
INTERACTION OF MICROWAVE
FILAMENTS AND A BLUNT BODY

IN SUPERSONIC FLOW

BY FARNAZ FARZAN

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Mechanical and Aerospace Engineering

Written under the direction of

Doyle D. Knight

and approved by

New Brunswick, New Jersey

OCTOBER, 2008



c© 2008

FARNAZ FARZAN

ALL RIGHTS RESERVED



ABSTRACT OF THE THESIS

INTERACTION OF MICROWAVE

FILAMENTS AND A BLUNT BODY

IN SUPERSONIC FLOW

by FARNAZ FARZAN

Thesis Director: Doyle D. Knight

Recent experiments have demonstrated the capability of pulsed microwave energy deposi-

tion for drag reduction in supersonic flows. The principal mechanism of this phenomenon

is the interaction of the hot filaments generated by the microwave energy pulse with the

shock system formed by the aerodynamic body. In this work, the filament is modeled as a

thin fluid region of high temperature. The interaction of the filament(s) with a cylindrical

body at Mach number 1.89 is examined using the unsteady Euler equations. Two filament

structures are considered, namely, 1) an infinitely long filament, and 2) a periodic train of

finite filaments (at different frequencies). The development of the flow structure during the

interaction is investigated. Furthermore, the drag reduction effectiveness and efficiency of

the process of the interaction of the microwave filament(s) with the cylindrical shock layer

for each case are studied.

Keywords: blunt body, stand–off distance, bow shock, recompression shock, expansion

fan, microwave filament, contact discontinuity, Richtmeyer–Meshkov instability, lensing

effect, vortex region, recirculation area, drag reduction, CFD
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Chapter 1

Introduction

1.1 Motivation

Most high speed aircraft are blunt–nosed rather than sharp–nosed to reduce surface heating.

As the flight speed increases this advantage is more evident. However, blunt–nosed vehicles

have higher drag than sharp–nosed ones. Thus, the study of methods to reduce the drag

on the blunted bodies becomes necessary.

There exist several aerodynamic methods to redirect the stream at supersonic speeds

by means of separation and circulation which lead to drag reduction on blunt bodies. Such

a flow can be created by means of a mechanical spike mounted on the blunt body [8, 29]. In

supersonic flows, weak perturbations produced by local changes in temperature or density

were shown to effectively modify the bow shock and reduce the aerodynamic drag on

blunted bodies. These local changes could be created by means of various kinds of energy

discharges such as laser, microwave (MW), glow, etc. (for example, see, [1, 4, 5]). For

MW energy deposition, the physical mechanism for drag reduction is the interaction of the

thin hot filaments with the shock structure generated by the body (Figure 1.1). In the

present research, the effect of pulsed MW energy addition on drag reduction for a cylinder

is examined.

Application of the MW technique is not the easiest way to obtain discharge in air-

flow. This technique is more complicated than some other methods such as DC discharge.

However, there are some options available by using MW discharge that makes it more ad-

vantageous for applications in flow control. These options are, namely, capability for action

in distance, energy delivery at the speed of light at a defined point, electronic control of

the MW beam focus shape and orientation according to the mission requirements and high

efficiency of generation.
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Figure 1.1: MW Filaments [6]

1.2 Literature Survey

There have been many of both experimental and numerical studies to investigate the ap-

plication of energy deposition in aerodynamic flow control at supersonic speeds. Several

review papers are available summarizing the recent studies: Knight et al [15, 16, 17], Zhel-

tovodov et al [32] and Bletzinger et al [5]. In this section, some papers along with their

important results are presented to provide the reader with some background regarding

historical overview, experimental and numerical research.

1.2.1 Historical Overview

The idea of focusing of electromagnetic beams for distant energetic coupling with a gas flow

appeared in the 1960’s and was stimulated by rapid progress in MW and laser techniques.

Despite many optimistic expectations regarding the application of electromagnetic beams

in aerodynamics, more realistic ones were evident by recognizing the complexity of such

systems and also by not obtaining rapid progress in efficiency. By the late 1970’s and the

beginning of the 1980’s, another area emerged which later was named plasma aerodynamics.

Plasma aerodynamics proved to be the catalyst which led to both reexamination of the

phenomena and to the discovery of new phenomena in several basic disciplines such as

gas discharge, gas dynamics and kinetic processes. Its brief description can be given by

non–stationary, non–uniform or non–equilibrium behavior.

Many interesting events occur when an electromagnetic field is applied to a gas medium.

The study of electromagnetic discharges in gases has led to many fundamental discoveries.
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A small segment of this field is related to electric breakdown at high frequencies which

dates back to the end of World War II. The term breakdown corresponds to the initiating

process and seemed reasonable to those studying the phenomena in which a DC voltage

across a gas tube was gradually increased until the gas suddenly started to glow and became

conducting.

The development of radar during the World War II led to the improvement of MW

techniques. Once a high–frequency field is applied across a gas, the electrons travel short

distances before the direction of the field changes. Therefore, electrons are not swept out

of the discharge region by the field, but leave with relatively low speeds and produce no

secondary effects at the surfaces of the container. There has been considerable experimental

work among which one of the pioneer ones is presented here. This experiment is chosen so

that it indicates in a general way the kind of experiments which were done [26]. Also, one

of the current experiment set–ups in Saint Petersburg is described.

Figure 1.2 shows a schematic diagram of an arrangement to measure breakdown in

atmospheric gases at a MW frequency of 10 GHz. MW power, stable in frequency and

controllable in power level, reaches the resonant cavity by a waveguide from the magnetron

source. A ferrite isolator prevents frequency pulling of the magnetron by the load by

introducing about 10 db attenuation for signals traveling from load to source without

significantly reducing the power transmission to the cavity. A small fraction of the power

is led to the frequency–measuring system, which includes a frequency counter that allows

accuracy to seven or eight significant figures. A known fraction of the power is also led to

the calorimetric power meter using a calibrated directional coupler. A spectrum analyzer

monitors the power transmitted through the cavity and serves to indicate when breakdown

has taken place. A number of E–H tuners are used to ensure proper matching at certain

points in the transmission line.

When the gas is introduced into the cavity at any desired concentration, the breakdown

field is determined by gradually raising the power level, while keeping the source frequency

at the resonant frequency of the cavity, until the gas in the cavity breaks down. The

indication of breakdown is a sudden decrease of transmitted power caused by the gas

becoming conducting and absorbing most of the power.
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Figure 1.2: Schematic diagram of MW equipment used in breakdown studies in air [26]

Since breakdown is the result of an increase in electron concentration, there must be

some electrons in the cavity when the field is applied; these are generally supplied by

keeping a small radioactive source near the cavity.

MW breakdown depends on the purity of the gas being studied. Advances in vacuum

technology have therefore been closely connected with progress in breakdown studies. For

example, ultrahigh–vacuum techniques made it possible to attain pressures in a reasonably

sized systems as low as 10−10 Torr in a matter of hours.

There have been many experimental studies of MW energy deposition for flow control

at supersonic speeds. Here, as an example, we describe the experimental set–up at Saint

Petersburg University. Figure 1.3 shows the components of the equipment including the

waveguide, the test chamber, the parabolic mirror to focus the MW beam which was used

before and the aluminum strips to focus the MW beam which are used now. The MW

pulse once generated is directed to the chamber test via the wave guide and is focused on

the desired point ahead the model using the aluminum strips. Closer views of the wave

guide and the test chamber are shown in Figure 1.4.
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Figure 1.3: Experimental set–up at Saint Petersburg University

a) b)

Figure 1.4: a)The wave guide b)The chamber test with aluminum strips to focus the MW
beam.
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1.2.2 Experimental Articles

The area is rich in experimental work. Different geometries of bodies have been studied

through experimental set–ups and the effects of different parameters such as the dimension

of the high temperature region, its strength in terms of the ratio of its density to the ambient

density and its orientation with respect to the axis of the body have been investigated.

Similar conclusions have been drawn regarding the phenomena observed: a vortex region

within the shock layer is formed which reduces frontal drag by effective streamlining of the

body (Figure 1.5). Also the stand–off distance of the bow shock and its shape change due

to the interaction. The effect of the interaction on the flow structure and aerodynamic

characteristics is shown to get magnified as the strength of the hot region and its length

increase. Here, we mention a selected series of recent experiments.

Kolesnichenko et al 2001

Kolesnichenko et al [19] performed a series of experiments to study the effect of MW energy

deposition on supersonic flow around an cylindrical body of diameter 8 mm in air, nitrogen,

argon and carbon dioxide. The air flow is generated by means of central supersonic conical

nozzle with exit Mach number of 1.5. The outer supersonic nozzle, gas ejector was set up to

obtain a rarefaction in the working chamber. The following parameters of the working flow

have been obtained: static pressure typically 60 Torr, Mach number 1.5 − 1.8 and static

temperature typically 200 K. The MW unit is a klystron–type generator of high power

pulses with X–range frequency. The ultimate pulse power attained is 210 kW. The pulse

duration is 1.2 − 2.2 µs. The pulse frequency can be as high as 1.0 kHz. The maximum

mean power of the MW facility is about 400 W.

The Schlieren images of the interaction are provided. To investigate the influence of

plasmoids on the drag, the surface pressure is measured on the centerline of the cylinder.

A significant reduction in the surface pressure resulting in a momentary decrease in frontal

drag is recorded. Investigation of spatial–temporal and spectral characteristics of light

emission of MW discharge is carried out by two measuring channels and the detailed spatial–

temporal data of discharge domains evolution and interaction are obtained.
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Figure 1.5: Numerical simulation of the flow structure during the interaction of a hot
filament with cylinder shock layer [9]

Lashkov et al 2003, 2004

Lashkov et al [22, 23] performed a series of experiments to investigate the effect of MW

energy deposition on blunt and hemisphere cylinders at M∞ = 2.1, static pressure p∞ =

25 Torr and static temperature T∞ = 159.4 K. The wind tunnel is a free jet configuration.

They studied a symmetric flow with the MW beam located approximately 70 − 90 mm

from the jet nozzle exit. They provided Schlieren images and chemiluminescent imaging

and surface pressure measurements. The initial lensing forward of the shock as the thermal

region convects to the bow shock has been observed (Figure 1.6). The formation of a vortex

region and transient streamlining of the flow past the body resulting in a decrease in frontal

pressure have been pointed out. The effect of off–axis position of the MW beam is also

examined for the case of a hemisphere body. It is shown that for some larger distance from

the axis of the body, energy deposition actually increases the drag.

Mashek et al 2004

There are also experiments performed to combine existing methods with MW deposition

to investigate the possibility of the MW beam generation in atmospheric pressure. In their

work, Mashek et al [27], set up several experiments to study MW discharge initiated by

a laser spark. Their objective is to ascertain the capability of a laser spark to act as a
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Figure 1.6: The effect of MW energy deposition on a blunt body at M∞ = 2.1
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precursor (initiator) for MW discharge in air at atmospheric pressure. The laser spark

is created by an impulse ruby laser in the focal point of short–focus lens (12 mm). The

X–range impulse MW generator with output power 180 kW and pulse duration 1.2 µs via

radiating system illuminates the focal area. A digital synchronous Schlieren system is used

for visualization of the shock wave structures excited by the laser spark and initiated by

the MW discharge. The luminosity of discharges is measured by fast photo multiplier tubes

with a time resolution better than 30 ns. According to their results, one can create MW

discharge at atmospheric pressure using laser precursor. They also examined the effect of

different delay times between the MW and laser to attain the maximum luminosity which

is shown to be 80−110 µs and the duration of this discharge is defined by the MW impulse.

Brovkin et al 2006

Brovkin et al [7] carried out an experimental investigation of combined laser–DC–MW

discharges. The operations were conducted using a powerful MW generator of magnetron

type (700 kW, 13 GHz), pulsing laser Nd:YAG (532 nm, 130 mJ/pulse) and pulsing DC

source (Figure 1.7). It was observed that at the reduced pressure the threshold of initiation

of the MW discharge is essentially decreased by the laser radiation even without laser–

induced spark generation. The opportunity of remote generation of the MW discharge

is shown. Special attention was given to studies of the interaction process of the MW

discharge with a laser plasma and the gas medium distributed by it at the late stages of

decay. The results also point out the potential of adjustment of the process of energy

deposition by means of changes in delays, and also the intensity levels of the MW and laser

radiation.

1.2.3 Numerical Articles

Kolesnichenko et al 2002

Some preliminary results of numerical simulations based on the Euler equations of the

interaction of a heated channel with a two–dimensional blunt body at M∞ = 1.9 are

presented in this work [20]. Different diameters of the model are studied and it is shown
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Figure 1.7: MW installation in IVTAN [7]
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Figure 1.8: The computed surface pressure on the centerline

that the peak value of stagnation pressure reduction increases with the model diameter.

The lensing forward of the shock due to the initial interaction, the formation of a vortex

pair, recirculation region and reflected shock waves inside the shock layer are displayed via

computed Schlieren images. Four phases are assigned to the changes in surface pressure:

phase I relates to pressure drop because of expansion wave generated by the interaction,

phase II refers to significant pressure drop due to vortex generation and also is associated

with momentarily effective streamlining of the body due to the creation of recirculation

area ahead the body. Phases III and IV correspond to the convection of the vortex past

the body and the recovery of pressure to its undisturbed level respectively (Figure 1.8).

Kolesnichenko et al 2003

Kolesnichenko et al [18] developed a model for the formation time of the hot filament. The

analytical model yields a finite time collapse–like creation of a hot plasma channel with

high electron concentration and temperature. The formation time of the hot channel is:

tchannel = [1.5k2ησ0E
2
0ρ−1

0 ]−1/3

where k is proportional to the MW wave number, η is the fraction of the dissipated energy

transformed into heating of the gas, σ0 is the conductivity, E0 is the amplitude of the electric
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field and ρ0 is the ambient density. For typical values (σ0 = 100 Siemens, λ = 3 cm,

p0 = 76 Torr, E0 = 3 kv/cm), the model predicts tchannel = 1 µs in agreement with

experiment.

Azarova et al 2005

In this paper [2], a numerical study based on the Euler equations is performed for wedge–

shaped bodies at different angles and different positions of MW discharge. Flow structure,

stagnation parameters, drag forces, stand–off distance and the shape of bow shock in the

case of an infinitely long filament are examined. For certain angles of the wedge, the

detached wave is observed and additional strong shock or acoustic waves (depending on

the angle) are generated within the shock layer and later join the bow shock. Dividing

or not dividing the vortex region near the top corner of the body depends again on the

angle of the wedge. For the cases of attached bow shock, no additional shock waves are

formed and only an acoustic wave traveling to the bow shock is observed. In addition, the

vortex region is not divided in these cases. Some flow structures can be pointed out in both

categories (detached and attached bow shock) such as the deformation of bow shock, the

increase in its stand–off distance, the generation of weak shocks moving to the right on top

surface of the body and significant decrease in frontal drag which is less for detached cases.

Generally, the effects become stronger as the degree of rarefaction of the hot filament or

its length increases.

Lashkov et al 2006

In a paper by Lashkov et al [21] a simplified analysis of gas motion at the beginning of

the interaction is offered and a list of main dimensionless parameters of this motion such

as the Mach number of flow, the heating degree and geometric parameters is discussed.

The results of numerical modeling on the basis of the Euler equations for a cylindrical

aerodynamic body with a complicated cavity to examine the possibility of intensifying the

vortex region are provided. The calculation analysis showed that the presence of the cavity

in the cylinder body amplifies the effects of drag force reduction. The effects established are

stronger for longer channels or for higher degrees of rarefaction. It is also pointed out that
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there exist time intervals in which the effects do not depend on the radius of the channel

but only on its length.

Zheltovodov et al 2007

Zheltovodov et al [33] have provided numerical calculations on a basis of 2–D axisymmetric

unsteady Euler equations and have compared the results with some known experiments with

laser induced energy deposition located upstream of different bodies. In their work, the

interaction of single pulse with a sphere at M∞ = 3.45 has been studied and the complex

unsteady flow structure is analyzed (Figure 1.9). Furthermore, the results of parametrical

numerical research of the flowfield features in the vicinity of blunt spherical and sharp

conical axisymmetric bodies in the case of periodic pulsed energy deposition in argon is

performed at M∞ = 2 (Figures 1.10 and 1.11). Comparison of performed calculations with

known experimental results confirms the reliability of such an approach to predict some

important features of the flowfield such as the deformation of the bow shock, the formation

of contact discontinuties and the lensing effect of the interaction in different cases. Also, the

main tendencies of drag reduction for spherical and conical bodies under energy deposition

influence have been demonstrated and specified.

a) b)

Figure 1.9: The single energy impulse interaction with the sphere at M∞ = 3.45, t = 70µ s:
a) calculated density gradients. b) experiment



14

a) b)

Figure 1.10: The pulsed energy deposition in front of a spherical blunted body at M∞ = 2:
a) calculated density gradients. b) experimental shadowgraphs

1.3 Statement of Objectives

In this work, the interaction of a heated filament with the shock layer ahead of a cylinder

is studied. The heated filament is a simplified model of the plasma filament generated

by a MW discharge (Figure 1.1).The main flow structures which are generated due to the

interaction are investigated and the behavior of the flow is studied by analyzing different

contours such as pressure and density fields. Furthermore, examining the effect of different

parameters in the effectiveness as well as in the efficiency of the pulsed energy deposition

in drag control is of main interest. Effectiveness is the percent of drag reduction caused by

the interaction of a train of finite filaments with the shock system; however, the amount of

drag reduction itself is not a sufficient measure and the calculation of the efficiency of the

process is needed as well, i.e., the ratio of the drag power saved to the power expended to

produce the MW filaments.
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a) b)

Figure 1.11: The pulsed energy deposition in front of a conically sharp body at M∞ = 2:
a) calculated density gradients. b) experimental Schlieren images

1.3.1 Outline of the Thesis

Chapter 2 introduces a schematic sketch of the problem, the governing dimensionless pa-

rameters and the parameters of interest which are investigated in this work. The method-

ology including the governing equations, the numerical algorithms and grid generation is

discussed in Chapter 3. The description of the CFD code can also be found in this chapter.

The results from the flow solver representing the flow structure are presented in Chapter

4. Further analysis to study the capability of introducing pulsed filaments into the shock

system to control the drag, is performed and described in this chapter. In the final section

conclusions and future work studies are summarized.
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Chapter 2

Problem Statement

2.1 Problem Definition

A sketch of the flow configuration is shown in Figure 2.1. Consider a cylinder in a supersonic

flow. A bow shock wave is created in front of the body. Using pulsed energy addition, a

region of high temperature and consequently low density is created in front of the bow

shock. This region is called a “temperature spot” or “density well”. Within this region,

there exists a weakly ionized medium containing visible filaments of diameter d ≈ 0.1−1 mm

and length of l ≈ 10− 30 mm [19] (Figure 1.1). In the current research, the filaments are

modeled as a thermal effect and therefore as tiny cylinders of high temperature aligned

with the body’s axis.

These filaments travel with the same speed as the flow and as they approach1 and

interact with the bow shock, they deform its shape and therefore the flow structure and

pressure behind the bow shock changes due to this interaction. The objective of this work

is to examine the change in the flow structure and the pressure on the aerodynamic body

caused by the interaction of infinite or finite MW pulses with the cylinder shock system.

1The pressure inside the filament is the freestream pressure, i.e., p∞.
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Figure 2.1: Schematic sketch of the problem

2.2 Dimensionless Parameters

There are two dimensionless parameter associated with the aerodynamic properties of the

flow which are the Mach number2, M∞, and the ratio of the density in the filament to the

freestream density, α. In nondimensionalizing, there are also three additional dimensionless

lengths associated with the geometry of the filaments, namely the filament length (l/D),

diameter (d/D) and spacing (L/D). The governing dimensionless parameters are listed in

Table 2.1. The geometric parameters3 are defined in Figure 2.1.

According to experiments (see, for example, [19]), the typical diameter for the filament

is d ≈ 0.1−1 mm and again from the similar experiments, the aerodynamic body’s diameter

is typically D ≈ 10 − 40 mm. Thus, 0.0025 ≤ d/D ≤ 0.1 and the choice of d/D = 0.1

represents a typical experiment. Similarily, the typical length for the filament is l ≈
10 − 30 mm and the selected value, l/D = 1.0, falls in the appropriate range. The values

for M∞ and α which are listed in Table 2.1 are chosen such that they are consistent with

the experiments.

2.3 Parameters Investigated

The specific objective of this research is studying the effect of altering the period, L/D,

of the pulsed filaments on drag reduction. For this purpose, all other parameters are kept

fixed after assigning appropriate values to them. Four different cases are examined which

are listed in Table 2.2.

2Mach number is defined as M∞ = U∞/a∞, where U∞ is the freestream velocity and a∞ is the freestream
speed of sound. For a perfect gas, a =

√
γRT .

3The Mach number of the filament is
√

αM∞
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Type Description Definition Value
Flow Mach M∞ 1.89

Specific heats ratio γ 1.4
Filament Density ratio α 0.5

Diameter d
D 0.10

Length (Duration4) l
D varies

Pulse (Period) L
D varies

b The temporal duration of a pulse, non–dimensionalized by D
U∞ , is l

D . Likewise, the pulse
period is L

D for the same non–dimensionalization.

Table 2.1: Governing Dimensionless Parameters

Case Description d
D

l
D

L
D

1 Infinitely long filament 0.10 ∞ n/a
2 Finite multiple filaments 0.10 1.0 4/3
3 Finite multiple filaments 0.10 1.0 2
4 Finite multiple filaments 0.10 1.0 4

Table 2.2: Studied Cases
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Chapter 3

Methodology

This chapter summarizes the governing equations, numerical algorithms, grid generation,

computer tools and finally a validation for the code which is used for the computations.

The governing equations of the problem are the unsteady axisymmetric Euler equations

which are discussed in detail in Section 3.1. Also, a comprehensive review of the numerical

algorithms applied is presented in Section 3.2 followed by the description of the grid in

Section 3.3. In section 3.4, the CFD code employed to solve the flow is described. Finally,

a steady–state case to demonstrate a validation for the solver code is presented.

3.1 Governing Equations

Fluid motion is governed by three major independent laws: conservation of mass (continuity

equation), conservation of momentum (Newton’s second law of motion) and conservation

of energy. First, the assumptions on which the computations are based are specified:

1. Axisymmetric flow

2. Unsteady flow

3. Inviscid flow

4. Compressible flow

5. Neglect body force

Conservation of mass

∂ρ

∂t
+

∂ρuk

∂xk
= 0 (3.1)
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The momentum equation (Euler equation)

Dui

Dt
= −1

ρ

∂p

∂xi
(3.2)

where ρ is the density, ui are the velocity components (u1, u2, u3) in the Cartesian coordi-

nate system (x1, x2, x3) and p is the static pressure. D
Dt is the convective derivative of a

function and is defined as

D

Dt
=

∂

∂t
+ ui

∂

∂xi
(3.3)

Finally the energy equation

ρ
De

Dt
= −∂puk

∂xk
(3.4)

where e = cvT + 1/2(u2
1 + u2

2 + u2
3).

There are four equations with five unknowns (ρ, u1, u2, u3, e) in the above set of equa-

tions. In order to solve for the unknowns, another equation is needed which is the equation

of state for thermally perfect gas which is p = ρRT . In this equation, R = cp − cv, is the

specific gas constant, where cp is the specific heat at constant pressure and cv is the specific

heat at constant volume.

3.1.1 Nondimensionalization

To obtain the governing equations in dimensionless form, the nondimensionalization is done

for the following:

1. The governing equations.

2. The boundary conditions.

3. The initial conditions.

Starting with the governing equations, nondimensionalization should be done for all the

variables which appear in the problem

u∗i =
ui

Uref
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x∗i =
xi

Lref

t∗ =
t

(Lref/Uref )

p∗ =
p

ρref .U2
ref

T ∗ =
T

Tref

ρ∗ =
ρ

ρref

e∗ =
e

U2
ref

(3.5)

Now, the reference values used to nondimensionalize the variables listed above are

specified (see Figure 2.1

Uref = U∞

Lref = D

ρref = ρ∞

Tref = T∞ (3.6)

Therefore, one obtains:

u∗i =
ui

U∞
x∗i =

xi

D

t∗ =
t

(D/U∞)

p∗ =
p

ρ∞U2∞

T ∗ =
T

T∞
ρ∗ =

ρ

ρ∞
e∗ =

e

U2∞
(3.7)

3.1.2 Governing Equations in Dimensionless Form

The governing equations are taken and the variables are substituted with the dimension-

less variables obtained above. Doing so, no dimensionless parameter will appear in the

governing equations. Thus, the governing equations would be as follows
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Conservation of mass

∂ρ∗

∂t∗
+

∂ρ∗u∗k
∂x∗k

= 0 (3.8)

The momentum equation (Euler equation)

Du∗i
Dt∗

= − 1
ρ∗

∂p∗

∂x∗i
(3.9)

and finally the energy equation

ρ∗
De∗

Dt∗
= −∂p∗u∗k

∂x∗k
(3.10)

From now on, for simplicity, the superscript ∗ and is dropped and dimensionless variables

are used in equations.

3.1.3 Boundary Conditions in Dimensionless Form

The boundary conditions in this problem are as follows (Figure 2.1)

1. Upstream velocity is U∞ (for both inflow and the filament)

2. Upstream temperature is T∞ (excluding the filament)

3. Upstream pressure is p∞ (for both inflow and the filament)

4. Filament density is ρf = αρ∞

It is clear that by knowing two thermodynamic properties in the upstream flow (e.g.,

pressure and temperature), the other properties, (e.g., the density), are known from the

equation of state or other thermodynamic properties.

Now, the boundary conditions are nondimensionalized by using the dimensionless vari-

ables

U∗
∞ =

U∞
U∞

= 1 (3.11)

T ∗∞ =
T∞
T∞

= 1 (3.12)
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The nondimensionless form of boundary condition for pressure

p∗∞ =
1

γM2∞
(3.13)

3.1.4 The Integral Form of the Conservation Laws

The integral equation for conservation of mass, momentum and energy may be written in

a compact vector notation as

∂
∂t

∫

V
QdV +

∮

A
(F · n̂)dA = 0 (3.14)

where n̂ denotes the outward unit vector normal to the surface, Q is the vector of the

conservative variables, F is the inviscid flux vector.

Q =





ρ

ρu

ρv

ρw

ρe





(3.15)

F · n̂ =





ρ(V · n̂)

ρu(V · n̂) + n̂xp

ρv(V · n̂) + n̂yp

ρw(V · n̂) + n̂zp

ρH(V · n̂)





(3.16)

where v is the velocity vector and H is the total enthalpy which is defined as H = e + p
ρ .

3.2 Numerical Algorithm

The conservation equations (3.14) are applied to a discrete set of control volumes Vi. The

solution requires specification of a set of control volumes and algorithms for the spatial and

temporal quadratures. In this section, a detailed description of selected algorithms for both

spatial and temporal discretization which are Van Leer’s scheme and Runge–Kuta method
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..

Figure 3.1: Cells used to define Qi(x)

respectively, is provided. Everything is explained in one dimension and the expansion of

the results to three dimension is straightforward. For the reader’s convenience, here is the

one dimensional form of Euler’s equations

∂
∂t

∫

V
Qdxdy +

∮

A
Fdy = 0 (3.17)

where the vector of dependent variables and inviscid fluxes are as follows

Q =





ρ

ρu

ρe





(3.18)

F =





ρu

ρuu + p

ρeu + pu





(3.19)

Then Euler equations (3.17) are applied to a discrete set of control volumes (Figure 3.1),

Vi = ∆x∆y. For each volume i, the volume–averaged values of Q are taken

Qi(t) =
1
Vi

∫

Vi

Qdxdy (3.20)

The spatial (flux) quadrature involves faces i + 1
2 and i− 1

2 . Denote

Fi+ 1
2

=
1

Ai+ 1
2

∫

x
i+1

2

Fdy (3.21)

where Ai+ 1
2

= ∆y is the surface area of the face at xi+ 1
2
. Then the Euler equations (3.17)

become

dQi∆x∆y

dt
+ (Fi+ 1

2
∆y − Fi− 1

2
∆y) = 0 (3.22)
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Since Vi is assumed to be independent of time,

dQi

dt
+

(Fi+ 1
2
− Fi− 1

2
)

∆x
= 0 (3.23)

This is the semi–discrete by which the Euler partial differential equations are trans-

formed into a system of ordinary differential equations. Given the solution Qi for each

cell’s centroids at time tn, the solution at time t(n+1) can be obtained by integration

Qn+1
i = Qn

i −
1

∆x

∫ tn+1

tn
(Fi+ 1

2
− Fi− 1

2
)dt (3.24)

The problem is therefore reduced to defining the temporal and spatial quadrature algo-

rithms for evaluating the second term on the right hand side of equation (3.24).

Also, the discretization of the domain and introduction of the volume averaged vector

Qi(t) result in a loss of information regarding Q(x, t). The time evolution of Qi requires,

from (3.23) in the vicinity of xi±1/2 within each cell i, a local approximate reconstruction

Qi(x) of the exact function Q(x).

3.2.1 Flux Vector Splitting Method

Consider the semi–discrete form of Euler equation 3.23. Since the problem is one–

dimensional, the flux Fi+ 1
2

= Fi+ 1
2
. The basic idea behind flux vector splitting is to

decompose the flux F into two parts,

F = F+ + F−

where

∂F+

∂Q
has nonnegative eigenvalues

∂F−

∂Q
has nonpositive eigenvalues

The term F+ corresponds to waves that move from left to right across the cell interface

and it is reasonable to use Ql
i+ 1

2
. Similarly, we will use Qr

i+ 1
2

to evaluate F−. There are

several algorithms proposed for F+ and F−. In this work, Van Leer’s method is utilized.
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Van Leer’s Method

Van Leer [13, 24] developed a flux vector split method based on the Mach number. The

flux vector F can be written

F =





ρaM

ρa2

γ (γM2 + 1)

ρa3M [ 1
(γ−1) + 1

2M2]





(3.25)

The term involving the Mach number1 is split into two parts, with ρ and a evaluated

using Ql or Qr as appropriate. For the mass flux the term involving Mach number is simply

M and is split according to

M = M+ + M− (3.26)

The mass flux is taken to be

ρu = ρlalM
+ + ρrarM

− (3.27)

Van Leer proposed

M+ =





0 for M ≤ −1

f+
1 for −1 ≤ M ≤ 1

M for M ≥ 1

(3.28)

and

M− =





M for M ≤ −1

f−1 for −1 ≤ M ≤ 1

0 for M ≥ 1

(3.29)

where M is the average Mach number at the interface and may be defined as

M =
ul + ur

al + ar
(3.30)

1Note that in this definition the Mach number can be positive or negative.
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This yields

ρu =





ρrarM for M ≤ −1

ρlalf
+
1 + ρrarf

−
1 for −1 ≤ M ≤ 1

ρlalM for M ≥ 1

(3.31)

It remains to determine the functions f+
1 and f−1 . They are chosen to satisfy equa-

tion 3.26 and to provide continuity of M± and its first derivative with respect to M at

M = ±1. It can be shown that

f+
1 =

1
4
(M + 1)2

f−1 = −1
4
(M − 1)2 (3.32)

The complete expression for M± are therefore

M+ =





0 for M ≤ −1

1
4(M + 1)2 for −1 ≤ M ≤ 1

M for M ≥ 1

(3.33)

and

M− =





M for M ≤ −1

−1
4(M − 1)2 for −1 ≤ M ≤ 1

0 for M ≥ 1

(3.34)

For the momentum flux, the term involving the Mach number is split according to

(γM2 + 1) = (γM2 + 1)+ + (γM2 + 1)− (3.35)

The momentum flux is taken to be

ρu2 + p = γ−1ρla
2
l (γM2 + 1)+ + γ−1ρra

2
r(γM2 + 1)− (3.36)

Van Leer proposed
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(γM2 + 1)+ =





0 for M ≤ −1

f+
2 for −1 ≤ M ≤ 1

γM2 + 1 for M ≥ 1

(3.37)

and

(γM2 + 1)− =





γM2 + 1 for M ≤ −1

f−2 for −1 ≤ M ≤ 1

0 for M ≥ 1

(3.38)

This yields

ρu2 + p =





γ−1ρra
2
r(γM2 + 1) for M ≤ −1

γ−1ρra
2
rf
−
2 + γ−1ρla

2
l f

+
2 for −1 ≤ M ≤ 1

γ−1ρla
2
l (γM2 + 1) for M ≥ 1

(3.39)

It remains to determine the functions f+
2 and f−2 . They are chosen to satisfy equa-

tion (3.35) and to provide the continuity of (γM2 + 1) and its first derivative with respect

to M at M = ±1. It can be shown that

f+
2 =

1
4
(M + 1)2[(γ − 1)M + 2]

f−2 = −1
4
(M − 1)2[(γ − 1)M − 2] (3.40)

The complete expressions for (γM2 + 1)± are therefore

(γM2 + 1)+ =





0 for M ≤ −1

1
4(M + 1)2[(γ − 1)M + 2] for −1 ≤ M ≤ 1

γM2 + 1 for M ≥ 1

(3.41)

and

(γM2 + 1)− =





γM2 + 1 for M ≤ −1

−1
4(M − 1)2[(γ − 1)M − 2] for −1 ≤ M ≤ 1

0 for M ≥ 1

(3.42)
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For energy flux, the term involving the Mach number is split according to

(ρe + p)u = ρla
3
l M [(γ − 1)−1 +

1
2
M2]

+

+ ρra
3
rM [(γ − 1)−1 +

1
2
M2]

−
(3.43)

Van Leer proposed

M [(γ − 1)−1 +
1
2
M2]+ =





0 for M ≤ −1

f+
3 for −1 ≤ M ≤ 1

M [(γ − 1)−1 + 1
2M2] for M ≥ 1

(3.44)

and

M [(γ − 1)−1 +
1
2
M2]− =





M [(γ − 1)−1 + 1
2M2] for M ≤ −1

f−3 for −1 ≤ M ≤ 1

0 for M ≥ 1

(3.45)

This yields

(ρe + p)u =





ρra
3
rM [(γ − 1)−1 + 1

2M2] for M ≤ −1

ρla
3
l f

+
3 + ρra

3
rf
−
3 for −1 ≤ M ≤ 1

ρla
3
l M [(γ − 1)−1 + 1

2M2] for M ≥ 1

(3.46)

It remains to determine the functions f+
3 and f−3 . They are chosen to satisfy (3.43) and

to provide the continuity of M [(γ − 1)−1 + 1
2M2] and its first derivative with respect to M

at M = ±1. It can be shown that

f+
3 =

1
8
(γ + 1)−1(γ − 1)−1(M + 1)2[(γ − 1)M + 2]2

f−3 = −1
8
(γ + 1)−1(γ − 1)−1(M − 1)2[(γ − 1)M − 2]2 (3.47)

The complete expressions for M [(γ − 1)−1 + 1
2M2]± are therefore
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M [(γ−1)−1+
1
2
M2]+ =





0 for M ≤ −1

1
8(γ + 1)−1(γ − 1)−1(M + 1)2[(γ − 1)M + 2]2 for −1 ≤ M ≤ 1

M [(γ − 1)−1 + 1
2M2] for M ≥ 1

(3.48)

and

M [(γ−1)−1+
1
2
M2]− =





M [(γ − 1)−1 + 1
2M2] for M ≤ −1

−1
8(γ + 1)−1(γ − 1)−1(M − 1)2[(γ − 1)M − 2]2 for −1 ≤ M ≤ 1

0 for M ≥ 1
(3.49)

3.2.2 Reconstruction Algorithm

As mentioned earlier, in a finite–volume code, the unknowns are stored as cell averages and

the code uses these cell averages to reconstruct the point wise field. In current thesis, the

higher–order point wise reconstruction is performed using the MUSCL (Modified Upwind

Scheme for Conservation Laws) approach [13].

In the reconstruction function and face values, the discontinuities in Q should be con-

sidered. The attention may be restricted to the face values since they determine the flux

at the cell face given the flux quadrature algorithm. The reconstruction within cell i may

be written as

Ql
i+1/2 = Qi +

1
4
[(1− κ)∆Qi−1/2 + (1 + κ)∆Qi+1/2]

Qr
i−1/2 = Qi − 1

4
[(1− κ)∆Qi+1/2 + (1 + κ)∆Qi−1/2] (3.50)

where ∆Qi+1/2 = Qi+1 − Qi and κ = 1/3. Equation (3.50) is then third order upwind–

biased since Ql
i+1/2 depends on Qi−1, Qi and Qi+1, and thus Ql

i+1/2 employs two cells on

the left of xi+1/2 and one cell to the right. Similarly, Qr
i−1/2 depends on Qi−1, Qi and Qi+1,

and thus Qr
i−1/2 employs two cells on the right of xi−1/2 and one cell to the left.



31

3.2.3 Limiter

For every CFD calculation, a balance exists between accuracy, convergence and mono-

tonicity. The solutions may possess any two of these quantities but not all three to the

fullest extent. The monotonicity of the flow solution is controlled by limiters. In a paper,

Godunov [11] showed that all monotone linear schemes can be at most of first–order accu-

racy. Hence, any linear procedure by which the gradients would be limited in second–order

schemes will not fulfill the requested goal, and the only way around this difficulty is to

introduce non–linear correction factors by limiter functions. The role of these limiters is to

force the numerics to follow closely the variation bounded properties of Euler solutions. For

the second order reconstruction, the limiter is chosen to be Min–Mod [12] with κ = 1/3.

3.2.4 Time Integration

An explicit second order method is applied, Runge–Kutta [13], for the temporal quadrature

of the semi–discrete Euler equations 3.23. The two–stage Runge–Kutta algorithm is

Q0
i = Qn

i

Q1
i = Q0

i +
∆t

2
R0

i

Q2
i = Q0

i + ∆tR1
i

Qn+1
i = Q2

i (3.51)

where we introduce the temporary vectors Q0
i , Q1

i and Q2
i . The temporary vector Q0

i

is identified as Qn
i . The first step computes an intermediate value Q1

i where R0
i implies

evaluation using Q0
i . The second step computes the final value of Qn+1

i with Ri evaluated

using Q1
i . The vector Q2

i is identified as Qn+1
i . The algorithm is temporally second–order,

i.e., the error in Qn+1
i is O(∆t2).

3.3 Grid Generation

A structured algebraic grid is generated to descretize the physical domain. The code to

generate the grid was developed in this research. The grid is in two–dimensional Cartesian
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Figure 3.2: The meshed field

coordinate system; however, when it is imported in the flow code, the axisymmetric option

is selected and the solver automatically converts the plane grid into an axisymmetric field.

The original grid generation code is written in FORTRAN.

The total number of grid points is 356, 800. The entire field is divided into four zones

to apply proper grid spacing and boundary conditions. The meshed field is shown in

Figure 3.2. For the purpose of visualization, not all the grid points are plotted.
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3.4 Flow Solver: GASPex

All numerical algorithms described above along with importing the grid generated are

applied through a flow solver in which the governing equations of the flow, namely con-

servation of mass, momentum and energy coupled with equation of state, are solved in a

time accurate manner. In the analysis, the use of a commercial software which is verified

against several test cases, GASPex [31], is made.

The General Aerodynamic Simulation Program (GASP) is a flow field analysis tool

developed by Aerosoft Inc. GASP is written for the analysis of the structured multi–block

grid systems of three dimensional flow domains. It solves the steady or time accurate

Reynolds-Averaged Navier Stokes Equations (RANS) and its subsets, namely the Thin-

layer Navier Stokes (TLNS), Parabolized Navier-Stokes (PNS), and Euler equations. GASP

is written for compressible flow fields above Mach number of 0.1. This conservative shock

capturing finite volume Computational Fluid Dynamics (CFD) code has a 6 degree of

freedom (6-dof) motion modeling, and moving body simulation capability. It is possible to

use a Chimera overlapping grid system which may be used for moving body simulations or

for complex steady state simulations. Once the grid is imported, preparation of the input

file for GASP includes three main types of information which will be supplied by the user,

namely initial and boundary conditions, time and space discretization algorithms.

3.4.1 Boundary and Initial Conditions

Boundary Conditions

The appropriate boundary conditions to set up the model are applied using available options

in GASPex.

Fixed at Q sets all boundary values according to a q specification, a q time, or point wise

data. The energy release is modeled via the entrance boundary conditions (x = 0)

as a finite or infinite channel of low density ρi, ρi = αρ∞ for 0 ≤ r ≤ d/2 where d is

the channel diameter, ρ∞ is the density in undisturbed flow, and α is the degree of

gas rarefaction in the channel. The other inflow parameters are equal to those of the

undisturbed flow (Figure 3.3).
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Figure 3.3: The boundary conditions

1st Order Extrapolation does a first order extrapolation from the interior cells for the

boundary values. For the no–reflection condition on the exit, the boundary is set to

be this type (Figure 3.3).

Negative (Positive) Axisymmetric Wall is an axi-symmetric side-wall boundary con-

dition that assumes the flow is axi-symmetric, and that the singular axis is along the

x axis. The angular displacement of the side walls must be exactly ∓π/80 or ∓2.25o.

The acute angle in a cross flow pie wedge must be exactly 4.5 (Figure 3.3).

Symmetry Plane assumes the flow is symmetric about the boundary face. There are no

restrictions as to the surface orientation. This is the appropriate option for the upper

boundary of the domain (Figure 3.3).

Tangency is an inviscid, impermeability condition designed for solid wall surfaces which

is selected for the body (Figure 3.3).

Axis of Symmetry is the condition applied to the axis of symmetry of the problem

configuration (Figure 3.3).
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Initial Condition

The time accurate calculation is initialized by the steady state solution of a uniform flow

at M∞ = 1.89 past a blunt cylinder in which a bow shock is created ahead of the body.

The initial condition is obtained by Gauss–Seidel relaxation using GASPex.

3.4.2 Space Discretization

The selected algorithm for inviscid fluxes is Van Leer’s scheme with third–order upwind

biased reconstruction and Min–Mod limiter.

3.4.3 Time Integration

The second order Runge–Kutta method as the time integration scheme in the analysis is

employed. The parameter to control is ∆t which is selected according two criteria. The

time step chosen should resolve the filament motion and also satisfies the stability condition.

The time step is selected so that the filament travels no more than one grid cell within

one time step

∆t ≤ ∆x

U∞
(3.52)

Based on 1–D von Neumann stability analysis for Runge–Kutta scheme, the Courant

criterion for the stability of the method is [13]

∆t ≤ ∆tCFL (3.53)

where ∆tCFL is defined as

∆tCFL = min
∆x

λm
(3.54)

where λ1 = u, λ2 = u + a, λ3 = u− a and u is the local velocity of the flow.

For this problem ∆tCFL can be obtained in both x and y directions

∆tCFLx = min
∆x

u1 + a
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∆tCFLy = min
∆y

u2 + a
(3.55)

and the smaller of the two (here, ∆tCFLx) is taken.

The time step used in these calculations stisfies both equations (3.52) and (3.53).

3.4.4 Post Processing

To investigate the flow structure and also the parameters of our interest such as the amount

of drag reduction and efficiency of the process, the primitive flow variables along with the

geometric coordinates are written to Tecplot files at specific time intervals. Two other

data sets, namely, pressure at the centerline and the pressure along the front body at

different instances of time are extracted for further analysis. The data for pressure at

the centerline versus time is employed to determine if the flow has reached stochastically

stationary behavior. The data for pressure on the front surface versus time is used to

compute the percent of drag reduction and energy efficiency of the process.

3.5 Computing Resources

The computations of this study are performed with the local machines that are in the

subnet of the Rutgers computer facilities.

In the subnet of Rutgers University, we make use of the following machines throughout

this study: tupolev, giovanni and engsoft. The cpu intensive part of the solution of the

flow domain is performed on tupolev which is a 12–node Linux cluster with two dual-core

processors per node at 2.4 GHz, 1 GByte RAM per processor (24 GByte RAM total), dual

1 Gbit Ethernet, Debian Linux. Giovanni and engsoft are used for grid generation and

some post processing applications respectively.

3.6 Validation

The code used as the flow solver has been verified by several cases; however, in this section

the steady state solution is taken and two parameters are examined as a validation of

GASPex. Two parameters are chosen, namely, stand–off distance of the shock and the

stagnation pressure behind the shock.
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As for the first parameter, there have been several articles discussing the stand–off

distance of the shock for blunt bodies. For a blunt cylinder in a low supersonic flow,

i.e., M∞ = 2, experiments have shown that the stand–off distance of the shock is half of

the diameter of the cylinder (see, for example, [19]). The same result is given by our

computations and the main features of the flow are specified in Figure 3.4:

1. The bow shock generated ahead of the cylindrical body.

2. The expansion fan formed over the upper corner of the body.

3. The recompression shock formed attached to the body.

4. The flow streamlines.

As for the stagnation point behind the shock, the relations for normal shock are taken

and the stagnation pressure is computed based on the conditions in front of the shock and

is compared the result with that of the computations. From the normal shock relations [25]
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for a perfect gas, the ratio of the stagnation pressure behind the shock to the stagnation

pressure ahead the shock is

po2

po1

=
[
1 +

2γ

γ + 1
(M2

1 − 1)
]−1/(γ−1)

[
(γ + 1)M2

1

(γ − 1)M2
1 + 2

]γ/(γ−1)

(3.56)

Substituting for M1 = M∞ = 1.89 and γ = 1.4, one obtains

po2 = po1/1.2954 (3.57)

The dimensionless stagnation pressure ahead the shock is po1 = 1.3194. Using the

ratio from equation (3.57), po2 = 1.0100. The stagnation pressure behind the shock is

po2 = 1.0149 from the GASPex calculations, therefore

(po2)GASPex − (po2)normalshock

(po2)normalshock
= 0.005

where (po2)GASPex denotes the stagnation pressure given by the flow solver’s calculations

and (po2)normalshock denotes the stagnation pressure obtained from normal shock relations.

This indicates that the accuracy of our computed results is within the range of the accuracy

with which the stagnation pressure is measured in supersonic speeds and therefore, the

computations are done with enough accuracy.
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Chapter 4

Results

In this work, the effect of altering the frequency of the pulses on the flow structure is

examined. Furthermore, determining the amount of front drag reduction on the body using

the periodic pulses of MW filaments is of interest. Also, as a measure of the efficiency of

the process, the energy efficiency as a function of the frequency of the pulses is studied. To

do this, four different cases are studied. The freestream Mach number is M∞ = 1.89 and

the degree of rarefaction is α = 0.5 for all cases, and γ = 1.4. A summary of the problems

examined is presented in Table 4.1. Case 1 considers an infinitely long filament with the

diameter of d/D = 0.1. Cases 2–4 examine the effect of multiple filaments of the same

diameter but with different frequencies.

This chapter is started with a section presenting the steady state case to compare with

the unsteady flow as a result of the interaction of filament(s) with the shock layer. A study

of flow structure and the efficiency for each case is done separately in the following sections.

4.1 Numerical Results for Different Cases

In this section, the results of numerical modeling using GASPex are provided for the case

of steady–state and all four cases summarized in Table 4.1. Three sets of results for the

unsteady cases are presented. The first set is to show the achievement of stochastically

Case Description d
D

l
D

L
D

1 Infinitely long filament 0.10 ∞ n/a
2 Finite multiple filaments 0.10 1.0 4/3
3 Finite multiple filaments 0.10 1.0 2
4 Finite multiple filaments 0.10 1.0 4

Table 4.1: Studied Cases
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stationary behavior of the flow. The second set demonstrates the visualization of the flow

field by pressure and density contours along with the numerical Schlieren images. Finally,

the last set describes the efficiency of the energy deposition in reducing drag for each case.

4.1.1 Steady State

When a supersonic uniform flow pasts a blunt cylinder, a bow shock is formed ahead of the

body with a stand–off distance. The density contour (ρ/ρ∞) is chosen to represent the flow

field in this case (Figure 4.1). The stand–off distance equals to D/2 which is in agreement

with the experiment [19]. Although the study of steady state condition is not the principal

interest of this work, the case is presented to compare with the unsteady behavior.

The main regions of the flow formed in a uniform supersonic (M∞ = 1.89) flow in the

vicinity of a cylindrical body are specified in Figure 4.1:

1. The bow shock generated ahead of the cylindrical body.

2. The expansion fan formed over the upper corner of the body.

3. The recompression shock formed attached to the body.

4. The flow streamlines.

4.1.2 Stochastically Stationary State

The nature of our problem is an unsteady behavior with a natural frequency associated

with it. Having said that, however, one does not observe a periodic behavior in a sense that

everything repeats exactly during the development of the flow. Eventually, a stochastically

stationary state should be achieved. To examine whether or not the flow has reached its

stochastically stationary state, the evolution of two different quantities, namely the mean

pressure and the pressure fluctuations at the centerline are investigated. The mean pressure

is formulated as follows

pmean(n) =

∫ tn
ti

pcenterline(t)dt

tn − ti
(4.1)
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where pmean(n) is the mean pressure corresponding to the nth interaction, ti indicates the

time of first interaction and tn is the time required for the nth interaction. Equation (4.1) is

then nondimensionalized appropriately (see Section 3.1.1) and is plotted versus the number

of pulses interacted with the shock layer.

The pressure fluctuations is formulated as follows

pfluc.(n) =

∫ tn
ti

(pcenterline(t)− pmean(n))2dt

tn − ti
(4.2)

where pfluc.(n) is the pressure fluctuations corresponding to the nth interaction. Equa-

tion (4.2) is then nondimensionalized appropriately and is plotted versus the number of

pulses interacted with the shock layer.

The trend of mean pressure and pressure fluctuations at the centerline is examined,

where pressure is nondimensionalized by ρ∞U2∞. The stochastically stationary state is

determined when both quantities (averaged mean pressure and averaged pressure fluctua-

tions) converge to constant values. Further analysis is carried out on the flow by examining

a period of time after the stochastically stationary behavior is obtained.

The corresponding plots for each case are presented in Figures 4.2 to 4.5. For the case

of an infinitely long filament, this state is achieved approximately at a dimensionless time

(t∗ = t/(D/U∞)) equal to 70, whereas for the case, L/D = 4, it takes a dimensionless

time equal to 18 for the flow to reach stochastically stationary behavior. This might be

associated with the fact that as the period of each pulse increases, the time between two

successive pulses increases as well and the flow has more time to retain its previous state

between two interactions.

4.1.3 Visualization of Flow

Case 1 : Infinitely Long Filament

Case Description d
D

l
D

L
D

1 Infinitely long filament 0.10 ∞ n/a

Table 4.2: Case 1
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The interaction of an infinitely long filament with the shock layer ahead of a blunt

cylinder is studied. The evolution of the flow is demonstrated by the density (ρ/ρ∞) and

pressure field (p/ρ∞U2∞) along with numerical Schlieren images (Figures 4.6–4.8). Since

there is no natural period associated with the case of an infinitely long filament, the behavior

of the flow is chosen to be investigated over a dimensionless time duration equal to 1.03.

The beginning of the interaction process causes the bow shock wave motion from

the body and generation of a contact discontinuity instability similar to the Richtmeyer-

Meshkov instability (see, Meshkov [28]). A significant increase (typically twice as much) in

stand–off distance is observed compared to the steady–state case (Figure 4.1). The reason

of the instability generation is an impulse effect of the bow shock wave upon the contact

discontinuities (horizontal and vertical) representing the boundaries of the heated channel.

This instability generates a toroidal vortex. It is seen that a triple point configuration is

formed at the bow shock front fracture (Figure 4.8). The vortex structure generated from

the rolled contact boundaries reaches the body and consequently decreases the pressure on

it. Near the front surface of the body, the reversed circulation flow is formed (Figure 4.6)

and later it stops the boundary of the heated area. Eddies generated stochastically as the

result of the shear layer instability move towards the upper corner of the body and interact

with the body causing a series of weak shock waves towards the bow wave and a series of

shock waves normal to the front body’s surface (Figures 4.7 and 4.8).

Main regions of flow are seen in Figures 4.6 to 4.81:

1. The low–density infinite filament.

2. The bow shock formed ahead of the cylindrical body.

3. The expansion fan formed over the corner of the cylindrical body.

4. The recompression shocks formed attached to the body.

5. The normal shocks generated at the front body’s surface.

6. The lensing effect caused by the interaction of the filament with the shock layer.

1The weak wave upstream the bow shock is a numerical phnomenon associated with the discontinuity
across the boundary of the filament. This is a benign feature and has no effect on the flow structure.
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7. The vortex generation within the shock layer during the interaction.

8. The contact discontinuity formed where two flows of different density and temperature

meet.

9. The weak shocks formed within the shock layer moving towards the bow shock.

Case 2: Finite Multiple Filaments (L/D = 4/3)

Case Description d
D

l
D

L
D

2 Finite multiple filaments 0.10 1.0 4/3

Table 4.3: Case 2

The results presented in this section is the first in the series of studying the interaction

of a train of finite periodic pulses with the shock layer. The computations are run for an

effectively infinite number of pulses. Dimensionless density contours (nondimensionalized

by ρ/ρ∞) along with instantaneous streamlines, pressure contours (p/ρ∞U2∞) and numerical

Schlieren images are chosen to represent the flow field during one pulse period at different

instants of time where time is nondimensioanlized by D/U∞ (Figures 4.9 to 4.11). The

main features of the flow are the same as the case of an infinitely long filament; however,

the general effect such as the increase in stand–off distance is weaker in the current case.

Four basic features of the flow are observed during the interaction:

1. When the filament reaches the shock layer, it modifies the shape of the bow shock.

As a result, the shock lenses forward. This behavior has been previously observed

(see, for example, Georgievskii and Levin [10]).

2. A toroidal vortex region is generated (see, for example, Azarova and Kolesnichenko [3]).

3. A stagnation point is formed and an effective momentary aerodynamic streamlining

of the body results.

4. As the filament penetrates into the shock layer, the vortex region convects past the

cylinder and eventually leaves the flow domain.
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During the interaction, main regions of the flow are formed which are specified in

Figures 4.9 to 4.11

1. The low–density finite filament.

2. The bow shock formed ahead of the cylindrical body.

3. The expansion fan formed over the corner of the cylindrical body.

4. The recompression shock formed at the body.

5. The weak shocks normal to the front surface of the body.

6. The weak shocks formed within the shock layer.

7. The lensing effect caused by the interaction of the filament with the shock layer.

8. The vortex generation within the shock layer during the interaction.

9. The contact discontinuity formed where two flows of different density and temperature

meet.

Case 3 : Finite Multiple Filaments (L/D = 2)

Case Description d
D

l
D

L
D

3 Finite multiple filaments 0.10 1.0 2

Table 4.4: Case 3

In this section, the interaction of an effectively infinite number of periodic pulses (L/D =

2) with the cylindrical shock layer is considered to examine the flow structure during

the interaction. The unsteady behavior of the flow is shown in Figures 4.12– 4.14 at

different instants of time where time is nondimensionalized by D/U∞. Density contours

(ρ/ρ∞), pressure contours (p/ρ∞U2∞) and numerical Schlieren images are shown together

with instantaneous streamlines. All the figures correspond to one pulse period (i.e., L/D).

It should be noted that the increase in the stand–off distance is less compared to the case

of an infinitely long filament. Also, the bow shock is flatter compared to the infinitely long

filament case (Figure 4.6). Four basic phenomena are observed during the interaction:
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1. When the filament reaches the shock layer, it modifies the shape of the bow shock.

As a result, the shock lenses forward. This behavior has been previously observed

(see, for example, Georgievskii and Levin [10]).

2. A toroidal vortex region is generated (see, for example, Azarova and Kolesnichenko [3]).

3. A stagnation point is formed and an effective momentary aerodynamic streamlining

of the body results.

4. As the filament penetrates into the shock layer, the vortex region convects past the

cylinder and eventually leaves the flow domain.

During the interaction, main regions of the flow are formed which are specified in

Figures 4.12 to 4.14

1. The low–density finite filament.

2. The bow shock formed ahead of the cylindrical body.

3. The expansion fan formed over the corner of the cylindrical body.

4. The recompression shock formed at the body.

5. The weak shocks normal to the front surface of the body.

6. The weak shocks formed within the shock layer.

7. The lensing effect caused by the interaction of the filament with the shock layer.

8. The vortex generation within the shock layer during the interaction.

9. The contact discontinuity formed where two flows of different density and temperature

meet.

Case 4 : Finite Multiple Filaments (L/D = 4)

In this section, the interaction of an effectively infinite number of periodic pulses with the

same size as the previous case but with different duration (L/D = 4) with the shock layer is

examined. Similar to the previous case, contours of density (ρ/ρ∞), pressure (p/ρ∞U2∞) and



46

Case Description d
D

l
D

L
D

4 Finite multiple filaments 0.10 1.0 4

Table 4.5: Case 4

numerical Schlieren images are chosen to represent the flow together with instantaneous

streamlines (Figures 4.15 – 4.17). The same as before, four basic flow structures are of

interest. A modification in the shape of bow shock (lensing effect) is observed, however,

the increase in stand–off distance is even less in the current case compared to the cases 1

and 3.

Similar to the previous case, different regions of flow are specified in Figures 4.15 to 4.17:

1. The low–density finite filament.

2. The bow shock formed ahead of the cylindrical body.

3. The expansion fan formed over the corner of the cylindrical body.

4. The recompression shocks formed attached to the body.

5. The lensing effect caused by the interaction of the filament with the shock layer.

6. The vortex generation within the shock layer during the interaction.

7. The contact discontinuity formed where two flows of different density and temperature

meet.

8. The weak shocks formed within the shock layer.

4.1.4 Drag Reduction Effectiveness and Efficiency

In this section, the drag reduction effectiveness and efficiency of the process of the inter-

action of the MW filament(s) with the cylindrical shock layer for each case are studied. A

detailed description of the formulation of effectiveness and efficiency is presented followed

by the results of them in each case.
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Formulation

The effectivenss, ζ, is a measure of the drag reduction and is defined as the ratio of the

average drag savings during the interaction of one MW filament with the shock layer to

the drag in the absence of the MW filament

ζ =
∫ L/D
o

∫ 1/2
o (po − p)rdrdt

L
D

∫ 1/2
o pordr

(4.3)

Equation (4.3) is in nondimensional form and po and p are front pressure in the absence

and in the presence of the MW filament respectively.

For the case of infinitely long filament, since there is no natural frequency present in

the problem, τ∞ is defined as the time of computation. The nondimensional effectiveness

is therefore as follows

ζ =
∫ τ∞
o

∫ 1/2
o (po − p)rdrdt

τ∞
∫ 1/2
o pordr

(4.4)

The efficiency is defined as the ratio of energy saved during the interaction of one MW

filament with the shock layer to the energy consumed to create that filament. Assume

for simplicity that the energy deposition occurs at constant pressure (isobaric) and in a

cylindrical region of diameter d (“filament”) and streamwise length of l aligned with the

flow and initially located upstream of the blunt body. The net energy ∆Ef added in volume

A∞l to increase the temperature from the ambient T∞ to the level Tf = T∞ + ∆T is [14]

∆Ef = A∞lcpρf∆T (4.5)

where ρf is the density of the filament. Since the energy is assumed added at constant

pressure,

∆Ef = A∞lcp
p∞
R

(1− α) (4.6)

where R is the gas constant for air and α is the ratio of the density of the filament to the

freestream density. Hence, the expression for energy efficiency is
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η =
∫ τ
o (U∞

∫
A podA− U∞

∫
A pdA)dt

(π d2

4 l)(cp
p∞
R )(1− α)

(4.7)

where τ = L/U∞ is the duration of one MW pulse, po and p are front pressure in the

absence and in the presence of the MW filament respectively and A is the front area of the

body.

Using the same reference parameters used to find the dimensionless parameters associ-

ated with the problem, the formulation for η in dimensionless form is obtained

η =
8(γ − 1)M2∞

(1− α)

(
D

d

)2 (
D

l

) ∫ L/D

o

∫ 1/2

o
(p∗o − p∗)r∗dr∗dt∗ (4.8)

The dimensionless are parameters as follows

γ = 1.4

α = 0.5

M∞ = 1.89

d

D
= 0.1

l

D
= 1.0

Thus, the final dimensionless relation used to calculate the efficiency η is (for simplicity,

∗ is dropped):

η = 2.286× 103
∫ L/D

o

∫ 1/2

o
(po − p)rdrdt (4.9)

For the case of infinitely long filament, since there is no natural frequency present in

the problem, τ∞ is defined as the time of computation. Similar to the case of finite filament

with appropriate nondimensionalization, one obtains

η =
8(γ − 1)M2∞

(1− α)

(
D

d

)2 1
τ∞

∫ τ∞

o

∫ 1/2

o
(p− po)rdrdt (4.10)



49

Results

The results for the effectiveness of the process of the interaction of the MW filament(s)

with the shock layer are presented in Figure 4.18. As it is clear in the figures, the maximum

effectiveness is that of the case of an infinitely long filament and as the period of the pulses

increases in the cases 2 to 4, the percent of drag reduction drops.

The drag reduction efficiency is calculated based on equation (4.10) for the case of in-

finitely long filament and equation (4.9) for the train of finite filaments. Then the averaged

amount over time is plotted versus the number of pulses interacting with the shock layer.

As it can be seen in Figure 4.19, the maximum efficiency is that of the case of L/D = 4

among these four cases; however, by comparing the amount of drag reduction for cases

1 to 4 (see, Figure 4.18), one concludes that in spite of an increase in drag efficiency in

case 4, the amount of drag reduction decreases compared to other cases and the increase

in efficiency is due to the small value of energy added to create the MW pulse. It is again

clear from the results that the amount of efficiency do not differ that much for the case of

L/D = 4/3 compared with the infinitely long filament case which is an interesting result,

since it is not possible to maintain an infinitely long filament in practice. These results

regarding the energy effectiveness and efficiency are summarized in Figures 4.20 and 4.21

where the asymptotic values of the drag reduction effectiveness and efficiency for cases 2–4

are plotted. The efficiency associated with the infinitely long case is specified in the figures

as well.

Figure 4.22 demonstrates the Pareto sets of non–dominated configurations (cases 1,

2 and 4) considering the drag reduction effectiveness and efficiency together in which the

maximum of efficiency is achieved in the case of L/D = 4/3 with the minimum effectiveness

associated with it. On the other hand, as it can be seen in Figure 4.22, the maximum

effectiveness is that of the inifinitely long filament but the efficiency is not maximum in

this case.
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Figure 4.1: The steady state density field
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Figure 4.2: Infinitely long filament a) Mean pressure at the centerline, b) Pressure fluctu-
ations at the centerline

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

Number of pulses

M
ea

n 
P

re
ss

ur
e

0 10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

Number of pulses

P
re

ss
ur

e 
F

lu
ct

ua
tio

ns

a) b)

Figure 4.3: L/D = 4/3, a) Mean pressure at the centerline, b) Pressure fluctuations at the
centerline
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Figure 4.4: L/D = 2, a) Mean pressure at the centerline, b) Pressure fluctuations at the
centerline
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Figure 4.5: L/D = 4, a) Mean pressure at the centerline, b) Pressure fluctuations at the
centerline
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Figure 4.6: The density field for the interaction of infinitely long filament with the shock
layer
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Figure 4.7: The pressure field for the interaction of infinitely long filament with the shock
layer
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the shock layer
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Figure 4.9: The density field for the interaction of the train of finite filaments with the
shock layer(L/D = 4/3)
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Figure 4.10: The pressure field for the interaction of the train of finite filaments with the
shock layer(L/D = 4/3)
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Figure 4.11: Numerical Schlieren image for the interaction of the train of finite filaments
with the shock layer(L/D = 4/3)
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Figure 4.12: The density field for the interaction of the train of finite filaments with the
shock layer(L/D = 2)



60

X/D

Y
/D

2.5 3 3.5
0

0.5

1

1.5

Pressure: 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

2
3 4

X/D

Y
/D

2.5 3 3.5
0

0.5

1

1.5

Pressure: 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

7
8

8

t = 68.2749 t = 68.6607

X/D

Y
/D

2.5 3 3.5
0

0.5

1

1.5

Pressure: 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

8

5

6

X/D

Y
/D

2.5 3 3.5
0

0.5

1

1.5

Pressure: 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

t = 69.0464 t = 69.4321

X/D

Y
/D

2.5 3 3.5
0

0.5

1

1.5

Pressure: 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

5
6

X/D

Y
/D

2.5 3 3.5
0

0.5

1

1.5

Pressure: 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2

t = 69.8179 t = 70.2679

Figure 4.13: The pressure field for the interaction of the train of finite filaments with the
shock layer(L/D = 2)



61

X/D

Y
/D

2.5 3 3.5

0.5

1

1.5

1

2
3 4

X/D

Y
/D

2.5 3 3.5

0.5

1

1.5

7 8

8

t = 68.2749 t = 68.6607

X/D

Y
/D

2.5 3 3.5

0.5

1

1.5

5
9

X/D

Y
/D

2.5 3 3.5

0.5

1

1.5

8

t = 69.0464 t = 69.4321

X/D

Y
/D

2.5 3 3.5

0.5

1

1.5

6

X/D

Y
/D

2.5 3 3.5

0.5

1

1.5

8

6

t = 69.8179 t = 70.2679

Figure 4.14: Numerical Schlieren image for the interaction of the train of finite filaments
with the shock layer(L/D = 2)
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Figure 4.15: The density field for the interaction of the train of finite filaments with the
shock layer(L/D = 4)
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Figure 4.16: The pressure field for the interaction of the train of finite filaments with the
shock layer(L/D = 4)
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Figure 4.17: Numerical Schlieren image for the interaction of the train of finite filaments
with the shock layer(L/D = 4)
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Figure 4.18: The amount of drag reduction for: a) infinitely long filament b) L/D = 4/3
c) L/D = 2 d) L/D = 4
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Figure 4.19: The drag reduction efficiency for: a) infinitely long filament b) L/D = 4/3 c)
L/D = 2 d) L/D = 4

Figure 4.20: Asymptotic values for effectiveness
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Figure 4.21: Asymptotic values for efficiency

Figure 4.22: Drag reduction efficiency vurses effectiveness
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Chapter 5

Conclusions - Future Work

Studying the interaction of an infinitely long filament and a train of finite filaments of

different durations with the shock layer formed ahead of a blunt cylinder has demonstrated

specific phenomena which can be further utilized to analyze the drag reduction over the

blunt body using MW energy deposition. The basic phenomena explaining the flow struc-

ture are

1. Modification of the shape of the bow shock (lensing effect).

2. Generation of toroidal vortex region.

3. Formation of stagnation point and consequent aerodynamic streamlining of the body.

4. Convection of the vortex region past the cylinder (Cases 2–4).

5. Formation of weak shocks normal to the front surface of the body (Cases 1–3)

6. Formation of additional weak shocks within the shock layer.

Examining the efficiency of drag reduction for the cases of infinitely long filament as

well as the train of finite filaments with the cylindrical shock layer has led to the result

that MW energy deposition increases the efficiency of drag reduction dramatically. Also,

computations show that the efficiency in drag reduction does not vary significantly when the

filaments become finite (cases 1 and 2). This is an interesting result, since in practice, only

finite MW pulses could be generated. Finally, there exists the pareto set of non–dominated

configurations (cases 1, 2 and 4). The maximum efficiency in case 4 is due to the small

amount of energy added to create the MW beam and the drag reduction effectiveness is

minimum in this case. Furthermore, the maximum effectiveness is that of the infinitely

long filament case which does not show the same result for the efficiency.
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This work can be expanded by studying the interaction of an off–axis filament with the

shock layer. In this case, the problem would not be axisymmetric anymore and a complete

3–D analysis is required. Furthermore, the heat transfer effect can come into consideration

which requires viscous simulations.
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Chapter 6

Numerical Schlieren

The flow images resulting from experiment are usually Schlieren pictures giving patterns

integrated along the spanwise direction. To compare the numerical flowfields with experi-

mental ones, usually an averaged density gradient field is calculated as

∇ρ(x, y) =
1
Lz

∫
|∇ρ(x, y, z)|dz (6.1)

Then it is visualized using the “numerical Schlieren” technique put forward by [30] (as

a half–tone grey–scale picture with a special nonlinear scale).

The procedure is as follows. First, the density gradient is computed in plane z = 0

∇ρ(x, y) =

√(
∂ρ

∂x

)2

+
(

∂ρ

∂y

)2

(6.2)

Next, a special non–linear scale for the above is determined. The following function is

used here

Sch(x, y) = exp(−ckS(x, y)) (6.3)

where

S(x, y) =
|∇ρ(x, y)| − |∇ρ(x, y)|o
|∇ρ(x, y)|1 − |∇ρ(x, y)|o (6.4)

Here, |∇ρ(x, y)|o = co|∇ρ(x, y)|max(x,y), |∇ρ(x, y)|1 = c1|∇ρ(x, y)|max(x,y) and the con-

stants are chosen as co = −0.001, c1 = −0.05 and ck = −0.3.

This function is then plotted in grey scale.
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