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By Michael J. Foster 

 

Dissertation Director: 

Dana E. Veron 

 

This work represents an effort to improve climate model treatment of shortwave radiative 

transfer through cloudy atmosphere.  Results from a stochastic model, which statistically 

represents radiative transfer through broken cloud fields using a Markovian distribution 

of observed cloud chord lengths, are compared against those of a plane-parallel model for 

a variety of cloudy scenes observed in the tropics over a four year period in an effort to 

reduce the error in radiative transfer calculations due to neglected cloud field 

morphology.  A k-means clustering algorithm is applied to observed cloud optical and 

dynamical properties in order to identify the presence of specific cloud regimes, which in 

turn are categorized using large-scale simulated climate variables.  The results from the 

model comparison and cluster analysis are used to develop criteria by which to identify 

situations where the stochastic model outperforms a traditional plane-parallel model.    

These criteria are applied to output from a climate model resulting in the identification of 

some of the issues involved in applying a parameterization developed with observations 

to model-generated cloud fields. 
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CHAPTER 1 – INTRODUCTION 

 

Clouds play an important role in the Earth’s climate system.  They reflect incoming 

solar radiation back into space, while absorbing and emitting infrared radiation.  Clouds 

affect atmospheric heating rates through latent heating from phase changes of cloud water 

and ice.  They transport moisture, heat, and momentum through convective processes, 

and are a primary component of the Earth’s hydrological cycle (e.g., Houghton et al., 

2001; Ackerman and Stokes, 2003).  The process of cloud formation is composed of 

numerous interconnected complex processes, including large-scale and sub-grid-scale 

dynamics, microphysics of ice and water precipitation, formation, and removal, and 

atmospheric thermodynamics.  Cloud-radiation interactions are important at both the 

microscale and cloud field scale, and are frequently cited as the largest reason for the 

large range in climate sensitivity estimates in atmospheric global climate models 

(AGCMs) (e.g., Cess et al., 1990; Senior, 1999; Potter and Cess, 2004; Randall et al., 

2007).  This is especially true in the tropics, where shortwave radiation interactions with 

boundary layer and mid-level clouds have a significant impact on the energy budgets that 

are major drivers of global atmospheric circulation.  Consequently, it is important to 

improve our ability to realistically simulate cloud radiative effects in climate models.  As 

an example of this, Figure 1.1 taken from the Intergovernmental Panel on Climate 

Change Fourth Assessment Report (IPCC AR4) relates how varied the treatment of 

shortwave radiation is in climate models.  This figure illustrates the zonally-averaged 

mean difference between model-generated and observed shortwave radiation reflected 

into space between 1985 and 1989.  Depending on the model being used, the magnitude 
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of reflected shortwave radiation may differ from that observed by as much as 20 Wm-2.  

The multi-model mean difference from observations in the tropics is around 5 Wm-2.  

Regionally these errors can be even more pronounced, though some recent studies have 

shown that in some instances errors are being offset by coinciding problems with 

unrealistic cloud optical properties, fraction, and vertical structure, thus masking the 

extent of the uncertainty (Webb et al., 2001; Potter and Cess, 2004). 

 

Cloud treatment in climate forecasting 

 

Current AGCM grid cells are typically much larger than the scale of individual 

clouds, necessitating the parameterization of cloud sub-grid scale impacts on the radiation 

fields.  Many AGCMs take a simplified approach to this endeavor by diagnosing cloud 

amount in each vertical layer based on mean values of relative humidity averaged over 

the grid cell.  In-cloud microphysical properties are often treated as homogeneous 

throughout the cloud, and the spatial relationship amongst clouds in different vertical 

layers is specified with a cloud overlap assumption.  Recent improvements in the 

treatment of clouds in climate models include the separate treatment of cloud water and 

ice condensate, advection of these variables in large-scale circulations, improvement in 

convective parameterizations, and consistent treatment of cloud particles (Boville et al., 

2006).  The simulation of marine low-level clouds has also improved for some AGCMs 

(Randall et al., 2007).  Many AGCMs separately parameterize convective cloud with 

large vertical velocities and stratiform cloud with weaker vertical motion, allowing for 

discrete treatment of microphysical properties.  However, the treatment of cloud 
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properties through the use of mean values ultimately neglects the effects of sub-grid scale 

variability.  When these sub-grid scale processes are non-linear, as is often the case, 

errors occur within the model simulations.  Examples of processes where this can occur 

include cloud reflectance and microphysical properties (Cahalan et al., 1994; Pincus and 

Klein, 2000).  These errors can in turn propagate and adversely affect atmospheric 

heating rates, cloud formation and dissipation processes, and precipitation rates; the end 

result being biases in the cloud feedback processes.  Many studies have addressed these 

issues, and most can be grouped into those that address the effects of microscale or in-

cloud inhomogeneity (Cahalan, 1994; Barker et al., 1996; Davis et al., 1997; Marshak et 

al., 1997; Pincus and Klein, 2000; among others), and those that address macroscale or 

cloud field configuration inhomogeneity.  This work relates specifically to bias in 

shortwave radiative transfer calculations due to macroscale cloud field inhomogeneity. 

The variance associated with cloud field geometry is a result of many factors, 

including the number and distribution of individual clouds, cloud shape and size (Zuev 

and Titov, 1995).  Early studies examined isolated non-planar homogenous clouds and 

found that solar fluxes could change significantly compared to those of plane-parallel 

clouds due to cloud side illumination from direct solar beams and diffusion of photons 

(Davies, 1978; Barker and Davies, 1992; Zuev and Titov, 1995).  Other studies looked at 

arrays of identical homogenous clouds with differing shapes and spacing and found that 

areas of enhanced illumination, interactions of photons between clouds, and cloud 

shadowing all play important roles for flux calculations (Welch and Wielicki, 1984; 

Kobayashi, 1988).  These studies also showed that nonplanar clouds reflect more 

radiation than plane-parallel cloud when the sun is at large zenith angles and less when 



 4 

the sun is overhead (Barker and Davies, 1992; Marshak et al., 1998).  In addition, the 

radiative field has a nonlinear dependence on cloud parameters, as do related processes 

such as atmospheric sensible and latent heating.  This further complicates the problem, 

and indicates that mean cloud properties are insufficient for calculating planetary albedo 

accurately (Cahalan, 1994; Zuev and Titov, 1995).  To put this in perspective, a decrease 

in global albedo of 10 percent, assuming all other variables are held constant, would 

increase the global mean surface temperature by approximately five degrees Kelvin 

(Cahalan, 1994).  This is roughly the same as doubling the atmospheric carbon dioxide 

concentration.  From Figure 1.1, the 5 Wm-2 difference between multi-model mean 

reflected shortwave radiation and that observed over the tropics translates to a 5 percent 

difference in shortwave albedo. 

 

Approaches to improving cloud simulation in climate models 

 

One effort to resolve these issues is through the improvement of spatial resolution in 

models.  While we are likely still decades away from achieving the computer processing 

power necessary to resolve individual clouds in a global climate model, regional or 

mesoscale models may currently benefit from this approach.  Cloud resolving models 

(CRMs) have the necessary spatial and temporal resolution to simulate individual clouds 

and by extension fields throughout a cloud system lifetime.  CRMs are often used for 

sensitivity and model intercomparison studies (Klein et al., 2008; Morrison et al., 2008).  

CRMs are also being used in the development of “superparameterizations”, where a 

CRM is embedded into an AGCM grid cell where it may explicitly simulate sub-grid 
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scale cloud processes that are in turn used as a statistical sampling for cloud properties 

throughout the entire grid cell (Grabowski, 2001; Randall et al., 2003a,b).  While this 

approach is undoubtedly promising, there are issues that need to be addressed.  

Embedding single 2-dimensional CRMs in each grid cell allow for sampling errors: 

Grabowski (2001) embedded a 2D CRM in each grid cell of a simplified AGCM and 

found that his results changed based on the orientation of the CRM.  A simple solution 

might be to embed multiple 2D or a single 3D CRM into each grid cell, but the problem 

of computational power quickly arises: Khairoutdinov and Randall (2001) found that 

after embedding a 2D CSRM into the Community Atmosphere Model (CAM) the 

running time was increased by a factor of 180, meaning it took one hour on a 64-

processor server array to simulate one day. 

Another approach to improving simulation of cloud-radiation interactions is through 

the development of statistical models, which use distributions of cloud properties, such as 

water content or (in our case) cloud chord lengths, to simulate the effects of sub-grid 

scale variability.  There has been a number of studies that use statistical models to 

examine the bias created by ignoring the effects of cloud field microscale inhomogeneity 

(Cahalan, 1994; Marshak et al., 1998; Fu et al., 2000; Di Giuseppe and Tompkins, 2003; 

Di Giuseppe and Tompkins, 2005).  This bias is often known as the “plane-parallel bias” 

and is defined as the difference between Independent Column Approximation (ICA) and 

plane-parallel calculations.  The ICA method essentially breaks the grid cell into many 

smaller cells and calculates cloud microphysical properties in each one.  The “ICA bias” 

is then defined as the difference between the ICA calculations and a fully 3D interactive 

radiative transfer calculation.  This bias takes into account morphology of the cloud 
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fields.  As discussed earlier, this includes horizontal photon flow, or “leakage”, through 

cloud sides, cloud shadowing and areas of enhanced illumination, and has a dependence 

on solar zenith angle (SZA).  Most of these studies use some form of a statistical Monte 

Carlo code to calculate the 3D radiative transfer.  The Monte Carlo method simulates the 

physically realistic processes that occur as radiation traverses the atmosphere.  That is, 

the flow of the radiation is calculated by simulating the paths individual photons travel.  

The length of these paths, and the events that occur when photons interact with cloud 

(absorption and scattering) are determined by probability functions.  These functions vary 

depending on the set of parameters used in the atmosphere, such as the cloud 

microphysics, presence of aerosol, and the wavelength of the incident radiation (O’Hirok 

and Gautier, 1998).   

One requirement shared by all these approaches is the realization of specific cloud 

fields for use by the Monte Carlo code.  These cloud fields are taken from observations, 

or simulated by CRMs or Large Eddy Simulation (LES) models.  While these individual 

cases provide insight into the potential for radiation calculation bias due to microscale 

and macroscale cloud inhomogeneity, the application to model simulations running on 

climate time scales is not immediately realized.  Another type of statistical model, such as 

that used in this study, treats clear sky and cloud as two immiscible fluids in a mixture, 

and while the microphysical properties of the fluid are known deterministically, the type 

of fluid at any given location within the mixture is determined stochastically (Stephens et 

al., 1991; Malvagi et al., 1993; Lane-Veron and Somerville, 2004).  One advantage to this 

method is that specific cloud fields do not need to be realized, though information about 

cloud size and spacing must still be provided.  Lane et al. (2002) showed that 
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distributions of cloud chord lengths could be derived from ground-based observational 

data and used in the stochastic model to represent radiative fields averaged over a 

temporal or spatial domain.  This makes it possible to incorporate realistic treatment of 

3D radiative transfer into models running on climate time-scales without necessitating the 

formulation of specific cloud fields. 

 

1.2 THEORY AND DATA 

Stochastic theory 

 

As a photon travels from the top of the atmosphere to the surface, the path it follows 

can be envisioned as a line.  This is not to say that the three-dimensional atmosphere is 

not taken into account; as the photon is scattered in different directions the length of its 

path adjusts accordingly, thereby increasing (or reducing) its probability of being 

absorbed or reflected before reaching the surface.  Let us assume the photon travels 

through an atmosphere composed of two non-mixing substances: clear sky and cloud.  

The optical properties in each substance, such as optical depth, single-scattering albedo, 

and asymmetry parameter, are known deterministically but the presence of either cloud or 

clear sky at any given point is determined stochastically.  If we were to solve the equation 

of radiative transfer for an infinite number of clear-sky and cloud realizations, each 

sharing the same statistical properties, then the ensemble-averaged intensity, <I>, of these 

solutions would represent the robustly known intensity averaged over time or space.  Of 

course, solving for an infinite number of cases is unrealistic.  Therefore a set of closures, 
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or approximations, must be used to solve for <I> directly using a set of simple equations 

(Malvagi et al., 1993).  

Extending this idea of a line being the path a photon takes from the top of the 

atmosphere to the surface, statistics on a line can be used to determine the conditional 

probabilities of a photon being located in either clear sky or cloud at any given point on 

its path.  For further reading on line statistics, there are good general descriptions 

available: (e.g., Marshak and Davis, 2005; Lane-Veron and Somerville, 2004), as well as 

more in-depth discussions: (e.g., Pomraning, 1991; Sanchez et al., 1994).  With the 

conditional line probabilities calculated, an infinite number of possible photon paths can 

be determined.  Figure 1.2 illustrates a number of possible paths as an example.  The 

advantage of the stochastic method is that it allows us to formulate four situations: 1) the 

photon is in clear sky, 2) the photon is in cloud, 3) the photon is transitioning from clear 

sky into cloud, or 4) the photon is transitioning from cloud into clear sky.  Traditional 

plane-parallel radiative transfer models only allow for situations where a photon is either 

in clear sky or cloud (Lane-Veron and Somerville, 2004).  These transitional situations 

allow for more complex radiative interactions amongst clouds in broken fields. 

 

Atmospheric Radiation Measurement Program 

 

The Atmospheric Radiation Measurement Program (ARM) (Stokes and Schwartz, 

1994) was created by the U.S. Department of Energy for the purpose of improving our 

treatment of clouds and radiative processes in Global Climate Models (GCMs).  The 

method by which this is accomplished has been to develop Cloud and Radiation Testbed 
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(CART) sites where high resolution measurements of radiative, cloud, and general 

atmospheric properties are taken over time scales appropriate for climate modeling.  

There are three primary sites: The Southern Great Plains (SGP), The Tropical Western 

Pacific (TWP), and the North Slope of Alaska (NSA).  These locations were chosen for 

their ability to provide a wide range of atmospheric and climatic conditions to study.  In 

addition, there are ARM Mobile Facilities that are transported to various locations around 

the world and take measurements for shorter time periods, often one year.  The focus of 

this dissertation is in the tropics, and as such the observational data are taken from the 

TWP CART site.  This site is actually composed of three research facilities: the Manus 

facility located on Los Negros Island in Manus, Papua New Guinea, the Darwin facility 

located in Darwin, Northern Territory, Australia, and the Nauru facility located on Nauru 

Island, Republic of Nauru.  Figure 1.3 displays a map of the three facilities and their 

relative locations.  Model simulations are performed using data strictly from the Nauru 

facility, while the cluster analysis portion utilizes data from all three TWP facilities. 

 

Cluster theory 

 

The shortwave radiative properties of clouds vary considerably with height, amount, 

and particle shape, size, and water/ice composition.  However, AGCMs don’t predict 

cloud type with enough consistency and in enough detail to capture the sub-grid scale 

thermodynamic and dynamic processes that affect cloud radiative properties.  For this 

reason it is helpful to use high-resolution surface measurements of cloud properties to 

separate observed cloud fields into different regimes, and then to look at the radiative 
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properties for each of these regimes.  The tool chosen for this purpose is cluster analysis.  

More specifically, the k-means clustering algorithm is used to objectively distinguish 

amongst cloud regimes (Anderberg, 1973; Jakob and Tselioudis, 2003).  The purpose of 

the k-means algorithm is to assign objects to a predetermined, k, number of groups (or 

clusters) based on similarity of the objects.  This is accomplished by mapping objects 

onto a multi-dimensional attribute space, the number of dimensions being the number of 

object attributes being examined, and defining similarity as the Euclidean distance 

between these objects.  Figure 1.4 shows a simple example of the clustering algorithm.  

The algorithm works using an iterative method, maximizing the Euclidean distance 

between clusters while minimizing the Euclidean distance between objects within each 

cluster.  The cluster centroids are initially collocated with randomly chosen objects 

amongst the set, and then their locations are adjusted with each iteration of the algorithm.  

The process is completed after a specified number of iterations, in this case 50, or when 

the cluster memberships no longer change, whichever occurs first.  Since the number of 

clusters is chosen before-hand, an objective set of criteria by which to choose a value of k 

may be applied.   

 

1.3 RECENT WORK 

Stochastic model 

 

Lane et al. (2002) took data from the sensors located at the ARM SGP CART site in 

Oklahoma, and generated the cloud properties required to run the stochastic model.  The 

statistical distribution of cloud size and spacing was determined using a threshold 
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technique and data on cloud-base height, the wind speed at that height, and radiance 

measurements from the Multifilter Rotating Shadowband Radiometer (MFRSR).  The 

assumption was made that sudden changes in the direct beam measured by the MFRSR 

indicated the passage of cloud between the surface and the sun.  The combination of these 

data allowed them to calculate the horizontal extent of the clouds and the spacing 

between them.  These data were compiled to create a statistical distribution of cloud and 

clear-sky chord lengths.  The study was constrained to times when broken cloud fields 

were present.  In order for the observations to represent a statistical average of cloud 

properties over the area being examined, spatial and temporal averaging techniques were 

applied.  The spatial averaging consisted of using data from multiple Oklahoma Mesonet 

stations, as well as multiple MFRSRs located within one-hundred kilometers of the 

central facility.  The second technique involved taking the highly resolved temporal 

measurements of cloud properties and averaging them over one-hour intervals. In the end 

forty-five hours of data were input into the stochastic model and the results were 

compared to those of a plane-parallel model.  Figures 1.5 and 1.6, taken from Lane et al. 

(2002), show some results from this study. 

It was found that the stochastic model performed well in some cases and not so well 

in others.  However, the results were ultimately inconclusive because it was found that 

the stochastic model was highly sensitive to certain input, such as cloud liquid water path 

(LWP) and cloud fraction.  The most promising results of this study were that it was 

shown to be possible to derive the information necessary to build a statistical description 

of cloud field geometry from observations. 
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A more recent study by Veron et al. (2008) examines stochastic model results for the 

year 2000 at the ARM SGP, TWP, and NSA CART sites.  The cloud information 

required as input to the stochastic model is extracted from a variety of instruments from 

these sites, including the Micropulse Lidar, 915-MHz Radar Wind Profiler and Radio 

Acoustic Sounding System, Vaisala Ceilometer, microwave radiometer, Active 

Remotely-Sensed Clouds Locations (ARSCL) products, Sky Radiation platform and 

Oklahoma Mesonet data.  The cloud properties extracted include the base height, 

fraction, thickness, droplet effective radius, LWP, and the characteristic horizontal extent 

and spacing.  Notably the horizontal extent and spacing translate into the Markovian 

distribution of chord lengths required for the stochastic portion of the model.  The 

resulting radiation fields generated by the stochastic model are compared with those of a 

plane-parallel model and observational data.  The stochastic model generates the best 

results at the NSA site and at the TWP site during times of deep convection.  The work 

for this study is finished and a paper is in preparation. 

 

Cluster analysis 

 

Some recent studies have made use of the cluster analysis technique to identify cloud 

regimes (Jakob and Tselioudis, 2003; Jakob et al. 2005; Gordon et al. 2005; Williams et 

al. 2005).  In the Jakob et al. (2005) study the primary data used for the clustering 

algorithm are cloud shortwave optical thickness and cloud-top pressure, processed by the 

International Satellite Cloud Climatology Project (ISCCP) from radiances measured by 

geostationary weather satellites (Rossow and Schiffer, 1999).  They create histograms by 
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calculating the frequency-of-occurrence of specific cloud optical thickness and cloud-top 

pressure pairings for specific cloud coverage ranges over three-hour intervals.  The study 

is run over a spatial domain of 280 x 280 km, located near the ARM TWP site.  The data 

are subsampled within this domain every thirty kilometers, at five kilometer cell sizes, 

which is the resolution of the satellite pixels.  The study is performed for the years of 

1999 and 2000.  Figure 1.7, from Jakob et al. (2005), shows the four distinct clusters the 

k-means algorithm generates, as well as a subset of the histograms located at the Manus 

TWP site within the domain being examined. 

The authors describe the regimes represented by these clusters as consisting of two 

suppressed regimes: one containing primarily shallow clouds (SSC) and the other 

composed of thin cirrus clouds (STC), and two convectively active regimes: one made up 

of optically thin cirrus with large coverage (CC), and the other composed of optically 

thick clouds with large coverage (CD).  The ISCCP data alone are insufficient to provide 

insight into the properties of these regimes, so instrumental and radiosonde data from the 

ARM TWP site are used to describe the regime characteristics, such as TOA and surface 

radiative fluxes, cloud properties, and temperature and water vapor profiles. 
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Figure 1.1 The ERBE (Barkstrom et al., 1989) observational estimates shown here are 
from 1985–1989 satellite-based radiometers, and the model results are for the same 
period of the CMIP3 20th Century simulations. Taken from Randall et al. (2007).
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Figure 1.2 Illustration of several possible photon paths through a fractional cloud scene 
and grouping of several of these paths, all generated using the same statistical distribution 
of clear sky and cloud.  Each path is composed of several arrows whose color is 
dependent on whether the photon is passing through clear sky or cloud. 
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Figure 1.3 The location of the three TWP ARM CART sites: Nauru, Darwin and Manus.  
The red line indicates the equator. Taken from the ARM webite: 
http://www.arm.gov/sites/twp.stm. 
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Figure 1.4 Example of k-means cluster analysis algorithm. 
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Figure 1.5 Model results of downwelling shortwave radiation for 15 Apr 1998 compared 
with averaged observations from the Oklahoma Mesonet. Cloud-fraction observations are 
from the MFRSR. Taken from Lane et al. (2002). 
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Figure 1.6 Model results of downwelling shortwave radiation for 12 May 1998 compared 
with averaged observations from the Oklahoma Mesonet. Cloud-fraction observations are 
from the MFRSR. Taken from Lane et al. (2002). 
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Figure 1.7 Cluster mean cloud-top pressure (CTP)–Tau histograms for 1999–2000 as 
identified (left) by cluster analysis for the TWP and (right) by projection for Manus. The 
regimes are suppressed shallow clouds (SSC), suppressed thin cirrus (STC), convectively 
active cirrus (CC), and convectively active deep cloud (CD). Also shown is the relative 
frequency-of-occurrence (RFO) and the total cloud cover (TCC). Taken from Jakob et al. 
(2005). 
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CHAPTER 2 – EVALUATION OF THE STOCHASTIC MODEL 

 

In the last decade numerous advances have been made in parameterizing cloud-

radiation interactions. One recent area of improvement involves statistical representations 

of the influence of three-dimensional cloud fields on the domain-averaged radiation. In 

this chapter, an off-line comparison of a traditional plane-parallel shortwave radiative 

transfer model against a stochastic model and observations is performed using four years 

of data from the ARM TWP CART site at Nauru Island.  Statistical cloud properties are 

derived from observed cloud chord lengths and input into the stochastic model.  A simple 

parameterization based on criteria developed from these results is applied to the plane-

parallel modeled downwelling shortwave flux to represent the impact of complex cloud 

field geometry on the domain-averaged radiation. 

A key component to the stochastic model simulations described in this chapter is the 

distribution of cloud size and spacing over the observed domain.  The nature of cloud 

variability over differing spatial scales has been the subject of much research over the 

past few decades.  Numerous studies have investigated cloud size distribution using 

aircraft observations (e.g. Planck, 1969; Hozumi et al., 1982; Sachs et al., 2002, Rodts et 

al., 2003), satellites (Wielicki and Welch, 1986; Cahalan and Joseph, 1989; Lovejoy and 

Schertzer, 2006, among others), radars (Kassianov et al., 2005a) and ground-based 

radiometers (Lane et al., 2002).  From these studies several methods of representing 

cloud size distribution over varying spatial scales have been proposed, including the use 

of a decaying exponential (Markovian) function, a single or double power law, or a 

multifractal approach (Lovejoy and Schertzer, 2006).  Complicating the debate is the 
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question of whether scale breaks exist where the description of cloud distributions shift 

and where they may occur (von Savigny et al., 2002; Zhao and Di Girolamo, 2007).  For 

this study, previous work performed by Veron et al. (2008) found that most of the chord 

lengths measured at the ARM TWP sites were significantly less than 1 kilometer.  For 

cases such as this, a Markovian distribution of cloud chord lengths has been found to be a 

reasonable approximation (Plank, 1969; Hozumi et al., 1982; Wielicki and Welch, 1986; 

Cahalan and Joseph, 1989).  It is important to note that this approximation has significant 

effects on the performance of the stochastic model, and as a result, the appropriateness of 

the stochastic approach is dependent on many factors, including geographic location, 

time of year, and synoptic conditions.  Much of the focus of this study then is to 

determine under which atmospheric and radiative conditions the stochastic model 

performs well and conversely under which situations it does not perform well, with a 

view to adapting the stochastic approach for use in an AGCM.  

In section 2.1 the stochastic and plane-parallel models are described briefly as are the 

observed cloud statistical data used to force them.  Section 2.2 contains the results and 

analysis of the model runs, and an evaluation of them performed using independent 

observations.  In section 2.3 situations are identified where 3D radiative transfer is 

important and a simple parameterization is applied to the plane-parallel model to account 

for cloud-field morphology.  The implications and conclusions from this study are 

discussed in section 2.4. 
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2.1 MODEL AND DATA DESCRIPTION 

Stochastic model 

 

The stochastic model used in this study, known as DSTOC, is based upon a model 

originally developed by Malvagi et al. (1993), though it is a more generalized form and 

has been modified for use in subsequent studies (Byrne et al., 1996; Lane et al., 2002; 

Lane-Veron and Somerville, 2004).  Cloud fraction, liquid water content, SZA, fractional 

length of daylight, effective liquid droplet radius, surface albedo, and a measure of cloud 

scale and spacing are required input for the model at each time step.  Model output 

includes ensemble-averaged radiative fluxes for each spectral band and model layer as 

well as in-cloud and clear-sky pathlengths. 

DSTOC utilizes profiles of temperature, carbon dioxide, and ozone at thirty-two 

unequally spaced vertical layers taken from the McClatchey et al. (1972) climatology.  

The McClatchey moisture profile in the tropics was found to be significantly drier than 

that observed at Nauru so NCEP model-derived specific humidity was used instead.  The 

horizontal domain of the model is related to the scale of the inhomogeneity in the cloud 

field; in this case the domain size is comparable to a relatively high resolution AGCM 

grid cell, approximately 20 kilometers per side.  LWP is allocated to each liquid cloud 

layer using hydrometeor reflectivity measurements taken from the TWP ARM CART site 

at Nauru Island and then converted into cloud water content using cloud fraction and 

layer thickness, from which volume extinction and absorption coefficients are derived 

(Byrne et al., 1996; Lane-Veron and Somerville, 2004).  Climatological values for 

surface albedo and effective ice particle radii are used.  Surface albedo is set to 0.2, 



 24 

effective ice particle radius is set to 23 microns, and liquid droplet radius uses a 

temperature-dependent equation with a minimum value of 6 microns.  A single-moment 

temperature dependent function is used to partition cloud water and ice, and a random 

overlap assumption is used for adjacent cloudy layers. 

The shortwave radiative transfer scheme is based upon the exponential sum-fitting 

method from Wiscombe and Evans (1977).  It uses a discrete ordinate method with an 

approximate iterative technique for solving the radiative transfer equation (Byrne et al., 

1996).  The incoming solar radiation is separated into thirty-eight unequally spaced 

spectral bands, each of which may contain a maximum of two absorbing gases.  Water 

vapor, ozone, carbon dioxide, and molecular oxygen are the gases currently included in 

the model: water vapor and ozone are the most commonly used absorbers, as they are the 

most important for many of the bands.  Isotropic scattering is assumed.  The solution is 

an ensemble mean of multiple clear and cloudy-sky scenarios sharing the same statistics.  

Solving for an ensemble of stochastic realizations generates the statistical variances of 

cloud-field properties required to calculate the non-linear reflectance of clouds.  The 

standard time-independent radiative transfer equations are modified to contain two 

additional terms that describe the cloud-field geometry using conditional linear 

probabilities (Byrne et al., 1996) as shown below 
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where i = 0 denotes clear sky and i = 1 denotes cloud.  In this equation pi(r) is the 

probability of the ith material (clear sky or cloud) being at position r (the isotropic 
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assumption allows us to leave r out of the equation).   is the angular photon path 

direction,  is the macroscopic total cross section, s is the macroscopic scattering cross 

section, and f is the single-scatter angular redistribution function.  ( )Ω,rI i  and ( )Ω,rI i  

are conditional ensemble-averaged intensities.  ( )Ω,rI i  is conditioned upon position r 

being located in fluid i, while ( )Ω,rI i  is conditioned upon position r being located at an 

interface between fluid i and j, with fluid i to the left (Malvagi et al., 1993).  The 

statistical line theory needed to calculate the stochastic distribution of clear sky and cloud 

requires a probability distribution function of cloud chord lengths.  Currently this 

function is governed by Markovian statistics, which simplifies the calculations and acts 

as one of the closure methods mentioned earlier.  In addition, equation 2.1 actually 

represents two equations with four unknowns; 011 ,, III  and I0.  A simple closure method 

suggested by Adams et al. (1989) is: 

 

ii II = .                                                              (2.2) 

      

Using Markovian statistics and removing photon scattering, these two closures still 

calculate an exact solution.  With scattering, it has been shown the solution is 

approximate but still very good (Adams et al., 1989).  The input required by the 

stochastic component is the sum of observed chord lengths.  This information is then 

converted into a distribution of cloud chord lengths in the model, assuming Markovian 

statistics.  The solution is the unconditional ensemble average intensity. 
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1100 IpIpI += .                                                    (2.3) 

 

It should be noted that the stochastic model is too computationally costly to be 

directly coupled to an AGCM, therefore any adjustment to shortwave terms in an AGCM 

resulting from work done with this model would likely take the form of a look-up table, 

or possibly a fitted non-linear polynomial. 

 

Column Radiation Model 

 

The Column Radiation Model (CRM) is a standalone version of the plane-parallel 

radiative transfer code employed in the NCAR Community Climate Model (CCM3; 

Kiehl et al., 1998).  The CRM is representative of shortwave radiative transfer codes used 

in many present-day AGCMs.  The CRM utilizes the Delta-Eddington approximation 

described in Briegleb (1992) to solve the radiative transfer equation.  The shortwave 

spectrum is divided into eighteen unequally-spaced bands with wavelengths ranging from 

0.2 to 5.0 microns.  Absorption sources include ozone, carbon dioxide, water vapor, and 

oxygen as well as cloud water and ice.  Scattering sources include molecular, cloud, and 

aerosol, with isotropic scattering assumed between vertical layers.  Profiles of 

temperature, carbon dioxide, and ozone at thirty-two unequally spaced vertical layers 

match those used by DSTOC and are taken from the McClatchey et al. (1972) 

climatology.  The moisture profile also matches that used in DSTOC and is derived from 

NCEP model results.  A double-moment microphysical function is normally used to 

partition cloud water and ice, but was replaced in this study by a temperature-dependent 
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single moment function that assumes clouds below -15°C are ice clouds and above are 

water clouds, in order to more closely match the stochastic model microphysics.  A series 

of CRM runs were performed utilizing the double moment and single moment functions, 

and the resulting difference was negligible.  The in-cloud microphysical properties for 

each layer are homogenous with adjacent cloudy layers overlapped randomly.  For 

cloudy layers below -15°C LWP is allocated among the layers based on radar 

reflectivities.  For temperatures below -15°C, the clouds in both models are treated as ice 

with an ice content of 0.015 gm-3.     

 

Model data 

 

The forcing data used in this study are taken from observed data and Value-Added 

Products (VAPs) from the ARM TWP CART Nauru Island site.  All measurements are 

averaged hourly, and then interpolated to thirty-two vertical layers.  Cloud amounts, base 

and top heights are taken from the ARSCL VAP.  The ARSCL VAP combines 

measurements from the Vaisala Ceilometer, Micropulse Lidar (MPL) and Millimeter 

Wavelength Cloud Radar (MMCR), and provides an estimate of layered cloud amount 

with a vertical resolution of 45 meters and a temporal resolution of 10 seconds (Clothiaux 

et al., 2000; Kollias et al., 2005).  The ARSCL VAP also contains an estimate of 

hydrometeor reflectivity provided by MMCR measurements, which is used to allocate 

LWP in the vertical layers containing liquid cloud. 

LWP is derived from the ARM two-channel (23.8 and 31.4 GHz) microwave 

radiometer (MWR) located at the Nauru Island facility using the Turner et al. (2007) 
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algorithm.  The algorithm uses both a statistical and physical-iterative retrieval to derive 

LWP and precipitable water vapor from MWR measurements.  Brightness temperature 

corrections are applied before the retrievals and the “monoRTM” radiative transfer model 

(Boukabara et al., 2001) is used to determine LWP.  As mentioned earlier, LWP is 

allocated in each vertical layer containing liquid water clouds utilizing a scaling factor 

proportional to the reflectivity of the layer. 

Downwelling shortwave broadband radiation data are taken from the ARM 

Shortwave Flux Analysis VAP, and are based on measurements taken from an ARM Sky 

Radiation (SKYRAD) radiometer.  Global hemispheric shortwave irradiance is measured 

with an unshaded pyranometer with a hemispheric field of view, while diffuse shortwave 

irradiance is measured with a shaded pyranometer.  The measurements are taken at one-

minute intervals and averaged over each daytime hour.  The Shortwave Flux Analysis 

VAP includes an algorithm that takes measurements of direct, diffuse, and total 

shortwave surface irradiance, detects periods of clear-sky, and fits a curve estimating the 

clear-sky shortwave irradiance over all time periods using SZA as the independent 

variable (Long, 2001). The fit-estimated surface clear-sky irradiance from this VAP is 

used for comparison against model results during clear-sky conditions.  The total 

effective cloud amount is also calculated with an empirically derived formula that uses 

the measured and estimated diffuse and direct shortwave irradiance (Long et al, 1999; 

Long and Ackerman, 2000; Long et al., 2006). 

The stochastic model requires a statistical description of the cloud size and spacing, 

given in the form of a probability distribution function (pdf) of cloud chord lengths.  The 

cloud chord lengths are calculated using NCEP model-derived wind data and ARSCL 
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cloud fraction.  In previous studies, a distribution function of individual cloud chord 

lengths is created using a narrow field-of-view upward pointing surface instrument such 

as a lidar or MFRSR to determine when clouds are overhead, and then converting the 

time a cloud is detected into a distance (chord length) using the wind speed at the 

detected cloud base height (Lane et al., 2002).  In these studies it was found that for the 

ARM TWP sites the preponderance of cloud chords lengths calculated from ground-

based remote sensors are at scales of 1 km and less, with greater than 50 percent of the 

chords having size of 200 m or less.  The compilation of these chords provides a pdf of 

the cloud chord lengths, which along with the distribution of clear-sky chord lengths is 

used to produce the volume cloud optical depth necessary for the stochastic model to 

generate photon paths.  Lane et al. (2002) determined that the observed Markovian 

distribution of chord lengths produced realistic results under low-level broken or 

scattered sky conditions.  The Veron at al. (2008) study also found that the distributions 

at the ARM TWP sites for all cloudy chord lengths were well represented by a 

Markovian distribution.  For this paper, the product of the hourly mean wind speed and 

the ARSCL cloud fraction at height is treated as the integration of the pdf of chord 

lengths.  The stochastic model then solves for the pdf inversely assuming a Markovian 

distribution, similar to the observed chord length pdfs. 

In order to complete the simulations described below, all input data from these 

diverse sources must be available and be able to meet certain criteria.  Of the 35064 hours 

spanning from the beginning of 2001 to the end of 2004, 8408 of those hours were used 

in the simulations.  Naturally, the largest constraint is that only daytime hours were used.  

16,403 hours or 47 percent of the total hours were available from the Shortwave Flux 
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Analysis VAP.  Most of the missing hours occurred at nighttime, while some were due to 

missing data, or a value of the cosine of the SZA below 0.02.  LWP derived from the 

MWR instrumentation was available for 26,845 hours, or 77 percent of the time.  The 

other hours were due to missing data or times with precipitation occurring (which 

accounted for a little under 3000 hours or 9 percent of the time).  Removing the hours 

when precipitation is occurring could have a small effect on the model results, however 

as the models we are using do not currently have a suitable radiative treatment for 

precipitating hydrometeors, this is an issue that must be addressed in a later study.  

12,180 hours (35 percent) were available for both data sources.  Cloud fraction data taken 

from the ARSCL VAP were available for 21,934 hours (63 percent).  Shortwave and 

cloud fraction data were available concurrently for 9831 hours, and LWP and cloud 

fraction data were available concurrently for 18,380 hours.  The times when shortwave, 

LWP, and cloud fraction data were all available totaled 8408 hours, or 24 percent of the 

total hours from 2001 to 2004, approximately one-half of the total daylight hours.  Figure 

2.1 shows the concurrent availability of these datasets in a Venn diagram. 

 

2.2 MODEL RESULTS 

Clear sky conditions 

 

The initial comparison of DSTOC and CRM involves simulations during clear-sky 

conditions.  To this end both models were run for 241 hours between 2001 and 2004, 

during which times the ARSCL VAP detected no clouds.  For downward solar surface 

irradiance (SSI), a mean difference of 6 Wm-2 with a standard deviation of 8 Wm-2 
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represents agreement between the CRM and DSTOC models of 1.2 ± 1.5 percent, which 

gives confidence that the models are performing similarly in a control situation.  Part of 

this difference may be because the spectral weighting differs slightly: the CRM solar 

spectral width spans from 0.2 to 5.0 microns and is broken into 18 bands, compared to 

that of DSTOC which spans from 0.25 to 5.0 microns and is broken into 38 bands.  In 

addition a climatological mean value of aerosol optical depth used in the CRM (0.07) was 

derived from measurements taken from the ARM Cimel Sun Photometer, while DSTOC 

does not currently account for aerosol optical depth. 

A comparison of the SSI produced by the models and measurements taken during 

times when the ARSCL VAP detected no clouds are shown in Figure 2.2.  The CRM and 

DSTOC models generated mean surface irradiances of 22 ± 42 and 16 ±  43 Wm-2 higher 

than observations, respectively.  When comparing the clear-sky model results against the 

algorithm-generated clear-sky estimations taken from the Shortwave Flux Analysis VAP, 

a separate analysis of clear-sky, there is no discernible positive or negative bias between 

model and clear-sky estimations (Figure 2.3).  The clustering occurring in both figures is 

a result of averaging over hourly intervals for a relatively small set of data.  The mean 

algorithm-generated clear-sky estimated SSI differed from the simulated CRM and 

DSTOC SSI by 7 ± 31 and 1 ± 33 Wm-2 respectively.  This implies that the observed 

mean surface irradiance is 15 Wm-2 lower than the algorithm-generated clear-sky 

estimate.  The most likely explanation for this discrepancy is that the ARSCL VAP is 

dependent on upward-pointing narrow-beam instruments for cloud detection and as such 

it is possible for undetected clouds to be present in the wider field-of-view.  To test this 

data from the Total Sky Imager (TSI) are examined during the 241 hours the ARSCL 
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VAP detected no clouds.  Out of the 241 hours, 177 coincided with times when TSI data 

are available.  The TSI detected some amount of thin or opaque clouds during most of 

these hours.  The mean opaque cloud fraction detected by the TSI over this period was 

0.15 and the mean thin cloud fraction was 0.04.  In addition, during the hours the ARSCL 

product detected no clouds in the atmosphere, the Microwave Radiometer did detect 

liquid water, however as there was no cloud in which to allocate this liquid water it was 

not input into the models. 

 

Monthly and diurnal cycles 

 

The median percent difference between the modeled and observed SSI is shown as a 

function of month of the year in Figure 2.4.  One thing to note is that both models 

perform reasonably well from January to April and then diverge from observations with a 

positive bias from April to September.  At the end of the year both models exhibit a 

negative bias with respect to observations.  During the April to September period the 

mean DSTOC results are closer to observations than the CRM.   This may be attributed to 

increased convective activity at Nauru during these months, due to warm SSTs and 

lighter surface winds.  Increased occurrences of cumulus towers and broken cloud fields 

coincide with an increase in the number and importance of inter-cloud radiative 

interactions, making a stochastic approach preferable.  Also included in Figure 2.4 is the 

median cloud coverage for these months, calculated using two different methods.  One 

takes the largest value for ARSCL cloud mask from all cloudy layers for each hour and 

uses it as an estimate of the total cloud coverage, while the other method utilizes the 
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algorithm developed by Long et al. (2006), which uses measurements of diffuse and total 

shortwave radiation at the surface along with estimates of clear-sky flux.  The correlation 

coefficient between mean ARSCL cloud coverage and the difference between the model 

divergences from observed SSI is 0.67, with the discrepancy between model results 

generally increasing as cloud coverage decreases.  This solidifies the point that cloud 

amount is an important component in determining when the stochastic approach is most 

appropriate.  It is interesting to note that the largest discrepancy between the Long et al. 

and ARSCL cloud coverage occur during roughly the same period the models diverge 

farthest from observed SSI.  During this time the cloud coverage calculated by the Long 

et al. algorithm is higher than that of ARSCL, which coincides with the model divergence 

from observations, suggesting that less solar radiation is reaching the surface then the 

estimation of cloud coverage from ARSCL data implies.  There are a couple of possible 

explanations for this:  First, our use of the cloudiest layer of ARSCL data as an estimate 

for cloud coverage is tantamount to the use of a maximum overlap assumption.  A study 

by Mace and Benson-Troth (2002) concluded that an assumption of random overlap 

could cause a positive bias in cloud coverage at Nauru for small separations between 

vertical cloudy layers, and that a maximum overlap assumption would be more 

appropriate in these instances.  The study also found that for large separations between 

cloudy layers minimum overlap predominated at Nauru.  Since the months at the 

beginning and end of the year are dominated by low thick boundary clouds, a maximum 

overlap assumption would be most appropriate and could cause the models to 

overestimate cloud coverage and underestimate SSI when compared to observations, as 

can be seen in Figure 2.4.  From April to September increases in convective activity 
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could generate greater spacing between cloudy layers, which in turn could make a 

minimum overlap assumption most appropriate causing the models to underestimate 

cloud coverage and overestimate SSI compared to observations.  Another explanation 

closely tied to the first is that thick low-level boundary layer clouds are likely to 

dominate direct and diffuse shortwave measurements and corresponding cloud coverage 

estimates whenever they are present.  Finally, it should be noted that these two methods 

of estimating cloud coverage are using different instrumentation.  The shortwave 

radiometers used in the Long et al. (2006) measurements have a nearly hemispheric field 

of view, while the instruments used in the ARSCL VAP are upward-pointing beams.  

While it has been shown that averaging nadir-view surface measurements over time can 

produce reasonable estimates of cloud coverage (Kassianov et al., 2005b), it should be 

recognized that there will undoubtedly be some discrepancies when comparing these 

measurements.    

In Figure 2.5, the hourly model-generated SSI is bin-averaged by 10 Wm-2 increments 

and plotted against that observed over the 4-year period.  DSTOC tends to overestimate 

when values of SSI are low, such as times when SZA is large or cloud amount very high, 

and improves as values of SSI increase.  For small values of SZA DSTOC tends to 

underestimate.  This is illustrated with a line fitted to the scatter-plotted DSTOC results, 

which has a slope of 0.98.  The opposite appears to be true for the CRM results.  The 

CRM begins by doing a good job for low values of SSI, and then overestimates SSI when 

the sun travels closer to the zenith, as illustrated by the slope of the CRM data fit being 

1.09.  The two models converge around the point where SZA is equal to 60 degrees.  For 

SZA larger than 60 degrees the mean CRM-generated minus observed SSI is 2 Wm-2 



 35 

while for DSTOC it is 11 Wm-2.  For SZA smaller than 60 degrees the mean CRM-

generated minus observed SSI is 22 Wm-2 while for DSTOC it is -10 Wm-2.  This result is 

not necessarily intuitive, as one might expect the closest approximation of a plane-

parallel atmosphere to occur when the sun is directly overhead, or nearly so.  For large 

SZA there is more likely to be shading effects where clear sky is inter-dispersed among 

cloud, while for the case of small SZA the shadowing effects between broken clouds 

would presumably be diminished.  However, when cumulus towers are frequently 

present, as is the case here, the large SZA case could more closely approximate a ‘plane-

parallel’ situation.  Also other processes such as rough cloud tops, side illumination or 

leakage (photons scattering horizontally out of a cloud), can cause radiative interactions 

in broken cloud fields that can significantly affect the shortwave radiative fields (Varnai 

and Davies, 1999). 

 

Liquid water path 

 

Cloud field morphology with radiatively significant 3D effects is more likely to occur 

when certain atmospheric conditions are present.  Broken cumulus fields and dissipating 

stratus clouds are potential examples of cloud regimes prone to developing 3D cloud 

geometry that has an effect on the shortwave radiative fields.  Figure 2.6 shows the 

median LWP for times when each model generates SSI closer to observed values, bin-

averaged by the summed vertical extent of all layers containing liquid cloud.  For this 

study we have selected a 5 percent threshold to determine when one model is performing 

better than another, meaning if the observed value of SSI is 100 Wm-2, a model must 
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generate SSI closer to 100 Wm-2 by more than 5 Wm-2 in order for us to determine it is 

outperforming the other model.  When both models generate SSIs that are within the 5 

percent threshold they are considered to be performing equally well.  For liquid cloud 

vertical extents below three kilometers both models have nearly identical median liquid 

waters paths.  Above three kilometers, however, DSTOC performs better when LWP is 

near the median for all hours, while the CRM performs better when LWP is above the 

median.  The LWP difference between the CRM and DSTOC plots are 10, 19, and 33 

gm-2 for bin-averaged vertical extents of 3.5, 4.5, and 5.5 km respectively.  For hours 

when it is determined one model is outperforming the other, the median percent by which 

each model is closer to observations is 12 for the CRM and 13 for DSTOC.  One 

implication of this is that while LWP does seem to be an important factor in determining 

how the models will perform as vertical liquid cloud extent becomes large, (i.e. greater 

than 3 kilometers) it does not seem to be a good indicator when liquid cloud extent is 

small.  Identifying thresholds such as these allows development of a set of criteria by 

which to determine when cloud field geometry is complex enough to require an approach 

other than a plane-parallel approximation.  In this case liquid water clouds with low LWP 

and a large vertical extent may indicate the presence of broken cumulus clouds, where a 

stochastic approach to radiative transfer is more appropriate than the plane-parallel one.  

 

Cloud fraction 

 

Figure 2.7 plots the top of the atmosphere (TOA) upwelling shortwave irradiance due 

to cloud scattering divided by the TOA downwelling SW irradiance and the difference 
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ratio between model-generated and observed SSI against cloud fraction for SZA above 

and below 60 degrees.  Figure 2.7a shows the CRM performing better than DSTOC for 

low cloud fractions with SZA greater than 60 degrees.  For higher cloud fractions both 

models underestimate SSI and consequently DSTOC produces SSI closer to observations 

for fractions above around 0.6.  The magnitude of the difference between the two models 

is relatively low since for large SZA the amount of incoming solar radiation is small.  

Much of this difference can be attributed to the larger TOA upwelling cloud-reflected 

shortwave irradiance simulated by the CRM when SZA is greater than 60 degrees. 

Figure 2.7b shows DSTOC with more TOA upwelling cloud-reflected shortwave 

irradiance for almost all values of cloud fraction.  Though the percent difference between 

the models is smaller, the magnitude is larger than Figure 2.7a due to the small SZA.  

DSTOC underestimates SSI for low cloud fractions and the CRM generates results close 

to observations.  For cloud fraction greater than 0.5 the CRM overestimates SSI and 

DSTOC generates results close to observations.  The implication of this is that DSTOC 

performs well for mostly cloudy to nearly overcast conditions when SZA is small.     

 

Diffuse and direct solar radiation 

 

The amount of diffuse and direct radiation reaching the surface can be a useful metric 

in determining the amount and radiative effects of cloud in the atmosphere (Long et al., 

1999; Long and Ackerman, 2000; Long et al., 2006).  As the ratio of observed diffuse to 

total surface irradiance is currently being used to determine when clear-skies are present, 

it is not unreasonable to hypothesize that it may be useful in determining when cloud 
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morphology is having a significant effect on radiation fields.  Figure 2.8 illustrates the 

median of this ratio plotted as a function of SZA for times when the models outperform 

one another and for all hours.  For large SZA the ratio of diffuse to total radiation is quite 

high, which is not surprising as the amount of diffuse radiation scattered in the 

atmosphere will naturally increase as its pathlength from the top of the atmosphere to the 

surface increases; consequently as SZA decreases so too does this ratio.  What is 

interesting is that the median ratio for DSTOC drops quickly and then flattens out, 

remaining roughly between 0.5 and 0.6 for SZA smaller than 80 degrees.  The CRM ratio 

meanwhile stays at a very high value until around 60 degrees, where it too quickly drops 

and flattens out, but to much lower values generally below 0.4.  This suggests that the 

stochastic model performs best when the ratio of diffuse to direct radiation is roughly 

equal, while the CRM tends to perform best when either direct or diffuse radiation 

dominates the surface irradiance.  The ratio for all hours may be used as an indicator of 

how often one model is outperforming the other.  For example, the ratio for all hours is 

closer to times when DSTOC outperforms the CRM for large SZA and times when the 

CRM outperforms DSTOC for small SZA.  Long et al. (2006) noted that it was not 

unusual for partly cloudy skies to enhance the amount of diffuse radiation reaching the 

surface.  From this we hypothesize that complex cloud field geometries in partly cloudy 

skies increase the radiative cloud interactions like those simulated in DSTOC, thereby 

increasing the amount of diffuse radiation reaching the surface. 
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2.3 PARAMETERIZATION DEVELOPMENT 

Criteria selection 

 

A preliminary set of criteria is developed that can be used to indicate when a 

stochastic approach to parameterizing SW radiative transfer through the cloudy 

atmosphere is more appropriate than the plane-parallel approach.  In section 2.2, it is 

shown that DSTOC performs well when the average LWP is relatively low and the liquid 

cloud has large geometric vertical extent (i.e., greater than 3 kilometers).  These criteria 

are consistent with a description of broken cumulus clouds with high vertical extent, 

providing space for inter-cloud radiative interaction in both the horizontal and vertical 

dimensions.  The LWP threshold used for this set of criteria is the midpoint between the 

mean for times when DSTOC outperforms the CRM and the mean LWP for the reverse 

situation.  Any LWP value found to be below this threshold during times when liquid 

cloud has a vertical extent greater than 3 kilometers is considered to be meeting the 

criteria necessary for use of the stochastic approach.  

The cloud fraction and SZA analysis described in section 2.2 indicate that DSTOC 

performs well during times with moderate to high cloud fraction, regardless of SZA.  In 

addition the diffuse to total SSI analysis indicates that DSTOC performs well when this 

ratio is between 0.5 and 0.6.  These times are consistent with the presence of broken 

cloud fields with complex top shapes and spacing conducive to horizontal scattering 

between clouds.  Therefore a second set of criteria for using the stochastic model over the 

plane-parallel model will be when cloud coverage is between 0.5 and 0.9 and the diffuse 

to total SSI ratio is between 0.5 and 0.6.  It should be noted that when either the LWP-
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vertical extent criteria or the cloud coverage-diffuse to total ratio criteria is met the 

stochastic approach will be used.  

These criteria are used as an indicator of when the stochastic approach to resolving 

radiative effects due to cloud field geometry provides a significant benefit to surface 

shortwave flux calculations, and as such when they are met the CRM SSI results are 

replaced with the stochastic SSI.  In addition, they are used to apply a simplistic 

parameterization of the stochastic approach described below. 

 

Parameterization 

 

A parameterization of the stochastic approach to SW radiative transfer was developed 

using a multiple regression technique applied to the following variables: LWP divided by 

vertical extent of liquid cloud, cloud fraction, and SZA.  Our goal is to identify key 

atmospheric processes that have a discernible relationship to cloud field configuration, 

and as such a simple multiple linear regression seems an appropriate initial choice.  The 

correlation coefficients for the difference between DSTOC and CRM SSI and these 

properties are 0.5 for cloud fraction, 0.12 for LWP divided by vertical extent of liquid 

cloud, and -0.37 for SZA.  The parameterization is as follows: 

PARAM  = DSTOC SSI - CRM SSI = ( )SZAd
qLCV

LWPcCFba
w

cos1
∗+






+∗+  

Where CF is cloud fraction, LWP is in gm-2, LCV is liquid cloud vertical extent in 

kilometers and qw is the density of water in gm-3.  The values for coefficients a, b, c and d 

are -12.8, 92.7, 267.7 and -81.5 respectively.  The R2 value for this parameterization is 

0.6, meaning this parameterization explains 60 percent of the original variability. 
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Results 

 

Figure 2.9 shows a comparison of the model results along with the CRM with 

DSTOC and CRM with parameterization results.  Also included is a plot which, for each 

hour, uses the results from the model that generates SSI closest to observation.  This plot 

is labeled ‘Best Performing’, and can be thought of as a best case scenario for this simple 

version of the parameterization criteria.  The CRM with DSTOC and CRM with 

parameterization results use the CRM calculations unless the above-mentioned criteria 

are met, in which case the DSTOC calculations or parameterization are used, 

respectively.  The plot shows all five model results generally overestimating observed 

SSI for large values of SZA and then underestimating SSI as SZA becomes small.  The 

CRM overestimates SSI for almost all values of SZA, only underestimating when SZA is 

less than 15 degrees.  DSTOC experiences the largest variability, ranging from 

overestimating by 12 percent for SZA above 80 degrees to underestimating by 9 percent 

for SZA less than 10 degrees.  As expected, the ‘Best Performing” results are the closest 

to observations, staying within 5 percent for almost all values of SZA and very close to 

zero for much of the time.  Both the CRM and CRM w/ DSTOC simulations do well for 

large values of SZA and then tend to underestimate as SZA decreases.  Perhaps the most 

encouraging results are for value of SZA between 80 and 60 degrees and between 35 and 

15 degrees.  During these intervals the CRM with DSTOC and CRM with 

parameterization results outperform both the CRM and DSTOC, and in some cases even 

the ‘Best Performing’ simulation.   
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Figure 2.10 shows a monthly comparison of the model results, with the same 

simulations found in Figure 2.9.  Again the “Best Performing” plot is closest to 

observations throughout the year.  The CRM with DSTOC results remain very close to 

those of DSTOC for much of the year, which is interesting as the criteria used for 

substituting DSTOC results for those of the CRM are met a little less than half of all 

hours.  In general, CRM with DSTOC and CRM with parameterization results show 

improvement over the CRM from May to September, but then largely underestimate at 

the end of the year.  One interesting point to note is that the CRM with parameterization 

results do extremely well from May to August, better even than those of “Best 

Performing”. 

For all hours, the median difference from observed SSI is 10 Wm-2 for the CRM, -3 

Wm-2 for DSTOC, 2 Wm-2 for the “Best Performing” simulation, -9 Wm-2 for the CRM 

with parameterization, and -5 Wm-2 for the CRM with DSTOC combination.  The 

parameterization criteria are met 46.9 percent of the time in the CRM model, 9.4 percent 

of the time due to the LWP criteria and 38.8 percent of the time due to the cloud coverage 

and diffuse to total SSI ratio criteria.  1.3 percent of the time both criteria are met.     

 

2.4 CONCLUSIONS 

 

These results indicate that a) the stochastic approach does in fact have the ability to 

significantly improve SW radiative calculations through cloudy atmosphere and b) it 

should be possible to develop a set of objective criteria by which to know when bias due 

to complex cloud field geometry is significant. The stochastic model is currently limited 
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in its ability to use different descriptions of variability in the cloud field, using only a 

Markovian description of the cloud sizes in the field.  However, this statistical approach 

outperforms current binary cloud-radiation models that do not account for 3D cloud 

effects. 

The comparison between off-line stochastic and traditional plane-parallel model runs 

suggest that the relationships between cloud coverage and SZA, LWP and vertical liquid 

cloud extent, and diffuse and direct SSI all have identifiable characteristics during times 

when the two models perform well. There are also seasonal differences in model 

performance, with the stochastic model showing the greatest improvement over plane-

parallel results from April to September.  These features can be used to derive objective 

criteria indicating when cloud-field geometry impacts the domain-average shortwave 

radiative fields.  These criteria are representative of the clouds present at the ARM TWP 

CART site and may not be appropriate for the entire tropics, let alone the rest of the 

globe. The following chapter expands the scope of the areas being observed to include 

the other two ARM sites in the Tropical Western Pacific. 

The stochastic approach is too computationally expensive to run directly as a 

parameterization in an AGCM. A simple parameterization that captures the impact of the 

stochastic approach was developed from stand-alone stochastic and traditional plane-

parallel model runs using ground-based observations as a reference.  The new 

parameterization provides an improvement in the CRM downwelling shortwave surface 

irradiance calculations under certain conditions.  The next step is to develop a more 

sophisticated approach to parameterizing the stochastic approach to modeling shortwave 

radiative transfer that will account for more variability in the modeled SSI differences.  
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This may include a sinusoidal dependence on SZA or inclusion of a dynamical term and 

may result in an adjusted cloud fraction as opposed to an irradiance correction.  
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Figure 2.1 Venn diagram showing the concurrent availability of ARM data at the Nauru 
facility from the beginning of 2001 to the end of 2004. 
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Figure 2.2 Scatterplot comparing observed solar surface irradiance to modeled for all 
clear-sky hours detected in the four-year 2001-2004 period.  DSTOC results are indicated 
by solid circles and CRM results are indicated by triangles.  The grey diagonal line 
indicates a one-to-one match between model and observation or fit-estimate. 
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Figure 2.3 Scatterplot comparing clear-sky fit estimated solar surface irradiance to 
modeled for all clear-sky hours detected in the four-year 2001-2004 period.  DSTOC 
results are indicated by solid circles and CRM results are indicated by triangles.  The grey 
diagonal line indicates a one-to-one match between model and observation or fit-
estimate. 
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Figure 2.4 Monthly comparison of model-generated median SSI shown as a percent-
difference from observations.  CRM results are shown as circles on a solid blue line.  
DSTOC results are shown as upward pointing triangles on a solid green line, and the 
difference between the two models is shown as diamonds on a dashed red line.  Monthly 
median cloud coverage calculated from the ARSCL layer with the highest cloud fraction 
is displayed on a cyan dashed line with downward pointing triangles, while cloud 
coverage as generated using the Long et al. (2006) algorithm is displayed with squares on 
a black solid line. 
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Figure 2.5 Comparison of model-generated versus observed solar surface irradiance.  
Results are bin-averaged at 10 Wm-2 observed SSI intervals using median values of 
model-generated SSI and plotted against one another.  Blue circles indicate CRM results 
while green triangles indicate DSTOC results.  The solid blue line represents the linear fit 
of the CRM results generated using the least-squares method while the green line 
represents the linear fit of DSTOC results.  The numbers next to the linear fit indicate the 
slope of the line. 
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Figure 2.6 Median liquid water paths for both models during times when they generate 
SSI closer to observations as a function of the bin-averaged vertical extent of liquid 
cloud.  CRM outperforming DSTOC is indicated by circles with a solid blue line and 
DSTOC outperforming CRM is indicated by triangles with a dashed green line.  Red 
diamonds indicate the median liquid water path for all hours.  Error bars extend to one 
standard deviation.  
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Figure 2.7 Normalized difference between model-generated and observed solar surface 
irradiance along with model-generated TOA upwelling shortwave irradiance due to cloud 
scattering divided by downwelling TOA shortwave irradiance plotted against cloud 
fraction.  2.6a (top) represents times when SZA is above 60 degrees, while 2.6b (bottom) 
represents times when SZA is below 60 degrees.  CRM results are shown by the solid 
blue line with circles, DSTOC results are shown as a solid green line with triangles, CRM 
albedo is shown as a dashed red line with squares, and DSTOC albedo is shown as a 
dashed black line with diamonds.  Results are bin-averaged at 0.1 cloud amount intervals 
using median values. 
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Figure 2.8 Comparison of surface diffuse divided by total solar radiation.  Circles on a 
solid blue line indicate times when CRM generates SSI results 5 percent closer to 
observations than did DSTOC, while triangles on a solid green line indicate times when 
the opposite is true.  Diamonds on a dashed red line indicate the ratio for all hours.  
Results are bin-averaged by SZA at intervals of 10 degrees using median values of 
diffuse to total surface irradiance. 
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Figure 2.9 Comparison of model-generated solar surface irradiance with respect to SZA.  
Each model-generated solar surface irradiance is treated as follows: 100*(Model SSI – 
Observed SSI)/(Observed SSI) to obtain a percent difference from observations.  CRM 
results are displayed on a blue line with circles, DSTOC results are displayed on a green 
line with upward pointing triangles, the cyan line with diamonds represents whichever 
model has the generated SSI closer to that observed for each hour, the red line with 
downward pointing triangles displays CRM results with DSTOC results inserted 
whenever the parameterization criteria are met, and the black line with squares represents 
CRM results adjusted with the results from the multiple linear repression whenever the 
parameterization criteria are met.  The bin-averaging interval is 10 degrees and median 
values are used. 
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Figure 2.10 Monthly comparison of model-generated median SSI shown as a percent-
difference from observations.  CRM results are displayed on a blue line with circles, 
DSTOC results are displayed on a green line with upward pointing triangles, the cyan 
line with diamonds represents whichever model has the generated SSI closer to that 
observed for each hour, the red line with downward pointing triangles displays CRM 
results with DSTOC results inserted whenever the parameterization criteria are met, and 
the black line with squares represents CRM results adjusted with the results from the 
multiple linear repression whenever the parameterization criteria are met. 
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CHAPTER 3 – IDENTIFICATION OF MAJOR CLOUD REGIMES IN THE 

TROPICAL WESTERN PACIFIC 

 

Recent studies have indicated that one way to improve global climate models is to 

improve their treatment of three-dimensional cloud field geometry.  There are several 

challenges to realizing this goal, one of which is relating large-scale (GCM-scale) fields 

to unresolved cloud scale variability in the cloud and radiation properties (Potter and 

Cess, 2004; Randall et al., 2007).  One way to address this issue is to identify specific 

cloud regimes using large-scale atmospheric properties that GCMs are able to resolve, 

and then to relate the dynamic and radiative properties of each regime individually using 

high resolution observations.  To this end a clustering algorithm is applied to ground-

based cloud and radiation measurements in order to identify said cloud regimes.   

Following work by Jakob et al. (2005) and Gordon et al. (2005), a k-means clustering 

algorithm (Anderberg, 1973; Jakob and Tselioudis, 2003; Jakob et al., 2005) is applied to 

cloud and radiation data measured at the ARM CART facility on Nauru Island from 2001 

to 2004.  The radiative and dynamic characteristics of the resulting clusters are analyzed 

using additional data from the ARM archive, as well as atmospheric profiles of 

temperature, humidity and wind taken from ECMWF data.  Four distinct cloud regimes 

are identified: a convectively active optically thick cirrus regime with large coverage, a 

convectively active optically thin cirrus regime with low coverage, a suppressed regime 

composed primarily of boundary layer clouds, and a convectively active optically thick 

regime composed of multiple cloud types.  Stochastic and plane-parallel shortwave 

radiative transfer simulations, as described in the last chapter, are compared against 
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observations and evaluated for each of the clusters.  As one of the goals of this work is to 

develop a parameterization applicable throughout the tropics, the clustering algorithm is 

applied to data from the ARM CART Manus and Darwin facilities.  Using the cluster 

analysis results from all three sites as well as the model results, a set of 3D cloud-effect 

criteria is developed.  

Section 3.1 details the data used for the clustering algorithm and additional analysis 

of the cloud regimes.  In section 3.2 the results and the ensuing examination of radiative 

and dynamic properties for each cluster are described.  Model performance for each 

cluster is evaluated in section 3.3.  Section 3.4 relates the inclusion of the Manus and 

Darwin data in the cluster analysis and the development of criteria for application of a 

statistical cloud-radiation scheme.  The implications and conclusions from this study are 

discussed in section 3.5. 

 

3.1 METHODOLOGY 

Cluster analysis 

 

The Jakob et al. (2005) study described in the first chapter and subsequent work by 

Gordon et al. (2005) and Williams et al. (2005) provide the framework for the cluster 

analysis performed here, with a few key differences.  While these studies used satellite 

data from the ISCCP climatology (Rossow and Schiffer, 1999) we are using surface-

based measurements from a smaller spatial domain. We are also using LWP in lieu of 

optical depth and geometric cloud-top height instead of cloud-top pressure.  Cloud 

coverage is used as a third variable to generate the histograms used in the cluster analysis, 
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similar to the method employed by Gordon et al. (2005).  Averages of the data are taken 

at 5-minute intervals, and 36 of these intervals are used to develop 3-hour histograms.  

The data are grouped into ten bins each, meaning each histogram contains 1000 elements.  

Analysis is restricted to histograms that contain ten or more 5-minute intervals, and times 

with clear sky are not included.  Also not included are times when rainfall is occurring, 

identified when the 31.4 GHz brightness temperature as measured by the microwave 

radiometer exceeds 100 K, or when LWP exceeds a predetermined threshold of 500 gm-2.  

While this may have some effect on the final clusters, the radiative transfer models with 

which these results are being compared do not currently have a method of dealing with 

precipitating hydrometeors. 

Since the number of clusters is chosen beforehand, an objective set of criteria must be 

used to determine a value for k.  Rossow et al. (2005) used a set of four criteria to 

objectively determine a value for k: (1) the centroid histogram patterns should not change 

when the initial conditions are varied, (2) the centroid patterns should significantly differ 

from one another, (3) the spatial-temporal correlations of the cluster members should be 

low, and (4) the distances between cluster centroids should be greater than the distance 

between the cluster members and their centroid.  Beginning with k=2 and successively 

increasing its value by one we found that k=4 provides the optimal number of clusters 

following these criteria.  For values of k less than 4, changes in the initial centroids lead 

to significant changes in the mean histogram patterns thereby violating the first criterion, 

while for values of k greater than 4 we produce centroids patterns that do not significantly 

differ from one another, violating the second criterion.  Even for k=4 changes in the 

initial centroid results in small deviations in the final mean cluster patterns.  To take this 
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into account, the clustering algorithm was run several times using randomly chosen initial 

centroids and the variance around each centroid was calculated.  The final cluster set 

chosen was that with the least sum of the variance.  This procedure follows that used in 

Gordon et al. (2005).  

 

Data 

 

All of the data presented in this chapter are from the ARM Program’s TWP site, 

composed of the Manus, Darwin and Nauru Island observational facilities.  The initial 

cluster analysis is performed with data from the Nauru Island facility that span from the 

start of 2001 to the end of 2004.  The variables used to develop the clusters are LWP 

derived from the ARM two-channel (23.8 and 31.4 GHz) microwave radiometer using 

the Turner et al. (2007) algorithm, cloud amount calculated with the (Long et al., 2006) 

algorithm using data from the Shortwave Flux Analysis VAP which is derived from 

pyranometer measurements, and cloud-top height taken from the ARSCL VAP, which 

combines measurements from the Vaisala ceilometer, micropulse lidar and millimeter 

wavelength cloud radar (Clothiaux et al., 2000; Kollias et al., 2005).  It is important to 

note that many of these instruments produce nadir narrow-beam single-point 

measurements, so that the size and source of the spatial domain being examined is 

strongly dependent on the magnitude and direction of the wind.  The measurements are 

averaged over five-minute intervals and then used to generate three-hourly relative 

frequency-of-occurrence histograms.  Diagnostic data derived from ECMWF model runs 

specially generated for TWP ARM sites provide profiles of wind speed and direction 
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which, along with cloud boundary data taken from the ARSCL VAP, are used to 

calculate wind shear between cloudy layers.  The ECMWF diagnostic data also provide 

profiles of temperature and moisture that are used to calculate Convective Available 

Potential Temperature (CAPE).  In addition to providing cloud profiles for the model 

simulations, the ARSCL product also contains cloud boundaries used for calculating 

spacing between vertical cloudy layers, Doppler velocity that is tracked for each cluster, 

and vertical profiles of reflectivity measurements used to allocate cloud liquid water in 

each cloudy vertical layer.  Details of the data sources, from which input for the radiative 

transfer models is derived, and descriptions of the models themselves can be found in 

chapter 2 but Table 3.1 provides a quick comparison of the model configurations. 

Once the analysis of the Nauru Island clustering results is performed, the method is 

expanded to include the Manus and Darwin facilities.  Though the cloud-top height and 

total cloud coverage measurements are still taken from the ARSCL and Shortwave Flux 

Analysis VAPs, respectively, the LWP measurement is taken from a different source.  

The LWP measurements in the initial cluster analysis are processed using the Turner et 

al. (2007) algorithm to derive LWP from microwave radiometer measurements.  The 

algorithm applies both a statistical and physical-iterative retrieval to derive LWP and 

precipitable water vapor from MWR measurements.  Brightness temperature corrections 

are applied before the retrievals and the “monoRTM” radiative transfer model 

(Boukabara et al., 2001) is used to determine LWP.  This algorithm-processed data is not 

available during the time periods in which we are interested at Manus and Darwin, and so 

LWP is derived directly from the line-of-site (LOS) microwave radiometer 

measurements.  To account for this, the cluster analysis is run a second time at the Nauru 
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Island site using the LOS measurements and a comparison is done between the two 

results. 

 

3.2 CLUSTER ANALYSIS RESULTS 

 

The k-means clustering algorithm is applied to the histograms described above using 

k=4 for the number of clusters.  Table 3.2 contains information about the cluster 

characteristics.  Figure 3.1 shows the first cluster, which represents a regime composed 

primarily of high cirrus with median LWP of 22.7 gm-2, high total cloud coverage and the 

presence of some deep convective activity (indicated by a large median Doppler velocity 

and cloud geometric thickness).  The large cloud coverage suggests this regime may also 

include outflow from neighboring convection.  The second regime, shown in Figure 3.2, 

is also dominated by high cirrus, but has lower median LWP (12.4 gm-2) with lower total 

cloud coverage and less coincident convective activity.  The third regime represented in 

Figure 3.3 is dominated by low boundary layer clouds with a median LWP of 22 gm-2 

and small total cloud coverage.  This is a stable regime with little to no convective 

activity.  Figure 3.4 shows the fourth and largest regime, which often contains multiple 

coincident cloud types ranging from boundary layer to cirrus.  Because of the presence of 

multiple cloudy layers, this regime has the most variance in cloud coverage, cloud-top 

height and cloud geometric thickness, but also has the highest median value of LWP with 

37.1 gm-2.  This cluster also has a positive (upward) median Doppler velocity indicating it 

may be a convectively active regime, and seems to be the only cluster that contains 
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significant amounts of mid-level cloud.  The relative frequencies of occurrence of the 

regimes are 15%, 13%, 18% and 54%, respectively.   

 

Spatial domain 

 

Before additional analysis of these clusters takes place a look at the magnitude and 

direction of the wind at the Nauru facility is warranted, as this will determine the size and 

location of the spatial domain being observed by the nadir-pointing surface instruments.  

The mean magnitudes of wind speed throughout the portion of the vertical column being 

observed, that being between a couple of hundred meters and twenty kilometers above 

the surface, are 5.0, 4.9, 5.4 and 4.9 m/s for clusters 1, 2, 3 and 4, respectively.  Figure 

3.5 shows the relative frequency-of-occurrence of wind direction; where for all hours it is 

dominated by the easterly trade winds.  This indicates that the size and source of the 

spatial domain is pretty consistent for all four identified cloud regimes, and that the 

spatial domain from which hourly data is being pulled for the DSTOC and CRM models 

is close to twenty kilometers in size and approaching from the east of Nauru. 

 

Convective Available Potential Energy 

 

One of the goals of this study is to determine the dynamic properties of the cloud 

regimes represented by the four identified clusters.  Vertical velocity may serve as one 

indicator of how much convective activity is present in the clusters, while another metric 

that may be used for this purpose is Convective Available Potential Energy (CAPE).  
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CAPE is essentially an indicator of how much buoyant energy is theoretically available 

for a parcel of air to vertically rise and accelerate.  Outside factors such as entrainment of 

dry air and horizontal pressure gradients can inhibit parcels from realizing their 

maximum potential height.  In terms of a skew-T diagram, positive CAPE is the area 

between the parcel temperature and the environmental temperature where the parcel 

temperature is warmer than that of the environment.  The lower boundary limit of CAPE 

generally occurs at the level of free convection, though inversions near the surface may 

also be included, and the upper boundary limit is the equilibrium or anvil level.  There are 

also different types of CAPE; for example in this study we calculate CAPE both for the 

entire atmospheric column and for only the area below 5 km where clouds are composed 

primarily of water.  Figure 3.6 shows a scatterplot of CAPE against cloud-top height.  

The CAPE used in Figure 3.6 is that calculated below 5 km and has been bin-averaged by 

intervals of 5 J/kg.  After restricting the dataset to daytime hours, as we are focused on 

shortwave fluxes, the data shown here represents nearly 13,000 hours spanning the four 

year period.  Though there is no statistically significant correlation between the raw 

hourly CAPE and cloud-top height measurements, once these data have been bin-

averaged the correlation coefficient between the two becomes 0.62.  The gray least 

squares fit bar in Figure 3.6 shows this linear relationship between cloud-top height and 

the magnitude of CAPE, though the error bars indicates that the signal is within the noise 

of the data.  When this comparison is made using CAPE calculated throughout the 

atmospheric column this signal becomes weaker (not shown).  These results are similar to 

those of Jenson and Del Genio (2006), though their study was limited to primarily 

cumulus congestus clouds and covered a shorter time span. 
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In order to further examine the relationship between CAPE and cloud-top height, we 

separate CAPE by cloud regime.  Using the same set of low-level CAPE and cloud-top 

height data, Figure 3.7 shows relative frequency-of-occurrence histograms based on 

cluster membership.  Membership is determined by matching the hourly cloud-top height 

and CAPE measurements with the coincident histograms used to generate the initial four 

cloud regime clusters.  Clusters 1 and 2 display similar patterns of high cloud top with 

CAPE median values of 32 and 38 J/kg (See Table 3.3), respectively, and a relatively 

stable distribution across the range of values. Interestingly, though cluster 3 seems 

primarily composed of stable low-level boundary layer clouds, it contains a relatively 

high concentration of CAPE with a median value of 52 J/kg.  Cluster 4 displays a wide 

array of cloud-top heights with a CAPE median value of 33 J/kg.  To put these numbers 

into better context we calculate convective inhibition (CINH) which is essentially the 

opposite of CAPE, or the area in a skew-T diagram where parcel temperature is cooler 

than that of the environment.  CINH may be thought of as the energy that must be 

overcome before an air parcel may develop into deep convection.  The median CINH 

values below 5 km are 290, 289, 250 and 279 J/kg for clusters 1, 2, 3 and 4 respectively.  

This further illustrates the complex thermodynamic processes that are occurring during 

the third cloud regime, as these clouds coincide with the highest values of CAPE and the 

lowest values of CINH.  Possible explanations for limiting the cloud-top heights of 

cluster 3, at least for the case of cumulus congestus clouds, include entrainment of dry air 

and the presence of weak stable layers near the freezing level (Redelsperger et al., 2002). 

From this analysis it appears that there is no easily discernible linear relationship 

between CAPE and cloud-top height, though given the correlation of the bin-averaged 
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data and the differing values of CAPE for each cluster this topic may warrant further 

study.  In particular, it is unclear why cluster 3, which appears to be composed primarily 

of stable boundary layer clouds and has a negative median value for Doppler velocity, 

would have the largest median value of CAPE and smallest median value for CINH. 

 

Wind shear and vertical spacing 

 

Wind shear and vertical spacing between cloudy layers are potentially significant 

factors in determining cloud macroscale effects on shortwave flux calculations as they are 

both related to cloud overlap (Naud et al., 2008).  Vertical spacing between cloudy layers, 

for this study, is defined as the geometric distance between the top height of a cloud 

detected by the ARSCL VAP and the bottom height of a cloud located above it.  Wind 

shear is calculated between these same heights.  Table 3.3 contains wind shear and 

vertical cloud spacing information for each cluster, and Figure 3.5 shows relative 

frequency-of-occurrence histograms for wind shear and cloud spacing based on cluster 

membership.  The histograms for clusters 1 and 2 display similar patterns, with these 

clusters containing relatively high wind shear and small spacing between cloudy layers 

when compared to those of clusters 3 and 4.  Cluster 1 has wind shear greater than 0.003 

s-1, which may be considered of at least moderate strength, 32 percent of the time while 

cluster 2 has moderate or higher wind shear strength 38 percent of the time, compared to 

14 percent for cluster 3 and 23 percent for cluster 4.  The small values for spacing 

between cloudy layers could indicate that a maximum overlap assumption would be 

appropriate for these clusters, but Naud et al. (2008) found that large values for wind 
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shear often prescribe a minimum overlap assumption.  Cluster 3 has the lowest values for 

wind shear and the highest concentration of both very low and very high (8 km and 

greater) spacing between cloudy layers.  These numbers should be taken in context, 

however, as 36 percent of the time there is only a single cloud layer present in cluster 3, 

where cloud spacing is zero and not included in these histograms.  That compares to only 

3, 5 and 9 percent of the time for clusters 1, 2 and 4 respectively.  The times with very 

high cloud spacing are due to the coincident presence of low boundary layer clouds and 

high cirrus, and account for only 9 percent of cluster 3.  Cluster 4 contains a wide array of 

different cloud spacing and wind shear, though the median wind shear value is relatively 

low (1.6E-03 s-1).  The large size and wide range of values in cluster 4 make it difficult to 

characterize cloud field morphology or overlap type. 

From this analysis it seems clusters 1 and 2, which represent cloud regimes with high 

cloud-top heights, may be characterized as having relatively large wind shear and small 

spacing between noncontiguous cloudy layers.  Cluster 3 has small median values for 

wind shear and the largest values for vertical spacing, but this is a bit misleading as 

cluster 3 often has only single or contiguous cloudy layers, which are not represented in 

these calculations.  Cluster 4 contains the mid-range values of wind shear and vertical 

spacing, likely due in part to its large relative frequency-of-occurrence and corresponding 

variety of coincident cloud types. 
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3.3 MODEL PERFORMANCE 

 

The DSTOC and CRM models described in chapter 2 are run, using the same data 

sources as the clustering algorithm: the ARSCL VAP, the MWRRET VAP, and the 

Shortwave Flux Analysis VAP, as forcing data from the beginning of 2001 to the end of 

2004.  Limiting the runs by the availability of instrument measurements and sunlit hours 

reduces the number of hours run from the 35064 possible to just under 8000, or a little 

less than half the daytime hours.  A thorough description of these simulations can be 

found in chapter 2. For the purposes of this study we are concerned with the models’ 

ability to simulate downwelling solar surface irradiance as compared to measurements 

taken from the Shortwave Flux Analysis VAP.  Figure 3.9 displays the performance of 

the models when compared to one another and against observations, separated by cluster 

membership.  In this context the term “outperform” is defined the same way is in chapter 

2; as one model generating SSI that is at least 5 percent closer to that observed than the 

other model.  For example, if the observed SSI is 100 Wm-2 then a model must generate 

SSI at least 5 Wm-2 closer to 100 Wm-2 than the other model in order to be considered 

outperforming it.  When both models are within this 5 percent range they are considered 

to be performing equally well.  It should be noted that the choice of 5 percent is 

somewhat arbitrary, and as such this analysis was also performed using 2, 3 and 4 percent 

as the criteria for one model outperforming the other (not shown).  The time when the 

models performed equally well decreased with a narrower definition of 

“outperformance”, but otherwise the ratio of one model outperforming the other remained 

close for all cases.  The distribution of one model outperforming the other varies 
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considerably amongst the clusters, with cluster 3 showing similar performances by both 

models and cluster 2 showing a considerable difference between DSTOC and CRM 

performance, with DSTOC outperforming the CRM 46 percent of the time compared to 

the CRM “outperforming” DSTOC 21 percent of the time.  Cluster 1 shows a smaller 

difference of this kind, with DSTOC outperforming the CRM 41 percent of the time 

compared to 27 percent of the time when the opposite occurs.  Cluster 4 shows a 

difference between the models of only about 5 percent, with the models performing 

equally most often by a small margin.   

Table 3.4 contains information on how the models perform in terms of mean, median 

and standard deviations of differences between model-generated and observed SSI 

normalized by the incoming solar radiation at the top of the atmosphere.  This can be 

thought of as the percent difference between modeled and observed atmospheric 

transmissivity for solar radiation.  The data are grouped by cluster and for times when 

each model “outperforms” the other.  As can be expected, during times when one model 

“outperforms” the other the difference from observations is smaller.  For all hours, 

DSTOC has smaller mean and median differences than the CRM for clusters 2, 3 and 4, 

while the CRM has smaller mean and median differences than DSTOC for cluster 1.  The 

largest discrepancy between model performances for all hours occurs for cluster 2, where 

DSTOC atmospheric transmissivity is 3.8 and 2.6 percent (mean and median) closer to 

observations than that simulated by the CRM.  Perhaps the data that stand out the most in 

Table 3.4 are the standard deviations, which are all large compared to the difference 

between model performances.  This is because there is a large amount of variability in the 

hour-by-hour model-simulated SSI as compared to observations.  There could be many 
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reasons for this variability, but likely suspects include the use of single point nadir-

pointing measurements for many of the observations, the use of climatological mean 

values for temperature, carbon dioxide, ozone and aerosol profiles, and the assumption of 

homogenous in-cloud microphysical properties.  Regardless, this variability makes it 

difficult to determine if one model’s improved performance as compared to the other’s is 

actually significant, and impossible to pronounce it statistically so. 

In an effort to address this issue and provide an additional tool for evaluating model 

performance, the ability of the models to capture the observed variability in solar 

radiative cloud forcing at the surface is compared in Table 3.5 for each cluster.  A 

correlation coefficient is calculated for model-generated and observed solar radiative 

cloud forcing at the surface, which is defined as the clear-sky fit estimated downwelling 

surface solar irradiance minus the model-generated or observed SSI.  Similar to the 

results in Table 3.4, when one model “outperforms” the other the correlation coefficient 

is higher, and in some cases significantly so.  For example, during hours when DSTOC 

“outperforms” the CRM for the second cluster, the CRM cloud forcing is poorly 

correlated with that observed, only 0.18, while the DSTOC correlation coefficient is 0.48, 

which is still not very highly correlated.  One point to take from Table 3.5 is that DSTOC 

has higher correlation coefficients for all hours and clusters than the CRM.  This is not 

unexpected, as one of the primary purposes of the stochastic approach is to be able to 

capture some of the large-scale geometric variability in the cloud fields not accounted for 

by plane-parallel calculations, but it does serve as some validation.  Another point to take 

from Table 3.5 is that there is quite a bit of variability in the models’ performance among 



 69 

clusters, ranging from correlation coefficients for all hours of 0.44 and 0.33 for cluster 2 

to 0.69 and 0.65 for cluster 4 for DSTOC and the CRM, respectively.  

 

3.4 EXPANSION OF CLUSTER ANALYSIS SPATIAL DOMAIN 

 

For these cloud regimes to be useful they must occur in more locations than just a 

single small island in the Tropical Western Pacific.  For this reason it is helpful to expand 

the spatial domain of the cluster analysis to include the Darwin and Manus facilities.  

There are a couple of caveats that should be mentioned regarding these sites.  First, the 

time period examined at Manus coincides with that of Nauru, from the beginning of 2001 

to the end of 2004, however the Darwin site is newer than its counterparts and does not 

have coincident measurements of LWP, cloud coverage and cloud top during this period.  

Therefore the cluster analysis at Darwin is performed for the period from the beginning 

of 2006 through July of 2007.  This may have some effect on the resulting clusters at 

Darwin, as there is bound to be inter-annual variability due to events such as the El Nino 

Southern Oscillation. Also, as mentioned earlier the MWRRET VAP used at the Nauru 

site for LWP was not available at Darwin and Manus, so LWP was derived from the line-

of-site microwave radiometer (MWRLOS) measurements.  To account for this the 

analysis was rerun at Nauru using the MWRLOS measurements. 

Table 3.6 contains information about the mean centroids generated at Nauru using the 

MWRLOS measurements of LWP.  Clusters 1, 2, 3 and 4 correspond with those 

generated in Table 3.2.  The difference in median LWP is considerable, with the 

MWRLOS clusters all sharing similar median values of LWP near 50 gm-2 and the 
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MWRRET clusters having median values of 22.7, 12.4, 22.0, and 37.1 gm-2 for the four 

clusters, respectively.  One reason for this difference may be that the MWRRET VAP 

uses infrared measurements at 11 microns as well as the microwave measurements to 

determine LWP.  The advantage to this approach is that when LWP is relatively small, 

say under 60 gm-2, the infrared measurements are much more sensitive than the 

microwave measurements and are able to reduce uncertainty in LWP (Turner, 2007).  

Since many of the LWP measurements at the TWP facilities fall into this under 60 gm-2 

category, it is not surprising that there are marked differences between the MWRLOS and 

MWRRET LWP measurements.  Regardless, the basic structure of the cloud regimes 

remains similar for both sets of clusters.  Due to the lack of sensitivity in LWP, clusters 1 

and 3, which in the first set of clusters had LWP median values of 22 gm-2, lose some 

members to cluster 4.  The result is that cluster 4’s relative frequency-of-occurrence 

increases by 0.1 to 0.64 at the expense of clusters 1 and 3.  Since clusters 1 and 3 are 

composed primarily of very different cloud types, namely boundary layer low coverage 

clouds and nearly overcast cirrus clouds, it leads to the question of whether cluster 4 can 

be broken up into smaller clusters.  Ultimately, after running the k-means algorithm with 

k values up to 12 it was found that cluster 4 consistently existed and contained a large 

number of member histograms.  For k = 12 this cluster still has a relative frequency-of-

occurrence of 0.44 while the next largest cluster has a relative frequency-of-occurrence of 

0.11.  This mixed-cluster is primarily made up of the multiple cloud layers, oftentimes 

high cirrus and low boundary layer clouds.  This generates a rather unique patterned 

histogram, as can be seen in Figure 3.4, which may explain why the clustering algorithm 

does not break it apart even with large values for k. 
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The same set of criteria for selecting a value for k is used at the Manus and Darwin 

facilities, as well as with the clustering of all three sites combined, as was used for the 

Nauru facility.  However, even with the use of a set of criteria for which to select k, there 

is still a subjective component to determining how many clusters are appropriate for each 

observed area.  The goal, at least for this study, is to find the minimum number of clusters 

with distinct cloud properties and dynamical conditions.  For example, when increasing k 

from 4 to 5 at the Manus site the third cluster, composed primarily of low clouds, split 

into two clusters with median cloud fractions of 0.2 and 0.4 that otherwise shared similar 

properties.  It was determined that this distinction did not produce a significant amount of 

additional insight and therefore the number of clusters produced at Manus remains at 

four.  Similarly at the Darwin site when k was increased from four to five the first cluster, 

composed primarily of high cirrus, split into two clusters with one of the clusters 

composed primarily of nearly overcast optically thick cirrus and the other composed 

primarily of partly cloudy cirrus with mid-range optical thicknesses.  In this case it was 

determined that the two new clusters represented regimes with significantly different 

optical and dynamical properties and should remain separate. 

 

Manus  

 

  Table 3.7 contains information about the four clusters generated at the Manus 

facility.  Three of the four clusters share similar properties with those generated at Nauru, 

and the rows have been color-coded in each table to reflect this similarity.  Specifically, 

cluster 2 at Manus is composed primarily of high cirrus clouds with medium coverage 
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(approximately between 0.4 and 0.7) and a positive median Doppler velocity indicating 

the possibility of convective activity, which corresponds with cluster 2 at Nauru.  Cluster 

3 at Manus is composed primarily of low boundary layer clouds with relatively low cloud 

coverage (between 0.2 and 0.4), very low geometric thickness, and very small or negative 

(downward) Doppler velocities indicating more stable conditions, which corresponds 

with the 3rd cluster at Nauru.  Finally, cluster 4 at Manus is the often-occurring mixed 

cluster discussed earlier which contains many cloud types that exist simultaneously, 

corresponding with cluster 4 at Nauru.  Cluster 1 at Manus is somewhat similar to cluster 

1 at Nauru in that both clusters contain primarily clouds with nearly overcast to 

completely overcast coverage that are optically thick.  The major difference between the 

clusters are that the median value of cloud-top height for Manus is around 5 kilometers 

while the median cloud-top height at Nauru is close to 13 kilometers.  Also the median 

geometric thickness of the Manus cluster is much smaller than that of Nauru, 0.41 

kilometers compared to 1.82 kilometers  

 

Darwin 

 

Table 3.8 contains information about the five clusters generated at the Darwin 

facility.  Four of the clusters generated at Darwin share similar characteristics with the 

Nauru clusters.  As mentioned in the description of the Manus clusters, clusters 2, 3 and 4 

at Darwin correspond with clusters 2, 3 and 4 at Manus and Nauru respectively.  The 1st 

cluster at Darwin is composed primarily of high cirrus clouds with nearly overcast to 

overcast coverage, large median Doppler velocity, and high LWPs, corresponding to 
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cluster 1 at Nauru.  The 5th cluster at Darwin has a small relative frequency-of-

occurrence, 0.05, very small cloud amount with a median of 0.08, small Doppler velocity, 

geometric thickness, and LWP, and a median top height of 5.26 kilometers.  It does not 

correspond with any cluster from either Nauru or Manus. 

 

All ARM TWP facilities 

 

Table 3.9 contains information about the five clusters generated using the histograms 

from all three ARM TWP facilities: Manus, Darwin and Nauru.  When the clustering 

algorithm is run with k=4, the clusters generated match those at the Nauru site.  With 

higher values of k smaller clusters appear that are generally just small variations on these 

four primary cloud regimes.  For example, depending on the selection of the initial 

centroids, several iterations split the low level boundary layer regime into two clusters 

containing median values of cloud fraction of 0.2 and 0.4, instead of a single cluster with 

a median value of 0.3.  This is not totally unlike the final selection of k=5 where it can be 

seen by the color coding in Table 3.9 that clusters 1, 3 and 4 all correspond with those 

found at the other sites, while clusters 2a and 2b have both been labeled as being part of 

the same cirrus medium coverage convective regime.  The reason these two clusters 

remain separate is that not only are there differences in the median cloud fraction, but one 

cluster is composed primarily of geometrically thick cirrus clouds with low median LWP 

(29.9 gm-2) while the other is composed primarily of cirrus that are geometrically thinner 

but have higher median LWP (53.1 gm-2).   
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The results of this analysis indicate that regional variations exist in the composition 

and frequency of specific cloud regimes, but that these differences tend to be small.  

Certain cloud regimes, such as convectively active high coverage cirrus, low-level 

boundary layer stratus, and medium coverage cirrus exist at several locations with large 

enough frequency to suggest that improving the radiative treatment of cloud-field 

geometry for these regimes could prove beneficial for many parts of the tropics.  The 

multi-layer regime, which exists with very large frequency at all sites, is more difficult to 

characterize as it has the largest standard deviations for its cloud properties. 

 

3.5 CONCLUSIONS 

 

The application of the k-means clustering algorithm to the surface-based 

measurements of atmospheric state taken from Nauru Island has produced four cloud 

regimes with distinct characteristics.  As the primary goal of this chapter is to identify 

criteria that could be used as indicators of complex cloud field geometry, it has been 

helpful to look at the dynamical and thermodynamical properties of each of these cloud 

regimes individually.  Three of the four regimes show signs of being convectively active, 

while the other regime (cluster 3) appears to be composed primarily of stable boundary 

layer clouds.  Though the convectively active regimes have on average higher cloud tops 

then the stable regime, we find only a weak linear relationship between cloud-top height 

and the magnitude of CAPE, both for the entire set of data and for each cluster 

individually.  In fact, the cloud regime found to be most stable also had the highest 

median values of CAPE and the lowest median values of CINH.  Examination of wind 
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shear and vertical spacing between cloudy layers suggest that the convectively active 

regimes tend toward large values of wind shear and smaller spacing between cloudy 

layers than does the stable regime. 

Another focus of this study is to compare the performance of a stochastic 

radiative transfer model against that of a plane-parallel RT model for a variety of cloud 

field configurations, specifically those affiliated with the four cloud regimes identified by 

the cluster analysis.  This task is complicated by the large amount of variability in the 

hour-by-hour comparisons of modeled and observed surface radiative fluxes.  Large 

standard deviations for mean and median differences in model-generated versus observed 

SSI make it difficult to determine whether one model “outperforming” the other for 

specific clusters is statistically significant.  However, it is found that the stochastic model 

is able to capture more of the variability of the observed solar radiative cloud forcing at 

the surface than the CRM for all four clusters, and that this difference is particularly 

noticeable for clusters 1 and 2.  These clusters represent regimes that often contain cirrus 

clouds with large ranges of cloud coverage and LWP.  Clusters 1 and 2 also have the 

highest median values for wind shear between cloudy layers and lowest median values 

for spacing between cloudy layers.  The combination of cloud-top height, wind shear, and 

spacing between cloudy layers directly affect the depth of the cloud field and the vertical 

and horizontal spacing between clouds, making them good indicators of significant 

macroscale inhomogeneity in the cloud fields.  From chapter 1 it is also known that cloud 

coverage is a key factor in determining the utility of a stochastic approach to radiative 

transfer, as is the ratio of LWP to cloud geometric thickness.  
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Other variables may require additional interpretation to be most useful.  For 

example, cluster 1 has high cloud tops, the strongest vertical velocity and the smallest 

spacing between cloudy layers of all the clusters, yet the stochastic model outperforms 

the CRM more frequently under cluster 2 conditions.  The most likely explanation for 

this is the large total cloud coverage and relatively high optical depth of the first cluster, 

since optically thick overcast or nearly overcast skies are likely to minimize the 

importance of radiative effects due to interactions between clouds.  Cluster 4 is also 

difficult to characterize, as its high occurrence and variety of different cloud types 

generate a large range of values for all cloud properties, making it easy to mask the 

strengths of the stochastic model. 

The cluster analysis is expanded to include the ARM Manus and Darwin facilities.  It 

is found that although there are small changes in the relative frequency-of-occurrence and 

the number and structure of the clusters, the primary cloud regimes found at Nauru may 

also be found at other locations.  This suggests it should be possible to apply a 

parameterization developed at Nauru to other areas in the tropics. 
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Figure 3.1 First three-dimensional centroid resulting from the k-means clustering of 
LWP, cloud-top height and total cloud coverage as measured by surface instrumentation 
on Nauru Island from the beginning of 2001 to the end of 2004.  The larger the diamond, 
the greater the relative frequency-of-occurrence. 
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Figure 3.2 Same as Figure 3.1 but for the second three-dimensional centroid. 
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Figure 3.3 Same as Figure 3.1 but for the third three-dimensional centroid. 
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Figure 3.4 Same as Figure 3.1 but for the fourth three-dimensional centroid. 



 90 

30

210

60

240

90

270

120

300

150

330

180 0

Wind Direction Approaching Nauru Island

 
 
Figure 3.5 Relative frequency-of-occurrence of wind direction approaching Nauru Island 
between 2001 to 2004.  Occurrences between 150 and 210 degrees indicate the wind is 
approaching from the east. 
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Figure 3.6 Scatterplot of CAPE versus cloud-top height bin-averaged by 5 J/kg intervals.  
Diamonds represent the average value and the error bars represent one standard 
deviation.  The solid grey line represents a least mean squares fit of the data. 
 

 



 92 

Cl
ou

d 
To

p 
He

ig
ht

 (k
m

)

 

 

5

10

15

0

0.01

0.02

 

 

0

0.01

0.02

0.03

 

 

0 100 200

5

10

15

0.01
0.02
0.03
0.04

CAPE (J/kg)
 

 

0 100 200
0

0.005

0.01

 

Figure 3.7 CAPE and cloud-top height relative frequency-of-occurrence histograms for 
each of the four clusters.  Cluster 1 is upper left, cluster 2 is upper right, cluster 3 is lower 
left and cluster 4 is lower right. 
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Figure 3.8 Mean wind shear between cloudy layers and mean spacing between cloudy 
layers relative frequency-of-occurrence histograms for each of the four clusters.  Cluster 
1 is upper left, cluster 2 is upper right, cluster 3 is lower left and cluster 4 is lower right. 
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Figure 3.9 Relative frequency-of-occurrence (rfo) plot for each of the four clusters 
comparing the DSTOC and CRM model abilities to generate downwelling solar surface 
irradiance close to that observed.  One model outperforms another when results are closer 
to observations by at least 5 percent of the observed value.   
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CHAPTER 4 – IDENTIFICATION OF OBSERVED CLOUD REGIMES IN CAM3 

 

One of the primary goals of this work is to develop a method to improve model 

treatment of solar radiative transfer through geometrically complex cloud scenes.  The 

focus of chapters 2 and 3 has been the development of an objective set of criteria, 

resolvable on a scale appropriate to GCM simulations, which may be used to determine 

when cloud field geometry is having significant effects on solar radiative fields.  This has 

been done through the use of high-resolution, surface-based measurements from a 

handful of ARM TWP facilities.  The next step, and the goal of this chapter, is to 

compare the results obtained from these high-resolution, single-point observations to 

those obtained from relatively low-resolution GCM simulations that span the entire 

tropics.  Of course a comparison of this type is challenging; direct comparisons may only 

be performed at the ARM TWP sites, spatial resolution of the GCM and single-point 

measurements are difficult to compare, and over long time periods it is unrealistic to 

expect GCM-simulated variables to directly match observations.  With these limitations 

in mind this chapter will address the following questions: 1) Can the GCM used in this 

study simulate the cloud regimes identified using the clustering techniques detailed in 

chapter 3; 2) How do distributions of observed versus GCM-simulated LWP, cloud-top 

height, and cloud coverage compare over time at the ARM TWP facilities; and 3) What 

can be concluded about differences between observed and GCM-simulated variables and 

how will these differences affect attempts to improve solar radiative transfer through 

cloud?  The GCM used for this purpose is the Community Atmosphere Model (CAM3). 
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Section 4.1 describes the configuration of the CAM3 model and the simulations 

performed.  Section 4.2 examines the distribution of cloud properties at two of the ARM 

facilities and the corresponding CAM3 results.  Section 4.3 examines CAM3’s ability to 

identify the cloud regimes discussed in chapter 3, and the implications and conclusions of 

this analysis are discussed in section 4.4. 

 

4.1 METHODOLOGY 

Model description     

 

The Community Climate System Model (CCSM) has been developed through 

collaboration by researchers at Universities and government labs, and is housed, 

distributed, and maintained by the National Center for Atmospheric Research (NCAR), in 

Boulder, Colorado.  The CCSM is a fully-coupled climate model composed of four 

primary components simulating the Earth’s atmosphere, ocean, land-surface, and sea-ice.  

There are multiple versions of CCSM and different horizontal resolutions available for 

each version.  CCSM3 is the most current version of the CCSM, and CAM3 represents 

the sixth generation of the atmospheric component of the CCSM.  CAM3 is a three-

dimensional global spectral model capable of being run either in a stand-alone or coupled 

mode, and uses 26 vertical layers (Collins et al., 2006).  The version run for this study 

utilizes the T85 horizontal resolution, which equates approximately to 1.4 by 1.4 degree 

grid cell size or 256 by 128 horizontal gridpoints globally.   

There are significant improvements in the treatment of cloud microphysical and 

condensation processes introduced in CAM3.  These include the separate treatment of 
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cloud water and ice condensate, advection of these variables in large-scale circulations, 

improvement in convective parameterizations, and consistent treatment of cloud particles 

including sedimentation and radiative properties (Boville et al., 2006).  Further 

information about the performance of CAM3 with respect to specific aspects of the 

global climate system can be found in a special issue of Journal of Climate (Vol. 19, No. 

11; e.g., Hack et al., 2006a,b; Rasch et al., 2006).  The cloud overlap in CAM3 is 

decoupled from the radiative parameterization and can vary among grid cells as well as 

time steps.  The overlap assumption is capable of being set to any combination of 

maximum and random cloud overlap, but in general practice employs the standard 

maximum-random overlap assumption (Collins et al., 2006).  

 

Model simulations 

 

The model simulations used in this study are taken from those generated for the IPCC 

AR4 Special Report on Emission Scenarios (SRES).  The CCSM3 IPCC SRES scenarios 

were run from 2000 to 2100 to estimate the likelihood of various aspects of future climate 

change.  The simulations cover a range of possible futures including idealized emission 

or concentration assumptions for greenhouse gases and aerosol.  Since the time period 

examined in this work is from the beginning of 2001 to the end of 2004, which is at the 

very beginning of the simulations and not yet projecting future changes, many of the 

SRES scenarios may be considered suitable for the purposes of this comparison.  The 

SRES results used are those from the A1F1 scenario, which is a scenario that represents a 

continued heavy reliance on the burning of fossil fuels throughout the 21st century.  This 
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scenario was chosen for a number of reasons: 1) The aerosol and greenhouse gas 

emissions are not drastically changed for the purposes of an idealized scenario (e.g., a 

complete freeze at 2000 levels); 2) The output is written at 6-hour intervals, and uses 

instantaneous as opposed to mean values; 3) Additional cloud-related output is available 

for this scenario, such as cloud fraction at each vertical level.  The output from this 

CCSM3 simulation is available for download at the Earth System Grid website 

(http://www.earthsystemgrid.org). 

 

4.2 CLOUD PROPERTIES 

Liquid water path, cloud-top height, and cloud coverage 

 

Since the CAM3 model results used in this study are generated for future climate 

scenarios and thus not forced with observations, it is difficult to directly compare hour-

by-hour observed versus model-generated atmospheric properties.  Another method, the 

one applied here, is to generate a distribution of these properties.  In this case cloud-top 

height, total cloud coverage and LWP are used for the clustering algorithm in the 

previous chapter, and should therefore not only measure the CAM3 ability to match 

observed atmospheric conditions but also its potential to identify the cloud regimes 

generated from the ARM TWP facilities.  Figures 4.1 and 4.2 show distributions of 

cloud-top height, LWP and cloud coverage generated by CAM3 and observed at the 

ARM Nauru and Manus facilities.  A comparison to Darwin is not shown here as the 

CAM3 simulations span from 2001 to 2004 and do not overlap the 2006-2007 

observations from Darwin.  CAM3 output is written every six hours, so observations 
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taken at matching times are used for this comparison.  Excluding times when 

observations are not available, either from missing data or quality control problems, a 

total of approximately 3000 hours are being examined.  While the distributions of LWP 

are close for CAM3 and ARM observations at both sites, there are marked differences in 

cloud coverage and top height.  The largest difference by far is for cloud-top height, 

where 69 percent of the time CAM3 simulates cirrus with a top height between 17 and 18 

kilometers above Nauru Island and 98 percent of the time the cloud-top height is above 

14 kilometers.  Manus shares a similar situation with CAM3 simulating a cloud-top 

height between 17 and 18 kilometers 71 percent of the time and above 14 kilometers 99 

percent of the time.  This suggests that the clusters developed in chapter 3 with low- to 

mid-level cloud tops will be virtually nonexistent, based solely on these cloud-top 

heights. 

There are a number of possible reasons for the persistent high cirrus in the CAM3 

simulations.  The transition from CCM3 to CAM2 introduced a large cold bias near the 

tropical tropopause resulting in a dry bias for stratospheric water vapor (Boville et al., 

2006).  In CAM3 the treatment of subvisible cirrus clouds was improved by separating 

the treatment of cloud ice and liquid particles and including additional sources and sinks, 

such as large-scale advection of cloud and gravitational settling of cloud particles.  The 

result was that the radiative imbalance causing the cold bias in CAM2 was largely 

removed.  It is possible that an increase in the stratospheric water vapor could generate 

more subvisible cirrus, causing the issues seen here.  The question then remains of 

whether this high cirrus is supposed to exist or if it is an artifact of CAM3.  It is certainly 

possible that the surface instruments used for the ARSCL VAP could miss some optically 
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thin high cirrus cloud, as the heights being discussed are near the upper limits of lidar 

range, and cirrus clouds are common in these regions.  However, the cloud regimes 

generated in the Jakob et al. (2005) study, which uses satellite measurements of cloud-top 

pressure, suggest that the occurrence of cloud tops with pressures below 640 hPa is not 

uncommon.  Specifically, at Manus a suppressed regime dominated by low clouds 

(cloud-top pressure > 680 hPa) was found to occur about 36 percent of the time, while the 

preponderance of other regimes contained cloud tops between 680 and 180 hPa.  This is 

not definitive proof, as the retrieval of optical depths requires the use of a visible channel, 

leaving open the possibility of undetected subvisible cirrus.  The next step in answering 

this question is to examine Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 

Observation (CALIPSO) data, which use active lidar and passive infrared measurements 

to probe thin cloud properties globally. 

The distribution of cloud coverage also varies between CAM3 and ARM observations 

at both sites with the largest difference being that CAM3 generates more times with 

overcast conditions.  The location of these overcast conditions is examined in more depth 

in the following section. 

 

High, mid-level, and low cloud occurrence and cloud thickness 

 

Figures 4.3 and 4.4 contain histograms of cloud fraction and geometric vertical 

thickness for high, mid-level and low cloud for Nauru and Manus, respectively.   High 

cloud is defined as being located at levels less than 400 hPa, mid-level cloud is located 

between 400 and 740 hPa, and low cloud is located at levels greater than 740 hPa.  These 
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pressure levels were chosen to correspond with level interfaces used by CAM3.  These 

figures also include a relative frequency-of-occurrence of high, mid-level and low cloud.  

The data used in these histograms are the same as those used in the previous figures, with 

observed 5-minute averages matched to the CAM3 6-hourly instantaneous output.  The 

cloud geometric thickness and fraction are derived from the ARSCL VAP at Nauru and 

Manus, which uses 512 vertical layers.  This greater resolution is the reason that the 

CAM3 histograms have a blocky appearance for geometric thickness, as it uses only 26 

vertical layers giving it a smaller range of possible thickness combinations.  If cloud is 

detected in a layer it is assumed that it exists throughout the vertical extent of the layer. 

Figure 4.3 shows the results at the Nauru facility.  The first thing to note is that 

CAM3 generates high cloud 98 percent of the hours being examined.  This indicates a 

persistent presence of high cirrus, as indicated by the large proportion of high cloud tops 

in the previous figures.  This compares to 68 percent of the time when the ARSCL VAP 

identifies the presence of high cloud.  One possible explanation for this is that since the 

spatial domain of CAM3 is approximately 1.4° by 1.4°, which is considerably larger than 

that of the single point measurements taken at the Nauru facility, there may often be 

small cirrus clouds present even when the spatial domain in general is clear.  However, 

the distribution of cloud fraction and vertical extent for CAM3 shows a relatively high 

concentration of overcast conditions with geometrically thick clouds, suggesting these are 

not simply small individual cirrus clouds.  This also explains the difference in the 

distribution of cloud coverage in figure 4.1, as the ARSCL data identifies far fewer times 

with overcast high clouds.  The histogram pattern for high cloud for the ARSCL VAP 

indicate a concentration of geometrically thin clouds with low coverage along with a 
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general increase in the distribution of cloud thickness as cloud fraction increases.  The 

ARSCL VAP does not identify times with overcast conditions with very thick clouds (> 6 

kilometers), while CAM3 does not generate times with overcast clouds that are 

geometrically thin (< 3 kilometers).  At least part of reason for the difference in thickness 

may be explained by the difference in vertical resolution.  As mentioned earlier, the 

ARSCL VAP uses 512 vertical layers while CAM3 uses only 26, meaning a cloud 

generated in a single CAM3 layer is necessarily much thicker than one detected in a 

single ARSCL layer. 

CAM3 generates mid-level cloud 36 percent of the time, compared to 42 percent of 

the time when it is detected by the ARSCL VAP.  For low clouds, CAM3 generates them 

85 percent of the time while the ARSCL VAP detects them 77 percent of the time.  As 

with the high clouds CAM3 tends to have geometrically thicker clouds than the ARSCL 

data for both mid-level and low clouds.  In addition, for both mid-level and low clouds 

the largest concentration of cloud occurrences for the ARSCL data have fractions 

between 0 and 0.1, while the highest concentration of cloud occurrences for the CAM3 

data had fractions between 0.2 and 0.3.  One interesting thing to note is that the ARSCL 

data show a pattern of very geometrically thick clouds with fractions between 0.3 and 0.4 

for both the mid-level and low cloud histograms.  These clouds are likely cumulus 

towers, and a similar pattern is not seen in the CAM3 data.    

Figure 4.4 shows the same histogram comparison but for the ARM Manus facility.  

Many of the spatial patterns are similar to those at Nauru with a few key differences.  

First, similar to Nauru, the Manus CAM3 simulations generate persistent high cirrus 

cloud with a large concentration of overcast conditions.  In fact, CAM3 generates high 
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cloud over Manus 99 percent of the time, compared to 67 percent of the time when the 

ARSCL VAP detects high cloud.  Unlike Nauru, however, the CAM3 simulations 

generate quite a bit more cloud at the mid- and low levels as well; 13 and 12 percent 

more respectively.  Both CAM3 and the ARSCL data detect mid-level cloud more often 

at Manus than at Nauru.  One other point to make is that, while it was mentioned that the 

Nauru ARSCL VAP detected low clouds with large vertical extents with fractions 

between 0.3 and 0.4, the Manus ARSCL VAP detects low cloud with large geometric 

thickness across a much wider range of cloud fractions; between 0.2 and 0.7.  This along 

with the greater occurrence of mid-level cloud suggests that the Manus facility may 

detect convective towers more often than Nauru.  

 

4.3 IDENTIFYING CLUSTERS USING CAM3 OUTPUT 

 

Figure 4.5 shows relative frequency-of-occurrence maps throughout the tropics for 

the 4 clusters generated at the ARM Nauru facility described in chapter 3.  The maps are 

generated using output from the CAM3 simulations.  The three variables used in the k-

means clustering algorithm: cloud-top height, cloud coverage and LWP, are used as 

criteria for the CAM3 output.  Values of cloud-top height, cloud coverage, and LWP that 

are within one standard deviation of the median values for each cluster are considered to 

have met the required criteria for that cluster.  A cluster is considered present when all 

three variables fall within the specified range of values.  Cluster 2, the moderate coverage 

cirrus regime, is the only cluster that maintains a consistent presence throughout the 

tropics, with an occurrence of between 8 and 12 percent over much of the ocean.  There 
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is a drop in occurrence over the tropical warm pool east of New Zealand, which is 

coincidentally the approximate location of the ARM TWP facilities.  In fact cluster 2 

occurs only about 2 percent of the time at Nauru and Manus in the CAM3 simulations, 

with the other clusters occurring less than 1 percent of the time.  Cluster 3, the low cloud-

top boundary layer regime, occurs infrequently over most of the tropics but has a few 

areas of higher concentration: in the Indian Ocean, east of the Gulf of Mexico and off the 

eastern coast of Brazil in the Atlantic.  Clusters 1 and 4, the overcast cirrus and mixed 

cloud-type regimes, both have some small pockets where their relative frequency-of-

occurrence reached between 8 and 12 percent, but for the vast majority of the tropics they 

are virtually nonexistent. 

Much of the reason for why the CAM3 cluster occurrence does not match that 

generated using the surface-based measurements at the ARM TWP facilities can be 

attributed to the CAM3 cloud-top height.  As explained earlier, CAM3 frequently 

generates high cirrus clouds with cloud-top heights often above 17 kilometers, which 

does not fall within the range of cloud-top height values for any of the 4 clusters.  This 

makes clustering based on cloud-top height problematic.  There are a number of possible 

approaches to this problem.  One would be to avoid using cloud-top height and instead 

opt with another variable, such as cloud-base height or thickness.  This approach may 

have its own issues, however, as Figures 4.3 and 4.4 show distinct differences in the 

cloud thicknesses observed versus those generated by CAM3, and it is uncertain how 

well cloud base-height may determine the presence of specific cloud regimes.  Another 

possibility would be to look for the presence of cloud within the range of values for 

cloud-top height for each cluster.  One issue with this approach is that for a cluster 
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composed of multiple cloud types, such as cluster 4 at the Nauru facility, there could be 

considerable intersection among the clusters.    Another approach, and the one used here, 

is to remove the subvisible cirrus generated by CAM3 when determining cloud-top 

height.  Subvisible cirrus is defined as having an optical depth below 0.03 (Seifert et al., 

2007).  The optical depth for each cloudy layer is calculated for CAM3 output using the 

parameterization:  

LWP =  * Re * 5/9                                                  (4.1) 

 

Where  is visible optical depth and Re is effective droplet radius.  In this case the 

equation is rearranged to solve for .  LWP is calculated for each layer using the layer 

thickness, cloud fraction and in-cloud water mixing ratio, while Re is assumed to be 6 m, 

which is consistent with the value used for the radiative transfer calculations from chapter 

2. 

Figure 4.6 shows relative frequency-of-occurrence maps for each of the clusters 

throughout the tropics with subvisible cirrus cloud removed.  Cluster 2 has almost no 

occurrence in the tropics while cluster 3 exists 20 percent or more of the time over much 

of the tropical oceans.  The range of values for cloud-top height in cluster 3 is from the 

surface to 3.25 kilometers.  It would appear that the reliance on LWP to generate visible 

optical depth has removed most of the high cloud.  It should be noted that cluster 4, 

which contains clouds with tops between 3.65 and 10.55 kilometers, has increased its 

frequency-of-occurrence in the equatorial region near New Zealand by 4 or 5 percent.  

Given that CAM3 generates mid-level cloud at Nauru and Manus 36 and 76 percent of 

the time respectively, we can surmise that the 0.03 optical depth restriction has also 
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removed some mid-level cloud, or else the cluster 4 cloud fraction requirement of being 

between 0.3 and 0.7 is not often being met.  Regardless the extremely low occurrences of 

clusters 1 and 2 suggest the removal of subvisible cirrus using liquid water as a calculator 

of optical depth does not produce a highly accurate translation from CAM3 generated 

cloud tops to those observed at the ARM TWP sites. 

A final point to consider is how often any of the clusters exists in the two scenarios 

given.  Figure 4.7 shows frequency-of-occurrence maps for any of the clusters for the 

original CAM3 output and applying the 0.03 cloud optical depth requirement.  For both 

maps there are areas close to the subtropics where the frequency-of-occurrence is 

between 25 and 35 percent.  For the original model output much of the equatorial region 

between 60°E and 120°W has low occurrence, below 5 percent, with increased 

occurrences over the oceans closer to the subtropics.  For the CAM3 output with the 0.03 

cloud optical depth requirement, the occurrence ranges between 15 and 30 percent for 

most of the ocean areas, with discontinuities off the west coasts of Chile and Northern 

Africa, the east coasts of Australia, Madagascar and Brazil, and the Gulf of Mexico. 

 

4.4 CONCLUSIONS 

 

Model output from a CAM3 climate change scenario generated for use in IPCC AR4 

is analyzed to determine how well a GCM can reproduce distributions of cloud variables 

such as cloud-top height, LWP and cloud coverage when compared with those observed 

at the ARM TWP Nauru and Manus facilities.  The CAM3 output does a very good job of 

reproducing the distribution of LWP, but displays marked differences in the distribution 
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of cloud-top height and cloud coverage.  Specifically, the CAM3 generates persistent, 

often overcast, cirrus cloud with very high top heights, while the surface-based 

observations at Nauru and Manus detect cirrus approximately 70 percent of the time with 

fewer occurrences of overcast conditions.   

The frequency-of-occurrences of high, mid-level and low cloud is also compared 

along with pairings of geometric thickness and cloud fraction.  It is found that CAM3 

generates high cloud 98 and 99 percent of the time over Nauru and Manus, respectively, 

which is about 30 percent more often than it is observed by the ARSCL VAP at either 

site.  It is also found that the CAM3 clouds tend to have higher vertical extent, which is 

likely due in part to the lower vertical resolution used in the model; 26 vertical layers in 

CAM3 versus 512 vertical layers in the ARSCL VAP.  CAM3 cloud fractions have a 

higher concentration between 0.2 and 0.3 while the ARSCL VAP clouds have a 

concentration between 0.0 and 0.1.  This is in addition to the high occurrence of overcast 

cirrus in CAM3 previously mentioned.   

Relative frequency-of-occurrence maps are generated throughout the tropics using 

CAM3 output to determine how often the cloud regimes represented by the clusters 

developed in chapter 3 are present in the CAM3 simulations.  The persistent high cirrus 

generated by CAM3 does not often fall within the cloud-top height ranges for the low- 

and mid-level cloud regimes.  Cluster 2, which has the highest range of cloud-top height, 

is found to be present approximately 8 percent of the time over much of the tropical 

oceans, with a reduction around the equatorial region near New Zealand.  In an attempt to 

bridge the gap between observed and model-generated cloud properties, a 0.03 cloud 

optical depth requirement is imposed upon CAM3 clouds when cloud-top height is 
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calculated.  The result is a large increase in the frequency of cluster 3, which is composed 

primarily of low boundary-layer clouds, along with an accompanying slight increase in 

cluster 4, which is composed of multiple cloud types with heights in the mid-level range.  

Clusters 1 and 2 occur rarely under these conditions.   

Finally the frequency-of-occurrence of any of the clusters is calculated for the 

original CAM3 output and with the 0.03 cloud optical depth requirement.  In the original 

output there is little cluster presence in the equatorial region between 60°E and 120°W. 

This is the area where the ARM TWP sites are located and the persistent presence of very 

high cloud tops is an important reason for the rare presence of the clusters.  For this 

scenario elsewhere over the tropical oceans, clusters are present between 15 and 20 

percent of the time.  In the modified cloud optical depth scenario there is a presence of 

clusters between 15 and 25 percent of the time throughout much of the ocean, most of 

which may be attributed to boundary-layer clouds from cluster 3. 

With respect to the primary goal of this work of improving solar radiative transfer 

through geometrically complex cloud scenes, the translation of GCM-generated cloud 

properties to those observed is problematic.  The clusters developed in chapter 3 may 

serve as a guide to determine when certain types of cloud regimes are present.  This 

information, along with the data gathered from the comparison of the stochastic and 

plane-parallel radiative transfer models in chapter 2, may be used to determine when and 

how the stochastic approach to radiative transfer can best improve the treatment of 3D 

cloud field geometry.  In this chapter, we examine one AGCM’s ability to identify these 

clusters in the tropics.  Though the translation from observed to model-generated cloud 

properties is clearly imperfect, a rough estimate of the potential of the stochastic 
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approach to improve solar radiative transfer may still be made.  Averaged over the 

tropical oceans, both the original and removal of subvisible cirrus methodologies detect 

cluster presence approximately 20 percent of the time.  In chapter 3 it was determined 

that DSTOC outperforms the CRM approximately 40 percent of the time averaged over 

all clusters.  Using just these numbers, the stochastic approach has the potential to 

significantly improve shortwave radiative transfer calculations over the tropical oceans 8 

percent of the time. 

In this chapter we have identified some of the differences between model-generated 

and observed cloud properties, and have proposed one method, though imperfect, of 

bridging this gap.  There are several possible next steps: 1) The large-scale variables used 

to develop the initial clusters could be reexamined and possibly replaced or modified 

with variables that are easier to interpret with the CAM3 output; 2) The method of 

identifying the current clusters in the CAM3 output may be refined, one readily apparent 

course of action is to include the effect of cloud ice when detecting subvisible cirrus with 

the hope of not removing so much of the observable mid-level and high cloud when 

determining cloud-top height; 3) The clusters could be initially developed using CAM3 

output, and the stochastic radiative transfer model could likewise be forced with model 

output. 
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Figure 4.1 Distribution of cloud-top height, liquid water path and cloud coverage for 
observed versus model-generated 6-hourly data from the beginning of 2001 to the end of 
2004 at the Nauru Island ARM facility.  The top row represents the CAM3 simulations, 
and the bottom row represents data taken from the ARM ARSCL and MWRRET VAPs.  
The location of Nauru Island is 0.521° S, 130.891° E, while the closest CAM3 grid cell is 
centered at 0.7004° S, 167.3438° E. 
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Figure 4.2 Distribution of cloud-top height, liquid water path and cloud coverage for 
observed versus model-generated 6-hourly data from the beginning of 2001 to the end of 
2004 at the Manus ARM facility.  The top row represents the CAM3 simulations, and the 
bottom row represents data taken from the ARM ARSCL and MWRRET VAPs.  The 
location of Manus is 2.006° S, 147.425° E, while the closest CAM3 grid cell is centered 
at 2.1012° S, 147.6563° E. 
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Figure 4.3 Paired histograms of geometric vertical cloud thickness and cloud fraction for 
CAM3 (left column) and observations (right column) for high, mid-level, and low clouds.  
The relative frequency-of-occurrence (rfo) of cloud type is displayed above each box.   
The observed clouds are derived from the ARSCL VAP at the ARM Nauru facility.  The 
color bar represents the rfo of each pairing.  Cloud fraction and geometric height are 
allocated into 10 equally-spaced bins. 
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Figure 4.4 Same as Figure 4.3 but for Manus Facility. 
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Figure 4.5 Relative frequency-of-occurrence maps generated using CAM3 simulations in 
the tropics from 2001 to 2004.  The color bar represents the percent occurrence of the 
clusters described in chapter 3.  
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Figure 4.6 Relative frequency-of-occurrence maps generated using CAM3 simulations in 
the tropics from 2001 to 2004.  The color bar represents the percent occurrence of the 
clusters described in chapter 3.  In order for a cloud-top height to be used as a criterion 
for these clusters the cloud layer must possess a minimum optical depth of 0.03.  
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Figure 4.7 Relative frequency-of-occurrence maps generated using CAM3 simulations in 
the tropics from 2001 to 2004.  The color bar represents the percent summed occurrence 
of all the clusters presented in chapter 3.  For a cloud-top height to be used as a criterion 
for these clusters in the bottom map, the cloud layer must possess a minimum optical 
depth of 0.03.  
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CHAPTER 5 – DISCUSSION AND CONCLUSIONS 

 

The comparison of off-line plane-parallel and stochastic shortwave radiative transfer 

simulations for a variety of observed cloud scenes over a four-year period indicate that, 

given the proper atmospheric conditions, the stochastic approach does in fact have the 

ability to significantly improve calculations of radiative transfer through cloudy 

atmospheres.  Further analysis of these results suggest that cloud coverage, LWP in 

relation to geometric vertical cloud thickness, and the ratio of diffuse to direct SSI exhibit 

identifiable characteristics during times when the stochastic model outperforms its plane-

parallel counterpart.  Monthly and diurnal patterns in model performance have also been 

identified.  This information is used to develop a preliminary set of criteria to determine 

when the stochastic approach to radiative transfer is most appropriate. A simplistic 

parameterization is developed using a multiple linear regression technique and applied 

using the aforementioned criteria.  The results generated using this parameterization are 

encouraging, often showing improvement over the plane-parallel radiative transfer model 

when compared against observed SSI.     

Limitations in this comparison include the stochastic models’ ability to use different 

descriptions of variability in the cloud field, as only a Markovian description of the cloud 

sizes in the field is utilized for these simulations.  This distribution of cloud chord lengths 

is representative of the clouds present at the ARM TWP Nauru site and may not be 

appropriate for the entire tropics, let alone the rest of the globe.  In addition, the large 

number of hours and atmospheric conditions creates significant variance in the model 

results when compared to observations, indicating that a further refinement of the criteria 
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and method of radiative flux adjustment is required before this parameterization is ready 

for general application to an AGCM. 

In order to further differentiate the atmospheric conditions necessary for optimal use 

of the stochastic approach, as well as to expand the scope of the global area for which this 

approach is appropriate, a k-means clustering algorithm is applied to surface based 

measurements of cloud-top height, cloud coverage, and LWP for three ARM TWP 

facilities.  Four cloud regimes are identified at the ARM TWP Nauru site, each with 

distinct characteristics.  The dynamical and thermodynamical properties of each of these 

cloud regimes are examined individually.  Three of the four regimes show signs of being 

convectively active, while the other regime appears to be composed primarily of stable 

boundary layer clouds.  Though the convectively active regimes have on average higher 

cloud tops then the stable regime, only a relatively weak linear relationship is found 

between cloud-top height and the magnitude of CAPE, both for the entire set of data and 

for each cluster individually.  Examination of wind shear and vertical spacing between 

cloudy layers suggest that the convectively active regimes tend toward large values of 

wind shear and smaller spacing between cloudy layers than does the stable regime.  The 

combination of cloud-top height, wind shear, and spacing between cloudy layers directly 

affects the depth of the cloud field and the vertical and horizontal spacing between 

clouds, making it a potentially good indicator of macroscale cloud field inhomogeneity. 

Comparison of model performance for each cluster involves examination of the 

models’ ability to capture the variability in observed shortwave cloud forcing at the 

surface, the percent time when one model outperforms the other as previously defined, 

and the percent difference of model-generated from observed SSI.  The stochastic model 
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captures more of the variability of the observed solar radiative cloud forcing at the 

surface than the CRM for all four clusters, and this difference is particularly noticeable 

for clusters 1 and 2.  These clusters represent regimes that often contain cirrus clouds 

with large ranges of cloud coverage and LWP, and they also have the highest median 

values for wind shear between cloudy layers and lowest median values for spacing 

between cloudy layers.  In addition they are the clusters where the stochastic model 

outperforms the CRM a significant portion of the time.  In terms of difference from 

observed SSI, the stochastic model generates median SSI closer to that observed by 6 

percent or greater for all clusters during times when it is considered to be outperforming 

the CRM.  This suggests that, in order to maximize the potential for the stochastic 

approach to improve AGCM radiative transfer calculations through cloud, a secondary 

set of criteria must be developed for each cluster.  Results from the initial comparison of 

the stochastic and the plane-parallel model against observations may serve as a starting 

point, but additional work still needs to be performed in this area. 

The cluster analysis is expanded to include the ARM TWP Manus and Darwin 

facilities.  It is found that although there are variations in the relative frequency-of-

occurrence and the number and structure of the clusters, the primary cloud regimes found 

at Nauru may also be found at other locations.  This suggests it should be possible to 

apply a parameterization developed at Nauru to other areas in the tropics. 

Translating results obtained from observations at the ARM TWP facilities to a 

parameterization useable by an AGCM requires a comparison of observed to AGCM-

generated cloud properties.  To this end output from the CAM3 is analyzed to determine 

how well it can reproduce distributions of cloud-top height, LWP, and cloud coverage 
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when compared against those observed.  The comparison is also expanded to include 

CAM3’s ability to reproduce histograms of cloud coverage and vertical geometric 

thickness as well as frequency-of-occurrence of high, mid-level, and low clouds.  It is 

found that CAM3 reproduces distributions similar to those observed for LWP over the 

ARM TWP sites, but generates persistent, often overcast, cirrus cloud with tops often 

reaching above 17 kilometers, while the surface-based observations at Nauru and Manus 

detect cirrus approximately 70 percent of the time with fewer occurrences of overcast 

conditions.  An examination of passive infrared and active lidar measurements from 

CALIPSO is currently underway to determine if this discrepancy is an artifact of CAM3 

or due to the surface instrumentation’s inability to detect high subvisible cirrus clouds.  

Compared to observations, CAM3 also underestimates mid-level cloud and overestimates 

low cloud at Nauru by small margins, and overestimates mid-level and low cloud 

occurrence at Manus by 13 and 12 percent, respectively.  CAM3 clouds tend to have 

higher geometric vertical thickness, which is likely due in part to the lower vertical 

resolution used in the model; 26 vertical layers in CAM3 versus 512 vertical layers in the 

ARSCL VAP.  In addition to the higher frequency of overcast cirrus, CAM3 cloud 

fractions have higher values between 0.2 and 0.3 while the ARSCL VAP clouds have 

larger values between 0 and 0.1. 

Two methodologies are tested for identifying occurrence of the clusters presented in 

chapter 3 for CAM3 output generated throughout the tropics.  The first is a direct 

comparison of CAM3 cloud fields with those observed in the clusters; using a range of 

one standard deviation of the clusters’ median values for cloud coverage, LWP, and 

cloud-top height as criteria for a cluster’s presence.  Cluster 2, which has the highest 
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cloud-top range, is present approximately 8 percent of the time over much of the tropical 

ocean, with a dip around the equatorial region near New Zealand.  The other clusters are 

present less frequently.  Overall there is little cluster presence in the equatorial region 

between 60°E and 120°W, which is the area where the ARM TWP sites are located and is 

likely largely due to persistent very high cloud tops.  For this scenario elsewhere over the 

tropical oceans, clusters are present between 15 and 20 percent of the time.   

The second methodology attempts to bridge the gap between observed and model-

generated cloud properties by imposing a 0.03 cloud optical depth requirement upon 

CAM3 clouds when cloud-top height is calculated; the idea being that much of the high 

cirrus generated by CAM3 is subvisible, and is either not detected by the surface-based 

instruments or is an artifact of the model.  The result is a large increase in the presence of 

cluster 3, which is composed primarily of low boundary layer clouds, with an 

accompanying slight increase in cluster 4, which is composed of multiple cloud types 

with heights in the mid-level range.  Clusters 1 and 2 occur rarely in this scenario.  

Clusters are present between 15 and 25 percent of the time throughout much of the ocean, 

most of which may be attributed to boundary-layer clouds from cluster 3. 

Possible next steps for improvement of the CAM3’s ability to identify these clusters 

include changing the large-scale variables used to develop the clusters with ones that 

translate more smoothly to CAM3 output, refining the method of identifying the current 

clusters in CAM3, or developing clusters directly using CAM3 output.  The issue with 

this third approach is that if CAM3, or AGCMs in general, contain biases when 

generating certain cloud properties, then tuning a parameterization to accommodate these 

biases is not necessarily a step forward. 
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Perhaps the most encouraging aspect of these results is the potential of the stochastic 

approach to improve AGCM treatment of complex cloud field geometry throughout the 

tropics.  If we only examine the two methods put forth in this study, and assume the 

stochastic approach has the ability to improve shortwave fluxes 40 percent of the time, 

which is the average amount for the 4 clusters derived in chapter 3, a significant 

improvement in SSI can be achieved in CAM3 over the tropical oceans approximately 8 

percent of the time.  This translates to an average improvement of 2 Wm-2 for all hours in 

the tropics.  These numbers will almost certainly increase with additional work in 

identifying the presence of specific cloud regimes for CAM3 output.    This calculation is 

perhaps somewhat premature given the additional work that needs to be performed before 

a parameterization ready for general application is ready, but the potential for 

improvement is encouraging nonetheless. 
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