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ABSTRACT OF THE DISSERTATION

Physics Beyond the Standard Model: Supersymmetry,

Dark Matter, and LHC Phenomenology

by Rouven Essig

Dissertation Director: Professor Scott Thomas

The Standard Model (SM) of particle physics is remarkably successful and has survived

two decades of precision tests at high energy particle accelerators. However, it is known to be

incomplete, and there are reasons to believe that there is new physics at energy scales that

will soon be probed in greater detail than ever before by the Large Hadron Collider (LHC), a

proton-proton accelerator being built near Geneva.

This thesis contains a diverse set of topics that may broadly be described as physics beyond

the SM.

In Chapter 2, implications of current experimental constraints are presented for the stop

masses and mixing in the Minimal Supersymmetric Standard Model (MSSM), a well-motivated

candidate for physics beyond the SM. It is found, for example, that lower bounds on the stop

masses are as large as 1 TeV assuming no stop-mixing.

Chapter 3 presents the regions in the MSSM with the minimal amount of fine-tuning of

electroweak symmetry breaking. The minimal amount of tuning increases enormously for a

Higgs mass beyond 120 GeV.
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Supersymmetry cannot be an exact symmetry, and one possibility is that our Universe is in

a long-lived metastable state with broken supersymmetry. In Chapter 4, a generic model with

this property is constructed in which all the relevant parameters, including the supersymmetry

breaking scale, are generated dynamically. This model has several interesting model-building

features including an explicitly and spontaneously broken R-symmetry, a singlet, a large global

symmetry, naturalness, renormalizability, and a “pseudo-runaway” direction.

In Chapter 5, a simple extension of the SM with weakly interacting non-chiral dark matter

particles is presented. Such particles can be detected at a future direct-detection experiment.

There are a wide variety of possible discovery signatures for new physics at the LHC. A

discovery signature with a large SM background that has not been well studied involves multi-

jet events without leptons and/or missing energy. In Chapter 6, it is found that using innovative

search strategies pair production of new coloured adjoint fermions producing a pure six-jet final

state can be detected up to a mass of about 650-700 GeV with 10 fb−1 of integrated luminosity.
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Rafael Greenblatt, Gareth Hughes, José Juknevich, Sam Klevtsov, Tim Koeth, Sergio Lukic,

Dmitry Melnikov, Haile Owusu, Sridhar Ramanujam, Naseem Rangwala, Brian Vancil, Aaron

Warren, Jessica Warren, and Iskander Ziyatdinov. I am especially grateful to my fellow graduate

student and collaborators Jean-François Fortin, Kuver Sinha, Gonzalo Torroba, and Korneel

van den Broek. I have learned so much from you, and I hope you realize just how valuable your

support has been to me over the last few years.

I also had the good fortune of having several friends outside the Rutgers physics department.

In particular I would like to thank my long-time friends from South Africa, Michael Abbott,

Grant Anderson, Sonja Currie, Mark Dalton, George Konidaris, Greg Lewis, Iris Oren, and Gene

Phillips, as well as the people at 10 Handy Street who gave me a home away from home during

the first few years in the USA. I especially want to thank my good friends Searle Silverman and

Robin Phillips for always being there when I needed them.

Finally, and most importantly, I thank my two sisters, Sandra and Diana, and especially

both my parents and Neelima, for their continued love and support, and for always believing in

me. I’m not sure I could have done this without them.

v



Dedication

For

Mom,

Dad,

&

Neelima

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Implications of the CERN LEP Higgs Bounds for the MSSM Stop Sector . 13

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. LEP constraints on the Higgs sector and implications for the MSSM stop sector . 15

2.3. Lower bounds on the stop masses . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4. Implications of new physics constraints for the lower bounds on the stop masses . 37

2.5. Implications for Electroweak Symmetry Breaking . . . . . . . . . . . . . . . . . . 46

2.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7. Appendix: Mixing in the Two Doublet Higgs Sector . . . . . . . . . . . . . . . . 53

2.8. Appendix: Quasi-Fixed Point for the Stop Trilinear Coupling At . . . . . . . . . 56

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3. The Minimally Tuned Minimal Supersymmetric Standard Model . . . . . . 63

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



3.2. Electroweak Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3. The Tuning Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4. Minimal Model Independent Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5. Minimal Fine-Tuning as a Function of the Higgs Mass . . . . . . . . . . . . . . . 86

3.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.7. Appendix: Semi-numerical Solutions of the MSSM One-Loop RG-Equations . . . 93

3.8. Appendix: Fine-tuning Components . . . . . . . . . . . . . . . . . . . . . . . . . 98

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4. Meta-Stable Dynamical Supersymmetry Breaking Near Points of Enhanced

Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2. The Model and its Supersymmetric Vacua . . . . . . . . . . . . . . . . . . . . . . 106

4.3. Metastability near enhanced symmetry points . . . . . . . . . . . . . . . . . . . . 112

4.4. Particle Spectrum and R-symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5. Meta-Stability Near Generic Points of Enhanced Symmetry . . . . . . . . . . . . 125

4.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5. Direct Detection of Non-Chiral Dark Matter . . . . . . . . . . . . . . . . . . . . 133

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2. Chiral Electroweak Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3. Non-Chiral Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4. Higgs contribution to the Direct Detection

Cross-Section and Singlet Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . 152

5.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

viii



6. Extracting Hadronic Resonances using Jet Ensemble Correlations . . . . . . 161

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2. Simulation Tools and Overview of Analysis . . . . . . . . . . . . . . . . . . . . . 164

6.3. Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.5. Appendix: Comparison of the PGS 4 and CMSSW detector simulations . . . . . 187

6.6. Appendix: Other Kinematic Correlations . . . . . . . . . . . . . . . . . . . . . . 191

6.7. Appendix: Three-Jet Resonance Figures . . . . . . . . . . . . . . . . . . . . . . . 193

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

ix



List of Tables

2.1. Minimum allowed values of the combination (m2
t̃L

+ m2
t̃R

+ |At|2)1/2 consistent

with a physical Higgs boson mass of mh ≥ 114.4 GeV in the Higgs decoupling

limit for large tanβ, taking into account only the LEP Higgs sector bounds. The

minimum allowed values increase with decreasing tan β. . . . . . . . . . . . . . . 48

3.1. Low-scale values for the stop soft trilinear coupling, the average of the left- and

right-handed stop soft masses and the two physical stop masses. These low scale

values give the minimal fine-tuning for arbitrary messenger scales. . . . . . . . . 77

6.1. Lorentz and gauge invariant color flow restrictions on resonant and two-body

production and decay modes to quarks and gluons of fermion and scalar triplet,

quix, and octet representations transforming as 3 or 3, 6 or 6, or 8 under SU(3)C ,

respectively. Shown in parenthesis are the possible resonances. . . . . . . . . . . 163

6.2. Data samples generated, their cross-sections, number of events in sample, and

integrated luminosity. The cross-sections include a 5 GeV cut on the jets within

PYTHIA, and assume |η| < 3.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3. High level triggers and event selection on pT ordered jets. For the high level

triggers see the CMS TDR [12, 13]. . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.4. σ(pp → X → 6j) cross sections in pb for adjoint Majorana fermion pair produc-

tion, top quark pair production and QCD, X = {QQ, tt̄,QCD}, with the triggers

and event selection given in Table 6.3, and with additional
∑6

j=1 pT,j and pT,6

cuts on the pT ordered jets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

x



6.5. Correct matching probability fraction of pT ordered reconstructed jet triplets

to the parton level Q → qqq, qqq resonance for mQ = 290 GeV as obtained

from Monte Carlo information. The probability fractions and the ordering of the

reconstructed jet triplets remain roughly unchanged for different mQ. Note that

the table only shows the jet triplets that can be made up from the six hardest

jet. The 11 best jet-triplets are found among triplets consisting only of the six

hardest jets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.6. Shown are the various kinematic and diagonal cuts used in the analysis for dif-

ferent values of mQ. Also shown is the “Diagonal Cut Yield on 16-Ensemble”,

for the signal (QQ) and the pure QCD background, which is the number of jet-

triplets (out of a maximum of 16) from each event that on average pass all the

cuts (including the diagonal cut). The ratio Sres
16 /Bres

16 is the number of jet-triplets

from the signal that are within the resonance peak after all the cuts, divided by

the corresponding number for the pure QCD background. The significance given

by Sres
16 /

√
Bres

16 for integrated luminosities L = 0.1, 1, and 10 fb−1, respectively,

are also given in the table. All numbers are obtained from averaging 1000 pseudo-

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

xi



List of Figures

2.1. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh ≥ 114.4 GeV as a function

of tan β for stop mixing Xt/mt̃ = 0,±1,±2. All squark, slepton, and gaugino

soft masses are equal to the stop soft masses, μ = 200 GeV, mA = 1000 GeV,

mt = 173 GeV, and all soft trilinear couplings are equal to At = Xt + μ cot β. . 25

2.2. Minimum physical stop masses, mt̃1
and mt̃2

, for mh ≥ 114.4 GeV as a function

of tan β for vanishing stop mixing (Xt = 0) and natural maximal stop mixing

(Xt/mt̃ = −2). Other parameters are as given in Fig. 2.1. . . . . . . . . . . . . 26

2.3. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh ≥ 114.4 GeV as a function

of tan β for vanishing stop mixing (Xt = 0) for a top quark mass of mt =

168, 173, 178 GeV. Other parameters are as given in Fig. 2.1. . . . . . . . . . . . 26

2.4. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh ≥ 114.4 GeV as a function

of tan β for intermediate stop mixing (Xt/mt̃ = −1) for a top quark mass of

mt = 168, 173, 178 GeV. Other parameters are as given in Fig. 2.1. . . . . . . . 27

2.5. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh ≥ 114.4 GeV as a function

of tanβ for natural maximal stop mixing (Xt/mt̃ = −2) for a top quark mass of

mt = 168, 173, 178 GeV. Other parameters are as given in Fig. 2.1. . . . . . . . 27

2.6. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh ≥ 114.4 GeV as a function

of tanβ for various values of the bino, wino, and gluino soft masses, M1,M2, M3.

The upper three lines are for vanishing stop mixing (Xt = 0) and the lower three

for natural maximal stop mixing (Xt/mt̃ = −2). Other parameters are as given

in Fig. 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xii



2.7. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh ≥ 114.4 GeV as a function

of tanβ for natural maximal stop mixing (Xt/mt̃ = −2) with μ = −500, 200, 500

GeV and bino, wino, and gluino soft masses of M1 = 100 GeV, M2 = 200 GeV,

M3 = 800 GeV. Other parameters are as given in Fig. 2.1. . . . . . . . . . . . . 29

2.8. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, as a function of mh. All squark

and slepton soft masses are equal to the stop soft masses, μ = 200 GeV, mt = 173

GeV, {M1,M2} = {100, 200} GeV, tan β = 30, and all the soft trilinear couplings

are equal to At = Xt + μ cot β. In the figure, the curved lines from left to right

are as follows: the dotted line is for no mixing (Xt/mt̃ = 0), the dash-dot line for

intermediate mixing (Xt/mt̃ = −1), the dashed line for natural maximal mixing

(Xt/mt̃ = −2), and the solid line for the mmax
h benchmark scenario (Xt/mt̃ = +2)

[24]. The gluino mass is set to be M3 = 800 GeV in all cases except in the

mmax
h benchmark scenario, where M3 = 0.8mt̃. The vertical dotted line is at

mh = 114.4 GeV, which is the lower bound set by LEP on mh in the decoupling

limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh � 93 GeV, mH ≥ 114.4

GeV, and cos2(β − α) ≥ 0.8, as a function of tanβ for stop mixing Xt/mt̃ =

0,±1,±2. All squark, slepton, and gaugino soft mass parameters are equal to

the stop soft masses, μ = 200 GeV, mt = 173 GeV, and all soft trilinear couplings

are equal to At = Xt + μ cot β. This figure may be compared with Fig. 2.1. . . . 34

2.10. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh � 93 GeV, mH ≥ 114.4

GeV, and cos2(β − α) ≥ 0.8, as a function of tanβ for vanishing stop mixing

(Xt/mt̃ = 0) for a top quark mass of mt = 168, 173, 178 GeV. Other parameters

are given as in Fig. 2.9. This figure may be compared with Fig. 2.3. . . . . . . . 34

xiii



2.11. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh � 93 GeV, mH ≥ 114.4

GeV, and cos2(β − α) ≥ 0.8, as a function of tanβ for intermediate stop mixing

(Xt/mt̃ = −1) for a top quark mass of mt = 168, 173, 178 GeV. Other parameters

are given as in Fig. 2.9. This figure may be compared with Fig. 2.4. . . . . . . . 35

2.12. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh � 93 GeV, mH ≥ 114.4

GeV, and cos2(β − α) ≥ 0.8, as a function of tanβ for natural maximal stop

mixing (Xt/mt̃ = −2) for a top quark mass of mt = 168, 173, 178 GeV. Other

parameters are given as in Fig. 2.9. This figure may be compared with Fig. 2.5. 35

2.13. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, as a function of tanβ, for no stop

mixing (Xt/mt̃ = 0). The solid line shows the minimum stop soft masses for

mh � 93 GeV, mH ≥ 114.4 GeV, and cos2(β − α) ≥ 0.8, consistent with the

LEP Higgs bounds. The dashed and dash-dot lines are not consistent with the

LEP bounds and used for comparison. The dashed line shows the minimum soft

masses for mh � 93 GeV and cos2(β−α) ≥ 0.8 and without a constraint on mH .

The dash-dot line shows the minimum soft masses for mh � 93 GeV and without

constraints on mH and cos2(β − α). Other parameters are given as in Fig. 2.9. . 36

2.14. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, as a function of tanβ, for interme-

diate stop mixing (Xt/mt̃ = −1). The other parameters and the different lines

are as for Fig. 2.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.15. Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, as a function of tanβ, for natural

maximal stop mixing (Xt/mt̃ = −2). The other parameters and the different

lines are as for Fig. 2.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.16. B(B → Xsγ) versus μ with stop soft masses mt̃ ≡ mt̃L
= mt̃R

= 283 GeV, and

natural maximal stop mixing (Xt/mt̃ = −2). All squark, slepton, and gaugino

soft mass parameters are equal to the stop soft masses, mt = 173 GeV, mA =

1000 GeV, tanβ = 20, and all the soft trilinear couplings are equal to At =

Xt + μ cot β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xiv



2.17. Relationship between the Re(Hu)−Re(Hd) and H‖ −H⊥ bases and h−H mass

eigenstates for the two doublet Higgs sector. . . . . . . . . . . . . . . . . . . . . . 53

3.1. The coefficients cij defined in equation (3.5) for tanβ = 10 as a function of the

messenger scale MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2. The minimal fine-tuning as a function of the messenger scale MS for tanβ = 10.

The top black line is the total minimal fine-tuning as defined in equation (3.10)

which includes all the individual contributions. The individual contributions to

the fine-tuning from μ2, m2
Hu

, the gaugino masses M2
1 , M2

2 and M2
3 , and the stop

soft trilinear coupling A2
t are included. Moreover, the average fine-tuning of the

stop soft masses m2
t̃L

and m2
t̃R

is included as in equation (3.11). . . . . . . . . . 75

3.3. The messenger scale values of M3, M2, M1, At and the average of the stop soft

masses squared, mt̃, that give the minimal fine-tuning (MFT) as a function of

the messenger scale MS and for tanβ = 10. The high-scale values of M2 and At,

and to a lesser extent M1 and mt̃, in the minimal fine-tuned region are roughly

constant. The high-scale value of M3, however, decreases significantly as the

messenger scale is increased. The reason for this is that the coefficient of M2
3

in the expression for m2
Z increases as a function of MS , and thus the minimal

fine-tuned region requires the value of M3 to decrease as MS increases. . . . . . 76

3.4. The low-scale values of the gaugino masses M1, M2 and M3, the stop soft trilinear

coupling At and the average of the stop soft masses squared mt̃ that give the

minimal fine-tuning (MFT) for the messenger scale MS (with tanβ = 10). While

the low-scale values of M2, At and mt̃ that give the minimal fine-tuning are

roughly the same for all MS , the values of M1 and M3 decrease for larger MS . . 78

xv



3.5. The RG-evolution of At/M3 for various boundary conditions at the low-scale for

At(mZ) / M3(mZ) = {−2.0,−1.5, . . . , 1.5, 2.0} and tanβ = 10. The strongly

attractive infrared quasi-fixed point near At/M3 � −1 is clearly visible. The

gaugino masses have been set to their minimal fine-tuned values for the case

MS = MGUT, i.e. M3(mZ) � 335 GeV, M2(mZ) � 430 GeV, and M1(mZ) � 830

GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6. The RG-trajectories of the minimal fine-tuned region if the messenger scale is

MS=MGUT (tanβ has been set to 10). At the scale mZ , the parameter values

are mt̃ � 305 GeV, mt̃1
� 110 GeV, mt̃2

� 475 GeV, M3(mZ) � 335 GeV,

and μ(mZ) = 140 GeV. The minimal fine-tuned value is obtained for natural

maximal-mixing, i.e. At � −2mt̃. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7. The minimal fine-tuning as a function of the lower bound on the Higgs mass

mh, where the calculation of mh only includes the one-loop corrections from the

top-stop sector (tan β = 10, mA = 250 GeV, mt = 170.9 GeV). . . . . . . . . . . 87

xvi



3.8. The minimal fine-tuning as a function of the lower bound on the Higgs mass

mh calculated with FeynHiggs 2.6.0 (tanβ = 10, mA = 250 GeV, mt = 170.9

GeV). Throughout this paper the fine-tuning is minimized subject to a constraint

on mh, where mh is estimated with a one-loop formula as described in Section

3.4.1. The different lines arise from different assumptions made about At, or

μ and M2, when minimizing the fine-tuning. These different assumptions give

rise to different low-energy spectra that present the least fine-tuned parameter

choices satisfying these assumptions. These low-energy spectra may then be used

in FeynHiggs to calculate mh. Although M2, μ and the sign of At do not affect

the one-loop estimate of mh which only contains the dominant corrections, they

do affect the FeynHiggs estimate of mh. For the solid black line no constraint

was set on At, and μ and M2 were only required to be above 100 GeV. It is the

same line as in Figure 3.7, but with mh estimated by FeynHiggs instead of the

one-loop formula. The dashed blue line assumes At is positive and near maximal

mixing, also with M2 and μ only required to be above 100 GeV. The dash-dot

green curve makes no assumption about At but sets μ = 100 GeV and M2 = 100

GeV. The dotted red line assumes At = 0, and again only requires μ and M2 to

be larger than 100 GeV. Further details and explanations are given in the text. 90

4.1. A plot showing the global shape of the potential. M has been expanded around

zero as in equation (3.8). Note the runaway in the direction X → −∞ and φ → 0.

The singularity at φ = 0 and the “drain” Wφ = 0 are clearly visible. Also visible

is the Coleman-Weinberg channel near X = 0 and φ large, discussed later. This

plot was generated with the help of [37]. . . . . . . . . . . . . . . . . . . . . . . 115

xvii



4.2. A plot showing the shape of the potential, including the one-loop Coleman-

Weinberg corrections, near the metastable minimum. In the φ-direction the

potential is a parabola, whereas in the X-direction it is a side of a hill with

a minimum created due to quantum corrections. This plot was generated with

the help of [37]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3. A plot of the classical potential (dashed line) and the total potential including

one-loop corrections (solid line) for fixed |φ| = |φ0|, where |φ0| is the position

of the metastable minimum in the φ-direction, defined in (4.32). In the figure,

Nf = 3, Nc = 2, N ′
f = 1 and N ′

c = 2. The values were scaled so that the position

of the “drain”, Wφ = 0, equals 1 on both axes. In these units, the position of the

metastable minimum is on the order of 10−4. This plot was generated with the

help of [37]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4. Table showing the classical mass spectrum, grouped in sectors of Str M2 = 0

for Nf = Nc + 1. The O(m2) fields in (φ, trX) are not degenerate. Although

supersymmetry is spontaneoulsy broken, there is no goldstino at the classical

level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5. Table showing the mass spectrum, including one-loop corrections, grouped in

sectors of Str M2 = 0 for Nf = Nc + 1. Notice the appearance of the goldstino

in the (φ, tr X) sector. The O(m2) fields in (φ, trX) are not degenerate; here

m2
CW = bh3m|φ0|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.6. Table showing the classical mass spectrum, grouped in sectors of Str m2 = 0, for
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Chapter 1

Introduction

This thesis is being completed at the beginning of a very exciting time in the field of high energy

physics. The standard model of particle physics is remarkably successful and has withstood

two decades of precision tests at high energy particle accelerators. It does, however, leave

unanswered several fundamental questions, such as how electroweak symmetry is broken, the

weakness of gravity, the origin of the mass of fundamental particles, and whether there are

additional symmetries in nature, such as supersymmetry. Starting in 2008, particle physicists

will enter a new era in which the prospects of finding answers to these questions and others are

great. This era will be dominated by a new machine built to probe the high energy frontier,

the Large Hadron Collider (LHC), a proton-proton accelerator being built at CERN outside of

Geneva along the French-Swiss border.

This thesis consists of a diverse set of topics that may broadly be described as physics

beyond the standard model. It consists of five main chapters which discuss the implications

of current experimental constraints on the Minimal Supersymmetric Standard Model (MSSM),

fine-tuning in the MSSM, a model in which supersymmetry is broken in a metastable vacuum,

the prospects for direct detection of a particular dark matter candidate, and some Large Hadron

Collider (LHC) phenomenology.

I shall first give a broad introduction which attempts to place these topics in a larger context.

I shall then briefly summarize each of the chapters in turn.

The Standard Model of particle physics is known to describe the properties and interactions

of all the known fundamental particles down to distances of about 10−16 cm or, equivalently, up

to the electroweak energy scale of about 250 GeV. It is undoubtedly one of the most successful
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theories of physics and has withstood testing from a variety of experiments, mainly from par-

ticle accelerators. Many of these experiments have probed its structure to an incredibly large

precision and found no significant deviation [1].

This success is a reason to celebrate, but for many it has also been a large source of frus-

tration. Part of this frustration is because the Higgs boson in the Standard Model has not

yet been found, despite intense efforts spent looking for it. However, the frustration really

goes beyond not having found the Higgs. There is reason to believe that there should be new

physics somewhere between the electroweak and the TeV scale (O(1000 GeV)), possibly with a

whole slew of new particles, and the frustration stems from the sheer number of ways that the

Standard Model has been tested, sometimes with staggering precision, without any sign of this

new physics. It is not only that no new particles have been directly produced and detected, but

also that new particles, if they are not too heavy, indirectly affect precision observables, and no

significant deviations from the Standard Model predictions of these precision observables have

been found to date.

Why should there be new physics around the TeV scale or below? We know that the

Standard Model is an incomplete description of fundamental physics, but most of its failures do

not actually point to new TeV scale physics. We will first briefly discuss some of these failures,

before turning to the reason of why it is believed that there should be new physics at the TeV

scale.

One of the Standard Model’s big failures, of course, is that it does not include a description

of quantum gravity. However, gravitational effects are not important for particle physics ex-

periments at the energies that have been probed so far. Moreover, since quantum gravitational

effects presumably only become important near the Planck scale MP ∼ 1019 GeV, they will

never be important in any particle physics experiment that can conceivably be built.

A further obvious problem with the Standard Model is that the neutrinos as described in the

Standard Model have zero mass, which is now known to be incorrect from neutrino oscillation

experiments. However, it is easy to give the neutrinos in the Standard Model non-zero masses
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by, for example, adding a right-handed neutrino to the Standard Model. Although much still

needs to be understood about the neutrino sector, a non-zero neutrino mass does not point to

new physics around the TeV scale (if anything, it points to new physics at energies of about

1015 GeV).

Arguably the biggest failure in our understanding of fundamental physics is that we have no

good explanation for the “dark energy” that is driving the acceleration of the cosmic expansion

and makes up about 72% of today’s energy density of the Universe [2]. It is true that the

Universe’s acceleration can be easily described with Einstein’s theory of general relativity by

the addition of the “cosmological constant” term to Einstein’s equations, which describes the

energy of the vacuum of space. This term can explain and is so far completely consistent with

combined data from astronomical measurements of supernovae, the cosmic microwave back-

ground radiation, and galaxy cluster masses. However, its measured value is about 120 orders

of magnitude too small than what would have been expected from quantum field theory. The

resolution of this “cosmological constant problem” may have to wait for a better understanding

of quantum gravity. It is, however, unlikely to be resolved by any new physics at the TeV scale.

Astronomical measurements have not only provided striking evidence for the existence of

dark energy, but they have also pointed to the existence of additional matter in the Universe.This

so-called dark matter makes up about 23% of the current energy density in the Universe, which

is to be contrasted with the 5% that consists of Standard Model particles. Although the identity

of the dark matter particle is not known, there are many suggestions for what it could be (it is

known that it is not part of the Standard Model). An intriguing possibility is that it is a particle

that could soon be produced and detected at the LHC. This possibility gets some credence from

the observation that any weakly interacting massive particle (WIMP), i.e. a particle charged

under the Standard Model electroweak gauge group SU(2)L × U(1)Y and interacting with the

W - and Z-bosons, has the correct dark matter relic density if its mass is on the order of several

100 GeV. At this stage this is only an intriguing observation, since there is nothing that requires

the dark matter in the Universe to be a WIMP. However, it does suggest the possibility that
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any new physics around the TeV scale may also have a suitable dark matter candidate.

None of the previous shortcomings or failures of the Standard Model require new physics

around the TeV scale or below. The reason for the belief that there should be something new

somewhere around this scale really comes from trying to find a solution to the hierarchy problem.

Finding a solution to the hierarchy problem has been the driving force behind model building

for physics beyond the standard model for the last 30 years. Let us now briefly review the

breaking of electroweak symmetry in the Standard Model and the definition of the hierarchy

problem.

The Standard Model is a gauge theory with gauge group SU(3)C ×SU(2)L×U(1)Y . Gauge

symmetry requires the Standard Model Lagrangian to be written in terms of massless spin-half

fields describing the fermions and massless spin-one fields describing the gauge bosons. It is

not yet clear how fermions as well as some gauge bosons get mass. In particular, experiments

show that the electroweak symmetry, described in the Standard Model Lagrangian by massless

gauge fields that transform under SU(2) × U(1), is broken, since three of the four carriers of

the electroweak force, the vector bosons W+, W− and Z, are massive. The set of particles and

interactions responsible for electroweak symmetry breaking is generically called the Higgs sector.

The minimal Higgs sector is the most popular choice for the Higgs sector of the Standard Model

as it consists of a single Higgs field which is a complex SU(2) doublet. One of the components of

the SU(2) doublet acquires a vacuum expectation value (VEV) v and automatically generates

mass terms for the vector bosons via the Higgs mechanism, as well as mass terms for fermions

via Yukawa couplings between the Higgs field and the fermions. The Higgs field has four degrees

of freedom. Three are the would-be Goldstone bosons that ‘get eaten’ and form the longitudinal

component of the vector bosons, and the one remaining degree of freedom is a scalar field, the

long-sought after Higgs boson, h. The Standard Model does not predict the mass of h which, at

tree-level, can be written in terms of the Higgs self-coupling λ as mh =
√

2λv, with v ≈ 246 GeV.

Precision measurements of the electroweak parameters, however, put indirect constraints on the

Higgs mass of about 129+74
−49 GeV and limit it to less than 285 GeV at the 95% confidence level
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[1]. Data from the Large Electron Positron (LEP) collider in CERN, Geneva, which operated at

center of mass energies of 91 - 209 GeV, put a lower bound of 114.4 GeV at the 95% confidence

level on its mass [4]. There are theoretical reasons for needing mh to be larger than ≈ 70 GeV

(vacuum stability) and less then ≈ 800 GeV (triviality).

The Higgs mass is thus expected to be somewhere around the electroweak scale. If mh

is more than about 180 GeV, λ blows up somewhere before the Planck scale, which means

that the Higgs sector becomes strongly coupled, and there may be some new physics below the

Planck scale. However, if mh is less than about 180 GeV, none of the the Standard Model

couplings (including λ) blow up before the Planck scale, and the Standard Model can be a

perfectly consistent weakly interacting theory all the way up to the Planck scale. In either case,

however, a naturalness argument makes it doubtful that the Standard Model really is a low-

energy effective theory valid to very high energies. All particle masses and couplings receive

quantum corrections which makes them sensitive to the scale, denoted by Λ, at which new

physics becomes relevant. Fermion masses and dimensionless couplings are only logarithmically

sensitive to Λ. However, scalar masses like the Higgs mass are quadratically sensitive to Λ. In

particular, if (m2
h)0 denotes the fundamental Higgs mass-squared parameter in the theory, then

the observable Higgs mass-squared m2
h is given by

m2
h = (m2

h)0 − k

16π2
Λ2, (1.1)

where the second term comes from quantum corrections involving the Standard Model particles,

and k is a coupling of O(1). If Λ2 is of order M2
P (where MP is the Planck scale), then (m2

h)0

must also be of order M2
P , and a very unnatural “fine-tuned” cancelation of 1 part in 1030

between the two contributions must give mh of order the electroweak scale. This fine-tuning is

called the hierarchy problem. It can be solved if Λ is not too large and below the TeV scale.

It is important to note that the hierarchy problem is not a logically compelling argument

proving the existence of new physics below the TeV scale. It is simply based on the common-

sense belief that there should not be any strange coincidences, and that therefore the Higgs

mass should not be fine-tuned. But it is perfectly possible that there is nothing beyond the
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Standard Model all the way up to the Planck scale. In fact, recently, there is evidence in string

theory for the existence of a “landscape” of possible vacua, each of which could be a Universe

in itself. It may then be that a simple anthropic argument is correct: since a low Higgs mass

is one of the conditions for life to exist, it is not surprising that we find ourselves in a Universe

where the Higgs mass is small. It is irrelevant then that our Universe has a hierarchy problem.

Whatever one’s feelings about the hierarchy problem, it is a fact that it has been the driving

force behind the model building community to go beyond the Standard Model. Let us assume

that it is a real problem that is solved by having new physics below the TeV scale so that there

is no fine-tuning. There are several suggestions of what this new physics is, and one of the most

promising candidates is supersymmetry (SUSY).

How does SUSY solve the hierarchy problem [5]? SUSY posits the existence of a bosonic

superpartner to every Standard Model fermion, and a fermionic superpartner to every Stan-

dard Model boson. If SUSY is exact, the Standard Model particle and its superpartner are

degenerate in mass. In addition to the usual term from quantum corrections to the Higgs mass

from Standard Model particles in (1.1), there would be a similar contribution to the Higgs

mass with the opposite sign and the same magnitude from the superpartners. These two terms

exactly cancel in the limit of exact SUSY, and there is thus no hierarchy problem. Since it

is obviously not the case that there are superpartners degenerate in mass with their Standard

Model counterparts, SUSY cannot be an exact symmetry of our world at low energies, and the

cancelation between the two contributions is not exact and instead leaves a small remnant. To

avoid a large fine-tuning to the Higgs mass, this remnant cannot be too big. This means that

the superpartners should have a mass of order the electroweak or TeV scale if SUSY solves

the hierarchy problem. The fact that no superpartners have been detected to this date, and

the fact that also no indirect effects of their presence have been observed, requires them to be

heavier than they need to be for SUSY to completely solve the hierarchy problem. This latter

observation is called the “little hierarchy problem”.

We now turn to a brief discussion of each of the chapters in the thesis.
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Chapter 2: Implications of the CERN LEP Higgs Bounds for the MSSM Stop Sector [7]

Chapters 2 and 3 deal with fine-tuning and related issues in the context of the Minimal

Supersymmetric Standard Model (MSSM). The MSSM is the minimal extension of the Standard

Model which incorporates SUSY, with the interesting properties that the gauge couplings unify

at the Grand Unified Theory (GUT) scale of about 2×1016 GeV and that there can be a viable

WIMP dark matter candidate. In addition to the Standard Model it contains a superpartner

for every Standard Model particle. Since the exact supersymmetry breaking mechanism is not

known, we parameterise our ignorance by including explicit supersymmetry breaking terms in

the MSSM Lagrangian. In addition, to avoid anomalies and to give mass to all the quarks and

leptons, the minimal Standard Model Higgs sector needs to be modified and the minimal MSSM

Higgs sector consists of two complex SU(2) doublets with opposite hypercharge. The MSSM

Higgs sector thus has eight degrees of freedom, of which three are the would-be Goldstone

bosons that again get “eaten”, whereas the remaining five form two charged scalars (H±), one

CP-odd neutral scalar (A0), and two CP-even neutral scalars (h0 and H0, with mH0 ≥ mh0 by

definition). Unlike the Standard Model, SUSY requires that the Higgs self-couplings are not

free parameters but are proportional to the electroweak couplings. This constrains the tree-level

mass of the lighter Higgs, h0, to be less than the mass of the Z-boson (91 GeV). If the actual

mass of h0 lies above 91 GeV, then we require radiative corrections. These would come mainly

from loops involving the heavy top quark and its superpartner, the scalar top quark, or “stop”,

and for large stop masses are able to push mh0 up to around 115-125 GeV, or even higher,

depending on the size of various MSSM parameters.

The best experimental bounds on the MSSM Higgs bosons come from LEP [6]. In Chapter 2,

the implications of the LEP Higgs bounds on the MSSM stop masses and mixing are compared

in two different regions of the Higgs parameter space. The first region is the Higgs decoupling

limit, in which the bound on the mass of the lighter Higgs is the same as the Standard Model

Higgs bound of mh ≥ 114.4 GeV, and the second region is near a non-decoupling limit with
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mh � 93 GeV, in which the masses of all the physical Higgs bosons are required to be light.

It both regions it is found, for example, that the lower bound on the stop mass is about 1000

GeV if there is no stop-mixing. Additional constraints are considered from the electroweak S-

and T -parameter and the decays B → Xsγ and Bs → μ+μ−, which also constrain the Higgs

and/or stop sector. In some regions of the MSSM parameter space these additional constraints

are stronger than the LEP Higgs bounds. The implications of this analysis for the tuning of

electroweak symmetry breaking are mentioned.

Chapter 3: The Minimally Tuned Minimal Supersymmetric Standard Model [8]

The work in Chapter 2 shows that the stop masses and mixings are required to be rather

large for the MSSM to be consistent with current experimental bounds. Large values for the

stop masses, however, can be shown to increase the size of the fine-tuning. Since the MSSM

contains many parameters, it may be possible to decrease the fine-tuning by changing the value

of some other parameter. An interesting question then is what regions in the MSSM parameter

space have the least amount of fine-tuning of electroweak symmetry breaking. In Chapter 3, an

analysis will be presented that not only discusses the regions in the MSSM with the minimal

amount of fine-tuning of electroweak symmetry breaking, but also shows how the minimal

amount of tuning increases enormously for a Higgs mass beyond 120 GeV. The upshot of the

analysis is that there is not much room left in which the Higgs mass can lie before the MSSM

begins to look extremely fine-tuned.

Chapter 4: Meta-Stable Dynamical Supersymmetry Breaking Near Points of Enhanced Symme-

try [10, 11]

Since the theoretical discovery of SUSY, much work has gone into trying to see how it could

be realized in nature. As we have discussed, if SUSY exists, it cannot be an exact symmetry

at low energies, and a very important problem in physics is to determine how it gets broken.

Over the years many models of SUSY breaking were built, but many of them were rather
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complicated and elaborate. These models usually contained stable vacua in which SUSY was

broken. It turns out that the requirement of stability is rather stringent, and severely limits

the kind of models that can be built. However, recently there has been a renewed interest

in building SUSY breaking models after Intriligator, Seiberg and Shih [9] found meta-stable

supersymmetry breaking vacua in a surprisingly simple model, namely N = 1 supersymmetric

QCD with massive flavors. The fact that SUSY breaking vacua were found in such a simple

theory suggested that they may in fact be ubiquitous, and that many models could contain

similar vacua. Indeed, it was found that by relaxing the requirement that the SUSY breaking

vacua be stable, it is much easier to build models of SUSY breaking. Our universe could be in

such a metastable state as long as the probability for the vacuum to decay is very small and

thus not in obvious conflict with observations.

In Chapter 4, the construction of a generic model with long-lived metastable vacua is dis-

cussed in which all the relevant parameters, including the SUSY breaking scale, are generated

dynamically. The model consists of two supersymmetric QCD sectors coupled by a singlet. It

has several desirable features including an explicitly and spontaneously broken R-symmetry, a

singlet, a large global symmetry, naturalness and renormalizability. The metastable vacua are

produced near a point of enhanced symmetry by a combination of nonperturbative gauge effects

and perturbative effects coming from the one-loop Coleman-Weinberg potential. An interesting

feature is the existence of ”pseudo-runaway” directions, which correspond to runaway directions

that are lifted by perturbative quantum corrections.

Chapter 5: Direct Detection of Non-Chiral Dark Matter [3]

As we have discussed, although the existence of dark matter is rather well established, the

identity of the dark matter particle remains a mystery. Current experimental constraints on the

properties of dark matter particles come from particle accelerators and from two other types

of experiments, called indirect and direct detection experiments. While the indirect detection

experiments look for the particles that are produced from annihilating dark matter, the direct



10

detection experiments attempt to infer the presence of dark matter particles as they scatter off

nuclei within detectors by looking for the resulting nuclear recoil.

The rationale for the direct detection experiments is that the dark matter lies in a halo

which encompasses our Milky Way galaxy. As the earth and sun rotate around the galactic

center, detectors on the earth move through the halo and intersect the path of dark matter

particles, which are expected to scatter off the nuclei inside the detectors.

Strong constraints have already been set from the direct detection experiments. They, for

example, rule out fermion dark matter that is a chiral representation of the electroweak gauge

group. Non-chiral real, complex and singlet representations, however, provide viable fermion

dark matter candidates, as will be discussed in Chapter 5. Although any one of these candidates

will be virtually impossible to detect at the LHC, it is shown that they may be detected at future

planned direct detection experiments. For the real case, an irreducible radiative coupling to

quarks may allow a detection. The complex case in general has an experimentally ruled out tree-

level coupling to quarks via Z-boson exchange. However, in the case of two SU(2)L doublets, a

higher dimensional coupling to the Higgs can suppress this coupling, and a remaining irreducible

radiative coupling may allow a detection. Singlet dark matter could be detected through a

coupling to quarks via Higgs exchange. Since all non-chiral dark matter can have a coupling to

the Higgs, at least some of its mass can be obtained from electroweak symmetry breaking, and

this mass is a useful characterization of its direct detection cross-section.

Chapter 6: Extracting Hadronic Resonances using Jet Ensemble Correlations [12]

We have discussed above how a large number of models have been developed in response to

the hierarchy problem. Although they differ slightly in their success in solving the hierarchy

problem, they generically predict new particles to be near or below the TeV scale. This is why

there is great excitement in the particle physics community about the coming LHC era.

Due to the large number of different possible models, there is a vast array of possibilities

for new particles with different interactions and with masses just above the electroweak scale.
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Moreover, if one takes a top-down approach motivated by a more fundamental theory such as

string theory, the possibilities become even more numerous and varied. We thus need to be

prepared to extract new physics from a plethora of possible discovery signatures.

Chapter 6 discusses a discovery signature that has not been well studied to date. This

discovery signature involves multi-jet events, both with and without leptons and/or missing

energy. Jets are produced in QCD hard scattering processes that create high transverse mo-

mentum quarks or gluons. Since quarks and gluons carry a color charge, QCD confinement

does not allow them to be detected directly in their free form and instead they turn into a

spray of hadrons confined to a narrow cone, called a jet. Jets are ubiquitously produced in

Standard Model QCD processes which will dominate at the LHC, and this may easily hide new

physics beyond the Standard Model that also produces jets. This is why much of the com-

munity is focused on extracting new physics from more conventional discovery signals, such as

multi-leptons and missing energy with no, or very few, jets, which do not have such a large

Standard Model background. However, there are many new physics signals that could only, or

predominantly, involve jets, so an analysis of discovery signatures which involve many jets is

essential. Moreover, new particles which produce multi-jet events tend to have a rather large

production cross-section at the LHC. This opens up the possibility that they could be among the

first things to be discovered at the LHC, provided that suitable search strategies are developed.

This work considers pair production of a new heavy colored particle (Q) undergoing a three-

body decay into jets and producing a six-jet final state. Since the Q’s undergo a three-body

decay into three jets, they should be seen as a resonance in a histogram of the invariant mass

of three jets. It is hard to extract this resonance due to the very large number of background

events which can completely swamp the signal, and also due to the large amount of combinatoric

confusion from not knowing how to select the three jets coming from the decay of one of the

Q’s. However, innovative cuts that make use of correlations and kinematic features among the

observables formed from the jets that come from the Q’s can be used to extract the resonance.

It is worth emphasizing that the search strategies developed here are more widely applicable.
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Chapter 2

Implications of the CERN LEP Higgs Bounds for the

MSSM Stop Sector

This chapter appears in print in Phys.Rev.D75:095005, 2007, arxiv:hep-ph/0702104.

The implications of the LEP Higgs bounds on the MSSM stop masses and mixing are

compared in two different regions of the Higgs parameter space. The first region is the Higgs

decoupling limit, in which the bound on the mass of the lighter Higgs is mh ≥ 114.4 GeV, and

the second region is near a non-decoupling limit with mh � 93 GeV, in which the masses of all

the physical Higgs bosons are required to be light. Additional constraints from the electroweak

S- and T -parameter and the decays B → Xsγ and Bs → μ+μ−, which also constrain the

Higgs and/or stop sector, are considered. In some regions of the MSSM parameter space these

additional constraints are stronger than the LEP Higgs bounds. Implications for the tuning of

electroweak symmetry breaking are also discussed.

2.1 Introduction

The Higgs sector in the Minimal Supersymmetric Standard Model (MSSM) consists of two

SU(2)L doublets, Hd and Hu, with opposite hypercharge. Five physical states remain after

electroweak symmetry breaking (EWSB). Assuming there are no CP-violating phases, these

physical states consist of two neutral CP-even states h and H with masses mh ≤ mH , one

neutral CP-odd state A, and two charged states H±. The tree-level masses of h and H are

bounded, mtree
h ≤ mZ ≤ mtree

H , with mZ � 91 GeV.

Using the Large Electron Positron (LEP) collider, the LEP collaboration searched for these
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Higgs bosons and published bounds on their masses [1]. Their results have ruled out substantial

regions of the MSSM Higgs parameter space, and in much of the remaining allowed regions it

is clear that large radiative corrections to the tree-level Higgs masses are required to satisfy the

LEP bounds. However, two very different scenarios are still possible. One scenario is obtained

in the Higgs decoupling limit in which h behaves like the Standard Model (SM) Higgs and all

the other Higgs bosons become heavy and decouple from the low energy theory. Here the bound

on mh coincides with the bound on the mass of the SM Higgs, namely mh ≥ 114.4 GeV [2].

The other scenario is obtained in the Higgs “non-decoupling” limit in which H behaves like the

SM Higgs and the Higgs sector is required to be light. It allows for 93 GeV � mh < 114.4

GeV, where the value of 93 GeV is the (somewhat model dependent) lower bound that the

LEP collaboration has obtained for mh assuming various decay scenarios for h and a variety of

different “benchmark” parameter choices for the MSSM parameters. If mh is near 93 GeV, it

seems to naively require much smaller radiative corrections to the tree-level Higgs mass than

when mh is near 114.4 GeV. Since the dominant radiative corrections to the tree-level CP-even

Higgs mass matrix, which determines mh and mH , come from loops involving the top quark

and stop squarks, one might naively suspect that mh near 93 GeV allows for much smaller

stop masses than mh near 114.4 GeV. Moreover, larger stop masses would in general imply a

more fine-tuned MSSM, and one might therefore suspect that the MSSM is less fine-tuned for

mh near 93 GeV. In this paper, we present lower bounds on the stop masses consistent with

the LEP Higgs bounds, both in the Higgs decoupling region, with mh ≥ 114.4 GeV, as well

as near the Higgs non-decoupling region, with mh � 93 GeV. We compare the constraints on

the stop masses in these two regions of the Higgs parameter space, and show that in certain

regions of the MSSM parameter space the lower bounds on the stop masses are not significantly

different from each other. Furthermore, although there are regions in which the lower bounds

are smaller, there are also regions in which they are larger.

There are other constraints on new physics that may further tighten bounds on the stop or

Higgs sector. These additional constraints include the electroweak S- and T -parameter, and the
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decays B → Xsγ and Bs → μ+μ−. In this paper, we discuss the regions of the MSSM parameter

space in which these additional constraints are important in restricting the stop and/or Higgs

sector further.

The outline of this paper is as follows. In Section 2.2, we investigate the LEP constraints

on the neutral MSSM Higgs sector and its implication for the stop sector in more detail. This

will allow us to obtain a simple numerical estimate of the lower bound on the stop masses in a

particular limit of the MSSM parameter space. This estimate is independent of the size of mh.

Section 2.3 contains the main results of this paper. We give lower bounds on the stop masses

consistent with the LEP Higgs bounds. The analysis will include all the important radiative

corrections to the CP-even Higgs mass matrix, and we discuss the importance of the top mass,

the stop mixing the gaugino masses and the supersymmetric Higgsino mass parameter (μ) on

the lower bounds of the stop masses. In addition, we present results on how the lower bounds

on the soft stop masses vary in the decoupling limit as a function of mh. In Section 2.4, we

discuss how other constraints on new physics impact the results in Section 2.3. In particular,

we investigate the effect of the electroweak S- and T -parameters, B → Xsγ, and Bs → μ+μ−.

Section 2.5 contains a discussion of the implications of our analysis for electroweak symmetry

breaking and the supersymmetric little hierarchy problem. In Section 2.6, we summarize the

results of this paper. Appendix 2.7 gives the relevant background to understand the LEP results

for the MSSM Higgs sector. In Appendix 2.8, we review the quasi-fixed point for the stop soft

trilinear coupling, At. The trilinear coupling is the main ingredient in determining the amount

of stop mixing, and we use the quasi-fixed point value for At in some of the main results of this

paper.

2.2 LEP constraints on the Higgs sector and implications for the

MSSM stop sector

In this section, we first review the LEP Higgs constraints, before going on to discuss the impli-

cations of these constraints for the stop sector.
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2.2.1 Constraints from LEP on the MSSM Higgs-sector

The LEP collaboration searched for the production of Higgs bosons in both the Higgsstrahlung

(e+e− → Z → Zh (or ZH)) and pair production (e+e− → Z → Ah (or AH)) channels. The

results from these channels have been used to set upper bounds on the couplings ZZh (ZZH)

and ZAh (ZAH) as a function of the Higgs masses. These couplings are proportional to either

sin2(β −α) or cos2(β −α). Here β is determined from the ratio of the two vacuum expectation

values vu ≡ 〈Re(H0
u)〉 and vd ≡ 〈Re(H0

d)〉 as tan β = vu/vd, and α is the neutral CP-even Higgs

mixing angle.

Within the MSSM, the results from the Higgsstrahlung channel give an upper bound on

sin2(β − α) and cos2(β − α) as a function of mh and mH , respectively (see Fig. 2 in [1]). The

pair production channel, on the other hand, gives an upper bound on cos2(β−α) and sin2(β−α)

as a function of mh +mA and mH +mA, respectively (see Fig. 4 in [1]). Appendix 2.7 contains

a review on how these functions of α and β appear in the MSSM, and why LEP bounds them.

The LEP results from the Higgsstrahlung channel put several interesting bounds on mh, mH

and sin2(β − α). In the decoupling limit, h behaves like the SM Higgs so that sin2(β − α) → 1

and the bound on its mass is given by

mh ≥ 114.4 GeV, sin2(β − α) → 1. (2.1)

If mh is less than 114.4 GeV, smaller values of sin2(β −α) are required in order to suppress

the production of h in the Higgsstrahlung channel and to allow it to have escaped detection.

For mh � 93 GeV, sin2(β −α) needs to be less than about 0.2, so that cos2(β −α) � 0.8 (from

Fig. 2 in [1]). Larger values of cos2(β − α), however, increase the HZZ coupling so that now

mH needs to be large enough to suppress the production of H in the Higgsstrahlung channel,

and allow it, in turn, to have escaped detection. We find that mH � 114.0 GeV (from Fig. 2

in [1]). If sin2(β − α) is even smaller and approaches zero, i.e. cos2(β − α) → 1, it is H which

behaves like the SM Higgs so that the bound on its mass is given by mH ≥ 114.4 GeV (this

will be referred to as the Higgs “non-decoupling” limit).
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In Section 2.3, we present lower bounds on the stop soft masses for two regions in the Higgs

parameter space. These two regions are given by equation (2.1) and by

mh � 93 GeV, cos2(β − α) ≥ 0.8, mH ≥ 114.4 GeV. (2.2)

(We choose mH in equation (2.2) to be at least above 114.4 GeV, in order to allow the full

range 0.8 ≤ cos2(β − α) ≤ 1.)

We note that the bounds given in the previous paragraphs assume that the MSSM Higgs

boson h decays like the SM Higgs boson (see [1]). If we assume different Higgs decay branching

ratios, somewhat different bounds can be obtained. For example, assuming h decays completely

into τ τ̄ gives a stricter bound on the hZZ coupling for a wide range of mh. The LEP collabo-

ration even considered the extreme case in which the Higgs decays invisibly. In this case, the

bound on the hZZ coupling as a function of mh is in general not much worse than if we assume

that the Higgs decays like a SM Higgs. In fact, for some range of mh the bound is even stricter

if we assume that the Higgs decays invisibly [3].

The lower bound on mh is also model dependent. For example, in [1], figures are presented

that show excluded regions in the MSSM parameter space for a variety of “benchmark” scenarios

that consist of different choices for the MSSM parameters. The LEP collaboration found that

the lower bound on mh can be slightly less than 93 GeV in certain cases. Moreover, the authors

in [4] claim that there are certain regions in parameter space for which the ZZh coupling and

the h/A → bb̄ branching ratios are both suppressed and that this allows mh to be substantially

less than 93 GeV.

2.2.2 Implications for the MSSM stop sector

Since the tree-level mass of the lighter neutral Higgs is bounded above by mZ , it is clear that

substantial radiative corrections are required to push the lighter Higgs mass above 114.4 GeV

in the Higgs decoupling limit.

We now discuss why substantial radiative corrections to the tree-level Higgs masses are also
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required if the lighter Higgs mass is near 93 GeV. This is most easily seen in the large tanβ limit.

In this limit, the CP-even Higgs mass squared matrix in the (Hd,Hu) basis is particularly simple

if we only include the tree-level pieces and the dominant radiative corrections. Since tanβ is

large, the vacuum expectation value vd vanishes in this limit, and the Higgs vacuum expectation

value is thus completely determined by vu. In the absence of any radiative corrections, one of

the physical Higgs mass eigenstates lies completely in the Hu direction and thus behaves like

the SM Higgs (with a mass equal to mZ), whereas the other mass eigenstate lies completely in

the Hd direction (with a mass equal to the mass of the CP-odd Higgs, mA). This alignment of

the two physical CP-even Higgs mass eigenstates with the Hu and Hd direction, respectively,

remains unchanged when only the dominant radiative correction is added. The reason for this

is that, due to the large top Yukawa coupling, the dominant radiative corrections to the Higgs

sector are to the up-type Higgs soft supersymmetry breaking Lagrangian mass and come from

loops involving the top quark and stop squarks [5, 6, 7]. This gives a correction to the Hu-Hu

component of the CP-even Higgs mass squared matrix. The matrix is thus particularly simple

for large tanβ, and is given by

M2 ≈

⎛⎜⎜⎝ m2
A 0

0 m2
Z + δM2

uu

⎞⎟⎟⎠ (for large tanβ), (2.3)

where δM2
uu is the dominant top/stop correction. Since the Hu-Hu component for large tanβ

gives the mass of the physical Higgs that behaves like the SM Higgs, its value is bounded below

by 114.4 GeV, i.e.

m2
Z + δM2

uu � (114.4 GeV)2. (2.4)

The result in equation (2.4) is independent of whether the lighter or the heavier Higgs lies in

the Hu direction (this depends on the size of mA). It also shows that the lower bound on the

size of the required radiative corrections is fixed and independent of the mass of the lighter

Higgs, at least in the large tanβ limit including only the leading corrections. Moreover, it is
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mH which acquires the dominant radiative corrections for mh � 93 GeV.

A simple estimate of the lower bounds on the stop masses in the large tan β limit may be

obtained using equation (2.4). For large tanβ, the dominant radiative correction is given by

δM2
uu � 3g2m4

t

8π2m2
W

{
ln

(
m2

t̃

m2
t

)
+

X2
t

m2
t̃

(
1 − X2

t

12m2
t̃

)}
, (2.5)

where mt is the top mass, g is the SU(2)L gauge coupling, and mW is the mass of the W -bosons

[5, 6, 7]. Furthermore, equation (2.5) assumes that the stop soft masses are equal to mt̃, with

mt̃ � mt. The stop mixing parameter is given by Xt = At − μ cotβ (� At for large tanβ),

where At denotes the stop soft trilinear coupling and μ is the supersymmetric Higgsino mass

parameter. The dependence on the top mass to the fourth power is particularly noteworthy.

The first term in equation (2.5) comes from renormalization group running of the Higgs quartic

coupling below the stop mass scale and vanishes in the limit of exact supersymmetry. It grows

logarithmically with the stop mass. The second term is only present for non-zero stop mixing

and comes from a finite threshold correction to the Higgs quartic coupling at the stop mass

scale. It is independent of the stop mass for fixed Xt/mt̃, and grows linearly as (Xt/mt̃)
2 for

small Xt/mt̃.

It is apparent from equation (2.5) that the mixing term is important for determining lower

bounds on the stop masses. Using equation (2.5) and assuming no mixing (Xt = 0), we require

mt̃ � 570 GeV in order to satisfy the LEP bound in (2.4). This value was obtained using a

running top mass of mt(mt) � 167 GeV [8, 9]. The second (mixing) term in equation (2.5),

however, reaches a maximum of 3 for Xt =
√

6mt̃, called maximal-mixing. In order for the

logarithm of the first term to be of the same order, mt̃ needs to be about 750 GeV. Thus the

mixing term alone is more than enough to give the required radiative corrections to satisfy the

LEP bound. Mixing in the stop sector therefore allows for much smaller stop masses.

There are other radiative corrections to the Higgs masses which are important, including

negative radiative corrections that come from charginos, for example. In Section 2.3, we include

all the important radiative corrections to determine more accurate lower bounds on the stop
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masses. For example, for no stop mixing and tanβ = 50, a more accurate lower bound is given

by mt̃ � 980 GeV, assuming a physical top mass of 173 GeV, μ = 200 GeV, and a bino and wino

mass of 100 GeV and 200 GeV, respectively. This shows the importance of including higher

order corrections to the Higgs sector. Moreover, the lower bound is approximately the same for

mh � 93 GeV and for mh ≥ 114.4 GeV, as expected for large tan β.

The above discussion assumes that tan β is large. In Section 2.3, we obtain lower bounds on

mt̃ also for small and moderate values of tanβ, for which the off-diagonal elements in the Higgs

mass matrix become important. In general, we find that the stop masses and/or mixing have to

be sizeable for all values of tanβ and for both the Higgs decoupling and non-decoupling regions.

However, depending on the size of the stop mixing, the lower bounds on the stop masses for

moderate values of tan β can be smaller for mh � 93 GeV than for mh ≥ 114.4 GeV (see also

[10]). Moreover, for small values of tanβ, the lower bounds on the stop masses become larger

for mh � 93 GeV than for mh ≥ 114.4 GeV.

2.3 Lower bounds on the stop masses

In this section, we present lower bounds on the stop masses consistent with the LEP Higgs

bounds, and we discuss their dependence on some of the other MSSM parameters. In partic-

ular, we set lower bounds on the left-handed and right-handed stop soft mass, mt̃L
and mt̃R

,

respectively, taking both equal to a common value, which we denote by mt̃. We denote the lower

bound on mt̃ consistent with the LEP Higgs bounds by mt̃,min. We consider the two scenarios

given in equations (2.1) and (2.2), namely the Higgs decoupling limit with mh ≥ 114.4 GeV

(Section 2.3.1), and near the Higgs non-decoupling limit with mh � 93 GeV, and the additional

constraints cos2(β − α) ≥ 0.8 and mH ≥ 114.4 GeV (Section 2.3.3). In addition, in Section

2.3.2, we give lower bounds on the stop soft masses as a function of the physical Higgs boson

mass mh in the decoupling limit. All the lower bounds on the stop masses that we present are

consistent with the 2σ constraint on δρ (which is related to the electroweak T -parameter). In

Section 2.4, we discuss the importance of this parameter, as well as others, in constraining the
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stop masses.

2.3.1 Lower bounds on the stop masses for mh ≥ 114.4 GeV

For a given set of parameters, we minimize mt̃ by starting it at the lowest value that gives

physical stop masses above 100 GeV and increasing it until mh is above 114.4 GeV. We choose

the physical stop mass to be at least 100 GeV since this bound is illustrative of the actual,

slightly model dependent, lower bound obtained from the Tevatron [11]. The Higgs masses

were calculated with version 2.2.7 of the program FeynHiggs which includes all the important

radiative corrections to the Higgs sector [12, 13, 14, 15]. We set mA = 1000 GeV to ensure that

we are in the Higgs decoupling limit.

In Fig. 2.1, we show mt̃,min as a function of tanβ for stop mixing Xt/mt̃ = 0, ±1, and ±2.

All squark, slepton, and gaugino soft masses are equal to mt̃, μ = 200 GeV, mt = 173 GeV, and

all the soft trilinear couplings are equal to the stop soft trilinear coupling, At = Xt + μ cot β.

The lower solid line shows the maximal-mixing scenario,1 Xt = 2mt̃, which approximately

maximizes the radiative corrections to the Higgs sector for a given set of parameters [19]. The

dot-dashed line shows the no-mixing scenario, Xt = 0, which approximately minimizes the

radiative corrections to the Higgs sector for a given set of parameters. The lower dashed line

shows the results for Xt = mt̃. An intermediate-mixing scenario with Xt = −mt̃ is represented

by the upper dashed line. We choose this scenario since At has a strongly attractive infrared

quasi-fixed point at At = −M3, see Appendix 2.8. Thus, At prefers to be negative due to

renormalization group evolution from the high scale down to the low scale (we choose the

convention in which M3 is positive). In addition, we consider a scenario which maximizes the

Higgs mass for negative stop mixing, and call it natural maximal mixing. This scenario is given

by Xt = −2mt̃ and is represented by the upper solid-line in the figure.

1The word “maximal” refers to the size of the radiative corrections, not to the amount of mixing. Maximal
mixing in FeynHiggs is obtained by setting Xt � 2mt̃, and not Xt =

√
6mt̃ as in Section 2.2.2. In the former

case, Xt is defined in the on-shell scheme used in the diagrammatic two-loop results incorporated into FeynHiggs,
whereas in the latter it is defined in the MS-scheme used in the RG approach. Moreover, mh is not symmetric
with respect to Xt in the full two-loop diagrammatic calculation in the on-shell scheme. For example, mh can
be up to 5 GeV larger for Xt = +2mt̃ than for Xt = −2mt̃. The difference arises from non-logarithmic two-loop
contributions to mh, see [16, 17, 18].
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A feature that is common to all the curves is that mt̃ becomes very large for small tan β.

This is because the tree-level contribution to the Higgs mass in the decoupling limit is given by

mtree
h � |cos 2β|mZ , and goes to zero as tan β approaches 1. Larger radiative corrections, and

thus larger stop masses, are therefore required for smaller tanβ to push mh above 114.4 GeV.

Fig. 2.1 clearly shows that mixing in the stop sector has a large impact on the values of

mt̃,min, with larger mixing allowing much smaller values of mt̃,min (see also [20, 21]). For large

tan β, the difference in mt̃,min between no mixing and maximal mixing is about 1000 GeV, with

mt̃,min = 1260 GeV for tanβ = 50 in the no-mixing case.

A plot of the two physical stop masses, mt̃1
and mt̃2

, versus tan β is given in Fig. 2.2 for

no mixing and for natural maximal mixing. For no mixing, there is no discernible difference

in the two stop masses since the only difference that arises is from small SU(2)L and U(1)Y

D-term quartic interactions. For appreciable mixing, the two physical stop masses are split by

an amount that is on the order of ∼ √
mtXt. For Xt = −2mt̃ and tanβ ≥ 7, mt̃,min is small

enough that the lighter physical stop mass is all the way down at its experimental lower bound

of roughly 100 GeV. For this range of tanβ, we find that mt̃ is larger than that which is required

to get mh just above 114.4 GeV, and thus mh is several GeV above 114.4 GeV here.

The current value of the top mass from the CDF and D0 experiments at Fermilab is mt =

171.4± 2.1 GeV [22]. The values obtained for mt̃,min are, however, extremely sensitive to slight

variations in the value of the top mass (see also [20]). It is thus illustrative to plot mt̃,min as a

function of tanβ for various amounts of stop mixing and for three choices of the top mass: 168

GeV, 173 GeV and 178 GeV. The plots are shown in Fig. 2.3, 2.4 and 2.5 for Xt/mt̃ = 0, -1,

and -2, respectively. These plots again assume that all squark, slepton, and gaugino soft masses

are equal to mt̃, μ = 200 GeV, and all the soft trilinear couplings are equal to At.

All three figures show that mt̃,min is extremely sensitive to small changes in mt for small

tan β. For intermediate and vanishing stop mixing, this sensitivity persists for large tanβ. For

example, in the no-mixing case for tanβ = 50, we find mt̃,min � 870 GeV, 1260 GeV, and 2570

GeV for mt = 178 GeV, 173 GeV, and 168 GeV, respectively. The very large value of mt̃,min
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for mt = 168 GeV is particularly noteworthy, especially if the central value of the measured top

mass keeps decreasing slightly as more data from the Tevatron becomes available.

So far we assumed that the gaugino masses are all equal to mt̃. The bino and wino masses,

M1 and M2, as well as μ contribute to the Higgs masses at one loop, whereas the gluino mass,

M3, only appears at two loops (see e.g. [9, 13, 23] and references therein). Since large values

of M1, M2 and μ can give important negative contributions to the Higgs masses [24], smaller

values of mt̃,min are possible for smaller values of M1, M2 and μ. For example, setting M1 =

100 GeV, M2 = 200 GeV and M3 = 800 GeV, we find in the no-mixing case for tanβ = 50

that mt̃,min � 760 GeV, 980 GeV, and 1410 GeV for mt = 178 GeV, 173 GeV and 168 GeV,

respectively. This may be compared with the values given in the previous paragraph for the

case where all the gaugino masses are equal to mt̃. Thus, setting the bino and wino masses to

smaller values decreases the size of mt̃,min, especially if mt is small. However, the large value of

mt̃,min for mt = 168 GeV is still noteworthy.

We show a further example of how a different choice for M1 and M2 affects mt̃,min in Fig. 2.6

for the no-mixing and natural-maximal-mixing scenario. For each scenario, this figure shows a

case for which M1 and M2 are both large (M1 = M2 = 800 GeV) or both small (M1 = 100

GeV, M2 = 200 GeV). In both cases, M3 is fixed to be 800 GeV, μ = 200 GeV, mt = 173 GeV,

all squark and slepton soft masses are equal to the stop soft masses, and all the soft trilinear

couplings are equal to At. The plots show that mt̃,min is smaller for smaller values of M1 and

M2. For example, mt̃,min is about 160 GeV smaller in the no-mixing case for tanβ = 50 when

choosing the smaller set of values for M1 and M2, and the difference in mt̃,min grows as tan β

decreases. For natural maximal mixing, no difference can be seen for most tanβ values, since

here the condition mt̃1
≥ 100 GeV again requires larger values of mt̃,min than the condition

mh ≥ 114.4 GeV. However, there is a difference in mt̃,min for smaller tan β, which again grows

as tan β decreases.

Fig. 2.6 also shows how a change in the gluino mass, M3, affects mt̃,min. In general, mh

tends to be maximized for M3 � 0.8mt̃ [13]. In this figure, we compare mt̃,min for two different
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gluino masses, namely M3 = 800 GeV and M3 = 1500 GeV. The figure shows that the effect is

not very large for this choice of parameters. However, the gluino mass can significantly affect

the Higgs masses, and therefore mt̃,min, for large tanβ and large and negative μ.

The variation of mh as a function of μ does not generally exceed about 3 GeV [13]. However,

it can become very large if one includes the all-order resummation of the tanβ enhanced terms

of order O(αb(αs tan β)n), where αb = λ2
b/4π and λb is the bottom Yukawa coupling [25, 26, 27,

28, 29, 30, 31]. This resummation is included in FeynHiggs. The origin of the enhancement is

a change in the bottom Yukawa coupling due to a loop containing, for example, a gluino and a

sbottom squark. The leading corrections to the bottom Yukawa coupling can be incorporated

into the one-loop result for the Higgs masses by the use of an effective bottom mass, meff
b . Large

|μ| tan β can substantially change the effective bottom mass meff
b from its MS value. Positive μ

can substantially decrease meff
b , making the sbottom/bottom sector corrections to mh negligible.

Negative μ on the other hand can substantially increase meff
b , making the sbottom/bottom sector

corrections to mh important. The bottom/sbottom corrections to mh are negative in the latter

case. Larger stop masses are then required for large and negative μ as tanβ increases to enhance

the positive radiative corrections from the stop/top.

This effect can be seen in Fig. 2.7 where we compare μ = +200 GeV and μ = ±500 GeV for

natural maximal stop mixing. This figure again assumes that all squark, slepton, and gaugino

soft masses are equal to the stop soft masses, mt = 173 GeV, and all the soft trilinear couplings

are equal to At. For large tanβ, slightly larger mt̃,min are required for μ = −500 GeV than when

μ is positive (the effect would be stronger for even larger negative μ). Note that for small values

of tanβ there is a region for which mt̃ is larger for both μ = −500 GeV and μ = +500 GeV

than for μ = 200 GeV. As we discussed above, this is because larger chargino and neutralino

masses decrease the size of mh.

Since the gluino mass also enters the equation that determines meff
b , it can have a significant

impact on mh for large tanβ and large negative values of μ as demonstrated in [31]. Thus,

some non-negligible dependence of mt̃,min on the gluino mass is expected for negative and large
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Figure 2.1: Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh ≥ 114.4 GeV as a function
of tanβ for stop mixing Xt/mt̃ = 0,±1,±2. All squark, slepton, and gaugino soft masses are
equal to the stop soft masses, μ = 200 GeV, mA = 1000 GeV, mt = 173 GeV, and all soft
trilinear couplings are equal to At = Xt + μ cot β.

μ.

2.3.2 Lower bounds on the stop masses as function of the Higgs mass

In this section, we present lower bounds on the stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, as a function

of the Higgs mass, mh. We assume the decoupling limit (mA = 1000 GeV), and we set all squark

and slepton soft masses equal to the stop soft masses, μ = 200 GeV, mt = 173 GeV, M1 = 100

GeV, M2 = 200 GeV, M3 = 800 GeV, tan β = 30, and all the soft trilinear couplings equal to

At. We allow mh to range from 100 GeV upwards. This means that the values obtained for mt̃

in the range mh ∈ [100, 114.4] GeV will be lower than those consistent with the LEP results,

since we set no additional constraints on cos2(β −α) and mH . However, the main point here is

to show the dependence of mt̃ on mh without any other constraints. The lower bounds on mt̃

are required to give physical stop masses not less than 100 GeV.

We show the results for different amounts of stop mixing in Fig. 2.8. This figure shows
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Figure 2.2: Minimum physical stop masses, mt̃1
and mt̃2

, for mh ≥ 114.4 GeV as a function
of tanβ for vanishing stop mixing (Xt = 0) and natural maximal stop mixing (Xt/mt̃ = −2).
Other parameters are as given in Fig. 2.1.
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Figure 2.3: Minimum stop soft masses, mt̃ ≡ mt̃L
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, for mh ≥ 114.4 GeV as a function
of tanβ for vanishing stop mixing (Xt = 0) for a top quark mass of mt = 168, 173, 178 GeV.
Other parameters are as given in Fig. 2.1.
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, for mh ≥ 114.4 GeV as a function of
tan β for intermediate stop mixing (Xt/mt̃ = −1) for a top quark mass of mt = 168, 173, 178
GeV. Other parameters are as given in Fig. 2.1.

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

tanβ

m
 t (G

eV
)

Xt = −2 m t

mt = 178 GeV 

mt = 173 GeV 

mt = 168 GeV 

~

~

Figure 2.5: Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh ≥ 114.4 GeV as a function of
tan β for natural maximal stop mixing (Xt/mt̃ = −2) for a top quark mass of mt = 168, 173, 178
GeV. Other parameters are as given in Fig. 2.1.
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Figure 2.6: Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh ≥ 114.4 GeV as a function
of tanβ for various values of the bino, wino, and gluino soft masses, M1,M2, M3. The upper
three lines are for vanishing stop mixing (Xt = 0) and the lower three for natural maximal stop
mixing (Xt/mt̃ = −2). Other parameters are as given in Fig. 2.1.

how an increase in mh requires an exponential increase in mt̃. In addition to the no-mixing,

intermediate-mixing and natural-maximal-mixing cases, we also include the mmax
h benchmark

scenario (Xt = +2mt̃) (but with μ = +200 GeV, not μ = −200 GeV) [24]. This benchmark

scenario is designed to maximize the Higgs mass for a given set of parameters. Moreover, we

choose M3 = 800 GeV for all cases, with the exception of the latter one. In the latter benchmark

scenario, we choose the benchmark value M3 = 0.8mt̃ instead, which gives slightly higher values

for mh [24].

It is clear from the figure that there is some value of mh at which a further small increase

in mh would require an extremely large increase in the stop masses. It is instructive to obtain

the values of mh from the figure if, for example, mt̃ = 3000 GeV. We find for no stop mixing,

mh � 121 GeV, for intermediate stop mixing, mh � 126 GeV, for natural maximal stop mixing,

mh � 131 GeV, and for the mmax
h benchmark scenario, mh � 134 GeV (see also [32], for example,

and references therein).
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Figure 2.7: Minimum stop soft masses, mt̃ ≡ mt̃L
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, for mh ≥ 114.4 GeV as a function
of tan β for natural maximal stop mixing (Xt/mt̃ = −2) with μ = −500, 200, 500 GeV and
bino, wino, and gluino soft masses of M1 = 100 GeV, M2 = 200 GeV, M3 = 800 GeV. Other
parameters are as given in Fig. 2.1.

Since At and M3 most naturally have the opposite sign due to renormalization group running

and the presence of a strongly attractive quasi-fixed point (see Appendix 2.8), a negative value

of At is more natural. For negative At, the upper bound of mh in the MSSM is around 131

GeV.

2.3.3 Lower bounds on the stop masses for mh � 93 GeV

In this section, we present results for the minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, as a

function of tanβ, for various choices of the other MSSM parameters, and consistent with the

following set of constraints on the Higgs sector obtained by LEP: mh � 93 GeV, cos2(β−α) ≥ 0.8

and mH ≥ 114.4 GeV (see equation (2.2)).

The mass mA is allowed to be a free parameter, since mt̃ needs to be minimized without

enforcing the decoupling limit. We vary mA between 93.5 GeV and 1000 GeV from the bottom

up for a given choice of mt̃ and other MSSM parameters, until the conditions 93 GeV ≤ mh ≤



30

100 105 110 115 120 125 130 135
0

500

1000

1500

2000

2500

3000

mh (GeV)

m
 t (G

eV
)

mt = 173 GeV 

μ = +200 GeV

Xt = −m t

Xt = 0

Xt = +2 m t
 (mh

max Benchmark)

tanβ = 30 
M1 = 100 GeV 
M2 = 200 GeV 
M3 = 800 GeV, or 
M3 = 0.8 m t for
   mh

max Benchmark 

~

~

~

~~ Xt = −2 m t

Figure 2.8: Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, as a function of mh. All squark and
slepton soft masses are equal to the stop soft masses, μ = 200 GeV, mt = 173 GeV, {M1,M2}
= {100, 200} GeV, tan β = 30, and all the soft trilinear couplings are equal to At = Xt +μ cot β.
In the figure, the curved lines from left to right are as follows: the dotted line is for no mixing
(Xt/mt̃ = 0), the dash-dot line for intermediate mixing (Xt/mt̃ = −1), the dashed line for
natural maximal mixing (Xt/mt̃ = −2), and the solid line for the mmax

h benchmark scenario
(Xt/mt̃ = +2) [24]. The gluino mass is set to be M3 = 800 GeV in all cases except in the mmax

h

benchmark scenario, where M3 = 0.8mt̃. The vertical dotted line is at mh = 114.4 GeV, which
is the lower bound set by LEP on mh in the decoupling limit.
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95 GeV, cos2(β − α) ≥ 0.8, and mH ≥ 114.4 GeV are satisfied. (The lower bound of 93.5 GeV

for mA is the approximate lower bound obtained within the same benchmark scenarios as the

bound on mh; it turns out that the actual values obtained for mA are slightly larger). If these

conditions cannot all be satisfied, we keep increasing mt̃ until they are satisfied. Note that we

require the lower bounds on mt̃ to give physical stop masses of at least 100 GeV. We again

denote the lower bounds on mt̃ consistent with the LEP Higgs bounds by mt̃,min.

The Higgs masses, mh and mH , are calculated with FeynHiggs, and cos2(β−α) is calculated

using the FeynHiggs output of the radiatively corrected CP-even Higgs mixing angle α.

In Fig. 2.9, we show mt̃,min as a function of tanβ for stop mixing Xt/mt̃ = 0, ±1, and ±2.

All squark, slepton, and gaugino soft masses are equal to the stop soft masses, μ = 200 GeV,

mt = 173 GeV, and all the soft trilinear couplings are equal to the stop soft trilinear coupling,

At. This figure may be compared with Fig. 2.1 in which we require mh ≥ 114.4 GeV in the

Higgs decoupling limit.

Next, we show mt̃,min as a function of tanβ for different values of the top mass (168 GeV,

173 GeV and 178 GeV) and for different amounts of mixing. Fig. 2.10 is for no mixing, Fig. 2.11

is for intermediate mixing, and Fig. 2.12 is for natural maximal mixing. All squark, slepton,

and gaugino soft masses are again equal to the stop soft masses, μ = 200 GeV, and all the soft

tri-linear couplings are equal to At. These figures may be compared with the figures in which

we require mh ≥ 114.4 GeV in the decoupling limit, namely Figs. 2.3, 2.4 and 2.5, respectively.

We first compare mt̃,min in the two scenarios mh � 93 GeV and mh ≥ 114.4 GeV for large

tan β. Here, the figures show that mt̃,min is the same in the case of maximal or natural maximal

mixing. For intermediate and vanishing stop mixing, mt̃,min is only slightly smaller for mh � 93

GeV than for mh ≥ 114.4 GeV. Assuming mt = 173 GeV and tanβ = 50, the difference is only

about 15 GeV for Xt = −mt̃ and 70 GeV for Xt = 0. We expected the values for mt̃,min to be

so similar from the discussion in Section 2.2.2.

For moderate tanβ, mt̃,min can be substantially smaller for mh � 93 GeV than for mh ≥

114.4 GeV. This is true in particular for the no-mixing and intermediate-mixing cases, with
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the difference being more pronounced for smaller values of mt. For example, the maximum

difference between mt̃,min in the two scenarios is about 600 GeV for tanβ = 12.5 if there is no

mixing and mt = 173 GeV.

As tan β decreases further, however, mt̃,min for mh � 93 GeV rises very steeply, and becomes

larger than for mh ≥ 114.4 GeV.

Understanding this behavior of mt̃,min as a function of tanβ requires an understanding of the

importance of the constraints cos2(β−α) ≥ 0.8 and mH ≥ 114.4 GeV. To this end, we compare

mt̃,min versus tan β for the case that the constraint on mH is ignored, for the case that both

constraints are ignored, and for the case consistent with the LEP bounds that includes both

constraints. We again make the comparison for various amounts of mixing in the stop sector.

Fig. 2.13 shows the results for no mixing, Fig. 2.14 for intermediate mixing, and Fig. 2.15 for

natural maximal mixing. Each of these figures has three lines. The solid line shows the results

which are consistent with the LEP bounds, i.e. it includes the two constraints cos2(β−α) ≥ 0.8

and mH ≥ 114.4 GeV, in addition to requiring mh � 93 GeV. The dashed line, on the other

hand, does not include the constraint on mH , but does require cos2(β − α) ≥ 0.8 and mh � 93

GeV. The dash-dot line only requires mh � 93 GeV, and ignores the constraints on cos2(β −α)

and mH .

As expected, both constraints from LEP in general increase mt̃,min. The constraint cos2(β−

α) ≥ 0.8 is more important as tan β becomes smaller, but less important as tan β gets larger. The

constraint mH ≥ 114.4 GeV, however, is more important for larger tanβ (if stop mixing is not

too large), but is less important as tanβ becomes smaller. We now explain these observations.

If the only condition is mh � 93 GeV, the theory tends to be in the Higgs decoupling limit

where cos2(β − α) → 0. The reason for this is that for a given set of parameters, including

a given value of mt̃, mh is maximized in the decoupling limit. (This is also the reason why

ignoring both constraints is in general equivalent to ignoring only the constraint cos2(β −α) ≥

0.8 but keeping mH ≥ 114.4 GeV as a constraint.) The constraint cos2(β − α) ≥ 0.8, however,

forces all the MSSM Higgs masses to be quite small. In particular, mA is forced to be relatively
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small and degenerate with mh, so that larger mt̃ are required to obtain the same value for mh.2

Moreover, the maximum value reached by cos2(β − α) decreases as tan β decreases. Larger

radiative corrections, in particular larger values of mt̃ or more stop mixing, can increase the

maximum value of cos2(β − α). However, if tanβ decreases too far, exponentially larger values

of mt̃ are required to allow cos2(β − α) to be greater than 0.8.

For a given set of parameters, mh in general decreases as tan β decreases. This is not the

case for mH , which in general decreases as tan β increases. This explains why the constraint on

mH is more important for larger values of tanβ. In the decoupling limit, mH is approximately

degenerate with mA, and larger values of mt̃ do not affect mH much. In the non-decoupling

limit, however, larger values of mt̃ can increase mH . In fact, if we define mmax
h to be equal to

mh in the decoupling limit, then mH � mmax
h for large tanβ and cos2(β −α) � 1. This may be

explained with the formula

m2
h sin2(β − α) + m2

H cos2(β − α) = (mmax
h )2, (2.6)

valid for large tanβ [32, 33, 34, 35], and explains why larger mt̃ increases the value of mH in,

or near, the non-decoupling region (see also Section 2.2.2).

2The results for mA for the case consistent with the LEP results (which includes both constraints) are mA ∈
[96.1 GeV, 99.5 GeV] for natural maximal mixing, mA ∈ [94.3 GeV, 97.7 GeV] for intermediate mixing, and
mA ∈ [95.1 GeV, 97.7 GeV] for no mixing. When the constraint on mH is ignored, mA lies roughly in the same
range. Note that from the pair-production channel these values of mh + mA give upper bounds on cos2(β − α)
consistent with cos2(β −α) ≥ 0.8, depending on what one assumes for the Higgs decay branching ratios, see [1].
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Figure 2.9: Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh � 93 GeV, mH ≥ 114.4 GeV,
and cos2(β − α) ≥ 0.8, as a function of tanβ for stop mixing Xt/mt̃ = 0,±1,±2. All squark,
slepton, and gaugino soft mass parameters are equal to the stop soft masses, μ = 200 GeV,
mt = 173 GeV, and all soft trilinear couplings are equal to At = Xt + μ cot β. This figure may
be compared with Fig. 2.1.
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Figure 2.10: Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh � 93 GeV, mH ≥ 114.4
GeV, and cos2(β − α) ≥ 0.8, as a function of tanβ for vanishing stop mixing (Xt/mt̃ = 0) for
a top quark mass of mt = 168, 173, 178 GeV. Other parameters are given as in Fig. 2.9. This
figure may be compared with Fig. 2.3.
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Figure 2.11: Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh � 93 GeV, mH ≥ 114.4 GeV,
and cos2(β − α) ≥ 0.8, as a function of tanβ for intermediate stop mixing (Xt/mt̃ = −1) for
a top quark mass of mt = 168, 173, 178 GeV. Other parameters are given as in Fig. 2.9. This
figure may be compared with Fig. 2.4.
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Figure 2.12: Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, for mh � 93 GeV, mH ≥ 114.4 GeV,
and cos2(β − α) ≥ 0.8, as a function of tanβ for natural maximal stop mixing (Xt/mt̃ = −2)
for a top quark mass of mt = 168, 173, 178 GeV. Other parameters are given as in Fig. 2.9. This
figure may be compared with Fig. 2.5.



36

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

1600

1800

2000

mh ≈ 93 GeV, mH > 114.4 GeV, cos2(β−α) > 0.8

mh ≈ 93 GeV, cos2(β−α) > 0.8

mh ≈ 93 GeV

tanβ

m
 t (G

eV
)

Xt = 0
mt = 173 GeV 

~

Figure 2.13: Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, as a function of tanβ, for no
stop mixing (Xt/mt̃ = 0). The solid line shows the minimum stop soft masses for mh � 93
GeV, mH ≥ 114.4 GeV, and cos2(β − α) ≥ 0.8, consistent with the LEP Higgs bounds. The
dashed and dash-dot lines are not consistent with the LEP bounds and used for comparison.
The dashed line shows the minimum soft masses for mh � 93 GeV and cos2(β − α) ≥ 0.8 and
without a constraint on mH . The dash-dot line shows the minimum soft masses for mh � 93
GeV and without constraints on mH and cos2(β−α). Other parameters are given as in Fig. 2.9.
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Figure 2.14: Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, as a function of tanβ, for inter-
mediate stop mixing (Xt/mt̃ = −1). The other parameters and the different lines are as for
Fig. 2.13.
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Figure 2.15: Minimum stop soft masses, mt̃ ≡ mt̃L
= mt̃R

, as a function of tanβ, for natural
maximal stop mixing (Xt/mt̃ = −2). The other parameters and the different lines are as for
Fig. 2.13.

2.4 Implications of new physics constraints for the lower bounds on

the stop masses

In Section 2.3, we presented lower bounds on the stop soft masses that are consistent with

the LEP Higgs bounds (we again denote these bounds by mt̃,min). In this section, we consider

additional constraints from the electroweak S- and T -parameter and the decays B → Xsγ and

Bs → μ+μ−, which also constrain the Higgs and/or stop sector. Some of these constraints may

provide more stringent lower bounds on the stop masses than those provided by the constraints

from LEP on the Higgs sector, or they might indirectly constrain the Higgs sector more tightly

than the LEP results.
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2.4.1 Constraints from Electroweak Precision Measurements: T- and

S-parameters

The oblique parameters T and S parameterize new physics contributions to electroweak vacuum-

polarization diagrams. They give a good parametrization if these diagrams are the dominant

corrections to electroweak precision observables [36]. Strong constraints on these parameters

already exist [11, 37].

The MSSM includes new SU(2)L doublets that contribute to the T - and S-parameter (which

are defined to be zero from SM contributions alone). The T -parameter is a measure of how

strongly the vector part of SU(2)L is broken, and is non-zero, for example, for heavy, non-

degenerate multiplets of fermions or scalars. The S-parameter is a measure of how strongly the

axial part of SU(2)L is broken, and is non-zero, for example, for heavy, degenerate multiplets

of chiral fermions [11].

The main contribution in the MSSM to the T -parameter in general comes from the stop /

sbottom doublet [38]. In particular, large mixing in the stop and/or sbottom sectors can lead to

large differences amongst the two stop and two sbottom masses, which gives a large contribution

to the T -parameter. Moreover, for a given set of parameters and fixed Xt/mt̃, decreasing mt̃

tends to increase the value of the T -parameter. For these reasons the T -parameter could provide

more stringent lower bounds on mt̃ than those coming from the LEP Higgs bounds when the

mixing in the stop sector is large, since then the stop and sbottom masses are split by large

amounts and the LEP Higgs constraints allow for small mt̃.

We estimate the T -parameter with version 2.2.7 of FeynHiggs. This program calculates δρ

which measures the deviation of the electroweak ρ-parameter from unity. The T -parameter and

δρ are related by δρ = αT , where α is the QED coupling. All the results presented in this paper

are consistent with the 2σ constraint on the upper bound of δρ, namely δρ ≤ 0.0026 [11]. The

T - and S-parameters are correlated, so that this bound corresponds to the 2σ bound on T for

S = 0.
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We find that the 2σ constraint on δρ does not provide an additional constraint on the stop

masses in essentially all the analyses presented in this paper.

For (natural) maximal stop mixing with mt̃ = mt̃,min, the value of δρ is not consistent with

its 1σ bound, although it is consistent with its 2σ bound (for intermediate and less mixing,

it is consistent also with the 1σ bound). For example, mt̃,min = 283 GeV for large tanβ and

natural maximal stop mixing (Xt = −2mt̃) in order to obtain mh ≥ 114.4 GeV in the Higgs

decoupling limit (this assumes all squark, slepton, and gaugino soft mass parameters are equal

to mt̃, μ = 200 GeV, mt = 173 GeV, and all the soft trilinear couplings are equal to At). This

gives a value of δρ = 0.0014. Increasing mt̃ while keeping all other parameters fixed decreases

δρ, and for mt̃ = 420 GeV, δρ is consistent with its 1σ upper bound of 0.0009 found in the

latest PDG review [11]. With mt̃ = 530 GeV, δρ is consistent with its 1σ upper bound of 0.0006

found in the previous PDG review [39].3

The S-parameter in the MSSM is in general not very important [11]. We estimated it using

the formulae in [40]. Including contributions from all squarks and sleptons, the S-parameter

does not reach a value higher than about 0.05 for mt̃ = mt̃,min in those cases that have large stop

mixing, with the main contribution coming from the stop/sbottom doublet. For intermediate

and vanishing mixing it is negligible. The constraint on S depends on T , but the 1σ upper

bound on S is about 0.07 for T = 0, whereas a positive value for T allows for larger values of

S. Thus the S-parameter is a weaker constraint on the stop masses than the LEP Higgs sector

bounds.

2.4.2 Constraints from B → Xsγ

New physics can contribute at one loop to the decay B → Xsγ, and can therefore be just as

important as the SM contribution mediated by a W -boson and the top quark. This makes the

3As this paper was being completed, we noticed that version 2.5.1 of FeynHiggs now uses sbottom masses
with the SM and MSSM QCD corrections added when calculating δρ. This can give different values of δρ,
especially for small sbottom masses, and it makes δρ more sensitive to μ. The results quoted in this paragraph
change as follows. For mt̃ = 283 GeV, δρ = 0.0011. Increasing mt̃ to 310 GeV gives δρ = 0.0009, and mt̃ =
380 GeV gives δρ = 0.0006. Qualitatively the conclusions presented in this section are unaffected. We thank S.
Heinemeyer for clarifying the difference between the older and newer versions.
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decay B → Xsγ an important tool in constraining new physics.

The SM contribution to the branching ratio B(B → Xsγ) is predicted to be

B(B → Xsγ)SM � (2.98 ± 0.26) × 10−4, (2.7)

see [41], whereas the experimental bound is given by

B(B → Xsγ)expt � (3.55 ± 0.26) × 10−4, (2.8)

see [42]. This allows, but does not require, new physics contributions [41].

There are several contributions to the decay B → Xsγ from the additional particles in the

MSSM, which we now discuss.

Within the Higgs sector, the charged Higgs (H+) contributes at one loop to the decay B →

Xsγ. The contribution is larger for smaller mH+ . If one only considers this contribution, as one

would in the two-Higgs-doublet model of type II (2HDM (II)), then this sets a rather stringent

lower bound on mH+ . The bound of course depends on the SM prediction and experimental

measurement of B(B → Xsγ), and in the past used to be about mH+ � 350 GeV, see [43], [44]

and references therein. The latest results quoted in equations (2.7) and (2.8) are expected to

change this bound slightly, but we do not explore this in more detail [41]. It is clear, however,

that this bound is much stronger than the bound coming from a direct search of H+ at LEP

which is given by mH+ � 78.6 GeV [45]. Note that the charged Higgs contribution is mostly

independent of tanβ; only for very small values of tanβ does it increase substantially.

The charged Higgs, thus, does not contribute much to B → Xsγ in the decoupling limit

for large mA, since here mH+ is large. In the region mh � 93 GeV with cos2(β − α) ≥ 0.8

and mH ≥ 114.4 GeV, however, mH+ � 125 GeV. The contribution from the charged Higgs

to B(B → Xsγ) is then roughly 7.7 × 10−4, more than a factor of two larger than the SM

contribution. We estimated this using version 2.5.1 of the program FeynHiggs,4 in the limit of

4Note that FeynHiggs gives B(B → Xsγ)SM � 3.63 × 10−4 which is larger than the latest value quoted in
equation (2.7). This is not of qualitative importance here.
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large sparticle masses. Therefore, the constraint on B(B → Xsγ) rules out this region of the

Higgs parameter space if one only considers the charged Higgs contribution.

There are, however, also chargino, neutralino and gluino contributions to B → Xsγ within

the MSSM with minimal flavor violation (MFV).5 NLO contributions can be very important

and need to be included in order to get an accurate estimate of B(B → Xsγ) [44]. The

contribution from a chargino together with a stop in the loop is often the most important one.

The chargino-stop contribution can become very large for small chargino and small stop masses,

and it is proportional to tanβ in the amplitude. However, it vanishes in the limit of large stop

or chargino masses. From studying the mSUGRA model, it is known that usually the chargino-

stop contribution to the branching ratio interferes constructively with the SM and the charged

Higgs contribution if the sign of μAt is positive, whereas it interferes destructively if the sign

of μAt is negative [44].

This means that the region mh � 93 GeV is not necessarily ruled out, since a light stop

and a light chargino could cancel the charged Higgs contribution [10, 47, 48]. Using version

2.5.1 of FeynHiggs to calculate the branching ratio of B → Xsγ, we verify this claim in the

case of intermediate and larger stop mixing, at least for tanβ not too small. We find that the

contribution to B → Xsγ from the chargino-stop loop can easily be large enough to interfere

destructively with the charged Higgs contribution and thus give an experimentally allowed

value of B(B → Xsγ). Moreover, in some cases for sizeable stop mixing, the chargino-stop

contribution can be made much larger than the SM and charged Higgs contribution. Thus, an

experimentally consistent value of B(B → Xsγ) can also often be obtained by finding a chargino

mass that gives a chargino-stop amplitude equal to the negative of the charged Higgs amplitude

plus the negative of twice the SM amplitude. We note that an experimentally consistent value

for B(B → Xsγ) can always be found without requiring the stop masses to be larger than mt̃,min,

5There are other possibilities for flavor violation within the MSSM, and therefore additional contributions to
B → Xsγ are possible. The additional flavor violation is small, however, assuming that the only source of flavor
violation comes from the mixing among the squarks and assuming that this is of the same form as the mixing
among the quarks, i.e. described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This assumption is usually
called minimal flavor violation (MFV). The MSSM with general flavor violation allows for more contributions
to the decay B → Xsγ, which can sometimes weaken constraints on parameters in the MSSM with MFV [46].
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but by adjusting the chargino mass alone.

If tanβ is small enough then mt̃,min becomes exponentially large, and the constraint on

B(B → Xsγ) rules out the mh � 93 GeV region since the chargino-stop contribution cannot

cancel the charged Higgs contribution.

In the case of vanishing stop mixing with degenerate stop soft masses, mt̃,min is so large

that the chargino-stop contribution to B → Xsγ is too small to cancel the charged Higgs

contribution. However, even in the no-mixing case one of the stops can be chosen to be light by

setting one of the stop soft masses to a small value. In this case the other stop soft mass needs

to be very large in order for the radiative corrections to the Higgs sector to be large enough

to satisfy the LEP bounds. One light stop, however, is able to give a sizeable chargino-stop

contribution that can cancel the charged Higgs contribution. For example, we find mt̃,min � 1100

GeV for mh � 93 GeV, cos2(β−α) ≥ 0.8 and mH ≥ 114.4 GeV, with tanβ = 20, μ = 200 GeV,

mA � 96 GeV, and mt = 173 GeV (this assumes that all squark, slepton, and gaugino soft

masses are equal to mt̃, and all the soft trilinear couplings are equal to At). Since the charged

Higgs then essentially provides the only contribution to B → Xsγ beyond that of the SM itself,

the branching ratio is again about 7.7×10−4. However, choosing, for example, mt̃L
= 350 GeV,

mt̃R
= 2000 GeV, all the gaugino soft masses equal to mt̃L

, and keeping all other squark and

slepton soft masses equal to 1100 GeV, gives a consistent branching ratio of 3.6 × 10−4.

In the Higgs decoupling limit, for which mh ≥ 114.4 GeV, the charged Higgs contribution

vanishes. Since mt̃,min is large for very small tanβ or vanishing stop mixing, the chargino-stop

contribution to B(B → Xsγ) is small, and there is no inconsistency with the experimental

bound. On the other hand, mt̃,min can be so low for appreciable amounts of mixing (and if

tan β is not too small) that the chargino-stop contribution can easily be too large. In this

case, however, we can find a chargino mass that gives a branching ratio of B → Xsγ within

the experimentally allowed region, and again we find no further constraint on mt̃. We can

achieve this by setting the chargino mass to a very large value, in which case the chargino-stop

contribution becomes vanishingly small. For negative μAt, however, the chargino-stop loop
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Figure 2.16: B(B → Xsγ) versus μ with stop soft masses mt̃ ≡ mt̃L
= mt̃R

= 283 GeV,
and natural maximal stop mixing (Xt/mt̃ = −2). All squark, slepton, and gaugino soft mass
parameters are equal to the stop soft masses, mt = 173 GeV, mA = 1000 GeV, tanβ = 20, and
all the soft trilinear couplings are equal to At = Xt + μ cot β.

interferes destructively with the SM contribution so that we can also adjust the chargino mass

until the chargino-stop amplitude is equal to the negative of twice the SM amplitude. This is

what happens in the case depicted in Fig. 2.16, where we show the branching ratio of B → Xsγ

as a function of μ. In this figure, all squark, slepton, and gaugino soft masses are equal to the

stop soft masses, which are given by mt̃,min = 283 GeV, mt = 173 GeV, tan β = 20, Xt = −2mt̃,

and all the soft trilinear couplings are equal to the stop soft trilinear coupling, At. We find an

experimentally allowed value for B(B → Xsγ) in this case by choosing μ � 330 GeV. We note

that μ has to be chosen within about a 30 GeV window for B(B → Xsγ) to fall within the 3σ

allowed region.
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2.4.3 Constraints from Bs → μ+μ−

The decay Bs → μ+μ− has not yet been observed. The SM contribution to this decay is

dominated by penguin diagrams involving the Z-boson and box diagrams involving the W -

bosons [49]. (The SM Higgs does contribute to the decay Bs → μ+μ− within the SM, but

relative to the dominant contribution it is suppressed by mμmb,s/m2
W , where mμ, mb and ms

are the masses of the muon, b-quark and s-quark, respectively, and mW is the mass of the

W -bosons [50].) The SM contribution to the branching ratio is quite small since it is fourth

order in the weak interactions. It is predicted to be

B(Bs → μ+μ−)SM = (3.42 ± 0.54) × 10−9 (2.9)

(see [51] and references therein). This is well below the current experimental bound from the

CDF experiment at the Tevatron given by

B(Bs → μ+μ−)expt < 1.5 × 10−7 (2.10)

at the 90% confidence level [51].

There are several contributions to the decay Bs → μ+μ− from the additional particles in

the MSSM, which we now discuss.

The contributions to the decay Bs → μ+μ− coming only from the MSSM Higgs sector are

the same as those found in the 2HDM (II). They can be enhanced by two powers of tanβ in

the amplitude, which can compensate for the suppression by the muon mass. One can set an

approximate bound on mH+ assuming this is the only contribution within the MSSM. This

bound depends on tanβ, but for tanβ = 50 one finds an experimentally allowed value for

B(Bs → μ+μ−) if mH+ � 35 GeV (see for example [52, 53]). As we discussed in Section 2.4.2,

within the 2HDM (II) the constraint on B(B → Xsγ) alone forces mH+ to be larger than about

350 GeV. Such a large value for mH+ guarantees that B(Bs → μ+μ−) is roughly of the same

size as the SM result even for quite large tanβ, so that it alone provides no further constraint
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on the parameter space within the 2HDM (II) [54].

In the MSSM there are, however, further contributions to the decay Bs → μ+μ− coming from

box and penguin diagrams that involve charginos and up-type squarks [53, 54, 55, 56, 57, 58, 59].

The penguin diagrams also contain the neutral Goldstone and Higgs bosons. The self-energy

MSSM Higgs penguin diagrams give the leading contribution to B(Bs → μ+μ−) for non-

negligible mixing in the stop sector. (In an effective Lagrangian approach these diagrams may

be viewed as inducing a non-holomorphic coupling between down-type quarks and the up-type

Higgs field.) For large tanβ, this leading contribution is roughly proportional to A2
t tan6 β/m4

A,

and can thus be significantly larger than the contributions from the Higgs sector alone. More-

over, this contribution becomes small for very small μ. This contribution does not vanish for

degenerate squark masses, nor in the limit of large sparticle masses. Thus, although the branch-

ing ratio depends on the size of the stop masses, it is much more sensitive to the size of the

Higgs masses, tan β and the amount of stop mixing. A light Higgs sector can give a branching

ratio of Bs → μ+μ− that is more than three orders of magnitude above the SM prediction and

thus well ruled out, especially if the stop mixing and tanβ are large. Moreover, this is the

case even for large sparticle masses. Furthermore, such large values for B(Bs → μ+μ−) can

be reached within the MSSM without violating any other constraints, including, for example,

those on B(B → Xsγ) [54, 60].

There are further contributions to B(Bs → μ+μ−) which also have a tan6 β/m4
A behavior,

even assuming that the CKM matrix is the only source of flavor violation in the squark sector.

These appear if the left-handed up-type soft squark masses of the three generations are not

all equal, so that the left-handed down-type soft squark mass-squared matrix has off-diagonal

terms. These lead to contributions from loops involving a neutralino or a gluino and a down-

type squark [53, 55, 58, 59, 60]. Cancelations between the chargino and gluino contributions

can occur and the neutralino contribution, although usually smaller, can then be important

(see, for example, [60]).

We estimated the values for B(Bs → μ+μ−) with the program MicrOMEGA 1.3 [61, 62] and
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the subroutine IsaBMM from IsaTools/IsaJet [58, 63]. We find that the branching ratio of

Bs → μ+μ− is well within experimental limits for the region mh � 93 GeV, mH ≥ 114.4 GeV

and cos2(β − α) ≥ 0.8 in the case of no (or very little) stop mixing and degenerate squark soft

masses. For intermediate mixing with degenerate squark masses near mt̃,min, B(Bs → μ+μ−) is

consistent with experimental limits for tanβ � 20 − 25. For natural maximal mixing, B(Bs →

μ+μ−) is consistent with experimental limits for tanβ � 15. For larger tanβ, as well as for

non-degenerate squark soft masses, a scan over all relevant MSSM parameters is necessary

in order to see whether we can find an experimentally consistent value of B(Bs → μ+μ−)

for such a light Higgs sector. However, for large stop mixing, it will become increasingly

difficult to find a parameter set that gives a branching ratio consistent with experiments as

tan β is increased. Of course, this assumes that there are no fortuitous cancelations between

the different contributions, and also that there are no other flavor-violating contributions such as

from R-parity violating couplings. A scan over the relevant MSSM parameters, even assuming

MFV, is beyond the scope of this paper. The reader is referred to the references found in the

previous two paragraphs, and especially [48], bearing in mind that the current CDF bound on

B(Bs → μ+μ−), equation (2.10), is stronger than the one used in these references.

In the Higgs decoupling limit, the dominant flavor-violating effects involving loops of neutral

Higgs bosons decouple, and these large contributions to Bs → μ+μ− become negligible. Using

MicrOMEGA 1.3, one may explicitly check that the decay Bs → μ+μ− does not provide stronger

constraints on the stop masses than do the LEP Higgs bounds in the decoupling limit found in

Section 2.3.1.

2.5 Implications for Electroweak Symmetry Breaking

In Section 2.3, we presented lower bounds on the stop masses consistent with the LEP Higgs

bounds, and in Section 2.4, we discussed whether the electroweak S- and T -parameter and the

decays B → Xsγ and Bs → μ+μ− indirectly put further constraints on the Higgs and/or stop

sector. In this section, we look at the implications for electroweak symmetry breaking.
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The mechanism of radiative electroweak symmetry breaking arises rather naturally in su-

persymmetric extensions of the Standard Model [64, 65, 66]. Because of the large top Yukawa

coupling, quantum fluctuations of the stop squarks significantly modify the up-type Higgs po-

tential, as studied numerically for the physical Higgs boson mass in the previous sections. The

leading effect, however, is a tachyonic contribution to the up-type Higgs soft supersymmetry

breaking Lagrangian mass. Over much of parameter space this tachyonic contribution is suf-

ficient to result in a stop squark quantum fluctuation-induced phase transition for the Higgs

fields, which is generally referred to as radiative electroweak symmetry breaking.

The leading quantum contribution to the up-type Higgs soft mass comes from renormal-

ization group evolution below the supersymmetry breaking messenger scale. The one-loop

β-function for the up-type Higgs soft mass-squared is, neglecting effects proportional to gauge

couplings,

16π2βm2
Hu

� 6λ2
t (m

2
Hu

+ m2
t̃L

+ m2
t̃R

+ |At|2) (2.11)

The light Higgs mass bounds require rather large stop masses and/or stop mixing, where the

stop soft trilinear coupling is related to the mixing parameter by At = Xt + μ cot β. This

implies that the stop contributions to the β-function in (2.11) proportional to the combination

(m2
t̃L

+m2
t̃R

+ |At|2) are also sizeable, at least at the low scale. Moreover, for generic parameters

this combination remains sizeable over the entire renormalization group trajectory up to the

messenger scale. For generic messenger scale values of the up-type Higgs soft mass squared,

m2
Hu

, the large value of the combination (m2
t̃L

+m2
t̃R

+ |At|2), along with the sizeable coefficient

in the β-function (2.11), then imply that m2
Hu

evolves relatively rapidly under renormalization

group evolution.

This evolution is towards tachyonic values of m2
Hu

which reduce the magnitude of the β-

function (2.11). For running into the deep infrared, the up-type Higgs mass squared would be

driven to values near the zero of the β-function (2.11) for which
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Xt/mt̃ mt = 168 GeV mt = 173 GeV mt = 178 GeV
0 3630 1780 1240
-1 1460 1000 770
-2 680 690 710

Table 2.1: Minimum allowed values of the combination (m2
t̃L

+ m2
t̃R

+ |At|2)1/2 consistent with
a physical Higgs boson mass of mh ≥ 114.4 GeV in the Higgs decoupling limit for large tanβ,
taking into account only the LEP Higgs sector bounds. The minimum allowed values increase
with decreasing tan β.

m2
Hu

� −(m2
t̃L

+ m2
t̃R

+ |At|2). (2.12)

Although this relation is not strictly obtained with finite running, the up-type Higgs mass

squared can approach this value for very high messenger scale. In Table 2.1, we show the

minimum allowed values of the combination (m2
t̃L

+ m2
t̃R

+ |At|2)1/2 deduced from the results

of section 2.3.1 consistent with mh ≥ 114.4 GeV in the Higgs decoupling limit for large tanβ.

The minimum allowed values increase with decreasing tan β.

The full Lagrangian mass squared for the up-type Higgs is a sum of the soft mass squared

and square of the superpotential Higgs mass, m2 = m2
Hu

+ |μ|2. To leading order in 1/ tan2 β,

and ignoring the finite quantum corrections to the Higgs potential which are not of qualitative

importance for the present discussion, this is equal to minus half the Z-boson mass squared in

the ground state with broken electroweak symmetry

1
2
m2

Z � −(m2
Hu

+ |μ|2). (2.13)

For m2
Hu

near the zero of its β-function given by (2.12), the bounds given in Table 2.1 imply that

obtaining the observed value of the Z-boson mass, mZ � 91 GeV, requires a rather sensitive

cancelation between the up-type Higgs soft mass and μ-parameter. The numerical magnitude

of this tuning (which has come to be known as the supersymmetric little hierarchy problem) is

apparent in the numerical data in Table 2.1, at least for regions of parameter space which are

driven under renormalization group flow to near the zero of the β-function (2.11).
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The minimum allowed value of the combination (m2
t̃L

+m2
t̃R

+|At|2) for a given lower limit on

the Higgs mass decreases with increasing stop mixing. This may be understood from the leading

expression for the quantum corrected Higgs mass given in equation (2.5). For no stop mixing,

Xt = 0, the leading correction to the Higgs mass squared comes only from renormalization group

running of the Higgs quartic coupling below the stop mass scale, and is therefore proportional

to ln(m2
t̃
/m2

t ). A linear increase in the Higgs mass squared in this case requires an exponential

increase in mt̃. However, the stop mixing correction to the Higgs mass squared with Xt �= 0

comes from a finite threshold correction to the Higgs quartic coupling at the stop mass scale and

is independent of mt̃ for fixed Xt/mt̃. In this case a linear increase in the Higgs mass squared

only requires a linear increase in (Xt/mt̃)
2. So increasing stop mixing allows exponentially

lighter stop masses in order to obtain a given Higgs mass. While such a decrease clearly reduces

the soft stop mass contributions to βm2
Hu

[20, 67] this is partially offset by an increase in the

mixing contribution from the stop trilinear coupling. From the data in Table 2.1, it is clear that

large stop mixing can decrease the magnitude of βm2
Hu

(2.11) by up to a factor of a few depending

on the top mass. However, the magnitude of the total stop contribution including mixing is

still quite sizeable for a Higgs mass bound of mh ≥ 114.4 GeV. So large stop mixing alone

cannot appreciably ameliorate the tuning of supersymmetric electroweak symmetry breaking or

satisfactorily solve the supersymmetric little hierarchy problem.6

This conclusion essentially remains unchanged for a physical Higgs boson mass of mh � 93

GeV with cos2(β−α) ≥ 0.8 and mH ≥ 114.4 GeV, as seen from the numerical results in Section

2.3.3. In general, one should bear in mind that indirect constraints on new physics, especially

from B(Bs → μ+μ−), severely restrict the allowed MSSM parameter space for mh � 93 GeV

(see Section 2.4). However, for less than maximal stop mixing, the stop masses can be somewhat

smaller for moderate tan β near the Higgs non-decoupling limit than in the Higgs decoupling

6Although this conclusion is valid for a generic choice of messenger scale values for the sparticle masses, it
is possible to reduce the amount of tuning coming from the running of m2

Hu
by a more judicious choice. One

example is to choose negative stop masses squared at the high scale which allows the contribution to the tuning
from the running of m2

Hu
to be arbitrarily small, as well allow for the (natural) maximal mixing scenario to be

radiatively generated at the low scale [68].
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limit (see also [10]). The combination (m2
t̃L

+m2
t̃R

+ |At|2)1/2 is in fact the smallest in the Higgs

non-decoupling region near intermediate values for the stop mixing and for tanβ near 10. It

reaches as low as about 650 GeV for mt = 178 GeV, tanβ = 10.5, Xt = −mt̃, and gaugino

masses equal to mt̃. It can be decreased slightly further by setting the bino and wino masses

to smaller values. (For maximal stop mixing, the combination is actually larger since here the

Tevatron bound on the lighter stop mass forces the stop soft masses to be larger than required

from the LEP Higgs bounds alone.) The combination always remains sizeable though, and thus

the tuning of electroweak symmetry breaking cannot be ameliorated by much in the mh � 93

GeV region.

2.6 Conclusions

The dominant radiative corrections to the tree-level CP-even Higgs mass matrix, which deter-

mines mh and mH , come from loops involving the top quark and stop squarks, with larger stop

masses implying larger radiative corrections. In this paper, we presented lower bounds on the

stop masses consistent with the LEP Higgs bounds in two different regions in the MSSM Higgs

parameter space. The one region is the Higgs decoupling limit, in which the bound on the mass

of the lighter Higgs is equal to the bound on the SM Higgs, mh ≥ 114.4 GeV. The other region

is near the Higgs “non-decoupling” limit with mh � 93 GeV in which the Higgs sector is re-

quired to be light. In the latter region, there are two additional constraints. One is on the mass

of the heavier Higgs, which now behaves like the SM Higgs, i.e. mH � 114.4 GeV. The other

constraint is on size of the coupling of the lighter Higgs to two Z bosons which is controlled by

the parameter sin2(β − α) and here needs to be less than about 0.2 (i.e. cos2(β − α) � 0.8) for

the lighter Higgs to have escaped detection at LEP. We denote the lower bounds on the stop

masses consistent with the LEP Higgs bounds by mt̃,min.

We presented mt̃,min as a function of tanβ in both these regions in the Higgs parameter space

for a variety of MSSM parameter choices. In particular, we further elucidated the importance

of the top mass and stop mixing, and investigated numerically how larger top masses and more
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stop mixing allow for substantially smaller values of mt̃,min. We also showed numerically how

larger gaugino masses and larger values of μ increase mt̃,min. Moreover, we saw how much mt̃,min

increases if μ is negative compared to μ positive if both tanβ and the magnitude of μ are large.

In the non-decoupling region, we discussed how the constraints on cos2(β −α) and on mH lead

to increased values for mt̃,min.

We also considered how mt̃,min changes as a function of mh. Since At and M3 most naturally

have the opposite sign at low scales due to renormalization group running, a negative value of

At is more natural in a convention where M3 is positive. For negative At and stop masses less

than a few TeV, the upper bound of mh in the MSSM is around 131 GeV.

We demonstrated that the two regions in the Higgs parameter space have roughly the same

mt̃,min if tanβ is large. For moderate values of tanβ and non-maximal stop mixing, mt̃,min is

larger in the Higgs decoupling region than in the Higgs non-decoupling region. As tanβ de-

creases, however, mt̃,min is larger in the Higgs non-decoupling region than in the Higgs decoupling

region.

We also considered additional constraints from the electroweak S- and T -parameter and the

decays B → Xsγ and Bs → μ+μ−, which also constrain the Higgs and/or stop sector.

The main contribution to the T -parameter within the MSSM usually comes from the stop /

sbottom doublet and, for a given set of parameters, is larger for larger stop (and sbottom) mixing

as well as for smaller stop and sbottom masses. We found that the value of the T -parameter is

well within its 2σ bound for stop masses equal to mt̃,min. In fact, only for maximal stop mixing

do we find small enough values for mt̃,min that give a contribution to the T -parameter that does

not also fall within its 1σ bound. For such large stop mixing one must then increase the stop

masses by a small amount above mt̃,min to also satisfy the 1σ bound on the T -parameter.

We found that the contribution to the S-parameter is not large, and that the S-parameter

therefore does not provide an additional constraint on the stop masses.

The indirect constraint on B(B → Xsγ) in many cases does not provide an additional

constraint on the stop masses. In the Higgs non-decoupling region for mh � 93 GeV, the Higgs
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sector is required to be light, and the charged Higgs contribution to B → Xsγ is large. The

charged Higgs contribution can usually be canceled by the chargino-stop contribution through

a judicious choice of the chargino mass. However, for vanishing stop mixing and assuming

degenerate stop soft masses, mt̃,min is so large that the chargino-stop contribution is too small

to cancel the charged Higgs contribution. For vanishing stop mixing, we therefore require non-

degenerate stop soft masses with one light stop so that the chargino-stop contribution can be

large enough to give an experimentally consistent value for B(B → Xsγ) (the other stop must

then be very heavy so that the LEP Higgs constraints are satisfied). In the Higgs decoupling

limit, the charged Higgs contribution vanishes. We find no further constraint on the stop

masses. Even for large stop mixing, for which mt̃,min can be very small, one can always obtain

an experimentally consistent value for B(B → Xsγ) by adjusting the chargino mass.

The main contributions to the flavor-violating decay Bs → μ+μ− come from flavor violating

Higgs couplings, and these decouple in the Higgs decoupling limit. Thus, the indirect constraint

on B(Bs → μ+μ−) is only important in the Higgs non-decoupling region. In this region, however,

it is able to severely restrict the allowed parameter space, since the flavor violation does not

decouple in the limit of large sparticle masses. In fact, the region for such a light Higgs sector is

ruled out if stop mixing and tanβ are large, unless there are fortuitous cancelations amongst the

various contributions, or there are additional flavor-violating contributions from, for example,

R-parity violating couplings that cancel these contributions.

We note that we did not consider the constraint on the anomalous magnetic moment of the

muon, (g − 2)μ, since it decouples in the limit of large sneutrino and smuon masses. It alone is

thus unable to directly provide a further constraint on the Higgs sector or on the stop masses.

Lastly, we discussed the implications of our numerical analysis for electroweak symmetry

breaking. Large stop mixing generically decreases the tuning of supersymmetric electroweak

symmetry breaking, but is unable to do so sufficiently to solve the supersymmetric little hier-

archy problem. Moreover, the tuning can be ameliorated only slightly in the mh � 93 GeV

region compared to the mh ≥ 114.4 GeV region (for intermediate values of the stop mixing
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and moderate values of tanβ), and thus the supersymmetric little hierarchy problem cannot be

satisfactorily solved in either of the two regions.

2.7 Appendix: Mixing in the Two Doublet Higgs Sector

A Higgs sector with electroweak symmetry broken to electromagnetism,

SU(2)L × U(1)Y → U(1)Q, by two SU(2)L doublets, Hu and Hd, with hypercharge Y = ±1

respectively, has two physical scalars, h and H, a pseudoscalar, A, and a charged scalar, H±.

The couplings of the scalar mass eigenstates, h and H, to the gauge bosons are determined by the

associated amplitudes of the neutral components of the gauge eigenstate doublets, H0
u and H0

d .

It is instructive to consider various vectors in the Re(H0
d) − Re(H0

u) plane in order to describe

these couplings and the relationship between the mass and gauge interaction eigenstates.

Re(H0
d
)

Re(H0
u
)

v

Re(H0
u
) − vu

Re(H0
d
) − vd

H‖

H⊥

H

h

β

|α|

β − α

Figure 2.17: Relationship between the Re(Hu) − Re(Hd) and H‖ − H⊥ bases and h − H mass
eigenstates for the two doublet Higgs sector.

Electroweak symmetry is broken by the expectation values 〈Re(H0
u)〉 = vu and 〈Re(H0

d)〉 =

vd. These expectation values define a vector in the Re(H0
d) − Re(H0

u) plane with an angle β

defined by tanβ = vu/vd as indicated in Fig. 2.17. The two physical neutral CP-even scalar

mass eigenstates are fluctuations about the expectation value in this plane and are related by

a rotation to the gauge eigenstates conventionally defined by an angle α as [69]
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⎛⎜⎜⎝ H

h

⎞⎟⎟⎠ =
√

2

⎛⎜⎜⎝ cos α sinα

− sinα cos α

⎞⎟⎟⎠
⎛⎜⎜⎝ Re(H0

d) − vd

Re(H0
u) − vu

⎞⎟⎟⎠ (2.14)

Vectors in the Re(H0
d) − Re(H0

u) plane which are parallel and perpendicular, H‖ and H⊥, to

the expectation value vector may also be defined as indicated in Fig. 2.17

⎛⎜⎜⎝ H⊥

H‖

⎞⎟⎟⎠ =
√

2

⎛⎜⎜⎝ sin β − cos β

cos β sin β

⎞⎟⎟⎠
⎛⎜⎜⎝ Re(H0

d) − vd

Re(H0
u) − vu

⎞⎟⎟⎠ , (2.15)

see also [10]. The physical mass eigenstates are related to these by a rotation⎛⎜⎜⎝ H

h

⎞⎟⎟⎠ =

⎛⎜⎜⎝ sin(β − α) cos(β − α)

− cos(β − α) sin(β − α)

⎞⎟⎟⎠
⎛⎜⎜⎝ H⊥

H‖

⎞⎟⎟⎠ . (2.16)

The neutral Goldstone pseudoscalar boson, G, which is eaten by the Z-boson is by definition

the imaginary part of the linear combination of the components of the neutral Higgs doublets

which are aligned with the expectation value, and the physical pseudoscalar Higgs boson, A, is

the perpendicular combination

A = Im(H⊥)

G = Im(H‖)
. (2.17)

These states are related to the gauge eigenstates through a rotation by the angle β

⎛⎜⎜⎝ A

G

⎞⎟⎟⎠ =
√

2

⎛⎜⎜⎝ − sin β cos β

cos β sin β

⎞⎟⎟⎠
⎛⎜⎜⎝ Im(H0

d)

Im(H0
u)

⎞⎟⎟⎠ . (2.18)

The charged Goldstone bosons, G±, and the charged Higgs mass eigenstates, H±, are defined

similarly as

H± = Im(H±
⊥ )

G± = Im(H±
‖ )

, (2.19)

where H±
⊥ and H±

⊥ are defined in analogy with equation (2.15).
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We may consider Higgs decoupling limits of the two doublet Higgs sector in which mH ,

mA, mH± � mh so that only a single light Higgs doublet remains in the low energy theory.

A particular decoupling limit is one for which the physical mass eigenstate of the light Higgs

doublet is aligned with the expectation value vector so that H‖ is the single Higgs doublet

of the low energy theory and H⊥ contains the heavy mass eigenstates. This is the unique

decoupling limit available to the the tree-level Higgs potential of the MSSM, although other

misaligned decoupling limits may be realized for more general two doublet potentials. In the

aligned decoupling limit h = H‖ with sin(β − α) = 1 and cos(β − α) = 0.

The couplings of physical Higgs bosons to gauge bosons arise from the gauge kinetic terms

of the Higgs fields

(DμHu)∗DμHu + (DμHd)∗DμHd (2.20)

where Dμ = ∂μ + ig′ 12Y Bμ + igT aW a
μ is the covariant derivative including the SU(2)L ×U(1)Y

gauge connections W a
μ and Bμ. A coupling of two gauge bosons to a single physical Higgs boson

arises from (2.20) with a gauge field in each covariant derivative, a physical Higgs boson in one

Higgs field, and an expectation value in the other Higgs field. In terms of the H‖ − H⊥ basis

these couplings are particularly simple. Since it is only H‖ which is parallel to the expectation

value, only this component appears in these couplings

(Dμv)∗DμH‖ + (DμH‖)∗Dμv, (2.21)

where of course Dμv contains only gauge field couplings since ∂μv = 0. In terms of the physical

gauge bosons, the couplings in (2.21) give rise to WWH‖ and ZZH‖ interactions. In terms

of the physical Higgs scalar eigenstates h and H related to H‖ in (2.16) these couplings give

interactions WWh and ZZh proportional to sin(β − α) and interactions WWH and ZZH

proportional to cos(β − α). In the Higgs aligned decoupling limit the latter interactions vanish

since H = H⊥ in this limit with cos(β − α) = 0. Note that there are no interactions of two

gauge bosons with a single charged Higgs boson of the form W±ZH∓, since from (2.19) the
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physical charged Higgs boson resides in H⊥, while from (2.21) these type of interactions arise

only for H‖. This result generalizes to any number of Higgs doublets.

A coupling of a single gauge boson to two physical Higgs bosons arises from (2.20) with a

single gauge field in one of the covariant derivatives, physical Higgs bosons in each Higgs field,

and a derivative acting on one of the Higgs fields

(DμH∗)∂μH + (∂μH)∗DμH (2.22)

where the covariant derivatives Dμ are again understood to only contain gauge fields here. This

subset of couplings represents the Higgs current coupling to a single gauge boson, and therefore

must contain at least one imaginary component of a Higgs field. Now from equations (2.17)

and (2.19) the imaginary components of the Higgs fields appear in the physical mass eigenstates

only through H⊥. So the couplings (2.22) to physical mass eigenstates are contained in

(DμH⊥)∗∂μH⊥ + (∂μH⊥)∗DμH⊥ (2.23)

In terms of the physical Z gauge boson these couplings give rise to ZH⊥H⊥ interactions. In

terms of the physical eigenstates h and H related to H⊥ in (2.16), these couplings give the

interaction ZAH proportional to sin(β − α) and ZAh proportional to cos(β − α). In the

Higgs aligned decoupling limit the latter interaction vanishes since h = H‖ in this limit with

cos(β − α) = 0.

2.8 Appendix: Quasi-Fixed Point for the Stop Trilinear Coupling At

The MSSM has a number of quasi-fixed points for various couplings that make a relation in

the low energy theory between them and other parameters quite natural. These couplings

include the top Yukawa and top trilinear coupling. Consider first the so called Pendleton-Ross

quasi-fixed point for the top Yukawa [70]. The one-loop β-functions for the top Yukawa λt and

SU(3)C gauge coupling g3 in the MSSM are
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16π2βλt
= λt

(
6λ2

t −
16
3

g2
3

)
(2.24)

16π2βg3 = −3 g3
3 (2.25)

where SU(2)L and U(1)Y gauge interactions have been neglected in βλt
. These β-functions give

a one-loop β-function for the logarithm of the ratio of couplings of

16π2βln(λt/g3) = 6λ2
t −

7
3
g2
3 . (2.26)

Vanishing of this β-function implies that the ratio of the top Yukawa to SU(3)C gauge coupling,

λt/g3, is independent of renormalization group scale at one-loop. Since βg3 does not vanish

at one-loop, g3 is renormalization scale dependent. So the vanishing of βln(λt/g3) defines a

quasi-fixed point for λt rather than a scale-independent fixed-point relation. With the above

approximations the Pendleton-Ross quasi-fixed point in the MSSM occurs for

λ2
t =

7
18

g2
3 . (2.27)

Since βg3 is independent of λt at one-loop, and the coefficient of the λ2
t term in βln(λt/g3) is

positive, this quasi-fixed point is attractive for λt/g3 both above and below the quasi-fixed point

value. Moreover, since βλt is cubic in λt, it is very strongly attractive from above.

The top trilinear coupling and gluino mass have a similar quasi-fixed point relation [71, 72].

The one-loop β-functions for the top trilinear coupling, At, and gluino mass, M3, are

16π2βAt
= 12λ2

t At +
32
3

g2
3M3 (2.28)

16π2βM3 = −2g2
3M3 (2.29)

where SU(2)L and U(1)Y gauge interactions have been neglected in βAt . Adding these β-

functions gives

16π2β(At+M3) = 12λ2
t At +

14
3

g2
3M3. (2.30)
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At the Pendleton-Ross quasi-fixed point (2.27) for the top Yukawa in the MSSM this reduces

to

16π2β(At+M3) =
14
3

g2
3 (At + M3) . (2.31)

The vanishing of βAt+M3 again defines a quasi-fixed point for At rather than a scale independent

fixed point relation. With the above approximations at the Pendleton-Ross quasi-fixed point,

the top trilinear then has a quasi-fixed point of

At = −M3. (2.32)

Since the coefficient of βAt+M3 is positive, this quasi-fixed point is attractive. Moreover, since

it is proportional to g2
3 with a sizeable coefficient it is rather strongly attractive. Because of

this it is most natural for At and M3 to have opposite sign and be comparable in magnitude

at low scales due to renormalization group evolution. This conclusion is rather insensitive to

messenger scale boundary conditions for At, at least for large enough messenger scales.
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Chapter 3

The Minimally Tuned Minimal Supersymmetric Standard

Model

This chapter appears in print in JHEP04(2008)073, arxiv:0709.0980 [hep-ph], and consists of

work done with Jean-François Fortin.

The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-

tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori

relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is

minimized with respect to all the important parameters which affect electroweak symmetry

breaking. The superpartner spectra in the minimally tuned region of parameter space are quite

distinctive with large stop mixing at the low scale and negative squark soft masses at the high

scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly

120 GeV.

3.1 Introduction

The Minimal Supersymmetric Standard Model, or MSSM, is a well-motivated candidate for

physics beyond the Standard Model (SM). The gauge couplings within the MSSM unify to

within a few percent at the grand unified theory (GUT) scale, MGUT � 2 × 1016 GeV, and

the lightest supersymmetric particle is a good dark matter candidate provided that R-parity

is conserved. Supersymmetry (SUSY) can also naturally stabilize the hierarchy between the

electroweak (EW) and the GUT or Planck scale. It does this by providing a radiative mechanism

for electroweak symmetry breaking (EWSB) where large quantum fluctuations of the scalar top
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squarks due to the large Yukawa coupling destabilize the origin of the Higgs potential. In much

of the MSSM parameter space this quite naturally leads to the right EWSB scale, as long as

the soft SUSY breaking parameters lie near it.

The absence of any direct experimental evidence from collider searches for the MSSM scalar

particles and the Higgs boson has, however, ruled out significant regions in the MSSM parameter

space. Indirect evidence from EW precision measurements and searches for flavor changing

neutral currents, CP violating effects and rare decays has not been forthcoming either, providing

additional severe constraints. As a result, the soft SUSY breaking parameters must lie well above

the EW scale in order to satisfy the experimental constraints, especially the constraints on the

Higgs mass from the results of the CERN LEP collider (mh � 114.4 GeV [1]).

Soft SUSY breaking parameters well above the EW scale reintroduce a small hierarchy and

require some fine-tuning (FT) among the SUSY parameters in order to obtain EWSB [2]-[22].

This is usually referred to as the supersymmetric little hierarchy problem.

Different choices for the soft SUSY breaking parameters lead to different amounts of FT.

This paper presents the minimally tuned MSSM (or MTMSSM), i.e. the MSSM parameter

region that has the least model-independent FT of EWSB. Model-independent means that no

relations are assumed between the soft SUSY breaking parameters at the scale at which they

are generated (which will be referred to as the messenger scale). Rather, each of them is taken

to be an independent parameter which is free at the messenger scale, and which therefore can

contribute to the total FT of the EWSB scale. The messenger scale itself is varied between 2

TeV and MGUT and the effect of this on the minimal FT is discussed.

In Section 3.2, EWSB in the MSSM will be reviewed. Section 3.3 discusses the tuning

measure used in this paper. The parameters taken to contribute to the tuning are |μ|2, m2
Hu

,

the gaugino masses M1, M2 and M3, the stop soft masses m2
t̃L

and m2
t̃R

, and the stop soft

trilinear coupling At.

Section 3.4 contains some of the main results. The low- and high-scale MSSM spectrum

which leads to the least model-independent FT is found. This is done for various messenger
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scales by numerically minimizing the FT expression subject to constraints on the Higgs, stop,

and gaugino masses. The results are then motivated analytically. The least FT is found to be

about 5% if the messenger scale coincides with the GUT scale. An important feature of the least

FT region is negative stop soft masses at the messenger scale (first pointed out in [19]). Even

for messenger scales as low as 2 TeV, the stop soft masses are tachyonic at the messenger scale

(threshold effects in the RG-running were neglected throughout). This does not lead to any

problems with charge and/or color breaking minima. Another feature of the least FT region is

that the trilinear stop soft coupling, At, is negative and lies near “natural” maximal mixing, i.e.

At � −2mt̃, where mt̃ is the average of the two stop soft masses. This value for At maximizes

the radiative corrections to mh. The large stop mixing leads to a sizeable splitting between

the two stop mass eigenstates. Moreover, the gluino mass, M3, is much smaller than the wino

mass, M2, at the high scale. The wino mass, in turn, is much smaller than the bino mass M1.

Phenomenological consequences of the low-scale spectrum are briefly summarized.

Section 3.5 contains the rest of the main results of the paper. The FT is minimized as

a function of the lower bound on the Higgs mass (with the messenger scale set to MGUT).

Although the numerical minimization procedure contains the dominant one-loop expression for

mh as a constraint, the resulting least FT spectra are used to calculate mh more accurately

with the program FeynHiggs [23, 24, 25, 26, 27]. The result is a plot of the minimal FT as a

function of mh, where mh now includes all the important higher order corrections. There are

several striking features of this plot. First of all, for mh larger than a certain value, the FT

increases very rapidly and at least as fast as an exponential. Secondly, around this mh, the

value of At in the least FT region makes a sudden transition from lying near −2mt̃ to lying

near +2mt̃. The third striking feature is that this value of mh is surprisingly low. The precise

value is only slightly dependent on the parameters in the Higgs sector and can be taken to lie

around 120 GeV. It has been mentioned before that the FT increases exponentially as a function

of mh, see for example [8, 14]. Previously, these results were obtained by assuming a specific

set of boundary conditions at the messenger scale and without taking into account important
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higher-order corrections to the Higgs mass which are included in FeynHiggs. The results here

do not assume particular boundary values for any of the important parameters contributing

to EWSB - rather, the spectrum that leads to the least amount of tuning is found. Moreover,

the higher-order Higgs mass corrections are included. It is shown that the minimal amount of

tuning still increases at least as fast as an exponential.

Section 3.6 contains a summary of the results and the conclusions. Appendix 3.7 reviews

the semi-numerical solutions of the MSSM one-loop renormalization - group (RG) equations.

These are used to calculate the expression for the FT employed in this paper. Appendix 3.8

contains a list of expressions for the FT with respect to various parameters.

3.2 Electroweak Symmetry Breaking

In the Higgs decoupling limit of the MSSM, the lower bound on the mass of the lighter CP-even

Higgs mass eigenstate h coincides with the 114.4 GeV bound on the mass of the SM Higgs boson

[1]. The mass of h may be approximated by

m2
h � m2

Z cos2 2β +
3

4π2

m4
t

v2

[
log

m2
t̃

m2
t

+
X2

t

m2
t̃

(
1 − X2

t

12m2
t̃

)]
(3.1)

which, in addition to the tree-level Higgs mass, includes the dominant one-loop quantum cor-

rections coming from top and stop loops [28, 29, 30, 31, 32, 33]. Here mt is the top mass, m2
t̃

is

the arithmetic mean of the two squared stop masses and v =
√

2mW /g � 174.1 GeV where g

is the SU(2) gauge coupling and mW is the mass of the W -boson. Furthermore, equation (3.1)

assumes mt̃ � mt. The stop mixing parameter is given by Xt = At − μ cot β (� At for large

tan β), where At denotes the stop soft trilinear coupling and μ is the supersymmetric Higgsino

mass parameter. The first term in equation (3.1) is the tree-level contribution to the Higgs

mass. The first term in square brackets comes from renormalization group running of the Higgs

quartic coupling below the stop mass scale and vanishes in the limit of exact supersymmetry. It

grows logarithmically with the stop mass. The second term in square brackets is only present
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for non-zero stop mixing and comes from a finite threshold correction to the Higgs quartic cou-

pling at the stop mass scale. It is independent of the stop mass for fixed Xt/mt̃, and grows as

(Xt/mt̃)
2 for small Xt/mt̃.

Equation (3.1) implies a combination of three things which are required to satisfy the bound

on mh, namely a large tree-level contribution, large stop masses and/or large stop mixing1. A

large tree-level contribution to mh requires tan β to be at least of a moderate size (� 5 − 10).

Although the stop masses must be rather large, their lower bound is very sensitive to the size of

the stop mixing, with larger mixing allowing for much smaller stop masses (see [34] for a recent

study on this). The reason for this sensitive dependence is due to the Higgs mass depending

logarithmically on the stop masses in contrast to the polynomial dependence on the stop mixing.

The soft masses are not only directly constrained from the LEP Higgs bounds but also indi-

rectly by constraints on flavor changing neutral currents, electroweak precision measurements

and CP-violation. Besides these, however, the Higgs sector parameters are also constrained by

requiring that the electroweak symmetry is broken. This leads to the following two tree-level

relations at the low scale

sin 2β =
2m2

12

m2
Hu

+ m2
Hd

+ 2|μ|2 =
2m2

12

m2
A

(3.2)

m2
Z

2
= −|μ|2 +

m2
Hd

− m2
Hu

tan2 β

tan2 β − 1
, (3.3)

where mA is the CP-odd Higgs mass, and β is determined from the ratio of the two vacuum

expectation values vu ≡ 〈Re(H0
u)〉 and vd ≡ 〈Re(H0

d)〉 as tan β = vu/vd. The masses m2
Hu

,

m2
Hd

and m2
12 are the three soft mass parameters in the MSSM Higgs sector. For a given value

of tanβ, m2
12 may be eliminated in favor of m2

A with equation (3.2). Equation (3.3) gives an

expression for m2
Z in terms of the supersymmetric mass parameter μ and the soft masses m2

Hu

and m2
Hd

. Since tan β should be sizeable, the contribution from m2
Hd

to the expression for m2
Z

1Although it is not obvious, it is important to note that these statements remain the same even away from
the Higgs decoupling limit, see e.g. [34]. Moreover, as mentioned in [34], the fine-tuning in the Higgs decoupling
limit is comparable to the fine-tuning in the Higgs non-decoupling limit. Thus the least fine-tuned regions found
in this paper do not depend in an essential way on the fact that the analysis is done in the Higgs decoupling
limit.



68

may be neglected and (3.3) simplifies to

m2
Z = −2|μ|2 − 2m2

Hu
. (3.4)

Close to the Higgs decoupling limit, mA is relatively large. However, since |μ|2,m2
Hu

∼ O(m2
Z)

to avoid large cancellations, mA may not be too large, otherwise m2
Hd

would also be sizeable

and equation (3.4) would break down (unless the value of tanβ is increased accordingly). By

choosing tan β = 10 and mA = 250 GeV in the numerical analysis throughout, equation (3.4)

holds to a very good approximation.

Equation (3.4) holds at tree-level, and although quantum corrections may add O(10 GeV)

to the right hand side of (3.4), this has negligible impact on the amount of fine-tuning to be

discussed below.

The parameters m2
Hu

and |μ|2 in equation (3.4) are evaluated at the scale mZ . Since the

fine-tuning of EWSB is a measure of the sensitivity of some low-scale EWSB parameter (usually

taken to be m2
Z) to a change in high-scale input parameters, |μ|2 and m2

Hu
need to be evolved

to a high scale using their RG equations (the one-loop RG equations will be sufficient for the

purposes of discussing fine-tuning). Under RG running many of the soft parameters mix, and as

a result of this mixing, the expression for m2
Z in terms of parameters that are evaluated at the

messenger scale MS differs significantly from the simple form given in (3.4). The RG-equations

may be integrated (see Appendix 3.7) and the expression for m2
Z may generically be written as

[35, 36]

m2
Z =

∑
i,j

cij(tanβ, MS)mi(MS)mj(MS). (3.5)

For moderate and not too large values of tanβ with an appropriate mA, the simplified expression

for m2
Z is applicable (equation (3.4)) and contributions from the bottom/sbottom and tau/stau

sectors may still be neglected2. The most important parameters appearing in (3.5) then are μ2,

m2
Hu

, the gaugino masses M1, M2 and M3, the stop soft masses m2
t̃L

and m2
t̃R

, and the stop soft

2For large tan β, bottom/sbottom and tau/stau sector contributions must be included. Large tan β allows
the tree-level Higgs mass to be increased by about 2 GeV compared to its value for tan β = 10. Higher-order
corrections to the Higgs mass from the bottom/sbottom sector, however, can in some regions lead to rather large
negative contributions. The effect on the least fine-tuned regions found in this paper will not be discussed in
detail, but it is unlikely that the main features of the least fine-tuned spectrum will change.
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Figure 3.1: The coefficients cij defined in equation (3.5) for tanβ = 10 as a function of the
messenger scale MS .

trilinear coupling At. The coefficients cij depend on tanβ and the messenger scale MS . The

most important coefficients are shown in Figure 3.1 for tanβ = 10 as a function of MS .

At the scale mZ , the coefficients of m2
Hu

and μ2 are −2 while the coefficients of the other soft

parameters are zero in agreement with equation (3.4). Since μ2 is a supersymmetric parameter,

it gets renormalized multiplicatively and its RG evolution does not give rise to soft parameters

(see equation (3.45)). Figure 3.1 shows that the coefficient of μ2 does not vary much and remains

close to −2 all the way up to the GUT scale. The RG evolution of m2
Hu

to higher messenger

scales, however, generates non-zero coefficients for the other soft parameters. The β-function

of m2
Hu

,

8π2βm2
Hu

= 3λ2
t (m

2
Hu

+ m2
t̃L

+ m2
t̃R

+ |At|2) − 3g2
2 |M2|2 − g2

Y |M1|2 − 1
2
g2

Y SY , (3.6)

depends on the stop sector parameters {m2
t̃L

,m2
t̃R

, At}, the wino and bino masses M2 and
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M1, and SY ≡ 1
2Tr(Yim

2
i ), which thus get generated immediately under RG evolution. The

coefficients of M2 and especially M1 and SY in (3.6) are small and lead to small coefficients in

the expression for m2
Z (3.5). Although βm2

Hu
does not explicitly depend on the gluino mass, a

non-zero coefficient for M3 is generated indirectly since the stop sector β-functions depend on

M3. Moreover, M3 appears with a large coefficient in these β-functions, and thus the coefficient

of M3 in equation (3.5) dominates after a few decades of RG evolution. For example, at a

messenger scale of MS = MGUT ≡ 2 × 1016 GeV, the expression for m2
Z (for tanβ = 10) is

m2
Z = −2.19 μ̂2 − 1.32 m̂2

Hu
+ 0.68 m̂2

t̃L
+ 0.68 m̂2

t̃R
+ 5.24 M̂2

3 − 0.44 M̂2
2

− 0.01M̂2
1 + 0.22 Â2

t − 0.77 Ât M̂3 − 0.17 Ât M̂2 − 0.02 Ât M̂1

+0.46 M̂3 M̂2 + 0.07 M̂3 M̂1 + 0.01 M̂2 M̂1 + 0.05 ŜY , (3.7)

where the hatted parameters on the right-hand side are all evaluated at MS . This expression

may be used to calculate the FT as discussed next.

3.3 The Tuning Measure

A variety of tuning measures have been used in the literature (a list of references has been

provided in the Introduction). Since the concept of fine-tuning (FT) is inherently subjective,

there is no absolute definition of a FT measure. The most common definition of the sensitivity

of an observable O({ai}) on a parameter ai, denoted by Δ(O, ai), is given by [2, 3]

Δ(O, ai) =
∣∣∣∣∂ logO
∂ log ai

∣∣∣∣ =
∣∣∣∣ai

O
∂O
∂ai

∣∣∣∣ . (3.8)

Δ(O, ai) thus measures the percentage variation of the observable under a percentage variation

of the parameter. A large value of Δ(O, ai) signifies that a small change in the parameter

leads to a large change in the observable, and suggests that the observable is fine-tuned with

respect to that parameter. In the literature, the FT of O is often defined to be maxi Δ(O(ai)),

e.g. [2, 3]. This FT measure arguably underestimates the “total amount” of FT if there is more

than one parameter ai. This can be a drawback especially if there are many parameters that are

tuned by roughly the same amount. This motivates the use of a FT measure which considers
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the tuning of all the parameters simultaneously. Assuming that the individual Δ(O, ai) are

uncorrelated, the following FT measure may be used (see also [16, 37])

F(O) =

√∑
i

(
Δ(O, ai)

)2

. (3.9)

Of interest in this paper is to quantify the sensitivity of EWSB in the MSSM on (soft)

supersymmetric parameters at the messenger scale MS . To this end, the observable to consider

is m2
Z as a function of the supersymmetric Higgsino mass squared and the soft supersymmetry

breaking parameters, collectively denoted by m2
i (MS) (in the FT measure, all parameters are

taken to have mass dimension two). The sensitivity of m2
Z with respect to each parameter may

be calculated as in (3.8) with O = m2
Z , and the total FT of m2

Z on parameters evaluated at the

messenger scale MS may be quantified by

F(m2
Z ; MS) =

√∑
i

(
Δ
(
m2

Z , m2
i (MS)

))2

. (3.10)

Note that F(m2
Z ;MS) may be interpreted as the length of a “fine-tuning vector” with compo-

nents Δ(m2
Z ,m2

i (MS)). This fine-tuning vector is formally a vector field defined by the gradient

of the scalar field log m2
Z , a function of log m2

i , along surfaces of constant log m2
Z .

There are several possible drawbacks to this FT measure, see for example [22, 38]. One

of these is that the individual Δ(m2
Z ,m2

i (MS)) are assumed to be uncorrelated. Within a

given model of supersymmetry breaking, there may be relations among the parameters at the

messenger scale. This would imply that the FT vector is projected onto a subspace, and the

resulting FT is necessarily less. In other words, the tuning of one parameter is correlated

with the tuning of another, so that the total FT is less3 than that given by (3.10). Moreover,

within a given model the values of the parameters at the messenger scale may be restricted to

certain ranges, whereas (3.10) assumes that all values are equally likely. However, no model

for supersymmetry breaking will be assumed here. Instead, the minimal FT will be found as a

function of the messenger scale MS assuming no relations or restrictions among the high-scale

3Note, however, that if a given model assumes relations among the high scale parameters which do not allow
the parameters to fall within the least fine-tuned regions found in this paper, then the FT of such a model will
most likely be substantially larger than the model-independent minimal FT, despite there being relations among
the high scale parameters.
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input parameters. For this “model-independent” tuning it is satisfactory to use the FT measure

(3.10).

Note that to find the tuning of a model, one should in principle consider the tuning of all

observables, since the absence of tuning in one observable does not necessarily imply it is small

in others, see e.g. [17]. In this paper, however, only the tuning of EWSB will be considered.

Finally, note that the FT with respect to a single parameter is by definition (3.8) zero if that

parameter happens to be zero at the messenger scale. An extreme version of this is found in

the no-scale model [39], where all scalar soft masses are much smaller than the gaugino masses

at the high scale. Setting them to zero, and using (3.8) and (3.10) the FT could be expected to

be small. However, it may be shown that this does not minimize the FT, since M3 and μ need

to be quite large at the high scale to satisfy all the low-energy experimental bounds (see [13]).

In the results presented in this paper, no parameter is found to be zero at the high scale.

3.4 Minimal Model Independent Tuning

In this section the minimal model independent tuning will be found as a function of the mes-

senger scale.

3.4.1 Discussion of Minimization Procedure and Constraints

The FT given by equation (3.10) is written in terms of parameters evaluated at the messenger

scale. In order to find the minimal FT (MFT) for a given messenger scale that is consistent

with low-energy experimental constraints, it is easiest to rewrite the FT expression in terms

of parameters that are evaluated at the low scale. This can be done by expressing each high-

scale parameter in terms of low-scale parameters, see Appendix 3.7. Once the FT is written in

terms of low-scale parameters, m2
Hu

(mZ) may be eliminated by using equation (3.4) (neglecting

contributions from m2
Hd

).
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The low-energy constraints considered in this paper include bounds on the (physical) spar-

ticle masses, on the gaugino masses, and on the Higgs mass4. The physical top quark mass

mpole
t is set to the central value of the latest Tevatron mass measurement of 170.9 ± 1.8 GeV

[40]. The physical stop masses are required to be at least 100 GeV which is illustrative of the

actual, slightly model dependent, lower bound obtained from the Tevatron [41]. It is found that

the region of MFT does not quite saturate this bound, although a slightly larger value for the

top mass would allow the lighter stop to be as low as 100 GeV. The gaugino masses M1 and

M2, as well as μ, are taken to have a lower bound of 100 GeV. The gluino mass is found to be

never smaller than 335 GeV in the numerical results presented in this section, and this does not

generically violate any experimental bounds.

The most important constraint is the Higgs mass bound of 114.4 GeV (valid in the decoupling

limit), since it turns out that this bound is always saturated when minimizing the FT. In the

numerical results presented in this paper, the Higgs mass is calculated using the formulas found

in [42] (see also [28, 29, 30, 31, 32, 43]). These formulas include the one-loop corrections

coming from the top/stop sector and are simple enough to be used as constraints in the FT

minimization (but note that the sign convention used here for At is that of [44]). In order to

capture some of the important leading two-loop contributions to the Higgs mass, a running

top mass mt(mt) � 162.5 GeV (evaluated in the MS-scheme) is used instead of the physical

top mass mpole
t . There are, however, further higher-order corrections to the Higgs mass that

play a very important role, and more accurate Higgs masses may be obtained with the program

FeynHiggs which includes many of them. These additional corrections often tend to lower the

Higgs mass, and the one-loop formula used in the minimization procedure here does not capture

this effect. In order to compensate for some of these additional higher-order corrections and

thus obtain a more accurate estimate of the MFT, a lower bound for the Higgs mass of 121.5

GeV is used in the FT minimization, instead of the SM lower bound of 114.4 GeV. It turns

4Constraints from measurements of B → Xsγ or the electroweak S- and T -parameter do not significantly
affect the results presented below, since an experimentally consistent value can be obtained by only small
adjustments (if at all necessary) in the least fine-tuned parameters - see also [34].
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out that the typical low energy sparticle spectrum obtained in the analysis below then leads

to a Higgs mass that lies just above 114.4 GeV when these additional corrections are taken

into account (calculated with FeynHiggs, version 2.6.0, assuming real parameters). The issue

of higher-order corrections to the Higgs mass will be revisited in Section 3.5.

Sequential Quadratic Programming (SQP) in Maple is used as a minimization algorithm.

Given the FT function (3.10) written in terms of low scale parameters, as well as linear con-

straints on the gaugino masses and μ, non-linear constraints on the physical stop and Higgs

masses, and an initial guess, SQP generates a less FT point until the minimum is found. Unlike

other minimization algorithms, SQP can handle arbitrary constraints which is essential here

due to the highly non-linear physical stop mass and Higgs mass constraints.

3.4.2 Numerical Results

Figure 3.2 shows a plot of the MFT as a function of the messenger scale MS . Shown are the

individual contributions Δ
(
m2

Z ,m2
i (MS)

)
to the FT, with m2

i given by M2
3 , M2

2 , M2
1 , A2

t , μ2,

or m2
Hu

. The FT of m2
t̃L

and m2
t̃R

have been included as

Δ(m2
Z ,m2

t̃
) =

(
1
2

[ (
Δ(m2

Z ,m2
t̃L

)
)2

+
(
Δ(m2

Z , m2
t̃R

)
)2 ])1/2

. (3.11)

The (top) black line shows the total FT as defined by (3.10).

From the plot it is clear that the MFT increases as a function of the messenger scale MS .

This is expected since a higher messenger scale implies more RG running to the low scale so

that small differences in high-scale input parameters are magnified. For MS = MGUT, the total

MFT is about 22, i.e. 4.5%. (As an aside, for tanβ = 30 and mA = 1000, the MFT for a

Higgs mass of 114 GeV is about 11, i.e. 9%.) The largest contribution to the total minimal

FT comes from M2
3 and A2

t which are both comparable for all values of MS . The next most

important contribution is that from M2
2 . The contributions from μ2, as well as m2

t̃L
and m2

t̃R

are less important and increase only slightly as a function of MS . The FT from m2
Hu

is very

small for all messenger scales while the contribution from M2
1 is negligible for small and large
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Figure 3.2: The minimal fine-tuning as a function of the messenger scale MS for tanβ = 10. The
top black line is the total minimal fine-tuning as defined in equation (3.10) which includes all
the individual contributions. The individual contributions to the fine-tuning from μ2, m2

Hu
, the

gaugino masses M2
1 , M2

2 and M2
3 , and the stop soft trilinear coupling A2

t are included. Moreover,
the average fine-tuning of the stop soft masses m2

t̃L
and m2

t̃R
is included as in equation (3.11).

MS but larger for intermediate messenger scales.

The large contribution from M2
3 is mainly because it has the largest (in magnitude) coefficient

in the expression for m2
Z , at least for MS � 1010 GeV, see Figure 3.1. The coefficients of

the cross-terms AtM3, M2M3 and M1M3 are smaller (see Appendix 3.8), but together still

contribute about 40% of the FT with respect to M2
3 for MS = MGUT. The reason that the

cross-term contributions are so large is that the MFT values of At, M2, and M1 are rather

sizeable at the messenger scale when compared with M3 (at least for MS � 104 GeV). This is

depicted in Figure 3.3.

The FT of m2
Z with respect to A2

t is also very large even though the coefficients of A2
t and the

cross-terms AtM3, AtM2 and AtM1 in the expression for m2
Z are rather small (for MS = MGUT,



76

104 106 108 1010 1012 1014 1016−300

0

500

1000

1500

2000

M
FT

 H
ig

h−
S

ca
le

 V
al

ue
 fo

r S
ca

le
 M

S

M2(MS)

M3(MS)

M1(MS)

−At(MS)

MS (GeV) 

mt(MS)~

Figure 3.3: The messenger scale values of M3, M2, M1, At and the average of the stop soft
masses squared, mt̃, that give the minimal fine-tuning (MFT) as a function of the messenger
scale MS and for tanβ = 10. The high-scale values of M2 and At, and to a lesser extent M1

and mt̃, in the minimal fine-tuned region are roughly constant. The high-scale value of M3,
however, decreases significantly as the messenger scale is increased. The reason for this is that
the coefficient of M2

3 in the expression for m2
Z increases as a function of MS , and thus the

minimal fine-tuned region requires the value of M3 to decrease as MS increases.

about 50% of the FT comes from the cross-terms). This is again because At, M2 and M1 are

sizeable at MS . The contribution to the FT from M2
2 is large for similar reasons.

The FT with respect to μ2 increases only slightly as a function of MS since the coefficient of

μ2 in the expression for m2
Z does not vary much, and since the high-scale value of μ2 increases

only slightly as MS is increased. The contribution from μ2 is smaller than those from M2
3 , M2

2

and A2
t because the value of μ is comparatively small and also because there are no cross-terms

in the FT expression that involve μ and other (large) soft parameters. Similar reasoning holds

for the contributions from m2
Hu

, m2
t̃L

and m2
t̃R

.

The low-energy spectrum that gives the MFT for a given messenger scale remains roughly

unchanged as the messenger scale changes. The value of the stop soft trilinear coupling at the
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At

√
1
2 (m2

t̃L
+ m2

t̃R
) mt̃1

mt̃2

-610 GeV 305 GeV 110 GeV 475 GeV

Table 3.1: Low-scale values for the stop soft trilinear coupling, the average of the left- and
right-handed stop soft masses and the two physical stop masses. These low scale values give
the minimal fine-tuning for arbitrary messenger scales.

low scale is always about -610 GeV, with the two physical stop masses around 110 GeV and

475 GeV, respectively, see Table 3.1 and Figure 3.4. These values of the stop-sector parameters

are essentially determined by the constraint on the Higgs mass and from the minimization of

Δ(m2
Z ,m2

Hu
(MS)). The ratio Xt/mt̃ is approximately -2, where Xt ≡ At − μ cot β, and mt̃ ≡√

1
2 (m2

t̃L
+ m2

t̃R
). The MFT is thus found for the natural maximal-mixing scenario which ap-

proximately maximizes the radiative corrections to the Higgs sector for a given set of parameters

and for negative At [34, 45, 46, 47]. Small deviations of At (and to a lesser extent mt̃L
and

mt̃R
) from its MFT value at the low scale lead to a very large increase in the FT, mainly from

Δ(m2
Z ,m2

Hu
(MS)). This can be seen from (3.23), which shows that the largest coefficients in the

expression for m2
Hu

(M) in terms of low-scale parameters all involve powers of At. Note that for

generic points in the still allowed parameter space, Δ(m2
Z ,m2

Hu
) would give one of the largest

contribution to the FT. To minimize the FT it is thus best to minimize Δ(m2
Z ,m2

Hu
(MS)) which

essentially determines the values of the stop-sector parameters (see the discussion in Section

3.4.3). The other contributions to the FT are then not at their minimum, but they are much

smaller and less sensitive to variations in the parameters.

The low-scale values of the gaugino masses that give the MFT for a given messenger scale

are shown in Figure 3.4. While the value of M2 that gives the MFT is roughly the same for

all MS , the values of M1 and M3 decrease for larger MS . Changing M1 away from its MFT

value does affect the FT but not excessively so, while a change in M3 has a larger effect. The

μ-parameter is always found to be less than 150 GeV for the MFT region at any messenger

scale. Choosing it to be closer to 100 GeV instead has a negligible impact on the FT, and

allows a neutralino to be the lightest SM superpartner (LSP), instead of the lighter stop, which
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Figure 3.4: The low-scale values of the gaugino masses M1, M2 and M3, the stop soft trilinear
coupling At and the average of the stop soft masses squared mt̃ that give the minimal fine-
tuning (MFT) for the messenger scale MS (with tanβ = 10). While the low-scale values of M2,
At and mt̃ that give the minimal fine-tuning are roughly the same for all MS , the values of M1

and M3 decrease for larger MS .

is found to be the LSP in the numerical minimization procedure.

Negative At may be expected to lead to less FT than positive At because At has a strongly

attractive infrared quasi-fixed point near [48, 49]

At � −M3. (3.12)

(This relation is strictly valid only at the Pendleton-Ross quasi-fixed point for the top Yukawa

[50], and neglecting SU(2)L and U(1)Y gauge interactions.) Because of this it is most natural

for At and M3 to have opposite sign and be comparable in magnitude at low scales due to

renormalization group evolution, see Figure 3.5. For positive At and maximal-mixing in the

stop-sector, At would have to be an order of magnitude larger then M3 at the messenger scale

(see Figure 3.5) which would lead to a much more FT parameter region. The MFT region here
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quasi-fixed point near At/M3 � −1 is clearly visible. The gaugino masses have been set to their
minimal fine-tuned values for the case MS = MGUT, i.e. M3(mZ) � 335 GeV, M2(mZ) � 430
GeV, and M1(mZ) � 830 GeV.

does not satisfy (3.12) exactly, but instead At/M3 � −1.8 at the low scale, for MS = MGUT.

In order to satisfy (3.12) exactly, M3 would have to be larger (assuming At remains fixed).

This would increase the size of the stop masses under RG evolution as can be seen from their

β-functions, see (3.50) and (3.51), which would lead to increased FT.

The MTMSSM has negative soft squark squared masses at the messenger scale (see also [19]).

This remains the case even if the messenger scale is very low and only on the order of a few TeV

(for very low messenger scales, finite threshold corrections should really be included). Under

RG-evolution the masses get driven positive very quickly within about a decade of running.

It is the sizeable values of the gaugino masses that pull them up towards positive values. For

smaller messenger scales the MFT region has a larger gluino mass, which drives the squark
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Figure 3.6: The RG-trajectories of the minimal fine-tuned region if the messenger scale is
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� 475 GeV, M3(mZ) � 335 GeV, and μ(mZ) = 140 GeV. The

minimal fine-tuned value is obtained for natural maximal-mixing, i.e. At � −2mt̃.

masses to positive values even faster while running towards the infrared. Equations (3.22) and

(3.24) or (3.25) in Appendix 3.7 show that negative squarks at the messenger scale lead to more

stop-mixing at the low scale, as was pointed out in [19]. Figure 3.6 shows the RG-trajectories

of the MFT region if the messenger scale is MS=MGUT.

The presence of tachyonic squarks at the messenger scale [51, 52] and/or very large At

[53, 54] may lead to dangerous color and/or charge breaking (CCB) minima.

Very large At may result in dangerous CCB minima around the EW scale. These CCB

minima occur in the (t̃L, t̃R,Hu) plane [55]. The condition that the EW minimum is the global

minimum may be estimated by going along the D-flat direction |t̃L| = |t̃R| = |Hu| and is given

by [56]

A2
t + 3μ2 <∼ 3(m2

t̃L
+ m2

t̃R
). (3.13)
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Assuming instead that the EW minimum is only metastable but has a large enough lifetime

gives the weaker constraint [56]

A2
t + 3μ2 <∼ 7.5(m2

t̃L
+ m2

t̃R
). (3.14)

The MTMSSM easily satisfies the second condition, as well as satisfying the first condition.

There are thus no dangerous CCB minima resulting from large At.

Tachyonic stops at the messenger scale may result in an unbounded from below potential

along D-flat directions involving the stop fields, as well as first and/or second generation squark

fields or slepton fields. Loop corrections give rise to an effective potential which is not unbounded

from below, but they generically introduce a CCB minimum with a vacuum expectation value

(VEV) on the order of the messenger scale. The MTMSSM may thus have CCB minima with

a VEV around the EW scale if the messenger scale is low, or CCB minima with a VEV large

compared to the EW scale if the messenger scale is high. Since the EW minimum is metastable

and long-lived for mt̃
>∼ 1

6M3 [57], it turns out that these CCB minima are not dangerous in

the MTMSSM. Moreover, the MTMSSM does not determine the masses of the sleptons or first

and second generation squarks since these do not play an important role in the FT. It is thus

always possible to choose them in such a way to avoid CCB minima without changing the above

FT results.

Finally, it is interesting to note that there are several near degenerate parameter subspaces

along which the FT does not change much. The first and second generation particles and their

superpartners do not contribute much to the FT because in equation (3.5) they appear only

with a small coefficient. The parameter SY is also not very important for the same reason.

A more interesting near degenerate subspace is that the FT is rather insensitive to changes in

the difference of the two stop soft mass squared parameters at the low scale as long as their

sum is kept fixed. This may be understood from the expression for m2
Z , e.g. equation (3.7),

in which only their sum appears (using the one-loop RG equations). However, even with only

one-loop RG equations this degeneracy is not exact since small discrepancies appear in the FT

measure from equations (3.24) and (3.25). Moreover, the difference in the two stop soft mass
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squared parameters appears in the calculation of the physical stop masses and this affects the

size of the Higgs mass, which is the most crucial low-energy constraint when calculating the

FT. The FT only starts to change by an order one number when
√

|m2
t̃L

− m2
t̃R
| ∼ 300 GeV for

MS = MGUT.

3.4.3 Analytic Motivation for Numerical Results

The numerical results presented in section 3.4.2 may be motivated analytically. The discussion

will for now assume MS = MGUT, but generalizes to arbitrary MS with a few caveats discussed

below.

In order to get a physical Higgs mass satisfying the experimental bound without generating

large FT for the EWSB, it is natural to maximize the radiative corrections to mh. Due to

the strongly attractive quasi-fixed point for At, this is achieved for negative At near (natural)

maximal mixing (at least for mh not too large, see Section 3.5).

The most important contribution to the FT comes from Δ(m2
Z ,m2

Hu
(MS)) since it has the

largest coefficients, see Appendix 3.8. Eliminating m̂2
Hu

with the EWSB equation (3.7) and

using the average stop soft mass squared m̂2
t̃

= (m̂2
t̃L

+ m̂2
t̃R

)/2 gives

m2
ZΔ(m2

Z , m̂2
Hu

) = | − m2
Z − 2.19 μ̂2 + 1.36 m̂2

t̃
+ 5.24 M̂2

3

− 0.44 M̂2
2 + 0.46 M̂3 M̂2 − 0.77 Ât M̂3 − 0.17 Ât M̂2

− 0.01M̂2
1 + 0.22 Â2

t |. (3.15)

It is possible to have cancelations among the various terms in this expression. Δ(m2
Z ,M2

3 (MS))

also has large coefficients, but cancelations among its terms are impossible since Ât is negative

(see Appendix 3.8).

Ignoring μ̂2, cancelation of the largest terms in equation (3.15), i.e. the gluino term and the

average stop soft mass squared term, decreases the FT by setting m̂2
Hu

� m2
Hu

and leads to

tachyonic squarks at the messenger scale [19]

m̂2
t̃
� −3.9M̂2

3 . (3.16)
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Next, the four terms on the second line of equation (3.15) can cancel by taking

M̂3 � 0.96M̂2 + 0.37Ât

1 − 1.67 Ât

M̂2

. (3.17)

Assuming M̂2 � −Ât, this simplifies to M̂2 � 4.5M̂3. Furthermore, keeping only the most

important terms, the natural maximal-mixing scenario implies

−2 � At

mt̃

� (0.32Ât − 2.13M̂3 − 0.27M̂2 − 0.03M̂1)
[
0.66m̂2

t̃
+ 5.15M̂2

3

+0.11M̂2
2 + 0.02M̂2

1 + 0.19ÂtM̂3 + 0.04ÂtM̂2 − 0.05Â2
t

]−1/2

= (−4.80M̂3 − 0.03M̂1)
[
2.16M̂2

3 + 0.02M̂2
1

]−1/2

(3.18)

which leads to M̂1 � 15M̂3, again assuming M̂2 � −Ât. It is now possible to compute the ratio

of the soft trilinear coupling with the gluino mass at the EWSB scale,

At

M3
� 0.32Ât − 2.13M̂3 − 0.27M̂2 − 0.03M̂1

2.88M̂3

� −1.8. (3.19)

These results agree well with the numerical results presented in section 3.4.2.

Note that a GUT scale model which predicts degenerate and negative squark and slepton

soft masses at the GUT scale would need very large wino and bino masses in comparison to the

gluino mass in order to drive the slepton soft masses to positive values under RG running to

the EWSB scale [58]. This is due to the small coefficients of the bino and wino masses in the

β-functions of the slepton soft masses. It is interesting that the MFT region prefers the bino

mass larger than the wino mass and, in turn, the wino mass larger than the gluino mass.

Although this cancelation pattern holds to a good approximation for higher messenger scales,

m̂2
t̃

does not exactly cancel M̂2
3 as the messenger scale decreases. For lower messenger scales,

m̂2
t̃

becomes less tachyonic while M̂2
3 increases, allowing the stop masses to be driven positive

faster under RG running to the EWSB scale. Moreover, the coefficient of M̂2
3 in the expression

for m2
Z (3.5) decreases significantly, as can be seen in Figure 3.1. Therefore the cancelation

pattern in Δ(m2
Z , m̂2

Hu
) discussed above does not hold since the m̂2

t̃
contribution decreases

while the M̂2
3 term gives a comparable contribution for all messenger scales (except for very

small messenger scales). On the other hand, being a supersymmetric parameter, μ̂ and its
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coefficient in equation (3.5) does not change much for different messenger scales. Compared

to M̂2
3 and m̂2

t̃
, its contribution becomes important at lower messenger scales and a lower FT

can be obtained by canceling the three contributions together. The other relations in the above

cancelation pattern holds to a good approximation for lower messenger scales, although for

MS <∼ 105 the cancelation pattern becomes more involved.

3.4.4 Summary of Phenomenological Implications

The above analysis shows that the MTMSSM has small values for μ, the stop masses and the

gluino mass. The gluino in the MTMSSM is around 335 GeV for MS = MGUT, but heavier

for lower MS . There is large mixing in the stop-sector which introduces a significant splitting

between the two physical stop masses. They have masses of around 115 GeV and 475 GeV

respectively, see Table 3.1. Thus the MTMSSM may have a stop as the LSP. However, as

mentioned before, μ can be chosen to be small enough so that a neutralino is the LSP without

affecting FT by much.

At the Large Hadron Collider, gluino pair-production in the MTMSSM is thus rather large

and comparable to top quark pair-production. The production of t̃1t̃1 is also of the same order.

The gluinos are Majorana particles, and can decay into the lightest stop via g̃g̃ → ttt̃1t̃1

producing same-sign top quarks 50% of the time. The top quarks each decay into Wb, and

the events with two same-sign top quarks will contain two same-sign leptons if the W decays

leptonically. If a neutralino and a chargino are lighter than the stop, the decay t̃1 → χ+
1 b is

possible, with χ+
1 further decaying into a neutralino and soft jets or leptons. The events thus

also contain missing energy and a number of b-jets, some of which are soft if the t̃1 − χ+
1 mass

splitting is small.

If t̃1 is the LSP a number of further interesting signatures are possible, see [59]. The lighter

stop can either be pair-produced directly or from gluino decays. Even though it is the lightest

SM superpartner, it may decay into a lighter goldstino G̃ via the flavor-violating decay t̃1 → cG̃

or via the three-body decay t̃1 → bWG̃. The decay rate depends on the messenger scale, with
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lower messenger scales leading to larger decay rates. For reasonable messenger scales, its decay

length easily exceeds the hadronization length scale, and the stop in general hadronizes before it

decays [59]. For messenger scales less than a few hundred TeV, the decay length is small enough

so that the decay products seem to originate from the interaction region. The three-body decay

leads to a similar signature as the top decay but can be distinguished from it, see [60]. For larger

messenger scales, t̃1 decays inside a hadronized mesino or sbaryon and a variety of interesting

signatures are possible [59], including mesino-anti-mesino oscillations [61].

Another interesting possibility is the direct pair-production of the heavier stop t̃2. Since

the two physical stop masses are split by a large amount, the decay mode t̃2 → t̃1 + Z is

kinematically allowed and has a sizeable branching ratio [62]. The resulting signature depends

on the t̃1 decay channel as discussed above. For χ+
1 and χ1

0 lighter than t̃1, the authors of [62]

propose to look for the inclusive signature Z(l+, l−)bbET/ X, where the two leptons l+ and l−

have an invariant mass equal to the Z-mass. Detecting this signature would give evidence for

the maximal-mixing scenario but requires a large integrated luminosity (at least O(100 fb−1))

[62]. Since the mass difference between t̃1 and the LSP is small in the MTMSSM this signature

will be very hard to see since the jet from the decay t̃1 → χ+
1 b is soft which makes it more

difficult to separate the signal from the SM background [62].

An alternative way to measure the parameters in the stop-sector is to use the Higgs boson

as a probe [63]. A measurement of the Higgs mass and its production rate in the gluon fusion

channel allows the average of the two stop soft masses as well as the stop mixing to be determined

in many regions of the still allowed MSSM parameter space, and especially in regions where the

FT is small [63].

3.4.5 Fine-Tuning with Respect to Other Parameters

This subsection briefly discusses other parameters that may in principle contribute to the FT.

If the goal is to find the MFT region of a model and make a prediction of what parameter

region is preferred for the model from a FT point of view, there is no reason to include the FT
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of experimentally known parameters such as gY , g2 ,g3, or λt. Taking into account the known

parameters in the minimization procedure would most likely lead to other MFT values for all

parameters, including MFT values for the known parameters which would in all likelihood not

match the experimental values.

If the goal, however, is to find the FT of a given model, one should in principle include

contributions from experimentally known parameters. For example, FT with respect to λt,

Δ(m2
Z , λt(MS)), may give a large contribution to the total FT due to the large top mass.

Indeed, with the MFT values for MS = MGUT, Δ(m2
Z , λt(MMGUT

)) � 8. This, however,

increases the total FT only by a small amount from 22.1 to 23.5.

What about FT with respect to m2
12 and tanβ? These parameters are unknown and in prin-

ciple they should be included in the minimization procedure. With the help of equation (3.3)

and symmetries, it is however easy to see that Δ(m2
Z ,m2

12(MS)) = 0. Indeed m2
12 does not ap-

pear directly in the expression for m2
Z . Furthermore it breaks a U(1)PQ- and a U(1)R-symmetry

and consequently does not feed back into any other β-functions since no other parameter breaks

both symmetries. Thus m2
12 cannot appear in equation (3.3) and is therefore completely free,

which allows mA to be chosen accordingly as discussed in Section 3.2.

The FT of tan β has not been taken into account in the minimization procedure since an

explicit expression for m2
Z can only be obtained assuming a specific value for tanβ, because λt

depends on tanβ through mt. Moreover, since tan β is then a free parameter the approximation

leading to equation (3.4) may not be valid anymore and m2
Hd

should be reintroduced. Contri-

butions from bottom/sbottom and tau/stau sectors should also be included if tanβ becomes

large.

3.5 Minimal Fine-Tuning as a Function of the Higgs Mass

The Higgs mass mh is the most important low-energy constraint that determines the amount of

minimal fine-tuning (MFT). It is therefore interesting to look at how the MFT is affected when

the lower bound on mh is changed. Figure 3.7 shows a plot of the MFT as a function of the
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Figure 3.7: The minimal fine-tuning as a function of the lower bound on the Higgs mass mh,
where the calculation of mh only includes the one-loop corrections from the top-stop sector
(tanβ = 10, mA = 250 GeV, mt = 170.9 GeV).

lower bound on mh, where the calculation of mh is the same one used in the FT minimization

described in Section 3.4.1, and only includes the one-loop corrections from the top-stop sector

(with mA = 250 GeV, tanβ = 10, mt = 170.9 GeV, and MS = MGUT). The Higgs mass

calculated with the one-loop corrections will be denoted by m1�
h . The region of MFT always

saturates the bound on m1�
h and has negative At. The minimal FT is about 1% for m1�

h � 132

GeV.

There are, however, other important one-loop and two-loop corrections that can significantly

affect mh, and these need to be included in order to get a more accurate idea of how the MFT

changes as a function of the lower bound on mh. With these additional corrections, mh is not

anymore a symmetric function of the stop-mixing parameter Xt = At −μ cot β � At, where the

latter approximation is good for sizeable tanβ. It can be up to 5 GeV larger for Xt = +2mt̃

than for Xt = −2mt̃, the difference arising from non-logarithmic two-loop contributions to

mh, see [64, 65, 66]. Moreover, large chargino masses, i.e. large values of M2 and μ, can give
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important negative contributions to mh [67]. These corrections are also not included in m1�
h .

Two-loop corrections that allow the gluino mass to affect mh can also be important but are

smaller in general - this will be ignored in the following discussion since the impact on the

results presented below is negligible.

The MFT spectrum that was found with the minimization procedure may be used to calcu-

late mh with FeynHiggs. The FeynHiggs estimate for mh will be denoted by mFH
h . The result

is the solid black line in Figure 3.8. This MFT spectrum characteristically has large chargino

masses and a negative value for At near the “natural” maximal mixing scenario.

Comparing the solid black line in Figure 3.8 with the curve in Figure 3.7 shows the well-

known fact that the higher-order corrections to mh are extremely important. There are two

additional very striking features. First of all, as mFH
h increases and approaches 120 GeV, the

FT increases enormously. Any further small increase in the Higgs mass results in an enormous

increase in the FT. The reason is that as mFH
h approaches 120 GeV here, it only grows logarith-

mically as a function of the stop masses. The stop masses therefore become exponentially large

and thus increase the FT at least exponentially (see also [34]).

The second striking feature of this curve is that the value of the Higgs mass at which the FT

starts to increase enormously is rather low (the MFT is already 1% for mFH
h � 119 GeV). This

value of mh may be increased by just under 2 GeV by choosing larger tanβ and mA (recall that

throughout this discussion tanβ = 10 and mA = 250 GeV). Note that the latest Tevatron top

mass value (mt = 170.9 GeV) has been used in the calculation, and a slightly different value

can also change mh by a few GeV.

An obvious question is whether the MFT region is significantly different if mFH
h were used

in the minimization procedure instead of m1�
h (the former is too complicated to be used). For

MSSM spectra that give small mh this is certainly not the case, since there is not a very large

discrepancy between the two Higgs mass estimates m1�
h and mFH

h . The difference between the

two Higgs mass estimates becomes significant, however, for MSSM spectra that give a large

mh, and the approximation mFH
h can be substantially smaller than m1�

h . Also, as mentioned
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above, mFH
h can be substantially larger for positive At (near maximal mixing) than for negative

At (near “natural” maximal mixing), and increases as the chargino masses decrease. On the

other hand, m1�
h remains unaffected by the sign of At and the size of the chargino masses. It

is thus possible that the MFT region does not coincide with the region obtained in the above

minimization procedure as the lower bound on mh increases. This is indeed the case, as will

now be discussed.

The FT may be minimized with the constraint that the chargino masses are small. Since the

effect of varying μ and M2 on the FT are noticeable but not substantial, the resulting spectrum

will be characterized by gluino and stop masses that are only slightly larger than those obtained

in the MFT region discussed in this paper. The value of At is still negative. This spectrum

may be used to calculate mFH
h . The result is shown by the dash-dot green curve in Figure 3.8.

For mFH
h not too large, the solid black curve lies below the dash-dot green curve because the

MFT region has large values of M2, see Section 3.4. As mFH
h increases further, however, the FT

becomes very large since the stop masses become exponentially large. Smaller chargino masses

lead to larger values of mFH
h , and the two curves show that for mh just below 120 GeV, a smaller

FT may be obtained by decreasing the size of M2. This behavior cannot be captured by m1�
h

which is unaffected by a change in the chargino masses. Note that the transition between the

two regions described by the two curves is smooth, and that it occurs when the MFT is already

more than 1%.

Next, the FT may be minimized with the constraint that At is positive and near maximal

mixing. The resulting low-energy spectrum is characterized by small chargino and gluino masses.

This spectrum may then be used to calculate mFH
h , and the MFT as a function of this value

of mFH
h is displayed by the dashed blue line in Figure 3.8. Comparing the solid black line or

dash-dot green line with the dashed blue line, it is clear that for small mFH
h the MFT region

has negative values of At. Even though negative At might be expected to always give less FT

than positive At due to the IR quasi-fixed point, the increase in mFH
h by several GeV by making

At positive is substantial, and as mFH
h approaches about 123 GeV, the two curves cross. Thus,
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Figure 3.8: The minimal fine-tuning as a function of the lower bound on the Higgs mass mh

calculated with FeynHiggs 2.6.0 (tanβ = 10, mA = 250 GeV, mt = 170.9 GeV). Throughout
this paper the fine-tuning is minimized subject to a constraint on mh, where mh is estimated
with a one-loop formula as described in Section 3.4.1. The different lines arise from different
assumptions made about At, or μ and M2, when minimizing the fine-tuning. These different
assumptions give rise to different low-energy spectra that present the least fine-tuned parameter
choices satisfying these assumptions. These low-energy spectra may then be used in FeynHiggs
to calculate mh. Although M2, μ and the sign of At do not affect the one-loop estimate of
mh which only contains the dominant corrections, they do affect the FeynHiggs estimate of
mh. For the solid black line no constraint was set on At, and μ and M2 were only required to
be above 100 GeV. It is the same line as in Figure 3.7, but with mh estimated by FeynHiggs
instead of the one-loop formula. The dashed blue line assumes At is positive and near maximal
mixing, also with M2 and μ only required to be above 100 GeV. The dash-dot green curve
makes no assumption about At but sets μ = 100 GeV and M2 = 100 GeV. The dotted red line
assumes At = 0, and again only requires μ and M2 to be larger than 100 GeV. Further details
and explanations are given in the text.
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there is a transition from At � −2mt̃ to At � +2mt̃ of the minimal fine-tuned region as mFH
h

increases. This behavior is again not captured by m1�
h which is independent of the sign of At.

The transition occurs when the minimal FT is already quite large (about 0.2%).

This transition from negative to positive At is not smooth, in the sense that the first deriva-

tive of the curve at the transition point is not continuous5. To show this, the FT may be

minimized with the constraint At = 0. The resulting low-energy spectrum may then again be

used to calculate mFH
h , and the result is shown by the dotted red line in Figure 3.8. The value

of mFH
h for vanishing stop-mixing, At = 0, is much lower than for the two maximal mixing sce-

narios, At � ±2mt̃, and it is clear that the MFT region does not interpolate smoothly between

them as a function of At.

The main point of the analysis in this section is that although the MSSM is already fine-

tuned at least at about the 5% level (if the messenger scale equals the GUT scale), there is not

much room left for the Higgs mass to increase before the FT becomes much worse.

Note that for a lower messenger scale the Higgs mass can have a slightly larger value before

the MFT begins to increase enormously. For example, for MS = 200 TeV, the MFT is 1%

for mh � 123 GeV. So even for a lower messenger scale the Higgs mass cannot be that much

beyond 120 GeV before the MFT increases dramatically.

3.6 Conclusions

In this paper the minimally tuned Minimal Supersymmetric Standard Model, or MTMSSM, was

presented. The MSSM parameter region that has the minimal model-independent fine-tuning

(FT) of EWSB was found. Model - independent means that no relations were assumed between

the soft SUSY breaking parameters at the scale at which they are generated (the messenger

scale). Instead, all of the important parameters were allowed to be independent and free at

the messenger scale, and were taken to contribute to the total FT of the EWSB scale. The

messenger scale itself was varied between 2 TeV and MGUT and the effect of this on the minimal

5One may perhaps refer to this as the first order phase transition of fine-tuning.
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FT was presented.

The most important parameters that contribute to the tuning are |μ|2, m2
Hu

, the gaugino

masses M1, M2 and M3, the stop soft masses m2
t̃L

and m2
t̃R

, and the stop soft trilinear coupling

At. The MSSM spectra which lead to the minimal model-independent FT were found by

numerically minimizing the FT expression subject to constraints on the Higgs, stop, and gaugino

masses (the Higgs mass was found to always be the most important low-energy constraint). The

high-energy spectra are characterized by tachyonic stop soft masses, even for messenger scales

as low as 2 TeV (but note that threshold effects in the RG-running were neglected throughout).

The potential existence of charge and/or color breaking minima turns out not to be a problem.

The gluino mass, M3, is much smaller than the wino mass, M2, and M2 in turn is much

smaller than the bino mass M1. The low-scale spectra are characterized by negative At near

the maximal mixing scenario that maximizes the Higgs mass. The large stop mixing leads to a

large splitting between the two stop mass eigenstates. Interesting phenomenological signatures

include the possibility of a stop LSP.

The minimal FT was also found as a function of the lower bound on the Higgs mass (with the

messenger scale set to MGUT). Although in the numerical minimization procedure the dominant

one-loop expression for mh was used as a constraint, the resulting least fine-tuned spectra were

used to calculate mh more accurately with FeynHiggs. A plot of the minimal FT as a function

of mh was presented. There are several striking features of this plot. For mh larger than about

120 GeV the FT increases very rapidly. This value of mh is rather low, perhaps surprisingly so.

It is only slightly dependent on the parameters in the Higgs sector. Near it, the value of At in

the least FT region also makes a sudden transition from lying near −2mt̃ to lying near +2mt̃,

where mt̃ is the average of the two stop soft masses. The upshot of this particular analysis is

that although the MSSM is already fine-tuned at least at about the 5% level (if the messenger

scale equals the GUT scale), there is not much room left for the Higgs mass to increase before

the FT becomes much worse. The magnitude and rate of increase of the minimal FT as mh

increases beyond about 120 GeV is very striking.
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3.7 Appendix: Semi-numerical Solutions of the MSSM One-Loop RG-

Equations

This appendix reviews the procedure for solving the MSSM one-loop RG equations semi-

numerically [35, 36]. The low scale M0 is set to be mZ , and the high (messenger) scale MS

is taken to lie anywhere between mZ and MGUT. Threshold corrections are neglected when

solving the RG-equations.

The main goal is to obtain an expression for m2
Z in terms of high-scale input parameters

as in equation (3.5). Assuming that tanβ is not too small, this requires solving |μ(mZ)|2

and m2
Hu

(mZ) in terms of high-scale parameters (for moderate values of tanβ, m2
Hd

may be

neglected, see equation (3.4)). The fine-tuning may then be calculated and naturally expressed

in terms of high-scale parameters as in equation (3.10). However, in order to minimize the

fine-tuning taking into account low-scale constraints on the Higgs, stop, and gaugino masses,

it is more appropriate to rewrite the fine-tuning expression in terms of low scale parameters.

This requires that μ as well as all the soft supersymmetry breaking parameters appearing in

equation (3.10) be written in terms of low scale parameters.

In solving the RG-equations, only the contributions from the third generation particles will

be included, since the third generation Yukawa couplings are much larger than those from

the first and second generations. Moreover, the contributions from the bottom/sbottom and

tau/stau sectors are neglected as tan β is taken to be not too large.

The high-scale parameters may in general be written in terms of low scale-parameters as

m2
i (MS) =

∑
j,k

cijk(tanβ, M0, MS) mj(M0) mk(M0). (3.20)

For example, for MS = MGUT, the expressions for the most important high-scale parameters
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written in terms of low-scale parameters are

M̂i = di Mi {d1, d2, d3} = {2.42, 1.22, 0.35} (3.21)

Ât = 3.15 At + 2.33 M3 + 1.03 M2 + 0.26 M1 (3.22)

m̂2
Hu

= 2.07 m2
Hu

+ 1.07 m2
t̃L

+ 1.07 m2
t̃R

+ 0.19 M2
3 − 0.98M2

2

− 0.31 M2
1 + 3.38 A2

t + 3.69 At M3 + 1.19 At M2 + 0.24 At M1

+0.76 M3 M2 + 0.15M3 M1 + 0.05 M2 M1 + 0.06 SY (3.23)

m̂2
t̃L

= 0.36 m2
Hu

+ 1.36 m2
t̃L

+ 0.36 m2
t̃R

− 0.72 M2
3 − 0.81M2

2

− 0.06 M2
1 + 1.13 A2

t + 1.23 At M3 + 0.40 At M2 + 0.08 At M1

+0.25 M3 M2 + 0.05M3 M1 + 0.02 M2 M1 + 0.02 SY (3.24)

m̂2
t̃R

= 0.72 m2
Hu

+ 0.72 m2
t̃L

+ 1.72 m2
t̃R

− 0.65 M2
3 − 0.18M2

2

− 0.46 M2
1 + 2.26 A2

t + 2.46 At M3 + 0.80 At M2 + 0.16 At M1

+0.50 M3 M2 + 0.10M3 M1 + 0.04 M2 M1 − 0.09 SY (3.25)

μ̂ = 0.95 μ. (3.26)

Similar type of expressions hold for low-scale parameters as a function of high-scale parameters.

The gauge couplings gα, α ∈ {1, 2, 3}, and the top Yukawa coupling λt are fixed at the low scale

by their experimental values [41]. Section 3.7.1 gives the solution of their RG-equations.

The MSSM one-loop β-functions that need to be solved come in three different functional

forms [68]. The RG-equations of the gaugino masses Mα, the supersymmetric Higgsino mass

μ, and SY are of the form

dmi

dt
= fi(λt, gα)mi, mi ∈ {Mα, μ, SY }, (3.27)

where t = ln(MS/M0). Their solution is given by

mi(t) = mi(0) exp
∫ t

0

dt′ fi(λt, gα). (3.28)

The stop soft trilinear coupling has the functional form

dAt

dt
= a(λt) At + b(gα,Mα). (3.29)
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The solution of this equation is more involved due to the presence of both homogeneous and

inhomogeneous terms, and requires the solution for the gaugino masses (3.28). It may be written

as (see Section 3.7.3)

At(t) = e
∫

dt′a(λt) At(0) + e
∫

dt′a(λt)

∫ t

0

dt′e−
∫

dt′′a(λt) b(gα,Mα). (3.30)

Finally, the RG-equations of the up-type Higgs soft mass and the stop soft masses form a

system of coupled inhomogeneous differential equations,

dm2
i

dt
=

∑
j

uij(λt)m2
j + vi(gα,Mα, SY , At), m2

i ∈ {m2
Hu

,m2
t̃L

,m2
t̃R
}. (3.31)

This may be solved (see Section 3.7.4) using the solutions for the gaugino masses and SY (3.28)

as well as the solution for the stop soft trilinear coupling (3.30),

m2
i (t) =

(
e
∫

dt′u(λt) m2(0) + e
∫

dt′u(λt)

∫ t

0

dt′e−
∫

dt′′u(λt) v(gα,Mα, SY , At)
)

i

. (3.32)

3.7.1 Gauge and Yukawa Couplings

The one-loop β-functions for the gauge and top Yukawa couplings in the MSSM are

8π2βg2
α

= bα g4
α, {bY , b2, b3} = {11, 1,−3} (3.33)

16π2βλt
= λt

(
6λ2

t −
16
3

g2
3 − 3 g2

2 − 13
9

g2
Y

)
. (3.34)

Their solutions are

g2
α(t) = g2

α(0) ξ−1
α (t) (3.35)

λ2
t (t) = λ2

t (0) E(t;�n0)G(t;�n0)−1, (3.36)

where �n0 =
(

13
9b1

, 3
b2

, 16
3b3

)
=

(
13
99 , 3,−16

9

)
, and for future convenience the functions

ξα(t) = 1 − bα

8π2
g2

α(0)t (3.37)

E(t;�n) =
3∏

α=1

ξ(�n)α
α (t) (3.38)

F (t;�n) =
∫ t

0

dt′ E(t′;�n) (3.39)

G(t;�n) = 1 − 3
4π2

λ2
t (0) F (t;�n) (3.40)
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have been introduced. The solution (3.36) is analytic if g2 and gY are set to zero [69, 70],

whereas non-zero values of g2 and gY require a numerical integration.

3.7.2 Gaugino Masses, μ-term and SY

The RG-equations for the gaugino masses, μ and SY are

βMα =
Mα

g2
α

βg2
α

(3.41)

16π2βμ = μ
(
3 λ2

t − 3 g2
2 − g2

Y

)
(3.42)

8π2βSY
= g2

Y

∑
scalars i

(
Yi

2

)2

SY . (3.43)

The general solution is of the form (3.28), and may be written as

Mα(t) = Mα(0) ξ−1
α (t) (3.44)

μ(t) = μ(0) G(t;�n0)−
1
4 ξ

3
2
2 (t) ξ

1
22
1 (t) (3.45)

SY (t) = SY (0) ξ−1
1 (t) (3.46)

with the notation of Section 3.7.1. The solutions for the gaugino masses and SY are analytic

while μ must be solved numerically unless the contributions from g2 and gY are neglected.

3.7.3 Stop Soft Trilinear Coupling

The β-function of the stop soft trilinear coupling is

8π2βAt
=

(
6 λ2

t At − 16
3

g2
3 M3 − 3 g2

2 M2 − 13
9

g2
Y M1

)
. (3.47)

Using the solutions for the gaugino masses (3.44), this equation may be integrated and written

as

At(t) =
1

G(t;�n0)

[
At(0) +

3∑
α=1

(�n0)α
Mα(0)
ξα(t)

(
G(t;�n0) − ξα(t) G(t;�n0 − �eα)

)]
(3.48)

where (�eα)β = δα
β are the usual unit vectors. If g2 and gY are zero, the solution does not require

a numerical integration.
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3.7.4 Up-type Higgs Soft Mass and Stop Soft Masses

The β-functions of m2
Hu

, m2
t̃L

and m2
t̃R

are

8π2βm2
Hu

= 3λ2
t

[
m2

Hu
+ m2

t̃L
+ m2

t̃R
+ |At|2

]
−3 g2

2 |M2|2 − g2
Y |M1|2 − 1

2
g2

Y SY (3.49)

8π2βm2
t̃L

= λ2
t

[
m2

Hu
+ m2

t̃L
+ m2

t̃R
+ |At|2

]
−16

3
g2
3 |M3|2 − 3 g2

2 |M2|2 − 1
9

g2
Y |M1|2 − 1

6
g2

Y SY (3.50)

8π2βm2
t̃R

= 2λ2
t

[
m2

Hu
+ m2

t̃L
+ m2

t̃R
+ |At|2

]
−16

3
g2
3 |M3|2 − 16

9
g2

Y |M1|2 − 2
3

g2
Y SY . (3.51)

They form a system of coupled inhomogeneous differential equations. Note that At appears

quadratically in these β-functions which gives cross-terms between Mα(0) and At(0) (see equa-

tion (3.48)). The equations can be solved as in (3.32) but it is possible to simplify the analysis

by the change of variables

X = m2
Hu

− m2
t̃L

− m2
t̃R

(3.52)

Y = m2
Hu

− 3m2
t̃L

(3.53)

Z = m2
Hu

+ m2
t̃L

+ m2
t̃R

. (3.54)

In terms of the new variables, the β-functions are

8π2βX =
32
3

g2
3 |M3|2 +

8
9

g2
Y |M1|2 + g2

Y SY (3.55)

8π2βY = 16 g2
3 |M3|2 + 6 g2

2 |M2|2 − 2
3

g2
Y |M1|2 (3.56)

8π2βZ = 6λ2
t Z + 6λ2

t |At|2 − 32
3

g2
3 |M3|2 − 6 g2

2 |M2|2 − 26
9

g2
Y |M1|2. (3.57)
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In this form, βX and βY are easily integrated since they have no homogeneous term (which is

due to the fact that the corresponding matrix uij in (3.31) has rank = 1)

X(t) = X(0) − 16
9

M2
3 (0)

(
ξ−2
3 (t) − 1

)
(3.58)

+
4
99

M2
1 (0)

(
ξ−2
1 (t) − 1

)
+

1
11

SY (0)
(
ξ−1
1 (t) − 1

)
Y (t) = Y (0) − 8

3
M2

3 (0)
(
ξ−2
3 (t) − 1

)
(3.59)

+3 M2
2 (0)

(
ξ−2
2 (t) − 1

)− 1
33

M2
1 (0)

(
ξ−2
1 (t) − 1

)
.

The equation for Z requires a numerical integration (even if g2 and gY are zero)

Z(t) =
1

G(t;�n0)

[
Z(0) −

3∑
α=1

(�n0)α
M2

α(0)
ξ2
α(t)

(
G(t;�n0) − ξ2

α(t)G(t;�n0 − 2�eα)
)

+
3

4π2
λ2

t (0)
∫ t

0

dt′ E(t′;�n0) |At(t′)|2
]

. (3.60)

The solutions for m2
Hu

, m2
t̃L

and m2
t̃R

in terms of X, Y and Z are then

m2
Hu

(t) =
1
2

(
X(t) + Z(t)

)
(3.61)

m2
t̃L

(t) =
1
6

(
X(t) − 2Y (t) + Z(t)

)
(3.62)

m2
t̃R

(t) =
1
3

(
− 2X(t) + Y (t) + Z(t)

)
. (3.63)

3.8 Appendix: Fine-tuning Components

This appendix lists for completeness the expressions for the fine-tuning of m2
Z with respect

to M2
3 , M2

2 , M2
1 , μ2, A2

t , m2
Hu

, m2
t̃L

and m2
t̃R

. The fine-tuning components as a function of

high-scale parameters are easily found from the fine-tuning measure, equation (3.8), with the
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observable m2
Z written as in equation (3.5). For MS = MGUT, the fine-tuning components are

m2
ZΔ(m2

Z , M̂2
3 ) � 5.24M̂2

3 + 0.23M̂3M̂2 + 0.03M̂3M̂1 − 0.38ÂtM̂3 (3.64)

m2
ZΔ(m2

Z , M̂2
2 ) � −0.44M̂2

2 + 0.23M̂3M̂2 + 0.01M̂2M̂1 − 0.08ÂtM̂2 (3.65)

m2
ZΔ(m2

Z , M̂2
1 ) � −0.01M̂2

1 + 0.03M̂3M̂1 + 0.01M̂2M̂1 − 0.01ÂtM̂1 (3.66)

m2
ZΔ(m2

Z , μ̂2) � −2.19μ̂2 (3.67)

m2
ZΔ(m2

Z , Â2
t ) � 0.22Â2

t − 0.38ÂtM̂3 − 0.08ÂtM̂2 − 0.01ÂtM̂1 (3.68)

m2
ZΔ(m2

Z , m̂2
Hu

) � −1.32m̂2
Hu

(3.69)

� −m2
Z − 2.19 μ̂2 + 1.36 m̂2

t̃
+ 5.24 M̂2

3

− 0.44 M̂2
2 + 0.46 M̂3 M̂2 − 0.77 Ât M̂3 − 0.17 Ât M̂2

− 0.01M̂2
1 + 0.22 Â2

t

m2
ZΔ(m2

Z , m̂2
t̃L

) � 0.68m̂2
t̃L

(3.70)

m2
ZΔ(m2

Z , m̂2
t̃R

) � 0.68m̂2
t̃R

. (3.71)

Here it is understood that the absolute value of the right-hand sides of each of these equations
is meant to be taken. The EWSB relation, equation (3.7), was used to eliminate m̂2

Hu
. It is

natural to eliminate m̂2
Hu

instead of μ̂2 or any other soft supersymmetry breaking parameters
since μ̂2 is supersymmetric while the other soft supersymmetry breaking parameters are not
involved in the EWSB equation at the EW scale. With the help of equations (3.21)-(3.26), it
is now straightforward to rewrite the FT expression (3.10) in terms of low-scale parameters.
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Chapter 4

Meta-Stable Dynamical Supersymmetry Breaking Near

Points of Enhanced Symmetry

This chapter appears in print in JHEP09(2007)032, arxiv:0707.0007 [hep-th], and in arXiv:

0710.4311 [hep-th], and includes work done with Kuver Sinha and Gonzalo Torroba.

We construct a model with long-lived metastable vacua in which all the relevant para-

meters, including the supersymmetry breaking scale, are generated dynamically by dimensional

transmutation. Our model consists of two sectors coupled by a singlet and combines dynamical

supersymmetry breaking with an O’Raifeartaigh mechanism in terms of confined variables. The

metastable vacua appear along a pseudo-runaway direction near a point of enhanced symme-

try as a result of a balance between non-perturbative and perturbative quantum effects. We

show that metastable supersymmetry breaking is a rather generic feature near certain enhanced

symmetry points of gauge theory moduli spaces.

4.1 Introduction

The idea that our universe may be in a long-lived metastable state in which supersymmetry is

broken has recently led to an increased interest in developing models of supersymmetry breaking.

This has opened many new possibilities in constructing field theory and string theory models.

On the field theoretic side, the work of Intriligator, Seiberg and Shih (ISS) [1] presented

calculable metastable vacua using Seiberg duality. This motivated related field theory construc-

tions, involving gauge mediation [2, 3, 4, 5], generalized O’Raifeartaigh models [6], retrofitting

[7], adjoint matter [8], applications to particle physics [9, 10, 11], etc. Similar developments
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have been seen in string theory based on a number of different tools, such as intersecting or

wrapping branes [12, 13, 14, 15], flux compactifications [16, 17, 18, 19, 20], Calabi-Yau’s with

particular geometric properties [21, 22, 23, 24], IIa/M-theory configurations [25, 26, 27] and

others. Statistical analyses of the supersymmetry breaking scale on the landscape of effective

field theories were done, for instance, in [28, 29, 30].

The ISS model consists of supersymmetric QCD (SQCD) in the free magnetic range, and

metastable vacua appear after taking into account one-loop corrections that lift the pseudo-

moduli. Their work suggests that nonsupersymmetric vacua are rather generic, if one requires

them to be only local, rather than global, minima of the potential. The construction still

contained relevant couplings in the form of masses for the quarks though, and the search for

models with all the relevant parameters generated dynamically has proven difficult; see [31, 32,

33, 34] for recent work in this direction.

One lesson from ISS is that certain properties of moduli spaces can hint at the existence of

metastable vacua. In their case, it was the existence of supersymmetric vacua coming in from

infinity that signaled an approximate R-symmetry. Here we will point out that one should also

look for another feature, namely, enhanced symmetry points, which are defined by the appear-

ance of massless particles. We claim that if the moduli space has certain coincident enhanced

symmetry points, metastable vacua with all the relevant couplings arising by dimensional trans-

mutation may be obtained.

Let us motivate this claim. In order to generate relevant couplings dynamically, a gauge

sector is required, which gives nonperturbative contributions to the superpotential. However, in

general this leads to a runaway behavior. We will show that starting with two gauge sectors, the

runaway may now be stabilized by one loop effects from the additional gauge sector, but only

around enhanced symmetry points where quantum corrections are large enough. Such runaways

which are stabilized by perturbative quantum corrections will be called ‘pseudo-runaways’.

Surprisingly, the gauge theories where this occurs turn out to be generic.

The model considered here consists of two SQCD sectors, each with independent rank and
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number of flavors, coupled by a singlet. It involves only marginal operators with all scales

generated dynamically. At the origin of moduli space, the singlet vanishes and the quarks of

both sectors become massless simultaneously. There are thus two coincident enhanced symmetry

points at the origin. While one of the SQCD sectors is in the electric range and produces a

runaway, the other has a magnetic dual description as an O’Raifeartaigh-like model. Near

the enhanced symmetry point, the Coleman-Weinberg corrections stabilize the nonperturbative

instability producing a long-lived metastable vacuum. A feature of our model is that it may be

possible to gauge parts of its large global symmetry to obtain renormalizable, natural models

of direct gauge mediated supersymmetry breaking with a singlet. R-symmetry is broken both

spontaneously and explicitly in our model.

The plan of the paper is as follows. In Section 2, our model is introduced and its super-

symmetric vacua are studied. In Section 3, we analyze in detail the non-supersymmetric vacua

and argue that they are parametrically long-lived. In Section 4, we give a detailed analysis of

the particle spectrum and the R-symmetry properties. In Section 5, we argue that such me-

tastable vacua may be generic near points of enhanced symmetry in the landscape of effective

field theories. In Section 6, we give our conclusions.

4.2 The Model and its Supersymmetric Vacua

We consider models with two supersymmetric QCD (SQCD) sectors characterized by (Nc, Nf ,Λ)

and (N ′
c, N

′
f , Λ′), respectively, that are coupled to the same singlet field Φ. The field Φ provides

the mass of the quarks in both sectors. In Section 2.1, the general properties of such models

will be discussed and their global symmetries analyzed. In Section 2.2, we analyze the super-

symmetric vacua. Section 2.3 will discuss for which range of the parameters (Nc, Nf , Λ) and

(N ′
c, N

′
f ,Λ′) metastable vacua will be shown to exist. The upshot will be that one sector has to

be taken in the electric range and the other sector in the free magnetic range.
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4.2.1 Description of the Model

The matter content of the models considered here consists of two copies of supersymmetric

QCD, each with independent rank and number of flavors, and a single gauge singlet chiral

superfield:

SU(Nc) SU(N ′
c)

Qi 1 i = 1, . . . , Nf

Qi 1

Pi′ 1 i′ = 1, . . . , N ′
f

P i′ 1

Φ 1 1

(4.1)

The most general tree-level superpotential with only relevant or marginal terms in four dimen-

sions for the matter content (4.1) with Nc, N ′
c ≥ 4 is

W = (λijΦ + ξij)QiQj + (λ′
i′j′Φ + ξ′i′j′)Pi′P j′ + w(Φ) , (4.2)

where w(Φ) is a cubic polynomial in Φ. Remarkably, we shall find metastable vacua even in the

simplest case of w(Φ) = 0, which we assume from now on. The general situation is discussed in

Section 5 (in [33], the case w(Φ) = κΦ3 was used to stabilize Φ supersymmetrically).

At the classical level, the superpotential with w(Φ) = 0 has an U(1)R × U(1)V × U(1)′V

global symmetry under which the fields transform as

U(1)R U(1)V U(1)′V

Qi +1 +1 0

Qi +1 −1 0

Pi′ +1 0 +1

P i′ +1 0 −1

Φ 0 0 0

Λ3Nc−Nf 2Nc 0 0

Λ′3N ′
c−N ′

f 2N ′
c 0 0

(4.3)
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where the normalizations of the U(1)V ×U(1)′V charges are arbitrary. In the quantum theory the

U(1)R symmetry is anomalous with respect to the SU(Nc) and SU(N ′
c) gauge dynamics. The

theta angles θ and θ′ transform inhomogenously under U(1)R, and the holomorphic dynamical

scale,

(Λ/μ)3Nc−Nf = e−8π2/g2(μ)+iθ , (4.4)

and likewise for Λ′3N ′
c−N ′

f , transform with charges given in (4.3). The U(1)R symmetry is

broken explictly by the anomalies to the anomaly free discrete subgroups Z2Nc ⊂ U(1)R and

Z2N ′
c
⊂ U(1)R, respectively. The largest simultaneous subgroup of both Z2Nc

and Z2N ′
c

which

is left invariant by the superpotential (4.2) which couples the two gauge sectors through Φ

interactions is ZGCD(2Nc,2N ′
c)

⊂ U(1)R, where GCD(2Nc, 2N ′
c) is the greatest common divisor

of 2Nc and 2N ′
c.

In the SU(Nf )V ×SU(N ′
f )V global symmetry limit the superpotential (4.2) (with w(Φ) = 0)

reduces to

W = (λΦ + ξ)tr(QQ) + (λ′Φ + ξ′)tr(PP ) . (4.5)

This superpotential has the same U(1)R × U(1)V × U(1)′V global symmetry as (4.2), as well

as a Z2 × Z2 conjugation symmetry under which Qi ↔ Qi and Pi ↔ P i, respectively. The

form of the superpotential (4.5) may be enforced for any Nc and N ′
c by weakly gauging the

SU(Nf )V × SU(N ′
f )V symmetry. One of the masses, ξ or ξ′, may always be absorbed into a

shift of Φ. For ξ = ξ′ both masses may simultaneously be absorbed into a shift of Φ, and the

tree level superpotential in this case reduces to

W = λΦ tr(QQ) + λ′Φ tr(PP ) . (4.6)

This form agrees with the naturalness requirement that there be no relevant couplings. Φ = 0

is an enhanced symmetry point for both sectors, where the respective quarks become massless.

The case ξ �= ξ′ is analyzed in Section 5.

At the classical level this superpotential has an U(1)R × U(1)A × U(1)V × U(1)′V global
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symmetry

U(1)R U(1)A U(1)V U(1)′V

Qi +1 − 1
2 +1 0

Qi +1 − 1
2 −1 0

Pi′ +1 − 1
2 0 +1

P i′ +1 − 1
2 0 −1

Φ 0 +1 0 0

Λ3Nc−Nf 2Nc −Nf 0 0

Λ′3N ′
c−N ′

f 2N ′
c −N ′

f 0 0

(4.7)

where the normalizations of the U(1)A × U(1)V × U(1)′V charges are arbitrary. The U(1)R

charges are only defined up to an addition of an arbitrary multiple of the U(1)A charges. In

the quantum theory both the U(1)R and U(1)A symmetries are anomalous. With the classical

charge assignments (4.7) the U(1)R symmetry is broken explictly by the SU(Nc) and SU(N ′
c)

gauge dynamics to the anomaly free discrete subgroup ZGCD(2Nc,2N ′
c)

⊂ U(1)R as described

above. Likewise, the U(1)A symmetry is broken explicitly by SU(Nc) and SU(N ′
c) gauge

dynamics to anomaly free discrete subgroups ZNf
⊂ U(1)A and ZN ′

f
⊂ U(1)A, respectively. The

largest simultaneous subgroup of both ZNf
and ZN ′

f
which is left invariant by the superpotential

(4.6) is ZGCD(Nf ,N ′
f ) ⊂ U(1)A. The form of the potential (4.6) may be enforced by gauging the

non-anomalous discrete ZGCD(Nf ,N ′
f ) symmetry if it is non-trivial, along with weakly gauging

the SU(Nf )V × SU(N ′
f )V symmetry. This forbids the presence of a polynomial dependence

w(Φ).

The marginal tree-level superpotential (4.6) is, up to irrelevant terms, of rather generic

form within many UV completions of theories with moduli dependent masses. It requires

only that the masses of the flavors of both gauge groups are moduli dependent functions, and

that all flavors become massless at a single point in moduli space, here defined to be Φ = 0.
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Importantly for the discussion of metastable dynamical supersymmetry breaking below, the

superpotential (4.6) contains only marginal terms, so that any relevant mass scales must arise

from dimensional transmutation. Generalizations to other gauge groups and matter contents in

vector-like representations with the superpotential (4.6) are straightforward.

The classical moduli space for the theory (4.1) with superpotential (4.6) depends on the

gauge group ranks and number of flavors. For λ = λ′ = 0 the moduli space is parameterized

by Φ, meson invariants Mij = QiQj and M ′
i′j′ = Pi′ P̄j′ and for Nf ≥ Nc and/or N ′

f ≥ N ′
c

baryon and anti-baryon invariants Bi1i2...iNc
= Q[i1Qi2 · · ·QiNc ], Bi1i2...iNc

= Q[i1Qi2 · · ·QiNc ],

and/or B′
i1i2...iN′

c

= P[i1Pi2 · · ·PiN′
c
], B

′
i1i2...iN′

c

= P̄[i1 P̄i2 · · · P̄iN′
c
] respectively. For λ, λ′ �= 0 the

superpotential (4.6) lifts all the moduli parameterized by the mesons. The remaining moduli

space has a branch parameterized by Φ. For Φ �= 0 the flavors are massive and the baryon and

anti-baryon directions are lifted along this branch. For Nf ≥ Nc and/or N ′
f ≥ N ′

c there is a

second branch of the moduli space parameterized by the baryons and anti-baryons with Φ = 0.

The two branches touch at the point where all the moduli vanish.

4.2.2 Supersymmetric Vacua

The classical moduli space of vacua is lifted by nonperturbative effects in the quantum theory.

Since the metastable supersymmetry breaking vacua discussed below arise for Φ �= 0, only

this branch of the moduli space will be considered in detail. On this branch, holomorphy,

symmetries, and limits fix the exact superpotential written in terms of invariants, to be

W = λΦ TrM + (Nc − Nf )
[
Λ3Nc−Nf

det M

]1/(Nc−Nf )

+ λ′Φ TrM ′ + (N ′
c − N ′

f )

[
Λ′3N ′

c−N ′
f

det M ′

]1/(N ′
c−N ′

f )

(4.8)

For gauge sectors in the free magnetic range, the nonperturbative contribution refers to the

Seiberg dual. Since the meson invariants are lifted on this branch, they may be eliminated by

equations of motion, ∂W/∂Mij = 0 and ∂W/∂M ′
i′j′ = 0, to give the exact superpotential in
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terms of the classical modulus Φ

W = Nc

[
(λΦ)Nf Λ3Nc−Nf

]1/Nc + N ′
c

[
(λ′Φ)N ′

f Λ′3N ′
c−N ′

f

]1/N ′
c

. (4.9)

The supersymmetric minima are given by stationary points of the superpotential, ∂W/∂Φ =

0, for which

Nf

[
(λΦ)Nf Λ3Nc−Nf

]1/Nc + N ′
f

[
(λ′Φ)N ′

f Λ′3N ′
c−N ′

f

]1/N ′
c

= 0 . (4.10)

Physically distinct supersymmetric vacua are distinguished by the expectation value of the

superpotential.

4.2.3 Parameter ranges for the gauge sectors

Under mild assumptions we thus end up considering two SQCD sectors, characterized by

(Nc, Nf ,Λ) and (N ′
c, N

′
f , Λ′), respectively, and superpotential couplings (4.6). Different choices

may be considered here; to restrict them, it is important to note that calculable quantum

corrections can be generated in two different limits.

For λiΦ � Λi, with Λi = Λ or Λ′, the corresponding gauge group is weakly coupled and

hence generates small calculable corrections to the Kähler potential. Integrating out the mas-

sive quarks, for energies below Φ, leads to gaugino condensation, which gives nonperturbative

contributions as in (4.9).

On the other hand, for λiΦ � Λi, the corresponding gauge sector becomes strongly coupled.

The calculable case corresponds to having the gauge theory in the free magnetic range. For

concreteness, we choose this sector to be SU(Nc) (the unprimed sector), so that Nc +1 ≤ Nf <

3
2Nc.

For the (N ′
c, N

′
f , Λ′) (primed) sector, the interesting case arises for N ′

f < N ′
c and λ′Φ �

Λ′. Although the classical superpotential pushes Φ to zero, the primed dynamics generates a

nonperturbative term which makes the potential energy diverge as Φ → 0, in agreement with the

fact that Φ = 0 corresponds to an enhanced symmetry point where P and P̄ become massless.

Balancing the primed and unprimed contributions leads to a runaway direction in moduli space
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which will be lifted by one loop corrections. This stabilizes Φ at a nonzero value. Calculability

demands working in the energy range E � Λ′ and E � Λ so the dynamically generated scales

must satisfy Λ′ � Λ.

The semiclassical limit corresponds to energies E � Λ,Λ′, where both sectors are weakly

coupled. Since Λ′ � Λ, SU(Nc) confines first when flowing to the IR. For Λ′ � E � Λ,

the primed sector is weakly interacting while the unprimed sector has a dual weakly coupled

description [35] in terms of the magnetic gauge group SU(Ñc) with Ñc = Nf −Nc, N2
f singlets

Mij , and Nf magnetic quarks (qi, q̃j). In terms of this description, the full non-perturbative

superpotential reads

W = mΦtrM + htrqMq̃ + λ′ΦtrPP̄ + (N ′
c − N ′

f )

(
Λ′3N ′

c−N ′
f

det PP̄

)1/(N ′
c−N ′

f )

+(Nf − Nc)
(

detM

Λ̃3Nc−2Nf

)1/(Nf−Nc)

. (4.11)

Hereafter, Mij = QiQ̄j/Λ, and m := λΛ. The magnetic sector has a Landau pole at Λ̃ = Λ.

In this description, the meson M and the primed quarks (P, P̄ ) become massless at Φ = 0.

M = 0 is also an enhanced symmetry point since here the magnetic quarks (q, q̃) become

massless.

4.3 Metastability near enhanced symmetry points

In this section, metastable vacua near the origin of moduli space will be shown to exist for the

theory with superpotential (4.11). In Section 3.1, we analyze the branches of the moduli space

and determine where Coleman-Weinberg effects may lift the runaway. Next, in 3.2, we focus

on the region containing metastable vacua. In 3.3, we argue that other quantum corrections

are under control and do not affect the stability of these vacua. Finally, in Section 3.4 the

metastable vacua are shown to be parametrically long-lived.
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4.3.1 Exploring the moduli space

Starting from the superpotential (4.11), the discussion is simplified by taking the limit Λ̃ →

∞, while keeping m fixed. The nonperturbative detM term is only relevant for generating

supersymmetric vacua, as discussed in (4.9), and not important for the details of the metastable

vacua that will arise near M = 0. Thus, for M/Λ̃ → 0 and Φ/Λ̃ → 0, it is enough to consider

the superpotential

W = mΦ tr M + h tr qMq̃ + λ′Φtr PP̄ + (N ′
c − N ′

f )

(
Λ′3N ′

c−N ′
f

det PP̄

)1/(N ′
c−N ′

f )

. (4.12)

In this limit all the fields are canonically normalized and the classical potential is

V = VD + V ′
D +

∑
a

|Wa|2 (4.13)

where Wa = ∂aW , and a runs over all the fields. VD and V ′
D are the usual D-term contributions

from SU(Ñc) and SU(N ′
c). Since both gauge sectors are weakly coupled, it is enough to consider

the F-terms on the D-flat moduli space, parametrized by the chiral ring. This restriction has

no impact on the analysis of the metastable vacua.

Let us study the regime PP̄ → ∞. Then nonperturbative effects from SU(N ′
c) may be

neglected, and the classical superpotential

Wcl = mΦ tr M + h tr qMq̃ + λ′Φtr PP̄ (4.14)

is recovered. Setting

WMij
= mΦδij + hqiq̃j = 0 , (4.15)

we obtain Φ = 0 and hqq̃ = 0. This implies WtrPP̄ = Wq = 0. The locus WΦ = 0 then defines

a classical moduli space of supersymmetric vacua.

Let us keep PP̄ large, but include the non-perturbative effects from SU(N ′
c). Then WtrPP̄ =

0 sets PP̄ → ∞ and WΦ = 0 implies M → ∞. Therefore the model does not have a stable

vacuum in the limit Λ̃ → ∞. As discussed above, for Λ̃ finite and M large enough, the nonper-

turbative detM term introduces supersymmetric vacua as in (4.9).



114

All the F-terms are small in the limit M → ∞, Φ → 0, which thus corresponds to M2
F � |F |.

The one-loop corrections give logarithmic dependences on the fields (Φ,M) and these cannot

stop the power-law runaway behavior.

Thus we are led to consider the region near the enhanced symmetry point M = 0. As we

shall see below, this still has a runaway. Crucially, it turns out that one-loop corrections stop

this runaway (this novel effect is characterized as a “pseudo-runaway”). The reason for this is

that the Coleman-Weinberg formula [36]

VCW =
1

64π2
StrM4 ln M2 (4.16)

will have polynomial (instead of logarithmic) dependence. This will be explained next.

A global plot of the potential is provided in Fig. 4.1, where M has been expanded around

zero as below in equation (3.8). In the graphic, the ‘drain’ towards the supersymmetric vacuum

corresponds to the curve WΦ = 0.

4.3.2 Metastability Along the Pseudo-Runaway Direction

In the region Φ �= 0, (P, P̄ ) may be integrated out by equations of motion provided that

Λ′ � λ′Φ. This is a good description if we are not exactly at the origin but near it, as given by

Φ/Λ̃ � 1. Taking, as before, Λ̃ → ∞ and m fixed, the superpotential reads

W = mΦtr M + h tr qMq̃ + N ′
c

[
λ′N ′

f Λ′3N ′
c−N ′

f ΦN ′
f
]1/N ′

c . (4.17)

This description corresponds to an O‘Raifeartaigh-type model in terms of magnetic variables

but with no flat directions.

Given that φ = 〈Φ〉 �= 0, we will expand around the point of maximal symmetry

q =
(

q0 0

)
, q̃ =

⎛⎜⎜⎝q̃0

0

⎞⎟⎟⎠ , M =

⎛⎜⎜⎝0 0

0 0 + X · INc×Nc

⎞⎟⎟⎠ . (4.18)

Here q0 and q̃0 are Ñc × Ñc matrices satisfying

hq0iq̃0j = −mφδij , i, j = Ñc + 1, . . . Nf , (4.19)
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Figure 4.1: A plot showing the global shape of the potential. M has been expanded around zero
as in equation (3.8). Note the runaway in the direction X → −∞ and φ → 0. The singularity
at φ = 0 and the “drain” Wφ = 0 are clearly visible. Also visible is the Coleman-Weinberg
channel near X = 0 and φ large, discussed later. This plot was generated with the help of [37].

and the nonzero block matrix in M has been taken to be proportional to the identity; indeed,

only trM appears in the potential. This minimizes WM and sets Wq = Wq̃ = 0. The spectrum

of fluctuations around (4.18) is studied in detail in Section 4, where it is shown that the lightest

degrees of freedom correspond to (φ,X) with mass given by m. The effective potential derived

from (4.17) is

V (φ,X) = Ncm
2|φ|2 +

∣∣∣∣∣mNcX + N ′
fλ′N ′

f /N ′
c

(
Λ′3N ′

c−N ′
f

φN ′
c−N ′

f

)1/N ′
c
∣∣∣∣∣
2

+ VCW (φ,X) , (4.20)

where the second term comes from Wφ. The Coleman-Weinberg contribution will be discussed

shortly.

As a starting point, set X = 0 and VCW → 0. Minimizing V (φ,X = 0) gives

|φ0|(2N ′
c−N ′

f )/N ′
c =

√
N ′

c − N ′
f

NcN ′
c

N ′
f

λ′N ′
f /N ′

c

m
Λ′(3N ′

c−N ′
f )/N ′

c , (4.21)
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and since Wφφ ∼ m, V (φ0 + δφ,X = 0) corresponds to a parabola of curvature m. The

nonperturbative term only affects φ0 but not the curvature m; this will be important in the

discussion of subsection 3.4.

Next, allowing X to fluctuate (but still keeping VCW → 0), V (φ0, X) gives a parabola

centered at

XWφ=0 = −
√

N ′
c

Nc(N ′
c − N ′

f )
|φ0| (4.22)

and curvature m. In other words, X = 0 is on the side of a hill of curvature m and height

V (φ0, 0) ∼ m2|φ0|2.

To create a minimum near X = 0, VCW should contain a term m2
CW |X|2, with mCW � m;

this would overwhelm the classical curvature. As explained in Section 4, the massive degrees

of freedom giving the dominant contribution to VCW come from integrating out the massive

fluctuations along q0 and q̃0. The result is

VCW = Ncbh
3m|φ||X|2 + . . . (4.23)

with b = (log4 − 1)/8π2Ñc [1], and ‘. . .’ represent contributions that are unimportant for the

present discussion. In this computation, X and φ are taken as background fields. It is crucial

to notice that the quadratic X dependence appears because X = 0 is an enhanced symmetry

point.

In order to be able to produce a local minimum, the marginal parameters (λ, λ′) will have

to be tuned to satisfy

ε ≡ m2

m2
CW

=
m

bh3|φ| � 1 . (4.24)

In this approximation, the value of φ at the minimum is still given by (4.21); also, X is stabilized

at the nonzero value

X0 = −e
−i

N′
c−N′

f
N′

c
αφ

N ′
f

bh3
λ′N ′

f /N ′
c

(
Λ′3N ′

c−N ′
f

|φ0|2N ′
c−N ′

f

)1/N ′
c

. (4.25)

The phases of φ and X are thus related by

αX +
N ′

c − N ′
f

N ′
c

αφ = π . (4.26)
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Figure 4.2: A plot showing the shape of the potential, including the one-loop Coleman-Weinberg
corrections, near the metastable minimum. In the φ-direction the potential is a parabola,
whereas in the X-direction it is a side of a hill with a minimum created due to quantum
corrections. This plot was generated with the help of [37].

Inserting (4.21) into (4.25) gives

|X0| =

√
NcN ′

c

N ′
c − N ′

f

m

bh3
. (4.27)

At the minimum, (4.24) gives

(m/Λ′)3N ′
c−N ′

f � (bh3)(2N ′
c−N ′

f )/N ′
cλ′N ′

f (4.28)

so the Yukawa coupling λ in m = λΛ must be taken small for the analysis to be self-consistent.

The calculability condition Λ′ � λ′Φ follows as a consequence of this. At the minimum,

X0 � φ0. The F-terms are given by

Wφ ≈
√

NcN ′
c

N ′
c − N ′

f

mφ0 ∼ WX . (4.29)

and from (4.21) the scale of supersymmetry breaking is thus controlled by the dynamical scales

of both gauge sectors. In the next subsection, the vacuum will be shown to be long-lived if

(4.24) is satisfied.
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Thus the model has a metastable vacuum near the origin, created by a combination of

quantum corrections and nonperturbative gauge effects. The pseudo-runaway towards X =

XWφ=0 has been lifted by the Coleman-Weinberg contribution, as anticipated. This is the

origin of the 1/b dependence in (4.27). The local minimum is depicted in Fig. 4.2.

4.3.3 Stability under other quantum corrections

The metastable vacuum appears from a competing effect between a runaway behavior in the

primed sector and one loop corrections for the meson field X. One is naturally led to ask if,

under these circumstances, other quantum effects are under control. These include higher loop

terms from the massive particles producing VCW as well as perturbative g′ corrections.

Let us first study higher loop contributions from the massive fields in (q, q̃). They can correct

the potential by additive terms of the form Xn, n > 2; these are automatically subleading,

because |X0|2 � m|φ0|. They can also produce higher φ powers. However, such quantum

corrections can only depend on the combination mφ, and thus will be suppressed by powers of

the UV cutoff Λ0. For instance, a quartic term would appear as (mφ)4/Λ4
0. We conclude that

all these effects are subleading to (4.23).

Furthermore, since nonperturbative effects from SU(N ′
c) were used, we should make sure

that perturbative g′ effects are not important. First note that the nonperturbative term in

(4.20) is of the same order as the classical height of the potential m2|φ|2 (see eq. (4.29)). It

thus suffices to show that g′ perturbative corrections to this height are subleading. A simple

argument for this is as follows. Loops generate typical quartic terms in the Kähler potential

δK =
α

Λ2
0

(Φ∗Φ)2 (4.30)

which change the scalar potential by

[ α

Λ2
0

|φ|2
]
(m2|φ|2) . (4.31)

The prefactor is parametrically small, making these contributions negligible.
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4.3.4 Tunneling Out of the Metastable Vacuum

This section will show that the metastable non-supersymmetric vacuum can be made paramet-

rically long-lived by taking the parameter ε ≡ m
bh3|φ0| sufficiently small. The lifetime of the

metastable vacuum may be estimated using semiclassical techniques and is proportional to the

exponential of the bounce action, eB [38].

First, the direction of tunneling in field space needs to be determined. Recall that the

metastable vacuum in the (|φ|, X) space lies at

|φ0|
2N′

c−N′
f

N′
c =

√
N ′

c − N ′
f

NcN ′
c

N ′
f

λ
′N′

f
N′

c

m
Λ′ 3N′

c−N′
f

N′
c , X0 = −

√
NcN ′

c

N ′
c − N ′

f

m

bh3
. (4.32)

(The phase of φ, not of qualitative importance for the present discussion, has been chosen to be

zero. This fixes X to be real - see equation (4.26).) For fixed X the potential has a minimum at

|φ| = |φ0|; while quantum corrections may change this value by an order one number, corrections

to the curvature of the potential in the |φ| direction are negligible. This curvature is positive,

and thus the potential increases as |φ| moves away from |φ0|. The field therefore does not tunnel

in the |φ| direction (see (4.2)). Along the X direction, however, the potential without quantum

corrections near the enhanced symmetry point is like the side of a hill. For fixed |φ| = |φ0|, the

potential decreases in the negative X direction, and the classical curvature at X = 0 is m.

Quantum corrections are qualitatively important when |X| is sufficiently small. For |X|2 �

|WX |, their size grows quadratically as a function of X and they are sufficient to change the

slope of the classical potential enough to introduce a minimum. For |X|2 � |WX |, the growth

of the quantum corrections is only logarithmic, and the slope of the classical potential again

starts to dominate. Hence, the total potential has a peak that parametrically may be estimated

to lie near

Xpeak � −
√

|WX | = −
√

Ncm|φ0|. (4.33)

For |X| > |Xpeak|, the potential decreases as X becomes more negative until X reaches the

‘drain’ Wφ = 0,

XWφ=0 = −
√

N ′
c

Nc(N ′
c − N ′

f )
|φ0|. (4.34)
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The direction in field space to tunnel out of the false vacuum is towards negative X with fixed

|φ| = |φ0|. It thus suffices to consider the tunneling in the one-dimensional potential, V (X) ≡

V (|φ0|, X). Note that parametrically |X0| � |Xpeak| � |XWφ=0| as ε → 0.

For negative X, using equations (4.20) and (4.32), the one-dimensional potential may be

written as

V (X) =

(
2N ′

c − N ′
f

N ′
c − N ′

f

)
Nc m2 |φ0|2 + N2

c bh3 m2 |φ0|2 f

( −|X|
bh3|φ0|

)
. (4.35)

In the region |X| � |Xpeak|, the function f(x) is dominated by quantum corrections and may

be approximated by

f(x) � bh3

Nc ε
x2 , (4.36)

where a constant piece coming from the quantum corrections, again not important for the

calculation of the bounce action, has been neglected. On the other hand, in the region |Xpeak| �

|X| � |XWφ=0|, the constant slope of the classical potential dominates. The potential in this

region may be approximated by the classical potential plus a constant contribution from the

quantum corrections whose size is roughly given by the height of the potential barrier. The

height of the potential barrier is, from (4.36), of order f(Xpeak/bh3|φ0|) = 1, and it is thus loop-

suppressed compared to the overall magnitude of the potential near the metastable minimum.

The potential in this region will be parametrized by a straight line

f(x) � 1 − 2

√
N ′

c

Nc(N ′
c − N ′

f )
(x − xpeak). (4.37)

In order to estimate the bounce action it is not appropriate to use the thin-wall approxima-

tion [38]. Instead, the potential may be modeled as a triangular barrier [39]. Using the results

of [39], the value to which the field tunnels to is

X̃ ∼ − b h3|φ0|. (4.38)

Note that parametrically |X0| � |Xpeak| � |X̃| as ε → 0, and that |X̃| is loop-suppressed

compared to |XWφ=0|. The bounce action scales as

B ∼ X̃4

V (Xpeak) − V (X0)
∼ b h3 1

ε2
. (4.39)
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Figure 4.3: A plot of the classical potential (dashed line) and the total potential including
one-loop corrections (solid line) for fixed |φ| = |φ0|, where |φ0| is the position of the metastable
minimum in the φ-direction, defined in (4.32). In the figure, Nf = 3, Nc = 2, N ′

f = 1 and
N ′

c = 2. The values were scaled so that the position of the “drain”, Wφ = 0, equals 1 on both
axes. In these units, the position of the metastable minimum is on the order of 10−4. This plot
was generated with the help of [37].

Therefore B → ∞ as ε → 0, and the metastable vacuum is parametrically long-lived.

The total potential V (X), including the full one-loop Coleman-Weinberg potential computed

numerically with the help of [37], is shown in Fig. 4.3. The program of [37] also allowed us to

check numerically the previous tunneling properties.

4.4 Particle Spectrum and R-symmetry

In this section, we discuss in more detail the particle spectrum of the model and comment on

the R-symmetry properties.

The fluctuations of the fields around the metastable minimum may be parametrized following

ISS,

φ = φ0 + δφ , M =

⎛⎜⎜⎝ YÑc×Ñc
ZT

Ñc×(Nf−Ñc)

Z̃(Nf−Ñc)×Ñc
X0 + X(Nf−Ñc)×(Nf−Ñc)

⎞⎟⎟⎠ (4.40)
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Fermions Bosons
Weyl mass2 U(Nf − 1) Real mass2 U(Nf − 1)
mult. mult.

φ, trX 2 O(m2) 10 1 0 10

3 O(m2) 10

Xij − trX (Nf − 1)2 − 1 0 Adj0 2((Nf − 1)2 − 1) 0 Adj0
Y , χ χ̃ 1 0 10 1 0GB 10

1 0NCGB 10

2 O(hm|φ0|) 10 4 O(hm|φ0|) 10

Z,Z̃, ρ, ρ̃ 2(Nf − 1) O(hm|φ0|) �1+�−1 2(Nf − 1) 0GB �1

2(Nf − 1) O(hm|φ0|) �−1

2(Nf − 1) O(hm|φ0|) �1+�−1 2(Nf − 1) O(hm|φ0|) (�1+
2(Nf − 1) O(hm|φ0|) �−1)

Figure 4.4: Table showing the classical mass spectrum, grouped in sectors of StrM2 = 0 for
Nf = Nc + 1. The O(m2) fields in (φ, trX) are not degenerate. Although supersymmetry is
spontaneoulsy broken, there is no goldstino at the classical level.

q =

⎛⎜⎜⎝q0 + χÑc×Ñc

ρ(Nf−Ñc)×Ñc

⎞⎟⎟⎠ , q̃ =

⎛⎜⎜⎝q̃0 + χ̃Ñc×Ñc

ρ̃(Nf−Ñc)×Ñc

⎞⎟⎟⎠ , (4.41)

where q0q̃0 := −mφ0/h. All fields are complex; φ0 and X0 are the values at the metastable

minimum.

The relevant mass scales are

M2 = 0, m2, m2
CW = bh3m|φ0|, hm|φ0| . (4.42)

The particles may be divided into three ‘sectors’ with small mixing amongst themselves. Up to

quadratic order, the superpotential is

W = Wφφδφδφ + mNcδφ(X0 + X) + mδφ

Ñc∑
α=1

Yαα

+mNcφ0(X0 + X) + h

Nc∑
f=1

[q0(ρ̃ZT )ff + q̃0(ρZ̃T )ff + X0(ρρ̃T )ff ]

+h

Ñc∑
α=1

[q0(χ̃Y )αα + q̃0(χY )αα] . (4.43)

The first line is related to the new dynamical field δφ; unlike ISS, now X is not a pseudo-flat

direction. The second and third lines are as in ISS.

Consider the case Nf = Nc + 1; the spectrum of classical masses is shown in Fig. 4.4, and

the spectrum of the masses including one-loop CW corrections is shown in Fig. 4.5. The fields

are grouped in sectors of STrM2 = 0.



123

Fermions Bosons
Weyl mass2 U(Nf − 1) Real mass2 U(Nf − 1)
mult. mult.

φ, trX 1 0 10 1 0 10

1 O(m2) 10 1 O(m2) 10

2 O(m2
CW) 10

Xij − trX (Nf − 1)2 − 1 0 Adj0 2((Nf − 1)2 − 1) O(m2
CW) Adj0

Y , χ χ̃ 1 0 10 1 0GB 10

1 O(m2
CW) 10

2 O(hm|φ0|) 10 4 O(hm|φ0|) 10

Z,Z̃, ρ, ρ̃ 2(Nf − 1) O(hm|φ0|) �1+�−1 2(Nf − 1) 0GB �1

2(Nf − 1) O(hm|φ0|) �−1

2(Nf − 1) O(hm|φ0|) �1+�−1 2(Nf − 1) O(hm|φ0|) (�1+
2(Nf − 1) O(hm|φ0|) �−1)

Figure 4.5: Table showing the mass spectrum, including one-loop corrections, grouped in sectors
of StrM2 = 0 for Nf = Nc + 1. Notice the appearance of the goldstino in the (φ, tr X) sector.
The O(m2) fields in (φ, trX) are not degenerate; here m2

CW = bh3m|φ0|.

Fermions Bosons
Weyl mass2 U(Nf − Ñc) SU(Ñc)D Real mass2 U(Nf − Ñc) SU(Ñc)D

mult. mult.
φ, trX 2 O(m2) 10 1 1 0 10 1

3 O(m2) 10 1
Xij − trX (Nf − Ñc)2 − 1 0 Adj0 1 2((Nf − Ñc)2 − 1) 0 Adj0 1

Y , χ χ̃ Ñ2
c 0 10 Adj Ñ2

c 0GB 10 Adj
Ñ2

c 0NCGB 10 Adj
2Ñ2

c O(hm|φ0|) 10 Adj 4Ñ2
c O(hm|φ0|) 10 Adj

Z,Z̃, ρ, ρ̃ 2Ñc(Nf − Ñc) O(hm|φ0|) �1+�
−1 �+� 2Ñc(Nf − Ñc) 0GB �1 �

2Ñc(Nf − Ñc) O(hm|φ0|) �
−1 �

2Ñc(Nf − Ñc) O(hm|φ0|) �1+�
−1 �+� 2Ñc(Nf − Ñc) O(hm|φ0|) (�1+ (�+

2Ñc(Nf − Ñc) O(hm|φ0|) �
−1) �)

Figure 4.6: Table showing the classical mass spectrum, grouped in sectors of Strm2 = 0, for
Nf > Nc + 1. After gauging SU(Ñc), the traceless goldstone bosons from (χ, χ̄) are eaten,
giving a mass m2

W = g2m|φ0|/h to the gauge bosons. Further, from VD = 0, the noncompact
goldstones also acquire a mass m2

W . Including CW corrections, trX acquires mass m2
CW and

one of the fermions becomes massless.

The fields (Y, χ, χ̃) form three chiral superfields, with supersymmetric masses, and hence do

not contribute when integrated out at one loop. The Coleman-Weinberg potential is generated

by the fields (Z, Z̃, ρ, ρ̃), which are the heaviest in the spectrum. Including such quantum

corrections, tr X acquires a mass m2
CW , while the mass of φ is not modified. Interestingly, at

the classical level there is no massless goldstino, since the expansion is not around a critical

point of the classical potential. Including quantum corrections, one of the massive fermions in

the (φ, tr X)-sector becomes massless, as may be seen in Fig. 4.5. A similar situation, in the

opposite limit of small supersymmetry breaking, has been discussed recently in [40].

The case Ñc = Nf − Nc > 1 can be similarly analyzed, and is shown in Fig. 4.6.
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The Standard Model gauge group can be embedded inside the global symmetry group of this

model. In this way, renormalizable models of direct gauge mediated supersymmetry breaking

may be constructed.

4.4.1 Breaking the R-symmetry

To have gaugino masses, any R-symmetry must be broken, explicitly and/or spontaneously [1],

[40]. The low energy superpotential 4.17 has the following U(1)R symmetry:

Rφ = 2
N ′

c

N ′
f

, RX = 2
N ′

f − N ′
c

N ′
f

, Rq = Rq̃ =
N ′

c

N ′
f

. (4.44)

Since the VEV’s of these fields are nonzero in the metastable vacuum, the R-symmetry is

spontaneously broken, and there is an R-axion a. In terms of the phase of the i-th field, the

axion is

φi =
1√
2

fR

Ri
eiRi(a/fR) , (4.45)

where the decay constant fR is defined as

fR =
[∑

i

(√
2Ri|〈φi〉|

)2]1/2

(4.46)

and Ri is the R-charge of φi. In [6] it was pointed out that if R-symmetry is broken spon-

taneously in an O’ Raifeartaigh model, then the theory should contain a field with R-charge

different than 0 or 2. This is also the case in the present situation, although our model does

not contain the linear O’ Raifeartaigh term.

For finite Λ̃, the det X contributions need to be taken into account, and the U(1)R sym-

metry becomes anomalous. Adding this term induces a tadpole for Y , which now acquires an

expectation value of order

Y ∼
[
X0

Λ̃

] 3Nc−2Nf
Nf −Nc

X0 , (4.47)

so that |Y | � |X0|. Then the mass of the R-axion follows from

|WX |2 ∼
∣∣∣∣∣mφ + cX2

0

[
X0

Λ̃

]2
3Nc−2Nf

Nf −Nc

∣∣∣∣∣
2

. (4.48)
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Deriving twice the cross-term, which is proportional to cos(a/f), yields the axion mass

m2
a ∼ m2

([
λ

bh3

]2
3Nc−2Nf

Nf −Nc ε

bh3

)
� m2 , (4.49)

where λ is the Yukawa coupling appearing in m = λΛ. Thus, R-symmetry is both spontaneously

and explicitly broken.

4.5 Meta-Stability Near Generic Points of Enhanced Symmetry

In this section, the existence and genericity of metastable vacua near enhanced symmetry points

is explored. Statistical analyses of the supersymmetry breaking scale up to date have not taken

into account loop quantum effects ([28], [29], [30]) as these corrections are hard to evaluate on

an ensemble of field theories. However, metastable vacua introduced by the Coleman-Weinberg

potential, with all the relevant parameters generated dynamically, may change such results.

Before considering the general case, let us analyze (4.5).

4.5.1 Non-coincident enhanced symmetry points

Consider two gauge sectors as in (4.5), with enhanced symmetry points at Φ = 0 and Φ = ξ,

respectively. The free magnetic sector is taken to be massless at Φ = 0; integrating over the

other primed sector gives

W = mΦtr M + h tr qMq̃ + N ′
c

[
λ′N ′

f Λ′3N ′
c−N ′

f (Φ + ξ)N ′
f
]1/N ′

c . (4.50)

Since metastable vacua were shown to exist for ξ = 0, here the discussion is restricted to the

limit of ξ much bigger than all the energy scales in the problem. This is consistent with the

fact that naturalness demands any relevant coupling to be of order the UV cutoff.

Introducing the notation

α = N ′
f/N ′

c , K = N ′
cλ

′N ′
f /N ′

c Λ′(3N ′
c−N ′

f )/N ′
c , (4.51)

the equations of motion for φ and X give

Ncm
2φ = α2(1 − α)

K2

ξ3−2α
. (4.52)
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|X| =
Nc

α(1 − α)
m2ξ2−α

K
. (4.53)

Without fine-tuning m or K, X tends to be driven away from the origin as ξ increases. The

fine-tuning may be seen, for instance, from the requirement mCW � m, which implies

m3 � bh3 K2

ξ3−2α
. (4.54)

Although this resembles the calculability condition (4.28), now there are powers of the large

scale ξ in the denominator. For ξ of order the UV cutoff, this represents a big fine-tuning, either

on the coefficient K or on the small mass parameter m.

The conclusion is that, while metastable vacua can occur for far away enhanced symmetry

points, this situation is not generic and requires fine-tuning. This is to be expected, once

relevant parameters are allowed to appear in the superpotential.

4.5.2 General Analysis

A generic structure in the landscape of effective field theories corresponds to a gauge theory

with vector-like matter and mass given by a singlet, whose dynamics is related to another sector.

The superpotential may be written as

W = f(Φ) + λ Φtr(QQ̄) . (4.55)

Here, (Q, Q̄) are Nf quarks in SU(Nc) SQCD; f(Φ) may be generated, for instance, from a flux

superpotential, by nonrenormalizable interactions [7], or, as in the case studied in this work,

by another gauge sector. Next, it is required that the SQCD sector be in the free magnetic

range; this is still a generic situation. The dual magnetic description is weakly coupled near the

enhanced symmetry point Φ = 0, where the superpotential reads

W = f(Φ) + mΦtr M + h tr qMq̃ . (4.56)

The question that will be addressed here is: what restrictions need to be imposed on f(Φ),

so that the one loop potential VCW can create a metastable vacuum near M = 0? Since we are



127

interested in the novel effect of pseudo-runaway directions we will demand f ′(Φ) �= 0. The case

f ′(Φ) = 0 is standard in such analyses, see e.g. [33].

As discussed in Section 3, this is possible only if

m2
CW := Ncbh

3m|φ| � m2 (4.57)

where φ denotes the expectation value of Φ at the metastable vacuum. Further, one needs to

impose that

h2|X|2 � m|φ| (4.58)

in order for the Taylor expansion of VCW around X = 0 to converge. Evaluating the potential

as in (4.20),

V = Ncm
2|φ|2 +

∣∣f ′(φ) + mNc X
∣∣2 + m2

CW |X|2 . (4.59)

The rank condition, an essential ingredient in the discussion, just follows from having SQCD

in the free magnetic range. This fixes the first term, which comes from WM , and the block

structure of the matrix M ; X was defined in (4.18).

Extremizing V (φ, X = 0) leads to

Ncm
2φ = −f ′(φ) f ′′(φ)∗ . (4.60)

On the other hand, minimization with respect to X in the approximation m2
CW � m2, gives

the metastable vacuum

m2
CW X = −Ncmf ′(φ) . (4.61)

Notice that m2
CW � m2 makes this value parametrically smaller than the position of the ‘drain’

f ′(φ) + mNc X = 0. This ensures the stability of the nonsupersymmetric vacuum. Replacing

(4.60) in (4.61) (with m2
CW = Ncbh

3|φ|) yields

|X| =
Ncm

2

bh3

1
|f ′′(φ)| . (4.62)

It is possible to combine the conditions (4.57) and (4.58) with the values at the metastable

vacuum (4.60), (4.62), to derive constraints on f(φ): (4.57) now reads

|f ′(φ)f ′′(φ)|
m3

� 1
bh3

, (4.63)
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while (4.58) gives

h2|f ′(φ)|2 � m(bh3)2|φ|3 . (4.64)

Summarizing, the necessary conditions to have metastable vacua near X = 0 are (4.63) and

(4.64). As illustrated in §4.5.1, they require fine-tuning the coefficients of f(φ), except in the

case of coincident enhanced symmetry points, where there are no relevant scales.

4.6 Conclusions

We constructed a model with long-lived metastable vacua in which all the relevant parameters,

including the supersymmetry breaking scale, are generated dynamically by dimensional trans-

mutation. The model consists of two N = 1 supersymmetric QCD sectors with flavors whose

respective masses are controlled by the same singlet field. One of the gauge sectors is in the

free magnetic range while the other is in the electric range. The metastable vacua are produced

near a point of enhanced symmetry by a combination of nonperturbative gauge effects and,

crucially, perturbative effects coming from the one-loop Coleman-Weinberg potential.

The model has the following desirable features: an explicitly and spontaneously broken

R-symmetry, a singlet, a large global symmetry, naturalness and renormalizability.

There are two points that have to be stressed. First, a salient feature of the model is the

existence of pseudo-runaway directions. They correspond to a runaway behavior that is lifted

by one loop quantum corrections. This has not been observed before, the closest analog corre-

sponding for example to the pseudo-moduli of [1]. It is quite plausible that this phenomenon

appears in other models as well. The criterion is that the height of the potential has to be para-

metrically larger than the curvature, as quantified in Section 3. The strength of the quadratic

Coleman-Weinberg corrections is set by this height, thus introducing a local minimum of high

curvature in the (otherwise) runaway potential.

In dynamical supersymmetry breaking models ([41], [42], [43], [44], [45], [46]), nonsupersym-

metric vacua generally arise due to competing effects between a nonperturbative runaway and

a classical term in the superpotential, as in the (3,2) model [47]. Our analysis shows that it is
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possible to stabilize such runaways even without tree-level terms, provided that one is close to

certain enhanced symmetry points.

The second feature worth emphasizing is the connection between enhanced symmetry points

in gauge theory moduli spaces and metastable dynamical supersymmetry breaking. There are

reasons to believe that such vacua are generic. At the field theory level this is associated to the

fact that a nonzero Witten index [48] may still allow an approximate R-symmetry [49]. While

dynamical ISS models are not hard to construct, in general these mechanisms involve discrete

R-symmetries [7]. This is very suppressed in the landscape of string vacua, correponding to a

high codimension locus in the flux lattice [50]. On the other hand, the construction presented

here does not suffer from the previous difficulty. Therefore, it would be interesting to study

how statistical estimates of the scale of supersymmetry breaking change, once the model is

embedded in string theory.
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Chapter 5

Direct Detection of Non-Chiral Dark Matter

This chapter appears in print in Phys. Rev. D 78, 015004 (2008), arxiv:0710.1668 [hep-ph].

Direct detection experiments rule out fermion dark matter that is a chiral representation

of the electroweak gauge group. Non-chiral real, complex and singlet representations, however,

provide viable fermion dark matter candidates. Although any one of these candidates will be

virtually impossible to detect at the LHC, it is shown that they may be detected at future

planned direct detection experiments. For the real case, an irreducible radiative coupling to

quarks may allow a detection. The complex case in general has an experimentally ruled out tree-

level coupling to quarks via Z-boson exchange. However, in the case of two SU(2)L doublets, a

higher dimensional coupling to the Higgs can suppress this coupling, and a remaining irreducible

radiative coupling may allow a detection. Singlet dark matter could be detected through a

coupling to quarks via Higgs exchange. Since all non-chiral dark matter can have a coupling to

the Higgs, at least some of its mass can be obtained from electroweak symmetry breaking, and

this mass is a useful characterization of its direct detection cross-section.

5.1 Introduction

The evidence for the existence of non-baryonic dark matter is overwhelming. Within the con-

cordance ΛCDM cosmological model, the required dark matter relic density is now known to

remarkable accuracy [1]. The nature of the dark matter particles within this model, however,

is unknown.

There is a possibility that new physics associated with electroweak symmetry breaking
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(EWSB) might contain a dark matter candidate with the correct relic density. This is be-

cause weakly interacting massive particles (WIMPs) can have the observed dark matter relic

density through thermal freeze-out if their mass is on the order of the electroweak (EW) scale.

In addition, it is possible to stabilize WIMPs by including a symmetry that forbids their decay

into other particles. This allows them to be good dark matter candidates.

The preferred mass of WIMPs suggests the possibility that they may be produced and de-

tected at the upcoming Large Hadron Collider (LHC) at CERN. Two other types of experiments

attempting to detect dark matter are indirect and direct detection experiments. While the in-

direct detection experiments look for the particles that are produced from annihilating dark

matter, the direct detection experiments attempt to infer the presence of dark matter particles

as they scatter off nuclei within detectors by looking for the resulting nuclear recoil.

The rationale for the direct detection experiments is that the dark matter lies in a halo which

encompasses our Milky Way galaxy. As the earth and sun rotate around the galactic center,

detectors on the earth move through the halo and intersect the path of dark matter particles,

which are expected to scatter off the nuclei inside the detectors. Since the local dark matter

density is not known better than to within a factor of two, there is some uncertainty in the

expected scattering rate [2]. Depending on the experimental setup, the nuclear recoil from the

scattering would produce ionization, phonons or scintillation, any of which can be observed. Ex-

amples of direct dark matter detection experiments include CDMS, DAMA, NaIAD, PICASSO,

ZEPLIN, EDELWEISS, CRESST, XENON and WARP [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

The dark matter scattering off nuclei within a detector can proceed via two fundamentally

different types of interactions. There is, on the one hand, a spin-independent, or coherent,

interaction between the dark matter and the nucleons. In this case the contribution of each

nucleon to the total scattering cross-section interferes constructively across the nucleus. Scat-

tering off nuclei is therefore enhanced roughly by a factor of A2 in the cross-section, where A is

the number of nucleons in the nucleus. This large enhancement factor is absent for the other

type of interaction, which is spin-dependent, and couples the dark matter spin to the spin of the
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nuclei. The large enhancement factor is also the main reason that much tighter constraints (a

factor of about 105 −106) exist on the SI cross-section, normalized to cross-section per nucleon,

than on the SD cross-section.

In this paper, fermion dark matter transforming under the EW gauge group SU(2)L ×

U(1)Y will be added to the standard model (SM), and the observational consequences at a

direct detection experiment will be discussed. In particular, chiral and non-chiral (real and

complex) representations of SU(2)L × U(1)Y will be considered in §5.2 and §5.3, respectively,

and the focus will be on spin-independent interactions for the reasons discussed in the previous

paragraph. §5.4 discusses how the direct detection cross-section may be characterized in terms

of the fraction of the dark matter mass that is obtained through EWSB. This characterization

is particularly useful for EW singlet dark matter. The conclusions are presented in §5.5.

The results of this paper are summarized in Figure 5.3. Shown are the current experimental

upper bounds on the spin-independent cross-section for WIMP scattering off nucleons from

XENON10 (solid line) [14], the projected upper bounds for SuperCDMS 2-ST at Soudan (blue

dashed line), SuperCDMS 25kg / 7-ST at Snolab (green dashed line), XENON1T (magenta

dashed line) and SuperCDMS Phase C (red dashed line) [15, 16, 17]. The cross-sections for

chiral and non-chiral dark matter are shown, in addition to the Higgs contribution to the direct

detection cross-section for a variety of parameter choices.

5.2 Chiral Electroweak Dark Matter

Chiral EW matter is forbidden to have an explicit mass term in the Lagrangian since such a

mass term is not gauge invariant. It instead has a Yukawa coupling to the Standard Model

Higgs field and gains all its mass from EWSB through the Higgs mechanism. Chiral EW dark

matter particles are thus Dirac fermions.

EW precision measurements put tight constraints on additional chiral matter. For example,

an additional doublet of colorless heavy fermions gives a contribution of 1/6π to the electroweak
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S-parameter, which is about 1.8σ away from its measured central value. An additional degen-

erate generation is disfavored even more strongly at the 99.95% confidence level [18].

Although EW precision measurements still allow room for chiral EW dark matter, direct

detection experiments rule it out as a viable dark matter candidate. The reason is that it has

a vector coupling to the Z-boson and can therefore scatter coherently off the nuclei inside the

detector via a tree-level Z-boson exchange. The resulting cross-section is large enough that

such dark matter particles would already have been seen [19].

In general, the cross-section per nucleon for dark matter scattering coherently off nuclei via

the exchange of a Z-boson is given by

σ � G2
F

2π
m2

χN

1
A2

[
(1 − 4 sin2 θW )Z − (A − Z)

]2

Y
2
. (5.1)

Here, GF is the Fermi coupling constant, mχN is the reduced mass of the dark matter mass

(mχ) and nucleon mass (mN ), A (Z) is the mass (atomic) number of the nucleus, θW is the

weak mixing angle, and Y ≡ 1
2 (YL + YR), where YL and YR are the hypercharge of the left-

and right-handed components of the dark matter particle [19]. The convention chosen here is

Q = T3 + 1
2Y , where Q is the electric charge, T3 is the third component of the isospin, and Y

is the hypercharge of the particle. The term proportional to Z in the square brackets is for the

dark matter scattering off the protons inside the nucleus. It is suppressed since 1− 4 sin2 θW is

very small. The term proportional to A − Z is for the dark matter scattering off the neutrons

inside the nucleus, and it dominates. The factor of 1/A2 normalizes the cross-section to a

cross-section per nucleon.

Chiral EW dark matter has YR = YL ± 1, i.e. Y = YL ± 1
2 . For the CDMS experiment, for

example, which uses Germanium (7332Ge), the scattering cross-section per nucleon then becomes

σ � 5 × 10−40 cm2, (5.2)

for Y ≥ 1
2 . This result is roughly independent of the mass of the dark matter, at least for a
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large enough dark matter mass. A Dirac neutrino1 saturates the lower bound as it has YL = 1

and YR = 0, and thus Ȳ = 1
2 . For mχ above roughly 10 GeV, the cross-section is larger than

current bounds, see Figure 5.3, and such chiral EW dark matter is therefore ruled out as a

viable dark matter candidate. Note that for mχ less than about 10 GeV (and down to about 2

eV, at which point the dark matter ceases to be “cold”), the direct detection cross-section is not

larger than the experimental bound. However, since these particles couple to the Z-boson, the

Z could have decayed into them. The precise CERN LEP measurement of the invisible decay

of the Z-boson rules out this possibility.

5.3 Non-Chiral Dark Matter

Non-chiral, or vector, matter is different from chiral matter in that an explicit mass term in

the Lagrangian is allowed. Even though, a priori, there is nothing that protects this explicit

mass term from being large, its size can nevertheless naturally be on the order of the EW scale.

This may happen if, for example, the underlying high-scale theory has a global chiral symmetry

that is spontaneously broken at the EW scale, but that forbids an explicit mass term at higher

scales.

Non-chiral matter is not subject to the same tight constraints from EW precision measure-

ments as is chiral matter. This is because there is no renormalizable coupling to the Higgs field.

Although there is a higher dimensional (non-renormalizable) coupling to the Higgs, this does

not cause any conflict with EW precision measurements. Instead, this coupling implies that

non-chiral matter gains some small fraction of its mass from EWSB. It will be seen that the

fraction of the dark matter particle’s mass that comes from EWSB is useful characterization of

the dark matter’s direct detection cross-section. This will be discussed further in §5.4.

Stability and electric neutrality are basic requirements of any dark matter particle. Since

massive non-chiral representations are allowed to carry conserved quantum numbers, which

1A Dirac neutrino also has an axial vector coupling to the Z-boson and therefore a spin-dependent interaction
with nuclei.
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prohibits their mixing with Standard Model fermions, the lightest state of such an additional

representation can indeed be stable. Moreover, such representations contain both new neutral

and new charged particles. The charged particles are several hundred MeV heavier than the

neutral particles due to EWSB. Intuitively one can understand the mass difference as arising

from different one-loop corrections to the masses and wave-functions: the charged components

receive corrections from both virtual photons and Z-bosons in the loop, whereas the neutral

components receive corrections only from virtual Z-bosons [20]. This means that the lightest

state of an additional massive non-chiral representation can also be expected to be neutral.

It is useful to divide non-chiral representations up further into real and complex represen-

tations. Each of these will now be discussed by focusing on an explicit example.

5.3.1 Real representations of SU(2)L × U(1)Y

If the dark matter particle is part of a real representation of SU(2)L × U(1)Y , then its hy-

percharge, Y , must be zero. Since the charge, Q, of the dark matter must be zero, this also

implies T3 = Q − 1
2Y = 0. The dark matter particle, now a Majorana fermion, therefore does

not couple to the Z-boson, and there is no coherent tree-level scattering off nuclei. This makes

it “safe” from the current experimental bounds.

As an example, consider the dark matter to be part of an SU(2)L triplet with zero hyper-

charge,

L =

⎛⎜⎜⎜⎜⎜⎜⎝
L+

L0

L−

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.3)

Here the neutral component L0 is a possible dark matter candidate. The explicit mass term in

the Lagrangian is given by

L ⊃ −m

2
(2L+L− + L0L0). (5.4)
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The non-renormalizable operator that, after EWSB, splits the mass of the neutral compo-

nents from the mass of the charged components by several hundred MeV is given by [20]

L ⊃ εabcLaLbH†T cH, (5.5)

where the T a, a = 1, 2, 3, are the SU(2)L generators, and H is the Standard Model Higgs field.

The interactions of L0 with the Standard Model gauge bosons and the charged fields L± are

given by

gW+
μ (−L+†σ̄μL0 + L0†σ̄μL−) + gW−

μ (−L0†σ̄μL+ + L−†σ̄μL0). (5.6)

Two-component spinor notation for the dark matter is employed throughout this paper, while

four-component Dirac notation will be used below for the quark fields (in equation (5.6), σμ =

(I2, �σ) and σ̄μ = (I2,−�σ), where �σ are the usual Pauli matrices).

Note the absence of any coupling of the neutral component L0 to the Z-boson. This means

there is no tree-level scattering for L0 off nuclei, making this a viable dark matter candidate.

There is, however, an irreducible one-loop coupling to nucleons, which will be discussed in

§5.3.3.

The particle L0 behaves like a wino-like lightest supersymmetric particle (LSP) found in the

Minimal Supersymmetric Standard Model (MSSM). Assuming that L0 makes up all of the dark

matter in the universe, it may be shown that it must have a mass of about

mL0 � 2 TeV (5.7)

to give the correct dark matter relic density. This mass was estimated from Figure 4 in [21]. Non-

perturbative electroweak corrections to the dark matter annihilation cross-section as included

in [22] require the dark matter to have a mass of about 2.7 TeV to obtain the correct relic

density.

It is interesting to note that if L0 makes up most of the dark matter component in the

universe, it will most likely be very difficult to detect at the LHC. Although a detailed collider

study is beyond the scope of this paper, the following comments are meant to give an indication
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of this difficulty. Since the L±,0 are heavy and weakly interacting, their production cross-

sections are small. They may be very roughly estimated to be on the order of 10−5 − 10−4

pb, as may be extrapolated from Figure 2 in [23], which shows the production cross-section for

the related wino-like neutralinos and charginos in the MSSM. Moreover, the charged states L±

are split from the neutral state L0 only by a small amount, so that even though they produce

ionizing charged tracks, they do so only within the inner portion of the detector, before they

each decay into the neutral state by emitting a soft pion [20]. The missing energy from the

two neutral particles escaping the detector balances, so that there is not much visible missing

energy. At the LHC it is very difficult to trigger on this, and such dark matter particles will thus

be extremely difficult to detect at the LHC. It is possible but unlikely that a detailed collider

study will change this conclusion.

5.3.2 Complex representation of SU(2)L × U(1)Y

If the dark matter particle is part of a complex representation of SU(2)L × U(1)Y , then its

hypercharge is nonzero. Since the charge of the dark matter must be zero, T3 = − 1
2Y . The

dark matter particle, now a Dirac fermion, therefore couples to the Z-boson at tree-level. In

the notation of equation (5.1), YL = YR ≡ Y , and the cross-section per nucleon for scattering

off nuclei is given by

σ � G2
F

2π
m2

χN

1
A2

[
(1 − 4 sin2 θW )Z − (A − Z)

]2

Y 2. (5.8)

For the CDMS experiment, using Germanium, the scattering cross-section per nucleon then

becomes

σ � 2 × 10−39 Y 2 cm2, (5.9)

which is experimentally ruled out.

If this tree-level coupling of the dark matter particle to the Z-boson can be avoided or

at least suppressed, this type of dark matter again becomes viable. This can be achieved for

example by adding additional matter, cf. [24, 25, 26, 27, 28]. In the case of dark matter that is
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a doublet of SU(2)L, however, it can be achieved by a non-renormalizable operator that couples

the dark matter particle to the Higgs.

The example of two SU(2)L doublets of opposite hypercharge will now be discussed in detail.

Denote the two SU(2)L doublets by

L1 =

⎛⎜⎜⎝ L0
1

L−
1

⎞⎟⎟⎠ L2 =

⎛⎜⎜⎝ −L+
2

L0
2

⎞⎟⎟⎠ , (5.10)

where L1 has hypercharge Y = −1, and L2 has hypercharge Y = +1. The explicit mass term

in the Lagrangian is given by

L ⊃ −mL1L2, (5.11)

where the SU(2)L indices are contracted as εαβLα
1 Lβ

2 . The neutral components of each doublet

together form a neutral Dirac fermion.

There is an accidental U(1)L1L2 symmetry under which L1 and L2 transform opposite to

each other. This symmetry requires the neutral components to be part of a Dirac fermion, and

thus allows the tree-level scattering off nuclei via Z-boson exchange. An operator which violates

this symmetry can, however, split the Dirac state into a pseudo-Dirac state, which consists of

two Majorana fermions that have a tiny mass splitting. This splitting can substantially suppress

the tree-level scattering.

The non-renormalizable operator that, after EWSB, splits the mass of the neutral compo-

nents from the mass of the charged components by several hundred MeV is given by

L ⊃ L2T
aL1H

†T aH, (5.12)

where the T a are the SU(2) generators [20]. This operator, however, only affects the splitting

of the charged states from the neutral states. Since it does not violate the U(1)L1L2 symmetry,

it does not affect the neutral Dirac state, whose scattering off nuclei remains unchanged.

However, a non-renormalizable operator that does violate the U(1)L1L2 symmetry is given

by

L ⊃ − c

M
(L1H)(L1H) + h.c. − c∗

M
(L2H

c)(L2H
c) + h.c., (5.13)
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where brackets indicate that the SU(2)L indices are contracted, Hc = iσ2H
∗, and H has

been assigned hypercharge Y = −1. The scale M is some high mass scale at which this

operator is generated, and c is an O(1) coefficient. Note that in writing down this term, the

discrete symmetry L1 ↔ (L2)
c

was assumed, so that the coefficients are the same up to complex

conjugation (removing this assumption leaves unchanged the main conclusion, namely that the

neutral Dirac state will be split). This operator only exists for dark matter that has hypercharge

|Y | = 1.

Once the Higgs field obtains a vacuum expectation value, v, and EW symmetry has been

broken, the neutral components get an additional contribution to the mass, which can be written

as δ = c
M v2. M will have to be large enough to ensure |δ| � m. Including corrections up to

O
(

Imδ
m

)
or O

(
Reδ
m

)
, the mass term may be written as

−1
2

(
L0

1 L0
2

)⎛⎜⎜⎝ δ m

m δ∗

⎞⎟⎟⎠
⎛⎜⎜⎝ L0

1

L0
2

⎞⎟⎟⎠

= −1
2

(
χ2 χ1

)⎛⎜⎜⎝ m + Reδ 0

0 m − Reδ

⎞⎟⎟⎠
⎛⎜⎜⎝ χ2

χ1

⎞⎟⎟⎠ , (5.14)

where the neutral mass eigenstates are given by

χ1 � i√
2

((
− 1 +

1
2

Imδ

m

)
L0

1 +

(
1 +

1
2

Imδ

m

)
L0

2

)
(5.15)

χ2 � 1√
2

((
1 +

1
2

Imδ

m

)
L0

1 +

(
1 − 1

2
Imδ

m

)
L0

2

)
(5.16)

These are the two Majorana fermions that make up the pseudo-Dirac state. Ignoring higher

order corrections, the mass eigenstates may also be written as

χ1 � i√
2
(−L0

1 + L0
2), m1 = m − Reδ (5.17)

χ2 � 1√
2
(L0

1 + L0
2), m2 = m + Reδ. (5.18)

Here χ1, the lighter of the two Majorana particles, is the dark matter particle. It behaves like

a higgsino-like LSP found in the MSSM. Assuming that χ1 makes up all of the dark matter in
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the universe, it must have a mass of about

mχ1 � 1 TeV, (5.19)

to give the correct dark matter relic density. This mass was estimated from Figure 4 in [21].

Non-perturbative electroweak corrections are negligible as discussed in [22].

At lowest order, the couplings among the neutral fields, χ1 and χ2, and the charged fields,

L−
1 and L+

2 , are given by

L†
1(iσ̄

μ∂μ)L1 + L†
2(iσ̄

μ∂μ)L2 + gW+
μ

[1
2
(χ†

2 − iχ†
1)σ̄

μL−
1

−1
2
L+

2

†
σ̄μ(χ2 − iχ1)

]
+ gW−

μ

[
− 1

2
(χ†

2 + iχ†
1)σ̄

μL+
2 +

1
2
L−

1

†
σ̄μ(χ2 + iχ1)

]
+

g

cos θW
Zμ

[
L−

1

†
σ̄μ(−1

2
+ sin2 θW )L−

1 + L+
2

†
σ̄μ(

1
2
− sin2 θW )L+

2

+
i

2
(χ†

2σ̄
μχ1 − χ†

1σ̄
μχ2)

]
+ eAμ

[
− L−

1

†
σ̄μL−

1 + L+
2

†
σ̄μL+

2

]
. (5.20)

Including the next higher order correction, the coupling of the dark matter to the Z-boson

becomes

g

2 cos θW
Zμ

[
i(χ†

2σ̄
μχ1 − χ†

1σ̄
μχ2) +

Imδ

m
(χ†

2σ̄
μχ2 − χ†

1σ̄
μχ1)

]
. (5.21)

Equations (5.20) and (5.21) show that the only coupling χ1 has to itself at tree-level is suppressed

by a factor of Imδ
m . The dominant coupling of χ1 is to χ2, and it is possible for χ1 to scatter

inelastically off nucleons via Z-boson exchange (χ1 → χ2). This inelastic scattering will be

kinematically inaccessible if the mass splitting between χ1 and χ2 (∼ 2Re(δ)) is large enough.

Since the typical recoil energies of the nuclei in the detector are expected to be on the order

of a few 10’s of keV, a splitting of a few 10’s of keV is required in order to forbid the inelastic

scattering via Z-boson exchange2 [2, 30]. This means that Imδ
m can be as small as ∼ 10−7−10−8,

so that the cross-section for the scattering of χ1 to χ1 off nuclei is suppressed by a factor of(
Imδ
m

)2

∼ 10−14−10−16, which ensures it lies well below the current experimental bound. Note

2The question of whether the scattering is kinematically allowed or not depends critically on the mass of the
nucleus in the detector. It is thus possible to carefully choose δ in such a way that scattering will take place in a
heavier target such as NaI used by DAMA, but not in a lighter target such as Ge used by CDMS. The possibility
of using this to explain the DAMA signal, in the absence of a signal by CDMS and others, was discussed in
[29, 25]. (The fact that the dark matter in the halo would follow a Maxwell-Boltzmann distribution of velocities
complicates, but does not invalidate, the statements just made.)
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also that this requires the scale of the new physics which generates the operator that breaks

the U(1)L1L2 symmetry to be roughly M � 108 − 109 GeV.

For appropriate values of the mass splitting the dark matter can therefore not scatter off the

nuclei at tree-level. This makes it “safe” from current experimental bounds. There is, however,

again an irreducible one-loop coupling to nucleons, which will be discussed in §5.3.3.

It should be noted that χ1 will most likely be extremely difficult to detect at the LHC. The

reasoning is similar to that mentioned at the end of §5.3.1 for the case of the SU(2)L triplet

with zero hypercharge. The LHC production cross-section of χ1 here is only marginally larger

(since it is less massive), about 10−4−10−3 pb. This was estimated from Figure 2 in [31], which

shows the production cross-section for the related higgsino-like neutralinos and charginos in the

MSSM. Moreover, the direct production of this type of dark matter and the associated charged

particles will again only give rise to signals that are very difficult to trigger on at the LHC. Their

associated production with jets, for example, has a cross-section that is too small to be visible

above background events (see [32], which looked at collider signatures for a higgsino-like lightest

supersymmetric particle). The non-chiral dark matter proposed in this paper thus seems to be

extremely difficult to detect at the LHC. Although a detailed LHC collider study is beyond the

scope of this paper, it seems unlikely that it would change this conclusion.

5.3.3 Direct detection of non-chiral dark matter

The previous two subsections considered non-chiral dark matter that is either a real or a complex

representation of SU(2)L × U(1)Y . For real representations, there is no tree-level coupling

between the dark matter and the nuclei. For complex representations, the tree-level coupling is

completely negligible, if the Dirac state has been appropriately split into a pseudo-Dirac state.

Although the absence of any tree-level coupling allows non-chiral dark matter particles to be

consistent with current experimental limits, there is an irreducible one-loop coupling which is
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W,Z W,Z

q q

χ χ

W,Z W,Z

q q

χ χ

h

Figure 5.1: Feynman diagrams for the irreducible one-loop couplings between non-chiral dark matter
and quarks. For real representations of SU(2)L × U(1)Y , there are only W -bosons within the loop.
For complex representations of SU(2)L × U(1)Y , there are both W - and Z-bosons in the loop. The
symbol h denotes the Standard Model Higgs boson, χ denotes the dark matter particle, and q refers to
quarks. There is also a cross-diagram for the diagram on the left which needs to be included.

large enough for it to be detectable in future direct detection experiments.3 These irreducible

one-loop couplings are given in Figure 5.1.

For real representations, the one-loop diagrams involve the W -bosons, but not the Z-boson.

As an explicit example, consider the SU(2)L triplet with zero hypercharge (L0). Its couplings

to the W -bosons and to the additional charged states (L±) are given in equation (5.6). The

effective Lagrangian for the coherent interaction between the dark matter and the quarks is

4 α2
2 π

∑
q

[
1
8

fW
I (mW /mL0)

1
mW m2

h

(
L0L0 + L0†L0†

)
mq q̄q

+
1
12

fW
II (mW /mL0)

1
m3

W mL0
(L0iDμσνL0† + L0†iDμσ̄νL0) ×

q̄(γμiDν + γνiDμ − 1
2
gμνi/D)q

]
. (5.22)

This result4 was obtained by assuming that the momentum carried by the quarks in the Feynman

diagram on the left in Figure 5.1 is small but non-zero; in the Feynman diagram on the right

the momentum of the quarks was set to zero, and therefore no momentum was assumed to flow

3For indirect dark matter detection rates and for prospects of detecting the associated charged particles
among the ultra-high energy cosmic rays see [22].

4The result for the one-loop computation agrees on-shell with [33], although here the operator
(

1
2
L0L0 +

1
2
L0†L0†

)
q̄i/Dq is found to vanish, and the coefficient of the twist-two operator is a factor of two larger than in

[33]. The results of this paper do not agree off- or on-shell with [34], who considered wino-like and higgsino-like
lightest supersymmetric particles in the MSSM. Since the operators agree on-shell with [33], the final cross-
sections calculated in this paper also basically agree. (It is more difficult to compare the cross-sections with
those of [34] since their’s is dependent on various MSSM parameters.)
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through the Higgs propagator. The functions fW
I and fW

II are given by

fW
I (x) =

1
3π

(12 − 12x2 + 2x4

√
4 − x2

arctan(
1
x

√
4 − x2)

+2x + (4x − x3) lnx2
)

(5.23)

fW
II (x) =

1
4π

(16 + 12x2 − 12x4 + 2x6

√
4 − x2

arctan(
1
x

√
4 − x2)

−5x + 2x3 + (4x3 − x5) ln x2
)
. (5.24)

These functions have been normalized to equal one in the limit x → 0. This is a useful

normalization since here x ≡ mW /mL0 � 1.

For higher dimensional representations, there is an additional factor in equation (5.22). For

an n-tuplet of SU(2)L with zero hypercharge this additional factor is given by (n2 − 1)/8.

For complex representations, the one-loop diagrams involve the W - and Z-bosons. As an

explicit example, consider the dark matter candidate from two SU(2)L doublets of opposite

hypercharge (χ1). Its couplings to the W - and Z-bosons, to the additional charged states L−
1

and L+
2 , and to the slightly heavier neutral state χ2 are given in equation (5.20). The effective

coherent interaction between the dark matter and the quarks due to W -bosons in the loop

is given by equation (5.22) by replacing L0 with χ1 and by including a factor of 1/4 which

multiplies the whole equation. The effective Lagrangian for the coherent interaction between

the dark matter and the quarks due to a Z-boson in the loop is given by

α2
2π

cos4 θW

∑
q

[ (
− 1

16
fZ

I (mZ/mχ1)
(cq

V )2 − (cq
A)2

m3
Z

+
1
16

fZ
II(mZ/mχ1)

1
mZm2

h

)

×
(

χ1χ1 + χ†
1χ

†
1

)
mq q̄q

+
1
24

fZ
III(mZ/mχ1)

(cq
V )2 + (cq

A)2

m3
Zmχ1

(
χ1iD

μσνχ†
1 + χ†

1iD
μσ̄νχ1

)

×q̄

(
γμiDν + γνiDμ − 1

2
gμνi/D

)
q

]
(5.25)
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where the functions fZ
I , fZ

II and fZ
III are given by

fZ
I (x) =

1
π

(
4 − 2x2 + x4

√
4 − x2

arctan
( 1

x

√
4 − x2

)
+ x − 1

2
x3 lnx2

)
(5.26)

fZ
II(x) =

1
π

(
4 + 4x2 − 2x4

√
4 − x2

arctan
( 1

x

√
4 − x2

)
−2x + x3 lnx2

)
(5.27)

fZ
III(x) =

1
8π

(
32 + 16x2 − 32x4 + 8x6

√
4 − x2

arctan
( 1

x

√
4 − x2

)
−4x + 8x3 + (8x3 − 4x5) ln x2

)
. (5.28)

These functions have also been normalized to equal one in the limit x → 0. This is again a

useful normalization since here x ≡ mZ/mχ1 � 1. On the quark line the coupling of the Z

boson to the quarks is given by − g
cos θW

γμ 1
2 (cq

V −cq
Aγ5), where cq

V = T 3
q −2 sin2 θW Qq, cq

A = T 3
q ,

Qq is the quark charge, and T 3
q = + 1

2 (− 1
2 ) for up (down)-type quarks.

For higher dimensional complex representations, there are additional factors in the W -bosons

contribution in equation (5.22) and in the Z-boson contribution in equation (5.25). For an n-

tuplet of SU(2) with n = Y + 1, there is an additional factor of (n2 − (1− Y )2)/16 multiplying

equation (5.22). However, if n > Y + 1, then there are more charged states that the dark

matter particle can couple to, and the additional factor multiplying equation (5.22) is given by

(n2− (1+Y 2))/8. For an n-tuplet of hypercharge Y , the factor that needs to multiply equation

(5.25) is given by Y 2.

The effective coupling between dark matter and the quarks involves several operators at a

scale of order mZ (which is the value of the dominant momentum in the loops of the diagrams in

Figure 5.1). These operators are the scalar operator mq q̄q, the trace operator q̄i/Dq (which was

found to vanish, but there is no symmetry reason for why it should vanish), and the traceless

twist-two operator 1
2 q̄(γμiDν + γνiDμ − 1

2gμνi/D)q. The traceless twist-two operator and trace

operator are part of the quark energy momentum tensor given by q̄γ(μiDν)q.

The nucleon matrix element of the scalar operator mq q̄q for light quarks is [2, 35]

〈N |mq q̄q|N〉 = fN
Tq

mN N̄N, (5.29)
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where on the right hand side of the equation N denotes a nucleon, and

fp
Tu

� 0.020 ± 0.004, fp
Td

� 0.026 ± 0.005, fp
Ts

� 0.118 ± 0.062

fn
Tu

� 0.014 ± 0.003, fn
Td

� 0.036 ± 0.008, fn
Ts

� 0.118 ± 0.062. (5.30)

The main contribution comes from the strange quark content of the nucleon, which also has the

largest uncertainty. Heavy quarks, Q, also contribute to the mass of the nucleon. This can be

derived by making use of the anomaly relating the heavy quarks to the gluons [2],

〈N |mQQ̄Q|N〉 = 〈N | − αs

12π
Ga

μνGaμν |N〉 =
2
27

fN
TGmN N̄N, (5.31)

where,

2
27

fN
TG =

2
27

(
1 −

∑
u,d,s

fN
Tq

)
� 0.062. (5.32)

Although we found that the trace operator q̄i/Dq vanishes and that there is thus no need

to know its nucleon matrix element, we mention it here for completeness. The nucleon matrix

element for light quarks may be estimated as

〈N |q̄i/Dq|N〉 = 〈N |mq q̄q|N〉. (5.33)

An accurate determination of the nucleon matrix element for the trace operator with heavy

quarks involves the calculation of higher loop diagrams as shown in Figure 5.2, and is beyond

the scope of this paper (see for example [36]). Instead, as a crude approximation, equation

(5.33) may also be used for the heavy quarks Q, together with (5.31).

The twist-two quark operator is given by

O(2)μν
q =

1
2
q̄(γμiDν + γνiDμ − 1

2
gμνi/D)q. (5.34)

A linear combination of scale-dependent twist-two quark operators,

∑
q

λq[O(2)
q ]m2

Z
, (5.35)

is generated at the scale mZ , with coefficients λq that may be read from equations (5.22) and

(5.25). For the W -contribution to the scattering amplitude, the coefficients are the same for
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W, Z W, Z

q q

GG

χχ

GG

χχ

q q

W, Z W, Z

h

Figure 5.2: Feynman diagrams generating a coupling between dark matter χ and gluons G. For
real representations of SU(2)L × U(1)Y , there are only W -bosons within the loop. For complex
representations of SU(2)L × U(1)Y , there are both W - and Z-bosons in the loop. The symbol h
denotes the Standard Model Higgs boson and q refers to quarks.

all quarks q, but for the Z-contribution they differ for up- and down-type quarks. Under QCD

rescaling, the twist-two quark operator mixes with the twist-two gluon operator. This may be

taken into account by rewriting equation (5.35) as a linear combination of operators that rescale

multiplicatively [37]. One of these operators is the QCD energy-momentum tensor Tμν

Tμν =
∑

q

O(2)μν
q + O(2)μν

G , (5.36)

where O(2)
G is the twist-2 gluon operator given by

O(2)μν
G = GaρμGaν

ρ − 1
4
gμνGaρσGa

ρσ. (5.37)

Another operator that may be rescaled multiplicatively is

Oμν
− =

16
3

∑
q

O(2)μν
q − nf O(2)μν

G , (5.38)

where nf is the number of active quark flavors (nf = 5 at the scale mZ). In the case of the

W -contribution, for which all λq are the same, equation (5.35) can be rewritten in terms of the

operators (5.36) and (5.38). For the Z-contribution, however, λq differs for up- and down-type

quarks, so that other operators that rescale multiplicatively are required. These are flavor non-

singlet combinations of the individual quark operators O(2)
qi − O(2)

qj that do not mix with the

gluon operator since the gluon contributions cancel out.
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The linear combination of twist-two quark operators (5.35) can thus be rewritten in terms

of operators whose QCD rescaling is simple. The operators may then be rescaled down to low

scales, so that (5.35) may be written in terms of operators that are evaluated at low scales.

The energy-momentum tensor Tμν has zero anomalous dimension, whereas Oμν
− and the flavor

non-singlet combinations O(2)
qi −O(2)

qj have positive anomalous dimension given by αs

3π

(
16
3 + nf

)
and 16αs

9π , respectively. This means that running to the infrared, Tμν does not get renormalized

whereas the other operators, Oμν
− and O(2)

qi −O(2)
qj , both decrease. The dominant contribution

at low scales to the linear combination of twist-two quark operators generated at mZ is thus

from the quark energy momentum tensor, whose contribution is known exactly. The other

contributions are subdominant, and may be estimated from the parton distribution functions

(PDFs); helpful for this is [38]. The expression for (5.35), written in terms of the operators

evaluated at a lower scale, will not be reproduced here. However, it was checked that for a

lower scale equal to 1 GeV, the subdominant contributions that require knowledge of the PDFs

amount to only about 17% in the case of the W -contribution and 14% in the case of the Z-

contribution (care was taken to decrease the active number of quark flavors from five to four

at the scale of the bottom quark mass and from four to three at the scale of the charm quark

mass). This shows that the nucleon matrix element of the twist-two quark operator can be

estimated reliably.

The nucleon matrix element of the twist-two quark operators may be evaluated by using the

expression [2]

〈N(p)|O(2)μν
q |N(p)〉 =

1
mN

(
pμpν − 1

4
m2

Ngμν
)

×
∫ 1

0

dx x
(
q(x, μ2) + q̄(x, μ2)

)
, (5.39)

where pμ denotes the momentum of the nucleon, and zero momentum transfer was assumed.

The PDF q(x, μ2) (or q̄(x, μ2)) gives the probability density of finding the quark q (or anti-quark

q̄) in the nucleon with momentum fraction x. The integral denotes the second moment of the
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PDF, and one may define

q(2, μ2) =
∫ 1

0

dxx q(x, μ2). (5.40)

The PDFs depends on the scale μ at which the twist-two operator was generated, so that here

μ = mZ . Using the website [38] and the results from the CTEQ group (CTEQ6M) [39], the

second moment of the PDFs may be determined directly at this scale (equivalently, q(2, μ2)

may be determined at μ = 1 GeV if the linear combination of twist-two quark operators is first

rescaled down to 1 GeV). The second moment of the PDFs for the proton for μ = mZ are given

by

u(2) � 0.221, ū(2) � 0.034,

d(2) � 0.115, d̄(2) � 0.039,

s(2) � 0.026, s̄(2) � 0.026, (5.41)

c(2) � 0.019, c̄(2) � 0.019,

b(2) � 0.012, b̄(2) � 0.012,

G(2) � 0.47.

G(2) is the PDF of the gluon, which is not needed here. For the neutron, the values of u(2)

and ū(2) are interchanged with d(2) and d̄(2), respectively.

The nucleon matrix elements discussed above may now be used to write the spin-independent

effective Lagrangian for non-chiral dark matter scattering off nucleons as

Lχ
eff, N � C mN

(1
2
χχ +

1
2
χ†χ†

)
N̄N, (5.42)

where C is determined from equations (5.22) and (5.25) and using the nucleon matrix elements.

The cross-section for the non-chiral dark matter particle to scatter off nuclei (normalized to a

single nucleon) is then

σχ
N =

1
π

μ2
χN m2

N C2, (5.43)

where μ2
χN is the reduced mass of the nucleon and the dark matter. The cross-section for a

dark matter particle from an SU(2)L triplet with Y = 0 is roughly the same when scattering
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off a proton or a neutron, and the average is given by

σL0

N � 1.9 × 10−45 cm2. (5.44)

The cross-section for a dark matter particle from two SU(2)L doublets with opposite hyper-

charge Y = ±1, after splitting the Dirac state into a pseudo-Dirac state, is also roughly the

same when scattering off a proton or a neutron, and the average is given by

σχ1
N � 2.1 × 10−46 cm2. (5.45)

A Higgs mass of mh = 120 GeV was assumed. For higher dimensional representations there

are additional factors which increase the cross-section, as discussed below equations (5.22) and

(5.25). For example, a quintuplet of SU(2)L with Y = 0 has a cross-section that is larger by a

factor of 9 than the triplet cross-section, i.e. σ � 1.7 × 10−44 cm2.

Figure 5.3 shows the results for the cross-section and how they compare to current experi-

mental exclusion bounds, as well as projected future bounds. The current upper bound on the

direct detection cross-section is roughly two to three orders of magnitude higher than the cal-

culated cross-sections in (5.44) and (5.45), respectively. Interestingly, XENON1T will get close

to, but not quite reach, the required sensitivity to see an SU(2)L triplet with zero hypercharge

and should be able to detect an SU(2)L quintuplet with zero hypercharge, while SuperCDMS

25kg / 7-ST at Snolab will not quite be able to detect the triplet, but will get close to detecting

the quintuplet. Experiments planned for well into the future, such as the proposed SuperCDMS

“Phase C” [16, 17], should be able to also probe the required parameter space for the case of

the two SU(2)L doublets with opposite hypercharge.

5.4 Higgs contribution to the Direct Detection

Cross-Section and Singlet Dark Matter

In this section, singlet dark matter will be discussed, and a useful characterization of its direct

detection cross-section will be given. Dark matter that is a singlet under SU(2)L × U(1)Y

does not have any irreducible couplings to quarks, unlike the non-chiral dark matter discussed
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Figure 5.3: A comparison of the results presented in this paper with current and projected experimental
bounds for the cross-section of dark matter scattering off a nucleon. Shown are the current experimental
upper bounds from XENON10 (solid black line) [14], and the projected upper bounds for SuperCDMS
2-ST at Soudan (blue dashed line), SuperCDMS 25kg / 7-ST at Snolab (green dashed line), XENON1T
(magenta dashed line) and SuperCDMS Phase C (red dashed line) [15, 16, 17]. The dashed black
horizontal line is the theoretical lower bound on the cross-section for chiral electroweak dark matter
scattering coherently off nuclei via the exchange of a Z-boson, see §5.2. The black dot (•) is the
predicted cross-section for a 1 TeV non-chiral dark-matter particle part of two SU(2)L doublets with
opposite hypercharge (a complex representation of SU(2)L), assuming its coupling to the Z-boson
is forbidden by splitting the Dirac state into a pseudo-Dirac state; see §5.3.2. Without the latter
assumption, the cross-section is given by the open circle (◦) and would be ruled out. The black square
(�) is the predicted cross-section for a 2 TeV non-chiral dark matter particle part of an SU(2)L triplet
with zero hypercharge (a real representation of SU(2)L), see §5.3.1. Dark matter from higher order
real or complex representations has a larger direct-detection cross-section than those represented by
the black square or by the black dot, respectively, see §5.3. The dotted diagonal lines represent the
Higgs contribution to dark matter scattering off nucleons for a range of magnitudes of the Higgs to
dark matter coupling. This coupling also determines what fraction, fmewsb ≡ mewsb/mχ, of the dark
matter mass comes from electroweak symmetry breaking, and the lines shown are for various fmewsb .
The experimental results shown in this figure were obtained through [40].
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in §5.3. It will be assumed that the singlet dark matter does not couple to the Higgs at the

renormalizable level and does not obtain a mass spontaneously. Rather, the singlet will be

allowed in the Lagrangian to have an explicit mass term which is not associated with the

EW scale. Although there is no renormalizable coupling between the singlet and the SM, no

symmetries forbid the existence of a non-renormalizable interaction generated by new physics

beyond the SM at some high scale. The gauge invariant operator coupling the dark matter χ

to the Higgs is an infinite sum of higher-dimensional operators,

Lhχχ =
c1

Λ1
χχH†H +

c2

Λ3
2

χχ(H†H)2 + . . . +
cn

Λ2n−1
n

χχ(H†H)n + . . . , (5.46)

where one Higgs field is replaced by the physical Higgs boson h/
√

2, and all others acquire a

vacuum expectation value of v/
√

2 � 174 GeV. The cn are dimensionless coefficients and the

Λn are the scales at which the higher dimensional operators are generated by new physics.

The Higgs-dark-matter coupling (5.46) is allowed more generally for any non-chiral dark

matter, whether it is a singlet or forms a non-trivial representation of the EW gauge group.

For singlet dark matter, the coupling (5.46) is generated at a scale Λ1 by new physics. For non-

chiral dark matter with non-trivial EW quantum numbers, the coupling is already generated

at the EW scale by integrating out the W -bosons (and, for complex representations, also the

Z-boson), as shown in Figure 5.1 in §5.3.

The existence of this Higgs to dark matter coupling also implies the existence of additional

contributions to the dark matter mass when all of the Higgs fields in (5.46) acquire a vacuum

expectation value. This means that non-chiral dark matter obtains at least some of its mass

from EWSB. Denoting the dark matter mass by mχ and the mass that is not associated with

EWSB by m0, gives the relation

mχ = m0 + mewsb, (5.47)

where mewsb � v2

2Λ1
+ . . . is the mass gained from EWSB.

The mass obtained by the dark matter from EWSB is a useful characterization of the Higgs
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contribution to the direct detection cross-section. The latter is given by (see also [41], [42])

σχ
N � g2

4πm2
W m4

h

μ2
χN m2

N

(∑
q

fN
Tq

)2

g2
hχχ, (5.48)

where ghχχ � c1v/2Λ1 � mewsb/v is the Higgs to dark matter coupling, and fN
Tq

may be taken

from equations (5.29) − (5.32). Evaluating the cross-section for mh � 120 GeV gives

σχ
N � 8 × 10−47 μ2

χN m2
ewsb, (5.49)

or,

σχ
N � 8 × 10−47 μ2

χN m2
χ f2

mewsb
, (5.50)

where

fmewsb ≡ mewsb

mχ
(5.51)

is the dark matter mass fraction obtained from EWSB. The cross-section is seen to be directly

proportional to the square of this fraction.

The various dotted lines in Figure 5.3 show the cross-section for fmewsb = 1, 10−1, 10−2 10−3,

and 10−4, as well as the current experimental bounds. (Constraints on mχ and fmewsb from the

known dark matter relic density are not included in the present discussion, but see for example

[41], [42]). These lines represent the Higgs contribution to the direct detection cross-section.

Modulo destructive interference with other contributions, they represent the lower bounds of

the direct detection cross-section also for non-chiral dark matter that is not an EW singlet.

If the dark matter is associated with new physics at the EW scale, the fraction fmewsb should

not be too small. The current bound has ruled out dark matter with a mass heavier than about

1 TeV and that obtains more than 10% of its mass from EWSB. SuperCDMS “Phase C” would

be able to rule out dark matter with a mass heavier than about 1 TeV and that obtains more

than about 0.1% of its mass from EWSB. This means that, assuming c1 ∼ O(1), SuperCDMS

“Phase C” would probe a scale of Λ1 ∼ O(30 TeV). As the direct detection experiments probe

ever smaller values of fmewsb , the absence of any direct detection signal would make relevant

the question of whether one should abandon the idea that dark matter is associated with new

physics at the EW scale.
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5.5 Conclusions

Fermion dark matter transforming under the electroweak gauge group SU(2)L × U(1)Y was

added to the standard model, and the observational consequences at a direct detection experi-

ment were discussed. Figure 5.3 summarizes the results.

Chiral electroweak dark matter is well known to be not a viable dark matter candidate, as

it has a spin-independent coupling to nuclei via the Z-boson, which gives a cross-section that

is ruled out by two to three orders of magnitude.

Non-chiral dark matter from real representations of SU(2)L × U(1)Y has an irreducible

one-loop spin-independent coupling to nuclei. The triplet has a mass of about 2 TeV and

a cross-section that is about two order of magnitude below current experimental bounds. A

future experiment with a very large sensitivity, such as the proposed XENON1T, may come

close to probing the relevant region of parameter space. Higher order representations have a

larger cross-section which makes it easier to detect them.

Non-chiral dark matter from complex representation of SU(2)L × U(1)Y have a tree-level

coupling to nuclei via Z-boson exchange, which would rule it out unless this tree-level coupling

can be suppressed somehow. For two SU(2)L doublets with opposite hypercharge the tree-level

coupling can be suppressed by a dimension five operator that couples the Higgs to the dark

matter particle and is able to split the neutral Dirac state into a pseudo-Dirac state. The

remaining irreducible one-loop coupling allows such a dark matter particle to be detected at a

very sensitive future planned direct detection experiment such as SuperCDMS “Phase C”. Its

mass is required to be about 1 TeV to reproduce the observed dark matter relic density.

Although a detailed LHC collider study was not done, non-chiral dark matter particles are

most likely extremely difficult to detect at the LHC. The reason is that not many of them will be

produced since they are not only required to be heavy to reproduce the observed relic density,

but they are also weakly interacting. This is in addition to the fact that they would not even

provide a signal that can easily be triggered on.
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Non-chiral dark matter has a coherent coupling to the standard model fermions through

the Higgs field. The existence of this coupling to the Higgs also means that at least some

of its mass is obtained from electroweak symmetry breaking. Non-chiral dark matter from

non-trivial representations of the electroweak gauge group does indeed gain a small fraction,

about 10−3, of its mass from electroweak symmetry breaking. For dark matter that is a singlet

under the electroweak gauge group, a non-renormalizable coupling to the Higgs could allow

it to be detected at a direct detection experiment (the singlet’s dominant coupling to the

Higgs was assumed to be through a dimension five operator). A useful characterization of the

direct detection cross-section is given by the fraction of mass that the dark matter particle

obtains through electroweak symmetry breaking, the amplitude being directly proportional to

this fraction. The current experimental bound has ruled out dark matter with a mass heavier

than about 1 TeV and that obtains more than 10% of its mass from EWSB. SuperCDMS

“Phase C” would be able to rule out dark matter with a mass heavier than about 1 TeV and

that obtains more than 0.1% of its mass from EWSB. As the direct detection experiments probe

ever more of the available parameter space, the absence of any direct detection signal would

at some point make relevant the question of whether one should abandon the idea that dark

matter is associated with new physics at the EW scale.
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Chapter 6

Extracting Hadronic Resonances using Jet Ensemble

Correlations

This chapter is a summary of work done with Shan-Huei Chuang, Eva Halkiadakis, Amit Lath,

and Scott Thomas (to appear).

A search strategy is presented for the pair production of new heavy colored fermions trans-

forming as an octet of the Standard Model color group and each decaying into three quarks

without leptons or missing energy. The resulting six-jet final state suffers from a large Stan-

dard Model background, predominantly from pure QCD six-jet production, but also from the

all-hadronic decay of the top quark. Innovative cuts making use of a variety of kinematic cuts

and correlations and kinematic features found in observables formed from the signal jets, which

are absent for the same observables formed from background jets, are required to extract the

three-jet resonance from these new particle. In addition, use is made of an ensemble of recon-

structed objects to increase signal efficiency. The mass reach is about 650-700 GeV for L � 10

fb−1. Particles with masses as large as 300 GeV can potentially be observed with only 100

pb−1 of integrated luminosity, which can be obtained soon after the start of the LHC. The

analysis method presented here is also applicable for extracting the top quark resonance in the

all-hadronic channel, as well as for multi-jet signals in association with leptons and missing

energy.
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6.1 Introduction

There are a wide variety of possible discovery signatures for new physics at the Large Hadron

Collider (LHC). One that has not been well studied involves multi-jet events, both with and

without leptons and/or missing energy. Jets are produced in QCD hard scattering processes

that create high transverse momentum quarks or gluons. Since quarks and gluons carry a

color charge, QCD confinement does not allow them to be detected directly in their free form

and instead they turn into a spray of hadrons confined to a narrow cone, called a jet. Jets are

ubiquitously produced in standard model (SM) QCD processes which will dominate at the LHC,

and this may easily hide new physics beyond the standard model that also produces jets. This

is why much of the community is focused on extracting new physics from more conventional

discovery signals, such as multi-leptons and missing energy with no, or very few, jets, which

do not have such a large standard model background. However, there are many new physics

signals that could only, or predominantly, involve jets, so an analysis of discovery signatures

which involve many jets is essential. Moreover, since any new particles which produce multi-

jet events couple strongly, their production cross-section at the LHC tends to be large. This

opens up the possibility that they could be among the first things to be discovered at the LHC,

provided that suitable search strategies are developed.

In this work, pair production of a new heavy colored particle Q that undergoes a three-body

decay into jets will be considered. (Table 6.1 lists the possible representations and decay modes

of new heavy colored particles. We focus on the case when Q is a fermion transforming as an

octet under SU(3)C .) One can imagine the existence of such a particle in many extensions of

the Standard Model (SM). For example, these particles and their decay channel can appear in

technicolor-like extensions of the SM, see e.g. [1, 2, 3, 4]. They also appear in supersymmetry,

where the gluino (the superpartner of the gluon) is a colored adjoint Majorana fermion and can

decay to three jets if R-parity is not conserved.

The signal of interest is therefore a six-jet final state with no leptons and no missing energy

(QQ → 6 jets). (Such a signal was considered a long time ago in [5, 6].) This signal has a very
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SU(3)C Lowest Multiplicity Low Multiplicity Hadron
Production Modes Decay Modes Collider

Signatures

Fermion

8 gg , qq → QQ Q → qqq , qqq (jjj)(jjj)

6 , 6 gq → Q , gq → Q Q → gq , Q → gq (jj)
gg , qq → QQ Q → qqq , Q → qqq (jjj)

(jj)(jj)
(jjj)(jj)
(jjj)(jjj)

3 , 3 gq → Q , gq → Q Q → gq , Q → gq (jj)
gg , qq → QQ Q → qqq , Q → qqq (jjj)

(jj)(jj)
(jjj)(jj)
(jjj)(jjj)

Scalar

8 gg , qq → Q Q → gg , qq (jj)
gg , qq → QQ (jj)(jj)

6 , 6 qq → Q , qq → Q Q → qq , Q → qq (jj)
gg , qq → QQ (jj)(jj)

3 , 3 qq → Q , qq → Q Q → qq , Q → qq (jj)
gg , qq → QQ (jj)(jj)

Table 6.1: Lorentz and gauge invariant color flow restrictions on resonant and two-body pro-
duction and decay modes to quarks and gluons of fermion and scalar triplet, quix, and octet
representations transforming as 3 or 3, 6 or 6, or 8 under SU(3)C , respectively. Shown in
parenthesis are the possible resonances.
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large background coming from pure QCD six-jet production and a smaller background coming

from the all-hadronic decay of the top quark, which also produces six jets. Since the new heavy

particle Q decays via a three-body decay into three jets, it should be seen as a resonance when

forming the invariant mass of three jets. However, innovative cuts are required in order to

extract this resonance. This is due to the very large number of background events which can

completely swamp the signal, and also due to the large amount of combinatoric confusion from

not knowing how to select the three jets coming from the decay of one of the Q’s. This work will

propose an innovative search strategy to look for these type of particles. It is worth emphasizing

that the search strategies developed here are more widely applicable.

In §6.2, an overview of the simulation tools and the analysis strategy will be given. §6.3

contains the analysis and the results of this work. The conclusions are presented in §6.4. There

are three appendices with more information in Sections 6.5, 6.6, and 6.7.

6.2 Simulation Tools and Overview of Analysis

6.2.1 Discussion of Simulation Tools

We are interested in detecting the pair production of a new heavy particle (denoted by Q) that

undergoes a three-body decay into quarks/gluons to produce a six-jet final state. In particular,

we simulated with PYTHIA [7] the pair production of a colored adjoint Majorana fermion that

undergoes a three-body decay into jets. Such a particle and decay mode may be found in the

Minimal Supersymmetric Standard Model with R-parity violation, where the superpartner of

the gluon (called a gluino) can be made to decay into three quarks. PYTHIA can simulate

the production of two gluinos, each of which undergoes a three-body decay via an intermediate

off-shell squark (q̃∗) to produce a six-jet final state (g̃g̃ → q̃∗jq̃∗j → 6j), see Fig. 6.1. The

mass of the gluino was chosen to lie between 300 GeV and 900 GeV (with the remainder of the

MSSM particles decoupled).

For the SM background that also produces a six-jet final state, we included the all-hadronic
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Figure 6.1: The decay of two gluinos to six quarks, via an intermediate off-shell squark, produc-
ing a six jet final state. Events of this type were generated with PYTHIA using the Minimal
Supersymmetric Standard Model with R-parity violation.

decay of the top quark (t̄t → b̄W−bW+ → 6j), which we generated with PYTHIA, and the pure

QCD six-jet background. The pure QCD background was generated with the help of ALPGEN

[8, 9, 10]. ALPGEN generates events with six-quarks in the final state. These events were then

run through PYTHIA to simulate the showering and hadronization of the quarks.

The generated events were run through the “Pretty Good Simulation” (PGS 4) detector

[11]. PGS 4 is a fast detector simulation which efficiently simulates the detection of jets,

electrons, muons, and taus. In particular, the jet algorithm looks for jets within a cone whose

diameter is ΔR = 0.5. The hadronic calorimeter energy resolution is σ(Ejet
T ) = 0.8

√
Ejet

T . Since

PGS 4 is a fast detector simulation, a natural question to ask is whether it is realistic enough to

simulate the very complicated CMS and ATLAS detectors at the LHC. To answer this question,

the events were also run through the full detector simulation of the Compact Muon Solenoid

(CMS) experimental collaboration using their CMS Software (CMSSW). We will discuss in an

appendix (§6.5) the differences between PGS 4 and CMSSW, but the upshot is that the analysis

done with PGS 4 is robust.
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6.2.2 Overview of Analysis and Search Strategy

The analysis was done with ChROOT1 which is based on ROOT2, the publicly available object

oriented analysis framework from CERN. Many additional functions were written and added to

ChROOT in order to do this analysis.

We now give an overview of the search strategy. The signal of interest in this work is a

six-jet final state, with no leptons and no missing energy. The number of background events

which also produce the same six-jet final state is extremely large and a priori swamps the

number of signal events.3 However, the jets coming from the new particle Q tend to have a

significantly larger momentum transverse to the beam pipe than the jets coming from the pure

QCD background and from the all-hadronic decay of the top quark. The ratio of signal events

(S) to background events (B) can therefore be significantly increased by requiring the jets to

have a large transverse momentum (pT ). The particular kinematic cuts employed in this work

include a cut on the sum of the transverse momenta of all the jets and a cut on the pT of the

sixth hardest jet. Even after these cuts, however, the ratio S/B is still less than one.

Each of the two Q’s undergoes a three-body decay into three jets, so that one way to

separate the signal from the background is to look for resonances in three-body invariant mass

distributions. One problem with this approach is that the cuts on the transverse momenta of

the jets, which are necessary to obtain a manageable S/B ratio, tend to shape the three-body

invariant mass distribution of the background events in such a way that it does not look too

distinct from the three-body resonance shape from the signal events. It is desirable therefore

to come up with a strategy (i.e. a set of cuts) which does shape the signal differently to the

background.

1http : //v1.jthaler.net/olympicswiki/doku.php?id = lhcolympics : chroot

2http : //root.cern.ch/

3In fact, the number of background events is uncertain by at least a factor of three (M.L. Mangano, private
communication). The reason for this uncertainty is that the six-jet pure QCD background is extremely difficult
to calculate, and ALPGEN, which was used to generate this background, only does the tree-level amplitude
exactly. This means that the normalization of the number of background events will have to be determined from
actual data, rather than from calculations and simulations, and it is important to keep in mind this factor of three
uncertainty when looking at numbers for S/B or S/

√
B. Moreover, the extreme size as well as the uncertainty

in the background cross-sections are the two main reasons why simply counting the number of observed six jets
events will not be sufficient to detect a signal.
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A further problem with the simple strategy of looking for three-body invariant mass distri-

butions is that it can only be effective if the three jets belonging to each of the two Q’s can be

found among the six jets from the signal (which will be called “signal jets”). However, the num-

ber of ways that three jets can be picked from six is
(
6
3

)
= 20, so that there is a large amount of

combinatoric confusion. (It is important to note that this combinatoric “background” is present

without, and in addition to, the physics background from QCD and the all hadronic tt̄ decays.)

A further problem, adding to the combinatoric confusion, is that there are basically always

more than six jets in the signal events, since the signal jets radiate many more jets. Since these

radiated jets tend to be softer, one might think that the six signal jets should be the hardest six

jets in the event. However, it is possible that at least one of the radiated jets from a particular

signal jet has a larger pT than one of the other signal jets, so that the six signal jets are not

always the six hardest jets in an event. In addition to this, initial state radiation (ISR) can

produce a hard jet coming from a gluon radiated off the incoming protons just before the hard

collision takes place. This jet can be harder than any of the six signal jets. This means that the

six signal jets are often not found among the six hardest jets of a signal event. However, if one

tries to find the three jets that come from one of the Q’s among the seven (or more) hardest

jets, the combinatoric confusion becomes even more unmanageable (e.g.
(
7
3

)
= 35). A priori, it

is therefore not clear how to select the jets in order to produce a clean three-body resonance.

In this work, we will show that the above mentioned difficulties with separating background

hadronic activity from new physics signals can be best dealt with by looking for distinguish-

ing features or correlations among the jet observables. The main correlation that we will be

interested in is that between the invariant mass of three jets versus the sum of the transverse

momenta of the same three jets (although in an appendix (§6.6) we shall discuss correlations

among a few other observables). Whereas the signal events display a clearly discernible corre-

lation between these two quantities, the background events do not display the same correlation

(or kinematic feature). The main use of the correlation is to allow us to identify, at least for

some of the events, which three jets come from the decay of one of the Q’s. An appropriate



168

cut is then able to extract the events for which such as identification is possible. This greatly

improves the ratio between the signal and the combinatoric and physics background.

Another important aspect to this work is the idea of making use of an ensemble of jet

combinations. Recall that there is a large number of possible three-jet combinations that could

come from the decay of a single Q. In order to determine the correct three-jet combinations,

we can use Monte Carlo information to match the quarks coming from the decay of the Q with

the jets that are found by the detector simulation. Ordering the jets according to their pT

this Monte Carlo information then tells us what fraction of the time any particular pT -ordered

three-jet combination is correct. In other words, it tells us what fraction of the time the first,

second, and third hardest jet, or the first, second, and fourth hardest jet, or any other pT -

ordered three-jet combination in a signal event, is correct. For a large number of events, each

of these three-jet combinations will be correct some of the time, but certain combinations are

correct more often than others, and the Monte Carlo information allows us to determine the

best ones.

Instead of using the kinematic feature or correlation discussed above to pull out those events

for which only the best jet-triplet combination is correct, we can use an ensemble of jet-triplet

combinations. The precise number of jet triplet combinations to use can be optimized, but we

tested it with using 1, 8, and 16. The main point of using an ensemble is that it increases the

number of signal events that pass all the cuts and can therefore increases the signal significance.

After all the cuts, the three-body invariant mass distribution for the signal together with the

background looks like a narrow gaussian shape (from the signal) sitting on top of a broad hump

(from the background). By carefully fitting for these two shapes we are able to extract the

signal from the background with a significance of above five sigma for a wide range of Q masses,

up to about 650 GeV - 700 GeV (the precise number of course depends on the normalization

of the background).
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σ (pb) Events L (fb−1)

mQ=290 GeV 344 100000 0.3
mQ=420 GeV 50 100000 2.0
mQ=660 GeV 3.4 100000 29.6
mQ=890 GeV 0.5 100000 215.5

6j, pT > 20 407000 315069 0.00077
6j, pT > 50 2400 434011 0.2
6j, pT > 80 120 507428 4.2
6j, pT > 110 14 448520 32.3

tt̄ 490 490000 1.0

Table 6.2: Data samples generated, their cross-sections, number of events in sample, and in-
tegrated luminosity. The cross-sections include a 5 GeV cut on the jets within PYTHIA, and
assume |η| < 3.0.

6.3 Analysis and Results

6.3.1 Summary of Generated Data, Triggers, and Kinematic Cuts

We first summarize the data that we generated, see Table 6.2. The new physics signal is given

by the production of a new QQ pair and its subsequent decay into six jets. Four data samples

were generated with different masses for the Q’s, namely mQ = 290 GeV, 420 GeV, 660 GeV,

and 880 GeV. The production cross-sections listed in Table 6.2 assume a very low cut on the

jets of 5 GeV, with |η| ≤ 3. The tt̄-background was generated with the same cuts on the jets.

Four samples for the six-jet QCD background were generated with ALPGEN assuming different

cuts on the pT of each of the six quarks, namely 20 GeV, 50 GeV, 80 GeV, and 110 GeV (η was

assumed to lie within 3 in all cases). The ALPGEN generated six-quark events were then run

through PYTHIA to do the showering and hadronization.

Next, we discuss the trigger-level cuts. At the LHC there are about 109 events every second,

but only about 100 events per second can be recorded. A huge rejection rate is therefore

required, and an event will only be recorded if it is deemed “interesting” and passes certain
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|ηj | < 3 j = 1, . . . , 6

ΔRij > 0.5 i, j = 1, . . . , 6(
pT,1 > 400 GeV ∪
pT,2 > 350 GeV ∪
pT,3 > 195 GeV ∪
pT,4 > 80 GeV ∪∑6

j=1 pT,j > 1000 GeV
)

pT,6 > 30 GeV

Table 6.3: High level triggers and event selection on pT ordered jets. For the high level triggers
see the CMS TDR [12, 13].

basic cuts, called “trigger-level” cuts. Also, although the events were generated with a very low

cut on the jets of 5 GeV, such a low cut is not realistic. Thus, an additional “event selection cut”

is made which requires the pT of the sixth jet to be at least 30 GeV. The high level triggers and

event selection cuts are summarized in Table 6.3. It turns out that the trigger which requires

the fourth hardest jet to lie above 80 GeV dominates the others, and most events come in on

this trigger.

A variety of kinematic cuts may be employed in order to increase the S/B ratio. We find that

a cut on the sum of the transverse momenta of the six hardest jets (
∑6

i=1 pT,i), as well as a cut

on the transverse momentum of the sixth jet (pT,6), are two very useful cuts4. These cuts may

be scaled with mQ, i.e. harder cuts are used for larger mQ (heavier Q will decay into jets that

on average have a larger transverse momentum, since there is more phase space available for the

jets). Figure 6.2(a) and 6.2(b) show the distribution of the events in the pT,6 versus
∑6

i=1 pT,i

plane for the signal (mQ = 290 GeV) and the ALPGEN generated pure QCD background

(assuming a pT cut of 80 GeV on each of the six quarks), without any additional trigger- or

4There are other kinematic cuts that we tried, but found not to be so useful. Recall that one problem in
selecting the correct six jets coming from the decay of the Q’s is that we cannot be sure that they are among
the six hardest jets in an event. However, requiring the pT of the seventh hardest jet to be very small increases
the chances that the seventh hardest jet and the other softer jets are indeed radiated jets and not signal jets. It
may be worth to further study such a cut.
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analysis-level cuts, for L=250 pb−1. Table 6.4 shows the cross-sections for the various data

samples after trigger and event-selection cuts and after various cuts on the kinematic variables∑6
i=1 pT,i and pT,6. It is clear that the pure QCD background is much larger than the signal,

even after all the cuts. Making the cuts even harder can increase the S/B ratio, but it will hurt

the signal efficiency too much (i.e., there will not be enough signal events left over to perform

an analysis on). Note that the tt̄ background is also very small after these kinematic cuts. For

mQ � mt, the QQ production cross-section is larger than the tt̄ production cross-section, since

the Q is an octet and the top is a fundamental of SU(3)C . For larger mQ their production

cross-section decreases, but the jets from the Q-decay are harder than the jets from the tt̄-decay.

Although the cross-sections after the kinematic cuts are roughly comparable for the large mQ

samples, the three-jet invariant mass distributions for the QQ sample peak at much larger values

than for the tt̄ sample, so that it is easy to separate the QQ signal from the tt̄ background.

6.3.2 The search for the three-jet resonance

Each of the two Q’s undergoes a three-body decay into three jets, so that one way to separate the

signal from the background is to look for resonances in three-body invariant mass distributions.

These resonances should be present for the signal, but not for the QCD background. They will

also be present for the tt̄ background, but the tt̄ background is easy to separate since it is either

smaller than the pure QCD background, or the top quark resonance will be at much lower mass

if mQ is large (see discussion in §6.3.1).

Let us assume that the six signal jets are the six hardest jets in the signal event. We have

seen that this is very often not actually true, see §6.2.2, but the combinatoric confusion will

only get worse if we do not assume this. There are 20 ways to select three jets from six, and

10 pairs of three-jet combinations in which one member of the pair belongs to one of the Q’s,

and the other member belongs to the other Q. How does one select the correct pair? One

suggestion is to make use of the fact that the invariant mass of the two members of the pair

must equal each other (and must equal mQ, although when doing the analysis the value of
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(a) Scatterplot for the signal mQ = 290 GeV, without any trigger- or analysis-level cuts,
for L=250 pb−1.
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(b) Scatterplot for the ALPGEN generated pure QCD background (assuming a pT cut of
80 GeV on each of the six quarks), without any additional trigger- or analysis-level cuts,
for L=250 pb−1.

Figure 6.2: The distribution of the events in the pT,6 versus
∑6

i=1 pT,i plane for signal and
pure QCD background.
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QQ QQ QQ QQ QCD t̄t
mQ (GeV) 290 420 660 880 – 172

Trigger + Event 98 30 2.8 0.42 10650 17
Selection

Cuts∑6
j=1 pT,j pT,6

(GeV) (GeV)

600 30 83 8350 14
600 60 36 430 4.5
600 90 7.4 28 0.63
600 120 1.5 3.2 0.067

700 30 26 6000 11
700 60 14 360 3.7
700 90 4.5 28 0.61
700 120 1.2 3.2 0.067

1100 30 2.1 1150 2.4
1100 60 1.6 110 1.1
1100 90 0.94 17 0.29
1100 120 0.44 2.9 0.061

1500 30 0.28 210 0.79
1500 60 0.24 29 0.32
1500 90 0.18 6.4 0.10
1500 120 0.12 1.6 0.032

Table 6.4: σ(pp → X → 6j) cross sections in pb for adjoint Majorana fermion pair production,
top quark pair production and QCD, X = {QQ, tt̄,QCD}, with the triggers and event selection
given in Table 6.3, and with additional

∑6
j=1 pT,j and pT,6 cuts on the pT ordered jets.
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mQ is of course unknown). This means that we can look for the pair which has the smallest

difference in the invariant masses of the two members. The smaller of the two invariant masses

satisfying this criterion is shown in Figure 6.3 for the signal with mQ = 290 GeV and for the

pure QCD background (all the trigger-level, event selection, and kinematic cuts discussed in

§6.3.1 are included). Looking at the signal in Fig.6.3(a), it is clear that there is a very large

combinatoric background. With the rather hard kinematic cuts, the resonance is only barely

visible at around 300 GeV, and the peak at around 600 GeV comes from the mismatching of

the jet-triplets due to the combinatoric confusion. The background shown in Fig.6.3(b) is about

four times larger and also peaks at about 600 GeV. This clearly shows the shaping of the signal

and the background due to the hard kinematic cuts. It also suggests that selecting the pair

of triplets that is closest in invariant mass does not help us much to extract the signal from

the background. This conclusion remains roughly unchanged for other values of mQ and for

different kinematic cuts.

We also checked that requiring the difference of the invariant masses of the two members

within the selected pair of triplets to be smaller than e.g. 60 GeV does not improve the signal

shape significantly. Moreover, we checked that the difference in the invariant mass of the “best”

pair is roughly the same as the difference in the invariant mass of the “second best” pair. This

suggests that this method of selecting the correct triplets is not very good. In fact, we checked

that selecting a random triplet is not significantly worse than selecting a triplet from the best

pair.

The shape of the signal shown in Fig. 6.3 may be contrasted with the shape of the signal

found from picking the correct triplets, shown in Fig. 6.4. The correct triplets may be found by

using the Monte Carlo simulation information with which the quarks from the decay of the Q’s

can be matched to the reconstructed jets. For each jet, the quark q or gluon g closest to it is

found for which pT,q/g/pT,jet > 0.75. The value of ΔR =
√

(Δφ)2 + (Δη)2 between the jet and

the quark/gluon is required to be less than 0.5. We then check whether the parent, grandparent,

or great-grandparent of the quark/gluon matched in this way is one of the Q’s. The efficiency
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(a) Histogram for the signal mQ = 290 GeV.
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(b) Histogram for the pure QCD background (when generated with ALPGEN, a pT cut of
80 GeV on each of the six quarks was assumed).

Figure 6.3: The figures show the three-jet invariant mass which was found as follows: form all
10 pairs of three-jet invariant mass combinations from the six hardest jets within an event and
calculate the difference between the invariant masses of the two members of each pair. Find
the pair with the smallest difference, and plot the smaller of the two invariant masses from this
pair. All the trigger-level and event selection cuts as discussed in §6.3.1 are included. Also
included are the two kinematic cuts

∑6
j=1 pT,j ≥ 600 GeV and pT,6 ≥ 90 GeV. The luminosity

used in these plots is L=250 pb−1.
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Figure 6.4: The three-jet invariant mass using Monte Carlo matching information for the same
signal data as used in Fig. 6.3, i.e. for mQ = 290 GeV, including all the trigger-level and event
selection cuts as discussed in §6.3.1, and also including the two kinematic cuts

∑6
j=1 pT,j ≥ 600

GeV and pT,6 ≥ 90 GeV. The luminosity used in this plot is L=250 pb−1.

of matching the quarks of at least one Q to the reconstructed jets is about 65-80%, depending

on mQ. The width of the resonance seen in Fig. 6.4 is due only to the imperfect hadronic

calorimeter energy resolution (see further discussion of this in §6.5). Moreover, contrasting

it with Fig. 6.3(a), it also clearly shows just how severe the combinatoric confusion is. The

combinatoric background basically cannot be distinguished from the physics background from

pure QCD.

The Monte Carlo matching of the reconstructed jets to the quarks from the decay of the Q’s

can be used to determine which reconstructed jet-triplet combinations are correct most often.

To do this, we first order the reconstructed jets according to their pT , from high to low, and

determine how often the reconstructed jet-triplet combination ijk can be matched to the quarks

that come from the decay of a particular Q (here, i, j, k = 1, 2, . . . , 6, and pT,i ≥ pT,j ≥ pT,k).

The probability fractions are shown in Table 6.5 for mQ = 290 GeV (the probability is calculated

by dividing the number of events in which the particular reconstructed jet-triplet ijk can be

matched to a particular Q, divided by the total number of events in which we were able to match
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pT Ordered Correct Matching
Jet Triplet Fraction

235 0.060
234 0.057
245 0.053
145 0.047
236 0.045
146 0.040
156 0.034
246 0.034
136 0.031
135 0.031
345 0.031
256 0.024
134 0.021
346 0.021
126 0.016
356 0.016

Table 6.5: Correct matching probability fraction of pT ordered reconstructed jet triplets to
the parton level Q → qqq, qqq resonance for mQ = 290 GeV as obtained from Monte Carlo
information. The probability fractions and the ordering of the reconstructed jet triplets remain
roughly unchanged for different mQ. Note that the table only shows the jet triplets that can be
made up from the six hardest jet. The 11 best jet-triplets are found among triplets consisting
only of the six hardest jets.
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any of the jet-triplets to that same Q). Note that only the jet-triplets that can be made up from

the six hardest jets are shown. The 11 best jet-triplets are found among triplets consisting only

of the six hardest jets. Note that the probability fractions and the ordering of the reconstructed

jet-triplets remain roughly unchanged for different mQ.

From Table 6.5, it can be seen that the combination 235, i.e. the second, third and fifth

hardest jet, is the best one and is correct about 6% of the time. Note that the combination 123

is not among the top 16 combinations. This makes sense, since it is unlikely that one of the

Q’s is going to decay into the three hardest jets in an event. It is much more likely that if the

hardest jet comes from one Q, then the second hardest jet will come from the other Q.

A priori, it is not clear how to use the information gained from the Monte Carlo matching.

However, we will now discuss a very useful kinematic correlation among observables made up

from the signal jets, which will enable us to better deal with the large combinatoric and physics

background. As we will see, it allows one to extract the signal, since both the combinatoric and

physics background do not have the same correlation. The correlation that we will focus on

here is found among the invariant mass of three jets versus the scalar sum of their transverse

momenta. Other kinematic correlations exist, which are qualitatively of the same importance

as the one discussed here, and they will be summarized in an appendix (§6.6).

The correlation between Mijk ≡ √
(pi + pj + pk)2 and pT,ijk ≡ |pT,i|+ |pT,j |+ |pT,k|, where

i, j, k refer to three different jets, exists basically for all pT -ordered jet-triplets. The correlation

is most pronounced, however, for the jet-triplets that are correct most of the time. We know

which ones these are from the Monte Carlo matching information. However, instead of just

using the best pT -ordered jet-triplet (i.e. the triplet 235 according to Table 6.5), it is much

better to include an ensemble of jet-triplets. This means that we include not just the best

triplet, but rather a collection of them. The precise number of triplets that should be included

can be optimized but was chosen here to be either the best 8 or the best 16 triplets. The

main point of including an ensemble of jet-triplets, as opposed to just one jet triplet, is that it

increases the significance of the signal.
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(a) Signal mQ = 290 GeV.
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(b) Pure QCD background (when generated with ALPGEN,
a pT cut of 80 GeV on each of the six quarks was assumed).
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(c) tt̄ background.

Figure 6.5: The figures show the invariant mass, Mijk ≡ √
(pi + pj + pk)2, versus the scalar

sum of the transverse momenta, |pT,i| + |pT,j | + |pT,k| for signal, pure QCD and tt̄. Here ijk
form a jet-triplet, and the figures include all the best 16 jet-triplets that most often come from
the decay of a Q, as shown in Table 6.5. There are thus 16 entries for each event. All the
trigger-level and event selection cuts as discussed in §6.3.1 are included, as well as the two
kinematic cuts

∑6
j=1 pT,j ≥ 600 GeV and pT,6 ≥ 90 GeV. The luminosity shown here is L=250

pb−1.
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A plot of Mijk versus pT,ijk is shown in Fig. 6.5 for the signal, QCD background and tt̄

background (note that each plot in this figure includes 16 entries per event). An interesting

kinematic feature, or correlation, is clearly visible for the signal in Fig. 6.5(a), where it appears

as a horizontal band around Mijk � mQ = 290 GeV. It is more pronounced for larger pT,ijk,

and is clearly distinct from the main diagonal band. This correlation is obviously absent for

the pure QCD background, since it appears only due to the resonance that is present in the

signal. The tt̄-background also has a similar feature around Mijk � mt � 172 GeV, which is

just barely visible in Fig. 6.5(c) (it can be made more pronounced with softer kinematic cuts).

Events on the horizontal branch come from correct jet-triplets consisting of highly boosted jets

and thus will have a large value for pT,ijk. Wrong jet-triplets which are highly boosted will not

generally land on the horizontal band, but will instead prefer to lie along the diagonal band.

The correct highly boosted jet-triplets will consist of jets that are close together in (φ, η)-space.

Thus one can also see a correlation if one plots Mijk versus ΔRij + ΔRjk + ΔRki, where

ΔRij =
√

(φi − φj)2 + (ηi − ηj)2, and φi (ηi) is the value of φ (η) of the i-th jet (see §6.6).

The non-zero width of the horizontal band is from the imperfect energy resolution of the

hadronic calorimeter. It is important to note that the combinatoric background is virtually

absent from the horizontal band. Moreover, since the QCD background also does not have

this kinematic feature, there is a strong contrast between the signal and the combinatoric and

physics backgrounds on the horizontal branch. Isolating the horizontal branch isolates those

events in which we are able to pick out the correct jet-triplet(s). This will lead to a good signal

over background ratio.

The best way to isolate the horizontal branch is to place a diagonal cut in the plane of Mijk

versus pT,ijk and keep everything below the diagonal line. More precisely, we keep an event if

any of the jet-triplets chosen from the set of the 16 best triplets, as given in Table 6.5, satisfies

the inequality

Mijk ≤ pT,ijk + offset, (6.1)

where “offset” was chosen to be either ∞ (i.e. no cut), 0 GeV, -100 GeV, -200 GeV, -300 GeV,
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or -400 GeV. The events that remain after this cut will have the property that at least one of

its jet-triplets among the 16 best jet-triplets make the cut (6.1). It may of course happen that

more than one of the jet-triplets make the cut.

For all the jet-triplets that made the cut (6.1), we calculate their invariant mass. The result

is shown in a histogram in Fig. 6.6(a), for mQ = 290 GeV and with an offset of -100 GeV

(trigger, event selection, and kinematic cuts are included). Note that the number of entries for

each event found in the total signal sample is between 0 and 16, and is equal to the number of jet-

triplets, chosen from the 16 best jet-triplets, that make all the cuts, including (6.1). Comparing

Fig. 6.6(a) with Fig. 6.3(a), it is clear that we have succeeded in isolating the resonance. There

is still some combinatoric confusion, which can be removed further by increasing the offset. It

is not always necessary to do this when trying to extract the signal from the background. In

fact, if the offset is too large the signal efficiency becomes too low.

The shape of the signal shown in Fig. 6.6(a) shows a peak sitting on top of a broad back-

ground. In order to better model the statistical fluctuations, we now fit a function to this shape,

and generate random data samples that average to this shape. The peak is well described by

ROOT’s Gaussian function, and the broad background can be described by ROOT’s Landau

function. The result of doing the fit, and rescaling everything to L = 1 fb−1, is shown in

Fig. 6.6(b). The parameters that are used in the fit are called pi, i = 0, 1, . . . , 5. p0, p1, and

p2 are respectively the normalization, mean, and sigma of the gaussian function. p3, p4, and p5

are respectively the normalization, most probable value, and sigma of the landau function. The

name on the top left of the plot has the format: “gluinosAAA t1 BBB CCC DDD EEE FFF”,

where

• “AAA” is the MS mass m of Q (here referred to as a gluino):

– m = 200 GeV ↔ mQ = 290 GeV

– m = 300 GeV ↔ mQ = 420 GeV

– m = 500 GeV ↔ mQ = 660 GeV
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gluinos200_t1_600_90_0_-100_16  / ndf 2χ  15.54 / 14
p0  65.6± 809.7 
p1  1.3± 287.7 
p2  1.67± 17.31 
p3  110.9±  2609 
p4  9.7± 381.2 
p5  7.3± 101.7 
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(b) This figure shows a fit to the shape in (a) above. See text for more details. The
luminosity shown here is L=1 fb−1.

Figure 6.6: The invariant mass of all the jet-triplets, chosen among the 16 best triplets, that
satisfy (6.1) for the signal with mQ = 290 GeV. All the trigger-level and event selection cuts as
discussed in §6.3.1 are included, as well as the two kinematic cuts

∑6
j=1 pT,j ≥ 600 GeV and

pT,6 ≥ 90 GeV. The offset in equation (6.1) is -100 GeV for this plot.
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– m = 700 GeV ↔ mQ = 880 GeV

• “t1” means that all the triggers from §6.3.1 are included

• “BBB” is the cut on
∑6

j=1 pT,j

• “CCC” is the cut on pT,6

• “DDD” is the cut on |�pT,i + �pT,j + �pT,k|, where �pT,i is the two-component momentum

vector transverse to the beam pipe (chosen to be zero in all of the plots presented)

• “EEE” is the value of the offset in equation (6.1)

• “FFF” is the number of jet-triplets included in the plot (here always 16)

The same curve fitting may be done to the pure QCD and tt̄-background, and the plots may be

stacked on top of each other. The pure QCD background may also be fit with ROOT’s Landau

and Gaussian function. The tt̄ background is well fit with just a Gaussian function. The result

is shown in Fig. 6.7. The signal can clearly be seen above both the QCD and tt̄ backgrounds.

This analysis may be repeated for a variety of kinematic cuts and for various values of mQ.

Several figures showing plots of the invariant mass distribution for the signal only, and for the

signal stacked on top of the background, are shown in an appendix (§6.7) in Figs.6.11-6.16 and

Figs.6.17-6.21, respectively.

The results of this analysis are summarized in Table 6.6. Shown are the various kinematic

and diagonal cuts used in the analysis for different values of mQ. Also shown is the “Diagonal

Cut Yield on 16-Ensemble”, for the signal (QQ) and the pure QCD background, which is the

number of jet-triplets (out of a maximum of 16) from each event that on average pass all

the cuts (including the diagonal cut). This number is obtained from averaging 1000 pseudo-

experiments. The ratio Sres
16 /Bres

16 is the number of jet-triplets from the signal that are within

the resonance peak after all the cuts, divided by the corresponding number for the pure QCD

background. The significance given by Sres
16 /

√
Bres

16 for integrated luminosities L = 0.1, 1, and 10
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p0  71.2± 856.8 
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p4  3.0± 404.3 
p5  2.3± 110.5 

Number of Events in
the Gauss Peak = 2041
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Figure 6.7: The invariant mass of the best 16 jet-triplets that satisfy (6.1) for the signal with
mQ = 290 GeV, the pure QCD background, and the tt̄ background (stacked on top of each other
from top to bottom, respectively). Included are all the trigger-level and event selection cuts as
discussed in §6.3.1, as well as the two kinematic cuts

∑6
j=1 pT,j ≥ 600 GeV and pT,6 ≥ 90 GeV.

The offset in equation (6.1) is -100 GeV. The luminosity shown here is L = 1fb−1.
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fb−1, respectively, are also given in the table. These numbers are also obtained from averaging

1000 pseudo-experiments.

The significance is around the discovery threshold of 5σ if L � 0.1 fb−1 for low mQ ∼ 300

GeV. This luminosity should be reached rather soon after the start of the LHC. About L � 1

fb−1 is required to discover Q’s with mQ ∼ 450 GeV, while Q’s with mQ ∼ 700 GeV require

L � 10 fb−1. Note that the significance will decrease by a factor of
√

3 if the QCD background

has a 3 times larger cross-section than what was assumed here. The same numbers as shown in

the table would then be obtained if L is increased by a factor of 3. These remarks assume that

only the background normalization changes, not its shape. However, even if the background

shape changes slightly it is unlikely that it will mimic the shape of the signal for all the cuts

that have been proposed here. So it should still be possible to extract the signal from the

background even in this case, although this statement would certainly need further study.

Finally, recall that the trigger-level cuts select Q’s that are very boosted. For very low mQ,

the trigger-level cuts select events that not only have highly boosted jets from the Q’s, but the

Q’s themselves are highly boosted when produced. It is possible that the three jets from the

decay of one of the Q’s begin to merge. Instead of a three-jet resonance there could then be

a two-jet resonance. The effect of the merging on the analysis method discussed here requires

further study.

6.4 Conclusions

The results of this work are summarized in Table 6.6. They show that searches for new particles

that produce multi-jet signals without any leptons or missing energy can be done. In particular,

it was found that a new heavy adjoint Majorana fermion Q decaying into three jets forms a

resonance that can be extracted from the large hadronic background. The mass reach is about

mQ ∼ 650-700 GeV for L � 10 fb−1. Q’s with masses as large as 300 GeV can potentially be

observed with only 100 pb−1 of integrated luminosity, which can be obtained soon after the

start of the LHC. The signal can be extracted using a variety of kinematic cuts and making use
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of correlations or kinematic features in observables formed from the signal jets which are absent

for the same observables formed from background jets.

The analysis method presented here is more widely applicable. It may be used to search

for tt̄ production in the all hadronic channel. In fact, there is additional information that can

be used in this case, such as b-tagging and the intermediate W-boson resonance, which makes

the search slightly easier. Moreover, it may be that the Q’s that get produced do not undergo

a three-body decay, but instead decay via an intermediate on-shell resonance, just like the top

quark. Our analysis method can also be used in this case. It is also applicable and should work

very well for multi-jet signals which are produced in conjunction with leptons and/or missing

energy. Such signals can, for example, be found in supersymmetry with R-parity violation.

The analysis here can no doubt be optimized further. Since a variety of cuts are used, it

may be useful to employ a neural network to do the optimization.

The two main ideas contained in this work are the idea of using correlations to extract

kinematic features and the idea of using an ensemble of reconstructed objects. The kinematic

features allow one to extract events with well-defined properties (e.g. in this work, the kinematic

feature allows one to extract events in which we can identify the jet-triplets that come from the

decay of the Q’s). Using an ensemble then increases the efficiency and thus the significance of

the signal. These ideas are very widely applicable and not just confined to multi-jet signals.

6.5 Appendix: Comparison of the PGS 4 and CMSSW detector sim-

ulations

Since PGS 4 is a fast detector simulation, a natural question to ask is whether it is realistic

enough to simulate the very complicated CMS and ATLAS detectors at the LHC. To answer this

question, the events were also run through the full detector simulation of the Compact Muon

Solenoid (CMS) experimental collaboration using their CMS Software (CMSSW). Including

only the trigger-level cuts, Figs. 6.8(a) and 6.8(b) show the Monte Carlo matched three-jet

invariant mass assuming mQ � 290 GeV for the PGS and for the CMSSW detector simulation,
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respectively. The gaussian invariant mass peak has a width of about σ � 26 GeV and σ � 33

GeV with the PGS and the CMSSW detector, respectively. As expected, the width is wider

with the more realistic CMSSW detector simulation, and the PGS 4 detector is “too good”.

In PGS, the hadronic calorimeter jet energy resolution is given by

σ(Ejet
T ) ∝ 0.8 ×

√
Ejet

T . (6.2)

In CMSSW (see the CMS TDR [12, 13]), the jet energy resolution for central jets is

σ(Ejet
T , |η| < 1.4) = (5.8 GeV) ⊕ (1.25 ×

√
Ejet

T ) ⊕ (0.033 × Ejet
T ), (6.3)

while the jet energy resolution for forward jets is

σ(Ejet
T , |η| < 3.0) = (4.8 GeV) ⊕ (0.89 ×

√
Ejet

T ) ⊕ (0.043 × Ejet
T ). (6.4)

The CMSSW jet energy resolution thus contains a constant and a linear term. The symbol ⊕

indicates that the terms should be added in quadrature.

Every jet in every event that comes from PGS may be made more realistic by giving its

energy an additional smearing. This can be done by multiplying the pT of each jet by a gaussian

random number, centered at 1, with a width given by the difference of the CMSSW σ-value

given in (6.3) and the PGS σ-value given in (6.2). The result of this is shown in Fig. 6.8(c).

The gaussian peak has a width of about σ � 35 GeV, which agrees well with the CMSSW peak

width.

The CMSSW jets and the newly smeared PGS jets both should get an additional systematic

smearing to make them even more realistic, see the CMS TDR [12, 13]. This additional smearing

is given by taking the pT or ET of the jet and adding a gaussian random number centered at 0

with a width given by 0.46 × σ(Ejet
T , |η|), i.e.

E
′jet
T = Ejet

T + Gaus[0, 0.46 × σ(Ejet
T , |η|)]. (6.5)

This further broadens the overall jet energy resolution by about 10%. The result of this, for

the already smeared PGS jets, is shown in Fig. 6.8(d). The gaussian peak here has a width of

about σ � 37 GeV.
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(c) PGS 4 smeared to match CMSSW
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Figure 6.8: The Monte Carlo matched jet-triplet invariant masses for different detector simula-
tions and, in some cases, with an additional smearing of the jet energy resolution. The signal
has mQ = 290 GeV. Only trigger-level cuts are included, without any additional kinematic cuts.
In Figure (a), the events were run through the PGS 4 detector simulation, while in Figure (b)
they were run through the full CMSSW detector simulation. Figure (c) includes events run
through PGS 4, but each jet receives an additional smearing as described in the text, in order
to have an overall jet energy resolution as that found in CMSSW. Figure (d) includes jets run
through PGS 4, with the same additional smearing as in Figure (c), but with an additional
smearing of about 10% as given by (6.5). This additional 10% smearing is described in the
CMS TDR as being more realistic, but is not included in the CMSSW detector simulation. The
luminosity shown in the figures is about L � 300 pb−1.
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(d) PGS 4 smeared to match CMSSW + system-
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Figure 6.9: The invariant mass of the best 16 jet-triplets that satisfy (6.1) for the signal with
mQ = 290 GeV. Included are all the trigger-level and event selection cuts as discussed in §6.3.1,
as well as the two kinematic cuts

∑6
j=1 pT,j ≥ 600 GeV and pT,6 ≥ 90 GeV. The offset in

equation (6.1) is -100 GeV. The luminosity shown here is L = 300 pb−1, except for Figure (d)
which only has L = 58 pb−1 and suffers slightly from low statistics. Figures (a)-(d) assume the
same detector/jet energy resolution as described in Fig. 6.8.

A feel for the effect of the more realistic jet energy resolution on the analysis can be gained

by looking at the signal shape after all the analysis cuts. This is shown in Fig. 6.9 for the PGS

and the CMSSW detector simulation and for different jet energy resolutions as discussed above.

The signal is at mQ = 290 GeV. Included are all the trigger-level and event selection cuts as

discussed in §6.3.1, as well as the two kinematic cuts
∑6

j=1 pT,j ≥ 600 GeV and pT,6 ≥ 90

GeV. The offset in equation (6.1) is -100 GeV. The effect of the additional smearing is small,

although it can be seen by eye. Although a systematic study of the effect of this on the results

as described in Table 6.6 has not been done, it is clear that the results will only change by a

small amount, since the smearing does not have too large an effect. This means that our results

and analysis obtained with PGS (and no additional smearing) are reliable.
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6.6 Appendix: Other Kinematic Correlations

We have seen that a very interesting correlation or kinematic feature can be seen for the signal

when plotting the invariant mass Mijk ≡ √
(pi + pj + pk)2 versus the scalar sum of the trans-

verse momenta pT,ijk ≡ |pT,i|+ |pT,j |+ |pT,k|, where pT,i is the transverse momentum of the i-th

jet, and ijk forms a (pT -ordered) jet-triplet. This is shown in Fig. 6.10(a) for mQ = 420 GeV.

In this appendix, we shall briefly mention two other kinematic correlations that we investigated.

The first one is a correlation in Mijk versus P ≡ ΔRij + ΔRjk + ΔRki, where ΔRij =√
(φi − φj)2 + (ηi − ηj)2, and φi (ηi) is the value of φ (η) of the i-th jet. This is shown in

Fig. 6.10(b). Again the correct jet-triplets can be found on a horizontal band around Mijk �

mQ, this time for small values of P . The three jets in a triplet form a triangle in (φ, η)-space,

and P calculates the perimeter of this triangle. Events on the horizontal band again contain

highly boosted jets. Since they are so highly boosted, the three jets in the correct triplet will

lie close together, and thus the value of P will be small.

Another correlation can be found in Mijk versus V ≡ |�pT,i + �pT,j + �pT,k|, where �pT,i is

the two-component momentum vector transverse to the beam pipe. This correlation is shown

in Fig. 6.10(c). V is the magnitude of the vector formed by summing the three transverse

momentum vectors. A horizontal branch is also visible here. Events on this horizontal branch

again contain highly boosted jets for which V is large.

It is possible to make use of all of these correlations in an analysis, but it is also clear

that they all provide basically the same information, since they always pick out highly boosted

jets. Since there is no qualitative difference between the various correlations, we chose to focus

our analysis on using just one of them (Mijk versus pT,ijk). One can no doubt optimize the

significance slightly by using all of the correlations.
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(a) Mijk versus pT,ijk ≡ |pT,i|+|pT,j |+|pT,k|, where
pT,i is the transverse momentum of the i-th jet.

(b) Mijk versus P ≡ ΔRij + ΔRjk + ΔRki, where

ΔRij =
√

(φi − φj)2 + (ηi − ηj)2, and φi (ηi) is the
value of φ (η) of the i-th jet.

(c) Mijk versus V ≡ |	pT,i + 	pT,j + 	pT,k|, where 	pT,i

is the two-component momentum vector transverse
to the beam pipe.

Figure 6.10: Mijk ≡ √
(pi + pj + pk)2 versus various other kinematic quantities made out of

three jets, for the signal with mQ = 420 GeV. Here ijk form a jet-triplet, and the figures include
all the best 16 jet-triplets that most often come from the decay of a Q, as shown in Table 6.5.
Each plot thus contains 16 entries for each event. All the trigger-level and event selection cuts
as discussed in §6.3.1 are included, as well as the two kinematic cuts

∑6
j=1 pT,j ≥ 600 GeV and

pT,6 ≥ 90 GeV. The luminosity shown here is L = 2 fb−1.
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6.7 Appendix: Three-Jet Resonance Figures
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(b) pT,6 = 30 GeV, offset = -200 GeV.
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(c) pT,6 = 60 GeV, offset = -100 GeV.
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(d) pT,6 = 60 GeV, offset = -200 GeV.

Figure 6.11: The invariant mass of the 16 best jet-triplets that satisfy (6.1) for the signal with
mQ = 290 GeV and offset value given in each subfigure caption. Included are all the trigger-
level and event selection cuts (§6.3.1), a kinematic cut

∑6
j=1 pT,j ≥ 600 GeV, and a cut on pT,6

as detailed in each subfigure caption. L = 1fb−1.
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(a) pT,6 = 60 GeV, offset = -300 GeV.
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(b) pT,6 = 90 GeV, offset = -100 GeV.

100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

gluinos200_t1_600_90_0_-200_16  / ndf 2χ  9.417 / 14
p0  44.7± 426.1 
p1  1.6± 290.2 
p2  1.81± 16.24 
p3  72.0± 921.8 
p4  13.0±   361 
p5  10.31± 90.34 

gluinos200_t1_600_90_0_-200_16

(c) pT,6 = 90 GeV, offset = -200 GeV.
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(d) pT,6 = 90 GeV, offset = -300 GeV.

Figure 6.12: The invariant mass of the 16 best jet-triplets that satisfy (6.1) for the signal with
mQ = 290 GeV and offset value given in each subfigure caption. Included are all the trigger-
level and event selection cuts (§6.3.1), a kinematic cut

∑6
j=1 pT,j ≥ 600 GeV, and a cut on pT,6

as detailed in each subfigure caption. L = 1fb−1.
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(a) pT,6 = 30 GeV, offset = -200 GeV.
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(b) pT,6 = 60 GeV, offset = -200 GeV.
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(c) pT,6 = 60 GeV, offset = -300 GeV.
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(d) pT,6 = 60 GeV, offset = -400 GeV.

Figure 6.13: The invariant mass of the 16 best jet-triplets that satisfy (6.1) for the signal with
mQ = 420 GeV and offset value given in each subfigure caption. Included are all the trigger-
level and event selection cuts (§6.3.1), a kinematic cut

∑6
j=1 pT,j ≥ 700 GeV, and a cut on pT,6

as detailed in each subfigure caption. L = 1fb−1.
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(a) pT,6 = 90 GeV, offset = -200 GeV.

100 200 300 400 500 600 700 800 900 10000

20

40

60

80

100

120

140

gluinos300_t1_700_90_0_-300_16  / ndf 2χ  13.61 / 14
p0  7.3± 100.2 
p1  1.3± 411.6 
p2  1.37± 18.93 
p3  10.8± 193.9 
p4  10.6± 425.1 
p5  7.29± 96.63 

gluinos300_t1_700_90_0_-300_16

(b) pT,6 = 90 GeV, offset = -300 GeV.
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(c) pT,6 = 90 GeV, offset = -400 GeV.
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(d) pT,6 = 120 GeV, offset = -200 GeV.
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(e) pT,6 = 120 GeV, offset = -300 GeV.
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(f) pT,6 = 120 GeV, offset = -400 GeV.

Figure 6.14: The invariant mass of the 16 best jet-triplets that satisfy (6.1) for the signal with
mQ = 420 GeV and offset value given in each subfigure caption. Included are all the trigger-
level and event selection cuts (§6.3.1), a kinematic cut

∑6
j=1 pT,j ≥ 700 GeV, and a cut on pT,6

as detailed in each subfigure caption. L = 1fb−1.



197

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

80

gluinos500_t1_1100_60_0_-200_16  / ndf 2χ  98.95 / 20
p0  1.24± 38.93 
p1  1.0± 639.1 
p2  1.31± 29.93 
p3  2.5± 299.5 
p4  2.4± 458.4 
p5  1.9± 116.3 

gluinos500_t1_1100_60_0_-200_16

(a) pT,6 = 60 GeV, offset = -200 GeV.
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(b) pT,6 = 60 GeV, offset = -300 GeV.
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(c) pT,6 = 60 GeV, offset = -400 GeV.

Figure 6.15: The invariant mass of the 16 best jet-triplets that satisfy (6.1) for the signal with
mQ = 660 GeV and offset value given in each subfigure caption. Included are all the trigger-
level and event selection cuts (§6.3.1), a kinematic cut

∑6
j=1 pT,j ≥ 1100 GeV, and a cut on

pT,6 as detailed in each subfigure caption. L = 1fb−1.
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(a) pT,6 = 90 GeV, offset = -200 GeV.
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(b) pT,6 = 90 GeV, offset = -300 GeV.
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(c) pT,6 = 90 GeV, offset = -400 GeV.
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(d) pT,6 = 120 GeV, offset = -200 GeV.
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(e) pT,6 = 120 GeV, offset = -300 GeV.
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(f) pT,6 = 120 GeV, offset = -400 GeV.

Figure 6.16: The invariant mass of the 16 best jet-triplets that satisfy (6.1) for the signal with
mQ = 660 GeV and offset value given in each subfigure caption. Included are all the trigger-
level and event selection cuts (§6.3.1), a kinematic cut

∑6
j=1 pT,j ≥ 1100 GeV, and a cut on

pT,6 as detailed in each subfigure caption. L = 1fb−1.
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(a) pT,6 = 30 GeV, offset = -100 GeV.
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(b) pT,6 = 30 GeV, offset = -200 GeV.
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(c) pT,6 = 60 GeV, offset = -100 GeV.
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(d) pT,6 = 60 GeV, offset = -200 GeV.

100 200 300 400 500 600 700 800 900 10000

200

400

600

800

1000

1200

1400

1600

1800

gluino signal + 6j+tt backgrounds  / ndf 2χ  16.51 / 14
p0  98.9± 516.3 
p1  2.2± 289.4 
p2  2.38± 14.66 
p3  171.3±  7034 
p4  5.0± 365.5 
p5  4.67± 98.53 

Number of Events in
the Gauss Peak = 949

gluino signal + 6j+tt backgrounds

(e) pT,6 = 60 GeV, offset = -300 GeV.
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(f) pT,6 = 90 GeV, offset = -100 GeV.
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(g) pT,6 = 90 GeV, offset = -200 GeV.
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(h) pT,6 = 90 GeV, offset = -300 GeV.

Figure 6.17: The invariant mass of the 16 best jet-triplets that satisfy (6.1), with an offset value
given in each subfigure caption, for the signal with mQ = 290 GeV, the pure QCD background,
and the tt̄ background. Included are all the trigger-level and event selection cuts (§6.3.1), a
kinematic cut

∑6
j=1 pT,j ≥ 600 GeV, and a cut on pT,6 as detailed in each subfigure caption. L

= 1fb−1.
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(a) pT,6 = 30 GeV, offset = -200 GeV.
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(b) pT,6 = 60 GeV, offset = -200 GeV.
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(c) pT,6 = 60 GeV, offset = -300 GeV.
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(d) pT,6 = 60 GeV, offset = -400 GeV.

Figure 6.18: The invariant mass of the 16 best jet-triplets that satisfy (6.1), with an offset value
given in each subfigure caption, for the signal with mQ = 420 GeV, the pure QCD background,
and the tt̄ background. Included are all the trigger-level and event selection cuts (§6.3.1), a
kinematic cut

∑6
j=1 pT,j ≥ 700 GeV, and a cut on pT,6 as detailed in each subfigure caption. L

= 1fb−1.
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(a) pT,6 = 90 GeV, offset = -200 GeV.
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(b) pT,6 = 90 GeV, offset = -300 GeV.
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(c) pT,6 = 90 GeV, offset = -400 GeV.
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(d) pT,6 = 120 GeV, offset = -200 GeV.
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(e) pT,6 = 120 GeV, offset = -300 GeV.
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(f) pT,6 = 120 GeV, offset = -400 GeV.

Figure 6.19: The invariant mass of the 16 best jet-triplets that satisfy (6.1), with an offset value
given in each subfigure caption, for the signal with mQ = 420 GeV, the pure QCD background,
and the tt̄ background. Included are all the trigger-level and event selection cuts (§6.3.1), a
kinematic cut

∑6
j=1 pT,j ≥ 700 GeV, and a cut on pT,6 as detailed in each subfigure caption. L

= 1fb−1.
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(a) pT,6 = 60 GeV, offset = -200 GeV.
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(b) pT,6 = 60 GeV, offset = -300 GeV.
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(c) pT,6 = 60 GeV, offset = -400 GeV.

Figure 6.20: The invariant mass of the 16 best jet-triplets that satisfy (6.1), with an offset value
given in each subfigure caption, for the signal with mQ = 660 GeV, the pure QCD background,
and the tt̄ background. Included are all the trigger-level and event selection cuts (§6.3.1), a
kinematic cut

∑6
j=1 pT,j ≥ 1100 GeV, and a cut on pT,6 as detailed in each subfigure caption.

L = 1fb−1.
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(a) pT,6 = 90 GeV, offset = -200 GeV.
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(b) pT,6 = 90 GeV, offset = -300 GeV.
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(c) pT,6 = 90 GeV, offset = -400 GeV.
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(d) pT,6 = 120 GeV, offset = -200 GeV.
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(e) pT,6 = 120 GeV, offset = -300 GeV.
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(f) pT,6 = 120 GeV, offset = -400 GeV.

Figure 6.21: The invariant mass of the 16 best jet-triplets that satisfy (6.1), with an offset value
given in each subfigure caption, for the signal with mQ = 660 GeV, the pure QCD background,
and the tt̄ background. Included are all the trigger-level and event selection cuts (§6.3.1), a
kinematic cut

∑6
j=1 pT,j ≥ 1100 GeV, and a cut on pT,6 as detailed in each subfigure caption.

L = 1fb−1.
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