manifold is an Euclidean space with the Euclidean distance metric, (3.4) is the

same as the Euclidean kernel density estimate of (3.1). The constant ck,h is chosen to

ensure that f̂k is a density, i.e., the integral of f̂k over the manifold is one.

Strictly speaking, f̂k is not a kernel density. In Euclidean space the integral of the

kernel is independent of the point at which it is centered. For a general Riemannian

manifold, the integral of the kernel depends on the point at which it is centered. It is

possible to ensure the integral of the kernel is the same irrespective of where it is centered

by using the volume density function [91]. We do not do this, since the computation of

the volume density function would limit the applicability of the algorithm to manifolds

where explicit expressions for the volume densities are available. Also, the computation

of the gradient would become very complicated. Therefore, we prefer to use the modified

kernel density of (3.4). The kernel density we use here is similar to the one proposed in

41

[17, Ch.10] for Grassmann manifolds. We use the same expression for all Riemannian

manifolds.

3.3.2 Mean Shift over Riemannian Manifolds

Calculating the gradient of f̂k at y, we get

∇f̂k(y) =
1
n

n∑
i=1

∇k
(
d2(y,xi)

h2

)

= − 1
n

n∑
i=1

g

(
d2(y,xi)

h2

)
∇d2(y,xi)

h2

=
2
n

n∑
i=1

g

(
d2(y,xi)

h2

)
logy(xi)

h2
(3.5)

where, g(·) = −k′(·), and in the final step we use (2.22). The gradient of the distance

is taken with respect to x. Analogous to (3.2), define the nonlinear mean shift vector

as

mh(x) =

n∑
i=1

g

(
d2(y,xi)

h2

)
logy(xi)

n∑
i=1

g

(
d2(y,xi)

h2

) . (3.6)

All the operations in the above equation are well defined. The logy(xi) terms lie in the

tangent space Ty(M) and the kernel terms g(d2(y,xi)/h2) are scalars. The mean shift

vector is a weighted sum of tangent vectors, and is itself a tangent vector in Ty(M).

The algorithm proceeds by moving the point along the geodesic defined by the mean

shift vector. The noneuclidean mean shift iteration is

yj+1 = expyj

(
mh(yj)

)
. (3.7)

The iteration (3.7) updates yj by moving along the geodesic defined by the mean shift

vector to get the next estimate, yj+1. A mean shift iteration is started at each data

point by initializing y = xi. The inner loop then iteratively updates y till convergence.

The complete algorithm is given below.

42

Algorithm: Mean Shift over Riemannian Manifolds

Given: Points on a manifold xi, i = 1, . . . , n

for i← 1 . . . n

y← xi

repeat

mh(y)←

n∑
i=1

g
(
d2(y,xi)/h2

)
logy(xi)

n∑
i=1

g
(
d2(y,xi)/h2

)
y← expy (mh(y))

until ‖mh(y)‖ < ε

Retain y as a local mode

Report distinct local modes.

Strong modes have high kernel density scores and a large number of iterations

converge to these locations. Spurious modes, having low densities and few iterations

converging to them, can be pruned to obtain only the strong modes. So, mean shift

returns the number of modes and their locations.

3.4 Computational Details of Nonlinear Mean Shift

The nonlinear mean shift algorithm is valid for any Riemannian manifold. A practi-

cal implementation requires the computation of the exponential operator expx and the

logarithm operator logx. The exponential and logarithm operators for commonly oc-

curring manifolds were presented in the previous chapter. Table 3.1 lists these formulas

for different manifolds.

For matrix Lie groups, the mean shift update proposed here is the same as the one

43

Table 3.1: Formulae for exp and log operators over different manifolds

exp log d(x,y)
Matrix Lie groups (2.38) (2.39) (2.40)

Grassmann Manifolds (2.47) (2.48) (2.49)
Essential Manifold (2.57) * (2.63)

Symmetric Manifold (2.67) (2.66) (2.68)

*Iterative procedure for logarithm over essential manifold is described in Section 2.4.4.

proposed in [112, 130]. However, in [112, 130] it was assumed that the relation between

the Riemann distance and the log operator was an approximation. However, as we

showed in Theorem 1, this relation is exact. Therefore the algorithm is provably con-

vergent to a local maxima of the kernel density (3.4) which will be proved by Theorem

2.

For Grassmann manifolds the algorithm proposed here is different from [112]. Over

there, an arc-length approximation to the Riemannian distance was used for computa-

tional purposes. This approximation was treated as a function of one of the points and

the gradient was computed as in [31]. The approximation holds for points close to each

other and in all experiments the algorithm converges quickly. However, theoretically

the convergence of the approximation of [112] is not assured while the method proposed

here is provably convergent.

In our implementation of mean shift over Sym+
n , the log operator is used in a

preprocessing step to map all matrices to their matrix logarithms. Mean shift is then

carried out in the vector space of symmetric matrices and the modes are mapped back to

Sym+
n by the exp operator. This is equivalent to performing nonlinear mean shift with

the Lie group structure of Sym+
n [4]. However, the matrix logarithms and exponentials

are used only once during the preprocessing and post-processing of data and the time

taken for mean shift is much lower. The space of SPD matrices can be given another

manifold structure and it is possible to do mean shift using this structure also. The

details of this are given in [109].

44

3.5 Theoretical Properties

One of the reasons for the popularity of the original mean shift is the provable conver-

gence of the mean shift iterations. In [25] it was shown that the iterations will converge

to a local maxima of a kernel density. This is rather surprising since other gradient

ascent methods such as Newton steps or conjugate gradient require a line search along

the gradient to make sure that the iteration does not take a big step and miss the

maximum. In the mean shift algorithms there is no line search. However, the mean

shift step of (3.2) adapts itself to the data points surrounding it. In regions with a high

density of points, the mean shift steps are small to make sure that it does not move too

far and miss the maximum, while in regions with a low density of points the steps are

much larger.

The nonlinear mean shift step of (3.6) ensures similar convergence properties. Let

yj , j = 1, . . . be the successive estimates of the mode obtained through mean shift

iterations given by (3.6) and (3.7). We have the following theorem.

Theorem 2. If the kernel K has a convex and monotonically decreasing profile and

the bandwidth h is less than the injectivity radius i(M) of the manifold, the sequence

{f(yj)}j=1,2,... is convergent and monotonically non-decreasing.

The proof proceeds is a manner similar to the proof for the Euclidean case [25].

Given the convexity of the profile we only need to show that each mean shift step

minimizes a weighted error measure, which is the same as that minimized by weighted

mean finding algorithms over manifolds. The necessary conditions for this have already

been shown in [68].

Proof 2. To prove this theorem we use a result shown in [68]. Consider a set of points

xi, i = 1, . . . , n lying on a Riemannian manifold. The weighted Karcher mean of these

points with weights wi ∈ R, i = 1, . . . , n is defined as the points which minimize the

cost function

C(y) =
n∑

i=1

wid
2(y,xi). (3.8)

It was shown in [68] that if all the data points lie within an injectivity radius of each

45

other, then the minimizer is unique and can be found using an iterative procedure. Let,

yj be the current estimate of the Karcher mean, then the updated estimate is given by

yj+1 = expyj

(
n∑

i=1

wilogyj
(xi)

/
n∑

i=1

wi

)
. (3.9)

If yj+1 is obtained from yj using the above rule, then C(yj+1) ≤ C(yj) and

n∑
i=1

wi(d2(yj ,xi)− d2(yj+1,xi)) ≥ 0. (3.10)

Using this result we prove the convergence of the mean shift iterations. Each kernel

is a real-valued function with a maximum value of one and the kernel density (3.4) is a

sum of n such kernels. Since n is finite, the value of f(yj) is bounded above. To prove

convergence of the sequence {f(yj)}j=1,2,... it is sufficient to prove that

f(yj+1) ≥ f(yj). (3.11)

Using (3.4), we can write

f(yj+1)− f(yj) =
ck,h

n

n∑
i=1

[
k

(
d2

j+1,i

h2

)
− k

(
d2

j,i

h2

)]
(3.12)

where, we use the notation dj+1,i = d(yj+1,xi). Due to the convexity of the kernel we

have

k(z2) ≥ k(z1) + k′(z1)(z2 − z1) (3.13)

for any z1, z2 ∈ R. Since, g(·) = −k(·), we rewrite (3.13) as

k(z2)− k(z1) ≥ g(z1)(z1 − z2). (3.14)

Using this identity in (3.12) for each of the n terms we get

f(yj+1)− f(yj) ≥
ck,h

nh2

n∑
i=1

[
g

(
d2

j,i

h2

)
(d2

j,i − d2
j+1,i)

]
. (3.15)

We now use (3.10) with the data points xi, i = 1, . . . , n and the weights wi = g(d2
j,i/h

2).

These weights change at each iteration, but for a single iteration they are constant and

the inequality holds. In this case (3.9) is the same as the mean shift step (3.7) and

46

therefore the right side of the above inequality if nonnegative. Therefore, (3.11) is true

and the sequence of values f(yj) is nondecreasing.

The only condition that needs to be verified is whether all the points lie within an

injectivity radius of each other as required for the result of [68] to hold. This can be

ensured by using a value of h less than the injectivity radius. In this case, the weights

g(d2
j,i/h

2) are zero for all points further than h away and all points with nonzero weights

will lie within an injectivity radius of each other as required.

3.5.1 Mean Shift and Expectation Maximization

In [13] it was shown that the original mean shift over vector spaces can be viewed

as a special case of expectation maximization (EM). We adapt the proof from [13] to

a general manifold. However, it is necessary to assume that there exists a transitive

group action over the manifold. We give a brief outline of the proof showing that for a

homogenous space, nonlinear mean shift with a Gaussian kernel is equivalent to EM.

Assume we are given a set of data points xi, i = 1, . . . , n lying on a manifold M

endowed with a transitive group action. These data points define the kernel density

f̂k(y) =
ck,h

n

n∑
i=1

kg

(
d2(y,xi)

h2

)
. (3.16)

where we use the Gaussian kernel kg(z) = e−z2
. Therefore, the kernel density is a

mixture of Gaussian model defined over the manifold. The group action is used to

define translated versions of this kernel density as

f̂k(y|g) =
ck,h

n

n∑
i=1

k

(
d2(g(y),xi)

h2

)
. (3.17)

where, g is an element of the group.

Given an observation ŷ, we use the EM algorithm to find the most likely value of

g. The hidden variables are denoted by zi, i = 1, . . . , n where zi is the probability that

ŷ was generated by the kernel centered at xi. Let gj denote the estimate of g after

the j-th iteration. The EM algorithm proceeds by building a tight lower bound for the

log-likelihood of the conditional distribution in the E-step and then maximizing this

lower bound in the M-step.

47

E Step: The log-likelihood is given by

log(p(ŷ, g)) = log

(
n∑

i=1

p(ŷ, zi, g)

)

≥
n∑

i=1

p(zi|ŷ, gj)log [p(zi|g)p(ŷ|zi, g)] . (3.18)

Assuming iid data, the expression of (3.18) can be further simplified to

n∑
i=1

p(zi|ŷ, gj)log[p(ŷ|zi, g)] +K (3.19)

where the constant K is independent of g. The lower bound

Q(g|gj) =
n∑

i=1

p(zi|ŷ, gj)log[p(ŷ|zi, g)] (3.20)

is maximized in the M-step.

M Step: The conditional probabilities p(ŷ|zi, g) are given by

p(ŷ|zi, g) = kg

(
d2(g(ŷ),xi)

h2

)
(3.21)

and the conditional probabilities p(zi|ŷ, gj) are

p(zi|ŷ, gj) = kg

(
d2(gj(ŷ),xi)

h2

)
(3.22)

Therefore, the lower bound can be rewritten as

Q(g|gj) = −
n∑

i=1

kg

(
d2(gj(y),xi)

h2

)
d2(g(ŷ),xi). (3.23)

Maximizing this lower bound is equivalent to minimizing the weighted sum on the right

hand side, and this is the same weighted sum which is minimized at each step of the

mean shift iteration. The only difference is that mean shift minimizes over the manifold

while the EM procedure described above minimizes over the group. Since the group

action is transitive the results of the two are equivalent.

It was also shown in [13] that Euclidean mean shift with a non-Gaussian kernel is

equivalent to generalized EM. Similarly, it can be shown that for a for a Riemannian

manifold with a transitive group action, nonlinear mean shift with a non-Gaussian

kernel is equivalent to generalized EM.

48

3.6 Applications and Results

The nonlinear mean shift is used to develop a motion segmentation method which can

recover both the number of motions and the motion parameters in a single step. This

method can be used with a number of different motion models and examples of this are

shown in Section 3.6.1. The motion segmentation algorithm can also be used for robust

estimation as explained in Section 3.6.2. Another application of nonlinear mean shift

is the discontinuity preserving filtering of non-vector valued images which is discussed

in Section 3.6.3.

3.6.1 Motion Segmentation

The input to the algorithm consists of point matches belonging to different motions.

Some of these correspondences may also be outliers. The algorithm proceeds in two

stages. In the first stage, the matches are randomly sampled to generate minimal sets

of points which define motion hypotheses. Such minimal sets are known as elemental

subsets. The sampling and hypothesis generation can be improved by a validation step

which reduces computation in the second stage [130]. In the validation step, a few

correspondences are randomly selected and we check whether they satisfy the motion

hypotheses. The hypotheses is retained only if at least one of these point satisfies the

motion up to some predefined validation threshold.

In the second stage, the parameter estimates are clustered over the manifold of

motion parameters using the algorithm proposed in Section 3.3.2. The number of

dominant modes gives the number of motions in the data and the position of the modes

corresponds to the motion parameters. Modes are considered not to be dominant if

they do not have high kernel densities or do not have a large number of mean shift

iterations converging to them.

The inliers for each mode are found based on the error residuals. This method is

justified in Section 4.4.3. Briefly, for each motion parameter returned by the clustering,

the residual errors of the inliers should be close to zero in the Euclidean space of the

residuals. This will lead to a mode around the origin in the space of residuals. We

49

use the original mean shift in the Euclidean space of the residual errors to find the

basin of attraction of the mode at zero. Points with residuals in this basin of attraction

are declared inliers. Since the inliers for each motion are decided independently, it is

possible for a correspondence to be assigned to two motions. In such a case the tie is

broken by assigning it to the motion which gives a lower error.

The performance of our algorithm is tested by verifying that the number of strong

modes is equal to the number of motions present in the data. Since mean shift returns

all local maxima of the kernel density estimate, for a data set with m motions the first

m modes should clearly dominate the (m+ 1)th mode, so that these extraneous modes

can be pruned.

We quantitatively compare the result of the algorithm with a manual segmentation

in two ways. Firstly, the classification of the correspondences is compared based on the

number of misclassifications by the algorithm. Secondly, we compute the squared error

using only the points declared inliers by the manual segmentation. Let Mj be the j-th

mode returned by the clustering. If the correspondence pi is an inlier for this motion,

the residual Mj(pi) should be small. We measure the residual squared error of Mj as

εjres =
1
nj

nj∑
i=1

|Mj(pi)|
2 (3.24)

where the sum is taken only over correspondences which are inliers according to the

manual segmentation and nj is the number of inliers for the j-th motion. The lower

limit for this error is

εjLS =
1
nj

nj∑
i=1

∣∣∣M̂j(pi)
∣∣∣2 (3.25)

where, M̂j is the least squares estimate based on the inliers given by the manual seg-

mentation. By definition, the least square estimate minimizes the squared error.

3D Translational Motion

Matched points across two views satisfy the epipolar constraint. If the camera is cal-

ibrated, the image coordinates can be converted to the normalized coordinates in 3D,

and the epipolar constraint becomes the essential constraint. Furthermore, if the point

50

mot.hyp. kde
M1 107 0.0388
M2 173 0.0338
M3 102 0.0239
M4 66 0.0199

M1 M2 M3 Out εres εLS

M1 26 0 0 0 0.00112 0.00080
M2 0 26 0 0 0.00006 0.00006
M3 0 0 26 0 0.00179 0.00136
Out 1 0 0 23

Figure 3.1: 3D Translational Motion. Mean shift over G3,1. In the left figure all the points
are shown while on the right the inliers returned by the system. The table on the left contains
the properties of the first four modes. Only the first three modes correspond to motions. The
table on the right compares the results with the manual segmentations.

has undergone only translation with respect to the camera, the essential constraint is

of the form [133]

tT (x1 × x2) = 0 (3.26)

where, x1 and x2 are the normalized coordinates in the two frames and t is the direction

of translation in 3D. Since the constraint is homogeneous, the translation can only be

estimated up to scale and t represents a line in R3 [133]. A line is a one-dimensional

subspace of R3, so the translation is parameterized by the Grassmann manifold, G3,1.

An elemental subset for a motion consists of two point matches and the hypotheses can

be generated by a cross product.

The motion segmentation on a real data set with three translations is shown in

Figure 3.1. A total of 102 corners were detected in the first frame and matched with

corners in the second frame using the method of [47]. Points in the background were

identified as having zero displacement and removed. On matching we obtain 27, 26

and 26 inliers for the motions and 23 outliers. These outliers are due to mismatches

by the point matcher. We generated 500 motion hypotheses and clustered them on the

51

manifold G3,1.

The results are tabulated in Figure 3.1. In the table on the left the number of

hypotheses which converge to each mode and the kernel density at the mode are shown.

Since the data set has three motions, there are three dominant modes with the fourth

mode having fewer point converging to it. The segmentation results are on the right.

Each row represents a motion and the row labeled Out represents outliers. The first

four columns show the classification results. For example, the first row indicates that of

the 26 points returned by the system as inliers for the first motion all 26 are inliers. The

last row shows that of the 24 points declared to be outliers by the system one is actually

an inlier for the first motion. Values along the diagonal are correctly classified, while off-

diagonal values are misclassifications. The last two columns show the residual errors

for our estimates ε, and for the least squares estimate, εLS . These residuals are the

average reprojection errors in mm2. Our algorithm’s performance, with no knowledge

of the segmentation, is comparable to manually segmented least squares estimates.

Affine Motion

This example involves mean shift over the Lie group of affine image transformations.

An affine image transformation is given by

M =

 A b

0T 1

 (3.27)

where, A is a nondegenerate 2 × 2 matrix and b ∈ R2. The set of all affine transfor-

mations, A(2), forms a matrix Lie group. An affine transformation has 6 parameters

and each point match gives 2 constraints. Each elemental subset, therefore consists of

3 point matches. The motion hypotheses are generated using least squares.

We used a data set of 80 corners matched across two frames with 3 independently

moving bodies. The matching was done using [47]. Points on the background were iden-

tified as having zero displacement and removed. Some of the points on the background

are occluded in the second image and are consequently mismatched. These points do

not have zero displacements and survive as outliers in the data set. The motions con-

tain 16, 18 and 16 inliers with 30 outliers. For clustering, 500 motion hypotheses were

52

mot.hyp. kde
M1 61 0.0550
M2 210 0.0547
M3 82 0.0468
M4 11 0.0155

M1 M2 M3 Out εres εLS

M1 16 0 0 0 2.7508 2.7143
M2 0 15 0 0 4.9426 4.6717
M3 0 0 15 0 3.2849 3.0860
Out 0 3 1 30

Figure 3.2: Affine motion segmentation. Mean shift over A(2). In the left figure all the points
are shown, and on the right only the inliers are shown. The table on the left contains the
properties of the first four modes. Only the first three modes correspond to motions. The table
on the right compares the results with the manual segmentations.

generated. The results of the experiment are shown in Figure 3.2. The images and

the tables display a similar analysis as in the previous figure. The residual errors are

expressed in units of pixel2.

Camera Pose Segmentation

The pose of a calibrated camera is the rigid body transformation from the world coordi-

nate system to the camera coordinate system and the set of camera poses is the special

Euclidean group, SE(3). We used the OpenCV camera calibration routines based on

[142] to triangulate three different point clouds. A 10 × 7 checkerboard pattern was

placed next to each of three objects and 25 images from different angles were taken for

each object. A few of the images are shown in Figure 3.3. The OpenCV routine returns

the internal camera parameters and the pose for each of the frames. We then used

SIFT [78] to match features across the images and used the calibrated pose estimates

to triangulate features in 3D. This gives us a data set of three different point clouds

along with the SIFT descriptors for each feature. Each of the three point clouds is

triangulated in a different 3D coordinate system.

53

Figure 3.3: Camera Pose Segmentation. Images used to reconstruct 3D point clouds using the
OpenCV implementation of the calibration technique of [142]

For segmentation, we use an image in which all three objects are present as shown

in Figure 3.4. The relative pose of the camera with respect to the world coordinate

systems of each of the objects is different. Therefore, the pose obtained using only the

correspondences from each of the objects will be different. This property can be used

to segment the three objects in the 2D image. Using SIFT we match the image features

to the previously computed 3D features. This gives 3D to 2D correspondences lying

across all three objects. Pose hypotheses are generated by the three-point method of

[56]. Each elemental subset of three points gives up to two solutions. A 1000 hypotheses

are clustered using mean shift over the Lie group SE(3) with a bandwidth of h = 0.1.

The results of the segmentation are shown in Figure 3.4. The tables below the figure

compare the results with the manual segmentation like in the previous sections with

the residual errors are expressed in mm2.

Multibody Factorization

Here we use mean shift over Grassmann manifolds. The positions of points tracked

over F frames of an uncalibrated affine camera define a feature vector in R2F . For

points sharing the same motion, these vectors lie in a four dimensional subspace of

R2F , and for planar scenes this subspace is only three dimensional [117]. In a scene

with multiple planar moving bodies, each motion defines a different subspace, which

54

mot.hyp. kde
M1 46 0.0388
M2 65 0.0387
M3 28 0.0223
M4 16 0.0092

M1 M2 M3 Out εres εLS

M1 42 0 0 1 2.46e-4 9.48e-5
M2 0 49 0 2 1.15e-4 3.90e-5
M3 0 0 25 0 4.63e-5 9.79e-6
Out 0 0 0 44

Figure 3.4: Camera Pose Segmentation. Mean shift over SE(3). The figure shows inliers for
the different motions found. The table on the left contains the properties of the first four modes.
Only the first three modes are valid motions. The table on the right compares the result with
the manual segmentation.

can be represented by a point in the Grassmann manifold G2F,3. An elemental subset

consists of the feature vectors defined by three points tracked across F frames. The

basis is obtained through singular value decomposition.

The results of multibody factorization with three motions is shown in Figure 3.5.

The system detected 140 corners in the first frame. Points on the background were

identified as having zero displacement and removed. The rest of the corners were tracked

across 5 frames, therefore, F = 5. The planar assumption holds due to negligible depth

variation, and each motion defines a three-dimensional subspace of R10. The three

motions contain 32, 21 and 29 points with 58 outliers. We generated 1000 hypotheses

from these matches and clustered them on the manifold G10,3.

The results are organized like before with the residual errors are expressed in pixel2.

The kernel density at the fourth mode is an order of magnitude below the third mode.

The classification results are nearly perfect. One outlier is misclassified as an inlier for

the first motion.

55

mot.hyp. kde
M1 209 0.1315
M2 695 0.0830
M3 52 0.0165
M4 12 0.0024

M1 M2 M3 Out εres εLS

M1 32 0 0 1 7.0376 5.0193
M2 0 21 0 0 2.8520 0.7627
M3 0 0 29 0 4.2007 3.1648
Out 0 0 0 57

Figure 3.5: Multibody Factorization. Mean shift over G10,3. The left figure shows the first
frame with all the points which are tracked. The middle and right images show the second and
fifth frames with only the inliers. The table on the left contains the properties of the first four
modes. Only the first three modes correspond to motions. The table on the right compares the
results with the manual segmentations.

Epipolar Segmentation

We do mean shift over the essential manifold. We calibrated a camera offline using the

method of [142]. Two images of a scene with two moving bodies were taken. The points

on each motion define an essential matrix due to their relative motion with respect to

the camera. For hypotheses generation we used the method of [89]. Each elemental

subset consists of five point and returns up to ten essential matrices. The hypotheses

are clustered over the essential manifold using the theory developed in Section 2.4.4.

The two images used for motion segmentation are shown in Figure 3.6. The toy cars

move together and the book has a separate motion. Using SIFT, and removing points

56

mot.hyp. kde
M1 459 0.0215
M2 409 0.0051
M3 92 0.0026

M1 M2 Out εres εLS

M1 36 1 2 5.31e-5 3.82e-5
M2 3 38 2 9.86e-4 1.64e-4
Out 0 3 15

Figure 3.6: Mean shift over the Essential Manifold. The left figure shows the first frame with
all the points which are matched. The right image shows the second frame with only the inliers
returned by the segmentation. The table on the left contains the properties of the first three
modes. Only the first two modes correspond to motions. The table on the right compares the
results with the manual segmentations.

in the background as having zero displacement, we get 100 point matches with 39 on

the book and 42 on the cars and 19 outliers according to the manual segmentation. We

generated 1000 hypotheses and the mean shift was done with a bandwidth of h = 0.001.

The clustering returns two dominant modes as expected. The first two modes are clearly

more dominant than the third. Some of the outliers are misclassified as inliers since

they satisfy the epipolar constraint. These results are tabulate in Figure 3.6 with the

residual squared errors expressed in mm2.

3.6.2 Robust Estimation

The same procedure that was used for motion segmentation can also be used for robust

estimation. In this case, the motion hypotheses are expected to form a single mode in

the parameter space. We integrated this robust estimator into the camera tracking

system of [115]. A freely moving camera is viewing a scene with a specific world

coordinate system. The aim is to robustly and efficiently compute the pose of the

camera with respect to the world coordinate system. The camera is assumed to be

57

calibrated offline and the required pose is the rigid body transformation from the world

to camera coordinate systems.

The system is initialized using a set of easily identifiable markers placed in the scene

which define a world coordinate system. Initially, the pose is estimated from these

markers and there are no outliers. Features in the rest of the scene are triangulated

using these pose estimates. The camera is then allowed to move freely without being

required to keep the markers in view. Triangulated features are used to estimate pose

while further features are constantly reconstructed. At this stage, the robust estimator

is required to prevent mismatches in the image tracking from leading to erroneous pose

estimates. In practice, a robust pose estimator is not sufficient for good results. Each

robust fit is used to remove outliers and the final pose is estimated using only the

inliers. Given a set of 3D world to 2D image point correspondences, we use the three-

point algorithm of [56] to generate pose hypotheses. The hypotheses are clustered using

mean shift over SE(3).

The mean shift estimator also allows us to take advantage of the continuity of the

camera movement. Since the pose estimates of two consecutive frames will not be very

different from each other, rather than starting a mean shift iteration at each hypoth-

esis, we only try to find the mode closest to the previous frame’s pose. Therefore a

single mean shift iteration is initialized at the previous pose estimate. The point of

convergence is taken as the next robust pose estimate. This also reduces the computa-

tion since we only need to do a single set of mean shift iterations rather than start an

iteration at each data point.

Mean Shift versus RANSAC

We outline a simple proof of why mean shift performs better than hypothesis-and-

test algorithms. Assume the data consists only of noisy inliers. With perfect data all

hypotheses will lie exactly at the true pose. For noisy data, the hypotheses Pi, i =

1, . . . , n are distributed around the true pose.

We assume the algorithm for hypothesis generation is unbiased. The generated

hypotheses will form a unimodal distribution with the mode at the true pose. This

58

Figure 3.7: Comparison of the error densities for RANSAC and averaging as given by (3.28)
and (3.29). (a) n = 10 for both curves. (b) n = 100 for both curves. (c) n = 100 for RANSAC
and n = 25 for averaging.

mode is modeled as a Gaussian with mean at the true pose Po and covariance Σ.

Since SE(3) is a 6-dimensional manifold in 12-dimensional space, Σ is a 12× 12 matrix

of rank 6 [65]. The squared Mahalanobis distances of the hypotheses from Po forms

a χ2 distribution with 6 degrees of freedom (dof). Let f and F be the density and

distribution functions of a 6 dof χ2 distribution. Let Pr be the RANSAC result and

Pa be the average of n hypotheses. We compare the two estimates based on their

Mahalanobis distances from Po.

RANSAC will always return one of the generated hypotheses. Ideally, it will return

the hypothesis with the lowest Mahalanobis distance to Po. The probability of the

lowest Mahalanobis distance being d and all the others being greater than d is

p(‖Pr −Po‖2Σ = d2) = nf(d2)(1− F (d2))n−1 . (3.28)

The mean of n Gaussian variables is a Gaussian random variable with the same

mean but an n times less covariance. Therefore, Pa is a Gaussian random variable with

mean Po and covariance Σ/n. Consequently, n‖Pa − Po‖2Σ is a 6 dof χ2 variable and

this gives

p(‖Pa −Po‖2Σ = d2) = nf(nd2) . (3.29)

The distributions for n = 10 and n = 100 are compared in the first two images

of Figure 3.7. The averaged estimates are closer to the true pose, and as n increases

this difference becomes more obvious. Therefore, averaging requires fewer hypotheses

59

to perform as well as RANSAC.

In the presence of outliers, the hypotheses will no longer form a unimodal distribu-

tion around the true pose. However, the pose estimates generated using only inliers will

still be distributed in the same way. Ideally, RANSAC will return the closest of these

estimates, and the above analysis for RANSAC still holds with n begin the number of

hypotheses generated using only inliers. To prevent outlier hypotheses from affecting

the averaging, the averaging needs to be robust. Mean shift (with the Epanechnikov

kernel) is the mean of all the points lying within the basin of attraction [25]. For

an appropriately chosen bandwidth, the mean shift estimate will be the average of

all the inlier hypotheses and the distance of this value from the true pose will follow

the distribution (3.29). Since averaging requires fewer hypotheses for the same level

of performance and the major bottleneck in the hypothesis-and-test procedure is the

generation of the hypotheses, less time is spent removing outliers.

In practice, the above assumptions may not hold. The hypotheses need not be

normally distributed, although for low noise this does not lead to serious problems.

More importantly, the bandwidth of the mean shift is usually conservative and not all

inlier hypothesis are averaged. Therefore, the parameter n differs for mean shift and

RANSAC. In the third curve of Figure 3.7, we compare the RANSAC error density

of (3.28) for n = 100 and the averaging error density of (3.29) for n = 25. As these

densities are comparable, mean shift needs to average only 25 good hypotheses to be

as good as RANSAC with 100 inlier hypotheses.

Camera Tracking System

The workspace scene from [115] was used to test our system. An image of this scene

and the camera path and the reconstructed point cloud for a sequence are shown in

Figure 3.8. Initially the camera is moved in front of the markers to allow scene features

to be reconstructed. This is the set of frames lying along a line in the top left of the

image. Later, the camera is allowed to move away from the markers and the robust

estimator is used.

We ran our experiments on a 2.4GHz Pentium 4 machine. RANSAC requires 100

60

Figure 3.8: Results of the camera tracking. The scene used is shown on the left. The recon-
structed point cloud and camera frames are on the right.

hypothesis and takes 0.4ms to process them. Each hypothesis generation takes 0.05ms

leading to a total of 5.4ms for the robust estimator. The mean shift estimator requires

50 hypothesis for similar performance and takes 1.2ms, on the average, to find the

mode. This gives a total time of 3.7ms for the mean shift estimator.

3.6.3 Discontinuity Preserving Filtering

The original mean shift has been used for the discontinuity preserving filtering of color

images [19, 25]. This algorithm was extended to manifold valued images in [114].

The image I is considered to be a mapping on a n-dimensional lattice which assigns

a value to each lattice point. Typically, n = 2 or 3. At each location zi, the data

values I(zi) are assumed to lie on a Riemannian manifold,M. A pixel I(zi) along with

its location zi is considered as a single data point x = (z, I(z)), in the joint domain

Rn ×M.

We do mean shift in this joint space to cluster the pixels. Consider an iteration

starting at the point xi = (zi, ci), ci = I(zi). Let this iteration converge to (ẑi, ĉi). In

the filtered image If , we set If (zi) = ĉ. The profile in the joint domain is the product

of a spatial profile defined on the Euclidean part of the joint domain and a parameter

profile defined on the manifold, as

k(x,xi) = ks

(
‖z− zi‖2

h2
s

)
kp

(
d2(c, ci)
h2

p

)
(3.30)

where x = (z, c) and xi = (zi, ci) are point in the joint domain. The bandwidth in

61

Figure 3.9: Chromatic Noise Filtering. The baboon image corrupted with chromatic noise is
shown on the left. The results of using standard mean shift filtering with EDISON are in the
middle and the results of our method are on the right.

the joint domain consists of a spatial bandwidth hs and a parameter bandwidth hp. In

practice, we use a truncated normal kernel and the performance of the algorithm can

be controlled by varying hp and hs.

To optimize performance, we used the heuristic suggested in [19] and used in the

EDISON system. The filtering step was not applied to pixels which are on the mean shift

trajectory of another (already processed) pixel. These pixels were directly associated

with the mode to which the path converged. The approximation does not noticeably

change the filtered image but reduces processing time.

Chromatic Noise Filtering

Chromatic image noise affects the direction (chromaticity) of the color vector and not

its intensity. The direction of a 3D vector can be represented by a unit vector in 3D and

these form the Grassmann manifold, G,31. By filtering chromaticity we obtain better

results than original mean shift which smooths chromaticity and brightness.

The results for the baboon image are shown in Figure 3.9. Chromatic noise of stan-

dard deviation 0.2 was added to the original image. The original mean shift image fil-

tering algorithm from EDISON, with spatial bandwidth hs = 11.0 and color bandwidth

hp = 10.5, was used to get the middle image. Using a larger hp leads to oversmoothing

62

Figure 3.10: Chromatic Noise Filtering. The jellybeans image corrupted with chromatic noise
is shown on the left. The results of using standard mean shift filtering with EDISON are in the
middle and the results of our method are on the right.

and using smaller values does not change the image much. Our algorithm was run with

hs = 11.0 and hp = 0.3 to get the image on the right. To clearly illustrate the difference

in the results, two image regions, outlined in yellow in the input image, are shown in

close-up. Our filtering is clearly better than EDISON.

The results for the jellybeans image are shown in Figure 3.10. The image is corrupted

with chromatic noise of standard deviation 0.2. The original mean shift image filtering

algorithm from EDISON, with spatial bandwidth hs = 11.0 and color bandwidth hp =

10.5, was used to get the middle image. Our algorithm was run with hs = 11.0 and

hp = 0.3 to get the image on the right. Again, our filtering is better than EDISON due

to the averaging of the right noise model.

DT-MRI Filtering

DT-MRI filtering involves mean shift over R3 × Sym+
3 . Our real data set is a DTI of

the human heart obtained from [59]. The lattice size is 128× 128× 67 and we ran the

smoothing with bandwidth values hs = 9.0 and hp = 1.0. For visualization purposes,

each 3×3 diffusion matrix is converted to some scalar value and planes of the 3D lattice

are drawn. Here, we use the fractional anisotropy [129]√
3
2

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

(3.31)

63

Figure 3.11: Real DTI data of a human heart before and after smoothing. The jitter in the
top image is due to noisy voxels having different anisotropies from their surroundings. These
are removed by the smoothing and more continuous regions of uniform anisotropy are visible
below.

where, λ1, λ2 and λ3 are the eigenvalues and λ̄ = (λ1 + λ2 + λ3)/3. The fractional

anisotropy for a particular plane z = 47 is shown in Figure 3.11.

64

Chapter 4

Projection Based M-Estimators

Regression algorithms estimate a parameter vector given a data set and a functional

relation between the data and the parameters. If some of the data points do not satisfy

the given relation they are known as outliers, while points which do satisfy it are known

as inliers. Outliers interfere with the regression and lead to incorrect results, unless

they are appropriately accounted for. Robust regression algorithms perform regression

on data sets containing outliers without a significant loss of accuracy in the parameter

estimates.

In vision applications, outliers almost always occur and any system which aims

to solve even simple visual tasks must address this problem. The most widely used

robust algorithm in computer vision is Random Sample Consensus (RANSAC) [37].

The popularity of the original RANSAC algorithm is due to its ease of implementation.

However, RANSAC suffers from a number of drawbacks which make it inappropriate

for some real applications.

Here we discuss an important obstruction to applying RANSAC in practice which

has largely been ignored till recently, namely the sensitivity to scale. Scale is the level

of additive noise which corrupts the inliers. RANSAC requires an estimate of this value

to be specified by the user and the performance of RANSAC is sensitive to the accuracy

of the scale estimate. Using a low value of the scale leads to rejecting valid inlier data,

while using large estimates of the scale lets the outliers affect the parameter estimate.

We develop a robust regression algorithm known as the projection based M-estimator

(pbM), which does not require a user specified scale estimate. This is achieved by estab-

lishing a connection between regression and the theory of kernel density estimation. The

65

pbM algorithm was initially proposed in [14] for robust regression with homoscedas-

tic data vectors, i.e., data vectors which are corrupted by additive noise with the

same covariance. Since then pbM has undergone changes in the cost function [110]

and variations of pbM have been developed to handle more complex problems such as

heteroscedastic data [111] and multiple linear constraints [113].

The pbM uses a modification of a robust M-estimator cost function to develop

data driven scale values. Usually, in regression problems, all the data points are as-

sumed to be corrupted by additive noise with the same covariance. Such data sets

are homoscedastic. The pbM algorithm is extended to two scenarios both of which

are more complex than the usual homoscedastic robust regression. Firstly, we consider

heteroscedastic data, where each inlier data point is allowed to be corrupted by an ad-

ditive noise model with a different covariance. As has been shown before [84], even in

the presence of low-dimensional homoscedastic data, the nonlinear functional relations

which occur in 3D-vision lead to heteroscedastic data vectors for regression. Secondly,

we address the problem of multiple regression, where each data point is required to

satisfy multiple linearly independent constraints. This problem is equivalent to robust

subspace estimation or robust principal component analysis [3, 12] and is of practical

importance to solve problems such as factorization [94, 118].

4.1 Previous Work

Random sample consensus (RANSAC) is the most widely used robust estimator in com-

puter vision today. RANSAC was proposed in [37] and has since then been applied to a

wide range of problems including fundamental matrix estimation [122], trifocal tensor

estimation [123], camera pose estimation [88] and structure from motion [88]. Other

applications of RANSAC can be found in [57]. RANSAC has been used extensively and

has proven to be better than various other robust estimators. Some of these estimators,

such as LMedS [98], were developed in the statistics community, but were found to not

give good results for vision applications [108].

The RANSAC algorithm proceeds by repeatedly hypothesizing possible parameter

66

estimates and then checking for the number of inliers based on the residual error. The

hypothesis with the maximum number of inliers is declared the true estimate. The

decision of whether a point is an inlier or not is based on a user defined scale estimate.

4.1.1 RANSAC and Robust Regression

Improvements have been proposed to the basic RANSAC algorithm of [37]. These

improvements can broadly be divided into two classes

• changes to the cost function

• changes to the sampling.

In [123], it was pointed out that in the RANSAC cost function, all inliers score zero

uniformly and all outliers score a constant penalty. Better performance was obtained

with a cost function where the inlier penalty is based on its deviation from the required

functional relation, while outliers scored a constant penalty. The method is known as

MSAC (M-estimator sample consensus). A different algorithm, MLESAC (maximum

likelihood sampling and consensus), was proposed in [124], where the cost function

was modified to yield the maximum likelihood estimate under the assumption that the

outliers are uniformly distributed. Like MSAC, MLESAC requires the parameters of

the inlier noise model to be given by the user.

Various methods to improve on the random sampling step of RANSAC have also

been proposed. In [120], the match scores from a point matching stage are used in the

sampling. By replacing the random sampling in RANSAC with guided sampling, the

probability of getting a good elemental subset was drastically improved. LO-RANSAC

[22], enhances RANSAC with a local optimization step. This optimization executes a

new sampling procedure based on how well the measurements satisfy the current best

hypothesis. Alternatively, PROSAC [21] uses prior beliefs about the probability of a

point being an inlier to modify the random sampling step of RANSAC. The robust esti-

mation problem can also be treated as a Bayesian problem. This leads to a combination

of RANSAC with importance sampling [121].

67

The original RANSAC algorithm is not applicable to real-time problems. In [88],

a termination condition based on the execution time of the algorithm is used to limit

sampling, so that RANSAC can be used for live structure from motion. For certain

problems, the problem of degenerate data can be handled by detecting the degeneracy

and using a different parametrization of the parameters being estimated [41].

In all this work, a major limitation to the practical use of RANSAC has not been

addressed. RANSAC requires the user to specify the level of noise corrupting the inlier

data. This estimate is known as the scale of the noise and the performance of RANSAC

is sensitive to the accuracy of the scale estimate [77]. In many applications we have no

knowledge of the true scale of inlier noise. The scale may also change with time and the

system will have to adapt itself to these changes without user intervention. Consider

a real-time image based reconstruction system which uses feature correspondences be-

tween frames to generate 3D models of the scene. Mismatches between frames will act

as outliers during the estimation of the scene geometry and it will be necessary to use

robust regression. The amount of noise corrupting the inliers will change based on how

fast the camera is moving.

4.1.2 Robust Subspace Estimation

Given data lying in a N -dimensional space, linear regression estimates the one dimen-

sional null space of the inliers. Subspace estimation requires the simultaneous estimation

of k linearly independent vectors lying in the null space of the inliers. The intersec-

tion of the hyperplanes represented by these k constraints gives the required N − k

dimensional subspace containing all the inliers. Subspace estimation in the presence

of outlier data is known as robust subspace estimation. If all the data points lie in

the same subspace, then Principal Component Analysis (PCA) [63] would be sufficient,

however PCA cannot handle outliers. Methods such as [3, 12] perform robust PCA to

handle outliers, but these methods cannot handle structured outliers.

Subspace estimation occurs frequently in the analysis of dynamic scenes, where it is

known as the factorization problem [27, 44, 118]. Since the seminal work of [118] which

introduced factorization for orthographic cameras, factorization has been generalized

68

to include affine cameras [94] and projective cameras [81, 125]. Many variations of the

factorization algorithm have been proposed to handle difficulties such as multiple bodies

[27, 44, 116, 135], outliers [66] and missing data [11, 54, 69]. The degeneracies are also

well understood [117, 141]. We concentrate on factorization in the presence of outliers,

both structured and unstructured. Structured outliers in factorization correspond to

bodies with different motions and this is known as the multibody factorization problem

[27, 44, 66, 96].

As we said in Section 3.6.1, factorization is based on the fact that if n rigidly moving

points are tracked over F affine images, then the 2F image coordinates can be used to

define feature vectors in R2F . These vectors lie in a four-dimensional subspace of R2F

[118]. If the data is centered then the dimension of the subspace is only three. Due

to the large amount of research that is aimed at solving the factorization problem, we

cannot offer a complete list of previous work done. Most work done in this area, includ-

ing subspace separation [27, 66] and generalized PCA (GPCA) [135] aim to solve the

multibody factorization problem where different bodies give rise to different subspaces.

Most methods make certain simplifying assumptions about the data. Firstly, in

[27, 66] it is assumed that the subspaces are orthogonal. Therefore, for degenerate

motions where the subspaces share a common basis vector, the methods break down

[141]. Secondly, the methods of [27, 66] require the data to be centered, which is

difficult to ensure in practice, especially in the presence of outliers. Finally, and most

importantly, [27, 116, 135] do not account for unstructured outliers. For the purposes

of estimating the subspace due to any particular motion, point tracks on other motions

can be taken to be outliers. However, they do not consider unstructured outliers, i.e.,

point tracks which do not lie on any of the bodies. Some preliminary work in this

direction has been done in [134]. However, [134] assumes that even in the presence of

outliers the algorithm returns a rough estimate of the true subspaces and the scale of

the noise is known. None of these assumptions are guaranteed to hold in practice.

69

(a) (b)

Figure 4.1: Biweight loss function, ρ(u) and the biweight M-kernel function, κ(u).
Image (a) on the left is the biweight loss function and (b) is the corresponding M-kernel
function.

4.1.3 Scale Independent Robust Regression

The pbM algorithm was initially proposed to solve the homoscedastic robust regression

problem without requiring user defined scale estimates [14]. This was done by taking

advantage of the relation between kernel density estimation and robust regression to

propose data-driven scale selection rules.

The connection between nonparametric density estimation and robust regression has

been remarked on before [25], and recently this equivalence has been used to develop

scale independent solutions to the robust regression problem [104, 105, 138]. In [104]

kernel density estimation is used to model the residuals of a regression based image

model and to choose an appropriate bandwidth for mean shift based segmentation.

The idea was extended in [105] to define a maximum likelihood estimator for parametric

image models. In [138], a two step method was proposed for the regression problem. In

the first step, they propose a robust scale estimator for the inlier noise. In the second

step they optimize a cost function which uses the scale found in the first step. This

requires the scale estimate to be close to the true scale. Kernel density estimation has

also been used to propose novel scores such as the kernel power density [137].

The above methods were developed to handle homoscedastic noise for one-dimensional

residuals. Robust subspace estimation involves multi-dimensional residuals and extend-

ing these methods is not trivial. For example, [138] uses a modified mean shift algorithm

70

known as the mean-valley algorithm to find the minima of a kernel density along the

real line. This method is unstable in one-dimension and will become worse in higher

dimensional residual spaces which occur in subspace estimation.

In [110], the pbM algorithm was extended to handle heteroscedastic data. In the

same work, and simultaneously in [99] for homoscedastic noise, a modified M-estimator

cost function was introduced. The pbM algorithm was further extended to handle the

robust subspace estimation problem in [113].

The pbM algorithm continues to use the hypothesise-and-test framework of the

RANSAC family of algorithms. The sampling methods of the previously discussed al-

gorithms can be used in the hypothesis generation part of pbM, while keeping the rest

of the algorithm the same. Consequently, the advantages that pbM offers are different

from methods such as PROSAC [21], QDEGSAC [41] etc. Our data-driven scale selec-

tion rules can be combined with any of the above algorithms to obtain improved robust

regression methods.

4.2 Robust Heteroscedastic Linear Regression

The original pbM estimator was proposed as a solution to the robust linear errors-in-

variables (EIV) problem [14]. It was later applied to the robust heteroscedastic-errors-

in-variables (HEIV) problem which is more general then the linear EIV problem [110].

We begin by introducing the robust HEIV problem. We explain the role played by a

user-defined scale estimate in RANSAC. We also connect the robust regression problem

to kernel density estimation. This similarity is exploited by the pbM algorithm in

Section 4.4.

Let yio ∈ Rp, i = 1, . . . , n1 represent the true values of the inliers yi. Typically,

for heteroscedastic regression, the data vectors are obtained from nonlinear mappings

of lower dimensional image data. Given n(> n1) data points yi, i = 1, . . . , n, we would

like to estimate θ̂ ∈ Rp and α̂ ∈ R such that the linear constraint,

θ̂
T
ŷi − α̂ = 0 (4.1)

71

where,

yi = yio + δyi δyi ∼ GI(0, σ2Ci)

for i = 1, . . . , n1. In the above equations, ŷi is an estimate of yio. The points yi, i =

n1 + 1, . . . , n are outliers and no assumptions are made about their distribution. The

number of inliers, n1, is unknown. The multiplicative ambiguity in (4.1) is removed by

imposing the constraint ‖θ‖ = 1.

Note that each yi i = 1, . . . , n1 is allowed to be corrupted by noise of a different

covariance. This makes the problem heteroscedastic as opposed to homoscedastic, where

all the covariances are the same. Heteroscedasticity usually occurs in vision due to

nonlinear mappings between given image data and the data vectors involved in the

regression. Given the covariance of the image data, the covariances of the regression

data vectors can be found by error propagation [84]. For example, for fundamental

matrix estimation, the lower dimensional image data vector is given by a vector in R4

which is mapped to a regression vector in R8. In this paper, we assume the covariance

matrices, Ci, are known up to a common scale [84].

The robust M-estimator formulation of this problem is

[
θ̂, α̂

]
= arg min

θ,α

1
n

n∑
i=1

ρ

(
θTyi − α
s
√

θTCiθ

)
(4.2)

where, s is the user-defined scale parameter. The term, θTyi−α measures the deviation

of the data from the required constraint. Deviations of points with larger covariances

should have less weight than points with smaller covariances. This is achieved by the√
θTCiθ term which is the standard deviation of the projection, θTyi.

We use a loss function, ρ(u), which is a redescending M-estimator. The loss function

is non-negative, symmetric and non-decreasing with |u|. It has a unique minimum of

ρ(0) = 0 and a maximum of one. Therefore, it penalizes points depending on how

much they deviate from the constraint. Greater deviations are penalized more, with

the maximum possible penalty being one. The scale, s, controls the level of error the

cost function is allowed to tolerate. If the loss function is chosen to be the zero-one loss

72

function

ρ0−1(u) =

 0 if |u| ≤ 1

1 if |u| > 1
(4.3)

then (4.2) is equivalent to traditional RANSAC [37]. Some versions of RANSAC use

continuous loss functions [124]. In our implementation, we use the biweight loss function

(Figure 4.1a),

ρ(u) =

 1− (1− u2)3 if |u| ≤ 1

1 if |u| > 1
(4.4)

since it is continuous.

4.2.1 The Scale in RANSAC

The RANSAC algorithm solves the optimization problem of (4.2) by repeatedly hypoth-

esizing parameter estimates and then testing them. An elemental subset, which is the

minimum number of data points required to uniquely define a parameter estimate, is

sampled randomly from the data and used to generate a parameter hypothesis [θ, α].

For example, in the case of fundamental matrix estimation, we would use the eight-

point algorithm to generate a fundamental matrix estimate. In the testing step, the

robust score for this estimate is computed. The scale s used to compute the score is

given by the user. This process is repeated till the system has attained a predefined

confidence that a good hypothesis has been obtained [88]. The number of iterations de-

pends on the fraction of inliers and the required confidence in the parameter estimates.

The hypothesis with the best score is returned as the parameter estimate.

After the parameters have been estimated, the inliers in the data are separated from

the outliers in the inlier-outlier dichotomy step. Let
[
θ̂, α̂

]
be the hypothesis with the

best score. A data point y is declared an inlier if ‖θ̂T
y−α̂‖ < s, otherwise it is declared

an outlier. The same user-defined scale s, is used in this step.

The scale estimate plays two important roles in RANSAC. Firstly, it appears in

the robust score being optimized. Secondly, it is used to separate the inliers from the

outliers in the final step. RANSAC requires the user to specify a single scale value to

73

be used in both steps. Ideally, the value of scale used should be the true value, but for

robust regression, choosing a good scale value is a circular problem. Given the scale

value it is possible to estimate the parameters and the dichotomy using methods such

as RANSAC. Given the inlier-outlier dichotomy, the parameters can be estimated using

least squares regression and the scale can then be estimated through χ2 tests.

In the absence of a good scale estimate it is not necessary for both the scale values

to be the same. The reason RANSAC uses the value twice is that the scale estimate

is defined by the user a single time. The pbM algorithm divides the robust estimation

problem into two steps and uses two different data-driven scale values. One of these

values appears in the robust score and this value is estimated by interpreting the ro-

bust score as a kernel density estimation. The inlier-outlier separation is based on a

nonparametric analysis of the residual errors.

4.2.2 Weighted Kernel Density Estimation

Let xi, i = 1, . . . , n be scalars sampled from an unknown distribution f . The weighted

adaptive kernel density estimate

f̂K(x) =
cK
nw

n∑
i=1

wi

hi
K

(
x− xi

hi

)
(4.5)

based on a kernel function, K, and weights, wi, satisfying

K(z) ≥ 0 wi ≥ 0 w =
n∑

i=1

wi (4.6)

is a nonparametric estimator of the density f(x) at x. The bandwidth hi of xi controls

the width of the kernel placed at xi and the weight wi controls the importance given

to the data point xi. The constant ck is chosen to ensure that f̂K integrates to 1.

This is a slightly more general definition of a kernel density than the one given

in Section 3.2. If all the weights are set to wi = 1 and we use a symmetric kernel,

K(x) = k(x2), where, k(·) is the profile then we obtain the previous definition of (3.1).

The mean shift vector for the weighted kernel density is obtained by taking the

74

Figure 4.2: The quasi-linear variation of M-estimator scores with scale. The parameters
θ and α are set to their true values while the scale s is varied. The dashed vertical line
indicates the true scale of the noise corrupting the inliers.

gradient of (4.5), and defining g(z) = −k′(z),

mh(x) = C
∇f̂k(x)

f̂g(x)
=

n∑
i=1

wixi

h3
i

g

(∥∥∥∥x− xi

hi

∥∥∥∥2
)

n∑
i=1

wi

h3
i

g

(∥∥∥∥x− xi

hi

∥∥∥∥2
) − x. (4.7)

C is a positive constant and mh(x) is the mean shift vector. The mean shift is propor-

tional to the normalized density gradient and the iteration

x(j+1) = mh(x(j)) + x(j) (4.8)

is a gradient ascent technique converging to a stationary point of the kernel density.

Saddle points are detected and removed, to obtain the modes of f̂K(x).

4.2.3 Reformulating the Robust Score

The heteroscedastic M-estimator formulation of (4.2) is mathematically similar to the

kernel density estimation of (4.5). To make this similarity precise, we replace the loss

function ρ(u) in (4.2) by the M-kernel function κ(u) = 1−ρ(u). The robust M-estimator

problem now becomes[
θ̂, α̂

]
= arg max

θ,α

1
n

n∑
i=1

κ

(
θTyi − α
s
√

θTCiθ

)
. (4.9)

75

The M-kernel function corresponding to the biweight loss function is given by (Figure

4.1b)

κ(u) =

 (1− u2)3 if |u| ≤ 1

0 if |u| > 1.
(4.10)

Now, suppose we fix the direction θ. The projections of the data points yi along

this direction are given by θTyi and the covariance of this projection is given by θTCiθ.

The robust score of (4.9) can be thought of as an adaptive kernel density estimate with

the one-dimensional data points being the projections θTyi. The mode of this density

will be the intercept α. We choose the kernel function K to be the M-kernel function κ

and the bandwidths hi and weights wi are chosen appropriately, as shown in Table 4.1

below.

Table 4.1: Kernel Density Estimation and M-Estimators
KDE M-Estimators

Kernel K κ

Bandwidth hi s
√

θTCiθ

Weights wi

√
θTCiθ

The kernel density (4.5) of the projections along the direction θ becomes

f̂θ(x) =
cκ
nsw

n∑
i=1

κ

(
θTyi − x
s
√

θTCiθ

)
. (4.11)

The factor cκ is a constant and can be ignored. The kernel density equation of (4.11)

differs from the M-kernel formulation of (4.9) only by a division by s and w.

The term w appears in the kernel density to ensure that it is in fact a density which

integrates to one. It is the sum of terms of the form
√

θTCiθ which depend on the

covariances Ci, which are part of the data, and the direction θ. The aim of the robust

regression algorithm is to maximize a robust M-score and kernel density estimation is

used as a computational tool to achieve this. Since w is not part of the robust M-score

we do not include it in the cost function being optimized. For a constant θ, w does not

change and acts as a proportionality factor of the kernel density which does not affect

the position of the maximum of the density.

76

The data driven scale is depends on the projections of the data points and therefore

varies as the direction of projection θ changes. When comparing M-estimator scores for

different directions, we are comparing scores evaluated at different scales. It is necessary

to account for the variation of the M-estimator score due to the change in the scale. In

Figure 4.2 the M-estimator score is computed at different scale values for a randomly

generated data set of 40 inliers lying on a plane and 40 outliers. The values of θ and

α are set to their true values and the dashed vertical line shows the true scale which is

0.75. It can be seen that as the scale changes the score variation is almost linear.

In previous hypothesise-and-test algorithms, the scale was held constant and did not

affect the optimization. However, as s increases, the M-score of (4.9) increases quasi-

linearly with s. Using data driven scale selection rules would bias the system in favor

of more distributed residuals unless we account for the variation of the M-score with

scale. To do this, we maximize the ratio between the M-score and the scale at which

it is evaluated. Denoting the data driven scale by sθ, the M-estimator formulation

becomes

[
θ̂, α̂

]
= arg max

θ,α

1
nsθ

n∑
i=1

κ

(
θTyi − α
sθ

√
θTCiθ

)
(4.12)

and the corresponding kernel density formulation reads

[
θ̂, α̂

]
= arg max

θ,α
f̂θ(α). (4.13)

The cost function (4.12) does not integrate to one and is no longer a kernel density.

However, it is proportional to a kernel density estimate and the position of the maximum

does not change. Using mean shift to find the mode of the projections while holding θ

constant would still be valid.

In our formulation, we return the hypothesis with the highest ratio between the

M-score and the scale at which it is evaluated. RANSAC, on the other hand, holds

the scale constant and returns the hypothesis with the highest M-score. A similar

cost function was proposed in [99], based on the empirical performance of pbM for

homoscedastic data. However, the theoretical justification for the division by scale due

to the linear variation of the M-score was first pointed out in [110].

77

Figure 4.3: An example of projection pursuit. The 2D data points and the two direc-
tions, θ1 and θ2 are shown in the middle image. The kernel density estimate of the
projections along θ1 is shown on the left. There is a clear peak at the intercept. The
projections along θ2 give a more diffuse density, as seen in the right figure.

4.2.4 Projection Pursuit

The kernel density formulation offers an alternate justification for the new robust score

of (4.12). Given a direction, the intercept is the largest mode of the kernel density. The

direction with the highest density at the mode is the estimated direction. This approach

to the robust heteroscedastic errors-in-variables problem is known as projection pursuit

in statistics. The equation (4.13) can be rewritten as

[
θ̂, α̂

]
= arg max

θ

[
max

x
f̂θ(x)

]
. (4.14)

The inner maximization on the right hand side returns the intercept α as a function of

θ and this is the projection index of θ.

α = arg max
x

f̂θ(x). (4.15)

The direction with the maximum projection index is the robust estimate.

The projection pursuit approach towards M-estimation has a clear geometric inter-

pretation. The direction θ can be regarded as the unit normal of a candidate hyperplane

fitted to the p-dimensional data. The bandwidth sθ defines a band along this direc-

tion. The band is translated in Rp, along θ, to maximize the M-score of the orthogonal

distances from the hyperplane. The M-estimate corresponds to the densest band over

all θ.

These ideas are geometrically illustrated in Figure 4.3, for two-dimensional data.

The inliers, which lie close to a line, and the outliers, which are uniformly distributed,

78

are shown in the middle figure. Their projections are taken along two directions, θ1

and θ2. The kernel density estimate of the projections along θ1 is shown on the left

and it exhibits a clear mode at the intercept. The kernel density estimate based on the

projections along θ2 is more diffuse. The mode is not that high and consequently, θ2

will have a much lower projection index than θ1.

4.3 Robust Subspace Estimation

In the last section we reformulated the robust regression problem as a projection pursuit

problem with the projection score given by a kernel density. We can carry out a similar

procedure to rewrite the robust subspace estimation problem as a projection pursuit

problem [113]. In this section we start from the robust M-estimator formulation and

derive the equivalent M-kernel and kernel density forms.

Let yio, i = 1, . . . , n1, be the true value of the inlier data points yi. Given n(> n1)

data points yi, i = 1, . . . , n, the problem of subspace estimation is to estimate Θ ∈

RN×k, α ∈ Rk

ΘTyio −α = 0k (4.16)

where

yi = yio + δyi δyi ∼ GI(0, σ2IN×N)

and, σ is the unknown scale of the noise. Handling non-identity covariances for het-

eroscedastic data, is a simple extension of this problem, e.g ., [83]. The multiplicative

ambiguity is resolved by requiring ΘTΘ = Ik×k.

Given a set of k linearly independent constraints, they can be expressed by an

equivalent set of orthonormal constraints. The N ×k orthonormal matrix Θ represents

the k constraints satisfied by the inliers. The inliers have N −k degrees of freedom and

lie in a subspace of dimension N−k. Geometrically, Θ is the basis of the k dimensional

null space of the data and is a point on the Grassmann manifold, GN,k [31]. We assume

k is known and here we do not treat the case where the data may be degenerate and

lie in a subspace of dimension less than k. Usually, α is taken to be zero since any

79

subspace must contain the origin. However, for a robust problem, where the data is not

centered, α represents an estimate of the centroid of the inliers. Since we are trying

to estimate both Θ and α, the complete search space for the parameters is GN,k ×Rk.

The projection of α onto the column space of Θ is given by Θα. If we use a different

basis to represent the subspace, α will change such that the product θα is constant.

The scale from the one-dimensional case now becomes a scale matrix and to account

for the variation of the M-score with scale, we now have to divide by the determinant of

the scale matrix. The robust M-estimator version of the subspace estimation problem

is

[
Θ̂, α̂

]
= arg min

θ,α

1

n
∣∣SΘ

∣∣1/2

n∑
i=1

ρ
(
xT

i S−1

Θxi

)
(4.17)

where, xi = ΘTyi−α, SΘ is a scale matrix and
∣∣SΘ

∣∣ is its determinant. The function

ρ(u) is the biweight loss function of (4.4). The M-estimator problem can be rewritten

in terms of the M-kernel function κ(u) as

[
Θ̂, α̂

]
= arg max

Θ,α

1

n
∣∣SΘ

∣∣1/2

n∑
i=1

κ
(
xT

i S−1

Θxi

)
. (4.18)

Building the same analogies as in Section 4.2.3, the M-kernel formulation of (4.18)

can be shown to be equivalent to kernel density estimation in Rk

f̂Θ(x) =
1

n
∣∣SΘ

∣∣1/2

n∑
i=1

κ
(
xT

i S−1

Θxi

)
(4.19)

with bandwidth SΘ and kernel κ(u). The robust M-estimator problem of (4.17) can

be stated as

[
Θ̂, α̂

]
= arg max

Θ

[
max

x
f̂Θ(x)

]
. (4.20)

This is a projection pursuit definition of the problem, and the inner maximization

returns the intercept as function of Θ

α = arg max
x

f̂Θ(x). (4.21)

This maximization can be carried out by mean shift in Rk [25].

80

4.4 The Projection Based M-estimator

We now develop the projection based M-estimator (pbM) algorithm to handle the robust

subspace segmentation problem of (4.20). The robust regression problem of (4.14) is a

special case of this with k = 1.

The pbM algorithm begins by sampling elemental subsets, without replacement,

from the given data set. An elemental subset is used to get an initial estimate Θ.

Given Θ, the intercept α is estimated according to (4.21). This mode search is done

through mean shift [25]. To perform mean shift it is necessary to choose a scale, and

we propose a data driven scale selection rule for this purpose in Section 4.4.1. The

density at α is given by (4.19) with xi = ΘTyi−α. Recall that in RANSAC, both the

direction Θ and the intercept α are generated by sampling. In our case, only the choice

of Θ depends on the elemental subset while the intercept depends on the projections

of all the measurement data.

This sampling step is repeated a number of times. After each sampling step, given

a parameter hypothesis, we perform local optimization to improve the score in a neigh-

bourhood of the current parameter estimates. The idea this is that given a [Θ,α] pair,

the robust score can be improved by running a local search in the parameter space.

Local optimization typically improves the score marginally and thus it is not necessary

to perform the optimization for every elemental subset. We set a threshold 0 < γ < 1,

and the local optimization is performed only when the current score is greater than γ

times the highest score obtained so far. The local optimization procedure is discussed

in Section 4.4.2.

The parameter pair with the highest score is returned as the robust parameter

estimate [Θ̂, α̂]. Given [Θ̂, α̂], the inlier/outlier dichotomy estimation is also completely

data-driven. We discuss the inlier-outlier separation procedure in Section 4.4.3.

4.4.1 Data-driven Scale Selection

The formulation of the M-estimator score as a kernel density offers a computational

advantage. If Θ is close to the true value of the model, it is sufficient to choose a

81

Figure 4.4: The pbM algorithm uses two different scales. Data-driven scales are used
for computing a robust M-scores. A new scale is then used to separate the inlier from
the outliers.

scale which ensures that the maximization (4.21) returns good estimate of the true

intercept. This is a much easier condition to satisfy than requiring the scale to be a

good estimate of the unknown noise scale. Furthermore, for kernel density estimation,

there exist plug in rules for bandwidth selection which are purely data driven. In [136,

Sec.3.2.2] the following bandwidth selection rule was proposed which was shown to give

good asymptotic convergence properties for one-dimensional kernel density estimation

s = n−1/5 med
j

∣∣∣∣xj −med
i
xi

∣∣∣∣ . (4.22)

where xi, i = 1, . . . , n are the data points being used to define the kernel density.

For subspace estimation, we have k-dimensional residuals of the form ΘTyi. We

extend the one-dimensional rule (4.22) by applying it k times, once for each component

of the residuals. This gives k different scale values. The bandwidth matrix, SΘ, is

a diagonal matrix with the value at (j, j) given by the square of the scale of the j-th

residual. For a different Θ, the residuals are different and we get a different bandwidth

matrix. This variation with Θ is the reason for dividing by the term
∣∣SΘ

∣∣1/2 in (4.18).

For the robust regression case with k = 1, the scale selection rule is applied to one-

dimensional residuals θTyi. For the robust subspace estimation problem with k > 1,

the bandwidth matrix depends on the basis used to represent the null space. If we

use a different basis to represent the same subspace, the residuals are transformed by

82

some rotation matrix. Ideally, we would like the bandwidth matrix to also undergo an

equivalent rotation but this is not so. However, we only require the bandwidth matrix

to be good enough to get a good estimate of the mode of the kernel density estimate.

For this purpose, choosing the scale along each direction is sufficient.

Replacing the scale by the bandwidth matrix of the kernel density estimate is not

a simple substitution. For M-estimators and RANSAC, the scale appears in the cost

function and points with errors greater than the scale are rejected as outliers. For pbM,

the bandwidth is data driven and is only used in estimating the density of projected

points to find the mode. It is not a threshold for acceptance of inliers (Figure 4.4).

4.4.2 Local Optimization

The robust scores defined in (4.14) and (4.20) are non-differentiable. This is due to

the complex dependence of the bandwidths and the intercepts on the basis Θ, or θ

in the single constraint case. The bandwidth depends on Θ through (4.22) and this

function is clearly not differentiable. The intercept α also depends on Θ through a

non-differentiable function. For example, consider a data set consisting of two different

structures which satisfy the projection constraints with the parameter values [α1,Θ1]

and [α2,Θ2]. Initially we set the projection direction to Θ1, and the maximization of

(4.21) would return the value α1. Now as we move the projection direction from Θ1 to

Θ2 the position of the mode would move smoothly till at some point both the structures

give rise to modes of equal height. On moving the direction some more, there will be

a jump in the estimate returned by the maximization of (4.21). This sudden change

makes the problem (4.20) discontinuous and hence, non-differentiable.

In [14], simplex optimization was used for the homoscedastic single constraint case,

since this does not require the computation of gradients. However, simplex optimiza-

tion requires a minimal parametrization of the search space. For GN,k, k > 1 such

parametrizations are very difficult to work with.

We use derivative based methods for the local search. This is done by approximating

the robust score so that its gradient can be computed. The bandwidth matrix is assumed

to be constant and its dependence on Θ is ignored. The intercept is treated as an

83

independent variable and the local search is done over the product space, GN,k × Rk.

The conjugate gradient algorithm over GN,k × Rk is presented in Appendix A. The

single constraint case is a special case of this with k = 1.

Previous work on adding local optimization to RANSAC has proposed discrete op-

timization techniques [22]. This method modifies the probability of a point being an

inlier based on how well is satisfies a parameter hypothesis and perform an inner sam-

pling with the modified probabilities. Our optimization uses continuous optimization of

the robust score in the parameter space over which we are searching. Another proposal

is to explicitly trade-off local exploration of the parameter space with exploitation or

sampling [50].

In our experiments we find that even without the local optimization step, using the

cost function proposed here to get robust estimates gives better results than RANSAC.

However, the local optimization step further improves results and makes the estimates

less sensitive to the additive noise corrupting the inliers. The parameter γ controls the

number of times the local optimization is performed. Setting γ = 0 leads to the local

optimization being performed for each elemental subset. This leads to the algorithm

of [113]. Although it is reasonable to use values of γ < 1, theoretically we can use

any positive value for γ. Setting γ to a large positive value ensures the optimization

is never performed. Local optimization is the most computationally expensive part of

the algorithm, but using a threshold of γ = 0.9 gives good results while not affecting

the complexity of the algorithm much.

4.4.3 Inlier-Outlier Dichotomy Generation

The inlier-outlier separation is done only once after repeating the random sampling

a sufficient number of times (Figure 4.4). The inlier-outlier dichotomy algorithm is

based on the assumption of unimodal additive noise corrupting the inliers. Given the

parameters with the highest robust score, [α̂, Θ̂], all the data points are projected to

Rk as Θ̂
T
yi. If, Θ̂ is close to the true direction, the projections of the inliers should

form a single mode at the intercept α̂. We estimate the kernel density of this mode

and only points lying in the basin of attraction of this mode are declared inliers. A

84

point lies in the basin of attraction if the mean shift iterations initialized at that point

converge to α̂ with some tolerance. Points which do not lie in the basin of attraction

are declared outliers. If k = 1, the basin of attraction of the mode corresponds exactly

to the window between the two minima on either side of the mode at α̂ ∈ R [14, 110].

If the data lies along two parallel hyperplanes, then in the first estimation the kernel

density estimate of the residuals will show two strong modes. The higher mode is

retained as the intercept. The points on the other hyperplane are classified as outliers.

By running pbM on the point classified as outliers from the first step, the second

structure can be estimated. The complete algorithm is summarized below.

Algorithm: Projection Based M-estimator

Given: Data points yi, i = 1, . . . , n, γ, fmax = 0

for j ← 1 . . .m

Sample elemental subsets and estimate Θj .

Estimate scale matrix SΘj
.

Do mean shift with scale SΘj
to get αj .

if f̂Θj
(αj) > γfmax

Do local search to improve f̂Θj
(αj).

if f̂Θj
(αj) > fmax

fmax = f̂Θj
(αj)[

Θ̂, α̂
]

= [Θj ,αj]

Perform inlier-outlier dichotomy with
[
Θ̂, α̂

]
.

Return
[
Θ̂, α̂

]
and inliers.

85

(a) (b) (c)

Figure 4.5: Scale selection experiment with synthetic data with k = 1. Figure (a)
compares the various scale estimators’ performance as the number of outliers increase.
Figure (b) shows the mode estimate computed on the same data sets and (c) shows a
zoomed-in version of (b).

4.5 Results

We present the results of pbM and compare it to other robust estimators for two real

applications. Affine motion estimation and fundamental matrix estimation requires the

use of the heteroscedastic version of pbM, while affine factorization requires multiple

linear constraints to be enforced simultaneously. Other applications can be found in

our previous work [14, 110, 113].

4.5.1 Synthetic Data

As mentioned in Section 4.2, the major advantage of pbM is the fact that it decouples

the scale selection problems at the parameter estimation and dichotomy generation

stages. Here we verify this claim for the parameter estimation step with k = 1. We

only require the scale to be good enough to accurately find the mode of the kernel

density of (4.12) while holding θ constant.

Synthetic data lying on a plane in R3 and corrupt it with additive Gaussian noise

of standard deviation one was generated. The outliers are distributed uniformly in a

cube centered around the origin with each side of length 200. As the number of outliers

is increased, different scale selection rules are compared. For this experiment only, we

assume the true parameters are known. This is because all scale selection rules assume

a parameter estimate is available and estimate the scale based on the residuals. We use

86

the true parameter values to compute the residuals. In practice, the situation can only

get worse since the true parameters are unknown.

We consider the performance of various scale estimators as the fraction of inliers

changes and compare their performances in Figure 4.5. We compare the median scale

estimate

smed = med
i

∣∣θTyi − α
∣∣ (4.23)

the Median Absolute Deviations (MAD) scale estimate

smad = med
j

∣∣∣∣θTyj −med
i

θTyi

∣∣∣∣ (4.24)

and the plug-in rule of (4.22) with xi = θTyi. The MAD scale we use is the same as

the usual MAD rule with a scaling constant c = 1.0. The only difference between the

MAD scale and the plug-in rule is the extra factor of n−1/5 where n is the number of

data points. Note, that while MAD and the plug-in rule do not require the data to

be centered, (i.e., only θ is required, not α), the median scale requires the centered

residuals.

The total number of data points is held constant at 1000 and the number of inliers

and outliers is changed. For each value of the fraction of outliers, 100 data sets were

generated and the scale estimators were used to get the inlier scale. The average value

of the 100 trials is plotted as a function of the fraction of outliers in Figure 4.5a. As

the number of outlier increases, the performance of all the scale selection rules suffers.

As expected, the breakdown point of all three estimators is at most 50%. The standard

deviations of the estimates across the 100 trials are very low for fewer outliers but

beyond fifty percent, these standard deviations increase rapidly.

For each of these data sets we use mean shift to find the intercept. The scale used

in the mean shift is given by (4.22). The average intercept estimate of 100 trials as a

function of the percentage of outliers is shown in Figure 4.5b. The true value of the

intercept is 78.2. This estimator is extremely accurate, and it only breaks down when

over 90% of the data is outlier data. In Figure 4.5c we show a zoomed in version of the

curve. The dashed lines indicate the variance by showing points which are one standard

87

Figure 4.6: Images used for affine motion estimation. All the 51 points (inliers and outliers)
matched in the two views are shown.

deviation away. When thought of as an estimator of the intercept, given the direction,

mode finding is clearly robust and accurate. In fact, the variance of the mode estimate

decreases as the number of outliers increases since the total number of points is held

constant. As the outliers increase the number of inliers decreases and define a mode

with lower variance.

4.5.2 Affine Motion Estimation

For 2D affine transformation associated with a moving object, yio = [yi1o yi2o] , i = 1, 2,

are the (unknown) true coordinates of a pair of salient points in correspondence. The

six parameter affine transformation between them y21o

y22o

 =

 a11 a12

a21 a22

 y11o

y12o

+

 t1

t2

 (4.25)

can be decoupled into two three-dimensional problems, in a11, a12, t1 and a21, a22,

t2 respectively, each obeying a linear model. Thus, the noisy measurements of cor-

responding points are distributed around two planes in two different 3D spaces. The

transformation parameters can be found through two separate estimation processes,

and points obeying the transformation must be inliers for both processes.

The images used in the experiment are shown in Figure 4.6. A large number of point

88

Figure 4.7: Results of affine motion estimation. The 19 inliers returned by pbM are shown in
the two images.

correspondences were established using [47]. Next, the point matches on the static

background were identified by having zero displacement and removed. The estimation

process used the remaining 51 point correspondences of which 21 are inliers. The

covariances of the matched points are found using the method of [67] and using a 7× 7

window around each corner. Each data point has a different covariance and the data is

heteroscedastic.

The performance of pbM is compared with RANSAC and MSAC in Table 4.2. For

the ground truth, the inliers were manually selected. This was used to estimate the inlier

noise standard deviation for each of the two three-dimensional problems, σ(1)
t = 1.62,

σ
(2)
t = 1.17. The final RANSAC and MSAC estimates were obtained by applying

them to the two subproblems and then combining the results. In a real application

the ground truth is unknown and the scale of the inlier noise is also unknown. To

simulate the real situation, RANSAC and MSAC were also run after tuning them to

the MAD scale estimate given by (4.24). In all our experiments, the same identical

elemental subsets were used by all the algorithms to ensure that sampling does not

bias any one algorithm. Performance is compared based on the number of true inliers

among the points classified as inliers by the estimator. We also compare the estimators

based on the ratio between the noise standard deviation of the selected points and the

89

standard deviation of the inlier noise. The closer the measures are to unity the better

the performance. The inliers found by pbM are shown in Figure 4.7.

Table 4.2: Performance Comparison - Affine Motion Estimation

sel./in. σ
(1)
in /σ

(1)
t σ

(2)
in /σ

(2)
t

RANSAC(σopt) 9/9 0.30 0.28
MSAC(σopt) 9/9 0.29 0.28

RANSAC(σmad) 14/10 9.20 22.83
MSAC(σmad) 12/10 9.76 16.52

pbM 19/19 1.13 0.92

RANSAC and MSAC give similar performances when the true scale of noise is

known. The performance degrades when the MAD scale estimate is used while pbM

does better then both of them even without any scale estimate.

4.5.3 Fundamental Matrix Estimation

For fundamental matrix estimation it is necessary to account for the heteroscedastic-

ity of the data [83]. The fundamental matrix between two images of the same scene

expresses the geometric epipolar constraint on corresponding points. The constraint is

bilinear, and can be expressed as [xT
1o 1]F[xT

2o 1]T = 0 where the matrix F has rank 2.

On linearizing we get

ŷ = [x̂T
1 x̂T

2 vec(x̂1x̂T
2)]T ∈ R8 (4.26)

[θ̂
T
α̂]T = vec(F̂) (4.27)

θ̂
T
ŷ − α̂ = 0 ‖θ̂‖ = 1 (4.28)

where the vec operator transforms a matrix into its column-organized form. The pa-

rameter vector θ corresponds to the elements F1 to F8 and α corresponds to F9 up to

scale. In the absence of any further knowledge it is reasonable to assume that the given

estimates of x1o and x2o are corrupted by homoscedastic normal noise with identity

covariance. However, the linearized data vectors y are bilinear functions of the point

locations x1 and x2, and therefore the vectors y do not have the same covariances.

The data vectors for the regression are heteroscedastic [83]. The linearized data vector

covariances are found by error propagation similar to [71].

90

Figure 4.8: Fundamental matrix estimation for the corridor images. Frame 0 and frame 9 are
shown along with all the 127 point matches (inliers and outliers).

Corridor Images

To test our algorithm, we use two far apart frames, frames 0 and 9, from the well known

corridor sequence. These images and the point matches are shown in Figure 4.8. The

ground truth for this sequence is known and from this the inlier noise standard deviation

is estimated as σt = 0.88. We compare the performance of pbM with RANSAC and

MSAC. Both RANSAC and MSAC were tuned to the optimal value of σopt = 1.96σt.

To simulate the real situation RANSAC and MSAC were also run after tuning them to

the MAD scale estimate of (4.24).

Points were matched using the method of [47] and 500 elemental subsets were ran-

domly generated. This gives 127 points with 58 inliers. Large portions of the first

image are not visible in the second image and these points get mismatched. Like in the

previous section, the performance of the estimators is compared based on the number of

true inliers among points classified as inliers and the ratio of the standard deviation of

the selected points to that of the true inlier noise. The results of the various estimators

are shown in Table 4.3.

It is clear that pbM outperforms RANSAC and MSAC in spite of being user inde-

pendent. The points retained as inliers by pbM are shown in Figure 4.9. True inliers are

91

Figure 4.9: Results of fundamental matrix estimation for the corridor images. The 66 inliers
returned by pbM and epipolar lines of the 8 outliers misclassified as inliers are shown. The
reason for the misclassifications is explained in the text.

Table 4.3: Performance Comparison - Corridor Image Pair

selected points/true inliers σin/σt

RANSAC(σopt) 35/30 12.61
MSAC(σopt) 11/8 9.81

RANSAC(σmad) 103/52 15.80
MSAC(σmad) 41/18 9.76

pbM 66/58 1.99

shown as asterisks. Eight mismatches have been classified as inliers and these are shown

as squares along with their epipolar lines. For these points, the epipolar lines pass very

close to the mismatched points or one of the points lies close to the epipoles. In such

cases the epipolar constraint (4.28) is satisfied. Since this is the only constraint that is

being enforced, the system cannot detect such mismatches and these few mismatches

are labeled inliers.

The fundamental matrix between two images should be of rank-2. This condition

is usually ignored by robust regression algorithms. Once a satisfactory inlier/outlier

dichotomy has been obtained, more complex estimation methods are applied to the

inliers while enforcing the rank-2 constraint. Consequently, the fundamental matrix

estimate returned by most robust regression algorithms are not good estimates of the

92

Figure 4.10: Fundamental matrix estimation for the Merton College images. Frames 0 and 2
are shown along with all the 135 point matches (inliers and outliers).

true fundamental matrix. In [14] a different version of pbM, which does not account for

the heteroscedasticity of the data, was used for robust fundamental matrix estimation.

In this case, it was found that pbM gives good inlier/outlier dichotomies but incorrect

estimates of the fundamental matrix.

The heteroscedastic pbM algorithm discussed here nearly satisfies the rank-2 con-

straint even though it is not explicitly enforced. This is because the heteroscedastic

nature of the noise is accounted for and our estimate is very close to the true funda-

mental matrix. For the estimate returned by pbM, the ratio of the second singular

value to the third singular value is of the order of 10000. The singular values of the

fundamental matrix estimated by pbM are 17.08, 2.92 × 10−2 and 5.61 × 10−7. The

epipoles computed from the estimated fundamental matrix also matched the ground

truth epipoles.

Merton College Images

We also tested pbM on two images from the Merton college data set from Oxford. The

two images are shown in Figure 4.10. Points were matched using the method of [47]

which gives 135 points with 68 inliers. For the robust estimation, 500 elemental subsets

were used.

The fundamental matrix returned by pbM was close to the available ground truth

estimate. It nearly satisfies the rank-2 constraint like in the previous example. The

93

Figure 4.11: Results of fundamental matrix estimation for the Merton College images. The 68
inliers returned by pbM and epipolar lines of the 6 outliers misclassified as inliers are shown.
The reason for the misclassifications is explained in the text.

singular values of the estimated fundamental matrix are 27.28, 1.83× 10−2 and 7.38×

10−8. Six outliers are misclassified since they are mismatched to points lying on the

correct epipolar line.

Table 4.4: Performance Comparison - Merton College Image Pair

selected points/true inliers σin/σt

RANSAC(σopt) 21/27 10.962
MSAC(σopt) 10/2 0.701

RANSAC(σmad) 32/11 3.094
MSAC(σmad) 43/32 13.121

pbM 68/62 0.92

Valbonne Images

The system was tested on another image pair taken from the Valbonne sequence. The

images and the point matches are shown in Figure 4.12. The true matches were selected

by manual inspection to obtain the ground truth. The standard deviation of the inlier

noise was fond to be σt = 0.072. Of the 85 points matched, 42 were inliers and the

rest are mismatches. The results of the various estimators are compared in Table 4.5.

Again, pbM does better than RANSAC and MSAC in spite of being user-independent.

The rank-2 constraint is satisfied with the ratio between the second and third singular

values of the fundamental matrix being of the order of 10000. The epipoles from the

94

Figure 4.12: Fundamental matrix estimation for the Valbonne sequence. Both images are
shown along with the 85 point matches (inliers and outliers).

estimated fundamental matrix also match the true epipoles.

Table 4.5: Performance Comparison - Valbonne Image Pair

selected points/true inliers σin/σt

RANSAC(σopt) 31/26 7.36
MSAC(σopt) 9/6 6.93

RANSAC(σmad) 46/37 17.73
MSAC(σmad) 27/21 11.82

pbM 45/42 0.97

In our examples, the epipoles lie within the image. As the epipoles move towards

the line at infinity, the geometry becomes more degenerate and fundamental matrix

estimation becomes more ill-posed. Under these conditions, pbM continues to give

a good inlier-outlier dichotomy but the fundamental matrix estimate becomes more

inaccurate. However, in practice, once a good dichotomy is obtained a more complex

non-robust estimator such as HEIV [84] is employed.

95

Figure 4.13: Results of fundamental matrix estimation for the Valbonne sequence. The 45
inliers returned by pbM and epipolar lines of the 3 outliers misclassified as inliers are shown.

4.5.4 Affine Factorization

In the previous examples we used pbM for the estimation of a single structure in the

presence of unstructured outliers, that is outliers not belonging to an other geometrical

structure such as another affine motion or another fundamental matrix. One advantage

of pbM is that it works well in the presence of structured outliers. We show this with the

example of multibody factorization. As we said earlier in Section 3.6.1, factorization is

based on the fact that the positions of points tracked over F frames of an uncalibrated

affine camera define a feature vector in R2F . When viewed with an affine camera

points sharing the same motion define a four-dimensional subspace (three-dimensional

subspace if the object is linear). Using pbM for factorization requires the subspace

estimation version of the pbM algorithm.

In the presence of multiple bodies we get multiple subspaces and this is known as the

multibody factorization problem. As mentioned in Section 4.1.3, most other multibody

96

factorization methods make assumptions about the data which may not be true. In

fact, in [113], pbM was compared to GPCA [134] and subspace separation [117] and it

was shown that the presence of outliers and degenerate motion subspaces does lead to

the breakdown of GPCA and subspace separation.

We use multiple constraint pbM to solve the affine factorization problem with mul-

tiple moving bodies and in the presence of outliers. Unstructured outliers which do

not lie in any motion subspace occur in the data set due to mismatched point tracks.

Publicly available affine factorization data sets, such as Kanatani’s [117] or the Hopkins

155 [127], do not have large image motion between the frames. Therefore, the num-

ber of outliers is low and their algorithms are designed to handle possible degeneracies

between the different motion subspaces. We try to address the problem of robustness

in the presence of large numbers of outliers which do not belong to any motion. Our

sequences have large displacements between frames leading to more outliers. They also

consist of few frames leading to degeneracies. For example, with three motions over

four frames it is impossible to have independent subspaces since only eight indepen-

dent vectors can exist in the space, while at least nine linearly independent vectors are

required for each motion subspace to have an independent basis.

For affine factorization, each elemental subset consists of four point tracks across

the F frames. These tracks give a 2F × 4 matrix. The matrix is centered and a three-

dimensional basis of the column space of the centered matrix is found by singular value

decomposition. All n measurements are projected along this three-dimensional basis

and the 3D intercept is found as the maxima of the kernel density.

For pbM we used 1000 elemental subsets for estimating the first subspace, and 500

elemental subsets for estimating each further subspace. The ground truth was obtained

by manually segmenting the feature points.

Lab Sequence

We used the point matching algorithm of [47] to track points across the frames. Two

of the motions are degenerate and share one of the basis vectors. The data consists of

231 point tracked across five frames. Points in the background are detected as having

97

Figure 4.14: Lab sequence used for factorization. The three objects move independently and
define different motion subspaces. The left image shows the first frame with all the points
(inliers and outliers). The right shows the fifth frame with the points assigned to the three
motions marked differently. The first motion M1 corresponds to the paper napkin, the second
motion M2 to the car and M3 to the book.

no motion and removed. All 231 corners are plotted in the first frame in the image on

the left in Figure 4.14. The three bodies move independently and have 83, 29 and 32

inliers and 87 outliers. Note, that the number of outliers is more than any group of

inliers. The segmented results are shown in the right image in Figure 4.14 where the

points assigned to the different motions are plotted differently on the fifth frame. The

results of the segmentation are tabulated in Table 4.6. The first line says that of the

87 points returned by the system as inliers for the first motion (paper napkin), 83 are

true inliers, two are on the second object (the car) and two are outliers.

Table 4.6: Segmentation Results of Factorization

M1 M2 M3 Out
M1 83 2 0 2
M2 0 28 2 2
M3 0 0 31 4
Out 0 2 1 74

We used the same elemental subsets generated for pbM to get robust estimates using

RANSAC and MSAC. Both RANSAC and MSAC pick a wrong subspace basis and do

not return a good motion even for the first motion.

98

Figure 4.15: Toy car sequence used for factorization. The three cars move independently and
define different motion subspaces, but the yellow and black cars define subspaces very close to
each other. The left image shows the first frame with all the points (inliers and outliers). The
right image shows the fourth frame with the points assigned to the three cars marked differently.
The first motion M1 corresponds to the blue car, M2 to the yellow car and M3 to the black
car.

Toy Car Sequence

We use the point matching algorithm of [47] to track points across the frames. This

data consists of 77 point tracked across four frames. As fewer frames are involved,

the degeneracies between the subspaces are more pronounced. The first and the third

objects define very similar motion subspaces. This makes it harder for algorithms like

RANSAC where the scale is held constant. However, pbM adapts the scale to the

current parameter estimate and manages to correctly segment the three motions. All

77 corners are plotted in the first frame in the image on the left in Figure 4.15. The

three cars have 23, 18 and 17 inliers with 19 outliers. The segmented results are shown

in the right image in Figure 4.15 where the points assigned to the different motion are

plotted differently on the fourth frame. The results of the segmentation are tabulated

in Table 4.7.

Table 4.7: Segmentation Results of Factorization

M1 M2 M3 Out
M1 22 0 3 0
M2 0 18 1 0
M3 1 0 11 0
Out 0 0 2 19

99

4.6 Connection to Nonlinear Mean Shift

We have used both the nonlinear mean shift algorithm and pbM for affine motion

estimation and multibody factorization. Although the two of them try to solve the

same problems in different ways there are some significant differences between them.

Most importantly, nonlinear mean shift is a procedure for finding the local maxima

of a kernel density over a manifold. Motion segmentation or robust estimation are

applications of this algorithm but it can also be used for image filtering etc. On the

other hand, pbM is a robust regression algorithm which makes the robust estimation

procedure user-independent.

Even when viewed as a robust estimator, nonlinear mean shift differs from pbM in

a few significant ways.

• Mean shift tries to find all the structures present in a single step without any

specification of the number of different models present while pbM only finds the

most dominant structure. Further structures are found by iteratively removing

inliers and running pbM again. Therefore, pbM needs some knowledge of the

number of structures present.

• For pbM, it is sufficient if a single hypothesis is generated from inliers since this

will give a hypothesis close to the true model. Mean shift requires the presence

of a mode at the true model parameters. Therefore, it is not sufficient for a

single hypothesis to be close to the true parameters but a sufficient number of

hypotheses need to be around the true parameters to make the mode significant

enough to be detected. The validation step is a partial solution to the problem

but it is not sufficient in the presence of large numbers of outliers.

• Mean shift requires the user to specify the bandwidth. In some cases performance

is sensitive to the value of the bandwidth. The bandwidth can be thought of as a

reflection of the scale of the noise, which pbM detects automatically. Therefore,

mean shift does not offer the advantage of user independence which pbM does.

Some ideas on combining these two methods are discussed in Chapter 6.

100

Chapter 5

Fusion of Multiple Sources in Structure from Motion

Fusing information from multiple sources is a problem which has received a lot of at-

tention in various fields of engineering. Given noisy estimates of measurements of a

parameter from different sensors, fusion attempts to combine these estimates to find

the best estimate of the parameter. Here we consider a slightly different problem

where some of the sensors only supply partial information about the parameter being

estimated. Another important aspect that is often overlooked is the fact that the con-

straint equation relating the given measurements and the parameters being estimated

are nonlinear leading to heteroscedastic data measurements [84].

An application where it is necessary to account for these aspects of sensor fusion is

the Structure-from-Motion (SFM) problem in computer vision. Estimating the three-

dimensional structure of a scene from a series of two-dimensional images is the central

problem of computer vision. Methods that try to solve this problem can be broadly

classified into causal methods which only use information available from the past and

noncausal schemes which attempt to infer the three-dimensional structure after all

the data has been collected. If the camera has not been calibrated and the internal

parameters of the camera are unknown, the reconstruction of the algorithm differs

from the true reconstruction by some projective transformation. If the calibration of

the camera is known, the reconstruction can be improved so that it differs from the

true structure by a rigid body transformation and scaling.

Due to the nature in which the data is collected and used in noncausal schemes, they

cannot be used for applications in which pose estimates are needed in real time. An

example of such an application is augmented reality (AR). Augmented reality systems

101

enhance a user’s interaction with the real world through additional information gener-

ated by computer models of the world. In AR systems these scene enhancements are

achieved through graphics generated from geometric models of real and virtual objects.

In order for the alignment between the real and virtual objects, it is necessary to know

the pose and the internal parameters of the camera. This is known as the 3D tracking

problem. In practice, the camera is calibrated offline and its internal parameters are

known. The availability of fast processors and frame grabbers, have made vision based

trackers extremely popular and there are similarities between the causal, calibrated,

structure-from-motion (SFM) problem in computer vision and 3D tracking for AR.

In this paper we propose a statistical method to combine information from multiple

sources for scene reconstruction. We achieve this fusion by modifying the heteroscedas-

tic errors-in-variables regression algorithm [84]. For our experiments, we consider a

system consisting of a single camera and a rigidly attached gyroscope. The gyroscope

gives noisy estimates of the rotation of the camera and this is combined with the image

information from the camera.

In Section 5.1 we review some of the previous work on this problem. There is

a large amount of work devoted to solving SFM and we cannot do justice to all of

it. We only discuss some of the more significant work in this direction. In Section

5.2 we introduce the heteroscedastic errors-in-variables (HEIV) algorithm for bilinear

regression and in Section 5.3 we discuss a camera tracking system based on HEIV. This

system infers scene structure based on image information. The HEIV formulation is

modified in Section 5.4 and a new algorithm is derived which accounts for multiple

sources of information. The results of our algorithm are presented in Section 5.5.

5.1 Previous Work

Structure from motion (SFM) is a central problem in computer vision which has been

extensively analyzed. The goal of SFM is to estimate the 3D shape and motion of a

set of features given the velocity of their perspective projections in the image (optical

flow) or the correspondences between different projections (point correspondences).

102

There exists a large amount of literature which tries to reconstruct the scene given

eight or more point correspondences between two images. These algorithms proceed

by estimating the epipolar geometry or trifocal tensor between frames, and then trans-

forming all the reconstructions to a common reference frame [95, 101]. If the camera

is calibrated, then the essential matrix is estimated rather than the fundamental ma-

trix. These methods are based on the geometrical relations between 3D feature points

and their projections into the frames. The geometry of this has been extensive studied

[57] and is very well understood. In practice, the geometrical relations do not hold

exactly. The estimates of the projections are noisy and do not satisfy the required con-

straints exactly and computationally expensive nonlinear optimization methods, such

as bundle adjustment [126], are required to find the optimal estimates of scene struc-

ture. However, global optimization is done at the last step to get good accuracy, and

these methods are not causal. A number of statistically optimal methods for geometric

estimation have also been developed specifically to account for the nonlinear geometric

relations [65, 82]. These methods can be used in a causal framework [115], but fail to

account for the dynamics of the camera motion.

The causal, calibrated, structure from motion problem is known as the camera

tracking problem in the augmented reality community. The aim of camera tracking

is to estimate the pose of the camera so that the virtual objects can be aligned with

the real objects. While estimating structure is one of the aims of SFM algorithms, in

camera tracking, structure estimation is considered just a step to get the camera pose.

Consequently, a number of algorithms have been developed which give the camera

tracking extra information, such as 3D models of some of the scene, the world positions

of easily identifiable markers in the scene etc. [46, 29, 76, 103, 115]. Simon et al

[103] assume the presence of planar structures in the scene to perform camera tracking.

However, the assumption of planarity is a special case and is not true always. Vacchetti

et al [76] combine offline information from keyframes with online information deduced

from a traditional frame-to-frame tracking approach. For structure recovery, they use

a two frame approach where point correspondences across two frames are found and

triangulated in 3D. To reduce the number of unknowns in this procedure, they use

103

a 3D model of the scene and the knowledge that all image points must lie on the

surface of the 3D model. Genc et al [46] use a learning based method where the initial

coordinate system is defined by markers but the system is allowed to move away from the

markers. The scene structure is sequentially estimated frame-to-frame using previously

triangulated scene features. This method is similar to the Simultaneous Localization

and Mapping (SLAM) algorithm of [29]. In [115] it was shown that the results of [46]

can be improved by accounting for nonlinearities present in the system by using the

Heteroscedastic-Errors-In-Variables (HEIV) estimator [82, 84] to solve the nonlinear

regression for camera pose and structure recovery. Using the balanced HEIV estimator

instead of nonlinear optimization techniques gives better results, as we show in Section

5.3.

Recently, there has also been some interest in using multiple sensors to improve

the accuracy of camera tracking systems. Some methods use multiple cameras [61],

inertial sensors [61] or optical trackers [60] to improve the scene structure inferred by

a single camera. When using multiple sources it is necessary to combine the various

data sources. Each of these data sources is inherently noisy, and they measure different

parameters of the motion. For example, gyroscopes measure the rotation but not the

translation.

As we discuss in Section 5.4.1, these methods are similar to a class of causal SFM

methods which are usually referred to as recursive or filtering based methods. Recursive

methods exist for the estimation of motion given the scene structure [10], estimation

of structure given motion [85] or the estimation of both simultaneously [5, 18]. These

methods approach the problem from a filtering perspective and use Kalman filters to

model the dynamics of the system. The theoretical properties of the filtering approach

have also been well studied and it is shown that a minimal parametrization of the

problem is possible, which is stable and observable [18]. The filtering based approaches

account for the dynamics of the camera motion. However, these methods cannot be

expected to give good results due to the nonlinear nature of the projection equations.

The method we propose here is an extension of the system of [115]. The HEIV

formulation is modified to allow the system to fuse image information with camera

104

motion information obtained from inertial sensors. Doing this optimally allows us to

account for the dynamics of the motion. We do not account for outliers in our system

since they are too few to cause serious errors in the pose estimation and reconstruction.

This assumption is valid for the camera motions we consider in this paper. For fast

moving cameras, where a wide baseline exists between consecutive frames, outliers in

the image tracking can become a problem. In this case robust methods can easily be

included in the system proposed here, like in system of [115].

5.2 Heteroscedastic Errors-in-Variables Algorithm

Most computer vision problems require the estimation of a set of parameters from a

set of noisy measurements. This is done by enforcing a constraint equation which

relates the measurements to a set of parameters while assuming a noise model which

characterizes the errors affecting the given measurements. The constraint equation and

noise model are collectively known as a statistical model. The constraint enforces an

implicit relationship between the true values of the measurements, zio and the true

parameter θo. We further assume, that the constraint can be factored into two parts.

The first part is a nonlinear function of the measurement vectors and the second is the

parameter vector. Such constraints are known as separable constraints. For most vision

problems, the constraints are separable and the nonlinear function is a polynomial.

f(zio,θo) = Φ(zio)θo = 0 Φ(·) ∈ Rm×p θo ∈ Rp (5.1)

The functions Φ(zio) are known as carrier vectors. The constraint (5.1) has a multi-

plicative ambiguity with respect to a nonzero constant. This is removed by assuming

that θ0 has unit norm. In some problems, it might be necessary to further constrain

that parameter vector. We discuss this problem later in Section 5.2.3.

The noise corrupting the measurements is taken to be additive. In the most general

case, the characteristics of the noise depend on the data point, and such noise is said

to be heteroscedastic

zi = zio + δzi δzi ∼ GI(0, σ2Czi) i = 1, . . . , n zio ∈ Rs (5.2)

105

where GI stands for a general, symmetric and independent distribution whose first two

central moments are available. The subscript ‘o’ is used to distinguish the ideal value

of a quantity from its noisy measurement. The covariance matrices are known up to a

common global scaling of σ2.

Note the similarity to the problem definitions of (4.1) and (4.16). The main dif-

ference is that here we assume all the points are inliers. We also explicitly model the

relation between the low dimensional data vectors zi and the higher dimensional carrier

vectors Φ(zi) which appear in the regression.

5.2.1 An Approach Through Linearization

The algorithm discussed here is described in [82]. A more complete version of the

algorithm, its derivation and its applications can be found in [84]. Here we give a very

brief version of the derivation of the algorithm.

The unobservable noise-free data zio, i = 1, . . . , n and the unknown true parameter

vector θo satisfy the constraint (5.1). From the measurements zi which have been

corrupted by additive heteroscedastic noise find the estimates ẑi, i = 1, . . . , n and θ̂

such that

f(ẑi, θ̂) = Φ(ẑi)θ̂ = (ep ⊗ θ̂)ϕ(ẑi) = 0 ‖θ̂‖ = 1 (5.3)

where, ϕ(zi) = vec(Φ(zi)T) and ⊗ is the Kronecker product of two matrices [52]. The

estimates are obtained by minimizing the objective function

J (θ̂, ẑ1, . . . , ẑn) =
1
2

n∑
i=1

(zi − ẑi)T C+
zi

(zi − ẑi) (5.4)

which is the sum of squared Mahalanobis distances between a measurement and its

corrected value. To account for possible degeneracies in the covariance matrices, the

pseudo inverse rather than the inverse of the matrices is used and this is denoted by

the superscript ‘+’. The global scaling σ2 has been dropped since it does not influence

the minimum of the objective function. If the measurement noise is known to be

normally distributed then this estimation process is equivalent to maximum-likelihood

estimation.

106

To account for the constraints, we introduce the Lagrange multipliers ηi ∈ Rm and

minimize

J (θ̂, ẑ1, . . . , ẑn) =
1
2

n∑
i=1

(zi − ẑi)T C+
zi

(zi − ẑi) +
n∑

i=1

ηT
i f(ẑi, θ̂). (5.5)

At the minimum of the above cost function, the parameter estimates must obey

JJ |zi
(θ̂, ẑ1, . . . , ẑn) = 0 i = 1, . . . , n (5.6)

JJ |θ(θ̂, ẑ1, . . . , ẑn) = 0 (5.7)

where, JJ |u is the Jacobian of the scalar objective function with respect to the vector

u. Evaluating (5.6) and (5.7) and after a non-trivial amount of algebraic manipulation,

we get [84]

JJ |θ(θ̂) =
[
S(θ̂)−C(θ̂)

]
θ̂ = 0 (5.8)

where, the weighted scatter matrix S(θ̂) is

S(θ̂) =
n∑

i=1

Φ(zi)T Cf (zi, θ̂)+Φ(zi) (5.9)

the weighted covariance matrix is

C(θ̂) =
n∑

i=1

(ηi ⊗ ep)T Cϕ(zi)(ηi ⊗ ep). (5.10)

The matrix Cf (zi, θ̂) is the first order approximation of the covariance of the expression

f(zi, θ̂) computed by error propagation from zi to f(zi, θ̂). Given zi and its covariance

Czi , we have

Cf (zi, θ̂) = JT
f |zi

(zi, θ̂)CziJf |zi
(zi, θ̂) . (5.11)

Similarly, the matrix Cϕ(zi) is the first order approximation of the covariance of the

expression ϕ(zi) computed by error propagation from zi to ϕ(zi)

Cϕ(zi) = JT
ϕ|zi

(zi)CziJϕ|zi
(zi) . (5.12)

The Lagrange multipliers are given by

ηi = Cf (zi, θ̂)+f(zi, θ̂) . (5.13)

107

The problem (5.8) can be rewritten as a generalized eigenproblem

S(θ̂)θ̂ = C(θ̂)θ̂ (5.14)

and this is called the heteroscedastic errors-in-variables (HEIV) equation.

5.2.2 The Heteroscedastic Errors-in-Variables Algorithm

It is difficult to solve the HEIV equation due to the dependence of S(θ̂) and C(θ̂) on

θ̂. The algorithm proceeds by iteratively improving the estimate of θo.

Let ži and θ̂
[k]

be estimates of zio and θo after k iterations. Initially, in the absence

of any prior information, we assume ži = zi and θ̂ is chosen randomly. For the k +

1-th iteration the expressions for the scatter matrix and covariance matrix involve

linearization around ži. These matrices are given by

S(θ̂
[k]

) =
n∑

i=1

Φ(zi)T Cf (ži, θ̂
[k]

)+Φ(zi) (5.15)

C(θ̂
[k]

) =
n∑

i=1

(ηi ⊗ ep)T Cϕ(ži)(ηi ⊗ ep) (5.16)

where the Lagrange multipliers are

ηi = Cf (ži, θ̂
[k]

)+f(zi, θ̂
[k]

) . (5.17)

Note, that the values of ži are updated for each iteration, while zi is constant. The

matrices defined above depend on both zi and ži. This comes out from the derivation

[84]. This generalized eigenproblem [49, p.394]

S(θ̂
[k]

)θ̂
[k+1]

= λC(θ̂
[k]

)θ̂
[k+1]

(5.18)

is solved by converting it into a generalized singular value decomposition [49, p.471]

in terms of the matrix square roots of S(θ̂) and C(θ̂). The generalized eigenvector

corresponding to the smallest generalized eigenvalue λ is taken to be θ̂
[k+1]

. The itera-

tion can also be solved by a standard eigenproblem, but the generalized eigenproblem

is more numerically stable gives better performance in practice. The estimates ži are

improved according to

ẑi = zi −CziJf |zi
(ži, θ̂

[k+1]
)Cf (ži, θ̂

[k+1]
)+f(zi, θ̂

[k+1]
). (5.19)

108

The values ẑi are used as the estimates ži for the next iteration. The scatter matrix

and covariance matrix are computed with the estimates ẑi and process is repeated till

convergence.

Convergence occurs when the smallest singular value λ is close enough to one. The

values of λ converge to one quickly from below. In practice, the method usually requires

4-5 iterations.

The HEIV equation is the most general expression for solving separable EIV prob-

lems. Special cases of the HEIV equation appear in numerous techniques commonly

used in computer vision. In [84] it is shown that methods such as generalized total least

squares [131], the Sampson method [100, 57] and renormalization [65] are special cases

of the HEIV formulation.

5.2.3 Enforcing Ancillary Constraints

The parameter estimate θ̂ may be required to satisfy additional constraints. The

method for enforcing these constraints is discussed below. A more complete discus-

sion can be found in [84]. We present an example of such constraints in Section 5.2.4.

Let the constraints be denoted as

ζ(θ̂) = 0, ζ(·) ∈ Rt . (5.20)

To obtain constrained estimates, HEIV proceeds by first doing an unconstrained esti-

mation of θ̂. At convergence, the a posteriori covariance of θ̂ is given by [84]

C
θ̂

= σ2
ν

[
S(θ̂)−C(θ̂)

]+
(5.21)

An unbiased estimate of the scale of the noise σ2
ν can be obtained from the residual error

[84]. In the following procedure, it is sufficient to know C
θ̂

up to scale, and therefore

we use C
θ̂

=
[
S(θ̂)−C(θ̂)

]+
. Given a parameter estimate θ̂, which does not satisfy

the constraints, and its a posteriori covariance, the additional constraints are enforced

by finding a ˆ̂
θ such that

ˆ̂θ = arg min
θ

(θ̂ − θ)T C+

θ̂
(θ̂ − θ) (5.22)

109

subject to ζ(θ̂) = 0. Introducing the Lagrange multipliers η ∈ Rt we get the cost

function

J =
1
2
(θ̂ − θ)T C+

θ̂
(θ̂ − θ) + ηT ζ(θ̂) . (5.23)

The solution ˆ̂
θ is found by setting the Jacobian JJ |θ(ˆ̂θ) = 0. Using a first order Taylor

expansion of ζ(·) and some simple algebra we get

ˆ̂
θ = θ̂ −C

θ̂
Jζ|θ(ˆ̂θ)

[
Jζ|θ(ˆ̂θ)T C

θ̂
Jζ|θ(ˆ̂θ)

]+
ζ(θ̂) (5.24)

The above equation does not have a closed for solution. Therefore, the solution is

obtained by doing the following iteration

ˆ̂
θ

[j+1]
= ˆ̂

θ
[j]
−C

θ̂
Jζ|θ(ˆ̂θ

[j]
)
[
Jζ|θ(ˆ̂θ

[j]
)T C

θ̂
Jζ|θ(ˆ̂θ

[j]
)
]+

ζ(θ̂
[j]

) . (5.25)

The complete derivation can be found in [84].

We now discuss two applications in computer vision and their formulations as HEIV

problems. These problems occur as part of the camera tracking system for augmented

reality [115].

5.2.4 Camera Pose Estimation

In camera pose estimation we are given a set of 3D point coordinates, Xi ∈ R3, i =

1, . . . , n, and a corresponding set of 2D image coordinates xi = [xi1 xi2]
T ∈ R2, i =

1, . . . , n. We would like to estimate the camera pose P = [R t] such that R ∈ R3×3 is

orthogonal and  xi

1

 ∝ P

 Xi

1

 (5.26)

where, ∝ implies projective equivalence. In practice, this constraint does not hold

exactly due to the additive noise corrupting the estimates. For ideal data the constraint

can be written as XT
io 0T −xi1oX

T
io

0T XT
io −xi2oX

T
io

p = Φ(xio,Xio)p = 0 (5.27)

110

where, p = vec(P T) is the 12-dimensional vector obtained by stacking rows of the

matrix P .

The data vector for HEIV is the five dimensional vector zi ∈ R5, i = 1, . . . , n

representing 3D-2D point matches. Therefore,

zi =

 Xi

xi

 . (5.28)

The vector zi is assumed to be a noise corrupted version of the true vector zio and the

covariance of this additive noise is σ2Ci ∈ R5×5, i = 1, . . . , n, where σ2 is the unknown

scaling of the covariance matrices. The nonlinear map Φ : R5 → R2×12 is given by

(5.27).

To enforce the orthogonality, we use the following set of constraints on the elements

of p,

pT
1 p2 = 0 pT

1 p1 = pT
2 p2

pT
2 p3 = 0 pT

2 p2 = pT
3 p3 (5.29)

pT
3 p1 = 0 pT

3 p3 = pT
1 p1

where, pi refers to the elements of p corresponding to the i-th column of P . These

constraints are used to form a function ζ(·) : R12 → R6 and the procedure of Section

5.2.3 is used.

5.2.5 Point Triangulation

Point triangulation is the problem of estimating the 3D position of a point given its

position in various images of the scene. The data in this case consists of the pose of

the camera P i = [Ri ti] and the 2D image position xi = [xi1 xi2]. The 3D position of

the point X needs to be estimated. The constraint can be expressed as xi

1

 ∝ RiX + ti . (5.30)

111

Like before, this relation holds exactly only for ideal data. In this case, it can be

rewritten as rT
i1o − xi1or

T
i3o ti1o − xi1oti3o

rT
i2o − xi2or

T
i3o ti2o − xi2oti3o

 Xo

1

 = Φ(xio,P io)θo = 0 . (5.31)

In general, rT
ij is the j-th row of Ri and tij is the j-th element of ti and θ =

[
XT 1

]T .

Now, the data vector consists of the pose and the image location and the nonlinear

function Φ is given by (5.31). The HEIV cost function is homogeneous and the algorithm

finds θ̂ under the condition that ‖θ̂‖ = 1. After finding the optimal θ̂, X can be

recovered by dividing θ̂ by its last element.

5.3 Camera Tracking System

The learning framework of [46] was used as the basis of the tracking system of [115].

This system will later be extended to handle multiple sources of information.

We assume the camera has been calibrated offline. For our system, the calibration

was done using Tsai’s algorithm and allowing radial distortion up to the sixth degree

[128]. This ensures good pose estimation when the system is provided with the right

correspondences. The operation of the system is divided into the learning phase and

the tracking phase. The learning phase is initialized when 3D markers, whose locations

are known, are detected in the image sequence and the pose is computed based on these

markers. The markers of [142] are used for this purpose. At each frame distinctive point

features are detected using the algorithm of [119]. The covariances of these points up to

a global scale factor can be obtained from the intensity values of the image [67]. Points

correspondences across frames are found by the Lucas-Kanade tracker [79].

Given correspondences across frames and the pose for each of these frames, the

feature points are triangulated. We assume there are no outliers present in the data.

If necessary, a robust estimator such as RANSAC [37] or pbM [115] can be used at

this stage to remove the outliers. Outliers could be erroneous point correspondences or

frames with incorrect pose estimates.

Once the markers are not visible in the image the tracking phase begins. Well

112

?

��
��
H

HHH����HH
HH

Markers
Visible

No Yes

? ?

HEIV HEIV

?
Get Feature

Pose,Pf

?
Get Marker
Pose,Pm

?

HEIV

?
Get Structure

S

6

Next
frame

Figure 5.1: Outline of the tracking system.

reconstructed points of the learning stage are used to estimate the pose. We define

well reconstructed points as points whose covariance matrices in 3D are such that

the highest singular value is below some predefined threshold. Since the point have

been triangulated through HEIV regression, their covariances are given by (5.21). New

feature points are continually detected in the image sequence and triangulated so that

at any given future frame a sufficient number of well-reconstructed points are available

for pose computation. The complete system is graphically represented in Figure 5.1.

The covariance information of all the triangulated points and computed camera

pose is retained and used in the HEIV estimation. In this manner points which are

well localized in 3D get greater weight and in a similar manner pose estimates which

are not good due to the planarity of the feature points etc. are neglected due to their

high covariances.

The system discussed above was a modification of the method proposed in [46].

However, in [46], Levenberg-Marquardt (LM) regression was used instead of HEIV to

handle the nonlinear regression. This led to a drift in the camera tracking as the camera

moved away from the markers. The scene used to test the system can be seen in Figure

113

Figure 5.2: Camera paths for workspace scene.

5.3. The markers used during the learning phase can be seen at the top of the image.

The results of the system discussed in this section are compared with the results

obtained by [46]. The image sequence consists of 641 frames. The markers come into

view at Frame 32 and the learning phase begins. At frame 151 the markers are not

visible anymore and the tracking phase begins. The camera now moves down towards

the bottom of the scene and then moves back up. The markers come into view again

at frame 624 and from this frame till the end the markers are again used for camera

pose estimation.

The extent of drift suffered by each system can be judged by the difference in camera

pose between fames 623 and frame 624. At frame 623, the markers are not visible and

previously triangulated features are used for pose computation. However, in frame 624

the markers are used for pose estimation. Since the markers are easily identifiable in

the image and their true 3D position is known, this pose is accurate. Since the camera

motion is smooth, if no drift has occurred the difference between the two pose estimates

114

Figure 5.3: Comparison of camera tracking at frame 623 for the workspace experiment. The
HEIV algorithm is used to get the pose and render the wireframe on the left and the LM
algorithm is used on the right.

should not differ by much. To depict these ideas graphically, we use the pose to estimate

the camera position for each frame. If the pose is given by P = [R t], the position of

the camera center is given by −RT t. The x, y and z coordinates of the camera center

are plotted as functions of the frame number in Figure 5.2. The pose computed from

triangulated features is used to render a wireframe around the markers at frame 623,

just before the markers come back into view. These frames are shown in Figure 5.3.

In spite of the improvement offered by using HEIV regression, this system does not

handle all the available information. Note that the pose for each camera is estimated

separately. This ignores information available from the previous frame. The pose for

the current frame cannot be very different from the pose at the previous frame. In a

Kalman filtering based approach to SFM this continuity is enforced by the equations

which model the dynamics of the system. To enforce this continuity, we use a gyroscope

rather than explicitly model the dynamics using a filtering approach. The relation to

Kalman filtering is further discussed in Section 5.4.1.

A gyroscope is a device for measuring or maintaining orientation, based on the

principle of conservation of angular momentum. We use the Wireless InertiaCube3

gyroscope developed by InterSense [62]. The system provides three degrees-of-freedom

orientation tracking. The angular estimates returned by the gyroscope have an uncer-

tainty of 1◦ in yaw and 0.25◦ in pitch and roll. The gyroscope and the wireless receiver

115

Figure 5.4: Wireless Inertia Cube 3 and the wireless receiver.

are shown in Figure 5.4.

Based on the estimates returned by the gyroscope, the relative rotational motion

between two frames is estimated. This can be used to obtain an estimate of the rota-

tional part of the pose for the next frame. This way of updating also ensures that the

pose for the next frame does not differ too much from the current pose. The rotational

part of the pose obtained in this manner is noisy and translational part of the pose is

unknown. In the next section we discuss a statistically balanced method for using the

given world to image point correspondences to estimate the pose of the camera while

also accounting for the noisy estimate given by the gyroscope.

5.4 The Modified HEIV Algorithm

In this section we derive an algorithm which is closely related to HEIV, but also accounts

for other available information about the parameter vector. We derive the algorithm

specifically for the problem of camera pose estimation given a set of world to image

point correspondences and a noisy estimate of the rotation part of the pose. In our

application this estimate of the rotation is supplied by the gyroscope. The method

can also be used when only estimates of the translation are available, but this is not

discussed here. Similarly, the method can be extended to other applications where some

information about the parameter vector is available.

We are given a set of 3D world points and corresponding 2D image points which are

organized into five dimensional vectors zi, i = 1, . . . , n, as described in Section 5.2.4.

116

The covariance σ2Czi of each zi is known up to some common global scaling σ2.

A noisy estimate R ∈ R3×3 of the rotation part of the pose is also available. The

matrix R is orthogonal and satisfies the constraints RRT = e3. The elements of R

can also be organized into a vector r ∈ R9, which we shall refer to as the rotation

vector. This estimate r differs from the true rotation vector ro by additive noise whose

covariance is given by Cr ∈ R9×9 which is known up to the same scaling of σ2. The

orthogonality constraints on R give rise to 6 linearly independent nonlinear constraints

on the vector r and the vector r has only three degrees of freedom. Therefore, Cr is a

9×9, symmetric, positive-semi definite matrix whose rank is only three. By performing

SVD on Cr we obtain the 9 × 3 matrix Ur and the 3 × 3 diagonal matrix Sr such

that Cr = UrSrUT
r. The reason for doing this is explained later.

The true point matches, rotation and translation satisfy the projection equations

given by (5.27). We denote these constraints between zio, ro and the translation to as

f(zio, ro, to) = 0. The projection equations can also be rewritten as

f(zi, r, t) = Φ(zi, r)θ (5.32)

where, the unknown translation is contained in θ =
[
tT 1

]T ∈ R4 and Φ(zi, r) ∈ R2×4

is a nonlinear function of the point match and rotation given by

Φ(zi, r) =

 1 0 −ui rT
1 p3

i − uir
T
3 p3

i

0 1 −vi rT
2 p3

i − vir
T
3 p3

i

 . (5.33)

where, rT
j is the j-th row of the rotation matrix, p3

i is the world position of the i-th

point correspondence and (ui, vi) is the image position of the i-th point.

The aim is to obtain an optimal estimate of the translation t ∈ R3 and optimally

corrected values of zi and r. The vector r is involved in all the n functional constraints

and appears in all the carrier vectors. This correlation between the n carrier vectors

implies that the simple HEIV algorithm of Section 5.2 is no longer valid.

We proceed by minimizing the cost function

J =
1
2

∑
i

(ẑi − zi)T C+
zi

(ẑi − zi) +
1
2
(r̂ − r)T C+

r (r̂ − r) (5.34)

117

while satisfying the constraints,

f(ẑi, r̂, t̂) = 0, i = 1, . . . , n (5.35)

In our application, the matrices Czi are full rank and the pseudo-inverse C+
zi is equiv-

alent to the inverse C−1
i . In a general case it is possible for Czi to be rank-deficient.

5.4.1 Relationship to Kalman Filtering Approaches

The cost function being minimized above is a likelihood function, if the additive noise is

Gaussian. In this case, the minima of the cost function is a maximum likelihood (ML)

estimate. Kalman filtering also tries to obtain a ML estimate under the assumption

of Gaussian noise. The major difference between the approach that we propose and

Kalman filter based approaches to structure-from-motion [5, 18] is the difference in the

model used for the dynamics. In [18], the rotational and translational velocity of the

camera are taken to be part of the state vector. The a priori estimate of velocity for

the next frame is taken to be the a posteriori estimate from the previous frame. Any

change in the velocity i.e. acceleration is modeled as white noise. The validity of this

assumption can only be justified by the results obtained in practice.

In our system, we do not explicitly model the velocity or the acceleration. Rather,

we use a gyroscope to update our position estimates and get a priori estimates of the

next camera pose. However, our cost function does not place any constraints on the

manner in which these a priori constraints are obtained. For example, rather than

using the gyroscope, the velocity of the camera can be taken as part of the state. In

this case, an a posteriori estimate of this velocity is always available and this estimate

can be used to update the current camera position to obtain an a priori camera pose

estimate for the next frame.

The advantage that our method offers over a Kalman filter is that it handles the

nonlinearities in the projection equations. Kalman filters, are theoretically valid only

for linear systems. In practice, extended Kalman filters are used to handle the nonlin-

earities, but the drawbacks of extended Kalman filters have been well documented [64].

More complex methods such as Unscented Kalman filters [64] have been proposed,

118

but the complexity of these algorithms restricts them to low dimensional problems.

Our system is closest to the Iterated Extended Kalman Filter [45], but our function

optimization is not a Gauss-Newton method.

5.4.2 Derivation

Introducing Lagrange multipliers ηi ∈ R2, the cost function becomes

J =
1
2

n∑
i=1

(ẑi − zi)T C+
zi

(ẑi − zi) +
1
2
(r̂ − r)T C+

r (r̂ − r) +
n∑

i=1

ηT
i f(ẑi, r̂, t̂) . (5.36)

At the minima, the Jacobians of J with respect to ẑi, r̂ and θ̂ should satisfy

JJ |zi
= C+

zi
(ẑi − zi) + Jf |zi

(ẑi, r̂, t̂)ηi = 0 (5.37)

JJ |r = C+
r (r̂ − r) +

∑n
j=1 Jf |r(ẑj , r̂, t̂)ηj = 0 (5.38)

JJ |θ =
∑n

i=1 Φ(ẑi, r̂)T ηi = 0 . (5.39)

The equations (5.37) and (5.38) can be rewritten as

ẑi = zi −CziJf |zi
(ẑi, r̂, t̂)ηi (5.40)

r̂ = r −Cr
∑n

j=1 Jf |r(ẑj , r̂, t̂)ηj (5.41)

Like in the original HEIV, let ži and ř, be available estimates. Initially, we assume

ži = zi and ř = r. The first order Taylor expansion of f(ẑi, r̂, t̂) around ži and ř gives

f(ẑi, r̂, t̂) = f(ži, ř, t̂) + Jf |zi
(ži, ř, t̂)T (ẑi − ži) + Jf |r(ži, ř, t̂)T (r̂ − ř) = 0 .(5.42)

We assume that the Jacobians Jf |zi
(ẑi, r̂, t̂) and Jf |r(ẑi, r̂, t̂) do not change much

when computed at ži and ř instead of ẑi and r̂. This assumption is reasonable since

the estimates ži and ř are quite close to ẑi and r̂. The equation (5.40) and (5.41) can

be rewritten as

ẑi − ži = zi − ži −CziJf |zi
(ži, ř, t̂)ηi (5.43)

r̂ − ř = r − ř −Cr
∑n

j=1 Jf |r(žj , ř, t̂)ηj (5.44)

119

Using the above expressions for ẑi− ži and r̂− ř and recognizing the first order Taylor

series expansion of f(zi, r, t̂) around ži and ř, the equation (5.42) becomes

f(zi, r, t̂) = Jf |zi
(ži, ř, t̂)T CziJf |zi

(ži, ř, t̂)ηi

+Jf |r(ži, ř, t̂)T Cr

n∑
j=1

Jf |r(žj , ř, t̂)ηj (5.45)

Recall that Cr = UrSrUT
r. We define

Σi
∆= Jf |zi

(ži, ř, t̂)T CziJf |zi
(ži, ř, t̂) Xi

∆= Jf |r(ži, ř, t̂)T Ur . (5.46)

In terms of these matrices, equation (5.45) becomes

f(zi, r, t̂) = Σiηi + XiSr

n∑
j=1

XT
j ηj (5.47)

As i varies from 1 to n we get n equations of the form of (5.47). This complete system

of equation can be represented in a single matrix equation as,

(A + XSrXT)η = b (5.48)

where

A =



Σ1 0 · · · 0

0 Σ2 · · · 0
...

...
. . .

...

0 0 · · · Σn


X =



X1

X2

...

Xn


η =



η1

η2

...

ηn


b =



f(z1, r, t̂)

f(z2, r, t̂)
...

f(zn, r, t̂)


(5.49)

where A ∈ R2n×2n, X ∈ R2n×3 and η, b ∈ R2n. The Lagrange multipliers η, are given

by,

η = (A + XSrXT)−1b . (5.50)

Using the Sherman-Morrison-Woodbury (SWM) formula for computing the matrix in-

verse,

η = (A−1 −A−1XMXT A−1)b (5.51)

where,

M = (S−1
r + XT A−1X)−1 . (5.52)

120

Since, A is a block diagonal matrix, its inverse can be computed simply by inverting each

2× 2 matrix Σi. The only other matrix that needs to be inverted is S−1
r + XT A−1X,

which is a 3×3 matrix. Therefore, the SMW formula drastically reduces the complexity

of inverting the 2n× 2n matrix A + XSrXT . The Lagrange multipliers are given by

ηi = Σ+
i f(zi, r, t̂)−Σ+

i XiM
n∑

j=1

XT
j Σ+

j f(zi, r, t̂) (5.53)

This is the reason for replacing Cr by its SVD. Without this change, the SWM

formula would not have been applicable and the matrix would have to be explicitly

inverted. This is required only when Cr is singular. If this is not the case then the

SVD is not necessary.

At the minima we also require the Jacobian with respect to θ̂ to be zero. This gives

JJ |θ =
n∑

i=1

Φ(ẑi, r̂)T ηi =
n∑

i=1

(ηi ⊗ Ip)Tϕ(ẑi, r̂) = 0 (5.54)

where, ⊗ is the Kronecker product [52] and ϕ(ẑi, r̂) = vec(Φ(ẑi, r̂)T). The first order

expansion of ϕ(ẑi, r̂) around ži and ř gives

ϕ(ẑi, r̂) = ϕ(ži, ř) + Jϕ|zi
(ži, ř)T (ẑi − ži) + Jϕ|r(ži, ř)T (r̂ − ř) (5.55)

Substituting for ẑi − ži and r̂ − ř, from (5.43) and (5.44) in the above equation and

recognizing the first order Taylor series expansion of ϕ(zi, r) about ži, ř

ϕ(ẑi, r̂) = ϕ(zi, r)− Jϕ|zi
(ži, ř)T CziJf |zi

(ži, ř)ηi − Jϕ|r(ži, ř)T Cr

n∑
j=1

Jϕ|r(žj , ř)ηj(5.56)

Using the definition of the Kronecker product for ži and ř

f(ži, ř, t̂) = Φ(ži, ř)θ̂ = (em ⊗ θ̂)Tϕ(ži, ř) . (5.57)

Evaluating Jacobians with respect to ži and ř on both sides of the above equations we

get

Jf |zi
(ži, ř, t̂) = Jϕ|zi

(ži, ř, t̂)(em ⊗ θ̂) (5.58)

Jf |r(ži, ř, t̂) = Jϕ|r(ži, ř, t̂)(em ⊗ θ̂) (5.59)

121

The equation (5.56) now becomes

ϕ(ẑi, r̂) = ϕ(zi, r)− Jϕ|zi
(ži, ř)T CziJϕ|zi

(ži, ř)(ηi ⊗ ep)θ̂

−Jϕ|r(ži, ř)T Cr

n∑
j=1

Jϕ|r(žj , ř)(ηj ⊗ ep)θ̂ (5.60)

The covariance of ϕ(ži, ř) approximated by error propagation in ži is

Cϕ(ži) = Jϕ|zi
(ži, ř)T CziJϕ|zi

(ži, ř) . (5.61)

Similarly the cross covariance between ϕ(ži, ř) and ϕ(žj , ř) by error propagation in ř

is

Cϕ(ř) = Uϕ(ži, ř)Uϕ(žj , ř)T = Jϕ|zi
(ži, ř)T CrJϕ|zi

(ži, ř) (5.62)

where Uϕ(ži, ř) = Jϕ|zi
(ži, ř)T C

1/2
r . In terms of these matrices, (5.60) becomes

ϕ(ẑi, r̂) = ϕ(zi, r)−Cϕ(ži)(ηi ⊗ ep)θ̂ −Uϕ(ži, ř)
n∑

j=1

Uϕ(žj , ř)T (ηj ⊗ ep)θ̂ . (5.63)

Substituting for ϕ(ẑi, r̂) in (5.54), and reorganizing the terms we get

n∑
i=1

(ηi ⊗ Ip)Tϕ(zi, r) =
n∑

i=1

(ηi ⊗ Ip)T Cϕ(ži)(ηi ⊗ Ip)θ̂

+
n∑

i=1

n∑
j=1

(ηi ⊗ Ip)T Uϕ(ži, ř)Uϕ(žj , ř)T (ηj ⊗ ep)θ̂ .(5.64)

By the properties of the Kronecker product, the left side of the above equation is

equivalent to
∑n

i=1 Φ(zi, r)T ηi. Substituting for the Lagrange multipliers using (5.53)

we get

n∑
i=1

Φ(zi, r)T ηi =
n∑

i=1

Φ(zi, r)TΣ+
i Φ(zi, r)Θ̂

−
n∑

i=1

n∑
j=1

Φ(zi, r)TΣiXiMXT
j Σ+

j Φ(zj , r)Θ̂ (5.65)

where M is given by (5.52). The equation (5.64) can be written like the HEIV equation

(5.14)

S(θ̂)θ̂ = C(θ̂)θ̂ (5.66)

122

where, S(θ̂) is the scatter matrix given by

S(θ̂) =
n∑

i=1

Φ(zi, r)TΣ+
i Φ(zi, r)

−
n∑

i=1

n∑
j=1

Φ(zi, r)TΣiXiMXT
j Σ+

j Φ(zj , r) (5.67)

and C(θ̂) is the covariance matrix given by

C(θ̂) =
n∑

i=1

(ηi ⊗ Ip)T Cϕ(ži)(ηT
i ⊗ Ip)

+
n∑

i=1

n∑
j=1

(ηi ⊗ Ip)T Uϕ(ži, ř)Uϕ(žj , ř)T (ηj ⊗ ep) . (5.68)

The expressions should be compared with the scatter and covariance matrices defined

for the original HEIV by (5.9) and (5.10). The first terms involving summation over i

exist but the cross-terms involving summation over i and j are not present in (5.9) and

(5.10). These appear now due to the correlation introduced by r.

Like in standard HEIV, due to the dependence of S(θ̂) and C(θ̂) on θ̂, (5.66) cannot

be solved for θ̂ directly. The generalized singular value decomposition (GSVD) problem

of (5.66) is solved iteratively. Starting from an initial estimate of θ̂, the scatter matrix

and covariance matrix are estimated. In practice, The GSVD problem is solved by

converting it into a generalized eigenvalue problem in terms of the matrix square roots

of S(θ̂) and C(θ̂). The generalized eigenvalue problem is solved to find a better estimate

of θ̂. The current definition of the scatter matrix makes this difficult since it cannot be

easily factored into its matrix square root. Therefore, we redefine the matrices as

S̄(θ̂) =
∑n

i=1 Φ(zi, r)TΣ+
i Φ(zi, r) (5.69)

C̄(θ̂) = C(θ̂) +
∑n

i=1

∑n
j=1 Φ(zi, r)TΣiXiMXT

j Σ+
j Φ(zj , r) (5.70)

Similar to (5.66), at the k-th iteration, we have the equation,

S̄(θ̂
[k]

)θ̂
[k+1]

= C̄(θ̂
[k]

)θ̂
[k+1]

(5.71)

However, now is easy to take the matrix square root of S̄(θ̂) and hence (5.71) can be

solved by solving a generalized eigenvalue problem.

123

5.4.3 Statistical Properties

In our system, we shall require the covariance of the pose estimates. This is done so

that pose estimates which are well localized (have low covariance) are given more weight

than pose estimates with high covariances. For this purpose we require the a posteriori

covariances of the pose estimates returned by the algorithm of the previous section.

The a posteriori covariance of r̂ is given by

Cr̂ = Cr −UrSr(T − TMT)SrUr (5.72)

where, T = XT A−1X. The a posteriori covariance of θ̂ is given by

C
θ̂

= (S(θ̂)−C(θ̂))+ (5.73)

5.5 Experimental Results

The above algorithm for fusing the rotation estimates supplied by the gyroscope, with

the image data was integrated into the camera tracking system discussed in Section 5.3.

The tracking phase begins from the first frame in which the markers are visible. For

this frame, the pose is computed using standard HEIV pose computation.

For each of the further frames, we have an estimate of the pose of the previous

frame. The gyroscope is used to get an estimate of the relative rotation between the

previous frame and the current frame. Given the pose of the previous frame and the

relative rotation, we get a estimate for the rotation part of the current pose by matrix

multiplication.

Note, that the gyroscope returns estimates of the actual orientation. However, the

gyroscope also suffers from drift which increases with time. Therefore, for longer se-

quences the estimates of the absolute orientation returned by the gyroscope deteriorate

rapidly. To overcome this we compare the current orientation estimate of the gyroscope

with the previous orientation to obtain the relative rotation between the two frames.

This method has the further advantage that it is not necessary to know the position

and orientation of the gyroscope with respect to the camera. As long as the gyroscope

124

Figure 5.5: Camera paths for experiment 1. The results of the simple HEIV algorithm are
compared with our fusion algorithm. The discontinuity in the position estimates when the
markers come back into view at frame 520 is an indication of the drift suffered by the system.
The fusion based system clearly suffers from lesser drift.

it attached to the camera rigidly, the constant transformation between the camera and

gyroscope systems does not affect the relative rotation estimates.

In the learning phase, given the covariances of the previous orientation and the

relative rotation returned by the gyroscope, the covariance of the a priori orientation

estimate can be obtained through error propagation. The markers are detected in the

image, and as their world position is known we know a sufficient number of image to

world correspondences. This data is combined using the new HEIV algorithm of Section

5.4 to obtain the a posteriori pose of the camera.

The pose estimation works similarly in the tracking phase. The only difference is

that the image to world point correspondences are obtained by tracking scene features.

We compare the results of this system with those obtained by the system [115] discussed

125

Figure 5.6: Comparison of camera tracking at frame 519 of experiment one. On the left the
fusion algorithm is used to get the pose and render the wireframe while the HEIV algorithm is
used on the right.

in Section 5.3.

The algorithms were run on a single processor Pentium III, 2.66 GHz machine and

processed the sequences at 15-25 frames per second (fps). Although, this is not quite

frame rate, we believe that with a the system can be made to run at frame rate by

improving various sections of the code. Also, faster computers are available on the

market and faster processors should considerably improve frame rate.

The first experiment is carried out on the scene as before, although this time we also

use the gyroscope while capturing the frame sequence. The sequence is 524 frames long

and the camera is moved quickly to give the system less time to localize new features.

The pose of the camera for each frame is used to estimate the position of the camera

center. The coordinates of the camera center are plotted versus the frame numbers to

get an idea of the camera motion. The camera paths returned by the two systems are

shown in Figure 5.5. The markers are kept in view for the first 150 frames to allow

localization of various scene features. Due to this both the HEIV and fusion algorithms

give smooth estimates of the camera position for the first 150 frames as can be seen in

the three plots of the camera position versus frame number.

After this the camera is moved away from the markers so that the scene features

are used for pose computation. This makes the position estimates more noisy and the

system also starts to suffer from drift. Note, that as soon as the markers go out of view

126

Figure 5.7: Comparison of camera tracking at frame 130 for the planar scene. The fusion
algorithm is used to get the pose and render the wireframe on the left and the HEIV algorithm
is used for the right image.

the two estimates rapidly diverge. It is difficult to decide simply from this information

which estimate is better. This is because we do not know the true world positions of

any of the features now visible in the frames. Also, due to the fast camera motion, the

gyroscope estimates are also fairly noisy and this makes the fusion estimates jittery.

However, the fusion estimates are still less noisy than those returned by HEIV.

Around frame 350 the camera starts moving much slower and this makes the pose

estimates much smoother and less jittery. Now, the extent of the drift suffered by the

system is now gauged by bringing the markers back into view. The markers come back

into view and are detected by the system at frame 520. At this time, the tracking phase

ends and the markers are again used for pose computation. Since the markers are easily

detectable and their world position is known, these pose estimates are reliable. The

huge jump in the HEIV estimates shows that there has been a fair amount of drift.

Although the fusion also suffers from drift it is much less in magnitude. The pose

computed from triangulated features is used to render a wireframe around the markers

at frame 519. These frames are shown in Figure 5.6 for both the simple HEIV method

and the fusion method. Although our system suffers from some drift the wireframe still

seems to be correct visually. However, for the HEIV system the wireframe is clearly

wrong.

Pose estimation is an ill posed problem, especially when there is not too much depth

127

Figure 5.8: Camera paths results for experiment two. The simple HEIV algorithm breaks down
and loses track due to the planarity of reconstructed features. The fusion algorithm presented
has some jitter but is much more stable. The HEIV pose estimate keeps flipping between the
true pose and its mirror image.

variation in the scene. Consequently, small errors in the orientation of the camera

can be accounted for by small changes in the translational part of the pose. This

implies that there are a number of pose estimates which can explain a given set of point

correspondences. If the pose of each frame is estimated individually, we can get any one

of these various pose estimates. It is possible to detect such a degeneracy, but doing this

at every frame is computationally expensive. Modeling the camera dynamics offers a

natural way to handle this problem. Even without a reparametrization, the availability

of a rough orientation estimate prevents the pose from being completely incorrect. By

enforcing the dynamics of the motion through the gyroscope, we make sure that the

pose estimated for the current frame is not too different from the previous frame. This

is a reasonable assumption since the camera moves in the real world and consequently

128

Figure 5.9: Comparison of camera tracking at frame 471 for experiment three. The fusion
algorithm is used to get the pose and render the wireframe on the left and the HEIV algorithm
is used on the right.

we get improved camera tracking results.

An example of a planar scene is shown in Figure 5.7. After a sufficient number of

features have been triangulated satisfactorily, the feature pose is computed and used

to render a wireframe around the markers. The results for one such frame are shown,

using the simple HEIV method and the fusion method proposed here. The error of the

HEIV method is clearly visible.

The planarity of reconstructed features frequently occurs in indoor scenes. Even if

this degeneracy occurs only for a few frames, the pose estimates form those frames are

used for the triangulation of further points. This leads to the errors multiplying and

eventually causes drift. We consider such a scene in our next experiment where the

sequence consists of 450 frames. Although multiple planar surfaces are present, it is

possible that at times all the well triangulate features lie on a single surface which is

planar or close to being planar. The camera tracks returned for this sequence by the two

algorithms are compared in Figure 5.8. The HEIV method frequently loses track and

suffer from large discontinuities. Note, how in the curve of the z-coordinate between

frames 300 and 400 the two curves are mirror images of each other around the z = 0

line. Since the z-coordinate represents depth, this means that the HEIV estimate is

returning the mirror image of the true pose due to the planarity of the scene. Enforcing

the continuity of the motion prevents the fusion based system from jumping between

129

Figure 5.10: Camera paths results for experiment three. The fusion algorithm presented here
clearly has a much more stable path and suffers from less drift.

the true pose and its mirror image.

Another advantage of enforcing the dynamics to get smoother camera path is that

it allows us to handle faster camera motions as we show in the third experiment. On

sequences where the simple HEIV method gives highly jittery paths and errors in re-

construction due to the speed of the camera, the fusion method is accurate and returns

smooth camera paths. The results on an example of such camera motion are shown in

Figures 5.9 and 5.10. The sequence consists of 474 frames. To get an idea of the drift

graphically, the feature pose is used to render a wireframe around the markers in the

frame before they reappear completely in the scene. These frames are shown in Figure

5.9. There is a considerable amount of drift in the simple HEIV based camera tracking

and the wireframe is quite far from the markers. The fusion method does not suffer

any noticeable amount of drift. The camera paths returned by the two systems are

compared in Figure 5.10. The camera path returned by simple HEIV are clearly highly

130

jittery.

The results shown here should not be taken as being representative of the HEIV

method of [115]. Here we have specifically considered cases where it breaks down and

our fusion algorithm still works. Although the fusion algorithm consistently does better

than HEIV, the simple HEIV algorithm gives satisfactory results under fairly general

conditions.

131

Chapter 6

Conclusion and Future Work

We have shown that the nonlinear constraints in vision problems lead to data which

do not lie in vector spaces but on curved surfaces embedded in higher dimensional

Euclidean spaces. These surfaces exhibit significant smoothness and can be studied

using the theory of differential geometry. Using the appropriate methods which ac-

count for these nonlinearities can lead to advantages with theoretical consistency and

improvements in practical performance of vision systems.

In this thesis, we proposed two new algorithms which account for the manifold nature

of visual data. The nonlinear mean shift algorithm can be used for the clustering of

data points lying on Riemannian manifolds. It was proved that the nonlinear mean shift

iterations converge to a local maxima of a kernel density function over the manifold.

Applications of this for motion segmentation and for discontinuity preserving filtering

of complex image data were shown. The motion segmentation algorithm based on

mean shift is a major improvement over previous work. To our knowledge, no previous

algorithm has tried to solve the motion segmentation problem in such a general setting.

The method of Section 3.6.1 does not require any knowledge of the number of motions

present and can handle multiple motions and outliers. It estimates the number of

motions present and the motion parameters in a single step. We have also obtained

promising results when using mean shift for the filtering of complex image data. With

the development of new imaging systems, especially for medical applications, image

data will increase in complexity. Accounting for the nonlinear nature of the data will

become necessary and we believe that the nonlinear mean shift algorithm will become

as widely applied as the original mean shift algorithm.

The projection based M-estimator is a user independent regression algorithm which

132

can adapt itself to varying levels of noise in the data set. It is able to handle both

structured and unstructured outliers. With the increasing use of autonomous vision

systems such user independence is necessary as the scene viewed by the system keep

changing. There is an increasing amount of work being done to address the problem

of making robust regression insensitive to user defined parameters and pbM is an im-

portant step in this direction. Previous modifications in robust regression have mainly

concentrated on using external information to upgrade the sampling. Combining these

methods with pbM, and the new robust cost function proposed in Section 4.2.3, should

further improve results.

6.1 Future Work

Ideas for future work based on this thesis are discussed next.

6.1.1 The Radon Transform

As mentioned in Section 4.6, nonlinear mean shift and pbM can be used to solve the

same problems but offer different advantages. Developing a robust estimator which can

simultaneously estimate all the motions present in a data set without user intervention

is still an open problem.

The major bottleneck of the mean shift technique is the hypothesis generation part

of the algorithm [130]. We assume that if all the points used to generate a hypotheses are

inliers then the hypothesis will be close to the true model. We refer to such hypotheses

as inlier hypotheses. Let the fraction of inlier data points be p < 1, and let k points

be required to generate a hypotheses. Then the fraction of inlier hypotheses will be

pk. Usually, we use some form of validation [20, 130], to improve the fraction of inlier

hypotheses. In most data sets, especially those with multiple structures, p can be quite

low and the algorithm does not scale very well with k. This occurs quite frequently

in vision problems. For example, in fundamental matrix estimation each elementary

subset consists of eight points (k = 8) and the fraction of inlier hypotheses can be quite

small.

133

Although, mean shift does not scale to these problems, pbM still gives good results

under such conditions. The pbM algorithm optimizes a cost function which is written

in terms of the data points themselves rather than a set of hypotheses. Consequently,

pbM requires a single hypotheses to be close enough to the true estimate rather then

requiring a sizeable fraction of the hypotheses to be inliers.

The advantages of both methods can be obtained by proceeding like in pbM to

generate a single hypotheses and then use nonlinear mean shift as a local optimization

procedure for a cost function written in terms of the data points, not in terms of other

hypotheses. Such a parameter estimation procedure is commonly known as the Radon

transform [58]. The reason it is not widely used is that the maximization of the score

in the parameter space is difficult.

We can use nonlinear mean shift for this maximization with some modifications. If

m(> 1) data points are required to uniquely define the model parameters, this implies

that a single data point does not completely specify the model. Each data point defines

a set of valid model parameters. For each correspondence, mean shift improves the

current parameter estimate by finding the closest of all these parameters and moving

towards it. This requires a characterization of the complete set of valid parameters

based on a single data point. This characterization depends both on the manifold

containing the parameters and the constraint relating the parameters and data. Also,

given a set of valid parameters we need to find the closest point to our current estimate.

This is possible for simple manifolds such as the special Euclidean group for es-

timating 3D rigid motion or subspace estimation over the Grassmann manifolds, but

extending this method to a larger class of applications is still an open problem.

6.1.2 Other Manifolds in Vision

Most manifolds we have considered here are fairly simple, low dimensional manifolds

which have been also analyzed in other fields. However, there exist many different

manifolds which are specific to computer vision but not very well understood. The

essential manifold of Section 2.4.4 was an example of this. Another well known example

of a manifold in computer vision is shape space, the space of all 2D curves invariant

134

to rigid transformations [30] or to elastic deformations [53]. Although the theory has

been known for a long time it is only recently that computers have developed enough

to allow for an automated analysis based on these ideas. The theory of shape space is

now being extended to 3D shape analysis [38].

Computer vision problems also lead to a number of less analyzed manifolds. Dimen-

sionality reduction techniques such as locally linear embedding and Laplacian eigenmaps

have shown that the space of visual images, in many cases, is much lower dimensional

than was previously thought. These methods have also shown that this data does not

follow the usual rules of Euclidean geometry. Analysis of cyclic processes such as human

gait and heartbeats also form manifolds whose geometry is not very well understood,

e.g . [33, 34].

A more principled analysis of these manifolds and their geometry is necessary. Once

their geometry is well understood we can extend the methods developed here to these

new manifolds for feature space analysis of new types of data.

135

Appendix A

Conjugate Gradient over GN,k × Rk

Most function optimization techniques, e.g., Newton iterations and conjugate gradient,

apply to functions defined over Euclidean spaces. Similar methods have been developed

for Grassmann manifolds [31]. As discussed in Section 4.4.2, the search space under

consideration is the direct product of a Grassmann manifold and a real space, GN,k×Rk,

and we want to perform conjugate gradient function minimization over this parameter

space. The algorithm follows the same general structure as standard conjugate gradient

but has some differences with regard to the movement of tangent vectors.

Let f be a real valued function on the manifold GN,k × Rk. Conjugate gradient

minimization requires the computation of G and g, the gradients of f with respect to

Θ and α. To obtain the gradients at a point (Θ,α), we compute the Jacobians JΘ

and Jα of f with respect to Θ and α. The gradients are

G = JΘ −ΘΘTJΘ g = Jα. (A.1)

Let [Θ0,α0] ∈ GN,k×Rk be the point at which the algorithm is initialized. Compute

the gradients G0 and g0, at (Θ0,α0) and the search directions are H0 = −G0 and

h0 = −g0.

The following iterations are done till convergence. Iteration j + 1 now proceeds by

minimizing f along the geodesic defined by the search directions Hj on the Grassmann

manifold and hj in the Euclidean component of the parameter space. This is known as

line search. The parametric form of the geodesic is

Θj(t) = ΘjVdiag(cosλt)VT + Udiag(sinλt)VT (A.2)

αj(t) = αj + thj . (A.3)

where, t is the parameter, Θj is the estimate from iteration j and Udiag(λ)VT is

136

the compact SVD of Hj consisting of the k largest singular values and corresponding

singular vectors. The sin and cos act element-by-element [31].

Denoting the value of the parameter t where the minimum is achieved by tm, set

Θj+1 = Θj(tm) and αj+1 = αj(tm). The gradient vectors are parallel transported to

this point according to

Hτ
j = [−ΘjVdiag(sinλtm) + Udiag(cosλtm)]diag(λ)VT

Gτ
j = Gj − [ΘjVdiag(sinλtm) + U(I− diag(cosλtm))]UTGj

The parallel transportation operator is denoted by τ . No explicit parallel transport

is required for the Euclidean component of the parameter space since this is trivially

achieved by moving the whole vector as it is. The new gradients Gj+1 and gj+1 are

computed at (Θj+1,αj+1). The new search directions are chosen orthogonal to all

previous search directions as

Hj+1 = −Gj+1 + γjHτ
j (A.4)

hj+1 = −gj+1 + γjhj (A.5)

where

γj =
tr
((

Gj+1 −Gτ
j

)T Gj+1

)
+ (gj+1 − gj)Tgj+1

tr
(
GT

j Gj

)
+ gT

j gj

(A.6)

and tr is the trace operator which computes the inner product between tangents of

the Grassmann manifold. This value is unchanged by parallel translation and in the

denominator we need not use the parallel transported tangents [31].

137

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, “Riemannian geometry of Grassmann mani-
folds with a view on algorithmic computation,” Acta Applicandae Mathematicae, vol. 80,
no. 2, pp. 199–220, 2003.

[2] S. Amari and H. Nagaoka, Methods of Information Geometry. American Mathematical
Society, 1st edition, 2001.

[3] L. P. Ammann, “Robust singular value decompositions: A new approach to projection
pursuit,” J. of Amer. Stat. Assoc., vol. 88, no. 422, pp. 505–514, 1993.

[4] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache., “Geometric means in a novel vec-
tor space structure on symmetric positive-definite matrices,” SIAM Journal on Matrix
Analysis and Applications, vol. 29, no. 1, pp. 328–347, 2006.

[5] A. Azarbayejani and A. Pentland, “Recursive estimation of motion, structure and focal
length,” IEEE Trans. Pattern Anal. Machine Intell., vol. 17, no. 6, pp. 562–575, 1995.

[6] P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imag-
ing,” Biophysical Journal, vol. 66, pp. 259–267, 1994.

[7] E. Begelfor and M. Werman, “Affine invariance revisited,” in Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition, New York, NY, vol. II, 2006, pp. 2087–2094.

[8] S. Birchfield and S. Rangarajan, “Spatiograms vs histograms for region-based tracking,”
in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, vol. II,
June 2005, pp. 1158–1163.

[9] W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry.
Academic Press, 2002.

[10] T. Broida and R. Chellappa, “Estimation of object motion parameters from noisy im-
ages,” IEEE Trans. Pattern Anal. Machine Intell., vol. 8, no. 1, pp. 90–99, 1986.

[11] A. Buchanan and A. Fitzgibbon, “Damped newton algorithms for matrix factorization
with missing data,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
San Diego, CA, vol. II, 2006, pp. 316–322.

[12] N. A. Campbell, “Robust procedures in multivariate analysis I: Robust covariance esti-
mation,” Applied Statistics, vol. 29, no. 3, pp. 231–237, 1980.

[13] M. A. Carreira-Perpinan, “Gaussian mean-shift is an EM algorithm,” IEEE Trans. Pat-
tern Anal. Machine Intell., vol. 29, no. 5, pp. 767–776, 2007.

[14] H. Chen and P. Meer, “Robust regression with projection based M-estimators,” in Proc.
9th Intl. Conf. on Computer Vision, Nice, France, vol. II, Oct 2003, pp. 878–885.

[15] H. Chen and P. Meer, “Robust fusion of uncertain information,” IEEE Trans. Systems,
Man, Cybernetics-Part B, vol. 35, pp. 578–586, 2005.

[16] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Trans. Pattern Anal. Ma-
chine Intell., vol. 17, pp. 790–799, 1995.

[17] Y. Chikuse, Statistics on Special Manifolds. Springer, 2003.

[18] A. Chiuso, P. Favaro, H. Jin, and S. Soatto, “Motion and structure causally integrated
over time,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 4, pp. 523–535, 2002.

138

[19] C. M. Christoudias, B. Georgescu, and P. Meer, “Synergism in low level vision,” in Proc.
16th Intl. Conf. on Pattern Recognition, Quebec, Canada, vol. IV, 2002, pp. 150–155.

[20] O. Chum and J. Matas, “Randomized RANSAC with td,d test,” in British Machine Vision
Conference, 2002, pp. 448–457.

[21] O. Chum and J. Matas, “Matching with PROSAC - progressive sample consensus,” in
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, vol. 1,
June 2005, pp. 220–226.

[22] O. Chum, J. Matas, and J. Kittler, “Locally optimized RANSAC,” in DAGM Symposium
Symposium for Pattern Recognition, 2003, pp. 236–243.

[23] R. Collins, “Mean shift blob tracking through scale space,” in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, Madison, WI, vol. II, 2003, pp. 234–240.

[24] D. Comaniciu, “Variable bandwidth density-based fusion,” in Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition, Madison, WI, vol. 1, June 2003, pp. 59–66.

[25] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space anal-
ysis,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, pp. 603–619, May 2002.

[26] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 25, pp. 564–577, 2003.

[27] J. Costeira and T. Kanade, “A multi-body factorization method for motion analysis,” in
Proc. 5th Intl. Conf. on Computer Vision,Cambridge, MA, 1995, pp. 1071–1076.

[28] B. Davis, P. T. Fletcher, E. Bullitt, and S. Joshi, “Population shape regression from
random design data,” in Proc. 11th Intl. Conf. on Computer Vision, Rio de Janeiro,
Brazil, Oct 2007.

[29] A. Davison, W. Mayol, and D. Murray, “Real-time localisation and mapping with wear-
able active vision,” in Proc. IEEE International Symposium on Mixed and Augmented
Reality, IEEE Computer Society Press, Oct. 2003, pp. 315–316.

[30] I. L. Dryden and K. V. Mardia, Statistical Shape Analysis. Wiley, 1st edition, 1998.

[31] A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algorithms with orthogo-
nality constraints,” SIAM Journal on Matrix Analysis and Applications, vol. 20, no. 2,
pp. 303–353, 1998.

[32] A. Elgammal, R. Duraiswami, and L. S. Davis, “Efficient kernel density estimation using
the efficient kernel density estimation using the color modeling and tracking,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 25, no. 11, pp. 1499–1504, 2003.

[33] A. Elgammal and C.-S. Lee, “Inferring 3D body pose from silhouettes using activity
manifold learning,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
Washington, DC, vol. II, 2004, pp. 681–688.

[34] A. Elgammal and C.-S. Lee, “Modeling view and posture manifolds for tracking,” in Proc.
11th Intl. Conf. on Computer Vision, Rio de Janeiro, Brazil, 2007, pp. 1–8.

[35] M. Fashing and C. Tomasi, “Mean shift is a bound optimization,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 25, no. 3, pp. 471–474, 2005.

[36] R. Ferreira and J. Xavier, “Hessian of the Riemannian squared-distance function on
connected locally symmetric spaces with applications,” in Controlo 2006, 7th Portuguese
Conference on Automatic Control, 2006.

[37] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography,” Comm. Assoc.
Comp. Mach, vol. 24, no. 6, pp. 381–395, 1981.

139

[38] P. Fletcher, S. Joshi, C. Lu, and S. Pizer, “Principal geodesic analysis for the study of
nonlinear statistics of shape,” IEEE Transactions on Medical Imaging, vol. 23, no. 8, pp.
995–1005, 2004.

[39] P. T. Fletcher, C. Lu, and S. Joshi, “Statistics of shape via principal geodesic analysis on
Lie groups,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Madison,
WI, 2003, pp. 95–101.

[40] W. Forstner and B. Moonen, “A metric for covariance matrices,” Technical report, Dept.
of Geodesy and Geoinformatices, Stuttgart University, 1999.

[41] J. M. Frahm and M. Pollefeys, “RANSAC for (quasi-)degenerate data (QDEGSAC),” in
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, New York, NY, vol. I,
2006, pp. 453–460.

[42] K. Fukunaga, Introduction to Statistical Pattern Recognition. Academic Press, second
edition, 1990.

[43] K. Fukunaga and L. D. Hostetler, “The estimation of the gradient of a density function,
with applications in pattern recognition,” IEEE Trans. Information Theory, vol. 21, pp.
32–40, 1975.

[44] C. W. Gear, “Multibody grouping from motion images,” International J. of Computer
Vision, vol. 29, no. 2, pp. 133–150, 1998.

[45] A. Gelb, Applied Optimal Estimation. The M.I.T. Press, 8th edition, 1982.

[46] Y. Genc, S. Riedel, F. Souvannavong, C. Akinlar, and N. Navab, “Marker-less tracking
for AR: A learning-based approach,” in IEEE / ACM International Symposium on Mixed
and Augmented Reality, IEEE Computer Society, 2002, pp. 295–304.

[47] B. Georgescu and P. Meer, “Point matching under large image deformations and illu-
mination changes,” IEEE Trans. Pattern Anal. Machine Intell., vol. 26, pp. 674–689,
2004.

[48] C. Geyer, R. Bajcsy, and S. Sastry, “Euclid meets Fourier: Applying harmonic analy-
sis to essential matrix estimation in omnidirectional cameras,” in Proc.of Workshop on
Omnidirectional Vision, Camera Networks and Non-classical Cameras, 2004.

[49] G. H. Golub and C. F. Van Loan, Matrix Computations. The John Hopkins University
Press, third edition, 1996.

[50] L. Goshen and I. Shimshoni, “Balanced exploration and exploitation model search for
efficient epipolar geometry estimations,” in Proc. European Conf. on Computer Vision,
Graz, Austria, vol. II, 2006, pp. 151–164.

[51] V. M. Govindu, “Lie-algebraic averaging for globally consistent motion estimation,” in
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Washington, DC, vol. I,
2004, pp. 684–691.

[52] A. Graham, Kronecker Products and Matrix Calculus:with Applications. Ellis Horwood
series in mathematics and its applications, 1981.

[53] U. Grenander, General Pattern Theory: A Mathematical Study of Regular Structures.
Oxford University Press, 1st edition, 1993.

[54] A. Gruber and Y. Weiss, “Multibody factorization with uncertainty and missing data
using the EM algorithm,” in Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition, Washington, DC, vol. I, 2004, pp. 707–714.

[55] G. Hager, M. Dewan, and C. Stewart, “Multiple kernel tracking with SSD,” in Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, Washington, DC, vol. I, 2004,
pp. 790–797.

140

[56] R. Haralick, C. Lee, K. Ottenberg, and M. Nolle, “Analysis and solutions of the three
point perspective pose estimation problem,” in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, Maui, HA, 1991, pp. 592–598.

[57] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge
University Press, 2000.

[58] S. Helgason, The Radon Transform. Birkhuser Boston, 2nd edition, 1999.

[59] P. A. Helm, R. L. Winslow, and E. McVeigh, “Center for cardiovascular bioinformatics
and modeling,” Technical report, Johns Hopkins University.

[60] W. A. Hoff, “Fusion of data from head-mounted and fixed sensors,” in Proc. of First
IEEE International Workshop on Augmented Reality, November 1998.

[61] W. A. Hoff and T. Vincent, “Analysis of head pose accuracy in augmented reality,” IEEE
Trans. Visualization and Computer Graphics, vol. 6, no. 4, pp. 319–335, 2000.

[62] InterSense,Inc., InterSense Wireless InertiaCube3, 2006. Available at
http://www.intersense.com/products/prec/ic3/wirelessic3.htm.

[63] I. T. Jolliffe, Principal Component Analysis. Springer, 2nd edition, 2002.

[64] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceed-
ings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[65] K. Kanatani, Statistical Optimization for Geometric Computation: Theory and Practice.
Elsevier, 1996.

[66] K. Kanatani, “Motion segmentation by subspace separation and model selection,” in
Proc. 8th Intl. Conf. on Computer Vision,Vancouver, Canada, vol. II, July 2001, pp.
301–306.

[67] Y. Kanazawa and K.Kanatani, “Do we really have to consider covariance matrices for
image features?,” in Proc. 8th Intl. Conf. on Computer Vision,Vancouver, Canada, vol. II,
(Vancouver, CA), July 2001.

[68] H. Karcher, “Riemannian center of mass and mollifier smoothing,” Comm. Pure Appl.
Math., vol. 30, no. 5, pp. 509–541, 1977.

[69] Q. Ke and T. Kanade, “Robust L-1 norm factorization in the presence of outliers and
missing data by alternative convex programming,” in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, San Diego, CA, vol. I, 2005, pp. 739–746.

[70] D. LeBihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and
H. Chabriat, “Diffusion tensor imaging: Concepts and applications,” Journal of Mag-
netic Resonance Imaging, vol. 13, pp. 534–546, 2001.

[71] Y. Leedan and P. Meer, “Heteroscedastic regression in computer vision: Problems with
bilinear constraint,” International J. of Computer Vision, vol. 37, pp. 127–150, 2000.

[72] C. Lenglet, R. Deriche, and O. Faugeras, “Inferring white matter geometry from diffusion
tensor MRI: Application to connectivity mapping,” in Proc. European Conf. on Computer
Vision, Prague, Czech Republic, vol. IV, 2004, pp. 127–140.

[73] R. Lenz and T. Bui, “Statistical properties of color signal spaces,” Journal of the Optical
Society of America, vol. 22, no. 5, pp. 820–827, 2005.

[74] R. Lenz, T. H. Bui, and J. Hernandez-Andres, “Group theoretical structure of spectral
spaces,” Journal of Mathematical Imaging and Vision, vol. 23, no. 3, pp. 297–313, 2005.

[75] R. Lenz and M. Solli, “Lie methods in color signal processing: Illumitnation effects,” in
International Conference on Pattern Recognotion, vol. III, 2006, pp. 738–741.

141

[76] V. Lepetit, L. Vacchetti, D. Thalmann, and P. Fua, “Fully automated and stable regis-
tration for augmented reality applications,” in Proc. IEEE International Symposium on
Mixed and Augmented Reality, IEEE Computer Society Press, Nov. 2004, pp. 93–102.

[77] S. Li, “Robustizing robust M-estimation using deterministic annealing,” Pattern Recog-
nition, vol. 29, no. 1, pp. 159–166, 1996.

[78] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International J.
of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[79] B. D. Lucas and T. Kanade, “An iterative image registration technique with an applica-
tion to stereo vision (DARPA),” in Proceedings of the 1981 DARPA Image Understanding
Workshop, April 1981, pp. 121–130.

[80] Y. Ma, J. Kosecka, and S. Sastry, “Optimization criteria and geometric algorithms for
motion and structure estimation,” International J. of Computer Vision, vol. 44, no. 3,
pp. 219–249, 2001.

[81] S. Mahamud, M. Herbert, Y. Omori, and J. Ponce, “Provably-convergent iterative meth-
ods for projective structure and motion,” in Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, Kauai, HI, vol. I, 2001, pp. 1018–1025.

[82] B. Matei, Heteroscedastic Errors-In-Variables Models in Computer Vision. PhD thesis,
Department of Electrical and Computer Engineering, Rutgers University, 2001. Available
at http://www.caip.rutgers.edu/riul/research/theses.html.

[83] B. Matei and P. Meer, “A general method for errors-in-variables problems in computer
vision,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Hilton Head,
SC, vol. II, June 2000, pp. 18–25.

[84] B. Matei and P. Meer, “Estimation of nonlinear errors-in-variables models for computer
vision applications,” IEEE Trans. Pattern Anal. Machine Intell., vol. 28, no. 10, pp.
1537–1552, 2006.

[85] L. Matthies, R. Szelisky, and T. Kanade, “Kalman filter-based algorithms for estimating
depth from image sequences,” International J. of Computer Vision, vol. 3, no. 3, pp.
209–238, 1989.

[86] S. J. Maybank, Theory of Reconstruction from Image Motion. Springer-Verlag, 1992.

[87] P. Mordohai and G. Medioni, Tensor voting: A Perceptual Organization Approach to
Computer Vision and Machine Learning. Morgan and Claypool Publishers, 2007.

[88] D. Nister, “Preemptive RANSAC for live structure and motion estimation,” in Proc. 9th
Intl. Conf. on Computer Vision, Nice, France, vol. I, October 2003, pp. 199–206.

[89] D. Nister, “Preemptive RANSAC for live structure from motion,” Machine Vision and
Applications, vol. 16, no. 5, pp. 321–329, 2005.

[90] B. O’Neill, Semi-Riemannian Manifolds:With Applications to Relativity. Academic Press,
1983.

[91] B. Pelletier, “Kernel density estimation on Riemannian manifolds,” Statistics and Prob-
ability Letters, vol. 73, no. 3, pp. 297–304, 2005.

[92] X. Pennec and N. Ayache, “Uniform distribution, distance and expectation problems for
geomteric feature processing,” Journal of Mathematical Imaging and Vision, vol. 9, no. 1,
pp. 49–67, 1998.

[93] X. Pennec, P. Fillard, and N. Ayache, “A Riemannian framework for tensor computing,”
International J. of Computer Vision, vol. 66, no. 1, pp. 41–66, 2006.

[94] C. J. Poelman and T. Kanade, “A paraperspective factorization method for shape and
motion recovery,” IEEE Trans. Pattern Anal. Machine Intell., vol. 19, no. 3, pp. 206–218,
1997.

142

[95] M. Pollefeys, “Self calibration and metric reconstruction in spite of varying and unknown
intrinsic camera parameters,” International J. of Computer Vision, vol. 32, pp. 7–25,
1999.

[96] H. Qiu and E. R. Hancock, “Robust multi-body motion tracking using commute time
clustering,” in Proc. European Conf. on Computer Vision, Graz, Austria, vol. I, 2006,
pp. 160–173.

[97] W. Rossmann, Lie Groups: An Introduction through Linear Groups. Oxford University
Press, 2003.

[98] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection. Wiley, 1987.

[99] S. Rozenfeld and I. Shimshoni, “The modified pbM-estimator method and a runtime
analysis technique for the RANSAC family,” in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, San Diego, CA, vol. I, June 2005, pp. 1113–1120.

[100] P. D. Sampson, “Fitting conic sections to “Very Scattered” data: An iterative refinement
of the Bookstein algorithm,” Computer Graphics and Image Processing, vol. 18, pp. 97–
108, 1982.

[101] F. Schaffalitzky and A. Zisserman, “Multi-view matching for unordered image sets, or
“How do I organize my holiday snaps?”,” in Proceedings of the 7th European Conference
on Computer Vision, Copenhagen, Denmark, vol. 1, 2002, pp. 414–431.

[102] J. Selig, Geometrical Methods in Robotics. Springer-Verlag, 1st edition, 1996.

[103] G. Simon, A. Fitzgibbon, and A. Zisserman, “Markerless tracking using planar structures
in the scene,” in Proc. International Symposium on Augmented Reality, Oct. 2000, pp.
120–128.

[104] M. Singh and N. Ahuja, “Regression based bandwidth selection for segmentation using
Parzen windows,” in Proc. 9th Intl. Conf. on Computer Vision, Nice, France, vol. I,
October 2003, pp. 2–9.

[105] M. Singh, H. Arora, and N. Ahuja, “A robust probabilistic estimation framework for
parametric image models,” in Proc. European Conf. on Computer Vision, Prague, Czech
Republic, vol. I, May 2004, pp. 508–522.

[106] S. T. Smith, “Optimization techniques on Riemannian manifolds,” Fields Institute Com-
munications, vol. 3, pp. 113–146, 1994.

[107] S. Soatto, P. Perona, R. Frezza, and G. Picci, “Motion estimation via dynamic vision,” in
Proc. European Conf. on Computer Vision, Stockholm, Sweden, vol. II, 1994, pp. 61–72.

[108] C. V. Stewart, “Robust parameter estimation in computer vision.,” SIAM Reviews,
vol. 41, pp. 513–537, 1999.

[109] R. Subbarao, Y. Genc, and P. Meer, “Robust unambiguous parametrization of the essen-
tial manifold,” in In preparation, 2007.

[110] R. Subbarao and P. Meer, “Heteroscedastic projection based M-estimators,” in Workshop
on Empirical Evaluation Methods in Computer Vision, San Diego, CA, June 2005.

[111] R. Subbarao and P. Meer, “Beyond RANSAC: User independent robust regression,” in
Workshop on 25 Years of RANSAC, New York, NY, June 2006.

[112] R. Subbarao and P. Meer, “Nonlinear mean shift for clustering over analytic manifolds,”
in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, New York, NY, vol. I,
2006, pp. 1168–1175.

[113] R. Subbarao and P. Meer, “Subspace estimation using projection based M-estimators over
Grassmann manifolds,” in Proc. European Conf. on Computer Vision, Graz, Austria,
vol. I, May 2006, pp. 301–312.

143

[114] R. Subbarao and P. Meer, “Discontinuity preserving filtering over analytic manifolds,”
in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Minneapolis, MN,
2007.

[115] R. Subbarao, P. Meer, and Y. Genc, “A balanced approach to 3D tracking from image
streams,” in Proc. IEEE and ACM International Symposium on Mixed and Augmented
Reality, October 2005, pp. 70–78.

[116] Y. Sugaya and K. Kanatani, “Multi-stage unsupervised learning for multibody motion
segmentaion,” in Proceedings of 2003 Workshop on Information-Based Induction Sciences
(IBIS 2003), 2003, pp. 113–118.

[117] Y. Sugaya and K. Kanatani, “Geometric structure of degeneracy for multi-body motion
segmentation,” in The 2nd Workshop on Statistical Methods in Video Processing (SMVP
2004), number 3247 in LNCS, pp. 13–25, Springer–Verlag, December 2004.

[118] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography:
A factorization method,” International J. of Computer Vision, vol. 9, no. 2, pp. 137–154,
1992.

[119] C. Tomasi and J. Shi, “Good features to track,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’94), (Seattle, WA), 1994, pp. 593–600.

[120] B. Tordoff and D. Murray, “Guided sampling and consensus for motion estimation,” in
Proc. European Conf. on Computer Vision, Copenhagen, Denmark, vol. I, May 2002, pp.
82–96.

[121] P. H. S. Torr and C. Davidson, “IMPSAC: Synthesis of importance sampling and random
sample consensus,” IEEE Trans. Pattern Anal. Machine Intell., vol. 25, no. 3, pp. 354–
364, 2003.

[122] P. H. S. Torr and D. W. Murray, “The development and comparison of robust methods
for estimating the fundamental matrix,” International J. of Computer Vision, vol. 24,
no. 3, pp. 271–300, 1997.

[123] P. H. S. Torr and A. Zisserman, “Robust parameterization and computation of the trifocal
tensor,” Image and Vision Computing, vol. 15, pp. 591–605, August 1997.

[124] P. H. S. Torr and A. Zisserman, “MLESAC: A new robust estimator with application
to estimating image geometry,” Computer Vision and Image Understanding, vol. 78, pp.
138–156, 2000.

[125] B. Triggs, “Factorization methods for projective structure and motion,” in Proc. IEEE
Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, vol. I, 1996, pp.
845–851.

[126] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment
— A modern synthesis,” in B. Triggs, A. Zisserman, and R. Szelisky, editors, Vision
Algorithms: Theory and Practice, Springer, 2000, pp. 298–372.

[127] R. Tron and R. Vidal, “A benchmark for the comparison of 3-d motion segmentation algo-
rithms,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Minneapolis,
MN, 2007.

[128] R. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision
metrology using off-the-shelf TV cameras and lenses,” IEEE Journal of Robotics and
Automation, vol. 3, no. 4, pp. 323–344, 1987.

[129] D. Tschumperle and R. Deriche, “Vector-valued image regularization with PDEs: A com-
mon framework for different applications,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 27, no. 4, pp. 506–517, 2005.

144

[130] O. Tuzel, R. Subbarao, and P. Meer, “Simultaneous multiple 3D motion estimation via
mode finding on Lie groups,” in Proc. 10th Intl. Conf. on Computer Vision, Beijing,
China, vol. 1, 2005, pp. 18–25.

[131] S. Van Huffel and J. Vanderwalle, “Analysis and properties of GTLS in problem AX ≈
B,” SIAM Journal on Matrix Analysis and Applications, vol. 10, pp. 294–315, 1989.

[132] B. C. Vemuri, Y. Chen, M. Rao, T. McGraw, Z. Wang, and T. Mareci, “Fiber tract map-
ping from diffusion tensor MRI,” in In Proceedings of the IEEE Workshop on Variational
and Level Set Methods, 2001, pp. 81–88.

[133] R. Vidal and Y. Ma, “A unified algebraic approach to 2-D and 3-D motion segmentation,”
in Proc. European Conf. on Computer Vision, Prague, Czech Republic, vol. I, 2004, pp.
1–15.

[134] R. Vidal, Y. Ma, and J. Piazzi, “A new GPCA algorithm for clustering subspaces by
fitting, differentiating and dividing polynomials,” in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, Washington, DC, vol. I, 2004, pp. 510–517.

[135] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component analysis (GPCA).,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 27, no. 12, pp. 1–15, 2005.

[136] M. P. Wand and M. C. Jones, Kernel Smoothing. Chapman and Hall, 1995.

[137] H. Wang and D. Suter, “Robust adaptive-scale parametric model estimation for computer
vision,” IEEE Trans. Pattern Anal. Machine Intell., vol. 26, no. 11, pp. 1459–1474, 2004.

[138] H. Wang and D. Suter, “Robust fitting by adaptive-scale residual consensus,” in T. Pa-
jdla and J. Matas, editors, Proc. European Conf. on Computer Vision, Prague, Czech
Republic, vol. III, Springer-Verlag, May 2004, pp. 107–118.

[139] J. Wang, B. Thiesson, Y. Xu, and M. Cohen, “Image and video segmentation by
anisotropic kernel mean shift,” in Proc. European Conf. on Computer Vision, Prague,
Czech Republic, vol. II, 2004, pp. 238–249.

[140] C. Yang, R. Duraiswami, D. DeMenthon, and L. Davis, “Mean-shift analysis using quasi-
Newton methods,” in Intl. Conf. on Image Processing, vol. II, 2003, pp. 447–450.

[141] L. Zelnik-Manor and M. Irani, “Degeneracies, dependencies and their implications in
multi-body and multi-sequence factorizations,” in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, Madison, WI, vol. 2, 2003, pp. 287–293.

[142] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 22, no. 11, pp. 1330–1334, 2000.

[143] Z. Zivkovic and B. Krose, “An EM-like algorithm for color-histogram-based object track-
ing,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Washington,
DC, vol. I, June 2004, pp. 798–803.

145

Vita

Raghav Subbarao

Education

2003-2008 Ph.D., Department of Electrical and Computer Engineering, Rutgers Uni-
versity

1999-2003 Bachelor of Technology, Department of Electrical Engineering, Indian In-
stitute of Technology, New Delhi

Publications

• R. Subbarao and P. Meer, “Discontinuity preserving filtering over analytic man-
ifolds,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Min-
neapolis, MN, 2007.

• R. Subbarao, Y. Genc, and P. Meer, “Nonlinear mean shift for robust pose
estimation,” in 8th IEEE Workshop on Applications of Computer Vision, Austin,
TX, February 2007.

• R. Subbarao and P. Meer, “Beyond RANSAC: User independent robust regres-
sion,” in Workshop on 25 Years of RANSAC, New York, NY, June 2006.

• R. Subbarao and P. Meer, “Nonlinear mean shift for clustering over analytic
manifolds,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
New York, NY, vol. I, 2006, pp. 1168–1175.

• R. Subbarao and P. Meer, “Subspace estimation using projection based M-
estimators over Grassmann manifolds,” in Proc. European Conf. on Computer
Vision, Graz, Austria, vol. I, May 2006, pp. 301–312.

• S. Kalyan Krishna, R. Subbarao, S. Chaudhury and A. Kumar, Parsing News
Video Using Integrated Audio-Video Features, 1st International Conference on
Pattern Recognition and Machine Intelligence, Calcutta, India, December 2005,
538-543.

• O. Tuzel, R. Subbarao, and P. Meer, “Simultaneous multiple 3D motion esti-
mation via mode finding on Lie groups,” in Proc. 10th Intl. Conf. on Computer
Vision, Beijing, China, vol. 1, 2005, pp. 18-25.

146

• R. Subbarao, P. Meer, and Y. Genc, “A balanced approach to 3D tracking from
image streams,” in Proc. IEEE and ACM International Symposium on Mixed and
Augmented Reality, October 2005, pp. 70-78.

• R. Subbarao and P. Meer, “Heteroscedastic projection based M-estimators,” in
Workshop on Empirical Evaluation Methods in Computer Vision, San Diego, CA,
June 2005.

Submitted to Journal

• R. Subbarao and P. Meer, Nonlinear Mean Shift Over Riemannian Manifolds.
submitted to International Journal of Computer Vision, 2008.

• R. Subbarao and P. Meer, Projection Based M-Estimators. submitted to IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2007.

