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This thesis addresses the optimization of systems whose behavior is described by 

noisy input-output data instead of model equations. Process models may not exist, as in 

the case of emergent technologies, or may be inaccessible if they are embedded within a 

legacy computational code. When a functional form for the input-output relationships is 

unavailable, the process behavior is symbolically described using black-box models.  

Two cases motivate the need to address problems containing black-box models:             

1) building a case for obtaining continued research funding during the early product life 

cycle, when the system information is limited to a sparse sampling set, and 2) process 

train optimization for systems that have been retrofitted or exhibit behavior which results 

in suboptimal performance. The challenge is to determine the best operating conditions 

which satisfy some objective, such as maximizing reaction yield or minimizing utilities 

costs, based on a limited amount of additional sampling that can be performed.  

Surrogate data-driven models can be alternatively generated, but many substitute 

models may need to be built, especially in the case of process synthesis problems. 

Although model reliability can be improved using additional information, resource 

constraints can limit the number of additional experiments allowed. Since it may not be 

possible to a priori estimate the problem cost in terms of the number of experiments 

 ii



required, there is a need for strategies targeted at the generation of sufficiently accurate 

surrogate models at low resource cost. The problem addressed in this work focuses on the 

development of model-based optimization algorithms targeted at obtaining the best 

solutions based on limited sampling. A centroid-based sampling algorithm for global 

modeling has also been developed to accelerate accurate global model generation and 

improve subsequent local optimization. The developed algorithms enable the superior 

local solutions of problems containing black-box models and noisy input-output data to 

be obtained when the problem contains both continuous and integer variables and is 

defined by an arbitrary convex feasible region. The proposed algorithms are applied to 

many numerical examples and industrial case studies to demonstrate the improved optima 

attained when surrogate models are built prior to optimization.  
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Chapter 1  

Introduction 

Decision-making is complicated at different product life cycle steps – funding 

allocation for research lines, process synthesis, and product optimization – when accurate 

model equations are lacking, and input-output data, possibly noisy, provide the only 

description of system behavior. Schematics describing the sampling and funding 

decision-making stages are shown in Figures 1.1(a) and 1.1(b), respectively.  
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Figure 1.1. Decision stages for (a) sampling and (b) funding allocation. 
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Continued project funding or production line existence may depend upon the 

determination of design and/or operating conditions at which the most efficient operation 

is attained, a task defined as process optimization. These conditions are defined as 

process optimal and quantify a system’s promise and/or performance. If this information 

can be efficiently determined, decision-making quality is improved.  

 A set of input conditions can be verified as locally process optimal if two optimality 

conditions are satisfied. A locally optimal set of input parameters can also be globally 

optimal, but the criteria are more difficult to satisfy. This thesis work is directed at the 

solution of a class of problems for which global optimality cannot be guaranteed, so the 

following presentation of the local optimality criteria is sufficient in order to explain the 

difficulty associated in finding an optimum when accurate process models are absent.  

For ease of presentation, let the term input conditions colloquially refer to the 

inclusive set of design and/or operating conditions at which process optimality is to be 

attained. Operation efficiency is expressed in terms of either a single or combination of 

quantified objective functions f(x), such as product purity/yield maximization, or 

cost/side product minimization. For a vector of input conditions x and a prespecified 

tolerance , a local minimizer is a point x* satisfying the condition: 

       f(x*)  f(x) for all x such that ||x – x*|| < . 

Process operation at the operating conditions x leads to a locally minimized objective 

function having value f(x*) if the following optimality conditions are satisfied:  
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1) The value of the objective function gradient, f’(x), or a reduced objective function 

gradient, fr’(x), is zero. A reduced objective function fr(x) is created when system 

constraints are present and is formulated as the sum of f(x) and the system 

constraints, each weighted by a Lagrange multiplier.  

2) The sign of the Hessian matrix is greater than zero. The Hessian matrix is the 

matrix of all second-order partial derivatives of f(x) or fr(x), as appropriate, and 

the Hessian is its determinant.  A locally maximized objective is conversely 

attained when the Hessian is less than zero.  

The application of gradient techniques results in the generation of a function’s first 

and second-order derivatives, from which the above two optimality conditions can then 

be evaluated for hypothesized optimal input conditions. When process models are absent, 

the two conditions can be applied to sampling data information from which surrogate 

models may or may not have been constructed. However, any surrogate model remains 

an approximation to the theoretically accurate system equations. Therefore, the task of 

guaranteeing an input condition as process optimal is made more difficult as an 

optimization framework must be targeted at not only finding good search directions based 

on sampling data alone, but also capable of identifying good search directions even 

though a substitute model is only an approximation to the true behavior.  

Process models may be absent in the case of emergent technologies such as 

nanoscale-level research, in which a “first-principles” system description may not yet be 

fully developed. Alternatively, accurate models may be absent if the theoretical models 

are either obsolete due to process retrofitting or system noise, or inaccessible if embedded 

within legacy computational codes or if expert knowledge is no longer available. The 
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traditional reliance upon a macroscopic continuum-level “first-principles” description of 

the physical system that presumes the accuracy of closed-form equations is therefore no 

longer an effective strategy for achieving process optimization. When a functional form 

for the input-output relationships is unavailable, the process behavior is symbolically 

described using black-box models as shown in Figure 1.2.   
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Figure 1.2. Modeling a process as black-box when system models are unavailable. 

 

Problems containing available, yet mathematically intractable, equations constitute a 

third possible case in which the problem can be considered black-box, since conventional 

gradient-based methods may fail to find all solutions of interest. One example described 

by this problem class is reaction rate determination in simultaneous diffusion-reaction 

systems. A specific problem is taken from Lucia et. al1 and described in more detail in 

Chapter 6.5. For this problem, the model equations are given by heat and mass PDE 

along with system-specific initial/boundary conditions. This system of nonlinear 

equations may have multiple physically meaningful solutions. Equation-solving routines 

may require user-specified input conditions, such as warm-start iterates or a specified 

subregion for search, in order for the entire solution set to be successfully identified; one 

such example is that of the GAMS NLP solver CONOPT.  The discovery of all realistic 
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solutions is motivated by a practical issue in which there is some metric quantifying one 

of the solutions as the best. For the diffusion-reaction example, the solution set consists 

of a set of possible reaction rates. If only a subset of the solutions are found, and the best 

possible reaction rate remains undiscovered, this reaction system may be discarded from 

further study beyond the conceptual design level. Therefore, algorithms which address 

problems having black-box characteristics can also be applied as equation-solving 

methods.  

In addition to being described as black-box, a process may exhibit noisy behavior as 

well. Process behavior is considered to be noisy when replicate experiments are 

conducted at identical input conditions and multiple output values are attained, instead of 

a single value. Noise factors affecting process operation are typically responsible for 

output variability, with some examples being high batch variability for input species 

flowrates/compositions, deteriorating mechanical performance due to aging process 

equipment, process contamination due to environmental toxins such as sulfurs leaking 

through valve and tank orifices, or adverse process controllability factors due to 

electronic delays for automated process controllers. Although process troubleshooting is 

used to identify and minimize noise sources, it may not be possible to eliminate all noise 

factors. The application of modeling techniques such as kriging, in which noise is 

considered to be a natural system feature, rather than induced by external environment 

variables, can lead to the generation of models providing a better system description than 

models based solely on deterministic models, since process variability is now taken into 

account.  
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The research achievements in this dissertation are the development and computational 

implementation of four optimization algorithms for problems containing black-box 

models. The algorithms have been developed by modifying two data-driven techniques 

known as kriging and response surface methodology (RSM), in order to address the 

solution of problems outside the standard applications for these two procedures.  

RSM employs gradient descent after sampling-based models are built in order to 

determine search directions for an optimum. In the absence of prior knowledge, a 

quadratic model is commonly employed as the response surface functionality since the 

behavior near an optimum is quadratic. Far away from an optimum however, the 

quadratic model may poorly approximate system behavior, and unnecessary resources 

may be utilized in the search for an optimum due to the identification of poor 

intermediate search directions. Better approximations are achieved when the region 

modeled by a quadratic surface is small; consequently system accuracy increases using 

only localized response surfaces. Although a solution may be found, no mechanism exists 

enabling x* to be classified as a global optimum, or at least a local optimum that is 

superior among a set of ancillary local optima that have also been attained.  

Kriging is a complementary method to response surface techniques in that it is 

directed at obtaining a global model of system behavior. The method originated out of the 

geostatistics literature and is so named after a South African mining engineer, Daniel 

Krige. The method was originally targeted at describing mineral deposit concentration 

distributions in caves and mines, in order to determine the best drilling locations 

maximizing the attainment of ores having a desired grade. This method is typically 
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applied in only three dimensions in keeping with its original application, due to the  

spatial visualization attained in the form of 3D mappings.  

The proposed techniques in this work extend the capabilities of kriging and response 

surfaces in order to address a more general class of problems than the primary 

applications. The advantages of the proposed methods are: 1) efficient identification of 

locally optimal solutions for problems described by general convex feasible regions, 

based on sequential optimization of response surfaces built using adaptive experimental 

designs (Chapter 2), 2) increased probability of finding a problem’s global optimum, 

based on the application of a unified kriging-RSM algorithm (Chapter 3), 3) successful 

identification of a problem’s global optimum when integer variables are present outside 

the black-box models, based on sequential application of Branch-and-Bound (B&B), 

kriging, and RSM (Chapter 4), 4) successful identification of a problem’s global optimum 

when integer variables are present both inside and outside the black-box models, based 

on sequential application of Branch-and-Bound (B&B), kriging, RSM, and direct search 

(Chapter 5), and attainment of accurate global kriging models via iterative refinement at 

lower sampling expense, relative to a strategy employing randomized/heuristic sampling, 

based on application of a centroid-based sampling method (Chapter 6). Although a global 

optimum cannot be theoretically confirmed due to the fact that true system equations are 

assumed absent, and that the kriging/response surface models are only approximations to 

the true behavior, a local solution xi* to any given optimization problem is colloquially 

referred to as a global optimum if it is corresponding objective function f(x*) has the 

lowest value relative to the objective values of the remaining local solutions xj*. A 

schematic of the problems addressed in each chapter, the proposed method employed, 
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and type of solution to be attained – a local or global optimum – is provided in Figure 

1.3. 
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Chapter 2  

Local Optimization Employing Response 

Surface Models Constructed From 

Adaptive Experimental Designs 

Response surface methodologies are local optimization techniques that can be employed 

to find the solution of problems containing black-box models and noisy input-output data. 

Optimization occurs based on sequential local optimization of quadratic polynomial 

response surfaces. Each response surface is built from input-output data obtained 

according to an experimental design template centered around the current best solution, 

or iterate.  The contribution of the work in this chapter is the development of adaptive 

experimental design templates used in sampling set generation whenever iterates are near 

constraint boundaries. The templates are employed to 1) enable problem optima to be 

found whenever the feasible region is a general convex region, and not simply box-

constrained, and 2) reduce the overall sampling expense required for discovery of 

problem optima, based on the construction of lower-D response surfaces whenever 

iterates are located near boundaries. The adaptive designs presented  are employed within 

three different response surface methodologies to a real case study1,2. 
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2.1 Introduction 

A response surface is a closed-form analytic model that describes input-output 

variable relationships according to an additive sum of weighted basis functions. The 

weights corresponding to each basis function are determined by least-squares fitting, in 

which the sum of squared errors between the set of model predictions and sampled output 

data is minimized. Any set of basis functions can be used in model generation3-6; 

however, the simplest, and most widely applied set corresponds to the family of 

polynomials.  

The motivation for using response surfaces is targeted at finding process optima; 

therefore, based on the optimality conditions provided in Chapter 1, one reasonable 

requirement of the model used is that it be twice continuously differentiable so that the 

Hessian can be evaluated. If the Hessian is indeed positive, the neighborhood containing 

a process optimum is considered to have been found, and refinement of the current best 

process conditions can be initiated using more localized models. One simple twice-

continuously differentiable response surface model is that of a quadratic polynomial 

containing bilinear interaction terms as given by Equation (2.1):  

 
n n n n

2
2 0 i i ij i j ii

i=1 i j=i+1 i=1

z x a a x a x x a x       i
        (2.1) 

where xi , n, and  denote the ith input variable, total number of input variables, 

and the modeled output variable, respectively. The vector [a0, ai, aij, aii] corresponds to 

the et of weights for each polynomial basis function.  

 2z x
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Response surfaces are frequently employed as surrogate models for black-box 

systems for three main reasons. Firstly, the analytic model employed, such as the 

polynomial given by Equation (2.1),  is often very simple in form, enabling 

correspondingly simplistic cause-effect relationships between input and output variables 

to be easily determined based on changes in the operating conditions. Secondly, the 

computational expense associated with model generation is low, enabling input-output 

behavior to be quickly characterized for time-sensitive processes in which quick 

decision-making is essential for sustained acceptable process performance. When 

analytically simple basis functions are employed for the model structure, the 

corresponding weights, or coefficients, can be determined at low computational cost 

using computationally inexpensive least-squares fitting algorithms. Thirdly, the 

computational expense associated with model optimization is also low, since the 

application of gradient methods to a simple model enables process optima to be identified 

quickly. The acquisition of optimal process conditions at low computational cost can be 

vital for automated processes in which input variable set points can be quickly adjusted to 

the process optimal values without sustained deterioration in product quality.  

For clarification, a response surface methodology, or RSM, is an algorithm for 

finding process optima using simple analytic models referred to as response surfaces. In 

its simplest framework, RSM consists of: 1) first building linear models centered around 

an iterate until the neighborhood of the optimum has been reached, and then 2) applying 

gradient-based methods to quadratic polynomial models, in order to identify the best 

search directions leading to an optimum. The neighborhood of the optimum is considered 

to be identified when the center sampling point iterate has the lowest objective value 
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relative to the set of objective function values for all sampling points that participate in 

the current model construction.  

RSM has been extensively applied for the solution of low-D box-constrained 

problems7,8. A box-constrained problem is one in which the only constraints are lower 

and upper bounds for each one of the input variables, and an example of a 2-D box-

constrained problem is shown in Figure 2.1(a). However, many process systems are 

described by feasible regions containing additional linear and nonlinear constraints in the 

form of sizing and operability constraints. A general framework for the solution of high-

D problems whose feasible region is comprised of an arbitrary number of constraints, and 

not simply defined by lower/upper bound ranges for the problem variables, e.g., box-

constrained, has not been found in literature extending over the past thirty years.  

The contribution of the research in this chapter is the presentation of a response 

surface algorithm that can be applied to problems whose feasible region is convex. A 

convex feasible region is one in which a line can be drawn between any two points lying 

within or on the boundaries of the feasible region, and for which all points on this line 

also reside in the feasible region. Examples of convex feasible regions are shown in 

Figures 2.1(a) – 2.1(c) where it is seen that a box-constrained feasible region is easily 

ascertained as a convex feasible region. For completeness, a nonconvex feasible region is 

also shown in Figure 2.1(d).  
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Figure 2.1. Convex feasible regions defined by: (a) box constraints, (b) linear non-box 

constraints, and (c) nonlinear constraints. Nonconvex feasible region (d). 

 

The new ideas employed within RSM are the application of adaptive experimental 

designs for the creation of n-D response surfaces and lower-D projected response 

surfaces whenever iterates approach constraint boundaries during the search for an 

optimum. Since the new algorithm can be applied to problems whose feasible regions are 

asymmetrical and defined by an arbitrary number of convex constraints, as shown in 

Figures 2.1(b) and 2.1(c), it is an improvement upon standard response surface 

methodology since a box-constrained feasible region is no longer required in order to 

apply RSM. 

 

2.1.1  Literature Review 

When closed-from process models are absent, the identification of optimal operating 

conditions can be identified using techniques which do and do not employ model-

building as part of the search methodology. 
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Optimization algorithms are classified as zero, first, or second-order, depending upon 

whether gradient information is used to guide search. For the class of zero-order methods, 

no gradient information is employed, and search is instead based on the application of 

heuristics with respect to sampled data in order to determine promising operating 

conditions for future testing. Some examples of zero-order methods are the pattern search 

methods (Hooke-Jeeves, Nelder-Mead, DIRECT, multilevel coordinate search)9-11, 

genetic algorithms, and differential evolution12.   

Pattern search methods are applied by generating a sampling set according to a 

template, identifying the optimum as the vector yielding the best objective value, 

centering a new template around the new best solution, and repeating the process until 

convergence in the optimum has been attained. Genetic algorithms and differential 

evolution techniques are applied by sampling at a randomly selected set of vectors and 

then performing crossover operations on components of the set of vectors yielding 

optimal process performance in order to determine new operating conditions believed to 

yield improved system performance. Hooke-Jeeves and Nelder-Mead represent two 

pattern search methods in which the optimum is locally found by sequential movement of 

a sampling set spatially arranged over a small subregion of the feasible region. DIRECT 

(Divided Rectangles), multilevel coordinate search, on the other hand, are two other 

pattern search methods that, along with genetic algorithms and differential evolution, 

belong to a class of global optimization algorithms since the search is based on sampling 

at vectors dispersed throughout the entire feasible region in an ordered or random 

manner. The biggest drawback to using these methods is that convergence to an optimum 

may occur asymptotically. 
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The application of gradient-based methods can lead to the identification of better 

search directions towards an optimum than those identified using zero-order methods. 

Gradient-based methods are categorized as being first-order or second-order depending 

upon whether strictly first-order information, or both first- and second-order information, 

respectively, are employed in combination with sampling information to identify future 

operating conditions at which improved process performance can potentially be achieved.  

Although gradient-based techniques can be applied to sampling data alone, following 

search directions based on gradient information obtained from noisy input-output data 

can lead to the discovery of poor search directions. The search directions will be based on 

noise-contaminated information rather than on the underlying deterministic input-output 

functionality. If a surrogate model is first built from the sampling data, and is created 

based on the application of a methodology minimizing the effect of the noise information, 

improved search directions may be obtained since the model may provide a better 

approximation to the underlying system behavior in contrast to the sampling data 

information alone. For ease of presentation, the term “gradient-based techniques” used in 

the context of RSM refers to the process of, 1) evaluating first-order derivative 

information from quadratic polynomial response surface models, and 2) solving the 

resulting linear system that is obtained from setting the gradient equations to zero. The 

solution set obtained corresponds to the model optimum. 

Although additional sampling expense may be required for surrogate model creation, 

the associated resource costs are justified by the possibility that the search for a minimum 

may be accelerated if model construction is added as an intermediate step between 

sampling and the application of optimization heuristics. The total sampling expense 
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required to obtain an optimum may therefore be lower than the corresponding cost 

required from the application of methods lacking a model-building step, provided that the 

required sampling and model-building expense for reliable iterative model construction is 

not prohibitive. It should be noted that surrogate model-building is not a requirement for 

an algorithm to be classified as first- or second-order, as the identification of search 

directions based on first- and second-order adaptive finite differencing methods13 such as 

implicit filtering14,15 does not require prior model construction. However, if surrogate 

model-building is indeed one step of a first- or second-order method, search directions 

are identified based on gradient information directly obtained from the model. Since 

surrogate models are used to predict system behavior at unsampled data locations, the 

locations of where an output variable exhibits interesting behavior such as peaks, valleys, 

or ridge systems can provide additional operability information.  

When both the input and output variables are stochastic, a stochastic response surface 

model, such as the one proposed by Isukapalli16, can be developed using a stochastic 

response surface method (SRSM) whose functionality z is of similar form as the equation 

given in (2.1). In the stochastic response surface model, the deterministic variables x are 

now replaced by assumed probability distributions pdfs(x) which model the uncertainty 

associated with the behavior of the now stochastic inputs. As a result, z2 is therefore also 

modeled as a stochastic variable having statistical properties such as mean and variance 

for a given sampling vector. The stochastic response surface model can be viewed as an 

alternative to the kriging model presented in Chapter 3 since in both cases z is described 

as a stochastic variable. However, the current implementation of SRSM given by 
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Isukapalli requires a strict ordered sampling arrangement in order that the set of  

coefficients be accurately estimated.  

The primary modeling algorithms used in this dissertation are response surface 

methodologies, presented in this chapter, and kriging (Chapter 3), procedures used in 

building local and global models, respectively. Based on information obtained from 

model predictions, an optimization algorithm can then be applied in order to obtain 

improved process conditions relative to the best candidates currently identified. If the 

performance of an optimization algorithm, such as a gradient-based method, is 

computationally inexpensive, the computational burden may instead be associated strictly 

with the model-building phase. The reason for this is that predictions are generated at a 

high number of test points in order to obtain a comprehensive model of the system over 

its entire feasible region. However, provided that a substitute model accurately describes 

system behavior over a given subregion, the application of surrogate model-based 

techniques can result in the identification of the search direction leading to an optimum at 

a lower sampling expense when compared to methods that lack a model-building step.  

An optimization algorithm can be considered both efficient and effective if an 

optimum is successfully discovered at the lowest theoretical sampling expense. This 

expense can be quantified as the minimum number of field or computer experiments 

required in order for the optimum conditions to be determined. This number is       

system-independent and, while it is not known a priori, would only be attained if an 

optimization methodology always identified the best search direction to move in based on 

the available sampling information. Therefore, one way of measuring the efficiency of a 

zero, first, or second-order algorithm is by the number of sampling experiments required 
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to identify a single or subset of optima. Based on this metric, the performance of a new 

algorithm can be compared against the corresponding efficiency determined for other 

algorithms in order to evaluate the advantages and limitations of new techniques.  

However, sampling expense may not be the only reliable indicator of algorithmic 

effectiveness and efficiency. When surrogate models are first constructed as part of the 

optimization algorithm, the computational expense required for model construction must 

also be considered as another efficiency metric. If the time required for sampling is low, 

but the computational cost of model building is prohibitively high, the algorithm is 

considered to be ineffective and inefficient since the time it takes to obtain the optima 

information may not be justified in terms of the quality of optima information obtained.  

For both modeling and optimization algorithms, the computational and sampling 

costs required for the attainment of optima information generally increases when the 

number of input variables n, designated as the problem dimensionality, also increases. 

This is because the number of possible search directions increases multiplicatively as the 

number of input variables increases, and the identification of poor search directions can 

result in the sampling expense rising prohibitively with little improvement being attained 

in the search for optimal process conditions.  
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2.1.2  Problem Definition 

The mathematical formulation for the class of optimization problems addressed using 

RSM  is given by Equation (2.2): 
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The variables x, z1, and z2, represent the vectors of continuous input variables, output 

variables whose input-output models are known, e.g. z1 = 8x1
2 –x2, and output variables 

whose input-output relationship is unknown, respectively. In addition, n is used to denote 

the problem dimensionality in terms of the number of input variables x. The equations for 

F, g, h, and  represent the objective function, closed-form operability constraints, 

closed-form balance equations such as mass/energy relationships, and black-box 

functions symbolically describing an unknown functionality between x and z2. If a 

closed-form functionality describing the behavior of z2 as a function of x is developed, it 

can be substituted into (2.3), replacing , and the optimization problem can be solved 

using gradient-based techniques.  

The closed-form functionality is known as a surrogate data-driven model, defined as 

such due to its creation from a set of sampled input-output data. The error term (x) is 

considered to be additive noise term to the deterministic output variable z2(x) and is 
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modeled as behaving according to a normally distributed function having mean  zero and 

variance 2.  Data-driven model terms may not be theoretically significant in terms of 

physically meaningful terms such as rate, driving force, and resistance variables. 

However, the identification of cause-effect behavior based on the manipulation of a few 

input parameters can enable a simplistic understanding of system behavior to be attained 

at low computational cost.  

2.2 Solution Approach 

By definition, the model built from any modeling algorithm can be considered as a 

response surface, since there is some response variable being represented as a function of 

a set of input variables. However, the term “response surface” usually refers to either a 

linear or quadratic polynomial model, in contrast to a model comprised of non-

polynomial basis functions. Therefore, models built from radial basis function methods, 

which employ exponential basis functions, or from artificial neural network techniques, 

which employ signomial and lognormal functions for signal processing applications, or 

inverse distance weighting methods, such as kriging, which employ a wider family of 

nonlinear basis functions, may not be referred to as response surfaces in the literature.  

As mentioned previously, a response surface is an analytic functionality comprised of 

a sum of basis functions, each multiplied by an unknown coefficient. The coefficient 

vector, given as [a0, ai, aij, aii] in Equation (2.1) for a quadratic polynomial response 

surface,  is determined using least-squares fitting based on the minimization of the total 

squared error between sampled output data and corresponding model predictions. The 

number of sampling vectors required for modeling is fixed according to a user-specified 

experimental design. This design template is centered around an iterate xc representing 
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the current set of operating conditions yielding the best process performance. If xc resides 

far away from the operating constraint boundaries, the sampling vectors are identified 

using a design targeting the construction of a response surface built with respect to n 

independent variables. Conversely, if xc is near any r constraints, the sampling vectors are 

identified using a design targeting the construction of a response surface built with 

respect to (n – r) independent variables, where n designates the problem dimension 

whose value is given by the number of input variables.  

Once the response surface has been built and minimized, a new iterate xc, defined as 

the new best set of operating conditions, is determined once sampling has occurred at the 

response surface minimum. If convergence in the problem objective F(xc) has not yet 

occurred, the procedure is repeated whereby another response surface is constructed 

around the new xc; otherwise, the algorithm is terminated. An illustration of the RSM 

algorithm being applied is presented in Figure 2.2. A flowchart containing the basic steps 

of this standard method, referred to as the RSM-S method, is given in Figure 2.3.  
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Figure 2.2. Application of the RSM-S algorithm for finding a system optimum. 
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Figure 2.3. Flowchart of an RSM algorithm employing projected response surfaces in 

order to efficiently find optima residing at boundaries of constrained problems.      

 

The promise of the RSM-S method, is based on the possibility that the early 

movement along a “fine” search direction will accelerate search towards the optimum 

However, since the response surface model used in this dissertation is a quadratic 

polynomial, accurate models are expected only in regions which contain linear or 

quadratic system behavior. Linear behavior is generally observed only in localized 

subregions, and quadratic behavior is observed in the neighborhood of a process 

optimum.  Since many systems exhibit more nonlinear behavior over the majority of the 
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feasible region, and since it is unlikely that a random starting iterate will be located 

within the vicinity of an optimum, the value of the information obtained from building 

quadratic response surfaces is likely to be poor. Therefore, the sampling expense 

associated with building a full response surface during the early stages of RSM is not 

considered justified.  

In order to reduce the sampling expense required for attainment of the problem 

optimum, two additional response surface methodologies, denoted as the DS-RSM and 

RSM-G algorithms, are applied. In the first method, response surfaces are built only at 

the later stages of optimization; in the second method, the initial response surface is 

optimized with respect to the global feasible region in contrast to a local subregion as 

done with the standard RSM-S algorithm. The methodology of the DS-RSM technique is 

presented in Section 2.2.5.  

Each one of the response surface algorithms - DS-RSM, RSM-S, and RSM-G employ 

experimental designs for the determination of sampling vector locations. In Section 2.2.1, 

the equations for the factorial and central composite designs are presented. In Section 

2.2.2, conditions are provided which specify both the radius and selection of a particular 

experimental design template to employ for response surface construction whenever an 

iterate is near linear or nonlinear constraints. In Section 2.2.3, a template is presented for 

response surface construction whenever operability or model equations are present in the 

form of equality constraints h(x,z1) as given in Problem (2.1). In Section 2.2.4., a 

template is presented for lower-D response surface construction whenever iterates 

approach constraints, which results in lower-D response surfaces being projected onto 

nearby constraints. In Sections 2.2.5 and 2.2.6, two variations of the standard response 
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surface algorithm described above are presented which target overall sampling expense 

reduction in the search for problem optima.  

 

2.2.1  Factorial and Central Composite Experimental Designs 

The sampling set used in building response surfaces conforms to a stencil 

arrangement known as an experimental design that typically consists of sampling vectors 

symmetrically located around a center iterate. Two commonly employed experimental 

designs are the factorial and central composite designs, shown in Figure 2.4.  

                                          

 

                                         (a)                             (b) 

Figure 2.4. 2-D factorial design (a) and central composite design (b). 

The factorial design shown in Figure 2.4(a) is a template used for determining 

sampling locations at all factor-level combinations. Let the variables xi, li, and ltot,i denote 

the ith input variable, ith operating condition, such as low/medium/high dosage level, and 

total number of operating conditions for xi, respectively. For this design,  sampling 

experiments are required, a number that increases quickly if many levels are considered 

or if many input variables exist. Due to the increased sampling expense, which can 

become prohibitively high, this design may not be appropriate if either one of the above 

two conditions are present.  

n

tot,i
i 1

l

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The central composite design (CCD), shown in Figure 2.4(b) for a problem 

containing two input variables, requires (1 + 2n + 2n) sampling points for a problem of 

dimension n. The CCD requires a lower sampling expense relative to a factorial design 

since data are not obtained at every factor-level combination. It should be noted that a     

2-level factorial design is identical to a CCD lacking its axial points.  

The procedure used to generate a sampling set using the factorial design or CCD is 

now described. The sampling set is comprised of peripheral sampling vectors xp 

symmetrically arranged about a center iterate xc. Each peripheral sampling vector xp is 

obtained as the sum of the corresponding center iterate xc plus a vector containing scalar 

multiples of a constant b. The value of b is considered to be a user-defined bound, or 

radius, of the resulting response surface, which is created with respect to n input 

variables. In the absence of prior knowledge, an example value for b can be a fraction, 

such as one-tenth, of an input variable’s feasible range. The equations for generating xp 

for the first two components of xc, xc,1 and xc,2, respectively, are given in Figures 2.5 and 

2.6 for the factorial design and CCD, respectively.  

 

 

 

  

 

 

Figure 2.5. Sampling set generation based on a factorial design centered around xc.. 

b b 
 c ,1 c ,2

b 

b 

 cx   cx  

x b,x b   c ,1 c ,2 c ,1 c ,2x x b,x b   ,x b  

 c ,1 c ,2



 c ,1 c ,2x b,x  x b,x  

 c ,1 c ,2 c ,1 c ,2  c ,1 c ,2x b,x b x ,x b  x b,x b     
xp 



 26

 

 

 

 

 

 

 

 

Figure 2.6. Sampling set generation based on a CCD centered around xc. 

 

2.2.2  Experimental Design Selection and Radius Sizing for 

Response Surface Construction Near Convex Constraints 

If the convex feasible region is of arbitrary shape and iterates xc approach nonlinear 

or multiple boundaries, infeasible collocation points may be identified using symmetrical 

design stencils. Since more reliable search directions are usually obtained from response 

surfaces constructed over symmetrical design stencils, in order to retain feasibility, the 

experimental design for collocation point generation is adaptively changed depending 

upon iterate proximity to the boundary. If iterates are near nonlinear boundaries or non-

orthogonal boundaries whose interior angle is acute, the central composite design is used, 

as shown in Figure 2.7(a) and 2.7(b), respectively. Conversely, if the iterate is near a 

linear boundary or a set of linear boundaries whose interior angle is orthogonal or obtuse, 

a factorial design is applied, as shown in Figure 2.7(b). The particular designs used 

according to the above stated conditions provide a more advantageous search of the 
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respective subregions defined by the surrounding constraints over their counterparts. 

However, due to the lower associated sampling expense relative to the factorial design, 

the CCD is a more attractive design template to use as the problem dimensionality 

increases regardless of iterate proximity to linear boundaries. To further ensure feasibility 

for linearly constrained problems, the maximum design radius is set as the minimum of 

the distance between the iterate and all constraints, shown in Figure 2.7(b) and illustrated 

in more detail in Figure 2.8.  

 

 

 

                   (a)                             (b) 

Figure 2.7. Application of a CCD or factorial design depending upon iterate proximity to 

a linear or nonlinear boundary (a). Ensuring feasibility by setting the maximum radius as 

the minimum iterate-constraint distance (b). 
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Figure 2.8. Determination of the maximum allowable design radius in order to ensure all 

sampling points remain feasible for modeling. 

 

2.2.3  Experimental Designs for Equality-Constrained Response 

Surface Construction  

The determination of each {x1…xn} component for each sampling vector xp must be 

modified if equality constraints h(x,z1) are present, since these constraints may result in 

the generation of infeasible input variable vectors. Consider an imaginary test problem 

involving a box-constrained optimization problem having n input variables. A box-

constrained problem is one in which the operability region is defined simply by lower and 

upper bounds on all input variables. Suppose an operability condition hoc(x,z1) = 0 is 

added to the problem formulation in which the value of one input variable must assume a 
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fixed value relative to another. As an example, suppose that hoc(x,z1) = 2x1 – x2 = 0. Based 

on this constraint, the value of x1 must be twice that of x2 for any and all sampling 

vectors. From a given design template, as shown in Figure 2.6, x1 and x2 are also 

determined by a separate set of equations based on xc, b, and n. If the x1- and  x2- 

components are determined according to the design template equations, they may be 

infeasible with respect to hoc(x), causing the referenced sampling vector xp to also be 

infeasible.  

In order to ensure feasibility in all sampling vectors, the response surface must then 

be built with respect to (n-1) independent variables, where the {x2…xn} components are 

determined according to the equations for an (n-1)-dimensional design. The                   

x1-component for each sampling vector is now determined in terms of x2 according to 

hoc(x) as shown in Equation (2.3).  

( ) ( ... )oc 1 n 1 oc 2 nh x ...x 0 x h x x             (2.3) 

This technique can be generalized whereby if an optimization problem contains r 

operability conditions prescribed as equality constraints, the response surface is then built 

with respect to (n-r) independent variables.  

 

2.2.4 Experimental Designs for Response Surfaces Projected onto 

Convex Constraints 

The limitation of the rule which enforces a maximum radius rmin for feasibility 

purposes as described in Section 2.2.2 is that as iterates xc approach a boundary 

gclose(x1…xn,z1), rmin can become small. Local optimization of response surfaces 

constructed over a small region results in small steps taken towards the optimum, 
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resulting in only a limited improvement being attained in the objective at the cost of the 

sampling required to build the local model. A more efficient application of the amount of 

sampling information can be attained if the response surface is “projected” onto the 

nearby constraint as shown in Figure 2.9. Projection is applied once rmin falls within a 

small percent of the distance between gclose, xc, and the opposite boundary gfar in the 

normal direction between gclose and xc.  

 gfar 

xc xc 

 

 
gclose 

 

Figure 2.9. Projection of an n-dimensional response surface onto constraints to avoid 

taking small steps towards the optimum.  

 

The projection is accomplished by treating gclose(x1…xn,z1) as an equality constraint as 

shown in Figure 2.10, where this particular inequality constraint is removed from the set 

of t1 inequality constraints g(x,z1) and added to the set of t2 equality constraints h(x,z1). 

This technique results in one of the x-components of gclose, e.g. {x1…xn}, no longer being 

treated as an independent variable, as discussed in the concluding section of Section 

2.2.3.  
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Figure 2.10. Conversion of a nearby inequality constraint gclose(x,z1) into an equality 

constraint hnew(x,z1) in order to enable lower-D response surface construction projected 

onto gclose(x,z1). 

 

The projected response surface is constructed with respect to (n – r – 1) independent 

variables as shown in Equation (2.4). One benefit of applying this technique is that 

significantly fewer sampling points are required to construct an (n - r - 1)-dimensional 

response surface when compared to the number required for an n-dimensional model. 

( ... ) ( ) ( ... )close 1 n close 1 n 1 close,rearranged 2 ng x x 0  g x ...x 0 x g x x        (2.4) 

The method of using projected response surfaces is illustrated in Figures 2.11 and 

2.12 for a problem containing three input variables. In Figure 2.11, seven 3-D response 

surfaces are required before the optimum is attained. Each response surface is built from 

sampling information taken at vectors corresponding to a CCD, since only fifteen data 

points are required in contrast to the twenty-seven required by a three-level factorial 

design. The solution is found after the sequential optimization of seven response surfaces. 

An approximate total of (7)(15) = 185 sampling experiments are required. In Figure 2.12, 
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application of the projection technique results in the optimum being found after five 

response surfaces are built. Nine sampling experiments are required for a 2-D CCD, and 

so an estimated total of (3)(15)+(2)(9) = 63 experiments are needed before the optimum 

is attained, a 68% reduction in resource costs when compared to the 185 required if 

projection is not employed. The total sampling values of 185 and 63 represent the 

maximum number of experiments required, since a sampling vector may correspond to 

the design points of both an old and new response surface, negating the need for 

additional experimentation. In order to further reduce the sampling expense for higher-

dimensional problems, line search techniques can also be incorporated into the algorithm 

whereby sampling is conducted at a sequence of points obtained along the path defined 

by the current and previous iterates. 
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Delayed search in finding optima using 
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1 

2 
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Figure 2.11. Delayed search for the optimum when movement based on low-radius 

response surface models (4 – 7) results in small steps being taken towards the optimum.  
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Figure 2.12: Accelerated search for the optimum when movement based on high-radius 

response surface models (4 – 5) enables large steps being taken towards the optimum. 

 

The construction and optimization of projected response surfaces onto constraints 

using adaptive experimental designs is incorporated into the DS-RSM, RSM-S, and 

RSM-G response surface algorithms, enabling search towards the optimum to be 

accelerated for constrained high-D problems. The methodology of the DS-RSM 

algorithm is presented in the next section.  

 

2.2.5  DS-RSM Algorithm 

The methodology of the DS-RSM algorithm  is based on the sequential application of, 

1) direct search in the early stages, and  2) local optimization of response surfaces using 

gradient methods in the later stages once the neighborhood of an optimum has been 

identified.  
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First, the iteration index j is initialized at unity. Sampling is performed at input 

conditions xc,j selected as a first guess for the optimal process parameters. A 2-level 

factorial design having nominal bounds bj is centered at xc,j. In the presented examples, 

the initial value of bj is set between 10% and 25% of the maximum feasible region radius. 

The 2-level design simply calls for low and high process sampling conditions relative to 

xc,j and each peripheral sampling point xp is identified according to the equations given in 

Figure 2.13. 

 

  

 

 

 

                                        

                                   (a)               (b) 

Figure 2.13. 2-D 2-level factorial design used as a base template for the 3-D factorial 

design (a) and CCD (b) in response surface construction.  

 

Once sampling has been performed at all xp, the vector at which the lowest objective 

value is attained is defined as Fmin(xp). If Fmin(xp) is less than F(xc,j), the corresponding xp,j 

location becomes the new center iterate xc,j+1. The iteration index j is increased by unity 

and a new set of sampling points are generated around the new xc,j vector. If F(xc,j) is 

lower than Fmin(xp), sampling is performed at the unsampled points corresponding to a   

3-level factorial design, or, for high-dimensional problems, the CCD as given by the 
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equations for xp in Figures 2.14(a) and 2.14(b), respectively. The value of Fmin,j is updated 

based on the additional objective function values obtained from sampling at additional xp 

locations.  

 c ,1 c ,2x ,x b   

 

    

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 2.14. Additional xp sampling location equations for the 3-level factorial (a) and 

central composite (b) designs in 2-D.  
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The response surface is then fitted by determining coefficients [a0,aj,ajk,akk] such that 

the squared error between the objective values based on sampled data, and the model 

objective function values, is minimized. A predicted optimum objective function value 

Pmin,j, located at xtest,j, is then determined from local minimization of the response surface 

over the design region. 

Sampling is performed at xtest,j to confirm whether process operation at xtest,j leads to 

improved product quality. The new best solution vector xc,j+1 is then determined as the 

one having lowest corresponding objective value from the set {F(xc,j),F(xp,j),F(xtest,j)}. If 

the difference between the current and previous optimal objective values F(xc,j+1) and 

F(xc,j) exceeds the value of a stopping tolerance tol, a new design radius bj+1 is defined in 

preparation for building another response surface. The new radius is half the value of the 

old radius if xc,j+1 and xc,j are identical, which signifies the need for more localized 

response surface construction around the current solution vector in order to refine the 

optimum. If xc,j+1 and xc,j are different, bj+1 is set as the Euclidean distance between the 

two vectors. The iteration index j is increased by unity and another response surface is 

created. Conversely, if the difference between F(xc,j+1) and F(xc,j) falls below the value of 

tol, the procedure terminates and xc,j+1 is considered to be process optimal having 

corresponding objective value F(xc+1,j). The DS-RSM algorithm is illustrated in Figure 

2.15 and a flowchart of the methodology is given in Figure 2.16. 
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 Phase II: Phase I: Direct Search Optimization 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. Application of the DS-RSM algorithm to find a system optimum. 
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Phase I: Direct Search (DS) optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16. Flowchart of the DS-RSM algorithm. 
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F(xc,j) = Fmin(xp,j)? 



 39

When the DS-RSM algorithm is applied, movement towards the optimum can only be 

accomplished by following the best of a limited set of search directions defined as the 

path between the center iterate and each one of the peripheral sampling vectors. The 

available search directions of the DS-RSM algorithm correspond to a “coarse” search 

direction, in contrast to the availability of a family of “fine” search directions identified 

from applying gradient methods to a response surface built at each iteration as done for 

the RSM-S algorithm. 

The primary benefit of applying the DS-RSM algorithm relative to the RSM-S 

technique is the lower sampling expense incurred during the early stages of optimization.  

Since fine search directions are needed at only the end stages of optimization, in order to 

refine the best candidate solution, the benefit of applying the RSM-S algorithm using 

quadratic polynomial response surfaces fails to be realized until an iterate approaches the 

search path leading directly to the optimum. It is at this time that response surfaces are 

likely to be built for the DS-RSM technique; therefore the increased sampling expense 

associated from building a response surface is motivated by the strong probability of 

attaining an improved problem optimum.   

 

2.2.6  RSM-G Algorithm 

The methodology of the RSM-G algorithm is based on the global optimization of a 

response surface built at each iteration in order to identify an updated iterate xc residing 

close to the optimum. The promise of the RSM-G algorithm is based on the possibility 

that while an iterate may reside far away from the optimum, the search path between the 

iterate and optimum is approximately a straight line. The application of this method leads 



 40

to a possibly accelerated search for the optimum when it resides far away from the 

nominal iterate.  

The benefit of globally optimizing the response surface is realized when either 1) the 

underlying system behavior is approximately quadratic, or 2) when optima lie near 

feasible region boundaries, and the locally optimal search direction remains unchanged 

for subsequent models created along this path as shown in Figure 2.17. A flowchart of the 

RSM-S and RSM-G algorithms is presented in Figure 2.18.  

 

 

 

 

 

Figure 2.17. Application of the RSM-G algorithm for finding a system optimum. 

 

 

 

 

 

 

 

 

 

 

Global optimization of an initial response 
surface can lead to quicker discovery of the 
neighborhood where the optimum resides, 
reducing total sampling expense 



 41

 

 

 

 

 

 

 

 

 

 

 

 

 
bj+1 = bj             (xc,j+1 = xc,j)  
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No 

1) Sample at peripheral vectors xp,j using one of the following designs centered at xj 
and having bound bj:  

a) n-D 3-level factorial design or CCD (if xc,j is far away from all constraints) 
b) projected (n-r)-D 3-level factorial design or CCD (if xc,j is near r constraints) 

2) Fmin(xp,j) = minimum objective among sampled data. 

1) Determine response surface coefficients [a0,aj,ajk,akk] by minimizing 
total squared error between sampled and model objective values 
2) Minimize surface locally within design region (RSM-S) or globally 
over entire feasible region (RSM-G) to obtain Pmin,j and its argument xtest,j. 
3) xc,j+1 = argmin(F(xtest,j),F(xc,j),F(xp,j)) 

Initialize iteration index j = 1. Specify nominal 
bound bj, vector xc,j, stopping tolerance tol.  

STOP: F(xc,j+1) is the optimum 

Figure 2.18. Flowchart of the RSM-S and RSM-G algorithms. 
 

2.3  Kinetics Case Study 

In this section, the performance the DS-RSM, RSM-S, and RSM-G algorithms is 

evaluated based on the application of each method to a reaction engineering case 

study17,18. The goal is to identify the set of input species concentrations which minimize 

an objective F, given by Equation (2.9), that is a nonlinear function of the corresponding 



 42

output variable concentrations. The performance of the response surface algorithms as a 

class is also evaluated against other optimization methods mentioned in the Literature 

Review (Section 2.1.2).  

The problem is to determine optimal CSTR reaction conditions when closed-form 

rate equations are unavailable. A seven-reaction network involves five species A, B, C, 

D, and E, whose kinetic behavior adheres to a modification of the Fuguitt and Hawkins 

mechanism. The reactions are as follows: A  E,  A  D,  B  D,    C  2D, and     

2A  C. The rate constants are k1
f = 3.33384 s-1,  k2

f = 0.26687 s-1, k3
f = 0.29425 s-1,     

k3
r = 0.14940 s-1 , k4

f = 0.011932 s-1, k4
r = 1.8957e-3 m3/(mol s), k5

f = 9.598e-6 m3/(mol 

s). The reactor volume V is 0.1 m3, the total input flowrate F1 is 0.008 m3/s, and only 

species A and C enter the reactor. The concentration ranges for A and C are specified as 

3e3 < CA
0 [mol/m3] < 3e4 and 0 < CC

0 [mol/m3] < 1e4. 

If the mathematical form of the rate equations is assumed to be unknown, the 

dynamic behavior can be described using black-box models as given by Equation (2.5):  

 , , , , , , , , , , ,

, , , ,

f f f r f r f 0 0i
1 2 3 3 4 4 5 A C 1

dC
k k k k k k k C C F V t

dt
i A B C D E

 


   (2.5) 

where the LHS describes the rate at which species i changes with respect to time. The 

variables kj
f and kj

r are rate constants for the jth forward and reverse reaction, respectively. 

CA
0 and CC

0 denote initial species concentrations of A and C, F1 is the total mass flow to 

the reactor, V is the reactor volume, and t  is time. For completeness, the true rate 

equations are given by (2.6), even though they are not directly employed in the 

optimization.  

  f f fA 1 0
A A 1 A 2 A 5 A

dC F C C k C k C k CVdt      2        (2.6a)   
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  f rB 1
B 3 B 3 D

dC F C k C k CVdt               (2.6b) 

  0.5 0.5f r 2 f 2C 1 0
C C 4 C 4 D 5 A

dC F C C k C k C k CVdt            (2.6c) 

  2f f r r rD 1
D 2 A 3 B 3 D 4 C 4 D

dC F C k C k C k C k C k CVdt        2     (2.6d) 

  fE 1
1 A

dC F C k CEVdt                (2.6e) 

The NLP is given by problem (2.7) and the objective function F depends upon the 

steady-state concentrations CC
SS and CD

SS attained for species C and D.  

     

 
 

Γ , ,

Γ , ,

2 2 3

SS SS
C D

SS SS
C D

SS 0 0
C A C 1

SS 0 0
D A C 1

-1
1

0
A

0
C

min F = 4 X -0.6 +4 Y -0.4 + sin πX +0.4

s.t. X = 0.1428C -0.357C

Y = -0.1428C +2.857C +1.0

C = C ,C ,F V t

C = C ,C ,F V t

F 8 L s

V 100 L

3 C 30

0 C 10




 

 

     (2.7) 

In keeping with the formulation as presented in (2.1), the optimization problem can 

be recast using the vectors of continuous and output variables x, z1, and z2 as shown in 

problem (2.8) and the equations given in (2.9): 
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       

 
 

Γ

Γ

2 2 3
1,1 1,2 1,1

1,1 2,3 2,4

1,2 2,3 2,4

2,8 1 2 3 4 5

2,9 1 2 3 4 5

1

2

3

4

min F = 4 z -0.6 +4 z -0.4 + sin π z +0.4

s.t. z = 0.1428z -0.357z

z = -0.1428z +2.857z +1.0

z = x ,x ,x ,x ,x

z = x ,x ,x ,x ,x

x 8

x 100

3 x 30

0 x 10




 
 

   (2.8) 

where x, z1, and z2 are defined as follows: 

   0 0
1 2 3 4 5 1 A C x ,x ,x ,x ,x F ,V ,C ,C ,t          (2.9a) 

   ,1,1 1,2z ,z X Y                (2.9b) 

  CA B D E
2,1 2,2 2,3 2,4 2,5

dCdC dC dC dC
z ,z ,z ,z ,z = , , , ,

dt dt dt dt dt
 
 
 

    (2.9c) 

   SS SS SS SS SS
2,6 2,7 2,8 2,9 2,10 A B C D Ez ,z ,z ,z ,z = C ,C ,C ,C ,C      (2.9d) 

 1 2 3 4 5x x ,x ,x ,x ,x              (2.9e) 

1 1,1 1,2z z ,z                  (2.9f) 

2 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10z z ,z ,z ,z ,z ,z ,z ,z ,z ,z          (2.9g) 

A contour plot of the objective as a function of the input variables CA
0 and CC

0 is 

shown in Figure 2.19.  
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Figure 2.19. Contour plot of the objective function given in Problem (2.7). 

 

The deterministic solution set consists of a global optimum of F = 0.7422 at   

[CA
0,CC

0] = [10.117, 8.378] and a local optimum of F = 1.2364 at [13.202,3.163]. In 

order to introduce black-box complications, the rate equations are assumed to be 

unknown, so a microscopic model is used instead, represented using a lattice containing 

Ptot particles. The microscopic model is generated by first expressing the fraction of each 

species present in terms of a given number of molecular particles, which is the 

corresponding fraction of Ptot total particles.  

The microscopic system is evolved using the Gillespie algorithm19, and the number of 

molecular species particles is then converted back to the corresponding macroscale 

variable species concentrations. The Gillespie algorithm is a method for evolving reaction 

networks based on the assignation of an event probability to each reaction and choosing 

one to occur by generating a random number. After the number of molecular variables for 

each species has been updated, another random number is obtained and the corresponding 
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reaction is selected. This procedure continues occurring until little change is observed in 

the molecular variables. The noise in the concentration arises as a function of how coarse 

the microscopic model is, or how low the value of Ptot is. Steady-state solution vectors 

are obtained from an initial point by running the microscale simulations for a long time 

horizon, after which the objective function can be evaluated. The variance of the 

microscale system error is evaluated as: 

 2 ( ) ( , , ) | ...i 0 0
A C totVar Var F C C P i 1 k            (2.10) 

In the next section, a detailed methodology of the Gillespie algorithm is presented. 

 

2.3.1  Gillespie Algorithm for Microscopic Model Evolution 

Based on the optimization formulation given in problem (2.7), steady-state species 

concentrations CC
SS and CD

SS are required in order to solve the optimization problem. In 

the absence of rate equations, the Gillespie algorithm19 can alternatively be employed to 

obtain CC
SS and CD

SS. The Gillespie algorithm is a stochastic population-based method 

used to simulate the dynamic behavior of reaction networks at a microscale level, based 

on an initial number of particles Ptot present.  

Even when a set of deterministic rate equations are available, the Gillespie algorithm 

provides an attractive computational alternative for obtaining a dynamic profile. The 

reason for this is that a stochastic simulation of a kinetics system can avoid the numerical 

intractabilities associated with solving a system of many coupled differential equations 

since numerical instabilities can arise through the application of both numerical and 

analytical techniques. The five-species, seven-reaction system is selected as a 
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simplification of a problem in which there are, say, a thousand reactions and the system is 

effectively black-box since a numerical solution can be computationally intractable.  

The Gillespie algorithm proceeds as follows. Species concentrations Ci at the 

macroscale level are expressed in terms of a corresponding number of particles Pi at the 

microscale level according to a weighted percentage of Ptot. The idea is to evolve the 

system to steady-state by selecting a single reaction to occur at each time step tj for a long 

time horizon tf, as given by Equation (2.11), or until there is very little change observed 

in the species particle population counts Pi for a time step series. 

, ...j
tot

j
t j

P
  f tot1 t P           (2.11) 

At steady-state, the particle equivalents are then mapped back to the corresponding 

macroscale species concentration values. The conversion between concentrations CA
0 and 

CC
0 and particles is accomplished through simple weighting as shown in Equation (2.12):  

, , , ,
0
i

i tot E
0
i

i A

C
P P i A B C D E

C


 


         (2.12) 

where Ptot represents the total particle population, Pj represents the number of particles 

for species i, and Ci
0 represents the species concentration i at the macroscale level, in 

terms of mol/L. Once CC
SS and CD

SS have been determined, the optimization problem can 

now be solved. 

Reaction networks are evolved based on the assignment of an event probability to 

each reaction and choosing one to occur based on the generation of a random number. At 

each time step, the kinetic system evolves whereby one of the seven reactions occurs 

probabilistically as a function of: (1) how many particles are present for reaction i and (2) 
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its respective rate constant. After the species particle count has been updated, another 

random number is obtained and the corresponding reaction is selected. This procedure 

continues occurring until little change is observed in the molecular variables Pi. Each 

time a steady-state vector is obtained, the microscale outputs are then mapped back to 

macroscale concentrations as shown in Equation (2.13), a reciprocal form of Equation 

(2.12), from which the objective function F can subsequently be evaluated.  

, , , ,
E

SS 0i
i i

i Atot

P
C C i A B C

P 

  ,D E        (2.13) 

As the value of Ptot increases, the length of the time step decreases, and the CPU time 

required for evolution of the reaction system to steady-state increases. As Ptot approaches 

infinity, and the time interval approaches zero, the microscopic model behavior 

approaches the continuous behavior described by the macroscopic rate equations, though 

at a higher computational cost when compared to model evolution based on a lower value 

for Ptot.  For repeated simulations of the microscopic model, different steady-state vectors 

will be generated due to the stochastic nature of the algorithm. As Ptot decreases, the 

variance of the set of these steady-state vectors increases since the microscopic system 

evolution is less accurately represented due to the kinetic system evolving over longer 

time steps. When the value of Ptot is specified as one million, the standard deviation of 

the objective value obtained from the set of one hundred stochastic simulations evolved 

from identical starting concentrations [CA
0,CC

0] is 0.004. As expected, at high values of 

Ptot the steady-state behavior obtained from population-based stochastic simulation 

approaches that of the deterministic steady-state behavior obtained from solution of the 

rate equations given by the equations in (2.6).  
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The Gillespie algorithm is therefore an effective tool for obtaining input-output 

information for response surface modeling. The input data consist of initial 

concentrations CA
0 and CC

0. The output data consist of steady-state species concentrations 

from which F can then be evaluated via the intermediate equations for X and Y. The 

response surface is built with respect to F as a function of the inputs [CA
0,CC

0], since it is 

F that is being minimized, not CC
SS or CD

SS. Once the Gillespie algorithm has been 

employed at each of the sampling vectors required for model construction, the response 

surface can be built. Local or global response surface minimization results in the 

attainment of a model-optimal value F.  

The noise, quantified in terms of the standard deviation  around the objective F for 

the R replicate simulations, decreases for increasing Ptot. The value of  is used as the 

stopping tolerance tol for the algorithms presented in Figures 2.16 or 2.18. If the value of 

tol is lower than , it is possible for premature termination to occur in that a solution 

vector will be attained that is far from the true optimum. At the same time, the imposition 

of a strict criterion can lead to an increased sampling expense if the optimization of 

sequential response surfaces results in minimal improvement in the objective F.   

 

2.3.2  Computational Results 

The NLP formulated in problem (2.7) is now solved by employing the DS-RSM, 

RSM-S, and RSM-G algorithms. The best solution F is attained after sequential 

optimization of response surfaces for twenty-five trials each of varying microscale 

system size Ptot. For each trial, the nominal solution xc, or, “initial best guess” is 

randomly selected in order to demonstrate successful convergence to an optimum 
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regardless of where the starting vector is located. Alternatively, this experiment is 

performed in order to show that the response surface method is robust against even a poor 

initial guess for the optimal vector (CA
0,CC

0).  The initial radius for the 2-level, and later 

3-level factorial design, is set as 0.1. A sample collocation set is presented in Figure 2.20 

for a nominal iterate xc = [0.7,0.7].  

 

 

 

 

 

 

 

Figure 2.20. Generation of sampling vectors for response surface modeling based on a 

factorial design template centered at xc = [0.7,0.7] and having initial bounds b1 = 0.1. 

 

The solution for each of the computational trials is comprised of the optimal process 

conditions (CA
0,CC

0)opt and its corresponding objective function F. Results for the set of 

trials in which the global optimum is attained are presented in Tables 2.1 and 2.21.  
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Table 2.1: Global solutions obtained based on application of the DS-RSM algorithm. 

Microscale 
model size 

Design radius for 
initial response 

surface 
CA

0 CC
0 CPU time (s)

Ptot b1      

10,000 0.1 9.977 0.703 8.37 0.106 66 20 
10,000 0.15 10.354 0.637 8.38 0.124 45 11 
10,000 0.2 9.956 0.72 8.368 0.108 44 8 
10,000 0.25 10.171 0.743 8.348 0.12 44 7 
50,000 0.1 10.27 0.532 8.379 0.068 290 77 
50,000 0.15 10.089 0.597 8.365 0.063 254 63 
50,000 0.2 10.12 0.527 8.347 0.07 236 46 
50,000 0.25 10.205 0.484 8.382 0.096 201 36 
100,000 0.1 10.257 0.477 8.375 0.039 494 141 
100,000 0.15 10.225 0.466 8.38 0.047 407 96 
100,000 0.2 10.207 0.416 8.353 0.057 345 77 
100,000 0.25 10.209 0.507 8.378 0.077 337 66 

 

Table 2.2: Global solutions obtained based on application of the RSM-G algorithm. 

Microscale 
model size 

Design radius for 
initial response 

surface 
CA

0 CC
0 CPU time (s)

Ptot b1      

10,000 0.1 10.131 0.787 8.395 0.128 94 30 
10,000 0.15 10.145 0.802 8.36 0.137 60 16 
10,000 0.2 10.156 0.571 8.347 0.128 74 21 
10,000 0.25 10.291 0.656 8.354 0.125 77 17 
50,000 0.1 10.172 0.643 8.398 0.129 290 79 
50,000 0.15 10.184 0.705 8.358 0.072 264 61 
50,000 0.2 10.186 0.485 8.359 0.081 261 61 
50,000 0.25 10.275 0.482 8.34 0.102 277 66 
100,000 0.1 10.203 0.559 8.388 0.085 624 190 
100,000 0.15 10.173 0.432 8.355 0.059 496 123 
100,000 0.2 10.284 0.353 8.332 0.066 496 112 
100,000 0.25 10.248 0.475 8.337 0.067 529 132 
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For each (Ptot,b1) combination, where b1 designates the experimental design radius 

corresponding to the initial response surface, the same set of 100 random starting points 

is used. Data represent averages of the subset of experiments converging to F = 0.7422. 

Similar results are obtained for convergence to the local optimum. As the initial size of 

the design region in both RSM-based algorithms increases, the accuracy of the optimum 

value achieved generally decreases. The reason for this is that if the vector at which 

refinement of the best solution is located just inside the basin of the true optimum, 

shrinkage of initially large experimental design regions may still result in determining 

additional points outside this region.  

Sequential quadratic programming using NPSOL is used to generate the solution of 

problem (2.7) when the microscale system size Ptot is adaptively refined during the course 

of optimization in order to reduce the computational expense during the early stages18. 

Results are given in Table 2.4. Table 2.5 provides additional results based on the 

performance of four other optimization algorithms that are employed to solve problem 

(2.7). 

 

Table 2.3. Optimization results obtained for Problem (2.7), based on application  

of an adaptive gradient-based NLP algorithm. 

(CA
0,CC

0)opt 
Solution 
Method 

Ptot  
F 

CPU 
Time 

(s) 

# of calls to 
microscale 
simulator 

Standard 106 (10.167,8.426) (0.2,0.05) 0.7425 2346 62 
Adaptive 104-106 (10.166,8.475) (0.21,0.04) 0.744 1052 96 
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For the adaptive method, 75% of the overall CPU time is spent making function calls 

to the simulator. Each function call requires a unique reaction network evolution of the 

micrsocale model which is computationally intensive as the value of Ptot increases. For 

the results obtained using the DS-RSM and RSM-G response surface methods, presented 

in Tables 2.4 and 2.5, the corresponding percentage of CPU time spent making function 

calls to the microscale simulator is above 85% since the fitting and optimization of the 

quadratic model are inexpensive operations compared to the evolution of the reaction 

network. The application of the adaptive algorithm results in a substantial reduction in 

CPU time compared to when the system size is fixed at a high resolution value of 106 

total particles, yet also requires a larger number of function calls. Since the value of N is 

initially lower for the adaptive algorithm, more iterations are required before the 

optimum region is reached. The standard deviation of the solution for ten replicate runs is 

comparable.  

 

Table 2.4. Performance of various optimization algorithms in finding the global  

optimum to problem (2.7) for a microscale system size of Ptot = 50,000. 

Method Ptot F (CA
0,CC

0)opt 
CPU 

Time (s) 

# calls to  
microscale 
simulator 

Nelder-Mead 50,000 0.7432 (9.505,8.460) 794 56 
MCS 50,000 0.7422 (10.482,8.367) 1879 200 

DS-RSM 50,000 0.7443 (10.243,8.376) 208 26 
RSM-G 50,000 0.7447 (10.113,8.367) 333 36 
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Table 2.5. Performance of various optimization algorithms in finding the global 

optimum to problem (2.7) for a microscale system size of Ptot = 100,000. 

Method Ptot F (CA
0,CC

0)opt 
CPU 

Time (s) 

# calls to  
microscale 
simulator 

Nelder-Mead 100,000 0.7424 (10.449,8.382) 1948 67 
Hooke-Jeeves 100,000 0.7422 (10.054,8.339) 2671 150 

SQP 100,000 0.7471 (10.327,8.478) 1321 69 
MCS 100,000 0.7423 (10.359,8.399) 3369 201 

DS-RSM 100,000 0.7442 (10.203,8.378) 443 28 
RSM-G 100,000 0.7442 (10.194,8.360) 512 35 

 

For a microscale system size of Ptot = 50,000, the response surface algorithms require 

approximately half the number of function calls required by Nelder-Mead, a purely direct 

search method. Because a combination of direct search and gradient-based optimization 

are employed by the DS-RSM algorithm, it can be considered as a hybrid between 

Nelder-Mead and the standard RSM-S technique. The solution attained by MCS is 

identical to the deterministic solution; however, it is attained at significantly higher 

computational expense relative to the response surface methods and Nelder-Mead. Even 

though the objective values obtained by the non-MCS methods are slightly inferior to the 

value of 0.7422 attained using MCS, the associated computational expense is an order of 

magnitude cheaper than that required by MCS. For a microscale system size of Ptot = 

100,000, the response surface algorithms again require approximately half the number of 

function calls to the microscale simulator relative to the number required by its nearest 

competitors in the Nelder-Mead and Hooke-Jeeves methods.  
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2.4 Summary  

The novel contribution of the work presented in this chapter has been the presentation 

of new experimental design templates employed within RSM optimization frameworks 

for the solution of NLP described by convex constraints. The new designs include 

techniques for 1) ensuring sampling set feasibility when iterates are located near 

boundaries, 2) generating sampling sets for lower-D response surfaces when equality 

constraints are present, and 3) generating sampling sets corresponding to response 

surfaces projected onto constraints to ensure that large steps remain being taken towards 

an optimum, rather than being limited in length by low iterate-constraint distances.  A 

sequential direct search-model based response surface methodology and a global 

response surface methodology are presented as techniques which target sampling expense 

reduction in the search for an optimum. Both of the new response surface techniques are 

applied to a kinetics case study to illustrate proof of concept, and the problem’s global 

optimum is attained at lower sampling expense relative the amount required when 

additional zero- and first-order algorithms are employed.  
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Chapter 3 

Global Optimization Employing  

Kriging and Response Surface Models 

 

Kriging predictors are data-driven models in which noisy input-output behavior is 

considered to be a natural system feature instead of a contaminant. Therefore, one main 

advantage of the method is that it specifically targets accurate model generation for noisy 

processes. Kriging was originally applied towards the identification of optimum drilling 

locations for mining applications and has been applied frequently for 3-D visualization in 

geostatistical applications20. Accurate kriging models can be constructed from dispersed 

sampling data at lower sampling expense relative to that required by an experimental 

design for response surface construction. The contribution of the work in this chapter is 

the development of a kriging-RSM  algorithm targeted at the identification of global 

optima for problems of arbitrary dimension and whose feasible region is described by 

convex constraints2. Kriging is used to first generate a global model of input-output 

behavior over the entire feasible region in order to identify the best warm-start iterates for 

local optimization using RSM. The benefit attained from applying the unified kriging-

RSM algorithm relative to the stand-alone RSM algorithms presented in Chapter 2 is that 

the chances of finding a problem’s global optimum increase since the initial iterates 

selected for local optimization are chosen based on global model information rather than 
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simply being chosen by random selection. The performance of the kriging-RSM 

algorithm is compared to the stand-alone response surface techniques and its 

effectiveness is evaluated in terms of the number of function calls required, number of 

times the global optimum is found, and computational time required before the optimum 

is found.  

 

3.1  Introduction 

The global solution of process design problems lacking closed-form model equations 

is difficult to obtain when a local optimization technique such as RSM, whose 

methodology is presented in the previous chapter, is applied. The primary limitation of 

the response surface model employed in the previous chapter is that it generally describes 

system behavior accurately only in the vicinity of an optimum. The reason why model 

accuracy is limited to a specific subregion is due to the simplicity of its quadratic 

polynomial functionality, which describes output variable behavior as a quadratic 

function of the set of continuous input variables. Since optima may be located in remote 

parts of the feasible region, and because output variable behavior can be a highly 

nonlinear function of the input variables, a quadratic polynomial response surface 

functionality may fail to accurately describe system behavior over a majority of its 

feasible region space.  

Kriging is a global modeling technique that can sufficiently model arbitrary nonlinear 

behavior; thereby the use of kriging models can overcome the modeling disadvantage of 

the quadratic response surface. However, the sampling expense associated with building 

accurate kriging models is generally higher than that required for local modeling since 
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the model is describing system behavior over the entire feasible region, which is usually 

more complex, in terms of mathematical geometry, in contrast to behavior described over 

a localized area. However, the additional sampling expense incurred from building global 

models is justified by the possibility of identifying promising warm-start iterates for local 

optimization, enabling more rapid determination of the complete set of refined local and 

global optima, in contrast to local models initialized at randomly determined iterates. 

In order to overcome the problem of high sampling expense, the technique of building 

iteratively updated global models can be applied in which an initial kriging model is built 

using a low number of sampling points, and subsequent models are then constructed 

based on the incorporation of additional sampling information. This practice has the 

effect of minimizing resource costs attributed to sampling at locations where the 

contribution to model development is low. However, one disadvantage of applying 

kriging is that it may not be a priori known how many sampling points are needed for 

accurate model construction, or where their locations should be. A naïve technique is to 

build kriging models from sampling data obtained at a user-specified number of 

randomly chosen locations. In Chapter 6, a standardized algorithm is presented to 

overcome the uncertainty associated with random sampling for initial model construction.  

In this chapter, a unified kriging-RSM algorithm is presented as a method for finding 

the solution of nonlinear programs (NLP) containing black-box functions and noisy 

variables. The kriging-RSM technique extends the capabilities of current methods to 

handle convex feasible regions defined by arbitrary linear and nonlinear constraints. In 

the proposed method, kriging is first used to construct iteratively refined global models in 

order to find the set of regions containing potential optima. Response surface techniques 
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are then applied to local models in order to refine the set of local solutions. The global 

model building expense is offset by an increased probability of finding the global 

optimum in contrast to the application of RSM alone.  

 

3.1.1  Literature Review 

A kriging predictor is a global model employing normally distributed basis functions, 

so both an expected sampling value and its variance are obtained for each test point21-23. 

Kriging was first developed as an inverse distance weighting method to describe the 

spatial distribution of mineral deposits. The global model that was obtained was used to 

determine additional locations possessing the same grade characteristics, thereby 

enabling the generation of improved monthly forecast estimates for different mine 

sections. The seminal article by Krige20 was reviewed in context of other classical 

statistical methods used for geostatistics24. 

Kriging has not only been used to generate models based on field data, but also when 

input-output information is obtained via computer experiments due to the increasing use 

of simulation for the study of complex processes25-26. It is to be noted that in the proposed 

algorithm, the function of kriging is to determine improved locations for local search 

thereby enabling the response surface techniques to be applied to “warm-start” iterates. 

Due to the black-box functions present in the problem formulation, even though the 

global optimum is sought, it is impossible to theoretically guarantee global optimality. 

The confidence limits obtained using of kriging may be similar to those attained using 

BB28 but BB assumes that the functionality is known which is not the case for the 

NLP class addressed in this chapter.  
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Kriging is an interpolation technique whereby a prediction  at test point xk is made 

according to a weighted sum of the observed function values at nearby sampling points. 

The kriging predictor is modeled after a normally distributed random function, so a 

prediction variance is also obtained at the test point. As a result, the sampling value is 

expected to fall within the interval specified by the prediction and corresponding 

variance. If the feasible region is discretized, both a prediction and variance mapping can 

be obtained over a test point set having uniform coverage. The variance mapping 

describes prediction uncertainty, which will be high in regions with a low number of 

sampling points. Kriging predictors can be improved by incorporating additional 

sampling information obtained within these regions, thereby reducing model uncertainty. 

The existing literature usually compares kriging and RSM methods but has not combined 

them together for the purpose of global optimization as presented in this chapter.  

2z

In the next section, the mathematical formulation of the problem is given. Following 

this, the basic steps of the kriging-RSM algorithm will be presented.  

 

3.1.2  Problem Definition 

The problem addressed in this work has the following form: 
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The problem formulation is the same as that given by Equation (2.1); however, the 

kriging-RSM methodology presented in this chapter targets the attainment of a global 

optimal solution instead of an arbitrary local optimum found using RSM alone as 

presented in Chapter 2.  

In this formulation, x represents continuous variables that are process inputs. This set 

of variables is distinct from the set of input variables z2 whose values are obtained from 

sampling data obtained at upstream units based on a subset of the variables x. 

Deterministic output variables z1 describe outputs whose modeling equations h(x,z1) are 

known. Stochastic output variables z2 represent the black-box part of the model and are 

simulated by deterministic functions (x) perturbed by an additive noise term x. The 

noise is described by a normally distributed error having mean zero and variance 2 

whose properties can change depending upon the spatial location of x. The noise function 

is stochastic in that replicate experiments performed under the same conditions lead to 

different values for (x) and in turn z2(x). Design constraints such as operating 

specifications are given by g(x,z2).  

 

3.2  Solution Approach 

In the proposed approach, a sequential kriging-RSM algorithm is employed for the 

optimization of systems containing black-box functions and noisy variables. The basic 

idea is to first use kriging to obtain a global picture of system behavior by generating 

predictions at test points, and then to apply RSM to a set of regions containing potential 

local optima in order to find the global optimum. Although the kriging predictor is 

iteratively improved as additional sampling is conducted in regions where prediction 
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ability is poor, the CPU cost associated with generating many predictions over the course 

of the modeling can become high, especially if a set of discretized test points obtained 

using high-resolution grids are employed in order to obtain more accurate optima. Since 

response surfaces can be inexpensively generated, a better strategy for obtaining potential 

optima is to generate a kriging surface over a lower-resolution grid and then use 

sequential response surfaces to refine the best set of candidate vectors.  

Since it is possible that local optima lie along the boundaries of the feasible region, 

the application of current response surface techniques which are suited for the solution of 

box-constrained problems would fail to improve upon the current values of the possible 

optima. In Chapter 2, these limitations have been overcome based on the application of  

1) adaptive experimental designs to retain feasibility, and 2) projection of the                  

n-dimensional response surface onto the feasibility space limited by the problem 

constraints. The incorporation of these techniques has extended the capabilities of RSM, 

enabling the solution of NLP to be obtained when the feasible region is described by an 

arbitrary set of convex constraints.  

Since the kriging-RSM algorithm is targeted at finding both interior and boundary 

solutions for constrained NLP described by 1) black box functions, 2) noisy variables, 

and 3) arbitrary convex feasible regions, it can serve as a backbone algorithm for the 

solution of problems containing integer variable complexities whose corresponding 

algorithms rely on the solution of relaxed NLP subproblems. In Chapters 4 and 5, 

Branch-and-Bound and Direct Search techniques will be combined with the kriging-RSM 

algorithm to address this more difficult MINLP problem class. It should be emphasized 

that even though global optimality is not theoretically guaranteed when the kriging-RSM 
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method is applied, the chances of finding a vector close to the deterministic optimum is 

increased relative to when a local technique such as RSM is used by itself. The reason for 

this is due to the global search feature obtained from building kriging models over the 

entire feasible region. In the next section, the details of the kriging method will now be 

presented.  

 

3.2.1  Kriging Methodology 

In kriging, sampling data are treated as the realizations of a random function in order 

to improve the modeling of a black-box system assumed to be inherently stochastic. 

Since the kriging model is based on a random function, at each test point Sk, both a point 

value and variance estimate are obtained. The global model is built by mapping the 

kriging predictions with respect to the input variables. The corresponding variance 

mapping is primarily used to determine sampling locations for model refinement at high-

variance regions. However, it can also be employed as an alternative measure of model 

reliability whereby further refinement is terminated once the maximum variance falls 

below a fraction of its initial value. Each kriging estimate at test point Sk is generated as a 

weighted sum of nearby sampled function values. The weights are generated as a function 

of the Euclidean distance between the sampling vectors close to Sk in a manner similar to 

inverse distance weighting methods, in which higher weighting is generally given to 

sampled function values whose vectors are close to the test point.  

Kriging models can be generated with respect to the process output variables z2 for 

the black-box units; however, the model that is directly used in the kriging-RSM 

algorithm is the one built with respect to the NLP objective. This is done since it is the 
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objective function which is being optimized instead of the process outputs. The weights 

are determined using a covariance function, which measures correlation strength between 

two objective values based on a Euclidean distance equation as given by Equation 3.2: 

, ( ) ( )i j i jd S x S  x              (3.2) 

where it should be noted that the complete representation of any sampling vector Si  is 

given as Si(x) if only continuous variables are present, and as the triplet Si(x,y1,y2) if any 

integer variables are also present. The integer variable classifications for y1 and y2 are 

provided in Chapter 5.1, and if any y2 variables are relaxed and therefore can temporarily 

assume continuous values, the equation for di,j is modified as given by Equation (3.3): 

, 2( , ) ( , )i j i jd S x y S x y  2

i

           (3.3) 

The two vectors employed in Equation (3.2) can be either two sampling points {Si,Sj}, 

or a sampling point and test point {Si,Sk}. Although coefficient values must first be 

determined for the covariance function, a reliable covariance function can usually be built 

using limited sampling information, enabling a set of predictions, and, in turn, a reliable 

global model, to be generated at low cost. The basic steps for building the model are as 

follows: 1) determination of covariance function coefficients based on sampling data; 2) 

calculation of the covariance Cov(di,k) between the test point and each nearby sampling 

point; 3) generation of weighting values  for each sampling point Si close to Sk after 

solving the linear system C = D, where the elements of C and D are {Si,Sj} and {Si,Sk} 

covariance values, respectively; and 4) estimation of the kriging predictor as given by 

Equation (3.4).    
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In (3.3), F(Sk) represents the prediction value obtained at test point Sk, kCluster denotes 

the number of nearby sampling points, and F(Si) denotes a corresponding sampled output 

value at Si. The estimation of F(Sk) is generally improved when the set of the Euclidean 

distances between the test point and its nearby sampling points are all different. Lower 

weighting generally occurs as the di,k distance between Si and Sk increases, a behavior 

similar to that observed with inverse distance methods.  

The methodology for obtaining the covariance function coefficients is now presented. 

From the set of STot sampling data, squared output value differences Fi,j are calculated and 

plotted relative to sampling-pair distances as given by Equation (3.5): 

2

, ( ) ( ) ...i j i j TotF F S F S i, j 1 S ,i     j     (3.5) 

From a scatter plot of Fi,j as a function of di,j, a semivariance function is then fitted. 

Several standard semivariance models from the literature are typically tested in order to 

ascertain which one provides the best fit20. Due to the plot complexity as shown in Figure 

3.1(a), the best fit to one of the established semivariance models in the literature is not 

usually immediately apparent.  

 

         

 

 

                         (a)                                            (b)                                                 (c) 

Figure 3.1. Data smoothing applied to squared function differences Fi,j (a) in order to 

obtain a semivariogram fit (b) and covariance function fit (c). 
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To alleviate this problem, data smoothing is applied, and the semivariance function is 

then fitted to a reduced set of scatterpoints known as semivariances  as shown in Figure 

3.1(b).  A set of P equidistant intervals are defined between zero and the maximum di,j 

distance. The pth interval midpoint is denoted by hp, and the semivariance corresponding 

to the pth interval, (hp), is obtained by averaging the set of squared function differences 

falling inside this interval as given by Equation (3.6):  
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where N(hp) is the number of sampling pairs {Si,Sj} whose separation distance di,j lies 

inside the pth interval. The semivariance function behavior typically rises from zero to an 

asymptotic maximum known as the sill . In order to generate the corresponding 

covariance function as displayed in Figure 3.1(c), the semivariance function is then 

reflected between the x-axis and the sill. Once the covariance function has been obtained, 

the covariance between any two sampling vectors can then be determined by substituting 

di,j or di,k into the model equation. The kriging weights are then obtained as the solution 

of a linear system of equations in which the LHS consists of a matrix of {Si,Sj} 

covariances, and the RHS consists of a vector of {Si,Sk} covariances. If the weights are 

forced to sum to unity, the linear system can be recast in a Lagrangian formulation as 

given by Equation (3.7): 
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where (Sk) and '(Sk) represent the weight vector and the Lagrange multiplier, 

respectively. Once the weights are obtained, the kriging prediction F(Sk) and its expected 

variance are obtained according to Equations (3.4) and (3.8), respectively: 2 ( )k kS

2 2( ) ( ) ( ) '( )
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k k VARIO i ik k

k
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i 1
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
S       (3.8) 

The methodology is then applied to another test point, and once all kTest kriging 

predictions have been obtained, the global mapping can be constructed. If additional 

sampling is performed, a new covariance function can be generated. Based on the 

updated covariance function, new kriging estimates can be generated for all kTest sampling 

points and a refined global model can be created. For each global model, its 

corresponding average predictor value  is compared against its counterpart based on the 

previous model. Once convergence has been achieved in , further refinement is 

terminated. Let the iteration index m refer to any property based on the mth kriging model, 

and let TolKrig be a percentage stopping tolerance. A sample range for TolKrig would be 

any value between one and ten percent. The mth average prediction value mis defined as 

the average of the set of kriging predictions and sampled function values as given by 

Equation (3.9): 
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where Sm and kTest,m refer to the number of sampled function values and test points 

employed in constructing the mth global model. Based on this notation, S1 denotes the 

nominal sampling set used to create the first global model. The nominal value of 0 is 

obtained by averaging the sampled function values from S1
. Once the mth global model 
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has been constructed, m/m-1 is evaluated. If this ratio falls inside the interval (1TolKrig), 

the mth global model is considered accurate, and no additional updating occurs.  

If, on the other hand, m/m-1 falls outside (1TolKrig), another model is built using 

additional sampling data. To increase model reliability, sampling is performed in regions 

of high uncertainty characterized by either high prediction variances, and at points whose 

kriging prediction value has changed the most between iterations, relative to the 

prediction value changes corresponding to the remaining set of kTest points16. In order to 

emphasize global model improvement, an additional criterion is enforced whereby all 

new sampling points reside some minimum distance apart from one another. This 

practice ensures that the new sampling set will not consist of clustered points located at a 

single high-variance region, thereby de-emphasizing local model refinement. It should 

again be noted that the corresponding mapping of the sampling data with respect to the 

process output z2, rather than the partially relaxed NLP objective, can be obtained by 

substitution of z2 in place of F for the equations given in (3.4), (3.5), (3.6), and (3.9). 

Local optimization using response surfaces is performed after global model reliability 

has been confirmed. However, the number of sampling points needed for local model 

construction can become high if the black-box process behavior is described using more 

than five variables. To alleviate this problem, each new sampling set used for global 

model refinement also includes vectors whose kriging predictors yield the best objective 

values for the current iteration. At regions where locally optimal kriging predictions are 

obtained, refined grids are generated and the corresponding set of new vectors is added to 

the set of current test points. A set of global models is presented in Figure 3.2 in order to 
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illustrate the stabilization that occurs after the kriging predictor has been improved using 

the current sampling rules for model refinement.  

  

                 (a)                           (b)                                (c) 

Figure 3.2. Kriging model generated at initial (a), intermediate (b), and final (c) stages.  

 

The procedure for obtaining a prediction at Sk, referred to as the kriging algorithm, 

can be summarized as follows. First, the feasible region is characterized and the iteration 

index m is initialized at unity. If the black-box model represents an intermediate process 

within a process train, output sampling data z2 obtained for some upstream processes may 

be required in order to fully define the feasibility constraints g(x,z2) and h(x,z1,), or 

alternatively the corresponding feasibility constraints  g  and  presented in 

Chapters 4 – 6, as appropriate, if the problem formulation also contains integer variables. 

A nominal sampling set Smis specified which contains as few as ten points even when the 

MINLP is described by as many as forty input variables. As long as the starting size of 

Smis not too small, the number of iterations required to achieve convergence in m will 

be relatively insensitive to the number of sampling vectors in the nominal sampling set. 

However, the initial number of sampling points which comprise Smshould be kept low in 

order to place emphasis on further sampling as needed during the iterative stages of 

predictor refinement. Semivariances are then generated using all sampling data within 

 h 
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SmThe best semivariance model is fitted using least squares, and the complementary 

covariance function is then obtained. The matrices on the RHS of Equation (3.7) are then 

constructed from submatrices hCluster, h0, C, and D, as given by Equation (3.10). The 

matrices C and D are augmented in order to remain consistent with the Lagrangian 

formulation given in Equation (3.7), in which the weights are required to sum to unity.   
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The location Sk is specified and kCluster nearest-neighbor sampling points are chosen 

from Sm that are nearest to Sk as given by Equations (3.2) or (3.3), depending upon 

whether any integer variables y2 exist and are relaxed in the corresponding relaxed NLP 

subproblem. The value of kCluster usually varies between five and ten regardless of 

problem dimension, although the estimate of F(Sk) may be skewed if sampling 

information is too sparse. The kriging weights are then obtained from solving the linear 
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system of equations as presented in Equation (3.7) and the prediction F(Sk) and its 

variance  are determined using Equations (3.4) and (3.8), respectively.  2 ( )k kS

The weights are then recalculated for each of the kTest sampling vectors in order to 

generate corresponding estimates for F(Sk). Once the global mapping has been 

constructed m is determined from Equation (3.9) and compared against m-1. If 

convergence is not achieved, the iteration index m is advanced by unity and additional 

sampling is performed based on application of the sampling rules. A new covariance 

function is built, new kriging estimates F(Sk) are generated, and an updated mapping is 

built. The procedure is terminated once convergence has been achieved in m.  The best 

local solutions are then identified for sequential local optimization using RSM. RSM 

targets the optimization of x, or, if appropriate, x and y2, as described in Chapter 5.3. A 

flowchart of the kriging algorithm is presented in Figure 3.3.  
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Define feasible region Obtain nominal sampling set S1(x). Initialize model iteration 
index m = 1. Set m as the average of the sampled objective values F(S1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Kriging algorithm flowchart for building/refining a data-driven global model. 
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3.2.2  Kriging-RSM Algorithm 

In this section, the details of the kriging-RSM algorithm are presented. First, a set of 

nominal sampling information is obtained and a set of feasible test points is generated 

over which to build the kriging predictor. As mentioned before, it is important that the 

number of test points not be too high as model building costs will increase. Discretization 

can be used to generate the set of test points for 2- or 3- dimensional problems, but the 

number may become too high for problems of higher dimension. For the presented 

examples in which the problem dimensionality was greater than three, it is found that one 

thousand randomly generated points are sufficient for building the kriging predictor 

without substantial increase in the model building costs.  

A test point xk is selected and both its kriging prediction and variance are obtained 

according to the kriging algorithm described in Figure 3.3. Once all kriging predictions 

have been obtained for the set of kTest points, the average value of the kriging predictor is 

then obtained and compared to the corresponding value obtained in the previous iteration. 

If the difference between these values exceeds a stopping tolerance TolKrig, a set of 

additional candidate vectors is obtained whose corresponding kriging variances are the 

highest for their respective local region. The parameter TolKrig is set at 0.01 and is a 

generally noise-independent parameter as the number of test points used to build the 

kriging mapping exceeds the number of points at which sampling data are obtained.  

Due to the fact that black-box functions prevent knowledge of NLP problem 

convexity as given by Equation (3.1), the global optimum may still be missed when 

kriging or any other global modeling technique is applied. In order to increase the 

chances of finding the subregion containing the global optimum, the current kriging 
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model is iteratively improved based on the information obtained from a new sampling set 

obtained for each iteration. The new sampling set is comprised of three subsets each 

having an equal user-determined number of data points. For the examples presented in 

this and the remaining chapters, this number is set at three. Each subset has a family of 

points conforming to one of the following characteristics: 1) high variance, 2) high 

difference between prediction estimates for consecutive iterations, and 3) minimum 

prediction values. In addition, the sampling locations within each family subset are 

separated by a minimum L2-normed distance in order to maximize the amount of global 

information obtained.  After performing additional sampling, the kriging predictor is then 

refined by generating new predictions again at all test points. Once the difference in the 

average kriging predictor falls below TolKrig for consecutive iterations, refinement of the 

current best candidate vectors yielding the lowest kriging predictions in M local regions 

occurs according to the RSM algorithm. The set of M kriging solutions Sm
K, m = 1…M, 

are then rearranged in order of increasing objective function value F; therefore S1
K refers 

to the kriging solution having the lowest objective value. The iteration index m represents 

the mth kriging solution to be locally optimized. 

At the start of the RSM algorithm, the iteration index w is initialized at a value of 

unity. A response surface is built around a kriging-optimal solution Sm
K by fitting 

sampling data obtained from a collocation set Scoll,w. The vectors which comprise Scoll,w 

are determined by applying either one of the factorial or CC design templates for a 

predetermined initial model radius bw. For the examples presented in Section 6.3, the 

nominal value of bw is set at ten percent of each variable’s operability range as defined by 

the difference in corresponding lower and upper bounds. The vector SK and its 
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corresponding objective value FK comprise the nominal solution set {Sopt,w,Fopt,w}. Once 

the response surface has been created, the optimum Sopt,w+1 having corresponding value 

Fopt,w+1 is determined using gradient methods. Sampling is performed at the model 

optimum vector in order to confirm objective value improvement. If the difference 

between the current and previous optimum |Fopt,w+1 - Fopt,w| falls below a prespecified 

criterion TolRSM, the algorithm terminates with {Sopt,w+1,,Fopt,w+1} established as the RSM 

solution. Otherwise, the iteration index is advanced by unity and another response surface 

having a new bound radius bw is constructed at the new Sopt,w. At any iteration w, the 

value of bw+1 is different from bw only if the Euclidean distance between the current and 

previous solution vectors is lower than the current radius bw. During the later stages of the 

algorithm, Sopt,w+1 will be near Sopt,w, signifying that the basin of the RSM optimum has 

been found. At this point, a more accurate description of the system behavior near the 

optimum can be attained using more localized response surfaces. Whenever iterates are 

close to the boundaries, lower-dimensional response surfaces are created by projecting 

the model onto constraints so as to prevent model generation based on an asymmetrical 

arrangement of the feasible sampling data12. The RSM-optimal solution is denoted as 

F(Sm
R). Once its value has been attained, the value of m is increased by unity and the next 

kriging solution Sm
K is locally optimized. A flowchart of the complete kriging-RSM 

algorithm is presented in Figure 3.4.  
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Figure 3.4. Flowchart of the Kriging-RSM algorithm. 
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For the presented examples, whenever an iterate approaches the feasible region 

boundary, the computational burden associated with identifying the corresponding 

constraints is low since the problem sizes are small. However, modifications to the 

proposed methodology may be necessary for high-dimensional problems containing 

many constraints and will be addressed in a future work. The kriging-RSM algorithm 

terminates after all or a subset of the kriging solutions have been refined using RSM, and 

the global optimum is identified as the vector having the lowest corresponding objective 

value F as given in Equation (3.1), relative to the set of refined local optima obtained.  

 

3.3  Examples 

In this section, the proposed kriging-RSM algorithm is applied to five numerical 

examples2. The first four examples are presented in order of increasing complexity in 

terms of problem dimensionality and an increasing number of linear/nonlinear 

constraints. The last example is the kinetics case study introduced in Chapter 2. For each 

example, a table of computational results is provided that illustrates the performance of 

four optimization algorithms. The kriging-RSM algorithm refers to the new methodology 

of applying steepest descent to response surfaces after building a global model as 

presented in Figure 3.4. The remaining algorithms are stand-alone response surface 

methods presented in Chapter 2. The second algorithm, DS-RSM, applies direct search in 

the early stages followed by application of steepest descent to response surfaces once the 

neighborhood of a local optimum has been found. The third algorithm, RSM-S, applies 

steepest descent to response surfaces at every iteration. The fourth algorithm, RSM-G, 

refers to the technique of building a response surface and minimizing with respect to the 
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entire feasible region in order to obtain global steps to the optimum. For each algorithm, 

one hundred trials are performed from a set of randomly selected feasible starting iterates. 

The percentage of iterates converging to the global optimum is presented in the second 

column of the respective table. Using information taken from the subset of starting 

iterates successfully finding the global optimum, the average number of iterations 

required, function calls needed, and CPU time required are also reported. All 

computational results are obtained using an HP dv8000 CTO Notebook PC with a 1.8 

GHz AMD Turion 64 processor.  

 

3.3.1  Six-Hump Camel Back Function  

The six-hump camel back function is a well-known global optimization test function 

that is box-constrained. Introducing both noise and black-box complications into this 

example, the output z2 is simulated according to a normally distributed perturbation of the 

deterministic function. The problem is formulated as shown in Problem (3.11) and the 

deterministic problem is presented in Figure 3.5: 

 
2

4
2 22 21

1 22 1 1 2 2

1

2

4 2.1 4 4 (0,0.05)
3

2 2

1 1

min z

xs.t. z = x + x + x x + x x + N

x

x

 
  
 
  

  
  

     (3.11) 
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Figure 3.5. Plot of the objective function given in Problem (3.11). 
 

This problem contains four local optima in addition to two global optima and is 

solved by applying the kriging-RSM algorithm in addition to all three response surface 

algorithms, DS-RSM, RSM-S, and RSM-G. The objective of applying each optimization 

algorithm is to identify the global optimum. The results obtained for this problem are 

presented in Table 3.1. 

 

Table 3.1. Comparison of the performance of the Kriging-RSM algorithm against    

stand-alone RSM algorithms in finding the global optimum for Problem (3.11). 

 

# Iterations # Function Calls CPU Time (s) 

Opt. 
Algorithm 

% Starting 
Iterates 
Finding 
Global 

Optimum 

K R K R Total K R Total

K-RSM 81 9 3 47 17 64 5.98 0.09 6.07 
DS-RSM 35 N/A 10 N/A 34 34 N/A 0.23 0.23 
RSM-S 40 N/A 9 N/A 47 47 N/A 0.28 0.28 
RSM-G 30 N/A 7 N/A 41 41 N/A 0.18 0.18 
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The global minimum is obtained in the fewest number of function evaluations when 

using the DS-RSM algorithm, but this is to be expected because the set of all optima are 

fairly evenly spread and have wide basins, meaning that the quadratic curvature is not 

apparent until the iterates are very close to the optimum. The RSM-S algorithm performs 

slightly better than the RSM-G algorithm because the two global optima (-0.0898,0.7126) 

and (0.0898,-0.7126) are located near the center of the feasible region (0,0). When 

applying the RSM-G method, a quadratic approximation of the function across the entire 

feasible region places many of the starting iterates in the neighborhoods of locally 

optimal solutions found at the corners of the feasible region as can be seen in Figure 3.5.  

The kriging-RSM algorithm requires approximately 50% additional function 

evaluations compared to the RSM-S and RSM-G methods, and almost twice as many as 

the DS-RSM method. However, the additional cost is balanced by the fact that this 

algorithm leads to global convergence in 81% of the cases. The remaining 19% of the 

starting iterates successfully found the basin containing either global optimum but 

terminated at values outside a 2% radius of the optimal solution. The average CPU time 

required by the Kriging-RSM algorithm is an order of magnitude higher than that of the 

stand-alone RSM solvers due to the computational expense associated with generating 

model predictions throughout the feasible region.  

 

3.3.2  Schwefel Function 

In this example the four optimization algorithms are applied to the 2-dimensional 

Schwefel test function, a problem also taken from the global optimization literature. This 

box-constrained problem is modified to include a linear and a nonlinear constraint. The 
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black-box function z2 depends on both x1 and x2 and is noisy, modeled by perturbing its 

deterministic value by a normally distributed error whose standard deviation is 1% of the 

deterministic function. The problem is formulated as shown below: 

2

2

1 2

2
1 1 2

1 2

( )

2 800

0.004 500

500 500

i

min z

2
s.t. z = -x sin x + N 0,15i

i=1
x - x

x x + x

x ,x



 

 
  

         (3.12) 

The deterministic equivalent of this problem is shown in Figure 3.6. This function 

contains a number of local optima and one global optimum at (420.97, -302.525) with an 

objective value of -719.53. This problem is selected in order to examine the performance 

of the stand-alone RSM algorithms when it is the underlying geometry instead of the 

noise that poses the main complication affecting successful convergence to the global 

optimum. In Table 3.2, results are presented for this example.  
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Figure 3.6. Plot of the deterministic objective function given in Problem (3.12).  
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Table 3.2. Comparison of the performance of the Kriging-RSM algorithm against    

stand-alone RSM algorithms in finding the global optimum for Problem (3.12). 

# Iterations # Function Calls CPU Time (s) 

Opt. 
Algorithm 

% Starting 
Iterates 
Finding 
Global 

Optimum 

K R K R Total K R Total

K-RSM 100 14 4 74 35 109 6.54 0.11 6.65 
DS-RSM 14 N/A 7 N/A 64 64 N/A 0.3 0.3 
RSM-S 11 N/A 5 N/A 53 53 N/A 0.23 0.23 
RSM-G 11 N/A 5 N/A 49 49 N/A 0.24 0.24 

 

If the starting iterate is located within the neighborhood of the global optimum, it is 

successfully found using any of the stand-alone RSM methods. However, the global 

optimum is located in a corner of the feasible region and is surrounded by a set of local 

optima which other nominal iterates can become trapped in on their path to the global 

optimum. The average number of function calls required for the DS-RSM method is 

higher than that observed for the RSM-S and RSM-G methods because the response 

surface is not created until the end stages of the algorithm.  

Because the global optimum lies at the corner of the feasible region, the sequence of 

iterates follows a longer path towards the basin containing the global optimum without 

terminating at suboptimal solutions that would be found if response surfaces were created 

at intermediate stages of the algorithm. The average number of function calls required by 

the RSM-S and  RSM-G methods is approximately the same because the interior 

candidate values are generally superior to the objective values obtained by sampling at 

the extremes of the feasible region. Due to the number of local solutions found within the 

interior of the feasible region, there is a low probability of convergence to the global 

optimum using the local algorithms.  
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In contrast, an average of almost twice as many function calls as the local methods 

are required in order to find a solution when the Kriging-RSM algorithm is applied, but 

global convergence is observed in all cases. The strategy of building a global model 

before conducting local search is particularly successful for this problem since 

convergence to a suboptimal solution using the local methods is avoided. The low CPU 

time required for solution of this problem using the Kriging-RSM algorithm increases the 

attractiveness of using this method as an alternative to the stand-alone response surface 

methods.  

 

3.3.3  Numerical Example 3 

This example involves 5 variables with 4 linear constraints and is an example 

modified from Floudas29. The problem is originally presented as an MINLP, and for this 

example a relaxed NLP is solved by relaxing the integrality constraints. The      black-box 

variable z2 is a function of two continuous variables and is noisy according to a normally 

distributed error with standard deviation 0.01. The NLP is formulated as shown in 

problem (3.13) and a plot of the objective as a function of the two continuous variables is 

presented in Figure 3.7:  
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Figure 3.7. Plot of the objective as a function of the continuous variables for Problem 

(3.13). 

 

A family of global optimal solutions exists for this problem in terms of the binary 

variables; however, the global optimum of -0.98688 is not achieved unless the optimal 

vector for the continuous variables is achieved at (0.2,0.2).  The results for this example 

are presented in Table 3.3.  The increased CPU time reported for this example using the 

Kriging-RSM algorithm is higher than that observed for the earlier presented                    

2-dimensional examples because the kriging predictor is generated over a 5-dimensional 

grid. Even though it appears from the plot that the nominal iterates in the continuous 

space should converge to (0.2,0.2) easily, movement is constricted by the feasible region 

defined by the relaxed binary variables, thereby causing approximately 20 – 30% of the 

nominal iterates to converge to a suboptimal solution when applying the stand-alone 

response surface methods. Even though the number of function evaluations required is 
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higher when using the Kriging-RSM algorithm, global convergence is observed in nearly 

all cases with only a modest increase in the overall model building costs.  

 

Table 3.3. Comparison of the performance of the Kriging-RSM algorithm against    

stand-alone RSM algorithms in finding the global optimum for Problem (3.13). 

# Iterations # Function Calls CPU Time (s) 

Opt. 
Algorithm 

% Starting 
Iterates 
Finding 
Global 

Optimum 

K R K R Total K R Total

K-RSM 97 7 7 40 47 87 10.9 0.5 11.4 
DS-RSM 70 N/A 13 N/A 40 40 N/A 0.24 0.24 
RSM-S 80 N/A 10 N/A 74 74 N/A 0.48 0.48 
RSM-G 82 N/A 10 N/A 72 72 N/A 0.75 0.75 

 

3.3.4  Numerical Example 4  

This example is also taken from Floudas29 and involves 11 variables with 11 linear 

constraints and 3 nonlinear constraints. Although the problem is also formulated as an 

MINLP, for this example it is solved as a relaxed NLP. The black-box variable z2 is a 

function of six continuous variables and is noisy according to a normally distributed error 

with standard deviation 0.01. The NLP is formulated as shown in problem (3.14): 
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The solution vector of the deterministic problem is (1.903,2,2,1.403,0.701,2, 

0.571,0.429,0.25,0.21,0) and has a corresponding objective value of -0.554. Due to the 

higher problem dimensionality, the kriging predictor is generated from a set of 1000 

feasible points unevenly dispersed throughout the feasible region rather than from an    

11-dimensional grid. The results for this example are presented in Table 3.4.  
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Table 3.4. Comparison of the performance of the Kriging-RSM algorithm against    

stand-alone RSM algorithms in finding the global optimum for Problem (3.14). 

# Iterations # Function Calls CPU Time (s) 

Opt. 
Algorithm 

% Starting 
Iterates 
Finding 
Global 

Optimum 

K R K R Total K R Total

K-RSM 76 7 17 62 381 443 11.6 9.6 21.2 
DS-RSM 55 N/A 24 N/A 855 855 N/A 18.8 18.8 
RSM-S 54 N/A 24 N/A 900 900 N/A 20.1 20.1 
RSM-G 53 N/A 24 N/A 850 850 N/A 19.2 19.2 

 

For this problem, the number of function calls required to obtain the global optimum 

is higher by two orders of magnitude compared to the corresponding values obtained 

from the earlier examples. The significantly higher number of function calls needed when 

using the response surface methods is due to the increased number of collocation points 

required in order to build response surfaces in higher dimensions even though the CCD is 

employed. The average number of function calls required for convergence in the kriging 

predictor is approximately 14% of the number needed during the refinement stage of the 

optimization. This result suggests that the kriging predictor sufficiently captures only the 

coarse geometry. In contrast to the previous examples, when using the local RSM 

algorithms, a higher number of response surfaces must be obtained before the optimum is 

found because the problem dimensionality is higher. This leads to increased local model 

building costs which are on the same order of magnitude as the model building costs for 

the kriging predictor. However the required number of function evaluations required 

using the kriging-RSM algorithm is approximately half of the number required using the 

stand-alone response surface methods, which again emphasizes the success observed 
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when using information obtained from building the kriging global model to guide the 

local optimization using RSM.  

 

3.3.5  Kinetics Case Study 

The kriging-RSM algorithm is applied to the kinetics case study presented in Chapter 

2.3. For this example, a value of N = 100,000 is used to refer to the total number of  

species particles A and C in the microscale model. Based on this value of N, the amount 

of noise in the output variable z2 is described by an additive error term that is normally 

distributed and has a standard deviation value of  = 0.011. The optimization results 

obtained from application of the Kriging-RSM, DS-RSM, RSM-S, and RSM-G 

algorithms are presented in Table 3.5. The CPU time excludes the time required for each 

function call in the form of a microscopic model simulation.   

Table 3.5. Comparison of the performance of the Kriging-RSM algorithm against    

stand-alone RSM algorithms in finding the global optimum for Problem (2.7). 

 

# Iterations # Function Calls CPU Time (s) 

Opt.  
Algorithm 

% Starting 
Iterates 
Finding 
Global 

Optimum 

K RSM K RSM Total K RSM Total

Kriging-
RSM 

100 9 4 46 25 71 5.27 0.09 5.36 

DS-RSM 55 N/A 6 N/A 30 30 N/A 0.09 0.09 
RSM-S 54 N/A 5 N/A 35 35 N/A 0.1 0.1 
RSM-G 53 N/A 5 N/A 32 32 N/A 0.1 0.1 

Even though approximately double the number of function calls are required for 

convergence to an optimum using the kriging-RSM algorithm, the global minimum is 

achieved in all cases. Since both the local and global optimum are located in wide 
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shallow basins near the center of the feasible region, starting iterates are found to 

converge to either optimum quickly when using the stand-alone response surface 

methods as seen by the low model building costs.   

For all the presented examples, it is seen that the modeling and optimization costs are 

relatively low when applying the Kriging-RSM algorithm due to the solution of     

ItKrigNTest + ItRSM systems of linear equations, where ITKrig and ITRSM represent the number 

of iterations required for the respective stages of the methodology. In contrast, only ItRSM 

systems of linear equations must be solved when applying any the DS-RSM, RSM-S, or 

RSM-G optimization algorithms. The value of ITKrigNTest is higher than ITRSM, so the 

major source of the reported CPU time is attributed to kriging modeling costs. However, 

for problems of significantly higher dimensions, such as atomistic modeling applications, 

the overall computational costs will instead be dominated by the time required for either 

real-time lab experiments or molecular simulation, rather than those associated with 

model-building.  

 

3.3.6  Loss-In-Weight Feeder Modeling 

Loss-in-weight feeders are frequently employed in the pharmaceutical industry for 

controlling the amount of reactant fed to a process. A common equipment configuration 

is shown in Figure 3.830. 
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Figure 3.8. Schematic of a Weight-In-Loss Feeder process. 

 

In the configuration shown in Figure 3.14, reactants are loaded into the feed hopper to 

its fill point. A discharge valve at the bottom of the feeder is opened and a set amount of 

reactants are fed to a mixing process. The amount of actual reactant discharged over time 

can be measured using the weighing scale. Based on the information obtained from 

weighing reactant discharge over short time intervals, the operator can adjust a process 

controller set point to either slow down or speed up the discharge rate. The feeder process 

can be considered as a black-box system in which the objective is to generate a model of 

an output variable, such as the flow variability in the discharge rate, in terms of feeder 

design variables. This model can be used to identify the best feeder configuration to use 

for a given application. For this study, both kriging and RSM are applied as surrogate 

modeling techniques.  
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For this process, field sampling data have been generated using loss-in-weight feeders 

provided by K-Tron. All experiments are performed using citric acid, granulated sugar 

and tea. Samples are taken at every five-second, fifteen-second, and thirty-second time 

intervals, for a duration of thirty minutes. The mass of samples are measured for each test 

run and the standard deviation from the average mass is considered to be a measure of the 

flow variability. The set of input variables are the reactant feed rate, feeder unit screw 

speed, feeder unit motor speed, and material density. The output variable is the standard 

deviation of the sample mass. From a randomly chosen set of thirty-four sampling data 

points, the input-output sampling data of eleven of these points are employed to build the 

initial kriging model.  
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Table 3.6. Loss-in-weight Feeders sampling data employed in kriging modeling. 

Point 
Set Feed 
Rate (g)

Motor 
Speed 
(RPM) 

Screw 
Speed 
(RPM) 

Density 
(lb/ft3) 

Standard 
Deviation 

(g) 

1 566.99 380 106 56  
2 715.04 440 122 57  
3 834.74 880 105 19.5 9.3976 
4 1574.97 1620 193 19.5  
5 346.49 960 291 22 3.7149 
6 1133.98 380 106 56  
7 3149.95 880 105 19.5  
8 692.99 460 128 22  
9 2929.45 440 78 57  
10 4290.23 440 122 57  
11 2078.97 460 128 22 15.0274 
12 1700.97 380 106 56  
13 2504.21 880 105 19.5 25.2309 
14 4724.92 1620 193 19.5  
15 2145.11 440 122 57 6.6212 
16 488.24 440 78 57 2.856 
17 1039.48 460 128 22  
18 976.48 440 78 57 4.5968 
19 904.03 620 172 56  
20 1464.73 440 78 57  
21 1430.08 440 122 57  
22 692.99 960 291 22 6.2754 
23 2712.1 620 172 56 10.3394 

24 1808.07 620 172 56  
25 346.49 460 128 22 6.2511 
26 1039.48 960 291 22  
27 2078.97 960 291 22 11.4664 
28 1574.97 880 105 19.5  
29 3401.94 380 106 56  
30 4724.92 880 105 19.5  
31 3149.95 1620 193 19.5  
32 5424.21 620 172 56  
33 9449.84 880 105 19.5  
34 9449.84 1620 193 19.5   
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The objective of the kriging model is to accurately predict the flow variability of the 

remaining twenty-three sampling points. The predictor is considered accurate once the 

average predictor value, or average predicted flow variability, of the current kriging 

model, is within 5% of the corresponding value of its predecessor. The average predictor 

value corresponds to the variable  given by Equation (3.9). 

For the first iteration, the average value of the kriging model, 9.97 g, is compared 

against the average value of the eleven sampled points, which is 9.25 g. Since the 7.766% 

difference between these values exceeds the 5% tolerance, the experimental output data 

values of two additional sampling vectors are added to the initial subset, and a new 

kriging model is built. The two additional vectors are selected as sampling points  #7 and 

#28, since the difference between the corresponding predicted and experimental flow 

variability values is highest among the remaining data points not included in the initial 

sampling subset. The subsequent kriging predictor, now built from thirteen sampling 

points, has an average prediction value of 7.79 g.  

There is a 21.8% difference between the average prediction value of the new 

predictor and the 9.97 g mean value corresponding to the first model, and therefore 

additional refinement is necessary. Two more data points are selected according to the 

same criterion employed in selecting the first two additional points, and once the updated 

model is built, the convergence test is again applied. At the third and fourth iterations, the 

average predicted flow variability values are 7.18 g and 7.40 g, respectively. The 7.40 g 

value differs from the 7.18 g value by three percent, and since the 5% tolerance criterion 

is satisfied, the kriging procedure is now terminated. At this point, seventeen sampling 

points have been used to build the final kriging predictor.  
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The kriging predictions obtained from models built at each one of the four iterations 

are presented in Figures 3.9 – 3.12, respectively, in which the magenta squares represent 

the experimental flow variability values and the blue diamonds refer to kriging 

predictions. The modeled uncertainty in the flow variability point estimate is expressed in 

terms of a normal distribution whose mean value is the flow variability point estimate and 

whose variance is determined according to Equation (3.8). The estimated variance is 

given by the error bars shown in each one of the four figures. Kriging predictor accuracy 

is confirmed by observing that most of the experimental standard deviation values given 

in Table 3.6 fall in the interval defined by the predicted value and the variance. Model 

prediction can be improved if a stricter convergence criterion is used, such as requiring 

that the average model value over consecutive iterations differs by no more than one or 

two percent, for example. However, increased accuracy is obtained at the expense of 

using additional sampling information for model construction.  
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Figure 3.9. Comparison of the first-iteration kriging model predictions against 

experimental flow variability measurements for the Loss-In-Weight Feeder case study. 
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Figure 3.10. Comparison of the second-iteration kriging model predictions against 

experimental flow variability measurements for the Loss-In-Weight Feeder case study.  
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Figure 3.11. Comparison of the third-iteration kriging model predictions against 

experimental flow variability measurements for the Loss-In-Weight Feeder case study.  
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Figure 3.12. Comparison of the fourth-iteration kriging model predictions against the 

experimental flow variability measurements for the Loss-In-Weight Feeder case study.  

 

Since an accurate kriging predictor is generated in just four iterations, the rule used 

for the generation of new sampling points for model refinement – that is, selection based 

on the highest difference between experimental and predicted output values – can be 

considered a reasonable heuristic to apply for other systems. Since an accurate model is 

generated at low computational cost, kriging is a computationally cheaper technique 

compared to more CPU-intensive first-principles modeling techniques such as Discrete 

Element Method for modeling flow variability in terms of feeder input conditions.  

A response surface model is also built using the data presented in Table 3.6. Since 

seventeen points are used to build an accurate kriging predictor, seventeen points are also 

used for response surface construction. The sampling data used are shown as follows in 

Table 3.7, and are chosen according to the rule that the average distance between the 

testing points and sampling points is minimized.  
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Table 3.7. Loss-in-weight feeder sampling-point data  

employed in response surface construction. 

Point 
Set Feed 
Rate (g)

Motor 
Speed 
(RPM) 

Screw 
Speed 
(RPM) 

Density 
(lb/ft3) 

Standard 
Deviation 

(g) 
2 715.04 440 122 57 3.159 
3 834.74 880 105 19.5 9.3976 
7 3149.95 880 105 19.5 4.5929 
9 2929.45 440 78 57 7.0584 
11 2078.97 460 128 22 15.0274 
13 2504.21 880 105 19.5 25.2309 
14 4724.92 1620 193 19.5 6.7285 
15 2145.11 440 122 57 6.6212 
16 488.24 440 78 57 2.856 
23 2712.1 620 172 56 10.3394 
24 1808.07 620 172 56 7.7571 
25 346.49 460 128 22 6.2511 
28 1574.97 880 105 19.5 4.317 
30 4724.92 880 105 19.5 6.0776 
32 5424.21 620 172 56 12.7948 
33 9449.84 880 105 19.5 10.9696 
34 9449.84 1620 193 19.5 11.3757 

 

The data are fitted using least squares to a quadratic response surface containing 

bilinear interaction terms. The resulting closed-form equation is given as follows by 

Equation (3.15): 

1 2 3 1 2

2 2 2
1 4 2 4 1 2 4

10.09 11.94 0.76 5.22 16.46 43.38

3.74 11.75 8.63 6.16 6.42

z x x x x x x x

x x x x x x x

     

    
1 3

   (3.15) 

 
 

in which x1, x2, x3, and x4 represent set feed rate, motor speed, screw speed and density, 

respectively, and z is the standard deviation of the output flow variability. The 

experimental and predicted test point values are shown in Figure 3.13.  
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Figure 3.13. Comparison of the response surface predictions against experimental flow 

variability measurements for the Loss-In-Weight Feeder case study.  

 

The average error between the modeled value and experimental data for the testing 

points is also 7.02%. This error value is identical to the average error between the 

predictions and experimental values of the test point set based on the kriging predictor 

obtained after four iterations. However, different average error values are obtained when 

the quadratic response surface model is generated from a different set of seventeen 

sampling points, a significant limitation when compared to the kriging method in that the 

7.02% average error is obtained for a randomly selected initial sampling set of eleven 

points for nominal model building.  

The kriging algorithm is self-correcting in that an accurate model can be obtained 

when a poor model is generated from a naively chosen nominal sampling set, due to the 

heuristics employed for the selection of additional sampling data to use for model 

updating. The experimentally obtained output flow variability for half of the sampling 
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data falls within the predicted confidence intervals generated from a kriging model 

constructed from the remaining half of the sampling data. As a result, kriging can be 

employed as an computationally inexpensive method for building accurate global models 

via iterative refinement.  

 

3.4  Summary 

In this chapter, a new kriging-RSM algorithm has been presented for the solution of 

convex constrained NLPs containing black-box functions and noisy variables. A global 

model is built using the kriging methodology whereby predictions and variances at 

discretized test points are obtained using a fitted covariance function built from scattered 

sampling data. After additional sampling has been performed, the covariance function is 

updated, leading to better predictions and an improved global model. Once convergence 

in the average value is observed, regions containing possible local optima are identified 

and RSM is applied in order to refine the current set of candidate vectors. The global 

optimum is selected as the best point of the set of local optima. The likelihood of finding 

the global optimum increases when applying the kriging-RSM algorithm because the 

global model obtained using kriging allows the set of regions containing potential local 

optima to be identified. The application of the proposed approach can lead to a 

substantial increase in the probability of finding the global optimum compared to      

stand-alone RSM at minimal increased sampling cost due to model construction of the 

kriging predictor, even though no theoretical guarantees of global optimality are made.  
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Chapter 4  

Mixed-Integer Optimization Considering  

Continuously-Valued Black-Box Models 

 

The contribution of the work in this chapter is the development of a methodology for the 

solution of mixed-integer nonlinear programs under uncertainty whose problem 

formulation is complicated by both noisy variables and black-box functions representing 

a lack of model equations31. The Branch-and-Bound framework is employed to handle 

the integer complexity whereby the solution to the relaxed LP/NLP subproblem at each 

node is obtained using both global and local information. Global information is obtained 

using kriging models used to identify promising neighborhoods for local search. RSM is 

then employed whereby local models are sequentially optimized to refine the LP/NLP 

problem optimum. The proposed algorithm is applied to several small process synthesis 

examples and its effectiveness is evaluated in terms of the number of function calls 

required, number of times the global optimum is attained, and computational time.  

 

4.1  Introduction 

Many process synthesis, design, and operations problems can be modeled as integer 

programming problems due to choices of process units, operating conditions, or task 

assignments. However, seldom is all the information available that is required to build a 
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deterministic analytical model. Since conventional mixed-integer nonlinear program 

(MINLP) solvers such as Discrete and Continuous Optimizer (DICOPT)32 require the 

existence of explicit deterministic equations, they are unable to address systems 

containing noise and unknown model equations. As a result, process synthesis problems 

are difficult to solve when the problem formulation contains black-box models for which 

noisy input-output sampling data are the only information available.  

In this chapter, a new algorithm based on a Branch-and-Bound (B&B) main structure 

is presented as a technique for solving MINLP problems involving noise and black-box 

models. This work is an extension of the kriging-RSM methodology presented in Chapter 

3 that was developed as a technique for solving NLP involving black-box models and 

noisy variables. The new method addresses the integer complexity using a B&B 

framework, enabling the previously developed techniques to handle a larger class of 

problems. In the new algorithm, kriging is used to construct global models of all  black-

box units. At each node, a kriging predictor describing the behavior of a relaxed NLP 

objective is employed to identify regions of potential optima. Response surface 

techniques are then applied to local models in order to refine the set of candidate 

solutions. The global model building expense is offset by the identification of more 

reliable lower and upper bounds (LB/UB) at each node, improving the speed at which the 

global optimum to the MINLP is obtained.  

 

4.1.1  Literature Review 

In general, for problems containing explicit analytical models, MINLP solution 

approaches such as Branch & Bound (B&B)33,34, Outer Approximation (OA)35, and 
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Generalized Benders Decomposition (GBD)36 split the overall problem into easier NLP 

and MILP subproblems whose solutions provide a converging sequence of upper and 

lower bounds. Floudas et. al37 present a review of the state-of-the-art techniques. In B&B, 

an NLP is formulated at the first node from the MINLP by relaxing the integrality 

constraint for all binary variables. New subproblems are created by sequentially 

branching on binary variables. Values of prior binary variable assignments yielding the 

best objective solution are retained until the optimum is found. Multivariable branching 38 

and parallel branch-and-bound methods39 accelerate convergence, but the problem may 

still be computationally very expensive. The OA algorithm relies upon linearization of 

the objective function and constraints to reduce problem complexity, but relies on 

differentiability and certain convexity assumptions. Furthermore, the computational cost 

associated with solving the master MILP increases at each iteration since the problem 

size increases due to the presence of an accumulating number of linearizations in the 

form of additional feasible region constraints.   

In GBD, the master MILP is formulated using the dual information corresponding to 

the relaxed NLP problem. Compared to OA, the time required to obtain the solution of 

the master MILP problem formulated using GBD is less computationally expensive, but 

more iterations may be required before algorithmic termination. Recently, an alternative 

framework was proposed based on the ideas of simplicial approximation of the feasible 

region, which guarantees convergence under specific convexity conditions40. 

The Extended Cutting Plane method41 successively linearizes the most violated 

constraint at the predicted minimizer, generating a sequence of nondecreasing lower 

bounds. While this algorithm does not require solving an NLP, convergence can be slow. 
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Cutting plane methods have been combined with B&B to produce hybrid methods known 

as branch-and-cut. In Generalized Disjunctive Programming42, the constraints are written 

in terms of logical operators to reduce the computational complexity. The family of BB 

algorithms (BB, SMIN-BB, GMIN-BB) targets the solution of twice-differentiable 

nonconvex NLP and MINLP having restricted participation in the binary variables43-46. 

These methods rely on the generation of valid convex underestimators for the lower 

bounding problems in order to overcome the algorithmic difficulties presented by the 

nonconvex functions. There are also many variants of the above methods that exploit 

special problem structure. 

A variety of techniques have also been applied in the field of stochastic programming 

in order to address the solution of MINLP containing variables with uncertainty. One 

class of techniques determines the solution based on information obtained from 

complementary deterministic problems created after obtaining sampling realizations in 

the uncertain space. Specifically, OA is used to solve MILP and NLP subproblems 

formulated using the sample average approximation method47. Confidence intervals on 

LB/UB are refined by solving a higher number of replicated subproblems created from an 

additional number of realizations in the uncertain space. This methodology has been 

extended by using the simplicial approximation approach to describe the feasible region 

using a convex hull approximation40. However, model equation availability is required in 

order to obtain linearization information, so these methods cannot be directly applied 

towards the solution of the problem involving black-box models. 

When black-box models are present, a second class of techniques can be used which 

rely on zero-order techniques to find the integer global solution. Derivative-free methods 
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can be coupled with process simulators such as PRO-II and ASPEN, thereby enabling the 

uncertainty complications to be addressed outside of the simulation environment without 

losing the synthesis capabilities built around deterministic models. This approach has 

been recently employed whereby a stochastic annealing algorithm has been wrapped 

around ASPEN in order to obtain the solution of a hydrodealkylation synthesis under 

uncertainty48.  

With the exception of B&B, a limitation of most of the MINLP algorithms previously 

described is that differentiability of the objective and constraints is assumed, a condition 

that is not satisfied if the problem is noisy, involves black-box models and/or uncertainty. 

Since the B&B-Kriging-RSM algorithm presented in this chapter can overcome these 

complexities, and its application does not require a priori satisfaction of any 

differentiability conditions, it can therefore serve as a complementary solver for this 

particular MINLP problem class. 
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4.1.2  Problem Definition 

The problem addressed in this chapter can be expressed in the following form as 

given in Equation (4.1): 
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           (4.1) 

In this formulation, x and y represent continuous and binary variables, respectively. 

The deterministic variables z1 describe outputs whose modeling equations h(x,y,z1) are 

known. Stochastic output variables z2 exist when the input-output functionality (x) is 

black-box simulated by a deterministic output perturbed by additive noise (x). The  

model for (x) is a normally distributed function having mean zero and variance 2. 

Synthesis equations are given by g(x,y,z1,z2) which include design constraints, operating 

specifications, and logical relations. The noise is described by a normally distributed 

error whose mean  and variance 2 can change depending upon the spatial location of x. 

 

4.2 Solution Approach 

The central idea of the  proposed algorithm for the solution of problem (4.1) is to use 

a B&B framework whereby at each node, a kriging predictor of a relaxed NLP objective 

function is built which serves as a global model. Using the global model of the objective, 
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promising regions for local search are identified that serve as starting neighborhoods for 

refinement of the candidate solution set using sequential response surfaces. In order to 

reduce sampling and model building costs, RSM is applied to coarse kriging predictors 

for local optimization. Kriging models built at later nodes incorporate both the sampling 

data used in previous kriging model construction in addition to the sampling data 

obtained from using RSM.  

During the early stages of the MINLP optimization, the computational cost is reduced 

by (a) use of coarse global models at early nodes and (b) use of weaker stopping 

tolerances for the kriging and RSM stages. More specifically, at the first node of the 

B&B tree, the global model is built using kTest points. For each subsequent level of the 

B&B tree, global model accuracy is improved by using 10 – 25% additional test points 

relative to the number employed at the previous level. For the examples presented in 

Section 3, the value of kTest employed at the root node is set at 1,000. A second method of 

reducing early computation expense relies upon a weak initial stopping criterion for 

global model improvement which is successively increased. This criterion is based on 

whether convergence in the sequence of average kriging model values is observed. At the 

first node, the initial tolerance TolKrig might be satisfied if the average prediction value 

falls within 90% of the value at the previous iteration. The value of TolKrig could be 

increased to 95% for the second level, and to 99% for all subsequent levels.  

Kriging models are built for both the black-box units and the relaxed objective at each 

node. Since the relaxed NLP objective may differ from node to node depending upon 

binary variable assignments, a new kriging predictor may need to be constructed for each 

NLP subproblem. The kriging model of each black-box process describes unit-specific 
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system behavior, whereas the kriging model of the relaxed NLP objective is created for 

optimization purposes in order to identify the best regions for local search. Once the 

global models for all black-box units have been created, this information can be 

incorporated into the construction of any arbitrary objective while simultaneously 

avoiding sampling duplication. Once the kriging solution has been refined using RSM, 

the optimum is classified as a lower or upper bound based on integer feasibility in y. 

Based on the application of fathoming criteria as described within the B&B algorithm, 

the details of which are presented in the next subsection, new subproblems are then 

formulated if a stopping criterion based on the difference in the LB/UB is not met.  

 

4.2.1  B&B Algorithm 

The B&B algorithm is used to bracket the integer optimal y2 solution objective 

between a converging sequence of lower and upper bounds (LB/UB). Each LB and UB 

corresponds to the solution attained for a partially relaxed NLP subproblem. At the start 

of the procedure, the initial LB and UB are set at – and + and the first partially 

relaxed NLP subproblem is formulated by relaxing all y2-variables. The optimal solution 

to the NLP is classified as a LB if it is integer infeasible in the y2-variables and an UB 

otherwise. If integer feasibility is not met, two new NLP subproblems can be formulated 

which require integer feasibility for any or all of the fractional y2-variables. Based on the 

application of the floor and ceiling functions to an integer infeasible vector, two disjoint 

subregions are generated which define the feasible space for each new NLP.  

If the global solution has been attained for a partially relaxed NLP subproblem, a 

solution that is obtained over a reduced feasible region cannot be better than the solution 



 108

attained for the parent NLP. Therefore, when the NLP solution has been designated as an 

UB, no additional subproblems are formulated. Conversely, when the solution is a LB, 

additional subproblems are created only if the LB is lower than the best UB. As the 

optimization progresses, a sequence of monotonically increasing LB and monotonically 

decreasing UB are generated which bracket the objective corresponding to the y2 integer 

optimal solution. The procedure is terminated once the list of candidate NLP 

subproblems is empty, or the LB/UB integrality gap has fallen below a stopping tolerance 

TolBB. The integer optimal solution corresponds to the best UB and is designated as the 

solution to the original MINLP. By combining the kriging-RSM algorithm used for 

obtaining NLP solutions with B&B, the integer global solution of MINLP can be 

efficiently found since the B&B fathoming criteria limits the number of NLP 

subproblems that have to be solved. The source of the computational expense for the 

optimization lies in generating reliable kriging models for both the black-box models and 

node-specific relaxed NLP objective functions.  

Due to the noise and the presence of black-box units, global optimality cannot be 

guaranteed. The identification of suboptimal solutions at each node can delay search and 

even cause integer feasible solutions to be missed. As a result it is unlikely that local 

optimization using response surfaces can lead to the discovery of the global optimal 

solution if the correct neighborhood has not first been identified using the kriging 

predictor. One way of addressing this problem is to apply ideas similar to the ones 

previously employed40,47. Let the number of black-box units be R and let S replicate sets 

of the R kriging predictors be created based on different nominal sampling sets. The 

converged kriging mappings are not necessarily the same since they are built using 
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different initial collocation points. For each sth set of R global models, s = 1…S, the 

corresponding mapping of the node-specific objective function can be built and the 

optimal objective function Fpred,krig,s obtained. Both the mean and variance of  the 

objective function{Fpred,krig,s|s=1…S} are then determined and used as a point estimate 

and confidence interval for the global solution. If integrality in the binary variables is 

satisfied, the point estimate is an upper estimate of the upper bound, otherwise, it is an 

upper estimate of the lower bound. Next, optimization is performed at the RSM level. 

The best kriging solution of the S replicates is then refined using RSM T times where      

T > S. Let the set of refined RSM solutions be represented by FRSM,t|t=1…T. Both the 

mean and variance of [FRSM,t|t=1..T] can then be obtained and used as a lower estimate of 

the solution regardless of whether it is a lower or an upper bound. The tradeoff for the 

benefit obtained by applying this technique – increased confidence in classifying a 

solution as the global optimum – is that the sampling costs may become prohibitive. In 

the next subsection, the details of the comprehensive B&B-Kriging-RSM algorithm are 

presented.  

 

4.2.2  B&B-Kriging-RSM Algorithm 

The B&B-Kriging-RSM algorithm proceeds as follows. First, stopping tolerances are 

established. The TolKrig and TolKrig,Obj parameters are used to terminate kriging predictor 

improvement for a process unit output and the relaxed NLP subproblem objective at an 

arbitrary node, respectively. The TolBB parameter is used to terminate further search at the 

Branch and Bound stage based on the difference between the LB/UB. The use of the 

TolBB parameter is motivated by the need to avoid the additional sampling and 
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computational expense associated with solving additional NLP subproblems whenever 

the improvement in the objective is expected to be low.  

Sampling data are then obtained in order to create kriging predictors for the black-box 

units. The relaxed NLP is formulated at the first node and the kriging model of the 

corresponding objective is generated. The best kriging solutions are identified and 

sampling is performed at locations of predicted optima to confirm global model reliability 

for the black-box units. If the difference between the sampled and predicted objective 

values exceeds TolKrig,Obj, global improvement is considered necessary. It should be noted 

that a subset of the inputs x in each sampling vector may actually be noisy outputs z2 

from upstream black box units. For each black box unit, the set of  sampled data is 

compared against the set of corresponding kriging predictions . Further sampling is 

then conducted for the subset of global models in which | | > TolKrig in order to 

improve the kriging predictors. Once the difference |fact-fpred| falls below TolKrig,Obj, the 

best kriging solutions fpred are refined based on sequential optimization of response 

surfaces. An alternative stopping criterion TolKrig that can be applied requires the 

determination of the average value of the set of kriging predictions for each iteration as 

given by Equation (3.9). Once convergence is attained in this average value for all black 

box units, the optimal kriging solutions for the objective would then be identified for 

refinement using RSM. Due to feasible region partitioning, the number of sampling 

points required for local optimization using RSM may decrease as 0-1 assignments are 

made in the binary variables due to the fact that search for a refined optima now occurs 

over a reduced feasible region.  

2,actz

2,Predz

2,Predz2,actz -
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For a given NLP subproblem, if the best kriging solution lies within the basin of an 

optimum, it will be identified using RSM. In order to determine whether additional 

optima exist, RSM is applied to the next best kriging solution. The corresponding RSM 

optimal solution is compared to the one already found. If the solution is found to be 

inferior, further application of RSM towards additional kriging solutions terminates. 

Otherwise, RSM is then applied to the subsequent optimal kriging candidate in order to 

determine whether another minimum exists. It should be noted that if the set of points xk 

over which the kriging model is built does not contain vectors located near optima, it is 

possible for some or all of the minima to be missed. In order to overcome this problem, 

the test set should be comprised of points approximating a uniform coverage of the 

feasible region. The optimum is then determined to be a LB/UB depending upon 0-1 

feasibility in the binary variables.   

If the difference between the best LB/UB falls below TolBB, the overall B&B-Kriging-

RSM algorithm terminates; otherwise, additional subproblems are determined according 

to the Branch and Bound fathoming criteria. A new subproblem is then selected from the 

candidate set and the kriging model of the relaxed NLP objective for the new problem is 

constructed. If the set of new candidate subproblems is empty, the algorithm terminates 

with the best UB established as the solution to Equation (4.1). A flowchart of the 

proposed algorithm is shown in Figure 4.1 and the effectiveness of the method is 

demonstrated based on the computational results obtained for the solution of two process 

synthesis examples presented in the next section.  
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Figure 4.1. Flowchart of the B&B Kriging-RSM algorithm. 
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4.3  Examples 

In this section, the proposed Branch and Bound Kriging-RSM algorithm is applied to 

two numerical examples29 and a modified propylene/propane separation synthesis 

study49. For each example, a table of optimization data is provided based on the 

performance of the proposed Branch and Bound Kriging-RSM algorithm. For each 

algorithm, 100 trials are performed from a set of randomly selected feasible starting 

iterates. Based on information taken from the subset of starting iterates successfully 

finding the global optimum, the average number of nodes visited, iterations required, 

function calls needed, and CPU time required are also reported. All computational results 

are obtained using an HP dv8000 CTO Notebook PC containing a 1.8 GHz AMD Turion 

64 processor. 

 

4.3.1  Numerical Example 1 

This example involves six variables, four linear constraints, and two nonlinear 

constraints. The black-box variable z2 is a function of three continuous variables and is 

made noisy from applying an additive random error to the deterministic output. The 

random error term is normally distributed and has a standard deviation of 0.01. The 

problem is formulated as shown in Equation (4.2): 
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  (4.2) 

The problem is solved by treating z2 as a black-box variable as given by Equation 

(4.3) and optimizing the kriging and response surface models built from x-z2 sampling 

data.  

 , ,2 1 2z x x x  6              (4.3) 

The solution of the deterministic problem is (x1,x2,x6,y1,y2,y3) = (1.301,0,1,0,1,0). The 

optimization results obtained for this example are presented in Table 4.1 based on one 

hundred applications of the B&B-Kriging-RSM. For each application of the algorithm, a 

different nominal sampling set comprised of ten randomly dispersed iterates is used to 

build the initial kriging model at the root node of the B&B tree. For one such test run, the 

solution information obtained at each node of a B&B tree is presented in Table 4.2.  

 

Table 4.1. Optimization results obtained for Problem (4.3),  

based on application of the B&B Kriging-RSM algorithm.  

# Function Calls CPU Time (s) % Starting Iterates 
Finding Global 

Optimum 

# 
Nodes Kriging RSM Total Kriging RSM Total

90 6 113 161 274 36.55 0.59 37.14
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Table 4.2. Optimization information corresponding to each node of the  

B&B tree for one trial solution of Problem (4.3). 

 

Fixed  
0-1  

Vbls. 
Optima Information Kriging RSM 

Node 

(y1,y2,y3) 
(x1,x2,x6, 

y1,y2,y3) 
F It. FC 

CPU 
Time 

(s) 
It. FC 

CPU 
Time 

(s) 

1 (-,-,-) 
(1.35,0.84,1, 
0.45,0.26,0) 

1.427 5 43 44.3 5 75 1.02 

2  (-,0,0) 
(1.05,1.05,0.71, 

0.53,0,0) 
5.205 4 34 3.06 6 47 0.19 

3  (-,1,0) 
(1.301,0,1, 

0,1,0) 
6 3 25 1.58 2 13 0.14 

4 (0,0,0) 
(0,0,0, 
0,0,0) 

10.02 1 1 0.03 0 0 0 

5 (1,0,0) 
(1.7,1.7,0.98, 

1,0,0) 
7.258 4 34 2.14 3 21 0.08 

4.3.2  Numerical Example 2 

This example involves 11 variables with 11 linear constraints and 3 nonlinear 

constraints. The black-box variable z2 is a function of six continuous variables and is 

made noisy by adding a random error term that is normally distributed according to a 

zero mean and a standard deviation value of 0.01. The problem is formulated as shown in 

Equation (4.4):  
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As was done for the numerical example presented in Section 4.3.1, this problem is 

solved by treating z2 as a black-box variable as given by Equation (4.5) and optimizing 

the kriging and response surface models built from x-z2 sampling data.  

 , , , , ,2 3 5 9 11 13 16z = x x x x x x             (4.5) 

The NLP solution of the deterministic problem is (x3 , x5 , x9 , x11 , x13 , x16) =        

(1.903 , 2 , 2 , 1.403 , 0.701 , 2) and (y1 , y2 , y3 , y4 , y5) = (0.571 , 0.429 , 0.25 , 0.21 , 0) 

and has a corresponding objective value of -0.554. The corresponding MINLP (integer) 

solution is (0 , 2 , 1.078 , 0.652 , 0.326 , 1.078) and (0 , 1 , 1 , 1 , 0) in the continuous and 

binary variables, respectively. At the first node, the kriging predictor of the objective is 
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built from ten thousand feasible points unevenly dispersed throughout the feasible region 

rather than from an 11-D grid, in order to avoid the modeling expense associated with 

generating over 280 billion kriging predictions. The performance of the B&B-Kriging-

RSM method is evaluated by a procedure similar to the one employed for the example 

given in Section 4.3.1. For each one of one hundred applications of the algorithm, a 

different nominal sampling set comprised of fifteen randomly dispersed iterates is used to 

build the initial kriging model at the root node of the B&B tree. The optimization results 

are presented in Table 4.3. The corresponding solution information obtained at each node 

of the B&B tree for one test run is presented in Table 4.4.  

 

Table 4.3. Optimization results obtained for Problem (4.4),  

based on the application of the B&B Kriging-RSM algorithm.  

# Function calls CPU Time % Starting 
Iterates Finding 
Global Optimum 

# 
Nodes Kriging RSM Total Kriging RSM Total

97 9 212 877 1089 29.83 11.64 41.47
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Table 4.4. Optimization information corresponding to each node  

of the B&B tree for one trial solution of Problem (4.4). 

 

Fixed Binary 
Variables 

 Kriging RSM 

Node 
y1 y2 y3 y4 y5 F Its FC

CPU 
Time 

(s) 
Its FC 

CPU 
Time 

(s) 

1 ------------ 0.179 6 43 44.27 19 75 1.02 
2 1 0 ---- 68.536 5 34 3.06 15 47 0.19 
3 0 1 ---- 64.723 4 25 1.58 9 13 0.14 
4 0 1 1 0 0 74.542 6 50 0.59 5 35 0.17 
5 0 1 1 1 0 73.084 12 34 2.14 2 21 0.08 
6 1 0 0 ---- Inf 
7 1 0 1 ---- 83.396 5 34 2.14 5 21 0.08 

 
 
 
 

 

 

 

 

 

 

 

The integer global optimum is found 90% of the time when the B&B-Kriging-RSM 

algorithm is applied; for the remainder of the trials, the algorithm terminates at near-

optimal solutions. At the first node, a higher number of function calls are required for 

local optimization relative to the amount required for global modeling. In order to avoid 

incurring the increased computational expense associated from the generation of a high 

number of kriging predictions at locations corresponding to a discretized grid, the test 

point set is generated from one thousand randomly selected feasible points. However, the 

location of the kriging optimum using the former method is expected to be inferior to the 

kriging solution that would have been obtained if discretization had been applied. The 

reason for this is that the average sampling-pair distance for one thousand sampling 

points will be higher than the corresponding distance based on sampling pairs uniformly 

distributed over a grid.. As a result, multiple response surfaces are required in order to 

refine the coarse estimate of the relaxed NLP solution.  
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The total number of function calls required for the RSM phase at the root node is 

seventy-five since fifteen function calls are required to build a response surface at each 

iteration. Each response surface is constructed according to a central composite design 

(CCD) template since the number of required sampling experiments is lower than the 33 = 

27 required based on a three-level factorial design.  At subsequent nodes, the values of a 

subset of the continuous elements of the best kriging solution match the respective 

variable upper bounds. These solutions are quickly identified as optimal, and therefore 

their values are held fixed while lower-D response surfaces are then used to optimize the 

remaining subset of un-optimized continuous variables. Since the number of function 

calls required to build lower-D response surfaces is lower relative to the number required 

for an n-D response surface, the sampling expense associated with local optimization at 

the later nodes of the B&B tree is lower.  

 

4.3.3  Case Study: Propylene/Propane Synthesis 

For this third example, the B&B Kriging-RSM algorithm is applied to a modified 

case study taken from Seader49. In the original problem, the task is to separate a 60/40 

mol% propylene/propane feed into a 99 mol% propylene distillate/95 mol% propane 

bottoms product from a using consecutive 100-trayed columns. The problem is modified 

whereby a 50-tray and 75-tray column are used to achieve a 94 mol% propylene 

distillate, and is formulated as a process synthesis problem in which a decision must be 

made as to which column sequence is best for attaining the 94% propylene distillate. The 

feed can enter either one of the columns and the distillate product from the first column 
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acts as feed to the second. A representation of the column superstructure is presented in 

Figure 4.2. 

 

 

 

 

 

 

Figure 4.2. Propylene/Propane sequencing problem consisting of two possible 

sequencing configurations for two distillation towers. 

 

The propylene-rich distillate product exiting the second column is to be sold while the 

bottoms product from both columns is combined for use elsewhere in the plant. The 

separation is very difficult due to the close volatility between propylene and propane. A 

high reflux may be required since 37.5% fewer trays are used than as in the original 

study, which will increase energy costs. The problem is to determine the column 

sequence, operating reflux ratios, and reboiler steam inputs maximizing profit and 

minimizing cost. The problem is formulated in Equation (4.6) where the product 

recoveries are simulated at 95% of their deterministic value perturbed by a normally 

distributed error:  

 
  75

 
 50

  
  75   50
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  (4.6) 

where the indices i = 1, 2 refer to columns 1 and 2, respectively; yi is the binary variable 

expressing the existence of column i; Di, QRi, QCi, RRi are the distillate flowrates, reboiler 

duties, condenser duties, and reflux ratios of column i; xPropylene,2, xPropane,2, are the 

propylene and propane mole fractions of the column 2 distillate; F, xPropylene,F, and 

xPropane,F  are the column 1 feed rate, propylene and propane feed mole fractions;  and 1, 

2, 3 represent the black-box models whose respective closed-form equations are 

inaccessible within the ChemCad process simulator.  

The objective represents a profit function where the first and second terms describe 

the profit obtained by selling the distillate at a price of $0.177/kg propylene and 

$0.132/kg of propane, respectively. The third and fourth terms represent heating and 

cooling costs, respectively. The ChemCad process simulator is used to simulate both 

distillation columns represented as black-box units, and is called upon as a slave program 

from the master driver in Matlab where the modeling and optimization tasks are carried 

out. Results for this example are presented in Tables 4.5 and 4.6. The process flowsheet 

represented in Figure 4.3 contains the optimal column sequencing.  
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Table 4.5. Optimization results obtained for Problem (4.6),  

based on application of the B&B-Kriging-RSM algorithm. 

 
# Function Calls CPU Time (s) % Starting Iterates 

Finding Global 
Optimum 

# 
Nodes Kriging RSM Total Kriging RSM Total

86 3 74 19 93 382 94 476 
 

 
Table 4.6. Optimization information corresponding to each node of the B&B tree for one 

trial solution of Problem (4.6), based on application of the B&B Kriging-RSM algorithm. 

 

Node 
Fixed 
0-1 

Vbls. 
Optima Information Kriging RSM 

 (y1,y2) (RR1,RR2,QR1,QR2) 
P 

($/h) 
Its FC 

CPU 
Time 

(s) 
Its FC 

CPU 
Time 

(s) 
1 (-,-) (9.82,10.59,13.2,17.9) 1021 5 52 176 2 12 41 

2 (0,1) (9.49,15.55,22.1,31.4) 875 4 21 89 2 12 37 

3 (1,0) 
(11.94,9.73,  
28.72, 20.85) 

931 5 26 113 3 17 43 

 

 

 

 

 

 

 

 

Figure 4.3. Optimal column sequencing for obtaining a 94 mol% propylene distillate. 

 

6857 kg/h C-6 
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The computational overhead required for this example, which is given in CPU time 

(s), is higher than the previous one even though the problem dimensionality is lower due 

to the computational expense incurred from ChemCad simulation, in which rigorous 

TOWR distillation models are employed to represent both the 50-tray and 75-tray 

columns. The  B&B Kriging-RSM is successful at finding the global optimum as 

evidenced by 86% convergence. The optimal plant configuration consists of the 50-tray 

column preceding the 75-tray column as shown in Figure 4.3. Based on this 

configuration, the optimal design variables are as follows. The reflux ratios for the first 

and second columns are 11.94 and 9.73, respectively, while the corresponding steam 

inputs to each reboiler are 28.72 106 kJ/h and 20.85 106 kJ/h. An 85% propylene distillate 

purity is achieved in the first column which is improved to 94% in the second, leading to 

a $931/h profit. As expected, the tower that has more trays is the one that is assigned to 

perform the more rigorous task of achieving propylene purity.  

 

4.4 Summary 
 

In this chapter, a new B&B kriging-RSM algorithm has been presented for the 

solution of constrained MINLPs containing black-box functions and noisy variables. The 

B&B framework is used to efficiently search in the 0-1 space for the integer global 

optimum, thereby extending the capabilities of existing work to handle process synthesis 

problems. Kriging is used to build global models of the black-box functions and the NLP 

subproblem objective at each node of the binary tree. The surrogate models are used to 

identify subregions where the relaxed NLP global optimum potentially resides. The best 

kriging solutions serve as starting iterates for further refinement via optimization of 

sequential response surfaces. The additional costs resulting from global model creation 
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are offset by highly successful convergence to the integer global solution as shown by the 

represented examples.  
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Chapter 5  

Optimization Considering Mixed-Integer 

Black-Box Models 

 

When black-box systems are functions of both continuous and input variables, RSM and 

B&B are ineffective for finding the integer optimal solution since the methodology of 

both techniques can result in sampling being required at fractional integer variable 

values, which are infeasible. The application of direct search can overcome this problem 

since optimization occurs based on selection of the integer variable vector having the 

lowest objective function value relative to a set of candidate solutions. At each iteration, 

the set of candidate solutions is generated from midpoint-endpoint sampling. 

Convergence to a global optimum is attained more rapidly if the initial endpoint sampling 

vectors are defined at the lower/upper bound for each integer variable instead of a more 

localized interval around the starting iterate. The contribution of the work in this chapter 

is the presentation of a new MINLP algorithm for problems containing black-box models 

and noisy variables50. The black-box variables can be functions of continuous and/or 

integer variables. To address the lack of explicit equations, kriging is used to build 

surrogate data-driven global models used to identify promising solutions for local 

refinement. The continuous variables are then optimized using a response surface 

method. The integer variables are optimized using Branch-and-Bound if a continuous 



 126

relaxation exists, and direct search otherwise. The four algorithms are unified into a 

comprehensive approach that can be used to obtain optimal process synthesis and design 

solutions when noise and black-box models are present. The performance of the proposed 

algorithm is evaluated based on its application to two industrial case studies.  

 

5.1 Introduction 

When black-box models are functions of strictly integer variables, local gradient-

based methods such as the response surface methodology (RSM) cannot be applied since 

fractional values are infeasible. Direct search is thereby proposed for the optimization of 

this class of variables. In addition, for process synthesis problems, another class of 

integer variables exists outside the black-box functions for which a continuous relaxation 

is permitted. In order to obtain an integer optimal solution, Branch-and-Bound (B&B) is 

proposed for the optimization of this variable class. In the previous chapter, an algorithm 

incorporating B&B, kriging, and RSM was presented to deal with the class of problems 

in which the black-box functions depended on continuous variables alone1. The 

methodology is now extended to address the case when the black-box functions depend 

on both continuous and strictly integer variables. The contribution of the work in this 

chapter is the development of a comprehensive modeling and optimization algorithm that 

employs each one of the kriging, RSM, direct search, and B&B methods in order to solve 

a more general class of MINLP containing black-box models and noise. A review of the 

MINLP literature for deterministic and stochastic optimization is presented in Section 

4.1.1. 
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5.2  Problem Definition 

The problem addressed in this chapter can be expressed in the following form as 

given in Equation (5.1): 
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    (5.1) 

Based on this formulation, the vectors of continuous and strict integer variables are 

given by x and y1, respectively. The variable 
q1Z  denotes the q1-dimensional variable 

subspace of the strict integer variables, in which each y1-variable varies over a range of 

possible integer values. The vector of integer variables having a continuous relaxation is 

given by y2. The objective function is represented by F, and the deterministic variables z1 

describe outputs whose modeling equations h(x,y1,y2,z1) are known. The vector of 

stochastic output variables z2 exists when the input-output functionality (x,y1) is black-

box. The stochastic value of each z2 variable is modeled as the sum of its corresponding 

deterministic output and an additive noise component  that is a normally distributed 

error term whose mean  and variance 2 may be a function of the input specification 

(x,y2). For field experiments, an estimate of the parameters  and 2 can be obtained by 

conducting replicate experiments for a given sampling vector. It should be noted that the 

modeled values of  and 2 may need to assume a range of values if it is known from 
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prior field data that the noise is spatially variant with respect to the input specification 

(x,y1), Synthesis equations are given by g(x,y1,y2,z1,z2) which include design constraints, 

operating specifications, and logical relations. In the problem formulation, it is assumed 

that the synthesis variables appear only as part of the feasible region constraints and/or 

objective function. 

 

5.3  Solution Approach 

In the algorithm developed to solve the problem given by Equation (5.1), y2 is 

optimized using B&B. At each node of the B&B tree, partially relaxed NLP subproblems 

are formulated whose solutions correspond to optimal x and y1. The designation of 

“partially relaxed NLP” is termed as such because while a continuous relaxation is 

permitted for y2, strict integrality must always be enforced for y1. At the root node, the 

first partially relaxed NLP is generated by relaxing all y2. An initial kriging model of the 

corresponding objective is constructed from a nominal sampling set Sin which each 

sampling vector {x,y1,y2} is chosen at random from the set of feasible points covering the 

feasible region. The kriging model is subsequently updated using additional sampling 

information located at regions of high variance, minimal prediction, and where model 

behavior significantly changes over consecutive iterations. For each model, the average 

predictor value is compared to the corresponding one obtained at the previous iteration, 

and once convergence has been attained, further model refinement is terminated. The 

local kriging solutions are then identified as warm-start iterates for further local 

optimization using RSM and direct search. Since no convexity assumptions are required 



 129

when applying kriging, the set of potential local optima can be identified once an 

accurate global model has been obtained.  

 
Select relaxed NLP subproblem 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Summarized flowchart of the B&B-Kriging-RSM-DS algorithm. 

 

For each kriging solution, the set of {x,y2} variables are locally optimized using RSM 

for fixed values of y1. Given a vector SK representing one of the best kriging solutions, 

additional sampling data are obtained from a collocation set localized around SK. A 

quadratic model is fitted using least squares and then locally optimized. A new model is 

constructed at the new optimum, and the sequential optimization of response surfaces 

continues until convergence in the objective has been achieved.  

Build global model (Kriging) 

Refine global solutions: 
Optimize x (RSM) and y1 (Direct Search) 

Optimize y2: Apply B&B, create new NLP subproblems if needed 

No 
List of NLP subproblems empty? 

Yes

Terminate 
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At the start of the response surface algorithm, the iteration index w is initialized at a 

value of unity. A response surface is built around a starting iterate SK by fitting sampling 

data obtained from a collocation set Scoll,w determined by the experimental design 

template and local model radius bw. The vector SK and its corresponding objective value 

FK comprise the nominal solution set {Sopt,w,Fopt,w}. Once the response surface has been 

created, the optimum Sopt,w+1 having corresponding value Fopt,w+1 is determined using 

gradient methods. If the difference between the current and previous optimum |Fopt,w+1 - 

Fopt,w| falls below a prespecified criterion TolRSM, the algorithm terminates with 

{Sopt,w+1,,Fopt,w+1} established as the RSM solution. Otherwise, the iteration index is 

advanced by unity and another response surface having a new design radius bw is 

constructed at the new vector Sopt,w. At any iteration w, the value of bw+1 is different from 

bw only if the Euclidean distance between the current and previous solution vectors is 

lower than the current radius bw. During the later stages of the algorithm, Sopt,w+1 will be 

near Sopt,w, signifying that the basin of the RSM optimum has been found. At this point, a 

more accurate description of the system behavior near the optimum can be attained using 

more localized response surfaces defined by smaller design radii bw. Whenever iterates 

are close to the boundaries, lower-dimensional response surfaces are created by 

projecting the model onto constraints so as to prevent model generation based on an 

asymmetrical arrangement of the feasible sampling data17 as described in Chapter 2. A 

flowchart of the algorithm is presented in Figure 5.2.  
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Initialize stopping tolerance TolRSM, proportionality constant  starting iterate S0
.  

If kriging has been previously applied, S0 = SK = {xK,y1
K,y2

K}.  
y1

K is fixed throughout during the iterative portion of this algorithm. 
Initialize iteration index w = 1, bounds bw. 
Set Sopt,w = S0, F(Sw) = Fw = Fopt,w. 

 

 

 

Obtain sampling set (S,F)coll,w using 
experimental design. Fit and minimize 
response surface. Confirm estimated  

bw+1 = min(bold,||Sw+1-Sw||2) 
w = w + 1 

optimum (Sopt,w+1,Fopt,w+1) using sampling.

 

 

No

Fopt,w+1 – Fopt,w < TolRSM? 

 
Yes

 

 

TERMINATE: [Sopt,w+1 , Fopt,w+1] is the optimal solution. If kriging has been 
previously applied, the solution Sopt,w+1 is designated as  SR = {xR,y1

K,y2
R}  

 
Figure 5.2. Flowchart of the RSM algorithm. 
 

 

The vector SR = {xR,y1
K,y2

R} is defined as the RSM optimal solution once the 

difference between the previous and current objective values, has fallen below the user-

specified tolerance TolRSM. Once this occurs, the search for optimal y1 is now initiated 

using one of two direct search methods. In the first method, sampling is performed at 

interval endpoints centered around SR
 with respect to the range of each one of the y1 -

variables. The interval is defined according to a stencil whose bracket length is adaptively 

decreased once the neighborhood containing optimum y1 has been found. If the initial 

interval length is greater than unity, smaller intervals are constructed around the current 

best solution. The procedure terminates when convergence in the objective is achieved or 
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when the newest interval length requires y1 to assume fractional values. The vector SD = 

{xR,y1
D,y2

R} is then established as the solution of the current NLP subproblem. In the 

second Direct Search method, a global search strategy is employed whereby the objective 

attained for SR is compared to the corresponding objectives obtained from sampling at the 

lowest and highest feasible values for y1. Smaller search intervals centered around the 

new y1-optimal solution are generated, and sampling is conducted at the new endpoints. 

The best solution is again found, and the procedure is repeated until the stopping criterion 

has been satisfied.  

The solution SD, while optimal in x, y1, and relaxed y2, may not be integer feasible for 

y2. Additional subproblems are therefore created when 0-1 integrality in y2 is not 

satisfied. Each new subproblem is now restricted to be y2-feasible for one of the currently 

noninteger y2-variables by substituting in values of zero and unity where the given y2-

variable appears in the overall problem. For each one of the newly defined subproblems, 

a new feasible region, which is a subset of the original problem’s feasible region, is 

defined. One of the new relaxed NLP subproblem is chosen for solution, with the first 

step requiring that the previously built kriging predictor be refined over the 

corresponding feasible subregion in order to determine best “warm-start” locations for 

further local optimization. The B&B Kriging-RSM-Direct Search algorithm terminates 

when the list of candidate NLP subproblems is exhausted, and the MINLP solution is 

established as the integer optimal solution in terms of both y1 and y2.  

The proposed algorithm relies on the sequential optimization of the continuous and 

integer variables x and y1, respectively. Because of this, the discovery of a local optimum, 

if not the global optimum, may prove to be more difficult if x-y1 separability does not 
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exist. This problem can be addressed by 1) locally optimizing multiple kriging solutions, 

or 2) creating multiple kriging models using different nominal sampling sets. The second 

strategy alleviates the attainment of suboptimal local solutions obtained from a kriging 

model whose initial sampling set has been poorly selected. However, the recourse costs 

associated with building replicate global models or conducting extensive local sampling 

can become prohibitively high, and so an area of ongoing research is focused at 

determining an optimal sampling arrangement. The sampling-based algorithm presented 

in Chapter 6 is an example of one possible strategy for addressing this problem.  

In the following subsections, the methodology of each one of the direct search 

algorithms will be presented. The reader is referred to Chapters 2, 3, and 4 for details 

concerning the application of the other three algorithms – RSM, kriging, and Branch-and-

Bound – also employed in the comprehensive procedure used to solve the problem given 

by Equation (5.1). 

 

5.3.1  Local Optimization Using Direct Search 

Since direct search methods do not rely on derivative information in the search for an 

optimum, convergence can be slow. In order to address this, a global search algorithm is 

presented in addition to a local method. The local and global techniques are denoted as 

DS-L and DS-G, respectively. Some common features of both methods are that: 1) search 

is performed based on simple heuristics, and 2) each y1 variable is sequentially optimized 

one at a time. These methods are intended as starting points from which more 

sophisticated variations can be developed as a future work.  
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The local direct search method, DS-L, is presented first. One of the y1-variables is 

selected for optimization, which has lower and upper limits given by YLL and YUL. The 

optimization iteration index m is initialized at unity. The current best solution Ym is 

initialized at a nominal sampling vector having corresponding objective F(Ym). If a warm-

start iterate has been attained using kriging and RSM, F(Ym) is set as the RSM optimum 

F(SR). When y1 is multidimensional, F(Ym) is instead set as the objective value 

corresponding to the sampling vector containing the subset of previously optimized y1-

variables. For ease of presentation, F is shown as being a function of only one y1-

variable, since all other components of a multidimensional sampling vector are held 

constant.  

The DS-L algorithm consists of two steps: 1) sampling at points Ym
L and Ym

U whose 

values are lower and higher than Ym, and 2) finding the best solution of these three values 

as given by the following: 

F(Ym+1) = min {F(Ym
L),F(Ym),F(Ym

U)}        (5.2) 

where Ym+1 is the optimal sampling point based on the set of objective function values 

attained at the bracket midpoint and endpoints. The iteration index m is advanced by 

unity and the procedure is repeated until, 1) Ym
L and Ym

U are found to be inferior solutions 

to Ym, and 2) no unsampled points lie between Ym
L, Ym, and Ym

U. At this point, the value 

of Ym is fixed at its optimal solution YD. The DS-L method is then applied to the next y1-

variable. After the set of y1-variables have been optimized, the procedure is terminated. 

The method by which Ym
L and Ym

U are generated for each iteration m is based on the 

application of a simple heuristic targeted at accelerating convergence. There are three 

cases to be considered, according to whether Ym is: 1) equal to YLL, 2) equal to YUL, or    



 135

3) between YLL and YUL. The equations used to generate the triplet {Ym
L, Ym, YM

U} are 

presented for each case as follows:  

Case L1:  Ym is equal to YLL. 

Ym
L = Ym             (5.3a)  

     Ym = Ym + Nm
            (5.3b) 

Ym
U = Ym + 2Nm           (5.3c) 

Case L2:  Ym is between YLL and YUL.  

     Ym
L = Ym  – Nm            (5.4a) 

     Ym = Ym              (5.4b) 

Ym
U = Ym + Nm            (5.4c) 

Case L3:  Ym is equal to YUL. 

     Ym
L = Ym – 2Nm           (5.5a)  

Ym = Ym – Nm
            (5.5b) 

     Ym
U = Ym              (5.5c) 

where Nm is an integer-valued step length parameter that must be initialized. When the 

range of permissible values for a given y1-variable is high, initializing Nm at a value 

greater than unity enables larger steps to be taken towards the optimum. In the DS-L 

algorithm, Nm is set to be approximately 1/10 of the feasible region range for the 

respective y1-variable. As an example, in the second case study, presented in Section 

5.4.2, the range of permissible values for the first y1-variable is given by [1,9], and so Nm 

is initialized at unity. In contrast, the range of permissible values for the second, third, 

and fourth y1 are given by [1,72], so Nm is initialized at ten. As the optimization 

progresses, the mth iterate Ym may be located near a boundary. Based on the current value 
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of Nm, it is possible for the corresponding bracket endpoints Ym
L and Ym

U to be defined at 

infeasible sampling points. To address this, a new value of Nm+1 is prescribed at each 

iteration m in order to ensure a symmetrical sampling arrangement as given by Equation 

(5.6):  

  Nm+1 = min{Nm,Ym-Ym
L,Ym

U-Ym}          (5.6) 

When the objective value corresponding to the bracket midpoint is found to be lower than 

the endpoint solutions, the vicinity of the optimum has been located. The value of Nm+1 is 

then halved as given by (5.7), in order to refine the optimum using a sequence of smaller 

brackets.    

  Nm+1 = 0.5Nm              (5.7) 

Once the midpoint-endpoint bracket length has fallen to unity and no unsampled 

points remain between Ym
L, Ym, and Ym

U, the DS-L algorithm is terminated at the optimal 

solution. The next y1-variable is selected for optimization and the DS-L procedure is 

repeated until optimal values have been found for all y1-variables. The complete             

y1-optimal solution set is referred to as y1
D. A flowchart of the methodology is presented 

in Figure 5.3.  
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Initialize optimization iteration index m = 1 and nominal iterate Ym having lower and 
upper feasible limits YLL and YUL and objective value F(Ym). 
If a kriging model has been obtained, the value corresponding to a local optimum SK

  
is set as the nominal iterate.  
Determine step length Nm. Example: Nm = 0.1(Ym

U – Ym
L)  

 

 

 

 

Generate sampling points (Ym
L,Ym,Ym

U ): 
If  Ym = YLL, apply (5.3).  
If YLL < Ym < Ym

UL, apply (5.4).   
If Ym= Ym

UL, apply (5.5).  
Obtain F(Ym+1) = min{F(Ym

L),F(Ym),F(Ym
U)}. 

No 

 
Nm+1 = min{Nm,Ym-Ym

L,Ym
U-Ym} F(Ym+1) = F(Ym)? 

m = m + 1 

 

 

 

 

 

Figure 5.3. Flowchart of the local direct search (DS-L) algorithm employed for the 

optimization of a single y1 variable. 

 

5.3.2  Global Optimization Using Direct Search 

The main limitation of the DS-L algorithm is that the final solution may not be 

globally optimal. In order to avoid terminating at a local solution, the DS-G algorithm 

can instead be applied. The DS-G method relies on global search and differs from its   

DS-L counterpart in the mechanism by which Ym
L, Ym, and Ym

U are defined. First, the 

Yes 

Yes 

TERMINATE: {Ym+1,F(Ym+1)} is the optimal solution 

Nm = 1? Nm+1 = 0.5Nm  
m = m + 1
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iteration index m and the current solution Ym are initialized in the same way as presented 

for the DS-L method. Nominal bracket endpoints Ym
L

 and Ym
U are initialized at the 

feasible region boundaries YLL and YUL. The bracket midpoint Ym
C is defined between YLL 

and YUL, with the ceiling function being applied to ensure integrality satisfaction. After 

sampling is performed at the bracket endpoints and midpoint, the current solution F(Ym) 

is updated as given by Equation (5.8): 

  F(Ym+1) = min{F(Ym
L), F(Ym

C), F(Ym
U), F(Ym)}      (5.8) 

The next step is to define a new bracket over which the global optimum is expected to be 

found. If the nominal solution at Ym continues to be the best solution, the new bracket is 

defined by applying Cases G1 or G2, depending upon whether the nominal value is less 

than or greater than the initial bracket midpoint F(Ym
C). Conversely, if the best solution is 

attained at the bracket midpoint or endpoints, the new bracket is defined by applying 

Cases G3, G4, or G5, respectively.  

Case G1:  F(Ym+1)
 = F(Ym), Ym

L < Ym
 < Ym

C 

Ym+1
L = Ym

  - min([Ym
C-Ym],[Ym-Ym

L])      (5.9a) 

     Y m+1
C  = Ym            (5.9b) 

Y m+1
U = Ym + min([ Ym

C-Ym],[Ym-Ym
L])     (5.9c) 

Case G2:  F(Ym+1)
 = F(Ym), Ym

C < Ym < Ym
U  

     Ym+1
L = Ym

  - min([ Ym
U –Ym],[Ym-Ym

C])       (5.10a) 

     Ym+1
C  = Ym            (5.10b) 

Ym+1
U = Ym + min([ Ym

U –Ym],[Ym-Ym
C])     (5.10c) 
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Case G3:  F(Ym+1) =  F(Ym
L) 

     Ym+1
L = Ym

L            (5.11a) 

     Ym+1
C = 0.5(Ym

L + Ym
C)         (5.11b) 

     Ym+1
U = Ym

C            (5.11c) 

Case G4:  F(Ym+1) = F(Ym
C) 

     Ym+1
L = 0.5(Ym

L + Ym)         (5.12a) 

     Ym+1
C = Ym

C            (5.12b) 

     Ym+1
U = 0.5(Ym + Ym

U)         (5.12c) 

Case G5: F(Ym+1) = F(Ym
U) 

     Ym+1
L = Ym             (5.13a) 

     Ym+1
C = 0.5(Ym

L + Ym
U)         (5.13b) 

     Ym+1
U = Ym

U            (5.13c) 

Once the new bracket has been generated, the iteration index m is advanced by unity 

and additional sampling is performed as necessary. The best solution F(Ym+1) is again 

determined based on the bracket endpoint and midpoint solutions, and the procedure is 

repeated until convergence in the objective has been achieved. In order to increase the 

probability of finding the global optimum YD, a set of brackets can be defined for each 

new iteration which enclose both the optimal and near-optimal solutions. The additional 

sampling expense is offset by the increased chances of finding a solution that, at worst, is 

equivalent to the one obtained using the local method, and at best, is the global optimum. 

The procedure is then repeated for the remaining y1-variables and the complete y1-optimal  

solution set is again given as y1
D. A flowchart of the DS-G method is presented in Figure 

5.4. 
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Figure 5.4. Flowchart of the global direct search (DS-G) algorithm employed for the 

optimization of a single y1 variable. 

 

The sequential application of kriging, RSM, and Direct Search enables optimal 

process design and operations policies to be determined for problems containing variable 

classes x and y1. When y2-variables are present, the application of B&B, the methodology 

m = m +1 

Yes

NoYm+1
L-Ym+1 < 1  

and Ym+1
U – Ym+1 < 1? 

Obtain F(Ym+1) =min{F(Ym
L), F(Ym), F(Ym

C),F(Ym
U)} (m = 1) 

Obtain F(Ym+1) =min{F(Ym
L), F(Ym),F(Ym

U)} (m > 1) 

If a kriging model has been obtained, the value of one of the y1-variables comprising 
the optimum SK

  is set as a nominal iterate Ym having corresponding objective F(Ym).  
Initialize optimization iteration index m = 1. The current y1-variable has lower and 
upper limits YLL and YUL. 
Initialize {Ym

L,Ym
C,Ym

U } = {YLL, 0.5(YUL + YLL),YUL}.  

Generate new sampling points {Ym+1
L,Ym+1,Ym+1

U} : 
If F(Ym+1) = F(Ym) and Ym < Ym

C, apply (5.9) (m = 1 only) 
If F(Ym+1) = F(Ym) and Ym > Ym

C, apply (5.10) (m = 1 only) 
If F(Ym+1) = F(Ym), apply (5.11).  
If F(Ym+1) = F(Ym), apply (5.12).   
If F(Ym+1) = F(Ym), apply (5.13). 

TERMINATE: { Ym+1,F(Ym+1)} is the optimal 
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of which is presented in Chapter 4, enables integer optimal y2 to be obtained since a 

continuous relaxation exists for this class of variables.  

Each one of the B&B, Kriging, RSM, and Direct Search algorithms target the 

optimization of a different variable class – y2, x-y1-y2, x, and y1, respectively. The four 

algorithms are now combined into a comprehensive B&B Kriging-RSM-Direct Search 

algorithm addressing the MINLP formulated in Equation (5.1). The steps of this 

algorithm are presented in the next section.  

 

5.3.3 B&B Kriging-RSM-Direct Search Algorithm 

The first step of the B&B Kriging-RSM-Direct Search algorithm is to formulate a 

partially relaxed NLP subproblem that has been relaxed in the y2-variables. A nominal 

sampling set is specified and the initial kriging model is built. The model is then 

iteratively refined based on sampling at: 1) regions of high uncertainty; 2) regions where 

the minimum value of the objective lies; and 3) regions where significant model change 

is observed over consecutive iterations, until a stopping criterion has been satisfied. The 

stopping criterion can be resource-based such as an upper limit on the number of 

computer or field experiments performed, or model-based such as when convergence has 

been achieved in the average prediction value. After the stopping criterion has been 

satisfied, the model predictor values are ranked, and the locally optimal kriging solutions 

are identified. A kriging solution SK = (x,y1,y2)
 K

 is then selected to be a “warm-start” 

iterate for local optimization using RSM, the methodology of which is given by the 

flowchart given in Figure 5.2. The x-y2 components of the RSM-optimal solution           

SR = (xR,y1
K,y2

R) are then fixed, and the y1-variables are then optimized using the local or 
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global direct search methods presented in Figures 5.3 or 5.4, respectively. Once 

convergence in the objective has been attained, the now y1-optimized solution is given as 

SD = (xR,y1
D,y2

R) and the next kriging solution SK is then locally optimized. Once all 

kriging solutions have been refined, the partially relaxed NLP solution  is designated 

as the best SD solution attained, which has corresponding objective value . Due to 

resource constraints, either in the form of field experiment costs or long simulation times 

for computer experiments, refinement of multiple local kriging solutions may need to be 

restricted to a single or subset of the warm-start iterates. For the two examples presented 

in Section 3, the best kriging solution is the only warm-start iterate that is further refined 

using RSM/Direct Search.   

opt
NLPS

opt
NLPF

The final step is to optimize the y2-variables using B&B in order to obtain the integer 

optimal solution in y2. If integer feasibility is not satisfied for the y2-variables,  is 

classified as a LB and new NLP subproblems are formulated by enforcing integrality on a 

subset of the  y2-variables. Kriging, RSM, and Direct Search are applied to each new NLP 

subproblem, and additional LB/UB are established depending on whether the 

corresponding solution is integer feasible in y2. New partially relaxed NLP subproblems 

are created when a solution designated as a LB is superior to the current best UB. Once 

the list of candidate NLP subproblems is exhausted, or another stopping criterion has 

been achieved, such as when the LB/UB integrality gap has fallen below the stopping 

tolerance TolBB, the procedure is terminated. The y1-y2 integer optimal solution vector 

opt
NLPF

opt
MINLPS , which has corresponding objective opt

MINLPF , is then defined as the one for which 

the lowest UB solution has been attained. The proposed methodology of the unified 
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algorithm is shown in a flowchart as given by Figure 5.5. In the next section, this 

algorithm is applied to two industrial case studies to demonstrate proof of concept.  

 

 

Formulate NLP subproblem corresponding to MINLP as given by (1) by allowing 
continuous relaxation in all y2-variables. Initialize LBopt = -, UBopt = +. 

 Build and refine kriging model for NLP subproblem (Figure 3).  
Find set of locally optimal kriging solutions SK = (xK,y1

K,y2
K).  

 

Let a solution vector SK serve as a warm-start iterate for further refinement.  
Optimize {x,y2} using RSM (Figure 5) for fixed y1

K. Solution is {xR,y2
R}. 

Optimize y1 using local or global direct search (Figures 7 or 8) for fixed {xR,y2
R}. 

Solution is y1
DS. Solution vector and objective is{SD = {xR,y1

D,y2
R},F(SD)} 
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Figure 5.5. Detailed flowchart of the B&B Kriging-RSM-Direct Search algorithm. 
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5.4  Examples 

In this section, the local and global direct search methods are applied within the 

framework of the Kriging-RSM optimization algorithm in order to identify system 

optima for two industrial case studies. In the first example, presented in subsection 5.4.1, 

the objective is to determine a set of process synthesis and design specifications 

minimizing the monthly operating costs for t-butyl methacrylate (t-BMA) production51. 

In the second example, presented in subsection 5.4.2, the objective is to determine 

optimal design specifications for alcohol dehydrogenase manufacture52. If kriging, RSM 

and local direct search are employed to determine the optimal solution, an algorithmic 

designation of K-R-L is used. Similarly, if kriging, RSM, and global direct search are 

used, the corresponding designation of K-R-G is employed. For each example, a table of 

solution information is provided based on application of both the K-R-L and K-R-G 

algorithms. Since the first problem includes synthesis variables, B&B is also used to 

obtain the integer optimal y2-variables. All results are obtained using an HP dv8000 CTO 

Notebook PC containing a 1.8 GHz AMD Turion 64 processor.  

 

5.4.1. t-Butyl Methacrylate Synthesis  

t-butyl methacrylate (t-BMA) is a monomer used in the production of both industrial 

and household coatings. For this example, the objective is to minimize the total cost 

required to satisfy a monthly demand of 457,874 kg 97.5% t-BMA. The total cost is the 

sum of in-house production costs and third-party purchase at $1.10/kg t-BMA. In-house 

production costs are defined as the sum of raw material (RM) and utilities costs. The RM 

employed in t-BMA production are isobutylene (IB) and methacrylic acid (MA) and the 
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costs for each are $0.88/kg and $0.17/kg, respectively. The post-reaction product is a 

four-component mixture that enters a three-cut separation train. The utilities cost 

component of the production costs is defined as the sum of the cooling water, chilled 

water, refrigerant, and steam costs required for the separation train. The problem is 

formulated as an MINLP that contains synthesis decisions describing the distillation 

tower sequencing for t-BMA purification, and design decisions representing the amount 

of fresh RM feed, column reflux, reboiler temperature, and column feed tray location. 

The continuous process is initiated by feeding methacrylic acid (MA) and isobutylene 

(IB) to a 6.7 m3 reactor pressurized at 3.426 bar in which the following reactions occur:  

  IB + MA ↔ t-BMA         

  IB  DIB          

The first reaction describes the reversible acid-catalyzed production of t-BMA and the 

second reaction represents IB dimerization resulting in di-isobutylene (DIB) formation, 

an unwanted side product. The conversion achieved is approximately 45%, after which 

caustic 50% NaOH solution is then fed to the reactor to neutralize the H2SO4 catalyst. 

The principal reaction product, comprised of IB, DIB, t-BMA, and MA, is flashed at 1.01 

bar to remove the majority of IB. The remaining process operations involve further         

t-BMA purification from IB, DIB, and MA using distillation or flash operations. At the 

end of the purification train, DIB exits as a waste product, t-BMA is either sold off or 

used elsewhere in the plant, and both IB and MA are recycled back to the reactor. The 

problem is solved using ChemCAD simulation-based optimization subject to the 

following conditions that are relaxed in the original presentation: 1) application of 

nonideal thermodynamic models, 2) application of rigorous distillation tower calculations 
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leading to nonsharp separations, 3) perturbed column distillate and bottoms flowrates that 

are noisy in order to simulate nonideal process operation, 4) reduction in the amount of 

IB/MA available for raw materials purchase, thereby limiting maximum production,      

5) application of two towers and a flash drum for the separation cascade instead of three 

towers, and 6) optimization of column feed tray location. The process behavior of the 

reactor, flash drum, and rigorous distillation column simulation units are considered to be 

black-box legacy codes since the design equation models are not directly accessible using 

the ChemCAD simulator. A superstructure of the problem is presented in Figure 5.6 

where there are six possible sequences. The notation / is used to denote the task of 

generating a distillate  using a tower consisting of  trays.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 147

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Superstructure of t-BMA separation train.  
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Synthesis and design inputs specifications are provided to the simulator. The synthesis 

decisions are given in terms of a vector of 0-1 variables specifying the sequencing of the 

IB/DIB, DIB/t-BMA, and t-BMA/MA separation tasks. Design decisions are given in 

terms of continuous variables describing the amount of IB/MA fed to the reactor, column 

reflux, and bottoms product temperatures, and integer variables denoting column feed 

tray location. Once the process utilities and product flowrates have been obtained, the 

operating cost is then determined. There is a tradeoff between t-BMA production and the 

cost of MA/IB purchase. Since the raw materials are expensive, a reduced production of 

t-BMA may be more economical. However, the manufacturing deficiency must then be 

supplemented by the purchase of additional t-BMA in order to meet the required monthly 

demand. The objective function is therefore given as the sum of raw material (including 

t-BMA) and utility costs. The MINLP is formulated as shown in (5.14) and 

accompanying cost and thermophysical data are presented in Table 5.1:  

  min  F = 0.17FIB + 0.88FMA + 0.0265FH2SO4 + 0.033FNaOH  

+ 1.10Ft-BMA + 0.26VCW + 0.52VChW + 5.28VRef + 2.2MStm (5.14a) 

  s.t.  FIB + FMA + FH2SO4+FNaOH = F0        (5.14b) 

    F1 - F2 - F3 - F4 - F5 = 0          (5.14c) 

    F4 – F6 – F7 = 0            (5.14d) 

    F5 – F8 – F9 = 0            (5.14e) 

    Fi – F0yi  0   i = 2…9         (5.14f) 

    Fi  0    i = 2…9         (5.14g) 

    y2 + y3 + y4 + y5 = 1           (5.14h) 

    y4 - y6 = 0              (5.14i) 
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    y4 – y7 = 0              (5.14j) 

    y5 – y8 = 0              (5.14k) 

    y5 – y9 = 0              (5.14l)   

    
,
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Djk = (RRk  , TBot,k , QCW,k , QChW,k , QRef,K , QStm,k , Fjk)  (5.14q) 

    Bjk = (RRk  , TBot,k , QCW,k , QChW,k , QRef,K , QStm,k , Fjk)  (5.14r) 

    Djk
noisy = (1-U(0,1))Djk + U(0,1)Bjk      (5.14s) 

Bjk
noisy = (1-U(0,1))Djk + U(0,1)Djk      (5.14t) 

,

{ }

{ / / / /

{ , } ...i

k

Bot k

}

j IB,DIB,t BMA,MA

k DIB 18,DIB 40,t BMA 18,t BMA 40

y 0 1 i 2 9

0

0.3 0.7

0.2 RR 30

290 T 351

 
  
 

 
 
 
 

   (5.14u) 

 

 

 

 



 150

Table 5.1. Cost and thermophysical data for the  

t-BMA methacrylate synthesis case study. 

 

i 
Cost of 
RM i, 
$/Unit 

Unit Hi, 
[kJ/kg] Tb [K] i, 

[kg/m3]
Cp,i 

[kJ/(kg K)]
Ti 
[K]

IB 88.19 100 kg     
MA 16.98 100 kg ---- ---- ---- ---- ---- 

H2SO4 2.65 100 kg ---- ---- ---- ---- ---- 
NaOH 3.3 100 kg ---- ---- ---- ---- ---- 
t-BMA 110 100 kg ---- ---- ---- ---- ---- 

Saturated 
Steam 

2.2 1000 kg 2000 457.16 ---- ---- ---- 

Cooling 
Water 

0.26 10,000 L ---- 293.15 1000 4.84 20 

Chilled 
Water 

0.52 10,000 L ---- 277.6 1000 4.184 20 

Refrigerant 5.28 10,000 L ---- 177.6 683 1.74 20 

The first four terms in the objective function represent raw materials costs related to 

production. The fifth term represents the cost required for additional t-BMA purchase 

whenever the manufacturing scheme fails to satisfy the monthly demand over the 720-hr 

operating period. The last four terms of the objective describe utility expenses and are 

comprised of cooling water, chilled water, refrigerant, and steam costs, respectively. The 

binary variables yi describe column or flash unit existence as shown in Figure 5.6 and the 

variables Fi describe corresponding feed flowrates. The first equation is a RM mass 

balance, the next ten equations describe the feasible t-BMA separation syntheses and the 

subsequent four equations describe the required utilities consumption. The next two 

equations represent distillate and bottoms flowrates from separation towers whose model 

equations are treated as black-box. The final two equations model the way in which noisy 

distillate and bottoms flowrates Djk
noisy and Bjk

noisy are obtained. The operating ranges for 
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column reflux and bottoms product temperatures are given with respect to the range of 

values allowed for all possible separations. The parameter  is a scaling factor used to 

restrict the amount of MA/IB fed to the reactor with respect to the specified values in the 

original study. This parameter is used to simulate the scenario in which raw material 

availability is limited and complicates the problem by introducing the possibility that 

additional t-BMA may need to be expensively purchased if the reaction product 

throughput falls short of the demand. The kriging model is built to describe the objective 

function behavior in terms of the synthesis and design inputs. This global model is then 

used to guide search towards candidate vectors whose manufacturing schemes require 

lower utility requirements. B&B is used to determine the optimal t-BMA separation 

sequence from IB/DIB/MA, RSM is used to determine the optimal amount of fresh 

IB/MA reactor feed, column reflux and reboiler temperatures, and Direct Search (DS) is 

used to obtain the optimal column feed tray locations.  

In Table 5.2, the optima information is provided based on a computational sampling 

limit of three hundred CHEMCAD simulations. The sampling limit is imposed due to the 

long computational time associated with attaining convergence in the process 

superstructure containing ten rigorous TOWR distillation columns. Figure 5.7 presents 

the Branch-and-Bound tree for one of the optimization trials, which illustrates the 

mathematical mechanism by which the optimal set of synthesis variables y2…y9 are 

obtained. The optima information for the continuous and black-box variables which 

correspond to the integer solution obtained at Node 3 of the B&B tree are shown in Table 

5.2. The optimal process synthesis consists of, 1) feeding the reaction product to the 18-

tray column at the 5th tray to remove IB/DIB, 2) flashing the IB/DIB to remove IB, and 3) 
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feeding the 18-tray column bottoms to the 40-tray column at the 11th tray location, 

resulting in the recovery of the t-BMA as a distillate and MA as the bottoms. Both the 

DIB and MA are recycled to the reactor.  

 
(y2,y3,y4,y5,y6,y7,y8,y9,F) =  1 

 

 

 

 

Figure 5.7. Branch-and-Bound tree information showing how the integer optimal process 

synthesis variables y2 are determined for the t-BMA separation case study.  

 

Table 5.2. Optima information for the continuous variables at  

Node 3 of the B&B tree shown in Figure 5.7. 

Variable 
Type 

Variable Description Optimal Values 

x1 
Ratio describing the amount of fresh IB/MA fed to 
reactor relative to the maximum amount that could be 
fed to the reactor assuming unlimited RM availability  

0.5 

x2 DIB/18 column reflux ratio 0.2718 
x3 DIB/18 column reboiler temperature, K 51.44 
x4 t-BMA/40 column reflux ratio 1.513 
x5 t-BMA/40 column reboiler temperature, K 60.57 
y1,1 Feed Tray (DIB/18 column) 5 
y1,2 Feed Tray (t-BMA/40 column) 11 
z2,1 Steam Duty (kg/h) 480.66 
z2,2 Volume CW (m3/h) 15.25 
z2,3 Volume ChW (m3/h) 10.35 
z2,4 Volume Refrigerant (m3/h) 9.525 
z2,5 IB/MA/H2SO4/NaOH RM Costs ($/hr) 464 
z2,5 IB/MA/H2SO4/NaOH Utilities Costs ($/hr) 7.02 
z2,5 Third-party t-BMA Costs ($/hr) $0 

2 

        (0.6588,0.3412,0,0,0,0,0,0, $310K) 

3 

(0,1,0,0,0,0,0,0,$305K) (1,0,0,0,0,0,0,0,$301K) 
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In Table 5.3, the performance of the K-R-L and K-R-G methods as applied in obtaining 

the optimal conditions for t-BMA production is presented for a set of fifty trials.   

 

Table 5.3. Optimization results obtained for the t-BMA methacrylate case study (No 

Noise), based on application of the B&B Kriging-RSM-DS algorithm. 

Modeling and 
optimization 
CPU time (s) Method 

# sampling 
points used  
in building 

kriging model 
(Initial,Final) 

Optimum 
monthly 

cost opt
MINLPF  

% trials  
for 

which 
opt

MINLPF  is 

attained 

Sim. 
Req. 

Sim. 
CPU 
Time 

(s) K R L/G 

K-R-L (10,18) $299,264  94% 150 3658 35 12 3 
K-R-L (15,23) $299,530  84% 154 3224 38 14 4 
K-R-L (20,28) $299,017  96% 197 4580 42 13 3 
K-R-L (30,38) $299,428  81% 224 5508 46 13 3 
K-R-G (10,18) $299,568  94% 142 3503 33 11 3 
K-R-G (15,23) $299,314  88% 171 3182 40 12 3 
K-R-G (20,28) $299,314  84% 159 4081 41 13 4 
K-R-G (30,38) $299,455  100% 188 5514 48 13 3 

 

The first column contains the sequence of global and local algorithms used in 

combination with B&B to find the optimal monthly cost opt
MINLPF .The second column 

contains the initial and total number of sampling points used to build the kriging 

predictor, respectively. The third and fourth columns contain the expected monthly cost 

and the rate of successful convergence to the optimum, respectively. The success rate is 

based on the application of the  K-R-L or K-R-G algorithms, in combination with B&B, 

for fifty different trials. For each trial, a unique sampling set, obtained from randomly 

choosing the initial number of feasible vectors, is employed to build a nominal kriging 

predictor of the relaxed NLP objective at the root node of the B&B tree. The fifth and 

sixth columns contain the average number of simulations and corresponding simulation 
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CPU time. The seventh, eighth, and ninth columns contain the CPU cost associated with 

the application of the kriging, RSM, and local or global direct search algorithms.  

It is observed that an increase in the number of sampling points used to build the 

nominal kriging predictor does not always increase the chances of finding the optimum. 

When the K-R-L algorithm is applied, the optimum is found in 84% of the cases when 

fifteen points are used to build the initial global model, compared with 96% of the cases 

when only ten points are used. Similar results are observed for the performance of the    

K-R-G algorithm; the optimum is found in 94% and 88% of the cases when ten and 

fifteen sampling points are used, respectively.  

When the Direct Search algorithms are compared in terms of the number of sampling 

points used to build the initial global model, the global search algorithm, DS-G, slightly 

outperforms its local search counterpart, DS-L, in terms of the number of simulations 

required. This behavior is observed regardless of whether ten, fifteen, twenty, or thirty 

sampling points are used to build the nominal kriging predictor, suggesting that the global 

search feature of the DS-G algorithm results in faster discovery of the optimum. Consider 

a global model initially built using ten sampling points. The optimum is found after an 

average of 142 simulations when global search is applied, in contrast to 150 simulations 

required by local search. The monthly cost reported in Table 5.3 represents the total cost 

required to satisfy the monthly demand of 457,874 kg t-BMA. Based on the 

corresponding optimal synthesis and operating conditions, third-party purchase of t-BMA 

is not required. The in-house production cost of t-BMA is $0.65/kg, a 41% savings 

achieved when compared to the third-party cost of $1.10/kg.  
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The sequential application of B&B, kriging, RSM, and direct search is again applied 

to the problem for varying nominal sampling set sizes, with the only change now being 

that process noise has been introduced into the reactor, flash unit, and distillation 

columns. The value of  is now set at 0.05. The unified B&B Kriging-RSM-Direct 

Search algorithms are again applied based on the same eight conditions given in Table 

5.3, in which optimal y1 is determined by local or global search, and in which the number 

of sampling points used in building the nominal kriging predictor varies between ten and 

thirty. The algorithm is applied to twenty-five different sampling sets for each of the 

eight conditions.  

 

Table 5.4. Optimization results obtained for the t-BMA methacrylate case study  

(With Noise), based on application of the B&B Kriging-RSM-DS algorithm. 

Modeling and 
optimization 
CPU time (s) Algorithm 

# sampling 
points used in 

building 
kriging model 
(Initial,Final) 

Optimum 
monthly 

cost opt
MINLPF

% Trials 
for 

which 
opt

MINLPF  is 

attained 

Sim. 
Req. 

Sim. 
CPU 
Time 

(s) K R L/G 

K-R-L (10,18) $304,318 80% 188 4737 34 2 8 
K-R-L (15,23) $304,026 84% 161 3016 39 2 9 
K-R-L (20,28) $304,479 84% 184 3373 33 1 7 
K-R-L (30,38) $303,968 84% 235 3884 50 2 9 
K-R-G (10,18) $304,453 72% 157 2732 33 2 9 
K-R-G (15,23) $304,030 88% 213 3799 36 2 8 
K-R-G (20,28) $303,883 88% 202 3593 37 2 8 
K-R-G (30,38) $303,334 72% 278 4943 44 2 9 

 

The value of the optimal objective opt
MINLPF is slightly inferior to the value obtained 

when no noise is present, although the relative production cost of t-BMA is $0.664/kg 

still results in a 39.7% savings in comparison to the third-party price. Successful 
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convergence to the optimum is generally observed in fewer cases when noise is present 

regardless of whether local or global direct search is used to determine optimal y1. 

However, the comparison is not quite fair since 1) results for the noisy conditions are 

based on twenty-five trials instead of fifty, and 2) for any given sampling size, a nominal 

sampling set employed under noisy conditions might be completely different from the 

sampling sets used when noise was absent. It is observed that the addition of noise for a 

given sampling set can lead to convergence problems being encountered for downstream 

units in the simulator, so new nominal sampling sets need to be employed when this 

problem occurs. The number of simulations required to achieve convergence to opt
MINLPF is 

also generally higher under noisy conditions. Since the number of sampling points 

employed for global modeling is the same in each of the eight conditions, the additional 

sampling costs are attributed to local optimization. This suggests, in turn, that the 

objective values corresponding to the deterministic kriging solutions SK were lower than 

those found for the stochastic conditions, indicating that the global geometry was 

modeled less accurately when noise was present.  

For the K-R-L algorithms, as the nominal sampling size increases, a modest 4% 

improvement in the attainment of opt
MINLPF is observed. For the corresponding K-R-G 

algorithm, a 16% improvement is obtained for sampling sizes of fifteen and twenty 

points, although the success rate corresponding to ten points for initial global modeling is 

only 72%. Surprisingly, when the K-R-G method is applied to thirty points, the success 

rate also decreases to 72%. Since the nominal sampling sets are randomly generated for 

all cases, this suggests the presence of sampling data which contributes redundant 

information to the kriging model, and that the success rate could be improved by focusing 
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on an algorithm specifically focused on the identification of sampling point vectors. In 

Chapter 6, a centroid-based sampling strategy is proposed to address this problem.    

 

5.4.2. Alcohol Dehydrogenase Purification  

The second example is taken from the biochemical engineering literature52. Alcohol 

dehydrogenase (ADH) is an enzyme that is used to convert alcohols to aldehydes and 

ketones. Since ADH is a naturally occurring chemical found within S. cerevisiae cells, it 

can be produced on a commercial scale via industrial continuous or fed-batch 

fermentation. However, the primary difficulty is ADH acquisition and purification, since 

ADH must first be released from the cells, and then separated from the cellular debris. 

ADH is temperature sensitive and degrades above temperatures of 40oF. There are four 

main process operations to be considered in ADH production, which are also typical steps 

for a standard enzyme process: fermentation, homogenization, centrifugation, and 

precipitation. In this case study, S. cerevisiae cells are grown in a fermenter using fed-

batch operations. The cells are then disrupted using homogenization, an operation that 

consists of passing the cells through a blender in order to disrupt the cell walls, enabling 

the release of intracellular components. In the centrifugation step, the ADH is separated 

from an intracellular protein contaminant. The ADH leaves in the centrifuge supernatant 

and residual protein is then precipitated using ammonium sulfate. In order to improve 

ADH purity and yield, the centrifugation and precipitation operations are repeated. A 

schematic of the homogenizer and centrifuge are presented in Figures 5.8 and 5.9, 

followed by a complete process flowsheet shown in Figure 5.10.   

 



 158

 Disrupted cells either 1) fed again to homogenizer 
(multi-pass) or 2) sent to centrifuge.  

 
 

Feed 
cells 

 
 
 
 
 
 
 
 
Figure 5.8. Detailed homogenizer schematic. 
 
 
 
 
 
 
 
 
 
  

From homogenizer 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.9. Detailed centrifuge schematic. 
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Disk Stack Disk Stack 
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Figure 5.10. Schematic of the process flow diagram for ADH production. 
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In the schematic, seven unit operations are employed for the process. The variables F, 

H, Ci, and Pi designate the fermentation, homogenization, ith centrifugation, and ith 

precipitation process, respectively. The process behavior for each unit operation is 

considered to be noisy and the equation models are assumed to be inaccessible. A test 

problem is formulated whereby the objective is to maximize ADH purity and yield while 

minimizing process operation costs. There are seven continuous variables and four 

integer variables. The continuous variables are given as follows, where the respective 

process operation is denoted in parentheses: 1) glucose concentration (F), 2) pressure (H), 

3) disk angle (C1, C2, C3), and 4) precipitant concentration (P1, P2). The integer design 

variables are 1) number of passes (H), and 2) number of disks (C1, C2, C3). The problem 

formulation is given in  (5.15): 

max F = 2z1 + 2z2 – y1 – y2 – y3 – y4        (5.15a) 

s.t.  zF = 1(x1, N(0,2))           (5.15b) 

  zH = 2(x2 , y1 , N(0,2))          (5.15c) 

  zC1 = 3(x3 , y2 , N(0,2))          (5.15d) 

  zP1 = 4(x4 , N(0,2))           (5.15e) 

  zC2 = 5(x5 , y3 , N(0,2))          (5.15f) 

  zP2 = 6(x6 , N(0,2))           (5.15g) 

  zC3 = 7(x7 , y4 , N(0,2))          (5.15h) 

  1  y1  9              (5.15i) 

  1  y2, y3, y4  9            (5.15j) 

   = 0.03              (5.15k) 
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The set of zF, zC1, zP1, zC2, zP2, and zC3 variables belong to the class of z2 variables 

described in the problem formulation as given by Equation (5.1). Similarly, the y1, y2, y3, 

and y4 variables correspond to the “y2” variable class described in the same problem 

formulation given by Equation (5.1), even though the notation y2,i, i = 1…4 is not used in 

the problem given by (5.15), simply for ease of presentation when providing the 

equations models described below. Since each unit operation is considered to be black-

box, this problem was solved using simulation data since field experimental data were 

unavailable. When possible, the same models used in the original case study have been 

employed52. In the cases where model equations require experimental parameter data, 

such as determining the amount of ADH present in the cells after fermentation, fitted 

equations have been employed which match the literature data. The models used to 

simulate each stage of the ADH process will now be presented in more detail. Since each 

process operation is treated as black-box and noisy, optimization is performed using 

surrogate kriging models constructed from sampling data zF, zH, zCi, or zPi obtained from 

continuous and integer inputs. The closed-form equations are presented simply to 

describe process operation and are not directly optimized.  

The main goal of fermentation is to grow cells to a high density in order to increase 

the ADH yield in recognition of the fact that a significant amount may be lost during 

downstream processing. At the end of the fermentation time period t, cellular growth is 

arrested and the corresponding diameter indicates whether the cell was in the lag, 

exponential, or stationary phase. The cell diameter ranges from 2 – 12 micrometers and a 

simulated size distribution model can be generated using linear combinations of Weibull 

probability density functions. The total cell number is determined by summing the 
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number of cells R(di) having given diameter di, i = 1…Nd, for Nd equispaced intervals. 

The median cell diameter dc,50 and cumulative distribution function scatterpoints c(di) are 

obtained once the total cell number has been obtained. The corresponding mass and mass 

fraction of cells having diameter di entering the homogenizer are given as mc,frac,i and mc,i, 

respectively, as shown in Equation (5.16).  

( )
...

( )

i
c , frac ,i d

d

i

R d
m ,N

R d
i 1






i 1 N          (5.16a) 

...c , frac ,i
c ,i dNd

c, frac , j
j 1

m
m X , i 1 N

m





          (5.16b) 

The cumulative size distribution of the cell diameter can be modeled using a Boltzmann 

equation as given in (5.17a) by fitting a standard deviation parameter wc to experimental 

or simulated mass fraction data53. It should be noted that mc,frac,i can alternatively be 

obtained if a value for wc is prespecified.  
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The remaining fermentation equations are presented as follows in Equation (5.18): 
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[ ] [0 xs ]X , ,t ,Y 10,0.21,3600,0.5            (5.18a) 

100 500ins                (5.18a) 

exp( )0X X t               (5.18c) 
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1 ix s                 (5.18k) 

,F c out f p ,unr e,unr ins,out, f ins,out, f c , frac c cz X ,S ,V ,m ,m ,e , p ,m ,m ,c,w      (5.18l) 

where the vector of fermenter output variables zF consists of the amount of biomass X 

created, amount of glucose substrate consumed Sc, final broth volume Vout,f, mass of 

unreleased, and currently insoluble, protein mp,unr, and corresponding mass of 

intracellular enzyme me,unr, respectively. The size-distributed cellular mass, mass 

fractions, and Boltzmann parameters are included for completion. The glucose substrate 

concentration S0 is also referred to as x1 in Equation (5.15b) in keeping with the 
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designation of continuous variables as x to be consistent with model (1). Equations  

(5.24) – (5.26) comprise the fermenter model equations and are symbolized by            

1(x, N (0,)).  

At the end of the fermentation, the biomass broth is fed to the homogenizer where 

ADH release is achieved via pressurized cellular disruption. The fermentation broth can 

be passed through the homogenizer up to nine times, with each additional pass resulting 

in a higher number of cell walls bursting apart. If too few passes are used, a high number 

of cell walls may remain intact, causing the ADH to remain inaccessible resulting in a 

lowered process yield. However, employing too many passes may lead to micronization 

of the cellular wall debris, causing separation of ADH from the debris and the 

intracellular protein contaminant to become more difficult. A simplified process flow 

schematic is shown in Figure 5.11 which corresponds to the detailed equipment 

schematic presented in Figure 5.9.  

  
Whole Cells Homogenizer 

(H) Released Enzyme  
Released Protein 

Whole Cells Cell Debris 
 
 
 
Figure 5.11. Schematic of the homogenizer process.  
 

Since the biomass is comprised of cells having different diameters, a model is 

proposed by Groep52 describing the pressure required for cell breakage, since cells having 

a larger diameter require a higher disruption pressure. The model describing the threshold 

breakage pressure Pc,i is given by Equation (5.19e), where  is defined as a cell strength 

parameter. The constants Pc0 and PcN  denote the threshold pressures required to induce 
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cell breakage for cells having the lowest and highest diameters d1 and dND, respectively. 

The pressure P is a manipulated parameter given as x2 whose range varies between 

689,476 Pa and 3.447e6 Pa. The homogenizer effluent consists of undisrupted cells, 

released protein and ADH, and cell wall debris. The equations representing the mass of 

undisrupted cells mc,out, released enzyme concentration esol,out, and protein concentration 

psol,out released, are also included in the other equations given by (5.19): 

[ ] [ ( ) ( )c0 cN c,P ,P ,k 1, 275,790 , 620,528 ,4.619e6]       (5.19a) 
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The cell size distribution for disrupted cells can also be fitted to a Boltzmann equation 

in order to model the cumulative size distribution as given by Equation (5.20a). The 

median cell diameter dq,50 is obtained in a similar manner to that of how dc,50 was 

obtained. For the disrupted cells, the size-distributed mass mq,out,i and mass fraction 

mq,frac,i  models are given as shown in Equations (5.20b) and (5.20a), respectively. It is 

assumed that any undisrupted cells exiting the homogenizer will remain intact after 

further processing. Based on this assumption, the undisrupted cells are then considered, 

in addition to the cell debris, to be waste particles. The corresponding size-distributed 

waste particle mass fraction is obtained by summing the respective distributions of 

undisrupted cells and cellular debris. The equations given by (5.19) and (5.20) comprise 

the homogenizer model equations and are symbolized by 2(x2,y1, N (0,)).  
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ins ,out ,h q , frac ,h q ,out ,h w,out ,h ins ,out q , frac q ,out w,outp ,m ,m ,m p ,m ,m ,m     

]

  (5.20e) 

[ ] [2 1x , y P,N               (5.20f) 

H c,out ,h sol ,out ,h sol ,out ,h q , frac ,h q,out,h w,out,hz m ,e , p ,m ,m ,m         (5.20g) 
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Once cell disruption has occurred, the next task is ADH purification from the cell 

debris, remaining undisrupted biomass, and protein contaminant. In the first step, the 

heavier cell debris and remaining whole cells are separated from the ADH and protein 

using centrifugation54. The ADH and protein leave in a supernatant stream while the cell 

debris and whole cells exit in a sediment stream. A process schematic is shown in Figure 

5.12. 

 
 

Centrifuge 
(C1) 

 Supernatant      Released Enzyme 
Whole Cells                          Released Protein 
Released Enzyme  
Released Protein 

Sediment         Whole Cells    Cell Debris                           Cell Debris 

 

Figure 5.12. Schematic of the first centrifuge process (C1).  

 

The centrifuge model used is a disk-type centrifuge, shown in Figure 5.9. The 

incoming feed enters the top of the centrifuge and flows downward through a conical disk 

stack having narrow flow channels between each disk. The centrifuge is horizontally 

agitated such that the feed stream splits off into smaller streams entering each of the flow 

channels. The heavier particles settle to the bottom of each channel, slide down to the 

bottom of the disk stack via mechanical agitation and gravity, and then exit the centrifuge 

at the base of the body. The lighter particles remaining in suspension now comprise a 

clarified liquid phase and are pumped out of the centrifuge at the top of the unit. Due to 

the nonuniform cell size distribution, not all waste particles exit in the sediment phase. 

The grade efficiency T(di), given by (5.21c), is a function fitted to experimental data 
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describing the percentage of solids recovered in the sediment phase stream, based on 

particles having diameter di. If a cell diameter di falls below a critical diameter dc, the cell 

is assumed to be light enough such that it exits with the supernatant. The parameters k 

and n are regression constants having randomly initialized values for simulation 

purposes. The remaining parameters consist of a hindered settling factor fs, gravitational 

constant g, volumetric throughput Q, carrier fluid viscosity , density difference between 

liquid and solid phases , outer and inner disk diameters Ro and Ri, and angular bowl 

velocity . 

  -3k ,n, f , 0.9501,0.4621,1.6,1.005es            (5.21a)  

   o i,R ,R , 191.8,0.076,0.036,960           (5.21b) 

( ) 1 ...

n

i
i d

c

d
T d exp k , i 1 N

d

  
        

      (5.21c) 

18
c s

Q
d f

g



              (5.21d) 

 22

3 tan

3 3
0 iZ R R

g

  



            (5.21e) 

30 75   

72

               (5.21f) 

1 Z                  (5.21g) 

The variables represented in the supernatant equations are given as follows: 1) size-

distributed mass of waste solids mw,out,i, 2) waste solids concentration wout, 3) dissolved 

enzyme concentration esol,out, 4) dissolved protein concentration psol,out, 5) intracellular 

enzyme concentration eins,out, and 6) intracellular protein concentration pins,out. The 

constants 1 and 2, respectively, designate the fraction of dissolved enzyme or protein 
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that becomes denatured or exits in the sediment phase stream. The equations given by 

(5.20) and (5.21) comprise the centrifuge model equations and are symbolized by 

3(x3,y2, N (0,)). 

in sol ,in sol ,in w,in sol ,out ,h sol ,out ,h w,out,hV ,e , p ,m = V ,e , p ,m     



     (5.22a) 

c,in ins ,in ins ,in c,out,h ins ,in ,h ins ,in ,hm ,e , p = m ,e , p            (5.22b) 

1λ 0.05(1 (0, ))N                (5.22c) 

2λ 0.05(1 (0, ))N                (5.22d) 

0.95(1 (0, ))supf N                (5.22e) 

sup sup inV f V                (5.22f) 

1(1 λ )(1 λ )sol,in in
sol,out

sup

e V
e

V
   2           (5.22g) 

1(1 λ )(1 λ )sol,in in
sol,out

sup

p V
p

V
   2           (5.22h) 

(1 ( ))w,out,i i w,in,i dm T d m , i 1...N          (5.22i) 

w,out,i
c ,out ,i c ,in ,i d

w,in,i

m
m m , i 1...N

m

 
   
 

        (5.22j) 

Nd

c,out ,iins ,out ins ,in
i 1

e e m


               (5.22k) 

Nd

c,out ,iins ,out ins ,in
i 1

p p m


              (5.22l) 

Nd

w,out,i
i=1

out
sup

m
w =

V


              (5.22m) 

1 C1 2 C1 1 2λ λ λ λw,out ,C1 c,out ,C1 , , w,out c ,outm ,m , , m ,m , ,           (5.22n) 
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



sup,C1 sup,C1 sol ,out ,C1 sol,out,C1 sup sup sol ,out sol,outf ,V ,e , p f ,V ,e , p        (5.22o) 

ins,out,C1 ins,out,C1 out ,C1 ins,out ins,out oute , p ,w e , p ,w           (5.22p) 

   3 2x , y ,Z                (5.22q) 

1 C1 2 C1= λ λC1 w,out ,C1 c ,out ,C1 , , sup,C1 sup,C1

sol ,out ,C1 sol,out,C1 ins,out,C1 ins,out,C1 out ,C1

z m ,m , , , f ,V ,

e , p ,e , p ,w




     (5.22r) 

The centrifuge supernatant is fed to a tank whereby an ammonium sulfate precipitant is 

then added in order to precipitate out the protein contaminant. A process schematic is 

presented in Figure 5.13. 

 
Insouble Enzyme  

Solution     Released Enzyme  Insoluble Protein  
                   Released Protein Precipitation 

(P1) 
Released Enzyme 

    Waste Solids Released Protein  

 Precipitate Ammonium Sulfate Precipitant 

 

Figure 5.13. Schematic of the first precipitation process (P1). 

 

The amount of precipitant Vz needed is determined by the desired output precipitant 

concentration zout as given by Equation (5.23c). The models for Vz and Vout are not treated 

as black-box since these output variables become explicitly known once zout has been 

specified. These models would be represented in the formulation given by Equation (5.1) 

by the equality constraints h(x,z1), where x and z1 correspond to the vectors [Vin, zin] and 

[Vz,Vout], respectively: 

 in in sup,C1V ,z V ,0                (5.23a) 
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10 40outz                 (5.23b) 

(in out in
z

out

V z z
V

100 z





)





              (5.23c) 

out in zV V V                 (5.23d) 

The parameters e and p describe the soluble enzyme and protein fractions after 

precipitation. The equations shown in (5.24) comprise the remaining precipitation model 

equations and are symbolized by  4(x4, N(0,)).  

sol ,in ins ,in sol ,in sol,out,C1 ins,out,C1 sol,out,C1e ,e , p e ,e , p           (5.24a) 

ins ,in in ins,out,C1 out,C1p ,w p ,w               (5.24b) 

0.9(1 (0, ))e N                 (5.24c) 

0.9(1 (0, ))p N                 (5.24d) 

e sol ,in in
sol ,out

out

e V
e

V


               (5.24e) 

( (1 ) )ins ,in e sol ,in in
ins ,out

out

e e
e

V

V 
           (5.24f) 

p sol ,in in
sol ,out

out

p V
p

V


              (5.24g) 

( (1 ) )ins ,in p in in
ins ,out

out

p p V
p

V

 
           (5.24h) 

in in
out

out

w V
w =

V
               (5.24i) 

,out P1 z ,P1 out ,P1 e,P1 p ,P1 sol ,out ,P1 out z out e p sol ,outz ,V ,V , , ,e z ,V ,V , , ,e        



 (5.24j) 

ins ,out ,P1 sol ,out ,P1 ins ,out ,P1 out ,P1 ins ,out sol ,out ins ,out oute , p , p ,w e , p , p ,w       (5.24k) 
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4 outx z                 (5.24l) 

P1 e,P1 p ,P1 sol ,out ,P1 ins ,out ,P1 sol ,out ,P1 ins ,out ,P1 out ,P1z , ,e ,e , p , p ,w      (5.24m) 

The remaining solution from the precipitation is passed through another centrifuge (C2) 

in order to separate the enzyme from the remaining waste solids in the form of cell debris 

and undisrupted cells. A process schematic is shown in Figure 5.14.   

 
Supernatant  Released Enzyme Released Enzyme  

                       Released Protein  Released Protein 
Centrifuge 

(C2) 
Waste Solids         

        Insoluble Enzyme Sediment     Whole Cells 
       Insouble Protein                      Cell Debris 

 

Figure 5.14. Schematic of the second centrifuge process (C2).  

 

The process models used for C2 are the same as those employed for C1 as given by 

Equations (5.21) and (5.22), where  and Z are now given as x5 and y3, respectively. The 

corresponding parameter values for the input variables in Equation (5.22a) are provided 

on the RHS of Equation (5.25): 

,in sol ,in sol ,in w,in out P1 sol ,out ,P1 sol ,out ,P1 w,out,C1V ,e , p ,m = V ,e , p ,m         (5.25a)  

c,in ins ,in ins ,in c,out,C1 ins ,out,P1 ins ,out ,P1m ,e , p = m ,e , p            (5.25b) 

The corresponding output variables are designated as follows in Equation (5.26). The 

equations given by Equations (5.21), (5.22), (5.25), and (5.26) comprise the model 

equations for the second centrifugation and are symbolized by 5(x5,y3, N(0,)). 

1,C2 2 C2 1 2λ λ λ λw,out ,C 2 c,out ,C 2 , w,out c ,outm ,m , , m ,m , ,            (5.26a) 

sup,C 2 sup,C 2 sol ,out ,C 2 sol,out,C2 sup sup sol ,out sol,outf ,V ,e , p f ,V ,e , p     ol,outf ,V ,e , p f ,V ,e , p         (5.26b)    (5.26b) 
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ins,out,C2 ins,out,C2 out ,C 2 ins,out ins,out oute , p ,w e , p ,w            (5.26c) 

   5 3x , y ,Z                (5.26d) 

1 C2 2 C2= λ λC2 w,out ,C 2 c,out ,C 2 , , sup,C 2 sup,C 2

sol ,out ,C 2 sol,out,C2 ins,out,C2 ins,out,C2 out ,C 2

z m ,m , , , f ,V ,

e , p ,e , p ,w




  (5.26e) 

The residual protein in the supernatant is now precipitated a second time according to 

the same process schematic as given in Figure 5.13. The amount of precipitant needed for 

the second precipitation is given by Equation (5.27c) and the remaining precipitant 

equations given in (5.27) comprise a second set of explicitly known equality constraints 

h.  

 in in sup,C2 out,P1V ,z V ,z               (5.27a) 

( , )in outmax z 10 40 z 70              (5.27b) 

(in out in
z

out

V z z
V

100 z





)





              (5.27c) 

out in zV V V                 (5.27d) 

The input data required for Equations (5.24a) and (5.24b) are now given by the RHS 

of the first equation in (5.28a) and (5.28b). The corresponding output variables given in 

Equations (5.25i) and (5.25j), in turn, are redefined by the LHS of the variable 

designations given in Equations (5.28c) and (5.28d). Together with Equation (5.24), the 

equations given by (5.27) and (5.28) comprise the model equations for the second 

precipitation and are symbolized by 6(x6, N(0,)). 

sol ,in ins ,in sol ,in sol,out,C2 ins,out,C2 sol,out,C2e ,e , p e ,e , p           (5.28a) 

ins ,in in ins,out,C2 out,C2p ,w p ,w               (5.28b) 
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 ,out P2 z ,P2 out ,P2 e,P2 out z out ez ,V ,V , z ,V ,V ,            (5.28c) 

p ,P2 sol ,out ,P2 e p sol ,out,e , ,e       



t

          (5.28d) 

ins ,out ,P2 sol ,out ,P2 ins ,out ,P2 out ,P2 ins ,out sol ,out ins ,out oute , p , p ,w e , p , p ,w       (5.28e) 

6 oux z                 (5.28f) 

P2 e,P2 p,P2 sol ,out ,P2 ins ,out ,P2 sol ,out ,P2 ins ,out ,P2 out ,P2z , ,e ,e , p , p ,w     (5.28g) 

The solution from the second precipitation is fed to a centrifuge one last time in order 

to improve ADH purity. The process schematic differs from the process schematic given 

in Figure 5.14 in that this time, the purified enzyme is component-rich in the sediment 

phase stream. The final ADH purity is given by z1 and the corresponding recovery 

percentage, compared to the total amount available from fermentation, is denoted by z2. 

Together with Equation (5.21), the equations given in (5.29) comprise the third centrifuge 

model equations, symbolized by 7(x7,y4,N(0,)).  

,in sol ,in sol ,in w,in out P2 sol ,out ,P2 sol ,out ,P2 w,out,C2V ,e , p ,m = V ,e , p ,m         (5.29a) 

c,in ins ,in ins ,in c,out,C2 ins ,out,P2 ins ,out ,P2m ,e , p = m ,e , p            (5.29b) 

1λ 0.05(1 (0, ))N                (5.29c) 

0.8(1 (0, ))sedf N                (5.29d) 

sed sed outV = f V                (5.29e) 

2( )ins,in in
ins,out e

out

e V
e = r

V
              (5.29f) 

( ))w,out,i i w,in,i dm T d m , i 1...N          (5.29g) 
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2( )ins,in in
ins,out p

out

p V
p = r

V
              (5.29h) 

1
sol,in in

sol,out
out

e V
e =

V
               (5.29i) 

1
sol,in in

sol,out
out

p V
p =

V
              (5.29j) 

,

, ,

100sol out sed
2

d

w,out,i sol out sed sol out sed

e V
z N

m p V e V
i 1

 
 

 

  
 

       (5.29k) 

1,C3 2,C3 , , 1 2 ,λ λ , , λ λ ,sed,C3 sed,C3 w out C3 sed out w out, f ,V m , , f ,V m         (5.29l) 

,sol ,out ,C3 sol out ,C3 sol ,out sol,oute , p e , p                (5.29m) 

,ins ,out ,C3 ins out ,C3 ins ,out ins oute , p e , p     , 

]

         (5.29n) 

[ ] [7 4x , y = ,Z               (5.29o) 

1,C3 2,C3 , ,= λ λ ,C3 sed,C 3 sed,C3 sol ,out ,C3 sol out ,C 3 ins ,out ,C3 ins out ,C3z , f ,V ,e , p ,e , p    (5.29p) 

In Table 5.5, the optimal value of the objective function F, as given by Equation (5.15a), 

is reported based on the application of RSM and local direct search to the best kriging 

solution SK obtained from a partially refined model. A partially refined model is one for 

which further updating is terminated after an arbitrarily chosen limit of thirty objective 

function evaluations.  
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Table 5.5. Performance of the K-R-L algorithm for Problem (5.15), based on  

local optimization of a partially refined kriging global model. 

 

Simulations Required 
Algorithm opt

MINLPF  
% improvement 

relative to 
nominal opt

MINLPF  Algorithm Total 
CPU 

Time (s) 

None (nominal 
sampling set only) 

198 --------- --------- 15 0.83 

Kriging 217 11.9 10 25 3.90 
RSM 230 18.7 44 69 5.84 

Local Direct Search 244 26.1 27 98 4.03 

The nominal kriging predictor is constructed from fifteen sampling vectors, each 

consisting of input points {x1…x7,y1…y4}. The value of the nominal best solution opt
MINLPF  

is 198 and is the optimal objective obtained based on the sampled data. After model 

refinement has occurred, an 11.9% improvement is observed in the objective. Once both 

RSM and the DS-L algorithms have also been applied, the total improvement rises to 

26.1%. The corresponding objective has a value of 244, which is attained after eighty-

three additional function evaluations. A modest 7% improvement is observed after RSM 

optimization at a cost of forty-four function evaluations. This suggests that the “warm-

start” iterate attained from the unrefined global model is still relatively far away from the 

refined local solution, and that further global refinement could result in a lower resource 

cost during the subsequent local optimization. A set of complementary results is 

presented in Table 5.6, in which global direct search is applied instead of its local 

counterpart.  
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Table sed on 

global optimization o d

 Re  

5.6. Performance of the K-R-G algorithm for Problem (5.15), ba

f a partially refine  kriging global model. 

Simulations quired
Algorithm opt

MINLPF  
% improv t emen

relative to 
nominal opt

MINF LP  A  Total 
CPU  

T ) lgorithm ime (s

No al 
sampling set only) 

--  --- - 
ne (nomin

198 ------- ----- 15 1.04 

Kriging 215 9.4 9 24 3.61 
RSM 227 15.9 44 68 6.12 

Global Direct Search 286 48.8 41 109 6.33 
 

The optimal solution opt
MINLPF  has an objective value of 286 and an additional 22.7% 

improvement is attained relative to the best solution using the K-R-L method, at the cost 

of an additional eleven function calls. Although this solution is superior to the 

corresponding objective found using local search, it cannot be confirmed as a global 

solution due to problem nonconvexity based on the presence of the nonlinear and bilinear 

x-y1 variable terms. In Tables 5.6 and 5.7, a complementary set of results are presented in 

which local optimization is performed on the best kriging solution SK obtained from a 

fully refined kriging model. 

 

Table ed on  

local optimization of a c  k

 Re  

 5.7. Performance of the K-R-L algorithm for Problem (5.15), bas

ompletely refined riging global model. 

Simulations quired
Algorithm opt

MINLPF  
% improv t emen

relative to 
nominal opt

MINF LP  A  Total 

CPU 
Time 

lgorithm (s) 

No al 
sampling set only) 

-  --- - 
ne (nomin

198 -------- ----- 15 0.98 

Kriging 240 23.1 49 64 12.62 
RSM 252 28.9 42 106 5.62 

Local Direct Search 269 37.5 27 133 3.96 
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Table d on  

global optimization of a d 

 Re  

 5.8. Performance of the K-R-G algorithm for Problem (5.15), base

completely refine kriging global model. 

Simulations quired
Algorithm opt

MINLPF  
% improv t emen

relative to 
nominal opt

MINF LP  A  Total 

CPU 
Tim

lgorithm
e 

(s) 

No al 
sampling set only) 

-  --- - 
ne (nomin

198 -------- ----- 15 1.07 

Kriging 241 28.7 51 66 13.23 
RSM 253 34.8 43 109 5.76 

Global Direct Search 286 54.1 38 147 5.72 
 

 

These results are obtained without applying any a priori resource restrictions on the 

amount of sampling directed at global model refinement. Instead, the stopping criterion 

applied is based on convergence in the average value of the kriging predictor as described 

in Figure 4. Although the value of opt
MINLPF rises to 269 when local search is employed, no 

increase is observed when global search has been applied. These findings suggest that a 

better objective can be attained using local search based on a fully developed kriging 

model. However, a better solution can be discovered using global search, however, even 

without a completely refined global mapping being generated, suggesting that the 

problem nonconvexity involving the y1-variable terms can cause the local direct search 

algorithm to become trapped in a suboptimal solution. The discovery of a superior 

objective using the global direct search method is an example of how global direct search 

 effective, at least for this example, in overcoming problem nonconvexity.  is
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5.5

successful convergence to improved local solutions. 

 

1 

2 

1 

 Summary  

In this chapter, a unified algorithm has been presented which integrates Direct Search 

with B&B, Kriging, and RSM in order to address process synthesis and design problems 

containing black-box functions which can depend on both continuous and integer 

variables. B&B is used to optimize integer variables having a continuous relaxation while 

RSM is used to optimize the continuous variables. The integer variables appearing in the 

black-box functions are optimized using either local or global direct search, and it is 

found that global search leads to better solutions being obtained based on algorithm 

performance for two presented case studies. The unified B&B Kriging-RSM-Direct 

Search algorithm proceeds as follows whereby at each node of a B&B tree, kriging is 

used to build global models of partially relaxed NLP subproblem objectives. The 

surrogate models are used to identify subregions containing potential local optima and the 

best kriging solutions serve as starting iterates for further optimization using RSM and 

direct search. The additional costs resulting from global model creation are offset by 

  

Notation
  
General  

x  = vector of continuous variables 

y = vector of integer-valued variables  

y = vector of integer design variables 

y = vector of synthesis variables 

z = vector of output variables whose input-output models are known 



 180

z2 = vector of output variables whose input-output models are black-box  

les  

 variables 

 process models  

s lacking closed-form equations 

F

eviation when process noise is modeled as a 

ctor 

les in any nominal sampling vector 

les 

 

 

n = subspace of continuous variables 

q1 = subspace of integer design variab

q2 = subspace of synthesis

g = feasibility constraint 

h = feasibility constraint or explicitly known closed-form

= input-output model

 = objective function 

 = mean value for a noisy, black-box model output variable 

2 = estimated or simulated standard d

normally distributed random function 

x0 = set of continuous variables in any nominal sampling vector 

y1
0 = set of integer design variables in any nominal sampling ve

y2
0 = set of synthesis variab

 = nominal sampling set 

SK = kriging-optimal solution 

xK = set of kriging-optimal continuous variables 

y1
K = set of kriging-optimal integer design variab

y2
K = set of kriging-optimal synthesis variables

xR = set of RSM-optimal continuous variables

y2
R = set of RSM-optimal synthesis variables 

y1
D = optimal sampling vector with respect to y1 

SR = optimal sampling vector with respect to x and y2 



 181

SD = optimal sampling vector with respect to x, y1, and y2 

dology 

ion 

al locally optimal solution vector to be locally optimized with respect to x and 

tion value 

e corresponding to wth RSM-optimal sampling vector 

 for RSM algorithm 

rithm 

m 

le 

RSM algorithm 

RSM = response surface metho

n = RSM problem dimens

w = RSM iteration index 

Scoll,w = set of sampling points used to build the wth response surface 

S0 = nomin

relaxed y2 

F0 = objective value corresponding to S0 

FK = kriging-optimal objective func

Sopt,w = current best solution vector 

Fopt,w = current best objective value  

Sopt,w+1 = sampling vector obtained from optimizing the wth response surface 

Fopt,w+1 = objective function valu

bw = wth response surface radius 

TolRSM = stopping tolerance

Direct Search algo

DS = direct search 

DS-L = local direct search algorithm 

DS-G = global direct search algorith

m = iteration index   

YLL = lowest feasible value for a strict integer variable 

YUL = highest feasible value for a strict integer variab
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Ym = mth best solution for a strict integer variable 

Ym
L = sampling point corresponding to the mth bracket low endpoint 

t 

ling point () 

ble 

d algorithm 

-Bound algorithm 

UB =

to best local solution found for a partially relaxed 

NLP 

Ym
C = sampling point corresponding to the mth bracket midpoint 

Ym
U = sampling point corresponding to the mth bracket high endpoin

F() = objective function value corresponding to samp

Nm = mth bracket midpoint-endpoint interval length  

YD = integer-optimal solution for a strict integer varia

Branch-and-Bound algorithm/Unifie

B&B = Branch-and

LB = lower bound 

 upper bound 

opt
NLPS  = best locally optimized solution vector corresponding to a partially relaxed NLP 

opt
NLPF  = objective value corresponding 

opt
MINLPS = MINLP solution vector that is integer optimal in y1 and y2 

opt
MINLPF  = MINLP objective function value corresponding to integer-optimal y1 and y2 

ing tolerance for B&B algorithm  

acrylate 

 acid 

t 

TolBB = stopp

Example 1 

t-BMA = tert-butyl meth

MA = methacrylic

IB = isobutylene 

DIB = di-isobutylene  

H2SO4 = sulfuric acid catalys



 183

NaOH = catalyst neutralizer 

RM = raw material 

F0 = reactor fresh feed stream [kg/h] 

FIB = fresh isobutylene feed stream [kg/h] 

FMA = fresh methacrylic acid feed stream [kg/h] 

FH2SO4 = fresh sulfuric acid catalyst feed stream [kg/h] 

 

m3/h] 

r t-BMA process [kg/h] 

[kg/h] 

 existence of feed stream Fi [-] 

Q

FNaOH = fresh catalyst neutralizer feed stream [kg/h] 

Ft-BMA = t-BMA feed stream containing purchased t-BMA[kg/h] 

VCW = volume of cooling water needed for t-BMA process [m3/h] 

VChW = volume of chilled water needed for t-BMA process [m3/h]

VRef = volume of refrigerant needed for t-BMA process [

MStm = mass of steam needed fo

F1 = reactor exit stream [kg/h] 

F2 = feed stream for separation train 1 [kg/h] 

F3 = feed stream for separation train 2 [kg/h] 

F4 = feed stream for separation trains 3 and 4 [kg/h] 

F5 = feed stream for separation trains 5 and 6 

F6 = feed stream for separation train 3 [kg/h] 

F7 = feed stream for separation train 4 [kg/h] 

F8 = feed stream for separation train 5 [kg/h] 

F9 = feed stream for separation train 6 [kg/h] 

yi = synthesis variable indicating

CW = cooling water duty [J/h] 
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CW = cooling water density [kg/m3] 

Cp,CW = cooling water heat capacity [kJ/kg K] 

TCW = minimum approach temperature for cooling water [K] 

Q

emperature for chilled water [K] 

Q

Bjk = 

 jth component-rich distillate obtained for the kth separation when noise exists 

[kg/h

 jth component-rich bottoms obtained for the kth separation when noise exists 

of RM fed to reactor [-] 

reb,k = reboiler temperature for kth separation [K] 

ChW = chilled water duty [J/h] 

ChW = chilled water density [kg/m3] 

Cp,ChW = chilled water heat capacity [kJ/kg K] 

TCW = minimum approach t

Ref = refrigerant duty [J/h] 

Ref = chilled water density [kg/m3] 

CRef = chilled water heat capacity [kJ/kg K] 

TRef = minimum approach temperature for refrigerant [K] 

Djk = jth component-rich distillate obtained for the kth separation [kg/h] 

Bjk = jth component-rich bottoms obtained for the kth separation [kg/h] 

Djk = jth component-rich distillate obtained for the kth separation [kg/h] 

jth component-rich bottoms obtained for the kth separation [kg/h] 

noisy
jkD  =

] 

noisy
jkB  =

[kg/h] 

 = scaling parameter limiting the amount 

RRk = reflux ratio for the kth separation [-] 

T
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Example 2 

process 

nase 

 

cess 

] 

third centrifugation [-] 

] 

 

n [-] 

General 

i = dummy index for a repeated 

ADH = alcohol dehydroge

F = fermentation process 

H = homogenization process 

Ci = ith centrifugation process

Pi = ith precipitation pro

z1 = ADH yield [kg/h] 

z2 = ADH purity [-] 

y1 = number of homogenizer passes [-] 

y2 = number of centrifuge disks for first centrifugation [-] 

y3 = number of centrifuge disks for second centrifugation [-

y4 = number of centrifuge disks for 

x1 = glucose concentration [kg/m3] 

x2 = homogenizer pressure [N/m2] 

x3 = centrifuge disk stack angle for first centrifugation [rad] 

x4 = precipitant concentration for first precipitation [kg/m3] 

x5 = centrifuge disk stack angle for second centrifugation [rad] 

x6 = precipitant concentration for second precipitation [kg/m3

x7 = centrifuge disk stack angle for third centrifugation [rad] 

zF = any fermentation output variable for the fermentation process [-]

zH = any homogenization output variable for the homogenizatio
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zC1 = any output variable for the first centrifugation process [-] 

 

viation parameter designating process noise intensity [-] 

 a given cell diameter 

ng diameter di [-] 

al to di after fermentation [-] 

ation [-] 

f of undisrupted cells [-] 

X tion [kg/m3] 

zP1 = any output variable for the first precipitation process [-] 

zC2 = any output variable for the second centrifugation process [-]

zP2 = any output variable for the second precipitation process [-] 

zC3 = any output variable for the third centrifugation process [-] 

 = standard de

Fermentation 

i = dummy index designating

di = ith cellular diameter [m] 

R(di) = final number of cells havi

dc,50 = median cell diameter [m] 

Nd = number of size-differentiated cell diameters [-] 

mc,frac,i = mass fraction of cells having diameter equ

mc,in,i = final mass of cells having diameter di [kg] 

mc,frac = size-distributed cell mass fraction after ferment

mc = size-distributed cell mass after fermentation [kg] 

c(di) = fraction of cells having diameter equal to or less than di [-] 

wc = Boltzmann parameter for modeling cd

0 = initial biomass concentra

 = cellular growth rate [s-1] 

t = fermentation time period [s] 

X = final biomass concentration [kg/m3] 

Sc = amount of substrate consumed [kg] 
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Yxs = yield coefficient of enzyme on substrate [U/kg] 

tion [kg/m3] 

tein inside undisrupted cells [kg] 

H

ongest cells having highest diameter [Pa] 

ss in feed broth [kg] 

ed for disruption of cells having diameter di [Pa] 

ls having diameter di leaving homogenizer [kg] 

sin = initial glucose concentra

V = final broth volume [m3] 

V0 = initial broth volume [m3] 

me,unr = mass of ADH inside undisrupted cells [kg] 

mp,unr = mass of pro

omogenization 

 = cell strength parameter [-] 

Pc0 = threshold breakage pressure for strongest cells having lowest diameter [Pa] 

PcN = threshold breakage pressure in str

N = number of homogenizer passes [-] 

kc = cell disruption rate constant, [NPa] 

mc,in = size-distributed cell ma

Vin = feed broth volume [m3] 

P = homogenizer pressure [Pa] 

Pc,i = threshold pressure requir

d1 = lowest cell diameter [m] 

dND = highest cell diameter [m] 

mc,out,i = mass of undisrupted cel

c = cell disruption constant [-] 

c = cell disruption constant [-] 

esol,out = concentration of dissolved ADH in homogenized broth [U/m3] 

psol,out = concentration of dissolved protein in homogenized broth [kg/m3] 
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eins,out = concentration of intracellular ADH in homogenized broth [U/m3] 

pins,out = concentration of intracellular protein in homogenized broth [kg/m3] 

g diameter di [kg] 

 cells [-] 

 

waste solids having diameter di [kg] 

any smaller cells leave in the supernatant [m] 

eter [-] 

ughput [m3/s] 

ween liquid and solid phases [kg/m3] 

in centrifuge disk stack [-] 

mq,frac,i = mass fraction of disrupted cells havin

dq,50 = median diameter of disrupted cells [m] 

wq = Boltzmann parameter for modeling cdf of disrupted

mq,out,i = mass of cellular debris having diameter di [kg]

mw,out,i = mass of 

Centrifugation 

T(di) = grade efficiency measuring recovery of cells having diameter di [-]

dc = critical diameter below which 

kgrade efficiency parameter [-] 

n = grade efficiency param

fs = settling parameter [-] 

g = gravitational constant [m/s2] 

Q = volumetric centrifuge thro

 = carrier viscosity [N s/m2] 

 = density difference bet

Ro = outer disk radius [m] 

Ri = inner disk radius [m] 

 = angular bowl velocity [rad/s] 

 = equivalent centrifuge settling area [m2] 

Z = number of disks 

 = disk angle [rad] 
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Vin = feed broth volume [m3] 

esol,in = concentration of dissolved ADH in feed broth [U/m3] 

psol,in = concentration of dissolved protein in feed broth [kg/m3] 

eins,in = concentration of intracellular ADH in feed broth [U/m3] 

pins,in = concentration of intracellular protein in feed broth [kg/m3] 

g/m3] 

ter di [kg] 

on [-] 

ment stream [-] 

ing as the supernatant [-] 

g] 

g] 

rnatant [kg] 

ation of supernatant waste solids [kg/m3] 

esol,out = concentration of dissolved ADH in supernatant [U/m3] 

psol,out = concentration of dissolved protein in supernatant [kg/m3] 

eins,out = concentration of intracellular ADH in supernatant [U/m3] 

pins,out = concentration of intracellular protein in supernatant [k

mc,in = size-distributed mass of undisrupted cells in feed  [kg] 

mc,in,i = mass of undisrupted cells in feed having diame

mw,in = size-distributed mass of feed waste solids [kg] 

mw,in,i = mass of feed waste solids having diameter di [kg] 

1 = fraction of dissolved enzyme or protein denatured from process operati

2 = fraction of dissolved enzyme or protein exiting in sedi

fsup = fraction of feed stream exit

Vsup = supernatant volume [m3] 

Vsed = sediment broth volume [m3]  

mw,out, i = mass of supernatant waste solids having diameter di [k

mw,out =  size-distributed mass of supernatant waste solids [kg] 

mw,out, i = mass of undisrupted cells having diameter di in supernatant [k

mw,out =  size-distributed mass of undisrupted cells in supe

wout = concentr
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Precipitation 

Vz = precipitant volume needed [m3] 

zin = precipitant input concentration [kg/m3] 

zout = precipitant output concentration [kg/m3] 

V 3] 

ed solution [kg/m3] 

] 

 = waste solids concentration in precipitated solution [kg/m3] 

 

 

 

out = broth volume after precipitant addition [m

e = fraction of soluble enzyme precipitated [-] 

p = fraction of soluble protein precipitated [-] 

esol,in = concentration of dissolved ADH in feed broth [U/m3] 

psol,in = concentration of dissolved protein in feed broth [kg/m3] 

eins,in = concentration of intracellular ADH in feed broth [U/m3] 

pins,in = concentration of intracellular protein in feed broth [kg/m3] 

esol,out = concentration of dissolved ADH remaining in precipitated solution [U/m3] 

psol,out = concentration of dissolved protein remaining in precipitated solution [kg/m3] 

eins,out = concentration of intracellular ADH remaining in precipitated solution [U/m3] 

pins,out = concentration of intracellular protein remaining in precipitat

wout = waste solids concentration in unprecipitated solution [kg/m3

wout
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Chapter 6 

Centroid-Based Sampling Strategy for 

Kriging-Based Global Modeling  

 

The kriging algorithm presented in Chapter 3 is an iterative global modeling technique in 

which initial models built from randomly chosen sampling sets are refined based on the 

incorporation of additional sampling information. The generation of a sampling set via 

randomization creates the possibility that a poor initial model will be constructed. Model 

accuracy can be improved based on sampling at locations where the predicted uncertainty 

is highest, where model discrepancy in the predicted objective is highest between 

consecutive iterations, and where the predicted objective is lowest relative to the 

corresponding values at nearby test points. However, the overall sampling expense 

required to obtain an accurate model can be higher if extensive model refinement is 

required. The contribution of the work in this chapter is the presentation of a new 

sampling strategy is presented for kriging-based global modeling. The strategy is 

employed within a kriging/response surface (RSM) algorithm for solving NLP containing 

black-box models55. As mentioned in previous chapters, black-box models describe 

systems lacking the closed-form equations necessary for conventional gradient-based 

optimization. System optima can be alternatively found by building iteratively updated 

kriging models, and then refining local solutions using RSM. The application of the new 
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sampling strategy enables accurate global models to be obtained at lower sampling 

expense relative to a strategy employing randomized and heuristic-based sampling for 

initial and subsequent model construction, respectively. Based on the new strategy, the 

initial kriging model is built using sampling information obtained at the feasible region’s 

convex polytope and centroid. Updated models are obtained by incorporating additional 

sampling information obtained at Delaunay triangulation centroids. The new sampling 

algorithm is applied within the kriging-RSM framework to several numerical and 

industrial examples to demonstrate proof of concept.  

 

6.1  Introduction 

In Chapter 3, the solution of process design problems whose problem formulation 

contains black-box models and noisy variables has been addressed using a kriging-RSM 

strategy that targets the attainment of globally optimal operating conditions. The kriging-

RSM algorithm relies on the generation of an accurate surrogate model using the kriging 

methodology as presented in Chapter 3, in order to identify warm-start iterates for further 

local optimization using RSM, the methodology of which is presented in Chapter 2. At 

each iteration of the kriging method, the previous global model is updated using 

additional sampling information collected at points of interest identified from the earlier 

predictor, such as where the model predictions are lowest, or alternatively where the 

model uncertainty is highest. The initial model is built from a set of randomly selected 

feasible points dispersed throughout the feasible region. Different nominal models are 

generated from different initial sampling sets. However the overall sampling expense is 

higher when poor initial models are built. The generation of inaccurate nominal models 
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suggests that the initial sampling information fails to contain the information needed in 

order for the kriging-based global modeling algorithm to accurately identify important 

system behavior in the form of ridges, valleys, optima, or stationary points. Therefore, 

based on the current sampling strategy of performing 1) random sampling for initial 

modeling, and 2) heuristic-based sampling at model-based points of interest, there exists 

an opportunity for reducing the global modeling sampling expense. The goal of reducing 

sampling expense is motivated further by the need to eliminate random sampling as a 

method for initial modeling. The attractiveness of a surrogate model-building technique is 

increased if it can be known a priori how many sampling experiments are needed before 

an accurate model can be reasonably expected. Because random sampling is inherently 

uncertain, the number of sampling experiments required before an accurate estimator is 

built can vary over a wide range. A technique which does not rely on random sampling 

removes the question of how much additional sampling expense is required due to the 

initial set having been chosen with some measure of uncertainty.  

The contribution of the work presented in this chapter is the presentation of a 

sampling technique that relies on sampling at Delaunay triangle centroids. The new 

technique has been successfully employed in attaining accurate global kriging models 

and the main advantages of the method are that, 1) a complete set of local and global 

optima can be found for NLP containing black-box models and/or noisy variables, and   

2) fewer sampling experiments are required to find the complete set of optima relative to 

a sampling strategy employing randomized/heuristic sampling. Therefore, the centroid-

based sampling technique is  proposed as a novel sampling approach for other sampling-

based modeling methods. The main features of the new sampling technique involve:      
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1) sampling at the vertices and centroid of the feasible region convex polytope for initial 

modeling, and 2) sampling at the Delaunay triangle centroids for model refinement.  

 

6.1.1 Literature Review  

The field of sampling-based techniques focuses on not only optimizing the number of 

and spatial arrangement of sampling points, but also the test set at which predictions are 

to be obtained.  The designation “sampling techniques” can refer to either, 1) an 

algorithm specifically targeted at identifying where field/computational experiments 

should be performed, as is the goal of the proposed method in this paper, or alternatively, 

2) a method for identifying the locations where model predictions should be generated. 

Considering the first class of sampling techniques, four main algorithmic subclasses exist 

for choosing any np samples from a set of ktest feasible vectors for modeling: 1) random, 

2) systematic, 3) stratified, and 4) cluster. Random sampling, however computationally 

convenient to implement, has the limitation that the information obtained from a 

sampling set poorly representing the feasible region may fail to result in accurate model 

development. Systematic sampling is another frequently employed method which relies 

on a set of heuristics for identifying sampling vectors, such as every seventh feasible 

point from the set of ordered kTest points. A key limitation of this technique is that a 

poorly chosen value for np can result in too few sampling experiments being performed, 

resulting in the generation of an inaccurate model, or conversely, too many sampling 

experiments being conducted, in the sense that redundant system information is identified 

from sampling points located close to one another. The centroid-based sampling 

technique used in kriging modeling, the algorithmic details of which are presented in 
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more detail in Section 6.2.1, is an example of a systematic sampling procedure. For this 

method, the sampling expense is controlled by sampling at a single point within any 

Delaunay triangle, and terminating the algorithm after the fourth iteratively improved 

global model has been built. Stratified sampling such as Latin Hypercube Sampling56 can 

be considered as the application of any other sampling algorithm to each one of a subset 

of the kTest points separated by some stratification rule. The advantage of this technique is 

that a more uniform sampling arrangement is generated in contrast to random sampling. 

Cluster sampling requires sampling to be performed for all sampling vectors in a given 

strata of kTest points, while neglecting the performance of any sampling in other strata. 

The advantage of cluster sampling is that an extensive amount of system information can 

be obtained over a localized subregion of interest, such when neighborhoods containing 

potential optima are identified and additional sampling information is needed to refine the 

current solution. The sampling templates used in RSM, given in Figure 6.9, can be 

considered as cluster sampling algorithms since no sampling is performed outside the 

subregions of interest.  

For the class of methods directed at the identification of the locations of all kTest 

points requiring model generation, the generation of model estimates at discretized 

feasible region locations as shown in Figure 6.1(a) is the most intuitive and easily 

implementable algorithm. However, this method becomes impractical as the problem 

dimensionality increases, since the number of test points is a multiplicative function of 

the number of grid points generated for each dimension. Since one goal of modeling 

techniques is that the modeling algorithm itself be as computationally inexpensive as 

possible, alternative pseudo-uniform sampling schemes such as Latinized, Hammersley, 
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and Halton sampling as shown in Figure 6.1(b) have been employed to alleviate this issue 

for problems whose feasible regions have initially been predominantly hypercuboidal but 

have since been extended to other symmetrical regions.   

 

 

 

 

 

              (a)        (b) 

Figure 6.1. Generation of a test point set based on discretization (a) or the application of 

a Latinized/Hammersley/ Halton algorithm (b). 

 

These sampling methods generate sampling points in each one of a set of smaller 

nonoverlapping hypercubes. The Centroidal Voronoi tessellation techniques applied by 

Romero et. al57 are effective for generating pseudo-uniform sets using modified Voronoi 

diagrams when the problem dimensionality increases, a limitation of the aforementioned 

sampling techniques. The Voronoi diagram is considered to be the dual of a Delaunay 

triangulation; however the proposed sampling method in this paper relies on sampling at 

Delaunay simplex centroids instead of the corresponding Voronoi simplex centroids. The 

number of simplex vertices in a Delaunay triangle is fixed at (n+1), where n is the 

problem dimensionality, whereas for a Voronoi simplex it is often greater than (n+1). 

Some of the Voronoi simplices will have a small hypervolume, while others will have a 

much larger one as shown in Figures 6.2(a) – 6.2(c). Conversely, the volume of the 
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simplices formed by applying Delaunay triangulation, on the other hand, are generated so 

as to have approximately equal volume, as shown in Figures 6.2(d) – 6.2(f). Therefore, 

the application of a Voronoi-based sampling technique in which samples are obtained at 

the centroids of iteratively updated Voronoi diagrams, can result in redundant sampling 

information being obtained as a result of sampling points being close to one another 

between neighboring Voronoi simplices as shown in Figure 6.2(c). In the proposed 

sampling method, this problem is addressed by terminating the kriging-RSM algorithm 

after the initial model has been refined only two or three times.   
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    (d)             (e)              (f) 

Figure 6.2. Generation of sampling points concentrated along feasible region diagonals 

when sampling is performed at simplex centroids for a set of iteratively updated Voronoi 

diagrams (a) – (c), a nonuniform sampling arrangement, in contrast to the more uniform 

sampling arrangement obtained from sampling at simplex centroids of iteratively updated 

Delaunay triangulations (d) – (f).  
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Other sampling designs optimize some other estimator property, such as minimization 

of estimator variance at a given subset of points of interest, maximization of the estimator 

confidence region, or a user-designed merit function created for comparison of multiple 

design alternatives. Modified central composite designs, squared-error designs, 

orthogonal arrays, and minimax designs are a few of the designs reviewed in more detail 

in Simpson et. al58. In the next section, the targeted NLP problem is first mathematically 

formulated. Following this, the algorithmic details of the new centroid-based sampling 

method, implemented within a kriging-RSM framework for solving this NLP, are then 

presented.  

 

6.1.2  Problem Definition 

The problem addressed in this work can be expressed in the following form: 

 

 

1 2

1 2

1

2

2

2
2

2

( , , )

. . ( , , ) 0

( , ) 0

( ) x)

( ) | ,

1 (
, exp

22
n

min F x z z

s t g x z z

h x z

z x x

x N x

x
N x

x

 

 





    

 

  
  

 


)

       (6.1) 

Based on this formulation, the vector of continuous variables is given by x. The 

objective function is represented by F, and the deterministic variables z1 describe outputs 

whose modeling equations h(x,z1) are known. The vector of stochastic output variables z2 

exists when the input-output functionality (x) is black-box. The stochastic value of each 

z2 variable is modeled as the sum of its corresponding deterministic output and an 
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additive noise component  that is a normally distributed error term whose mean  and 

variance 2 may be a function of the input specification (x,y2). For field experiments, an 

estimate of the parameters  and 2 can be obtained by conducting replicate experiments 

for a given sampling vector. It should be noted that the modeled values of  and 2 may 

need to assume a range of values if it is known from prior field data that the noise is 

spatially variant with respect to x. Design and operating equations are given by g(x,z1,z2), 

where the feasible space for x may be further constrained based on the feasible space 

defined by z2(x).  

In our previous work21,22, a Branch-and-Bound Kriging-RSM-Direct Search 

algorithm has been successfully applied to process synthesis problems in which integer 

variables appear both inside and outside the black-box function as presented more fully in 

Chapter 5. The formulation of this problem class is the analog of (6.1) which would now 

contain two integer variable sets (y1,y2) as additional dependent variables for F, g, h, and 

z2 as given by Equation (5.1). Both integer variable sets are required in order to 

separately designate the integer variables residing inside or outside of . Even though the 

sampling strategy presented in this paper is applied to problems containing strictly 

continuous variables, a natural future work would be the extension of this technique to 

this more general problem class. 

  

6.2  Solution Approach 

The optimization strategy used to obtain the solution of the problem described by 

Equation (6.1) relies on generating an iterative sequence of kriging global models in 

order to identify promising warm-start iterates for local optimization. At each stage of the 
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kriging algorithm, new sampling data are used to update the previously built global 

model. Over the course of applying kriging, a sequence of global models is generated, 

with the late models closely resembling one another. Once the system predictor has 

converged, the global model is considered accurate and the best local solutions are then 

identified for subsequent local optimization via response surface methodology (RSM). 

The application of RSM to at least a subset, if not all of, the kriging model optima 

improves the chances of not only finding a system global optimum, but also establishing 

a confidence in its classification as a global optimum due to the successful identification 

of additional local optima having inferior objective values F. A flowchart summarizing 

the kriging-RSM algorithm, which relies on centroid-based sampling for global model 

construction and refinement, is shown in Figure 6.3 and is referred to as the KC-R 

algorithm for the remainder of this paper.  
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Figure 6.3. Flowchart of centroid-based sampling strategy embedded within a      

kriging-RSM modeling/optimization algorithm; this technique is designated as the KC-R 

method.  

 

The basic steps for building and refining global models based on the incorporation of 

sampling information obtained at Delaunay triangle centroids are as follows: 1) sample at 

the feasible region convex polytope and its centroid, 2) build the global model, 3) sample 

Sampling set g
for model re

eneration 
finement 

No

Build kriging global model 

Refine global model solutions: 
Optimize x (RSM) 

Yes

Sample at convex polytope 
vertices and centroid 

Sample at vectors corresponding to 
Delaunay triangulation centroids.  

Convergence attained 
in sequence of global 

models?

Formulate NLP, generate inscribed convex polytope of feasible region 

Subdivide convex polytope 
into Delaunay triangles. 

Terminate: Global optimum is the minimum objective F (confirmed 
by sampling) attained with respect to the set of refined optima. 
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at Delaunay triangle centroids, and 4) repeat steps 2) and 3) until the sequence of global 

models has converged. In Figure 6.4, sampling templates are presented which correspond 

to the construction and refinement of a 2-D global model whose output variable z2 is a 

function of two variables x1 and x2, and whose feasible region is box-constrained.  
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      (c)                   (d) 

Figure 6.4. Generation of sampling templates used to build kriging models for a 2-D 

box-constrained problem, in which five sampling points are used for initial model 

construction (a), and four (b), twelve (c), and thirty-six (d) additional sampling points are 

used in subsequent model building.  
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In Figure 6.4(a), the Delaunay triangulation of the initial sampling set is shown. Once 

the initial model has been built, it is not yet considered to be an accurate estimator, and 

therefore requires refinement using new sampling information. The new sampling set is 

comprised of vectors corresponding to the Delaunay triangle centroid locations, 

designated by the black dots, as shown in Figure 6.4(b). If the second model, built using 

the set of nine sampling points, is still considered inaccurate, another Delaunay 

triangulation is performed. The centroids of the Delaunay simplices are shown in Figure 

6.4(c), and the number of sampling points in the new sampling set is twelve. If the third 

model, constructed from twenty-one sampling points, still requires refinement, Delaunay 

triangulation is performed yet again. The thirty-six Delaunay triangle centroids are shown 

in Figure 6.4(d). After the fourth iteration, it is supposed that for this hypothetical system 

the sequence of global models has converged. At this point, the set of local kriging 

solutions are identified, and further local optimization using RSM is initiated.  

The kriging solutions are defined as the vectors for which the objective function value 

F is lower than the corresponding objectives for the set of nearest neighbors. For all the 

presented examples in Section 6.3, the set of test points is generated using discretization. 

The generation of a gridded test point set can result in a very high number of test points 

for dimension n  10, increasing the modeling/optimization computational expense.  

In addition, at each iteration of the centroid-based kriging algorithm, a call is made to 

the Matlab 2008b implementation of the Delaunay triangulation algorithm. This 

particular version of the Delaunay triangulation algorithm relies on convex hull 

construction using the qHull method58
, whose computational complexity increases rapidly 

as a function of problem dimension and therefore is nontrivial when the problem 
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dimensionality is greater than ten. If np is defined as the total number of sampling points, 

Barber et al.59 conjecture that the computational time required to obtain the convex hull 

of r points having a maximum number of facets fr is O(np log r) for problems of 

dimensionality equal to or less than three, and O(np fr/r) when the problem dimensionality 

is greater than four. The computational complexity required to determine the number of 

facets based on r points for a problem of dimension n determined according to the 

following equation: 

   
/ 2

/ 2 !

n

r

r
f O

n

   
     

               (6.2) 

A more efficient Delaunay triangulation algorithm is required to alleviate this 

problem; therefore the kriging-RSM modeling/optimization algorithm employing 

centroid-based sampling for kriging model construction is efficient only for problems 

with less than ten input variables. In subsections 6.2.1, 6.2.2, and 6.2.3, respectively, the 

algorithmic details of the centroid-based sampling strategy, the kriging technique, and 

response surface methodology are presented.  

 

6.2.1  Centroid-Based Sampling Strategy 

For kriging-based global modeling, sampling is initially performed at the vertices of 

the region’s convex polytope and its centroid. One condition required for application of 

the KC-R version of the kriging-RSM algorithm is that the problem’s feasible region be 

defined by a convex polytope. The RSM phase of the optimization algorithm consists of 

the sequential optimization of local models; however early termination of the method can 

occur once iterates have reached a boundary and the optimal step direction requires 
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movement outside the feasible region. For an n-dimensional problem, the set of M 

convex polytope boundaries can be given in terms of a matrix formulation:  

Ax b                  (6.3a) 

...

1,1 1,2 1,n

2,1 2,2 2,n
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 
 
 


       (6.3c) 

A vector x is a member of the convex polytope if it satisfies Equation (6.4) for any n 

constraints and is also feasible with respect to the others.   

Ax b                  (6.4) 

where A is an arbitrary (n x n) submatrix of A and b  is the corresponding (n x 1) 

submatrix of b. In Figure 6.5, the convex polytope is shown by the black dots that serve 

as the vertices of a diamond-shaped feasible region.   


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Figure 6.5. Application of a feasibility check to identify the set of sampling points 

located at the convex polytope vertices. 

 

Once the set of vertices comprising the convex polytope has been obtained, the next 

step is to generate the centroid of these points. Let the set of NV convex polytope vertices 

be denoted as V, and let the ith vertex be denoted as xV,i. The corresponding convex 

polytope centroid can then be obtained as the arithmetic mean of the vertex points as 

given in the following equation: 

,

VN

V i
i 1

C
V

x
x

N



               (6.5) 

For a convex polytope, its centroid will always reside within the feasible region. The 

strategy of including the convex polytope centroid as a sampling point for initial 

modeling is motivated by the idea that the system information obtained from sampling at 

this point is equivalent to the information obtained from sampling at a sequence of points 

converging to the convex polytope centroid. Once the vector xc has been determined, the 

sampling set S1 used to build the initial kriging-based global model is defined as follows: 

A5x  b5 

A1x  b1 
A4x  b4 

A2x  b2 
A3x  b3 
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   , 1...
,1

c V i i n
S V x x x


  , c            (6.6)   

Once the initial kriging model is generated, it may not accurately describe the system 

behavior at locations inside the feasible region. Model inaccuracy occurs because the 

kriging-based global modeling is an interpolatory method whereby predictions are 

generated as a weighted sum of nearby sampled function values. Kriging model behavior 

resembles the behavior exhibited by models constructed using inverse distance weighting 

methods, in that model accuracy generally decreases as a function of increasing distance 

between a test point and the  nearby sampling points. The centroid location is likely to be 

far away from the convex polytope vertices, and model inaccuracy will be highest at test 

points approximately midway between the centroid and the vertices. In order to attain 

significant model improvement, additional sampling is therefore performed at locations 

where the uncertainty is highest.  

To address this problem, a Delaunay triangulation is applied to the current sampling 

set Smwhere Sm refers to the additional sampling data used together with the Sm-1 dataset 

to build the mth kriging model as presented in the kriging algorithm flowchart shown in 

Figure 6.8. The Delaunay triangulation algorithm attempts to subdivide the feasible 

region into a set of adjacent, nonoverlapping simplicial subregions having uniform 

volume. The Delaunay triangulation of a convex polytope having k possible subdivisions 

will be the one that contains the highest minimum simplicial angle. Each simplicial 

subregion contains (n+1) vertices which serve as the vectors used in the corresponding 

centroid calculation given by Equation (6.5). The new sampling set Sm+1 is then generated 

as the set of all Delaunay triangulation centroids.  
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In Table 6.1, the differences between the current and new sampling algorithms are 

presented. Either one of the sampling algorithms can be applied within the framework of 

the kriging method in order to iteratively generate an accurate global model. The details 

of the kriging technique are presented in the next subsection.  

 

Table 6.1. Differences between the two sampling strategies for  

building iteratively updated global kriging models. 

 Old Sampling Strategy 
New Sampling 

Strategy 

Model 
Creation 

Sample randomly 
Sample at convex 

polytope and centroid

Model 
Refinement 

Sample at locations where there is: 
1) minimum model prediction 
2) maximum model uncertainty 
3) highest current/previous model discrepancy 

Sample at each one of 
the ND Delaunay 

triangulation centroids

 

6.2.2  Kriging Methodology  

The kriging model consists of predictions obtained at all test points Sk, in which each 

kriging estimate is determined as a weighted sum of nearby sampled function values. The 

kriging model is built with respect to the NLP objective since it is the objective function 

that is being optimized instead of the process outputs. The steps for obtaining a prediction 

at Sk are as follows: 1) determination of covariance function coefficients based on 

sampling data; 2) calculation of the covariance Cov(di,k) between the test point and each 

nearby sampling point; 3) generation of weighting values  for each sampling point Si 

close to Sk after solving the linear system C = D, where the elements of C and D are 
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{Si,Sj} and {Si,Sk} covariance values, respectively; and 4) estimation of the kriging 

predictor. The details of the methodology will now be presented. 

From the set of sampling data contained in the current sampling set Sm, where m 

denotes the iteration index, squared output value differences Fi,j are calculated as given 

by Equation (6.7) and plotted relative to sampling-pair distances as given by Equation 

(6.8): 

2

, ( ) ( ) ... m

i j i jF F S F S i, j 1 S ,i     j

2

    (6.7) 

, || ( ) ( ) ||i j i jd S x S x               (6.8) 

From a scatter plot of Fi,j as a function of di,j, a semivariance function is then fitted. 

Due to the plot complexity as shown in Figure 6.6(a), the best fit to one of the established 

semivariance models in the literature17 is not usually immediately apparent.  

 Cov(h) = 2
VARIO – FVario(h) 

 

 

 

 

               (a)              (b)                           (c) 

Figure 6.6. Data smoothing applied to squared function differences Fi,j (a) in order to 

obtain a semivariogram fit (b) and covariance function  fit (c).  

 

To alleviate this problem, data smoothing is applied, and the semivariance function is 

then fitted to the reduced set of scatterpoints known as semivariances  as shown in 

Figure 6.6(b).  A set of P equidistant intervals are defined between zero and the 

Fi,j 

h h 

Cov(h) 

2
VARIO 

(h) 

h
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maximum di,j distance. The pth interval midpoint is denoted by hp, and the semivariance 

corresponding to the pth interval, (hp), is obtained by averaging the set of squared 

function differences falling inside this interval as given by Equation (6.9):  

( )

,( ) ... ,
( )

N hp

p i j
r 1p

1
h F p 1 P

2N h 
    i j

i

  (6.9) 

where N(hp) is the number of sampling pairs {Si, Sj} whose separation distance di,j lies 

inside the pth interval. The semivariance function behavior typically rises from zero to an 

asymptotic maximum known as the sill . In order to generate the corresponding 

covariance function as displayed in Figure 6.6(c), the semivariance function is then 

reflected between the x-axis and the sill. Once the covariance function has been obtained, 

the covariance between any two Si-Sj or Si-Sk vectors is determined by substituting di,j or 

di,k into the model equation. The kriging weights are then obtained as the solution of a 

linear system of equations in which the LHS consists of a matrix of {Si,Sj} covariances, 

and the RHS consists of a vector of {Si,Sk} covariances between kCluster nearest-neighbor 

sampling points Si and Sk. If the weights are forced to sum to unity, the linear system can 

be recast in a Lagrangian formulation as given by Equation (6.10): 

2σVARIO
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' ( )
i, j i,kk
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Cov d 1 Cov dS
= i, j = 1...k , i j

1 0 1S
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 
 

   
       

  (6.10) 

where (Sk) and '(Sk) represent the weight vector and the Lagrange multiplier, 

respectively. Once the weights are obtained, the kriging prediction F(Sk) and its expected 

variance are obtained according to Equations (6.11) and (6.12), respectively: 2 ( )k kS

( ) ( ) ( )
Clusterk

k i
i 1

F S F S S


              (6.11) 
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
S       (6.12) 

The methodology is then applied to another test point until objective function 

estimates at all test points have been generated. If additional sampling data are obtained, 

a new covariance function can be generated. Based on the updated covariance function, 

new kriging estimates can be obtained for all kTest sampling points and a refined global 

model can be created. For each global model, its corresponding average predictor value  

is compared against its counterpart based on the previous model. Once convergence has 

been achieved in , further refinement is terminated.  

Let the iteration index m refer to any property based on the mth kriging model, and let 

TolKrig be a percentage stopping tolerance. A sample range for TolKrig would be any value 

between one and ten percent. The mth average prediction value mis defined as the 

average of the set of kriging predictions and sampled function values as given by 

Equation (6.13): 

 
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m i i
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r kμ F S F S

card S k i 1 r 1

 
   
    

   (6.13) 

where card(Sm) refers to the number of sampled function values in the current sampling 

set Sm and kTest,m refers to the number of test points employed in constructing the mth 

global model. A nominal value of 0 is obtained by averaging the sampled function 

values from S1
. Once the mth global model has been constructed, m/m-1 is evaluated. If 

this ratio falls inside the interval (1TolKrig), the mth global model is considered accurate, 

and no additional updating occurs. Otherwise, another model is built using additional 

sampling data. The locations of new candidate sampling points are obtained using either 
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one of the two methods described in Table 6.1. When the non-centroid-based sampling 

method is employed, global model improvement is enforced by requiring that all new 

sampling points reside some minimum distance apart from one another. This practice 

ensures that the new sampling set will not consist of clustered points located at a single 

high-variance region, thereby de-emphasizing local model refinement. A set of global 

models is presented in Figure 6.7 which shows iterative stabilization of the kriging 

predictor after it has been updated using the randomized/heuristic-based sampling 

strategy described in Table 6.1.  

 

          (a)            (b)                        (c) 

Figure 6.7. Kriging model generated at initial (a), intermediate (b), and final (c) stages. 

 

The procedure for obtaining a prediction at Sk, referred to as the kriging algorithm, 

can be summarized as follows. First, the feasible region is characterized and iteration 

index m is initialized at unity. A nominal sampling set S1is specified using one of the two 

techniques presented in Table 6.1. The location Sk is specified and kCluster nearest-

neighbor sampling points are chosen from S that are nearest to Sk as given by Equation 

(6.8). If the centroid-based sampling technique is employed, the value of kCluster is set at 

(n+1), otherwise for the non-centroid-based method, referred to as the KNC algorithm, it is 

a user-determined parameter that is set at seven for the presented examples in Section 3. 
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Semivariances are then generated using all sampling data from SmThe best semivariance 

model is fitted using least squares, and the complementary covariance function is then 

obtained. The matrices on the RHS of Equation (6.10) are then constructed from 

submatrices hCluster, h0, C, and D, as given by Equations (6.14) – (6.17). The matrices C 

and D are augmented in order to remain consistent with the Lagrangian formulation given 

in (6.10).   

,
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The kriging weights are then obtained from solving the linear system of equations 

as presented in (6.10) and the prediction F(Sk) and its variance  are determined. 

The weights are then recalculated for each one of the remaining kTest sampling vectors in 

order to generate corresponding estimates for F(Sk). Once the global mapping has been 

constructed, the value of  m is determined from Equation (6.13) and compared against 

m-1. If convergence is not achieved, the iteration index is advanced by unity and 

2 ( )k kS
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additional sampling is performed based on application of the sampling rules as given in 

Table 6.1. A new covariance function is built, new kriging estimates F(Sk) are generated, 

and an updated mapping is built. The procedure is terminated once convergence has been 

achieved in m and the best local solutions are then identified for local optimization using 

RSM, whose algorithmic details are presented in the next subsection. A flowchart of the 

kriging algorithm is presented in Figure 6.8.  
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Define feasible region Obtain nominal sampling set S1(x). Initialize model iteration 
index m = 1. Set m as the average of the sampled objective values F(S1(x)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 6.8. Kriging algorithm flowchart for building/refining a data-driven global model. 

k = k + 1 m = m+ 1 

Obtain set of kCluster sampling points SCluster,k near Sk, SCluster   
Obtain semivariances based on sampling information from 
Build matrix hCluster(i,j) = ||Si – Sj||2 for i,j  kCluster   

Build vector h0(i,k) = ||Si – Sk||2 for i SCluster,k 

Fit semivariogram model coefficients. Obtain corresponding 2
VARIO  

for each model (spherical/Gaussian/exponential/power/linear) 
Select best fitted semivariogram model FVario(h) 
Obtain covariance function Cov(h) = 2

VARIO – FVario(h) 

No

Generate global model test point set containing ktest points.  

Yes 

Initialize test point index k = 1. 

No
k = kTest? 

TERMINATE: SK = {xK} is the set of modeled locally optimal solutions  

Generate new sampling 
set (Table 6.1) 

Yes

m+1/m  (1TolKrig)?

Obtain covariance matrix C for hCluster(i,j) 
Obtain covariance vector D for h0(i,k) 
Obtain kriging weights [ ; '] 



 by solving  

(C = D s.t. = 1) using Lagrangian  

Obtain new prediction F(Sk)=  (xi)f(xi)| " i Î xCluster,k) 

Obtain error variance    VARIO λD -λ 'k kS    
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6.2.3  Local optimization using RSM  

The response surfaces used in this chapter are quadratic polynomials containing 

bilinear terms which can be easily optimized using standard gradient techniques. If 

additional sampling at the response surface optimum yields a better solution, a new 

model is then built which is centered around this iterate, and the process continues until 

the objective has converged. The set of input points for building the response surface 

conforms to a stencil arrangement known as an experimental design that is centered about 

an iterate, which can be any of the best kriging solutions14,24. The factorial design for a 

problem in two dimensions requires ab points, where a is the number of factors and b is 

the number of continuous input variables. For problems whose feasible regions are 

described by linear constraints, a factorial design, shown in Figure 6.9(a) for a 2-D 

problem, enables system behavior along a linear boundary to be effectively described.  

 

 

 

 

            (a)                (b) 

Figure 6.9. Factorial (a) and Central Composite Design (b)  for 2-D response surface 

generation. 

 

An alternative to the factorial design is the central composite design (CCD) shown in 

Figure 6.9(b) for a problem in two dimensions, which requires (1 + 2n + 2n) sampling 

points for a problem of dimension n. Response surfaces built according to the factorial 
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design are defined over an n-D hyper-rectangular region; however the same models built 

according to the CCD are instead defined over an n-D spherical region. When iterates are 

located along a linear boundary, the system behavior is captured more effectively if the 

response surface is built according to the factorial design. However, the CCD design is 

associated with a lower sampling expense relative to a factorial design since data are not 

obtained at every factor-level combination.  

At the start of the algorithm, the iteration index w is initialized at a value of unity. A 

response surface is built around a kriging-optimal solution SK by fitting sampling data 

obtained from a collocation set Scoll,w. The vectors which comprise Scoll,w are determined 

by applying either one of the factorial or CC design templates for a predetermined initial 

model radius bw. For the examples presented in Section 6.3, the nominal value of bw is set 

at ten percent of each variable’s operability range as defined by the difference in 

corresponding lower and upper bounds. The vector SK and its corresponding objective 

value FK comprise the nominal solution set {Sopt,w,Fopt,w}. Once the response surface has 

been created, the optimum Sopt,w+1 having corresponding value Fopt,w+1 is determined 

using gradient methods. Sampling is performed at the model optimum vector in order to 

confirm objective value improvement. If the difference between the current and previous 

optimum |Fopt,w+1 - Fopt,w| falls below a prespecified criterion TolRSM, the algorithm 

terminates with {Sopt,w+1,,Fopt,w+1} established as the RSM solution. Otherwise, the 

iteration index is advanced by unity and another response surface having a new bound 

radius bw is constructed at the new Sopt,w. At any iteration w, the value of bw+1 is different 

from bw only if the Euclidean distance between the current and previous solution vectors 

is lower than the current radius bw. During the later stages of the algorithm, Sopt,w+1 will 
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be near Sopt,w, signifying that the basin of the RSM optimum has been found. At this 

point, a more accurate description of the system behavior near the optimum can be 

attained using more localized response surfaces. Whenever iterates are close to the 

boundaries, lower-dimensional response surfaces are created by projecting the model 

onto constraints so as to prevent model generation based on an asymmetrical arrangement 

of the feasible sampling data12. A flowchart of the algorithm is presented in Figure 6.10.  

 

 

  

Initialize stopping tolerance TolRSM, proportionality constant  starting iterate SK
 .  

Initialize iteration index w = 1, bounds bw. 
Set Sopt,w = SK, F(SK) = Fw = Fopt,w. 

 

 

 

 

 

 

 

 

 

Figure 6.10. Flowchart of the RSM algorithm. 

 

The RSM-optimal solution is denoted as F(SR) = F(xR). Once its value has been 

attained, the remaining locally optimal kriging solutions are also optimized using RSM.  

 

Fopt,w+1 – Fopt,w < TolRSM? 

Obtain sampling set (S,F)coll,w using 
experimental design. Fit and minimize 
response surface. Confirm estimated 
optimum (Sopt,w+1,Fopt,w+1) using sampling.

bw+1 = min(bold,||Sw+1-Sw||2) 
w = w + 1

No

Yes

TERMINATE: [Sopt,w+1, Fopt,w+1] is the optimal solution. If kriging has been 
previously applied, the solution Sopt,w+1 is designated as  SR = {xR}  
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6.3  Examples 

In this section, the performance of the centroid-based sampling algorithm, as 

implemented within the kriging-RSM optimization method, is evaluated based on its 

application to three global optimization test functions and two industrial case studies54. In 

the first case study, presented in subsection 6.3.4, the objective is to determine an optimal 

set of reaction conditions, given in terms of two species concentrations. This problem is 

solved initially with the only constraints being simple lower and upper bounds for each of 

the two reaction species. The problem is then solved when additional constraints are 

present, in order to demonstrate the applicability of the centroid-based sampling strategy 

to problems defined by non box-constrained feasible regions. In the second case study, 

presented in subsection 6.3.5, the objective is to identify the maximum reaction rate 

possible for simultaneous diffusion-reaction occurring in a catalyst pellet. For coupled 

heat and mass transfer, multiple possible reaction rates exist, and therefore it is important 

that application of the kriging-RSM algorithm leads to identification of all reaction rates. 

The physical first-principles equations are recast in a discretized form using orthogonal 

collocation, and the optimization problem involves a least-squares objective. For this case 

study, the   kriging-RSM method is applied as an equation-solving algorithm.  

The notations KC-R and KNC-R are used to refer to application of the kriging-RSM 

algorithm which does, and does not, employ the centroid-based sampling strategy for 

kriging model updating, respectively. More specifically, the notation KNC-R refers to the 

kriging algorithm in which the initial global model is built from ten dispersed sampling 

points, and in which subsequent models are updated based on data collected at regions of 

highest model variance, lowest prediction, and where the current and previous model 
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predictions differ the most. Three sampling points are chosen for each of the three 

heuristic criteria, for a total of nine sampling points to use in model updating. For each 

example, a table of solution information is provided based on application of each one of 

the KC-R and KNC-R methods. All results are obtained using an HP dv8000 CTO 

Notebook PC with a 1.8 GHz AMD Turion 64 processor.  

 

6.3.1  Six-Hump Camel Back Function 

The six-hump camel back function is a well-known 2-D global optimization test 

function that is box-constrained. Introducing black-box complications into this example, 

the output z2 is a function of two continuous variables x1 and x2. The NLP is formulated 

as shown below in problem (6.18) and a deterministic plot of z(x1,x2) is presented in 

Figure 6.11: 
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Figure 6.11. Plot of the objective function given in Problem (6.18). 

 

The NLP given by problem (6.18) implies that only the single global optimum is to be 

found. However, this problem contains four local optima in addition to two global 

optima, and the goal of applying the centroid-based (KC-R) and non-centroid-based 

(KNC-R) sampling methods within the kriging-RSM optimization algorithm is not to 

identify simply only one global optimum, but the complete set of optima. Solution 

information obtained from applying the KC-R and KNC-R techniques are presented in 

Tables 6.2 and 6.3, respectively.   
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Table 6.2. Optimization results obtained for Problem (6.18)  

based on application of the KC-R algorithm. 

# Iterations # Function Calls Optima Found CPU Time 

KC R KC R 
Total =      

KC + (R) 
x1 x2 F KC R Total 

4 3 57 27 -0.0899 0.71098 -1.03161 1.609 
3 0 27 0.0899 -0.71098 -1.03161 
5 0 26 -1.7011 0.79460 -0.21538 
5 0 26 1.7011 -0.79460 -0.21538 
2 0 18 -1.6060 -0.56716 2.10427

N/A 

2 0 18 

223 

1.6060 0.56716 2.10427

N/A 
1.047 2.656

 

Table 6.3. Optimization results obtained for Problem (6.18) 

based on application of the KNC-R algorithm. 

# Iterations # Function Calls CPU Time 

KNC R KNC R 
Total =     

KNC + (R)

# optima 
found 
(Nopt) 

# cases in which 
only NOpt optima 

are found/ 
total # cases 

KNC R Total 

4 13 30 59 89 2 2/100 1.211 0.352 1.563 
5 15 43 89 132 3 11/100 2.003 0.911 2.913 
6 20 48 121 168 4 38/100 2.090 1.097 3.187 
9 21 71 135 206 5 33/100 3.158 1.317 4.474 
12 24 103 153 256 6 16/100 4.885 1.450 6.335 

 

Based on the optimization information presented in Table 6.2, all six optima are 

successfully identified when the centroid-based sampling strategy is used to build the 

global models. In contrast, when randomized/heuristic sampling was employed for global 

model building/refinement, only sixteen of 100 trials resulted in all optima being found as 

reported in Table 6.3. Moreover, the number of required function calls increased by 15% 

relative to the 223 required by the KC-R method. For the KNC-R method, in which a 

randomized sampling set was generated for initial model building in each of 100 trials, 
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the two global optima were successfully discovered for all cases. In addition, for 87% of 

the cases, at least two additional local optima were found. However, since it is not known 

a priori how many optima exist for a black-box function, the identification of the 

remaining local optima by the KC-R method motivates its use as a competitive 

modeling/optimization algorithm relative to the KNC-R technique. Figure 6.12 shows the 

sequence of iteratively updated global models using the KC-R algorithm; while the initial 

models are poor, the fourth model as presented in Figure 6.12(d) appears to be a good 

approximation of the deterministic complement shown in Figure 6.11.  
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      (c)            (d) 

Figure 6.12. (a) – (d) Iteratively refined kriging models of the objective function given in 

Problem (6.18), based on application of the KC-R algorithm. 
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6.3.2  Branin Function 

In this example the KC-R and KNC-R optimization algorithms are applied to the      

2-dimensional Branin global optimization test function. The black-box function z2 

depends on both x1 and x2, the box-constrained problem is formulated as shown in 

problem (6.19): 

 

2

22
1 1

2 2 12

1

2

5.1 5 1
6 10 1 cos 1

4 8

5 10

0 15

min z

x x
s.t. z = x x

x

x

               
  
 

0
   (6.19) 

The deterministic function, shown in Figure 6.13, contains three global optima located at                

(-12.275), (2.275), (32.475) having objective value z2 = 0.97887. This problem was 

selected in order to confirm that all three optima would be successfully identified using 

the KC-R method. In Tables 6.4 and 6.5, the optimization results obtained for this 

example using both the KC-R and KNC-R methods are presented.  
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Figure 6.13. Plot of the objective function given in Problem (6.19). 
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Table 6.4. Optimization results obtained for Problem (6.19) 

based on application of the KC-R algorithm. 

# Iterations # Function Calls Optima Found CPU Time (s) 

KC R KC R 
Total =      

KC + (R) 
x1 x2 F KC R Total 

4 4 57 36 9.4245 2.4774 0.39789 0.9688 
5 0 44 3.1417 2.2759 0.39789

N/A 
7 0 62 

203 

-3.1414 12.2753 0.39789
N/A 

0.7188 1.6875

 

Table 6.5. Optimization results obtained for Problem (6.19) 

based on application of the KNC-R algorithm. 

# Iterations # Function Calls CPU Time (s) 

KNC R KNC R 
Total =     

KNC + (R)

# 
global 
optima 

found (NOpt)

# cases in which 
only NOpt global 

optima are found/ 
total # cases 

KNC R Total

5 24 36 174 210 2 16/100 1.081 1.749 2.830

6 24 49 187 236 3 84/100 1.179 1.552 2.731
 

The number of function calls required to attain all three global optima increases by 

16% when the KNC-R algorithm is used, relative to the KC-R method. In comparing the 

performance of the KC-R and KNC-R methods when all optima were found, 57 and 49 

sampling experiments were performed during the global modeling phase; the information 

obtained from eight additional sampling points, in addition to the sampling locations of 

all previous vectors, motivates the emphasis on sampling location for global modeling. 

The amount of sampling required for local optimization, in terms of the number of 

function calls, is (36+44+62) = 142 for the KC-R algorithm, a 32% reduction relative to 

the 187 sampling experiments required for local optimization based on global models 

built using the KNC-R method. The set of iteratively refined global models built using 

the KC-R method are shown in Figure 6.14, in which again the poor early models rapidly 
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improve based on the additional sampling data obtained from sampling at the third and 

fourth set of Delaunay triangulation centroids.   
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     (c)            (d) 

Figure 6.14. Iteratively refined kriging models of the objective function given in Problem 

(6.19), based on application of the KC-R algorithm. 
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6.3.3  Schwefel Function 

The 2-dimensional Schwefel test function is a problem also taken from the global 

optimization literature. This box-constrained problem is modified to include both a linear 

and a nonlinear constraint as shown in problem (6.20). The black-box variable z2 is a 

sinusoidal function of x1 and x2 and therefore its nonconvex deterministic behavior 

resembles that of a noisy function. The problem is formulated as shown below and a 3-D 

plot is shown in Figure 6.15. Due to the function nonconvexity induced by the additive 

sinusoidal terms, a contour plot is also provided in Figure 6.16.  
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Figure 6.15. 3-D plot of the deterministic objective function given in Problem (6.20). 
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Figure 6.16. Contour plot of the deterministic objective function given in Problem (6.20). 

 

This function contains a number of local optima and one global optimum at   

(420.97,-302.525)  having an objective value of -719.53. The global optimum is located 

in a corner of the feasible region and is surrounded by a set of local optima. Due to the 

number of inferior local optima, the KC-R and KNC-R algorithms will be applied in 

order to find the set of five dispersed optima whose objective values are lower than -500. 

This problem is selected in order to demonstrate the application of the centroid-based 

sampling technique when a nonlinear constraint exists. For the initial modeling, the 

sampling set is obtained at locations which correspond to the convex polytope inscribed 

within the nonlinear feasible region. For this problem, even if a nominal noise term were 

additively applied to z2, the underlying geometry would still pose the main complication 

affecting successful convergence to the global optimum. The optima information are 

presented in Table 6.6 along with additional computational results based on application 
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of the KC-R algorithm. Corresponding computational results based on application of the 

KNC-R method are presented in Table 6.7.  

 

Table 6.6. Optimization results obtained for Problem (6.20) 

based on application of the KC-R algorithm. 

# Iterations # Function Calls Optima Found CPU Time (s) 

KC R KC R 
Total =     

KC + (R) 
x1 x2 F KC R Total

4 2 73 31 420.775 -302.028 -719.491 3.391 
1 0 30 203.783 420.958 -620.826 
11 0 20 416.871 202.563 -618.513 
3 0 40 420.734 -123.123 -541.478 

N/A 

7 0 36 

230 

202.105 -301.280 -501.820 

N/A 
3.766 7.156

 

Table 6.7. Optimization results obtained for Problem (6.20) 

based on application of the KNC-R algorithm. 

# Iterations # Function Calls CPU Time (s) 

KNC R KNC R 
Total =     

KNC + (R)

# 
optima 
found 
(NOpt) 

# cases in which 
NOpt optima are 

found/ 
total # cases 

KNC R Total 

32 29 283 186 469 5 86/100 26.337 4.638 30.974
 

When the KNC-R method is applied, the set of five optima are found at an 86% 

success rate and require just over twice the 230 required by the KC-R procedure. Due to 

the sinusoidal behavior of the function, no function “settling” is observed as the model is 

refined. The objective value varies over a high range, between -/+ 800, and there exist 

many shallow/deep local optima distributed over both small and large subregions. Since 

the objective function value can vary over a wide range, between -/+800, when additional 

sampling is performed at locations where the model predictions are smallest, the model 
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variance is highest, or where the model has changed most between iterations, the average 

model value for the kriging predictor can change significantly between iterations. For the 

KNC-R algorithm, thirty-two iteratively refined global models are required before local 

optimization is initiated, indicating that the termination criterion of requiring model 

convergence may be effective for successful identification of warm-start iterates for RSM 

refinement, but ineffective with respect to minimizing the amount of sampling needed for 

accurate global modeling. A set of plots showing the sampling locations and iteratively 

improved global models built using the KC-R method is presented in Figure 6.17.  
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(g)            (h) 

Figure 6.17. Iteratively refined kriging models (b), (d), (f), and (h), of the objective 

function given in Problem (6.20), based on application of the KC-R algorithm, with 

accompanying sampling plots containing previously sampled points (vertices) and the 

new sampling set (interior points) (a), (c), (e), (g). 
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6.3.4  Example 4: Kinetics Case Study 

For this example, the KC-R and KNC-R methods are applied to a realistic kinetics 

case study taken from Bindal et al.18. There are five reaction species, two of which are 

system inputs. The reactions are assumed to occur in an ideal CSTR and the reaction 

network considered is a modification of the Fuguitt and Hawkins mechanism17given by: 

A  E,  A  D,  B  D, C  2D, and 2A  C. Only A and C enter the reactor having 

concentrations CA
0, CC

0 given in units of mol/m3. The dynamic behavior of the system is 

described by problem (6.21). 

     

 

 

 

 

2 2 34 0.6 4 0.4 0.4

0.1428 0.357

0.1428 2.857 1.0

0.5 0.5 (6.21)

SS SS
C D

SS SS
C D

f f f 2A R 0
A A 1 A 2 A 5 A

f rB R
B 3 B 3 D

f r 2 f 2C R 0
C C 4 C 4 D 5 A

D R
D 2

min F X Y sin X

X C C

Y C C

dC F C C k C k C k CVdt
dC F C k C k CVdt
dC F C C k C k C k CVdt
dC F C kVdt

      

 

   

    

   

    

  

 

 , , , , , ,

3 6
, , , , , , ,

4 4

4

2

3.33384 0.26687 0.29425 0.14940

0.011932 1.8957e 9.9598e 0.008,0.1

3e 3e

0 10e

f f r r r 2
A 3 B 3 D 4 C 4 D

fE R
E 1 A

f f f r
1 2 3 3

f r f
4 4 5 R

0
A

0
C

C k C k C k C k C

dC F C k CVdt

k k k k

k k k F V

C

C

 

   

  

   
      

 

   

The variables and SS
CC SS

DC represent the macroscale steady-state values of CC and CD, 

respectively. The rate constants, input flow rate, and reactor volume are similarly given 

by k, FR, and V, respectively. A plot of the objective F as a function of the input variables 
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CA
0 and CC

0 is shown in Figure 6.18. In the following two subsections, this problem is 

solved as a box-constrained and then non-box constrained NLP.  
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Figure 6.18. Plot of the objective function given in Problem (6.21). 

 

6.3.4.1  Box-Constrained Problem With Noise 

The deterministic solution of problem (6.21) yields a global optimum of F = 0.7422 

at [CA
0,CC

0] = [10.117, 8.378] and a local optimum of F = 1.2364 at [13.202,3.163]. In 

order to introduce black-box complications, the rate equations are assumed to be 

unknown, so a microscopic model is used instead, represented using a lattice containing 

N molecules. The microscopic model is generated by first translating concentrations to 

molecular variables, evolving the microscopic system using the Gillespie algorithm25, and 

then mapping back the final measured variables to concentrations. The noise in the output 

concentrations thereby arises as a function of how coarse the microscopic model is. 

Steady-state solution vectors are obtained from an initial point by running the microscale 

simulations for a long time horizon, after which the objective function can be evaluated. 

The optimization problem is formulated as shown in problem (6.22), where the steady-

state concentrations CC
SS and CD

SS are treated as the black-box system output variables: 
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The variance of the objective can be evaluated over k replicate simulations at a nominal 

species concentration vector x = [CA
0,CC

0] as: 

 2 ( ) ( , ) | 1...iVar Var F x N i j              (6.23) 

For this example, the noise applied to the objective is in the form of a normally 

distributed error having standard deviations of  = 0 and  = 0.011, which corresponds to 

microscale system sizes of N = 1e6 and N = 100,000, respectively. Therefore, the 

problem given by (6.21) can be restated as an optimization problem which contains a 

noisy objective function as given by problem (6.24): 
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  (6.24) 

For the local optimization using RSM, the value of TolRSM is 0.01, meaning that the 

difference between the current and previous optimum objective values, as given by 

|Fopt,w+1 – Fopt,w|, must fall below 0.01 before the RSM algorithm is terminated. In order to 

improve global optimum accuracy, once this termination criteria is met, another response 
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surface is built and optimized using a design radius bw half that of the previous one, in an 

effort to further zoom in on the best solution. In Tables 6.8 – 6.11, computational results 

are presented based on the application of the KC-R and KNC-R kriging algorithms. 

Tables 6.8 and 6.9 present results when the problem given by (6.24) is solved 

deterministically; based on this condition, value of  is zero. Tables 6.10 and 6.11 present 

complementary results when problem (6.24) is solved under the condition that  is 0.011. 

For all tables, it should be noted that the reported CPU times refer to the computational 

expense required for strictly modeling and optimization, and excludes the time required 

for each function call in the form of a microscopic model simulation.  

 

Table 6.8. Optimization results obtained for Problem (6.24) under the 

condition that  = 0, based on application of the KC-R algorithm. 

# Iterations # Function Calls Optima Found CPU Time (s) 

KC R KC R 
Total =    

KC + (R)
x1 x2 F KC R Total

4 3 57 26 10.1178 8.3787 0.74221 1.5313 
N/A 2 0 18 

101 
13.2025 3.1756 1.23644 N/A 

0.2188 1.75

Table 6.9. Optimization results obtained for Problem (6.24) under the 

condition that  = 0, based on application of the KNC-R algorithm. 

# Iterations # Function Calls CPU Time (s) 

KNC R KNC R 
Total =     

KNC + (R)

# 
optima found 

(NOpt) 

# cases in 
which only 
NOpt optima 
are found/ 

total # cases 

KNC R Total

5 3 42 21 63 1 (global only) 47/100 1.899 0.168 2.067

6 7 44 57 101 2 (global + local) 53/100 1.921 0.495 2.416
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When problem (6.24) is solved deterministically, the number of function calls 

required for attainment of both optima is identical when either one of the KC-R or KNC-

R methods is used. However, even though the global optimum is found in all cases when 

the KNC-R method is used, the chances that both optima are identified when the KNC-R 

method is employed is only 53%.  

Table 6.10. Optimization results obtained for Problem (6.24) under the 

condition that  = 0.011, based on application of the KC-R algorithm. 

# Iterations # Function Calls CPU Time (s) 

KC R KC R 
Total =     

KC + (R) 

# 
optima found 

(NOpt) 

# cases in 
which only 
NOpt optima 
are found/ 

total # cases 

KC R Total

4 7 57 59 116 1 (local only) 17/100 1.783 0.563 2.347

4 9 57 75 132 1 (global only) 25/100 1.901 0.858 2.758

4 10 57 79 136 2 (global + local) 39/100 1.869 0.765 2.634

 

Table 6.11. Optimization results obtained for Problem (6.24) under the                       

condition that  = 0.011, based on application of the KNC-R algorithm.  

# Iterations # Function Calls CPU Time (s) 

KNC R KNC R 
Total =     

KNC + (R)

# 
optima found 

(NOpt) 

# cases in 
which only 
NOpt optima 
are found/ 

total # cases 

KNC R Total

6 9 48 65 113 1 (local only) 9/100 2.450 0.721 3.170

6 5 45 39 84 1 (global only) 48/100 2.169 0.394 2.563

5 11 41 78 119 2 (global + local) 22/100 1.874 0.818 2.691
 

When noise is applied to the problem given by Equation (6.24), the chances of finding at 

least one of the optima are (17 + 25 + 39) = 81% or (9 + 48 + 22) = 79%, for the         
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KC-R and KNC-R methods, respectively. The global optimum is found in (25+39) = 64 

cases when the KC-R algorithm is applied, and in (48+22) = 70 cases when the KNC-R 

method is used instead. However, both optima are identified in 39 cases when the KC-R 

method is used, nearly double the number of cases (22) when the KNC-R method is 

employed. In Figure 6.19, the sequence of iteratively refined global models built using 

the centroid-based sampling strategy is shown, along with the corresponding sampling 

templates.  
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Figure 6.19. Iteratively refined kriging models (b), (d), (f), (h) of the objective function 

given in Problem (6.21), based on application of the KC-R algorithm, with accompanying 

sampling set plots (a), (c), (e), (g). 

 

6.3.4.2  Non-Box-Constrained Problem 

In order to demonstrate the applicability of centroid-based sampling to a problem 

whose feasible region is non-box constrained, problem (6.22) is modified to include three 
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additional linear constraints. The new problem is given by problem (6.25) and is solved 

under deterministic conditions. A plot of the function is shown in Figure 6.20.  
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Figure 6.20. Plot of the objective function given in Problem (6.25). 

 

The presence of the additional constraints alters the shape of the original box-shaped 

region to that of a pentagon. For this problem, the nominal sampling set is now 
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comprised of, 1) the five vertices of the reduced feasible region, rather than the four used 

for the box-constrained region, and 2), the centroid location given with respect to these 

five vertices. The set of sampling templates and global models corresponding to the 

application of centroid-based sampling for  global modeling within the KC-R algorithm 

are shown in Figure 6.21.  
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Figure 6.21. Iteratively refined kriging models (b), (d), (f) of the objective function given 

in Problem (6.25), based on application of the KC-R algorithm, with accompanying 

sampling set plots (a), (c), (e). 

 

The solution set of the optimization problem given in Equation (6.25) consists of, 1) a 

constrained global optimum at [CA
0,CC

0] = [12.6140, 7.0977] whose corresponding 

objective value is 1.0424, and 2) a local optimum at [CA
0,CC

0] = [13.20247,3.1756], 

whose corresponding objective value is 1.23644. Tables 6.12 and 6.13 present 

computational results based on application of the KC-R and KNC-R algorithms to solve 

this problem. For this problem, the KC-R algorithm is terminated after two iterations, or 

after the global model has been updated only once. Due to the smaller feasible region 

size, early termination is applied to avoid obtaining sampling information at smaller 

Delaunay triangle centroids that might fail to provide any new function behavior not 

already captured by the previous sampling set.  
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Table 6.12. Optimization results obtained for Problem (6.25) 

based on application of the KC-R algorithm. 

# Iterations # Function Calls Optima Found CPU Time (s) 

KC R KC R 
Total =     

KC + (R) 
CA

0 CC
0 F KC R Total 

2 3 11 24 12.7946 7.1133 1.0424 0.7500 
N/A 3 0 38 

76 
13.203 3.1944 1.2366 N/A 

0.3438 1.0938

 

Table 6.13. Optimization results obtained for Problem (6.25) 

 based on application of the KNC-R algorithm. 

# Iterations # Function Calls CPU Time (s) 

KNC R KNC R 
Total =     

KNC + (R)

# optima found 
(NOpt) 

# cases in 
which NOpt 
optima are 

found/ 
total # cases 

KNC R Total

4 8 31 46 77 1 (global only) 36/100 1.210 0.369 1.579

4 11 32 65 97 2 (global + local) 64/100 1.148 0.533 1.681
 

Both the local and global optima are found using the KC-R method in approximately 

the same number of average function calls required for only the global optimum to be 

identified by the KNC-R algorithm. For the KNC-R method, the number of sampling 

experiments required to obtain the local optimum increases by 27% relative to the 76 

required by the KC-R algorithm. Furthermore, both the local and global optima are 

identified with only a 64% success rate when the KNC-R technique is employed. 

  

6.3.5  Simultaneous Diffusion and Reaction in a Catalyst Pellet 

In this second industrial case study, taken from Lucia et. al60, the kriging-RSM 

algorithms are applied as equation-solving methods in order to identify the best modeled 
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reaction rate of a chemical species undergoing simultaneous diffusion and reaction 

through a spherical catalyst pellet as shown in Figure 6.22. The physical behavior of this 

coupled heat-mass transfer problem can be described by a PDE having specified 

boundary conditions. NLP solvers may fail to yield closed-form solutions of this 

differential equation system, but may succeed at alternatively identifying the solutions to 

a discretized complement of the original problem. The physical system models and 

discretization methods described below are the same as given by Lucia et. al58, and the 

KC and KNC algorithms are applied as equation solvers once the optimization problem has 

been reformulated in terms of a minimum set of nonlinear equations.  

 

 

 

 

 

 

 

 

 

Figure 6.22. Dimensionless concentration profile of reactants undergoing simultaneous 

diffusion and reaction as they move through the pores of a spherical catalyst pellet.  

The dimensionless non-isothermal species and heat transport model is given by 

Equation (6.26).  

2 1
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The boundary conditions specify the following behavior: 1) at the pellet surface, the 

dimensionless species concentration is unity as shown in Equation (6.27), and 2) at the 

pellet center, the species concentration change is zero, as given in Equation (6.28). The 

reaction rate  is given by Equation (6.29).  

1
1

x
y


               (6.27) 

0

0
x

dy

dx 

               (6.28) 

2
1

3

x
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
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              (6.29) 

The complete optimization problem is formulated in problem (6.30):  
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      (6.30) 

In order to identify the set of possible reaction rates , orthogonal collocation over 

finite elements (OCFE) is used to discretize the problem given by Equations (6.26) – 

(6.28). From the set of discretized equations, variable elimination can be performed, 

reducing the problem to a set of nonlinear equations given in terms of dimensionless 

concentrations y(xi) for i equispaced intervals between [0,1]. Once a vector y(xi) has been 

obtained which satisfies the nonlinear equations, the appropriate elements of this vector 

are substituted into the OCFE derivative expression at x = 1, thereby yielding a value for 

. This process can be repeated for all solution vectors y, until all values of  have been 

determined.  
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The dimensionless radius x, which varies between zero at the pellet center and unity 

at the surface, is subdivided into NE equidistant elements, each one containing NN  nodes. 

For each element, a unique approximation is generated for the dimensionless species 

concentration y as a function of radial distance x from the pellet center. C0 continuity is 

enforced at adjacent finite element junctions whereby the piecewise approximations 

corresponding to two adjacent finite elements must agree at the common node location x. 

In addition, C1 continuity is similarly enforced by requiring that the piecewise 

approximation gradients also agree. The orthogonal collocation equations are given as 

follows: 

     
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Equation (6.31) provides the piecewise approximation for y over a given element i, 

defined as y[i] and valid over the interval [(i-1)/NE,i/NE], i = 1…NE. For each 

approximation, y[i] is expressed as the sum of NN nodal approximations y(i-1)(NE-1)+j, each 

weighted by a corresponding Lagrange polynomial L(i-1)(NE-1)+j, for i=1…NE and j = 

1…NN, as given in Equation (6.32). Equation (6.33) is the diffusion-reaction transport 

equation that must be satisfied at all interior nodes for each of the i finite element 

approximations y[i]. Equations (6.34) and (6.35) correspond to the boundary conditions 

specified by (6.27) and (6.28). Equations (6.36) and (6.37) are the C0 and C1 continuity 

equations denoting the conditions that the ith piecewise approximation y[i] and its gradient 

dy[i]/dx must match the corresponding ith+1 approximations y[i+1] and dy[i+1]/dx,  at 

locations x which correspond to interior nodes, respectively. In the following subsections, 

two example discretization cases will be considered: 1) two elements and three nodes, 

and 2) five elements and three nodes.  

 

6.3.5.1  Discretization based on two elements and three nodes 

For a discretization containing two elements and three nodes, the equations are 

provided as follows for NE = 2 and NN = 3: 
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where Equations (6.38) and (6.39) designate the OCFE polynomial expressions valid for 

the general variables y, dy/dx, and d2y/dx2 given in (6.26) – (6.29). For example, over the 

interval 0  x  0.5, the polynomial given by y[1], shown below in Equation (6.53), is a 

model describing the decrease in dimensionless species concentration y; the 

corresponding expression given by y[2] models the behavior of y over the corresponding 

interval 0.5  x  1. Equations (6.40) and (6.41) describe the coupled heat and mass 

transport described by Equation (6.33). The OCFE expressions corresponding to the 

boundary, C0 continuity, and C1 continuity conditions given by (6.34) – (6.37) are 

represented by Equations (6.42) – (6.45). The Lagrange polynomials are obtained using 

Equation (6.32) and are shown below in Equations (6.46) – (6.52): 
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The discretized concentration equations for y are obtained from substitution of the 

equations provided in (6.48) – (6.53) into Equation (6.31), and are shown in Equations 

(6.54) and (6.55). The corresponding gradient expressions dy/dx and d2y/dx2 are then 

easily generated from differentiation of Equations (6.54) and (6.55).  
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The equations given by (6.54) -  (6.59) are then substituted into Equations (6.33) – 

(6.37) in order to obtain the set of OCFE equations corresponding to a two-element, 

three-node discretization of the problem given by Equations (6.26) – (6.28):  

2 2
2 3 2

2

1
32 32 exp 0

1 (1 )

y
y y y

y


   
      


          (6.60) 

2 5
4 5 6 5

5

1
10.6 32 21.3 exp 0

1 (1 )

y
y y y y

y


   
      




0

4

6

       (6.61) 

6 1y                   (6.62) 

1 2 36 8 2y y y                  (6.63)   

3y y                  (6.64) 

1 2 3 4 52 8 6 6 8 2y y y y y y                 (6.65) 

 

Due to the presence of the linear equations given in (6.62) –(6.65), variable elimination 

can be performed and the problem can be reduced to one that is described in terms of the 

two variables y2 and y5 which appear in the nonlinear terms of Equations (6.60) and 

(6.61). The reformulated equations for y1 and y3, given in terms of y2 and y5 are shown 

below in Equations (6.66) and (6.67): 

1 2 5

20 4 1

17 17 17
y y y                (6.66) 

3 2 5

8 12 3

17 17 17
y y y                (6.67) 

Sample values for , , and  in the reduced problem are arbitrarily given values of 

0.6, 30, and 0.2, respectively. The variables y2 and y5 represent the dimensionless 

concentrations at corresponding dimensionless locations x2 = 0.25 and x5 = 0.75, 

respectively and therefore vary between zero at the pellet center and unity at the pellet 
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surface. Problem (6.30) is recast as the NLP given in problem (6.68), where a solution is 

identified as one in which the sum of the squared constraint violations z1,1 and z1,2, 

uniquely specified for a vector {y2,y5}  [0 1]2, falls below a given tolerance. A plot of 

the objective function in terms of the dimensionless concentrations y2 and y5, 

corresponding to physical locations at x = 0.25 and 0.75 with respect to the radial axis of 

the catalyst pellet, is shown in Figure 6.23.  

=

2 2
2 3 2

2

2 5
3 5 5

5

2 5

min

1
. . 32 32 exp

1 (1 )

1
10.6 32 21.3 exp

1 (1 )

0 [ , ] 1

[ ] [ 0.2 ]

2
2
1,n

n 1

1,1

1,2

F z

y
s t z y y y

y

y
z y y y

y

y y







 

   
       

   
       

 

     

       (6.68) 

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

2

4

6

x 10
4

y2

y5

F

 

Figure 6.23. Plot of the dimensionless concentration y for a 2-element, 3-node  OCFE 

approximation of the spherical catalyst pellet model given by Equations (6.26) – (6.28). 

 

The solution of this problem consists of two global minima, located at [y2,y5] = 

[0.66594,0.92606] and [0.99313,0.99685]. For both global minima, the objective F 
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assumes a value falling below a tolerance of 1e-7. There are two difficulties presented 

when this problem is solved using GAMS and the barrier-terrain method of Lucia et. al. 

In the former case, the GAMS solver CONOPT fails to identify the two global minima 

unless the initial box-constrained region is reduced to a fine subregion enclosing each of 

the global optima. In the latter case, the foundation of the terrain method relies on 

solutions being connected by smooth valleys such that a set of solutions can be easily 

identified once one solution has been found, by moving along eigenvector paths while 

remaining inside the feasible region. However, if a problem contains two optima that are 

not connected to each other by a smooth valley, movement along eigenvector paths from 

the first located optimum may not result in discovery of the second optimum, a 

characteristic noted as a fundamental problem of the terrain method. The kriging-RSM 

method is therefore applied as an alternative technique for identifying the global optima. 

Because it does not rely on movement along valleys, it avoids this main difficulty of the 

terrain method. Tables 6.14 and 6.15 present computational results for the application of 

both the KC-R and KNC-R algorithms to solve the 2-element, 3-node problem  

 

Table 6.14. Optimization results obtained for Problem (6.68) 

based on application of the KC-R algorithm. 

# Iterations # Function Calls Optima Found CPU Time 

KC R KC R 
Total =     

KC + (R)
y2 y5 F KC R Total

4 5 57 34 0.99310 0.99684 5.65e-7 3.7188 
N/A 10 0 72 

237 
0.66600 0.92606 1.91e-6 N/A 

1.9063 5.625
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Table 6.15. Optimization results obtained for Problem (6.68) 

based on application of the KNC-R algorithm. 

# Iterations # Function Calls CPU Time (s) 

KNC R KNC R 
Total =     

KNC + (R)

# 
optima found 

(NOpt) 

# cases in 
which only 
NOpt optima 
are found/ 

total # cases 

KNC R Total

9 25 73 143 215 1 (local only) 21/100 8.461 1.653 10.114

7 25 56 155 212 1 (global only) 8/100 6.676 1.318 7.994

10 33 80 216 296 2 (global + local) 69/100 9.583 2.179 11.762
 

The number of sampling experiments required in order for both the local and global 

optimum to be identified using the KNC-R method increases by 24.9% relative to the 237 

required by the KC-R algorithm; furthermore both optima are identified only at a 69% 

success rate. The discovery of at least the local optimum is identified in 90% of the cases 

and is easy to find since it is located close to a feasible point vertex at [1,1]. This 

sampling point is included in the nominal sampling set for the centroid-based method, 

and is a likely sampling point during the early stages of the KNC-R method since feasible 

vectors having high model uncertainty are often identified at points along the feasible 

region boundaries. The set of iteratively improved global models using the KC-R method 

are shown in Figure 6.24.  
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     (e)            (f) 
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     (g)            (h) 

Figure 6.24. Iteratively refined kriging models (b), (d), (f), (h) of the objective function 

given in Problem (6.68), based on application of the KC-R algorithm, with accompanying 

sampling set plots (a), (c), (e), (g). 

 

6.3.5.2  Discretization based on five elements and three nodes 

For a discretization containing five elements and three nodes, the equations are as 

follows, where NE = 5 and NN = 3: 

2 [1] 2 [
[1]

, , , ,
2

0 0.2 0 0.2x x

dy d y dy d y
y y

dx dx dx dx
   

   
   

   

1]

2
      (6.69) 

2 [2] 2 [2
[2]

, , , ,
2

0.2 0.4 0.2 0.4x x

dy d y dy d y
y y

dx dx dx dx
   

   
   

   

]

2
      (6.70) 

2 [3] 2 [3]
[3]

, , , ,
2

0.4 0.6 0.4 0.6x x

dy d y dy d y
y y

dx dx dx dx
   

   
   

   
2

      (6.71) 

2 [4] 2 [4
[4]

, , , ,
2

0.6 0.8 0.6 0.8x x

dy d y dy d y
y y

dx dx dx dx
   

   
   

   

]

2
      (6.72) 
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2 [5] 2 [5]
[5]

, , , ,
2

0.8 1 0.8 1

2

x x

dy d y dy d y
y y

dx dx dx dx
   

   
   

   
      (6.73) 

 
 

[1]2 [1] [1]
2

2 [1]

0.1

12
exp 0

1 1
x

yd y dy

dx x dx y




   
   

     
      (6.74) 

 
 

[2]2 [2] [2]
2

2 [2]

0.3

12
exp 0

1 1
x

yd y dy

dx x dx y




   
   

     
      (6.75) 

 
 

[3]2 [3] [3]
2

2 [3]

0.5

12
exp 0

1 1
x

yd y dy

dx x dx y




   
   

     
      (6.76) 

 
 

[4]2 [4] [4]
2

2 [4]

0.7

12
exp 0

1 1
x

yd y dy

dx x dx y




   
   

     
      (6.77) 

 
 

[5]2 [5] [5]
2

2 [5]

0.9

12
exp 0

1 1
x

yd y dy

dx x dx y




   
   

     
      (6.78) 

 

[1] [2]

0.2 0.2x x
y y

 
               (6.79) 

[2] [3]

0.4 0.4x x
y y

 
               (6.80) 

[3] [4]

0.6 0.6x x
y y

 
               (6.81) 

[4] [5]

0.8 0.8x x
y y

 
               (6.82) 

 

[1] [2]

0.2 0.2x x

dy dy

dx dx
 

              (6.83) 
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[2] [3]

0.4 0.4x x

dy dy

dx dx
 

              (6.84) 

[3] [4]

0.6 0.6x x

dy dy

dx dx
 

              (6.85) 

[4] [5]

0.8 0.8x x

dy dy

dx dx
 

              (6.86) 

 

[ , , ] [0,0.1,0.2]1 2 3x x x              (6.87) 

[ , , ] [0.2,0.3,0.4]4 5 6x x x              (6.88) 

[ , , ] [0.4,0.5,0.6]7 8 9x x x              (6.89) 

[ , , ] [0.6,0.7,0.8]10 11 12x x x             (6.90) 

[ , , ] [0.8,0.9,1]13 14 15x x x              (6.91) 

 

232

1 2 1 3

( )( )
50 15 1

( ) ( )1

x xx x
L

x x x x


x x


 

 
          (6.92) 

231

2 1 2 3

( )( )
100 20

( ) ( )2

x xx x
L

x x x x


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 
x x         (6.93) 

21 2

3 1 3 2

( ) ( )
50 5

( ) ( )3

x x x x
L

x x x x
x x

 
 

 
          (6.94) 

25 6

4 5 4 6

( ) ( )
50 35 6

( ) ( )4

x x x x
L

x x x x

 
 

 
x x          (6.95) 

264

5 4 5 6

( )( )
100 60 8

( ) ( )5

x xx x
L

x x x x


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x x         (6.96) 
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6 4 6 5
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50 25 3

( ) ( )6

x xx x
L

x x x x


 

 
x x          (6.97) 
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L x

x x x x

 
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x          (6.98) 
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L x
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211 12

10 11 10 12

( ) ( )
50 75 28

( ) ( )10

x x x x
L

x x x x

 
  

 
x x         (6.101) 

29 10

11 9 11 10

( ) ( )
100 140 48

( ) ( )11

x x x x
L

x x x x

 
   

 
x x        (6.102) 
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213 15
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213 14
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( ) ( )
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( ) ( )15

x x x x
L

x x x x

 
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 
x x 

3

       (6.106) 

 

[1]
1 21 2 3y L y L y L y               (6.107) 

[2]
4 54 5 6 6y L y L y L y               (6.108) 

[3]
7 87 8 9y L y L y L y   9             (6.109) 

[4]
10 11 1210 11 12y L y L y L y              (6.110) 

[5]
13 14 1513 14 15y L y L y L y              (6.111) 
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[1]

1 2(100 15) ( 200 20) (100 5)
dy

3x y x y x
dx

       y     (6.112) 

[2]

4 5(100 35) ( 200 60) (100 25)
dy

6x y x y x
dx

       y     (6.113) 

[3]

7 8(100 55) ( 200 100) (100 45)
dy

9x y x y x
dx

       y     (6.114) 

[4]

10 11 12(100 75) ( 200 140) (100 65)
dy

x y x y x
dx

       y    (6.115) 

[5]

13 14 15(100 95) ( 200 180) (100 85)
dy

x y x y x
dx

       y    (6.116) 

 

2 [1]

1 22
100 200 100

d y
3y y

dx
   y           (6.117) 

2 [2]

4 52
100 200 100

d y
6y y

dx
   y           (6.118) 

2 [3]
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100 200 100

d y
9y y

dx
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2 [4]
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2 [5]
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      (6.127) 

 

                 (6.128) 

             (6.129) 

                 (6.130) 

                 (6.131) 

0
                 (6.132) 

                (6.133) 

 

6y           (6.134) 

9y           (6.135) 

         (6.136) 

         (6.137) 

ted in terms of the variables appearing in the nonlinear terms of Equations 

(6.123) – (6.127), namely y2, y5, y8, y11, and y14, as given below in Equations (6.138) – 

(6.142):  

88

15 1y 

1 2 315 20 5 0y y y   

3 4y y

6 7y y

9 1y y

12 13y y

1 2 3 4 55 20 15 15 20 5y y y y y     

4 5 6 7 85 20 15 15 20 5y y y y y     

7 8 9 10 11 12

10 11 12 13 14 155 20 15 15 20 5y y y y y y     

From the set of equations given by (6.128) – (6.137), y1, y3, y6, y9, and y12 can be 

reformula

5 20 15 15 20 5y y y y y y     
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 1 2 5 8 11

1
3940 676 116 20 4 1

3363
y y y y y     14y        (6.138) 

3 2 5 8 11

1
544 676 116 20 4 1

1121
y y y y y y     14         (6.139) 

 6 2 5 8 11 1

1
280 1960 1972 340 68 43363

y y y y y y      17      (6.140) 

 9 2 5 8 11 14

1
16 112 656 660 132 33

1121
y y y y y y            (6.141) 

 12 2 5 8 11 14

1
8 56 328 1912 2308 577y y y y y y            (6.142) 
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The NLP corresponding to problem (6.30), for a discretization consisting of five 

elements and three nodes by the OCFE method, is given as follows: 
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  (6.143) 

In Tables 6.16 – 6.18, computational results are presented based on the application of 

the KC-R and KNC-R algorithms to solve the 5-element, 3-node problem given by 

problem (6.143). Table 6.17 contains the vector information for the two optima.  
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based on application of the KC-R algorithm. 
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6.16. Optimization results obtained for problem (6
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 6.17. Optima vectors obtained for problem (6

 

 

 

ble 6.18. Optimization results for problem (6.14

based on app gorithm. 

# Itera ons # unc  Calls CPU ime (s) 

KNC R K  
Total =     

KN R)
optima found 

are found/ 
to s 

NC R 
C + (

# 

(NOpt) 

# cases in 
which only 
NOpt optima 

tal # case

KNC R Total

6 12 52 1,918 1,970 1 (local only) 14/100 11.84 2.72 14.57

7 55 53 12,588 12,641 1 (global only) 35/100 12.41 88 100 

11 67 96 15,029 15,124 2 (global + local) 40/100 22.13 144 166 
 

# atio # F tion U e Iter ns unc  Calls CP  Tim  (s) 

K  
Total = 

KC ) 
C R KC R 

 + (R
KC R Total 

4 5 280 876 52.3 
N/A 36 0 8,530

9,686 
N/A 

36.5 88.8 

Optima Found 
y2 y5 y8 y11 y14 F 

0.99199 0.99263 0.99394 0.99594 0.99853 8.80e-5 
0.45717 0.76123 0.89781 0.95473 0.98784 1.81e-7 

The optima vectors differ from those found using a two-element, three-node 

OCFE discretization because the equations for y, dy/dx, and d2y/dx2 are different. The 

number of sampling experiments required in order for both the local and global optimum 

to be identified using the KNC-R method increases by 56.1% relative to the 9,686 
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required by the KC-R algorithm; furthermore both optima are identified only at a 40% 

success rate. The discovery of at least the global optimum is identified in 75% of the 

cases. The computational time required for global modeling using the KC-R algorithm is 

now higher than that required for the KC-R method because the computational time 

required for Delaunay triangulation increases rapidly when the number of simplex points, 

and, to a lesser extent, the number of sampling points used in the triangulation, both 

increase. The solution of this problem was also attempted using OCFE approximations 

for a five-element, four-node problem, whose reduced problem dimensionality was ten. 

However, the computational time required for performing the third-iteration Delaunay 

triangulation became prohibitive, as a new sampling set comprised of 11-point Delaunay 

triangle centroids could not be obtained even after eleven hours of real clock time had 

elapsed. Since the limiting factor in the application of the KC-R algorithm to a 10-D 

problem is the computational complexity of qHull, one natural extension of this work 

would therefore be the application of a Delaunay triangulation method employing an 

alternative convex hull algorithm in place of qhull whose computational complexity is 

 

6.4

lower.  

  Summary 

In this chapter, a centroid-based sampling algorithm has been presented for iterative 

global modeling using kriging. The new sampling algorithm is motivated by the 

opportunity to reduce the sampling expense associated with modeling, which can have 

practical implications in terms of the resource costs associated with performing field 

experiments or conducting computationally expensive simulations. The new sampling 

technique is applied within a kriging-RSM algorithm in order to obtain the complete 
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solution set of three global optimization test problems and two case studies, for problems 

containing up to five variables. The promise of the centroid-based sampling algorithm is 

measured in terms of the sampling expense required to identify all optima for each of the 

problems, and is compared against the corresponding sampling expense associated with 

the application of a sampling method employing 1) random sampling for initial modeling, 

and 2) sampling at locations of minimum prediction, maximum uncertainty, and where 

the

bal model creation are offset by successful convergence to improved 

local solutions.  

re is high model change between the current and previous model.  

It is found that application of the new sampling technique results in all optima being 

found at lower or equivalent sampling expense compared to the sampling algorithm 

which relies on randomized/heuristic sampling, when the problem dimensionality is low. 

When the problem dimensionality is higher than five, the Matlab 2008b Delaunay 

triangulation code, which employs the qHull algorithm, becomes computationally 

expensive to run, resulting in a significant increase in the global modeling time. 

Therefore, the centroid-based sampling algorithm has currently been successfully applied 

for problems containing up to five variables. Each kriging model is refined using 

additional sampling information, and once the global model is accurate, the best solutions 

serve as starting iterates for further optimization using RSM. The additional costs 

resulting from glo
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Chapter 7  

Summary and Future Work 

The contribution of the work in this dissertation has targeted the optimization of 

problems containing black-box models and noisy data. The black-box model description 

is applied when the equations employed by conventional gradient-based algorithm are 

either missing, as in the case of new research technologies, or, when they do exist, are 

either inaccurate, inaccessible, or mathematically intractable. In order to address the lack 

of directly accessible model equations, kriging and response surface methodologies are 

employed to create global and local surrogate models.  

Accurate models are generated using both kriging and RSM based on iterative 

refinement, in which additional sampling information is used to update earlier models. At 

the global level, a centroid-based sampling technique has been successfully employed to 

reduce the overall sampling expense associated with building accurate kriging models. At 

the local level, adaptive sampling templates have been developed to accelerate movement 

towards an optimum whenever iterate are near constraints. The generation of lower-D 

response surfaces projected onto constraints can significantly reduce sampling expense 

when the problem dimensionality is higher than five. The integration of multiple 

optimization techniques is a central feature of this work in which the sequential 

application of Branch-and-Bound, kriging, RSM, and direct search has provided a 

method for obtaining the solution of problems in which integer variables may also be 

present both inside and outside the black-box models. Each one of the developed 
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algorithms - kriging-RSM, B&B Kriging-RSM, B&B-Kriging-RSM-DS, and centroid-

based Kriging-RSM – can be employed as either a competitive alternative or a cross-

validation technique relative to other algorithms for finding a problem’s global optimum.  

There remain some areas where additional work can confirm and/or improve the 

promise of the developed algorithms.  

Firstly, in regards to the adaptive experimental designs presented in Chapter 2, the 

factorial and central composite designs were the main templates employed. Since 

sampling expense reduction is the key metric used for evaluating algorithmic 

effectiveness and efficiency, the construction of response surfaces using adaptive 

templates based on other template such as fractional factorial designs could result in 

lower sampling being required in the search for an optimum.  

Secondly, in regards to the fact that it is not always known a priori how much 

sampling is required in order to obtain an accurate kriging model, a theoretical study of 

the heuristics employed for generating the sampling set used in kriging model refinement 

could provide information as to how much additional sampling is required before 

convergence is attained in the average predictor value.  

Thirdly, the generation of a mathematically tractable analytical kriging predictor 

could be used to identify optima based on gradient calculations rather than by point 

estimation on a coarse sampling grid. As described in Chapter 3, a kriging prediction is 

the weighted sum of nearby sampled objective function values, and the weights are 

obtained by solution of a linear system of covariance information. Based on variable 

elimination in the linear system, each one of the weights can be analytically given as a 

nonlinear function of both sampling-pair and sampling-point/test-point covariances. 
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However, the closed-form expressions become mathematically intractable when the 

problem dimensionality increases above five. At the same time, the modeling expense 

multiplicatively increases as the problem dimension increases. The motivation for 

generating a closed-form predictor would be that model optima, and other locations of 

interest, such as vectors where there is high model uncertainty, could be determined 

strictly from the sampling information without requiring the high computational expense 

associated with generating a prohibitive number of kriging estimates.  

 Fourthly, the promise of the centroid-based kriging-RSM algorithm needs to be 

confirmed for problems whose dimensionality is greater than five and for problems in 

which integer variables are present both inside and outside the black-box models as given 

by Problems (4.1) and (5.1). The version of qHull employed for generating Delaunay 

triangulations is based on the seminal work performed by Barber57 in 1996, and more 

efficient Matlab-compatible algorithms are expected to have been developed over the 

past twelve years. In addition, the performance of the centroid-based sampling technique 

needs to be validated against other sampling templates in terms of the sampling expense 

associated with the discovery of problem optima. In this work, it has proven superior 

relative to a methodology that relies on a combination of randomized sampling for initial 

modeling and heuristic-based sampling for subsequent modeling. However, its 

performance has not yet been compared against the Centroidal Voronoi tessellation 

techniques employed by Romero55 or other iterative sampling methods.  

Fifthly, the employment of dynamic kriging could result in significant computational 

savings for time-dependent CPU-intensive simulation problems. For all the presented 

problems, the solution vectors are comprised of optimal values for design variables that 
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are not time-dependent. As an example, consider the kinetics case study presented in 

Section 2.3 and re-examined in Sections 3.3.5 and 6.3.4. The objective was to obtain 

optimal reactant concentrations for two species leading to the optimization of a objective 

function that was a function of steady-state species concentrations. For this problem, only 

the initial and steady-state species concentrations were of interest. If kriging were 

successfully applied as a dynamic predictor, substantial computational savings could be 

obtained since a complete evolution of the microscale system to steady-state each time a 

function call is required for modeling and optimization would no longer be necessary.  
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