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ABSTRACT OF THE DISSERTATION

Topics in Statistical Finance

by Venkata Sasikiran Goteti

Dissertation Director: Prof. Kesar Singh and Prof. Larry Shepp

This thesis is divided into three parts. The first part investigates the presence of

long term dependence in stock price data via a permutation test based on the cor-

relation structure of the underlying stock prices. These tests reveal the short term

nature of stock price dependence structure. The second part extends Ramprasath and

Singh(2007)’s ‘statistical options’ to define a group of American type options based on

robust estimators of location. The payoff functions of these path dependent options

are based on a new set of stochastic processes which are defined using various robust

estimators of location. The asymptotic distributional behavior of these new processes

is ascertained which in turn is used in pricing the options. Markov Chain Monte Carlo

(MCMC) methods were used to compute the prices of the statistical options. The third

part explores a stock price model parameter estimation problem and interprets a growth

rate parameter.
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Chapter 1

Introduction

This thesis consists of three applications of statistical tools to finance. The first part

of this thesis proposes a simple graphical method to detect the existence of long term

dependence in the stock price data. The second part deals with a set of financial

contracts called statistical options, first proposed by Ramprasath and Singh (2007).

Various statistical options of the American type are introduced and their fair prices are

obtained. The third part deals with a stock price model and its parameter estimation.

A parameter denoted by θ is introduced and is interpreted as the stock price growth rate

parameter. In the following three sections, the above three problems are introduced in

greater detail.

1.1 Dependence in Stock Price Data

For many decades, researchers have been interested in the dependence structure of stock

price time series. The presence of long term dependence in the stock price data has

many important consequences. The ability to predict the future stock prices to some

degree of accuracy allows an investor to make money with relatively low or no risk.

This violates the basic assumption of ’no arbitrage’. Indeed many option trading firms

exploit the dependence structure of stock prices in predicting the near future prices and

make use of this information in their option purchasing/selling decisions.

The detection of long term dependence in time series data has been dealt with

by many researchers. Some of the prominent works in this area include Hurst(1951),

Mandelbrot(1971), Lo(1991), Willinger et al.(1991) and Robinson(1995). An important

but simple concept in the theory of time series data is that of autocorrelation. A

time series of a process {Xt, t > 0} is a sequence of data, obtained periodically at



2

consecutive time points. Autocorrelation is the correlation between the process at

different time points. For example, autocorrelation of a time series Y between time

points s and t is defined as the correlation between Ys and Yt. Also, autocorrelation

at a lag value k is defined as the correlation between Yt and Yt+k. This current work

proposes a permutation test based procedure to determine the presence of long range

dependence in the stock price data. Suppose that the process {Xt, t > 0} is a stock

price process. Under both the geometric Brownian motion and the jump diffusion

models, the log-returns of the process Xt are independent random variables. Moreover,

if the log-returns are obtained at regular intervals of time, they are also identically

distributed. In this work, the key observation is that, if a time series is a sequence

of independent and identically distributed random variables, any permutation of the

sequence is also a sequence of independent and identically distributed random variables

and hence has zero autocorrelations at every lag. Therefore, any perumtation of the

log-returns series retains the autocorrelation structure of the original log-returns time

series. It is also important to note that, if the log-returns are not independent, a random

permutation operation distorts the autocorrelation structure of the original log-returns

sequence. Using these observations, a permutation test is obtained by comparing the

autocorrelation structure of many randomly permuted versions of the log-returns time

series with that of the original time series.

In our analysis, the daily closing prices of a stock price sequence are used to obtain

the daily log-returns sequence. Under the geometric Brownian motion model, the log

returns are independent normal random variables. The autocorrelation structure of

these log-returns determines the dependence structure of the stock price sequence. A

null hypothesis of no dependence in the log-returns series is formulated and the permu-

tation procedure is applied. The details of the test procedure are explained in section

2.2. For all the stocks that were considered for the analysis, the test procedure revealed

no presence of long term dependence. The results are shown in section 2.3.
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1.2 Statistical Options

The concept of ‘Statistical Options’ was first introduced by Ramprasath and Singh

(2007). (see also PhD thesis, Ramprasath (2005).) In this paper, robust estimators

of location are used in proposing a new set of path dependent European type options,

which protect the investor from sudden drops in stock prices. This current work extends

the idea to the case of American type options. The details of these options are outlined

in the following paragraphs.

A security option is a financial contract between a financial house and an investor.

The investor is given the ‘option’ to ‘exercise’ the contract. For example, a European

type call option lets the investor buy a security at a predetermined price K, on a pre-

determined date T . If the market price X(T ) of the security at time T is more than

K, the investor gains the difference X(T ) − K by exercising the contract at time T

and selling it in the market at the market price X(T ). In practice, the investor is paid

X(T )−K, often called the ‘option payoff’ whenever the price X(T ) exceeds K. If the

market price X(T ) falls below K, the investor gains nothing by exercising the contract

and hence the option payoff is zero. In effect, the European call option provides an

investor the option to execute the contract whenever the underlying security price ex-

ceeds the strike price K. Similarly a European Put option provides an investor with the

option to sell the underlying security at the strike price (K) whenever the security price

X(T ) falls below K. In general, European type options allow the investor to exercise

the option only on a predetermined date called the exercise date. On the contrary,

American type options allow the investor to exercise the option on any day between the

onset of the option and the option expiry date. Apart from the aforementioned call and

put options, there is a variety of options traded in the markets. For example, an Asian

call option pays the investor (X(T )−K)+ where X(T ) is the arithmetic average of the

security prices between the onset of the option and the exercise date T . Such options

are called path dependent options since their payoffs depend on the entire history of

the underlying security price rather than on the security price at the exercise date. The

premium an investor needs to pay for an option is called the option price. The fair
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value of an option price is often determined using the ‘no arbitrage’ principles. It is in

general more difficult to price path dependent options due to the complicated structure

of their payoff functions.

‘Statistical options’ considered in chapter 3 are also path dependent. These options

are designed so as to protect the investor from significant market crashes. Of course,

the investor would pay a reasonable premium for it. To understand the exact definitions

of these payoffs, we review here, the statistical concept of robust estimators and their

relation to the statistical option payoffs. In the statistical literature, robust estimators

are characterized by their insensitivity to outliers or extreme observations. A classic

estmator of a location parameter is the sample mean. Although sample mean often is

the minimum variance estimator in the class of all unbiased estimators, it has a critical

drawback. Sample mean is very sensitive to extreme observations in the data. The

presence of a single outlier can drastically alter the sample mean. On the other hand,

sample median is very insensitive to outliers. Since sample median is defined as the

middle most observation of an ordered data set, it ignores all extreme observations of

the data set. Other examples of robust location estimators are the Hodges-Lehmann

estimator and the trimmed mean.

Under the geometric Brownian motion model for the security prices X(t), the natural

logarithm of the price process is a Weiner process with a constant drift and constant

volatility. Let us denote this Weiner process by W (t). Then, W (t) can be written as

the sum of n independent and identically distributed normal random variables for any

n and for any t > 0. Under the jump diffusion model, the natural logarithm of the

price process X(t) also has independent and identically distributed increments. So, in

either case, log(X(t)) can be written as an IID sum of random variables. This sum of n

IID variables can be viewed as n times the mean of n log returns of the process. Notice

that the call option payoff increases with this mean log-returns. A sudden sharp drop

in the security price corresponds to a large negative log returns term and this causes

the decrease in a call option payoff. The motivation behind the statistical options lies

in modifying this mean log returns term so as to protect the investor from this kind

of decrease in the option payoff. The mean log-returns term is replaced by the median
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log-returns or some other statistically robust summary measure of log-returns so that,

the payoff is not affected by large negative returns. In the rest of this thesis, a call

option with this type of payoff is referred to as the statistical call option. To fix ideas,

we introduce the following notation. Let the time period between 0 and T be equally

divided into n parts. Let the log-returns be denoted by δi. Then we have,

δi = log
(

X(ti)
X(ti−1)

)
, (1.1)

where ti = iT
n , i = 0, 1, . . . , n. At time T, a median call option with strike price K pays

off (Mn(T )−K)+, where

Mn(T ) = X(0) exp(n.median(δ1, δ2, . . . , δn)) (1.2)

Notice that, the only difference between Mn(T ) and the usual call option payoff

lies in the term median(δ1, δ2, . . . , δn). One obtains the usual call option payoff by

replacing the median in the above expression with mean. In chapter 3, we consider the

stochastic process Mn(t) and other similar processes for every t ∈ [0, T ]. For a fixed

n, the definition of Mn(t) is clear for every t ∈ ti = iT/n : i = 0, 1, . . . , n. For values

of t other than these, we define Mn(t) by an interpolation of Mn(tk) and Mn(tk+1)

where, tk ≤ t ≤ tk+1. Now notice that such stochastic processes can be used in

defining American type statistical options. For example, at time t, an American type

median call option pays off (Mn(t) − K)+. Thus, given a choice of robust estimator

of location, one has a corresponding American type statistical option. The processes

obtained by replacing the mean log-returns term with other robust location estimators

are considered in chapter 3.

The sample pathwise behavior of the above processes is illustrated in the following

three figures, where the darker curve represents the daily closing values of Apple Inc.

over a period of six months. The dashed curves represent the median process Mn(t),

the HL estimator based process HLn(t) and the trimmed mean based process TRn(t)

respectively. HLn(t) and TRn(t) are obtained by replacing median in equation (1.2)

with the HL estimator and the trimmed mean respectively. See section 3.2 for rigorous

definition of HLn(t) and TRn(t). Clearly, the trimmed mean path follows the stock

price path more closely than do the HL median path and the median path.
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(a) Median path.

(b) Hodges-Lehmann median path

(c) Trimmed mean path

Figure 1.1: Robust estimator based processes: Sample paths
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Pricing the statistical options is the next major task. Historically, there are various

methods to find the fair price of a security option. It is often very difficult to find an

analytical solution to the option prices. It is all the more difficult when the options

are path dependent. Due to the availability of computing power, various numerical

methods are now available for option pricing. Binomial option pricing method, Finite

difference methods, Markov Chain Monte Carlo methods, Bootstrap methods are a few

of the popular option pricing methods. Various above mentioned numerical procedures

are different in many ways, but all their methodologies depend on the ‘no arbitrage

principle’. A brief review of the above principle can be found in section 3.1 .

In pricing the statistical options, we rely on the limiting behavior of the above

processes. It is proved in this thesis that if X(t) is assumed to be a geometric Brow-

nian motion process, the processes Mn(t), HLn(t) and TRn(t) functionally converge

in distribution to different geometric Brownian motion processes as n increases to in-

finity. Interestingly, if the underlying process X(t) is a jump diffusion process, these

processes converge to the same geometric Brownian motions whenever the robust esti-

mators used in defining these processes trim outliers on both sides. We approximate the

above processes with their asymptotic counterparts in pricing the statistical options.

This approximation allows one to price American type options defined on the statistical

assets. The pricing methods are discussed in great detail in chapter 4.

Notice that since the median of a group of observations can very well be less than

the sample mean, the payoff of an American type median call option could be less than

that of a vanilla call option. This is due to the fact that median also ignores the larger

of the observations. The investor of a call option only needs to be protected from large

drops in the stock price and an investor of a put option only needs to be protected

from a sudden rise in the price. To protect the investor from any loss due to this two

new statistical options are introduced. To ensure that the investor does not lose out

on favorable price moves, one may want to modify the payoff by taking the maximum

of the median option payoff with the vanilla option payoff. In this thesis, this option

is referred to as the max type option. Another way could be to consider an estimator

that ignores outliers only in one direction. A one sided trimmed mean is an example
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of such an estimator. For example, when considering a call option, one can replace the

median in (1.2) by a lower trimmed mean which ignores a given fraction of the smallest

of the observations. A call option with payoff based on this process always pays off

more than the vanilla option does. In chapter 4, pricing methods for these variations

of the statistical options are explained in more details. Several statistical option prices

are computed and compared in sections 4.2 and 4.3.

1.3 Parameter estimation for a stock price model

In the third part of this thesis, a new stock price model is considered. This model is

given by,

dX(t) = Xθ(t)(µdt + σdW (t)) (1.3)

where θ ∈ [0, 1], µ ∈ R and σ ∈ (0,∞). The above model was proposed by Chen,

Logan, Palmon and Shepp(2003). In this thesis, the parameter θ is of interest. Notice

that θ = 0 corresponds to the linear Brownian motion model of Bachelier(1900) and

θ = 1 corresponds to the geometric Brownian motion model of Black, Scholes and

Merton(1973). In fact, Bachelier model corresponds to simple linear growth of stock

value over time in the sense that, the mean value of the stock price is a linear function

of time. Also, it is easy to note that the Black-Scholes-Merton model corresponds to

continuously compounded growth of stock value over time, meaning that the expected

value of the stock price under this model is an exponential function of time. The average

value of the stock price is a monotone increasing function of θ and as θ increases to one,

the above model corresponds to the famous Black-Scholes-Merton model. The current

parameter estimation problem considers the estimation of θ with it’s possible values in

the interval [0,1].

The parameter θ is estimated by a kurtosis based method. Kurtosis is defined as

the fourth standardized moment of a distribution. In symbols, we have,

γ =
µ4

σ4
(1.4)
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where µ4 is the fourth central moment and σ4 is the square of variance. Kurtosis

can be viewed as a measure of peakedness of a distribution in the sense that, a larger

kurtosis value corresponds to heavy tails in a distribution. Since the stock prices are

observed only at discrete time points, the differential terms in the stochastic differential

equation 1.3 are replaced by their corresponding finite difference terms. For example,

dt term at time t = tk−1 is replaced by ∆t = tk − tk−1 and dW (t) is replaced by

∆W (t) = W (tk) − W (tk−1). This method of discretization is often called the ‘Euler

discretization method’. Assuming model (1.3) and following this method, the modified

returns ∆X(t)
X(t)θ are given by

∆X(t)
X(t)θ

=
(X(t + ∆t)−X(t))

X(t)θ
. (1.5)

Notice that these modified returns follow a normal distribution for every t. Irrespective

of the values of the parameters, normally distributed variables have a kurtosis value of

three. This observation is key to our estimation procedure. We estimate the kurtosis

of the modified returns for every θ ∈ [0, 1] and estimate θ by choosing the value that

is closest to three. In all the stocks that we considered and for all values of θ ∈ [0, 1],

the kurtosis values of the modified returns were always more than three, indicating a

heavy tailed nature of the returns. Hence, the estimate of θ is the value which gives

a minimum kurtosis value for the modified returns. Further details of the estimation

procedure are given in section 5.2.
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Chapter 2

Stock Prices Have Just A Few Days Of Memory!

- A Correlation based Analysis.

2.1 Introduction

The presence of long range dependence or long term memory in the stock price data has

been explored by many researchers over the past decades. The potential implications

of long range dependence made these investigations both important and controversial.

If there is substantial evidence of long term dependence in the stock price data (or any

asset price data) the common assumption of ”efficient markets” would be violated. By

definition, an efficient market would not allow the investors to predict with accuracy, the

future prices of a stock,ie, the past prices would not contain any information regarding

the future prices. This requires the price changes to possess zero autocorrelations. If the

stock prices indeed have long term dependence, the markets would become inefficient

and this in turn makes the common asset pricing methodologies invalid.

A number of procedures have been developed over the past many years to detect

long term dependence and many empirical tests were conducted on various stock market

data. Harold Edwin Hurst (1951), an English hydrologist, first proposed the ”Rescaled

Range” R/S-statistic, which was later modified by Mandelbrot(1971). Lo (1991) pro-

posed a test based on the modified R/S-statistic to overcome the sensitivity of Mandel-

brot’s R/S statistic to the presence of short range dependence in the data. Willinger

et al.(1991) provide a detailed discussion on these procedures. Robinson (1995)consid-

ered semiparametric estimation of long term dependence. More recently, Berkes et al.

(2006) devised a test discriminate between long term dependence and changes in the

mean. Among empirical studies, Greene and Felietz (1977),Aydogen and Booth (1988),
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Lo(1991), Cheung et al (1993), Chow et al(1995) detected no presence of long term

dependence while Crato(1994), Barkoulas and Baum (1996), Christodoulou-Volos and

Siokos(2006) reported evidence of long term dependence.

This current study attempts to provide a new tool to detect the long-range / short-

range dependence in the form of a permutation test based on the autocorrelations of the

stock price returns. The methodology is graphical and easy to comprehend. It presents

a whole profile of correlations, at a large number of lag values. This chapter is divided

into four sections. Section-2 outlines the framework and describes the graphical test

procedure. Section-3 describes the data and provides the results. Section-4 contains

the concluding remarks.

2.2 Framework and the test procedure

Let Xt be the share price at time t, 0≤t≤T. For convenience, let the unit of time be

one day. Also let the process

Y (t) = log(Xt). (2.1)

have stationary increments over the interval 0≤t≤T,

i.e., for any ∆ > 0,

Z∆(t) = log(Xt+∆)− log(Xt) (2.2)

has the same distribution for all t > 0.

So, in particular, Z1(0),Z1(1),Z1(2),. . . ,Z1(T−1) are identically distributed random

variables.

For future reference, we define the following processes which are often used in mod-

eling the stock price data.

Black-Scholes Model:

S1(t) = S1(0) exp(µt + σW (t)), o ≤ t ≤ T (2.3)

where S1(0) is the share price at time t=0, µ ∈ R, σ > 0 and W(t) is a standard

Brownian motion over the interval [0,T].
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A Jump-Diffusion Model:

S2(t) = S2(0) exp(µt + σW (t) +
N(t)∑
i=1

Yi), o ≤ t ≤ T (2.4)

where S2(0) is the share price at time t=0, µ ∈ R, σ > 0, W(t) is a standard Brownian

motion over the interval [0,T] and N(t) is a Poisson process and Yi are IID random

variables.

Bachelier Model:

S3(t) = S3(0)(µt + σW (t)), o ≤ t ≤ T (2.5)

where S3(0) is the share price at time t=0, µ ∈ R, σ > 0 and W(t) is a standard

Brownian motion over the interval [0,T].

We quickly note that under the above two models, the process Z(t) is stationary

and the variables has zero autocorrelations. Under the Black-Scholes model,

Z1(0),Z1(1),Z1(2),. . . ,Z1(T − 1) are iid normal variables with mean µ and variance σ2.

Both these models satisfy the “Efficient Markets” assumptions and enable one to price

various options and stock assets. This is due to the fact that the exponents in the above

two models (ie, log(S1(t))− log(S1(0) and log(S2(t))− log(S2(0) respectively) fall under

the larger class of processes called Levy Diffusions. Levy Diffusions are the processes

with independent and identically distributed increments.

We considered daily and weekly data of closing prices for different stocks enlisted

in NYSE. The exact details of the stock data is discussed in section 3.

Since Z1(t) = log(X(t))−log(X(t−1)) is a stationary process, Z1(t) have a common

mean, say µz, for different t=1,2,. . . ,T. And µz is unbiasedly estimated by

Z =
1
T

T∑
i=1

Z1(i) (2.6)

and hence

Z̃(t) = Z1(t)− Z, t = 1, 2, . . . , T (2.7)

is a mean zero stationary process.
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Under the hypothesis of short range memory, the autocorrelations r(t) of Z̃(t) must

“die down to zero” quickly as the lag value increases. We compute the autocorrelations

of Z̃(t) for different lags l=1,2,. . . ,n. We considered lags of size up to 500 for the

daily data and lags of size up to 100 for the weekly data. We notice that under the

hypothesis of {Z̃(t), t = 1, 2, . . . , T} being i.i.d random variables, the joint distribution

is symmetric. Therefore, any random permutation of {Z̃(t), t = 1, 2, . . . , T} has the

same distribution and this fact forms the basis for the permutation test being deployed

here.

Let us denote a random permutation of {Z̃(t), t = 1, 2, . . . , T} by Z̃P (t), indexed by

the permutation P. Also let us denote by {rP (l) : l = 1, 2, . . . , n.} , the autocorrelations

of the permuted sequence {Z̃P (t) : t = 1, 2, . . . , n.} at different lags l = 1, 2, . . . , n. rP (l)

denotes the empirical correlation obtained from the pairs

(ZP (0), ZP (l)),(ZP (1), ZP (l+1)),. . .,(ZP (T − l− l), ZP (T −1)). Since the sign of a cor-

relation rP (l) is irrelevant to us, we replace rP (l) by it’s absolute value |rP (l)|. Now, we

obtain a correlation curve by plotting the values of |rP (l)| in increasing order, ordered

over different lags l = 1, 2, . . . , n. We repeat this permutation process and simulta-

neously plot the correlation curves, obtained as above for a large number of random

permutations. From now on, we call this set of simultaneously plotted curves a corre-

lation band. The correlation curves may be viewed as a curve valued random variables

or a stochastic process. The correlation band in essence described the conditional dis-

tribution of the correlation curve given the original data {Z1(t), t = 1, 2, . . . , T} under

the hypothesis of exchangeability.

Now under the short range memory hypothesis, the original sequence {r(l) : l =

1, 2, . . . , n.} of autocorrelations must form a correlation curve that lies well within the

repeated permutation based correlation band as described above. We plotted these

curves for different stocks over different time periods to graphically test the hypothesis.

The results are shown in section 3.

To make the testing scheme rigorous at 5% level of significance, we deleted 5% of

the correlation curves (out of the correlation band) which had highest values of the

average
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AP =
1
n

n∑
l=1

|rP (l)|. (2.8)

The choice of AP for the purpose of deletion is ad-hoc, though logical. Other choices

could be the median, the mean of the upper 100t% , just to name a few. Our findings

are so unambiguous that the choice of trimming device would hardly matter for the

conclusions.

2.3 Data and Results

We obtained the daily and weekly data for various stocks enlisted in the New York Stock

Exchange(NYSE). These stock data, the corresponding time periods and the data sizes

are summarized in table 3.1.

Stock Begin Date End Date Data Size
Apple Inc. 2nd Jan 1985 12th May 2006 5391

Alberto-Culver Co. 2nd Jan 1985 12th May 2006 5390

Adobe Systems 14th Aug 1986 12th May 2006 4975

American Electric 2nd Jan 1985 12th May 2006 5389

Aetna Inc. 2nd Jan 1985 12th May 2006 5390

Allstate Corp. 3rd Jun 1993 12th May 2006 3262

Amazon.com Inc 2nd Jun 1997 12th May 2006 2253

Table 2.1: Stock data,time periods and data sizes.

To begin our correlation analysis, we considered plotting the autocorrelations {r(l) :

l = 1, 2, . . . , n} for the above data; where r(l), the autocorrelation with a lag value

l is obtained as explained in section 2. The following figures 3.1 and 3.2 show the

autocorrelations for different stocks for lags up to 200 days.
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(a) Apple Inc. (b) Alberto Culver

(c) Adobe Systems (d) American Electric

Figure 2.1: Autocorrelations
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(a) Aetna Inc. (b) Allstate Corp.

(c) Amazon.com Inc. (d) Pseudo Normal data

Figure 2.2: Autocorrelations:Continued
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From the above figures(a)-(g), it can be observed that the autocorrelations do not die

down to zero as the lag value increases. To explore this phenomenon more, we simulated

pseudo normal random data of size 5400 and computed the autocorrelations. These

autocorrelations are plotted in figure 3.2(h). Note that if the stock price indeed follows

the Black-Scholes model given by the equation(2.3), the autocorrelation plot would look

like 3.2(h). We observe that these autocorrelations also oscillate around zero but do not

tend to get closer to zero, as the lag value increases. Indeed, these autocorrelation plots

do not provide enough evidence to reject the hypothesis of independent increments.

We now turn to the methodology explained in section 2 and plot the correlation

bands for the stock price data. The following figures show the correlation bands and the

actual correlation curves. The autocorrelation curves are shown in black to distinguish

them from the correlation band.

Figure 2.3: Correlation Band-Apple Inc
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Figure 2.4: Correlation Band-Alberto Culver

Figure 2.5: Correlation Band-Adobe Systems
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Figure 2.6: Correlation Band-American Electric

Figure 2.7: Correlation Band-Aetna Inc



20

Figure 2.8: Correlation Band-Allstate Inc

Figure 2.9: Correlation Band-Amazon.com Inc
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We note that the correlation curve falls outside the correlation band for most of the

above stocks. This is rather apparent in Alberto Culver, American Electric and Amazon

stocks. This means that the hypothesis of independent increments is rejected. Now,

we consider the data with it’s alternative entries and we repeat the same graphical

testing procedure on this data. If the correlation curve still falls outside the newly

obtained correlation band, we proceeded to consider every third entry in the data set,

thus forming a new data set with size approximately one thirds of the original data set,

and so on... For all the stocks that we considered, the correlation curve came within

the correlation band when every fourth entry was considered. We notice that, if the

correlation curve falls well-within the correlation band when every kth data entry is

considered (say k=2,3,4), it means that the data is weakly dependent. We now present

the correlation bands obtained using the above methodology.

Figure 2.10: Correlation Band-Apple Inc. Alternate days
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Figure 2.11: Correlation Band-Apple Inc.: Every third day

Figure 2.12: Correlation Band-Apple Inc.: Every fourth day
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Figure 2.13: Correlation Band-Alberto Culver Alternate days

Figure 2.14: Correlation Band-Alberto Culver: Every third day
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Figure 2.15: Correlation Band-Adobe Systems Alternate days

Figure 2.16: Correlation Band-Adobe Systems: Every third day
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Figure 2.17: Correlation Band-American Electric Alternate days

Figure 2.18: Correlation Band-American Electric: Every third day
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Figure 2.19: Correlation Band-Aetna Inc Alternate days

Figure 2.20: Correlation Band-Aetna Inc: Every third day
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Figure 2.21: Correlation Band-Aetna Inc: Every fourth day

Figure 2.22: Correlation Band-Allstate Inc Alternate days
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Figure 2.23: Correlation Band-Allstate Inc: Every third day

Figure 2.24: Correlation Band-Allstate Inc: Every fourth day
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Figure 2.25: Correlation Band-Amazon.com Inc: Alternate days

Figure 2.26: Correlation Band-Amazon.com Inc: Every third day
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In all the above plots, as was mentioned in section 2, 5% of the correlation curves

which had the highest value of the average (given by equation 2.8) were deleted from

the correlation band. When every third day was considered, the correlation curve came

well within the correlation band for most of the above stock returns data. We also

considered the Bachelier model for which similar results were obtained except that the

null hypothesis of independent increments was not accepted until when every fourth day

was considered, i.e., The correlation curve came within the correlation band when every

fourth day was considered. We then carried out similar analysis for the weekly data

and found that the weekly stock data returns are not independent. But when alternate

weeks were considered, the dependence vanished and the corresponding correlation

curve fell within the correlation band.

2.4 Conclusions and Discussions

In this chapter, we applied our correlation band methodology to various stocks enlisted

on New York Stock Exchange to detect any long-term dependence in the stock returns.

The hypothesis of independent increments is rejected for all of the stocks. The method-

ology revealed that daily or weekly stock returns are weakly dependent and it detected

little evidence of long-range dependence. The test methodology produced similar results

under both Black-Scholes and Bachelier models proving it to be less model dependent.
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Chapter 3

Statistical Assets and Derived Financial Contracts

3.1 Introduction

This chapter deals with a set of stock options called the Statistical options, first intro-

duced by Ramprasath and Singh (2007). In their paper, a new class of European-type

options, named statistical options, was developed to protect the buyer of a call option

against a sudden drop in the stock price and the buyer of a put option against sudden

rise in the stock price. This chapter extends the idea to American type options. For

the sake of completeness, we next describe some of the basic concepts related to stock

options.

A Stock option is a financial contract between a financial house and the buyer of

the option. The financial house issues the contracts for a price. By selling the option

to the buyer, the financial house enables the buyer to execute the option on a future

date. As the name suggests, an option holder has the right to but is not obligated to

execute the option. To consider a specific example, a European call option on a stock

enables the buyer to purchase a share of the stock on a predetermined future date, at a

predetermined price. This future date is called the exercise date and the predetermined

price is called the strike price. The duration between the time of purchase of the option

and the exercise date is called the lifetime of the option. A European type put option

enables the buyer to sell the underlying stock on the exercise date at a predetermined

strike price. Now if the stock price on the exercise date is more than the strike price,

the call option buyer can execute the option at the strike price and sell it at the current

market price to gain the difference of these two prices. On the other hand, if the stock

price falls below the strike price, the call option becomes worthless. The net worth of

an option on the exercise date is called the ‘payoff’ of the option. Most often, these
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options are available on a wide range of exercise dates and strike prices so as to cater

to the diverse interests of the buyers. The price a buyer pays for an option varies with

both the exercise time and the strike price. Determining the prices of various options

is a major challenge for the subject of finance. Black and Scholes (1973) first derived

option price formulae based on the ‘no arbitrage’ principle which says that a “fair”

price would not allow the financial house or the investor to make risk free profits.

Apart from the European type options, there is a variety of stock options available

to the investor. Most popular of them are the American type options. An American

type option lets the investor exercise the option at any time point during the lifetime

of the option. So, a holder of an American type call option has the right to buy the

stock at any time during the lifetime of the option, paying the strike price. There is

another popular class of options called the Asian options. An Asian call option pays

the investor the average price of the stock during its lifetime. Since the payoff of Asian

options depends on all the stock prices during the lifetime of the option, these are called

‘path dependent’ options. The statistical options proposed by Ramprasath and Singh

(2006) are also path dependent. In this chapter, we propose extensions of these options

to the American type and also deduce the fair prices to these American type options

using ‘no arbitrage’ arguments. To put our work in perspective, we will revisit the

concepts of Statistical options in section 2. Section 3 introduces the framework to our

results and the results are stated in section 4. Some of the proofs for the results in

section 4 are given in Appendix A.

3.2 Review and Motivation

Let X(t) denote the share price at time t, 0 ≤ t ≤ T . Let us assume the well known

Black-Scholes model for the stock price, which is given by the stochastic differential

equation(SDE),

dX(t) = X(t)(adt + σdW (t)), 0 ≤ t ≤ T. (3.1)

where a ∈ R, σ > 0 and W(t) is a standard Brownian motion over the interval [0,T].
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This above SDE is satisfied by the process,

X(t) = X(0) exp(µt + σW (t)), 0 ≤ t ≤ T, (3.2)

where µ is given by a− σ2/2 and X(0) is the share value at time 0. In this model, µ is

called the drift parameter and σ is called the volatility parameter.

We notice that µt + σW (t) has independent and identically distributed increments.

For any t > 0 such that nt is an integer, if we break up the time period [0,t] into nt

many equal time intervals, we can write µt + σW (t) as the sum

µt + σW (t) = δ1 + δ2 + . . . + δnt, (3.3)

where

δi = log(X(i/n))− log(X((i− 1)/n)), i = 1, 2, . . . , nt. (3.4)

Notice that δi are IID normal variables with mean µ/n and variance σ2/n. The

sum in the right hand side of (3.3) can be viewed as nt times the average of nt many

IID normal variables. Notice that if nT is an integer, we can replace the usual payoff

(X(T ) − K)+ by (X(0) exp(nT.median(δ1, δ2, ..., δnT )) − K)+ so that the investor is

protected against a sudden fall in the stock price.

This idea of using the median to protect the investor can be extended to other

robust estimators of location. Thus, we can replace the mean by median, Hodges-

Lehmann estimator or trimmed mean, just to name a few. The options thus obtained,

by replacing the mean by a robust location estimator, are called statistical options. To

emphasize the usefulness of Statistical options a little more, we plotted the sample path

of a geometric Brownian motion along with the corresponding sample paths obtained

by replacing the mean by the robust location estimators Median, HL estimator and the

trimmed mean. These plots are shown in the figure below. These sample paths are

simulated using a drift parameter µ = 0.25 and a volatility parameter σ = 0.6 for a

one year time period. The X-axis in each of these plots denotes time in days. Notice

that, the median path always stayed above -0.2 while the actual Brownian path takes
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a minimum of -0.38. Also, the median path stayed above 0.2 for many more days than

did the Brownian path. The HL and the trimmed mean paths follow the Brownian

path more closely.

Figure 3.1: Simulated sample paths



35

We observe that in the case of an American call option, if the payoff at time t,

(X(t) − K)+ is replaced by (X(0) exp(nt.median(δ1, δ2, ..., δnt)) − K)+, the investor

is still protected against a sudden fall in the stock price. Having observed this, we

note that the use of robust estimators can be extended to the American options, thus

allowing the investor to exercise the option at any time during its lifetime as well as

protecting the investor from any sudden drops in the share price. Now if nt is not an

integer, we can extend the payoff by linearly interpolating the median process. Hence,

when nt is not an integer, the payoff is, for a suitable α,

(X(0)e{α([nt]+1)median(δ1,δ2,...,δ[nt]+1)+(1−α)[nt]median(δ1,δ2,...,δ[nt])} −K)+. (3.5)

Once a suitable payoff function is chosen, the technical task is to price the stock

option which gives the chosen payoff. Pricing European type statistical options was

discussed in Ramprasath and Singh(2007). The pricing of American type Statistical

options is discussed in the section 4. Section 5 extends the results stated in section 4

under a jump-diffusion model. The following section provides the framework that leads

to the main results, which are stated in section 4.

3.3 Framework

For any n ≥ 1, let us denote by Tn = Tn(Z1, Z2,. . .,Zn), a statistic based on the IID

variables Z1, Z2,. . .,Zn. Assume that Tn is affine equivariant in its arguments, i.e,

Tn(aZ1 + b, aZ2 + b, . . . , aZn + b) = aTn(Z1, Z2, . . . , Zn) + b, (3.6)

for any two real numbers a and b. Now, let us further assume that

√
n(Tn − θ) → N(0, ν2). (3.7)

for some real θ and a ν2 > 0.

Also, define T0 = θ. Examples of Tn that are of interest to us include
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Median Estimator

Mn = median(Z1, Z2, . . . , Zn), (3.8)

Hodges-Lehmann Estimator

HLn = median{(Zi + Zj)/2 : i, j = 1, 2, . . . , n.}, (3.9)

For an α in (0,1), let us define

Two-sided Trimmed mean Estimator

TRn =
1

n− 2[nα]

n−[nα]∑
i=[nα]+1

Z(i), (3.10)

One-sided Trimmed mean Estimators

Lower-sided Trimmed mean:

LTRn =
1

n− [nα]

n∑
i=[nα]+1

Z(i), (3.11)

Upper-sided Trimmed mean:

UTRn =
1

n− [nα]

n−[nα]∑
i=1

Z(i), (3.12)

where Z(i) is the ith order statistic in {Z1,Z2,. . .,Zn}. It is easy to verify that HLn,TRn,LTRn

and UTRn are all affine equivariant, thus satisfying the condition (3.6).

Let us assume that Z1, Z2,. . .,Zn are IID N(0,1) variables, and from now on in this

chapter, Tn(Z1,Z2,. . .,Zn) is simply written as Tn. Now recall that

√
nMn → N(0, π/2). (3.13)

√
nHLn → N(0, π/3), (3.14)

√
nTRn → N(0, fα), (3.15)
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√
n (LTRn − a) → N(0, f

′
α), (3.16)

and
√

n (UTRn + a) → N(0, f
′
α), (3.17)

where

a =
φ(ξα)

(1− α)
,

fα =
1

1− 2α
+

2ξα(φ(ξα) + αξα)
(1− 2α)2

and

f
′
α =

αξ2
α

1− α
+

1
1− α

− φ2(ξα)
(1− α)2

+
(1− 2α)ξαφ(ξα)

(1− α)2
− α2ξ2

α

(1− α)2
.

Hence, Mn, HLn, TRn, LTRn and UTRn are all examples of statistics Tn satisfying

(3.6) and (3.7).

For every t in [0,T] and every n ≥ 1, let us define by Tn(t) the process,

Tn(t) = X(0) exp
{
α([nt] + 1)T[nt]+1(δ1, δ2, . . . , δ[nt]+1) + (1− α)[nt]T[nt](δ1, δ2, . . . , δ[nt])

}
,

(3.18)

where Tn is a statistic satisfying (3.6) and (3.7). For notational convenience, the same

symbol Tn is used for both the statistic as well as the process. Since the statistic Tn

has the vector (δ1, δ2, . . . , δn) as its argument and the process Tn has the time variable

t as its argument, the interpretation is self evident from the context.

Let us also define,

Mn(t) = X(0) exp
{
α([nt] + 1)M[nt]+1(δ1, δ2, . . . , δ[nt]+1) + (1− α)[nt]M[nt](δ1, δ2, . . . , δ[nt])

}
,

(3.19)

HLn(t) = X(0) exp
{
α([nt] + 1)HL[nt]+1(δ1, δ2, . . . , δ[nt]+1) + (1− α)[nt]HL[nt](δ1, δ2, . . . , δ[nt])

}
,

(3.20)

TRn(t) = X(0) exp
{
α([nt] + 1)TR[nt]+1(δ1, δ2, . . . , δ[nt]+1) + (1− α)[nt]TR[nt](δ1, δ2, . . . , δ[nt])

}
.

(3.21)
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and let us also define LTRn(t) and UTRn(t) in a similar fashion.

3.4 Results

The Theorem below is stated under the following two conditions.

Condition A1: Let g be a real function such that, for any k > 0, there exists a positive

constant c(k) such that

P (|Tn − θ − 1
n

n∑
i=1

g(Zi)| > c(k)an) = O(n−k),

where an = o( 1√
n
). Also assume that E(g(Z1)) = 0 and var(g(Z1))=ν2 < ∞.

Condition A2:

max1≤k≤n|Tk − θ| = OP (log n).

Theorem 1: Under conditions A1 and A2, the process Tn(t)/ exp(θσ
√

nt) converges

weakly to a process T (t) satisfying the stochastic differential equation

dT (t)
T (t)

= µ
′
dt + σνdW (t), (3.22)

where µ
′
= µ + σ2ν2/2, with the initial condition T (0) = X(0).

proof: Let us define,

ξn(t) =
√

t

ν

[
α
√

[nt] + 1
(
T[nt]+1 − θ

)
+ (1− α)

√
[nt]

(
T[nt] − θ

)]
(3.23)

and

ηn(t) =
√

t

ν

 α√
[nt] + 1

[nt]+1∑
i=1

g(Zi) +
(1− α)√

[nt]

[nt]∑
i=1

g(Zi)

 . (3.24)

We will first show that as n tends to ∞, sup0≤t≤T |ξn(t) − ηn(t)| converges to zero in

probability. But since, ηn(t) converges in law to a standard Brownian motion by the

classical functional CLT, it immediately follows that
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ξn(t) → W (t), 0 ≤ t ≤ T as n →∞. (3.25)

Observe that, we can write |ξn(t)− ηn(t)| as
√

t
ν

∣∣∣α√[nt] + 1
[
T[nt]+1 − θ − 1

[nt]+1

∑[nt]+1
i=1 g(Zi)

]
+ (1− α)

√
[nt]

[
T[nt] − θ − 1

[nt]

∑[nt]
i=1 g(Zi)

]∣∣∣
and hence,

|ξn(t)− ηn(t)|

≤
√

t

ν
max

√[nt] + 1

∣∣∣∣∣∣T[nt]+1 − θ − 1
[nt] + 1

[nt]+1∑
i=1

g(Zi)

∣∣∣∣∣∣ ,
√

[nt]

∣∣∣∣∣∣T[nt] − θ − 1
[nt]

[nt]∑
i=1

g(Zi)

∣∣∣∣∣∣
 .

(3.26)

Now, we break up sup0≤t≤T |ξn(t)− ηn(t)| into two parts using the equality

supo≤t≤T |ξn(t)−ηn(t)| = max
{
supo≤t<nδ−1 |ξn(t)− ηn(t)|, supnδ−1≤t≤T |ξn(t)− ηn(t)|

}
.

(3.27)

Using equation (3.26),we have,

supnδ−1≤t<T |ξn(t)− ηn(t)| ≤
√

T

ν
maxnδ≤l≤nT

√
l

∣∣∣∣∣Tl − θ − 1
l

l∑
i=1

g(Zi)

∣∣∣∣∣ . (3.28)

Now notice that, using condition A1,

P
(
maxnδ≤l≤nT

√
l|Tl − θ − 1

l

∑k
i=1 g(Zi)| > c(k)

√
nδanδ

)
≤
∑nT

l=nδ P
(√

l|Tl − θ − 1
l

∑k
i=1 g(Zi)| > c(k)

√
lal

)
≤ (nT −nδ + 1)(nδ)−k → 0 if k > 1/δ as n →∞ and that, c(k)

√
nδanδ → 0 as n →∞.

Combining this with equation (3.28) we have,

supnδ−1≤t<T |ξn(t)− ηn(t)| → 0 in Probability as n →∞. Now, observe that,

sup0≤t≤nδ−1 |ξn(t)− ηn(t)| ≤ (nδ−1)
1
2

ν max1≤l≤nδ

√
l|Tl − θ − 1

l

∑l
i=1 g(Zi)|

which yields,

sup0≤t≤nδ−1 |ξn(t)− ηn(t)|
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≤ (nδ−1)
1
2

ν max1≤l≤nδ

√
l|Tl − θ|+ (nδ−1)

1
2

ν max1≤l≤nδ

√
l|
∑l

i=1 g(Zi)|

≤ Cδ (nδ−1)
1
2

ν nδ/2max1≤l≤nδ |Tl − θ|+ (nδ−1)
1
2

ν nδ/2max1≤l≤nδ

∑l
i=1 |g(Zi)|

≤ Cδ (nδ−1)
1
2

ν nδ/2max1≤l≤nδ |Tl − θ|+ (nδ−1)
1
2

ν nδ/2nδmax1≤l≤nδ |g(Zi)|

≤ Cδ (nδ−1)
1
2

ν nδ/2 log n + (nδ−1)
1
2

ν n2δ by condition A2 and the fact that

max1≤i≤nδ |g(Zi)| = O(nδ/2) under the condition that E(g2(Z1)) < ∞.

Note that for any choice of α < 1/5, the above expression converges to zero, as n →∞.

Therefore,

sup0≤t≤T |ξn(t)− ηn(t)| = max{sup0≤t≤nδ−1 |ξn(t)− ηn(t)|, supnδ−1≤t≤1|ξn(t)− ηn(t)|}

converges to zero as n →∞.

Now, by definition, and using the equivariance property of Tn, we have,

Tn(t) = X(0) exp
{

µ

(
α([nt] + 1) + (1− α)[nt]

n

)
+ σ

(
α([nt] + 1)√

n
T[nt]+1 +

(1− α)[nt]√
n

T[nt])
)}

.

We will now proceed to show that Tn(t) converges to a geometric Brownian motion, as

claimed in part a). Note that the function α([nt]+1)+(1−α)[nt]
n is bounded by T and it

converges to t as n tends to ∞. On the other hand,
α([nt]+1)√

n
T[nt]+1 + (1−α)[nt]√

n
T[nt] can be written as

{
α([nt] + 1)√

n
(T[nt]+1 − θ) +

(1− α)[nt]√
n

(T[nt] − θ)
}

+
θ([nt] + α)√

n
. (3.29)

In the above expression, the term in the braces can now be written as

νξn(t)+α

(
[nt] + 1√

n
−
√

t
√

[nt] + 1
)

(T[nt]+1−θ)+(1−α)
(

[nt]√
n
−
√

t
√

[nt]
)

(T[nt]−θ).

(i) Note that if nt < 1,

α

(
[nt] + 1√

n
−
√

t
√

[nt] + 1
)

(T[nt]+1 − θ) + (1− α)
(

[nt]√
n
−
√

t
√

[nt]
)

(T[nt] − θ)

reduces to α
(

1√
n
−
√

t
)

(T1(Z1) − θ) which is bounded by 2(T1(Z1)−θ)√
n

and hence uni-

formly converges to zero in probability as n →∞ and that
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(ii) if nt > 1,

supt>1/n

∣∣∣∣α( [nt] + 1√
n

−
√

t
√

[nt] + 1
)

(T[nt]+1 − θ) + (1− α)
(

[nt]√
n
−
√

t
√

[nt]
)

(T[nt] − θ)
∣∣∣∣

= supt>1/n

∣∣∣∣α√[nt]+1√
n

([nt]+1−nt)√
[nt]+1+

√
nt

(T[nt]+1 − θ) + (1− α)
√

[nt]√
n

([nt]−nt)√
[nt]+

√
nt

(T[nt] − θ)
∣∣∣∣

≤ max1≤k≤nT

(
α
∣∣∣Tk+1−θ√

n

∣∣∣+ (1− α)
∣∣∣Tk−θ√

n

∣∣∣)
≤ max1≤k≤nT

|Tk−θ|√
n

which converges to zero in probability by condition A2. Finally, notice that the dif-

ference between the second term in the equation (3.29) and θ
√

nt converges to zero in

probability; i.e,
θ([nt] + α)√

n
− θ

√
nt = oP (1).

Now the claim follows from the equation (3.25) and from the above observations (i) and

(ii). QED.

In the following theorem we will extend the previous result to the multidimensional

case. To state the result, let us assume that Tn1,Tn2,. . .,Tnm are statistics defined on

the same probability space, satisfying the properties given by equations (3.6) and (3.7).

Also, define the processes, Tn1(t),Tn2(t),. . .,Tnm(t) as before, i.e,

Tni(t) = X(0) exp
{
α([nt] + 1)T([nt]+1)i(δ1, δ2, . . . , δ[nt]+1) + (1− α)[nt]T([nt])i(δ1, δ2, . . . , δ[nt])

}
(3.30)

for each i = 1, 2, . . . ,m. Let us further assume the following three conditions.

Condition B1: For each i=1,2,...,n, there is a real function gi such that, for any k > 0,

there exists a real positive constant ci satisfying

P (|Tni − θi −
1
n

n∑
j=1

gi(Zj)| > ciani) = O(n−k),

where ani = o( 1√
n
).

Condition B2: For each i = 1, 2, . . . ,m, E(gi(Z1)) = 0 and Cov(gi(Z1), gj(Z1)) = γij

for each i, j = 1, 2, . . . ,m.

Condition B3: For each i = 1, 2, . . . ,m we have

max1≤k≤n|Tki − θi| = OP (log n).
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Theorem 2: Under the above conditions B1-B3, the Rm-valued process

(
Tn1(t)/ exp(θ1σ

√
nt), Tn2(t)/ exp(θ2σ

√
nt), . . . , Tnm(t)/ exp(θmσ

√
nt)
)

converges weakly to a process satisfying the stochastic differential equation

dT(t)
T(t)

= µ
′
dt + σΓ1/2dW(t), (3.31)

with the initial condition (T1(0), T2(0), . . . , Tm(0)) = (X(0), X(0), . . . , X(0)) where

T(t) is the process (T1(t), T2(t), . . . , Tm(t)), dT(t)
T(t) stands for

[
dT1(t)
T1(t) , dT2(t)

T2(t) , . . . , dTm(t)
Tm(t)

]
,

µ
′

is the m-dimensional vector (µ + σ2γ11/2, µ + σ2γ22/2, . . . , µ + σ2γmm/2), Γ is the

m×m matrix whose (i, j)th entry equals γij and W(t) is the m-dimensional standard

Brownian motion process (W1(t),W2(t), . . . ,Wm(t)).

proof: Let Θ = (θ1, θ2, . . . , θm). It follows from theorem 1 that for every i, Tni(t)/eθiσ
√

nt

converges weakly to a geometric Brownian motion with drift parameter µ and volatility

parameter γii. It is easy to see that, (log(Tn1(t)), log(Tn2(t)), . . . , log(Tnm(t)))−σ
√

ntΘ

converges weakly to a multivariate gaussian process. Since a gaussian process is well-

defined by its mean and covariance functions it suffices to identify the asymptotic mean

and covariance functions to determine the limiting process. The means are already

given by Theorem 1. It remains to figure out the covariance structure. Notice that it

follows from condition B1 that, for each i = 1, 2, . . . ,m,

Tni = θi +
1
n

n∑
j=1

gi(Zj) + oP (
1√
n

). (3.32)

It then follows from the definition of Tni(t) and the above observation that

log(Tni(t)) = θiσ
√

nt +
1√
n

[nt]∑
j=1

gi(Zj) + oP (1). (3.33)

Therefore, (log(Tn1(t)), log(Tn2(t)), . . . , log(Tnm(t))) has the same asymptotic covari-

ance structure as that of 1√
n

[nt]∑
j=1

g1(Zj),
1√
n

[nt]∑
j=1

g2(Zj), . . . ,
1√
n

[nt]∑
j=1

gm(Zj)


and the result immediately follows from condition B2. QED
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The rest of this section describes applications of the above theorems to various

robust location estimators. We will prove that Condition A1 and Condition A2 of The-

orem 1 are satisfied for all the location estimators defined earlier. Assuming for now

that Mn, HLn,TRn,LTRn and UTRn do satisfy these two conditions, note that Theo-

rem 1 can be used to price the American type statistical options with payoff functions

suggested by the empirical processes Tn(t) for each of the above choices of the statistics

Tn. For example, an American type call option with payoff (Mn(t)−K)+ can be priced

using the standard American option pricing methods that assume Black-Scholes model.

From corollary 1 below, the process Mn(t) converges in law to a geometric Brownian

motion with mean parameter µ and volatility σ
√

π/2. We can use this asymptotic

result to approximately price the statistical option with payoff (Mn(t) −K)+ and the

approximation is quite accurate for large n. The details of these pricing methods and

numerical results are presented in chapter 4. We now state the following corollaries

which enable us to price various types of Statistical options. The proofs to these results

are given in Appendix A.

Corollary 1:

(a) The process Mn(t), 0 ≤ t ≤ T converges weakly to a process M(t) given by

M(t) = X(0) exp(µt + σ
√

π
2 W (t)) as n →∞.

(b) As n →∞, (Mn(t),X(t)) , 0 ≤ t ≤ T converges weakly to the stochastic process

X̃(0) exp {(µt, µt) + σ(W1(t) + c1W2(t),W1(t))} where X̃(0) = (X(0), X(0)), W1,W2

are two independent Brownian Motions and c1 =
√

π
2 − 1.

Corollary 2:

(a) The process HLn(t), 0 ≤ t ≤ T converges weakly to a process HL(t) given by

HL(t) = X(0) exp(µt + σ
√

π
3 W (t)) as n →∞.

b) As n →∞, (HLn(t),X(t)) , 0 ≤ t ≤ T converges weakly to the stochastic process

X̃(0) exp {(µt, µt) + σ(W1(t) + c2W2(t),W1(t))} where X̃(0) = (X(0), X(0)), W1,W2

are two independent Brownian Motions and c2 =
√

π
3 − 1.
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Corollary 3:

(a) The process TRn(t), 0 ≤ t ≤ T converges weakly to a process TR(t) given by

TR(t) = X(0) exp(µt + σ
√

fαW (t)) as n →∞.

(b) As n →∞, (TRn(t),X(t)) , 0 ≤ t ≤ T converges weakly to the stochastic process

X̃(0) exp {(µt, µt) + σ(W1(t) + c3W2(t),W1(t))} where X̃(0) = (X(0), X(0)), W1,W2

are two independent Brownian Motions and c3 =
√

fα − 1.

Corollary 4:

(a) The processes LTRn(t)/ exp(aσ
√

nt), 0 ≤ t ≤ T and UTRn(t)/ exp(−aσ
√

nt),

0 ≤ t ≤ T converge weakly to the same process LTR(t) given by

LTR(t) = X(0) exp(µt + σ
√

f ′
αW (t)) as n →∞.

(b) As n →∞, the two processes (LTRn(t)/ exp(aσ
√

nt),X(t)) and

(UTRn(t)/ exp(−aσ
√

nt),X(t)) 0 ≤ t ≤ T converge weakly to the same process

X̃(0) exp {(µt, µt) + σ(W1(t) + c4W2(t),W1(t))} where X̃(0) = (X(0), X(0)), W1,W2

are two independent Brownian Motions and c4 =
√

f ′
α − 1.

We end this section with two application of the above results. Suppose that an

investor purchases an American type median call option having a one year life time

at a strike price K. Suppose that the stock does very well during the period and the

stock value appreciates considerably. In such a situation, the investor would probably

have profited more by purchasing a usual American call option on the stock instead of

buying the Statistical option. To enable the investor to profit as much as he/she would

have profited by purchasing a usual American type option, we propose an option which

pays the maximum of the two prices; i.e, an option with payoff function, max(X(t) −

K, Mn(t) − K, 0). This option could be priced using the asymptotic result given by

corollary 1(b). Since the joint process (Mn(t), X(t)) converges to the known process

given by proposition1, we can price the above option under the limiting process.

Note that the statistics Mn, HLn and TRn have asymptotic mean θ = 0 while the

statistics LTRn and UTRn have nonzero asymptotic means a and -a where a = φ(ξα)
1−α .

We will use this property of the one-sided trimmed means to define a set of Statistical
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options that benefit the investor. Notice that at any time point t, LTRn(t) is always

more than TRn(t). This is due to the fact that a two sided trimmed mean deletes both

the largest and smallest 100α% order statistics from the average while the lower-sided

trimmed mean deletes only the smallest 100α% order statistics, thus contributing larger

summands to the average. For this reason, an American type call option with payoff

(LTRn(t) −K)+ is more beneficial to the investor than an American call option with

payoff (TRn(t)−K)+. Hence, whenever there is a big rise in the stock price, the buyer

of a call option still benefits from it; but when there is a large dip in the stock price, the

buyer is guarded against the loss due to the decrease in the price. In a similar fashion,

an American type put option with payoff (K − UTRn(t))+ lets the investor gain from

any dips in the stock price and also guards the investor against any large rises in the

price. Both these options could be approximately priced using corollary 4. The exact

details of these pricing methods will be discussed in full length in chapter 4.

3.5 Limit Theorems under a Jump Diffusion model

The occurrence of jumps in the stock prices and other asset prices is a rather common

phenomenon in finance. For better understanding, let us say that a jump occurs when

there is a ‘large’ price change during a ‘small’ period of time. It is difficult to explain the

occurrence of such jumps using the Black-Scholes model; particularly so when the jumps

occur persistently over time. To encompass the possibility of occurrence of sudden

jumps in the asset prices, Merton(1976) first proposed the Jump-Diffusion model. For

the reader’s convenience, we restate Merton’s Jump Diffusion model below.

Jump-Diffusion model:

X(t) = X(0) exp

µt + σW (t) +
N(t)∑
j=1

Yj

 , o ≤ t ≤ T (3.34)

where X(0) is the share price at time t=0, µ ∈ R, σ > 0, W(t) is a standard Brownian

motion over the interval [0,T] and N(t) is a Poisson process with rate λ and Yj are IID

random variables. The jumps in the stock prices are explained by the random variables

Yj . The Poisson process N(t) determines the time points at which the jumps occur and

the rate λ determines the frequency of the jumps. Ramprasath and Singh (2007) have
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dealt with the pricing of European type Statistical options under the jump diffusion

model. This section extends their results to the American type statistical options. We

establish a limit theorem, which will enable us to price the American type Statistical

options under the Jump Diffusion model. As before, let us define for any n ≥ 1,

δJ
i = log(X(i/n))− log(X((i− 1)/n)), i = 1, 2, . . . , nT. (3.35)

Notice that δJ
i , i = 1, 2, . . . , nT are IID random variables and that

δJ
i = δi +

N(i/n)∑
j=1

Yj −
N((i−1)/n)∑

j=1

Yj . (3.36)

For any statistic Tn which satisfies the conditions (3.6) and (3.7), let us define,

T J
n (δ) = Tn(δJ

1 , δJ
2 , . . . , δJ

n). (3.37)

Now also define, for any 0 ≤ t ≤ T and n ≥ 1, the process

T J
n (t) = X(0) exp

{
α([nt] + 1)T J

[nt]+1(δ) + (1− α)[nt]T J
[nt](δ)

}
. (3.38)

From now on in this section, for convenience, we will simply write Tn(δ) for Tn(δ1, δ2, . . . , δn)

and T J
n (δ) for T J

n (δJ
1 , δJ

2 , . . . , δJ
n). Since N(t) is assumed to be a Poisson process, N(T)

is finite with probability one and it can be bounded by an integer M with a large prob-

ability. So, there are only finitely many i’s for which δJ
i is different from δi. We will

show that, when Tn is the median, Hodges-Lehmann estimator or the Trimmed mean,

for large n, Tn(δ) can be approximated by T J
n (δ) with a large probability.

This observation leads us to the following result. We need condition C1 to state the

theorem.

Condition C1: For any β > 0,

P
(
n
∣∣∣T J

n (δ)− Tn(δ)
∣∣∣ > β

)
= o

(
1
n

)
. (3.39)

Theorem 3: Under conditions A1, A2 and C1, the process T J
n (t)/ exp(θσ

√
nt)

converges weakly to a process T(t) satisfying the stochastic differential equation

dT (t)
T (t)

= µ
′
dt + σνdW (t), (3.40)



47

with the initial condition that T(0)=X(0).

proof:

Notice that, given ε > 0, there exist a δ > 0 and a positive integer M such that,

P (N(δ) > 0) < ε/2. (3.41)

For this reason, we have,

P (sup0<k≤nδk|Tk(δ)− T J
k (δ)| > 0) ≤ P (N(δ) > 0) ≤ ε/2. (3.42)

Now using condition C1, for any β > 0,

P
(
n
∣∣∣Tn(δ)− T J

n (δ)
∣∣∣ > β

)
= o(

1
n

).

Note that for any t ∈ (δ, T ], we have,

P
(
nt
∣∣∣T[nt](δ)− T J

[nt](δ)
∣∣∣ > β

)
= o(

1
n

), (3.43)

which implies that,

P
(
supδ≤t≤T [nt]

∣∣∣T[nt](δ)− T J
[nt](δ)

∣∣∣ > β
)
≤ P

(
maxnδ≤k≤nT k

∣∣∣Tk(δ)− T J
k (δ)

∣∣∣ > β
)

≤ (nT − nδ + 1)o( 1
nδ ) → 0 as n →∞.

This observation, combined with equation (3.42) gives

P (max0≤k≤nT k
∣∣∣Tk(δ)− T J

k (δ)
∣∣∣ > β) → 0, as n →∞. (3.44)

This observation implies that, the processes T J
n (t)/ exp(θσ

√
nt) and Tn(t)/ exp(θσ

√
nt)

converge to the same process. Now it follows directly from Theorem 1 that T J
n (t)/ exp(θσ

√
nt)

converges to a process satisfying the stochastic differential equation given by (3.40).

QED.

We now proceed to extend the above result to the multidimensional case. As in The-

orem 3, for i = 1, 2, . . . ,m, let Tni(δ) be statistics defined on the vector (δ1, δ2, . . . , δn).

Let T J
ni(δ) be defined as

T J
ni(δ) = Tni(δJ

1 , δJ
2 , . . . , δJ

n). (3.45)

To state Theorem 4, we need a condition to ensure that the statistics T J
ni(δ) can be
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approximated by Tni(δ).

Condition D1: For any β > 0 and for each i = 1, 2, . . . ,m,

P
(
n
∣∣∣T J

ni(δ)− Tni(δ)
∣∣∣ > β

)
= o

(
1
n

)
. (3.46)

Theorem 4: Under conditions B1,B2,B3 and D1, the process(
T J

n1(t)/ exp(θ1σ
√

nt), T J
n2(t)/ exp(θ2σ

√
nt), . . . , T J

nm(t)/ exp(θmσ
√

nt)
)

converges weakly to a process satisfying the stochastic differential equation

dT(t)
T(t)

= µ
′
dt + σΓ1/2dW(t), (3.47)

where Θ, µ
′
,Γ, T(t) and W(t) are as defined in theorem 2.

proof: Using conditions (3.32) and (3.43), it is easy to see that

(log(T J
n1(t)), log(T J

n2(t)), . . . , log(T J
nm(t)))− σ

√
ntΘ

converges weakly to a gaussian process. Hence, the limiting process is uniquely defined

by the mean and covariance functions. The mean function is given by theorem 3.

For the covariance, notice that using (3.44), the equation (3.34) is still valid with Tni

replaced T J
ni. Hence, (log(T J

n1(t)), log(T J
n2(t)), . . . , log(T J

nm(t))) has the same covariance

structure as  1√
n

[nt]∑
j=1

g1(Zj),
1√
n

[nt]∑
j=1

g2(Zj), . . . ,
1√
n

[nt]∑
j=1

gm(Zj)


and the result follows from condition B2. QED.

We are now ready to apply theorems 3 and 4 to various examples of statistics Tn.

As before, we will consider the statistics median, HL-estimator and the trimmed mean.

To fix the notation, let us define,

MJ
n (δ) = median{δJ

1 , δJ
2 , . . . , δJ

n}, (3.48)

HLJ
n(δ) = median{(δJ

i + δJ
j )/2, i, j = 1, 2, . . . , n.}, (3.49)

and

TRJ
n(δ) =

1
n− 2[nα]

n−[nα]∑
i=[nα]+1

δJ
(i). (3.50)
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Let us further define the processes

MJ
n (t) = X(0) exp

{
α([nt] + 1)MJ

[nt]+1(δ) + (1− α)[nt]MJ
[nt](δ)

}
, (3.51)

HLJ
n(t) = X(0) exp

{
α([nt] + 1)HLJ

[nt]+1(δ) + (1− α)[nt]HLJ
[nt](δ)

}
, (3.52)

and

TRJ
n(t) = X(0) exp

{
α([nt] + 1)TRJ

[nt]+1(δ) + (1− α)[nt]TRJ
[nt](δ)

}
. (3.53)

It can be shown that the condition C1 is satisfied for all the three statistics MJ
n (δ),

HLJ
n(δ) and TRJ

n(δ). We will prove this statement for the case of Mn(t) and the re-

maining cases can be proved in a similar fashion. Using theorems 3 and 4, notice that

part(a) of corollaries 1-3 are all valid when the processes Mn(t),HLn(t) and TRn(t) are

replaced by their jump diffusion model counterparts MJ
n (t),HLJ

n(t) and TRJ
n(t). We

formally state these results below.

Corollary 5:

(a) The process MJ
n (t), 0 ≤ t ≤ T converges weakly to the process M(t) given by

M(t) = X(0) exp(µt + σ
√

π
2 W (t)) as n →∞.

(b) As n →∞, (MJ
n (t),X(t)) , 0 ≤ t ≤ T converges weakly to the stochastic process

X̃(0) exp
{
(µt, µt) + σ(W1(t) + c1W2(t),W1(t) +

∑N(t)
i=1 Yi)

}
where X̃(0) = (X(0), X(0)),

W1,W2 are two independent Brownian Motions and c1 =
√

π
2 − 1.

Corollary 6:

(a) The process HLJ
n(t), 0 ≤ t ≤ T converges weakly to the process HL(t) given by

HL(t) = X(0) exp(µt + σ
√

π
3 W (t)) as n →∞.

b) As n →∞, (HLJ
n(t),X(t)) , 0 ≤ t ≤ T converges weakly to to the stochastic process

X̃(0) exp
{
(µt, µt) + σ(W1(t) + c2W2(t),W1(t) +

∑N(t)
i=1 Yi)

}
where X̃(0) = (X(0), X(0)),

W1,W2 are two independent Brownian Motions and c2 =
√

π
3 − 1.

Corollary 7:

(a) The process TRJ
n(t), 0 ≤ t ≤ T converges weakly to the process TR(t) given by
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TR(t) = X(0) exp(µt + σ
√

fαW (t)) as n →∞.

(b) As n →∞, (TRJ
n(t),X(t)) , 0 ≤ t ≤ T converges weakly to to the stochastic process

X̃(0) exp
{
(µt, µt) + σ(W1(t) + c3W2(t),W1(t) +

∑N(t)
i=1 Yi)

}
where X̃(0) = (X(0), X(0)),

W1,W2 are two independent Brownian Motions and c3 =
√

fα − 1.
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Chapter 4

Pricing derived Financial Contracts

4.1 Introduction:

This chapter addresses the problem of pricing various statistical options outlined in

chapter 3. We will use the limit theorems proved in chapter 3 to price the statistical

options. The theory of option pricing stands on the principle of ‘no arbitrage’. In 1973,

Fischer Black and Myron Scholes first developed the theory of option pricing using

‘no arbitrage’ arguments, in their seminal paper ‘The pricing of options and corporate

liabilities’. Robert C.Merton later expanded and unified the theory in his ‘Theory of

Rational Option Pricing’(1973). Their work has not only greatly influenced the future

research in the area of asset pricing but also enabled the researchers and financial

houses to price rather complex securities. We will now define various basic concepts of

the theory and then briefly explain the option pricing methodology that follows from

the no arbitrage theory.

A portfolio is a collection of assets held by an investor. The value of a portfolio at

a given time t is the net value of all the assets of the portfolio at time t. A function

{θ(t) : t ≥ 0} is called a trading strategy if θ(t) is a portfolio for all t ≥ 0. A trading

strategy θ is said to be self-financing if for every t ≥ 0, the value of θ(t) depends only

on its asset prices at time t. In other words, a trading strategy is self-financing if no

gains are withdrawn and no external funds are added. A self-financing trading strategy

with initial value V (0) = 0 is said to be an arbitrage if for some fixed t0 > 0; V (t0),

the value of the strategy at time t0, is nonnegative with probability one and V (t0) is

strictly positive with positive probability. An arbitrage allows one to create wealth out

of nothing and the existence of arbitrage contrasts economic equilibrium.

A price process {V (t) : t ≥ 0} is called attainable if there is a self-financing trading
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strategy such that at any time t, the value of the trading strategy equals V (t). A

positive process {D(t) : t ≥ 0} with D(0) = 1 is called a deflator if {D(t)/Z(t) : t ≥ 0}

is a martingale for any attainable process {D(t) : t ≥ 0}. If the process {D(t) : t ≥ 0}

is a deflator then, by the martingale condition, we have for any t > 0,

V (0) = E

(
V (t)
D(t)

)
. (4.1)

It is easy to observe, since D(t) is a positive process, that (4.1) precludes the existence

of arbitrage. In fact, the converse is also true and the equivalence of ‘no arbitrage’ and

the existence of a deflator is called the ‘Fundamental theorem of option pricing’. Now

we will derive a formula for option pricing under the assumption of no arbitrage. Let

D(t) be a deflator. Suppose that r is the risk free rate of interest. Then, R(t) = ert

is an attainable process and hence, the process R(t)/D(t) is a positive martingale.

Notice that R(0)/D(0) = 1 and so we can define a probability measure P
′

by the

Radon-Nikodym derivative(
dP

′

dP

)
(t) =

R(t)
D(t)

, for all t ∈ [0, T ]. (4.2)

The probability measure P
′
thus obtained is called the Risk-Neutral measure or Equiv-

alent Martingale measure. Now notice that,

V (0) = EP

[
V (t)
D(t)

]
= EP

[(
R(t)
D(t)

)(
V (t)
R(t)

)]
= EP ′

[
V (t)
R(t)

]
. (4.3)

Since the process R(t) = ert is non-stochastic, we have,

V (0) = e−rtEP
′ [V (t)] . (4.4)

Suppose now that V (t) is the payoff of a derivative. Under the assumption of

complete markets, the payoff V (t) can be obtained by the value process of a trading

strategy and hence is an attainable process. Therefore, the value of such a derivative at

time zero is the discounted expected payoff under the Risk-Neutral measure P
′
. This

simple consequence of equation (4.4) simplifies the pricing of derivatives by a great

extent. The task of derivative pricing reduces to computing the expected payoff under

the Risk-Neutral measure.
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Suppose that X(t) is the share price of a stock at time t and r is the riskless rate

of interest. Under the risk-neutral measure P
′
, the discounted price process e−rtX(t)

is a martingale and this condition imposes a relation on the parameter values. Under

the Black-Scholes model (3.1), this condition implies that a = r and under the Jump

diffusion model (3.34), this yields the condition

µ = r − σ2

2
− λ

[
E(eY1)− 1

]
. (4.5)

For a European type call option or a European type put option, the equation (4.4)

yields a closed form formula for the option price. American type options are more com-

plex to price in the sense that a closed form solution is seldom obtained. This situation

arises for many path dependent options. An option is said to be path dependent if

its payoff depends on the price of the underlying asset not only at the time of option

maturity but also at various time points during the life of the option. Examples of path

dependent options include American type options, Asian options, Russian options, bar-

rier options and lookback options. Clearly, all the statistical options defined in chapter

3 are path dependent. Path dependent options are more difficult to price because of

their complex payoffs. Most path dependent options do not have closed form formulae

for their prices and very often, the prices need to be computed by numerical procedures.

In such situations. a computation intensive estimation procedure called Monte Carlo

estimation comes to the rescue and lets one to estimate the option prices with great

accuracy. This procedure advocates generating sample paths of the underlying process

under the risk neutral measure and then taking the simple average of the payoffs ob-

tained from each sample path to calculate the expectation in (4.4). This method is

appealing for its wide generality. Option prices can be estimated using this procedure

whenever it is feasible to simulate the sample paths of the underlying assets and to

compute the payoffs based on the simulated sample paths. Monte Carlo estimators are

often asymptotically unbiased and are also consistent. The interested reader is referred

to Glasserman (2003) for a detailed discussion on Monte Carlo methods in finance.

So far in this discussion, we have assumed that the markets are complete and derived

the equation (4.4) under this assumption. But in reality, the assumption of complete
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markets is not always satisfied. It is well known that perfect hedging is not possible

due to the discrete nature of trading and transaction costs. This could give rise to the

possibility of arbitrage opportunities. Indeed many financial firms have a ‘statistical

arbitrage’ group whose task is to exploit any arbitrage opportunities present in the

market and thus make profits for the firm. Arbitrage opportunities are often short

lived and they quickly vanish in the presence of transaction costs. Statistical arbitrage

groups rely on their huge computational power and algorithmic trading to profit from

arbitrage opportunities. In spite of these facts, ‘no arbitrage’ option pricing theory

provides one with benchmark prices for financial contracts. In the following sections,

we will compute the no arbitrage prices of various statistical options defined in chapter

3. Section 2 discusses the pricing of American type statistical options based on the

processes Mn(t),HLn(t),TRn(t),LTRn(t) and UTRn(t) which are defined in chapter 3.

Section 3 deals with the pricing of maximum type statistical options based on the above

processes and the underlying stock price process.

4.2 Pricing American type Statistical options

Recall now the definitions of the statistical assets defined in chapter 3. Statistical assets

were defined based on an underlying asset and various options were defined based on the

statistical assets to cater to the diverse interests of investors. For instance, an American

type call option on Mn(t) reduces the investor’s risk to sudden drops in the underlying

stock. An American type call option on LTRn(t) lets the investor profit from any rise

in the underlying stock prices, but guards the investor against sudden large drops in

the stock price. Since LTRn(t) is defined based on the lower sided trimmed mean, the

process only ‘trims’ large negative increments in the stock price. These options provide

the investor with added insurance against sudden fall in the stock prices. This benefit

usually comes with a cost and the investor needs to pay more for a call option on Mn(t)

or LTRn(t) than for a call option on the underlying stock process X(t). Naturally, it is

important to be able to price the statistical options fairly, so as to be able to sell them

in the market. We will discuss the pricing methods in this section.
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We will make use of the limit theorems proved in chapter 3 to price the statis-

tical options. Recall the corollaries (1-3) which state that the law of the processes

Mn(t),HLn(t) and TRn(t) converge to that of a geometric Brownian motion as n tends

to infinity. In pricing the Statistical options, we will use the limit law of geometric

Brownian motion instead of the actual law. This approximation is quite reasonable

for large n, in view of the convergence results given by corollaries(1-3) of chapter 3.

Therefore, the problem reduces to pricing an American option on a stock following a

Black Scholes model. Since geometric Brownian motion is a common model for stock

prices, this approximation puts a vast literature on American type option pricing at

our disposal. Unlike the European options, no closed form formulae are available for

the American option prices. The price needs to be computed either through simulation

procedures or by using an approximation method. The binomial tree method was used

to compute the prices in tables 4.1 and 4.2 .

Suppose that the risk free rate of interest is 5%. Let the historical volatility be

constant at 20% per annum. Let the time to maturity of the options, T be equal to

one year. Suppose the stock provides a continuous dividend yield of 2%. Table 4.1

provides the American call option prices and table 4.2 gives the American Put option

prices for the underlying processes Mn(t),HLn(t) and TRn(t). The tables provide the

prices when the current stock price is $58 and $66 for varying strike prices.
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Stock price Strike price Median call HL call TR call BLS call
58 50 11.12 10.41 10.38 10.35

58 54 8.57 7.69 7.65 7.60

58 58 6.48 5.47 5.42 5.36

58 62 4.78 3.73 3.69 3.63

58 66 3.45 2.48 2.43 2.38

58 70 2.47 1.58 1.54 1.50

66 50 17.86 17.46 17.44 17.43

66 54 14.73 14.10 14.07 14.04

66 58 11.89 11.05 11.02 10.97

66 62 9.45 8.39 8.35 8.29

66 66 7.38 6.22 6.17 6.10

66 70 5.66 4.45 4.40 4.33

Table 4.1: American call option prices on Mn(t),HLn(t) and TRn(t)

In the above table, the column “Median call” refers to the American call option

price when the underlying stock follows M(t), “HL call” refers to the call price when

the underlying stock follows HL(t) and “TR call” refers to the call price when the

underlying stock follows TR(t). Notice that the prices decrease in each row from left to

right. This is due to the fact that the process M(t) has more volatility than the process

HL(t) and the process HL(t) has more volatility than TR(t).
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Stock price Strike price Median Put HL Put TR Put BLS Put
58 50 1.88 1.16 1.13 1.09

58 54 3.20 2.29 2.25 2.21

58 58 5.00 3.98 3.93 3.87

58 62 7.23 6.22 6.17 6.12

58 66 9.91 9.02 8.98 8.93

58 70 12.98 12.30 12.28 12.25

66 50 0.74 0.34 0.32 0.31

66 54 1.44 0.79 0.77 0.74

66 58 2.44 1.59 1.55 1.50

66 62 3.87 2.80 2.75 2.69

66 66 5.69 4.53 4.47 4.41

66 70 7.90 6.73 6.67 6.61

Table 4.2: American put option prices on Mn(t),HLn(t) and TRn(t)

In table 4.2, ‘Median Put’ refers to the American Put price when the underlying

stock follows M(t), ‘HL put’ refers to the put price when the underlying stock follows

HL(t) and ‘TR put’ refers to the put price when the underlying stock follows TR(t).

Again as in Table 4.1, notice that the prices decrease in each row from left to right. Note

that the above prices would not have altered had we considered the jump diffusion model

(3.34) for the underlying stock price X(t) instead of the Black-Scholes model given by

(3.1). This follows from the corollaries (3.5)-(3.7).

We shall now consider pricing the American type options based on the statistical

assets LTRn(t) and UTRn(t). Note that the investor would benefit with a larger pay-

off either by purchasing a call option on LTRn(t) or by purchasing a put option on

UTRn(t). In view of this observation, it is of interest to find the fair prices of these

two options. Firstly, observe that, LTRn(t) explodes to infinity as n increases to in-

finity. For a large fixed n, let us write LTRn(t) as the product of exp(aσθ
√

nt) and

LTRn(t)/ exp(aσθ
√

nt) and let us approximate the second term in the product by its

limit LTR(t). Hence for any large fixed n, the process LTRn(t) can be approximated by

exp(aσθ
√

nt)LTR(t). We approximate the price of an American call option on LTRn(t)

by the price of an American call option on the process exp(aσθ
√

nt)LTR(t). Table 4.3
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gives the the call option prices obtained by this approximation. As before, let the risk-

free rate of interest is 5% and let the volatility be equal to 20% per annum. Suppose

that the time to maturity of the option is six months, the trimming level α = 5% and

that the stock provides a continuous dividend yield of 2%. Then, Table 4.3 gives the

prices of an American call option on LTRn(t) using the above approximation.

Stock price Strike price LTR Call
58 50 14.31

58 54 11.03

58 58 8.03

58 62 5.46

58 66 3.45

58 70 2.03

66 50 22.17

66 54 18.74

66 58 15.36

66 62 12.12

66 66 9.14

66 70 6.54

Table 4.3: American call option prices on LTRn(t)

Note that the these prices are quite higher when compared to the call option prices

on Mn(t). This is only to be expected because the payoff in this case is strictly higher

than the payoff obtained from a call option on the process Mn(t). Also, the prices

strictly increase with the value of trimming level α. Finally, we notice that the price

of a put option on UTRn(t) could be approximated by the price of an American put

option on the process exp(−aσθ
√

nt)LTR(t). Table 4.4 provides the put option prices

on the process UTRn(t) for the same parameter values as above.

4.3 Options on the maximum of two assets

This section deals with pricing of American options whose payoff equals the maximum

of two American type option payoffs. As was discussed in chapter 3, a median call
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Stock price Strike price UTR Put
58 50 2.15

58 54 4.43

58 58 7.60

58 62 11.36

58 66 15.47

58 70 19.76

66 50 0.47

66 54 1.35

66 58 2.96

66 62 5.45

66 66 8.65

66 70 12.38

Table 4.4: American put option prices on UTRn(t)

option is profitable to the investor only when there are sharp decreases in the stock

price. If the stock price is increasing over the lifetime of the option, a usual American

option on the stock would payoff more than the median option would. To ensure the

investor a payoff which is at least as much as that of a usual American option on the

stock, we consider the max-type options. For instance, a max-type median call option

pays max(Mn(t)−K, X(t)−K, 0) at time t. Similarly, a median put option of the max

type would pay max(K−Mn(t),K−X(t), 0) at time t. One can define similar options

using the processes HLn(t) and TRn(t).

Many researchers have successfully worked on pricing various financial securities

with payoffs involving more than one asset. The max-type statistical options are exam-

ples of such securities. Johnson(1987), Kamrad and Ritchken(1991), Detemple, Feng

and Tian(2003), Broadie and Detemple(1994) and Boyle, Ervine and Gibbs(1989) found

various results on pricing options involving multiple assets. Note that as in section 2,

we can use the limit theorems obtained in chapter 3 to price the max type options. For

example, part (b) of corollary 1 states that the joint process (Mn(t), X(t)) converges in

law to a two dimensional geometric brownian motion and we intend to use this approx-

imation to price the max-type options. Now, the pricing problem reduces to pricing an
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American type option on the maximum of two assets, each of which follow a geometric

Brownian motion. As in the case of the usual American type options, there are no

analytic formulae for the prices of max-type options and we rely on simulation meth-

ods to compute the prices. Broadie and Glasserman (1997) obtain an efficient Monte

Carlo simulation method to price American type options. This method was used in the

max-type option pricing and we will briefly describe this method below.

The price estimation method described by Broadie and Glasserman (1997) falls

under the class of random tree methods. Two estimators called High estimator and

Low estimator are obtained for the option price where high estimator has upward bias

and low estimator has downward bias. Both the estimators are asymptotically unbiased

and so, the simple average of these two serves as an asymptotically unbiased estimator

for the option price. As the name suggests, a random tree method simulates a random

tree of the underlying stock asset prices. Let the underlying asset price be X(t) at time

t ∈ [0, T ]. Assume that X(0) = X0. Suppose t0, t1, t2, . . . , tk are time points such that

0 = t0 < t1 < t2 < . . . < tk = T . We assume that the option could be exercise at any

of these (k + 1) many time points. Although an American option can be exercised at

any time point during its lifetime, due to the discrete nature of trading, it is reasonable

to assume that there are only finitely many exercise time points. Assume that the

underlying stock follows a geometric Brownian motion and all the parameters of the

model are specified. Also assume that there is a constant risk free rate of interest r.

Given these values, one can simulate the asset prices at time points t = t0, t1, t2, . . . , tk.

We generate, under the risk neutral measure, m many replications of the asset price

at time t1 given that X(t0) = X0 and given each of these values of X(t1), we generate

m many independent values of the asset price X(t2) and so on... Each of these asset

prices obtained at each time point is called a node of the tree and each node is said

to be branched into m many nodes. For example, a simulated value of X(ti) given the

value of X(ti−1) is a node at depth i. In this fashion, X(ti) is simulated ki many times

in the random tree. The total number of exercise time points is called the depth of the

tree. Hence the depth of the tree in our case is k.

Notice that the value of the option at the terminal nodes (nodes at time t = tk) is
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just the payoff of the option. The value of the option at a node at time t = tk−1 is

computed by taking the maximum of the option value by exercising at time tk−1 and the

option value by not exercising at time tk−1. Since the m paths originating from X(tk−1)

are only of depth one, the value of the option at the node X(tk−1), by not exercising at

time tk−1, is the discounted average of the m payoffs at time tk. The option is exercised

at the node X(tk−1) if the immediate payoff is more than the discounted expected

payoff obtained by not exercising. Similarly, at each node, we determine whether to

exercise the option or not by comparing the expected discounted payoff at that node

to the immediate exercise payoff. Let {X(tki) : i = 1, 2, . . . ,m} denote the m nodes

originating from X(tk−1). For each i = 1, 2, . . . ,m, let Vki denote the value of the

option at the node X(tki). Then the value of a call option at the node X(tk−1) is given

by

max

(
(X(tk−1)−K)+, e−r(tk−tk−1) 1

n

n∑
i=1

Vki

)
.

In this case, since the option reached its maturity date, the value of the call option Vki

equals (X(tki) −K)+. The value of the option at any given node is the maximum of

the immediate payoff and the expected discounted payoff. Thus a value is assigned at

each of the nodes. The value at the initial node X0 is the option value at time zero and

hence is the option price at time zero. This estimator of the option price is called the

high estimator.

Unfortunately, the price obtained by the above method is not unbiased. At any

time point ti, the above method decides whether to exercise the option by comparing

the average discounted value of the option by not exercising to the immediate exercise

payoff. By doing this, the method is using information on the future in making the

exercise decision. This unfair use of information on the future increases the option

value at time zero and hence the method overestimates the price. This bias can be

corrected by making the exercise decision using a subgroup of the m originating nodes

and calculating the discounted expected payoff using only the rest of the nodes (which

are not used to make exercise decision). Suppose that we use the first node X(tk1)

to decide whether to continue and the rest m − 1 nodes to compute the discounted

expected payoff by not exercising the option at node X(tk−1) i.e., we decide to exercise
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at X(tk−1) if the payoff (X(tk−1) − K)+ is more than e−r(tk−tk−1)(X(tk1) − K)+. If

the decision is made not to exercise the option, the value of the option at X(tk−1)

is the average discounted value of the nodes {X(tki) : i = 2, 3, . . . ,m} This simple

modification eliminates the high bias in the estimator but introduces a low bias. Since

any of the m nodes {X(tki) : i = 1, 2, . . . ,m} could be used to make the exercise

decision, we repeat this procedure m-many times, each time using a different node to

make the exercise decision. Thus, we obtain m-many option values at the node X(tk−1).

We define the average of these m values to be the low estimator at the node X(tk−1).

One can continue this procedure to obtain the low estimators at each node and the

value at the node X0 is the low estimator of the option price.

The following tables give the prices of the max-type call options based on Mn(t),

HLn(t) and TRn(t). For example, at time t, the American type max(median,mean)

call option with strike price K pays maximum(Mn(t) − K, X(t) − K, 0). Let current

stock price be equal to $58. As before, let the risk less rate of interest be equal to 5%

per annum and let the continuous rate of dividends q=2%. Let the time to maturity

be one year and the volatility be constant at 20%. The second and third columns of

the following tables give the high and low estimators of the option prices respectively.

In the computations, k was assumed to be equal to 3 and the number of replications

m=10. The fourth and fifth columns give the standard errors in estimating the high

and low estimators.



63

Strike price High Low se(high) se(low)
50 13.91 13.56 0.0431 0.0421

54 10.92 10.77 0.0429 0.0402

58 8.31 8.13 0.0369 0.0355

62 6.17 6.04 0.0320 0.0302

66 4.44 4.30 0.0254 0.0260

70 3.14 3.07 0.0211 0.0217

Table 4.5: Max(median,mean) call option prices

Strike price High Low se(high) se(low)
50 11.36 11.10 0.0372 0.0403

54 8.45 8.26 0.0314 0.0333

58 6.03 5.91 0.0282 0.0284

62 4.16 4.13 0.0237 0.0220

66 2.81 2.76 0.0193 0.0182

70 1.83 1.78 0.0138 0.0135

Table 4.6: Max(HL,mean) call option prices

Strike price High Low se(high) se(low)
50 11.10 10.85 0.0366 0.0358

54 8.20 8.00 0.0330 0.0319

58 5.88 5.79 0.0272 0.0273

62 4.04 3.97 0.0237 0.0226

66 2.67 2.63 0.0185 0.0184

70 1.71 1.70 0.0133 0.0123

Table 4.7: Max(TR,mean) call option prices



64

As earlier, notice that the max(median,mean) prices are higher than the max(HL,mean)

prices which in turn are higher than the max(TR, mean) prices. This is due to the fact

that the process Mn(t) has more volatility than that of HLn(t) and HLn(t) in turn has

more volatility than that of TRn(t).
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Chapter 5

A Stock Price Model: Parameter Estimation

5.1 Introduction

In the year 1900, the French mathematician Louis Bachelier first proposed modeling the

stock prices by linear Brownian motion. Bachelier developed a theory of option pricing

based on the linear Brownian motion model for the stock prices. Later in 1965, Paul

Samuelson proposed the geometric Brownian motion model for stock prices. In 1973,

Black, Scholes and Merton developed option pricing theory under this model. Indeed,

the no arbitrage option pricing theory developed by Black, Scholes and Merton com-

pletely revolutionized the field of derivative pricing forever and is still very influential

in Academia as well as the finance industry.

Although both the above models have been extensively used for stock prices and

other asset prices, they are fundamentally very different. It is well known that under

the Bachelier model, stock price hits the value zero in finite time with probability one.

So, the stock goes bankrupt for any choice of drift and volatility parameters. On the

other hand, under the Black-Scholes model, the stock price is always strictly positive,

thus precluding the possibility of a bankruptcy. In this chapter, we consider the model

proposed by Chen, Logan, Palmon and Shepp(2003), of which both Bachelier and Black-

Scholes models are special cases. This model is given by the stochastic differential

equation

dX(t) = Xθ(t)(µdt + σdW (t)) (5.1)

where θ ∈ [0, 1], µ ∈ R and σ ∈ (0,∞). The above model degenerates to the Bachelier

model for θ = 0 and to the Black-Scholes model for θ = 1. The case θ = 0 corresponds

to simple interest and the case θ = 1 corresponds to continuously compounded interest
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in the sense that, at time t, the expected value of the stock price equals X(0)µt if

θ = 0 and equals X(0)eµt if θ = 1. This observation suggests the relation between the

parameter θ and the growth rate of the stock price X(t). Chen, Logan, Palmon and

Shepp(2003) call θ, the capital productivity parameter. In this chapter, we concentrate

on estimating and interpreting the parameter θ for various stocks enlisted on the New

York Stock Exchange(NYSE).

Inference on continuous time variables, often modeled by diffusion processes is fun-

damentally different from the classical statistical inference due to the fact that each

observation here corresponds to a real valued function of time, often referred to as a

sample path, which is a random realization of the underlying diffusion process. Al-

though each observation is a function of time, it is seldom possible to observe the whole

sample path. Instead, the sample path values are obtained at various discrete time

points. In view of this fact, classical parameter estimation methods are adapted to

parameter estimation of diffusion processes by means of discretization methods. A dis-

cretization method approximates a continuous time model by a discrete time model.

Since continuous data is seldom obtained, a discretization method plays a vital role in

estimating the parameters of a continuous time process. Euler approximation is the

simplest of such discretization methods. Although the entire price path cannot be ob-

served, the discrete price values at various time points are often sufficient to accurately

estimate various model parameters. The details of Euler approximation method are

discussed in the next section.

Statistical inference of diffusion processes has been dealt by many researchers over

the past decades. ‘Statistical Inferences for diffusion type processes’ by Basawa and

Rao(1980) is a good starting point for the researcher interested in parameter estima-

tion of diffusion processes. The review paper by Fan(2005) describes various nonpara-

metric inference methods for financial time series. Anderson(1959), Billingsley(1961),

Dacunha-Castelle and Florens-Zhmirou(1986), Lo(1988), Melino(1994), Pederson(1995),

Duffie and Glynn(1997), Florens(1999), Zhang,Mykland and Ait-Sahalia(2005) discuss

various estimation methods in the context of diffusion processes. More recently, the

seminal paper by Ait-Sahalia(2002) considers the maximum likelihood estimation of
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diffusion process parameters and provides a rather accurate closed form approximation

to the estimator. In this chapter, we consider estimation of the parameter θ of the

model (5.1). The following section describes our method and discusses the results.

5.2 Estimation procedure

Let the stock price X(t) follow the model (5.1). Suppose we have discrete data from

the stock price X(t) at time points t = t0, t1, . . . , tn. Euler Approximation method

suggests replacing the differential terms at time tk−1, dt and dW(t) of equation (5.1)

by the differences tk − tk−1 and W (tk)−W (tk−1) respectively. This yields,

X(tk)−X(tk−1) = Xθ(tk−1){µ(tk−tk−1)+σ(W (tk)−W (tk−1))}, k = 1, 2, . . . , n. (5.2)

We assume that the process is observed at equal time intervals ∆. Therefore, sup-

pose that the process is observed at time points t = 0,∆, 2∆, . . . , n∆. Using the above

observation, we observe that the modified returns

X(k∆)−X((k − 1)∆)
Xθ((k − 1)∆)

, k = 1, 2, . . . , n (5.3)

are independent normally distributed variables with mean µ∆ and variance σ2∆. Our

estimation method makes use of a measure of peakedness of a variable, called kurtosis.

The kurtosis of a variable Z is defined as,

γ =
E((Z − µ)4)

var2(Z)
. (5.4)

It is well known that a normal variable has a kurtosis value of three. Observe that, since

the above modified returns are IID normal variables, the kurtosis of these variables

should be equal to three. We estimate the parameter θ using this criterion, i.e, we

estimate θ as that value for which the estimated kurtosis of the above variables is

closest to three. The parameter θ was estimated for many daily stock data enlisted

in the NYSE. The following table gives the θ values for various daily stock price data.

The data size was typically around 5500.
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Stock Theta
Apple 1.000

Alberto Culver 0.688

Adbe Systems 0.952

Aetna 1.000

Amazon 0.844

Boeing Co. 1.000

Dell 0.918

Table 5.1: Theta estimates for various stocks

The following curves give, for each of the stocks from the above table, the kurtosis

values of the modified returns for different values of θ between 0 and 1.

Figure 5.1: Kurtosis values-Apple Inc.
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Figure 5.2: Kurtosis values-Alberto Culver

Figure 5.3: Kurtosis values-Adbe Systems
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Figure 5.4: Kurtosis values-Aetna

Figure 5.5: Kurtosis values-Amazon Inc.
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Figure 5.6: Kurtosis values-Boeing Co.

’

Figure 5.7: Kurtosis values-Dell
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5.3 Conclusions:

We note that for some stocks, the above method yielded θ estimates that are signif-

icantly different from one. This suggests that the Black-Scholes-Merton model is not

the best fit for all the stocks. The method described in this chapter relies only on

the assumption that the modified return are normally distributed. The values of the

other parameters µ and σ are hardly of any consequence in estimating the growth rate

parameter θ.
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Appendix A

Corollary 1 :

Proof :We show that Conditions A1 and A2 are satisfied for the case of Mn. By

Bahadur’s Quantile representation (1966), we have for any k,

P

(∣∣∣∣∣Mn +
Fn(0)− 1

2

φ(0)

∣∣∣∣∣ > c(k)n−
3
4 log n

)
= O(n−k). (A-1)

Equivalently,

P

(∣∣∣∣∣Mn −
1
n

n∑
i=1

g(Zi)

∣∣∣∣∣ > cn−
3
4 log n

)
= O(n−k), (A-2)

where g(Zi) are defined as (I(Zi<0)− 1
2
)

φ(0) , where φ is the standard normal density function.

We also notice that E(g(Z1))=0 and var(g(Z1))=π/2. We will now show that condition

B is satisfied.

Firstly, notice that, max1≤k≤n|Mk| ≤ max1≤k≤n|Zk|. We also have,

P (max1≤k≤n|Zk| > c log n) ≤ n (P (|Z1| > c log n)) which converges to zero. Therefore,

applying Theorem 1, we have, Mn(t) converges weakly to the process M(t) as given in

(a). To prove part (b), observe that the statistic An = 1
n

∑n
i=1 Zi satisfies conditions A1

and A2 with θ = 0 and g(Z1) = Z1. Now using Theorem 2, the process (Mn(t), An(t))

converges weakly to the process X̃(0) exp {(µt, µt) + σ(W1(t) + c1W2(t),W1(t))} as n

→∞. The proof is complete observing that the process An(t) converges weakly to X(t).

To prove corollary 2, we will need the following lemmas. Let X1, X2, . . . , Xn be IID

standard normal random variables. Now define,

Fn(x) =
1

n(n− 1)

∑∑
i6=j

I

(
Xi + Xj

2
≤ x

)
,

F (x) = Φ(
√

2x),

and

F ∗
n(x) =

1
n

n∑
i=1

Φ(2x−Xi).
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Also define, for any x ∈ R,

Rn(x) = [Fn(x)− F (x)]− 2 [F ∗
n(x)− F (x)] .

Lemma 1: Under this notation, we have

P (supx∈R|Rn(x)| > cn−1 log n) = O(n−k)

for any k > 0.

proof: We first show that, for any real number x and any k > 0,

P (|Rn(x)| > cn−1 log n) = O(n−k).

To prove this, we will state the following result by Arcones(1996).

Let {Xi : i ∈ N} be IID random variables. Let f be the kernel of a degenerate

U-statistic with ‖f‖∞ ≤ c. Then the inequality

P

n−m/2

∣∣∣∣∣∣
∑
In
m

f(Xi1 , Xi2 , . . . , Xik)

∣∣∣∣∣∣ > t

 ≤ c1 exp(−c2(t/c)2/m) (A-3)

holds for any t > 0 where c1, c2 are positive constants depending only on m and In
m

denotes the set {(i1, i2, . . . , im) : ij ∈ N, 1 ≤ ij ≤ n, ij 6= ik if j 6= k}.

Now, let f(X1, X2) =
[
I
(

X1+X2
2 ≤ x

)
− Φ(

√
2x)

]
− 2

[
Φ(2x−X2)− Φ(

√
2x)

]
.

Notice that

Rn(x) =
1

n(n− 1)

∑
(i1,i2)∈In

2

f(Xi1 , Xi2). (A-4)

Applying the above result to this f at t = 2k
c2

log n, we get

P

(
|Rn(x)| > n−1

(
2k

c2
log n

))
≤ c1 exp

(
−c2

2k log n

2c2

)
= c1n

−k, (A-5)

for any x ∈ R and any k > 0, i.e, we have,

P (|Rn(x)| > cn−1 log n) = O(n−k) (A-6)

for any x ∈ R and for any k > 0. Define An = {ω : |Xi(ω)| > log nfor some i=1,2,. . . ,n.}.

Notice that P (An) = O(n−k) for any k > 0.
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P (supx∈R|Rn(x)| > cn−1 log n)

= P (supx∈R|Rn(x)| > cn−1 log n, An) + P (supx∈R|Rn(x)| > cn−1 log n, Ac
n)

≤ P (An) + P (supx∈R|Rn(x)| > cn−1 log n, Ac
n).

It suffices to show that,

P (supx∈R|Rn(x)| > cn−1 log n, |Xi| ≤ M, i = 1, 2, . . . , n) = O(n−k).

Now, we break up the interval [− log n, log n] into intervals of the form [ai, ai+1], with

a0 = 0, a−L = aL = log n such that, ai−ai−1 = 1
n for i ∈ {−L + 1,−L + 2, . . . ,−1.0, 1, 2, . . . , L− 1}.

For x ∈ [ai, ai+1], we have

Rn(ai−1)−
c

n
≤ Rn(x) ≤ Rn(ai) +

c

n
.

Hence,

P (sup|x|≤log n|Rn(x)| > cn−1 log n, Ac
n)

≤
∑L

i=−L P
(
supx∈[ai,ai+1]|Rn(x)| > cn−1 log n, Ac

n

)
≤
∑L

i=−L P
(
max{|Rn(ai)|, |Rn(ai+1)|} > cn−1 log n, Ac

n

)
≤ 2

∑L
i=−L P (|Rn(ai)| > c

2n−1 log n)

= O(n−k).

Now, we will show that

P (sup|x|≥log n|Rn(x)| > cn−1 log n, Ac
n) = O(n−k).

If x < − log n, |Xi| ≤ log n, i = 1, 2, . . . , n, then Fn(x) = 0 and F (x) = O(n−k)

1 ≤ F ∗
n(x) = 1

n

∑n
i=1 Φ(2x−Xi) = O(n−k) and hence,

|Rn(x)| = |F (x) − 2F ∗
n(x)| = O(n−k). On the other hand, if x > log n and |Xi| ≤

log n, i = 1, 2, . . . , n, we have 1 − F (x) = Φ(−
√

2x) = O(n−k), Fn(x) = 1, and

1− F ∗
n(x) = O(n−k) and hence,

|Rn(x)| = |1 + F (x)− 2F ∗
n(x)|

= |2(1− F ∗
n(x))− (1− F (x))|

≤ 2|1− F ∗
n(x)|+ |1− F (x)|

= O(n−k).

Therefore,from the above observations, we have

P (supx|Rn(x)| > cn−1 log n, |Xi| ≤ M, i = 1, 2, . . . , n) = O(n−k).
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Hence we have,

P (supx|Rn(x)| > cn−1 log n) = O(n−k) for any k > 0.

Lemma 2: For any k > 0, there exists a c(k) > 0 such that

P (supx∈R|F ∗
n(x)− F (x)| > c(k)n−1/2 log n1/2) = O(n−k).

proof: This proof is standard and is omitted here.

As a simple consequence of Lemmas 1 and 2, we have

Lemma 3: For any k > 0, there exists a c(k) > 0 such that

P (supx∈R|Fn(x)− F (x)| > c(k)n−1/2 log n1/2) = O(n−k).

Lemma 4: For any k > 0,

P (|HLn − 0| > cn−1/2 log n1/2) = O(n−k). (A-7)

proof: In view of Lemma 3 and the fact that Fn(HLn) = F (0)± 1
n(n−1) ,we have,

P (|F (0)− F (HLn)| > cn−1/2 log n1/2) = O(n−k).

Now note that,

|HLn − 0| > cn−1/2 log n1/2 ⇒ |F (HLn − F (0))| > 1
2
c
√

2πn−1/2 log n1/2

for all large n and hence the claim.

Lemma 5: For any k > 0 and a suitable choice of a constant c > 0,

P (|ξn| > cn−1 log n) = O(n−k)

where ξn = −2[(F ∗
n(HLn)− F (HLn))− (F ∗

n(0)− F (0))].
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proof:

Note that

ξn(x) = −2
{
HLn(F ∗′

n (0)− F ′(0)) + HL2
n

2 (F ∗′′
n (ω)− F

′′
(ω))

}
for some ω.

|F ∗′′
n (ω)− F

′′
(ω)| ≤ K for some constant K.

F ∗′
n (0)− F

′
(0) = 2

n

∑n
i=1 φ(−Xi)−

√
2φ(0).

Noting that E[F ∗′
n (0)] = F

′
(0), we observe that F ∗′

n (0)− F
′
(0) is a centered IID mean

and hence,

P (|F ∗′
n (0)− F

′
(0)| > cn−1/2 log n−1/2) = O(n−k).

P (|ξn| > cn−1 log n)

≤ P (2|HLn||F ∗′
n (0)− F

′
(0)| > cn−1 log n) + P (kHL2

n > cn−1 log n)

≤ P (|HLn| > c1n
−1/2 log n−1/2) + P (|F ∗′

n (0) − F
′
(0)| > c2n

−1/2 log n1/2) + P (HLn >

c3n
−1/2 log n1/2)

which is O(n−k) for suitable choices of c,c1,c2 and c3. Hence the claim.

Corollary 2:

proof: Notice that,

ξn = −2[(F ∗
n(HLn)− F (HLn))− (F ∗

n(0)− F (0))]

= 1√
π

[
2
√

π(F (HLn)− F ∗
n(HLn)) + 2

√
π

n

∑n
i=1(Φ(−Xi)− 1

2)
]

= 1√
π

[√
π(Fn(HLn)− F (HLn)) +

√
πRn(HLn) + 2

√
π

n

∑n
i=1(Φ(−Xi)− 1

2)
]

= 1√
π

[√
πHLnF

′
(0) +

√
π HL2

n
2 F

′′
(ω) +

√
πRn(HLn) + 2

√
π

n

∑n
i=1(Φ(−Xi)− 1

2)
]

= 1√
π

[
HLn + 2

√
π

n

∑n
i=1(Φ(−Xi)− 1

2)
]
+ HL2

n
2 F

′′
(ω) + Rn(HLn).

Using lemmas 1,4,5 and the above equation, (noting that F
′′
(ω) is bounded) we have,

P (|HLn +
2
√

π

n

n∑
i=1

(Φ(−Xi)−
1
2
)| > cn−1 log n) = O(n−k)

for any k > 0. Condition A2 of theorem 1 can be proved similarly as in corollary 1. To

show part(b), we consider the joint process (HLn(t), An(t)). By Theorem 2, this pro-

cess weakly converges to the process X̃(0) exp {(µt, µt) + σ(W1(t) + c2W2(t),W1(t))}

as n →∞. Again as was observed in the proof of corollary 1, the proof is complete by

noting that An(t) weakly converges to X(t).
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Corollary 3:

proof:

For a weight function w, 0 ≤ w ≤ 1, let us define

Ln(x) =
∫ ∞

−∞
xw(Fn(x))dFn(x).

and

L(x) =
∫ ∞

−∞
xw(F (x))dF (x)

where Fn(x) = 1
n

∑n
i=1 I(Xi ≤ x) and F (x) = Φ(x).

As can be observed from the above equations, an L-Statistic Ln is a weighted linear

combination of order statistics. So, TRn can be written as Ln for a suitable choice of

weight function w. Let us also define ,

Rn =

∣∣∣∣∣(Ln − L)− n−1
n∑

i=1

Zi

∣∣∣∣∣
where

Zi =
1

1− 2α

∫ 1−α

α

p− I(Xi ≤ ξp)
φ(ξp)

dp

for i = 1, 2, . . . , n. Under the above notation, Singh(1981) shows that there exists a

c > 0 depending on k, such that,

P (Rn > cn−1 log n) ≤ n−k.

This proves condition A1 and condition A2 follows from the observation that for any

α ∈ (0, 1),

|TRn| ≤ max1≤k≤n|Zi| = OP (log n).

Hence, TRn converges to a Geometric Brownian motion with mean parameter µ and

volatility parameter σ
√

fα. For part(b), notice that it follows from Theorem 2 that the

process (TRn(t), An(t)) converges weakly to X̃(0) exp {(µt, µt) + σ(W1(t) + c3W2(t),W1(t))}.

The result is immediate from the fact that An(t) converges weakly to the process X(t).

Corollary 4:

proof:

We will prove the result for the case of LTRn(t). The proof for the case of UTRn(t) is
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very similar and is left as an exercise for the interested reader. Notice that LTRn is a

trimmed mean and hence can be written as a L-statistic. Noticing this, condition A1

can be verified using the result by Singh(1981) stated in the previous proof. Condition

A2 follows from the fact that,

|LTRn| ≤ max1≤k≤n|Zi| = OP (log n).

Finally, part(a) follows from the fact that the second term in equation (3.30), given by
θ([nt]+α)√

n
is of the same order as θ

√
nt and . Part(b) can be easily verified as before.

Corollary 5:

proof:

We first notice that, part (a) is a direct consequence of condition C1. We will prove

that, for any r > 0 and any β > 0, there is a sequence of positive real numbers bn ↓ 0

such that

P
(
n
∣∣∣Tn(δ)− T J

n (δ)
∣∣∣ > βbn

)
= O(n−r). (A-8)

Notice that this is a much stronger condition when compared to C1. To this end, we

first notice that, since N(T ) is a Poisson random variable; for any given ε > 0, there is

a K ∈ N such that for any r > 0,

P (N(T ) > K log n) = O(n−r) (A-9)

Now, let us define the set

A = {ω : N(T )(ω) ≤ K log n}. (A-10)

We note that under the assumption that N(T ) ≤ K log n, there are at the most [K log n]

many Yis which are nonzero and hence T J
n lies between the (1

2−
k log n

n )th and (1
2+k log n

n )th

quantiles of the set {δ1, δ2, . . . , δn}. This observation yields,

P
(
n
∣∣∣Tn(δ)− T J

n (δ)
∣∣∣ > βbn

)
≤ P

(
n
∣∣∣Tn(δ)− T J

n (δ)
∣∣∣ > βbn, A

)
+ P

(
n
∣∣∣Tn(δ)− T J

n (δ)
∣∣∣ > βbn, Ac

)
≤ P

(√
n
∣∣∣F−1

n (1
2)− F−1

n (1
2 −

K log n
n )

∣∣∣ > βbn

)
+P

(√
n
∣∣∣F−1

n (1
2)− F−1

n (1
2 + K log n

n )
∣∣∣ > βbn

)
+ O(n−r)

where Fn is the empirical CDF of Z1, Z2, . . . , Zn ∼ N(0, 1). It remains to show that
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the first two terms are O(n−r) for any r > 0. This follows from the following two

statements

(i) For any t ∈ [ε, 1− ε] and for any r > 0 there is a c > 0 (depending on r) such that,

P

(∣∣∣∣F−1
n (t)− F−1(t) +

Fn(t)− F (t)
f(F−1(t))

∣∣∣∣ > cn−3/4 log n

)
= O(n−r), (A-11)

(ii) For any t ∈ (0, 1), for any r > 0 and for any real sequence βn = o(n−1/2 log n1/2)

there is a c > 0 (depending on r) such that,

P
(
|(Fn(t)− F (t))− (Fn(t + βn)− F (t + βn))| > cn−3/4 log n

)
= O(n−r). (A-12)

It is straight forward to see the claim by applying statement (i) at t = 1/2 and

statement (ii) at t = 1/2 and βn = ±K log n
n and then combining these two. Now, it

suffices to vindicate the above two statements. The first statement (i) follows from Ba-

hadur’s quantile representation (1966) and the second statement follows by observing

that for any s > 0,

P
(
|(Fn(t)− F (t))− (Fn(t + βn)− F (t + βn))| > cn−3/4 log n

)
= P

(
exp {sn |(Fn(t)− F (t))− (Fn(t + βn)− F (t + βn))|} > exp{scn1/4 log n}

)
≤ exp(−scn1/4 log n)Mξ(s) (Markov Inequality)

where, ξ = n |(Fn(t)− F (t))− (Fn(t + βn)− F (t + βn))| and Mξ(s) is the moment

generating function of the variable ξ at s. Note that ξ is the absolute value of a

centered sample sum of indicator variables I(t < Xi < t + βn). Now observe that,

Mξ(s) = exp(log(Mξ(s))) ≤ exp(E(sξ)) ≤ exp(s
√

var(ξ)) ≤ exp(s
√

log n).

Therefore,
P
(
|(Fn(t)− F (t))− (Fn(t + βn)− F (t + βn))| > cn−3/4 log n

)
≤ exp(−scn1/4 log n + s

√
log n)

which is O(n−r) for any r > 0 for a suitable choice of s. Hence the claim.
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