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ABSTRACT OF THE DISSERTATION

A LINEAR PROGRAMMING MODEL FOR

SEQUENTIAL TESTING

by LILIYA FEDZHORA

Dissertation Director: Endre Boros

In this study, a linear programming model is formulated that finds an optimal strategy for

many decision-making problems that typically arise in homeland security, banking, medi-

cine, and engineering. We consider the problem of deploying a set of tests most effectively

when the goal is to detect as many as possible “bad” objects among the vast majority of

“good” ones, for example, in searching for contraband. The study assumes that functional

dependency between test results and object type is unknown. The model finds an optimal

testing strategy in the form of a decision tree that minimizes the expected cost given a

detection rate or maximizes the detection rate given the budget. The mathematical basis

for the model is a polyhedral description of all decision trees in higher dimensional space.

Decision trees are widely used in data mining and machine learning. A notion of VC-

dimension is used to evaluate the bounds of the sample size required for the learning model.

For some classes of Boolean functions VC-dimension is already known, for example, for

monomials and threshold functions. In Chapter 10, the VC-dimension of Horn functions

is derived, and also the VC-dimension of a more general class of k-quasi-Horn functions.

In Chapter 11 we state and prove a criterion for k-quasi-Horn functions that generalizes

McKinsey’s theorem. Also, necessary and sufficient conditions for function to be bidual

k-quasi-Horn are stated and proved.
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Chapter 1

Introduction

Should a bank grant a credit card to a particular applicant? Does a cargo ship that arrives at

a U.S. port from a foreign country carry containers with illegal contents? Has an emergency

room patient suffered a heart attack? Decision-making or diagnostic problems arise in many

areas, including astronomy ([70]), engineering ([21]), image and language processing ([18, 52,

67]), homeland security ([71, 69, 2, 56]), manufacturing and production ([28, 33, 34, 36]),

and medicine ([35, 45, 48, 53, 57]). Some real-life examples are provided in Chapter 8.

Diagnoses are based on test results, such as blood pressure readings or radiation levels.

For some problems, functional dependency between tests results and diagnosis (decision

function) is known, but for others it is not.

We consider the problem of deploying a set of tests most effectively when the goal

is to detect as many as possible “bad” objects among the vast majority of “good” ones,

for example, in detecting contraband or diagnosing patients with rare diseases. (For the

purpose of focusing on diagnostic problems, we will refer to the subjects being analyzed as

“objects”, whether they are individuals or inanimate entities.) Tests have costs in terms

of such factors as time, money, and pain. Making decisions about the object type also

incurs costs. When we decide that an object is good based on the test results, the costs

of that decision are usually negligible; for example, if a diagnosis is favorable, or good, a

doctor releases a healthy patient. In most cases, the decision that an object is bad costs

considerably more than the tests; for example, a diagnosis is unfavorable, or bad, so a sick

patient checks into the hospital and undergoes a costly treatment.

Thus, an object is routed through various tests according to the results it produces.

This process can be conceptualized by saying that a particular design of the testing schedule

produces a tree. The first test to be applied is at the root node. According to the initial
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root-node test results, the object being tested may be either released (i.e., declared good),

or forwarded to another test, or declared bad. When test results are expensive to learn we

can use given labeled data to derive an empirical distribution for each test and type.

One of the most important applications of the diagnosis problem is in homeland security.

Because the vast majority of imported goods come to the United States by sea, inspecting

containers at U.S. ports to prevent illegal items from entering the country is critical. Ob-

viously, inspecting every container is economically infeasible, and only about 2% to 3% of

the containers are inspected each year (see, e.g., [54] for more details).

In [71], the container inspection problem is approached by completely enumerating all

possible binary decision trees. One of the two assumptions that is made about a decision

function is completeness; that is, in some cases, to decide whether a container is dangerous,

the readings from all sensors (tests) are required. The second assumption is monotonicity;

that is, if the readings of any two containers at all the sensors are the same except one, then

the container with the more distinctively suspicious reading is likely to be more dangerous.

Even under these assumptions, the number of binary decision trees grows doubly exponen-

tially in the number of sensors, and the problem becomes computationally challenging for

more than four sensors. (More definitions are provided in Chapter 3, and a more detailed

description of this model can be found in Chapter 4.)

Sensitivity analysis of the results of the above model is described in [2]. To make the

model more tractable, at least two (opposite by nature) approaches have been considered

in the literature. In [82] more restrictive assumptions are made about the binary decision

trees. In [56] a broader class of binary decision trees is discussed. The notion of a class of

complete, monotonic Boolean functions is generalized and a notion of a class of complete

and monotonic binary decision trees is defined. A search algorithm based on [22, 23, 59] is

introduced that allows us to find an optimum decision tree for at least five sensors.

In Chapter 5 we introduce some additional definitions, and in Chapters 6 and 7 we

formulate a linear programming model that finds an optimal strategy for problems with

unknown diagnosis function. The model finds an optimal strategy in the form of a decision

tree that minimizes the expected cost given the detection rate or maximizes the detection

rate given the budget.
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While most of the literature considers the simplest type of decision trees, binary, our

model suggest mapping the problem from the space of all decision trees to the space of all

ordered test sequences. This approach proves to be very efficient, because the dimension

of the space of all decision trees is O(n!M(n)), where M(n) ≈ 2
2
n

√

n , comparing to the

dimension of the space of all ordered test sequences of O(n!), where n is the number of

tests. Also, our model is not limited to binary trees only; we may choose different numbers

of branches (decisions) for different tests. The literature on multi-fold decision trees is very

scarce, which makes our model even more valuable, because sometimes it is more natural

to divide the results of the tests into more than two categories. However, the main reason

to use manifold decision trees is directly related to a difficult problem of choosing “good”

thresholds (cut-off points).

The average cost of a strategy depends on the choice of thresholds. For different thresh-

old levels we have different average costs. One method for choosing thresholds can be based

on the observation made in [51] that a decision as to whether a container is dangerous does

not depend on the sensor reading but on the odds ratio of dangerous to safe containers cor-

responding to the reading. In general, the larger the number of thresholds (not necessarily

optimal ones) the lower the average costs.

We consider two types of objects and two types of decisions, but our model can be gen-

eralized for any number of different types of objects and decisions. Decision tree regression

is a generalization of a decision tree when a decision is not discrete but continuous (see,

e.g., [81]).

The fundamentals of decision analysis were developed in [77, 78, 55, 8]. For the sequential

testing a large body of literature exists on the type of problems when the decision function

is known (see, e.g., [15, 16, 14, 73, 72, 19, 7, 27, 20, 30, 39, 44, 46, 49, 50, 65, 68]).

An example of a decision tree representation of Boolean function f(x1, x2, x3) = x1x2 ∨

x1x3 is given in Figure 1.1. Given the costs of learning the values of the variables x1, x2, and

x3, and different criteria for decision trees (e.g., to choose the cheapest one) we may prefer

to choose one decision tree over another to learn the value of the function. In general,

even if the cost of tests are uniform it is very hard to find the shallowest decision tree

representation for a given Boolean function, which is a major problem in circuit complexity.
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x1

f = 0

x1 = 0

x2

x3

f = 0

x3 = 0

f = 1

x3 = 1

x2 = 0

f = 1

x2 = 1

x1 = 1

Figure 1.1: A decision tree representation for a Boolean function f(x1, x2, x3) = x1x2∨x1x3.
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For a simple case of a series Boolean function (i.e., the decision is positive if and only if

all the test results are positive), the optimal strategy is to conduct tests in the order of the

ratio of cost to probability that the reading will be positive (see, e.g., [61, 19, 64, 1]).

Another simple Boolean function (also called system) when the decision is positive if

and only if any of the test results are positive is called parallel. Series-parallel systems

are the systems in which components can be grouped hierarchically into series or parallel

subsystems. Sequential testing of series-parallel systems when subsystems are tested one by

one in the order of their cost/probability ratios was proposed in [44] and was claimed to be

optimal for any series-parallel system. It was shown in [7, 64, 16, 73] that it is true only for

some special structures of series-parallel systems. In [82] a system of equations for general

total cost of inspection is developed for general case of n sensors in series-parallel system.

The optimal testing strategy for even more complex Boolean functions was considered in

[21].

Decision trees are widely used in data mining and machine learning ([17, 60, 79]). To

evaluate the bounds of the sample size required for learning model, a notion of VC-dimension

is used (see, e.g., [5, 9, 74]).

Because finding an exact function c from a known class C is usually difficult, we find a

function (hypothesis) h from a hypotheses space H that is very close to c. In other words,

we minimize the error of h, and if err(h) is small we consider h to be “approximately

correct.” Because we learn the values of a function from a random sample, it is possible

that a bad sample will prevent our ability to find h that is approximately correct. Thus,

we allow the learning algorithm to fail with some small probability. In this case we call h

“probably approximately correct” or PAC. In other words, h is PAC compliant if

Pr[err(h) ≤ ǫ] ≥ 1 − δ.

When the set of all hypotheses H is finite, the goal is to find h ∈ H that is PAC compliant

for a sample size of m. The VC-dimension of H, d, provides us with a bound on m to

achieve ǫ and δ. Formally, err(h) ≤ ǫ for
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m = O

(
d ln(1/ǫ) + ln(1/δ)

ǫ

)
.

A point x = (x1, ..., xn) ∈ B
n is a true point of the Boolean function f if f(x) = 1, and

if f(x) = 0 we call x a false point, where B = {0, 1}. We denote by T (f) the set of true

points of Boolean function f , and by F (f) the set of false points of f . Let G be a class

of Boolean functions g : B
n → B. A set S ⊆ B

n is said to be shattered by G if for any

partition of S into two subsets T and F there exists function g ∈ G for which T ⊆ T (g) and

F ⊆ F (g). The Vapnik-Chervonenkis dimension of G, denoted by V Cdim(G) is defined as

the maximum cardinality of a subset S ⊆ B
n that is shattered by G.

For some classes of Boolean functions VC-dimension is already known, for example, for

monomials and threshold functions [4]. In Chapter 10 we derive the VC-dimension of Horn

functions, and also the VC-dimension of a more general class of k-quasi-Horn functions.

A Boolean function f : B
n → B is Horn if it has a DNF representation with at most one

negative literal in each term. For any nonnegative integer constant k a Boolean function g:

B
n → B is k-quasi-Horn if it has a DNF representation with at most k negative literals in

each term.

In Chapter 11 we state and prove a criterion for k-quasi-Horn functions that generalizes

McKinsey’s theorem. Also, necessary and sufficient conditions for function to be bidual

k-quasi-Horn are stated and proved. For any Boolean function f its dual fd is defined as

fd(x) = f(x) for all x ∈ B
n, where x = (x1, . . . , xn). A function f is bidual k-quasi-Horn,

if both f and fd are k-quasi-Horn.
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Chapter 2

Main Results

First we formulate a large-scale linear programming model that finds an optimal strategy for

a type of problem with unknown diagnosis function. The model finds an optimal strategy

in the form of a decision tree that minimizes the expected cost given a detection rate

or maximizes the detection rate given the budget. The model is based on a polyhedral

description of all decision trees in the space of possible inspection histories (see Chapter 7

for more details). Polyhedral characterization of decision trees applies even if we consider

shape restrictions, such as depth of the tree or precedence constraints between tests.

The polyhedral approach is based on the notions of history and subhistory (or path

and subpath). For each object and its test results we associate a history, which is the

sequence of pairs of test and the range in which the test result belongs, and a final decision

about an object. For instance, for three tests with four possible ranges for test results

π = ((1, 3), (2, 4), (3, 2), 0) is an example of a history from a set of all possible histories P ,

where π describes that the result of the first test falls into the third range; the results on

the second test are in the fourth range; at the third test the result is in the second range,

and the decision about an object is negative. For every history π ∈ P we say that ν is a

subhistory of π and denote ν ≺ π, if there exists a history π0 ∈ P such that (ν, π0) = π. For

the history mentioned above we have four subhistories (including two trivial ones - empty

subhistory and history itself):

ν1 = (),

ν2 = ((1, 3)),

ν3 = ((1, 3), (2, 4)),

ν4 = ((1, 3), (2, 4), (3, 2)),
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and the following relation holds:

() ≺ ((1, 3)) ≺ ((1, 3), (2, 4)) ≺ ((1, 3), (2, 4), (3, 2)) ≺ ((1, 3), (2, 4), (3, 2), 0).

We use a set of equalities to describe a polytope, the vertices of which correspond to

decision trees (there is a one-to-one correspondence between vertices and decision trees). In

fact, optimal strategy is usually not a single decision tree (pure strategy), but a combination

of several decision trees (mixed strategy). In pure strategy, the value of the function is the

same for exactly the same values of variables. In mixed strategies we can have different

values of the function for the same values of the variables. (See Figures 5.1 and 5.2 in

Chapter 5 for examples of mixed strategies.)

Decision trees are widely used in data mining and machine learning ([17, 60, 79]). To

evaluate the bounds of the sample size required for learning model, a notion of VC-dimension

is used (see, e.g., [5, 9, 74]).

Let us denote by Hk the class of k-quasi-Horn functions h : B
n → B, and by P the

class of positive Boolean functions. In Chapter 10 we state and prove the VC-dimension of

k-quasi-Horn functions.

Theorem 1 V Cdim(Hk) = Θ(V Cdim(P )), when k ≪ n and V Cdim(P ) =
( n⌊

n+1

2

⌋) .

In the first part of Chapter 11 we use the notion of k-zeros-conjunction (for more details

see Chapter 11) to generalize and prove the McKinsey theorem, which states that a Boolean

function is Horn if and only if the set of its false points is closed under conjunction.

Theorem 2 A Boolean function is k-quasi-Horn if and only if the set of its false points is

closed under k-zeros-conjunctions.

The criteria for bidual Horn functions and DNFs can be found in [31]. We general-

ize these results and formulate necessary and sufficient conditions for bidual k-quasi-Horn

functions and DNFs in the second part of Chapter 11.

We denote by P (t) and N(t) respectively the set of indices of positive and negative

literals in the term t, and by V (t) = P (t) ∪N(t) the set of all variable indices in the term

t. For any s ≥ 2 terms ti1 , . . . , tis let us denote by t+i1,i2,...,is
the positive term such that

P (t+i1,i2,...,is
) = P (ti1) ∪ P (ti2) ∪ . . . ∪ P (tis),
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and by t±i1,i2,...,is
the positive term such that

P (t±i1,i2,...,is
) = V (ti1) ∪ V (ti2) ∪ . . . ∪ V (tis).

We denote by

Ñi2,i3,...,is(ti1) = N(ti1) \ (N(ti2) ∪N(ti3) ∪ . . . ∪N(tis))

the set of indices of the unique (with respect to the terms ti2 , ti3 , . . . , tis) negated literals

in the term ti1 . To simplify the notations we will use Ñ(ti1) instead of Ñi2,i3,...,is(ti1) when

all the terms are defined without any ambiguity. We define a positive DNF

t̂±i1,i2,...,is
=

∧

q∈{1,2,...,s}

(( ∧

l∈P (tiq )

xl

)
∧

( ∨

l∈Ñ(tiq )

xl

))
.

In Section 11.4 we formulate and prove necessary and sufficient conditions for bidual

k-quasi-Horn functions and DNFs.
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Chapter 3

Definitions

Let us assume that we have a set of n Boolean variables xi ∈ B, i ∈ N and a Boolean function

f(x) = f(x1, . . . , xn), where B = {0, 1}. A Boolean function can be described in different

ways. We can represent Boolean function by a formula; for example, f(x1, x2) = x1 ∨ x2.

Alternatively, we can describe this Boolean function by its truth table (see Table 3.1).

Also, it can be represented by a decision tree (see Figure 3.1). The nodes denoted by

circles in Figure 3.1 represent variables. The edges correspond to the values of the variables.

For each node and each set of edges that follow that node, the values of variables are assigned

to the edges in monotone increasing order; for example, the leftmost edge corresponds to

the smallest possible value of the variable, and the rightmost edge corresponds to the largest

possible value of the variable. In the case of Boolean variables, the left edge corresponds

to the value of zero of a variable, and the right edge corresponds to the value of one. A

node that is not followed by edges is called a leaf. Leaves store the value of the function

and are denoted by squares. Every edge is followed by a leaf or a node that corresponds to

a variable. In our example if the value of x1 is 1 then f(x1, x2) = 1. Otherwise, if x1 = 0,

we must know the value of x2 to calculate the value of the function. The diagram in Figure

3.1 is an example of a binary decision tree. A binary decision tree (BDT) represents a

process of the sequential learning of variable values to make a decision about the value of

the function, where each node except leaves has exactly two edges. A node that corresponds

to the variable that we learn first is called a root.

We assume that each variable appears at most once in any path from the root to any

leaf of the BDT. It is a reasonable assumption, because we do not need to learn a value of

a variable if we have already learned it.

Let us consider the number of BDTs for different number of variables. When we do not
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x1 x2 f(x1, x2)

0 0 0

0 1 1

1 0 1

1 1 1

Table 3.1: Function f(x1, x2) = x1 ∨ x2.



12

1
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0 1

1

Figure 3.1: Function f(x1, x2) = x1 ∨ x2.
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have any variables there are two possible BDTs, assigning a value of 0 or 1 to the function.

Let us denote by Dn the set of distinct BDTs that can be formed for a Boolean function

of n Boolean variables, and by Nn = |Dn| the number of such distinct BDTs. We have

that N0 = 2 and N1 = 6 (see Figure 3.2). For n Boolean variables the number of BDTs is

described by a recursive formula Nn = 2+n(Nn−1)
2. For two Boolean variables there are 74

possible BDTs; for three Boolean variables we have 16, 430 possible BDTs; for four Boolean

variables there are more than 1 billion possible BDTs, and for five Boolean variables there

are 5x1018 distinct BDTs (see [71]).

Let Ci denote the cost to learn a value of the variable xi, and pi = Prob(xi = 0) denote

the probability that xi = 0.

Example 1 The cost of the BDT in Figure 3.1 to learn the value of the function f(x1, x2) =

x1 ∨ x2 equals C1 + p1C2. The cost of the BDT in Figure 3.3 to learn the value of the same

function equals C2 + p2C1. Depending on the values of Ci and pi we compare trees and

choose the least expensive one. For example, given the choice between BDTs in Figure 3.1

and Figure 3.3 for C1 = 1, C2 = 2, and p1 = p2 = .5, we choose the BDT in Figure 3.1,

because it costs 1 + .5(2) = 2, whereas the cost of BDT in Figure 3.3 is 2 + .5(1) = 2.5.

Binary decision trees are also used for classification when the system function is un-

known, or may not even exist. In binary classification we call an outcome of 0 negative,

and outcome of 1 we call positive. If based on the values of the variables we predict a posi-

tive (negative) outcome, but observe a negative (positive) outcome, we call it false positive

(negative). Consider the following example.

Example 2 Assume that the values of variable x1 that correspond to negative observations

follow standard normal distribution, and the values of the same variable that correspond to

positive observations follow normal distribution with mean and variance equal to one. We

have many different BDTs that classify our observations; for example, if x1 < .5 declare an

observation negative, otherwise positive. In this case 0.5 is a threshold level that is used for

classification. Area A+B in Figure 3.4 represents a fraction of correctly classified negative

observations, area B - a fraction of false negative observation, C - a fraction of false positive,
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Figure 3.2: All possible distinct BDTs for a Boolean function with one variable.
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Figure 3.3: Another BDT to learn the value of the function f(x1, x2) = x1 ∨ x2.
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Figure 3.4: Distributions of the values of the variable x1 for negative and positive observa-
tions, indicated respectively by solid and dotted curves.
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and C+D - a fraction of correctly classified positive observations. If costs of misclassification

are equal; that is, the cost of false positive and false negative are equal, we minimize the

fraction of misclassified outcomes by minimizing the sum of the areas that represent the

fraction of misclassified observations (B+C). In case of different misclassification cost we

impose weights on the areas B and C.

In general, not only learning the variables values has costs, but also the function value

itself, or the fact that observation is misclassified. A patient with positive test results

undergoes an expensive procedure, and for a patient with false negative results the cost

of a procedure is even more expensive because of lost time. Let us denote by CP and

CN the cost of positive and negative classification, and by CFP and CFN the cost of false

positive/negative classification respectively. We denote by U(D, i) the utilization of the set

of the nodes that correspond to the variable xi and decision tree D; that is, if we repeatedly

learn the value of the function for different values of the variables using decision tree D,

U(D, i) corresponds to the frequency of learning the value of variable xi. For example, for

binary decision tree D in Figure 3.1 we have U(D, 1) = 1 and U(D, 2) = p1, because we

must always learn the value of variable x1, and the value of the variable x2 we learn only

when the value of the variable x1 equals zero. The cost C(D) of a binary decision tree D is

C(D) =
n∑

i=1

U(D, i)Ci + U(D,P )(CP +QFPCFP ) + U(D,N)(CN +QFNCFN ),

where U(D,P ) and U(D,N) denote the frequency of positive and negative classification

respectively. QFP and QFN denote the fraction of false positive and false negative classifi-

cation respectively. We denote by ∆(D) the detection rate; that is, the fraction of correctly

classified positive observations. Obviously,

∆(D) = 1 −QFP .
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Chapter 4

A Model from the Literature

In this section we describe an application of BDT to approach a classification problem

considered in [71]. Containers that arrive at U.S. ports may carry illegal nuclear materials,

and must be classified as either dangerous (positive) or not dangerous (negative). A decision

as to whether a container is dangerous is based on four different tests with binary outcomes.

The testing procedure follows BDT structure; that is, tests are performed sequentially, and

after a test a choice must be made: to perform another test or to decide whether a container

is dangerous. Given the costs of tests, classifications, and misclassifications, the problem is

to find the least expensive testing strategy for a given detection rate.

The tests with binary outcomes correspond to Boolean variables xi, i = 1, . . . , n. To find

the least expensive BDT only BDTs that correspond to complete and increasing (monotone)

Boolean functions are considered (called feasible BDTs), which significantly decreases the

number of BDTs under consideration (see Table 4.1). Completeness means that we consider

only testing strategies that utilize all four tests. Monotonicity supports the intuitive fact

that switching the results of one of the tests from negative to positive increases the likelihood

of positive outcome.

Depending on whether the observations are positive or negative, the test results yi

considered in [71] follow a Normal distribution N(µ(P, i), σ2(P, i)) or N(µ(N, i), σ2(N, i))

with the corresponding probability density functions φ(P, i, u) or φ(N, i, u), respectively.

To transform yi into a Boolean variable xi we choose a threshold ti and say that xi = 0 if

yi < ti, and xi = 1 otherwise. For each feasible BDT a two level suboptimization is applied

in the evaluation of each BDT to obtain the set of threshold values that minimize the cost

function given a detection rate:
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Number of variables Number of all BDTs Number of feasible BDTs

2 74 4

3 16, 430 60

4 1, 079, 779, 602 11, 808

5 5x1018 263, 515, 920

Table 4.1: Number of all and feasible BDTs depending on the number of variables.
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min
t∈Rn, D∈Dn

C(D, t) =
n∑

i=1

U(D, i, t)Ci+U(D,P, t)(CP +QFPCFP )+U(D,N, t)(CN+QFNCFN )

subject to

∆(D) ≥ ∆0, D ∈ Dn.

Then, given all feasible BDTs and corresponding cost, a BDT with the smallest cost is

chosen

min
D∈Dn

C(D).

The model was tested for four tests and the data in Table 4.2. We also have that CP = 600.

For ∆0 = .815 the optimal BDT with t = (2.6, 1.07, 1.16, 2.2) is shown on Figure 4.1. We use

“CHK” for positive observations, because after the tests we check containers for dangerous

content, and “OK” is used for negative observations, because we declare containers safe and

let them go.
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test i 1 2 3 4

Ci .32 .92 57 176

µ(N, i) 0 0 0 0

µ(P, i) 4.37 1.53 2.9 4.6

σ2(N, i) 1 1 1 1

σ2(P, i) 1 1 1 1

Table 4.2: Data for four tests.
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Figure 4.1: Optimal testing strategy.
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Chapter 5

More Definitions

We will use the terms BDT and decision strategy, or strategy, interchangeably hereafter

because BDT is indeed a strategic plan to learn the values of the variables in a particular

order to guess about the value of the hidden function.

5.1 Pure and Mixed Decision Trees

Assume that T is a set of object types and T = {G,B}; in other words, each object is

either of “good” (type G) or “bad” (type B) quality. We assume that we rarely observe the

objects of bad quality, where “rarely” implies a subjective judgment and depends on the

problem.

Strategies that we considered above are deterministic, in the sense that for exactly the

same values of variables the value of the function is the same. We call such strategy pure.

Let us consider another type of strategy, mixed, when for the same values of the variables

we can have different values of the function. Figure 5.1 represents a general mixed strategy.

Root node denoted by M means that the strategy is mixed. Nodes D1 and D2 represent

pure strategies. The probability that we use the strategy D1 to make a decision about the

value of the function is denoted by α.

Consider a mixed decision tree on Figure 5.2. The value of the function is 40% of the

time the same as the value of the variable x1, and other 60% of the time the value of the

function equals one independent of the value of the variable.

Pure inspection strategies do not necessarily provide the best possible solutions. We

illustrate this statement by Figure 5.3, assuming that the decision function depends on a

single variable.

We choose density functions φ(N, x) = 10e−10x and φ(P, x) = 3e−3x. We assume that
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M

α 1 − α

D1 D2

Figure 5.1: Mixed decision tree.
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Figure 5.2: An example of a mixed decision tree.
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Figure 5.3: Pure strategies (dotted and dashed lines) and mixed strategies (solid line).
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C1 = 1 and CP = 5.

The three pure strategies are:

(1) declare every observation positive until the budget is exhausted (denoted by dotted

line on Figure 5.3);

(2) learn the value of the variable for all observations, and use the remaining budget to

declare the observations positive in decreasing order of the odds that they are positive; that

is, in decreasing order of the value of the variable x1 (dashed line);

(3) declare all the observations negative.

The performance of the first two pure strategies is shown in Figure 5.3, whereas the third

strategy clearly has a detection rate equal to zero. The best mixed strategy is also shown

in the figure (solid line).

At very low budgets, the best strategy is a mixed use of the second and the third

strategies (blue solid line). This use can be represented by a diagram as the first decision

tree in Figure 5.4, where the small square represents the (random) mixing. As the budget

increases we encounter a range of budgets where the optimal solution is the compound

strategy (red solid line) represented by the second decision tree in Figure 5.4. Finally, the

mixed strategy becomes a mixture of the first and the second strategies (green solid line),

represented by the third decision tree in Figure 5.4.

Figure 5.5 illustrates another example showing when mixed testing strategies allow us-

ing a budget the most efficiently. Assume we have four pure decision trees with different

costs and detection rates. Given the budget of $10, the best pure strategy is strategy D2,

providing 40% detection rate. At the same time, a 50-50 mix of strategies, D2 and D3,

provides a detection rate of 60%.

A notion of mixed strategy is extensively used in game theory (see, e.g., [62, 63, 76]).

Usually, a player would use a mixed strategy when the opponent could benefit from knowing

the next move. This property has at least two benefits in cases of container inspections.

First, the strategy allows inspectors to achieve higher detection rates, and second, unlike

pure strategy, advisories cannot adopted it.
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Figure 5.4: Decision trees that correspond to mixed strategies are denoted on the Figure
5.3 by blue, red, and green solid lines respectively.
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Figure 5.5: Best (mixed) strategy for a given budget.
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5.2 Manifold Decision Trees and Choice of Thresholds

In a BDT every node, except a leaf, is followed by two branches. A more general case is

a manifold decision tree, in which every non-leaf node is followed by several branches. An

example of a manifold decision tree is shown in Figure 5.6, where node 2 has 3 branches.

For every node i ∈ N , where N = {1, . . . , n} we fix ki thresholds ti = (ti1, t
i
2, . . . , t

i
ki

),

that is, we have ki + 1 different ranges for the values of the variable xi. We denote by

Ri = {1, . . . , ki + 1} the set of the ranges for the node i ∈ N .

Different methods are available to associate ranges with branches. One way is to do it

monotonically; that is, for each variable range j corresponds to the j-th branch from the

left. Another way is to associate a group of ranges with a branch based on some criteria.

One criteria is odds ratio. For each range we calculate the ratio of the probability of a

negative observation to the probability of a positive observation. Then we assign the ranges

to the branches in increasing order of the odds ratios, where more than one range can be

assigned to the same branch.

5.3 Decision Trees of Limited Depth

The depth of the decision tree is the length of the longest path in a tree, or, in other words,

the maximum number of tests that we run for any object. For example, the decision tree on

Figure 5.6 is of depth 2, because although for some objects it is enough to make a positive

decision after the results of test 1, some of the objects require the results of both tests, 1 and

2, to make a decision. The restriction on the depth of the tree becomes useful when we have

additional constraints; for example, constraints on time we can spend testing the objects.

If any test requires an hour to obtain the results, and we cannot spend more than 3 hours

testing an object, then we should restrict our analysis to the trees of depth at most 3, even

if there are more than 3 available tests. We derive theoretical results without restricting

the depth of the trees, but analogous analysis can be applied to limited depth trees. We

provide solution of our model for limited depth trees in Chapter 8.
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Figure 5.6: An example of a manifold decision tree.
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Chapter 6

Macro Approach

6.1 Macro Model

Using macro approach we define a mixed decision tree with a variable

x = (x(D1), . . . , x(D|D|)),

where x(Di) is a proportion of objects that are tested using a decision tree Di, for i =

1, . . . , |D|, where D is a family of all feasible decision trees. Clearly we have that
∑

D∈D
x(D) =

1 and x(D) ≥ 0. Because all strategy costs, detection rate, and utilization of tests are linear

with respect to mixing, we can define them as linear functions; that is, cost of a testing

strategy x is defined as

C(x) =
∑

D∈D

C(D)x(D),

the detection rate of a testing strategy x as

∆(x) =
∑

D∈D

∆(D)x(D),

and the utilization of test i ∈ N in a testing strategy x as

U(x, i) =
∑

D∈D

U(D, i)x(D).
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As an example, let us consider decision tree D0 given in Figure 4.1. If D0 is optimal, then

we have x(D0) = 1 and x(D) = 0 for all D ∈ D such that D 6= D0. Also,

C(x) = C(D0),

∆(x) = ∆(D0),

U(x, i) = U(D0, i) for i ∈ N .

As another example, consider a decision tree in Figure 5.1. If the tree is optimal and

α = 0.1, then x(D1) = .1, x(D2) = .9, and x(D) = 0 for all D ∈ D such that D 6= D1 and

D 6= D2. For this decision strategy

C(x) = .1C(D1) + .9C(D2),

∆(x) = .1∆(D1) + .9∆(D2),

U(x, i) = .1U(D1, i) + .9U(D2, i) for i ∈ N .

In general, we consider the problem of finding an optimal testing strategy that minimizes

average costs of testing the objects, detects a certain prescribed fraction ∆0 of bad objects,

and limits the utilization of tests by given capacities K(i). We can formulate that problem

as the following linear programming problem:

min
x

∑
D∈D

C(D)x(D)

subject to
∑

D∈D
∆(D)x(D) ≥ ∆0

∑
D∈D

U(D, i)x(D) ≤ K(i) for all i ∈ N
∑

D∈D
x(D) = 1

x(D) ≥ 0 for all D ∈ D.

(6.1)

Similarly, the problem of finding the testing strategy that maximizes the detection rate

for a given budget C0 and limited capacities can also be written as a linear programming

problem:
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max
x

∑
D∈D

∆(D)x(D)

subject to
∑

D∈D
C(D)x(D) ≤ C0

∑
D∈D

U(D, i)x(D) ≤ K(i) for all i ∈ N
∑

D∈D
x(D) = 1

x(D) ≥ 0 for all D ∈ D.

(6.2)

Many other variants of these problems, involving limits on rates of false positives, in-

spection times, etc., can be formulated analogously as linear programming problems.

The main practical difficulty in using the above models is their size. The number of

variables in these formulations is double exponential in the number of tests. For example,

in [71] more than 11000 binary decision trees are enumerated for 4 tests. With binary

partitions of the sensor readings, however, we cannot achieve the best performance. To

utilize the power of the above models, we want a much finer partition of tests results, so

that the optimization will be able to select the best decision sequence for the decision trees

appearing in the optimal mixed strategy. If we allow, for example, 10 thresholds for all

tests, the number of variables in (6.1) (or (6.2)) will jump to well above 100 million, making

it almost impossible to generate them all and to write in full detail the linear programming

problems (6.1) and (6.2).

On the positive side, there are only 2 + |N | constraints in the above formulations, and

thus the optimal basic solution x∗ involves at most 2 + |N | decision trees with nonzero x∗D

values. This suggests that such a mixed strategy is far from being impractical, because it

is not a complicated matter to switch between a small number of decision trees.

The small size of a basic solution also implies that column generation might be a good

way of solving these very large linear programming problems. This technique was introduced

first in [37, 38] for the solution of cutting stock problems, but since then column generation

has become a standard approach, used widely and efficiently in numerous applications. For

the sake of completeness we describe briefly the main ideas.
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Let us consider, for example, problem (6.2) and its linear programming dual, which has

only 2 + |N | variables, α corresponding to the budget constraint, βi, i ∈ N corresponding

to the capacity constraints, and γ corresponding to the last balance equality. Using these

we can write the dual of (6.2) as follows:

min C0 α +
∑

i∈N

K(i)βi + γ

subject to

C(D)α +
∑

i∈N

U(D, i)βi + γ ≥ ∆(D) for all D ∈ D

α, γ, βi ≥ 0 for all i ∈ N .

(6.3)

Let us now consider a small subset D̂ ⊆ D of all decision trees, and suppose that we

have solved (6.2) restricted to this set (i.e., we replace D everywhere in (6.2) by D̂). Let us

denote by x∗ the optimal solution to this restricted variant of (6.2), and let α∗, β∗i , i ∈ N ,

and γ∗ denote the corresponding optimal solution of the dual of the restricted problem (i.e.,

where we keep constraints in (6.3) only for D ∈ D̂).

The theory of linear programming then implies (see e.g., [24]) that x∗ is an optimal

solution for the unrestricted problem (6.2) if and only if

min
D∈D

[
C(D)α∗ +

∑

i∈N

U(D, i)β∗i + γ∗ − ∆(D)

]
≥ 0. (6.4)

If this is the case, we can stop, and x∗ is our optimal solution. Otherwise, we choose

a decision tree D∗ for which the minimum in (6.4) is attained, increment D̂ = D̂ ∪ {D∗},

and return to the solution of the restricted (6.1) problem. Experience shows that, on

average, this approach generates only a small number of the variables in (6.2). In fact, as a

consequence of the results in [47], the number of times we need to solve (6.4) is limited by

a polynomial of the rank of (6.2) and the largest of the determinants of (6.2).

However, for this to work, one has to be able to solve subproblem (6.4) efficiently. In its

current form, problem (6.4) still seems to require the complete enumeration of all decision
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trees, which is an approach that does not scale well, as we noted before. In the following

sections we show that problem (6.4) can in fact be reformulated such that it can be solved

efficiently.
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Chapter 7

Micro Approach

7.1 Histories and Decision Trees

We denote by Pd(k1 +1, . . . , kn +1) the set of all possible histories of depth at most d; that

is, paths from root to leaves of depth at most d for n tests, where ki denotes the number of

the thresholds applied at test i for all i = 1, . . . , n. We say that π ∈ Pd(k1 + 1, . . . , kn + 1)

if either π = (OK), or π = (CHK), or π = ((i1, ri1), . . . , (is, ris), b), where ij ∈ N , s ≤ d,

rij ∈ Rij for all j = 1, . . . , s, and b ∈ {OK,CHK}. For example, π = (CHK) denotes a

path when we check the objects without prior testing, and π = ((2, 1), (1, 3), OK) is a path

when we send an object to test 2; if the results are in the first range, we send an object

to test 1, and if the results are in the third range we do not check an object. We consider

paths and decision trees without restriction on depth, but similar analysis can be provided

for limited depth trees. To simplify notations we will use P instead of Pn(k1 +1, . . . , kn +1)

when it creates no ambiguity.

We denote by P(D) the set of histories that correspond to the testing strategy D.

Consider a testing strategy D′ represented by Figure 7.1. It consists of four histories:

π1 = ((1, 1), (2, 1), OK)

π2 = ((1, 1), (2, 2), OK)

π3 = ((1, 1), (2, 3), CHK)

π4 = ((1, 2), CHK).

Hence P(D′) = {π1, π2, π3, π4}, while P(2, 3) ⊇ P(D′) is larger, including, for example,

π5 = ((1, 1), OK).
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Figure 7.1: Testing strategy D′.
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Let us recall from Chapter 2 that for every path π ∈ P we say that ν is a subpath of π

and denote ν ≺ π, if there exists a path π0 ∈ P such that (ν, π0) = π. We denote by P̃ the

set of all subpaths that correspond to P. We denote by f(τ, i, j) the fraction of the objects

of type τ ∈ T = {good, bad} to have test results on test i in the range j for all i ∈ N and

j ∈ Ri, or in other words

f(τ, i, j) =

tj∫

tj−1

φ(τ, i, x)dx.

For all π ∈ P we denote by g(π) and b(π) respectively the proportion of good and bad

objects that follow path π (we assume that the test results are stochastically independent):

g(π) =
∏

(i,j)∈π

f(G, i, j) for all π ∈ P,

b(π) =
∏

(i,j)∈π

f(B, i, j) for all π ∈ P.
(7.1)

Because every container of either type must have some specific path, these parameters

satisfy the equalities

∑

π∈P

g(π) =
∑

π∈P

b(π) = 1. (7.2)

7.2 The Polytope of Decision Trees

Let us consider a given set N of tests, a fixed set of thresholds for test results, and recall

that we denote by P the set of all possible object histories, while P(D) denotes the set of

histories of the objects inspected by strategy D. In other words, we have

P =
⋃

D∈D

P(D).
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Furthermore, any decision tree D can, equivalently, be represented by the vectors (g(π) |

π ∈ P(D)) and (b(π) | π ∈ P(D)). Let us extend these vectors with zeros, and define in

this way g(D), b(D) ∈ R
P , where

gπ(D) =





g(π) if π ∈ P(D)

0 if π ∈ P \ P(D)
and bπ(D) =





b(π) if π ∈ P(D)

0 if π ∈ P \ P(D)

In fact a mixed strategy x = (x(D) | D ∈ D) can also be represented naturally by the

fractions of good and bad objects having a particular history π ∈ P. The corresponding

vectors g(x), b(x) ∈ R
P are convex combinations:

g(x) =
∑

D∈D

x(D)g(D) and b(x) =
∑

D∈D

x(D)b(D).

Thus, we can associate naturally two polytopes, Pg and Pb, to the set of tests and the

fixed thresholds of their test results, corresponding to the two object types we considered.

These polytopes are defined as

Pg = ConvHull 〈g(D) | D ∈ D〉 =



g(x)

∣∣∣∣∣∣

∑
D∈D x(D) = 1

x(D) ≥ 0 for all D ∈ D





and

Pb = ConvHull 〈b(D) | D ∈ D〉 =



b(x)

∣∣∣∣∣∣

∑
D∈D x(D) = 1

x(D) ≥ 0 for all D ∈ D



 .

The following statement provides a linear characterization of the polytopes Pg and Pb.

This result turns out to be very useful for solving problem (6.2) (and other variants). We

state the characterization only for polytope Pg, because the perfectly analogous claim can

easily be shown in the same way for Pb, as well. To simplify notation, we assume that the
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tests results are stochastically independent, and parameters g(π) and b(π) are computed by

(7.1) for all π ∈ P. Let us add, however, that this is just a technical detail, and analogous

linear description for the polytopes Pg and Pb can be derived for stochastically dependent

tests, as well.

Theorem 3 Given y ∈ R
P , we have y ∈ Pg if and only if

∑

π∈P

y(π) = 1 (7.3)

and

∑

π∈P
(ν,(i,r))≺π

y(π) = f(G, i, r)

ki+1∑

j=1

∑

π∈P
(ν,(i,j))≺π

y(π) (7.4)

for all i ∈ N , r ∈ Ri, ν ∈ P̃.

Proof. We prove the statement by “peeling off” vectors g(D) from y, until we arrive to

y = 0, each time decreasing the number of histories π ∈ P for which y(π) > 0.

To be able to do this “peeling off” process, we set a real parameter δ = 1, and claim

that if y satisfies equalities (7.3) and (7.4), then there exists a decision tree D ∈ D such

that y(π) > 0 for all π ∈ P(D). For such a decision tree D, we set

λ = min
π∈P(D)

y(π)

g(π)
.

Because of (7.2) and (7.3), we must have 0 ≤ λ ≤ 1. Let us set x(D) = δλ. If λ = 1,

then we must have y = g(D), and our proof is complete. Since both y and g(D) satisfies

equalities (7.3) and (7.4), by setting

y′ =
y − λg(D)

1 − λ
and δ′ = δ(1 − λ).
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We obtain a vector y′ that also satisfies (7.3) and (7.4), and which has at least one less

history with a positive y′(π) value than vector y had in the previous step. Thus, replacing

y by y′, δ by δ′, and repeating the above steps, after a finite number of iterations, we can

arrive at a convex combination of the vectors g(D), D ∈ D which is equal to y, completing

the proof of our statement.

What is left is to show our claim, namely that if y satisfies equalities (7.3) and (7.4),

then there exists a decision tree D ∈ D such that y(π) > 0 whenever g(π) > 0 (recall that

g(D) = (g(π) | π ∈ P(D)).

We prove this claim by induction on the number of tests. Clearly, if we have only one

test, then the claim is almost trivial, because we only have to try all possible final decisions

at the leafs of the only possible trivial decision tree (consisting of only one node).

Let us now assume that we proved this claim for up to m tests, and consider the case

when |N | = m+ 1. Consider an arbitrary history π ∈ P for which y(π) > 0, and let i ∈ N

be the first test appearing in this history (i.e., for which (i, j) ≺ π for some j ∈ Ri). Since

f(G, i, j) > 0 for all j ∈ Ri, we must also have histories π′ ∈ P with y(π′) > 0 and with

(i, j) ≺ π′ for all j ∈ Ri. Let us denote by π̂ the history obtained from π by deleting the

first sensor from π, and consider the sets

Pj = {π̂ | π ∈ P, (i, j) ≺ π}

for j ∈ Ri. Each set Pj is the set of all possible histories for the smaller set N \ {i} of

tests. Furthermore, for an index j ∈ Ri let us define

ρj =
∑

π∈P,(i,j)≺π

y(π)

and a new vector yj ∈ R
Pi defined by

yjbπ =
1

ρj
y(π) for all π̂ ∈ Pj .
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Then, yi is a vector satisfying equations (7.3) and (7.4), with respect to tests N \ {i}.

Thus, we must have a decision tree Dj such that yjbπ > 0 for all π̂ ∈ P(Dj) by our inductive

hypothesis. Because this holds for all j ∈ Ri, by gluing these decision trees Dj , j ∈ Ri to

test i as a root note, we obtain a decision tree D rooted at test i, satisfying our claim. �

7.3 Micro Model

To provide an efficient linear programming based scheme, we note that by Theorem 3 every

decision tree can be viewed as a particular (vertex) y ∈ Pg, and conversely, every vector

y ∈ Pg can be viewed as a mixed strategy. Thus, to solve (6.4) all we need is to represent

D ∈ D by the corresponding y vector, and perform the minimization over y ∈ Pg instead

of D ∈ D. If we can do this, such that we obtain an expression which is linear in y, then

we can solve (6.4) as a linear programming problem.

To this end, let us associate cost, detection rate, load parameters, and so forth, to every

history π ∈ P. Let us denote by N (π) the set of tests appearing in π, and define

C(π) =





∑

i∈N (π)

Ci if OK ∈ π,

CCHK +
∑

i∈N (π)

Cs if CHK ∈ π,

∆(π) =





0 if OK ∈ π,

b(π) if CHK ∈ π,

where b(π) is defined in (7.1), and

Ui(π) =





1 if i ∈ N (π),

0 if i 6∈ N (π),
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for i ∈ N . Furthermore, to a vector y ∈ Pg we associate

C(y) =
∑

π∈P

C(π)yπ,

∆(y) =
∑

π∈P

∆(π)
yπ

gπ
, and

Ui(y) =
∑

π∈P

Ui(π)yπ for i ∈ N .

In particular, if y = g(D) for a decision tree D ∈ D, then we have C(y) = C(D),

∆(y) = ∆(D) and Ui(y) = Ui(D) for i ∈ N .

Thus, we can rewrite the optimization problem in (6.4) as the following linear program-

ming problem:

min
y∈Pg

[
C(y)α∗ +

∑

i∈N

Ui(y)β
∗
i + γ∗ − ∆(y)

]
, (7.5)

where we use formulae (7.3) and (7.4) from Theorem 3 to minimize over y ∈ Pg.

Note that in the subsequent iterations only the objective function in (7.5) changes,

and hence we can keep the previously optimal basis, and just re-optimize it with the new

objective, which increases efficiency and, perhaps, will save time.
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Chapter 8

Applications

8.1 Inspection of Containers at U.S. Ports

We applied our model to the container inspection problem considered in Chapter 4 using

the same data, described in Table 4.2 with CCHK = 600 and ∆0 = .815. For one thresh-

old, for each of the four tests we obtained a decision tree depicted in Figure 8.1. It is a

mixed strategy, when 7.9% of the containers are inspected differently than the other 92.1%.

Restricting the model to the binary decision trees of depth 2 provides a solution shown in

Figure 8.2. Figure 8.3 shows the optimal cost for unlimited depth and different number of

thresholds (blue line), and we list the sizes of the problems and corresponding computing

times in Table 8.1. While the average costs of decision trees in Figure 8.1 and 8.2 are higher

if compared with pure strategy from the previous study (red dot), for four thresholds and

more, we see a cost reduction, with 10% cost reduction for seven thresholds. In general,

with multiple thresholds and depth 4 we obtain better results and improve computational

time if compared with the classical approach.

This problem can be considered to be a learning problem, where we can learn from past

test results from past occurrences. To compare our model with a J48 classifier in Weka

([80]), we generated 10,000 observations (9,980 negative and 20 positive) according to given

normal distributions in Table 4.2. Using 10-folding cross-validation for J48, the average

detection rate is ∆0 = .85, where for all the containers are first sent to sensor 4. For the

same detection rate we solved our model for decision trees of depth two and five ranges for

every test. The solution is a mixed decision tree, where 24% of the time we use the decision

tree described in Figure 8.4, and the other 76% of the time the one in Figure 8.5. Despite

carefully chosen thresholds in Weka and almost randomly chosen thresholds in our model,

our solution provides a less costly decision tree: because all the containers in Weka are sent
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Figure 8.1: Optimal mixed decision tree.
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Figure 8.2: Optimal decision tree of depth 2.
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Figure 8.3: Optimal cost for different number of thresholds.
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Number of CPU time

ranges constraints variables nonzeros iterations setup solver
per test (sec) (sec)

2 318 1264 6960 17 0.05 0.06
3 1810 5424 50640 25 0.20 0.58
4 5918 15776 209056 32 3.66 3.58
5 14658 36640 630240 36 30.81 23.59
6 30622 73489 1518794 45 147.88 160.22
7 56978 132945 3276170 53 487.38 1975.30

Table 8.1: Problem sizes and computational times for different number of ranges.
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Figure 8.4: 24% of the containers follow this decision tree as a part of optimal inspection
strategy for decision trees of depth 2 and 5 ranges.
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Figure 8.5: 76% of the containers follow this decision tree as a part of optimal inspection
strategy for decision trees of depth 2 and 5 ranges.
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first to test 4, it costs at least $176 per container to inspect all the containers, whereas for

our solution it costs only $28 per container (six times less). Also, although misclassification

costs can be specified in Weka, the current version of Weka does not take them into account.

8.2 Classification Results for Real-Life Data

Linear programming can be applied to the traditional learning model1 and tested using

cross-validation, where the input (distributions) can be derived from classical machine learn-

ing input (values of attributes).

We apply our model to Wisconsin Breast Cancer, Liver Disorders, and Pima Indians

Diabetes real-life databases from UC Irvine Machine Learning Repository ([6]) and compare

our results with J48 decision tree algorithm in Weka. The Credit Approval database has

15 attributes, and the details on attributes for two other databases are listed in Tables 8.2

and 8.3.

We have 345 observations for Liver Disorders and 768 observations for Pima Indians

Diabetes databases. Wisconsin Breast Cancer database has 699 observations, and some

observations have missing data. We delete from the study all the observations with missing

data, which results in 683 observations for the Breast Cancer database. To compare the

results we use our model to maximize the classification power, where for every strategy y

classification power κ(y) is the fraction of correctly classified observations; that is,

κ(y) =
∑

π∈P
CHK∈π

yπp0b(π)

p0b(π) + (1 − p0)g(π)
+

∑

π∈P
OK∈π

yπ(1 − p0)g(π)

p0b(π) + (1 − p0)g(π)
,

where p0 is the fraction of positive observations.

Let us note that at least two different formulas have been used in the literature to define

the classification power (see, e.g., [40] for an alternative formula). Because we compare our

results with the results in Weka, we use the formula that is used in Weka.

One of the assumptions in our model is that the test results are independent of each

other. To test whether this assumption holds, we calculate the correlation matrices (see,

1The application of this method to classification was also suggested by Noam Goldberg.
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Attribute Description

1 Mean corpuscular volume (blood test)

2 Alkaline phosphotase (blood test)

3 Alamine aminotransferase (blood test)

4 Aspartate aminotransferase (blood test)

5 Gamma-glutamyl transpeptidase (blood test)

6 Number of half-pint equivalents of alcoholic beverages drunk per day

Table 8.2: Description of Liver Disorder database attributes.
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Attribute Description

1 Number of times pregnant

2 Plasma glucose concentration a 2 hours in an oral glucose tolerance test

3 Diastolic blood pressure (mm Hg)

4 Triceps skin fold thickness (mm)

5 2-Hour serum insulin (mu U/ml)

6 Body mass index (weight in kg/(height in m)2)

7 Diabetes pedigree function

8 Age (years)

Table 8.3: Description of Pima Indians Diabetes database attributes.
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Attribute 1 2 3 4 5 6

1 1 0.044103 0.147695 0.187765 0.222314 0.31268

2 0.044103 1 0.076208 0.146057 0.13314 0.100796

3 0.147695 0.076208 1 0.739675 0.503435 0.206848

4 0.187765 0.146057 0.739675 1 0.527626 0.279588

5 0.222314 0.13314 0.503435 0.527626 1 0.341224

6 0.31268 0.100796 0.206848 0.279588 0.341224 1

Table 8.4: Correlation matrix for Liver Disorders data.
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e.g., Table 8.4 for Liver Disorders data). Because some of the test results are highly corre-

lated, for example, the results of tests 3 and 4 for Liver Disorders, we modify our model to

incorporate the dependency of the test results. When independency assumption holds we

use the formula Pr(∩Ai) = ΠPr(Ai) for all events Ai, or in our case test results. In case of

dependency, the above formula does not always hold, and we calculate distributions taking

into account all the test results simultaneously (see example below).

To obtain a distribution (histogram) for our model from the data for each attribute, we

select the smallest interval that contains all the values for positive and negative observations.

Then, depending on the number of thresholds that we use in the model, we select one by

one a threshold that divides the largest interval by half starting from the left. To obtain

a histogram, we calculate the percentage of observation for each combination of ranges,

attributes, and type of observations.

8.2.1 Example

Consider a simple example with two attributes and one threshold for each attribute. Given

the data in Table 8.5 (two negative and three positive observations), we calculate

g((1, 1), 0) = 1,

g((1, 2), 0) = 0,

g((2, 1), 0) = 1/2,

g((2, 2), 0) = 1/2,

b((1, 1), 1) = 1/3,

b((1, 2), 1) = 2/3,

b((2, 1), 1) = 1/3,

b((2, 2), 1) = 2/3,

g((1, 1), (2, 1), 0) = g((2, 1), (1, 1), 0) = 1/2,

g((1, 1), (2, 2), 0) = g((2, 2), (1, 1), 0) = 1/2,

g((1, 2), (2, 1), 0) = g((2, 1), (1, 2), 0) = 0,

g((1, 2), (2, 2), 0) = g((2, 2), (1, 2), 0) = 0,

b((1, 1), (2, 1), 1) = b((2, 1), (1, 1), 1) = 1/3,
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b((1, 1), (2, 2), 1) = b((2, 2), (1, 1), 1) = 0,

b((1, 2), (2, 1), 1) = b((2, 1), (1, 2), 1) = 0,

b((1, 2), (2, 2), 1) = b((2, 2), (1, 2), 1) = 2/3,

where, for example, b((1, 2), (2, 2), 1) is the fraction of positive observations with the first

and second attributes in the second range. We used the dependency assumption here, for

example, b((1, 2), (2, 1), 1) = 0, while b((1, 2), 1) = 2/3 and b((2, 1), 1) = 1/3; in other words

b((1, 2), (2, 1), 1) 6= b((1, 2), 1)b((2, 1), 1).

8.2.2 Numerical results

We apply our model using 10-folding cross-validation and compare with the result in Weka

following these five steps.

Step 1. We set a maximum decision tree depth that is less than or equal to the number

of attributes; that is, k ≤ n. In our study, we choose k = 3 for every dataset. We divide

the dataset into 10 subsets.

Step 2. We set aside one tenth of the dataset for testing, and use the rest of the

dataset for training. Using only training data we select the smallest interval that contains

all the values for positive and negative observations. We set a number of thresholds for each

dataset to divide the attribute values into a small number of ranges; for example, we choose

two thresholds for Pima Indians Diabetes (PID) dataset, thus dividing all the attribute

values into three ranges. We select the thresholds one by one to divide the interval of the

largest size by half starting from the left. For example, Table 8.6 shows the thresholds for

attribute 4 from the PID dataset for up to seven thresholds, where the first 691 out of 768

observations were used as a training set, and [0, 99] is the smallest interval that contains

all the values of the fourth attribute for the training set. Because we choose two thresholds

for PID dataset in our study, we choose ranges [0, 24.75], [24.75, 49.5) and (49.5, 99] for

attribute 4. Note that this threshold selection procedure is expected to be robust, because

there is a high probability that the selected thresholds are always the same. We calculate

the distribution values b(π) and g(π) for each possible path of up to length three for positive

and negative observations.
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Step 3. We maximize the classification power for the training set over the polytope

of at most k-depth decision trees using the data generated in Step 2 and find an optimal

decision tree:

max
y∈P

∑

π∈P
CHK∈π

yπp0b(π)

p0b(π) + (1 − p0)g(π)
+

∑

π∈P
OK∈π

yπ(1 − p0)g(π)

p0b(π) + (1 − p0)g(π)
.

Step 4. We apply the optimal decision tree to the testing set and calculate the number of

correctly classified instances for testing set. For example, for LDD dataset optimal decision

tree for the training set was applied to the testing set consisting of the first 34 observations

of the whole dataset and 25 observations were correctly classified.

Step 5. We repeat Steps 2-4 for every testing set (having a different testing set in

every run, so that after 10 runs every observation is once a part of testing set and nine

times in training set). We calculate the testing classification power as a fraction of correctly

classified observations adding the numbers from the 10 runs and dividing by the number

of observations. For example, for LDD dataset we report in Table 8.7 the training and

testing classification power, which results in 70.14% of correctly classified observation. We

randomly reshuffle the data and repeat the 10-folding cross-validation (Steps 1-5) several

times and calculate the average classification power.

We report the results for maximum decision tree depths 2 and 3 in Table 8.8 along with

the classification power obtained by J48 decision tree algorithm in Weka (see [40]) using

the same datasets. We have used the Xpress-MP package formulating our model in the

Mosel modeling language, and solving the large scale linear programming problems by the

Newton-barrier method. We ran the experiments on a Dell Inspiron 1200, with a 1.30GHz

Intel(R) Celeron(R) processor and 248MB memory.

Optimal decision trees built in Weka are all binary and usually larger, and for two out of

three datasets even larger than the number of attributes, because J48 algorithm allows us

to revisit the same test (obviously with a different threshold). Although the classification

power for our model is lower than classification power obtained by J48 for all three datasets

when maximum decision tree depth is 2, it is higher when decision tree depth is 3. Note that
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we avoided a potential problem of overfitting by limiting the depth of considered decision

trees. We based our application on Theorem 3 on polyhedral characterization of decision

trees, that applies even if we consider shape restrictions, such as depth of the tree.
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Observation/Attribute 1 2 Type

1 1 2 0

2 1 1 0

3 1 1 1

4 2 2 1

5 2 2 1

Table 8.5: Example data for two attributes and two ranges.
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Number of thresholds Thresholds

1 49.5

2 24.75, 49.5

3 24.75, 49.5, 74.25

4 24.75, 37.125, 49.5, 74.26

5 24.75, 37.125, 49.5, 61.875, 74.27

6 12.375, 24.75, 37.125, 49.5, 61.875, 74.28

7 12.375, 24.75, 37.125, 49.5, 61.875, 74.29, 86.625

Table 8.6: The thresholds for attribute 4 from the PID dataset for up to seven thresholds.
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Testing Classification power Classification power

set for training set for testing set

1 76.43% 73.53%

2 76.61% 74.29%

3 76.99% 73.53%

4 75.80% 82.85%

5 77.84% 64.71%

6 77.31% 54.29%

7 75.37% 76.47%

8 77.76% 65.71%

9 75.91% 82.35%

10 77.91% 54.29%

Table 8.7: Classification power for training and testing sets for one of the 10-folding cross-
validation runs for LDD.
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Breast Liver Pima Indians

Dataset Cancer Disorders Diabetes

Number of attributes 9 6 8

Decision tree depth (J48) 5 8 9

Classification power, % (J48) 93.79 63.65 76.13

Classification power, % (LP) 91.12 94.61 60.34 70.26 70.29 77.17

Decision tree depth (LP) 2 3 2 3 2 3

Number of ranges (LP) 3 3 3 3 3 3

Number of constraints (LP) 6760 142840 2890 35290 5290 96010

Number of variables (LP) 13520 285680 5780 70580 10580 192020

Number of nonzeros (LP) 92502 2759860 39164 681628 72484 1872860

Number of iterations (LP) 7 11 7 9 7 10

Computational time, sec (LP) 85 3300337 7 1399 35 36300

Table 8.8: Classification results for real-life data for Linear Programming model (LP) when
maximum decision tree depths are 2 and 3, and the classification power obtained by J48
decision tree algorithm in Weka.
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Chapter 9

Conclusions

The results reported herein illustrate several important features of the test scheduling prob-

lem. We have shown that formulating the problem in terms of a polyhedron in a very

high dimensional space, whose points represent combinations of possible paths of an object

through the test network, leads to a large scale linear programming problem that can be

solved efficiently.

Because the choice of the thresholds is subjective, there are many different methods

for choosing them. One method is based on the distributions of the test results. Another

method is based on the values of the ratio of the two conditional distributions. Also, the

thresholds may be randomly generated. We expect that some methods may increase the

strategy performance.

Also, increasing the number of the thresholds results in better overall performance, and

it is presumably asymptotic to the result that would be obtained with infinite number of

the thresholds.

Although we assumed conditional independence of the test results, the analysis can be

extended to situations in which the test results are stochastically dependent, for both the

good and bad objects.

The cost of false negative and of false positive observations can be included in the

formulation of the problem. We considered in this study only the cost of operation, because

usually they are concrete and easily documented. The costs of various types of errors are

typically matters of debate and conjecture.

In this study we considered two types of the observations (positive and negative), and

two types of decisions (values of the function), but the analysis can be extended for any

reasonable number of different types of objects and decisions.
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Chapter 10

VC-dimension of Horn Functions

10.1 Introduction

Let us consider a set of n Boolean variables V = {x1, ..., xn}, where xi is a Boolean variable

if xi ∈ {0, 1}, i = 1, ..., n. Let L = {x1, x1, ..., xn, xn} denote the set of corresponding

literals, where xi = 1− xi, i = 1, ..., n are the complemented (or negated) variables. A term

(or monomial) is the conjunction of a subset of the literals, e.g. φ = x1x3x8. A disjunctive

normal form (or DNF in short) is a disjunction of terms, e.g. ψ = x1x3x8 ∨ x2 ∨ x7x3.

It is well-known that any Boolean function f : B
n → B has a DNF representation, where

B = {0, 1}.

A point x = (x1, ..., xn) ∈ B
n is a true point of the Boolean function f if f(x) = 1, and

if f(x) = 0 we call x a false point. Let us denote by T (f) the set of true points of Boolean

function f , and by F (f) the set of false points of f . Let G be a class of Boolean functions

g : B
n → B. A set S ⊆ B

n is said to be shattered by G if for any partition of S into two

subsets T and F there exists function g ∈ G for which T ⊆ T (g) and F ⊆ F (g). The

Vapnik-Chervonenkis dimension of G, denoted by V Cdim(G) is defined as the maximum

cardinality of a subset S ⊆ B
n that is shattered by G.

The notion of VC-dimension was introduced in [75] and can be defined for any class of

functions analogously. It is used in the evaluation of the bounds of the sample size required

for learning in PAC model (see, e.g., [5, 9, 74]). For some classes of Boolean functions

VC-dimension is already known, for example, for monomials and threshold functions [4].

The complexity of the problem of finding the VC-dimension for given class of functions is

addressed in [66].
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Example 3

dP = V Cdim(P ) =

(
n⌊

n+1
2

⌋
)
, (10.1)

where P is a class of positive functions. A Boolean function is positive if it has a DNF rep-

resentation in which each variable appears only uncomplemented. To find the VC-dimension

of positive functions we use the condition that a Boolean function f is positive if and only if

for all x, y ∈ B
n the implication x ≥ y ⇒ f(x) ≥ f(y) holds. Let us denote by S any subset

that is shattered by P . If S contains any two points that can be compared, for example,

x, y ∈ S such that x ≥ y, then no such positive function exists for which x is a false point

and y is a true point. Therefore S consists of such a set of points that no two of them can

be compared. Hence the maximum possible cardinality of S (known as Sperner’s Theorem)

is
( n⌊

n+1

2

⌋), implying that

V Cdim(P ) ≤
(

n⌊
n+1

2

⌋
)
. (10.2)

To show that

V Cdim(P ) =

(
n⌊

n+1
2

⌋
)

(10.3)

let us consider a set S consisting of vectors x ∈ B
n such that x has exactly

⌊
n+1

2

⌋
components

equal to 1. For any partition of S into two subsets T and F we construct a DNF expression

φ such that the number of terms in φ equals to the number of vectors in T and there is a

one-to-one correspondence between the terms of φ and the vectors from T . For each vector

x from T the corresponding term of φ is the conjunction of
( n⌊

n+1

2

⌋) variables xj such that

xj = 1. Finally, let us observe that T is a subset of true points of φ and F is a subset of

false points of φ.

10.2 Main results

Let us denote by H the class of Horn functions h : B
n → B, where a Boolean function is

Horn if it has a DNF representation with at most one complemented variable in each term.

Horn functions were introduced in [42] and are extensively used in artificial intelligence (see,

e.g., [3]). Let us denote by dH the VC-dimension of H.

Our main result is the following.
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Theorem 4 dH = Θ(dP ), where dP = V Cdim(P ) =
( n⌊

n+1

2

⌋) (see Example above).

To state even stronger results let us consider the class Hk of k-quasi-Horn functions

(see e.g. [3]). For any nonnegative integer constant k let us define k-quasi-Horn functions

h: B
n → B as a class of Boolean functions that have a DNF representation with at most

k complemented variables in each term. The above definition implies that the class of k-

quasi-Horn functions includes positive (k = 0) and Horn (k = 1) functions. Let us denote

by dk the VC-dimension of Hk. Theorem 5 is a generalization of the Theorem 4.

Theorem 5 dk = Θ(dP ), when k ≪ n.

Among other generalizations of Horn functions the most popular is the class Gq of q-

Horn functions, introduced in [11], but we will use the definition given in [10]. For every

subset of the literals A ⊆ L we denote by A a set of complemented literals of the set A. A

Boolean function h: B
n → B is q-Horn if it has a DNF representation φ for which there is

a subset of the literals A ⊆ L such that A ∩A = ∅ and for any term t ∈ φ the inequality

1

2

∣∣Y ∩ (L \ (A ∪A))
∣∣ + |Y ∩A| ≤ 1 (10.4)

holds, where Y is a set of literals that that are involved in term t ∈ φ. Our first observation

is that if A = V , or, in other words, if A includes all possible complemented literals then h is

Horn. Our second observation is that if we denote by Gq those q-Horn functions for which A

contains only complemented literals then any function from Gq will be 2-quasi-Horn. Hence

we can conclude that H1 ⊆ Gq ⊆ H2, implying the following Corollary of the Theorem 5.

Corollary 1 V Cdim(Gq) = Θ(dP ).

10.3 Proof of Theorem 4

The proof of Theorem 4 is based on the following observations.

Given two Boolean vectors x = (x1, ..., xn) and y = (y1, ..., yn) we define their conjunc-

tion x ∧ y = (x1 ∧ y1, ..., xn ∧ yn) as the component-wise conjunction. We say that a set

S ⊆ B
n is closed under conjunction if for any x, y ∈ S we have x ∧ y ∈ S.

Let us recall a famous McKinsey’s theorem.
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Theorem 6 ([58]) A Boolean function h is Horn if and only if the set of its false points is

closed under conjunction.

For every set Q ⊆ B
n we denote by x(Q) the intersection of set Q:

x(Q) =
∧

y∈Q

y. (10.5)

We say that a set W ⊆ B
n satisfies the Non-Intersection Condition if for any Q ⊆ W such

that Q 6= ∅ we have x(Q) /∈W \Q. We say that a set W ⊆ B
n satisfies the Designated Zero

Condition if for all x ∈W either x = (1, ..., 1) or there exists k ∈ {1, ..., n} such that xk = 0

and for all y ∈W, x 6= y the inequality

yk +
∑

j:xj=1

(1 − yj) > 0 (10.6)

holds. In other words, any vector from the set W either has all the coordinates equal to 1

or has a “designated” zero and the combination of this zero and all the ones of this vector

at exactly those positions is unique among all vectors from W .

Lemma 1 Let W ⊆ B
n. Then W satisfies the Non-Intersection Condition if and only if

W satisfies the Designated Zero Condition.

Proof. (⇒) Let us observe that if the Designated Zero Condition does not hold for W then

there is a vector x in W such that some components of x are zeros and any combination of

any zero and all ones of x can be found in at least one other vector of W . Let us denote by

Wx the set of vectors in which such combinations can be observed. We can observe that

x =
∧

y∈Wx

y ∈W \Wx, (10.7)

implying that the Non-Intersection Condition does not hold.

(⇐) If the Non-Intersection Condition does not hold for W then there is a vector y ∈

W such that y equals to the conjunction of some other vectors from W . Because any

combination of any zero and all ones of y can be found in one of the vectors that participate

in conjunction it is impossible to find a designated zero for y. �

Now we are ready to prove our main theorem.
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Proof of Theorem 4. Since any positive function is Horn we have dH ≥ dP . To

complete the proof we must show that there exists a constant c > 0 such that dH ≤ cdP .

Let us denote by SH ⊆ B
n a set of maximum cardinality that is shattered by the

family of Horn functions H. By Theorem 6 it follows that SH satisfies the Non-Intersection

Condition. To see this let us observe that if there exists Q ⊆ SH such that

x(Q) :=
∧

y∈Q

y ∈ SH \Q, (10.8)

then according to Theorem 6 no such Horn function exists for which all vectors y ∈ Q are

false points and x(Q) is a true point.

Since by Lemma 1 SH satisfies the Non-Intersection Condition it follows that each vector

from SH is either (1, ..., 1) or has its designated zero. Let S = SH if SH does not include

(1, ..., 1); otherwise let S = SH \ {(1, ..., 1)}. W.l.o.g. let us assume that n is divisible by 2

(if not, we can introduce additional variable xn+1 = 1 to proceed with our analysis and then

delete it). Let us divide S into two sets SL and SR depending whether designated zero

of the vector is in its left or right half. Let us forget for a moment about designated zeros

and note that the maximum number of distinct left halves of vectors in SL is at most 2n/2.

Consider a collection U of any vectors that have the same left half. Lemma 1 implies that

the combination of all ones and designated zero of any vector should be unique. Because

the left halves of the vectors from U are the same, to be unique their right halves should

form an antichain, or in other words should be noncomparable. The same analysis can be

repeated for SR. Thus, using Stirling’s approximation we can conclude from the above that

for some constants c1, c2 > 0 we have

dH ≤ 1 + 2n/2

(
n/2⌊
n+2

4

⌋
)

≤ 1 + 2 · 2n/2c1
2n/2

√
n/2

= 1 + 2
√

2c1
2n

√
n
≤ c2dP . (10.9)

�

10.4 Proof of Theorem 5

To prove Theorem 5 we generalize the results of Section 10.3.
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For any x ∈ B
n let us denote by zx the number of zero components of x, or in other

words

zx = n−
n∑

j=1

xj . (10.10)

For any W ⊆ B
n we say that W satisfies the k-Designated Zeros Condition if for all x ∈W

there exists a set of at most k distinct indices I ⊆ {1, ..., n}, |I| = min{k, zx} such that for

all i ∈ I xi = 0 and for all y ∈W, y 6= x the inequality

∑

j:j∈I

yj +
∑

m:xm=1

(1 − ym) > 0 (10.11)

holds. In other words, each vector x from W has min{k, zx} designated zeros and the

combination of all these zeros (if any) and all the ones of this vector at exactly these

positions is unique among all vectors from W .

Lemma 2 Let W ⊆ B
n. Then W is shattered by the class Hk if and only if W satisfies the

k-Designated Zeros Condition.

Proof. (⇒) If the k-Designated Zeros Condition does not hold for W , then there is a vector

x ∈W such that any combination of any at most k zeros and all ones of this vector can be

found in at least one other vector of W . Let us denote by Wx the set of vectors in which

such combinations can be observed and assign T = {x} and F = W \ T . It is impossible to

find h ∈ Hk for which T is a subset of its true points, because for any term t in a DNF of

such a function h ∈ Hk if t(x) = 1 then we also have that t(w) = 1 for w ∈Wx ⊆ F .

(⇐) By construction. For any partition of W into two subsets T and F let us denote

by φ a DNF representation of h ∈ Hk. The number of terms in φ equals to the number

of vectors in T , and there is a one-to-one correspondence between the terms of φ and the

vectors from T . For each vector x from T the corresponding term of φ is the conjunction of

uncomplemented and complemented variables such that a variable xj is uncomplemented if

xj = 1 and a variable xj is complemented if xj is a designated zero. To complete our proof

let us observe that T is a subset of true points of φ and F is a subset of false points of φ.�

Proof of Theorem 5. Because for any nonnegative integer constant k any positive

function is k-quasi-Horn, we have dk ≥ dP . To complete the proof we must show that there

exists a constant c > 0 such that dk ≤ cdP .
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Let S(k) ⊆ B
n be a set of maximum size that is shattered by Hk. According to Lemma

2, each vector from S(k) has at most k designated zeros. Let us consider a set S = S(k)\S0,

where S0 ⊆ S(k) is a set of vectors that have less than k zero components. Note that

|S0| ≤ 1 +

(
n

2

)
+ ...+

(
n

k − 1

)
≤ c0n

k−1 (10.12)

for some constant c0 > 0.

W.l.o.g. let us assume that n is divisible by k+1 (if not, we can introduce m additional

variables xn+1 = ... = xn+m = 1, where 0 < m ≤ k and n+m is divisible by k+ 1, proceed

with the analysis, and then delete them). Let us divide each vector x ∈ S by k + 1 parts.

Let the sets S1, ..., Sk ⊆ S be a partition of S, where x ∈ Si if the designated zeros of

x are located in exactly i out of k + 1 different parts of x. Those parts of vectors that

contain (do not contain) any designated zeros we will call designated (nondesignated) parts

respectively. Subvectors obtained by deletion of nondesignated (designated) parts will be

called designated (nondesignated) subvectors respectively. For any i = 1, ..., k there are
(
k+1

i

)
different ways of locating designated zeros in i different parts of vector. The number

of distinct designated subvectors of particular i designated parts is at most 2in/(k+1). And

finally, what if a collection U of vectors has the same i designated parts with the same

designated subvectors? According to Lemma 2 the combination of all ones and designated

zero of any vector should be unique, and the only way to be unique is that the nondes-

ignated subvectors of their nondesignated parts forms an antichain. Thus, using Stirling’s

approximation we can conclude from the above that for some constants c0, c1, c2 > 0 we

have

dk ≤ c0n
k−1 +

k∑

i=1

(
k + 1

i

)
2in/(k+1)

(
n(1 − i

k+1)
n
2 (1 − i

k+1)

)
≤ c0n

k−1 + c1
2n

√
n
≤ c2dP .

�
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Chapter 11

On k-quasi-Horn Functions

11.1 Introduction

Recall that for any nonnegative integer constant k a Boolean function h: B
n → B is k-

quasi-Horn if it has a DNF representation with at most k negative literals in each term. We

denote by Hk the class of k-quasi-Horn functions, our main interest in this chapter. Note

that, for example, the class of 2-quasi-Horn functions includes both positive (k = 0) and

Horn (k = 1) functions. For any Boolean function f its dual fd is defined as fd(x) = f(x)

for all x ∈ B
n, where x = (x1, . . . , xn). A function f is bidual Horn, if both f and fd are

Horn.

Usually, any given class of Boolean functions can be described in many different ways.

For instance, we can define Boolean linear functions as the class of functions that have a

DNF representation with at most one literal in each term, or we can say that a Boolean

function f is linear if for any x, y ∈ B
n the equality f(x) ∨ f(y) = f(xy) ∨ f(x ∨ y) holds

(see, e.g., [32]). The description of many important classes of Boolean functions by algebraic

identities is considered, for example, in [26, 25, 31, 32], and a criterion for the classes of

Boolean functions that can be characterized by algebraic identities is derived in [32].

In this chapter we consider the classes of k-quasi-Horn functions, which generalize the

class of Horn functions. The importance of Horn functions and McKinsey’s theorem, the

criterion of Horn functions, cannot be overstated in the theory of Boolean functions and

artificial intelligence. In particular, McKinsey’s theorem was one of the crucial factors that

allowed us to obtain a good polynomial time algorithm for learning a Horn function in

[3]. One of the most popular generalizations of the Horn functions is the class of q-Horn

functions, introduced in [11]. Algebraic characterization of q-Horn functions is addressed in

[43].
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Section 11.2 provides definitions and notations that we use in the chapter. In Section

11.3, we state and prove a criterion for k-quasi-Horn functions that generalizes McKinsey’s

theorem. In Section 11.4, we state and prove necessary and sufficient conditions for function

to be bidual k-quasi-Horn.

11.2 Definitions and Notations

For each Boolean vector x ∈ B
n we denote O(x) = {i | xi = 1} and Z(x) = {i | xi = 0}.

Given two Boolean vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) we denote their component-

wise conjunction by x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn), or for short xy = (x1y1, . . . , xnyn). We

say that a set S ⊆ B
n is closed under conjunction if for any x, y ∈ S we have x ∧ y ∈ S.

For any set S ⊆ B
n such that S 6= ∅ let us denote by

c(S) =
∧

y∈S

y

the component-wise conjunction of all vectors of S. We will say that a set S ⊆ B
n satisfies

the k-Zeros Condition if for any Q ⊆ Z(c(S)) such that |Q| = k there exists y ∈ S such

that Q ⊆ Z(y). If a set S ⊆ B
n satisfies the k-Zeros Condition, we say that c(S) is a

k-zeros-conjunction (or k-zeros-intersection) of set S. For example, vector x = (0, 0, 0)

is not a 2-zeros-conjunction of vectors u = (1, 0, 0) and v = (0, 1, 0), since x1 = x2 = 0

and u1 + u2 = v1 + v2 = 1. Let us remark that 1-zeros-conjunction of vectors coincides

with conjunction of vectors. Note that if S satisfies the k-Zeros Condition then there exists

a set S′ ⊆ S, |S′| < nk such that c(S′) = c(S) and S′ also satisfies k-Zeros Condition.

Furthermore, we can check whether a given set S satisfies a k-Zeros Condition and find

a minimal S′ ⊆ S with c(S′) = c(S) if it does in time nk|S|, which is polynomial for a

constant k. Finally, we say that a set S ⊆ B
n is closed under k-zeros-conjunctions if for all

sets Q ⊆ S which satisfy the k-Zeros Condition we have c(Q) ∈ S.

By analogy, similar notions are formulated for disjunction of vectors. The component-

wise disjunction of two Boolean vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is x ∨ y =

(x1 ∨ y1, . . . , xn ∨ yn). A set S ⊆ B
n is closed under disjunction if for any x, y ∈ S we have

x ∨ y ∈ S.
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For any set S ⊆ B
n such that S 6= ∅ we denote by

d(S) =
∨

y∈S

y

the componentwise disjunction of all vectors of S. We will say that a set S ⊆ B
n satisfies

the k-Ones Condition if for any Q ⊆ O(d(S)) such that |Q| = k there exists y ∈ S such

that Q ⊆ O(y). If a set S ⊆ B
n satisfies the k-Ones Condition, we say that d(S) is a

k-ones-disjunction (or k-ones-union) of set S. For example, vector x = (1, 1, 1) is not

a 2-ones-disjunction of vectors u = (1, 0, 0) and v = (0, 1, 1), since x1 = x2 = 1 and

u1u2 = v1v2 = 0. Note that a 1-ones-disjunction of vectors defines a disjunction of vectors.

A set S ⊆ B
n is closed under k-ones-disjunctions if for all sets Q ⊆ S that satisfy the

k-Ones Condition we have d(Q) ∈ S.

Let us denote by P (t) and N(t) respectively the set of indices of positive and negative

literals in the term t, and by V (t) = P (t) ∪N(t) the set of all variable indices in the term

t. For any s ≥ 2 terms ti1 , . . . , tis let us denote by t+i1,i2,...,is
the positive term such that

P (t+i1,i2,...,is
) = P (ti1) ∪ P (ti2) ∪ . . . ∪ P (tis),

and by t±i1,i2,...,is
the positive term such that

P (t±i1,i2,...,is
) = V (ti1) ∪ V (ti2) ∪ . . . ∪ V (tis).

For example, if t1 = x1x2 and t2 = x2x3, then t+1,2 = x1x2 and t±1,2 = x1x2x3.

Let us denote by

Ñi2,i3,...,is(ti1) = N(ti1) \ (N(ti2) ∪N(ti3) ∪ . . . ∪N(tis))

the set of indices of the unique (with respect to the terms ti2 , ti3 , . . . , tis) negated literals

in the term ti1 . To simplify the notations we will use Ñ(ti1) instead of Ñi2,i3,...,is(ti1) when

all the terms are defined without any ambiguity. We define a positive DNF

t̂±i1,i2,...,is
=

∧

q∈{1,2,...,s}

(( ∧

l∈P (tiq )

xl

)
∧

( ∨

l∈Ñ(tiq )

xl

))
.

For example, if t1 = x1x2x3x4 and t2 = x2x3x5x6, then t̂±1,2 = x1x2(x2 ∨ x4)(x5 ∨ x6).

Finally, a vector x ∈ B
n is a true point of the Boolean function f if f(x) = 1, and if

f(x) = 0 we call x a false point. We denote by T (f) the set of true points of Boolean

function f , and by F (f) the set of false points of f .
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11.3 A Generalization of McKinsey’s Theorem for k-quasi-Horn Func-

tions

Let us recall McKinsey’s theorem ([58]) from Section 10.3 (Theorem 6), where a Boolean

function h is Horn if and only if the set of its false points F (h) is closed under conjunction.

Let us formulate our main result for 2-quasi-Horn functions, and an easy generalization

will follow.

Theorem 7 A Boolean function h is 2-quasi-Horn if and only if the set of its false points

is closed under 2-zeros-conjunctions.

Proof. (⇒) Assume that the set of false points of a Boolean function h is not closed under

2-zeros-conjunctions or, in other words there exists a set S ⊆ F (h) that satisfies the 2-Zeros

Condition and c(S) is a true point of h. In any DNF expression of h we must have a term

t for which t(c(S)) = 1 and t(y) = 0 for all y ∈ S. Because S satisfies 2-Zeros Condition a

term t has at least three negative literals, because otherwise there exists y ∈ S such that

t(y) = 1. Hence h cannot be 2-quasi-Horn.

(⇐) Assume that the set of false points of a Boolean function h is closed under 2-

zeros-conjunctions. We show that h is then 2-quasi-Horn. Consider an arbitrary true point

x ∈ T (h). Let us distinguish two cases:

Case (i) If x has at most two zero components. In this case define a term tx as a

minterm of x. Clearly, we have tx ≤ h and tx has at most two negative literals.

Case (ii) If x has at least three zero components. Let us denote by

S := {y ∈ F (h) | y > x}

the set of false points of h that are greater than x. We claim that there exist two indices

i 6= j such that xi = xj = 0 and for any vector y ∈ S we have yi + yj ≥ 1. Otherwise, the

2-Zeros Condition would hold for S contradicting the fact that c(S) is a true point. Then

define a term

tx = wiwj

∧

k:xk=1

wk.
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Clearly, we have tx ≤ h.

To complete our proof we can observe that the same analysis can be repeated for any

true point of h, implying that h can be represented by a DNF

h =
∨

x∈T (h)

tx,

which is a 2-quasi-Horn DNF. �

Theorem 8 A Boolean function h is k-quasi-Horn if and only if the set of its false points

is closed under k-zeros-conjunctions.

Proof. The proof of Theorem 8 is an easy generalization of the proof of Theorem 2.

(⇒) Assume that the set of false points of a Boolean function h is not closed under k-

zeros-conjunctions or, in other words there exists a set S ⊆ F (h) that satisfies the k-Zeros

Condition and c(S) is a true point of h. In any DNF expression of h we must have a term

t for which t(c(S)) = 1 and t(y) = 0 for all y ∈ S. Because S satisfies k-Zeros Condition

a term t has more than k negative literals, because otherwise there exists y ∈ S such that

t(y) = 1. Hence h cannot be k-quasi-Horn.

(⇐) Assume that the set of false points of a Boolean function h is closed under k-

zeros-conjunctions. We show that h is then k-quasi-Horn. Consider an arbitrary true point

x ∈ T (h). Let us distinguish two cases:

Case (i) If x has at most k zero components. In this case define a term tx as a minterm

of x. Clearly, we have tx ≤ h and tx has at most k negative literals.

Case (ii) If x has at least k + 1 zero components. Let us denote by

S := {y ∈ F (h) | y > x}

the set of false points of h that are greater than x. We claim that there exist k pairwise

distinct indices i1, . . . , ik such that

xi1 = . . . = xik = 0

and for any vector y ∈ S we have

yi1 + . . .+ yik ≥ 1.
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Otherwise the k-Zeros Condition would hold for S contradicting the fact that c(S) is a true

point. Then define a term

tx = wi1 ∧ . . . ∧ wik

∧

j:xj=1

wj .

Clearly, we have tx ≤ h.

To complete our proof we can observe that the same analysis can be repeated for any

true point of h, implying that h can be represented by a DNF

h =
∨

x∈T (h)

tx,

which is a k-quasi-Horn DNF. �

Let us remark that the class of all Boolean functions is partitioned by n+1 classes of k-

Horn-functions, and we have necessary and sufficient conditions to recognize a k-quasi-Horn

function.

11.4 Bidual k-quasi-Horn Functions

From the definition of bidual function and McKinsey’s theorem we have the following corol-

lary.

Corollary 2 A Boolean function f is bidual k-quasi-Horn if and only if F (f) is closed

under k-zeros-conjunctions and T (f) is closed under k-ones-disjunctions.

The criteria for bidual Horn functions (Lemma 3) and DNFs (Lemma 4) formulated

below can be found in [31]. We generalize these results and formulate necessary (Subsection

11.4.1) and sufficient (Subsection 11.4.2) conditions for bidual k-quasi-Horn functions and

DNFs. All proofs are considered for k = 2, and proofs for k > 2 are analogous.

Lemma 3 ([31]) Let f be a Horn function. Then the following statements are equivalent:

(i) f is bidual; (ii) For every pair of Horn implicants ti and tj of f that have different

negative literals, for example, |N(ti)∪N(tj)| = 2, it holds that t+i,j ≤ f ; (iii) For every pair

of Horn implicants ti and tj of f such that |N(ti) ∪N(tj)| = 2, it holds that t±i,j ≤ f .
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Lemma 4 ([31]) Let ϕ be a Horn DNF. Then ϕ represents a bidual Horn function if and

only if

t+i,j ≤ ϕ (equivalently, t±i,j ≤ ϕ)

holds for all pairs of Horn terms ti and tj in φ such that |N(ti)∪N(tj)| = 2. (Remark: This

condition is different from Lemma 3 (ii) in that only terms ti and tj in ϕ are considered

here.)

11.4.1 Necessary conditions

Lemma 5 Let f be a 2-quasi-Horn function. If f is a bidual 2-quasi-Horn function, then

for every three 2-quasi-Horn implicants ti, tj and tm of f such that

|N(tq)| = |Ñ(tq)| ≥ 1, q = i, j,m, (11.1)

it holds that

t+i,j,m ≤ f and t̂±i,j,m ≤ f.

Proof. Assume that there is a vector b such that t+i,j,m(b) = 1 and f(b) = 0 for some 2-quasi-

Horn implicants ti, tj and tm of f such that condition (11.1) holds. Because t+i,j,m(b) = 1

we have that

O(b) ⊇ P (ti) ∪ P (tj) ∪ P (tm).

Furthermore,

N(tq) ∩ O(b) 6= ∅, q = i, j,m, (11.2)

because otherwise we have tq(b) = 1, and hence f(b) = 1, which is a contradiction. Now let

us take four vectors b, b(i), b(j) and b(m), where b(q) denotes the vector such that

O(b(q)) = O(b) \N(tq) ⊇ P (tq). (11.3)

Because of (11.1) we have

b = b(i) ∨ b(j) ∨ b(m). (11.4)

Because

ti(b
(i)) = tj(b

(j)) = tm(b(m)) = 1,
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we have

f(b(i)) = f(b(j)) = f(b(m)) = 1,

and f(b) = 0 holds by assumption. From (11.1)-(11.4) we conclude that b is a 2-ones-

disjunction of b(i), b(j) and b(m), and, consequently, T (f) is not closed under 2-ones-

disjunctions, that is, f is not bidual 2-quasi-Horn. �

Lemma 6 Let ϕ be a 2-quasi-Horn DNF. If ϕ represents a bidual 2-quasi-Horn function

then

t+i,j,m ≤ ϕ and t̂±i,j,m ≤ ϕ

holds for every three 2-quasi-Horn terms ti, tj and tm in ϕ such that

|N(tq)| = |Ñ(tq)| ≥ 1, q = i, j,m.

Proof. Special case of Lemma 5. �

We extend the above results in the next two Lemmas.

Lemma 7 Let f be a k-quasi-Horn function. If f is a bidual k-quasi-Horn function, then

for every k + 1 k-quasi-Horn implicants ti1, ti2, . . . , tik+1
of f such that

|N(ts)| = |Ñ(ts)| ≥ 1, s = 1, 2, . . . , k + 1,

it holds that

t+i1,i2,...,ik+1
≤ f and t̂±i1,i2,...,ik+1

≤ f.

Lemma 8 Let ϕ be a k-quasi-Horn DNF. If ϕ represents a bidual k-quasi-Horn function,

then

t+i1,i2,...,ik+1
≤ ϕ and t̂±i1,i2,...,ik+1

≤ ϕ

holds for every k + 1 k-quasi-Horn terms ti1, ti2, . . . , tik+1
in ϕ such that

|N(ts)| = |Ñ(ts)| ≥ 1, s = 1, 2, . . . , k + 1.
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11.4.2 Sufficient conditions

Lemma 9 Let f be a 2-quasi-Horn function. If for every three 2-quasi-Horn implicants ti,

tj and tm of f such that

|Ñ(tq)| ≥ 1, q = i, j,m, (11.5)

it holds that

t+i,j,m ≤ f and t̂±i,j,m ≤ f, (11.6)

then f is a bidual 2-quasi-Horn function.

Proof. Assume that f is not bidual, or in other words its dual fd is not 2-quasi-Horn.

Because fd is not 2-quasi-Horn, T (f) is not closed under 2-ones-disjunctions. Hence, there

exist four vectors, u, v(i), v(j) and v(m), such that

u = v(i) ∨ v(j) ∨ v(m), (11.7)

u is a 2-ones-disjunction of v(i), v(j) and v(m), f(u) = 0 and f(v(q)) = 1, for q = i, j,m. The

fact that f(v(q)) = 1 implies that there is a 2-quasi-Horn implicant

tq =
( ∧

l∈P (tq)

xl

)
∧

( ∧

l∈N(tq)

xl

)

of f such that

tq(v
(q)) = 1, q = i, j,m. (11.8)

We will show that condition (11.5) holds, t+i,j,m = 1 and t̂±i,j,m = 1. Because f(u) = 0 this

will contradict condition (11.6).

(a) N(tq) 6= ∅ for q = i, j,m. Otherwise, (11.7)-(11.8) imply tq(u) = 1, that is, f(u) = 1,

which is a contradiction.

(b) N(ti) ∩ O(v(j) ∨ v(m)) 6= ∅. Assume that N(ti) ⊆ Z(u) holds. Then (11.7)-(11.8)

imply that ti(u) = 1, that is, f(u) = 1, which is a contradiction. The cases N(tj) ⊆ Z(u)

and N(tm) ⊆ Z(u) are analogous.

(c) Ñ(ti) 6= ∅. Assume Ñ(ti) = ∅, or in other words N(ti) ⊆ N(tj) ∪ N(tm). If there

exists

p ∈
⋂

q∈{i,j,m}

N(tq),
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then up 6= 1, because otherwise there exists q ∈ {i, j,m} such that tq(v
(q)) = 0. From (b)

assume that h ∈ N(ti) ∩ O(v(j) ∨ v(m)), h /∈ N(tm) and g ∈ N(tm) ∩ O(v(i) ∨ v(j)). Then

uh = ug = 1, and for every q = i, j,m we have that v
(q)
h v

(q)
g = 0, because from (11.8)

v
(i)
h = v

(j)
h = v(m)

g = 0.

Hence, u is not a 2-ones-disjunction of v(i), v(j) and v(m), contradiction. The cases Ñ(tj) = ∅

and Ñ(tm) = ∅ are analogous.

From (c) we conclude that condition (11.5) holds and t+i,j,m(u) = 1, contradiction to

condition (11.6) since f(u) = 0. Now let us show that t̂±i,j,m(u) = 1.

(d) Ñ(ti) ∩ O(v(j) ∨ v(m)) 6= ∅. Assume that Ñ(ti) ⊆ Z(u). Then using the same

arguments as in (c) we have that 2-Ones Condition does not hold, contradiction. The cases

Ñ(tj) ⊆ Z(u) and Ñ(tm) ⊆ Z(u) are analogous. Hence we conclude that t̂±i,j,m(u) = 1. �

Lemma 10 Let ϕ be a 2-quasi-Horn DNF. Then ϕ represents a bidual 2-quasi-Horn func-

tion fϕ if

t+i,j,m ≤ ϕ and t̂±i,j,m ≤ ϕ (11.9)

holds for every three 2-quasi-Horn terms ti, tj and tm in ϕ such that

|Ñ(tq)| ≥ 1, q = i, j,m.

Proof. Let us assume that (11.9) holds, but fϕ is not bidual. Hence, fd
ϕ has a prime

implicant r such that |N(r)| ≥ 3, and each term in ϕ has a common literal with r (it is

easy to see by dualizing ϕ). Furthermore, because r is prime, for each literal ℓ in r there

is a term in ϕ having only literal ℓ in common with r. Otherwise a proper subterm of r

would be an implicant of fd
ϕ, which is a contradiction, because r is prime. Let t1, t2 and t3

be respectively such terms in ϕ for different negative literals in r, that is,

P (ti) ∩ P (r) = ∅. (11.10)

By the assumption t+1,2,3 is an implicant of fϕ, hence it has a common literal with r, that is

P (t+1,2,3) ∩ P (r) 6= ∅,
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which is a contradiction to (11.10). The case t̂±i,j,m ≤ ϕ is analogous. �

The above results can be generalized as follows.

Lemma 11 Let f be a k-quasi-Horn function. If for every k + 1 k-quasi-Horn implicants

ti1, ti2, . . . , tik+1
of f such that

|Ñ(ts)| ≥ 1, s = 1, 2, . . . , k + 1,

it holds that

t+i1,i2,...,ik+1
≤ f and t̂±i1,i2,...,ik+1

≤ f,

then f is a bidual k-quasi-Horn function.

Lemma 12 Let ϕ be a k-quasi-Horn DNF. Then ϕ represents a bidual k-quasi-Horn func-

tion fϕ if

t+i1,i2,...,ik+1
≤ ϕ and t̂±i1,i2,...,ik+1

≤ ϕ

holds for every k + 1 k-quasi-Horn terms ti1, ti2, . . . , tik+1
in ϕ such that

|Ñ(ts)| ≥ 1, s = 1, 2, . . . , k + 1.
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