


ABSTRACT OF THE DISSERTATION

Three-dimensional computational modeling and simulation

of biological cells and capsules

by Sai Doddi

Dissertation Director: Professor Prosenjit Bagchi

Three-dimensional computational modeling and simulation are presented on the flow-induced

motion of highly deformable particles which are representative of biological cells, such as

red blood cells. We focus on the dynamics of capsules, that is, liquid drops surrounded by

hyperelastic membranes. Unlike liquid drops where the fluid-fluid interface is characterized

by isotropic surface tension, that for a capsule is governed by more complex constitutive

laws. The numerical method is based on a front-tracking/immersed boundary method for

capsule deformation, and a finite-difference/fourier-transform method for the flow solver.

The methodology is able to consider large deformation of capsules, capsule-capsule inter-

action, semi-dense suspension, and inertial effect. Using the simulation tool, we address a

sequence of problems:

(a) Capsule motion in wall-bounded pressure-driven flows: The motion of a capsule in a

channel flow is investigated in absence of inertia and under large deformation. It is shown

that a deformable capsule slowly drifts lateral to the flow and away from the wall while

moving axially with the flow. Based on the theory of small deformation, and the present

numerical results, an approximate expression for migration velocity under large deformation
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is developed.

(b) Binary interaction in wall-bounded pressure-driven flows: Hydrodynamic interaction

between two capsules in a channel flow is investigated in absence of inertia. Effect of wall-

proximity on the shear-induced diffusion process, in which one capsule rolls over the other,

is studied for spherical and ellipsoidal resting shapes.

(c) Effect of inertia on binary collision: Hydrodynamic interaction between two capsules in

a linear shear flow is investigated in presence of inertia. The shear-induced diffusion pro-

cess is shown to be absent. Instead, a new interaction mode is found in which the capsules

engage in spiraling motion.

(d) Simulation of semi-dense suspension: We then consider direct numerical simulations

(DNS) of suspension of multiple capsules of spherical and biconcave resting shapes. Detailed

analysis of the numerical results and their relevance to in vitro blood flow are presented.

It is shown that the two-phase model of blood in microvessels underpredicts the DNS flow

rate. We proceed to develop a three-layer model based on the microrheology extracted from

the DNS, and show that it accurately predicts the DNS velocity.
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Chapter 1

Introduction

1.1 Circulatory System

The human circulatory system is composed of the heart, blood, and blood vessels facilitating

the delivery of oxygen and nutrients to every cell in the body. Blood is pumped by the heart

through the arterial and venular systems. The large arteries supply blood to smaller vessels,

known as arterioles, which then supply blood to even smaller vessels known as capillaries.

The nutrients and oxygen diffuse through the thin walls of the capillaries to the adjacent

tissue. The oxygen depleted blood is then collected in venules, and then in veins, and

finally it returns to the heart. The circulatory system can be divided into macro and micro-

circulation. The macro-circulation refers to the flow of blood in large blood vessels, such as

aorta, large arteries and veins, having internal diameter greater than about 500 µm. The

micro-circulation refers to the flow of blood in vessels in the diameter range of 5–500 µm,

and it consists of arterioles, venules and capillaries.

1.2 Blood

Blood is a multiphase suspension that is primarily composed of plasma, red blood cells,

white blood cells and platelets (figure 1.1). Plasma is a liquid that constitutes about 55%

of total blood volume. Blood cells are suspended in plasma. It also contains many sub-

micron and nano-scale particulates, such as proteins and lipids, apart from minerals, glucose

and enzymes. Nearly 90% of plasma is made of water; hence the density and viscosity of

plasma (∼ 1.2 cP) are nearly equal to the viscosity of water (1 cP).
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RBC

Platelet

WBC

Figure 1.1: A Scanning Electron Microscope image of red blood cells (RBC), white blood
cells (WBC), and disc shaped platelets. Image source: National Cancer Institute.

1.2.1 Red Blood Cell

Red blood cells (RBC) or erythrocytes are sacs of liquid protein called hemoglobin, that

are enclosed by deformable membranes. They constitute 40–45% of the total blood volume.

The volume fraction of the red blood cells in blood is termed hematocrit. An undeformed

RBC is biconcave discoid in shape. The diameter of a typical RBC is about 8 µm with

a thickness of 2 µm. RBCs normally do not have a nucleus. The membrane of an RBC

is composed of a lipid bi-layer with an underlying two–dimensional actin network called

cytoskeleton (figure 1.2). This structure gives the RBC its membrane stiffness and helps

retain the undeformed shape under resting condition. Under external force, RBCs easily

deform. However, during deformation, the surface area of an RBC remains constant. The

deformability of RBCs is essential for them to flow through even the smallest blood vessels.

The viscosity of the liquid inside the cell (hemoglobin) is five times the viscosity of plasma

(Skalak et al. 1989).



3

Hemoglobin

Plasma

RBC Membrane(A)

µ1 = 1.2cP

µ2 = 6cP

(B)

Lipid
Molecule

Protein
Molecule

Lipid
Bilayer
(5 nm)

Figure 1.2: (a) Section of a red blood cell. Part of the RBC is magnified to show the
composition of the RBC membrane. (b) The lipid bilayer of the RBC membrane is shown.

1.3 Rheological Models for Blood Cells as Capsules

The deformability of the cell membrane, and the liquid-like nature of the cytoplasm make

the entire cell deform when subject to an external fluid flow. The ability of a cell to deform

primarily arises from the properties of its membrane and cytoplasm. The membrane of a

red blood cell is composed of a lipid bi-layer of about 5 nm thickness, and a 2D skeletal

structure which lies beneath the bi-layer. The skeletal structure is made of actin filaments,

and is known as cytoskleton. The bi-layer has a unique mechanical property that it can

be deformed, but not stretched. The 2D cytoskeleton is believed to be responsible for the

bending resistance of the red blood cell membrane, which causes a deformed cell to regain

its biconcave shape when the external force is withdrawn.

On a mesoscopic scale, the detailed molecular structure of the lipid bi-layer and the

underlying cytoskeleton can be neglected. Then, the entire cell can be modeled as a capsule,

that is a liquid drop surrounded by an infinitesimally thin elastic membrane (Figure 1.2).
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Similar to a liquid drop, a capsule deforms when placed in a shear flow. However, there are

important differences between a capsule and a liquid drop. For the latter, deformation is

determined by the surface tension, and the viscosity of the liquid. For a capsule, typically,

four quantities determine its mechanical behavior: the viscosity of the interior liquid (or,

cytoplasm), the extensional elastic modulus of the membrane, the shear modulus, and the

bending resistance of the membrane. The elastic response of the capsule membrane is then

expressed in terms of a strain energy function. Some of the models often used to describe

the strain energy of the membrane of a blood cell are described below.

Mooney-Rivlin model

Mooney-Rivlin model (see e.g., Pozrikidis 2003) is a rubber elastic model to describe the

property of the membrane. The membrane in this model is regarded as a thin layer of homo-

geneous, isotropic, three-dimensional incompressible material. The strain energy function,

W for such a membrane is given by

W =
Es

6
(1 − ψ)[2Λ2 + e−2Λ1 − 1] +

Es

6
ψ[2Λ2e

−2Λ1 + 2e−2Λ1 + e2Λ1 − 3]. (1.3.1)

In the above equation, ψ is a non-dimensional parameter varying from 0 to 1, which intro-

duces non-linear behavior in the model. Λ1 and Λ2 are the strain invariants (Barthès-Biesel

and Rallison 1981) given by

Λ1 = log ε1ε2, and

Λ2 = (1/2)(ε21 + ε22) − 1,

where ε1 and ε2 are the principal extension ratios, and Es is the surface elastic modulus of

the membrane.

Neo-Hookean model

Neo-hookean model is a special case of the Mooney-Rivlin law when ψ → 0. Then, the

strain energy function is given by

W =
Es

6
(ε21 + ε22 + ε−2

1 ε−2
2 − 3). (1.3.2)
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Skalak et al model

The above models do not strictly represent a RBC membrane which undergoes deforma-

tion without stretching. Skalak et al. (1973) proposed a strain energy W to describe the

properties of red blood cell membrane given by,

W =
B

2
(Λ2

2 + Λ2 −
e2Λ1 − 1

2
) +

C

8
(e2Λ1 − 1)2. (1.3.3)

where Λ1 and Λ2 are the same as defined earlier. For an RBC, the values of the constants,

B and C, are B = 0.5 × 10−2 dyn/cm and C = 5 dyn/cm, respectively.

Evans-Skalak model

From the measurement of deformation of a human RBC membrane, Evans and Skalak

(1980) developed a strain energy function given by

WRBC = Ea(ε1ε2−1)2 + Es(
ε21 + ε22
2ε21ε

2
2

− 1). (1.3.4)

Here Ea = 500 dyn/cm is an area dilatation modulus, and Es = 6× 10−3 dyn/cm is the

shear modulus. The high value of Ea and the low value of Es allow large deformation of an

RBC without a significant change in its surface area.

1.3.1 Dynamics of Single Capsule

Dynamics of single capsule has been a subject of investigation for several decades. Defor-

mation of a capsule suspended in a shear flow was measured by Chang & Olbright (1993).

Recently, Risso et al. (2006) experimentally investigated single-file motion of artificial cap-

sules flowing through narrow tubes. Barthès-Biesel and co-workers (Barthès-Biesel 1980;

Barthès-Biesel & Rallison 1981; Barthès-Biesel & Sgaier 1985; Barthès-Biesel 1991) devel-

oped the theory of small deformation for a capsule suspended in a shear (or, a general

linear) flow. Li et al. (1988) computed axisymmetric large deformation of capsules in a

pure straining flow, and Leyrat-Maurin & Barthès-Biesel (1994) studied axisymmetric large

deformation of a capsule during its passage through a hyperbolic constriction. Queguiner
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& Barthès-Biesel (1997) studied the axisymmetric motion of capsules through cylindrical

tubes. Pozrikidis (1995) and Ramanujan & Pozrikidis (1998) used boundary integral simu-

lation to consider large deformation of capsules in shear flow. Pozrikidis (2001) and Kwak

& Pozrikidis (2001) have also studied the effect of membrane bending resistance on the

deformation of a capsule suspended in shear flow and in axisymmetric straining flow. Effect

of membrane viscosity on the dynamic response of a capsule was studied by Diaz et al.

(2000, 2001). Capsule deformation under various constitutive laws for the membrane mate-

rial was studied by Barthès-Biesel et al. (2002) and Lac et al. (2004). Effect of membrane

pre-stress was studied by Lac & Barthès-Biesel (2005). Eggleton & Popel (1998) studied

the large deformation of red blood cell ghosts using immersed boundary method. They have

used both the neo-Hookean and Evans-Skalak model to study the deformation of initially

spherical and biconcave capsules in shear flow.

1.4 Blood in Microcirculation

Due to its particulate nature, the study of blood, both experimental and theoretical, has

been very challenging. Fortunately, for large vessels in macrocirculation, the characteristic

size of a blood cell is much smaller than the diameter of the vessel. The flow rate (and

hence, the average shear rate) is also very high in these vessels, so that the red blood cells

are maximally deformed. In such a case, the presence of individual cells can be neglected and

the whole blood can be modeled as a single-phase liquid using an appropriate constitutive

relation.

In microcirculation, however, the size of a blood cell is comparable to the diameter of

a blood vessel. The shear rate is also low, but strongly varying, in these vessels. The

multiphase nature of blood becomes important in these vessels. Blood in such vessels

behaves as a non-Newtonian fluid; that is, the viscosity of blood is not constant, rather it

depends on the vessel diameter.

The viscosity of blood is an important fluid dynamic and physiological quantity. It

determines the pumping power required by the heart. Under many disease conditions, the
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viscosity of blood increases. Since the viscosity of blood in microcirculation is not known a

priori, an apparent viscosity of blood is introduced by invoking the Poiseuille law as

µapp =
πD4

128L

∆P

Q
(1.4.1)

where ∆P is the pressure drop, Q is the volume flow rate, D is the diameter and L is

the length of the tube. The relative apparent viscosity, µrel = µapp/µp is the ratio of the

apparent viscosity µapp and the viscosity of plasma µp. The relative apparent viscosity is

sometimes also referred to as relative viscosity or effective viscosity.

1.4.1 Fahraeus and Fahraeus-Lindqvist effect

The non-Newtonian nature of blood flowing through a small tube was first described by

Fahraeus and Lindqvist (Fahraeus & Lindqvist 1931). The Fahraeus-Lindqvist effect refers

to a decrease in the viscosity with decreasing vessel diameter (figure 1.3). The figure shows

that as the tube diameter decreases below 500 µm, the relative viscosity decreases, until it

reaches a minimum when the vessel diameter is about 8 µm. Upon further decrease in ves-

sel diameter, the relative viscosity increases sharply showing a reverse Fahraeus-Lindqvist

effect. A somewhat related phenomenon, known as Fahraeus effect, refers to the decrease

in hematocrit ratio (HT /HD, where HT is the tube hematocrit and HD is discharge hemat-

ocrit) as the vessel diameter decreases from 500 to 8 µm (figure 1.3). Upon further decrease

in vessel diameter, the hematocrit ratio increases sharply.

1.4.2 Cell-free layer

Deformability of the red blood cell is the key to the Fahraeus and Fahraeus-Lindqvist

effects. In narrow capillaries with diameters less than 8µm, the red blood cells need to

squeeze themselves in order to move through these vessels. The motion of RBCs in such

narrow vessels is often referred to as the single file motion (figure 1.4). Cell deformability

plays a critical role here. Experiments have shown that RBCs can flow through capillaries as

small as 3µm in diameter. An individual RBC fills the entire cross-section of the vessel, and
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Figure 1.3: Top panel: Effect of diameter of the tube on the relative apparent viscosity for
45% volume fraction of red blood cells. Solid curve is the empirical fit to data (Pries et al.

1990). Bottom panel: Effect of diameter of the tube on the hematocrit ratio HT /HD.
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Figure 1.4: Flow of human red blood cells moving through glass tubes with approximate
diameters 4.5 µm (top), 7µm (middle), and 15 µm (bottom), in the experiments by Alex
R. Pries (Pozrikidis 2003); the flow direction is from left to right.

the friction between the vessel wall and the cell results in a large pressure drop across the

cell, and hence an increased relative viscosity (figure 1.3). As the vessel diameter increases,

a cell-free layer forms between the cell and the wall which facilitates the cell to move with

less friction. Also, the cells move at higher velocity relative to the average flow velocity

since the cells are closer to the tube centerline where the velocity is a maximum. As a

result, the relative viscosity decreases. For vessels having 8–10 µm diameter, the RBCs still

move in single file, but the gap between the cells and the vessel wall increases significantly.

This gap, which contains plasma, refers to as the cell-free or cell-depleted layer. On

the contrary, the core of the vessel is called cell-rich core. The cell-free layer has a locally

reduced viscosity than the cell-rich core. On the average, the increased thickness of the

cell-free layer results in a reduction in the relative viscosity (figure 1.3).

As the vessel diameter increases beyond ∼ 10µm, RBCs no longer flow in single file.

Rather, they flow in multi-files (figure 1.4). The ratio of the cell-free layer thickness to

the vessel diameter starts decreasing, and hence the relative viscosity increases. For vessels

larger than ∼ 500µm in diameter, the role of the cell-free layer becomes insignificant, and
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the relative viscosity becomes nearly constant.

1.4.3 Lateral Migration

The formation of the cell free-layer is due to a migration of the red blood cells lateral to the

mainstream flow and away from the wall of the vessel. The lateral migration arises due to

the deformation of the red blood cells (Goldsmith 1971). As per the theory of viscous fluid

mechanics (Stokes flow), a perfectly rigid particle does not migrate away from the wall, but

a deformable particle does (Happel & Brenner 1983). Deformation results in an asymmetry

in the flow, and a non-zero lift force directing away from the wall. The lateral migration has

been well studied in case of a liquid drop. Extensive studies exist on the lateral migration of

an isolated liquid drop in absence of inertia: e.g. Karnis et al. (1963), Goldsmith & Mason

(1962), Chan & Leal (1979), Hiller & Kowalewski (1987), Coulliette & Pozrikidis (1998),

and many others. These studies suggest that the equilibrium position of a liquid drop in a

pressure-driven flow depends on λ, the ratio of the viscosity of the liquid drop to that of

the surrounding liquid. At a low viscosity ratio of less than unity, the drop settles at the

tube axis. But for λ ∼ O(1), it settles at a position between the wall and the axis. The

cross-stream migration also depends on the ratio of the capsule (or drop) diameter to the

size of the channel or conduit.

In a dilute suspension, individual RBCs continuously migrate toward the center of the

vessel. In a dense suspension, hydrodynamic interaction between adjacent cells also affects

their motion. The cell-free layer is formed under a balance of the deformation-induced

lateral migration and the dispersion due to the cell-cell interaction (Goldsmith 1971).

1.4.4 Challenges

The motion of RBC in narrow capillaries is often axisymmetric (figure 1.4), and hence

amenable to theoretical analysis (Secomb 1987, Queguiner & Barthès-Biesel 1997). Hsu &

Secomb (1989), and Coulliette & Pozrikidis (1998) have also extended the work to non-

axisymmetric single file motion (figure 1.4). The main difficulty in the theoretical analysis
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of the blood flow at small scales arises when the vessel diameter is in the range ∼10–500

µm. In such vessels, the cells move in a multi-file fashion (figure 1.4). The cell-to-cell

interaction also becomes important. Simulation of multiple, deformable blood cells is a

major computational challenge. Three-dimensional simulations of bubbles, drops, and rigid

particles have been pursued by various groups for both Stokes flow and inertial flows, such as

Nott & Brady (1994), Loewenberg & Hinch (1996), Zinchenko & Davis (2002), Mortazavi &

Tryggvason (2000), Pozrikidis (2002), Patankar et al. (2001), Zhang & Prosperetti (2005),

to name a few. Similar investigations with a large number of blood cells or capsules have

not been reported.

1.5 Scope of the thesis

The objective of this thesis is to develop computational models and simulations to study

the dynamics of capsules, as models for blood cells. The framework is able to consider

a wide variety of problems, such as, dynamics of single capsule, capsule-to-capsule binary

interaction, and motion of multiple capsules under a variety of flow conditions, such as

steady linear shear (Couette flow), parabolic shear (pressure-driven flows), and oscillatory

shear flows. The methodology should be able to consider various models for hyperelastic

membrane, such as neo-Hookean law, Evans-Skalak law, etc., as introduced in the previous

chapter. It should also be able to consider the difference in the viscosity of the liquids

interior and exterior to the capsule. Further, it should be readily extensible to consider the

effect of inertia, which may play a role during the manufacturing of giant artificial capsules.

The specific topics that are addressed in the thesis are described below.

1. Computational modeling and simulation of capsule deformation (Chapter

2): We develop a computational methodology for unsteady capsule dynamics in three-

dimensions using a front-tracking/immersed boundary method for deformable inter-

face and a finite-difference/Fourier transform method for flow solver. The method-

ology can address problems ranging from dynamics of a single capsule, interaction

between a pair of capsules, motion of multiple capsules under a variety of flows such
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a simple or parabolic shear, and oscillatory flows. The computational framework is

quite general, and it is currently being applied to address more specific biological

problems, such as adhesive rolling motion of a white blood cell (Pappu et al. 2008),

and interaction between a red blood cell and a white blood cell (Pappu & Bagchi

2007).

2. Lateral migration of capsule in wall-bounded flow (Chapter 3): Using the

above numerical tool, the first problem that is addressed is the motion of a capsule

in a pressure-driven (parabolic) flow through a channel. As mentioned in Chapter 1,

a deformable capsule in a wall-bounded flow migrates away from the wall. To date,

the migration of a capsule has been addressed only in the limit of small deformation.

The focus of this study is the migration of a capsule under large deformation,

3. Capsule-capsule interaction in wall-bounded flow (Chapter 4): We consider

the hydrodynamic interaction between two capsules as they migrate simultaneously.

The objective is to study the effect of a neighboring capsule on migration velocity.

This study also illustrates the role of wall effects on shear-induced self-diffusion process

which is a key process for mixing in suspensions at low inertia.

4. Effect of inertia on hydrodynamic interaction between two capsules (Chap-

ter 5): Next, we consider the effect of inertia on the hydrodynamic interaction be-

tween two capsules suspended in a simple shear flow. In absence of inertia, binary

collision between two capsules (or, any deformable particles, in general) tends to the

‘shear-induced diffusion’, in which one capsule rolls over the other resulting in an ir-

reversible shift in their trajectory. The objective of this chapter is to study the effect

of inertia on the shear-induced diffusion process, as finite-inertia suspension is often

encountered during manufacturing of synthetic capsules.

By focusing on the motion of an isolated capsule, and two interacting capsules, the

above studies form the basis for addressing the more complex problem of the motion

of multiple, interacting capsules in non-dilute suspension, as in the case of blood flow
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in a microvessel.

5. Simulation of capsule suspension (Chapter 6): As mentioned before, one of the

challenges in the computational study of a suspension of capsules, in particular, and

of any deformable objects, in general, is to be able to consider a large ensemble of

capsules. This is a formidable problem when large deformation of multiple interacting

capsules is considered, especially for a geometry which is not triply periodic. The

computational methodology developed here is extended to consider the motion of

O(100) three-dimensional capsules in a channel flow. Rheology of a suspension of

deformable capsules is extracted. These simulations facilitate the development of an

improved low-order model for blood flow in microvessels.
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Chapter 2

Numerical Methodology

2.1 Flow Configuration and Simulation Technique

2.1.1 Problem setup

We consider three-dimensional simulation of a suspension of deformable capsules (figure

2.1) in a channel. The channel is bounded by two infinite flat plates placed parallel to the

X-axis in the XY Z coordinate system as shown. The height of the channel is H. In absence

of the capsules, the undisturbed flow u0 is either parabolic, driven by a constant pressure

gradient dP/dX as

u0 =

[
1

2µ0

(
−
dP

dX

) (
H Y − Y 2

)
, 0, 0

]
, (2.1.1)

or, a linear shear flow at zero pressure-gradient driven by the two walls of the channel as

u0 = [γ̇(Y −H/2), 0, 0] , (2.1.2)

where γ̇ is the shear rate. Here Z is the direction of vorticity of the undisturbed flow. The

no-slip conditions are imposed at the top and bottom walls as

u = u0(Y = 0, H). (2.1.3)

The channel is assumed to be infinitely long in the X and Z directions. We use periodicity

conditions in these directions to reduce the size of the computational domain. The stream-

wise length of the domain is Hx and the length in the Z direction is Hz. As discussed

later, the condition of periodicity not only reduces the size of the domain, but also allows

us to use Fourier transform for fast computation. The capsules are released in the flow at
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Figure 2.1: Three dimensional computational domain for simulation of capsule suspension.

time t = 0. The initial undeformed shape of the capsules can be spherical, ellipsoidal or

biconcave.

2.1.2 Fluid-structure interaction

The simulation technique considered here is the front-tracking/immersed boundary method

(Peskin 1977, Unverdi & Tryggvason 1992, Tryggvason et al. 2001) for multiple fluids with

different properties. The main idea of the front-tracking method is to use a single set of

equations for both the fluids, inside and outside of the capsule. The fluid equations are

solved on a fixed Eulerian grid, and the interface is tracked in a Lagrangian manner by a

set of marker points (figure 2.2). The interface is accounted for by introducing a body force

F(x, t) in the governing equations such that it is zero everywhere in the flow except at the

interface:

F(x, t) =

∫
∂S

f(x′, t)δ(x − x′)dx′ (2.1.4)

where x is the location of an arbitrary point in the flow domain, x′ is any point on the

interface, ∂S is the entire interface, and δ is the three-dimensional Delta function which
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Figure 2.2: The Eulerian and Lagrangian grids.

vanishes everywhere except at the interface. Here f is the elastic force generated in the

membrane due to deformation of the capsule. For incompressible fluids of different viscosity,

the governing equations are:

∇ · u = 0 , and ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p+ ∇ · τ + F (2.1.5)

Here u(x, t) is the fluid velocity, ρ is the density, p pressure, and

τ = µ(∇u + (∇u)T ) (2.1.6)

is the viscous stress tensor. Here µ(x, t) is the viscosity in the entire fluid: within a capsule,

µ = µc, and for any point outside, µ = µ0. As the capsules move and deform, µ(x, t)

needs to be updated. Following Tryggvason et al. (2001), this is done by solving a Poisson

equation for an indicator function I(x) such that

µ(x) = µ0 + (µc − µ0)I(x) . (2.1.7)

The δ function used in (2.1.4) is constructed by multiplying three 1D δ functions as

δ(x − x′) = δ(x− x′)δ(y − y′)δ(z − z′) . (2.1.8)



17

For numerical implementation, a smooth representation of the δ-function is used as

D(x − x′) =
1

64 ∆3

3∏
i=1

(
1 + cos

π

2∆
(xi − x′i)

)
for |xi − x′i| ≤ 2∆, i = 1, 2, 3,

D(x − x′) = 0 otherwise, (2.1.9)

where ∆ is the Eulerian grid size (Unverdi & Tryggvason 1992). As a result, the membrane

force and viscosity vary smoothly over four Eulerian grid points surrounding the interface.

In discrete form, the integral in (2.1.4) can be written as

F(xj) = ΣiD(xj − x′

i)f(x
′

i) (2.1.10)

where i and j represent Lagrangian and Eulerian points, respectively.

2.1.3 Numerical treatment of membrane deformation

The capsule membrane follows the neo-Hookean law for which the strain energy function is

given by

W =
Es

6
(ε21 + ε22 + ε−2

1 ε−2
2 − 3) (2.1.11)

where ε1 and ε2 are the principal stretch ratios and Es is the surface elastic modulus. We

assume that the bending resistance of the membrane is negligible.

The deformation of the membrane is treated using a finite element model developed by

Charrier et al. (1989) and Shrivastava & Tang (1993), and later implemented by Eggleton

& Popel (1998) within the framework of immersed boundary method to consider large

deformation of capsules. First, the membrane is discretized using flat triangular elements

(figure 2.3a). A Lagrangian node on the surface is surrounded by five or six triangular

elements. It is assumed that the elements remain flat even after large deformation of the

capsule. In the model, the forces acting on the three vertices of a triangular element

are obtained by computing the displacements of the vertices of the deformed element with

respect to the undeformed element. For this purpose, the undeformed and deformed surface

elements are transformed to a common plane P using rigid-body rotations (figure 2.3b). By
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Figure 2.3: (a) Lagrangian elements on the capsule surface. (b) Deformation of a planar
triangular element in space, and comparison of the deformed and undeformed element in a
common plane.
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denoting the three vertices of a triangular element as l,m, and n (see figure 2.3b), and

the undeformed and deformed coordinates of the element as x and X, respectively, the

transformation rules used for coordinate rotation are

xP
l = 0, xP

m = M (xm − xl), xP
n = M (xn − xl), and, (2.1.12)

XP
l = 0, XP

m = R (Xm − Xl), XP
n = R (Xn − Xl), (2.1.13)

where xP
l and XP

l etc. are the coordinates of the vertices of the undeformed and deformed

elements on the common plane P ; M and R are the transformation matrices defined as

Mij = eui e
0
j and Rij = edi e

0
j , where e0, eu, and ed are the unit vectors attached to a fixed

reference frame, to the undeformed element, and to the deformed element, respectively

(figure 2.3b). Once the deformed and undeformed elements are transformed to the common

plane P , the problem is reduced to a 2D (planar) deformation on {xP , yP }, where xP , yP

denote a local coordinate system attached to the plane P . The displacements of the three

vertices can be obtained which do not include the contribution from a rigid-body rotation.

Using the principle of virtual work, the forces in the common plane P are then obtained as

fP
l =

∂W

∂ε1

∂ε1
∂vl

+
∂W

∂ε2

∂ε2
∂vl

(2.1.14)

for the vertex l, and similarly for vertices m and n. Here v is the displacement of a vertex,

and ε1 and ε2 are the principal values of the in-plane stretch ratios. The force fP lies in

plane P .

We now assume that the displacement v varies linearly inside the element so that

v = Nlvl +Nmvm +Nnvn. (2.1.15)

and the shape functions Nl, Nm and Nn are expressed as

Nl = alx
P + bly

P + cl (2.1.16)

for the vertex l, and similarly for vertices m and n. The coefficients al etc. are found by

letting Nl = 1 at vertex l, and Nl = 0 at vertices m and n, and so on. Once the shape
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functions are known, the displacement gradients within the element, such as ∂v/∂xP , and

∂v/∂yP , can be found by differentiating (2.1.15).

At this point we need to express the in-plane stretch ratios ε1 and ε2 in terms of the gra-

dients ∂v/∂xP etc, in order to evaluate the derivatives in (2.1.14). For a planar deformation,

ε1 and ε2 can be related to the deformation gradient tensor D as

ε21 =
1

2

[
G11 +G22 +

√{
(G11 −G22)

2 + 4G2
12

}]
, (2.1.17)

ε22 =
1

2

[
G11 +G22 −

√{
(G11 −G22)

2 + 4G2
12

}]
, (2.1.18)

where G = DTD is a symmetric positive definite matrix. Using the expressions for ∂v/∂xP ,

and ∂v/∂yP , the components of G can be written explicitly in terms of the shape functions

N and the nodal displacement v. The derivatives in (2.1.14), such as ∂ε1/∂v, can then

be written explicitly, and hence fP can be evaluated at each of the vertices of an element.

Once the in-plane forces for individual element are found, they need to be transformed to

the global coordinates. This is done by using the transformation rule f = RT fP , where R

is the transformation matrix as explained above. The resultant force f(x′, t) at any node is

obtained by vector resultant of the forces contributed by all the elements which share that

node.

2.1.4 Surface discretization

The surface of the capsule is discretized using flat triangular elements. The triangulated

surface mesh needed for the simulations is obtained from the GNU Triangulated Surface

(GTS) Library. GTS is an Open Source Free Software Library intended to provide a set of

useful functions for scientists dealing with 3D computational surface meshes. GTS provides

a set of useful functions to deal with 3D surfaces meshed with interconnected triangles

including collision detection, multiresolution models, constrained Delaunay triangulations

and robust set operations (union, intersection, differences). The discretized surface for a

sphere and a RBC is shown in figure 2.3.
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2.1.5 Interface tracking

The capsule membrane is tracked in a Lagrangian manner. The velocity of the interface is

computed at each time step, after solving the Navier-Stokes equations, as

u(x′) =

∫
S
u(x)δ(x − x′)dx, (2.1.19)

where S indicates the entire flow domain. Though the summation is over all Eulerian nodes,

only the ‘local’ nodes contribute to the membrane velocity. The discrete form of the delta

function used here is the same given by (2.1.8). In this way, a weighted interpolation of the

Eulerian fluid velocity is performed which ensures that the continuity of velocity across the

membrane is satisfied. The Lagrangian points on the membrane are then advected as

dx′

dt
= u(x′). (2.1.20)

Numerically, the above equation is treated explicitly using the second-order Adams-Bashforth

scheme as

x′

n+1 = x′

n + ∆t

[
3

2
u(x′

n) −
1

2
u(x′

n−1)

]
, (2.1.21)

where n, n+ 1, etc. are the time instances.

2.1.6 Flow solver

The time-marching of the flow solver is done using a two-step time-split scheme. In the first

step, known as the predictor step, an advection-diffusion equation is solved

ρ

[
∂u

∂t
+ u · ∇u

]
= ∇ · τ + F . (2.1.22)

The interfacial force is retained in the advection-diffusion equation. For constant density

but variable viscosity, as in case of capsule and cell suspension, the above equation can be

written, for the three velocity components, as

ρ

[
∂u

∂t
+ (NL)x

]
= µ∇2u+ 2

∂µ

∂x

∂u

∂x
+
∂µ

∂y

(
∂u

∂y
+
∂v

∂x

)
+
∂µ

∂z

(
∂u

∂z
+
∂w

∂x

)
+ Fx (2.1.23a)
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ρ

[
∂v

∂t
+ (NL)y

]
= µ∇2v +

∂µ

∂x

(
∂v

∂x
+
∂u

∂y

)
+ 2

∂µ

∂y

∂v

∂y
+
∂µ

∂z

(
∂v

∂z
+
∂w

∂y

)
+ Fy (2.1.23b)

ρ

[
∂w

∂t
+ (NL)z

]
= µ∇2w +

∂µ

∂x

(
∂w

∂x
+
∂u

∂z

)
+
∂µ

∂y

(
∂w

∂y
+
∂v

∂z

)
+ 2

∂µ

∂z

∂w

∂z
+ Fz (2.1.23c)

where NL = u·∇u. In the time-integration, the nonlinear terms are treated explicitly using

a second-order Adams-Bashforth scheme and the viscous terms are treated semi-implicitly

using the Crank-Nicolson scheme,

ρ
u∗ − un

∆t
=

1

2
[D(u∗) + D(un)] −

3

2
(NL)un +

1

2
(NL)un−1, (2.1.24)

where u∗ is the predicted velocity at an intermediate time level between ‘n’ and ‘n+1’

which is not divergence-free, ∆t is the time step size, D denotes the diffusion terms, and

NL denotes the nonlinear terms in the Navier-Stokes equations. Spatial derivatives are

computed using 2nd order finite-difference scheme.

Since the diffusion terms are treated semi-implicitly, the advection-diffusion equation has

to be solved either iteratively, or by direct inversion. Here we adopt the latter approach.

Also note that the advection-diffusion equation contains evolving viscosity µ(x, t), and its

spatial derivatives. In order to be invertible, the diffusion operators must be separable.

This is done by using an Alternate Direction Implicit (ADI) scheme in which the equation

is solved in four steps as follows

Step 1. ρ
u∗∗∗∗ − un

∆t
= −

[
3

2
(NL)n

x −
1

2
(NL)n−1

]
+

[
3

2
Fx

n −
1

2
Fx

n−1

]
(2.1.25a)

+

[
3

2

(
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x

)n

−
1

2

(
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x

)n−1
]

+

[
1

2

(
µ∇2u+ 2

∂µ

∂x

∂u

∂x
+
∂µ

∂z

∂u

∂z
+
∂µ

∂y

∂u

∂y

)n]

Step 2. ρ
u∗∗∗ − u∗∗∗∗

∆t
=

1

2

(
µ
∂2u∗∗∗

∂x2
+ 2

∂µ

∂x

∂u∗∗∗

∂x

)
(2.1.25b)
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Step 3. ρ
u∗∗ − u∗∗∗

∆t
=

1

2

(
µ
∂2u∗∗

∂z2
+
∂µ

∂z

∂u∗∗

∂z

)
(2.1.25c)

Step 4. ρ
u∗ − u∗∗

∆t
=

1

2

(
µ
∂2u∗

∂y2
+
∂µ

∂y

∂u∗

∂y

)
(2.1.25d)

for u, and similarly for v, and w. The viscosity µ and its derivatives are assumed to be

known from level ‘n’. The step 1 is explicit, and can be readily obtained. For steps (2) to (4),

we use tri-diagonal matrix solver. Since x and z directions are periodic, cyclic-tri-diagonal

solver is used for steps (2) and (3).

The second step involves solving a Poisson equation for the pressure as

∇2Pn+1 =
1

∆t
∇ · u∗. (2.1.26)

The Poisson equation must be solved fully implicitly to force the final velocity field to be

divergence-free. Due to periodicity in the z direction, we use the Fourier transform. The

resultant equation is given by

[DY ] P̂n+1 + P̂n+1 [D1] = ̂RHSp, (2.1.27)

where [D1] = [DX ] − [I] k2
Z (2.1.28)

where ̂RHSp is the right hand side of (2.1.26). This equation is solved for P̂n+1 by making

use of a matrix diagonalization procedure. The operator matrices are diagonalized as,

[DY ] = [R]λR

[
R−1

]
, (2.1.29)

[D1] = [T]λT

[
T−1

]
(2.1.30)

where R, T are the matrices formed by the eigenvectors of matrix DY and D1, and λR and

λT are the eigenvalues of DY and D1 respectively. Then the pressure at the interior points

is obtained as

P̂n+1 = [R]

[
R−1(̂RHSp)T

λR + λT

] [
T−1

]
, (2.1.31)

The velocity field obtained from the predictor step is then projected onto a divergence-free

space to obtain the velocity field at time level ‘n+1’ as

un+1 − u∗

∆t
= −∇Pn+1 (2.1.32)
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Once the velocity field is known, the position of the capsules is updated as described

before using (2.1.19) and (2.1.20). Then µ(x, t) is updated by solving a Poisson equation

for the indicator function I(x) as

∇2I = ∇ · G , (2.1.33)

where

G = ΣiD(xj − x′

i)n∆s , (2.1.34)

and D is the discrete δ function as given in (2.1.8), n is the unit normal to the cell surface,

and ∆s is the triangular surface element. Solution procedure for the above equation is

similar to that for the pressure.

2.1.7 Numerical resolution

Typical Eulerian resolution used in this study is 120 × 120 × 120 to 160 × 160 × 160, and

Lagrangian resolution used is 1280–5120 triangular elements. Dimensionless timestep used

in the simulation is 10−3.

2.2 Validation

2.2.1 Capsule deformation in linear shear flow

We now present a series of validation of our present code. For this purpose, we consider

deformation of an initially spherical capsule subject to a linear shear flow as

u0 = [γ̇(Y −H/2), 0, 0] , (2.2.1)

where γ̇ is the shear rate. The flow is bounded in the Y direction by two parallel walls

which are placed H distance apart. The Z direction is the direction of vorticity. The

no-slip condition is imposed at the top and bottom walls as

u = u0(Y = 0, H). (2.2.2)
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Periodic conditions are imposed at the other boundaries of the domain as discussed in

previous section. The computational domain for this problem is a cube with each side

having length H. The capsule is placed at the middle (Xc0 = H/2, Yc0 = H/2, Zc0 = H/2)

of the computational domain. The capillary number for the shear flow problem is defined

as Ca = γ̇aµ0/2Eh. The other important parameter is the viscosity ratio of the interior to

exterior fluid λ = µc/µ0.

Consider first λ = 1 case. The initially spherical capsule deforms in a shear flow and

attains an ellipsoidal shape. The steady-state shape of the deformed capsule is shown in

figure 2.4a as a function of Ca. Capsule deformation increases, and it aligns more towards

theX-axis with increasing Ca. This qualitative trend agrees with previous numerical results

of Ramanujan & Pozrikidis (1998) (henceforth called RP) and Lac et al. (2004) (henceforth

called L1).

The flow field inside and around a deformed capsule is shown in figure 2.4b. The

rotational motion of the fluid can be seen in the figure.

Rehage et al. (2002) have experimentally studied the deformation of a capsule enclosed

by a polyamide membrane subject to simple shear flow. We have compared our results with

theirs along with the linear theory of Barthès-Biesel & Rallison (1981) in figure 2.5. The

comparison is agreeable. At higher shear rates or Ca, the linear theory deviates from the

actual deformation obtained through both experiment and present simulation as expected.

Quantitative comparisons with the results of RP and L1 are considered next. We con-

sider time history of the deformation parameter, D = (L−B)/(L+B) where L and B are

the major and minor axis of the ellipsoid in the plane of the shear. Our results are compared

with those of RP in figure 2.6a and of L1 in figure 2.6b. In Table 2.1, we list the numerical

values of the steady-state deformation D obtained from our simulations, from RP, from

L1, and also from small deformation analysis of Barthès-Biesel & Rallison (1981). We also

compare our results with those of Li and Sarkar (2008) for Ca = 0.1 and 0.2, who used a

similar but independently-developed front-tracking code to simulate capsule deformation.

At low Ca, our results agree well with those predicted by the small deformation analysis.
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Figure 2.4: (a) Capsule deformation in linear shear flow. 2D shapes in the shear plane are
shown after steady state is reached. –◦– Initial shape, · · · · · · Ca = 0.05, —— Ca = 0.1, –
– – Ca = 0.2. (b) Flow field at Ca = 0.1 after steady state is reached.
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Table 2.1: Validation: Comparison of steady state deformation D with Ramanujan &
Pozrikidis (1998) (RP), Lac et al. (2004) (L1), Li and Sarkar (2008) (LS) and small defor-
mation theory (S.D) of Barthès-Biesel & Rallison (1981).

Ca Present RP L1 SD LS

0.0125 0.083 0.08

0.025 0.162 0.16 0.15 0.16

0.05 0.278 0.27 0.27 0.32

0.1 0.392 0.39 0.40 0.63 0.37

0.15 0.460 0.47

0.2 0.496 0.5 0.52 0.49

It should be noted that RP’s results correspond to a zero-thickness shell, rather than a neo-

Hookean membrane. RP mentioned that the resulting deformation is 4% less than the one

that would be obtained with a neo-Hookean membrane. For Ca ≤ 0.1, our front-tracking

method predicts slightly higher values of deformation D compared to those obtained by

RP. For Ca = 0.025, 0.05, and 0.1, we predict 1.25%, 2.96%, and 0.5% higher values of D,

respectively. For Ca = 0.2, we predict slightly lower (0.8%) value of D as compared to that

of RP. In comparison to Lac et al. (2004), we predict higher values of D for Ca < 0.1;

our prediction is 8%, and 2.96% higher for Ca = 0.025, and 0.05, respectively. In contrast,

for Ca ≥ 0.1, we predict lower values of D compared to those of Lac et al. (2004); our

predicted values are 2%, 2.12%, and 4.6% less for Ca = 0.1, 0.15, and 0.2, respectively.

It is somewhat surprising that at higher Ca, we predicted less (though very small) D

compared to that of RP. Before discussing the origin of these differences, we compare our

results with those of Li and Sarkar (2008). Interestingly (and surprisingly), Li and Sarkar,

similar to us, predicted lower deformation than those predicted by RP and Lac et al. (2004).

Compared to the results obtained by Li and Sarkar, our results are closer to those of Lac

et al. (2004). Li and Sarkar predicted 7.5%, and 5.8% less values of D compared to those

predicted by Lac et al. (2004) for Ca = 0.1 and 0.2, respectively.

Extensive tests at Ca = 0.2 are done by varying Eulerian resolution (NE), Lagrangian

resolution (NL), timestep size (∆t), and the size of the computational domain (Hx). The
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Figure 2.7: Resolution tests at Ca = 0.2 showing the steady values of D. (a) Effects of
varying Eulerian resolution ((NE)3) �, and Lagrangian resolution (NL) �. NL is the number
of triangular elements on the capsule surface. (b) Effects of varying timestep size (∆t) ∇,
and computational domain size (Hx) �.

steady-state value of D with respect to these variables are shown in figure 2.7. In figure

2.7a, the effect of varying Eulerian resolution is shown. Capsule deformation increases with

increasing Eulerian resolution, but reaches a converged solution for Eulerian resolution

above 1203. When the Eulerian resolution is changed from 403 to 803, D increases by 3.1%,

but when the resolution is increased from 1203 to 1603, D increases by only 0.2%. Most of

our simulations are done at 1203 and some at 1603. The effect of Lagrangian resolution (in

terms of the number of triangular elements on the capsule surface denoted by NL) is also

shown in figure 2.7a by keeping the Eulerian resolution fixed at 1203. Deformation decreases

with increasing NL. We note that D is significantly over-predicted for NL < 1280. Above

this NL, D is nearly constant; as NL is increased from 5120 to 20480, D changes by only

0.4%.

The effects of varying timestep size (∆t) and computation box size (Hx) are shown in

figure 2.7b for Ca = 0.2. The deformation parameter D increases with decreasing ∆t and

increasing Hx, but reaches asymptotic values for ∆t ≤ 10−3 and Hx/a > 3. As ∆t is

decreased from 0.01 to 0.001, D increases by 4.2%, but as ∆t is decreased from 0.001 to
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Table 2.2: Validation: Comparison of capsule orientation θ/π at steady state with Ramanu-
jan & Pozrikidis (1998) (RP), and Lac et al. (2004) (L1). RP’s data at Ca = 0.025 is not
included since θ did not reach a steady value in their simulation.

Ca Present RP L1

0.0125 0.215

0.025 0.201 0.2

0.05 0.168 0.17 0.17

0.1 0.136 0.14 0.14

0.15 0.121 0.12

0.2 0.107 0.11 0.10

Table 2.3: Validation: Comparison of tank–treading period γ̇T , with Ramanujan &
Pozrikidis (1998) (RP), and Lac et al. (2004) (L1). ∗ TTP is computed following a rev-
olution of a marker point. † TTP is computed by integrating dl/|v| over the membrane
circumference in the (x, y)-plane, as done in L1, where dl is a line segment of the capsule
profile, and v is the membrane velocity.

Ca Present ∗ Present † RP L1

0.025 14.1 13.4 13.4 13.0

0.05 16.2 15.0 14.6 14.9

0.1 19.0 17.8 16.6 17.8

0.15 20.9 20.0 19.6

0.2 22.2 21.3 19.7 22.1

0.0001, D increases by only 0.8%. As Hx/a is increased from 0.5π to π, D increases by

5.1%, but as Hx/a is increased from π to 2π, D increases by only 1%. Results presented in

figures 2.4–2.11, and in Tables 2.1–2.3 are for Hx/a = π.

Figure 2.7 shows that at the best resolution (NE = 1603), our prediction for D (= 0.5)

is the closest to, but still 4% less than, that obtained by Lac et al. (2004) (= 0.52). This

prediction is, however, better than that obtained by Li & Sarkar (2008) (= 0.49).

In Table 2.2, we present the values of the inclination angle θ that the major axis of the

capsule makes with the X axis after it has reached a steady-state. The orientation angles

obtained from our simulations also agree very well with those of RP and L1.



32

X

Y

Z 0.4
0.3
0.2
0.1
0

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7

Figure 2.8: Principal stress distribution for Ca = 0.025. Compressive (negative) stress
(indicated by white shade) in the equatorial region can be seen.

In Table 2.3, we present the period of the tank-treading motion (TTP) of the capsule,

and compared that with the results of RP and L1. TTP is computed in two different ways:

by following a full revolution of a marker point, and by integrating dl/|v| where dl is a line

segment over the capsule profile in (x, y)-plane, and v is marker point velocity. As shown in

Table 2.3, the former approach gives higher values of TTP. For Ca ≤ 0.15, TTP computed

using the second approach agrees well with those of L1 with maximum difference of 3% at

Ca = 0.025. For Ca = 0.2, Lac et al. used the first approach, and their result agrees within

0.45% of ours.

At low Ca, neo-Hookean membrane tends to exhibit buckling (L1; Li & Sarkar). As

shown by these authors, buckling onsets due to membrane zones undergoing compression

in the equatorial region. In figure 2.8 we show the distribution of the elastic tension in the

membrane for Ca = 0.025. Compressive (negative) stress in the equatorial region of the

capsule is evident in the figure.

In figure 2.9, we show the effect of the viscosity ratio λ = µc/µ0 on the steady state

values of D, and compare our results with those of RP. This figure again shows that for
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0.2. Solid line (x–coordinate); dashed line (y–coordinate). Lines without symbols are results
from Lac et al. (2004). Lines with symbols are present results.

λ �= 1, as well, our results are in good agreement with those of RP.

The trajectory of a marker point on the capsule surface is shown in figure 2.10 and

compared with the results of Lac et al. (2004). This result also shows excellent agreement

between the two simulations.

2.2.2 Resolution test

Sensitivity of our results to the Eulerian and Lagrangian resolutions was shown earlier in

figure 2.7 for Ca = 0.2. Further results for Ca = 0.1 are shown in figure 2.11 by considering

three test simulations at different resolutions: (i) 803 Eulerian grids and 1280 Lagrangian

elements, (ii) 1203 Eulerian grids and 1280 Lagrangian elements, and (iii) 1203 Eulerian grids
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and 5120 Lagrangian elements. In figure 2.11a, we show the time history of deformation

parameter D and in figure 2.11b, we show the final steady shape in the shear plane. No

significant difference is observed between the three test cases.

We also keep track of the capsule volume during the simulations. The change in the

cell volume is less than ±0.1% from its initial volume. The projection method used here

for the flow solver satisfies the mass conservation up to ≈ 10−14 at every grid point in the

computational domain.
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Chapter 3

Lateral Migration of a Capsule in a Plane Poiseuille Flow in

a Channel

3.1 Introduction

Capsules suspended in a liquid flowing through conduits are often encountered in many

biological processes, and in biomedical devices. Examples are the motion of blood cells

through blood vessels, flow chambers, and cell separation devices. In a wall-bounded shear

flow, the motion of a capsule (and, liquid drop) is characterized by its migration lateral to

the wall. Lateral migration of liquid drops or capsules plays an important role during the

flow of a suspension of particles in which case a particle-free region is developed near the

wall. Reduced local viscosity in the particle-free region helps reducing the resistance to flow

in small vessels, and is critical for blood flow in microcirculation.

Lateral migration of liquid drops has been a subject of investigation for many years.

Here we briefly discuss a few studies on the migration of liquid drops. In the limit of zero

inertia, a liquid drop moves laterally in a wall-bounded shear flow due to the asymmetry

introduced by the deformation of the particle by the imposed shear. A liquid drop in a

linear shear flow bounded by a single wall continues to migrate away from the wall, whereas

in a wall-bounded parabolic flow, it settles at the centerline or in between the centerline

and a wall. Experimental studies on drop motion in wall-bounded shear flow have been

carried out by Karnis et al. (1963), Goldsmith & Mason (1962), Karnis & Mason (1967),

Chan & Leal (1981), Hiller & Kowalewski (1987), and Smart & Leighton (1991), among

others. Early theoretical works on drop migration in presence of wall in the limit of small

deformation have been considered by Cox (1969), Chaffey et al. (1967), Ho & Leal (1975),
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and others (see, e.g. Leal 1980, for a review). Chaffey et al. (1967) predicted that the lateral

velocity of a droplet in a wall-bounded linear shear flow decreases inversely with the square

of the distance from the wall. Chan & Leal (1979) extended the small deformation analysis

to drop migration in wall-bounded Couette and plane parabolic flows. For a Newtonian

drop suspended in a parabolic flow of another Newtonian fluid, their results showed that

the drop migrates away from the wall and settles at the centerline for drop-to-medium

viscosity ratio (λ) of less than unity. But for λ ∼ O(1), it settles at a position between the

wall and the axis. Using the method of reflections, Shapira & Haber (1988) obtained an

approximate expression of the deformation and drag force on a drop moving parallel to a

wall in a quiescent fluid bounded by two walls. The wall effects on the drop deformation

was shown to be greater for drops located close to the walls, and to vanish for drops moving

along the centerline. Shapira & Haber (1990) extended the analysis to Couette flow in

presence of a wall. Uijttewaal et al. (1993) used boundary integral method to study drop

deformation and migration in linear shear flow in presence of a wall, and observed large

deviations from the theory of Chan & Leal (1979) and Shapira & Haber (1988, 1990) at

small wall distances and large drop deformation. Uijttewaal & Nijhof (1995) extended

the boundary integral method to consider viscosity ratios other than unity. Coulliette &

Pozrikidis (1998) studied transient motion of three-dimensional liquid drops in cylindrical

tubes at λ = 1.0 using boundary integral simulation, and observed migration towards the

tube center. Li & Pozrikidis (2000) also considered wall-bounded shear flow and plane

Poiseuille channel flow of two-dimensional suspensions of liquid drops. Recently, Griggs et

al. (2007) formulated an efficient three-dimensional boundary-integral method for motion

of deformable drops between two parallel walls that can consider a wide range of capillary

number, drop-to-channel size ratio, and drop-to-medium viscosity ratio.

In the case of a finite Reynolds number liquid drop, the effect of inertia and drop

deformation both contribute to lateral migration. Mortazavi & Tryggvason (2000) showed

that in presence of high inertia, an isolated liquid drop undergoes a transient oscillatory

motion about its equilibrium position, and a steady-state may not be achieved at sufficiently
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high Reynolds number.

In the limit of a rigid spherical particle, lateral migration is possible only in presence

of inertia, and an extensive literature exists on this subject. Here we avoid the discussion

on the subject, and refer to a recent article by Magnaudet et al. (2003) which provides an

excellent review of the topic.

Unlike liquid drops, capsule migration in wall-bounded shear flow is relatively less stud-

ied. Experiments performed by Goldsmith (1971) using dilute suspensions of red blood cells

showed center-ward migration, similar to the case of liquid drops. Extending the theory of

small deformation, Helmy & Barthès-Biesel (1982) studied the migration of a capsule in an

unbounded parabolic flow, and showed that similar to a liquid drop, an isolated capsule mi-

grates laterally toward the centerline due to its deformation under external shear. Pozrikidis

(2005) presented boundary-element simulation of spherical, oblate ellipsoidal and biconcave

capsules in tube flow, and observed that spherical capsules slowly migrate towards the tube

centerline, and oblate and biconcave capsules developed parachute and slipper-like shapes,

respectively.

Three-dimensional numerical simulation is presented on the motion of a deformable cap-

sule undergoing large deformation in a plane Poiseuille flow in a channel at small inertia.

Lateral migration of the capsule towards the centerline of the channel is observed. Results

are presented over a range of capillary number, viscosity ratio, capsule-to-channel size ratio,

and lateral location. After an initial transient phase during which the capsule deforms very

quickly, the flow of the capsule is observed to be a quasi-steady process irrespective of cap-

illary number (Ca), capsule-to-channel size ratio (a/H), and viscosity ratio (λ). Migration

velocity and capsule deformation are observed to increase with increasing Ca and a/H, but

decrease with increasing λ, and increasing distance from the wall. Numerical results on

the capsule migration are compared with the analytical results for liquid drops (Chan &

Leal 1979), and capsules with Hookean membrane (Helmy & Barthès-Biesel 1980) which are

valid in the limit of small deformation. Unlike the prediction for liquid drops (Chan & Leal
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Figure 3.1: Schematic of the flow configuration. The computational domain is indicated by
dashed lines.

1979), capsules are observed to migrate toward the centerline for 0.2 ≤ λ ≤ 5 range consid-

ered here. The migration velocity is observed to depend linearly on (a/H)3, in agreement

with the small-deformation theory, but non-linearly on Ca and the distance from the wall,

in violation of the theory. Using the present numerical results and the analytical results

of Shapira & Haber (1988), we present a correlation that can reasonably predict migration

velocity of a capsule for moderate values of a/H and Ca.
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3.2 Flow Configuration and Simulation Technique

3.2.1 Problem setup

The flow configuration is described in figure 3.1. We consider the motion of an array of

capsules in a channel bounded by two infinite flat plates placed parallel to the X-axis in

the XY Z coordinate system as shown. The height of the channel is H. The separation

between adjacent capsules in the X direction is denoted by Lx0 and in the Z direction by

Lz0. The fluids, inside and outside of the capsules, are incompressible and Newtonian. The

fluids have same density but may differ in viscosity. Viscosity of the liquid interior of the

capsule is denoted by µc, while that of the external liquid is µ0. In absence of the capsules,

the undisturbed flow u0 is a fully-developed parabolic (Poiseuille) flow, and is directed from

X = −∞ to X = +∞, and is driven by a constant pressure gradient dP/dX as

u0 =

[
1

2µ0

(
−
dP

dX

) (
H Y − Y 2

)
, 0, 0

]
. (3.2.1)

Here Z is the direction of vorticity of the undisturbed flow. The capsules are released in

this flow at time t = 0 off the center of the channel. The initial location of the capsule

centroid is denoted by Xc0, Yc0, Zc0, which are varied in the simulations as described later.

3.2.2 Dimensionless parameters

The centerline velocity of the undisturbed parabolic flow is Ucl. The undeformed shape

of the capsule is spherical. The diameter of the capsule is denoted by a. The governing

equations are made dimensionless using H as the characteristic length scale, Ucl as the

velocity scale, and H/Ucl as the time scale. The dimensionless time is denoted by t∗. The

major dimensionless parameters are: the capillary number Ca = µ0Ucl/Eh which is the

ratio of the viscous force to the elastic force of the capsule membrane, the ratio of the

viscosity of the interior fluid to that of the exterior fluid λ = µc/µ0, and the size ratio a/H.

The Reynolds number of the capsules, defined as Re = ρUcla/µ0, is 0.01, and hence the

effect of inertia is negligible. Other geometric parameters are the initial separation distance

between the capsules, Lx0/H, and Lz0/H, in the x and z directions, respectively.
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3.3 Results and Discussion

3.3.1 Migration at λ = 1

We now consider the motion of a capsule in a fully-developed Poiseuille flow in a channel.

As mentioned before, the imposed periodicity of the computational domain along the X and

Z directions implies that we consider the motion of an array of capsules (figure 3.1), rather

than a perfectly ‘isolated’ capsule. The inter-capsule distance is taken to be Lx0 = Lz0 = H.

The effect of inter-capsule spacing will be considered in a later section.

The initial transience immediately after the capsule is released in the flow is shown in

figure 3.2 for Ca=0.2 and 0.8. For this case, we consider a/H=0.16. We use 1280 and 5120

Lagrangian elements for Ca = 0.2 and 0.8, respectively. The capsule is released close to the

wall at Yc/H = 0.175 at t∗ = 0. It deforms very quickly (within t∗ < 1, as shown) under

the action of the imposed shear, and aligns itself at an angle with the direction of the flow.

For Ca = 0.2, the capsule attains an ellipsoidal shape, but for Ca = 0.8, the capsule shape

at t∗ > 1 is asymmetrical with high-curvature corner in the near-wall side. As expected,

deformation and alignment w.r.t. the X-axis are higher for Ca = 0.8.

Migration of the capsule over an extended time (tUcl/a > 400) until the capsule comes

close to the center of the channel is shown in figure 3.3. For both Ca, the capsules migrate

continually towards the centerline. Deformation decreases as the capsule moves closer to-

wards the center in the low shear region. For Ca = 0.8, the shape is asymmetric when the

capsule is located near the bottom wall, and near the channel center. Figures 3.2 and 3.3

suggest that the rate of deformation is significant during the initial transience. Once this

initial transience is passed, capsule shape remains nearly steady as it migrates away from

the wall.

In figure 3.4 we show the history of lateral location, migration velocity Vy, slip velocity

Vslip, deformation, and angular orientation w.r.t. X-axis for Ca = 0.1, 0.2, 0.4, and 0.8. For

all cases, a/H = 0.16 and capsules are released at Yc/H = 0.175. At high Ca, capsule shape

is not ellipsoidal. In this case, deformationD is calculated as (Lmax−L⊥)/(Lmax+L⊥) where
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Figure 3.2: Migration of a capsule in a pressure-driven flow in a channel. Sequence of
capsule shapes during initial transience is shown for Ca = 0.2 (top row) and Ca = 0.8
(bottom three rows). Here t∗ = tUcl/H. X,Y,Z coordinates are scaled by channel height
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and a/H = 0.16.
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Lmax is the maximum distance between two points on the capsule profile on (x, y)-plane, and

L⊥ is the distance between capsule membrane in the direction normal to Lmax in the same

plane. For an ellipsoidal capsule, Lmax is the major axis, and L⊥ is the minor axis. The

orientation angle θ reported for non-ellipsoidal shape is the angle between Lmax and x-axis.

As the flow starts, D attains its peak value within a short time (t∗ < 1) implying that the

capsule deforms quickly before it moves significantly in the lateral direction. The migration

velocity and slip velocity also reach their maximum, and the orientation angle reaches its

minimum, during the rapid initial transience. The migration velocity and deformation are

observed to be higher with increasing Ca implying that the lateral migration is essentially

due to the departure from the initially undeformed spherical shape as in case of a liquid

drop. The angular orientation w.r.t. the X-axis decreases with increasing Ca, which is

also consistent with the results in linear shear flow, and seem to remain the same even in

presence of the wall-bounded parabolic flow. The slip velocity Vslip, defined as the Poiseuille

velocity at the instantaneous center of the capsule minus the X-component of the capsule

velocity, is shown in figure 3.4c. The slip velocity is always positive meaning that the

capsule lags behind the fluid. The slip velocity becomes higher with decreasing Ca. The

slip velocity is order of magnitude less than the capsule translational velocity. In the limit

Ca → ∞, the slip velocity would vanish, whereas in the limit that the capsule is perfectly

rigid, it would be maximum for a given lateral location. This qualitative trend is reflected

in the simulation results. Once the initial transience is passed, the capsules start migrating

toward the channel center. During subsequent motion, the deformation, migration and slip

velocity decrease, and the orientation increases with time as the capsule drifts toward low

shear region. The decrease in slip velocity over time (i.e. with lateral location) is also in

qualitative agreement with the asymptotic theory of small rigid spheres as well as neutrally

buoyant drops at small deformation. The capsule migrates toward the center of the channel

for all values of Ca considered here. The migration in general is slow. For Ca = 0.8 the

capsule travels only about half of its diameter in the lateral direction, while translating

nearly 50 diameters along the axial direction.
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Figure 3.4 shows oscillations in Vy, Vslip, D, and θ for Ca = 0.8. The oscillations arise

from the shape oscillation of the capsule which can be seen from capsule profiles given

in figure 3.2. This figure shows that immediately after the release (t∗ = 0.16 and 0.64),

capsule shape is ellipsoidal. But for t∗ ≥ 0.96, sharp edge is developed near the wall-ward

side due to the higher local shear stress acting on this region of the capsule arising from the

no-slip condition imposed on the wall. Because of the tank-treading, the sharp curvature

travels along the membrane, and it dissipates as it moves away from the wall (t∗ = 2.4).

Subsequently, another sharp curvature develops near the wallward region (t∗ = 3.3 and 4.1),

which also travels along the membrane away from the wall. As the capsule migrates away

from the wall, the sharp curvature weakens. Due to repeated emergence and smoothing

of the sharp curvature, magnitude and direction of Lmax and L⊥ oscillate, causing an

oscillation in D and θ. Oscillations in Vy and Vslip also arise due to shape oscillation. Vy

is locally minimum when the curvature is high, and maximum when it is smoothened. The

oscillations are not evident beyond t∗ = 5 over which the capsule travels only 0.28 of its

diameter. Thus, these oscillations are during initial transience. Since migration is a slow

process, and as shown in figure 3.3, the capsule does not reach the center even at t∗ = 64,

these oscillations do not have any effect on the long-term migration.

It is of interest to see if the motion of the capsule, after the initial transience is passed, is

quasi-steady. We compare the motion of a ‘free’ capsule with the results of a ‘quasi-steady’

simulation in figures 3.5 and 3.6 for Ca = 0.2 and 0.8, respectively. For the simulation of

a free capsule, the capsule is released near the bottom wall and the simulation is contin-

ued until it reaches close to the center. For the quasi-steady simulations, an undeformed

spherical capsule is released at various lateral locations along the trajectory of the free

capsule, and the simulations are stopped just after the initial transience is passed. Since

the capsule has not moved significantly in the lateral direction during this short simulation,

the results, such as migration velocity, deformation etc., can be taken as the ‘quasi-steady’

results corresponding to that lateral location.

In figures 3.5 and 3.6, we compare four quantities: migration velocity, slip velocity,
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deformation, and angular orientation, of the free capsule and quasi-steady result. In the

figure the lines represent the free capsule, and the points represent quasi-steady results. As

can be seen for both Ca = 0.2 and 0.8, all four quantities show excellent agreement between

the free capsule and the quasi-steady results. Note that in the limit the capsule is located

at the center of the channel, the slip velocity is still non-zero and proportional to (a/H)2

according to the linear theory. The asymptotic behavior of computed Vslip in figure 3.4c

yields the same order of magnitude value as (a/H)2.

In figures 3.5 and 3.6, we also overlap the shapes of the freely moving capsule and the

quasi-steady results for various lateral locations. The capsule shapes match very well which

further confirms that the migration is a quasi-steady process.

The quasi-steady nature of the capsule migration can be understood by comparing the

migration time Ty = a/Vy, to the response time of the capsule shape Tc = µa/Eh. The

capillary number Ca = µUcl/Eh can be expressed as the ratio of Tc and the axial convection

time Tx = a/Vx, where Vx ≈ Ucl. Since Vy << Vx (that is, Tx/Ty << 1), and Ca < 1, we

see that Tc << Ty.

It is also of interest to compare the present results with previous analytical predictions.

Migration of a capsule with Hookean membrane was considered by Helmy & Barthès-Biesel

(1982) in an unbounded cylindrical Poiseuille flow in the limit of Ca(a/D0) � 1, where D0

is a length scale of the undisturbed flow, which is the tube diameter for the Poiseuille flow.

They predicted

Vy

Ucl
= −

29

6
Ca

(
b

a

) (
a

D0

)3

(3.3.1)

for Poisson ratio equal to 1/2 for the membrane. Here b is the distance of the capsule center

from the flow centerline.

Chan & Leal (1979) considered migration of a deformable liquid drop of surface tension

σ in an unbounded plane Poiseuille flow in the limit of small deformation, and obtained

Vy

Ucl
= −

8

5

µ0Ucl

σ

[
1 − 2

(
Yc

H

)] ( a

H

)3

(3.3.2)

for λ = 1. Despite the differences in the background flow, and the nature of the particle,
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corresponds to the linear theory.

(3.3.1) and (3.3.2) predict the similar qualitative dependence of Vy/Ucl on Ca, Yc/H and

a/H, and differ only in the numerical prefactors. Though exact comparison is not possible

due to the differences in the background flow and the nature of the particle, it is of interest

to see if the qualitative dependence of Vy/Ucl w.r.t. Ca, Yc/H and a/H predicted by (3.3.1)

or (3.3.2) agree with our simulation.

In figure 3.7a we show the migration velocity as a function of Ca while keeping a/H and

Yc/H constants at 0.16 and 0.18, respectively. The capsules were released at Yc/H = 0.175,

and hence the wall effect is strong. While (3.3.1) and (3.3.2) predict a linear dependence

of Vy on Ca, the simulations predict a non-linear dependence. The results in figure 3.7 are

shown for 0.025 ≤ Ca ≤ 0.8. Assuming that the linear dependence of Vy on Ca is valid at

low Ca (which is likely to be the case), and extrapolating the result to higher Ca (dash line

in figure 3.7a), we see that the linear theory over-predicts the migration velocity at higher

Ca. This is because the linear theory also over-predicts also the capsule deformation at

higher Ca (Chapter 2, Table 2.1).
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We also show slip velocity, deformation, and orientation as functions of Ca in figure

3.7. Figure 3.7a shows that the slip velocity decreases with increasing Ca. For a small,

rigid sphere in a circular Poiseuille flow, the ratio Vslip/Ucl = b2/(D0/2)2−(2/3)(a/D0)
2, to

the leading order (Brenner 1970, Goldman et al. 1967) where b and D0 are defined above.

In the linear theory of Helmy & Barthès-Biesel (1980), the axial velocity of the capsule

does not depend on Ca, and the ratio Vslip/Ucl is the same as that of a small rigid sphere.

Our simulations show that Vslip/Ucl depends on Ca. Further, the order of magnitude of

Vslip/Ucl obtained from the simulation and shown in figure 3.7a is significantly lower than

the prediction by the linear theory even when Ca = 0.025 is considered. On the contrary,

the simulation and the linear theory would predict nearly similar order of Vslip as b → 0,

that is when the capsule is located far from the wall as observed in figure 3.6a. Shapira &

Haber (1990), on the contrary, obtained that Vslip/Ucl is proportional to Ca (a/Yc)
2, for a

wall-bounded linear shear flow in the limit of small deformation. Assuming that the linear

dependence of Vslip on Ca is valid at low Ca even for parabolic flow, and extrapolating the

result to higher Ca, one can say from figure 3.7a that the linear theory, when taken into

consideration the effect of Ca, would underpredict the slip velocity at higher Ca.

In figure 3.7b, deformation D and orientation angles are shown. D appears to approach

a plateau as Ca increases which explains the plateau in migration velocity. This plateau

in D can arise from two effects. In an unbounded linear shear flow, D does not increase

linearly at large Ca, and shows reduced rate of change at higher Ca. In addition, the

presence of the wall and parabolic nature of the flow can further prevent the capsule from

deforming at higher Ca. In an wall-bounded flow, migration arises from two effects. A

particle moving near a wall would experience a lift force even in absence of the flow due

to the asymmetry introduced by the wall. In addition the presence of a shear flow would

introduce additional asymmetry in the governing equations at low inertia leading to the

deformation-induced lift force. Thus the migration velocity is proportional to the product

of slip velocity and amount of deformation. This explains, as seen in figure 3.7, that D

increases but Vslip decreases with increasing Ca resulting a plateau in Vy at higher Ca.
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In figure 3.7b, the orientation angle at very low Ca is close to its theoretical value of

π/4 for low deformation. It decreases with increasing Ca departing from the linear theory,

but appears to plateau at higher Ca due in part, possibly, to the wall effect.

In figure 3.8 we plot Vy, Vslip, and D as functions of Yc/H while keeping Ca and a/H

fixed. Unlike the linear dependence in (3.3.1) and (3.3.2), the simulations predict non-linear

dependence of Vy w.r.t. Yc/H.

In figure 3.8b, variation of Vslip w.r.t Yc/H shows also a non-linear decrease. The

slip velocity is higher near the wall and decreases away from the wall. The higher slip

velocity near the wall arises from the no-slip condition imposed on the wall which causes

a higher local shear rate in the gap between the capsule and the wall. When wall-effect is

included (Chan & Leal 1979; Chaffey et al. 1967; Magnaudet 2003), Vslip should decrease

as (1−Yc/(H/2))2, in the leading order for small rigid spheres as well as neutrally buoyant

drops under small deformation. Our numerical results indicate that Vslip decreases faster

than this rate near the wall, and slower near the centerline. D shown in figure 3.8c also

suggests a faster decrease near the wall than that near the centerline.

In figure 3.9 we plot Vy as a function of (a/H)3 while keeping Ca and Yc/H constants.

Interestingly, the linear dependence of Vy w.r.t. (a/H)3 as predicted by (3.3.1) and (3.3.2)

happens to be the case in the numerical results as well.

Shapira & Haber (1988) studied the wall effect on the shape of a drop moving in a

quiescent fluid confined between two parallel plates in the limit a/H � 1, and predicted

D =
175

384

µVx

σ

( a

H

)2

Cs (3.3.3)

where Cs is a function of Yc/H which is maximum at the channel wall, and zero at the

center, implying that drop deformation decreases as it is located closer to the center, and

that deformation is zero at the center as is the case for small a/H. Though Shapira &

Haber (1988) considered a non-migrating drop with a constant orientation at π/4, we find

that the expression of Cs can be used to predict the dependence of Vy on Yc. This is shown

in figure 3.10a where data points are numerical Vy at various Yc locations, and solid lines

are the shape function Cs scaled by a factor for each Ca.
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The results shown in figure 3.10a are for a fixed a/H = 0.16, the lowest size ratio

considered. Since the numerical results agree with the theoretical prediction (3.3.1,3.3.2)

on the linear dependence of Vy on a/H, the scaling factor used for Cs should depend only

on Ca. Based on the numerical results in figures 3.9 and 3.10a, and following the theoretical

results of Shapira & Haber (1988), an approximate expression for the migration velocity

can be proposed as

Vy

Ucl
= F1(Ca)F2(Yc/H)

( a

H

)3

(3.3.4)

where the functions F1 and F2 are functions of Ca and Yc/H, respectively, and are given as

F1 = exp [−0.3458 ln(Ca) + 7.3878] (3.3.5)

and,

F2 = exp

[
−11.1758

(
Yc

H

)
− 2.7429

]
. (3.3.6)

F2 is a simplified form of the original shape function Cs given by Shapira & Haber. In

figure 3.10b, we replot the migration velocity shown in figure 3.9 (which was for a constant

Ca = 0.2 but different Yc/H) by scaling Vy/Ucl by (F1F2). We find that curves for different

Yc/H collapse, and vary linearly with (a/H)3. Equations (3.3.4)–(3.3.6) can thus be used to

reasonably predict migration rate of a capsule in a parabolic flow in a channel for moderate

values of (a/H) and Ca.

3.3.2 Larger capsules

We consider a/H = 0.5 for which we use 5120 Lagrangian elements on the capsule surface.

The computational domain is cubic, and the distance between the adjacent capsule centers

in the array is Lx0 = Lz0 = H. The capsule is released at Yc/H = 0.334. Figure 3.11 shows

the deformed shapes at various lateral locations for Ca = 0.2. Unlike the smaller capsules

which attain ellipsoidal shape after the initial transience is passed, the initial shape (at

Yc/H = 0.34 in figure 3.11) for a/H = 0.5 resembles a tear-drop and is asymmetric with

the high-curvature end facing the bottom wall. Center-ward migration is evident in the
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figure. As the capsule approaches the center, it changes from a tear-drop to a slipper shape.

In the figure, we also overlap the quasi-steady shapes with those of the free capsules, and see

that even for the larger capsule, the two simulations predict similar shapes. The migration

velocity for the free capsule and the quasi-steady values are presented in figure 3.11 which

also shows that the quasi-steady values match well with the the results of the free capsules

once the initial transience is passed.

Figure 3.12 shows the fluid velocity vectors at three time instances during the migration

of the larger capsule. The figures here are drawn in a reference frame moving with the

velocity of the center of mass of the capsule. Also shown is the vector plot for a/H = 0.16

at one time instance. During the initial phase of migration of the larger capsule, a clockwise

rotating vortex is generated inside the capsule. The center of this vortex is located close to

the capsule centroid. Due to the proximity of the larger capsules in the array, (a/Lx0 = 0.5),

the fluid in between the adjacent capsules also develops a counter rotating vortex (marked

by dash arrow in the figure). In case of smaller capsules, such vortex exterior of the capsule

is absent.

As the larger capsule approaches the center of the channel, the interior vortex moves

upward, while a new smaller counter rotating vortex is generated near the bottom. In the

exterior fluid as well, two counter rotating vortices can be seen, which are not present for

the smaller capsule. The presence of exterior vortices for large a/H, and the transition from

one vortex to two counter-rotating vortices as shown by our extended simulations, can have

implications in case of tracer diffusion in capillary blood vessels in presence of erythrocytes.

It should be mentioned that the strength of the internal vortex is actually very weak.

For larger capsules of a/H = 0.5, the effect of separation distance between consecutive

capsules is shown in figure 3.11. We consider Lx0/a = 2, 6 and 8. The separation distance

does have a significant effect on migration velocity when the capsule is located closer to

the wall. As Lx0/a is changed from 2 to 6, Vy increases by a factor of 1.5; when Lx0/a

is changed from 6 to 8, Vy increases by a factor of 1.05. Thus Vy is expected to converge

with increasing Lx0/a. For this case, we have not performed a simulation with even higher
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Figure 3.13: Effect of separation distance on flow pattern: velocity vectors (in a frame of
reference moving with the velocity of the capsule center of mass) corresponding to the case
shown in figure 3.12a–c but for Lx0/a = 8.

Lx0/a due to computational cost, as Lx0/a = 8 itself was simulated using 320 × 80 × 80

resolution. The effect of Lx0 appears to decrease as the capsule moves away from the wall.

Further result on the effect of Lx0/a on Vy for a/H = 0.16 is given later in figure 3.18 where

convergence of Vy with increasing Lx0/a is evident.

The flow pattern for Lx0/a = 8 is shown in figure 3.13 which can be compared with the

results for Lx0/a = 2 shown in figure 3.12. Evolution of the internal and external vortices

as the capsule migrates away from the wall is qualitatively similar for Lx0/a = 8 and 2.

For larger capsules shown in figure 3.11, the back of the membrane undergoes com-

pression. This is shown in figure 3.14 where we plot the principal stress. Regions having
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Figure 3.14: Membrane stress distribution for the migrating capsule shown in figure 3.11.
Dark regions correspond to compressive stress.

negative stress are seen in this figure.

3.3.3 Effect of λ

Effect of λ is considered next by two simulations at λ = 5 and 0.2 (both for a/H = 0.16)

shown in figure 3.15. Deformation, orientation, migration and slip velocity of a free capsule

released at Yc/H = 0.175 at t∗ = 0 are shown. Also shown are the results from quasi-

steady simulations of undeformed spherical capsules released at various lateral locations.

The results from the free-capsule simulation and those of quasi-steady simulations agree

well implying that the quasi-steady nature of migration is valid over the range of viscosity

ratio considered here.

The capsule shapes for free capsule and for quasi-steady results are compared in figure

3.16 for a/H = 0.5, and λ = 5 and 0.2 at various lateral locations. The two simulations

predict nearly overlapping shapes implying the quasi-steady nature of migration even for

larger capsules at a viscosity ratio other than unity.

The migration velocity, deformation and orientation of the capsules for λ = 5, 0.2 and 1

over a wider range of lateral locations are shown in figure 3.17 for a/H = 0.16, Ca = 0.2. As

expected, the migration rate, deformation and orientation angle decrease with increasing λ.

The migration velocity and deformation decrease as the capsule approach channel center.

We also note that results for λ = 1 and 0.2 nearly overlap with each other, which is consistent
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with the linear shear results presented earlier in figure 2.9 which showed that deformation

did not change much from that of λ = 1 when λ is reduced below unity, but it changed

significantly when λ > 1. Also note in figure 3.17c that near the center of the channel, the

deformation curves for λ = 1 and λ = 5 cross each other. This is likely because a capsule

with higher λ is slower to respond to the changing shear rate than the one with lower λ.

The characteristic time for deformation is proportional to 1 + λ. This also explains why

migration velocities are nearly the same for λ = 1 and λ < 1, but much lower for λ > 1.

It may be noted that the expression of drop migration by Chan & Leal suggests that

for λ < 0.5 and λ > 10, the drop migrates toward the center of a channel, while for

0.5 < λ < 10, it migrates toward the wall. The simulations performed here over a range of

Ca and λ suggested that the capsule migrates always toward the center of the channel.
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3.3.4 Effect of capsule separation

The effect of separation distance on the migration velocity and flow pattern for a/H = 0.5

was shown earlier in figures 3.11 and 3.13. Further results for a/H = 0.16 at Ca = 0.2 and

0.4, and a/H = 0.5 at Ca = 0.2 are shown in figure 3.18. Here the dimensionless separation

distance Lx0/a is varied from 1.25 to 25. As discussed earlier, migration velocity changes

significantly for small separation distance, but converges beyond Lx0/a ≈ 6. The migration

velocity decreases as −1/r where r is the separation distance. Comparison of Vy at four

Lx0/H suggests that the results presented in the previous sections would change very little

by increasing the separation distance, but they would change significantly with decreasing

separation distance.
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3.4 Conclusion

We present results on the lateral migration of a capsule in a plane Poiseuille flow simulated

over extended period of time. The migration is observed to be a quasi-steady process,

except an initial transient phase during which the capsule deforms very quickly, over a wide

range of Ca, size ratio (a/H), and viscosity ratio (λ).

Dependence of the migration velocity with respect to Ca, size ratio and capsule location

is studied and compared with the small-deformation theory for liquid drops, and capsules

with Hookean membrane. Unlike the linear theory, migration velocity shows a non-linear

dependence on Ca and capsule location. The linear theory is seen to overpredict the mi-

gration velocity, and underpredict the slip velocity at higher Ca. This departure could be

due to both large deformation and small wall distance. Interestingly, however, the linear

dependence on (a/H)3 as predicted by the theory appears to be valid even in the limit of

large deformation, as shown by the simulation results. Using the present numerical results,

and the analytical results of Shapira & Haber (1988), we then present a correlation that

can reasonably predict migration velocity of a capsule for moderate values of a/H and Ca.

Unlike the prediction for liquid drops (Chan & Leal 1979), capsules are observed to migrate

toward the center for 0.2 ≤ λ ≤ 5 range considered here.

Results presented here depict the effect of curvature in the velocity profile, as well as

the wall effects. For the undisturbed Poiseuille flow considered here, it is difficult to isolate

the wall effect and the curved velocity profile due to the way the computational problem is

set up. In order to isolate the wall effect using the present computational setup, one can

consider a linear shear flow where the capsule can be placed away from the wall without

any change in the shear rate. Identifying such wall effects in the case of large deformation

of a capsule is left for future investigation.

While experimental data on lateral migration of single liquid drop are available in the

literature (e.g. Smart & Leighton 1991), we are not aware of similar data on capsule

migration. Indeed there are experimental results available on capsule deformation in lin-

ear shear flow, and on single-file motion (see Chapter 1). Results on lateral migration of
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erythrocytes in tube or channel flow are not abundant. Experiments by Goldsmith and

co-workers (e.g. Goldsmith 1971) was mentioned earlier. Recently, Secomb et al. (2007)

presented two-dimensional simulation on erythrocyte migration in 8-µm capillary. The sim-

ulation result was verified qualitatively by experimental data on cell trajectories observed

in microvessels of the rat mesentery. The results presented in this article are, however, for

three-dimensional capsules in a planar flow, and hence cannot be directly compared with

their numerical or experimental data. It appears that migration experiments using spherical

capsules are necessary.
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Chapter 4

Lateral Migration and Pairwise Interaction of Liquid

Capsules in a Plane Poiseuille Flow in a Channel

4.1 Introduction

In the last chapter, we studied motion of a liquid capsule in wall-bounded flows in a dilute

suspension. In a non-dilute suspension of liquid drops or capsules, both deformation-induced

migration, and particle-particle hydrodynamic interaction are present. The particle-particle

interaction may affect the migration process. Goldsmith (1971), in experiments with non-

dilute suspension of red blood cells, observed that the center-ward migration of the cells

was hindered, and cell-free region near the wall was reduced as the cell volume fraction

increased. To the best of our knowledge, the only study that addressed both particle-particle

interaction and deformation-induced migration is the one by Li & Pozrikidis (2000) who

considered a suspension of liquid drops in a pressure-driven flow. Although an ensemble of

25 drops was considered, their study was limited to two dimensions. Similar studies in three

dimensions, and using liquid capsules are non-existent. In the present study we address the

lateral migration of a capsule-pair in Poiseuille flow through a channel bounded by two

infinite parallel plates.

In the first part of the chapter, we consider spherical undeformed shape. It is shown that

the migration velocity is significantly affected due to the presence of a neighboring capsule.

We also find a new dynamic behavior in which the capsules engage in a leap–frog motion.

We then consider shear–induced diffusion of capsules in wall–bounded parabolic flows and

show that this mechanism dominates over deformation–induced lateral migration.

In the second part of the chapter, we first consider the motion of an ellipsoidal capsule. It



70

X

Z

Y

a1

a2

Lx

Ly

H

Hx

Hz

µ0

µ1

µ2

Figure 4.1: Schematic of the computational domain with capsules. The undisturbed flow is
parabolic.

is shown that the ellipsoidal capsule undergoes tumbling motion while migrating away from

the wall, as observed in experiments using erythrocytes in shear flow. The hydrodynamic

interaction between a migrating capsule-pair is considered next. The leap–frog behavior and

shear–induced diffusion, as observed for spherical capsule, are also present for ellipsoidal

capsule, and hence, possibly, for erythrocytes.

4.2 Problem Setup

The flow configuration is described in figure 4.1 for a pair of closely spaced capsules in a

channel. The fluid, both inside and outside of the capsules, is incompressible and Newtonian.

The channel is periodic in the streamwise (x) direction, and in the z-direction. In the y-

direction, the flow is bounded by two no-slip walls. In absence of the capsules, the flow

is parabolic (Poiseuille flow), and is driven by a constant pressure gradient ∇P . The
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(discussed in sections 4.3 and 4.3.1). The boundaries of the periodic domain are indicated by
dashed lines. (a) Migration of an isolated capsule, (b) Interaction of two capsules separated
axially and (c) Interaction of capsules separated both axially and laterally.

undeformed diameter of the capsule is denoted by a, and the height of the channel by

H. The streamwise length of the channel is Hx and the length in the z direction is Hz.

Note that the channel is periodic in x and z directions. In some of our computations

Hx = Hz = H for which the computation domain is a cube. The centerline velocity of the

undisturbed parabolic flow is Ucl. The governing equations are made dimensionless using

H as the characteristic length scale, Ucl as the velocity scale, and H/Ucl as the time scale.

The dimensionless time is denoted by t∗. The major dimensionless parameters are: the

capillary number Ca = µ0Ucl/Eh which is the ratio of the viscous force to the elastic force

of the capsule membrane, ratio of the viscosity of the interior fluid to that of the exterior
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fluid λ = µc/µ0, and the size ratio a/H. Other geometric parameters are the initial lateral

location of the centroid of a capsule yc0, and the initial separation distance Lx0, Ly0 , in

the x and y directions respectively, between the centers of the two adjacent capsules. The

instantaneous separation between the capsules is denoted by Lx and Ly. The Reynolds

number of the capsules, Re = ρUcla/µ0, is much less than unity.

Typical Eulerian resolution used in this study is 120×120×120, and typical Lagrangian

resolution used is 1280 triangular elements. In some cases, e.g. for capsules with high Ca and

for an array of closely-spaced capsules, we use 5120 triangular elements, and 160×160×160

Eulerian points. It should be mentioned that there should be sufficient resolution between

the inter-capsule spacing in order to resolve the close range interaction between adjacent

capsules. For the simulations presented here, we verify that there are at least six mesh

points between the inter-capsule spacing. Dimensionless timestep used in the simulation is

∼10−3.

4.3 Results and Discussion

4.3.1 Capsule-Capsule interaction

A.1. Array of equispaced capsules with same yc0

The results presented so far correspond to a single capsule in a cubic computation domain

of dimensionless sides of unit length. The domain is periodic in the x and z directions.

The configuration is equivalent to a series of capsules placed in a long channel at the same

initial lateral location yc0 but with a separation distance of Lx0/H = Lz0/H = 1 between

adjacent capsules in x and z directions (Figure 4.2). In this section we address the effect of

changing the separation distance. Note that the x direction is the mean flow direction, and

z direction is the direction of vorticity.

First, consider the effect of increasing the separation distance along the axial (x) direc-

tion. The z direction is still periodic over unit length. Figure 4.3 shows the time dependent
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Figure 4.3: Migration of an array of equispaced capsules. Effect of capsule-to-capsule
separation distance on (a) the lateral position and (b) migration velocity. Thin lines without
symbols correspond to the array of capsules of size a/H = 0.16 spaced along the x-direction
for which the following cases are shown: —— Lx0/H = 2; - · - · - · - Lx0/H = 1; -
- - - Lx0/H = 1/3; and · · · · · · Lx0/H = 1/5. The thin lines with symbols correspond
to the array of capsules of size a/H = 0.16 spaced along the z-direction for which the
following cases are shown: —∆— Lz0/H = 1/3; and —�— Lz0/H = 1/5. The thick lines
correspond to the array of capsules of size a/H=0.32 spaced along the x-direction for which
the following cases are shown: —— Lx0/H = 1; and – – – – Lx0/H = 1/2. For all cases
λ = 1 is considered. For a/H = 0.16, we considered Ca = 0.4, whereas for a/H = 0.32, we
considered Ca = 0.2.

lateral position and velocity of the capsules as the intercapsule distance along the x direc-

tion is increased to Lx0/H = 2. For comparison, results corresponding to the separation

distance Lx0/H = 1 are also plotted. It can be seen that when the separation distance is

increased to Lx0/H = 2, the capsule velocity and the location of the center are only slightly

affected compared to the results for the separation distance of Lx0/H = 1. Thus, it may be

inferred that the results presented in the previous section using the periodic computation

box of unit length are very close to those for a long channel.

Next, consider decreasing the capsule-to-capsule separation distance along the x direc-

tion. We have simulated two cases: Lx0/H = 1/3 and 1/5 (figure 4.3). Again, the flow in
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the z-direction remains periodic over unit length. We observe that decreasing the separation

distance between the capsules results into a significant reduction in the migration rate. The

case with Lx0/H = 1/5 was simulated with a higher Eulerian resolution of 1603 to ensure

that the region between two adjacent capsules is well resolved. Due to computational cost,

this case is not simulated for a long time; however, the trend is sufficient to show that the

migration rate is significantly reduced due to the reduction of the intercapsule distance. We

also observe that all capsules in the array maintain the relative distance between them, and

all of them migrate at the same rate during the course of their motion.

The results described above are for a/H = 0.16. We also considered the effect of

increasing the capsule size to a/H = 0.32 (figure 4.3). Overall, same behavior is observed

for both a/H = 0.32 and a/H = 0.16. Migration in case of Lx0/H = 2 is only marginally

faster than that with Lx0/H = 1. Indeed the difference between the migration rates at

Lx0/H = 1 and Lx0/H = 2 increases as a/H changes from 0.16 to 0.32, but the difference

is not significant. When the intercapsule distance is decreased to Lx0/H = 1/2, we see

a significant reduction in the migration velocity for a/H = 0.32, similar to the case for

a/H = 0.16. In figure 4.3, we show only the results for Lx0/H = 1/2 for a/H = 0.32.

We note that Coulliette & Pozrikidis (1998) simulated motion of an array of drops placed

at the same lateral position in a cylindrical tube, similar to the configuration considered

here. Although they did not report the migration rate of the array, their results show that

with decreasing separation distance the deformation of the drops is reduced. Similar trend

is observed in our case, though the separation distance considered here is much lower than

that considered in Coulliette & Pozrikidis (1998). Since the migration rate increases with

increasing deformation, our results together with Coulliette & Pozrikidis (1998) suggest that

a closely-spaced array along the mean flow direction has a reduced migration rate compared

to that of an isolated capsule/drop.

Next we consider the effect of changing the separation distance Lz0 along the z direction,

which is the direction of vorticity. The periodicity in the x direction is now maintained at

Lx0/H = 1. The lateral location and velocity are plotted in figure 4.3. We note that
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increasing the separation distance in the z direction by a factor of two does not make any

discernible change, and hence this case is not shown in the plot. However, reducing the

separation in the z direction increases the migration velocity. This is in contrast to the

reduction of migration velocity seen previously for the capsule array arranged along the

mean flow direction.

The changes in migration velocity as seen above can be explained by considering the

changes in deformation and tank-treading motion. The lateral migration depends on both

tank-treading and deformation. For the capsule array along the x-direction, the tank-

treading motion weakens as the spacing between the capsules decreases. This, combined

with reduced deformation discussed earlier results into a reduction of the migration rate. In

the case of the array spaced in z direction, the arrangement seems to approach the geometry

of a cylindrical capsule along the z direction. This results into more blockage of the flow in

the streamwise direction, and hence, possibly, a higher lift force, and higher migration rate.

This observation is in agreement with the results of Mortazavi & Tryggvason (2000) who

observed that the migration rate for a two-dimensional liquid drop is slightly higher than

that for a three-dimensional drop.

In experiments using non-dilute suspension of red blood cells, Goldsmith (1971) observed

that the lateral migration of the cells is reduced, and the formation of the cell-free region

near the wall is hindered. Goldsmith attributed this reduction to the interaction with the

neighboring particles providing an obstruction to lateral migration. The results from our

simulations show that lateral motion could be reduced even for an array of capsules arranged

along the mean flow direction and without any obstruction in the lateral direction.

A.2. Non-equispaced capsules

Next we consider an array of capsules arranged along the x direction, which are not sepa-

rated by equal distance. Specifically, we consider two closely-spaced capsules with separa-

tion distance Lx0/H �= 1/2. The flow is otherwise periodic over unit length in the x and

z directions. The initial lateral locations yc0 of the two capsules are kept the same. The
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Figure 4.4: Migration of a pair of closely-spaced capsules with the same initial lateral
locations of the centroids as discussed in Section A.2. Evolution of the capsule shape is
shown. The parameters considered are Ca = 0.2 and λ = 1. Here yc0/H = 0.18 for both
capsules, and Lx0/H = 0.29.

arrangement and shapes of the capsules at time t∗ = 0 and at later times are shown in figure

4.4. In the figure, the mean flow is from left to right. The upstream capsule is marked as

‘1’ and the downstream capsule as ‘2’.

The lateral positions, and migration velocities of the capsules are shown in figure 4.5.

The results are markedly different compared to those of an equi-spaced arrangement. The

capsules do not migrate simultaneously, and they do not have the same migration velocity.

At the beginning, the downstream capsule migrates faster than the upstream capsule. In

the process, the former moves closer to the center of the channel and attains a higher

axial velocity. The separation distance between the capsules increases. As the downstream

capsule 2 migrates toward the center, its migration velocity decreases, but at a rate faster

than that of an isolated capsule. Meanwhile, the migration velocity of the upstream capsule

1 increases. Eventually the upstream capsule moves closer to the downstream capsule, and

the separation distance between them decreases. The upstream capsule continues migrating

and moves faster toward the center than the downstream capsule. Thus, a leap-frog process

between the capsules is established. The leap-frog process keeps repeating as the capsules
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migrate toward the center of the channel. The leap-frog behavior of the capsules seen here

has been reported earlier by Li & Pozrikidis (2000) for 2D simulation of liquid drops.

As shown in figure 4.5, the leap-frog behavior and crossover in the lateral positions of the

capsules are observed for a wide range of parameters. Some of the simulations shown in the

figure are performed over a long time to confirm that the behavior is persistent. The time to

reach the first crossover, and the time between two crossovers are seen to depend on Ca and

yc0. As shown in figure 4.5a, a smaller Ca results into an early and more frequent crossover.

A smaller yc0, and hence close proximity to the wall, also has the same effect. The leap-frog

behavior is less prominent as the initial location moves closer to the center. The earliest

crossover occurs for the case of Ca = 0.1, Lx0/H = 0.29, and yc0/H = 0.18 at time t∗ = 9.5

when the capsules have traveled about 35 diameter along the axial direction. The slowest

crossover occurs for capsules released at yc0/H = 0.29, with the first crossover occurring at

t∗ = 32 when the capsules have traveled about 170 diameter in the axial direction.

Figures 4.5b and 4.5c show the lateral and axial velocities, respectively. The axial

velocity shows similar leap-frog behavior. The lateral velocities for both capsules oscillate

with time, but are opposite in phase. The result is also significantly different from that

of an isolated capsule. Most strikingly, the lateral velocity components periodically attain

negative values, in a few cases, implying that the capsules migrate toward the wall for some

time during their motion. This is in stark contrast to the result for an isolated capsule,

and for an array of equi-distant capsules, where the lateral velocity is observed to be always

positive. In figure 4.5d, we show the time evolution of the absolute separation distance,

and the lateral separation distance yc,1 − yc,2 between the capsule centers. Clearly, the

lateral separation distance, starting from zero at t = 0, oscillates about the zero mean. The

absolute separation distance also oscillates.

A.3. Non-equispaced capsules with different yc0

Next we consider two capsules with initial separation in the x direction as Lx0, same as

before (section A.2), but also with an initial separation in the y direction as Ly0. The capsule
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Figure 4.5: Migration of a pair of closely-spaced capsules having same initial lateral loca-
tions. Shown here are (a) lateral location, (b) lateral velocity, (c) axial velocity, and (d)
lateral and absolute separation distances between the capsules. The line patterns used in
(a) to (c) are as follows: ——— Ca = 0.2, Lx0/H = 0.29, yc0/H = 0.18; – – – Ca = 0.1,
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· - Ca = 0.1, Lx0/H = 0.24, yc0/H = 0.18. (d) Lateral separation distance (− · − · −·,
right axis), and absolute separation distance (———, left axis) between the capsules for a
representative case of yc0 = 0.18, Ca = 0.2 and Lx0/H = 0.29. For all cases in (a) to (d),
λ = 1.
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Figure 4.6: Migration of a pair of closely-spaced capsules with different initial lateral loca-
tions of the centroids as in Section A.3. The flow is from left to right. Here yc0/H = 0.21
for the upstream (‘1’) capsule, and yc0/H = 0.18 for the downstream (‘2’) capsule. Other
parameters are: Lx0/H = 0.29, Ca = 0.2, and λ = 1. Shapes at t∗ = 0 and at later times
are shown.

pair is placed in the cubic box of unit length (figure 4.1). The flow is otherwise periodic in

x and z directions. The capsule configurations at time t = 0 and at later times are shown in

figure 4.6 for one case. The upstream capsule (‘1’) is located initially above the downstream

(‘2’) capsule. As the flow starts, the upstream capsule moves over the downstream capsule,

and the lateral distance between them increases. The interaction is repeated due to the

periodicity in x, and the lateral separation between the capsules continues to increase while

both capsules undergo a net migration toward the channel center.

The process shown in figure 4.6 is similar to the one observed for liquid drops in linear

shear flows in previous studies, e.g. by Loewenberg & Hinch (1997) for three-dimensional

liquid drops, and Charles & Pozrikidis (1998) for two-dimensional drops, and is the self-

diffusion of deformable particles by pairwise interaction. In a linear shear flow, the pairwise

interaction between two liquid drops results in an increased separation distance. The long

time separation distance depends on the initial separation distance, viscosity ratio, and
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weakly on the capillary number. Loewenberg & Hinch (1997) and Charles & Pozrikidis

(1998) showed that the lateral separation distance decreases with increasing Ca, and λ. A

recent study by Lac et al. (2007) reported that the hydrodynamic interaction between two

capsules in simple shear flow also resulted in self-diffusion of the capsules, similar to liquid

drops.

The lateral position, velocity, and separation distance between the capsules are shown in

figure 4.7. Results suggest that the migration is dominated by self-diffusion. Also shown are

the lateral positions of single capsules starting from the same initial position. The pairwise

interaction results into an increase in the migration rate for the upstream capsule 1, and

a decrease for the downstream capsule 2. Though the pair has a net migration toward

the channel center, both capsules periodically attain negative lateral velocity. The peak in

the lateral velocity of the initially upstream capsule could be an order of magnitude higher

than the migration velocity of an isolated capsule. Also note that for an isolated capsule,

deformation-induced lateral migration strongly depends on the capillary number (Chapter

3, figure 3.4a). For the case of the capsule-pair, the additional displacement due to pairwise

interaction does not strongly depend on the capillary number (figure 4.7c), which is in

agreement with the observation of Loewenberg & Hinch (1997) for liquid drops. As the

lateral separation distance increases with time, the pairwise interaction weakens. Similar

results have been observed in our simulations for larger capsule size with a/H = 0.32.

Previously in figure 4.3, we studied the effect of decreasing the axial spacings Lx0 between

the capsules that are arranged in an array along the flow (x) direction. The initial lateral

positions of the centers yc0 of all capsules were kept the same. We observed that for

equi-spaced arrangement, decreasing the spacing Lx0 between the capsules results into a

reduction of the lateral velocity. We now consider similar arrangement for capsule-pairs

as shown in figure 4.8. Instead of one pair of capsules, we now consider two pairs with

pair-to-pair separation of L = H/2. It is interesting to note that reducing the separation

distance between the capsule-pairs does not inhibit migration. On the contrary, an increased

dispersion of the capsules due to more frequent interactions is observed. Capsules located
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Figure 4.7: Migration of a pair of closely-spaced capsules with different initial lateral loca-
tions of the centroids as shown in figure 9. Lateral position and lateral velocity are shown in
(a) and (b). The lateral separation distance between the capsules, and the relative velocity
between them are shown in (c) and (d), respectively. For all figures following line patterns
are used: · · · · · · λ = 1, Ca = 0.2; - - - - - λ = 1, Ca = 0.8; and —— λ = 5, Ca = 0.2. In
(a) thin lines correspond to the results of an isolated capsule, and the thick lines for the
capsule-pairs. In (b) to (d) only the results for the capsule-pairs are shown. In (a) and (b),
results for both upstream and downstream capsules marked by ’1’ and ’2’ are shown.
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closer to the center move faster toward the center, while those located closer to the wall show

no significant center-ward motion. Increased interaction also results in more oscillations in

the lateral velocity which periodically becomes negative for all capsules.

A.4. Non-identical capsules

So far we have considered capsules of identical Ca and a/H. We now extend our simulation

of the foregoing configuration to consider non-identical capsules. In particular, we consider

two capsules forming the pair having different Ca and a/H. This case has relevance for

the study of bi- and poly-disperse suspensions. The effect of non-identical Ca is shown in

figure 4.9. Two cases are considered here: (i) the upstream capsule (‘1’) with Ca = 0.2, and

the downstream capsule (‘2’) with Ca = 0.8, and (ii) vice versa. The upstream capsule is

released at a lateral location slightly closer to the channel center. Migration of an isolated

capsule for identical parameters is also shown for comparison.

Consider the case (i) first. In absence of the pairwise interaction, the results for isolated

capsules suggest that the downstream capsule with Ca = 0.8 would have a higher migration

rate than the upstream capsule with Ca = 0.2. Due to the pairwise interaction, on the

contrary, the upstream capsule has a much higher migration rate, and it moves faster

toward the channel center. The migration of the downstream capsule, though somewhat

reduced, seems to be less affected compared to that of an isolated capsule. Interestingly,

the upstream capsule shows negative lateral velocity over a significant fraction of the time

during the course of its motion. For the case (ii), capsule 1 has higher migration rate,

and capsule 2 has lower migration rate, as expected, based on the results for the isolated

capsules.

Several interesting observations can be made in figure 4.9. First, the net migration for

the pair is higher in case (i) than in case (ii). Second, the lateral separation between the

capsules is higher for case (ii). Further, the frequency of encounter between the capsule is

higher in the case (ii) than in the case (i). Also note that for a capsule-pair with similar

Ca, the local maxima in the lateral position of the upstream capsule and the local minima
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Figure 4.8: Effect of increasing the number of capsule-pairs. Top Panel: Initial configuration
and shapes at t∗=8. Here Ca = 0.2 and λ = 1 are considered. The lateral positions and
velocities are shown in (a) and (b), respectively. The results of a single capsule-pair (from
figure 4.7) and of an isolated capsule are also shown for comparison. Line patterns used for
(a) and (b) are as follows: —— four capsules; - - - - a capsule-pair; and · · · · · · an isolated
capsule. For the case of four capsules, lateral location and velocity of ‘1’ and ‘2’ coincide
with those of ‘3’ and ‘4’, respectively.
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Figure 4.9: Migration of a pair of non-identical capsules (Section A.4). Effect of different
Ca is considered. Lateral position versus time is shown for the capsule-pair (solid line),
and for an ’isolated’ capsule (dash line) released from the same initial location and with the
same parameters. (a) (case i) The upstream capsule has Ca = 0.2, and the downstream
capsule has Ca = 0.8. (b) (case ii) The upstream capsule has Ca = 0.8, and downstream
capsule has Ca = 0.2. Here λ = 1 and a/H = 0.16 for all cases shown.

in that of the downstream capsule occur nearly at the same time. For the non-identical pair

shown in figure 4.9a for the case (i), the maxima and minima do not occur at the same time.

These observations suggest that the pairwise interaction between bi-disperse capsules, even

in linear shear flow, may have some features different from mono-disperse capsules.

Effect of dissimilar a/H is presented in figure 4.10. Here we consider two cases: (i) the

upstream capsule with a/H = 0.16, and the downstream capsule with a/H = 0.32, and (ii)

vice versa. The Ca for both capsules is fixed at 0.2. For cases (i) and (ii), the centroid

of the downstream capsule is initially located closer to the wall than that of the upstream

capsule. Consider the case (i) first. As the flow starts, the capsules deform. The smaller

capsule assumes an ellipsoid shape, while the larger one assumes a tear-drop shape. As

the capsules approach each other, a flat contact area is formed. The ellipsoidal/tear-drop

shapes are recovered when the capsules move apart. As the upstream smaller capsule tries

to move over the larger downstream capsule, the former is dispersed toward the center by
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the latter. Thus the migration of the smaller capsule is strongly affected by the capsule-

capsule interaction and is significantly different from that of an isolated capsule. Large

oscillations in the lateral position and velocity of the smaller capsule can be seen in the

figure. On the contrary, migration of the larger capsule is not significantly affected by the

pairwise interaction, and is similar to that of an isolated capsule. We have continued the

simulation for a long time until t∗ = 40. Over a long time the smaller capsule is dispersed

toward the opposite wall as the larger capsule approaches the center. In absence of the

pairwise interaction, the smaller capsule would have remained closer to the bottom wall

for an extended time. The result suggests that for a bi-disperse suspension, significant

dispersion and mixing may arise due to pairwise interaction. For the reverse arrangement

of the capsule-pair (case ii), the net migration rate of the larger capsule is now higher than

that of an isolated capsule. However, the pairwise interaction does make an effect on the

larger capsule which is reflected in the increased oscillations in its lateral locations. The

migration of the smaller capsule is significantly affected. After time t∗ = 16, the smaller

capsule seems to have made nearly no net lateral migration.

An interesting feature of figures 4.7–4.10 is the number of local maxima/minima in the

lateral positions of the upstream/downstream capsules. The maxima/minima represents an

encounter between the capsules. In a given time t, the number of encounters depend on

the initial location, capillary number, viscosity ratio, and the capsule size. More frequent

encounters result into more lateral dispersion. To facilitate discussion, we plot the lateral

separation distance Ly between the centroids of the capsules in figure 4.7c. A maximum

in Ly is considered as an encounter between the capsules. First we note that the first

encounter between the capsules occurs earlier for the case of λ = 1, Ca = 0.8 than that for

the case of λ = 5, Ca = 0.2. Moreover, the local maxima in the lateral separation decreases

with increasing Ca and λ. These results are consistent with those of Loewenberg & Hinch

(1997) for pairwise interaction between liquid drops in a linear shear flow. However, as

the simulations continue for longer time, somewhat different behavior is observed. First we

note that the time interval between two encounters gradually decreases. Also, the number
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Figure 4.10: Migration of a pair of non-identical capsules (Section A.4). Effect of dissimilar
a/H is considered. For the larger capsule a/H = 0.32, and for the smaller one a/H = 0.16.
The figures on the left show the capsule shapes at various times. The figures on the right
show the lateral positions versus time. Solid lines are for the case of the capsule pair. Dashed
lines correspond to the result of an ‘isolated’ capsule released from the same location with
similar parameters. Here λ = 1 and Ca = 0.2 for all cases.
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of encounters decreases with increasing Ca and decreasing λ. Thus, although the pair with

λ = 5 has the slowest approach rate for the first encounter, it shows more frequent encounter

over a long time.

The number of encounters between the capsules in a time window depends on the relative

velocity between them. A higher relative velocity results into more frequent encounters. In

figure 4.7d, the relative velocity between the capsule centers is shown for various cases. The

relative velocity shows a complex behavior with time. In figure 4.7d, for t∗ > 5, the relative

velocity is lower for a more deformable capsule pair. A capsule-pair with higher Ca and

lower λ has a higher net migration rate toward the center. As seen in figure 4.7a, at a given

time t∗, a capsule-pair with higher Ca and lower λ is located closer to the center. Because of

the parabolic nature of the undisturbed velocity profile, this pair will have a lower relative

velocity than a pair located closer to the wall. Hence, the number of encounters between

the capsules decreases with increasing Ca and decreasing λ.

The relative velocity between the capsules is strongly affected for the non-identical cap-

sules of varying sizes (not shown in figure). It is higher when the larger capsule is closer to

the channel center than the smaller capsule. Thus the highest number of encounters over a

given time is observed in figure 4.10 with the larger capsule located initially slightly above

the smaller one. The case of non-identical Ca also shows similar trend; higher number

of encounters is seen when the more deformable capsule in the pair is placed closer to the

center of the channel resulting into a greater relative velocity between the pair (figure 4.9b).

4.3.2 Ellipsoidal capsules

In this section we consider capsules with ellipsoidal undeformed shape. The ellipsoidal

shape somewhat resembles the deformed state of a red blood cell in a shear flow (see, e.g.,

Secomb 2003). In a shear flow, an isolated red blood cell undergoes a tank-treading and/or

tumbling motion. The transition between the two modes depends on the aspect ratio of the

ellipsoid and the viscosity ratio λ ( Keller & Skalak 1982, Ramanujan & Pozrikidis 1998). In

the present simulation with ellipsoids, the aspect ratio is taken as 2. The initial inclination
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times are shown. The flow is from left to right. The figure corresponds to λ = 5, and
Ca = 0.2.

angle of the major axis is at 450 with the flow. The volume of the ellipsoid is the same

as that of a spherical capsule with a/H = 0.16. The simulations are performed with 1603

Eulerian grids, and 5120 triangular elements on the surface of the ellipsoid. Note that the

present model for the capsule membrane using neo-Hookean law does not exactly resemble

a red blood cell membrane. The objective here is to see to what extent the lateral motion of

an ellipsoid is affected due to its initial shape, as well as due to simultaneous tank-treading

and tumbling motions.

An isolated ellipsoidal capsule in a parabolic flow is considered first. The capsule shape

at t∗ = 0 and at later times are shown in figure 4.11 for Ca = 0.2, λ = 5. The capsule is

released at t∗ = 0 at yc0/H = 0.21. As the flow starts, the tumbling motion of the ellipsoid

sets in while it migrates toward the center of the channel. The rotation of the ellipsoid

coincides with the direction of vorticity of the undisturbed flow. The instantaneous angular

orientation θ of the major axis with the mean flow direction is shown in figure 4.12c.

It is of interest to compare the present results with the simulations of Pozrikidis (1995)

and Ramanujan & Pozrikidis (1998). In these studies, dynamics of ellipsoidal capsules

in unbounded linear shear flow are considered. Pozrikidis (1995) observed that for an

ellipsoidal capsule at λ = 1, a steady orientation at θ = 0.13π is attained while the capsule
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undergoes tank-treading motion. Tumbling motion is absent for λ = 1. Ramanujan &

Pozrikidis (1998) considered the effect of λ and observed that the tumbling motion is present

for an aspect ratio 2 and λ ≥ 5. The results from our simulations as presented in figure

4.12c show that the tumbling motion is possible even for λ = 1. The difference between

the present observation and that of Pozrikidis (1995) and Ramanujan & Pozrikidis (1998)

is possibly due to the lateral migration of the capsule, and the presence of the wall.

Lateral position and velocity of the ellipsoidal capsules are shown in figures 4.12a & b.

Four different cases are considered: (a) an isolated ellipsoidal capsule with Ca = 0.2 and

λ = 1; (b) a spherical capsule with Ca = 0.2 and λ = 1; (c) an isolated ellipsoidal capsule

with Ca = 0.2 and λ = 5; and (d) an array of ellipsoidal capsules with Ca = 0.2 and

λ = 1 arranged along the streamwise direction with center-to-center separation distance

Lx0 = H/3. First, we note that the lateral position of an isolated ellipsoid is higher, though

not significantly, than that of the spherical capsule for the same values of Ca and λ, implying

that the tumbling motion, and the initial shape do not strongly affect the net migration.

The migration velocity (figure 4.12b) shows oscillations due to the tumbling motion. It

has a local maxima when the inclination angle θ = 900, and a minima when θ = 00. The

frequency of oscillations slowly decreases as the capsule migrates away from the wall to

regions with lower shear rate. The decrease is consistent with the theory of rotation of

a perfectly rigid ellipsoid in Stokes flow, that is, the rotation rate is proportional to the

shear rate (Jeffery 1922). Oscillations in the lateral velocity result into small undulations

in the lateral position. However, the capsule always migrates toward the center irrespective

of the instantaneous orientation angle. The effect of increased viscosity ratio at λ = 5 is

to reduce the migration rate due to the reduced deformation of the capsule. The effect

of reduced separation distance between the capsules is also to reduce the migration rate,

similar to the earlier observation for the spherical capsules. Interestingly, the reduction of

the spacings between the capsules does not prevent the tumbling motion. However, with

time, the frequency of rotation of the ellipsoid array decreases faster than that of an isolated

ellipsoid, though the array is instantaneously located closer to the wall due to its slower
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Figure 4.12: Migration of ellipsoidal capsules. (a) Lateral position, (b) lateral velocity, and
(c) instantaneous orientation of the major axis of the capsule versus time are shown. For
all cases Ca = 0.2. Line patterns used here are as follows: —— isolated ellipsoid with
λ = 1; - - - - - - isolated sphere having the same volume and λ = 1; - · - · - · - · - isolated
ellipsoid with λ = 5; and · · · · · · , an array of ellipsoids arranged along the x-direction with
center-to-center distance Lx0 = H/3 and λ = 1.
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Figure 4.13: Migration of a pair of closely-spaced ellipsoids with their centroids located
initially at the same lateral position yc0/H = 0.21. Line patterns used are as follows: – – –
λ = 1; —— λ = 5. Also shown is the result for an isolated ellipsoid (· · · · · · ) at λ = 1. For
all cases Ca = 0.2.

migration.

Pairwise interaction of ellipsoids is considered in figures 4.13 to 4.14. Two initial con-

figurations are considered which are similar to those for the spherical capsules: (a) two

ellipsoids placed at the same lateral distance yc0/H = 0.21, but separated along the axial

direction by Lx0/H = 0.29, and (b) two ellipsoids with axial separation of Lx0/H = 0.32,

and lateral separation of Ly/H = 0.03. For the case (a) as shown in figure 4.13, the leap-frog

behavior of the ellipsoids at λ = 5 is evident. For λ = 1, the leap-frog motion is absent at

the beginning, and the ellipsoids migrate maintaining nearly the same lateral position. At

around t∗ = 8, the pairwise interaction sets in, and self-diffusive type of motion is observed.

For the case (b) as shown in figure 4.14a, results are more closer to the spherical capsule

cases for both λ = 1 and 5. The lateral motion of the ellipsoids is strongly affected by the

pairwise interaction. The upstream capsule having its centroid located further away from

the wall is strongly displaced toward the center of the channel. The center-ward motion of
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Figure 4.14: Lateral migration of a pair of closely-spaced ellipsoids with their centroids
located initially at different lateral positions. Shown here are (a) lateral location, (b) lateral
velocity, and (c) instantaneous angular orientation. The line patterns used in (a) and (b)
are as follows: – – – λ = 1; —— λ = 5. Also shown is the result of an isolated capsule
(· · · · · · ) for λ = 1. In plot (c), angular orientation for only λ = 1 case is shown, where – –
– represents the upstream capsule, - · - · - the downstream capsule, and · · · · · · represents
an isolated capsule. For all cases, Ca = 0.2.
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the downstream capsule is significantly hindered. For λ = 5, the downstream capsule shows

no significant lateral motion, and it oscillates about a nearly steady mean position. The

lateral velocity becomes periodically negative for both ellipsoids, though the net migration

of the pair is still toward the center of the channel. The ellipsoid-pair with λ = 5 migrates

slower than the λ = 1 pair. Tumbling of the capsules is observed here, however it does not

seem to have a significant effect on the net migration. The frequency of tumbling of the

upstream capsule is lower than that of the downstream capsule. The latter tumbles nearly

at the same rate as that of an isolated ellipsoid. The frequency of encounter between the

ellipsoids for λ = 1 case is nearly the same as that for spherical capsules with similar Ca,

while it is slightly less for λ = 5.

4.4 Conclusion

The effect of neighboring capsule on lateral migration is studied by considering a pair of

ellipsoidal and spherical capsules in a wall-bounded pressure driven parabolic flow in a

channel in absence of inertia. Simulations have been performed for a range of Ca, viscosity

ratios and capsule-to-channel size ratio. First, we consider an equispaced array of capsules

in the flow direction, and investigate the effect of separation distance on migration velocity.

It is found that the rate of migration reduces as the separation distance decreases. However,

when the array of capsules is in the vorticity direction, a reversal of trend is obtained, where

the rate of migration increases as the separation distance decreases. On the other hand,

in both these cases, increasing the separation distance after two periodic domain lengths

does not change the migration velocity appreciably. Next, when an array of non-equispaced

capsules is considered in the flow direction, an interesting leap-frog behavior is noticed due

to the crossover of the capsules, which has no similarity compared to the migration of an

isolated capsule. Also, the interaction of non-identical capsules is observed. This is relevant

in the case of bi or polydisperse suspensions. In the case of interaction of ellipsoids, the

lateral migration is strongly affected by the interaction between them. When the pairwise

interaction sets in, a self-diffusive type of motion is observed. By focusing on the motion of
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an isolated capsule and interacting capsule pairs, this study forms the basis for the study

of interaction between multiple capsules in the case of suspensions.
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Chapter 5

Effect of Inertia on the Hydrodynamic Interaction between

Two Liquid Capsules in Simple Shear Flow

5.1 Introduction

When two particles are released in a shear flow with different velocities, they first approach,

and then roll over each other. If the particles are rigid spheres with zero inertia, then

the interaction is reversible, that is, the particles follow the same trajectories when the

shear flow is reversed. If the particles are deformable, however, the interaction results into

an irreversible trajectory. The separation distance between the particles in the velocity

gradient direction is higher after the interaction than before the interaction (Figure 5.1).

The phenomenon is termed as shear-induced self-diffusion, and it plays an important role

in mixing and microstructural evolution of suspension (Loewenberg & Hinch 1997; Guido

& Simeone 1998).

Shear-induced self-diffusion has been mostly studied in the case of suspension of rigid

spherical particles. Batchelor & Green (1972) studied the interaction between two rigid

spheres in a linear flow, and showed that the trajectories of one sphere relative to the other

could be closed (i.e. they do not extend to infinity). The existence of closed trajectories

for a pair of spheres was experimentally observed by Darabaner & Mason (1967). If the

spheres are perfectly smooth, interaction between a pair of them does not lead to self-

diffusion. Self-diffusion of rigid spheres is possible when more than two spheres are present

(Acrivos et al. 1992; Wang et al. 1996), or surface roughness is introduced (Da Cunha &

Hinch 1996). Experimental measurements on shear-induced self-diffusion of rigid particles

have been obtained by Eckstein et al. (1977), Leighton & Acrivos (1987), Chang & Powell
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Figure 5.1: Schematic of interaction of a pair of rigid and deformable bodies in shear flow:
(a) rigid, and (b) deformable. Here ∆y1 and ∆y2 are the initial and final lateral distances
of the bodies.

(1994), and Breedveld et al. (1998, 2001). Theoretical and numerical studies on shear-

induced diffusion of rigid particles have been considered by Brady & Bossis (1985), Brady

& Morris (1997), Foss & Brady (1999), Marchioro & Acrivos (2001), Drazer et al. (2002),

and Sierou & Brady (2004).

The works mentioned above are all in the limit of Stokes flow. The presence of inertia is

expected to affect the interaction between a pair of liquid drops/capsules/rigid spheres, as

well as the shear-induced diffusion mechanism. Interaction between a pair of liquid drops

in presence of inertia has been extensively studied. These studies are complicated by the

fact that the drops often coalesce or break upon interaction at high inertia. Depending on

the nature of the coalescence and breakup, various regimes of collision can be identified.

Here we avoid the discussion on drop-drop collision, and refer to some recent papers by, for

example, Pigeonneau & Feuillebois (2002), Qian & Law (1997), Wang et al. (1994), Ashgriz

& Poo (1990), Nobari & Tryggvason (1996), Brenn & Kolobaric (2006), Pan & Suga (2005),

and Roisman (2004), among others, which give excellent accounts on the subject. We note,

however, that the shear-induced diffusion process for non-coalescing and non-breaking liquid

drops in presence of inertia has not been studied. So is the case for liquid capsules. As for

rigid particles, Kromkamp et al. (2005) studied pairwise interaction between two circular

particles in a shear flow at finite but small inertia. Kromkamp et al. (2005) observed that

though the shear-induced diffusion mechanism is present, the trajectories of the particles

showed markedly different behavior in presence of inertia.
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It appears, therefore, that shear-induced diffusion process, and hydrodynamic interac-

tion between three-dimensional deformable particles in presence of inertia lack sufficient

investigation. In this chapter we address hydrodynamic interaction between two liquid cap-

sules suspended in a linear shear flow in presence of inertia. We choose capsules because

unlike liquid drops, they do not coalesce or break upon interaction, and hence provide a

‘cleaner’ system. At the same time, capsules are deformable like liquid drops. Thus, unlike a

pair of smooth rigid spheres which does not show shear-induced diffusion, a pair of capsules

is expected to show this mechanism. As mentioned above, the only study that addressed

shear-induced diffusion of a capsule-pair is the one by Lac et al. (2007) in the limit of

zero inertia. Here we extend their study to finite inertia. While inertia is not important

for biological applications, it is often relevant for artificial capsules in industrial processes

related to food and polymer processing (Borhan & Gupta 2003).

In this chapter we present three-dimensional numerical simulation on capsule dynamics

using immersed boundary/front-tracking method. The main objective of the chapter is to

study the interaction between two capsules in presence of inertia. However, we note that

there is virtually no study that addressed the effect of inertia on single capsule dynamics.

Therefore, in the first part of the chapter, we briefly consider the dynamics of a single

capsule suspended in a shear flow in presence of inertia. This is followed by the results on

the effect of inertia on capsule-capsule interaction.

5.2 Problem Setup

The flow configuration is described in figure 5.2. We consider deformation of a capsule, and

interaction between two capsules, suspended in a simple (linear) shear flow given by U =

{Gy, 0, 0}, where G is the shear rate. The initial undeformed shape of a capsule is spherical

with diameter a. The fluid, both inside and outside of the capsules, is incompressible and

Newtonian. The channel is periodic in the streamwise (x) direction, and in the z-direction.

In the y-direction, the flow is bounded by two no-slip walls separated by a distance H. The

computational domain is a cube of sides of length H. In the present computation, we take
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Figure 5.2: Schematic of the initial configuration showing the computational domain and
initial location of the capsules in shear flow.

a/H = 0.16.

The governing equations are made dimensionless using a as the characteristic length

scale, and the inverse shear rate G−1 as the time scale. The dimensionless time tG−1

is denoted by t∗. The major dimensionless parameters are the Capillary number Ca =

µGa/Eh which is the ratio of the viscous stress to the elastic force of the capsule membrane,

and the Reynolds number Re = ρGa2/µ. In the limit of small inertia, capillary number is

the relevant parameter, whereas at finite inertia it is customary to use the Weber number

We = ReCa = ρG2a3/Eh instead of the capillary number. The viscosities of the capsule

liquid and the exterior liquid are the same.

5.3 Results and Discussion

5.3.1 Capsule Deformation at Finite Re

As mentioned before, previous works on capsule deformation have been mostly limited to

Re � 1. Using the immersed boundary code, we have simulated capsule deformation in

shear flow at finite Re up to 50, and We up to 10. The capsule shapes in this range of

Re are shown in figure 5.3a. As in the limit of small inertia, capsules at finite inertia also

attain a steady ellipsoidal shape and inclined orientation with the flow. We note that the

capsule elongates more as Re (or, We) increases. The deformation parameter D and the
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orientation angle θ are shown in figures 5.3b and c, respectively, with respect to time. The

asymptotic steady values of D and θ increase with increasing Re (or, We).

Once the capsule attains the steady deformed shape and orientation, the interior liquid

and the membrane rotate in a tank-treading manner. The streamlines in and around the

capsule at steady state are shown in figure 5.4 for Re� 1 and for and Re = 10 and 50. For

all cases, streamlines within the capsule rotate clockwise in accordance with the direction of

vorticity of the imposed flow. The streamlines outside the capsule, however, show significant

differences at small and high inertia. For Re � 1 (figure 5.4a) all streamlines around the

capsule extend to infinity. Streamlines in y/a > 0 half of the domain go from left to right,

and those in y/a < 0 go from right to left, in agreement with the imposed shear flow. When

Re increases to 10 or 50 (figures 5.4b and c), not all streamlines extend to infinity. Rather,

the streamlines within −0.5 < y/a < 0.5 form a reverse flow. The streamlines coming from

left in 0 < y/a < 0.5 turn around as they approach the capsule, and then they move to the

left in −0.5 < y/a < 0. The streamlines coming from right in −0.5 < y/a < 0, also turn

around as they approach the capsule, and move to the right in 0 < y/a < 0.5. Between the

reverse-flow region, and the capsule, a straining flow region with a off-surface stagnation

point is generated. As Re increases from 10 to 50, the reverse-flow region expands more

in the lateral (y) direction. Note that the flow domain is periodic in x. Thus we actually

simulate an array of capsules with centers located H apart. The reverse streamlines in

between two adjacent capsules then form a recirculating flow.

The streamline patterns shown here can be compared with those obtained previously for

rigid particles suspended in simple shear flow. In the limit of Stokes flow, all streamlines

around a rigid spherical or circular particle extends from −∞ to +∞, or vice versa, under

a torque-free condition (e.g. Happel & Brenner 1983, Poe & Acrivos 1975, Mikulencak &

Morris 2004). At finite inertia, experiments (Poe & Acrivos 1975) and numerical simulations

(Kossack & Acrivos 1974, Mikulencak & Morris 2004) have shown the existence of reverse

streamlines, and off-surface stagnation points for a torque-free rigid sphere or circular cylin-

der. The distance between the stagnation points and the center of the particle decreases
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as Re increases (Poe & Acrivos 1975). Our results show that the reverse streamlines and

off-surface stagnation points also exist for deformable liquid capsules at finite Re.

5.3.2 Capsule–Capsule Interaction at Re � 1

Next we consider the main results of the chapter, that is, hydrodynamic interaction between

two capsules suspended in a shear flow. We first consider the low Re limit, followed by the

effect of inertia in the next section. The initial coordinates of the capsule centers are

−x0, y0, z0, and x0,−y0, z0. Thus, the capsules are initially placed off-axis, at small but

equal distances above and below the center line at y = 0 (figures 5.2). The initial lateral

and horizontal separations between the centers of the capsules are denoted by ∆y0, and

∆x0. The dimensionless parameter ∆y0/a is also called the impact parameter. Due to the

non-zero relative velocity between them, the capsules approach each other, and subsequently

interact. The sequence of interaction at successive times is shown in figure 5.5 for Re� 1.

Here we consider Ca = 0.2, and ∆y0/a = 0.2, and ∆x0/a = 4. As the flow starts, the

capsules first deform and attain ellipsoidal shapes. As they approach closer, the capsules

roll over each other. During the process, both capsules undergo significant deformation,

and a flat contact area is formed. Eventually the capsules separate in the x-direction, and

the ellipsoidal shapes are recovered. The capsule moving to the right continues to move in

that direction, and the one moving to left also continues in that direction.

A close inspection of figure 5.5 reveals that during the interaction, the lateral separation

between the capsule first increases and then decreases. The history of the lateral separation

∆y between the capsule centroids is shown in figure 5.6. The effect of Ca is also shown

here. ∆y remains at its initial value of 0.2 until the capsules are close enough. Upon close

encounter, ∆y increases sharply reaching its maximum when the capsules roll over each

other (i.e. ∆x ≈ 0). After the interaction, ∆y decreases. As the capsules move away

from each other, ∆y reaches a steady value. The final steady value of ∆y (≈ 0.6) is higher

than the initial value of 0.2, implying that the hydrodynamic interaction has resulted in

a larger permanent lateral separation between the capsules. The process is irreversible,
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and the capsules are said to have undergone shear-induced self-diffusion due to pairwise

interaction. The shear-induced diffusion seen here for the liquid capsules is similar to that

recently published by Lac et al. (2007). It is also similar to the shear-induced diffusion of

non-coalescing liquid drops at zero Reynolds numbers (e.g. Loewenberg & Hinch 1997) and

at finite Reynolds numbers (e.g. Nobari & Tryggvason 1996), and for rigid particles (e.g.

Kromkamp et al. 2005) at finite Re.

5.3.3 Capsule–Capsule Interaction at Finite Re: Short Time Behavior

Next we consider the effect of inertia on capsule-capsule interaction. The initial off-sets

are ∆y0/a = 0.2 and ∆x0/a = 4, same as before. Successive profiles of the capsules are

shown in figure 5.7 for Re = 10 and We = 2. As the flow starts, the capsules deform and

attain ellipsoidal shapes. As time progresses, the capsules first approach each other due

to the non-zero relative velocity between them (figure 5.7b). As the capsules come closer,

however, they do not roll over each other. Rather, they reverse the direction of motion

(at t∗ = 12 in figure 5.7c). The capsule initially moving to the right (shown using light

shading) now moves to left, while the one moving to left (shown using dark shading) now

moves to right (figure 5.7d). This behavior is remarkably different from that seen earlier

at Re � 1 in figure 5.5, where the capsules rolled over each other, and maintained their
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respective directions of motion after the interaction. At around t∗ = 28 (figure 5.7e), the

horizontal separation between the capsules is the maximum. At this point, their directions

of motion reverse again, and they again start approaching each other, as evident from figure

5.7f for t∗ = 38. Subsequently, at around t∗ = 45, the capsules again reverse their motion,

and recede from each other (not shown). The simulation was continued for a long time, and

the reversal of the motion was observed to repeat continuously.

A number of numerical experiments at finite Re up to 50 are performed. The trajectories

of the capsule centroids for different Re are shown in figure 5.8a. We also show the y-

coordinates of the capsule centroids versus time in figures 5.8b and c which may also be

helpful to describe the capsule interaction at finite Re. For all Re, the initial horizontal

separation is 4, and the vertical separation is ∆y0 = 0.2. The initial locations of the capsule

centroids are marked by circles in figure 5.8a. The capsule located in x < 0, y > 0 initially

moves to the right, and the one located in x > 0, y < 0 moves to the left. Consider first the

cases with Re� 1. The capsules approach each other in nearly horizontal trajectories. As

the horizontal separation between them decreases, the capsules roll over each other which

results in an increase in the vertical separation between their centers. After the interaction,

the capsules move away from each other, and the vertical separation decreases. The capsule

initially moving to the right (or left) continues to move in the same direction after the

interaction. Next consider Re = 0.5. Inertia does not play any significant role at this Re.

The trajectories of the capsules at this Re are similar to those obtained for Re � 1 which

show shear-induced diffusion.

Consider next Re = 1.5 and 2.3 (We = 0.075 and 0.115) in figures 5.8a and b. The effect

of inertia is now apparent, as the capsules do not move in horizontal trajectories before the

encounter. Rather, they move towards the y = 0 axis immediately before the encounter.

As a result, the vertical separation between the capsule first decreases. Also note that the

capsules move closer to the y = 0 axis as Re increases. Upon encounter, the capsules roll

over each other. Subsequently, the capsules move away from each other, and continue to

maintain their initial direction of motion. Thus the shear-induced diffusion occurs even at
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Re = 1.5 and 2.3 except that the capsules move laterally towards y = 0 axis before the

encounter.

When Re increases to 3 (figures 5.8a and c), several remarkable effects of inertia are

observed. The capsules first approach each other as before. They also migrate vertically,

and move closer towards the y = 0 axis. But upon encounter, they do not roll over each

other. Rather they reverse their direction of motion upon interaction. The reversal of

direction is due to the fact that the capsules cross the y = 0 axis. The capsule which

is in y > 0 before the encounter, moves to y < 0 after the encounter, and vice versa.

Subsequently, the capsules reverse their direction of motion. The capsule moving to the

right (left) before the interaction, moves to the left (right) after the interaction.

When Re increases to 10 and 50, the reversal of motion of the capsules is also observed

(figures 5.8a and c). We also note that as Re increases from 3 to 50, the reversal of motion

of a capsule happens progressively earlier in time (figure 5.8c).

The interaction between the capsules at finite Re as just described has no similarity in

low Re. The shear-induced diffusion phenomenon observed at low Re is completely absent

in presence of moderate to high inertia (Re > 3). Recently, Kromkamp et al. (2005)

performed numerical simulations of hydrodynamic interaction between two rigid circular

cylinders suspended in a simple shear flow in presence of inertia. The Reynolds number

of the particles considered in their study ranges from 0.019 to 0.518. At Re > 0.058,

they observed that the cylinders move vertically towards the y = 0 axis before rolling

over each other. This result is similar to that obtained by us for three-dimensional and

deformable capsules at Re = 1.5 and 2.3. These two results therefore suggest that inertia

alters the trajectories of the particles during the shear-induced diffusion process irrespective

of whether the bodies are 2D or 3D, and rigid, or deformable. Kromkamp et al. (2005)

however, did not consider much higher Reynolds number (e.g. Re > 1) as considered in our

study. Thus, the reversal of capsule motion for Re ≥ 3 as described above has not been

reported by them.

The effect of the impact parameter ∆y0/a is studied next in figure 5.9a. We consider
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Re = 50 only, but ∆y0/a = 0.2, 0.40 and 0.57. Due to the inertia, in all cases, the capsules

first approach y = 0 axis before encounter. For ∆y0/a = 0.2 and 0.4, the capsules cross the

y = 0 axis, and thus reverse their directions of motion. For ∆y0/a = 0.57, the capsules do

not cross the y = 0 axis, and they roll over each other, resulting in shear-induced diffusion.

This result implies that the roll-over or reversal of motion depends on the initial vertical

separation (impact parameter), not just on Re (or We). We also note that the reversal of

motion occurs earlier as the impact parameter decreases. In the limit ∆y0 → 0, there is no

interaction between the capsules, and ∆x = ∆x0 for all time. In the limit ∆y0 → ∞, also

there is no interaction between the capsules, and ∆y = ∆y0 for all time.

Figures 5.9b and 5.9c show the effect of ∆x0. Here ∆y0/a is held constant at 0.2, and

∆x0/a is 1.5 and 8. The Reynolds number considered here is 3, 10, and 50 (We = 0.15,

0.5, and 2.5, respectively). For all Re at ∆x0/a = 8 (figure 5.9b), the capsule trajectories

are similar to those obtained for ∆x0/a = 4 (figure 5.8), and they show the reversal of

the capsule motion. Thus, the reversal of the motion is expected to occur even at large

∆x0/a. On the contrary, capsules with ∆x0/a = 1.5 (figure 5.9c) show remarkably different

trend. In this case, reversal of motion occurs only for Re =50, and the diffusion-type motion

(roll-over) occurs for Re = 3 and 10.

We now explain the physical reason for the reversal of capsule motion at finite Re. For

that, we refer to the streamlines plot presented in figure 5.4. It was noted in figure 5.4 that

at Re � 1, the streamlines outside a capsule smoothly follow the deformed shape of the

capsule, and extend to ∞. If a second capsule is introduced in the flow, it will follow the

streamlines, and move around and over the first capsule as seen in figure 5.5 resulting in

self-diffusion type motion. At finite Re, on the other hand, the exterior streamlines near the

y = 0 axis create a recirculating flow. If a second capsule is released within the recirculating

flow, it will follow the closed streamlines, and show the reversal of motion. If it is released

outside the recirculating flow, it will follow the open streamlines, and roll over the first

capsule. The lateral extent of the recirculating flow increases with increasing Re (figure

5.4). At moderate values of Re (e.g. 1.5 and 2.3 in figure 5.8) and ∆y0 (e.g. 0.2), the initial
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locations of the capsules are nearly along the boundary of the recirculating flow. Thus the

capsule initially move closer to the y = 0 axis before rolling over each other. For higher

values of Re (> 3) but moderate values of ∆y0 (e.g. 0.2 in figure 5.8), the initial locations

of the capsules are well within the recirculating flow regions, and hence the capsules reverse

their motion. For Re = 50 and ∆y0 = 0.57 (figure 5.9a), the initial locations are outside

the reverse flow regions, and hence the capsules roll over each other.

Some more interesting observations at finite Re can be made in figures 5.8b and c, which

show the y-coordinate of the capsule centroids versus dimensionless time. First, for Re < 3,

the time t∗ taken by the capsules before they tumble increases with increasing Re. This is

because as Re increases, the recirculating flow strengthens, and the vertical component of

fluid velocity increases in the recirculating region. The capsules move towards the y = 0 axis

relatively earlier. As a result, the relative velocity between them (based on the undisturbed

shear flow) decreases resulting in longer time before they tumble over each other. For

Re ≥ 3, even higher lateral fluid velocity causes the capsules to move quicker towards the

y = 0 axis, and cross the axis due to inertia. Thus for Re ≥ 3, the reversal of capsule

motion occurs earlier in time with increasing Re. It also implies, as evident from figures

5.8 and 5.9, that with increasing Re (≥ 3) the capsules come less closer to each other.

The reversal of the capsule motion should not be confused with the bouncing collision

that is often encountered during head-on collision of liquid drops (see, e.g. Nobari &

Tryggvason 1996, Mohamed-Kassim & Longmire 2004). In the latter case, the drops come

close to each other before bouncing. In the present case, the capsules at finite inertia do

not come close to each other as evident from figures 5.7–5.9. To illustrate this point, we

compute the minimum horizontal distance ∆xmin between the capsules as shown in figure

5.10. We note that ∆xmin depends on Re, ∆x0 and ∆y0. For a given ∆y0, we see that

∆xmin increases with increasing Re (also see figure 5.9a), due to the increasing strength of

the recirculating flow. For a given Re, ∆xmin increases with decreasing ∆y0. In the limits

∆y0 → 0 or ∞, no interaction can take place, and ∆x = ∆x0.

One implication of the fact that the capsules do not come close to each other at finite
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Re is that the deformed ellipsoidal shapes of the capsules remain unchanged during the

interaction. This is in contrast to the observation at low Re, where capsule shapes deform

significantly during the interaction (figure 5.5).

5.3.4 Capsule-Capsule Interaction at Finite Re: Long-Time Behavior

So far we discussed the results on the first encounter between the capsules. Simulations

presented above were continued for longer time. We now discuss the long time behavior

of the capsules. For this we only consider the cases for which reversal of capsule motion

was observed. The long-time behavior can be illustrated by going back to figure 5.7. Here

we see that the capsules, after deforming, first approach each other, then recede from each

other (at t∗ ≈ 12 − 28), and then again approach each other (at t∗ ≈ 28 − 38). They also

periodically move above and below the y = 0 axis. The periodic approach and receding

motion continued throughout the length of the simulation (t∗ ≈ 100). Simulations at higher

Re and We also show similar periodic motion, details of which are described later. Such

periodic approach and receding motion over long time at high Re has no similarity at low

Re.

Long-time trajectories of the capsules for Re = 10, 25 and 50 (We = 2, 5 and 10,

respectively) are shown in figure 5.11. The trajectories show that the capsules move in

spirals, and thus repeatedly approach and recede. The direction of the spiraling motion

coincides with the direction of the vorticity of the imposed shear flow. The trajectories do

not show the same behavior for all Re and We. At Re = 10, the capsules move spirally

outward. At Re = 25, the capsules first spiral inward, but eventually continue to spiral

in fixed orbits. At Re = 50, the capsules spiral inward, and then settle on the y = 0 axis

after which no significant motion of them is observed. The spiraling motion of the capsules

is further illustrated in figure 5.11b showing the capsule centroids (yc) versus t∗. For both

capsules yc oscillates about y = 0. For Re = 10, amplitude of oscillations increases with

time as is the case for an outward spiral. For Re = 25, the amplitude remains constant as

is the case for a fixed-orbit motion. For Re = 50, oscillations are damped as the capsules
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spiral inward and eventually settle at y = 0 axis.

The explanation for the different spiraling motions (outward, inward or fixed-orbit) can

again be based on the existence of the recirculating flow formed in between two adjacent

capsules in an array (figure 5.4). The explanation is given using the fluid velocity vectors

shown in figures 5.12 and 5.13 where two pairs of capsules are considered since the flow is

periodic in x. The capsules are marked by number 1, 2 etc. Consider Re = 10 first in figure

5.12. At t∗ = 5 (figure 5.12a), a recirculating flow exists (marked by ‘R1’ in the figure)

between the capsules 1 and 2 where the fluid moves in the clockwise direction. At this

moment the centers of capsules 1 and 2 are located above and below y = 0, respectively. As
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the capsules approach each other, the recirculating flow between them weakens. At t∗ ≈ 12

(figure 5.12c), the capsules are closest to each other, and the recirculating flow between

them is absent. Instead, a straining flow region exists (marked by ‘S’ in figure 5.12c). The

generation of this straining flow region was also discussed in section III-B. At this point,

however, two recirculating regions, marked by ‘R2’ in figure 5.12c, develop between capsules

3 and 1, and between 2 and 4. As a result, capsule 1 now starts moving downward towards

y = 0, and capsule 2 moves upward towards y = 0. Due to inertia, the capsules cross the

y = 0 axis. Once the capsule 1 is in y < 0, and capsule 2 is in y > 0, they start receding

from each other (figure 5.12d). The intercapsule gap between 1 and 2 starts increasing and

a recirculating flow re-emerges there (marked by ‘R1’ in figure 5.12e), whereas straining

flow regions re-emerges between 3 and 1, and between 2 and 4. The cycle is then repeated.

The vector plots for Re = 50 are shown in figure 5.13. As noted earlier in figure 5.4 for

single capsule, the off-surface stagnation points are located closer to the capsule as Re

increases. As a result, the recirculating flow develops between two capsules even when the

inter-capsule gap is relatively small. The effect from two adjacent recirculating regions is

nullified by each other, and eventually the capsules attain a stable position at y = 0 axis.

5.3.5 Regimes of Capsule-Capsule Interaction at Finite Re

Above results suggest that shear-induced diffusion, which is characteristic of Re � 1, may

or may not be present at finite Re (or, We) depending on the impact parameter ∆y0/a

and the initial gap ∆x0/a. In the case where shear-induced diffusion is present, the lateral

separation between the capsules first decreases before they roll over each other. In the case

when shear-induced diffusion is absent, the capsule-pair engages in a spiraling motion. The

spiraling motion could be either outward, inward or fixed-orbit. These regimes of motion

are shown in a Re–∆y0 (or, We–∆y0) plane in figure 5.14 for a fixed ∆xo/a = 4. Based on

the computational results, four different regimes in capsule-capsule interaction at finite Re

can be identified. They are: (i) a self-diffusive type interaction for Re < 3 (We < 1) and

any ∆y0 in which the capsules roll over each other as in case of Re � 1, (ii) an outwardly
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spiraling motion for 3 < Re < 20 (1 < We < 4) and for low values of ∆y0/a (< 0.4), (iii)

a fixed-orbit spiraling motion for 20 < Re < 30 (4 < We < 6) and ∆y0/a < 0.4, and (iv)

an inwardly spiraling motion for Re > 30 (We > 6) and ∆y0/a < 0.4 in which the capsules

settle at y = 0.

5.4 Summary and Conclusion

The main objective of this chapter was to study the effect of inertia on the hydrodynamic

interaction between a pair of capsules. In the limit of zero inertia, it has been known

from past research that the hydrodynamic interaction between two deformable particles

(drops/capsules) suspended in shear flow with a relative velocity results in an irreversible

shift in the trajectories of the particles leading to the so-called shear-induced diffusion.

In this chapter we investigated the effect of inertia on the deformation of single capsule,

on capsule-capsule interaction, and the shear-induced diffusion of them. Throughout the

chapter, we draw comparison between the results at finite inertia and at small inertia. The

main results from this study are summarized below.

1. At finite inertia, a capsule in a shear flow deforms in to an ellipsoidal shape, and

deformation increases with increasing Re. The flow field around a capsule showed reverse

flow regions and off-surface stagnation points, similar to those previously reported in case

of torque-free spheres and cylinders. The lateral extent of the reverse flow increases with

increasing Re.

2. The present methodology has been successful to simulate the shear-induced diffusion

resulting from the hydrodynamic interaction between two liquid capsules at Re� 1. Similar

to liquid drops, capsules at Re� 1 undergo irreversible increase in their lateral separation

due to the shear-induced diffusion. During the interaction, the capsules undergo significant

deformation. To the best of our knowledge, apart from the present study, there is only one

study that addressed the shear-induced diffusion of liquid capsules (Lac et al. 2007).

3. Effect of inertia on the interaction between two capsules is quite remarkable. For

1 < Re < 3, the capsules do undergo the shear-induced diffusion, but their trajectories are
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different from those at Re � 1. Specifically, the lateral separation between the capsules

first decreases before they roll over each other. For Re > 3, the capsules reverse their

directions of motion before coming close to each other. Thus, for Re > 3, the shear-induced

diffusion can be absent. The reversal of the capsule motion is explained based on the

recirculating streamlines formed around the capsule at finite Re. The reversal of motion

occurs progressively earlier in time (that is, the capsules come less closer to each other)

with increasing Re.

4. The long-time behavior of the capsule-capsule interaction at finite inertia showed

that the capsules engage in spiraling motions. The nature of the spiraling motion depends

on Re and We, and the initial separation between the capsules. The spiraling motion of the

capsules is also explained based on the recirculating streamlines formed around the capsule

at finite Re.

5. Based on our simulations, four different regimes of capsule-capsule interaction at

finite inertia are identified: (i) a self-diffusive type interaction for Re < 3 (We < 1), (ii)

an outwardly spiraling motion for 3 < Re < 20 (1 < We < 4), (iii) a fixed-orbit spiraling

motion for 20 < Re < 30 (4 < We < 6), and (iv) an inwardly spiraling motion for Re > 30

(We > 6) in which the capsules settle with zero relative velocity. These spiraling motions

at finite Re have have no analogy at Re� 1.

One distinct feature of capsule-capsule interaction at finite inertia is that the capsules do

not come close enough so that the interaction does not lead to further deformation of them.

This is in stark contrast to Re� 1 limit when the capsules undergo significant deformation

during the interaction. These, and other results presented here may have implications

in developing a theory of capsule suspension. By considering the binary interaction of

capsules, this study forms the basis of addressing the more difficult problem of suspension

of deformable capsules or other deformable particles at finite inertia.
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Chapter 6

Three-dimensional Computational Modeling and Simulation

of Multiple Cells Flowing in Microvessels

6.1 Introduction

In last chapters, we investigated dynamics of single capsule & pair-wise interaction of two

capsules as models for motion of deformable cells such as red blood cells. These studies

develop the foundation for a more complex problem of motion of multiple, interacting,

deformable particles. In this chapter, we consider Direct Numerical Simulation (DNS) of

a suspension of a large number of capsules in a channel flow. The objective is to be able

to predict physiologically relevant processes, such as the development of the cell-free layer,

plug-flow profile, Fahraeus & Fahraeus-Lindqvist effects, as discussed in Chapter 1 (section

1.4.1).

A continuum description of blood flow in microvessels, such as those given by core-

annular (or, two-phase) models, is sufficient to qualitatively predict the Fahraeus and

Fahraeus-Lindqvist effects. Such models, however, rely on estimates of various physio-

logical parameters, such as the width of the cell-free layer, which can be obtained only by

high-resolution experiments (Long et al. 2004; Kim et al. 2007), or computational simula-

tions in which motion and deformation of individual cell are directly resolved. Significant

progress has been made over the past decades in understanding cell motion in unbounded

simple shear flow (Eggleton & Popel 1998; Skotheim & Secomb 2007), and axisymmetric

and nonaxisymmetric motion of single cell in narrow tubes and channels (Secomb et al.

1986; Pozrikidis 2003; Damiano 1998; Hsu & Secomb 1989). Pozrikidis (2005) presented

boundary-element simulation of spherical, oblate ellipsoidal and biconcave cells in tube flow.
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Secomb et al. (2007) developed a 2D finite-element model that included viscoelastic nature

of the erythrocytes, and studied cell deformation, tank-treading and radial migration in mi-

crovessels. Extension of such models to larger vessels has remained a major computational

challenge since multiple cells, often of the order of a few thousands in number, must be

considered without sacrificing the detailed mechanics of individual cell.

Recent advances in the development of robust numerical methods and high-performance

computational resources have enabled researchers to consider such large-scale simulations.

Sun & Munn (2005) used a Lattice-Boltzmann simulation to address blood flow in 20–40µm

with cells modeled as 2D rigid disks. Zhang et al. (2007) developed a 2D immersed bound-

ary Lattice-Boltzmann technique that can simulate flow of a small number of deformable

erythrocytes. Bagchi (2007) used immersed boundary method in 2D to simulate flow of a

large number (up to 2500) of deformable erythrocytes in 10–300µm vessels. Ding & Aidun

(2006) used a three-dimensional Lattice-Boltzmann technique to consider cluster formation

in a large ensemble of deformable erythrocytes in shear flow. Pivkin et al. (2006) de-

veloped a dissipative-particle-dynamics technique to consider the simultaneous motion of

deformable erythrocytes, and their effect on platelet deposition and thrombus formation.

Freund (2007) studied margination of leukocytes in presence of deformable erythrocytes in

2D. Recently Zhao et al. (2008) developed a fixed-mesh method for the study of deformable

fluid-structure interaction in 3D with application to biological systems.

In this chapter, we present three-dimensional computational modeling and simulation of

a large number of deformable cells flowing in microchannels. We consider two types of cells,

one having initially spherical shape, and the other having biconcave shape representative

of erythrocytes in unstressed state. The channel width ranges from about 10–45 µm, which

allows us to consider both single and multi-file motion. The highest number of cells consid-

ered in the simulations is 122 within the computational domain. The simulations generated

a database with a wealth of information on the dynamics of flowing cell suspension. In

this chapter, we present results on radial migration of cells, and their tumbling motion

as observed for erythrocytes, analyze the trajectory and velocity of individual cells in the
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suspension as functions of cell deformability, hematocrit, and channel width. The Fahraeus

and Fahraeus-Lindqvist effects are also predicted by our simulations. The simulations allow

us to directly estimate the width of the cell-free layer, and also the cross-section variation

of effective viscosity (Chapter 1, section 1.4). We then use these results to show that the

two-phase models underpredict the mean velocity of blood obtained in the simulations. We

proceed to develop a three-layer model, and show that this gives an accurate prediction of

the simulation results. Comparison with in vitro and in vivo data is presented throughout

the chapter.

6.2 Results

6.2.1 Tumbling of biconcave cells

We first simulate the tumbling motion of a biconcave capsule. As mentioned in Chapter 1,

an erythrocyte has a biconcave shape under resting condition. The shape of the biconcave

capsules can be obtained by applying the following transformation on the sphere as (Evans

& Fung 1972):

X = R0x, (6.2.1a)

Y =
1

2
R0(1 − r2)

1

2 (C0 + C2r
2 + C4r

4), (6.2.1b)

Z = R0z. (6.2.1c)

where X, Y and Z are the coordinates of the erythrocyte and x, y and z are the coordinates

of a unit sphere. In the above equation, r2 = x2 + z2 and the constants C0, C2 and C4

are taken to be C0 = 0.32, C2 = 2.003 and C4 = −1.123. R0 is adjusted to preserve the

volume. We consider the motion of a biconcave cell in the channel flow. As shown in

figure 6.1a, a biconcave cell undergoes tumbling motion in which it flips like a rigid body

while moving axially with the flow. In the figure, a marker point on the cell membrane is

also shown. Unlike the spherical capsule cases shown in chapter 3, the marker point does

not move significantly with respect to its initial location on the cell membrane implying

that the tank-treading motion is nearly absent. We have simulated a number of cases for
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varying Ca = 0.05-0.6, and for all cases tumbling motion was observed. In experiments

using erythrocytes in shear flow, two modes of motion, tank-treading and tumbling, have

been observed by previous researchers (Ramanujan & Pozrikidis 1998; Skotheim & Secomb

2007). Results presented here, and elsewhere, suggest that the transition from tank-treading

to tumbling motion depends on the the aspect ratio and the internal-to-external viscosity

ratio, but not on the membrane elastic modulus. The absence of significant tank-treading for

the biconcave discoid as observed in the present simulations is consistent with the analysis

of Keller & Skalak (1982) who showed that an ellipsoid with an internal-to-external viscosity

ratio of 5 would tumble rather than rotate even at high shear rates. Time history of the

axial (xc) and lateral (yc) locations of the center-of-mass of the cell, axial and lateral velocity

components (u/Ucl and v/Ucl), and angular orientation (θ/π) of the major axis of the cell

with the x-axis are shown in figures 6.1b and 6.1c. The velocity components, as well as the

lateral position show fluctuation in time due to the tumbling motion. Negative values of

lateral velocity are evident.

6.2.2 Single-file motion

We start with the results of single-file motion of cells in channels under a driving pressure

gradient. Single-file motion of erythrocytes is observed in narrow capillaries whose dimen-

sion is compareable or smaller than the characteristic cell dimension. In such vessels, cells

squeeze to a parachute shape.

Results from our simulations are shown in figure 6.2 for initially spherical capsules of

H/d = 1.25 and in figure 6.3 for biconcave capsules of H/d = 1.37. The capsule volume

fraction for both types of cells is 26%. The spherical capsule is placed symmetrically at

the channel center at time t∗ = 0, whereas the biconcave cells are placed slightly off-center.

Transient deformation of the spherical cell into a parachute shape at Ca = 0.6 is shown

in figure 6.2a. In this case, the front and rear of the cells become convex and concave

respectively, and sharp cusps develop at the trailing edges. The computed shapes are in

qualitative agreement with the observed erythrocyte shapes in narrow capillaries at high
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velocities (Secomb 2003). Note that unlike cell motion in a cylindrical tube, the cell shape

here is not axisymmetric. 2D slices on the x-y and x-z planes for three values of Ca are

shown in figures 6.2b, c and d for spherical capsules at t∗ = 1.6 and in figures 6.3c, d and

e for biconcave cells at t∗ = 4.8. The maximum deformation occurs in the x-y plane; in

the x-z plane the cell shape remains nearly circular or biconcave for all Ca. Amount of

deformation decreases and the sharp cusps disappear with decreasing Ca. For Ca = 0.1,

the spherical cell becomes concave near the trailing edges but changes to convex near the

center. At Ca = 0.02, only small deviation from the spherical shape is observed. For the

biconcave cells at lower Ca, the dimple near the center diminishes, and the cell shapes

resemble a cylindrical pellet.
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6.2.3 Multi-file motion

Next we present the results on multifile motion of a suspension of deformable cells flowing

in a channel under a constant driving pressure. The undeformed channel height to cell size

ratio H/d varies from 1.6 to 6.3. The channel (tube) hematocrit, which is the cell volume

fraction, Ht = 5− 26%. The number of cells in the simulations varies from 3 to 131 within

the computational domain. Table 6.1 lists the tube hematocrit, size ratio H/d, the number

of cells Nc in the computation box, and the Eulerian resolution. For each case, at least three

different Ca are simulated. We consider both initially spherical and biconcave capsules. At

t∗ = 0, cells are distributed randomly in the computation domain. For lower Ht, the initial

coordinate of the center-of-mass of each capsule can be obtained from a random number

generator. This is, however, not an efficient way for higher Ht. For the latter case, we

follow the method of Bunner & Tryggvason (2002) in which the cells are first arranged in

a regular lattice and then given a small but random displacement. For higher hematocrit,

cells span across the entire channel height. For lower Ht, a center-weighted distribution is

taken to reduced computation time since the lateral migration would eventually result in

to a higher concentration near the center. For the biconcave cells, the cell orientation with

respect to the flow is also taken to be random. But the ensemble average orientation at

a given lateral location is taken to be close to the local gradient of the flow so that the

suspension reaches steady state over a short time. During the course of the simulations,

fluid and cell velocity, pressure, cell coordinates are stored at frequent intervals which are

post-processed to obtain time-averaged rheology.

Instantaneous cells shapes and distribution from a few representative simulations are

shown in figure 6.4 for spherical capsules at Ca = 0.6 and Ht = 26%, and in figure 6.6

for biconcave cells at Ca = 0.6 and Ht = 23%. The computational domain is also shown

for each case. Note that the driving flow is in x direction, and the domain is periodic in x

and z directions. Figure 6.4a shows a two-file arrangement for which H/d = 1.6, and the

computational domain contains two off-centered capsules. This simulation was done using

1203 Eulerian nodes. Cells deform significantly and attain a slipper shape with a sharp
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Table 6.1: Size ratio (H/d), vessel hematocrit (Ht), number of cells per computational box
(Nc), and Eulerian resolution used in the present simulations.

H/d Ht% Nc Resolution

26 122
18 84

6.3
12 56

160 × 161 × 160

5 23
26 44
18 30

spherical cells
4.5

12 20
120 × 121 × 120

5 8
3.1 15
2.4 7

1.6
26

2
120 × 121 × 120

1.25 1

4.9 26 113 160 × 161 × 160
biconcave cells 3.1 31

2.5 26 16 120 × 121 × 120
1.4 3
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Figure 6.4: Instantaneous snapshots for suspension of spherical cells after the flow has
reached a stationary state for H/d = 1.6 (top), H/d = 3.1 (middle), and H/d = 6.3
(bottom).



131

cusp at the trailing edge. Deformation is non-symmetric due to initial off-centering. The

computed shape is in qualitative agreement with the non-axisymmetric single- or two-file

motion of erythrocytes at high velocity in glass tubes with internal diameter ≈ 10–15 µm.

Figure 6.4b shows a snapshot for a three-file arrangement for H/d = 3.1 for which the

computational box contains 16 capsules and 1203 Eulerian nodes. Cells located near the

channel walls deform in to a slipper shape with sharp cusps at the trailing edges. Cells

flowing near the center deform less due to reduced local shear. Cells moving in a multifile

manner are shown in figure 6.4 for H/d = 6.3 with 122 capsules in the computational box

that is comprised of 1603 Eulerian points. The slipper shapes are no longer seen; rather,

cells near the walls are more ellipsoidal and disk shaped, and those near the center are nearly

spherical. Cell deformation in this case is primarily due to interaction with the adjacent

cells. For the two-file arrangement in figure 6.4a, there is no ‘slip’ between two cells, and

the relative position between them remains constant. For multifile motion as in figures 6.4b

and c, cell near the center flow at higher velocity. The relative slip between two cell layers

results in increased binary collision as H/d increases. The flattening of the cell surface, and

appearance of dimples as seen in figure 6.4c are the consequence of such binary collisions

(Loewenberg & Hinch 1997).

Each simulation is run for a long time after the initial transience is passed and the mean

quantities are extracted by averaging over a large time window over which the suspension

remains statistically stationary. To check if the suspension has reached a statistically steady

state, we follow the time history of relative suspension viscosity defined as

µrel(t
∗) =

µapp(t
∗)

µp
=

Qp

Q(t∗)
(6.2.2)

where µapp is the instantaneous apparent viscosity of the whole suspension, µp is the plasma

viscosity, Qp is the flow rate of Poiseuille’s profile, and

Q(t∗) =

⎛⎝ H�
x,y,z=0

udxdydz

⎞⎠ /H (6.2.3)

is the time-dependent flow rate averaged over the entire computational box. Figure 6.5

presents µrel(t
∗) over time for several runs. The relaxation time of the suspension depends
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on the cell deformability, volume fraction, and H/d ratio. In general, the relaxation time

is higher for suspension of more deformable cells at lower hematocrit due to center-ward

migration of the cells which is a slower process. For higher hematocrit, cells fill the entire

channel cross-section preventing such migration, and the suspension takes shorter time to

attain a statistical steady state. The relaxation time is usually less than t∗ = 5, and the

duration of simulations vary from t∗ = 15 to 60. On average, cells in the simulations travel

by a distance of about 15 to 50 computational boxes or 50 to 500 cell diameter.

Visualizations from multifile motion of biconcave capsules are shown in figure 6.6 Also

shown is an initial arrangement. Deformation of cells is evident in the figure. As the flow

develops, cells near the upper wall initially rotate in the counterclockwise direction, while

those near the lower wall rotate clockwise, in accordance with the direction of vorticity of

the flow. However, continuous tumbling motion that is present for a biconcave cell in dilute

suspension is no longer observed at higher hematocrit. Interaction with the neighboring

cells inhibits continuous tumbling. In some cases, such interaction may cause reversal of

the direction of rotation. Eventually cells near the wall align with the flow direction and do

not show any further rotation. Alignment decreases with increasing distance from the wall,

and most cells near the center flow with nearly vertical alignment. Cells near the wall deform

more and lose their biconcave shape, and assume disk-like shape. Cells near the channel

center deform less and assume slipper shapes. This behavior is expected since deformation

depends on the local shear rate which decreases from the wall toward the center. As the

size ratio H/d increases from 3.1 to 4.9, slipper shapes become less evident. Formation of

a cell-depleted layer near the wall is evident in the figure. For the biconcave cells, as the

figure suggests, cell-free layer develops due to center-ward lateral motion of the cells as well

as due to horizontal alignment of the cells close to the wall. For spherical capsules, only

the center-ward motion is responsible for the formation of the cell-free layer.



134

Figure 6.6: Instantaneous snapshots for suspension of biconcave cells. (a) Initial distribution
and cell shape for H/d = 3.1. (b) and (c) show distribution and cell shape for H/d = 3.1
and 4.9, respectively, after the flow has reached a stationary state.
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Cell trajectory and velocity traces

Position and velocity of individual cell are tracked in time in the simulations. These data

allow us to visualize three-dimensional cell trajectory and velocity over time. Results on cell

trajectories and instantaneous velocities are shown in figure 6.7. Here we consider lateral

position (y) and lateral velocity (v) of cell centroids with respect to time. As evident,

cells exhibit fluctuations in position and velocity due to interactions with neighboring cells.

Though not shown here, fluctuations are also present in cross-stream location (z), and in

axial and cross-stream velocities (u, and w) as the cells are dispersed in x and z directions

as well. Figures 6.7a and b show results for a lower hematocrit of Ht = 5% for Ca = 0.6 and

0.005, respectively. Center-ward migration of the cells in the near-wall regions is evident

for higher Ca but not for lower Ca. The rate of migration in the suspension is less due

to interaction from neighboring cells. Further, unlike in a dilute suspension, migration

is not continuous. Motion at a higher hematocrit (18%) is shown in figures 6.7c and d

for Ca = 0.6 and 0.005, respectively. At this higher Ht, center-ward migration is nearly

inhibited. However, fluctuations in lateral position have increased due to increasing cell-cell

interaction. Also evident in figure 6.7d is formation of three layers of cells for lower Ca as

the suspension reaches a stationary state implying a stack-like motion of the suspension.

Such layered distribution is not prominent at higher Ca. Fluctuation in cell velocity is

another indication of cell-cell interaction in the suspension. Velocity fluctuation increases

with increasing hematocrit and decreasing Ca.

Root-mean-square (rms) of the fluctuations in the lateral position (y′) and axial velocity

(u′) can be used as a measure of hydrodynamic dispersion. Once the suspension reaches a

stationary state, these quantities are calculated in dimensionless form as (Bagchi 2007)

y′ =

[∫ t
0
(y(t) − y)2dt/T

]1/2

d
, (6.2.4)

and

u′ =

[∫ t
0
(u(t) − u)2dt/T

]1/2

u
, (6.2.5)
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where y and u are the mean lateral position and axial velocity of a cell, and T is the time

window over which data is collected. Figure 6.8a shows the variation of y′ over the vessel

cross-section for three different values of Ht (26, 18, and 5%) for H/d = 6.3 and Ca = 0.05.

Here symbols represent individual cells, and lines are the quadratic fit through the data.

In general, lateral position of a cell fluctuates over 1–25% of its diameter. We note that

y′ is higher near the center and reduces towards the wall. This is due to an increased

local hematocrit (discussed later in figure 6.10) near the vessel center that resulted from

the lateral migration of the cells. The best-fit curves become more parabolic at lower

hematocrit, but it flattens at higher hematocrit. This is because at higher hematocrit, cells

are nearly uniformly distributed over the cross-section, whereas at lower hematocrit, they

migrate to the center, as shown earlier in figure 6.7.

Also shown in figure 6.8a is the range of rms fluctuation measured in vivo by Bishop

et al. (2002) for red blood cells flowing in venules of 40–80 micron diameter in rat spino-

trapezius muscle. On average, the in vivo data predicts higher fluctuation than those in the

simulations.

The effect of cell deformability is shown in figure 6.8b which shows increasing rms

fluctuation with decreasing Ca. This is because binary interaction results in higher lateral

displacement of nearly rigid cells than that of deformable cells. The effect of H/d is shown

in figure 6.8c which shows that y′ profile becomes more flattened with increasing H/d. We

also present a comparison of y′ and z′ in figure 6.8d. Variation of z′ over the cross-section

is nearly uniform unlike the parabolic variation of y′. The peak z′ is also less than that of

y′ implying that hydrodynamic dispersion in the velocity gradient direction is higher than

that in the direction of vorticity in agreement with earlier works on binary collision of liquid

drops (Loewenberg & Hinch 1997).

The rms velocity fluctuation u′ is shown in figure 6.9. u′ decreases from the wall toward

the center as the the mean cell velocity u increases. Dependence of u′ on Ht is considered

in figure 6.9a. u′ increases with increasing Ht as u decreases (shown later in figure 6.16).

Velocity fluctuations in the simulations vary from 1–10% of the mean velocity. In contrast,
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the in vivo data of Bishop et al. (2002) which is also shown in the figure give higher velocity

fluctuations as it did for rms position. Possible reasons for the difference are discussed later.

Figure 6.9b compared the rms velocity fluctuations in three directions. Fluctuations in v

and w components are similar in magnitude but less than that of u.

Cell-free layer

The simulations allow us a direct estimation of the cell-free layer thickness. This is obtained

by from the cross-sectional variation of “local” hematocrit Hc(y). Once the cell suspension

has reached a statistically stationary state, the capsule distribution at frequent intervals

are analyzed to obtain Hc(y, t) at several time instances which are then averaged to obtain

Hc(y). The indicator function I(x, y, z, t), as described in section 2.1.2 can be used to

calculate Hc(y, t). Noting that I changes from zero to one across the capsule membrane,

we have

Hc(y, t) =

∫
x

∫
z I(x, y, z, t)dxdz∫

x

∫
z dxdz

(6.2.6)

Figure 6.10 shows the ratio Hc(y)/Ht for spherical cell (H/d = 6.3) and biconcave cell

(H/d = 4.9). The ratio goes to zero near the wall (y/H −→ 0 in the figure) indicating

particle depletion in the near-wall region. Away from the wall, Hc(y)/Ht ≈ 1. The thickness

of the cell-free layer, denoted by δ, can be precisely calculated from such plots, and is given

in figure 6.11 in dimensionless form as δ/(H/2) as a function of Ht and H/d for different

Ca and spherical and biconcave cells.

Figure 6.11a shows that δ/(H/2) decreases with increasing hematocrit and decreasing

Ca. The reduction of δ with decreasing Ca is due to reduced center-ward migration of the

cells. Figure 6.11b shows that δ/(H/2) decreases with increasing vessel size. Also presented

in figure 6.11b is the in vivo data from Kim et al. (2007). Only qualitative comparison can be

made, as the simulations represent flow in channels rather than cylindrical vessels. Further,

Kim et al. (2007)’s data is for Hd ≈ 40%, while simulation results are for Hd ≈ 30%. Thus,

the simulations predict lower δ/(H/2) in comparison to the in vivo data. This is possibly

due to the limitation of the immersed boundary method implemented here which does not
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allow the cells to physically contact each other yielding a higher intercellular spacing. The

difference could also arise from limitation of the cell membrane model. Further the in vivo

data may yield a reduced cell-free layer width due to nonuniform vessel geometry, branching

and convergence, and influence of leukocytes.

Also note in figure 6.10 that Hc(y) approaches its value at the core smoothly, rather

than a sudden step change assumed in two-phase models for blood flow in small vessels

(to be discussed later). The slope of Hc(y) across the interface of the cell-free layer and

the core region decreases with decreasing Ca and decreasing Ht. This is because highly

elongated cells at higher Ca favor a more closed-pack distribution and hence a higher slope

of Hc(y). In contrast, lower hematocrit results in more cell–cell separation distance, and

hence reduced slope of Hc(y). As will be shown later, these results have consequences in

the modeling of mean blood flow in microvessels.
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Plug-flow profile

Mean (averaged in time, and in x and z directions) velocity profile of the cell suspension

over the channel cross-section is shown in figure 6.12. Also shown is the parabolic profile of

Poiseuille flow for the same pressure gradient. Results for spherical capsules are shown in

figures 6.12a–c, and for biconcave cells in figure 6.12d. The effect of vessel size is considered

in figure 6.12a at fixed Ca = 0.05 and Ht = 26%. Experimental measurements of blood

velocity shows the well-known plug-flow profile which is characterized by a parabolic profile

near the wall and nearly constant velocity near the vessel center. Simulation results show a

prominent plug-flow profile for the smallest vessel considered here (H/d = 1.25) for which

single-file motion occurs. Constant velocity occurs in nearly 60% of the vessel cross-section.

As H/d increases, the velocity profiles departs from plug-flow toward a blunt parabola.

Qualitative comparison of this trend can be made with the in vivo measurements of Bishop

et al. (2002) who obtained an empirical relation u/Umax = 1 − (r/R)k with k in the range

2.1 to 2.2 for blood flow in 45–75 µm venules. A clear plug-flow profile occurs when k = 3,

and a parabolic profile occurs when k = 2. The present numerical results also predict

values of k in the same range as that of Bishop et al. (2002). The bluntness of the profile

increases with increasing hematocrit and decreasing vessel size. The mean velocity decreases

with increasing H/d due to increasing number of cells, and hence more interfacial contacts,

causing increased energy dissipation. For the same reason, the mean velocity decreases with

increasing hematocrit, as well, as shown in figure 6.12b. Also shown in figure 6.12b is the

mean velocity of several cells which is a Lagrangian quantity. In experiments, most often

the velocity of the cells are measured and assumed to be equal to the Eulerian fluid velocity.

The data shown in figure 6.12b shows that the difference between the cell velocity and the

Eulerian fluid velocity is indeed insignificant.

Figure 6.12c shows that the mean velocity decreases also with decreasing Ca. This is

probably due to additional energy loss due to increased fluctuation in cell velocity, and

increased tank-treading and tumbling frequencies. Results for biconcave cells are shown in

figure 6.12d for differentH/d. As in case of spherical cells, the mean velocity of biconcave cell
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suspension decreases with increasing H/d. Interestingly, for similar parameters, a biconcave

cell suspension gives higher velocity than a spherical cell suspension. This is because of the

near-horizontal orientation of the biconcave cells located near the wall, as shown in figure

6.6, which causes a larger cell-free layer.

Fahraeus-Lindqvist and Fahraeus Effects

Eq 6.2.2 can be integrated over time to obtain average values of the relative apparent

viscosity µrel which depends on hematocrit, vessel size and cell deformability. The Fahraeus-

Lindqvist effect refers to the decrease in µrel as the vessel size decreases. µrel computed

from the present simulations are shown in figure 6.13a as a function of the size ratio H/d

for three values of Ca and at Ht = 26%. Results for spherical and biconcave capsules are

shown. As evident in the figure, the Fahraeus-Lindqvist effect is qualitatively predicted

by our simulations. Results also suggest that µrel increases with decreasing Ca. This is

due to decreasing cell-free layer, as discussed in figure 6.11, as well as increased velocity

fluctuations, as discussed in figure 6.12, resulting in higher dissipation with decreasing Ca.

The figure also shows that for the range of Ca considered, µrel for the biconcave cells is

less than that for the spherical cells. This is due to the larger extent of the cell-free layer

arising due to the tilting of the biconcave cells as discussed in figures 6.6 and 6.12. Results

from our simulations are compared with the in vitro data given in Pries et al. (1990, and

1992) who compiled a comprehensive database on in vitro measurements of blood viscosity

by a number of investigators. Using the database, Pries et al. (1992) obtained an empirical

relation for µrel as a function of hematocrit and vessel size. Relative viscosity obtained from

their expression for Ht = 26% and as a function of d/H are also plotted in figure 6.13a.

Simulation results for biconcave cells agree well with the empirical relation of Pries et al.

(1992). It should be mentioned that the comparison in figure 6.13a should be taken as

qualitative only as the simulations considered here represent blood flow in a microchannel

whereas the empirical relation is based on blood flow in glass tubes.

Another important physiological phenomenon observed for blood flow in small vessels
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is the Fahraeus effect which refers to the decrease in the ratio of the vessel to discharge

hematocrit Ht/Hd with decreasing vessel size. Simulation results for time-averaged Ht/Hd

are shown in figure 6.13b as a function of H/d for three values of Ca and at Ht = 26% for

spherical and biconcave capsules. Note that in the simulations Ht is specified, and the ratio

Ht/Hd is extracted posteriori from the simulations as Ht/Hd = U/Vc which is the ratio of

the mean (time- and space-averaged) suspension velocity to the mean (time and ensemble-

averaged) cell velocity. As evident in the figure, our simulations qualitatively predicted the

Fahraeus effect. The figure also shows that Ht/Hd increases with decreasing Ca. There are

two competing mechanisms that affect the dependence of Ht/Hd on Ca. First, the extent of

the cell-free layer decreases with decreasing Ca so that U approaches Vc. Second, U (hence,

Vc) decreases with increasing Ca.

Experiments using erythrocyte suspension in capillary glass tubes showed that decreas-

ing the tube diameter below 8–10 µm results in a reverse Fahraeus and Fahraeus-Lindqvist

effects, that is, the relative viscosity and hematocrit ratio increase with decreasing tube

diameter. This is due to the transition from multifile to single-file type motion in which the

cells flow in a tightly-fit manner and the friction between the cell and the wall causes the

increased viscosity. The minimum relative viscosity and hematocrit ratio are obtained for

tube diameter of 8–10 µm. Although simulating tightly-fitted cells is not of interest here,

the present results on single-file motion suggest interesting feature of the reverse Fahraeus

and Fahraeus-Lindqvist effects. In figure 6.13 the simulation results for lower range of H/d

are shown in the insets. A reversing trend of µrel and Ht/Hd for Ca = 0.6 is evident in

the figure. When curves for three capillary numbers are compared, results suggest that the

vessel size at which µrel and Ht/Hd become minimum decreases with decreasing Ca. This

is again due to wider cell-free layer at higher Ca.

6.2.4 Comparison of DNS results with two-phase model

Flow of blood in microvessels is often described by a two-phase model in which the vessel is

divided into a cell-free region of thickness δ and a core region of H − 2δ as shown in figure



148

6.15a. Since the mean flow is steady and unidirectional, one can write

dτxy

dy
=
dP

dx
(6.2.7)

where

τxy = µ(y)γ̇(y) (6.2.8)

is the shear stress, and γ̇ = du/dy is the “local” shear rate. The above equations accounts

for viscosity variation over the cross-section of the vessel. In the two-phase model, one

writes µ(y) as

µ(y) = µf + (µc − µf ) H(y − δ) for 0 ≤ y ≤ H/2 (6.2.9a)

= µc + (µf − µc) H(y −H + δ) for H/2 ≤ y ≤ H (6.2.9b)

where µf and µc are the viscosity of the cell-free and core regions, respectively, and H is the

Heaviside function. In the two-phase model, µf and µc are assumed to be constants. Using

appropriate boundary conditions, that is, no-slip at the wall, symmetry at the centerline,

and continuity of velocity and shear stress at the interface at y = δ, the solution is obtained

as

uf (y) = −
dP

dx

H2

2µf

(
y

H
−

y2

H2

)
for 0 ≤ y ≤ δ (6.2.10a)

uc(y) = −
dP

dx

H2

2µf

[
µf

µc

(
y

H
−

y2

H2

)
+

(
1 −

µf

µc

)(
δ

H
−

δ2

H2

)]
(6.2.10b)

for δ ≤ y ≤ H/2 .

where uf (y) and uc(y) are the velocity of the cell-free and core regions, respectively. The

profile is written only for 0 ≤ y ≤ H/2 as it is symmetric about y = H/2. There are

three unknown parameters: δ, µf and µc, the values of which are often taken ad hoc to

match the experimental values of relative apparent viscosity. While recent high-resolution

experimental measurements have yielded values of δ, experimental data on µf and µc are

scarce. In reality, the interface between the core and the cell-free layers cannot be well
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defined as the cells are continuously dispersed due to hydrodynamic interaction. Thus the

variation of viscosity across the vessel is expected to be smooth, rather than a step jump

as in eq 6.2.9. Based on micro-PIV measurements of blood velocity, Long et al. (2004) and

Damiano et al. (2004) showed that the “local” viscosity µ(y) varies smoothly across the

channel, and it approaches µf near the wall, and µc near the center of the vessel.

The cross-section variation (or, “local” variation) or viscosity can be extracted from

the present computational results following the approach used by Long et al. (2004) and

Damiano et al. (2004) (also, Bagchi 2007). Since dP/dx is a constant, eq 6.2.7 can be

integrated to give

τxy = −
dP

dx
(y −H/2) (6.2.11)

where we used the condition that τxy = 0 at y = H/2. Invoking the constitutive relation
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given by eq 6.2.8 above, we get

µ(y) = −
dP

dx

y −H/2

γ̇(y)
(6.2.12)

A similar equation can be written for the Poiseuille flow of pure plasma. Then for a constant

pressure drop,

µ(y)

µp
=

γ̇p(y)

γ̇(y)
(6.2.13)

where γ̇p(y) is the shear rate across the channel for the Poiseuille flow.

Simulations results for µ(y)/µp are shown in figure 6.14. As expected µ(y)/µp approaches

unity near the wall, and it is higher than unity in the core region of the vessel. In the core

region, it is often nonmonotonic with respect to y. The local maximum/minimum of µ(y)/µp

corresponds to the local maximum/minimum of the cell concentration shown earlier in figure

implying high viscous dissipation near regions of interfacial contacts. Most importantly,

over the interface of the core and cell-free layers, µ(y)/µp varies smoothly, rather than the

step-like manner assumed in the two-phase model. This smooth variation obtained from

our simulation is in qualitative agreement with the micro-PIV measurement of Long et al.

(2004) and Damiano et al. (2004). The slope of µ(y)/µp across the interface of the cell-free

and core regions increases with increasing Ht, and shows relatively less dependence with

respect to Ca or H/d.

The simulations results of µ(y)/µp and δ given in figures 6.14 and 6.11 respectively can

be used to precisely calculate µf and µc as

µf =
1

δ

∫ δ

0

µ(y)dy and µc =
1

H/2 − δ

∫ H/2

δ
µ(y)dy (6.2.14)

Their values are listed in Table 6.2. Interestingly, the cell-free layer viscosity µf is slightly

higher than the plasma viscosity µp. This is likely due to occasional intrusion of the cells

from the core region in to the cell-free layer due to the hydrodynamic interaction from

the neighboring cells. Difference between µf and µp increases with increasing hematocrit

and decreasing Ca. The core viscosity µc also increases with increasing hematocrit and
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Table 6.2: Viscosity of the core (µc) and cell-free layer (µf ), and the thickness β − δ of the
transition layer obtained from the simulations

µc/µp for µc/µp for
H/d Ca Ht µf/µp 2-phase model 3-layer model β/(H/2) (β − δ)/(H/2)

0.005 26 1.05 5.11 5.52 0.21 0.16
0.05 26 1.05 4.02 4.25 0.20 0.13
0.6 26 1.02 2.93 3.06 0.22 0.12

6.3 0.005 18 1.02 2.45 2.68 0.37 0.30
0.05 18 1.02 2.23 2.46 0.31 0.22
0.6 18 1.00 2.01 2.06 0.35 0.19
0.05 12 1.00 1.75 1.91 0.41 0.27

0.005 26 1.09 4.98 5.03 0.20 0.13
4.5 0.05 26 1.04 3.82 3.90 0.22 0.12

decreasing Ca due to increased interfacial dissipation. In general, µc/µf > 1, and it increases

with increasing hematocrit and decreasing Ca.

Using the values of µc and µf given in Table 6.2, the velocity profile from the two-phase

model (eq 6.2.10) can be obtained. It of interest to compare the resulting velocity profile

predicted by the two-phase model with that obtained directly from the simulations. This

comparison is shown in figure 6.16. We see that the two-phase model underpredicts the

mean velocity. This implies that the two-phase model would underpredict the flow rate,

and hence overpredict the relative apparent viscosity. The difference between the results

from the simulations and the two-phase model could be as high as 40% depending on y-

location, and it increases with decreasing Ca. It must be emphasized that despite the

difference between the two results, the two-phase model has been shown to agree with in

vitro blood velocity. As mentioned before, this agreement, however depends on the choice

of the empirical constants δ, µf and µc.

The difference between the velocity profiles predicted by the two-phase model and the

simulation is due to the step-like variation of µ(y) assumed in the two-phase model. As

shown in figure 6.15c the model overestimates the viscosity in the region immediately outside

the cell-free layer compared to that obtained in the DNS. This overestimation of µ(y) results
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in an underprediction of the fluid velocity.

6.2.5 A three-layer model of blood flow in microvessels

The above discussion suggests that a model that takes in to consideration the y-dependence

of viscosity in the vicinity of y = δ would give more accurate prediction of the DNS result.

Thus, we now present a three-layer model of blood flow in microvessel. This is illustrated in

figure 6.15b. In this model the vessel is divided in three layers: a cell-free layer of thickness

δ of constant viscosity µf , a transition layer of thickness β − δ wherein viscosity varies

linearly with y, and a core region of half-width H/2 − β of constant viscosity µc. Thus,

cell free layer : µ(y) = µf for 0 ≤ y ≤ δ , (6.2.15)

transition layer : µ(y) = µf +
µc − µf

β − δ
(y − δ) for δ ≤ y ≤ β , (6.2.16)

and, core : µ(y) = µc for β ≤ y ≤ H/2 . (6.2.17)

Note that in this model µc must be calculated as

µc =

∫ H
0
µ(y)dy − µf (β + δ)

H − (β + δ)
(6.2.18)

where µ(y) is obtained from the DNS results as given in figure 6.15c. The linear variation

of viscosity in the intermediate region as assumed here can be improved further. However,

as will be shown later, even such a linear variation can predict the DNS result with a high

accuracy. We now solve for the velocity profiles in the three layers in a similar manner

described above using the non-slip boundary condition at the wall, symmetry condition at

the centerline, and continuity of velocity and shear stress across the interfaces at y = δ and
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β. A close-form solution can be obtained as

uf = −
dP

dx

1

2µf

(
yH − y2

)
(6.2.19a)

uβ = −
dP

dx

(
β − δ

µc − µf

)
[
−y +

(
βµf − δµc

µc − µf
+
H

2

)
ln
µc

µf
+

(
µc

µf
− 1

)
Hδ − δ2

2(β − δ)
+ δ

]
(6.2.19b)

uc = −
dP

dx

1

2µc[
yH − y2 −

2(β − δ)2

1 − µf/µc

(
1 +

βµf − δµc + (µc − µf )H/2

β − δ
ln
µf

µc

)
+

(
Hδ − δ2

) µc

µf
+ β2 −Hβ

]
(6.2.19c)

where uf , uβ and uc are the velocity in the cell-free layer, intermediate layer, and in the core,

respectively. Again, the values of δ, β, µf , and µc are obtained from the DNS as described

earlier. β is taken as the lowest value of y where Ht(y) has a local maximum. The values of

β, thickness of the transition layer β−δ, and µc for the three-layer model are given in Table

6.2. Note that β does not show any strong dependence on Ca or H, but it increases with

decreasing Ht. The thickness of the transition layer β− δ, however, depends on hematocrit

and Ca. It decreases with increasing Ca. This is because elongated cell shape at higher

Ca allows more close-packed arrangement in the vicinity of y = δ. It also decreases with

increasing Ht due to reduced cell–cell separation distance. Most importantly, the transition

layer thickness is comparable and often greater than the cell-free layer thickness δ by several

factors. Thus, it is expected to play a major role in determining blood velocity profile. Also

note that µc values for the three-layer model (eq 6.2.18) are higher than those for the

two-phase model (eq 6.2.14) due to the introduction of the transition layer.

Prediction based on the three-layer model given by eq 6.2.19 are compared in figure 6.16

against the DNS data. Excellent agreement between the proposed three-layer model and

the DNS result is evident.
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Figure 6.16: Comparison of mean velocity obtained from simulations (symbols), and pre-
dicted by two-phase model (eq 6.2.10, dash lines) and three-layer model (eq 6.2.19, solid
lines). Results are shown for H/d = 6.3. In (a) Ht is varied while Ca is held fixed. In (b)
Ca is varied and Ht is held fixed.
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6.3 Conclusion

Three-dimensional computational simulation of a large number of deformable cells flowing

in microchannels is presented. The focus is on hydrodynamics of multiple deformable cells

flowing in microvessels, typical of mammalian microcirculation and microfludic devices.

The simulations generated a database with a wealth of information on the dynamics of

flowing cell suspension which can be further post-processed to gain deeper insight in the

general problem of suspension of deformable particles, and of erythrocytes, in particular.

For example, the simulations results can be used to obtain collision frequency of cells as

a function of cell deformability, volume fraction, and size ratio, which is of importance

in modeling cell-cell aggregation. The coefficient of hydrodynamic dispersion of cells, and

that of tracer particles can also be obtained, which are of importance in solute and drug

transport in microvessels. In this chapter, we present results on radial migration of cells, and

their tumbling motion as observed for erythrocytes, analyze the trajectory and velocity of

individual cells in the suspension as functions of cell deformability, hematocrit, and channel

width. The Fahraeus and Fahraeus-Lindqvist effects are also predicted by our simulations.

The simulations allow us to directly estimate the width of the cell-free layer, and also the

cross-section variation of effective viscosity. We then use these results to show that the

two-phase models underpredict the mean velocity of blood obtained in the simulations.

We develop a three-layer model, and show that this gives an accurate prediction of the

simulation results.
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Chapter 7

Conclusions of Thesis and Directions for Future Work

7.1 Summary and conclusions

We study dynamics of capsules as models for deformable blood cells. The focus is on

development of a three-dimensional computational modeling that can resolve the motion and

deformation of individual capsule, as well as a large number of hydrodynamically interacting

capsules.

The main results of this thesis can be summarized as follows:

1. Numerical development: Three-dimensional direct numerical simulation is devel-

oped to consider large deformation of capsules in shear flow. An immersed boundary/front-

tracking method is used for the fluid/structure interaction problem. The flow solver is

based on a mixed finite-difference/Fourier transform method. Capsules are modeled

as liquid drops surrounded by elastic membranes. Thus, unlike in a liquid drop, the

interface of a capsule is governed by more complex constitutive laws that describe the

mesoscopic behavior of lipid bilayers. In this study, we have used neo-Hookean model

for the membrane, but the methodology can readily incorporate more complex mod-

els such as those given by Evans & Skalak (1980) and Skalak et al. (1973). The flow

solver can also accommodate variable viscosity, and hence bi- or poly-disperse cell sus-

pension. Extensive validation of the methodology is performed against experimental

results using artificial capsules, and boundary integral simulation.

Using the simulation tool, we address a sequence of problems on capsule dynamics.

2. Motion of a capsule in wall-bounded parabolic flow: First, we consider the



158

motion of a deformable capsule in a channel flow in absence of inertia. As per the

theory of viscous fluids (Stokes flow), a deformable particle in an wall-bounded shear

flow drifts laterally away from the wall while translating axially with the flow. Such

lateral migration results due to interfacial nonlinearity that leads to the generation

of a hydrodynamic lift force normal to the flow direction. Lateral migration of liquid

drops has been studied for nearly half-a-century. Similar study for liquid capsules in

the limit of large deformation is absent, and is a topic in the present study. Motion of

a capsule in wall-bounded parabolic flow is simulated over an extended period of time

to consider both transient and steady-state motion. Lateral migration of the capsule

towards the centerline of the channel is observed. Results are presented over a range

of capillary number, viscosity ratio, capsule-to-channel size ratio, and lateral location.

After an initial transient phase during which the capsule deforms very quickly, the flow

of the capsule is observed to be a quasi-steady process irrespective of capillary number

(Ca), capsule-to-channel size ratio (a/H), and viscosity ratio (λ). Migration velocity

and capsule deformation are observed to increase with increasing Ca and a/H, but

decrease with increasing λ, and increasing distance from the wall. Numerical results

on the capsule migration are compared with the analytical results for liquid drops

(Chan & Leal 1979), and capsules with Hookean membrane (Helmy & Barthes-Biesel

1980) which are valid in the limit of small deformation. Unlike the prediction for liquid

drops (Chan & Leal 1979), capsules are observed to migrate toward the centerline for

0.2 ≤ λ ≤ 5 range considered here. The migration velocity is observed to depend

linearly on (a/H)3, in agreement with the small-deformation theory, but non-linearly

on Ca and the distance from the wall, in violation of the theory. Using the present

numerical results and the analytical results of Shapira & Haber (1988), we present a

correlation that can reasonably predict migration velocity of a capsule for moderate

values of a/H and Ca.

3. Motion of a capsule-pair in channel flow: The effect of neighboring capsule on
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lateral migration is studied by considering a pair capsules in a wall-bounded pressure-

driven flow in absence of inertia. We observe completely different dynamics depending

on the locations of the capsules in the channel. When the capsules are located in an

equispaced array, all of them have the same migration velocity that is significantly

lower than that of an isolated capsule. In a non-equispaced array, the capsules engage

in a leap-frog motion, and the migration velocity can become periodically negative.

If the capsules are released at different lateral location with respect to the wall, the

so-called shear-induced diffusion process sets in. In the process, one capsule rolls over

the other while both of them migrate away from the wall. We conclude that the

shear-induced diffusion dominates over the deformation-induced migration process.

We also studied the tumbling motion of an ellipsoidal capsule, as simplified geometric

model for a red blood cell. We further extend our study to consider the motion of an

ellipsoidal capsule-pair. The leap-frog motion, and the shear-induced diffusion pro-

cess observed for the spherical capsules are also observed for the ellipsoidal capsules.

This study shows that the area of binary interaction of spherical and non-spherical

deformable particles is rich with new and interesting physics, and further motivates

for careful experimental studies to verify the numerical observations made here.

4. Effect of inertia in capsule interaction: Three-dimensional numerical simulations

are performed to study the hydrodynamic interaction between two capsules suspended

in simple shear flow in presence of inertia. In the limit of zero inertia, it has been

known from past research that the hydrodynamic interaction between two deformable

particles (drops/capsules) suspended in shear flow results in an irreversible shift in the

trajectories of the particles as one particle rolls over the other. Here we found that

when inertia is small but finite, the capsules do undergo an irreversible displacement,

but the lateral separation between them first decreases before they roll over each other,

unlike in Re� 1. For moderate to high inertia, the capsules reverse their directions of

motion before coming close to each other. The reversal of motion occurs progressively

earlier in time with increasing inertia. The long-time behavior of the capsule-capsule
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interaction at finite inertia showed that the capsules engage in spiraling motions.

Based on our simulations, four different regimes of capsule-capsule interaction at finite

inertia are identified: (i) a self-diffusive type interaction, (ii) an outwardly spiraling

motion, (iii) a fixed-orbit spiraling motion, and (iv) an inwardly spiraling motion in

which the capsules settle with zero relative velocity. The reversal of motion, and

the spiraling trajectories at finite inertia have no analogy in the limit of zero inertia.

Such motions are explained by analyzing the flow field around a deformed capsule

which shows reverse flow regions and off-surface stagnation points, similar to those

previously reported in case of rigid spheres and cylinders under torque-free condition.

5. Motion of multiple deformable capsules: We perform 3D simulations of multiple

deformable capsules flowing in microchannels. Both spherical and biconcave capsules,

with 0(100) capsules at a maximum volume fraction of 26% are considered. The

objective was to study some physiologically relevant quantities, such as the cell-free

layer, apparent viscosity, and the Fahraeus and Fahraeus-Lindqvist effects. The chan-

nel width ranges from about 10–45 µm, which allows us to consider both single and

multi-file motion. We present results on tumbling motion, and radial drift of bicon-

cave capsules, as observed for erythrocytes. We analyze the trajectory and velocity

fluctuations of individual capsules in the suspension, and the plug-flow velocity profile

as functions of cell deformability, hematocrit, and channel width. Comparison with

in vitro (Pries et al. 1992) and in vivo (Bishop et al. 2002; Kim et al. 2007) data

is presented throughout. The Fahraeus and Fahraeus-Lindqvist effects predicted by

our simulations are also presented. The simulations allow us to directly obtain the

width of the cell-free layer. We then use these results to show that the two-phase (or,

core-annular) model for blood flow in microvessels underpredicts the blood velocity in

comparison to that obtained in the simulations. Based on a posteriori analysis of the

simulations data, we develop a three-layer model for blood flow in microvessel. This

model is shown to give an accurate prediction of the simulation results.
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7.2 Future directions

Some problems of future interest that can be addressed by the present computational

methodology are mentioned below:

• Modeling issues and capsule dynamics: The present methodology can be readily

extended to consider more complex constitutive laws for the membrane material. The

dynamics of the capsule for different constitutive laws is an interesting area for future

consideration. Further, the effect of internal-to-external viscosity ratio is not fully

explored here. As mentioned before, a very rich inclination dynamics occurs when

the viscosity ratio changes and the capsule makes transition from tank-treading, to

wobbling, and to tumbling. Effect of viscosity ratio is relatively less studied as it

poses further computational challenge due to more stringent diffusion stability limit.

Dynamics of non-spherical capsules is also another topic that is less studied and can

be addressed by the present methodology.

• Binary collision of dissimilar particles: In the present thesis we addressed binary

interaction of identical capsules which is relevant for monodisperse suspension. In

many practical situations, however, bi- and poly-disperse suspensions are encountered.

A very interesting problem that can be addressed using the present methodology is the

shear-induced diffusion process for a pair of non-identical capsules, with and without

inertia.

• Multi-particle interaction: Finally, the ‘grand challenge’ problem in the present

area of interest is the dynamics of suspension of deformable particles, as in case of

blood flow in microcirculation. In Chapter 6, we have only briefly addressed this

problem. With the current advances in computing resources, one can consider even

larger ensemble comprising of more than a thousand capsules. Such a large system

would enable us to compute more reliable statistics of the rheology of the suspension,

and hence possibly a better low-dimensional model than the one described in Chapter

6, that would incorporate more physics. Extended simulations would also allow us
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to compute dispersion coefficient that is of paramount importance in such modeling.

Further, the simulations results can be used to obtain collision frequency of cells as a

function of cell deformability, volume fraction, and size ratio, which is of importance

in modeling cell-cell aggregation. The coefficient of hydrodynamic dispersion of tracer

particles in a cell suspension is another problem of interest that is relevant for solute

and drug transport in microvessels, and can be addressed by the present methodology.
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