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ABSTRACT OF THE THESIS

Performance and Hardware Complexity Analysis of Programmable
Radio Platform for MIMO OFDM based WLAN Systems

by Vijayant Bhatnagar

Thesis Director: Professor Predrag Spasojevic

Emerging wireless technologies and standards present a design space with multiple dimensions

in terms of time, physical hardware space, and technology trends. Efficient evaluation of a de-

sired combination of these dimensions to support multiple technologies and standards presents

a significant challenge. We study the feasibility of a multiprotocol architecture without sacrific-

ing the Quality of Service. An architecture facilitating such a mechanism can be implemented

at different layers in the network stack with each layer offering a tradeoff between complexity

and latency. Careful analysis of the physical layer reveals that most blocks of the transceiver

can be reused for different protocols without significant architectural change. In addition to

the feasibility analysis, we also identify common blocks in the network stack that could be

possibly reused buying us significant hardware gains without sacrificing the aggregate system

throughput. Our study presents the gate count complexity and the performance analysis of

programmable radio architecture with the 802.11n (Draft 3.0) MIMO-OFDM based protocol

stream and 802.11a OFDM based WLAN protocol stream. In this thesis, we demonstrate that

multiple protocols can be supported using the same hardware under acceptable latency require-

ments. Complexity of the system in terms of gate count has been determined. It has been

found that for shorter frame sizes, it is better to process less number of OFDM symbols at a

time. However, for larger frame sizes, it is beneficial to process large number (four to eight) of

ii



OFDM symbols at a time. Also, the minimum clock rate required to run the hardware, would

vary depending upon the number of OFDM Symbols processed. The switching and multi-

plexing overhead of the programmable radio platform has also been investigated. Finally, our

simulator is capable of evaluating bottlenecks, if any.
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Chapter 1

Introduction

1.1 Motivation

For the present WLAN deployment and emerging 4G Communications standards, there is a

need to build an infrastructure with different PHY, MAC, and Network layer technologies and

that is capable of operating in different spectrum bands. Such an infrastructure necessitates a

common architecture (WiNC2R - WINLAB Network-centric Cognitive Radio Hardware Plat-

form [3]) for multi-protocol processing. One of the biggest advantages of this architecture

would be to minimize the design effort and leave the matter of reconfigurability in the hands

of the user. We need to allow some degree of flexibility for different radio specifications which

would help in upgrading the architecture to meet new radio specifications with minimal effort

and less amount of replacements. We have to explore the radio specifications that can benefit

from this common architecture.

In essence, this architecture would require flexible physical and higher layer network pro-

cessing and adaptability for per packet protocol switching. The flexibility, while an important

asset, needs to be added with the marginal compromise in cost and performance in comparison

to a fixed function hardware solution. This architecture would be an enormous tool for identify-

ing and evaluating appropriate wireless technologies for the mobile devices. This architecture

would also help in identifying pros and cons of the hardware vs. software implementation trade-

off and understanding the limitations of the programmable CPU architecture in addressing the

needs of emerging wireless technologies.
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1.2 General Statement of the Problem

WiNC2R allows flexible processing in a specific application domain. Most of the key elements

of the FPGA based architecture for a 802.11a receiver have been designed prior to this work [4]

receiver has already been done [3]. The main problem was to reuse physical layer components

designed for 802.11a [4] on WiNC2R and extend it to incorporate MIMO-OFDM based WLAN

systems (802.11n [5] compliant). 802.11n protocol standard was chosen as a reference point

for analysis, design and evaluation of MIMO-OFDM based WLAN systems since it is the next

generation MIMO WLAN standard. Problems addressed by this thesis can be broadly divided

into five major sub-problems:

1. There was a need to support all the features mandated by the standard. Hence, there was

a need to explore all the PHY layer transmission and reception minimum requirements of

the overall system.

2. Some of the PEs (PE is a group of communication blocks like interleaver, encoder etc.

done on the basis of localized communication pattern and related functionality e.g. En-

coder PE is a combination of encoder and interleaver) in the transmitter and receiver

needed to be redesigned in order to be able to support MIMO-OFDM systems. This

was accompanied by exploring different possible architectures for each PE including the

Modulator, Encoder, FFT etc. The ensuing latency and complexity for each of the blocks

had to be analyzed. The architectural tradeoffs and limitations had to be known for a

given specification.

3. Some of the PEs were added because of the need for more sophisticated PHY layer trans-

mission and reception techniques like cyclic delay diversity based channel estimation and

MMSE based MIMO Detection.

4. All the command specifications designed for 802.11a compliant architecture had to be

modified for improved utilization and, more generally, for upgrading the architecture.



3

5. Last but not the least, the overall architectural performance was simulated using MAT-

LAB 1. The simulation resuls are interpreted in terms of

• Control Overhead Clock cycles

• Optimal chunksize

• Performance Factor (α)

• PE Utilization

This interpretation has been done for a given throughput specifications. Also, analysis

had to be done for viewing system performance while supporting multi-protocol streams

like 802.11a and 802.11n [5].

1.3 Prior Work

Prior work consisted of OFDM based WLAN implementation on WiNC2R architecture. This

work was taken as a baseline for designing MIMO-OFDM based WLAN systems. It is assumed

that UCM has enough capabilities to control processing of physical and higher layer radio

protocols. Also, the 802.11a compliant architecture is being built using FPGAs. ASIC based

implementation has been assumed as the focus of this work.

1.4 Contribution

The contribution to the thesis has basically been highlighted in section 1.2. They are rested in

the following:

• Designing transmitter and receiver for MIMO-OFDM compliant system

• Complexity analysis for the design. We note that InCyte Lite tool 2 was used for getting

the complexity of IP Cores for ASIC design.

• Performance analysis of the design for the present architecture.

1MATLAB is a registered product of MathWorks Inc.
2InCyte is a registered trademark of ChipEstimate.com
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1.5 Thesis Organization

Rest of the thesis is organized as follows. Chapter 2 presents a detailed picture on the specifi-

cations required to be supported for 802.11a and 802.11n based WLAN systems. In Chapter 3,

we give an overview of the radio processing platform and the design of PEs at the transmitter

and the receiver. Command specifications would also be described for PEs. Chapter 4 explains

the simulation strategy following a pipelining mechanism. Chapter 5 describes the simulation

results. In Chapter 6, we draw conclusions for the design and some strategies for future work.
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Chapter 2

PHY LAYER SPECIFICATION FOR A 802.11N BASED WLAN
SYSTEMS

In this chapter we would explore briefly explore some of the characteristics of 802.11n archi-

tecture and hardware design individual components of the transceiver.

2.1 Minimum Requirements

Some of the PHY Layer features of 802.11n based systems are :

• LDPC Codes are optional and BCC codes are mandatory.

• GI of 400ns is optional and GI of 800ns is mandatory.

• Other features like beamforming, greenfield format are optional.

• 40 MHz operational bandwidth is optional. 20 MHz bandwidth compliance is mandatory.

• PPDU Format has been classified into Non-HT Format (compliant to legacy devices like

802.11a and 802.11g), HT-Format (no compatibility with legacy devices) and Mixed

Format (conforms to both legacy and HT devices).

• Support of 20 MHz Non-HT Format and 20MHz HT Format with one and two spatial

streams is mandatory at AP.

• 20 MHz Non-HT Format and 20 MHz HT Format with one spatial stream is mandatory

at non-AP.

• Four pilot subcarriers are used in 20 MHz mode and six pilot subcarriers are used in 40

MHz mode. On the other hand there are 52 data subcarriers for 20 MHz channel and 108

subcarriers for 40 MHz channel.
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Generic 802.11n compliant transmitter has been represented in Figure2.1. The transmitter

configuration has been restricted to 2X2 MIMO-OFDM systems.

2.2 Modulation and Coding Schemes

The modulation and coding schemes used for the design have been highlighted in Table 2.2.

Table 2.1: MCS Used
MCS Mod1 Mod2 R NBPSCS(iss) NSD NSP NCBPS NDBPS Data

Rate
0 BPSK - 1/2 1 52 4 52 26 6.5
1 QPSK - 1/2 2 52 4 104 52 13.0
2 QPSK - 3/4 2 52 4 104 78 19.5
3 16-QAM - 1/2 4 52 4 208 104 26.0
4 16-QAM - 3/4 4 52 4 208 156 39.0
5 64-QAM - 2/3 6 52 4 312 208 52.0
6 64-QAM - 3/4 6 52 4 312 234 58.5
7 64-QAM - 5/6 6 52 4 312 260 65.0
8 BPSK BPSK 1/2 1 52 4 104 52 13.0
9 QPSK QPSK 1/2 2 52 4 208 104 26.0
10 QPSK QPSK 3/4 2 52 4 208 156 39.0
11 16-QAM 16-QAM 1/2 4 52 4 416 208 52.0
12 16-QAM 16-QAM 3/4 4 52 4 416 312 78.0
13 64-QAM 64-QAM 2/3 6 52 4 624 416 104.0
14 64-QAM 64-QAM 3/4 6 52 4 624 468 117.0
15 64-QAM 64-QAM 5/6 6 52 4 624 520 130.0
16 16-QAM QPSK 1/2 6 52 4 312 156 39.0
17 64-QAM QPSK 1/2 8 52 4 416 208 52.0
18 64-QAM 16-QAM 1/2 10 52 4 520 260 65.0
19 16-QAM QPSK 3/4 6 52 4 312 234 58.5
20 64-QAM QPSK 3/4 8 52 4 416 312 78.0
21 64-QAM 16-QAM 3/4 10 52 4 520 390 97.5

where,

R = Code Rate;

MCS = Modulation and Coding Scheme Index;

Mod1 = Modulation on First Stream;

Mod2 = Modulation on Second stream;

NBPSCS(iss) = Number of coded bits per single carrier per spatial stream;

NSD = Number of data subcarriers;
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NSP = Number of pilot subcarriers;

NCBPS = Number of coded bits per OFDM Symbol;

NDBPS = Number of data bits per OFDM Symbol;

Data Rate = Theoretical Data rate considering 800ns GI.

From the Table 2.2, three types of architectures Figure 2.2-Figure2.4 can be derived. We

note that the number of encoders have been restricted to one.
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2.3 Transmitter

The transmitter basically consists of the following blocks.

• Encoder Parser : It demultiplexes the scrambled bits among NES in round robin fashion;

where NES is the number of encoders used. Since we have only one encoder block,

encoder parser is removed from the three configurations.

• Encoder : It has been assumed that encoder is Binary Convolutional Code encoder with

generator polynomials G0=133 and G1=171 with constraint length K = 7 .

• Stream Parser : It divides the outputs from the encoder to be sent to interleaver and

mapper in round robin fashion.This sequence of bits sent to the interleaver is termed as

spatial stream.

• Frequency Interleaver: It applies three levels of permutation in Interleaver. The first two

levels of interleaver are exactly similar to that of legacy systems. The resultant of this

interleaving is a full interleaver. We note that this block operates on serial data. Hence, it

is anticipated that it will have large latency. We would analyze this block in much detail

in subsequent chapters.

• STBC [6]: Since our MIMO model is 2X2, simple Alamouti scheme [7] would be used

for STBC.

• Spatial Mapper It maps space time streams to transmit streams of the Transmitter. A

matrix multiplcation is being performed. For 2X2 systems, this matrix multiplication

simplifies to store and forward ofdm symbol procedure. If the number of space time

streams is equal to the number of transmit stream, a simple one-to-one mapping is done.

• CSD : This is also termed as CDD. The OFDM symbol is cyclically shifted by different

delay on each of the transmit streams. This leads to diversity in frequency domain since

cyclic shift in time domain is equivalent to frequency shift in frequency domain. This

concept applied on Long sequence of the Preambles would be used for estimating chan-

nel. [8], [9] and [10] have given an insight on CSD and how can it be used for better BER

without increasing any complexities at the receiver.
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• FFT : FFT block would be used for modulation of OFDM Symbol from frequency do-

main to time domain. FFT period defined in both the standards is 3.2us.

We note that PPDU encoding process will be exactly similar to that described in the 802.11n/802.11a

standard [Section 20.3.4 of [5]].

2.3.1 Architectural Design of the Transmitter

• Encoder, Stream Parser and Interleaver: These blocks operate on data serially. Because

of serial operation, these blocks have higher latency. There are two possible architectures

for these blocks. BCC Encoder can be implemented using parallel architecture with

reduced latency but at the cost of higher complexity. Stream Parser can be implemented

by wiring specific bit input to specific bit output. Interleavers can also be designed using

parallel architecture and serial architecture. We shall analyze both the architectures.As

shown in Figure2.5, the distributed RAM is 1 bit wide with 1024 memory locations. The

input address generator generates address for every bit on every clock cycle depending

upon the type of protocol stream. We shall asssume that all the PE know which protocol

is it operating on. This information is got through commands which would be described

in detail in Chapter 3. This shall be analyzed in Chapter 3 in detail. The read and

write operation alternate between the two RAMs A and B. Hence this kind of method is

termed as ping-pong buffer method. This method has an advantage of lower complexity

but higher latency. On the other hand, Figure 2.6 shows array of 1024 registers(1-bit

wide). All the bits are fed at a time inside the registers using 16-bit wide or 32-bit wide

data bus. At the output stage, these bits are read using 16-bit wide or 32-bit data bus.

Though this method has latency of only one clock cycle for interleaving, the complexity

of this kind of architecture is very high because of 1024 registers. We note that 1024

registers have been chosen in order to be able to accomodate largest chunk size of future

technologies. For the present design, not all of 1024 registers shall be required.
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• FFT : The FFT is another bulky block in terms of latency. Since programmable radio

architecture operates on chunks (chunk means the number of OFDM symbols processed

at a time. This could be one, two, four or eight.), FFT block has different latencies de-

pending upon the chunk size and the FFT point. The latency of FFT depends on δ and

χ where δ (equation 2.1 )is the initial latency depending upon the type of architecture

used and χ is the latency depending upon the chunksize. Hence, as the chunk size in-

creases,total latency Π becomes nearly equal to χ. The effect of δ decreases. This is

an important result for our analysis because programmable radio architecture splits the

MAC data frame into chunks. Hence, if we operate on larger chunks, the latency would

be minimal. Hoewever, this is not always the case. This case shall be further investigated

in Chapter 5. We also note that FFT block used for the analysis has reconfigurable FFT

Length. Further, the same FFT block can be used for IFFT operation. Since, WLAN

based transceivers run on half-duplex mode, we can save considerable amount of logic

gates by reusing the same FFT block for FFT/IFFT operation.

Π = δ + χ; (2.1)

• Cyclic Prefix Insertion : Cyclic prefix insertion is handled by copying elements of RAM

after taking the IFFT. This operation has very low latency.

• Modulator : This block is also called as Mapper in the literature. The latency of this

block depends on the modulation block size and clock cycles required to read the data.

Latency would also depend on the kind of architecture used. In this case wordsize of

32-bit would have a better performance over 16 bit wordsize. We assume that modulator

block has all the information about the protocol stream under operation. This is further

detailed in following chapters.

• Preambles : Legacy preambles of PPDU Header is similar to that in 802.11a compliant

devices. However, the HT-preambles are cyclically shifted and modulated with QBPSK

(i.e. on imaginary axis of the constellation) using 1/2 rate BPSK modulation. This is

done so that the legacy devices do not see HT symbols. The HT-preambles consist of



16

HT-Signal,HT-STF and HT-LTF. HT-Signal field is used to better understand the frame

in terms of modulation, coding rate, bandwidth of the channel etc.. HT-STF is used for

timing acquisition and coarse frequency acquisition of HT compliant devices. HT-LTF

at the receiver help in determining the number of spatial streams used by the transmitter.

It is also used as sounding PPDUs for beamforming (optional feature not supported by

programmable radio architecture).

2.4 Receiver

The MIMO OFDM receiver is more complex than transmitter in terms of gate level complexity.

The latency requirements imposed upon by the MAC layer is more stringent hence, parallel

processing is not feasible to full extent. A typical MIMO-OFDM based receiver block diagram

has been shown in Figure 2.7.
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These blocks have been further described in next subsection 2.4.1

2.4.1 Architectural Design of the Receiver

• Synchronizer :This block helps the receiver to get the timing information of the OFDM

Symbol. Then frequency correction is done before FFT in order reduce the effect of

inter-channel interference [11]. The Schmidl and Cox algorithm [12] based synchronizer

has been developed for 802.11a based systems. There can be two different architectures

possible for the synchronizer as shown in Figure2.8 and figure2.9.

In the Figure2.8, there is only one synchronizer block shared among the two streams.

The advantage of having such a block is to minimize gate level complexity. However, we

would have to run this block twice the speed of normal clock rate for one synchronizer.

For our analysis, we have assumed the second implementation of the synchronizer block

shown in Figure2.9 owing to the fact that we don’t have to run the receiver at higher

clock rates. Secondly, our goal is to estimate feasibility of multiple protocol streams.

Since the synchronizer block is in directly coupled with the analog circuit, the actual

latency computation starts after synchronization is done. Hence, the design of this block

has not been considered for the present analysis.
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• Channel Estimation: This block is used to estimate the channel coefficients. A number of

techniques for channel estimation have been highlighted in [13], [14], [15] and [9]. How-

ever, these techniques cannot be applied to our architecture based on 802.11n because it

has been assumed by them that transmitters maintain time domain orthogonality while

transmitting training sequences (Long preambles) to the receiver. This is not the case in

programmable radio architecture. We transmit long sequences after cyclically shifting the

symbols in time domain. As a result of this we have orthogonality in frequency domain.

Hence, we shall use the technique highlighted in [16]. A block diagram based on this

scheme has been shown in Figure2.10 for one stream. We also note that this operation is

done only once and it is assumed that the channel response doesn’t change for the rest of

the frame.

Figure 2.10: Typical Channel Estimation Scheme for MIMO-OFDM receiver. (Only one of the
two possible streams has been shown in the figure).

• MIMO Detector: This block is also termed as equalizer because it nullifies the effect of

channel and gives a good estimate of the transmitted symbol. Ideally the MAP rule offers

the optimal performance. However, it has got a disadvantage of high complexity. For N

transmitter system with modulation scheme Ω, where Ω is a modulation scheme like ±
Ω ± jΩ for 4-QAM, the complexity is |ΩN | since it has to search over all the symbols

in codebook and find the minimum distance. We shall use MMSE linear receiver [17]
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for our analysis. We note that zero-forcing based receiver has not been used (though it is

much simpler than MMSE based receiver in terms of hardware complexity and latency)

because it has got a drawback of enhancing noise power [17] [18]. Typically MMSE

based equalizer is given by [17]

W =
ρ

M
H†(

ρ

M
HH† + N0IN )−1 (2.2)

where, H† is the Moore-Penrose pseudoinverse of H [19].

W can then be used to linear estimate the transmitted symbol â

âLLSE = Wr (2.3)

where r is the received symbol.

Typical implementation of equalizer would be done using array of MAC blocks i.e.

Multiplier-Adder-Cordic blocks. It can be easily found that the number of Multipli-

cation, Addition and Cordics required to find equation 2.2 is 18 Complex multipliers, 17

Complex Adders and 1 Cordic square root block. The latency of 32-bit signed complex

multiplier is approximately 5 clock cycles, 1 clock cycle for Adder and approximately 31

clock cycles for CORDIC to find square root [20]. When this operation is applied across

all subcarriers, it becomes very complex in terms of gate count. Hence, this block shall

be reused for other subcarriers.

• Demodulator: This block is similar to the Modulator block of transmitter. This block

is capable of handling two streams at a time without much increase in latency and com-

plexity.

• Deinterleaver : This block is exactly similar to that of Interleaver block of tranmsitter.

This block has the capability of handling two streams at a time.
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• Viterbi Decoder: This block decodes the bits generated by convolutional encoder. Trace-

back RAM method has been designed for operation of Viterbi Decoding. The architec-

tural diagram of viterbi decoder is shown in Figure 2.11. Softdecision based decoding is

done. It consists of following blocks :

1. Branch Metric Unit: The branch metric unit calculates posteriori probabilities by

estimating the distance with all possible transmitted codewords. An efficient Branch

Metric Algorithm A has been developed for mapping the four level output of the

Branch Metric Table to 64 rows of ACS unit.

2. ACS Unit : This unit is called as Add Compare Select Unit. This unit compares

all the possible path metrics of the trellis. The path metrics are computed knowing

the information about the current state and the next state. For better performance

and lesser latency, parallel implementation (64 such units) of this unit has been

assumed.

3. Normalizer : This unit calculates the minimum path metrics and subtracts it from

all the branch of trellis. This helps to prevent the overflow problem encountered in

hardware systems.

4. Traceback Unit : This units consists of the RAM where all the possible path metrics

are stored. This unit is considered as the heart of the Viterbi Decoder. This unit is

most expensive with regards to complexity since it consists of four dual port RAM.

For reference, the operation of these four RAM have been shown in Figure 2.12.
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Figure 2.12: Pipelined operation of traceback RAM.

Viterbi decoder specification and design have been detailed in Appendix D.

• FCS Unit : This block calculates the Frame Check Sequence (CRC). Computing CRC

doesn’t involve much latency. The CRC implementation unit used here operates on 8bits

in parallel. It discards the frame if an error is found in it.
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Chapter 3

PROGRAMMABLE RADIO PLATFORM (WiNC2R)

3.1 Introduction to the Programmable Radio Platform

The Programmable radio platform consists of three blocks PE, system controller (UCM) and

common blocks. Each PE with these common blocks is termed as Functional Unit. Common

blocks are Memory associated with PE, Memory address interface, Command Processor and

Task Manager. Each UCM of FU has global knowledge and intelligence for collaboration. Each

block of FU is vividly described in later sections. On the whole, there exists a top level com-

munication among FU. This top level communication is handled by UCM which is described

in more detail below.

A block diagram describing the connection of these blocks is shown in Figure3.1
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Figure 3.1: Block diagram of building blocks of programmable radio architecture.

All the blocks have been briefly described below:

• UCM : This is the heart of the whole architecture. The block mainly performs three

functions :

1. Collaborating hardware modules : It ensures that all the hardware modules work

together in harmony. It maintains a database for keeping a record of each PE. It

also makes sure that tasks like preemption, scheduling, queueing etc. is performed

well.

2. Controlled processing resources sharing : It makes sure that some of the resources

like Memory and PEs are shared properly without any conflict. Also, the resources

are made available whenever required.

3. Control mechanisms for sequencing operations between hardware modules : It en-

sures that all the control mechanisms function properly. This is required because

all the other blocks totally rely upon control commands. Hence, if something goes
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wrong with these control signals, the architecture would collapse.

• PE : This block is the basic building block of the whole architecture. This block is

designed in such a way that the UCM overhead is less. We note that UCM overhead

is associated with the latency due to data transfer between PEs and some clock cycles

for preprocessing and postprocessing of data. As a result of which some of the closely

related blocks have been grouped in one PE Figures 3.2-3.4
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Also, the encoder block splits one stream into two streams in 802.11n mode with two

streams. However, it requires only one stream for legacy protocols. Figure 3.3.

Figure 3.3: Encoder block diagram capable of supporting two streams.

The PE level block diagram for the receiver is shown in Figure3.4.
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We see that blocks like Demodulator, Deinterleaver and Stream multiplexer have been

combined to form one Modulator PE in order to reduce UCM Overhead. The effect of

UCM Overhead has been analyzed in more detail in chatper 5

• Common Blocks: The common blocks are instantiated with each PE depending upon

the role of PE. These blocks help PE to

1. communicate with UCM

2. take appropriate action upon receiving a command from the UCM.

3. handle errors during processing and hence help PE level debugging.

4. generate addresses for input and output buffers associated with each PE.

5. handle tasks generated by other PE. It also helps to dispatch new tasks depending

upon the requirements.

6. handle preemption of low priority tasks by high priority tasks.

These common blocks are described in brief below:

– Command Processor : This block decodes the command sent by the UCM block

and generates an appropriate signal to the PE. Command flows and timing diagram

have been analyzed in more detail in section .

– Memory Interface Module : This block generates enable, start of frame and end of

frame signal so that the data can be easily processed by underlying blocks.

– Task Manager : It spawns new tasks either addressed to itself or addressed to some

other PE.

3.2 The Programmable Command Flow and Timing Diagram

In this section we shall analyze the command flow across PE at the transmitter and the receiver.

3.2.1 Transmitter Command Flow

As shown in Figure3.5, as soon as the header PE gets a command, it splits the frames into

chunks. There is a command associated with every chunk. The command includes all the PE
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specific attributes for processing. A typical command has been shown in Appendix B. As soon

Figure 3.5: Block diagram showing the command flow of the transmitter block.

as Encoder PE receives command TxCode from the header PE, it first processes the chunk

and then dispatches another command TxModulate for the Modulator PE. The modulator PE

processes the chunk and dispatches command to IFFT block for modulation into time domain.

When the PE sends a command, it also sends the data. The job of accomplishing data transfer

is done by UCM block. It also does the bookkeeping required for data transfer. TXPreambleC-

trlCSD specifies whether CSD should be inserted before the IFFT block or after it. This can

be analyzed by referring to figures 2.2 - 2.4. The timing diagram associated with the above

commands is shown in Figure 3.6 of subsection 3.2.2.

3.2.2 Transmitter Timing Diagram
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Each transmitter splits the frame into chunks. Each chunk is processed in one synchronous

time period. Allocation of synchronous period is done in such a way that the timing constraints

of OFDM symbol are met. The analysis in Chapter 5 would consider these aspects. We would

not be finding the actual synchronous period but we would find the minimum clock rate essential

to meet this period.

3.2.3 Receiver Command Flow
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The receiver command flow is quite similar to that of the transmit command flow but has

few complications. The receiver first receives the header, runs CRC on the header and then

analyzes the type of the frame i.e. modulation type, chunk size, coding rate etc. Hence, the

timing requirements for the receiver block is more stringent. The processing has to be done

before the interval of one OFDM symbol expires. This imposes a big constraint on the archi-

tectural design. This topic is more clearly discussed in chapter 5. As shown in Figure3.2.3, as

soon as the synchronizer is done with its job, it sends long sequence to the Channel Estimator

PE so that it can start this estimation. Once the Channel Estimator PE finishes finding the chan-

nel estimates, it sends a command RxChEq to the Equalizer PE. Once the channel estimates

are got, the secondary path (consisting of Channel Estimator PE) is not traversed. The data is

equalized from the stored channel estimates. Initially, the header reception is initiated by send-

ing RxHdrDemod command. The modulator block works on the equalized data to send out bits

to the Viterbi Decoder PE. The Viterbi Decoder PE decodes the data sends this data with the

command RxPLCPFrameCheck to the FCS block. If the CRC check passes, this data is sent

to the synchronizer block. The chunking is initiated by Frame Checker PE in the receiver as

opposed to the header PE in the transmitter. Once all the attributes of the frame are received

and decoded using the header, the normal operation of reception is done. The timing diagram

has been shown in Figure3.8.We also note that if the CRC on the header fails, the FCS PE sends

RxHdrFailCtrl command to the synchronizer PE to drop the frame.

3.2.4 Receiver Timing Diagram
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As shown in figure, the chunking process is initiated by the Frame Checker PE. This chunk-

ing is done every synchronous period. The task of Channel Estimation is done only once

throughout the frame and it is assumed that the channel characteristics do not change over the

rest of the data.

3.3 Half Duplex Operation of the PHY Layer

Since this transceiver runs on half duplex mode, either transmitter or receiver can be active at a

time. If the transmitter is transmitting the frame, it sends TxStartCtrl (not shown in the figure)

to the receiver block. This command shuts down the receiver. As soon as transmitter is done

with its job, it sends another command TxEndCtrl to the receiver enabling it.

3.4 Interfacing with the MAC Layer

The MAC layer sends RxStartRcvCtrl command to enable the PHY Receiver. This command

would be used like a bootup command. At the time of bootup, the MAC layer would specify

the kind of receiver to be implemented i.e. the number of streams to be used by the receiver.

At the time of bootup the CCA would be set to busy. Whenever the change of state of channel

is determined (i.e. CCA could be busy or idle), the PHY layer then sends ChannelBusyCtrl or

ChannelIdleCtrl command to the MAC layer. Once the reception of frame is finished, Chan-

nelIdleCtrl Command is dispatched to the MAC Layer. We also note that once the whole frame

is received, the CRC check sum is sent along with the command RxMACData command.

In the next section we shall analyze the simulator setup and strategies.
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Chapter 4

EXPERIMENT SETUP: SIMULATION STRATEGY

In this section we shall describe the simulation setup, assumptions and models for analyzing

transmitter and receiver.

4.1 Assumptions

• It is assumed that there are no queues. This assumption is valid because even though

there are asynchronous and synchronous queues in the programmable radio platform,

there isn’t any mechanism to monitor the queues and prevent overflows. Also, in the

present architecture for 802.11a, queues are not being used. But we note that the system

performance can definitely be increased if we incorporate and queue handling mecha-

nisms. In this case, we would also have to consider queueing mechanism overhead on

top of UCM overhead. Further, in absence of queues, a PE can only transfer the task to

the next PE if the next PE has completed its job. Otherwise, the PE will wait for the next

PE to finish its job.

• The transmitter and receiver are analyzed independently. This assumption is valid be-

cause our transceiver is half duplex. Hence, we have to select the worst case scenarios

for transmitter and receiver.

• We would not be analyzing MAC layer and UCM overhead of MAC layer because it is

out of the scope of this work.

• We assume that the analog circuit is reconfigurable and is capable of performing Analog

signal processing. This module is under development for the present architecture of

WiNC2R. This assumption is important because we are dealing with multiple standards

along with multiple specifications.
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• We assume that Peak to average ratio problem is handled by the analog circuit since this

topic is out of the scope of this thesis.

• Since puncturing and de-puncturing doesn’t require much overhead, this has been ne-

glected. This assumption is valid because puncturing blocks selects few bits from the

output of 1
2 rate convolutional encoder. It can be easily verified that the number of clock

cycles for performing this operation is minimal.

• It has been assumed that the MAC layer is capable of transmitting and receiving manda-

tory features specified in 802.11n [5] and 802.11a [4] standard.

• For the compatibility with the legacy devices, we are assuming other protocol stream to

be 802.11a compatible.

• For estimating the complexity of the architecture, InCyte 1 tool is being used for get-

ting average gatecount of IP cores. This would help us to have a rough estimate of our

architecture with respect to latency.

• Design of UCM block is not done. However, simulations have been done for testing

feasibility of this block and providing bounds on UCM clock overhead.

• The simulation is not event driven simulation but based on database known to the PE.

• It is assumed that all the PE function in pipeline.

• For the legacy systems, only one of the two receiver antennas would be sufficient be-

cause the signal on the other antenna would be cyclically shifted version of that on the

first antenna. Also, for mixed format or multiple streams we can dedicate one receiver

per stream. However this design totally depends on the front end receiver design of the

analog circuit. For the present analysis, we assume that we have multiple streams avail-

able at the same time on both the synchronizer blocks. However, for legacy systems, we

shall be using only one receiver antenna and the second receiver shall be switched off.

1InCyte is a product of Cadence Design Inc.
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4.2 Simulation Setup

In this section we shall understand the interfaces of the simulator in more detail.

4.2.1 Objective of simulations

1. For a given a set of (Ti, Ai) where Ti belongs to a set containing throughput and Ai

belongs to a set containing architectures, the simulator would estimate gatecount (com-

plexity), system throughput and per unit utilization. This would help us to know if we

can incorporate some extra functionality within the architecture.

2. To reduce the UCM overhead by efficiently deciding upon the chunk size.

3. To estimate and reduce latency

4. To estimate gate count/CLBs for fpga.

5. To estimate minimum clock rate for a given architecture and given throughput require-

ments.

4.2.2 Input parameters to the simulator

1. Word size 16 bit or 32 bit.

2. Number of OFDM Symbols to be processed : One, two, four or eight OFDM symbols.

3. Frame Size : Size of frame per stream.

4. Protocol : Protocol in use of each stream

5. Flexibility of reuse : Flexibility on reuse of architectural components like MAC (Multiplier-

Adder and Cordic), FFT etc.

4.2.3 Output of the simulator

The output of the simulator would be quantitative results that would gauge the performance of

the architecture. The performance metrics would be the complexity (gate count). Depending

on Latency and gate count, minimum clock rate would be computed.
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4.2.4 Top Level Interface specification of the simulator

Typically top level interface specifications of the simulator would be :

(Total Latency, Gatecount) = ncp simulator(Wordsize, Number of OFDM Symbols, Frame-

size, Protocol in use, Reuse parameter, System level parameters) where,

• Wordsize : The word size of the architecture.

– 0 : 16 bit wide word size.

– 1 : 32 bit wide word size.

– 2 : 64 bit wide word size (optional for future use. The present analysis is valid only

for 16-bit and 32-bit wide words)

• Number of OFDM Symbols : This indicates how many OFDM symbols would be pro-

cessed by each stream.

• Framesize : This would indicate the total number of data bytes to be transferred for each

protocol.

• Reuse parameter : This parameter if set would imply to reuse the hardware components

throughout the simulation. If reset, two components would be instantiated. This would

lead to larger occupancy of area but less latency.

• System level parameters This has been described below.

– Desired bit rate : Desired bit rate on each of the protocols to be tested.

– Clock frequency (the base frequency). This is the base frequency that is used for

all the standards. This is set to 20 MHz.

– Clock multiplication factor : This is the multiplication factor of Clock frequency

applied to target higher frequencies ASIC/FPGA design.

– Number of streams : The total number of streams to be used for MIMO case only.

For 802.11a case, this would be set to 0.

– Transmitter configuration to be used: The transmitter configuration to be used out

of the three possible transmitters. This parameter would differentiate between the

three possible transmitter configuration of 802.11n
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• Total latency: This would be the total estimated latency after adding individual latencies

for each chunks of each protocol and UCM overhead latency Appendix D.

• Gatecount: This would calculate the total gatecount depending on whether we are reusing

components in our design. This would also depend on the transmitter configuration cho-

sen.

4.3 Operation of the simulator

Figure 4.1: Diagram describing operation of the simulator.

As shown in the Figure4.1, the simulator decides which PE would be used based on config-

uration parameters written in the file. It then calls respective PE Interface. It also passes all

the necessary attributes to respective PE interface. Each PE interface returns gate-count and

latency depending upon the configuration. If the data size exceeds that of one chunk size, the

simulator would divide the data stream into smaller chunks and then estimate the total latency.

The same analysis is equivalently valid for the receiver also. The simulator estimates the total

latency taking into account pipelining operation as shown in Figure 4.2.
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Figure 4.2: Diagram describing pipelining operation of the simulator.

As shown in the Figure4.2,Idle time is defined as the time during which the PE doesn’t have

any chunk for processing. Processing Time is defined as the time during which PE processes the

incoming chunk.Wait Time is defined as the time during which the PE waits for its neighboring

PE to finish off the job so that it can either hand over the task to the next PE or take over the

task from the previous PE.

4.3.1 Estimation of latency

The latency estimation has been described in Appendix D. We would need to refer to the MCS

table as shown in figure 2.2

4.4 Receiver Model

It has already been pointed out that receiver design is more complex than transmitter. Hence a

model has been developed for analysis which is as described below. In this model, we assume
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that a new chunk is available for PE as soon as it is done processing the chunk. In reality, this

may not happen. This is clear from the Figure4.3 shown below. Practically there would be

some 4delay because of UCM Overhead.
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Figure 4.3: Diagram describing receiver model.
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Now let us see understand each case shown in the Figure4.3.

1. Case 1 : We have only one stream to process and we are processing two OFDM symbols

in one chunk. As a result of this we are left with processing two OFDM symbols in SIFS

period. We see that SIFS period is long enough to encompass the symbols. Hence, there

would not be any problem in processing this kind of streams.

2. Case 2 : We have only one stream to process and we are processing four OFDM symbols

in one chunk. Since our chunk size is large, we need to first wait for symbols to get

buffered and then process them. Also, we need to process these in only SIFS period.

Hence, we have to run our hardware at a higher clock rate.

3. Case 3: In this case, we have two streams (shown in green and pink color). As soon as

we are done processing the first stream (802.11a pink colored), we have already buffered

two ofdm symbols of 802.11a. We see that 802.11n has a longer header than 802.11a.

As a result of which, while we haven’t received 802.11n data and we are still processing

802.11n header, we can process 802.11a data. Since, at any time either of the two streams

would be available, we can easily process the data. We can then assume that in the total

time frame for transmitting both the streams, at any time we would be having atleast one

chunk of either one of the streams. Also, since 802.11n stream has a longer SIFS period,

we can easily prioritize streams during this period.

Conclusion: It is clear from the Figurethat when there are multiple streams, we can assume

that there is a chunk available all the time. Hence, we need not wait for one stream to finish off

its job. This is the basic idea behind this model. In other words, when we are processing stream

A, data from stream B gets buffered and gets ready for processing during the next simulation

cycle. This analysis would apply to multiple streams.

4.5 Usefulness of the simulator

The results of this simulator would help us in following ways :

• It would help us to estimate bounds on UCM Overhead.
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• Also, it would help us in finding appropriate chunksize so that the architecture can sup-

port multiple streams.

• We can find the bounds on latency and required minimum clock rate.

• We can have rough estimate of complexity of architecture.

4.6 Limitations of the simulator

• This simulator is passive simulator. It doesn’t calculate values after running the protocol.

It works on values calculated for each chunk of individual protocols. Hence, estimation

is done on the basis of pre-calculated values.

• Some of the estimates like gate-count are industry average approximation. True values

have not yet been ascertained.

• UCM overhead has been calculated approximately by manual inspection of the present

release. There is no information about this parameter. Hence, some simulations have

been done for estimating the bounds on of this parameter. This fairly works okay because

UCM overhead would be definitely less than individual PEs in terms of latency. However,

gate count of UCM has not been estimated. This estimate would be available once the

full implementation of programmable radio architecture is over.

• Place and routing estimation has not been covered in the simulations.
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Chapter 5

EXPERIMENTAL RESULTS

In this section, we shall examine the simulation results. The simulator would be used to find

• To find the bounds of UCM Overhead.

• To illustrate the effects of different chunksizes on transmitter and receiver.

• To examine the complexity of different architectures of transmitter and receiver.

• To depict the effect of different chunksizes and framelength on effective power utiliza-

tion.

5.1 UCM Overhead bounds

In this section we shall see the effect of UCM Overhead on the minimum clock rate for a given

architecture and given framesize. This analysis would be used as an upper bound at the time of

designing UCM for a given clock rate. Since, the UCM architecture has not been finalized yet,

the results of this section would be useful for designing UCM architecture in the future.
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5.1.1 UCM Overhead bounds for the transmitter
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Figure 5.1: UCM Overhead bound for one stream input at the transmitter.

In the graph 5.1, we ran the simulation with chunk size equal to one and varying payload size.

Only one stream of 802.11n with MCS equal to four was considered.
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Figure 5.2: UCM Overhead bound for two stream input at the transmitter.

In the graph 5.2, we ran the simulation with chunk size equal to one and varying payload
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size. Two streams of 802.11n and 802.11a with MCS equal to four was considered.

5.1.2 UCM Overhead bounds for the receiver
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Figure 5.3: UCM Overhead bound for one stream input with chunksize equal to two at the
receiver.

In the graph 5.3, we ran the simulation with chunk size equal to two ofdm symbols and varying

payload size. Only one stream of 802.11n with MCS equal to four was considered.
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Figure 5.4: UCM Overhead bound for one stream input with chunksize equal to four at the
receiver.

In the graph 5.4, we ran the simulation with chunk size equal to four ofdm symbols and

varying payload size. Only one stream of 802.11n with MCS equal to four was considered.
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Figure 5.5: UCM Overhead bound for two stream input with chunksize equal to two at the
receiver.

In the graph 5.5, we ran the simulation with chunk size equal to two ofdm symbols and

varying payload size. Two streams of 802.11n and 802.11a with each MCS equal to four was
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considered.

5.1.3 Conclusion

• We see that the graph of minimum clock rate versus UCM overhead is almost linear.

• For the transmitter, the slope is almost constant for all the payload size.

• For the receiver, the slope is high for higher payload size and low for smaller payload

size. As a result of which, the UCM overhead should be as minimum as possible for

higher throughputs.

• On the receiver side, as the payload size increases, the minimum clock rate increases.

Hence, the UCM overhead should be less if we are operating with longer payload size.

• For supporting higher throughput, the UCM overhead should be small because of the

linear relationship between the minimum clock rate and UCM overhead. Hence, UCM

architecture design is crucial for judging the throughput of programmable radio plat-

form.

5.2 Effects of Chunksize on Transmitter and Receiver design.

In this section we shall investigate the effect of changing chunksize on streams with different

payload lengths. We shall also investigate the effect when there are multiple streams.

5.2.1 Effect of Chunksize on Transmitter Design

The effect of chunksize on transmitter is shown in Table 5.1. We note here that higher chunksize

is not possible because 14 byte data fits in only one chunk.

Table 5.1: Typical minimum clock rates for the given chunksize and architecture with Payload
size of 14 bytes.

Stream Chunksize Minimum
clock rate

One 802.11n with MCS 4 1 190
Two 802.11n with MCS 4 each 1 290
802.11n and 802.11a with MCS 4 each 1 290



55

Now when the payload size increases, the effect of chunksize on minimum clock rate is

demonstrated by Figures (5.6-5.7)
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Figure 5.6: Effect of chunksize on minimum clock rate for payload size of 1000 bytes.
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Figure 5.7: Effect of chunksize on minimum clock rate for payload size of 1500 bytes.
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5.2.2 Analysis of Chunksize on Transmitter Design

From the figures (5.6-5.7) and Table 5.1, it is clear that we need to run the whole system at

a higher clock rate if we wish to support higher data rate and multiple streams. Also, when

the payload size is large, it is better to run the system with higher chunksize. This would have

an added advantage of decreasing the minimum clock rate and improving the utilization of

the PEs. Table 5.2 demonstrates the utilization of one of the PEs decreases as the chunksize

increases. Hence, even if the minimum clock rate is same for different chunksize, the effective

utilization of the PE is different. Although there is only a marginal difference (approximately

5-10% per chunk), this difference is considerably large when we consider a long stream. Also,

from the Table 5.1, it is clear that when the payload size is small, it is better to operate the

system with smaller chunksize. This is true because the added latency per chunksize decreases.

in both cases (i.e. when the chunksize is small for smaller payloadsize and when the chunksize

is large for a larger payloadsize)

Table 5.2: PE utilization of IFFT Block as a function of chunksize for payloadsize correspond-
ing to Figure 5.6

Chunksize Minimum
clock rate

PE Utilization in Percentage

150 1 65.6746 %
130 2 41.8568 %
120 4 29.8507 %
120 8 23.6326 %

Also, when a chunk is processed by a PE, there are two kinds of latency that is involved :

• Θ is the latency required by each PE for initial setup. This latency doesn’t depend on the

chunksize. This is the minimum initial delay required to process the data. This can be

thought of as initial delay of the FFT.

• γ is the latency required by each PE depending upon the chunksize. This could be the

number of clockcycles required to read the chunk or write the chunk. This could even be

processing time depending upon the chunksize.
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The total latency is shown by the equation 5.1.

τ = Θ + γ (5.1)

We see that when the chunksize increases, γ increases as compared to θ. This helps us to

run the system at a lower clock rate because τ becomes approximately equal to γ. However,

when the chunksize decreases, θ becomes comparable to γ. Also, θ is unavoidable. Hence,

the total latency becomes higher. Now when we consider smaller payload, we cannot increase

γ by using larger chunks because of the tight time constraints imposed to transmit an OFDM

symbol. The only option is to decrease the chunksize and hence reduce γ.

5.2.3 Effect of Chunksize on Receiver Design

The effect of Chunksize is demonstrated by figures 5.8-5.11.
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Figure 5.8: Effect of chunksize on minimum clock rate for payload size of 100 bytes.

In all the figures 5.8-5.11, three independent streams were considered :

• Only one 802.11n stream.

• One 802.11n stream and one 802.11a stream.

• Two 802.11n stream (two spatial streams.)
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Figure 5.9: Effect of chunksize on minimum clock rate for payload size of 14 bytes.

In all the figures 5.8-5.11, the simulations were done using MCS 4 and chunksize was

varied as one, two, four and eight.
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Figure 5.10: Effect of chunksize on minimum clock rate for payload size of 1000 bytes.

In all the figures 5.8-5.11, the UCM overhead was kept at 50 clockcycles.
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Figure 5.11: Effect of chunksize on minimum clock rate for payload size of 1500 bytes.

The architectural complexities corresponding to figures 5.8-5.11 have been analyzed in

section 5.3.

5.2.4 Analysis of Chunksize on Receiver Design

The effect of chunksize is quite similar to that explained in subsection 5.2.2. The only differ-

ence is that for smaller payloadsize, we assume that the data is padded with zeros such that the

data fits into the chunks. This is also possible at the transmitter. This has not been analyzed

because this costs unnecessary power consumption because of padded zeros. However, at the

receiver, we need to analyze it because we may have a frame with smaller payload and padded

zeros. The results obtained for the receiver are quite similar to that of transmitter. There are

few things that are worth noting from the Figure5.8-5.11.

Firstly, the minimum clock rate for two streams consisting of 802.11a and 802.11n is higher

than that of two spatial streams of 802.11n (for higher payload size). This can be attributed

to the fact that the number of bits in two 802.11n streams is higher than that of 802.11a and

802.11n streams for a given MCS because there are more number of subcarriers in 802.11n.

Since the number of bits are higher, we get lesser latency per chunk i.e. θ in equation 5.1.

Hence, the effective utilization of a chunk is higher. This doesn’t mean that we should have
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large chunksize because after certain point (called as the knee-value), the minimum clock rate

doesn’t decrease much. The effective utilization of the individual PEs decreases. Also, for

smaller payload size, the effect is reverse of what has been explained. This is clear from the

graphs 5.9 and 5.11.

There is one more concept worth noting. If we analyze Figure5.11, we see that when we

have two spatial streams of 802.11n, the clock rate increases as the chunksize increases. This

is true because in the SIFS interval, we have to process two 8 OFDM symbols (since we have

two streams). Hence, the overhead increases by twofold. As a result of which, the minimum

clock rate increases. Also, when the chunksize is small, the minimum clock rate increases due

to the effect highlighted above.

5.2.5 Conclusion

Thus, when the payloadsize is large, we should use larger chunksize and when the payloadsize

is small, smaller chunksize is advisable for transmitter and receiver. The minimum clock rate

required to run the hardware would be less than that of different chunksize respectively.

5.3 Complexities of different architecture

In this section we shall present the total gate count for different architectures analyzed before.

These gatecounts have been presented in Table 5.3 and Table 5.4.

Table 5.3: Approximate gatecount of TX design for different architectures of Table 5.1.
Stream Gatecount
One 802.11n with MCS 4 49800
Two 802.11n with MCS 4 each 60600
802.11n and 802.11a with MCS 4 each 49800

Table 5.4: Approximate gatecount of RX design for different architectures of Table 5.1.
Stream Gatecount
One 802.11n with MCS 4 750800
Two 802.11n with MCS 4 each 761600
802.11n and 802.11a with MCS 4 each 750800
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The InCyte Lite tool 1 and [21], [22] was used to estimate the gatecount of individual PEs.

The gatecount of modulator block was found by mutiliplying the total number of CLB on Xilinx

FPGA for 802.11a by a factor of 10. These estimates are approximate and not accurate. The

basic goal of finding these estimates is to have a rough idea about the area of the ASIC chip and

its power utilization. These numbers do not include the gatecount of UCM block. This block is

still under research and development phase. Hence, no results are available for this block.

Individual gatecounts of the transmitter and receiver have been highlighted in Table5.5.

Table 5.5: Approximate gatecount of Transmitter and Receiver.
Transceiver Block Gatecount
Channel Equalizer 351000
Demodulator 800
Deinterleaver 10000
Viterbi Decoder 20000
FCS 35000
UCM 30000
Synchronizer 334000
Encoder 20000
Modulator 1600
IFFT/FFT 30000

5.4 Analysis of Complexities of different architectures

We see that the first and the third row of the Table5.4 and Table5.3 is the same because we

are reusing the blocks for different streams. On the other hand, in order to accomodate two

spatial processing we have to have additional hardware. This adds up to the complexity which

is shown by second row of tables 5.4 5.3.

5.5 Study of power utilization of different architectures

In order to study the power utilization of different architectures, we would define a parameter

α and name it as Performance factor (equation 5.3). The actual equation governing the power

utilization is shown in 5.2 (equation 18.10 of [23]). For estimating the exact power utilization,

1InCyte is a registered trademark of ChipEstimate.com
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we can multiply α by a number depending on fabrication technology and chip company i.e.

Energygate, Cload and Egate.

Power = fN(Energygate + 0.5V 2Cload)Egate (5.2)

where

• Energygate is the average internal consumption for an equivalent gate (includes parasitic

capacitance as well as short circuit currents [23]).

• Cload is the average capacitive load for an equivalent gate.

• Egate is the average output activity for an equivalent gate per cycle.

• N is the gate equivalent count for the component.

• f is the clock rate or frequency of operation.

• V is the voltage of the ASIC circuit.

α = clockrate ∗ {
Ξ∑

i=1

(Utilizationi)(Gatecounti)} (5.3)

where

• Ξ is the total number of PE

• Utilization is the utilization of PE on the scale 0 to 1.

• Gatecount is the approximate gatecount of the PE corresponding to the desired configu-

ration.

The results for the receiver have been shown in Table 5.7.

Power has been analyzed for both transmitter and receiver based on complexity of the hard-

ware. The results for the transmitter have been shown in Table 5.6. There is one concept

worth noting. When the payload size is small enough to fit in just one OFDM symbol, there is

no added benefit in zero padding additional OFDM symbols. Hence, first row of each of the

streams in Table 5.6 is left blank. At the receiver, we have analyzed OFDM symbol sizes two,
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Table 5.6: Transmission chunksize for minimum power dissipation at transmitter
Streams Payload

Size
Optimal
Chunksize

Savings by
factor

Optimal Chunk-
size compared with
chunksize

802.11n one stream
14 1 - -
100 4 1.8698 4 compared with 8
1500 8 2.3027 8 compared to 1

802.11n two streams
14 1 - -
100 2 1.264 2 compared with 8
1500 8 1.617 8 compared with 1

802.11n and 802.11a
14 1 - -
100 4 1.549 4 compared with 1
1500 8 2.101 8 compared with 8

Table 5.7: Transmission chunksize for minimum power dissipation at receiver
Streams Payload

Size
Optimal
Chunksize

Savings by
factor

Optimal Chunk-
size compared with
chunksize

802.11n one stream
14 1 15.4127 1 compared with 8
100 1 88.83 1 compared with 8
1500 8 1.2344 8 compared with 1

802.11n two streams
14 1 5.528 1 compared with 8
100 1 8.8967 1 compared with 8
1500 4 1.0063 4 compared with 1

802.11n and 802.11a
14 1 4.3 1 compared with 8
100 1 4.68 1 compared with 8
1500 8 1.1336 8 compared with 1

four and eight for payload size 14. The basic idea was to see the effect of padding additional

symbols at the receiver when the payload size is small. The results are self explanatory. Zero

padding doesn’t benefit at all and is disastrous. The power dissipation rises by the factor of five

to eighty. This is definitely not desirable. Similar analogy can be applied to the case of 802.11n

two streams with datasize 1500 (sixth row of Table5.7). We also note that, savings by factor

is estimated using the worst case OFDM symbol size, i.e. using four to eight OFDM symbols

when payload size is small and vice versa.



64

1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

9

10
x 10

6

Chunksize in number of OFDM Symbols

Performance factor with Payload size 1500 bytes.

802.11n One stream
802.11n Two Streams Full rate
802.11n and 802.11a

Figure 5.12: Performance factor (α) vs chunksize at the transmitter with payloadsize equal to
1500 bytes.

Three graphs have been shown for investigating the variation of α with chunksize. Figures

5.12 is straightforward. There exists a linear relationship between Figure 5.12 and 5.7.
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Chunksize in number of OFDM Symbols

Performance factor with Payload size 100 bytes.

802.11n One stream
802.11n Two Streams Full rate
802.11n and 802.11a

Figure 5.13: Performance factor (α) vs chunksize at the receiver with payloadsize equal to 100
bytes.

Also, in the Figure5.13, any value of chunksize greater than two is not feasible because of

very high clockrate except for only one 802.11n stream. Also, a higher value of clockrate for
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two 802.11n streams could be attributed to large gatecount.

However, there is an important concept in the Figure5.14. We see that as the chunksize

increases to eight, the power dissipation doesn’t decrease as anticipated. The reason is that

the minimum clockrate for chunksize eight either increases (for two streams of 802.11n ) or

remains constant (for two stream of 802.11n and 802.11a and one stream of 802.11n; refer

Figure 5.11) as compared to chunksize of four for receiver with payloadsize 1500 bytes. Also,

the gatecount of two streams of 802.11n is greater than the other two data streams. This justifies

the drastic increase of power for chunksize eight and knee value of four OFDM symbols.
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Chunksize in number of OFDM Symbols

Performance factor with Payload size 1500 bytes.

802.11n One stream
802.11n Two Streams Full rate
802.11n and 802.11a

Figure 5.14: Performance factor (α) vs chunksize at the receiver with payloadsize equal to 1500
bytes.

5.6 PE Utilization

From the graph 5.15, it is clear that bottleneck of the system is demodulator PE at the receiver.

Demodulator PE at the receiver includes interleaver and stream combiner which operate seri-

ally. Hence, the utilization of PE doesn’t improve even if we increase the chunksize.
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Figure 5.15: Variation of PE utilization with respect to chunksize at the Receiver with one
802.11n stream and payloadsize equal to 1500 bytes.

From the graph 5.16, it is clear that bottleneck of the system is encoder PE for the transmit-

ter. Encoder PE at the transmitter includes interleaver, convolutional coder and stream parser.

These blocks operate serially. Hence, it is advisable to go for parallel architectures for these

blocks even if the gate count increases.
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Effect of Chunksize on PE Utilization at Transmitter with 1500 payloadsize. 
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Figure 5.16: Variation of PE utilization with respect to chunksize at the Transmitter with two
802.11n stream and payloadsize equal to 1500 bytes.
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5.7 Implementation of common blocks for PE

There are three basic blocks which were being simulated and implemented using VHDL. The

block diagram showing the connection of these block is shown in Figure 5.17 . The design of

these blocks were done by WiNC2R team. Only implementation of these blocks was done in

this thesis.

Figure 5.17: Top level diagram of common blocks [2].
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The general PE Architecture consists of PU, CP, FDG, TSP and RMAP. Only CP and FDG

would be discussed in this thesis.

The basic functionality of CP is to

• Provide interfacing to UCM

• Decode UCM commands (optional)

• setup PE common modules in preparation for command processing

• terminate current command cycle

The basic functionality of FDG is to

• Fetch data from Input Buffer

• Generate sof, eof and enb control signals for data synchronization

We note that sof, eof and enb signals help trigger data processing and synchronization. ’sof’

goes high everytime there is a valid data frame for PE. Similarly, ’eof’ goes high everytime last

byte of data frame is read. ’enb’ signal helps to know how many bytes are valid out of 32-bit

dataword.

5.7.1 CP Block

The state machine diagram of CP block is shown in Figure 5.18. The idea behind this block is

to decode a specific command and then give out a particular action signal to PU. The design of

this block was done by WiNC2R team [2]. Only implementation was done in this thesis.
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Figure 5.18: State Machine of Command processor.

5.7.2 FDG Block

The state machine diagram of the FDG block is shown in Figure 5.19. The idea behind this

block is to be able to generate control signals alongwith the data. This would facilitate us to

process the data in a better way.
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Figure 5.19: State Machine of FDG.

The state machine diagram of the context cycle of FDG block is shown in Figure 5.20.

The idea behind this block is to be able to send contextual data when another command is

in progress. Contextual data would be used to maintain state information between different

streams.
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Figure 5.20: State Machine of context cycle of FDG.

5.7.3 FDG requirements

The FDG was required to support the following scenarios. Few of these requirements are

actually error conditions meant to make the unit robust.

1. Sequential and non throttled cycle

2. Sequential and throttled cycle

3. Sequential, secondary and non throttled cycle

4. Non sequential and non throttled cycle

5. Non sequential and throttled cycle
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6. Non sequential, secondary and non throttled cycle

7. Contextual cycle

8. Single word transfer

9. Sequential, secondary and throttled cycle

10. Non sequential, secondary and throttled cycle

11. Sequential and errorneous secondary cycle

12. Non sequential and errorneous secondary cycle

13. Non sequential and one word transfer

14. Non sequential and contextual transfer

The above terms have been defined as :

• Throttled Cycle : This means that the data transfer would be throttled i.e. transfer would

be stalled for sometime and then resumed again. The FDG block would maintain state

information about the transfer and hence resume it anytime.

• Secondary Cycle : This means that the FDG block would cater to another stream when

one stream is already in progress. It is the job of FDG block to handle all the transfer

and maintain the state information. The FDG block would also save the current state

of the stream before switching to the new stream. As for e.g. when there is a data

cycle already in progress, another control command could interrupt the data cycle (a.k.a.

primary cycle). This control cycle would be termed as secondary cycle.

• Contextual Cycle : This cycle is used for transferring state information of one stream to

the block. This would help to cater to high priority tasks.

• Single word transfer : Since one word could be either 16-bit or 32-bit, this cycle would

transfer only one word and go back to the idle state.

• Sequential Cycle : In this the data would be read from contiguous locations of the mem-

ory.
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• Non-sequential Cycle : In this cycle, the data would not be read from the contiguous

locations but from the locations defined by the control signals. This would be helpful for

removing the guard interval from the memory by changing the read and write locations.

• Errorneous cycle : These cycles have been designed and tested to make this block full

proof. Since FDG is a common block, it is very essential to make this error free.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

• We should use different chunksizes for different payload size. Hence, our Chunksize

should be reconfigurable for one frame.

• We should keep the UCM overhead as small as possible if we want to operate on streams

with higher throughput.

• Parallel architecture should be used for Encoder PE at the transmitter.

• Channel estimation and MIMO detection block should be optimized to reduce the com-

plexity at the receiver. Further, a common architecture should be designed for synchro-

nizers of both the streams. This would help us to scale down power requirements.

6.2 Future Work

The future work could incorporate simulation of MAC layer in conjunction with the PHY layer.

This would help us to have a bigger picture of the platform in terms of complexity, latency

and UCM overhead. Also, presently there is no mechanism to monitor queue size. If this is

incorporated, the minimum clock rate could be reduced further at an additional cost of queueing

overhead. Hence, a good design would be to have variable length queues.

Further, a good analysis of this architecture would be to have dynamic simulator of the

architecture which encompasses functionality to test different traffic models. It should also be

able to simulate MAC layer.
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Appendix A

Algorithm: Branch Metric Table Mapper.

Preconditions: BM0 −BM3 is available.

PostConditions :

Branch Metric(i) where i = 0 → 63 contains 2 bit branch metric indicating BM0(00), BM1(01),

BM2(10) and BM3(11)

Symbols:

χ : bit wise multiplication.

θ : Parity bit of an array

& : Concatenation

← : Left hand side takes the value of Right hand side.

Ω : Binary Value

κ : Constraint Length of Convolutional code

Pseudocode:

G0 ← 133;

G1 ← 171;

for i in 0 to 2κ−1

do b0 ← θ(Ω(i))χ(Ω(G0));

do b1 ← θ(Ω(i))χ(Ω(G1));

Branch Metric(i) ← b1&b0;

step;
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Appendix B

A sample command has been shown in Table

Table B.1: Typical command specification of TxDataAvl command
Bits Description
b0 − b3 MCS
b4 − b5 Standard ID
b6 − b21 Frame Length
b22 − b23 Channel ID
b24 − b25 Channel Bandwidth
b26 − b27 Channel Offset
b28 Format
b29 Number of Streams
b30 GI
b31 Coding Scheme Used

MCS values have been described in Table 2.2

Table B.2: Channel offset description
Channel Offset Description

00 CH OFF 20U 1

01 CH OFF 20L 1

10 CH OFF 40 1

11 NOT USED

Table B.3: Channel bandwidth description
Channel Bandwidth Description

00 NON HT CBW40 1

01 NON HT CBW20 1

10 HT CBW20 1

11 HT CBW40

1Please refer to [5] for more details



79

Table B.4: Standard ID description
Standard ID Description

00 802.11a
01 WiMAX
10 802.11n
11 NOT USED

Table B.5: Format description
Format Description
Not Used Non-HT
0 HT Mixed Format
1 HT Greenfield Format

Table B.6: Coding type
Coding Type Description

0 BCC
1 LDPC

Table B.7: Guard Interval to be used (for future release)
Coding Type Description

0 Use Short GI
1 Use Long GI

Table B.8: Stream description
Stream Number Description

0 1 stream as input
1 2 stream as input
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Appendix C

Viterbi Decoder

C.1 Introduction

The problem of decoding a convolutional code can be thought of as attempting to find a path through

the trellis diagram by making use of some decoding rule. Ideally, one would like to choose a path which

minimizes the actual number of symbol errors that would be made if one were to compare the encoder

input with the decoder output. Although it is possible to conceive of a decoding algorithm based on this

approach, attempts to do so have not resulted in hardware that can be easily implemented [24].

With block codes, it turns out to be more practical to attempt to choose the path which matches the

received sequence as closely as possible; that is, to attempt to minimize the sequence error probability.

While this procedure doesn’t guarantee that the actual bit error rate will be minimized, one is guaranteed

that making the sequence error rate small will also make the bit error rate small for all but pathologi-

cally bad codes. Any performance difficulties that result from this nonoptimality are of no practical

importance.

The significance of the trellis viewpoint is that the number of nodes in the trellis does not continue

to grow as the number of input symbols increases, but remains at 2k-1, where k is the constraint length

of the code. This, of course, is because the redundant portions of the code tree have been merged. A

consequence of this merging is that if at some point an incorrect path is chosen, it is possible that the

correct path will merge with at a later time. At every stage of the trellis, a set of paths are discarded

which balances the set of new paths chosen. This simple iterative process is called as Viterbi algorithm

and is a special case of dynamic programming. A good example of how viterbi decoder works, has been

described in detail in the online tutorial [25].

C.2 Decoding convolutional codes

There are basically two kinds of approach to decode convolutional codes.
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C.2.1 Fano Algorithm

Sequential decoding was first proposed by Wozencraft. Thereafter, Fano improved the algorithm in

terms of decoding efficiency. Sequential decoding allows forward and backward movement through the

trellis. The decoder keeps track of its decisions each time it makes an ambiguous decision, it tallies it.

If tally increases faster than some threshold value, decoder gives up that path and retraces the path back

to the last fork where the tally was below the threshold. Detailed design can be found in [24] and [25].

C.2.2 Maximum Likelihood Algorithm

We shall concentrate on Viterbi decoding since errors occur infrequently and probability of error is

small. While viterbi decoder extends and updates the metrics for all paths that can potentially be the

best, a sequential decoder severely limits the number of paths that are actually updated.

C.3 Traceback and decode operation

[26] defines traceback operation as This is one of the two read operations and consists of reading a

bit and interpreting this bit in conjunction with the present state number as a pointer that indicates the

previous state number (i.e. state number of the predecessor). Pointer values from this operation are

not output as decoded values; instead they are used to ensure that all paths have converged with some

high probability, so that actual decoding may take place. The traceback operation is usually run to a

predetermined depth T, before being used to initiate the decode read operation (described next) [26]

also defines decode operation as This operation proceeds in exactly the same fashion as the traceback

operation, but operates on older data, with the state number of the first decode read in a memory bank

being determined by the previously completed traceback. Pointer values from this operation are the

decoded values and are sent to the bit-order reversing circuit. A decode read can serve as a dual decode

and traceback read, this allows us to decode read multiple columns using one traceback read operation

of T columns.

The gist of these definition is that traceback operation is performed to ensure that we have reached

optimum stage and if we decode the bits, we can be sure that decode process will not be faulty. There are

basically two kinds of hardware architectures for these operations used in practice which is described in

the next section.
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C.4 Hardware Architectures for Viterbi Decoder

C.4.1 RegisterExchange Method

In the RE approach, a register is assigned to each state. The register records the decoded output sequence

along the path from the initial state to the final state. This is shown in the above figures. At the last stage,

the decoded output sequence is the one stored in the survivor path register, the register assigned to the

state with the minimum PM. Since, the RE method does not need to be traced back, it is faster. However,

the RE method does require the copying of all the registers at each stage [27].

C.4.2 Traceback Implementation

In the traceback method, we extract the decoded bits, beginning from the state with the minimum PM,

S0. Beginning at this state and tracing backward in time by following the survivor path, which originally

contributed to the current Path Metric, a unique path is identified. This is indicated in the figure shown

above. While tracing back through the trellis, the decoded output sequence, corresponding to the traced

branches, is generated in the reverse order [27].

C.4.3 Comparison of two architectures

Table C.1: Comparison of two architectures of Viterbi decoder
Traceback Method Register Exchange Method
It is reconfigurable since all the operations

are done using RAM [28]
It is not reconfigurable for different constraint
lengths.

Latency is 2 to 3 times that of Register Ex-
change Method

Latency is lower and it is faster because of
parallel implementation

Some of the implementations need higher
clock rate but have low area requirements

Area requirements are higher since most of
the work is done in hardware.

It is suitable for any constraint lengths It is good for constraint lengths less than 5 but
not advisable for constraint lengths greater
than equal to 7.

C.5 Hardware Design of Viterbi Decoder

Let us first explore the entity level block diagram. Typical block diagram of Viterbi decoder is as shown

in the Figure C.1. Each of the blocks have been explained in detail starting from Section C.6.
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C.6 Viterbi Interface specifications

C.6.1 Overall Block Diagram

The overall block diaram has already been shown in Figure 2.11. The following are the specifications of

a typical viterbi decoder.

• It is based on dynamic programming approach.

• It has constraint Length is 7 and code rate = 1/2.

• Generator polynomials of convolution encoder are G0 = 133 and G1 = 171.

• The viterbi decoder has been implemented using Traceback approach because of advantage of

reconfigurability for different code rates. Traceback length has been chosen to be 35.

• Soft decision decoding is being done with 6 bit levels.

• Four Dual port distributed RAMs are used.

Table C.2: Comparison of two architectures of Viterbi decoder
Interface Signal Number of bits
Input X input 8
Input Y input 8
Output Viterbi out 8

C.6.2 Branch Metric Unit

The branch metric unit calculates posteriori probabilities by estimating the distance with all possible

transmitted codewords. It has been proved that this distance can also be estimated linearly using adders

and subtractors [29]. In this way, we have avoided calculation of Euclidean distance. Offset of +2 has

been added to get rid of negative values of BM0-BM3. The figure has been shown in Figure C.2. Input

output specifications have been shown in Table C.3

Table C.3: Comparison of two architectures of Viterbi decoder
Interface Signal Number of bits
Input X input 8
Input Y input 8
Output BM0 9
Output BM1 9
Output BM2 9
Output BM3 9
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Figure C.2: Branch metric unit design

C.6.3 Branch Metric Table Generation Algorithm

Typically the four output from BMU (BM0 − BM3) is fed as an input to ACS unit. There are 32

ACS units and each requires atleast two Branch metrics. For this, a branch metric table consisting of

64 rows is being generated. Each row acts like an input to the ACS unit. Each row references either

(BM0 −BM3). This algorithm is shown in Appendix A.

C.6.4 ACS Unit (Add-Compare-Select Unit)

Typical trellis structure of ACS Unit is as shown in Figure C.3

The state diagram of the trellis of Figure C.3 is shown in Table C.4.

Table C.4: State diagram of trellis shown in Figure C.3
Output(NextState)

States Input = 0 Input = 1
00 00 10
01 00 10
10 01 11
11 01 11
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Figure C.3: Typical trellis of viterbi decoder

C.6.5 ACS Unit

Each of the 4 states on the RHS of trellis requires ACS operation. However, we see that states S0 and S2

have S0 and S1 as their previous state. The only difference between states S0 and S2 is that both have

different BMs and PMs (Path Metrics). Hence, the two operations at S0 and S2 can be grouped into a

single ACS unit. This operation is termed as Trellis reduction. PM is obtained from path metric register.

We shall study this in the next subsection. An example has been shown in Figure C.4.

The block diagram of ACS unit is shown in Figure C.5 . The two ACS operations have been com-

bined and put into one block. The four inputs to this block are the combination of two BMs and two

PMs. The PM is 15 bit in length. [The reason for increase in the length of PM would be clear in next

subsections. Actually, 6 clock cycles are required to compute minimum path metric. During these 6

clock cycles, the register length may increase by 1 bit because of addition operation. Hence, after 6

clock cycles, the register may increase by 6 bits. Therefore, total length of this block is equal to 9 bits

+ 6 bits.] The bits B0 and B1 are stored in Traceback unit in order to maintain the history of traversed

trellis paths. This is further explained in later sections. The input output specification of ACS unit is

shown in table
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Figure C.4: Typical reduction of trellis diagram
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Table C.5: ACS Unit specifications
Signal Number of bits

Input BM0 and BM1 9
Input PM0 and PM1 15
Output PM0 out and

PM1 out
15

Output B0 and B1 1

C.6.6 Normalizer Unit

The normalizer block is used to prevent overflow. This block requires 6 clock cycles to compute the

minimum of all 64 PM registers. Hence, the width of PM has been increased from 9 bits by 6 bits. The

state diagram is as shown in the Figure C.7.

Figure C.6: State diaram of normalizer unit

The block diagram of Normalizer unit is as shown in Figure C.7.
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Figure C.7: Block diagram of normalizer unit

C.6.7 Minimum path calculator unit

The block diagram of minimum path calculator unit is shown in Figure C.8.This circuit calculates the

minimum path. The Xilinx comparator circuit is being used. The output of this comparator circuit is

being fed to the multiplexor. The multiplexor then selects the minimum of the two input PMs. This

operation is then recursively repeated for subsequent PMs. This operation is done for 6 clock cycles

processing 64, 32, 16, 8, 4 and 2 PMs respectively.

Table C.6: Minimum Path Calculation Unit specifications
MPCU Signal Number of bits
Input PM0 through

PM63

15

Output MPin 15
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Figure C.8: Block diagram of minimum path calculator unit

C.6.8 Traceback unit

This can be considered the heart of whole Viterbi decoder. Since, the survivor path of the ACS unit is

stored in Traceback RAM, this unit is also referred to as Survivor path unit. The output of ACS operation

is written on to the memory. The memory is organized into 4 banks. Each bank is 64 X 35 bits wide.

Subsections C.6.8 and C.6.8 describe the state diagram and timing operation of the four banks. The four

banks help us to pipeline our traceback, decode and write operation. This results in higher throughput.

All the four memories are dual port RAMs. Distributed RAMs are preferred over Block RAMs.
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Table C.7: Minimum Comparator Circuit Unit specifications
MPCU Signal Number of bits
Input PM0 in through

PM63

15

Input PM1 in 15
Output PM out 15

State Machine Diagram of Traceback RAM

There are basically three cycles. Read (Decode or DC) cycle, Write Cycle and traceback cycle. Trace-

back is done to ensure that the states have converged to local minimum. After traceback is complete,

decode operation is done. Traceback is done for 35 cycles. All the three operation are done in parallel

to increase the throughput and decrease the latency. Traceback RAM is also called as Survivor Memory

unit because it saves the survivor paths of the trellis. Typical state machine diagram of is shown in Figure

Timing diagram

This diagram shows input output behavior of all the four banks with respect to time. The three processes

can be implemented using traditional VHDL ’processes’. After reading/writing/traceback, the pointer

wraps to the beginning of the RAM ie the first memory location. The timing diagram has been shown in

Figure 2.12

Traceback circuit

The traceback unit consists of three operations. Writing data to the memory, performing traceback and

reading the data. This necessitates us to design a mechanism that would do three things:

• Traverse the trellis in reverse direction during traceback operation This can be further explained

by taking an example of 4-state trellis shown in above sub-sections. If we see the trellis diagram,

states S0 or S1 precedes S2. Represented in binary form we can say that state 00 or 01 precedes

10. Also, given state 00, if the input is 0, the next state is 00. Given the state 00, if the input

is 1, the next state is 10. Thus, we can go from state S2 (10) to either 01 or 00 by left shifting

the state metric; i.e. if we left shift 10 or 00, it becomes 0X. We need to now decide the ’X’

(unknown) bit. This bit is received from the traceback RAM. [Recall that the survivor path of the

two possible paths is stored in RAM]. Hence, if the survivor path is B0 = 1 (say) the previous state

from 10 is 01. If the survivor path is B0 = 0 (say) the previous state from 10 is 00. Now, given the

previous state, we choose one bit from the possible 64 bits corresponding to the 64 states using

multiplexer. The select input to the multiplexer chooses the survivor path of the current state. (We
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Figure C.9: State machine diagram of four banks

have assumed that we are in the process of decoding and 64 bit sequence are available as input to

the multiplexer.)

• Decode operation We also need to decode the data. This decode operation is fairly simple. This

can be easily explained by referring to 4-state trellis explained above. We see that given a zero

input on any of the four states, the next state is either 00 or 01. Similarly, given a one input on

any of the four states, the next state is either 10 or 11. Thus, we can easily determine the input if

we examine the MSB of the present state. This concept can be applied to any number of states.

Subsection C.6.8 shows arrangement of Memory Unit and the combiner/decombiner operation.

Sub-section C.6.8 shows arrangement of Traceback and decode circuit.
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• Generating output Since, we traverse our path in the reverse direction; bits are actually in the

reverse order. In order to reverse it, we use a shift register coupled with the memory. The 8-bit

output is first reversed by reading data from the register in the opposite direction. This 8-bit is

then written to the memory starting from the last memory location. The data is then read from

the top of the memory by the UCM.

Memory unit

This unit has been shown in Figure C.11.

Figure C.10: Block diagram of SMU
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Traceback output unit

This is the last stage of viterbi decoding operation. This unit has been shown in Figure C.11.

Figure C.11: Block diagram of SMU control unit

C.7 Vitebi Input/Output specification

C.7.1 Memory specifications

Total memory size that is required is equal to 64 X 35 X 4 = 1120 bytes.

C.7.2 Input output specifications

Input would be two 8 bit data where MSB would be used for signed arithmetic.

C.7.3 Latency specifications

• Latency due to Traceback Unit = 35 X 4 Cycles.
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• Therefore, for 70MHz clock, latency would be 0.000002 seconds = 2 microseconds.

• The throughput in this case would be 70Mbps since on every clock cycle we would have one bit

output.

C.8 Conclusion

We demonstrated the basic understanding of viterbi decoder. We also showed the different architectures

and tradeoff between them. We also showed that traceback implementation best suits for applications

like WLAN etc. Finally, hardware circuit was designed.
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Appendix D

These tables show the latency estimates for each of the individual blocks. These estimates have been

calculated using Xilinx.

1. FFT

Table D.1: FFT Latency estimation from Xilinx
Read Write Calculated latency from

Xilinx
Latency after subtracting
read cycles

64 206 241 321
128 160 468 628
256 320 852 1172

2. Modulator

The number of read cycles would be equal to total number of bits per subcarrier (Table 2.2) / 16

for 16 bit wide data bus or total number of bits per subcarrier(Table 2.2) / 32 for 32 bit wide data

bus.

The number of write cycles would be equal to total number of subcarriers because each word

would require atleast one clock cycle for writing.

3. Encoder PE

We have assumed RAM based implementation for the interleaver. Since Interleaver, stream parser

and encoder are included in one PE, there would be pipelining amongst them. Hence, the total

latency β is calculated by equation D.1.

β = Readcycles + Writecycles + ϕ; (D.1)

where ϕ = NDBPS (Table 2.2).

Read cycles and write cycles depend on the size of data bus i.e. 16 bit or 32 bit.

4. Channel Equalizer PE
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The latency of this block would totally depend on the number of multiplier, adder and cordic

blocks used and their respective latency. The latency of these block is highlighted in Table D.2

Table D.2: Adder, Multiplier and Cordic Latency estimation from Xilinx
Block Latency for performing its

operation
Adder 1
Multiplier (16-bit) 5
Cordic 7

We note that Cordic is used for calculating square root. This would be required for calculating

determinant of the matrix.

5. Channel Estimation PE

Channel Estimation requires an IFFT and two FFTs. Hence the total latency would be calculated

using the Table D.1.

6. FCS PE

It has been assumed that FCS is a parallel 8 bit CRC. Hence the total latency would then depend

on the modulation scheme and the number of output bits from the viterbi decoder.

It is assumed that blocks like puncturing/de-puncturing have latency of 2-3 clock cycles [20]. Hence,

this is not considered for the analysis.


