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 Judgments of similarity play an integral role in the human cognitive system as 

they provide a means for extracting information about how objects in the world relate to 

each other.  This similarity information is applied in various cognitive tasks, such as 

categorization, recognition, and identification.  Previous work suggests that perceived 

objects are cognitively represented in a psychological space where similarity is 

preserved, allowing for an internal structured representation of objects in the world 

(Shepard, 1964). For an internal representation to be formed, information about an 

object must be extracted. Shape, a highly informative and salient property of an object, 

is often used. Judgments made about shape similarity reflect how humans functionally 

represent and utilize shape information from an object.  Computational shape 

representation has been achieved with varying amounts of success (e.g. Blum, 1973; 
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Biederman, 1987).  This variability is due, in part, to the complexity of mimicking the 

seemingly effortless human ability to make judgments about shape even in spite of 

numerous possible complications, such as sparse information and occlusions.  This 

work presents the use of a Bayesian estimation of a shape’s skeleton, the maximum a 

posteriori (MAP) skeleton (Feldman & Singh, 2006), as part of a generative model of 

shape that allows for the computation of a probabilistically-based similarity metric.  

This method of shape representation makes possible the prediction of similarity 

judgments reported by human subjects on collections of shapes that exhibit differences 

in both part structure and metric qualities and that have been generated by an unrelated 

process.  It is argued that the derivation of a similarity metric from this model provides 

the previously unavailable relationship between shape representation and categorical 

judgments about shape.   

 

iii 

 



 

TABLE OF CONTENTS 

ABSTRACT OF THE DISSERTATION ....................................................................... II 

1.0  INTRODUCTION ............................................................................................ 1 

2.0  THE PROBLEM ............................................................................................... 5 

3.0  OBJECTIVES ................................................................................................... 9 

4.0  BACKGROUND ............................................................................................. 10 

4.1  SHAPE REPRESENTATION .............................................................. 10 

4.2  SKELETON SHAPE REPRESENTATION ....................................... 12 

4.3  SIMILARITY ......................................................................................... 15 

4.3.1  Multidimensional Scaling (MDS) ...................................................... 16 

4.3.2  Shape Similarity ................................................................................. 17 

4.3.3  Shape Matching .................................................................................. 19 

4.3.4  Neural work on similarity ................................................................. 22 

5.0  THE GENERATIVE SIMILARITY MODEL ............................................ 24 

5.1  PREVIEW ............................................................................................... 24 

5.2  A GENERATIVE MODEL ................................................................... 24 

5.3  SKELETON MODEL ............................................................................ 27 

5.4  STRUCTUAL ASPECTS OF SHAPE: THE TOPOLOGY OF THE 

SKELETON ............................................................................................................. 30 

iv 

 



 

5.5  METRIC ASPECTS OF THE SKELETON ....................................... 39 

5.6  METRIC ASPECTS OF THE CONTOUR: THE RIB MODEL ...... 40 

5.7  COMPUTING SIMILARITY ............................................................... 43 

5.8  FURTHER CONSIDERATIONS OF THE GS MODEL .................. 44 

6.0  EXPERIMENTS ............................................................................................. 46 

6.1  EXPERIMENT 1: PART EMERGENCE ........................................... 47 

6.1.1  Subjects: .............................................................................................. 48 

6.1.2  Stimuli: ................................................................................................ 49 

6.1.3  Procedure: ........................................................................................... 49 

6.1.4  Results ................................................................................................. 50 

6.1.5  Discussion ............................................................................................ 56 

6.2  EXPERIMENT 2: SHAPES WITH TOPOLOGICAL 

DIFFERENCES ...................................................................................................... 57 

6.2.1  Subjects ............................................................................................... 58 

6.2.2  Stimuli ................................................................................................. 58 

6.2.3  Procedure ............................................................................................ 58 

6.2.4  Results ................................................................................................. 59 

6.2.5  Discussion ............................................................................................ 61 

6.3  EXPERIMENT 3: SHAPES WITH METRIC DIFFERENCES ....... 61 

6.3.1  Subjects ............................................................................................... 62 

6.3.2  Stimuli ................................................................................................. 63 

6.3.3  Procedure ............................................................................................ 63 

6.3.4  Results ................................................................................................. 63 

v 

 



 

6.3.5  Discussion ............................................................................................ 65 

6.4  EXPERIMENT 4: ATTNEAVE SHAPES ........................................... 65 

6.4.1  Subjects ............................................................................................... 66 

6.4.2  Stimuli ................................................................................................. 66 

6.4.3  Procedure ............................................................................................ 67 

6.4.4  Results ................................................................................................. 67 

6.4.5  Discussion ............................................................................................ 69 

7.0  GENERAL DISCUSSION ............................................................................. 70 

7.1.1  Categorization .................................................................................... 71 

7.1.2  Additional experimental findings ..................................................... 73 

8.0  FUTURE WORK ............................................................................................ 75 

8.1.1  Similarity and abstraction ................................................................. 76 

9.0  CONCLUSION ............................................................................................... 80 

APPENDIX A ................................................................................................................... 81 

BIBLIOGRAPHY ............................................................................................................ 83 

CURRICULUM VITA .................................................................................................... 92 

vi 

 



 

 LIST OF FIGURES 

 

Figure 1: Example of shapes that may be grouped differently, either by general shape 

(rows) or roundness of boundary contour (columns) on the basis of similarity .................. 6 

Figure 2: Two categories, A and B, whose variability affects the similarity rating of 

exemplars x and y. ............................................................................................................... 8 

Figure 3: The medial axis of a rectangle, formed by connecting the centers of the 

maximally inscribed circles. .............................................................................................. 13 

Figure 4: Medial axis from a rectangle with contour noise. The multiple axes 

demonstrate a weakness in Blum's medial axis approach. ................................................ 13 

Figure 5: A hierarchical tree that depicts the relationship between shapes, their 

skeletons, and their generative history. Shapes with common origins are highly similar. 26 

Figure 6: On the right, a medial axis transform skeleton that demonstrates sensitivity to 

noise. On the left is the MAP skeleton, which does not suffer from such sensitivity. ...... 28 

Figure 7:  A depiction of the components of the MAP skeleton for a 2D shape. .............. 29 

Figure 8: Picture F (left) and the hierarchical structural descriptions of picture F (right).30 

Figure 9: An example illustrating the structural or syntactic approach to shape 

representation (a)  A line represenstation of a triangle  (b) Primitives and their discrete 

symbol representation (c) Approximation of the triangle using primitives and the 

vii 

 



 

symbol string representation of the triangle (d) Approximation of a different size 

trinagle and its symbol strings representation ................................................................... 33 

Figure 10: Example shape with its skeleton, ribs, and knotpoints, which are used as the 

terminals in the context free grammar model. ................................................................... 35 

Figure 11: The shape on the left is represented by a specific derivation in the grammar. 

The shape on the right would not be well represented by the same derivation such that  

its most likely generative path would involve it “starting from scratch”. ......................... 39 

Figure 12: A graphical depiction of an HMM with states Q=Q1,Q2,...QT, observations 

O=O1,O2,O3,..,OT, transition probability matrix A={aij}, and emission probability matrix 

B = {b(o|Sj)}. ..................................................................................................................... 41 

Figure 13: Experimental stimuli for experiment 1-shapes with an emerging part ............ 48 

Figure 14: Example screenshot from similarity rating experiment. .................................. 50 

Figure 15: Experiment 1 shapes with their corresponding MAP skeletons and ribs. 

Color coding indicates separate axes in the MAP estimates; i.e. red ribs and axis 

constitute a secondary part.  Red boundary indicates “gulf” in stimulus space separating 

one and two part shapes. .................................................................................................... 51 

Figure 16: An MDS plot of subjects' similarity ratings for the shapes presented in 

Experiment 1. The red boundary represents the "gulf" that occurred between one and 

two part shapes determined by the skeletal representation. .............................................. 52 

Figure 17: The means of the computed psychological distances in the shape space for 

two groups. Group one is made up of the distances between shapes with the same 

topology and group two is made up of the distances between shapes with different 

topologies (one part vs. two). ............................................................................................ 54 

viii 

 



 

Figure 18: Regression graph of predicted and subjective similarity, with standard error 

bars, for all trials in Experiment 1-shapes with an emerging part. .................................... 55 

Figure 19: The top row shows shapes that were matched to the shapes on the bottom 

row on the basis of the calculated similarity metric. Each match was with shapes that 

are adjacent in the stimulus space. .................................................................................... 56 

Figure 20: Example stimuli for Experiment 2-shapes with differing topology ................. 57 

Figure 21: Regression graph of predicted and subjective similarity for all trials in 

Experiment 2-shapes with different topologies ................................................................. 59 

Figure 22: An individual subject's data from Experiment 2. The pattern closely 

resembles that of the averaged subject data used in comprehensive analysis. .................. 60 

Figure 23: The shape matching results for two shapes chosen from the stimuli of 

Experiment 2. The two shapes on the right were found most similar as were the two on 

the left. ............................................................................................................................... 61 

Figure 24: Experimental stimuli for Experiment 3-shapes with metric differences. ........ 62 

Figure 25: Regression graph of predicted and subjective similarity for all trials in 

Experiment 3-shapes with metric differences. .................................................................. 64 

Figure 26: Example experimental stimuli for Experiment 4. The shapes were generated 

from Attneave's (1957) random shape algorithm. The two shapes on the right are in the 

same “family”, as are the two shapes on the left. .............................................................. 66 

Figure 27: Regression graph of predicted and subjective similarity for all trials in 

Experiment 4- Attneave shapes. ........................................................................................ 68 

ix 

 



 

Figure 28: Example shapes that demonstrated qualities that subjects may utilize that are 

not included in the present version of the GS model. The shape on the left demonstrates 

a symmetry that the shape b lacks.  Shape c demonstrates a part’s “special” placement. 74 

Figure 29: Example of a lattice structure that represents skeleton generation .................. 78 

 

x 

 



1 
 

 

 

1.0  INTRODUCTION 

 Judgments of similarity play an integral role in the human cognitive system as 

they provide a means for extracting information about how objects in the world relate to 

each other.  At first glance, the term “similarity” seems too ambiguous to offer much in 

the way of a manageable application to cognitive modelling. As Nelson Goodman 

(1972) suggested, similarity could be an empty explanatory construct, as any two things 

can be as similar or dissimilar, depending on the respect in which their similarities are 

depicted.  Objects with seemingly disparate qualities can become similar by virtue of, 

for example, being in the same room.  Despite this ambiguity, the degree to which 

people perceive two things as similar fundamentally affects their rational thought and 

behavior (e.g. Tversky, 1977; Coombs, 1964).  When similarity is considered in a 

psychological context under experimental conditions, it becomes constrained in such a 

way to allow for the evaluation of its role in cognition, most notably for its involvement 

in recognition (e.g. Ashby & Perrin, 1988), identification (e.g. Ashby & Lee, 1991), 

learning (Gentner, 1989), problem solving (Gick & Holyoak, 1980), and categorization 

tasks (e.g. Posner & Keele, 1968; Rosch, 1978). 

 Defining similarity in concrete terms has proven difficult.  This difficulty arises 

not only because of its ambiguous nature, but also because similarity is not a static 

construct. Its determinants may change based on various factors, such as context.  
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Similarity sometimes means the degree to which two objects share physical or 

perceptual features, and sometimes the degree to which two objects share “deeper”, 

non-perceptual features (Quine, 1977).  Popular theories of similarity measurement 

from the psychological literature include Shepard’s (1957) spatial account, Tversky’s 

(1977) contrast model, and the more recent alignment model (Markman & Gentner 

1993; Goldstone & Medin, 1994).  The assessment of similarity for particular machine 

applications have also been mechanized by various techniques, such as neural networks, 

statistical methods, or productions rules (Bareiss & King, 1989). While these 

specifically designed methods may prove successful for their intended applications, 

they are often not broad enough to be applied within any context and are built on 

assumptions distant from the psychological considerations that motivate cognitive 

modelling. 

 The role of similarity as related to the human visual system is also ambiguous 

and requires an investigation of how judgments of similarity arise from the information 

provided by the visual system. It is often assumed in the study of vision that the human 

visual system should attempt to provide an accurate replication of the world to use in 

later stages of cognitive processing. To this end, computational models of vision are 

created to mechanize human visual and cognitive capabilities, and as a result, models of 

2D shape are of critical value. While objects may be characterized in numerous ways, 

such as by color or texture, shape has been shown to be a primary source of information 

for object recognition (Biederman, 1987; Biederman & Ju, 1988). For a variety of 

reasons, shape representation has proven difficult to model, resulting in a wide 

assortment of approaches.  
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 Mere representation, however, is not the only goal of shape modelling efforts.  It 

is also important that models can be applied to solve various types of problems, 

especially those requiring systematic comparisons between shapes, as this is a critical 

function utilized for tasks such as recognition, matching, and classification (e.g. Siddiqi, 

Dickinson, & Zucker, 1999; Bai & Latecki, 2008). Comparisons of this nature 

necessitate that shape representation models allow for some account of the similarity 

between shapes; however, shape similarity is difficult to assess as it relies on the 

selection of discriminative shape features, which might change according to task, 

context, or due to the particular characteristics of the shape. Often shape representation 

models that do provide a simple metric for shape similarity, such as those based on 

simple descriptors, are not robust enough to capture important shape information. More 

complex models, such as chain codes (Freeman, 1961), capture more information about 

a shape (though not all, such as part structure), but do not readily provide a similarity 

metric by which to compare shapes. Because it is so critical to many cognitive tasks, 

such as categorization and overcoming changes in viewpoint, the determination of 

shape similarity should ideally arise from any theory of shape representation. 

 Humans are extremely capable of distinguishing subtle differences in shape for 

various tasks, such as similarity and categorization judgments. Shepard (1957, 1987) 

was first to recognize the importance of similarity in human judgments with his 

proposal of a universal law of perceptual generalization, which explained human 

similarity judgments in terms of the proximity between representations of objects in an 

internal representation space. The use of an internal shape representation space is 

valuable only if the patterns of proximities between objects there are reflective of the 
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similarities among the real-world objects themselves. Under a “space” representation 

theory, visual perception should provide the qualities of shape that allow for placing it 

in the proper place in representational space (Cutzu & Edelman, 1996). In order to 

produce a veridical representation, an entire geometrical reconstruction is not always 

necessary, where often only representation of contrasts or dissimilarities between 

objects is adequate (Ashby & Perrin, 1988). 
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2.0  THE PROBLEM  

 Most of the work available on shape representation attempts to capture specific 

shape attributes (see section 4.1) exclusively, based on either contour or part structure.  

However, few, if any, shape representation techniques are so robust as to be able to 

represent the characteristics of shape that allow for a wide range of comparisons 

between different types of 2D contour shapes, as occur in human similarity judgments.  

For example, to group the  four shapes in Figure 1 into two sets on the basis of 

similarity, the shapes might be arranged as two sets, one including shapes a and b and 

one including shapes c and d on the basis of part structure. Shapes a and b can be seen 

as exhibiting one part while c and d exhibit multiple parts.  However, another grouping, 

where shapes a and c are one set and b and d form the other, may also be distinguished, 

as these groupings reflect the similar “roundness” of the contour.  This example 

highlights the need for a shape representation method that is not solely based on either 

part structure or contour properties, as both elements may be influential in human 

similarity judgments. The model presented in this thesis attempts to place structural and 

metric shape properties in a common framework by considering their generative origins 

in a common formalism, a shape-generating skeleton. 

 

 

 



6 
 

 

 

 

 

  

 A large portion of the available work on shape similarity, primarily within the 

field of computer science, is focused a shape matching, which involves shape 

classification by some method of label assignment. Shape matching usually 

concentrates on images rather than simple contours and is largely unmotivated by 

psychological constructs. Most often, shape matching is used for applications with a 

specific goal, such as for shape retrieval, classification and recognition by machine 

processes, which creates a dependence of the similarity computation on the particular 

application and the specific types of associated shapes.  Shape matching is related to the 

work presented here, as it typically involves the measurement of the resemblance of one 

shape to another using a predefined measure, however, its motivation and scope is 

greatly disparate.  While there are various successful matching algorithms, shape 

matching involves a limited classification into a well-defined set of disjoint categories, 

without regard to gradations of similarity either within or between the categories.  A 

a b 

c d 

Figure 1: Example of shapes that may be grouped differently, either by

general shape (rows) or roundness of boundary contour (columns) on the basis of

similarity 
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more broadly construed treatment of similarity, like the one presented here, emphasizes 

the gradations and attempts to find a similarity metric robust enough to support 

inductive inferences above and beyond predefined classification.   

 Hume (1975) suggested that arguments created on the basis of experience are 

founded on similarity, with our expectation that similar effects flow from similar 

causes, making similarity critical to inductive cognitive processes. A more theoretical 

difference between shape matching and psychologically motivated similarity metrics is 

that the similarity used in perception has a much more far-reaching impact towards the 

human ability to make generalizations about the world (e.g. Shepard, 1987; 

Tennenbaum & Griffiths, 2001).  This difference is largely created from the diverse 

types of problems that are faced by computer science applications and the human visual 

system, where human similarity judgments represent a more comprehensive attempt to 

extract shape information that extends beyond mere classification. 

 In shape matching applications the determination of similarity between two 

shapes is largely static; within the same database of images, the comparison of two 

shapes will consistently produce the same result.  This lack of variation is not, however, 

exhibited in human behavior, where a variety of influences can affect similarity 

judgments (Rips, 1989; Stewart & Chater, 2002; Ashby & Townsend, 1986). As an 

example of how human similarity judgments can vary, Figure 2 graphically depicts two 

categories A and B, where the size of each oval represents the category’s variability.  

Both categories contain the objects x and y.  When comparing only objects from 

category A, the judgment of dissimilarity between x and y will be much greater than a 

judgment between the two objects when the comparison is only between stimuli from 
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category B. This difference results from the consideration of within-category variability, 

as the separation between x and y in category A covers more of the total “space” than it 

does in category B, resulting in a higher dissimilarity rating.  Therefore a cognitively 

motivated representation of shape should provide a means of incorporating contextual 

effects, such as category variability, within the representatioal framework. 

 

 

   

   

 

 

A B x    y 

Figure 2: Two categories, A and B, whose variability affects the similarity rating of 

exemplars x and y. 
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3.0  OBJECTIVES 

 This thesis makes multiple contributions.  First, it will demonstrate the need for 

a shape representation theory that bridges the gap between psychologically-based 

computer vision models of shape, which primarily concentrate on successful 

application, and cognitive models, wherein shape representation is presently either 

overly simplified or assumed without a comprehensive computational model. Second, a 

new model of shape similarity, called the Generative Similarity (GS) model is presented 

that provides a well-motivated explanation of shape by formalizing the processes that 

generate it. Third, this type of representation allows for the derivation of a meaningful 

metric of similarity that can be used in both computer vision and psychological models 

to predict experimentally collected data. Fourth, the model is presented as part of a 

larger, comprehensive probabilistic framework that is able to incorporate dynamic 

assumptions, primarily represented as probabilities, so that it may be applied within a 

variety of contexts and applications.   
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4.0  BACKGROUND 

4.1 SHAPE REPRESENTATION 

 Shape is a critical feature of objects, and one of the primary means by which 

humans reason about objects in their world.  Approaches to shape representation are 

numerous, largely because shape representation and description is such an enormously 

difficult task. 

 The most common classification of shape representation methods divides 

approaches into two types; contour- and region-based (Zhang & Lu, 2004). Contour-

based representations (sometimes referred to as boundary-based, e.g. Pavlidis, 1978) are 

based on the use of shape boundary points rather than the interior of the shape. Region-

based methods use both the boundary and interior points in the representational scheme.  

Within both the contour and region distinctions, methods may be identified as either 

global or structural (Zhang & Lu, 2004). The former, global, results in a representation 

of the entire shape, while the latter, structural, results in a shape represented through a 

collection of components or primitives.   

 Under the broad dichotomy of contour and region-based shape representation, 

there are various other mid-level classifications that vary among authors and fields. 

Costa and Cesar (2001) separate the contour-based representation into three types.  
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Parametric contours are those where the shape outline is represented as a parametric 

curve, implying a sequential order. The second type is merely a set of contour points, 

without any particular order.  The third type of contour representation is curve 

approximation, where a set of geometric primitives (such as splines or segments) is 

fitted to the shape contour. Costa and Cesar also separate region-based shape 

representation into three classes.  Region decomposition allows for the shape region to 

be divided and represented by simpler forms (e.g. polygons).  Under a bounding regions 

method, the shape is represented as an approximation by some defined geometric 

primitive that is fitted to the shape.  The third type of region-based representation uses 

internal features that represent the shape’s internal region (e.g. skeletons). 

 The psychologist Fred Attneave first suggested that an important source of 

information in a shape is contained in its high curvature points, where “contours change 

direction maximally” (Attneave, 1957). Attneave suggested many of the important 

elements of current shape representation algorithms, such as the extraction of curves as 

contours of an image and the smoothing and encoding of curves into a robust 

representation. Other psychologists have also acknowledged the importance of 

information stored at maximum curvature points.  Hoffman and Richards (1984) 

proposed that the visual system decomposes objects at points of high negative 

curvature.  Feldman & Singh (2005) proposed a formalism to represent the information 

at areas of maximum curvature, incorporating sign of curvature as well as magnitude. 

Leyton’s (1999) work recognizes the importance of curvature maxima with his 

symmetry-curvature theorem, which proposes that all shapes are basically circles which 

 

 



12 
 

have changed as a result of various deformations caused by external forces like pushing, 

pulling, and stretching.  

 Some of the more psychologically prominent approaches for shape 

representation involve parsing a shape into a defined set of parts that are then stored in a 

structural description of propositional relationships.  The significance of this type of 

representation is based primarily on findings that suggest the psychological importance 

of a shape’s parts, (e.g. Biederman, 1987; Hoffman & Richards, 1984; Marr & 

Nishihara, 1978; Saiki & Hummell, 1998).  For example, Tversky and Hemenway 

(1984) had subjects report features of various categories and found that they often listed 

the objects’ parts.   A challenge for this approach is the representation of the infinite 

variety of shapes with a small set of primitives.  The ability to form a hierarchical 

relationship between parts also makes these methods especially powerful. These 

methods are also attractive because they provide symbolic descriptions of objects; 

however, some objects do not have a clear decomposition into generic parts.  It may 

also be difficult to extract generic parts from images in a meaningful way. 

 

4.2 SKELETON SHAPE REPRESENTATION 

 Blum (1973) introduced the first axis-based representation of two dimensional 

shapes, referred to as the symmetric or the medial axis.  The medial axis of an object is 

defined as the set of centers of all maximally inscribed disks in a shape (see Figure 3). 

For two dimensional objects the medial axis is one-dimensional.  The hierarchical 
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structured formed by the medial axis is attractive from a computational point of view as 

it captures local symmetries of an object and provides a natural decomposition of the 

object into parts that correspond to branches in the one-dimensional structure. Blum’s 

medial axis, as originally computed, is sensitive to contour noise, where small 

disruptions in a shape’s contour can cause gross differences in the resulting medial axis 

(see Figure 4). 

 

 

Figure 3: The medial axis of a rectangle, formed by connecting the centers of the 

maximally inscribed circles. 

 

 

 

Figure 4: Medial axis from a rectangle with contour noise. The multiple axes demonstrate 

a weakness in Blum's medial axis approach. 
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  In general, representations based on the medial axis are adequate to capture the 

geometry of 2D shapes. Medial axis models can also better capture natural deformations 

of objects compared to boundary models (Sebastian & Kimia, 2001). A closely related 

representation, called the shock graph (Siddiqi & Kimia, 1996), which uses the medial 

axis along with geometric and dynamic information at the points of discontinuities,  has 

also met with much success and has been used to model deformation and changes in an 

object’s structure (Sebastian, Klein & Kimia, 2001).    

 A recent effort to address many of the weaknesses of the traditional medial axis 

transform is a Bayesian estimation of the shape skeleton (Feldman & Singh, 2006). This 

approach assumes that shapes arise from a mixture of generative and random factors, 

specifically a skeleton and a “stochastic growth process”. Here, a process estimates the 

skeletal structure most likely to have generated the shape.  The model assumes (1) a 

prior over skeletons and (2) a likelihood function that models how shapes are generated 

from skeletons.   

 A key element of this approach, which will be expanded upon in the model 

presented below, is that it allows for alternative “explanations” for a given shape.  In the 

approach to similarity developed in this thesis, the key idea is to question whether two 

shapes are better explained as resulting from a common generative source or from two 

independent sources; therefore, the Bayesian estimation of the shape skeleton allows for 

this evaluation. 
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4.3   SIMILARITY  

 Much of the historical study of similarity pertains to judgments used to 

determine whether an internal cognitive representation matches its reference in the “real 

world”. The traditional view, attributed to Aristotle, is that an internal representation 

refers to an external object according to its resemblance or isomorphism between the 

two. For example, the representation of a mouse has the quality of being furry and 

small.  Rather than believing that the internal representation of the mouse is small and 

furry, it is obvious that it is represented as a set of measurements that embody the visual 

qualities of a mouse. The form of this information in regards to shape, be it structural 

(e.g. Biederman, 1987), metric (e.g. Ullman, 1989), or as forwarded in this thesis, both, 

demonstrates the one to one correspondence between properties in the brain to those in 

the world. 

 Another importance of similarity arises when considering that the visual system 

attempts a second-order isomorphism (Shepard, 1968) between similarities of shape and 

similarities of the internal representations of shapes, as opposed to the first-order 

isomorphism between the shapes and their direct representations. For example, an 

internal representation of the shape of a cat may take various forms, but it should 

demonstrate some “closeness” or similarity to the internal representation of a rabbit than 

to the smell of burning tires, or any other such stored concept. 

 Utilizing this second-order isomorphism, similarity has been used to investigate 

the representation of shape and its veridicality to worldly objects (e.g. Shepard & 

Chipman, 1970; Shepard and Cermak, 1973; Cortese and Dyre, 1996; Cutzu and 
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Edelman, 1996). These studies have tested and demonstrated the consistency of both the 

correspondence of similarity judgments between subjects and, when using 

parametrically varied stimuli, between the subject-rating produced MDS patterns (see 

section 4.3.1) and those formed by the constructed stimulus space. 

  

4.3.1 Multidimensional Scaling (MDS) 

 The main tool used to generate an internal shape space for similarity judgments 

is multidimensional scaling (MDS). In a typical MDS experiment, subjects are 

presented with pairs of stimuli and are asked to indicate their perceived similarity using 

a numerical rating.  These ratings are then used to produce a geometric representation in 

which each stimulus is identified with a point in a multidimensional perceptual space 

with the property that similarity and the inferred psychological distance are inversely 

related.  An assumption of MDS models is that subjects base their similarity judgments 

on the distance between the raw perceptual representations of the two stimuli.  Thus, the 

computation of a distance metric is one way of integrating information from various 

perceptual dimensions, creating a psychological space, which can then be used to 

predict behavior on tasks such as categorization (Shin & Nosofsky, 1992). In this sense, 

MDS has value as a tool after similarity has already been evaluated. It is also necessary 

to be cautious in linking ”distance” in MDS space to true psychological similarity. 

Clark (1993) points out that although the distances within MDS space are 

monotonically related to similarity, it cannot be assumed that ratios of distances are 
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interpretable and that there may not be a common unit to be used on each dimensional 

axis.  

  An MDS plot is a descriptive tool that can also be used to explain behavior in 

terms of a decision boundary model (Ashby & Townsend, 1986).  According to this 

type of model, objects give rise to distributions of points in psychological space and a 

classifier partitions the space by forming boundaries.  These boundaries create regions 

wherein ratings of similarity will be like. While MDS has an enormous literature, it 

should be noted that the goals of MDS do not include any type of predictive or 

explanatory computation of similarity, but focus instead on the understanding of the 

geometrical structure of empirically observed similarity judgments. In this sense, MDS 

does not by itself provide any means for determining the similarity between two stimuli. 

4.3.2  Shape Similarity 

 Efforts toward creating efficient and robust methods of shape representation are 

often focused on shape matching, classification, or recognition.  One of the primary 

means for performing these tasks is by utilizing shape similarity. For example, using 

shock graphs, in which a shape’s contour is decomposed into a set of qualitative parts, 

captured in a directed acyclic graph, the similarity between two shapes is produced by 

comparing their shock graph topology and attributes (Sebastian, Klein, Kimia, 2002; 

Siddiqi, Shokoufandeh, Dickinson, & Zucker, 1998).  Shape representation approaches 

that use a finite set of features may provide a measure of dissimilarity by finding the 

Euclidian distance between their features, where, for example, the features may be 

Fourier descriptors (Lin & Chellappa, 1987; Cortese & Dyre, 1996) or Zernike 

 

 



18 
 

moments (Zhang & Lu, 2003). Local features may include local tangents, curvature, and 

other, qualitative descriptions of shape boundaries (Carlsson, 1999). In this case, 

computing the distance between shapes involves finding point-wise correspondences 

between the shapes’ contours. These correspondences are often found by applying 

optimization techniques, particularly dynamic programming (e.g. Basri, Costa, Geiger, 

& Jacobs, 1998; Gdalyahu & Weinshall, 1999, Sebastian, Klien, & Kimia, 2003) or the 

fast marching method (Frenkel & Basri, 2003). A method developed by Pizer et al. 

(1999) represents shapes using a multiscale medial axis representation and has been 

successfully used by Yushkevich, Pizer, Joshi, and Marron (2001) for the examination 

of shape variability, in terms of growing and bending, in diagnostic classification for 

medical imaging. 

 Another more modern approach suggests that the similarity between two objects 

is a function of the “complexity” required to “transform” the representation of one 

object into another (Chater & Hahn, 1997; Hahn & Chater, 1997). The more simple this 

transformation process, the more similar the two objects are assumed to be.  The idea 

that the involvement of a transformation is related to similarity has also been used to 

“map out” psychological space (Feldman & Richards, 1998) and for machine learning 

applications (Li & Vitanyi, 1997). This notion of transformation is highly relevant to 

the similarity metric proposed in this thesis as it introduces the role of processes in 

similarity measurement. 

 Another issue pertinent to shape similarity involves the integrality of stimulus 

dimensions, which is how different stimulus attributes combine and interact in 

perceptual processing.  Traditionally, perceptual dimensions are characterized according 
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to whether they are separable or integral (Attneave, 1950; Shepard, 1964). A pair of 

dimensions are said to be separable if it is easy to attend to one and ignore the other 

(Shepard, 1964).  With an integral dimension, it is extremely difficult to attend to one 

dimension and ignore the other (Lockhead, 1966).  Similarity judgments involve the 

assessment of similarity in multiple respects, often involving the combination of 

features, such as size, shape, number of parts, etc., which has been found to have a 

neural basis (Drucker & Aguirre, 2008). A well-founded similarity metric can reflect 

this integration if the shape representation and object comparison method on which it is 

based is capable of representing integrated information in a veridical fashion. 

 

4.3.3 Shape Matching 

 As previously mentioned, shape matching uses the similarity between objects’ 

shapes for particular tasks that are most often encountered within computer science 

applications. In many object recognition and content-based image indexing 

applications, object outlines are represented as curves and then matched. The matching 

relies on either aligning feature points using an optimal similarity transformation, which 

rely on matching feature points by finding the optimal rotation, translation, and scaling 

parameters (e.g. Umeyama, 1998), or on a deformation-based approach that aligns the 

properties of the two curves, such as by finding a mapping from one curve to the other 

that penalizes stretching and bending (e.g. Liu & Srinath, 1990; Basri, Costa, Geiger, & 

Jacobs, 1998).  
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 Approaches to shape matching also utilize various other shape representation 

techniques, such as the Hough Transform (Ballard, 1981), deformable templates 

(Sclaroff & Pentland, 1995), Fourier descriptors (Loncaric, 1998), and curvature scale 

space (Mokhtarian, Abbasi, & Kittler, 1996). For example, by representing an image by 

its Zernike moments (Khotanzad & Hong, 1990), functions that are moment invariants 

can be defined for an image such that only a few low-order moments are needed for an 

adequate representation.  These moment invariants can be put into a feature vector that 

may subsequently be used for matching (Veltkamp, 2001). 

 The actual similarity computation used in shape matching can take various other 

forms (see Veltkamp & Latecki (2006) for a review). The shape context method 

(Belongie, Malik, & Puzicha, 2002) builds a shape representation for each contour point 

then uses statistics of other contour points “viewed” by each point to create distances 

that are used as the similarity measure.  The area of symmetric difference measure, also 

called the template metric, is defined as the union of the difference of area of each of 

two shapes subtracted from the other (Alt, Fuchs, Rote, & Weber, 1996).  More 

psychologically relevant is a similarity measure based on convex parts correspondence 

(Latecki & Lakaemper, 2000).  This method uses the optimal correspondence of contour 

parts of two compared shapes, where the correspondence is computed on contours 

simplified by a discrete curve evolution using dynamic programming (Latecki & 

Lakaemper, 1999).   

 Recently, some of the more significant shape matching results are based on 

models that use a shape’s skeletal structure as a basis for similarity. Shock graph 

matching has been used (Pelillo, Siddiqi, & Zucker, 1999; Sharvit, Chan, Tek, & Kimia, 
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1998) for object recognition and image indexing tasks. Zhu and Yuille (1996) have 

proposed a frame-work (FORMS) that decomposes 2D shapes into connected mid-

grained skeletal parts. Matches are based on similarity between parts, computed as a 

joint probability by employing a grammar that “constructs” shapes out of their 

primitives. 

 A problem addressed by a few recent models is the fact that an object’s shape 

may change as the result of part articulation.  A model with reasoning similar to that of 

this thesis has been proposed by Bai and Latecki (2008), which develops a novel 

method for matching skeleton graphs by contrasting the geodesic paths between shape 

skeletons.   Their primary motivation stems from the fact that similar shapes may 

exhibit grossly different topological skeletal structure, for example, the skeleton of a 

man with his arms down compared to the skeleton of a man with his arms raised. This 

“mobility” of parts creates the need for a technique that is articulation invariant.   Their 

approach uses the similarity between the shortest paths between each pair of endpoints 

of a 2D shape’s pruned skeleton.  The similarity between the shortest paths establishes a 

correspondence relation between the endpoints for graphs from different shapes.  The 

shapes are then matched by corresponding the shape descriptors of the skeleton 

endpoints.  They find that their method is successful at classification of images by using 

standard image databases, outperforming shape matching based on shock trees (Siddiqi, 

Kimia, Tannenbaum, & Zucker, 1999) and shape contexts (Belongie, Malik, & Puzicha, 

2002).  A similar articulation invariant method uses inner-distances, the shortest paths 

between landmark points on a shape silhouette, as a descriptor of complex shapes (Ling 

& Jacobs, 2005; Ling & Jacobs, 2007); 
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4.3.4 Neural work on similarity 

 The mapping between “real world” stimuli and internal representation space 

leads to the search for neural evidence of such an internal representation.  Specifically, 

investigators have looked for neural units that respond preferentially to certain objects, 

with response falling off monotonically with dissimilarity between the object and 

another stimulus.  Several investigations have suggested that stimuli could be 

represented in the brain by a recoding of the visual input into distance functions 

(Edelman, 1999; Pouget & Snyder, 2000).   

 Tanaka et al., (1991, 1992, 1993) found selectivity for specific objects in 

recordings from the inferotemporal (IT) cortex of anesthetized monkeys.  This work 

suggest a parallel between the functional organization of the IT cortex and the primary 

visual cortex, where the former has cells responding to similar shapes arranged in 

columns perpendicular to the cortical surface and the latter where the columnar 

structure reflects orientation selectivity.  In a study by Sakai, Naya, and Miyashita’s 

(1994), stimuli were varied parametrically by periodic 2D patterns.  They found that the 

response of cells decreased monotonically with parameter space distance between the 

test stimulus and preferred pattern to which the cells were tuned.  Other single-cell 

recordings in the IT cortex have also supported the notion of distance function for the 

representation of shape (Logothetis, Pauls, & Poggio, 1995; Op de Beeck, Wagemans, 

& Vogels, 2001), where at the individual level, most IT neurons respond maximally to 

the presentation of a particular shape in a stimulus group.  Responses weaken for shapes 

located more distantly in the stimulus space. 
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 A highly relevant study by Op de Beeck, Wagemans, & Vogels (2008) again 

found that neurons respond to particular shapes and display properties of distance 

functions, however, they also find that perceived shape differences may differ from 

experimentally manipulated parametric shape differences and therefore need to be 

independently quantified, as they are not necessarily equivalent to parametric 

differences in shape. They attribute the failures of spatial models of categorization that 

represent stimuli on only a low number of dimensions to fit behavioral data  to subjects 

not using the dimensions explicitly included in the spatial representation. To address 

this failure, they cite the need for “richer” models of visual categorization that allow for 

the fact that visual stimuli may be represented at multiple levels. 
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5.0  THE GENERATIVE SIMILARITY MODEL 

5.1 PREVIEW 

 The following section describes the details of the GS model. First, the 

motivation behind the model in terms of its generative structure is presented.  Second, 

the skeleton creation for 2D shapes is presented as the precursor and critical 

groundwork for the GS approach.  Next, the particular details of the model are 

presented according to the specific issues that they address, namely, the topology and 

metric aspects of the skeleton and the modelling of shape from the skeleton. Lastly, the 

computation of the similarity metric is presented and discussed. 

 

5.2 A GENERATIVE MODEL 

 The primary goal of this thesis is to demonstrate that a probabilistic framework 

for shape representation is useful for modelling human shape similarity judgments.  The 

basic idea is that similarity is determined by the generative processes that results in a 

shape.  While “generative” 
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 can mean different things depending on the context, here “generative” describes the 

processes that, having occurred, produced a particular shape. The model described in 

this thesis allows for a computable similarity metric by providing an estimate of the 

likelihood that a particular shape has been generated by the model of the generative 

processes of another shape. Shapes that result from the same series of generative 

processes will be deemed as similar; those created from different generative processes 

will be gauged as dissimilar.   

 A generative approach to similarity suggests that even complex objects are the 

result of simple processes, a notion that spans disciplines, but is found most notably in 

biology (Thompson, 1961).  This idea has also been applied to shape representation 

(Leyton, 1999), categorization (Feldman, 1997; Rehder, 2003) and syntax (Chomsky, 

1965). Figure 5 gives an example of a hierarchical structure demonstrating the 

relationship between different shapes, their skeletons, and the generative history of their 

skeletons.  Each skeleton is formed according to a generative path, where each point 

along the path results in subsequent transformation of the skeleton. Shapes that share a 

like skeletal structure, and thus a generative path, exhibit a high level of similarity. This 

organization, similar to biological taxonomies, reveals how similar shapes are likely to 

have common origins, or generative paths, that result in their observable similarity. 
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Figure 5: A hierarchical tree that depicts the relationship between shapes, their skeletons, 

and their generative history. Shapes with common origins are highly similar. 

 

 Kemp, Bernstein and Tenenbaum (2005) illustrate the usefulness of viewing 

similarity as related to generative processes by pointing out that given an object and 

asked to predict similar objects, there are two kinds of responses.  Similar objects may 

result from small perturbations of one type of object or may be created from small 

perturbations of the process that generates the objects.  They suggest that the latter 

response, the generative view, is much more feasible as the former would result in an 

object that is not created from a plausible generative process and would therefore lack a 

causal history. This idea suggests that the use of similarity is grounded in the real-

world, where human cognitive processes are presumably designed to reflect natural 

processes.  

  

Generative 
path  
of skeleton 

skeleton 

shape 
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5.3 SKELETON MODEL 

 The first step in evaluating the similarity between two shapes requires that each 

shape to be represented by its maximum a posteriori (MAP) skeleton, created from the 

skeleton formation technique described in Feldman & Singh (2006). The motivation 

behind this skeletal model is that shapes and their skeletons arise from generative 

processes.  This approach lays the foundation for a larger, more comprehensive 

stochastic generative model that allows for comparisons of shape by virtue of their 

generative processes.   

 Feldman and Singh’s model uses a probabilistic Bayesian framework to 

represent a shape with the “best” skeleton.  This skeleton is determined from candidate 

skeletons by finding the one with the maximum posterior, that is, the one that best 

“explains” the shape. To judge the viability of candidate skeletons, the posterior  

 

is calculated over all possible skeletons for a particular shape.  

 To create candidate skeletons, this approach begins with the medial axis 

transform (Blum, 1973) and then estimates the probability of that skeleton, p(skeleton), 

using a set of predefined priors, which serve as penalties involved in the skeleton 

formation. The first penalty derives from work on contour integration (Feldman & 

Singh, 2005) and penalizes increasing curvature of a skeleton axis.  The skeletal axes 

are approximated by splines denoted by a series of knotpoints, creating smaller 

segments, over which there is a prior density that assumes successive points are 

 

 



28 
 

generated by a density function that is centered on a zero curvature continuation of the 

axis with a deviation following a von Mises distribution.  This means that relatively 

straight axes have a high probability that decreases with an increase in turning angle. 

Another prior penalizes increasing complexity, making complicated skeletons, those 

with more axes, more unlikely. Starting with the MAT for a particular shape, branches 

are pruned away if their explanatory power is outweighed by their complexity penalty, 

resulting in a skeleton that demonstrates a much decreased sensitivity to contour noise, 

a detrimental trait of the MAT (see Figure 6). 

  

 

Figure 6: On the right, a medial axis transform skeleton that demonstrates sensitivity to 

noise. On the left is the MAP skeleton, which does not suffer from such sensitivity. 

 

 For a given a skeleton, the likelihood of a particular shape can then be found 

under a conditional probability density function, p(shape|skeleton). For this likelihood 

portion of the posterior calculation, the model constructs “ribs” which radiate from the 

axes to the shape’s contour as a means explaining contour points on the shape (see 

Figure 7). For each point on the skeletal axis, these ribs grow on both sides, 

approximately perpendicular to the axis but with random directional error (chosen from 

a von Mises density centered on zero). The likelihood of the shape point p(x|skeleton) is 

determined by the product of the expected rib length, directional error, and rib length 
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error. The likelihood of the whole shape is then the product of the likelihoods of all of 

its points.  

 

Figure 7:  A depiction of the components of the MAP skeleton for a 2D shape. 

 

 The critical advantage of this model is that it generates a viable skeletal 

representation for shape by representing two integrated sources of information: the 

generative mechanism and a “noise” mechanism. It also provides skeletal components, 

namely a hierarchical set of axes and ribs, that can be further modelled for shape 

comparison tasks, as is described below.  
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5.4 STRUCTUAL ASPECTS OF SHAPE: THE TOPOLOGY OF THE 

SKELETON 

 In order to model the topological structure obtained through the skeletal process 

just described, a construct is needed that formalizes relationships exhibited in the 

structure of a skeleton. In linguistics, sentences can be modelled as composed of a noun 

phrase and a verb phrase, which again may be decomposed into simpler parts, such as a 

determiner and a noun and verb.   The breakdown of these components signifies the 

hierarchical nature of the sentence and its parts. The set of allowed configurations of the 

parts is determined by a set of rules called a grammar.  While there are many possible 

ways for the grammar rules to be expressed, a popular method is the use of string 

rewriting rules called productions.  

he topological structure obtained through the skeletal process 

just described, a construct is needed that formalizes relationships exhibited in the 

structure of a skeleton. In linguistics, sentences can be modelled as composed of a noun 

phrase and a verb phrase, which again may be decomposed into simpler parts, such as a 

determiner and a noun and verb.   The breakdown of these components signifies the 

hierarchical nature of the sentence and its parts. The set of allowed configurations of the 

parts is determined by a set of rules called a grammar.  While there are many possible 

ways for the grammar rules to be expressed, a popular method is the use of string 

rewriting rules called productions.  

 Likewise, syntactic approaches to pattern recognition, usually referred to as rule-

based grammars (Chomsky, 1957), can model complex objects by defining them in 

terms of their constituents; the constituents in turn are defined in terms of their 

subconstituents. At the bottom of this process lies a set of terminals for which no further 

expansion is possible.  This leads to hierarchical descriptions of the objects of interest. 

A specific example, extracted from Fu (1989), is shown below, where the pictorial 

pattern of Picture P (Figure 8) can be described in terms of the hierarchical structures 

shown on the right of Figure 8.  

 Likewise, syntactic approaches to pattern recognition, usually referred to as rule-

based grammars (Chomsky, 1957), can model complex objects by defining them in 

terms of their constituents; the constituents in turn are defined in terms of their 

subconstituents. At the bottom of this process lies a set of terminals for which no further 

expansion is possible.  This leads to hierarchical descriptions of the objects of interest. 

A specific example, extracted from Fu (1989), is shown below, where the pictorial 

pattern of Picture P (Figure 8) can be described in terms of the hierarchical structures 

shown on the right of Figure 8.  
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 To use a syntactic approach to pattern recognition, objects must first be 

represented.  The most common representation scheme for this type of application is 

strings of symbols, though arrays and graphs (Pavlidis, 1977) have also been used.  

Most notably, Fu (1982) developed a comprehensive pattern description language, 

influenced by Shaw’s (1969) pictorial description language, as a primary pattern-

modelling tool.  The following is an example of a description language taken from Fu 

(1989). 

 Given a line representation of a triangle shown in Figure 9 (a) and the primitives 

shown in Figure 9 (b), the triangle may be represented by the string abc, using the 

“concatenation” operation from Fu (1974).  Different sizes of the triangle are 

represented by the string ambmcm, where m≥1. An example of a larger triangle is shown 

in Figure 9 (d). 

 

 

 

 

 

 



32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

c

b 

(a) (b) 

a b
a b c 

c (c) 

a b

a a3 b3 c3 b

a 
b 

(d) 
c c c 

 

 



33 
 

 

 

 

 

 

 

The triangle can be generated by the following grammar (Tremblay, 1975),  

G =  < {S, X,Y}, {a,b,c}, S, P > 

where P consists of the following production rules: 

    S  aSXY 

    S  aXY 

    YX  XY 

    aX  ab 

    bX  bb 

    bY  bc 

    cY  cc 

  

 Given a particular grammar and a collection of terminals, it is a natural question 

whether the grammar could have generated this collection of terminals.  The process of 

determining the process by which a set of terminals was produced is known as parsing.  

Parsing is the basis of pattern recognition for syntactic methods.  Typically, a set of raw 

data is pre-processed into a collection of terminals, which are then parsed again.  Output 

of the parse is a list of rules that could have generated the collection of terminals, which 

may be singular or include multiple possibilities.  The parse of the triangle in Figure 9 

(d) is shown below. 

Figure 9: An example illustrating the structural or syntactic approach to shape representation 

(a) A line represenstation of a triangle  (b) Primitives and their discrete symbol representation   (c) 

Approximation of the triangle using primitives and the symbol string representation of the triangle (d) 

Approximation of a different size trinagle and its symbol strings representation 
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   S  aSXY 

     aaSXYXY 

     aaSXXYY 

      aaaXYXXYY 

   aaaXXYXYY 

   aaaXXXYYY 

   aaabXXYYY 

   aaabbXYYY 

   aaabbbYYY 

   aaabbbcYY 

   aaabbbccY 

   aaabbccc 

 

 When there exists more than one possible parse for a set of terminals, it is 

necessary to form a means of comparing or ranking these different interpretations.  

Probabilistic context-free grammars (PCFGs) are a modern variation to grammar 

creation in which probabilities are imposed on rewrite rules.  Here, a context-free 
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grammar is used to define the set of production rules with a corresponding probability 

distribution.  

  A similar scheme will be used in the work in this thesis; a novel compositional 

grammar will be used to define a set of rules with associated probabilities that will 

represent a “skeleton grammar”.  A PCFG will be used to induce a probability 

distribution over shapes, with each shape skeleton seen as the result of a derivation 

according to the grammar. Though various primitives for representing the shape could 

be used (e.g. line segments (Fu, 1974), chaincode (Freeman, 1961), or polygonal and 

functional approximations (Pavlidis, 1977)), the approach in this thesis uses knotpoints 

as the primitives by which each axis can be represented (see Figure 10). 

 

 

Figure 10: Example shape with its skeleton, ribs, and knotpoints, which are used as the 

terminals in the context free grammar model. 

 

 For a set of shapes, a general “shape grammar” is used that represent 

transformations that can occur to produce a given set of terminals (knotpoints) that 

knotpoints 
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represent each shape’s skeleton (see Appendix A). Each individual rule can be seen as 

representing a kind of transformation. For example, the rule K →K K represents the 

replication of a knotpoint resulting in an expansion of the axis. The rule K →LB 

represents the creation of a left branching point on an axis. There are likewise rules that 

represent transformations such as right-branching and deletions of branches.  As a 

probabilistic grammar, each rule has a corresponding probability. For example, the 

probability that a knotpoint on the main (root) axis of the skeleton will be right-

branching could be assigned a value of 0.5.  This would indicate that for each knotpoint 

on the main axis of a shape generated from this particular shape grammar, there is a 

50% chance that it will result in a branch on the right side.  Because it was not the 

specific goal of this thesis to incorporate meaningful priors, for example, those based on 

natural shape statistics (Wilder, Feldman, & Singh, 2008), the initial probabilities in the 

grammar were designed to be neutral, in the sense that particular production rules are 

not biased. For example, the production rules in the grammar are initially set with 

probabilities so that the occurrence of a right branch is equal to the probability of a left-

branch.  

 Under this type of grammar there are multiple ways to model a specific shape.  

One approach would be to bias all of the rules of the grammar so that they resemble the 

entire process that could have been responsible for that shape. For example, to model 

the shape of a dog that has four legs branching from a torso (the root), the production 

rules responsible for left branching would reflect a higher probability of occurrence than 

that for right branching (assuming a right to left transversal down the main axis of the 

dog). This approach would be suitable for an iterative learning process, for example, a 
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categorization model that iteratively creates a “definition” for a category (see section 

7.1.1 for further discussion).   

 Another approach, and the one applied here, requires only one additional 

production rule (beyond the ones that are included for every shape) in the grammar. 

This single rule reflects the topology of the specific shape that is modelled, and in doing 

so, reflects a “shortcut” of the process that created that particular shape. When parsing 

occurs under a particular shape’s grammar, the most likely “path” will be found.  So, for 

instance, when parsing a shape similar to the one on which the grammar is modelled, it 

will likely use the rule that reflects the modelled shape’s topology. If a very different 

shape is parsed, it will likely result from a process that does not utilize the topologically 

specific rule, as it is more likely to have been generated by a different process. 

 For example, the shape’s skeleton on the left of Figure 11 is represented by the 

following knotpoints:  

     K1, LB1, K2, K1 

where S stands for the starting point, LB stands for left-branch, A stands for axis, and K 

stands for a non-branching knotpoint.  The number in each term indicates on which axis 

the knotpoint occurs. The transversal of the skeleton is from right to left and is depth-

first, meaning that each encountered branch is followed until it reaches termination or 

another branching occurs.  Under a grammar constructed for this particular shape, this 

series of knotpoints could have resulted from many “paths” or sequence of productions 

rules.  Two example paths are as show below. 

   

 A:   S  A1  K1 LB1 K2 K1  
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 B:   S  A1  K1  K1 K1 K1 K1 K1  K1 LB1 K1  K1 LB1 A2 K2  K1 LB1 K2 

K1 

  

 Path A shows the use of the rule that was specifically place in the grammar to 

represent the modelled shape’s particular topology.  Path B demonstrates how this shape 

could have “started from scratch”, as each knotpoint is the result of a single production 

rule.  Upon parsing this string of knotpoints, using the Natural Language Toolkit1 

developed by Loper and Bird (2002), a likelihood value for each path is found, with the 

first path achieving the highest likelihood.  Because the probability of each step, a value 

that is less than or equal to one, is multiplied when the step is incorporated in the path, 

path A’s higher likelihood results because it involves less production steps. If a specific 

grammar was created to model the shape on the right in Figure 11, then used to parse 

the shape on the left, which is highly dissimilar to the one on which the grammar was 

based, the most likely path would result from a “starting from scratch” path, as to begin 

with the other shape’s topology would involve the too costly deleting of branches. 

                                                 

1 The Natural Language Toolkit (NLTK) is a suite of Python modules distributed under the GPL open 
source license via nltk.org. The NLTK code supports corpus access, tokenizing, stemming, chunking, 
parsing, clustering, and language modeling, as well as other functionality. 
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Figure 11: The shape on the left is represented by a specific derivation in the grammar. The 

shape on the right would not be well represented by the same derivation such that  its most likely 

generative path would involve it “starting from scratch”. 

 

 It should be noted here that this component of the model, representing shape 

skeletons with a grammar, is the most significant contributor to the computational 

complexity of the model.  As the number of points (knots) used to represent the shape 

increases, so does the computational time for parsing each shape.  Because the number 

of knots increases proportionally with the number of parts in a shape, the parsing of 

complicated shapes may take a significant amount of processing. 

5.5 METRIC ASPECTS OF THE SKELETON 

 The axis depiction from the skeletal model represents the curvature of each 

specific axis as a series of angles and log ratios of line segment lengths. The angles are 

the measurements from each line segment to the tangent of the preceding segment. The 

log length ratios are formed between each pair of consecutive segments that form the 
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axis. Both values are assumed to be normally distributed with the means equal to the 

modelled shape’s values at each consecutive point. 

 The angle at which each axis “branches” from its parent is likewise represented 

under the assumption that a child branches from its parent according to a Normal 

distribution. In the GS model, the mean of this distribution is set to the value of the 

modelled shape’s branching angle for that particular branch.  The variance for the 

distributions representing the curvature and branching angle is set to a predefined value. 

Because this value is static and used across all shape comparisons, any influence it 

introduces is shared across comparisons and therefore does not cause any specific bias.  

Within the GS model, the curvature values and branching angles of a to-be-compared 

shape can then be assigned a probability according to the normal distribution of the 

modelled shape’s corresponding axis and branch distributions. 

5.6 METRIC ASPECTS OF THE CONTOUR: THE RIB MODEL 

 As explained in section 5.3, the skeleton representation produced includes a 

collection of ribs that explain points along the shape’s contour. While the skeletal model 

captures many of the important properties of the shape, most significantly, the part 

structure, the ribs capture information about the contour at a finer level of detail. Within 

the GS model, the representational strategy employed for modelling the shape ribs is 

based on one created by Bicego and Murino (2004). Their model employs Hidden 

Markov Models (HMMs) for 2D shape classification by representing contours through 
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their curvature coefficients along the boundary, allowing for the representation of a 

shape’s boundary as a probabilistic sequence. 

 An HMM is a probabilistic model that represents a random sequence 

O=O1,O2,O3,..,OT  as the indirect observations of an underlying Markovian random 

sequence Q=Q1,Q2,...QT  (see Figure 12 for a graphical representation). An HMM λ is 

defined by the following components (Rabiner, 1989): a set of states, S = {S1,S2,...,Sk}; a 

transition matrix A={aij}, where aij ≥ 0 represents the probability of going from state Si 

to state Sj; an emission matrix B = {b(o|Sj)}, the probability of an emission o from state 

Sj; and an initial state probability distribution π = { πi}, the probability of the first state 

πi = P[Q1 = Si]. 

 

 

 

 

    

  

 

  

 

 With this model, given a sequence O, the Baum-Welch re-estimation procedure 

(Baum, Petri, Soules, & Weiss, 1970) can be used to determine the HMM parameters 

maximizing the probability P(O| λ).  To compute the probability P(O| λ) given the 

sequence O and an HMM λ, the forward-backward procedure (Baum, 1970) is used.   

Q3 Q2 Q1 

b1 

a32 a21 

a23 a12 

b3 

O3 O2

b2 

O1

Figure 12: A graphical depiction of an HMM with states Q=Q1,Q2,...QT, observations 

O=O1,O2,O3,..,OT, transition probability matrix A={aij}, and emission probability matrix B = {b(o|Sj)}.
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 The sequence of rib lengths that occurs about each axis of a shape in the GS 

model is captured by an HMM using the previously described HMM method.  For the 

primary axis, the sequence of rib lengths starts from the right endpoint. For “child” 

branches, the sequence begins at the attachment-to-parent point. For both types of axes, 

the sequence of rib lengths is created by travelling around the axis until all rib lengths 

have been collected.  

 This obtained collection of rib lengths is then used to train a continuous HMM 

using the Baum-Welch method, where the emission probability of each state is 

represented by a one-dimensional Gaussian function.  The number of states of each 

HMM is set as a function of the number of rib lengths collected (one tenth of the 

number of ribs), with a minimum of one and a maximum of six states. The HMM 

implementation used was developed by Kevin Murphy (2001) and uses a Gaussian 

Mixture Model clustering to initialize the emission matrix of the HMM by grouping the 

rib lengths into clusters and then using the Gaussian parameters to initialize the 

Gaussian of each state.  At the end of the training, there is one HMM for each axis of 

the modelled shape’s skeleton, so that the ribs for an entire shape are represented by the 

collection of HMMs for its component axes. 

 To produce the likelihood that one shape’s ribs have arisen from another shape’s 

model, the previously mentioned forward-backward procedure is run. Given the ribs 

from shape A, on which an HMM λA  has been modelled (if shape A has multiple axes, 

λA will be multiple HMMs), and a shape B that is to be compared to A, this algorithm 

computes the probability P(OB| λA), where OB  is the sequence of rib lengths from shape 
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B.  This probability represents the likelihood that shape A’s model is the generative 

process that resulted in shape B’s ribs. 

  

5.7 COMPUTING SIMILARITY 

 Again, the goal of this thesis is to develop a comprehensive stochastic model for 

shape representation that allows for a computable similarity metric by comparing the 

processes that generate shapes.  Using the shape representation previously described, an 

intuitive similarity metric between two shapes is defined by 

 

 

   

 For example, to compute the similarity for two shapes A and B, represented as a 

set of contour points, the first step is to find the skeleton for each shape by applying the 

MAP skeleton method (see section 5.3).  This process results in a skeleton that is 

composed of a series of n axes with a hierarchical order consisting of one “root” and n-1 

children. Specific information about each axis of the skeleton is modelled separately, 

including: information about where branching off the root occurs (section 5.4), the 

curvature of each axis (section 5.5), the branching angle of each child axis (section 5.5), 

and the distribution of ribs that radiate from each axis to the contour of the shape 

(section 5.6). Taken together, these separate models result in the ability to compare 
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shapes by finding the likelihood that one shape has been generated from another 

shape’s model. The more similar two shapes are, in theory, the more their underlying 

generative processes will overlap, resulting in a higher probability for one shape to have 

been created from the other’s generative process. To compute the similarity between 

two shapes, each shape is comprehensively modelled and then the probability that each 

shape was generated from the other’s model is found and averaged.  

  

5.8 FURTHER CONSIDERATIONS OF THE GS MODEL 

 An extremely important note should be made here: the GS model previously 

described contains many parameters, which through an optimization process, could be 

fit to a particular set of data. The following analysis represents the results of no effort to 

fit these parameters to the data. Initial parameter values were chosen either arbitrarily or 

to be as unbiased as possible. Presumably, better performance (for the following 

experimental analysis) could be achieved if data fitting through parameter optimization 

was incorporated. 

 Other important characteristics of the GS model that are not readily obvious are 

its invariance to rotation and scale. The model is approximately scale invariant, in that 

the representational theory used for shape representation is invariant, however, because 

implementation details possible make it slightly variant, if it was the intention to 

compare shapes that grossly differed in size, it would be necessary to account for their 

scale.  The analysis presented in this thesis does not assume scale invariance and only 
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uses shapes of approximately the same size. The GS model is not orientation invariant, 

in that orientation will be a factor in the similarity calculation.  While this lack of 

invariance might be detrimental in a shape matching context, because subjects may be 

sensitive to orientation, it is assumed to be a significant factor in representing human 

similarity judgments.  
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6.0  EXPERIMENTS 

 The following four experiments were designed to test the theory behind the GS 

model explained in section 5.0.  Each experimental analysis compares the generative 

similarity metric (discussed in section 5.7) with similarity judgments made by human 

subjects.  The primary difference between the four experiments is in the specific types 

of 2D shapes that were presented to the subjects. Each set of shapes was chosen so as to 

evaluate the GS approach in a different way, allowing a full and comprehensive test of 

the model in a variety of settings.  Much previous work on similarity within shape 

spaces (e.g. Cortese &  Dyre, 1996) concentrates on a very narrow class of shapes, and 

then  draws conclusions that seem strictly limited to that class. Very few, if any, 

psychological-based shape models effectively handle a wide variety of shapes, 

including both qualitative and quantitative differences, within the same theoretical 

framework. 

 Experiment 1 concentrates on shapes that show the emergence of a secondary 

part across the stimulus space. This examination serves to validate the importance of a 

shape model’s ability to distinguish when noise along a shape’s contour becomes 

meaningful enough to warrant perceptual significance. Experiment 2 and 3 build off of 

the work of Basri, Costa, Geiger and Jacobs (1998) who suggest that both part structure 

(qualitative) and metric (quantitative) differences should be considered in determining 
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shape similarity. Experiment 2 uses shapes that vary according to their topology or part 

structure.  This investigation tackles the difficult task of analyzing shapes that are 

highly perceptually variant. Experiment 3 offers a complimentary assessment of shapes 

that have identical topological structure, but whose metric differences, length and 

curvature of branches, are randomly varied.  This experiment is designed to test subtle 

differences between shapes, those that, in general, are subjectively quite similar.  The 

fourth experiment involves the use of shapes that have been created through a random 

unrelated process that intentionally deemphasizes part structure.  This investigation 

attempts an unbiased challenge to the GS model in order to evaluate its comprehensive 

adequacy. 

6.1 EXPERIMENT 1: PART EMERGENCE 

 Experiment 1 was designed to investigate the “emergence” of a part across a 

series of two-dimensional shapes. This emergence was created by presenting subjects 

with 25 shapes that varied parametrically over two dimensions, the length and width of 

a protrusion that arises from a curved base. For the shapes where the protrusion has 

lower values of length, the second “part” is virtually imperceptible, but becomes 

noticeable as the length increases (see Figure 13).   
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Figure 13: Experimental stimuli for experiment 1-shapes with an emerging part 

 

 This progression of shapes was designed to induce a boundary where, within 

this parameterized space, the protrusion qualifies as a separate part for both human 

subjects and the shape representation model.  If the model distinguishes a difference in 

similarity between shapes with one part and two parts as do the subjects (without the 

model parameters being fit to the subject data), it will be evident by the correspondence 

between the similarity ratings provided by the subjects and the similarity metric 

produced by the model. Shapes with one part will be rated as similar to each other but 

dissimilar to the two part shapes. 

6.1.1 Subjects:  

  Eleven undergraduates at Rutgers University received class credit for 

participation. 
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6.1.2 Stimuli: 

  Shapes were generated using the same major axis, but varied parametrically on 

the length and width of the secondary “part” or protrusion.  The height of the protrusion 

varied in 12 equal unit increments starting from zero.  The width of the protrusion 

varied in 20 percent increments, from 10 percent to 90 percent of the width of the major 

axis. To avoid having the subjects develop strategies focused on particular aspects of 

the shapes, rather than using a more holistic approach, Gaussian noise was applied to 

the contour of all the presented shapes. The shapes were solid black and presented on a 

white background. Shapes were approximately 10 degrees of visual angle in size at 

approximately 58cm viewing distance. 

6.1.3 Procedure:  

 Each pair of shapes from the set of shapes displayed in Figure 13 was presented 

twice to subjects on an eMac computer. Each shape was presented in a random rotation 

on the display. Beneath the shapes a similarity scale was displayed, ranging from 1 to 7 

(see Figure 14).  The subjects indicated their perceived similarity of the two shapes by 

choosing the number corresponding to their rating with the mouse, where 7 represented 

“most similar” and 1 represented “least similar”. 
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Figure 14: Example screenshot from similarity rating experiment. 

6.1.4 Results 

 Figure 15 shows the MAP skeletons for each stimulus shape presented in 

Experiment 1.  At some point within the parameterized space the protrusion becomes 

meaningful enough (in terms of the MAP skeleton procedure) to warrant a second axis 

in the shape’s skeleton (indicated by the red boundary).  
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Figure 15: Experiment 1 shapes with their corresponding MAP skeletons and ribs. Color 

coding indicates separate axes in the MAP estimates; i.e. red ribs and axis constitute a secondary 

part.  Red boundary indicates “gulf” in stimulus space separating one and two part shapes. 

 

 The GS approach presumes that structural aspects of shape (among others) play 

a key role in similarity judgments.  This suggests that qualitative shape changes, as 

captured in the theory by topological changes to the inferred skeleton, will entail jumps 

in dissimilarity.  To corroborate this prediction, a preliminary MDS analysis (ASCAL) 

was run to produce scaled inter-shape distances from the subject data, which represent 

the distances among shapes in “psychological space” derived from the similarity 

ratings. An MDS plot (see section 4.3.1 for an explanation) was created to visually 

represent how the subjects grouped the shapes on the basis of similarity. Figure 16 

shows the MDS plot, where each shape is represented by a circle, whose color 

corresponds to the color circles below each shape in Figure x. Shapes grouped closely 

in the MDS plot indicates those shapes’ high level of similarity as rated by subjects.  
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The MDS plot reveals a conspicuous “gulf” between two groups of shapes. This gulf 

corresponds to the same gulf as seen in Figure 15, between the one and two part shapes.  

Though only a visual aid, this plot indicates that a psychological difference exists 

between shapes with one part (as found by the skeletal model) and those with two. 

 

 

Figure 16: An MDS plot of subjects' similarity ratings for the shapes presented in 

Experiment 1. The red boundary represents the "gulf" that occurred between one and two part 

shapes determined by the skeletal representation. 

 

 To validate the “gulf” that is implied by the MDS plot, an additional analysis 

was run aiming to compare the magnitude of dissimilarity judgments within vs. between 

classes of topologically like shapes (i.e. those with one or two axis skeletons).  To 

compensate for the actual physical differences between the shapes, each of the MDS 
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scaled inter-shape distances from the subject data was divided by the corresponding 

Euclidean distance in the parameterized shape space.  These distances were then 

separated into two groups.  The first group was composed of the distances between 

shapes with either only one part (according to the skeletal model) and the distances 

between shapes with two parts (according to the skeletal model). This group can be seen 

as a list of distances among shapes with the same topology. The second group was 

composed of the distances between shapes with one and two parts, so that these 

distances were among shapes with differing topologies.  A t-test was then used to 

analyze if there was a difference between the means of the two groups of distances, 

which resulted in a rejection of the null hypothesis that the means are equal (t=-4.346, 

df=245, p<.005).  This result indicates that a psychological difference exists between 

shapes with one part (as found by the skeletal model) and those with two. The means 

and standard errors of the averaged distances for both one and two part shapes is 

displayed in Figure 17. 
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Figure 17: The means of the computed psychological distances in the shape space for two 

groups. Group one is made up of the distances between shapes with the same topology and group 

two is made up of the distances between shapes with different topologies (one part vs. two). 

 

 

 The similarity metric, derived from the process explained in section 5.7, was 

computed for each pair of shapes. Because the calculated similarities are small 

probabilities, the absolute value of the logarithmically scaled value was used for 

analysis. In order for the model and subject ratings to have a positive correlation, the 

subjects’ ratings were inverted so that ‘1’ became the highest value of similarity and ‘7’ 

became the lowest.  To determine if the model generated a similarity metric that 

corresponded to the subjects’ similarity ratings, a linear regression model (Figure 18) 

was used.  The model was found to adequately predict the similarity ratings of the 

subjects (F(1, 623) = 80.033, p < .0005).  
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Figure 18: Regression graph of predicted and subjective similarity, with standard error 

bars, for all trials in Experiment 1-shapes with an emerging part. 

 

 In the graph in Figure 18, there is a noticeable nonlinearity in the data where 

similarity is higher.  A post-hoc analysis has shown that this non-linearity pattern results 

from subjects’ rating practices that occur when the stimuli presented is two of the exact 

same shape. For example, subjects may tend to keep their ratings around the middle 

range of the scale, but when they observe two of the same shape, they “jump” to the 

highest similarity rating.  This ‘jump’ is indicative of the subjects doing something 

qualitatively different than the GS model.  It is likely that this difference is results from 

the subjects performing something like identification, determining if the 2 shapes are 

exactly the same, and thus represents a separate type of process that the GS model does 

not intend to capture. If the trials where the same shape was shown twice are removed, 

the results remain significant (F (1, 598) = 51.122, p < .0005). 
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 To forward the use of a similarity metric for further applications, a 

supplementary demonstration of shape matching based on the calculated similarity 

metric was also performed.  Each shape in a corner of Figure 13 was chosen as a shape 

to be matched, which involved determining, out of the other 24 shapes, the shape that 

had the second highest similarity rating to the to-be-match shape. The first highest 

similarity to the to-be-matched shape is consistently itself and therefore this match is 

not considered.  Figure 19 displays the to-be-matched shapes above their resulting 

matches. Results show that each shape was matched to an adjacent shape in the stimulus 

space. 

 

 

Figure 19: The top row shows shapes that were matched to the shapes on the bottom row 

on the basis of the calculated similarity metric. Each match was with shapes that are adjacent in 

the stimulus space. 

6.1.5 Discussion 

 From the regression analysis, it is evident that the subjective similarity is 

effectively predicted by the generative similarity metric produced by the model. Shapes 

that are judged to be dissimilar by the subjects are likewise found dissimilar according 

to the similarity metric.  Because the skeletal model created 2-part skeletons for those 
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shapes with a larger protrusion, according to the regression analysis, subjects are likely 

finding a similar distinction between shapes, where the size of the protrusion eventually 

determines it being deemed significant enough to warrant labelling it as a second part. 

6.2 EXPERIMENT 2: SHAPES WITH TOPOLOGICAL DIFFERENCES 

 The second experiment was intended to test shapes with a strong part structure.  

The shapes used in this experiment were generated by running the grammar “forward”, 

where the same probabilistic rules used to parse a given shape (explained in section 5.4) 

were employed to generate new shapes (see Figure 20 for examples). These shapes were 

designed to test both metric and topological types of shape transformations, which is 

especially important because it emphasizes the unique strength of the GS model to 

handle differences in part configurations across shapes.  

 

 

 

Figure 20: Example stimuli for Experiment 2-shapes with differing topology 
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6.2.1 Subjects 

Subjects were 10 undergraduates at Rutgers University who participated for class credit. 

6.2.2 Stimuli 

 As previously mentioned, the grammar contains production rules for the 

branching or topological structure of a shape.  This set of 25 shapes was created by 

iteratively applying these rules according to the probability that they occur in generating 

a shape.  Each shape was solid black and presented on a white background. Shapes were 

approximately 10 degrees of visual angle in size at approximately 58cm viewing 

distance. 

6.2.3 Procedure  

 Each pair of shapes was presented twice to subjects on an eMac computer. Each 

shape was presented in a random rotation on the display. Displayed beneath the shapes 

was a similarity scale, ranging from 1 to 7 (see Figure 14).  The subjects indicated their 

perceived similarity of the shapes by choosing the number corresponding to their rating 

with the mouse, where 7 represented “most similar” and 1 represented “least similar”.  

 

 



59 
 

6.2.4 Results 

 The similarity metric, derived from the process explained in section 5.7, was 

computed for each pair of shapes and compared to the GS model-produced similarity 

rating in a linear regression.  Again, we find that the model accurately predicts subjects’ 

similarity ratings (F(1,623) = 28.71, p < .0005).  

 

Figure 21: Regression graph of predicted and subjective similarity for all trials in 

Experiment 2-shapes with different topologies 

 

 Removing the trials where subjects viewed two of the same shape, because this 

causes the non-linearity discussed in section 6.1.4, still results in a significant regression     

(F (1, 598)=22.525, p < .0005). 
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 Because the linear regression was run using averaged subject data, Figure 22 

displays data from an individual subject.  As can be seen, the exhibited pattern of the 

individual closely resembles that of the averaged data.  

 

 

Figure 22: An individual subject's data from Experiment 2. The pattern closely resembles 

that of the averaged subject data used in comprehensive analysis. 

  

 As a shape matching exercise, two shapes were randomly chosen to find their 

most similar counterparts from the set.  Figure 23 displays the two shapes along with 

the two shapes most similar to them according to the similarity metric (excluding self-

similarity comparisons). These results correspond to the subjects’ ratings, as these 

shapes were also deemed as most similar to their “matched” counterparts. 

 

 

 



61 
 

 

Figure 23: The shape matching results for two shapes chosen from the stimuli of 

Experiment 2. The two shapes on the right were found most similar as were the two on the left. 

6.2.5 Discussion 

 Experiment 2 presented subjects with shapes that displayed a strong part 

structure that differed between each shape in the set.  This specific variability is meant 

to focus on the use of a shape’s topology in shape similarity comparisons by subjects.  

That subjects rate similarity of shapes differently purely on the basis of topological 

differences is not surprising as this corresponds to the adequacy of Marr and 

Nishihara’s (1978) stick figures as simple but sufficient representations of shape.  This 

experiment emphasizes the importance of a skeletal representation, but as can be seen in 

Experiment 3, this is but one source of information about a shape that a subject may 

utilize for similarity comparisons. 

6.3 EXPERIMENT 3: SHAPES WITH METRIC DIFFERENCES 

 Complementary to Exp. 2, Exp. 3 was intended to test shapes that share a 

common topological structure, but that exhibit differences in their metric structure, 
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namely the length and curvature of each branch of the shape (see Figure 24). These 

shapes can be seen as broadly belonging to the same qualitative type, but differing in 

their quantitative aspects of that type. Previous successes in shape representation, such 

as Biederman’s geons (1987) or Richards and Hoffman’s codons (1985) are unable to 

account for metric variations within a shape type.  This experiment tests the GS model’s 

capacity to represent much more subtle differences among shapes than were 

encountered in the previous experiments.  

 

 

Figure 24: Experimental stimuli for Experiment 3-shapes with metric differences. 

 

6.3.1 Subjects 

 Subjects were 10 undergraduates at Rutgers University who participated for 

class credit. 
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6.3.2 Stimuli 

 This set of 20 shapes was created by selecting an arbitrary “prototype” shape 

and then randomizing the branching angle, curvature and length of each branch 

according to a normal distribution. The width of each branch was set at 50% of its 

parent branch. These distributions were centered on the values corresponding to those 

of the prototype and used a predefined variance.  Each shape was solid black and 

presented on a white background. Shapes were approximately 10 degrees of visual 

angle in size at approximately 58cm viewing distance. 

6.3.3 Procedure  

 Each pair of shapes was presented twice to subjects on an eMac computer. Each 

shape was presented in a random rotation on the display. Displayed beneath the shapes 

was a similarity scale, ranging from 1 to 7 (see Figure 14).  The subjects indicated their 

perceived similarity of the shapes by choosing the number that corresponded to their 

rating with the mouse, where 7 represented “most similar” and 1 represented “least 

similar”. 

6.3.4 Results 

 The similarity metric, derived from the process explained in section 5.7, was 

computed for each pair of shapes and compared to those rating given by subjects in a 
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linear regression. Again, we find that the model accurately predicts subjects’ similarity 

ratings (F (1, 398) = 64.461, p < .0005). 

 

Figure 25: Regression graph of predicted and subjective similarity for all trials in 

Experiment 3-shapes with metric differences. 

 

To account for the non-linearity in the subjects’ responses that results from the trials 

with two of the same shape (causing a “jump” on the similarity scale discussed in 

section 6.1.4) the analysis was also run without the self-comparison trials.  This too 

found the model as an accurate predictor (F (1, 378) = 18.841, p < .0005). 
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6.3.5 Discussion 

 This experiment attempts to further the notion that a shape possesses multiple 

sources of information that may be utilized for comparison tasks. Experiment 2 

demonstrated that the GS model effectively accounts for the way that topological 

differences influence perceived shape similarity.   Experiment 3 takes a complimentary 

approach by removing topological differences from the comparison, leaving only metric 

differences.  Because topology is just one method of shape representation, this 

experiment demonstrates an additional source of variability between shapes, 

emphasizing that, by design, a purely skeletal representation would be insensitive to 

metric differences between shapes within a shape type. As the proposed model does 

utilize aspects of shape beyond its part structure, it is able to predict subjects’ responses 

in this type of similarity task. 

 

6.4 EXPERIMENT 4: ATTNEAVE SHAPES 

 In Exp. 2 and Exp. 3, shapes were generated via a method that in some ways 

mirrored the generative model underlying the skeleton estimation model, resulting in 

shapes with natural axes.  Experiment 4 presents randomly generated shapes (see Figure 

26) from a generation method specifically chosen because it does not initially generates 

shapes by first producing their axes, resulting in shapes without a predetermined and 

distinct part structure. Previous work has shown success in modelling the perceptual 
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similarity of shapes (Cortese & Dyre, 1996) in the exact terms (amplitude and phase of 

a Fourier descriptor frequency) through which shapes were created.  Conversely, the 

goal for this experiment was to challenge the GS model by using a very different non-

axial shape generation model that creates shapes from a process unrelated to the shape 

representation model proposed in this thesis.   

 

 

Figure 26: Example experimental stimuli for Experiment 4. The shapes were generated 

from Attneave's (1957) random shape algorithm. The two shapes on the right are in the same 

“family”, as are the two shapes on the left. 

6.4.1 Subjects 

 Subjects were 10 undergraduates at Rutgers University who participated for 

class credit. 

6.4.2 Stimuli 

 The two sets of shapes (12 in each set) were created from two prototypes 

generated from the random shape generation model proposed by Attneave (1957). To 

initially create a shape, this method chooses random points about which a convex hull is 
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formed. Random points are then removed and connected to form a prototype shape. 

Other shapes in the same “family” of the prototype are created by changing the position 

of some number of points in the prototype. This creates a set of shapes very similar to 

the prototype (see Figure 26).  It is important to note that no axes or elongated 

structures are involved in this process. Each shape was solid black and presented on a 

white background. Shapes were approximately 10 degrees of visual angle in size at 

approximately 58cm viewing distance. 

6.4.3 Procedure  

 Each pair of shapes was presented twice to subjects on an eMac computer. Each 

shape was presented in a random rotation on the display. Displayed beneath the shapes 

was a similarity scale, ranging from 1 to 7 (see Figure 14).  The subjects indicated their 

perceived similarity of the shapes by choosing the number that corresponded to their 

rating number with the mouse, where 7 represented “most similar” and 1 represented 

“least similar”. 

6.4.4 Results 

 The similarity metric, derived from the process explained in section 5.7, was 

computed for each pair of shapes. A linear regression was run using the subjects’ and 

the model’s similarity ratings. The model predicts subjects’ performance (F (1, 574) = 

63.9,  p < .0005)  
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Figure 27: Regression graph of predicted and subjective similarity for all trials in 

Experiment 4- Attneave shapes. 

 

 As in previous experiments, there is again a noticeable nonlinearity in the data at 

the lower values of computed similarity.  A post-hoc analysis has shown that this 

pattern results from a non-linearity in subjects’ rating practices that occurs when the 

stimuli presented is two of the exact same shape (see section 6.1.4 for a discussion of 

why this occurs). Removing the trials where the same shape was shown twice does not 

affect the significance of the regression (F(1,550) = 81.3, p < .0005). 
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6.4.5 Discussion 

 The predictive value of the model in this experiment rests in its ability to model 

shapes that have been created from an arbitrary generative process. Where it might be 

expected that the presented model performs well with shapes that are specifically 

designed on the generative processes of the presented model (such as in Experiment 2), 

this particular set of shapes does not explicitly follow the same “history” of generation.  

That the model does perform well on these shapes implies that between shapes there 

exists a common notion of generation that sufficiently explains similarity between 

shapes. 
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7.0  GENERAL DISCUSSION 

 The studies presented in this work demonstrate that a 2D shape model 

implemented in a stochastic framework based on a skeletal representation is adequate 

for capturing critical shape information used in human shape similarity judgments.  

These judgments are predicted by a similarity metric that is based on the idea that 

similarity judgments reflect an inference of shared generative processes that represent 

the formation of shape through its skeletal structure. .   

 Experiment 1 showed that, for both subjects and the skeletal model, a part 

emerges as parametrically manipulated properties of the shape change; that is, 

dissimilarity undergoes a conspicuous “jump” or discontinuity when a new part 

emerges (see Figure 15). Because this topological change occurs as a function of a 

shape’s contour properties, this experiment emphasizes the need for a shape 

representation theory that incorporates both qualitative and quantitative properties.  The 

importance of topological representation, in general, is demonstrated in Experiment 2. 

Here, the GS model was able to accurately account for the dissimilarity induced by 

gross changes in the shapes’ part structure.   Experiment 3 revealed the role of the 

differences in shapes’ contours in absence of a disparity in topological structure.  This 

experiment validated the rib and curvature components of the GS model, and proved 

their integral responsibility in representing subtle differences between shapes. 
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Experiment 4 provided the most comprehensive challenge to the GS model by 

confronting it with shapes that were formed using an independent method, one which 

did not intentionally introduce axial components. This investigation substantiates the 

use of the GS model in a general sense, proving that the components of the model 

adequately capture general shape qualities utilized by subjects in similarity judgments. 

 Taken as a whole, these experiments speak to the sufficiency of a similarity 

metric based on the idea that similarity results from generative processes. Shapes that 

share generative processes, those with similar shape models, are found to be 

perceptually similar. The accurate representation of these processes allows for a 

similarity metric that adequately predicts human shape similarity judgments. It should 

be noted that the presented model is but one method of implementation of the general 

theory that similarity arises from shared generative processes.  

  

7.1.1 Categorization 

 By providing a shape-based similarity metric, the GS model provides a bridge 

between models of categorization and models of shape representation used for 

psychological inquiry (as opposed to models specifically used for shape matching).  

Visual processing often involves analyzing a shape that is not exactly like any shape 

that has been encountered before, which is why categorization is necessary.  

Categorization requires the processing of similarity between the stimulus object and 

representations of other previously encountered objects store in memory.  
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The most cited models of categorization describe the process in two steps (e.g. 

Kruschke, 1992; Nosofsky, 1984; Smith and Medin, 1981).  First is the assumption of a 

psychological similarity space, with objects represented by points or regions in a space 

so that perceived similarity is reflected by spatial proximity.  Second in this process, 

regions of this space are associated with particular categories.  Thus, investigations of 

similarity are an important precursor to work in modelling categorization behavior.  

However, conventional treatments of similarity in psychology do not generally provide 

a method for its computation by which it can actually be computed from the stimuli. 

 An independent measure of similarity allows for an enlightened investigation of 

how categories are formed.  The common view is that categories arise from regularity in 

the world (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976).  In light of the 

present work, the source of this regularity can be explained as the shared generative 

processes that result in similarity between objects of the same category.  In representing 

these generative processes, the similarity metric from the GS model provides insight 

about where and when “gulfs” (such as those reported in Exp. 1) occur, which are 

indicative of the partitioning of the stimulus space into regions that map to category 

boundaries. This formation can also be seen through an iterative process of stimulus 

encounters, where, as shapes are observed, their relative similarity and related 

generative processes create a “definition” of the category.   

Op De Beeck, Wagemans, and Vogels (2003) suggest that a fault in traditional 

categorization models is that they do not differentiate between perceptual and decisional 

processes.  They find that the “attention parameter” present in many common 

categorization models may account for both changes in perception of stimuli and in 
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decision strategies.  Rather than having the attention parameter serve in both functions, 

the GS model would also allow for the “weighting” of particular dimensions in the 

perceptual process that the attention parameter has hereto provided. With the use of the 

GS model, perceptual bias of particular shape dimensions may be accounted for 

independent of the attention parameter, which then could serve only in a decision 

making capacity.  

7.1.2 Additional experimental findings 

 Several subject behaviors were noted in the experiments that deserve further 

investigation. Unreported MDS plots of shapes similar to those in Experiment 2, those 

with intentionally different topologies, suggests that subjects make “clusters” of shapes 

based on attributes that are not represented by our shape model. Specifically, it is likely 

that subjects recognize both the symmetry and “special” placement of parts.  Figure 28 

shows an example of three shapes that subjects might place in different clusters in 

psychological space.  Figure 28 (a) is separated from (b) because it demonstrates a 

symmetric quality about the vertical axis.  This symmetry results in the perception of 

shape (a) having 2 parts (with one that continues through the main axis), rather than 

what in shape (b) would be considered as 3 parts. Shape (c) also exhibits this symmetric 

property but is further differentiated from shape (a) because its second part occurs at the 

bottom of the shape, somewhat like a foot or base, a placement which affords its 

distinctiveness.  As the shape model presented in this thesis does not specifically model 

symmetry or any type of “special” placement of parts, it lacks the ability to capture the 

influence that these properties have on similarity judgments.  Recognition of such 
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"special" arrangements could, in principle, be added to the generative model, potentially 

rectifying these problems, but this possibility has not yet been tested. 

 

 

 

 

Figure 28: Example shapes that demonstrated qualities that subjects may utilize that are 

not included in the present version of the GS model. The shape on the left demonstrates a 

symmetry that the shape b lacks.  Shape c demonstrates a part’s “special” placement. 

 

a b c
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8.0  FUTURE WORK 

 This thesis represents the beginning of a comprehensive shape modelling and 

categorization project.  As such, there are several fruitful directions that are logical next 

steps to this work.   

 As a theoretical extension, it would be valuable to relate the GS model’s 

similarity metric to shape categorizations studies, wherein it could be employed in 

traditional categorization models.   As previously discussed, most prominent 

categorization models utilize similarity for “dividing up” the stimulus space.  An 

assumption in this type of application is that the salient dimensions of the space are 

known.  With the GS model, however, exact dimensions are not assumed, making it a 

robust precursor for similarity-based categorization models that would allow for 

analysis of relatively complicated shapes. 

 It would also be of great interest to conduct categorization experiments of shape 

that manipulated category variability, addressing the issue brought up in section 2.0 

(Figure 2). Here it could be determined whether the model accurately reflects how 

subjects represent category variability, for instance, by creating the need to adjust the 

probabilistic priors.    

 While section 6.0 presented some elementary shape matching exercises, it also 

seems important to further evaluate the GS model with this traditional computer science 
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approach on a more complicated shape matching task.  For example, with a given 

database of shapes, the similarity metric would be used to determine which shape a to-

be-matched shape is most similar to in order to assign a classification label. The 

model’s performance could then be compared to other leading shape classification 

models.  This inherent classification approach also leads to a more interesting 

investigation- the clustering of shapes within a database on the basis of similarity.  

These groupings could be used to form taxonomies, which could then be compared to 

natural and scientific taxonomies, such as those formed from animals and plants.   

 An additional necessary evaluation involves determining the scalability of the 

GS model.  With the relatively simple shapes presented here, running the model 

requires computation time that is negligible; however, this time increases dramatically 

with increasing complexity of the shapes that are compared (see section 5.4).  To 

process much more complicated shapes will require the development of either more 

efficient algorithms or a more concise method for representing the shape skeletons. 

8.1.1 Similarity and abstraction 

 Feldman (1997) argued that objects created by the same operations are likely 

considered to be in the same perceptual category. These shared processes create a 

categorical hypothesis in the same sense as the generative model of shape proposed in 

this thesis.  The process that the GS model uses for the computation of similarity 

between shapes can be seen as exploiting the lattice structure described in Feldman 

(1997). 
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  Lattices are partially ordered sets in which any two elements x and y share a 

supremum, the elements' least upper bound or join (denoted by ), and an infimum, 

the elements’ greatest lower bound or meet  (denoted by ), of all finite subsets 

(Davey & Priestley, 2002). Lattices encode the algebraic behavior of the entailment 

relation and such basic logical connectives as conjunction and disjunction, which results 

in an adequate algebraic semantics for a variety of logical systems. Traditional 

applications of lattices vary, where they are currently most used in areas of computer 

science, social science, and operations research.   

 Figure 5 (in section 5.2) displayed a hierarchical structure representing possible 

generative paths of skeleton formation.  Figure 29 shows a similar diagram, a lattice, 

which exhibits both a join and meet in a hierarchical arrangement of skeletal generation. 

Each node in the lattice can be seen as a skeletal model. Ascending the diagram 

provides the generative history, or a more abstract version, of the skeleton. Descending 

along a path explains the generation as it occurred, resulting in more constrained 

models.  Each node inherits all properties of the nodes in its generative history.  At 

point d a meet occurs, where the skeleton has two possible generative histories, or, 

perhaps more accurately, two different sequences in which the same generative 

operations could have occurred. Point a represents the join, or the common model, from 

which all skeletons in this diagram are derived. 
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 The GS model takes advantage of this lattice structure by evaluating the paths 

over which a skeleton (and shape) can be generated.  The similarity metric computed 

from the GS model is the probability that two shapes share a common generative path. 

If a shape, x, is better explained by a path that is different from the one that best 

explains shape y, then shape x will best be explained “from scratch” (not using shape y’s 

model) and the shapes will likely be found as dissimilar. If the best explanations of both 

shapes fall along the same path, then the shapes will be found as similar.  

a

b

c 

d 

Figure 29: Example of a lattice structure that represents skeleton generation
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 In terms of the lattice configuration, the similarity metric can be expressed as 

 

A more abstract similarity calculation that the lattice structure provides is the use of any 

common model   (a join) instead of using each specific shape’s model that the GS 

model uses (see section 5.0).  Furthering exploiting the lattice structure, it would be a 

valuable pursuit to evaluate the similarity between two shapes on the basis of all of their 

shared common mid-level models (or joins) that occur within the lattice.  This 

conception of similarity lends itself to the induction of category labels from 

observations (Richards, Feldman, & Jepson, 1992), where the lattice serves as a 

hypothesis “tester” for viewers seeking to align observed objects by aligning their 

generative processes.  
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9.0  CONCLUSION 

 In summary, this thesis makes the case that a generative approach to similarity, 

coupled with a suitably rich skeletal representation of shape, can provide an effective 

and psychologically valid similarity metric. Considering similarity as a function of an 

object’s generative processes serves to bridge current disparate cognitive investigations 

of shape representation and shape categorization. This treatment of similarity offers 

many rich directions for both the improvement of the GS model and towards the 

enhancement of other similarity-based applications. 
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APPENDIX A 

[GENERAL SHAPE GRAMMAR] 

 The following production rules represent the general shape grammar that was 

used in the similarity calculations presented in this thesis. To represent a particular 

shape, an additional rule was added to this grammar. The number to the right of each 

production rule is the probability associated with that rule. 

 

 S     → A1 [1.0] 

 A1    →  K1 [1.0] 

 A2   → K2 [1.0] 

 A3    →  K3 [1.0] 

 A4    →  K4 [1.0] 

 A5    → K5 [1.0] 

 A6   → K6 [1.0] 

 A7    →  K7 [1.0] 

 LB1   →  A2 [0.499995] | K1[0.0001] | 'LB1' [0.499995] 

 LB2   →  A3 [0.499995] | K2[0.0001] | 'LB2' [0.499995] 

 LB3   →  A4 [0.499995] | K3 [0.0001] | 'LB3' [0.499995] 

 LB4   →  A5 [0.499995] | K4 [0.0001] | 'LB4' [0.499995] 

 LB5 → A6 [0.499995] | K5 [0.0001] | 'LB5' [0.499995] 
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 LB6  → A7 [0.499995] | K6 [0.0001] | 'LB6' [0.499995] 

 RB1   →  A2 [0.499995] | K1 [0.0001] | 'RB1' [0.499995] 

 RB2   →  A3 [0.499995] | K2 [0.0001] | 'RB2' [0.499995] 

 RB3   →  A4 [0.499995] | K3 [0.0001] | 'RB3' [0.499995] 

 RB4   →  A5 [0.499995] |  K4 [0.0001] | 'RB4' [0.499995] 

 RB5  →  A6 [0.499995] | K5 [0.0001] | 'RB5' [0.499995] 

 RB6 →  A7 [0.499995] | K6 [0.0001] | 'RB6' [0.499995] 

 K1    →  K1 K1 [0.14] | RB1 [0.08] | LB1 [0.08] | RB2 [0.07] | LB2 [0.07] | RB3 [0.06] 

| LB3   [0.06] | RB4 [0.05] | LB4 [0.05] | RB5 [0.04] | LB5 [0.04] | RB6 [0.03] | LB6 

[0.03] | 'K1'  [0.2] 

 K2    → K2 K2 [0.12] | RB2 [0.08] | LB2 [0.08] | RB3 [0.07] | LB3 [0.07] | RB4 [0.06] 

| LB4 [0.06] | RB5 [0.05] | LB5 [0.05] | RB6 [0.04] | LB6 [0.04] |'K2'  [0.28] 

 K3   → K3 K3 [0.10]| RB3 [0.08] | LB3 [0.08] | RB4 [0.07] | LB4 [0.07] | RB5 [0.06] | 

LB5 [0.06] | RB6 [0.05] | LB6 [0.05] | 'K3'  [0.38] 

 K4   → K4 K4 [0.08] | RB4 [0.08] | LB4 [0.08] | RB5 [0.07] | LB5 [0.07] | RB6 [0.06] | 

LB6 [0.06] | 'K4'  [0.5] 

 K5    →  K5 K5 [0.06] | RB5 [0.08] | LB5 [0.08] | RB6 [0.07] | LB6 [0.07] | 'K5'  [0.64] 

 K6    →  K6 K6 [0.04] | RB6 [0.08] | LB6 [0.08] | 'K6'  [0.8] 

 K7  → K7 K7 [0.02] | 'K7'  [0.98] 
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