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ABSTRACT OF THE DISSERTATION

Time-resolved fluorescence studies of protein

aggregation leading to amyloid formation

by Jason Thomas Giurleo

Dissertation Director: David S. Talaga

Aggregation of soluble polypeptides or proteins into insoluble amyloid fibrils con-

taining the cross-β structural motif has been observed in the progression of over

20 diseases. Self-assembly mechanisms have been proposed but are not well-

established. Recent evidence has shifted some of the focus from amyloid fibrils

to prefibrillar amyloidogenic aggregates as the cause of disease symptoms. We

used time-resolved non-covalent fluorescence labeling to follow the conformational

changes occurring in a model protein (β-lactoglobulin) during amyloid aggrega-

tion. The data was analyzed using a novel model-free globally regularized fitting

technique. This reduction of model space allowed for stable fitting and the ability

to identify intermediate species. An aggregation model was then proposed. In the

second half of this thesis, our attention is shifted to α-synuclein (αSyn). αSyn is

the majority protein component of the fibrillar inclusion bodies found in brains of

Parkinson’s disease patients. We have begun a set of fluorescence lifetime experi-

ments using covalent and non-covalent labeling schemes to elucidate the dynamic,

conformational and aggregation properties of αSyn.

ii



Acknowledgements

Acknowledgements begin with my mentor, Professor David Talaga. As a dance

instructor, he taught me my first steps of Lindy Hop, well before either of us

began here at Rutgers. As a mentor, I thank him for pushing me as hard has he

pulled for me. I would like to thank my committee: Professors Barbara Brod-

sky, Ronald Levy and Edward Castner. I would especially thank Ed for all of

the insightful conversations and for the use his laser system to take most of the

time-resolved fluorescence data presented in this dissertation. I am indebted to

Researchers Dave Remeta and Conceicao Minetti who been so generous with their

time; “helpful” is not a strong enough word. I would like to thank the Talaga

research group: Troy Messina, Jeremy Pronchik and Xianglan He. Whether di-

rectly or indirectly, each has contributed in some way to this work by selflessly

donating their time. More importantly, their sense of humor pulled me through

the frustrating moments (or HAM as we called it). The support my family was

paramount. First, Aunt Noelle and Uncle Greg for the engaging conversations, a

place to crash, and their uncanny knack for instilling confidence in my path. Sec-

ond, my girlfriend Dorothy whose emotional support has kept my mind focused

while not letting me burn out. Many of the hours spent in Starbucks writing, she

was right by my side helping in which ever way should could. Lastly, I acknowl-

edge my parents. My well-being has always been a top priority along with their

unconditional emotional support. Okay, and some financial support too ;) And to

my mom: You took on the colossal task of proofreading this dissertation without

question, just like you did 18 years ago when you helped prepare, proofread, and

type my first science project. See, it was all worth it!

iii



Chapters 2 and 3 where previously published in the The Journal of Chemical

Physics, 128:114114(118), 2008 and Journal of Molecular Biology 381:13321348,

2008, respectively. The author of this dissertation was the primary author of two

contributing publications.

iv



Dedication

Essay as part of my application to The College of New Jersey (circa February

1995):

The person who has had a significant influence in my life is Thomas Puglisi.

He is a kind, loving and patient man.

As a child my favorite place was his basement workshop where we would

conduct “Mr. Wizard”- type experiments. As I watched eagerly, he patiently

would answer my many questions, never making my inquiries seem frivolous. I

loved observing him fix things, and many times he would trust me with his tools.

He always would listen to my ideas and opinions about possible solutions. Tom

taught me problem solving by having me look at a situation from many different

angles. I learned that nothing should be overlooked, no matter how simple or

obvious. Problem solving not only became challenging, but also rewarding. I

still treasure the small, self-propelling, wooden toys we made together. Now,

after studying physics, I realized that he applied complex laws of physics to make

a simple toy! As I grew older, and several school projects later, I began to

appreciate his methodical, practical, and efficient approach to making or fixing

something. I would revel in drawing up plans with objectives and then seeing

them become a reality Tom’s gentle guidance through my trial and error process,

without criticizing me for mistakes, gave me the confidence to keep trying.

Early on, Tom Puglisi sparked a curiosity in me about the complex worlds

of chemistry and physics. He taught me that patience, determination, creativity,

and imagination are the keys to a successful outcome. I am proud to say that the

man who has significantly influenced my life and my desire to become a scientist

v



is my grandfather, Thomas Puglisi.

Tom (1917-2002) was a chemist for Hoffmann-LaRoche for 43 years includ-

ing a three year hiatus serving as an Army Sargent, stationed on the European

front under General Patton. Tom passed away from complications of Alzheimer’s

disease, and is to whom I humbly dedicate this work.

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Personal motivation . . . . . . . . . . . . . . . . . . . . . . 1

Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

β-Lactoglobulin studies . . . . . . . . . . . . . . . . . . . . 5

Using global probabilistic constraints to develop global mod-

els . . . . . . . . . . . . . . . . . . . . . . . . . . 8

β-LGa revisited, model solidified . . . . . . . . . . . . . . 8

Spectroscopic studies of covalently labeled αSyn . . . . . . 9

Aggregation studies of αSyn . . . . . . . . . . . . . . . . . 10

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Global fitting without a global model: regularization based on

the continuity of the evolution of parameter distributions. . . . . 14

2.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



2.3.1. IPG Regularizer . . . . . . . . . . . . . . . . . . . . . . . . 22

Locally Regularized IPG . . . . . . . . . . . . . . . . . . . 23

Globally Regularized IPG . . . . . . . . . . . . . . . . . . 24

2.3.2. Data Simulations . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3. Fitting Mechanics . . . . . . . . . . . . . . . . . . . . . . . 26

Levenberg-Marquardt . . . . . . . . . . . . . . . . . . . . . 27

Active-Set and Interior Point Gradient . . . . . . . . . . . 28

Maximum Entropy method fits . . . . . . . . . . . . . . . 29

2.3.4. Model Similarity Criteria . . . . . . . . . . . . . . . . . . . 30

Quality-of-fit . . . . . . . . . . . . . . . . . . . . . . . . . 30

Quality-of-Parameters . . . . . . . . . . . . . . . . . . . . 31

2.3.5. Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1. Levenberg-Marquardt . . . . . . . . . . . . . . . . . . . . 33

Three-Exponential Model Fits . . . . . . . . . . . . . . . . 34

Four-Exponential Model Fits . . . . . . . . . . . . . . . . 36

2.4.2. Active-Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.3. Maximum Entropy Method . . . . . . . . . . . . . . . . . 40

2.4.4. Interior Point Gradient Method . . . . . . . . . . . . . . . 40

Unregularized IPG . . . . . . . . . . . . . . . . . . . . . . 42

Locally Regularized IPG . . . . . . . . . . . . . . . . . . . 43

Globally Regularized IPG . . . . . . . . . . . . . . . . . . 45

2.4.5. Global Model LM . . . . . . . . . . . . . . . . . . . . . . . 48

Traditional Global Model LM . . . . . . . . . . . . . . . . 49

Regularized Global Model LM . . . . . . . . . . . . . . . . 52

2.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.1. Comparison of Methods . . . . . . . . . . . . . . . . . . . 53

viii



Reduced Chi-square . . . . . . . . . . . . . . . . . . . . . 53

Kullback-Liebler divergence . . . . . . . . . . . . . . . . . 54

Population Evolution . . . . . . . . . . . . . . . . . . . . . 59

2.5.2. Prior Knowledge and Probabilistic Constraints . . . . . . . 59

2.5.3. Global fitting strategy . . . . . . . . . . . . . . . . . . . . 61

2.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3. β-Lactoglobulin Assembles into Amyloid through Sequential Ag-

gregated Intermediates . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1. Amyloid Formation . . . . . . . . . . . . . . . . . . . . . . 70

3.2.2. Bovine β-lactoglobulin variant A . . . . . . . . . . . . . . 72

3.2.3. Biophysical Approaches to Aggregation . . . . . . . . . . . 74

3.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.1. AFM shows sequential growth of aggregates . . . . . . . . 76

3.3.2. DLS resolves early lag phase aggregation . . . . . . . . . . 77

Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.3. ThT tracks structural conversions . . . . . . . . . . . . . . 78

3.3.4. ANS reports changes in hydrophobic regions and calyx loss. 82

ANS aggregation reversibility assay . . . . . . . . . . . . . 90

3.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4.1. Conformationally lability prior to incubation . . . . . . . . 92

3.4.2. Early lag phase aggregation was more reversible . . . . . . 94

3.4.3. Late lag phase aggregation loses calyx . . . . . . . . . . . 95

3.4.4. Protofibrils appeared after day 20 . . . . . . . . . . . . . . 96

ix



3.4.5. Overall mechanism . . . . . . . . . . . . . . . . . . . . . . 97

3.5. Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5.1. Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5.2. β-LGa incubations . . . . . . . . . . . . . . . . . . . . . . 100

3.5.3. Time-resolved luminescence . . . . . . . . . . . . . . . . . 101

3.5.4. Dynamic light scattering . . . . . . . . . . . . . . . . . . . 103

3.5.5. Atomic force microscopy . . . . . . . . . . . . . . . . . . . 105

3.6. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4. Exploring αSyn with covalently attached fluorophores using time-

resolved and single molecule imaging spectroscopy . . . . . . . . . 113

4.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.3.1. Selected materials . . . . . . . . . . . . . . . . . . . . . . . 117

Protein Preparation . . . . . . . . . . . . . . . . . . . . . . 117

4.3.2. Protein conjugation . . . . . . . . . . . . . . . . . . . . . . 118

4.3.3. Cysteine conjugation . . . . . . . . . . . . . . . . . . . . . 118

4.3.4. Fluorescence spectroscopy . . . . . . . . . . . . . . . . . . 118

Time-resolved fluorescence . . . . . . . . . . . . . . . . . . 119

Single molecule imaging . . . . . . . . . . . . . . . . . . . 119

4.3.5. Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4.1. Properties of Alexa 488 . . . . . . . . . . . . . . . . . . . . 120

Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.2. Properties of Atto 590 . . . . . . . . . . . . . . . . . . . . 123

x



Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4.3. Properties of NR-αSyn . . . . . . . . . . . . . . . . . . . 124

Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.4. SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5. Thermodynamic studies of α-synuclein . . . . . . . . . . . . . . . 133

5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Intrinsically disordered protein . . . . . . . . . . . . . . . . 134

Two thermodynamic states . . . . . . . . . . . . . . . . . 135

5.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.1. Preparation and Purification . . . . . . . . . . . . . . . . . 136

5.3.2. UV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.3. DLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.4. CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.5. Two-state model . . . . . . . . . . . . . . . . . . . . . . . 139

5.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4.1. UV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4.2. Circular Dichroism . . . . . . . . . . . . . . . . . . . . . . 141

5.4.3. Dynamic Light Scattering . . . . . . . . . . . . . . . . . . 143

5.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.5.1. Future studies . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xi



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6. Aggregation methods of α-synuclein. . . . . . . . . . . . . . . . . 151

6.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Mechanism and amyloid formation. . . . . . . . . . . . . . 151

Incubation conditions affect aggregation rates. . . . . . . . 153

Experimental design . . . . . . . . . . . . . . . . . . . . . 153

6.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Protein Preparation . . . . . . . . . . . . . . . . . . . . . . 155

Sample preparation for time-zero Native Gel . . . . . . . . 155

Sample preparation for incubation . . . . . . . . . . . . . . 157

ThioflavinT assay . . . . . . . . . . . . . . . . . . . . . . . 158

DLS and SLS assay . . . . . . . . . . . . . . . . . . . . . . 159

AFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Native gel electrophoresis . . . . . . . . . . . . . . . . . . 160

Photograph of final product . . . . . . . . . . . . . . . . . 160

6.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4.1. Initial conditions . . . . . . . . . . . . . . . . . . . . . . . 160

6.4.2. Final product - Visual Inspection and AFM . . . . . . . . 162

6.4.3. SS ThT Assay . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.4. SLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4.5. Dynamic Light Scattering . . . . . . . . . . . . . . . . . . 167

6.4.6. Time-Resolved ThT luminescence . . . . . . . . . . . . . . 170

6.4.7. Data recapitulation . . . . . . . . . . . . . . . . . . . . . . 172

FS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xii



US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

UR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Differences in methods . . . . . . . . . . . . . . . . . . . . 174

6.5.1. Preparation Effects . . . . . . . . . . . . . . . . . . . . . . 174

6.5.2. Agitation Effects . . . . . . . . . . . . . . . . . . . . . . . 175

6.5.3. Mechanistic consequences . . . . . . . . . . . . . . . . . . 177

Shaking versus rotating . . . . . . . . . . . . . . . . . . . . 177

6.5.4. Biological relevance of in vitro agitation studies . . . . . . 178

6.5.5. Future experiments . . . . . . . . . . . . . . . . . . . . . . 179

Teflon beads - No head space - Rotated . . . . . . . . . . . 179

Quiescent- No head space - Filtered . . . . . . . . . . . . . 179

Elucidating intermediate species with TRF studies covalently-

labeled αSN. . . . . . . . . . . . . . . . . . . . . 180

FRET study of the co-incubation of two different αSN con-

jugates . . . . . . . . . . . . . . . . . . . . . . . . 180

6.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7. Supplementary Materials . . . . . . . . . . . . . . . . . . . . . . . . 185

7.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2. Simulating DLS data . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.2.1. Generating DLS data, IGOR code . . . . . . . . . . . . . . 187

7.3. γ-cyclodextrin (γ-CD) . . . . . . . . . . . . . . . . . . . . . . . . 190

7.4. Urea titration of β-LGa . . . . . . . . . . . . . . . . . . . . . . . 192

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8. Explanation of Global Regularization Code . . . . . . . . . . . . 195

xiii



8.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.2.1. Fast GIPG . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.3. Flow charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9. Globally regularized interior point gradient method, Igor code 209

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

xiv



List of Tables

4.1. Physical properties and other information concerning Alexa 488

and Atto 590. τ is the lifetime, τn is the calculated natural life-

time, CF280 is the correction factor at 280 nm, or A280 divided

by the absorption at maximum, CF260 is the same as CF280 but

at A280, εmax extinction coefficient, λ is wavelength at absorption

maximum, A493 is relative to the Atto absorption at 493 nm. . . . 116

5.1. Table of fit parameters and Tm for spectroscopic fit. Fit parameters

are described in the text. Tm is calculate from Eq. 5.5. O0′ and

O1′ are used for the global fitting of 198 and 222 nm CD data. The

observables (O) are in units of the measurement, γ is dimensionless,

and ε is in Joules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.1. A select list publications concerning aggregation of αSN. Time to

the beginning of the growth phase is dependent on preparation of

monomer protein and agitation conditions. All incubations in this

list carried out at 37 ◦C. . . . . . . . . . . . . . . . . . . . . . . . 156

xv



List of Figures

1.1. Classic sigmoidal kinetics of amyloid fibrils in vitro. Left panel:

The canonical explanation of amyloid growth has been proposed

from histological staining assays in vitro. The explanation involves

three phases: lag, growth and elongation. Right panel: Adding

pre-formed seeds eliminates the lag phase. [17] See Fig. 1.2 for a

comprehensive description of the possible intermediates that have

been proposed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

xvi



1.2. Overview of amyloid assembly mechanisms. Amyloid) any fib-

ril, plaque, seed, or aggregate that has the characteristic cross-β

sheet structure. Amyloid fibril) long ribbons of amyloid approx-

imately 10 nm in diameter and >100 nm in length. Most often

observed in vitro. Amyloid protofibril/filament) a species of

amyloid smaller in diameter (3-6 nm) and length (<100 nm) than

typical for amyloid fibrils, thought to be a possible direct precursor

to amyloid fibrils perhaps through lateral aggregation. Amyloid

seed (or template)) a species of a critical size or structure that

rapidly elongates to form larger amyloid species possibly by pro-

viding a proper scaffold for amyloid assembly. Amyloidogenic

oligomer) A small aggregate of precursor that is smaller than

the critical seed size but still may have some of the structural

characteristics of amyloid. Folded state) The native (functional)

state of the precursor. Folding intermediate) A partially folded
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structure, AM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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3.1. The possible binding sites of ANS to β-LGa. Hydrophobic amino

acid residues are colored in slate, hydrophilic residues in brick.

ANS was docked to β-LGa using PyMOL, and minimized using

molecular mechanics software IMPACT.[86] The left panel is a 16 Å
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The right panel is rotated 90◦ about vertical axis of left panel to
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Chapter 1

Introduction

Personal motivation

Truth be told, I was resoundingly disinterested in pursuing a research career

studying biological molecules after graduating from college. It was during my

employment at Hoffmann-La Roche that I became aware of the importance of

increasing the stability and shelf life for protein-based therapeutic agents. Aggre-

gation was usually the biggest culprit in reducing the long-term efficacy of a drug;

we worked closely with the formulators to curb this effect. Concurrently, protein

aggregation research was becoming a popular topic, specifically because a small

peptide was found to be the main constituent of proteinaceous plaques found in

Alzheimer’s disease. [1, 2] The topic became personal when my grandfather was

diagnosed with this devastating disease. Motivation to study the physics and

chemistry of biological molecules stemmed from these events.1 This dissertation

is presented as the product of this motivation.

Disease

In the mid-1800s, German physician Rudolph Virchow first coined the term “amy-

loid” after iodine staining an abnormally appearing cerebral corpora amylacea

tissue culture. In 1906, Alois Alzheimer autopsied the brain of a patient who ex-

hibited premature senile dementia, along with paranoia and agitation, and found

1I also had an interest in inorganic chemistry but was throughly thwarted by enlisting in
one Solid State Chemistry course at Rutgers University as a non-matriculated student in the
spring of 2000. Professor’s name withheld.
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neurofibrillary tangles and amyloid plaques. [3] In 1912, a colleague of Alzheimer,

Friedrich Heinrich Lewy, discovered protein inclusion bodies in the brains of pa-

tients with paralysis agitans. [4] Later, it was discovered that the inclusion bodies

also contained fibrillar protein deposits. Since these discoveries, 20 protein aggre-

gation diseases, including Alzheimers disease (AD), Parkinsons disease (PD), type

II diabetes, and Creutzfeldt-Jakobs disease, have been observed. The diseases

have a common thread: soluble polypeptides or proteins aggregate into insoluble

amyloid fibrils containing the cross-β structural motif. The enormous medical

implication of these diseases has motivated research and numerous reviews dis-

cussing the structure and growth of amyloid fibrils. [3, 5, 6, 7, 8, 2, 9, 10, 11]

PD affects 500,000 people in the United States. This is the second most

prevalent of the late-onset neurodegenerative diseases. [12] Today the disease is

clinically diagnosed much like it was done prior to Virchow’s amyloid discovery.

James Parkinson wrote an extensive essay on “Shaking Palsy” in 1817 (reprinted

in Ref.[13]) describing a patient with involuntary muscle tremors and inability to

initiate movements. Pathologically, PD is characterized by the predominate loss

of dopaminergic neurons in the substantia nigra. Dopamine, which is crucial to

human movement, is manufactured in this part of the brain. Upon autopsy, it

has been shown that some neurons have fibrillar cytoplasmic inclusions, or Lewy

bodies. [12] It is not clear, however, if the the presence of Lewy bodies and fibril

formation is the cause or the consequence of the neuronal death.

Recent evidence has shifted some of the focus from macroscopic fibrillar de-

posits to prefibrillar amyloidogenic aggregates as the cause of symptoms[14, 5,

15, 9], leading many to propose development of vaccines targeting small amy-

loidogenic aggregates.[7, 16, 2] In the case of PD, it has been shown that neurons

containing Lewy bodies appear to have no quantifiable differences in viability.
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Secondly, the amount of Lewy bodies found in postmortem brains of asymp-

tomatic patients is ten-fold greater than the prevalence of PD. Thirdly, early-

onset familial forms of PD lead to neurodegeneration without substantial Lewy

body accumulation. [12] One hypothesis suggests that inclusion bodies sequester

toxic mis-folded or aggregated protein species from the system, akin to a protein

vacuum cleaner-like mechanism. [14] Transgenic animal experiments showed that

overexpression of the principle protein found Lewy bodies was not concomitant

to neuronal loss. However, transgenic mice with non-fibrillar deposits in parts of

the brain did exhibit substantial neuronal deficiencies. [9]

Placing the responsibility of the disease on toxic oligomers makes the solution

to the aggregation problem hard to ascertain. Proposed aggregation mechanisms

are constructed around the in vitro studies that show a sigmoidal growth of amy-

loid fibrils. The kinetics of the mechanism have been named lag, growth and

elongation (as labeled in Fig. 6.1). This may lead us to the notion that the

mechanism of protein aggregation simple.
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Figure 1.1: Classic sigmoidal kinetics of amyloid fibrils in vitro. Left panel: The
canonical explanation of amyloid growth has been proposed from histological
staining assays in vitro. The explanation involves three phases: lag, growth and
elongation. Right panel: Adding pre-formed seeds eliminates the lag phase. [17]
See Fig. 1.2 for a comprehensive description of the possible intermediates that
have been proposed.

To the contrary, monitoring amyloid formation is only a small part of the entire
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Figure 1.2: Overview of amyloid assembly mechanisms. Amyloid) any fibril,
plaque, seed, or aggregate that has the characteristic cross-β sheet structure.
Amyloid fibril) long ribbons of amyloid approximately 10 nm in diameter
and >100 nm in length. Most often observed in vitro. Amyloid protofib-
ril/filament) a species of amyloid smaller in diameter (3-6 nm) and length
(<100 nm) than typical for amyloid fibrils, thought to be a possible direct precur-
sor to amyloid fibrils perhaps through lateral aggregation. Amyloid seed (or
template)) a species of a critical size or structure that rapidly elongates to form
larger amyloid species possibly by providing a proper scaffold for amyloid assem-
bly. Amyloidogenic oligomer) A small aggregate of precursor that is smaller
than the critical seed size but still may have some of the structural characteris-
tics of amyloid. Folded state) The native (functional) state of the precursor.
Folding intermediate) A partially folded or misfolded structure of the precur-
sor. These partially folded structures are potentially the same as or precursors
to amyloidogenic folds. Denatured state) The unfolded state of the precursor.
Unstructured aggregate) Completely or partially denatured proteins tend to
aggregate non-specifically without forming a particular structural motif.

mechanism, and the vagueness in the sigmoidal kinetics can allow for many dif-

ferent possible mechanistic intermediates. Fig. 1.2 is a comprehensive diagram of

proposed intermediate species and pathways along the amyloid formation mech-

anism. It is well accepted that critical intermediates exist along the amyloid

pathway, but have not been explicitly identified. This combination has led to
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a wide range of plausible mechanisms that do not violate sigmoidal growth of

amyloid fibril. Our interest is to shift focus from amyloid fibrils to prefibrillar

amyloidogenic aggregates that are present in the lag phase. Only by elucidating

the intermediate species can an accurate mechanism be developed. Unfortunately,

intermediate species are expected to be in relatively very low concentration. We

set out to confront this obstacle by utilizing several biophysical techniques in-

cluding time-resolved fluorescence (TRF) spectroscopy, dynamic light scattering

(DLS), and atomic force microscopy (AFM).

β-Lactoglobulin studies

In chapter 3, we investigated the aggregation and amyloid fibril formation of β-

lactoglobulin variant A (β-LGa) under partially denaturing conditions. T0his

protein has been very well studied [18] and is fairly inexpensive. β-LGa is a

member of the lipocalin superfamily of proteins consisting of a flattened β-barrel

or calyx comprised of eight β-strands (Fig. 3.1). We took advantage of the nat-

urally occurring hydrophobic pocket for the intercalation of an environmentally

sensitive fluorescence probe, ANS. The modulation of the fluorescent properties

reflected conformational changes of the protein along the aggregation pathway.

The fluorescent lifetime for any particular time of incubation needed to be

represented by a multi-exponential function, suggesting multiple binding species

were present. By locally fitting each incubation time point, it was obvious that

there were trends in the data. This allowed for a global model fitting approach.

It was a rigorous search, taking many iterations, but eventually a statistically

significant simple global model was selected and shown in Eq. 1.1,

ID(t) = AD(f1e
−t/τ1 + f2e

−t/τ2 + f3e
−t/τ3 + (1− f1 − f2 − f3)e−t/τ4) (1.1)

where AD was the total time-zero intensity for a particular day (local), f1, f2, and

f3 were the fractional amplitude components (local), and τ1, τ2, τ3 (global), and
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τ4 (local) were the lifetimes.

Figure 1.3: Fit parameters of Eq. 1.1 used to described lifetime data of ANS
bound BLG. This figure was originally part of my thesis proposal and is shown to
illustrate the parameter trends after a global model was selected.

This analysis was presented as part of my research proposal as a requirement

for Ph.D. candidacy. The parameters from the global fit are shown in Fig. 1.3

and originally part of the proposal. The speculative mechanism was proposed

based on the data and is shown in Fig. 1.4. The mechanism was chosen based

on interpretation of the data which heavily relied on the global fit to reduce the

model space. Though we believed that the global model was supported by the

data, we understood that model selection is also related to the skill (and patience)

of the investigator selecting the model. This prompted us to think about ways

to develop (and not select) a model without unknowingly forbidding the true

solution.



7

Figure 1.4: Fit parameters of Eq. 1.1 used to described lifetime data of ANS bound
BLG. This reduced data set originally appeared in my thesis proposal. τ1 and f1,
and τ2 and f2 are attributed to sites 1 and 2, respectively. τ1 decreases with
increasing denaturant concentration, indicative of the disruption of the binding
pocket. At time-zero incubation, we assume that the protein is soluble but in a
non-native state, S. During first six days, the site 1 lifetime decreases is indicative
of a further conformational change. S-state is converted to that of an aggregation
prone state, A. The overall decrease in ANS binding to site 1 (f1) may be due
to a further conformational change as A-state monomers aggregate to O-state
oligomers that lack the internal binding pocket. It is also conceivable that the
inablitiy for ANS to bind site 1 is a function of steric hindrance due to A-state
aggregation and not a conformational change in the binding pocket. The site
2 binding occurs via external hydrophobic interactions. It is expected that any
hydrophobic exterior patches will be utilized by protein-protein interactions of
amyloid aggregation but may be affected by general oligomerization. By day 12,
ANS external binding to site 2 becomes in competition with the specific protein-
protein interactions necessary for amyloid cross-β structure, AM.
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Using global probabilistic constraints to develop global models

Spectroscopic techniques often involve making a measurement on a system, mak-

ing a small perturbation to the system by some experimental factor, and then

taking another measurement. When done in this way, a smooth change in the

signal is expected. In chapter 2, we take advantage of this prior knowledge to cir-

cumvent the need to reduce model space in a single step. Instead, we develop an

approach that allows one to start from an essentially model-free fit and progress to

a specific model by moving from probabilistic constraints (parameter continuity

across the experimental coordinate) to deterministic constraints (global models).

In chapter 2, the globally regularized interior-point gradient method (GIPG)

is developed.2 We demonstrate through a pedagogical example, that GIPG could

represent a complex distribution of species on par with those thought to be present

during protein aggregation. Furthermore, we show how a maximum entropy

method approach may claim to be “model-free”, but does not significantly help

model development.

β-LGa revisited, model solidified

Chapter 3 is the recapitulation of the β-LGa data sets using GIPG analysis to

generate global models. By utilizing GIPG, lifetime evolution distributions were

calculated. We assumed that the contributions of different ANS-bound species

could be expressed as a linear combination of multipeaked “fingerprints”. This

type of fingerprint analysis, to our knowledge, is the first of its kind to be applied

to TCSPC data.

Time-resolved thioflavinT (ThT) luminescence was also analyzed by GIPG.

DLS data was fit with GIPG by adding a continuity condition to the particle size

2Chapter 7 is the explanation of the final version of the algorithm. Previous versions were
computationally inefficient, but fully functional. By utilizing three dimensional matrix opera-
tions, a drastic increase in the computational speed was reached.
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distribution evolution. Though specific global models were not independently

developed for ThT and DLS data, the trends were considered when generating

fingerprints for the ANS fluorescence lifetimes.

The comprehensive interpretation of all the data led to an aggregation model

(Fig. 3.11) and kinetic scheme (Fig. 3.9). We cannot help but notice that the

original interpretation of the data did not change much with the inclusion of GIPG

analysis and DLS, AFM and ThT lifetime measurements. However, a deeper

understanding of the mechanism became available and allowed us to compare our

data to other mechanistic possibilities and alternative models.

Spectroscopic studies of covalently labeled αSyn

After comprehensive studies of β-LGa, it was now possible to begin studying

α-synuclein (αSyn) with confidence. αSyn is the principle component of Lewy

bodies, the protein inclusions bodies that are implicated in Parkinson’s disease.

One of the similarities carried over from the β-LGa studies is the conforma-

tional variability of the monomeric unit. (Recall that β-LGa formed amyloid

under partially denaturing conditions.) αSyn is an intrinsically disordered pro-

tein (IDP) but upon aggregation, goes through an ordered transition leading to

highly ordered cross-β quaternary structure. Amyloid-β peptide (in AD), Amylin

(in type II Diabetes) and prion protein (Creutzfeldt-Jakobs) are all intrinsically

disordered. [9].

Recent studies have shown that αSyn may have minimal structural prefer-

ences. [19, 20]. In these studies, long-range interactions were seen between the

negatively-charged C-terminal region with the middle region that is referred to as

the non-Aβ amyloid component, or NAC, region of αSyn. A recent NMR study

by our collaborator Baum et al., has pointed out that deprotecting the NAC re-

gion may lead to transient interchain interactions and may serve as a nucleation

site for aggregation. [21]
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In chapter 3, we show how the intercalation of a conformationally sensitive

fluorophore can report on the aggregation states of a protein. β-LGa was a special

case where the host protein has a defined binding pocket. αSyn, on the other

hand, is an IDP. It is reasonable to expect that a non-covalent probe would non-

specifically bind. Therefore, covalent attachment of the fluorophore is necessary.

In chapter 4, temperature dependence of the fluorescence lifetimes of Alexa

Fluor, Atto 590, and Nile Red covalently attached to A19C mutant of αSyn are

evaluated. Previously, we have proven that we can analyze complicated fluores-

cence lifetime distributions with a model-free fitting approach. This approach

coupled with the notion that fluorescence is a highly sensitive technique, allows

us the unique opportunity to evaluate if, indeed, the fluorescence lifetime can

relay valuable information concerning the conformational dynamics of αSyn.

In chapter 5, a more traditional biophysical approach is taken to evaluate

conformational changes of αSyn. Specifically, CD and UV absorption are used to

monitor the spectroscopic changes αSyn with temperature. The two techniques

measure different features of protein. We notice transitions at different tem-

peratures for both techniques. These transitions are evaluated with a two-state

model. We invoke a “cooperativity” parameter to be incorporated into the parti-

tion function to create a fit function for the data. Cooperativity should be large

for folded to unfolded transitions, but for an IDP it is expected to be very close

to 1. Spectroscopically, however, the parameter was greater than 1, consistent

with the notion that αSyn has local transient conformations. [21]

Aggregation studies of αSyn

While researching the literature for aggregation rates of αSyn, we came across

awesome inconsistencies (see Table 6.2). Specifically, aggregation rates were the

most affected by preparation and incubation conditions. In chapter 6, we con-

duct a primary investigation of these conditions. We use the tools developed in
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chapters 2 and 3, to evaluate the features in the particle size and ThT lifetimes

distributions and relate them to possible aggregation states of αSyn. We also

find that certain species along the amyloid pathway are not as pronounced under

certain preparation and incubation conditions.

The primary studies of the aggregation mechanism of αSyn is the conclusion

of this thesis work. However, it is just the beginning of an exciting set of ex-

periments designed to elucidate the amyloid formation mechanism of a medically

relevant protein. First, the proper analysis tools had to be developed (chapter 2)

and tested on a model system (chapter 3). With confidence in these tools, the

elucidating monomeric properties of αSyn using fluorescence techniques (chapters

4 and 5) could begin.
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Chapter 2

Global fitting without a global model:

regularization based on the continuity of the

evolution of parameter distributions.

2.1 Summary

We introduce a new approach to global data fitting based on a regularization con-

dition that invokes continuity in the global data coordinate. Stabilization of the

data fitting procedure comes from probabilistic constraint of the global solution

to physically reasonable behavior rather than specific models of the system behav-

ior. This method is applicable to the fitting of many types of spectroscopic data

including dynamic light scattering (DLS), time-correlated single-photon counting

(TCSPC), and circular dichroism (CD). We compare our method to traditional

approaches to fitting an inverse Laplace transform by examining the evolution

of multiple lifetime components in synthetic TCSPC data. The global regular-

izer recovers features in the data that are not apparent from traditional fitting.

We show how our approach allows one to start from an essentially model-free fit

and progress to a specific model by moving from probabilistic to deterministic

constraints in both Laplace transformed and non-transformed coordinates.
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2.2 Introduction

Sample heterogeneity is nearly unavoidable in spectroscopy. In many simple sys-

tems the heterogeneity can be reduced to the point where it can be ignored. How-

ever in complex biological systems there is much to be gained from understanding

the heterogeneity. The biological machinery in the cell, for example, relies on the

dynamic nature of proteins and protein assemblies.[1] Intermediate species have

been identified in protein (mis)folding mechanisms.[2, 3, 4, 5, 6] Multiple con-

formations of protein-ligand complexes have been discovered because of signal

heterogeneity.[7] The evolution of multiple binding sites for β-lactoglobulin and

the time-dependence of the site-binding entropy in response to the sudden pres-

ence of a strong dipole was elucidated by the heterogeneity in a time-dependent

Stokes-shift measurement.[8] Heterogeneity is a crucial element of interpreting sin-

gle molecule measurements.[9, 10, 11, 3, 12] The presence of multiple species in

misfolded β-lactoglobulin leads to very heterogeneous signals prior to[13, 14] and

during the assembly of amyloid.[15] To fully understand the underlying physics

of such complex systems requires approaches to data reduction that can accom-

modate their heterogeneity.

Data reduction, or fitting, always requires a model. For any phenomenon

being measured there is a set, or space, of models that could reasonably be ex-

pected to explain the data. The fitting procedure should eliminate all parts of

the model space inconsistent with the data. From the remaining possibilities, the

algorithm should allow selection of the most likely model given the experimental

information. Experimental information in this context includes both the explicit

data that comes from the instrumentation as well as knowledge that comes from

the experimental design and understanding of the physics of the system. These

two source of information we will call “data” and “prior knowledge.”[16]

Prior knowledge is used to determine the model space for the problem. Many
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experiments — including quasi-elastic light scattering,[17, 18, 19, 20] circular

dichroism,[21] dynamic NMR,[22] and fluorescence lifetime[23] — can be related

to their underlying physics by Fredholm integral equations of the first kind:

F (t, y) =

∫ b

a

A(t, k, y) f(k, y) dk. (2.1)

Data inversion seeks to find the function, f(k, y), from the noisy signal, F (t, y) +

ε(t, y), given the continuous kernel function, A(t, k, y), that connects t and k, with

y remaining untransformed.

The mathematical model space comprises all possible functions f(k, y). In

most circumstances the physical interpretation of f(k, y) is that it represents a

distribution of populations of species that differ in their values of k. The goal

of the experiment is usually to determine the systematic behavior of those pop-

ulations with experimental changes in y, which can represent any experimental

condition such as pH, incubation time, solvent polarity, etc. For example, deter-

mining the species population changes with temperature allows thermodynamic

parameters to be extracted.

For experiments that monotonically decay such as fluorescence lifetime and dy-

namic light scattering measurements the kernel in Eq. 2.1 is A(t, k, y) = exp(−k t)

and a = 0, and b =∞ provide the integration limits for a Laplace transform:

F (t, y) = L{f(k, y)} =

∫ ∞
0

e−ktf(k, y) dk. (2.2)

Solving for f(k, y) requires inversion of integral equation 2.2.

In the presence of noise, the inverse Laplace transform is not unique. An

explicit expression for the inverse Laplace transform[24] illustrates the difficulty

of direct inversion,

f(k, y) = L−1{F (t, y)} = lim
i→∞

(−1)i

i!

[
i

k

]i+1

F (i)

(
i

k
, x

)
(2.3)

where F (i) is the ith derivative of F . The inverse Laplace transform is sensitive

to high order derivatives that do not exist in real data in any meaningful way;
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each subsequent derivative increases the appearance of noise. As a result, all

functions, f(k, y), that have Laplace transforms, F (t, y), with similar first few

derivatives, but divergent higher order derivatives, will be valid solutions to the

inverse Laplace transform.

Since direct inversion is problematic, an indirect approach based on least-

squares optimization is typical.[25, 26, 27]

min

[(∫ b

a

A(t, k, y) f(k, y) dk − F (t, y)

)2
]

(2.4)

Eq. 2.4, though more stable, still suffers from the problem that multiple solutions

for f(k, y) will be statistically equivalent. As a result, the strategy that a par-

ticular optimization algorithm uses to obtain the inversion, f(k, y), can influence

which solution is found, or even if a solution is found.

Many algorithms exist to solve the general least squares problem defined

by Eq. 2.4 and determine the inverse transform, f(k, y).[25, 26] A direct so-

lution to this problem can be obtained using methods such as singular value

decomposition.[26] However these approaches generate solutions that are highly

sensitive to the details of the noise and typically give many negative values for

the parameters. Therefore approaches that allow constraint of the solution to

positive values are desirable.

One of the most common methods for least-squares minimization is Levenberg-

Marquardt (LM).[28, 29] This method is fast for small to medium sized data

sets and is appropriate for both linear and non-linear models, but is subject to

potential non-linear instabilities.[26, 30] A gridded representation of the kernel

A(k, t, y) is called a design matrix and eliminates non-linear instabilities because

it allows the use of linear least squares algorithms like the Active-Set (AS) and the

Interior-Point Gradient (IPG) methods.[31, 32] Though the setup is common in

both methods, each minimizes the general least squares expression very differently.
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Figure 2.1: Experimental prior knowledge With global fitting available, prior
knowledge in the form of a regularizer can either be be applied in the Laplace
transform dimension, k, or in the experimental evolution dimension, y. In the left
panel the individual data transients are indicated by the black mesh lines. In the
right panels, the direction of continuity conditions is indicated by the black mesh
lines. The top right panel emphasizes the continuity in the k dimension imply-
ing continuous distributions of properties. The bottom right panel emphasizes
continuity in the y dimension implying continuous evolution of population.

The AS method enforces non-negativity on f(k, y) by adding and removing

basis functions from the kernel (design matrix).[31] This corresponds to expanding

and contracting the dimensionality of that solution space, in effect finding the

“right number” of exponentials on the grid to represent the fit. This method is

computationally expensive for very large scale problems because of the continual

matrix factorizations necessary to identify the active set. [33, 32]

The IPG method has an adaptive step size that accelerates convergence while

limiting itself to steps that maintain the non-negativity of the solution at all

points in the search, unlike the AS method.[32] IPG is a typical gradient method
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in that it uses the entire set of basis functions and requires only matrix-vector

multiplications.[34, 35] Though these methods are considered to be less accurate

than the traditional AS method [32], the decreased convergence time of IPG for

large problems makes it very useful. IPG accomplishes this by exploiting the

totally non-negative structure of the problem to calculate this step and direction

giving fits that converge faster than the classic Active-Set method.[32]

Because many different elements of the model space will give equally good fits

to the noisy data,[30] all three methods we mention must constrain the model

space, in some way, to stabilize the inverse Laplace transform. Since many of

the solutions may not be physically reasonable, constraints can be selected based

on prior knowledge. When f(k, y) is a population then f(k, y) ≥ 0. Instru-

mental limitations can limit the range of k that can be determined. When y is

varied systematically then the global behavior of the individual species popula-

tions can be invoked to limit the possible f(k, y). For example, the conservation

of matter could provide a normalization condition for f(k, y) at each value of

y. The systematic variation of y could provide an expectation of a particular

functional dependence of f(k, y) along y for particular values of k representing

different species. Limiting the model space with prior knowledge can be done

with deterministic or probabilistic constraints.

Constraints of both types may be applied to the transformed variable, k,

and the non-transformed variable, y. Constraints in the transformed variable

are formed from hypotheses regarding the nature of the system, f(k, y), across

k. This is illustrated by the upper right panel of Fig. 2.1 where continuity has

been invoked along k. Constraints in the non-transformed variable (such as time,

temperature, solvent, etc.) require hypotheses that generate global models leading

to specific functions or continuity conditions describing the evolution of the system

across y. This is illustrated by the lower right panel of Fig. 2.1.

Deterministic constraints consider only some very small subset of functions
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in the model space, and forbid all non-conforming solutions. Such empirical

functions make the tacit prior assumption of a specific physical model for the

system that gives analytical forms for f(k, y) that transform trivially. A least-

squares fit to F (t, y) with these functions is equivalent to the inversion. The most

common way is to use a small number (i.e. 1-3) exponential functions to fit the

data. This limits the model space f(k, y) to a small number of delta functions. All

other possible solutions have their likelihood set to zero a priori. Global models

are constructed by assigning specific functions to describe the evolution of f(k, y)

along y for all of the discrete values of k that represent a species. A drawback

is that this can forbid the “true” solution from being obtained if it is not, by

happenstance, consistent with the deterministic constraints.

By contrast, probabilistic constraints reduce the likelihood of solutions in pro-

portion to their departure from the constraint, but do not set the likelihood of

any solutions in the model space to zero. Probabilistic constraints are usually

imposed by penalty functions or regularization conditions. The new fitting func-

tional including regularization is,

Ξ2 = χ2 + γΩ2, (2.5)

where χ2 is the usual sum of the weighted squared residuals, Ω2 is any arbitrary

regularizer functional, and γ is the strength of the regularization.

Early work on probabilistic constraints[30, 17] used a second derivative regu-

larizer functional of the form

Ω2 = H(k) =

∫ [
∂2f(k, y)

∂k2

]2

dk (2.6)

with the assumption that this would provide the most “parsimonious” discretized

solution to the inversion problem.[17] This regularizer implies piece-wise linearity

in k, strongly biasing against any discontinuities. There will be many systems

for which this will not be valid, such as those having discrete distributions across

k. Other regularizers have been used to probabilistically reduce the available
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solution space for the inversion by imposing expectations of the nature of the

solution in k.[36, 37]

Maximum entropy is another criterion that is often used as a regularizer [23,

36, 38, 39],

W =

∫ ∫
f(k, y)−m(k, y)− f(k, y) log

(
f(k, y)

m(k, y)

)
dkdy (2.7)

where m(k, y) is the uniform distribution that gives maximum entropy. The

entropy functional satisfies two conditions that serve to define it. Entropy is

maximized for flat distributions. This has the physical meaning that all values of

k are not only possible but equally likely. Entropy also has the property that it

is maximized when, in a joint distribution, the likelihood is independent.[40, 16]

That is, when f(k, y) = f(k) × f(y). This has the physical meaning that all

species have identical behavior under the influence of the experimental variable.

This is an excellent example of how assumptions about the behavior of the system

can creep in without the explicit knowledge of the investigator. Also, since en-

tropy is an extensive property, performing a maximum entropy analysis globally

is identical to performing parallel local analyses, so long as the likelihood at each

value of y is normalized across k. This suggests that though maximum entropy

is a useful condition for probabilistic constraint of fitting, it is of limited benefit

for global fitting in this context.

In this paper we introduce a method to exploit the global behavior of a sys-

tem (e.g. continuity) across an experimental coordinate, y, to define a global

regularization condition that does not make any assumptions about the shape

or continuity in the Laplace transform dimension, k. In a typical experiment,

k is directly related some property of the different species present and the con-

centrations of the different species change with the experimental coordinate, y,

(e.g. over time by some kinetic rate law). Therefore the solution set, f(k, y), will

often be piece-wise continuous in y, implying smooth changes in the population of

individual species with respect to y. To represent this behavior mathematically,
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we introduce a global regularizer that favors solutions that satisfy the continu-

ity/smoothness condition in y:

G(y) =

∫ [
∂2f(k, y)

∂y2

]2

dy (2.8)

Implementation of Eq. 2.8 into Eq. 2.5 requires a general least-squares op-

timization algorithm that can accommodate the inclusion of a regularizer term.

The IPG method minimizes Eq. 2.4 by choosing the scale of the step and di-

rection to be as close as possible the exact minimizer without crossing into the

non-negative region. We augment the IPG with a regularizer functional such that

the step and direction favor solutions with continuity in the either the k, local,

or y, global, dimensions.

To demonstrate utility of global regularization on an evolving data set, we

simulate a test data set, evaluate fitting methods and compare and contrast ex-

isting method with methods introduced here. We also evaluate the effect of noise

on each method’s ability to reproduce the test parameter set. Lastly, we show

how to use global regularization in the experimental domain with a traditional

physical model for the species domain to do global fitting using LM.

2.3 Methods

2.3.1 IPG Regularizer

The computer implementation of Eq. 2.4 replaces continuous variables t, y, and

k with discrete variables ti, kj, and ylwith i ∈ {1 · · · T}, j ∈ {1 · · ·K},

and l ∈ {1 · · ·Y }. Matrix notation replaces continuous notation as follows. Each

transient, F (t, yl) has a design matrix,

A
[T×K]
l ≡ A(t, k, yl)/s(t, yl),

a solution vector,

x
[K×1]
l ≡ f(k, yl),
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and a data vector,

b
[T×1]
l ≡ F (t, yl)/s(t, yl).

The design matrix and the data vector are scaled by the standard deviations of

the data, which were estimated by s(t, yl) =
√
F (t, yl) + 1.

We momentarily drop the subscripts in our notation when considering one

transient at a time. The minimum of Eq. 2.4 occurs when the derivatives with

respect to the parameters equal zero, yielding the exact minimizing equation,

ATAx−ATb = 0. (2.9)

The details of the fitting algorithm can be found in [32]. The key feature of the

algorithm is the way it determines the scaling vector for calculating each iteration:

d =
x

ATAx
. (2.10)

Eq. 2.10 is the core of the IPG algorithm and makes it less sensitive to ill-

conditioned problems. Ref. [32] shows that with condition number of ATA ≈

1016, the relative error of the fits between IPG and the Active-Set after 103 it-

erations is ≈ 10−5 and nearly five orders of magnitude better than other scaling

methods. For our global fits, typical condition numbers range from 1018 to 1022

making the insensitivity of IPG to condition number particularly valuable.

Locally Regularized IPG

The same minimization principle can be applied when considering the cost func-

tion, Ξ2 in (Eq. 2.5),

(ATA + γH)x−ATb = 0, (2.11)
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where the regularizer H is now represented as the regularization matrix H.

H[K×K] ≡



1 −2 1 0 0 0 0 · · · 0

−2 5 −4 1 0 0 0 · · · 0

1 −4 6 −4 1 0 0 · · · 0

0 1 −4 6 −4 1 0 · · · 0

...
. . .

...

0 · · · 0 1 −4 6 −4 1 0

0 · · · 0 0 1 −4 6 −4 1

0 · · · 0 0 0 1 −4 5 −2

0 · · · 0 0 0 0 1 −2 1



(2.12)

where, again K is the number of parameters for each transient. This second

derivative regularizer matrix measures departure from piece-wise linearity in f(k).

Other regularizers will be appropriate depending on the available prior knowledge.

Details for generating different types of regularization matrices are found in chap-

ter 18-5 of reference [26]. For locally regularized IPG, we substitute (ATA + γH)

for all occurrences of ATA in the IPG algorithm.

Globally Regularized IPG

The global fits simultaneously consider all the available Y transients. Setting up

globally regularized IPG is analogous to the locally regularized case, except that

the entire data set is fit at once. The matrices and vectors must accommodate the

global nature of the problem. This requires concatenation of local data transients

and parameters into global vectors:

b =


b1

b2

...

bY


and x =


x1

x2

...

xY


. (2.13)
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The design matrices, Al are placed in a block diagonal global-design matrix,

A =


A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 0 · · · AY


. (2.14)

The regularization matrix is also expanded to incorparate continuity across the

non-transformed dimension. Eq. 2.8 specifies a global regularization matrix,

G[KY×KY ]. To obtain G[KY×KY ], each element (h1···Y,1···Y ) of Eq. 8.2, (H[Y×Y ]) is

replaced by a K ×K diagonal matrix:

G =


h1,1I h1,2I · · · h1,Y I

h2,1I h2,2I · · · h2,Y I

...
. . .

...

hY,1I hY,2I · · · hY Y I


, (2.15)

where I is a K ×K identity matrix.

For global regularization, we substitute (ATA + γG) → ATA in the IPG

algorithm.

2.3.2 Data Simulations

Ten (Y = 10) time-correlated single-photon counting (TCSPC) measurements

were synthesized with T = 4096 bins over 50 ns time-window range to evaluate the

utility of the global regularization method. Each transient, F (t, yl), is generated

by the matrix multiplication of an exponential decay matrix, S (with each element,

Sij = exp(−kjti)) by a K = 1200 synthesized solution set (the exemplar) f̃ =

f̃(k, yl). The synthesized solution set was evenly spaced in k−1, from 0.01 to

12ns. The grid for the simulation was 10-fold denser than that used for the fit to

better simulate the presence of continuous distributions.
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The exemplar solution set, f̃(k, y) was generated by representing four evolving

species, each by a Gaussian distribution,

f̃(k, y) =
4∑
i=1

Ci

(
σi
√

2π
)
−1e
− 1

2

“
k−ki
σi

”2

. (2.16)

Such fluorescence decay components commonly arise and are difficult to fit.[37,

41, 42, 36] Species 1 was centered at k−1
1 =7 ns, concentration C1=1 and had an

evolving width,

σ1(y) =

(
0.2 +

0.7

e−(5−y)/2 + 1

)
ns.

Species 2 (k−1
2 =2 ns, σ−1

2 =0.2 ns) has an initial concentration of C2=0.5 and

converts into Species 3 (k−1
3 =3 ns, σ−1

3 =0.2 ns) with a first order rate of 0.2/ex-

perimental unit in y. Species 4 was non-evolving in both k and y, (k−1
4 =1 ns,

σ−1
4 = 0.2 ns) with constant concentration of C4=0.3. The right two panels in

Fig. 2.1 show the exemplar solution, f̃(k, y), for the evolving test case, F (t, yl).

The intensity decays generated were convoluted with an instrument response

function typical of microchannel plate photomultipliers.[43, 7] We examined the

influence of noise on the fitting algorithms by generating data sets with different

intensity levels. The peak convoluted decay intensities were scaled to eleven

values: I = 102, 2× 102, 5× 102, 103, 2× 103, 5× 103, 104, 2× 104, 5× 104, 105,

and 108. We included uncorrelated background (e.g. dark counts) at an intensity

level of 30 counts for every bin for all signal-to-noise (S:N) levels. The noise of

photon counting was simulated from a Poisson distribution at the intensity of

each bin in F (t, y). For example, the case with an intensity of I ∼ 104 peak

counts and 30 background counts has a S:N level of ∼100:1 at the peak.

2.3.3 Fitting Mechanics

All fits were performed with Igor Pro 6.01 (Wavemetrics Inc.) running on a

2.16 GHz Intel DuoCore MacBook Pro under Mac OS X 10.4 (Tiger) with 2 GB
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of RAM. Active-Set and IPG were implemented as user-defined functions. Non-

linear least squares fitting was performed implementing IGOR’s Levenberg-Marquardt

(LM) curvefit package.

Levenberg-Marquardt

We performed four types of exponential, instrument-response-convolved fits uti-

lizing the LM method: three exponential model, four exponential model, global

model and a regularized global model fit. For the global model fit, the entire data

set was fit simultaneously. The global model was chosen based on the global IPG

fits, the full rationale for which appears in the results.

Three and four exponential fits were of the form F (t, y) = F0(y)+
∑n

i=1 Pi(y)e−kit,

where n = 3 or 4, respectively. All parameters F0, Pi and ki were unconstrained.

The data were weighted by the estimated standard errors. Each data transient

was fit individually. To provide the best likelihood of successful convergence, the

initial guesses were determined from a successful multi-exponential fit for the high

S:N limit (I = 108). For each S:N ratio the initial guesses were scaled according

to the intensity and used for the first transient. The resulting fit parameters were

then used as the initial guess for the next transient in the data set. Convergence

of the algorithm occurred when either the one of the two conditions were met:

the number iterations reached a maximum of 100, or fractional decrease of sum

of the weighted residuals, χ2, from one iteration to the next was less than 0.001.

Global models were performed on an entire data set for a particular signal-to-

noise ratio. The chosen model for the global fit was represented by one stretched

exponential plus three exponentials:

F (t, y) = F0(y) + P1(y)e−{k1(y)t}β(y)

+
4∑
i=2

Pi(y)e−kit, (2.17)

where k2, k3, and k4 were global parameters and β(y), k1(y), P2(y), P3(y), P4(y),

and F0(y) were local. Initial guesses were determined using the same method as



28

the local fits. All parameters were constrained to be positive, and the following

parameters were constrained by 0.8 < k−1
4 < 1.2 ns, 1.5 < k−1

2 < 2.5 ns, 2.8 <

k−1
3 < 3.5 ns, and β ≤ 1. The rationale for the constraints is in the Results sec-

tion. A perturbation coefficient applied to stabilize the estimates of the numerical

derivatives calculated by LM and was necessary for a successful fit. In IGOR Pro,

the coefficient is implemented via an “epsilon wave” and was set to 0.01. The

convergence criteria were the same as the local LM fits.

The globally regularized model applies the second derivative global continuity

condition on same local parameters across the non-transformed coordinate. The

regularizer for any set of local parameters, P(Y×1), is:

Ω2
P = PTHP (2.18)

where H ≡ H(Y×Y) and P ≡ (local1, local2, ...localY )T. A regularizer value for

any set of parameters can be calculated. For this paper, regularizer value for

local parameters P1(y), P2(y), P3(y), P4(y), k1(y) and β(y) were caluculated and

summed into the total regularizer value for the model, Ω2
M.

In order to use the same LM minimizer used to fit the three and four expo-

nential fits, Igor’s built in curve fitting operation was used to minimize the new

cost function in Eq. 2.5. This was accomplished by expanding the data and fit by

one data point (a total of T × Y + 1 points). By placing the square root of γΩ2
M

in the last fit point and a zero in the last data point, the fitting algorithm will

add the squared the difference to the residuals giving the proper cost function.

Active-Set and Interior Point Gradient

AS and IPG require as input a design matrix (Al), scaled data (bl), and an

initial guess for the solution xl. AS, IPG and locally regularized IPG fit each

transient in a data set individually. For TCSPC data simulations in this paper

the design matrix A has elements exp(−kjti). The design matrix was convoluted
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column-by-column with an instrument response function typical of microchannel

plate photomultipliers. The total number of grid points per local fit was set to

K = 120. The grid was evenly spaced in k−1 from 0.1 to 12.0 ns. For globally

regularized IPG, these local matrices were organized as previously described in

the methods for the global case.

The IPG method requires a scaling term λ ∈ (0, 1) The scaling term is used

when IPG attempts to take step into a non-feasible region of the parameter state

space; λ is used to scale the maximum allowable step distance as to get close, but

not reach the non-negative boundary. We set λ = 0.9 which is 90% of the largest

step. In the current data fits λ was set to 0.9 because it seemed to converge the

fastest while also avoiding local minima.

Convergence of the IPG algorithm was allowed a maximum of 106 iterations.

Every 2000 iterations, χ2 was evaluated. If the fractional decrease from one

evaluation χ2 to the next was less than 10−7, the fit was considered converged.

The high S:N limit data, I = 108 required 107 iterations due to the large condition

number of the global design matrix. Initial guesses were set to 10−32.

We chose the linear continuity condition for both local regularization and for

global regularization in Eq. 2.6 and 2.8, respectively. Adding the regularizer to

the minimization for IPG modifies the condition needed to maintain the param-

eters in the non-negative region. To maintain the totally non-negative condition,

regularized IPG requires (ATA + γH)x > 0, so γ is constrained by:

γ ≤ Hx

ATAx
. (2.19)

For all S:N, γ was set many orders of magnitude below this maximum threshold.

Maximum Entropy method fits

Maximum Entropy fits were performed using a exponential rates and is minimized

by the Levenberg-Marquardt method using the same convergence and constraint
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criteria as described above. Each transient was fit locally using the the same

design matrices, Al, as employed for the AS and IPG methods,

F (t, yl) =
T∑
i=1

K∑
j=1

Aijlxjl. (2.20)

Maximum Entropy regularizer, γW , was by calculated using Eq.2.7 and were

implemented using Igor’s built in curve fitting operation in similar fashion as the

global regularized model fits.

2.3.4 Model Similarity Criteria

Two perspectives can be taken to compare and contrast the fitting methods pre-

sented in this paper. The first compares the quality of fit, the second compares

the quality of parameters. A model is considered acceptable when the quality-of-

fit, χ2, is below some statistcal threshold . Multiple acceptable models (usually

differing in model simplicity) can be differentiated from each other via statisti-

cal testing. However, many models will be statistically indistinguishable based

solely on quality of fit to the data, even when χ2 is evaluated globally across

all Y transients, frustrating the search for the “best” global model. The ulti-

mate goal is to get the set of parameters that best represents the physics of the

system assuming all candidate models give adequate fits to the data. We use

the Kullback-Leibler divergence and species population deviation to evaluate the

quality of the parameters as compared to the exemplar parameter set.

Quality-of-fit

The sum of the weighted, squared residuals, χ2, is normally reduced by the ex-

pected variance or value of χ2 based on normal statistics. However, because we

have synthesized data, we can directly compare the true F(t,y) (i.e. noiseless

data) to the noisy data to determine the actual variance of the data and reduce
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the fit χ2 by this value,

χ2
r =

χ2
fit

χ2
true

. (2.21)

χ2
r values are calculated for the entire data set. We consider an adequate fit to

be 1.1 > χ2
r > 1.0. χ2

r with values above or below this range under-fitting or

over-fitting the data, respectively.

The F-test is used to calculate the probability-to-reject the hypothesis that two

fits are the same based on χ2
r [17]. Values close to 1 indicate the values of χ2

r are

statistically different. For this paper, we use the F-test for two different purposes:

to set convergence criteria and to compare the statistical significance of different

model fits. The convergence criteria for IPG fits provided a probability-to-reject

< 0.01 for all S:N when compared to the AS fits. The regularizer strength, γ, for

local and globally regularized IPG fits was chosen such that probability-to-reject

< 0.01 when compared to the AS fits. With very little regularization, we will show

that even though fits are not statistically different, the underlying parameters

distributions are. The F-test was used compare traditional global model fitting

with regularized global fitting, again choosing the regularization strength such

that probability-to-reject < 0.01. We also used the F-test to compare three

exponential fit to the four exponential, traditional global fit and regularized global

fits.

Quality-of-Parameters

Kullback-Leibler divergence is an information theory approach to quantify the

difference between a “true” probability distribution and an arbitrary probability

distribution, and represented by,

DKL =
∑
k

∑
y

f(k, y) ln

(
f(k, y)

f̃(k, y)

)
. (2.22)

DKL is a measure of the relative entropy of the two distributions. Perfect overlap

of a test set would result in a value of DKL = 0.
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A common goal in fitting data is to determine the evolution of the populations

of different species. Attribution of the populations from gridded fits such as the

AS and IPG methods described above is not trivial. Therefore, we define regions

of the grid that are attributed to each species. The region for each species is

summed for a given value of y to determine the total population of that species.

The evolution of species i in a particular data set was defined as Si(y):

Si(y) =

ki,max∑
k=ki,min

f(k, y) (2.23)

where ki,min and ki,max were set based on the features of the exemplar parameter

set. Specifically, k−1
4,min = 0.6 ns, k−1

4,max = 1.4 ns, k−1
2,min = 1.5 ns, k−1

2,max = 2.4 ns,

k−1
3,min = 2.5 ns, k−1

3,max = 3.5 ns and k−1
1,min = 5.0 ns, k−1

1,max = 9.0 ns. The species

parameters are calculated for every S:N ratio, but we will only explicitly compare

Si’s for different fitting methods at I = 104.

An overall score for reproducing the populations over the evolution dimension

y was determined by the mean-squared difference of the populations:

POP =
4∑
i=1

(S̃i(y)− Si(y))2 (2.24)

where S̃i(y) is the population vectors calculated from the exemplar model. This

metric, along with the Kullback-Leibler divergence, alllowed us to score the overall

performance of different methods for all S:N ratios in their ability to reproduce

the underlying physics of the system.

2.3.5 Error Estimates

Parameter errors in ill-posed problems are unbounded.[17] This arises because

many potentially very different parameter sets can fit the data equally-well. How-

ever for a particular fit one can estimate the errors in the parameters and the

degree to which they are coupled from diagonal and off diagonal elements of the
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covariance matrix, respectively. Taking the derivative of the Jacobian, Eq. 8.1,

gives the Hessian matrix. The matrix inverse of the Hessian matrix gives the

covariance matrix:

C = ((ATA + γH))−1. (2.25)

The square root of the the diagonal elements of the covariance matrix provides

an estimate of the errors in the parameters. Not all parameters will have a value

of zero in the Jacobian given by Eq. 8.1. This is a consequence of the constraint

of the paramters to be non-negative. These parameters are not active and should

not be included in error estimates. Therefore, only parameters with values of

the Jacobian that are close to zero should be included in the Hessian matrix.

In our experience the covariance matrix gives large estimates for the errors in

these ill-posed problems because of the large degree of anti-correlation between

parameters.

2.4 Results

In this section we examine the results of several approaches to fitting the data

generated by the exemplar model at different levels of photon counting noise.

2.4.1 Levenberg-Marquardt

A common method for multiexponential fitting of TCSPC data is non-linear least-

squares optimization. This method implies a weighted sum of delta-functions at

the different values of the decay rates in Laplace space. The number of delta-

functions is static which helps to stabilize the inversion. Levenberg-Marquardt

is one of the most common algorithms for accomplishing this. For the data

sets generated by the exemplar model, less than three exponentials did not give

satisfactory fits.



34

8

6

4

2

0

12108642
 lifetime, t   /   ns

8

6

4

2

0

8

6

4

2

0

 E
x
p

e
ri
m

e
n

ta
l 
C

o
o

rd
in

a
te

, 
y

8

6

4

2

0

8

6

4

2

0

5 1.0 0.4 0.2 0.15 0.1

rate, k  /  ns
-1

44 22 33 11
Exemplar

I =1x10
5

I =1x10
4

I =1x10
3

I =2x10
2

Figure 2.2: f(k, y) for three exponential fits. Starting from top panel down:
exemplar solution parameters, fit solution parameters synthesized with I =
105, 104, 103, 200 peak mean photons. Superimposed numbers correspond to
species described in Methods.

Three-Exponential Model Fits

Three exponential fitting was fast, robust, and relatively insensitive to initial

guesses with respect to convergence, except for the high S:N limit (I = 108)

which converged much more slowly. Only at this high S:N limit did a fit yield a
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value of χ2
r that indicated that the fit failed to reproduce the data. (See Fig. 2.11.)

Contour plots of the parameter values resulting from three exponential LM fits

appear in Fig. 2.2. The discrete functions are unable to reproduce the width or

evolution of Species 1 at any S:N. The conversion of Species 2 to Species 3 is never

resolved. At high S:N (I ≥ 105) the conversion is represented by a single species

with a decay rate at approximately the weighted average of the contributions of

Species 2 and 3. Species 4 should not evolve in either intensity or position and

is only properly reproduced at high S:N (I ≥ 105).

The population evolutions for Species 1 - 4 at a moderate S:N, I = 104, are

compiled in Fig. 2.14. For this three exponential fit, S1(y), represented by brown

circles, follows a similar trend to that of the exemplar evolution (shown by the

solid line of the same color). S2(y) (green diamonds) is not present, suggesting

the need for another exponential term. S3(y) (blue triangles) follows the cor-

rect increasing population evolution trend over the experiment coordinate, but is

overestimated. S4(y) (red squares) decreases until it reaches the true population,

y = 2, then flattens. The initial overestimation of Species 4 population evolution

and total overestimation of Species 3 is a compensation for the inadequacy of the

three exponential model to describe Species 2.

Quantitative measure of the similarity (see DKL and POP in Figs. 2.12 and

2.13, respectively) of the three exponential fit parameters and the exemplar model

show little improvement with increasing S:N, even at the high limit (I = 108).

This is a consequence of the lack of flexibility in the model to represent the trends

in the exemplar model. In effect, the correct model was excluded prior to fitting.

A normal next step would be to add an additional exponential term to the model

and compare the fits to the three exponential results.



36

8

6

4

2

0

12108642
lifetime, t   /   ns

8

6

4

2

0

8

6

4

2

0

E
x
p
e
ri
m

e
n
ta

l 
C

o
o
rd

in
a
te

, 
y

8

6

4

2

0

8

6

4

2

0

5 1.0 0.4 0.2 0.15 0.1

rate, k  /  ns
-1

44 22 33 11
Exemplar

I =1x10
5

I =1x10
4

I =1x10
3

I =2x10
2

Figure 2.3: f(k, y) for four exponential fits. Panels are described in figure 2.2.

Four-Exponential Model Fits

Contour plots of the parameter values resulting from four exponential LM fits

appear in Fig. 2.3. For all S:N, the resulting parameters were sensitive to initial

guesses, even though the χ2 statistic was not. At the S:N limit (I = 108),

convergence became extremely sensitive to the initial guesses for the parameters.

We note that this prompted our use of similar initial guesses for each S:N ratio
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as described in the Methods. According to the F-test, the χ2
r values were not

significantly different from those obtained for three exponential fits until high

S:N (probability-to-reject for I ≤ 2 × 104 was < 0.01). Only the high S:N limit

(I = 108) gave a value of χ2
r that indicated that the fit failed to reproduce the

data. (See Fig. 2.11).

The four-exponential model fails to reproduce the exemplar model as illus-

trated in Fig.2.3. In the region of the distribution associated with Species 1, the

fit typically used two of the four available exponentials. There was no systematic

trend in these components until high S:N (I ≥ 105) where the pair of exponen-

tials are split and increases in separation over the non-transformed coordinate,

y. Though this might have been hailed as a success, there is little to distinguish

this pattern from that generated in the Species 2, 3, and 4 region. Here Species

4 is resolved, and the exchange of Species 2 and 3 is again reduced to a single

exponential at the weighted mean.

These trends can be more clearly seen when we consider the species population

evolutions in Fig. 2.14. The S1(y) decreases and diverges from the exemplar at

y = 6 as the one of the two exponential rates, attempting to shape the edges of this

distribution, overshifted to about k−1 = 4.5 ns. There was an abrupt exchange of

population between S2(y) and S3(y) at y = 6 as the single exponential component

shifts to longer lifetime. Finally, S4(y) evolved by first decreasing (y ≤ 5) then,

after a sharp increase, decreased again (y > 6).

The overall population overlap parameter, POP , was overall better than the

three exponential fits and gradually, if inconsistently, trended toward improve-

ment with increasing S:N. The Kullback-Liebler divergence also improved slightly

with increasing S:N. Approaching the high S:N limit there was no further improve-

ment in POP or in DKL. Interestingly, χ2
r greatly deviated from one but was two

orders of magnitude smaller than three exponential χ2
r at the same high S:N limit.

At low S:N the fits are of such poor stability that the addition of another
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exponential makes it even more difficult to identify a trend in the fits, most likely

because of the necessary trade-off between representing the different numbers

of species and widths at the early versus late stages of the evolution across y.

For example, in the first few transients, three species were being represented by

four exponentials. Later there were four species active, but one of them required

a width that needs at least a fifth exponential to represent it. All this would

suggest that an adaptive method (such as the Active-Set method) that could

change the number of exponential contributions as needed might provide better

fits and better reconstruction of the exemplar model.

2.4.2 Active-Set

Contour plots of the parameter values resulting from Active-Set method fits ap-

pear in Fig. 2.4. The Active-Set method converged substantially slower than the

three and four exponential LM fits. This difference became more pronounced

with increasing S:N. The χ2
r steadily decreases with increasing S:N.

At low S:N, the fits are unstable and correct trends are difficult to ascertain.

Species 1 is represented by two or three components, but no systematic trend

appears. Likewise Species 2, 3, and 4 are represented by three or four components,

but are not resolved until the high S:N limit (I = 108 parameters not shown).

As can be seen in Fig. 2.4, the Active-Set method typically selects four to

eight exponential contributions for a given position along the non-transformed

(y) coordinate. However as can be seen in Fig. 2.11 this has not translated into a

substantially better match with the exemplar; it is not only difficult to ascertain

a trend for Species 2, 3 or 4 at any S:N, but there is little evidence of distribution

of rates for Species 1.

The lack of any discernible trend has translated into erratic behavior of the

species evolutions in Fig. 2.14. Again, S1(y) slowly deviates from the exemplar as

the width of the distribution of Species 1 increases. Populations S2(y) and S3(y)
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Figure 2.4: f(k, y) for Active-Set Method fits. Panels are described in figure 2.2.

randomly exchange across the experimental coordinate while S1 fluctuates about

exemplar population values.

Though performed on a grid, the Active-Set method tends to give discrete

distributions. This is a consequence of the algorithm used to expand and contract

the basis set. During the search for the best fit the algorithm explores regions

of parameter space that include negative populations. To correct for this, these
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negative values are pruned from the active set of basis functions. It is usually the

closely-related basis functions that get pruned. This results in the suppression of

solutions with continuous distributions. This tends to make Active-Set method

not fit distributions as well as one might expect given that the distribution is

explicitly allowed by virtue of the procedure being performed on a grid.

2.4.3 Maximum Entropy Method

A commonly used method to improve the stability of multi-exponential and

distribution-of-exponentials fitting is to regularize using maximum entropy (MEM).

The parameter values of the resulting fits are shown in Fig. 2.5. The MEM con-

verged substantially slower than the Active-Set fits. Good fits were only obtain-

able when the regularizer parameter was increased to a value consistent with a

ten-fold higher probability-to-reject the regularized solution as compared to the

typical IPG regularized fits (vide infra). The χ2
r steadily decreases with increasing

S:N and displayed a consistent trend with AS fits even at the highest S:N.

At low S:N (I = 2× 102), none of the species are resolvable. At modest S:N

(I = 103) the distribution of Species 1 is apparent and is the first example in this

paper of fitting method depicting a distribution. Though Species 1 distribution

becomes better defined as high S:N, Species 2, 3, and 4 are still undecipherable.

Only in the high S:N limit (I ≤ 108) are all the species resolvable.

Kullback-Liebler divergence and the overall population parameter, POP , sys-

tematically improves with increasing S:N. At (unrealistically) high S:N limit, these

parameters are extremely good.

2.4.4 Interior Point Gradient Method

The Interior Point Gradient method improves the grid-based solution by perform-

ing the fit search in such a way that physically forbidden (negative population)
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Figure 2.5: f(k, y) for MEM fits. Panels are described in figure 2.2.

values of the parameters are never accessed. Execution time of the algorithm

was substantially faster than that of the Active-Set method, but slower than

LM. Adding local regularization to IPG increased the average iteration time by

less than 10%. globally regularized IPG was the slowest to converge because this

method fits all the data simultaneously. For all reasonable values of S:N (I ≤ 105)

the resulting χ2
r were consistent with a good fit as seen in Fig. 2.11.
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Figure 2.6: f(k, y) for IPG fits. Panels are described in figure 2.2.

Unregularized IPG

Contour plots of the parameter values resulting from unregularized IPG fits ap-

pear in Fig. 2.6. The IPG fits do a better job reproducing distributions, such as

that of Species 1. Even at modest S:N (I ≥ 103) the distribution of Species 1 is

well defined, though the proper evolution of its width is not resolved except for

high S:N (I ≥ 105). The contributions of Species 2, 3, and 4 are unstable at low
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S:N.

At high S:N (I = 105) Species 4 is resolved from Species 2 and 3. However,

the conversion of Species 2 to 3 is a shifting distribution rather than separate

exchanging distributions. Only at the high S:N limit (I = 108 parameters not

shown) does the unregularized IPG method reproduce the contributions from all

four species and their evolution with y.

Even though population distributions are being reproduced, the species pop-

ulations for the IPG method evolve erratically over the experiment coordinate.

S1(y) decreases with y but the deviation from the exemplar, S̃1, is less than seen

in AS. S2(y) and S3(y) readily exchange population. S4(y) is far from constant

evolution across y.

Kullback-Liebler divergence systematically improves with increasing S:N. The

overall population parameter, POP , also improves with increasing S:N. Fitting

data with high S:N, I ≥ 2×104, there is a big improvement in POP . Comparing

parameters in Fig. 2.6 with moderately-high to high S:N, i.e. I = 104 to I = 105,

IPG gains the ability to separate Species 2 from Species 3, albeit, with minimal,

success. To improve the IPG’s inability to accurately reproduce parameters at

low S:N, a regularizer may be used to stabilize the fitting procedure.

Locally Regularized IPG

The effect of the local regularizer on the fits can be seen in Fig. 2.7 as effectively

broadening the distributions as compared to unregularized IPG. The imposition

of the continuity condition in the transformed dimension k has essentially given

very similar solutions to that of the unmodified IPG except that the distributions

have broadened beyond the exemplar widths. At very low S:N, the correct trend

is impossible to ascertain in any reasonable way. Fitting moderate S:N data

(I = 104), the distribution of Species 1 is resolved but does not correctly evolve

in width. Concurrently, Species 2, 3 and 4 are merged into an undecipherable
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Figure 2.7: f(k, y)for Locally Regularized IPG fits. Panels are described in figure
2.2.

single species. At high S:N (I = 105), Species 1 is resolved with a similar width

evolution as the exemplar. However, for y < 4 Species 2, 3, and 4 are merged

making it difficult to establish initial species. Even at this S:N, Species 1 has

been over-estimated in width.

The species populations for locally regularized IPG were far more stable than
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the AS or unregularized IPG. S1(y) decreased away from the exemplar population

after y = 6. Even though the distributions of Species 2 and 3 were unresolved, the

evolution of S2(y) and S3(y) indicated that the correct populations were beginning

to be recovered, though they were still unstable. There was an apparent trend

of decrease in population of Species 2 and a simultaneous increase in Species 3.

S4(y) was well-behaved about its correct exemplar value.

Though the qualitative trends comparing the locally regularized IPG fit pa-

rameters to the exemplar model suggested worse fits, the Kullback-Liebler di-

vergence was smaller than the unregularized case. This is a result of broader

distributions being more forgiving in terms of overlap with the exemplar model.

Even the population is slightly better-reproduced in the locally regularized IPG

fits. Similar to the unregularized case there is a big improvement in this metric

occuring at low S:N, I = 2 × 103 to I = 104. As seen in Fig. 2.7, Species 1 be-

comes better defined at higher S:N, as well as separating Species 3 from Species

1 for y ≥ 7.

Overall, the regularization of IPG stabilized the solution set and may allow the

investigator to establish trends at high S:N. Though the evolution of species pop-

ulations showed reasonable overlap with the exemplar in Fig. 2.14, it is unlikely

that that local regularization would lead the investigator to correctly identify the

number and properties of species present.

Globally Regularized IPG

The globally regularized IPG method was far superior for reproducing the exem-

plar model. Even at level of S:N appropriate for a single molecule measurement,

(I = 2×102) the fit demonstrates that the long lifetime species was a broad distri-

bution whereas the short lifetime components were narrower. Species 1 broadens

with y. The presence and conversion of Species 2 and 3 were beginning to be
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Figure 2.8: f(k, y) for Globally Regularized IPG fits. Panels are described in
figure 2.2.

resolved. At modest S:N (I = 103), Species 2 and Species 3 were clearly two sep-

arate populations converting from one to the other, adjacent to a third constant

Species 4. The mean of the population distribution of Species 1 was about 7 ns,

increasing in width along the experimental coordinate.

The species population evolution was quite similar to that of the exemplar.
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Species populations S2(y) and S3(y) both slowly exchanged populations without

affecting S4(y). Notice that populations followed a more linear trend than the

exemplar populations for Species 2 and 3. This was due to the linear nature of

the regularization condition applied in the fitting algorithm.

The quality-of-fit improved systematically with increasing S:N. The quality-

of-parameters also became increasing better with S:N. POP decreases abruptly

between I = 102 and I = 2× 102, then again between I = 5× 103 and I = 104.

Though the globally regularized IPG method reproduced a distribution for Species

1, at the lowest S:N there was an inability to distinguish between Species 2, 3,

and 4 (data not shown). At slightly higher S:N, this was no longer a problem.

When comparing moderate to high S:N, not only were the Species 2 and 3 better

separated, their populations more closely matched the exemplar. This represented

the second drop in POP . The Kullback-Liebler divergence also steadily decreased

with increasing S:N. Fits for data with low to modest S:N, I = 5×102 to I = 103,

also showed a drop in the divergence parameter. This small increase in S:N allowed

the globally regularized IPG method to clearly define all species and populations.

The globally regularized IPG fitting procedure does a great job reproducing

the evolution of the exemplar model. However the exact evolution of the pop-

ulation of the species present must be interpreted by extracting them from the

gridded fits. Moreover there is no way of directly interpreting the physics or

chemistry implied by the evolution from these fits. This is the consequence of

the probabilistic constraints as opposed to specifying a particular physical model.

The advantage is that since models were not eliminated a priori, one can use

the globally regularized IPG fits to determine an appropriate physical model for

traditional global fitting as appears in the next subsection.
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2.4.5 Global Model LM

A global model puts deterministic constraints on the model space in the trans-

formed coordinate. We determined a global fitting model using the distribution

of rates from the globally regularized IPG fit at I = 104 in Fig. 2.8. From this

fit, it is clear that there are four species. Species 1 had a significant width, that

slightly evolved and was centered at k−1= 7 ns. Conventional global fitting might

treat this as a stretched exponential expression (second term in Eq. 2.17) in order

to model a distribution of rates. Both the stretch parameter, β(y) and the rate

parameter, k1(y) must be local parameters since β(y) changes not only the width

of the distribution but also the mean.

The global fit also showed that Species 2, 3 and 4 were fairly narrow dis-

tributions thus represented by single exponentials, each with global rates, k2, k3

and k4. Though the populations of these species had fairly consistent trends (i.e.

Species 2 descended, 3 ascended and 4 remained nearly a constant in amplitude)

the model was kept general enough to allow variability in populations across the

evolution, by employing local pre-exponential factors P2(y), P3(y), P4(y), respec-

tively. The fit model also contained a baseline term, F0(y), local for each data

transient.

Part of the instability of non-linear least-squares fitting of multi-exponential

functions arises from the lack of constraints on the the exponential parameters.

Even with the proper discrete global model, the fit procedure must be constrained.

If they are left unconstrained, the exponential parameters can attain the same

values. When this occurs, singular matrix errors are encountered by the LM

algorithm causing the fit to fail. To forbid the global rate parameters from com-

bining, a problem common with non-linear multi-exponential fitting, constraints

were used. Constraints were placed upon global parameters, k2, k3, and k4, and

they were chosen based on the trends in the I = 104 globally regularized fits.
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Figure 2.9: f(k, y) for Global Model fits. Panels are described in figure 2.2.

Traditional Global Model LM

For all reasonable S:N levels (I ≤ 105), good fits were obtained as determined from

χ2
r. In fact, there was no significant statistical difference in quality-of-fit across

nearly all S:N levels I ≤ 5× 104, comparing the three exponential model and the

stretched model (Probability-to-reject ≤ 0.01). At high S:N limit I = 108 the

χ2
r value increased suggesting that the discretization of the model was beginning
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to make a difference in the quality of the fit at that limit. For all S:N, fits were

robust but at low S:N, I ≤ 2 × 102, the global rates were often limited by the

constraint (not all data is shown).

For the low S:N fits, the stretched exponential term was not able to consis-

tently reproduce the Species 1 distribution. The β(y) parameter converged to

1 in several cases resulting in a discrete exponential for some values of y. Even

though Species 1, 2 and 3 were centered at nearly the correct lifetime, the local

amplitudes fluctuate greatly at low S:N. By a moderate S:N level, I = 104, the

fits nicely reproduce the width and evolution of the Species 1 distribution. The

instability of the β parameter for the fit to Species 1 appeared to interfere with

the fitting of the conversion of Species 2 to 3, which was not correctly reproduced

until I = 104. The Species 4 region was properly reproduced even at low S:N,

I = 2× 102.

As anticipated, the ability of the global model to reproduce the populations

was excellent. The populations trends appeared to be only slightly “noisy” across

y. Moreover, the POP metric shows global model thus far producing the best

overlap with each species population from I ≥ 5 × 102. Because all population

for a particular species were determined from subranges of the grid of k’s, the

POP parameter was less sensitive to the discrete nature of model used to describe

Species 2, 3 and 4. The plateau in DKL divergence at I ∼ 104 suggests that above

this value the deterministic constraints on the transformed coordinate dimensions

of the model space limit the quality of overlap with the exemplar model.

The local nature of the amplitude parameters allowed them to fluctuate greatly

along y, especially for low to modest S:N. A specific deterministic model along y

related to some physical theory could help stabilize this situation. We note that

since there was no improvement in Kullback-Liebler divergence or POP for high

S:N limit (I = 108), we expect little gain in parameter stability at moderately

high S:N (I > 104) with a regularized model. Nonetheless, in the spirit of first
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Figure 2.10: f(k, y) for Regularized Global Model fits. Panels are described in
Fig. 2.2.

using probabilistic models, we attempted to regularize the model fit along the y

coordinate as a way to use global information without a specific model.
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Regularized Global Model LM

Regularization of the global LM fitting increased convergence time by no more

than a factor of 2 and increased the stability of the fitting procedure. The values

of χ2
r indicated good fits across all reasonable values S:N and were not statisti-

cally different from the traditional global model fits as measured by the F-test

(probability-to-reject < 0.05).

The addition of the regularizer stabilizes the distribution due to Species 1.

This, in turn, stabilized the evolution of Species 2 and 3 since Species 1 was no

longer interfering with them. Overall good fits were obtained at moderate S:N

I ≥ 103.

The globally regularized model fit was a considerably better method for re-

producing the distribution of Species 1 at very low S:N. Species 1 had a clear

distribution across the experimental coordinate, but lacked an evolving trend in

width. Species 2, 3 and 4 had the correct population trends but are close to

the employed bounds. For data with I ≥ 103, all species were well within the

imposed bounds, while showing an evolving width associated with Species 1. The

ability of this method to resolve Species 2, 3 and 4 did not change much with

increasing S:N I ≥ 103, while Species 1 improved with better S:N.

The addition of the regularizer to an otherwise traditional global fit improved

the ability of the fit to reproduce systematic changes in species population evo-

lution as seen in Fig. 2.14. Specifically, the evolutions for the regularized global

model were noticeably smoother. As with the globally regularized IPG fits, S2(y)

and S3(y) were more linear than their respective exemplar evolutions. The con-

stant species, S4(y), also did not have a consistent increasing trend, as it did

for the globally regularized IPG. Though S1(y) was slightly overestimated, the

population evolution was nearly constant.
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The match with the exemplar model was limited because of the discrete char-

acter of the model in the transformed dimension as seen in the Kullback-Liebler

divergence. However, when comparing the Kullback-Liebler divergence for the

regularized global model fits to the traditional global model, the regularizer model

reached a plateau sooner (I = 103 versus I = 5 × 103). As seen in Fig. 2.9 and

Fig. 2.10, the regularized global model stabilized the evolving distribution of

Species 1 with modest S:N, I = 103. There was no improvement in Kullback-

Liebler divergence in the high S:N limit(I = 108).

The POP metric steadily decreased until a plateau was reached for moderate

S:N, I = 2 × 103. This indicated that from a species population point-of-view,

nothing else can be gained from better S:N. This can be seen in the increase in

the POP value for fits to the highest S:N data (I = 108), thereby showing the

addition of a regularizer is not necessary for a discrete global model fit to virtually

infinite S:N data.

2.5 Discussion

2.5.1 Comparison of Methods

In the results we evaluated how the S:N ratio influenced the success of each

fitting method using χ2
r, the Kullback-Liebler divergence, and the population

parameters. We now compare the different methods to each other and discuss

why they gave different results.

Reduced Chi-square

The four deterministically constrained models (all optimized with LM) showed

little systematic change in χ2
r until I ≥ 5 × 104, at which point χ2

r began to

get worse. By comparison, the gridded methods (optimized by AS, MEM, or

IPG) showed steady improvement in χ2
r until I = 105. There was no statistical
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difference of fit between the AS fit and any of the MEM or IPG fits except in

the high S:N limit (I = 108). The MEM fits gave slightly higher χ2
r because of

the higher value of the regularizer strength parameter required to get reasonable

fits. One interpretation of the higher χ2
r for the gridded methods would be that

they were done on too coarse of a grid. However, the improvement in χ2
r with

increasing S:N suggests otherwise, since a constraint in the model space would

be reflected as a lower boundary for the χ2
r. Furthermore, improving the grid

resolution did not change χ2
r. Grid methods have more model flexibility and can

take advantage of the increased S:N, however the model space they are performed

in does not include terms that adapt to the noise.

The global model fits were not statistically different than the three exponential

fits until they began to diverge in terms of χ2
r at I > 104 because they have less

model flexibility than three exponential and four exponential fits. According to

χ2
r the three exponential model was adequate to describe the data for these fits

until high S:N. In the high S:N limit it was quite clear that neither the three nor

the four exponential fit was a good model for the system.

Kullback-Liebler divergence

The Kullback-Liebler divergences comparing the exemplar parameters to the three

exponential, four exponential, AS, global model and regularized global model

fits did not improve much with increasing signal-to-noise. (See Fig. 2.12) The

deterministic constraints implied by these fitting methods forbid the true solution.

At low S:N (I = 102) the methods were all clustered. In this limit the AS

method was worst and the three exponential model was best. This suggests that

too much model flexibility is not good when the there is little information in the

data, as the model flexibility will be used to fit noise. The MEM and IPG methods

did a better job than AS because they tended to give continuous distributions

that better represented the broad part of Species 1 and were less able to adapt
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Regularized IPG fits, (+)–Global Model fits, (∗)–Regularized Global Model fits.

to fit details of the noise.

With a modest increase in S:N (I = 103) the IPG and global models all

showed a lower divergence from the exemplar model than did the three and four

exponential, MEM, and AS method. This was primarily a consequence of their

ability to represent the width of Species 1. The MEM fits continued to improve,

however, not as quickly as the IPG and global-model methods. The Kullback-

Liebler divergence for the three and four exponential and AS methods reached a

plateau here; they could not improve because the model was fixed, and they could
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Figure 2.12: Kullback-Liebler divergence from the exemplar model versus I using
the different fitting methods. Fitting methods are represented in the same markers
as in Fig. 2.11.

not take advantage of the increased information available at higher S:N. Multi-

exponential fitting optimizes the exponential parameters after assuming the size of

the solution space is drastically limited. Multi-exponential fitting never considers

solutions of the form that IPG uses to find a best fit. In the case of the AS method,

the fitting algorithm is such that it chooses multiple-discrete representations of

the distribution of Species 1. AS disfavors smooth distributions since they include

more basis functions and usually give negative values in the matrix factorization

step of the algorithm. The fundamental problem with the AS method is that in its

search it allows intermediate solutions that have non-physical negative amplitudes

and deletes basis functions to prevent the negative amplitudes from being realized,

but in the process also eliminates possible correct solutions. This tends to split

smooth distributions into multiple discrete components. As a result AS chooses

what could be considered a minimal entropy solution.
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By I ≥ 2 × 103 all the IPG methods are better than the global model fits.

This is because the global model fits are representing the narrow width of each

of the Species 2, 3, and 4 by discrete exponentials. This restriction on the model

space resulted in a limitation of how well it could reproduce the exemplar model.

Rather than adjusting the fit model to include a width, as in the IPG methods,

the differences between a discrete versus a narrow distribution were compensated

by minor adjustments of other parameters and do not greatly affect χ2
r.

Across the range of 103 ≤ I ≤ 105 the globally regularized IPG fitting was

superior to the other methods. This is because the regularizer favors those so-

lutions that are continuous in y, resulting in better overlap with the exemplar

parameters. IPG evolves the fit distribution within the full solution space until

the distribution reaches a best fit.
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Population Evolution

The POP parameter in Fig. 2.13 measures the overall ability of the fit to extract

the evolution of the populations, while the individual populations of the different

species appear in Fig. 2.14. The globally regularized IPG began improving at a

lower signal level than the other IPG methods, however at higher signal levels

the other methods eventually caught up. The MEM fits were comparable to the

locally regularized fits for low S:N but after I = 2× 103 the MEM was worse and

did not catch up until the higher accuracy of our MEM implementation became

important in the high S:N limit (I = 108)). The global regularizer could not do

a perfect job tracking the population evolution because it inherently measures

deviation from a linear dependence of the evolution in y. As a result the evolu-

tion was “flatter” than it should have been as shown in Fig. 2.14 right column,

third row. Once it is known that there are a certain number of species and that

they are evolving, the regularizer could be modified to allow more curvature in

the evolution by measuring departure from piecewise quadratic behavior with a

third derivative regularizer. However at the level of reconstruction afforded by

the second-order global regularizer, one would be better served forming a phe-

nomenological model describing the evolution and fitting to that global model to

extract physical parameters from the data.[7] Prior knowledge in this case arises

from the formation of a physical hypothesis and allows the global models to get a

better solution. The traditional global model and regularized global model illus-

trate this point as they both did an excellent job reconstructing the populations

and their evolution.

2.5.2 Prior Knowledge and Probabilistic Constraints

For all reasonable S:N levels, an investigator considering the value of χ2
r and the F-

test would be led to choose the three exponential model. If one also considered the
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details of the experiment and used that prior knowledge in the fitting procedure

one would obtain better results in terms of identification of the species present,

their properties in terms of the transformed coordinate, k, as well as evolution

of their populations across the non-transformed coordinate, y. Stabilization by

global fitting works because the model space is being limited. To start with

a deterministic global model would be to start with an assumed answer and

eliminate all other regions of model space.

We saw how the addition of a regularization condition in the transformed

dimension, k, perturbs not only the narrow distributions of Species 2, 3, and 4

but also increases the width of the broad distribution of Species 1. The broadening

from the regularizer masked the evolution of the Species 1 width. We see that

the regularized IPG gave fits that were no better and were in some ways worse

than than those given by unregularized IPG. This is because the transformed-

coordinate regularizer is adding incorrect information to the fitting procedure.

In the case of the three exponential, four exponential, and AS fitting there

was also incorrect information being added to the fitting procedure. In the case

of the three and four exponential fits, the incorrect information was that the

distributions are discrete. This limits the solution space available for the fits to

the point where no correct solution can be found because the correct solution is

not included in the space of possible solutions. The space of possible solutions

for the AS method fits includes the correct solution, however the search space

includes solutions that are not in the space of possible solutions. The algorithmic

mechanism used to return the search from the forbidden space to the allowed

space is what biases the fit away from the correct solution. In locally regularized

IPG the local solutions are biased away from solutions that include discrete or

sharp features and thus, though the available solution space includes the correct

solution, the regularizer puts an a-priori bias against it because it includes narrow

features. When viewed in this light, it is understandable why regularization in
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the transformed dimension is not a physically reasonable thing to do.

The global regularization worked well because there was an evolution of the

system across y. If there were no systematic trend with the independent variable

then it would not be sensible to regularize the data with the condition of piecewise

linearity implied by Eq. 2.8. This method of global fitting may also be applied to

systems without a second independent variable by using replicate measurements

and a regularizer that is appropriate for a non-evolving system.

G(y) =

∫ [
∂f(k, y)

∂y

]2

dy. (2.26)

This regularizer measures departure of f(k, x) from a constant in the y direction.

In systems that are strongly evolving the third derivative regularizer can be

useful as it measures piecewise deviation from a parabola:

G(y) =

∫ [
∂3f(k, y)

∂y3

]2

dy. (2.27)

Other regularizers could be used as well, so long as they can be placed into matrix

form as in Eq. 8.2.

Though the different regularizers imply different prior knowledge of the ex-

perimental design, they do not forbid non-conforming solutions. They only favor

conforming solutions to the degree dictated by the strength of the regularizer

parameter, γ. Since γ is restricted to be weaker than any level that causes an

increase in χ2
r that is significant as determined by the F-test, one can be assured

that the fit obtained is statistically indistinguishable from that of an unregular-

ized fit. The prior knowledge of the experiment is only biasing within the set of

solutions that are statistically the same.

2.5.3 Global fitting strategy

The goal of global analysis is to identify the species present and characterize

their evolution with the non-transformed coordinate y. An additional benefit of
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Figure 2.15: Model selection vs model discovery Current paradigm of global anal-
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data and prior knowledge. Once a model is discovered, deterministic constraints
can be applied in order to reach conclusions about the underlying physical system.

global analysis is that a given local solution, when fit globally, is actually using

information from all the decay curves and therefore behaves as it if has better

S:N. The global analysis essentially allows the amount of signal (information) for

the entire data set to be used for the global parameters. For local parameters the

benefit is indirect. However, having more stable values for the global parameters

results in more stability in the local parameters as well. Global regularization

allows this to occur without requiring a specific model and without enforcing
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a value on a global parameter. Even when a traditional global model is used a

regularizer can allow partial globalization of the non-global parameters. The non-

global parameters are essentially free of the model. In the present example the

global model would have needed to be expanded to include a specific functional

form for the evolution of the population parameters.

Fig. 2.15 illustrates a fitting strategy that step-wise reduces the available

model space according to the data and prior knowledge. This allows fitting of

the global data set without sacrificing the range of the model space while still

allowing quantitative conclusions to be drawn. Initially one should use prior

knowledge to determine the range of valid k for the inversion. Alternatively this

could be done with a traditional multi-exponential LM fit or a large-grid AS

fit. Once the model space has been identified, one should use prior knowledge

of the experimental design to determine if there should be some expectation of

continuity or other regularization condition in either or both of the coordinates

k and y. Once a probabilistically constrained model space is available, one can

perform a global fit that includes all the model space using the globally regularized

IPG method. From the globally regularized IPG fits one should identify the

species present and form a deterministically constrained global model for the

transformed (species) coordinate. A traditional global model can then fit the

data either with or without a probabilistic constraint on the non-transformed

(evolution) coordinate. At this point a global model for both coordinates should

be apparent and further reduction based on a fully deterministic physical model

with a small number of parameters should be feasible.
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2.6 Conclusions

Current physical measurements include complex systems that do not give simple

homogeneous signals. Large heterogeneous data sets measured over many con-

ditions have become the norm. Extracting physical information from such data

sets requires handling large model spaces in the fitting procedure. Fitting with

large numbers of basis functions such as is done in this work has only recently

become feasible. The complexity of the global regularization method would have

been prohibitive given the computational facilities commonly available 10 years

ago. Many of the assumptions for approaches to and algorithms for data fitting

and reduction were shaped by technological limitations of 20 or more years ago.

Modern computers allow direct fitting of large data sets and should be exploited

to allow better insight into the processes behind the data.
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Chapter 3

β-Lactoglobulin Assembles into Amyloid

through Sequential Aggregated Intermediates

3.1 Summary

We have investigated the aggregation and amyloid fibril formation of bovine β-

lactoglobulin variant A with a focus on the early stages of aggregation. We used

time-resolved non-covalent labeling with thioflavin T and 1-anilino-8-naphthalenesulfonate

to follow the conformational changes occurring in β-lactoglobulin during aggre-

gation. 1-anilino-8-naphthalenesulfonate monitored the involvement of the hy-

drophobic core/calyx of β-lactoglobulin in the aggregation process. Thioflavin T

luminescence monitored formation of amyloid. The luminescence lifetime distri-

butions of both probes showed changes that could be attributed to conformational

changes occurring during and following aggregation. To correlate the lumines-

cence measurements with the degree of aggregation and the morphology of the

aggregates, we also measured dynamic light scattering and atomic force micro-

scopic images. We evaluate the relative stability of the intermediates with an

assay sensitive to aggregation reversibility. Our results suggest that initial aggre-

gation during the first 5 days occurred with partial disruption of the characteristic

calyx in β-lactoglobulin. As the globular aggregates grew from days 5-16, the ca-

lyx was completely disrupted and the globular aggregates became more stable.

After this second phase of aggregation, conversion to a fibrillar form occurred

marking the growth phase and still more changes in the luminescence signals

were observed. Based on these observations we propose a three-step process by
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which monomer is converted first to weakly-associated aggregates that rearrange

into stable aggregates that eventually convert to protofibrils that elongate in the

growth phase.

3.2 Introduction

3.2.1 Amyloid Formation

Aggregation of soluble polypeptides or proteins into insoluble amyloid fibrils

containing the cross-β structural motif has been observed in the progression of

over 20 diseases.[1] The human health impact of these diseases has motivated

intensive study and numerous reviews of the structure and growth of amyloid

fibrils.[1, 2, 3, 4, 5, 6, 7, 8, 9]

Amyloid formation often shows a sigmoidal kinetic growth pattern. Early

times are characterized by a lag phase where little or no fibrillar growth is ob-

served. The growth phase follows where amyloid rapidly assembles. The reaction

then slows with amyloid accumulation reaching a plateau.[10, 1, 11] After this

point amyloid often begins to gel or precipitate in vitro. The duration of the lag

phase and the growth phase both change dramatically depending on the incuba-

tion conditions.[12, 13, 14]

The kinetic lag phase for many amyloidogenic precursors is characterized by

conversion of soluble monomers to small oligomers.[15, 10, 14] One of the driving

forces for initial aggregation of soluble globular proteins may be the partitioning

of hydrophobic side chains into a central core, much like protein folding.[16] The

structural content and contribution to amyloid assembly of the small oligomers

is usually only inferred.[17, 18] During the lag phase there is little appreciable

amyloid formation as determined by histological assays. The lag time can be

reduced or eliminated by addition of mature amyloid as observed both in vivo,

by mortality of the organism and/or autopsy with histological staining [19], and
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in vitro as monitored by light scattering or staining.[20, 12, 21] This leads most

investigators to associate the lag phase with the formation of a critical seed or

nucleus.[20, 15, 17, 22] The kinetic evidence of a critical seed has not been corrobo-

rated by either structural evidence identifying it or direct mechanistic information

of how it forms and grows.

The kinetic growth phase shows rapid assembly of amyloid. Amyloid filaments

and fibrils have been identified in atomic force microscope (AFM) and electron

microscope images during and after the growth phase.[23, 24, 25, 26, 21] During

the growth phase it is most often observed that the kinetic rate is first order

with respect to precursor concentration.[27, 13, 28] Based on images and sim-

ple kinetics, mechanisms have been proposed,[11] but are not well-established.

A template or seed has been proposed to be required for the growth phase to

occur.[29] Growth then occurs as the template either actively induces structural

changes in other species or passively aggregates with other species also having

the correct template.[30]

Recent evidence has shifted some of the focus from amyloid fibrils to prefibril-

lar amyloidogenic aggregates as the cause of Alzheimer’s disease symptoms[2, 18]

leading many to propose development of vaccines targeting small amyloidogenic

aggregates.[4, 31, 6] It remains a challenge to distinguish between small oligomers

that are harmless and those that are either toxic in their own right or that lead

to formation of amyloid fibrils.[18]

Many amyloidogenic peptides and proteins exhibit conformational polymor-

phism; they can exist in multiple stable conformations.[32] Conformational changes

are typically observed during amyloid assembly. In their native state, the pre-

cursor proteins may not, in general, contain the secondary structural elements

present in the final amyloid assembly.[33] The amide I infrared absorption or Ra-

man band has been observed to lose intensity associated with the native state

and gain intensity associated with cross-β.[34, 35, 25, 32] Circular dichroism of
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Figure 3.1: The possible binding sites of ANS to β-LGa. Hydrophobic amino
acid residues are colored in slate, hydrophilic residues in brick. ANS was docked
to β-LGa using PyMOL, and minimized using molecular mechanics software
IMPACT.[86] The left panel is a 16 Å slab of the van der Waals surface without
secondary structure to illustrate the binding of ANS in the hydrophobic calyx site
(A). The right panel is rotated 90◦ about vertical axis of left panel to show the
postulated intercalation site in the hydrophobic region between the main α-helix
and β-barrel surface patch (B). Roughly two-thirds of the calyx volume is rep-
resented by its “mouth” and may be considered to be a third ANS binding site
(C).

the peptide backbone absorption band is also sensitive to secondary structure

and has given similar results.[36, 37] Fluorescence spectroscopy has been used

to detect conformational changes either by non-covalent labeling with dyes like

1-anilino-8-naphthalenesulfonate (ANS) that are specific for exposed hydrophobic

patches[38, 39, 40, 41] or through covalent attachment of fluorescent dyes.[42, 43]

3.2.2 Bovine β-lactoglobulin variant A

We investigate the mechanism of amyloid formation from β-lactoglobulin variant

A (β-LGa) with a particular focus on the aggregation and structural changes

occurring during the lag phase. Bovine β-LGa (MW 18.3kD/monomer) is a

member of the lipocalin superfamily of proteins consisting of a flattened β-barrel
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or calyx comprised of eight β-strands (Fig. 3.1). β-LGa also has a partial ninth

β-strand and a three-turn α-helix.[44] β-LGa is dimeric under native conditions.

β-LGa has two disulfide bridges and a single free cysteine that has been observed

to undergo disulfide exchange only when denatured.[45]

β−LGa has been shown to form amyloid fibrils.[37, 13, 25, 46] The folding

behavior of β-LGa has been extensively studied using bulk experiments.[45] β-

LGa has structural elements that are conformationally labile.[47, 48, 49, 50, 51,

52] β-LGa can exist in an equilibrium between folded, partially structured, and

unfolded states.[53, 47, 37, 48, 49, 13, 50, 51, 54, 52, 55, 56, 57] β-LGa has been

reported to form non-native α-helices prior to complete folding.[53, 48, 49, 13,

50, 51, 54, 52, 55] NMR has shown that these α-helices must melt and form a

β-strand to complete the native-state structure.[52] The stabilization of βLGa by

trehalose was studied using acrylodan covalently attached to cysteine 121, which

showed conformationally sensitive fluorescence. Conformational fluctuations in

β-LGa transmitted to the local environment of the attached acrylodan resulting

in a spectral shift as well as lifetime, intensity, and anisotropy changes.[58]
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Figure 3.2: AFM images of β-LGa aggregation under amyloidogenic conditions.
Days 10, 22, 29, and 65 are shown as labeled. Images are colored by height
and approximately correspond to species described in the text. AFM heights are
uncorrected for tip penetration of the soft samples. Prior to day 10, there was
little indication of stable aggregates adhering to amino-silanized mica surface.
The first sign of small stable oligomers (shown in green) appear at day 10. The
total number and aspect ratio of the aggregates increases through day 22. After
four weeks, small protofibillar species are apparent and range from 50 to several
hundred nanometers in length. Fibrillar species ranging in height and length
dominate at two months of incubation. Large amorphous aggregates appear as
early as day 10, but appear to be off the amyloid formation pathway.

3.2.3 Biophysical Approaches to Aggregation

In this paper we use ANS fluorescence lifetime distributions to follow the aggre-

gation of β-LGa through its lag phase intermediates until it forms amyloid fibrils.

It has been previously reported that the fluorescence lifetime of ANS is influenced
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by the polarity of its binding environment, specific interactions with amino acid

side chains, and the relative orientation and mobility of the anilino group.[59]

ANS binds to hydrophobic regions of proteins[60], and has been extensively used

to probe the presence of the molten globule state and assembly of partially struc-

tured proteins.[40, 61, 13] ANS has been observed to have different fluorescence

intensity properties when bound to different types of protein aggregates.[62] β-

LGa binds ANS in several ways,[58] including through the calyx that results in

a sequestered ANS with a very long lifetime (see Fig. 3.1). ANS probes both

the presence and integrity of this calyx as well as the overall exposure of hy-

drophobic groups in β-LGa. The calyx is of particular interest because it is the

majority of the hydrophobic core of β-LGa. Disruption of this core is required

for an aggregate to fulfill the geometric constraints of the cross-β structure of an

amyloid fibril. We use our globally regularized interior point gradient (GIPG)

fitting procedure that fits all the data simultaneously to resolve the contributions

of different ANS binding sites to the fluorescence lifetime decay.[63]

We expect aggregation to be driven, in part, by hydrophobic forces. Therefore

the parts of the protein that can bind ANS should be structurally changed by

aggregation. The ability to detect the presence of an intact calyx by virtue of

ANS binding allows determination of the involvement of, and structural changes

in, the protein hydrophobic core during amyloidogenic incubation. If the aggrega-

tion process is hydrophobically driven then we expect the aggregate to sequester

hydrophobic residues changing the structure of the calyx. Alternatively if hy-

drophobicity the key driving force for conversion to the cross-β structure, then

the large changes in the calyx should occur at that point in the incubation. In

either case the sensitivity of ANS to its binding environment should be reflected

in its fluorescence lifetime distribution.

We confirm early stages of aggregation using dynamic light scattering (DLS).

DLS has been used extensively to characterize protein aggregation and the growth
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of amyloid.[64, 65] We explicitly evaluate the evolution of the particle size distri-

bution using the GIPG fitting procedure.[63]

We assay for the presence of amyloid using Thioflavin T (ThT) luminescence.

When bound to amyloid, ThT exhibits a new absorption band at 450 nm that has

been attributed to ThT binding to the cross-β structure.[66, 67, 68, 69, 13, 70]

The spectroscopic properties of ThT in amyloid are consistent with behavior that

has been attributed to ThT dimer formation.[71, 72, 73] The lifetime of such a

dimer will depend on its environment and geometry and some contribution of the

luminescence may arise from non-amyloid binding modes.[74] We exploit this to

detect the presence of various amyloid-like structures using a ThT luminescence

lifetime assay. The different lifetime distribution contributions and their evolution

is determined using the GIPG procedure.

We determine the morphology of the aggregates using AFM imaging. Imaging

techniques such as AFM have provided an invaluable way to determine gross mor-

phologies of amyloid protofibrils (single-stranded) and fibrils (multi-stranded).[23,

25, 26, 75]

3.3 Results

3.3.1 AFM shows sequential growth of aggregates

Fig. 3.2 shows AFM images taken on several different days of the incubation. The

images are false-colored by height to emphasize the contrast between different

classes of particles. AFM images taken from days 0 to 9 of the incubation did not

show significant signs of aggregation. The protein deposited as a uniform coating

on the functionalized mica surface (brown background in Fig. 3.2). Starting from

day 10 of the incubation, we began to see small round aggregates (green dots in

Fig. 3.2) that grew in size and number through day 22 (orange dots in Fig. 3.2).

After day 22 the number and length of oblong protofibrils increased (purple bars
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in Fig. 3.2). Eventually long fibrillar aggregates were observed (Fig. 3.2). Large

amorphous aggregates were also observed (white features in Fig. 3.2) but appeared

to evolve independently of the other species.

The AFM results suggest two acts to aggregate growth. The first act consists

of formation of round aggregates that can be stably imaged on the functional-

ized mica surface. The second act features the elongation of protofibrils. Each

of these processes appears to have an induction period of 8-10 days under our

incubation conditions. A complete analysis of the evolution of the AFM particle

size distribution is the subject of a forthcoming paper.

3.3.2 DLS resolves early lag phase aggregation

DLS correlation functions were measured every 15 minutes for 4.7 days to inves-

tigate the earliest aggregation events. Distributions of correlation decay times

appear in Fig. 3.3. The width at 5 M urea was greater than it was at both lower

and higher urea concentrations where the protein is a native monomer (2.5 M) and

unfolded (7.5 M), respectively. This was consistent with literature reports that

at 5 M at neutral pH, β-LGa intermediate and denatured states are in thermal

equilibrium.[76] From day 0 to day 2 the position of the peak max moved from

the monomer decay time to the the dimer decay time. By day 4 of incubation,

the peak max moved to the position expected for the tetramer decay time.

Fig. 3.4 shows the evolution of the DLS decay time distribution taken every

2 days for the first 28 days of incubation. The 0-4 day evolution matches that

of Fig. 3.4. The peak max of the small aggregate region did not substantially

change after day 4. The peak width was broader than expected for a monodis-

perse tetrameric aggregate. From days 10-18 a shoulder appears in Fig. 3.4 to

longer decay times suggesting growth of a minority species of larger aggregates.

A weak and broad peak grows in slowly from days 12-18 at ∼1.5 ms and be-

comes appreciable from days 18-28. At these later stages the large distribution
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of particle sizes and shapes prevents specifying these quantities in terms of the

ensemble-averaged DLS decay time distribution.

Interpretation

The DLS data suggests three phases of aggregation. Aggregation of the monomer

proceeded rapidly within the first few days of incubation. Non-reducing SDS

PAGE analysis after 5 days of incubation stage showed mainly disulfide-linked

dimers with some monomers. The motility of the monomers that were still present

was consistent with their native disulfides still being intact. This suggests that

oxidative aggregation does not exceed the dimeric state, consistent with only a sin-

gle exchanging cysteine per monomer. Upon accumulation of the approximately

tetrameric aggregate, a new phase begins. Further changes showing increases in

particle size appeared during days 10-18, suggesting another mode of aggregation.

The contribution of these particles to the DLS signal eventually was swamped by

the contribution of the large particles that appeared in significant numbers from

day 18 onward. Late-stage (>30 days of incubation) SDS PAGE showed similar

results with the concentration of the dimers about 50% of that of the monomers.

Again the motility of the monomers was greater under the non-reducing condi-

tions than under reducing condition. The lack of disulfide cross-linked aggregates

of higher order than dimers at late stages is consistent with higher-order aggre-

gation being associated with non-covalent interactions.

3.3.3 ThT tracks structural conversions

We used a Thioflavin T assay to evaluate the point in the incubation when the

aggregates converted to amyloid. Steady-state luminescence measured during

incubation shows the classic sigmoid curve that is often associated with amyloid

formation. As seen in Fig. 3.5, the individual lifetime contributions to the signal,

however, have a very different behavior.
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Figure 3.3: GIPG fit of DLS correlation functions for the 4.7 day incubation
of β-LGa. A continuous acquisition DLS experiment allowed investigation of
the earliest aggregation events. During the first hour of incubation, the hydro-
dynamic radius of β-LGa was consistent with a partially unfolded monomer at
2.5 nm (shown as a brown mesh line (1)). If the aggregation preserves the density,
the decay times of approximately spherical dimeric and tetrameric species can be
calculated; they are represented by the green (2) and blue (4) mesh lines, respec-
tively. The monomer was converted to mostly dimer by day 2, then tetramer by
day 4.

When measured in buffer, ThT shows four contributions to the lifetime dis-

tribution, and we speculate that the different lifetimes arise from different ThT

aggregate geometries free in solution.[71] ThT in the presence of unincubated

β-LGa shows an additional lifetime contribution at ∼110 ps not present in the

protein-free control. β-LGa is known to bind hydrophobic molecules and there-

fore some luminescence changes associated with this binding to the monomer is

expected. It is also possible that a single β-LGa could bind two ThT molecules

creating a small amount of dimer signal, as was shown by intercalation of ThT in

γ-cyclodextrin.[72, 73]

The ThT liftetime distribution was substantially different at each phase of
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Figure 3.4: GIPG fit of DLS correlation functions for the 28 day incubation of
β-LGa. Mesh lines (1) and (4) are the same as in Fig. 3.3. The high-resolution
DLS fits coincide with the first few days of the 28 day incubation. A shoulder
appeared at day 10 and separated from the tetramer species at day 18 (orange
dashed contour). This feature has a decay time characteristic of a small, inflexible
rod of length ranging from 15 to 30 nm with the same radius as the tetramer. The
red, orange, and green color bars represent a rough estimate of the early, mid, and
late phases that we have consistently observed throughout our experiments. The
white mesh line demarcates the intensity and number weighted representation of
the decay times allowing the entire data set to be presented together.

the incubation. During the beginning of the lag phase, days 0 to 5, we saw

a decrease in the contributions that are present in the ThT-only control. The

relative contributions of these components also changes. This behavior suggests

that the aggregation in the early lag phase is reducing the solution-phase portion

of the ThT in favor of protein-partitioned ThT. During the lag phase, days 9-

18, we saw a different pattern emerge in the lifetime distribution. Several new

lifetime features appear ranging from 75 ps to 2.2 ns.

After day 18 the distribution began to change rapidly as shown by growth of

a feature at 2.6 ns followed by a feature at 1.3 ns. At day 32 the majority of the
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Figure 3.5: GIPG fit of ThT luminescence decays in the presence of β-LGa over
a 28 day incubation. Left panel: The evolution of lifetime distributions show
the onset of luminescent species occurs in stages. The reduced chi-squared (χ2

r)
for this global fit was 1.022. Right panel: Incubation time slices of ThT lifetime
distributions with different contributions at days 0, 5, 16, 32 and 65 are as labeled
and correspond to the dotted mesh lines in the right panel. To depict the growth
and loss of different luminescence components along the incubation timecourse,
the distributions are filled to the baseline with colors corresponding to the trace
where the particular component dominates. For example the green filling matches
the peaks at day 32, but the same components are less prevalent at day 16.

luminescence signal is coming from 580 ps lifetime. The short-lifetime feature at

11 ps disappeared and was replaced by a feature at 18 ps that attained a maximum

at 26 days and then disappeared by 33 days. After 2 months of incubation, the

distribution is dominated by a broad asymmetric peak at 2.6 ns with a smaller

contribution at 250 ps.

There are clearly multiple contributions to the ThT lifetime distribution. Each

phase of the incubation has a distinct lifetime distribution suggesting that ThT

associates with many different aggregates in structurally different ways. We ob-

served that significant ThT luminescence grew in during the earliest stages of

incubation (Fig. 3.5). These changes in an intensity-only experiment might be
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interpreted as a baseline shift. The association of monomers into a disordered

aggregate may provide ThT with the opportunity to form dimers that show lu-

minescence similar to amyloid, however the lack of a regular geometry results

in a different lifetime. Particularly striking is the difference between the 580 ps

contribution that seems to appear in association with protofibrils and the 2.6 ns

contribution that appears in the late-stage aggregation where mature amyloid fib-

rils are present. The signal from ThT usually associated with histological staining

is probably most closely related to the distribution from the 65 day sample. The

ThT signal changes that contribute to the classic sigmoidal intensity kinetic trace

are most likely due to other binding modes and luminescence lifetimes. This sug-

gests that the pro-amyloid ThT luminescence has a structural sensitivity that is

reflected in its luminescence lifetime distribution. ThT assays based only upon

intensity could be misleading since there are several contributions to the lumines-

cence that are potentially changing during incubation. The contributions from

the different species cannot be resolved from intensity alone.

3.3.4 ANS reports changes in hydrophobic regions and

calyx loss.

The fluorescence lifetime of ANS was measured during 28 days of amyloidogenic

incubation. We used GIPG as a model-free approach to determine the evolution

of the ANS fluorescence assay lifetime distribution. We observed several peaks

in the distribution that change systematically with incubation time and labeled

them (a) though (i) for clarity as shown in Fig. 3.6. Some of these peaks change

during the first several days of the incubation. Others grow in at the late stages

of the incubation. The evolution of individual peaks can be associated with the

changes in the availability of specific binding environments on β-LGa in its various

aggregation states. To directly evaluate the evolution of the contributions from
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Figure 3.6: GIPG fit of ANS fluorescence decays in the presence of β-LGa over
a 28 day incubation. The χ2

r for this global fit was 1.019. The distribution of
fluorescence lifetimes showed the variety of binding environments for ANS and
their systematic population changes changes with incubation time. The reduction
of some peaks (i.e. a, b and c) and the increase of others (i.e. g, h, i) reflected
the conformational changes experienced by β-LGa as it assembles into fibrils. All
peaks are assigned to different ANS environments in the text. This model-free
fit was used as the basis for further data reduction as described in the text and
shown in Fig. 3.7.

each sub-population of ANS, we constructed a reduced basis set representing each

peak from the original GIPG fit as a separate function. The Laplace transform

of each of these peaks was convoluted by the instrument-response function in

this simplified basis set. The population of each contribution as a function of

incubation time appears in Fig. 3.7. These sub-populations of ANS binding were

then assembled into lifetime distribution fingerprints for the different species along

the amyloid formation pathway.

ANS is quenched by full exposure to 5 M urea and gave a lifetime of ∼300 ps

(e) in our control experiments. This contribution appeared to decrease as the
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Figure 3.7: Sub-populations of ANS binding to β-LGa over a 28 day incubation
using GIPG with reduced basis set. The χ2

r for this global fit was 1.020. In the
top three panels, the red squares represent the decreasing lifetimes and the blue
triangles represent increasing lifetimes corresponding to the sub-populations in
Fig. 3.6. The species lifetime evolutions are associated with a change in the ANS
environment in the calyx or surface sites. The bottom panel shows the trends of
the short lifetime components. The lettering (a) though (i) matches the peaks in
Fig. 3.6. The red and orange dotted vertical lines mark the lifetime components
at days 8 and 16 which were combined with those at days 0 and 28 to generate
the characteristic “fingerprints” of the ANS-bound protein species and shown in
Fig. 3.8.

incubation progressed. This suggested an increase in the partitioning of ANS

with the protein as compared to the solution and was consistent with an overall

increase in the availability of hydrophobic binding sites as the incubation proceeds.

The model-free GIPG fit in Fig. 3.6 shows an 89 ps feature (f), which was
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also present in the ANS lifetime distribution from 1 to 6 M urea in our control

experiments, but only when β-LGa was also present. This feature appeared to

increase in population from days 0 to 14 then decrease from days 16 to 28. The

89 ps contribution overlapped with a broad lifetime contribution at 70 ps (j) that

grew in starting at day 18. The increase in this contribution appeared to com-

pensate for the loss of the 89 ps contribution. These lifetimes were significantly

shorter than that of the free ANS, suggesting a quenching interaction with an

amino acid side chain.

The monomeric signal included contributions from peaks at 18.2 ns (a), 7.9 ns

(b), and 2.7 ns (c). The peak at 18.2 ns was close to the unquenched lifetime of

∼19 ns predicted by an evaluation of the oscillator strength using the Strickler-

Berg equation.[77] This suggested that ANS was sequestered from any quenchers

and was protected from water, consistent with an intact calyx. This feature

decreased throughout the incubation. ANS can induce structure in proteins and

the presence of folded β-LGa under these conditions may be a result of this effect.

No other lifetime feature in the distribution appears to compensate for the loss

of the 18.2 ns feature.

The peak at 7.9 ns (b) also suggested protection from water, though to a lesser

degree. This was consistent with a partially denatured calyx. The 7.9 ns feature

decreased dramatically in the first 8 days, leveling off until day 18, whereupon

it continued to decrease. The changes in the 7.9 ns contribution appeared to

be mostly compensated by changes in a feature at 4.9 ns (h). The highly anti-

correlated behavior of the 7.9 ns and 4.9 ns components suggested that the 4.9 ns

feature was from ANS bound to β-LGa that had its 7.9 ns calyx site disrupted

by aggregation.

The peak at 2.7 ns (c) has been previously attributed to β-LGa surface

binding.[76] Based on our ANS docking studies we found that the mouth of the

calyx is a more likely assignment for this feature. The 2.7 ns feature decreased
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rapidly at first, its evolution slowing after 8 days, and accelerating again during

the late stages of incubation. The 2.7 ns feature population changes were partly

compensated by changes in the 2.1 ns feature (i). Again, this close relationship

leads us to conclude that the mouth of the calyx is being disrupted during the

process that exchanges the population of the 2.7 ns and 2.1 ns features.

Overall, the changes in the ANS lifetime distributions occurring after day 20

were more dramatic. One of these was an 11 ns feature (g) that appeared to

grow in at the late stages of incubation. The long lifetime suggests that ANS

was mostly isolated from water. We attribute it to sequestration of ANS in the

cross-β structure of amyloid protofibrils.

Not all of the lifetime features changed over the incubation timecourse. The

feature at 790 ps (d) was present throughout the incubation with only small

changes in intensity. Therefore the 790 ps site should be a structure that was not

disrupted in the aggregation process. This lifetime was consistent with surface

binding, which should be present at all points of the incubation. The 790 ps

lifetime appeared to shift slightly at different points in the fits in Fig. 3.6. These

shifts were too small to reliably resolve multiple lifetime contributions to this

feature.

Any particular ANS lifetime peak can, in principle, contribute to several dif-

ferent aggregates. The binding location as reflected in the lifetime is sensitive

to the local environment, but not the specific aggregation state. Nevertheless,

the relative contribution of each binding site to a particular aggregate should be

in some fixed proportion that depends on the structure of the β-LGa monomers

in it. During amyloidogenic incubation we see three main phases in the kinetic

evolution of the ANS lifetime distribution that are corroborated by other experi-

ments. We seek to separate contributions of at least four species with qualitatively

different aggregation states.

We assumed that the contributions of different species could be expressed as
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Figure 3.8: The characteristic “fingerprints” lifetime distributions of ANS-bound
β-LGa. The evolution of the ANS lifetime distributions were decomposed into
“fingerprint” for each species. The fingerprints are labeled in the figure and used
to fit the TCSPC decays with GIPG.

linear combinations of a multi-peaked “fingerprint” describing both the relative

binding likelihood and nature of the various binding modes of ANS in each species.

The first fingerprint describes lifetime distribution of the various monomeric and

monomer-like components. It was assigned from the day 0 βLGa urea titration

control experiments. The monomer fingerprint was subtracted from the day 8

reduced basis GIPG lifetime distribution at a level that maintained non-negativity
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of the distribution to obtain a difference fingerprint. We assumed this difference

fingerprint was due to an early oligomeric species we designated “aggregate A”

or AggA. The first two fingerprints were removed from the day 16 distribution

to obtain a fingerprint we designated as “aggregate B” or AggB. The first three

fingerprints were removed from the final distribution to obtain the fingerprint for

“protofibrils.” Fingerprints for the unbound ANS at 300 ps (e) and the surface

ANS at 750 ps (d) were included separately in the fits. These fingerprints appear

in Fig. 3.8. The rationale for the designations of the different fingerprints is in

the discussion.

Specific differences in the contributions of the different ANS lifetime peaks

can be noted for the different fingerprints. The monomer fingerprint had a dif-

ferent ratio of 7.9 ns (b) and 2.9 ns (c) than AggA, which also lacks the 18 ns

contribution (a). The contribution from the 89 ps peak (f) increased in the AggA

fingerprint which also had a new contribution at 4.9 ns (h). The AggB fingerprint

is missing the 7.9 ns and 4.9 ns components and gained a new contribution at

2.1 ns (i). The protofibril fingerprint gains a peak at 11 ns (g) and trades the

89 ps contribution for the 70 ps feature (j). If a particular aggregation step does

not result in a structural change, then it will not be reflected in the fingerprint,

nor in the fingerprint population evolution.

Each fingerprint generated a single instrument response convoluted basis func-

tion for use in the GIPG fit. The resulting evolution of the population of the

fingerprints appears in Fig. 3.9. The population of the monomer fingerprint ap-

peared to decrease rapidly during the first 4 days of incubation. This contribution

plateaued around day 8 and began to decrease again after day 24. The AggA fin-

gerprint grew in as the monomer disappeared and reached a maximum value at

day 10. It then slowly decreased until day 18, after which it decreased more

rapidly. The AggB fingerprint grew in slowly beginning at day 6 pausing from

day 12-16 after which it increased more rapidly reaching a peak at day 24. The
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Figure 3.9: The evolution of each fingerprint’s contribution to the ANS-βLGa
fluorescence decays. The χ2

r for the global fit was 1.026. The evolution of
monomer, AggA, AggB, and protofibril showed multiple stages of aggregation.
The monomeric species decreased dramatically in the first several days and is
consistent with the DLS fits 3.3. The increase in AggB from day 10 to 22 matched
the accumulation of stable round aggregates in the AFM results. The increase in
the protofibril species after day 24 coincided with significant changes in the ThT
lifetime distributions and rod-like particles imaged by AFM.

protofibril fingerprint was flat for the first 20 days of incubation after which rapid

growth occurred.

The evolution of the individual peak fits and fingerprints suggested three

phases to the aggregation process. First the monomer converted to AggA; then

AggA converted to AggB; protofibrils began to appear after AggB was formed in

large quantities.
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day 8. The loss contemporaneously matches the change over of the 4.3 to the
3.6 ns species. The χ2

r for the global fit was 1.002.

ANS aggregation reversibility assay

One of the classic features of amyloid is its stability with respect to dissociation.

To evaluate the amount of stabilization in different aggregates we performed the

ANS assay under conditions of 0.5 M urea following incubation at 5 M urea. Under

these conditions unfolded monomers are expected to spontaneously refold. If the

stabilization energy of the aggregate is greater than that of the refolding reaction,

then the aggregation will not be reversible upon dilution of the denaturant.

The GIPG fit to the ANS aggregation reversibility assay data appears in

Fig. 3.10. The nearly constant-amplitude peak at 240 ps is consistent with ANS

free in 0.5 M urea. This peak increases in amplitude during the first five days of



91

incubation and then decreases slightly until day 9 and then increases again with

the increase accelerating after day 14.

At day 0, the peak associated with surface binding at 830 ps did not appear at

its 0.5 M control experiment position suggesting that the association at this site

was somewhat irreversible. From days 2 to 8 the peak was shifted to its reversible

position at 1.1 ns and from days 10-18 it shifted to 790 ps. This result may

indicate that there was a kinetic competition between refolding of the surface

site, perhaps at the α-helix, and binding of ANS. If this is the case, it would

suggest that during days 2-8 the binding site was protected from ANS until after

refolding had occurred. The overall amplitude of this peak did not change much,

consistent with the results of the standard ANS assay.

The peak at 16 ns was consistent with binding to the calyx and decreased

rapidly from days 0 to 4 and continued to decrease more slowly from days 6 to

12. This peak was replaced by a feature at 14 ns that appeared around day 1,

increased until day 14 and decreased thereafter. Around day 18 the peak shifted

to 13 ns. The rapid decrease in the availability of the calyx suggests that the

aggregates in the early stages prevented the binding of ANS to the calyx. The

shifts in lifetime suggest that though some structure resembling a calyx can reform

as late as day 18, the population of these proteins is substantially reduced and

that they cannot reform the full calyx that is possible before aggregation has

occurred.

We attributed the peak at 4.3 ns to the outer calyx binding site. This lifetime

was shorter than the 5.4 ns we determined from the 0.5 M control measurement.

This suggests a degree of irreversibility even at day 0 in this binding site. This

feature decreased from days 0 to 4, leveled out from days 5 to 8, and then decayed

away from days 8 to 12. This feature was replaced by a peak at 3.6 ns that

increased until day 12 after which it remained steady from 14 to 18 days. Overall

the qualitative behavior of this feature was similar to the feature at 16 ns.
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There were essentially three manifestations of irreversibility represented in

this data. The first was the ability of the protein to regain the same ANS binding

sites after dilution from 5 M to 0.5 M urea as determined by the lifetime distri-

bution. The dilution was performed in the presence of ANS. If the ANS binds

to the site in question prior to refolding, then it could lock the protein into a

misfolded conformation at the binding site. The result is a lifetime that more

closely resembles the 5 M urea control experiment conditions than the 0.5 M urea

conditions. The second type of irreversibility was the loss of a particular binding

site as aggregation progresses. This suggests that the aggregate disrupts or blocks

access to the site in question and that the site cannot be reformed by dilution

of the denaturant. The third type of irreversibility was the replacement of one

site with another. This is similar to the second type of irreversibility, except that

the structural change has resulted in a new local environment for the binding of

ANS.

These three types of irreversibility suggest that there are two main stages to

the incubation over the range of 0 to 18 days that appear to transition at 8 to

10 days. The changes that were reflected in the irreversibility suggested that

one of the key elements distinguishing the different aggregation steps was the

reversibility of the interactions between monomers in the different aggregates.

3.4 Discussion

3.4.1 Conformationally lability prior to incubation

Our results suggest that βLGa was conformationally labile under the amyloido-

genic incubation conditions. The Thioflavin T assay showed little change in signal

over the protein-free control except for an additional peak at 110 ps. The ANS

assay showed several lifetime components and a substantial contribution from

intact-calyx-binding of ANS suggesting that ANS may be stabilizing the folded
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Figure 3.11: Proposed mechanism of β lactoglobulin A aggregation. Amyloido-
genic conditions put βLGa into a disordered, conformationally labile state that
reversibly aggregates into dimers and tetramers that are stabilized in part by
hydrophobic interactions. The calyx is intact but structurally altered. As aggre-
gation continues, the calyx is lost and the loosely associated oligomers convert to
higher order, more stable aggregates. These aggregates then convert into protofib-
rils that elongate in the classic growth phase of sigmoidal kinetics. Monomeric:
The top is the folded monomer, the middle was obtained by modeling the unfold-
ing of the the C-terminal α-helix and β-strand I. The bottom was obtained by
flattening the barrel into a sheet. Aggregate A: These oligomers were obtained
by aligning complementary surfaces of the middle monomer structure. Aggre-
gate B: This octamer was modeled by stacking the flattened monomer structure
into four layers. Protofibrils: Four sheets of the canonical cross-β structure.

structure.[78] The multiplicity of features in the 5 M urea ANS assay suggested

multiple structures for monomeric βLGa. In particular the calyx, or hydrophobic

core, was more flexible and more accessible to solvent as shown by ANS fluores-

cence. The reversibility ANS assay showed minor signs of irreversibility and fewer

lifetime features. Under these conditions βLGa adsorbed on an amino-silanized

mica surface and appeared to be denatured.

The DLS measurements showed that the protein had swelled and had a broad

distribution of hydrodynamic radius. In a titration from 0 M to 7 M urea, the
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width of the DLS RH distribution was broadest at 5 M urea. That the width of the

distribution is resolvable, implied the exchange time within that distribution was

longer than the characteristic diffusion time of ∼20 µs. Amyloid formation from

βLGa has been observed to be fastest at 5 M urea.[13] The day 0 DLS results

showed that the conditions giving the maximum rate of amyloidogenesis were

coincident with those that created the maximum variance in the hydrodynamic

radius of βLGa.

Overall we can conclude that there are multiple monomeric structures that

are exchanging in the sample under these conditions. The partially folded in-

termediate appeared to be the aggregation-prone state. The ability to exchange

between multiple conformations may be a crucial feature in determining aggrega-

tion propensity. To use free energy landscape language, the folding funnel flattens,

allowing access to disordered states of increased RH and core solvation.

3.4.2 Early lag phase aggregation was more reversible

The DLS assay showed that aggregation occurs in the first few days of incuba-

tion with average particle sizes passing through a dimeric stage to a steady state

with an average size consistent with tetramers. In the AFM assay, the aggre-

gates could be imaged on a clean mica surface, but on a more strongly adsorbing

amino-silainzed mica surface the aggregates were disrupted and denatured on the

surface. The ANS 5 M urea assay revealed a decreased ability of ANS to bind to

the calyx. The irreversibility assay showed changes predominantly in the calyx

binding site. The fingerprint analysis of the ANS 5 M urea assay suggested that a

new species was growing in, with a small contribution from another species. We

call these species AggA and AggB, respectively. The differences in fingerprints

suggested changes in the nature and relative populations of different binding sites

and therefore a change in the tertiary structure of the monomers upon aggrega-

tion. However, the ThT assay only showed small changes in lifetime distribution
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implying that this structural change was not to the cross-β structure associated

with amyloid.

The stabilization energy of AggA was less than the electrostatic interaction

with the amino-silanized mica surface. However, AggA was not disrupted by

dilution into more native-like conditions suggesting that the AggA stabilization

energy was between the folding energy and the surface adsorption energy. The

interaction between monomers in AggA most likely involved some change or dis-

ruption of the calyx that allowed solvent access. Some parts of the structural

changes that occurred upon forming AggA were still reversible at this stage. This

suggested that the structure of βLGa in AggA more closely resembled the free

monomer than does AggB. AggA appeared to be limited in total size. Contin-

ued growth most likely required disruption of the remaining free-monomer-like

structure. AggA in Fig. 3.11 was modeled with swapping of structural elements.

This type of interaction is possible because of the inherent self-complimentary

nature of folded proteins. These interactions are also likely to sterically limit the

maximum size of aggregates that could be so assembled.

3.4.3 Late lag phase aggregation loses calyx

During the late lag phase small aggregates were possible to image on the amino-

silanized mica surface. In the DLS assay, the appearance of a wing on the distri-

bution to larger RH and the growth of a new feature at large RH suggest aggregate

growth resuming during this stage. The ThT assay shows a new pattern in the

lifetime distribution. The ANS fingerprint analysis showed that AggB begins

to get appreciable population while AggA decreases in population, suggesting a

conversion from AggA to AggB. The ANS irreversibility assay showed that AggB

had new binding sites for ANS. This suggested that the structural conversion was

inside of the aggregate rather than a newly formed aggregate.
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Conversion to AggB appeared to be required for growth to continue. The sta-

bility of AggB with respect to dissociation on the amino-silanized surface implied

that it was more stable than AggA. AggB was larger, on average, than AggA. The

monomer structure changed from AggA to AggB as reflected in the changes in the

ANS assay binding sites. AggB was also structurally different than AggA in terms

of the monomer-monomer interactions as suggested by the ANS reversibility as-

say. The changes in AggB structure allowed ThT-ThT interactions that were not

possible in AggA. The ThT assay implied that some elements of the AggB struc-

ture might be similar to those in amyloid fibril. However, no fibrils or protofibrils

were observed at this stage. The ThT lifetime contributions of fibrillar species

were different than those of AggB. Conversion to AggB could be misinterpreted

as amyloid formation if only changes in ThT intensity were measured.

3.4.4 Protofibrils appeared after day 20

During the growth phase the light scattering intensity increased enormously and

the amount of large aggregate increased. AFM images showed the appearance of

protofibrils followed by elongation of protofibrils and finally fibril assembly into

long fibrils of varying length and diameter. The ANS assay showed dramatic

growth in the protofibril fingerprint, a decrease in the AggA fingerprint, and a

steady state for the AggB fingerprint. At very long incubation times very little

ANS binding was observed to mature fibrils suggesting the presence of accessi-

ble hydrophobic regions on the protofibrils that disappeared upon formation of

mature fibrils. We speculate that these hydrophobic locations are involved in

the lateral association of protofibrils into fibrils. The ThT assay showed a new

lifetime distribution pattern that continued to grow until at least day 34. We

associated this pattern with amyloid protofibrils since the distribution was still

very different than that observed from mature fibrils. Only some of the protofibril

features were present in the ThT assay taken after 2 months of incubation where
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mature fibrils were present. A large ThT lifetime contribution was present in

the mature fibril data that was not present at any other stage. The structure of

protofibrils must be different at the ThT binding level from that of fibrils.

3.4.5 Overall mechanism

The native β-strands in β-LGa are not in the right orientation to attain the cross-

β geometry. It appears likely that an interaction analogous to domain swapping

or opening of the β-sheet “sandwich” would be required for β-LGa to associate

into the cross-β geometry. Based on the observed morphology of amyloid fibrils

and the size of β-LGa, it would require approximately 2-3 β-LGa monomers, or

4-6 flattened monomers, to form the transverse structure of a 4-5 nm diameter

fibril. A fibril of ∼45 nm in length would contain ∼32 β-LGa monomers and have

a total molecular weight of 590 kDa. A fully formed amyloid fibril of 10 nm x

200 nm would contain ∼700 β-LGa monomers and have a total molecular weight

of 12.9 MDa.

Our results suggest that there are two parts to the lag phase of βLGa amy-

loid formation. The sequence of events is similar to some recent kinetic analyses

of amyloid nucleation.[22] We monitored the role of the hydrophobic core using

the signature lifetime of ANS in the calyx. We showed how fluorescence lifetime

fingerprints can be used to extract the contribution of multiple species during

incubation. We identified two intermediates in the lag phase that are distin-

guishable by their relative stability, size, and binding of ThT and ANS. ANS is

sensitive to the rigidity and polarity of binding locations, while ThT is sensitive

to the relative geometry of its ThT binding sites. Based on this information, we

must conclude that significant rearrangement of structure must occur between

AggA and AggB. The standard interpretation of this change would be that AggB

represents the conversion to the amyloid nucleus. However, ThT gave different

signals when bound to AggA, AggB, and protofibrils. Moreover, the onset of
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rapid growth of protofibrils does not occur until many days after the appearance

of AggB. Therefore we must conclude that AggB is distinct in structure from

both AggA and protofibrils. The presence of multiple aggregated species in a

serial mechanism suggests that homogenous nucleation may not be a universal

description of amyloid formation kinetics.

The initial aggregation into AggA and subsequent aggregation into AggB must

have some driving force associated with them. Two simple models, colloidal ag-

gregation and polymer phase stability, can be invoked to frame the initial ag-

gregation. The inherent hydrophobicity of the polypeptide chain can lead to an

aggregated phase of protein being more stable.[16] The driving force in this case is

the increased number of favorable protein-protein and water-water contacts and

a decreased number of protein-water contacts. Colloidal aggregation is similar

except that it attributes the driving force to the partitioning of amino acids with

unfavorable protein-water contact energies into a region of higher protein-protein

contacts while amino acids with favorable protein-water contact energies are par-

titioned to the surface of the aggregate. This partitioning puts an additional

geometric constraint on the aggregation process that is not present in the phase

stability picture.

Given the large number of charged amino acids on βLGa we favor the col-

loidal aggregation picture, however our data only indirectly addresses this issue.

Colloidal association in AggA and then AggB could reduce the barrier to the

conformational change to cross-β required to form amyloid. Colloidal associa-

tion is required because the monomer cannot rearrange without sacrificing a pro-

hibitively large number of hydrophobic interactions. If the protein has a strong

hydrophobic core, then the hydrophobic effect is too strong to disrupt. If the

protein is completely unfolded the possible hydrophobic gains are too weak to

overcome the translational entropy lost to aggregation.

There is a connection to protein folding in this analysis. Proteins below a
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certain size typically cannot stably fold. This can be attributed to there not be-

ing a large enough number of favorable interactions to meet the thermodynamic

conditions of cooperativity. By associating into colloidal or phase-separated ag-

gregates, the protein increases its effective molecular weight and potential number

of favorable interactions to the point where the fold of amyloid is accessible. This

colloidal or phase-separated promotion of conformational rearrangement may ex-

plain the ability of surfactants to promote amyloid formation.

Amyloidogenic conditions have been identified for many non-disease-related

proteins. This leads to the hypothesis that aggregation of proteins leading to amy-

loid fibril formation is a generic feature of polypeptides.[79, 7] If the hypothesis

that amyloidogenesis is a generic possibility for proteins is valid, then we should

think about amyloid as a particular state of protein in the polypeptide phase

diagram. The driving forces for phase separation into amyloid should depend on

the relative contributions of hydrogen bonding in the cross-β structure and the

arrangement of hydrophobic groups. There is evidence that the polypeptide is

hydrophobic from a polymer physics point of view, i.e. that polymer-polymer

contacts are more energetically favorable than polymer-water contacts.[80, 81]

This would suggest that the environmental and sequence determinants for amy-

loid propensity are more based on the lowering of the barrier to formation of the

amyloid phase than on stability of the amyloid phase itself. In other words the

effects are principally kinetic rather than thermodynamic. In particular in this

study we propose that the initial aggregation to AggA allows a larger hydrophobic

core to be formed in AggB. This allows the cross-β structure to be obtained in

the protofibril. The initial bistability of the monomer allows formation of AggA.

AggA allows a lower-barrier pathway to formation of AggB which is large enough

to rearrange into the more stable cross-β structure without a prohibitively large

activation barrier. This allows the spontaneous formation of amyloid protofibrils

to occur even when barriers to formation of the cross-β structure directly from
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the monomer or even AggA is energetically prohibitive.

3.5 Materials and Methods

3.5.1 Materials

Lyophilized β-LGa, thioflavin T, urea, APTES, sodium phosphate dibasic and

mono-basic were purchased from Sigma. Fluorescence grade 8-anilino-1-naphthalenesulfonic

acid ammonium salt (ANS) was purchased from Fluka.

A 10 mM sodium phosphate, pH 7.0 stock buffer solution was prepared with

HPLC grade water. This buffer was used to prepare a second stock buffer con-

taining 7.5 M urea. Both stock buffers were filtered through a 0.22 µm PES

filter and stored at 4◦C. For DLS measurements, extra care was taken to mini-

mize scattering from dust contaminants by filtering stock buffer solutions with a

pre-washed, 0.020 µm syringe filter (Whatman). The 0 M urea stock phosphate

buffer was used to prepare a 138 µM stock protein solution of β-LGa and stored

at 4◦C. The protein stock solution was checked by UV absorption every few days

to ensure its stability.

3.5.2 β-LGa incubations

We incubated β-LGa under conditions previously reported to show maximum

amyloidogenicity[13] and aliquoted samples for time-resolved ANS and ThT lu-

minescence, DLS, and AFM experiments.

For time-resolved luminescence and DLS measurements, 1.5 mL of protein

sample for incubation was prepared every other day for 28 days and used for ANS

assay along with the long-term DLS experiments. For ThT and ANS reversibility

assay, samples were prepared every day for 34 days and 18 days, respectively.

Each incubation sample was prepared by combining a 500 µL aliquot of the stock
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protein solution to 1000 µL of the 7.5 M urea stock solution in a polypropylene

eppendorf tube resulting in a final protein concentration of 46 µM and a final

urea concentration of 5 M. The sample was capped, sealed with Parafilm, and

placed in an incubator at 37◦C. At the conclusion of the incubation, all samples

were breached and each was parsed for contemporaneous experimentation.

To investigate the earliest aggregation with DLS, a sample of 46 µM β-LGa in

5 M urea, 10 mM sodium phosphate at pH 7.0 was prepared from the stock solu-

tions above. The sample filled the cuvette to approximately 90% capacity in order

to reduce the sample head space. Dynamic light scattering was measured while

simultaneously incubated at 37◦C in a Peltier sample chamber (instrumentation

discussed below).

For the AFM measurements, lyophilized β-LGa was reconstituted and dia-

lyzed against pre-filtered (0.22 µm) 100 mM phosphate buffer, pH 7.0. Prefiltered

concentrated urea buffer was added resulting in a final sample condition for in-

cubation of 50 µM protein in 5 M urea, 13.7 mM sodium phosphate at pH 7.0.

The sample was incubated in a Parafilm-sealed 1.5 mL Eppendorf tube at 37◦C

over 65 days. The sample was inverted once each day that AFM was measured

and 20 µL was aliquoted for the AFM image.

3.5.3 Time-resolved luminescence

Time-resolved luminescence was measured by time-correlated single photon count-

ing (TCSPC). Experimental set up has been previously described[82] with the

exception that the Spectra Physics Tsunami Ti:Sapphire laser was operated in

femtosecond mode. All samples were analyzed at 37◦C in a Quantum North-West

TLC150 Peltier controller sample chamber (Spokane, WA).

For the ThT assay, a stock 5 µM ThT solution was prepared from the 0 M

urea stock buffer. 50 µL of an incubated timepoint was aliquoted into 450 µL of

ThT solution in a reduced volume cuvette and allowed to stand for 15 minutes
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at 37◦C. The excitation laser was tuned to 450 nm and the luminescence was

observed at 482 nm. The time zero intensity ranged between 30,000 and 60,000

photons. A 50 ns collection window was used. Instrument response functions

typically had a full-width at half-maximum (fwhm) of approximately 90 ps.

A 80 µM ANS stock solution was prepared in a 0 M urea stock buffer for the

ANS assay. 500 µL of an incubated timepoint was combined with 10 µL of the

ANS stock solution and allowed to stand for 15 minutes at 37◦C.

For the ANS reversibility assay, a 1 µM ANS stock solution was prepared

in a 0 M urea stock buffer. 50 µL of an incubated timepoint was combined

with 450 µL of the ANS stock solution and allowed to stand for 15 minutes at

37◦C. Excitation beam was tuned to 390 nm and the fluorescence emission was

observed at 485 nm over a 100 and 82 ns collection windows for the ANS and

ANS reversibility assays, respectively. A typical transient’s time zero intensity was

4,000 for the ANS reversibility assay, whereas 18,000 photons was common for the

ANS assay. Instrument response functions typically had a fwhm of approximately

100 ps.

We expect the population of the luminescent species to be piecewise contin-

uous with respect to incubation time, making this system a prime candidate for

global data analysis by the GIPG method.[63, 82]. ThT luminescence lifetime dis-

tributions were fit on an 80-point grid, logarithmically spaced in lifetime, ranging

from 0.002 to 20 ns. Both types of ANS assays were fit on there own 58-point log-

arithmically spaced between ranging from 0.03 to 30 ns. A baseline and scattering

term was included in the fits. To compensate for potential incident laser intensity

fluctuations across incubation time, all TCSPC transients were normalized by the

total time-zero photon population. This is accomplished by summing the param-

eters from a non-negative least squares fit [83, 63] The GIPG fits were considered

statistically indistinguishable from the local fits by calculating the probability-to-

reject [63, 84] to be less than 10−4 for all fits. ThT, ANS and ANS reversibility
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assays GIPG fits used 8 × 105, 1 × 106, 1.5 × 106 iterations, respectively. The

GIPG step scaling term referred to as λ, was set to 0.9.

3.5.4 Dynamic light scattering

Fluctuations of scattered light intensity were measured using a homodyne tech-

nique. At a particular incubation time, x, the intensity correlation function

g2(t, x), was measured by a modified Nicomp Model 380 Particle Size Analyzer

from Particle Sizing Systems. Scattered light from the incident laser, λ=532 nm,

was collected orthogonally, θ=90◦. The system employs a linearly-scaled 64-

channel digital autocorrelator. For experiments completed in this paper, the

native autocorrelator was bypassed by an ALV-6010 Multi-Tau autocorrelator

(ALV-GmbH, Langen, Germany) for the maximum possible statistical accuracy

across several orders of magnitude in decay time.[85]

Round borosilicate glass cuvettes (Kimble Glass) were used for all DLS mea-

surements. In order to minimize dust contamination, each cuvette was rinsed with

Millipore water. Cuvettes were placed in a micro-centrifuge, inverted (open-side

face-down), then spun dry and stored face down. After sample was quickly and

carefully added to the cuvette, it was covered with transparent tape to keep it

dust-free, then wrapped in Parafilm for an additional seal.

For the 28 day DLS study, 250 µL of incubated sample was placed in a clean,

dry cuvette. Twenty correlation functions were measured sequentially for 30

seconds apiece for each incubated sample. The cuvette chamber was held at

a constant temperature of 37◦C. For the continuous acquisition incubation, the

same sample was analyzed every 15 minutes for 5 minutes at 37◦C for 4.7 days.

The distribution of decay rates, f(Γ, x), for particular incubation time point,

x is related to the field correlation function, g1(t, x), by

g1(t, x) =

∫ ∞
0

e−Γtf(Γ, x) dΓ, (3.1)
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where f(Γ, x) can be solved for by the inverse Laplace transform. In most cases,

the intensity and field correlation functions can be related via the Siegert relation,

such that
√
g2(t, x)− 1 ∝ g1(t, x).[85]

GIPG was originally demonstrated by globally fitting TCSPC transients, but

it can be also employed to globally fit many types of spectroscopic data that

require an inverse Laplace transform, such as in Eq. 3.1, as long as there is

piecewise continuity in the experimental domain, x. One difference is that the

intensity correlation functions do not require instrument-response convolution of

the basis set. Another difference is that the standard deviations for the data were

calculated in real time by the ALV-6010 correlator using a noise model.

DLS data was globally fit on a 50-point grid of logarithmically-spaced decay

times, Γ−1, ranging from 0.001 to 65 ms. A baseline term was included. The

total number of correlation functions used in the short-term DLS fit was reduced

340 to 34 by averaging every ten correlation functions into a single trace and

propagating the error accordingly. The probability-to-reject the GIPG solution

for both data sets was less than 10−4.

In DLS, a particle’s decaytime is related to the translational diffusion constant

though the scattering vector, q, such that D = Γ/q2, where q = 4nπ/λ sin(θ/2),

where n is the refractive index. The diffusion constant can then be converted

to Stokes-hydrodynamic radius (RH) using the Stokes-Einstein relation, RH =

(kbT )/(6πη0D), assuming a spherical shape. For these experiments, T is the

temperature, η0 is the viscosity of the buffer, and kb is the Boltzmann constant.

The characteristic density of the partially unfolded monomer determined from

assignment of a urea titration DLS experiment at 5.0 M was used to scale the

oligomer sizes.
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3.5.5 Atomic force microscopy

To obtain better adhesion of protein aggregates to a mica surface, a chemical sur-

face modification was implemented. 20 uL of 0.1 (V/V) APTES (Aminopropyl-

triethoxysilane) was applied evenly on freshly cleaved 9.9 mm diameter mica disk.

After 10 minutes unreacted APTES was rinsed away with 15 mL 0.2 µM filtered

deionized water. The surface was blown dry with high purity compressed nitrogen

gas. Incubated sample was applied evenly on freshly prepared surface for 10 min-

utes. Unbound species were rinsed away with Millipore water. The sample was

again dried with nitrogen gas before being imaged with a MultiMode Scanning

Probe Microscope (Digital Instruments) with a TESP tip in tapping mode.
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[21] J. Stöhr, N. Weinmann, H. Wille, T. Kaimann, L. Nagel-Steger, E. Birk-
mann, G. Panza, S. B. Prusiner, M. Eigen, D. Riesner, Mechanisms of prion
protein assembly into amyloid, Proc. Natl. Acad. Sci. U. S. A. 105 (2008)
2409 –2414.

[22] J. M. Andrews, C. J. Roberts, A lumry-eyring nucleated polymerization
model of protein aggregation kinetics: 1. aggregation with pre-equilibrated
unfolding, The Journal Physical Chemistry B 111 (2007) 7897–7913.

[23] C. Goldsbury, J. Kistler, U. Aebi, T. Arvinte, G. J. S. Cooper, Watching
amyloid fibrils grow by time-lapse atomic force microscopy, J. Mol. Biol.
285 (1) (1999) 33–39.

[24] M. Stolz, D. Stoffler, U. Aebi, C. Goldsbury, Monitoring biomolecular inter-
actions by time-lapse atomic force microscopy, Journal of Structural Biology
131 (3) (2000) 171–180.



108

[25] W. S. Gosal, A. H. Clark, P. D. A. Pudney, S. B. Ross-Murphy, Novel amyloid
fibrillar networks derived from a globular protein: β-lactoglobulin, Langmuir
18 (19) (2002) 7174–7181.

[26] A. Parbhu, H. Lin, J. Thimm, R. Lal, Imaging real-time aggregation of
amyloid β protein (1-42) by atomic force microscopy, Peptides 23 (7) (2002)
1265–1270.

[27] Y. Kusumoto, A. Lomakin, D. B. Teplow, G. B. Benedek, Temperature
dependence of amyloid β-protein fibrillization, Proc. Natl. Acad. Sci. U. S.
A. 95 (21) (1998) 12277–12282.

[28] F. Bergasa-Caceres, H. A. Rabitz, Two-state folding kinetics of small proteins
in the sequential collapse model: Dependence of the folding rate on contact
order and temperature, J. Phys. Chem. B 107 (46) (2003) 12874–12877.

[29] S. B. Prusiner, Novel proteinaceous infectious particles cause scrapie, Science
216 (4542) (1982) 136–144.

[30] J. S. Griffith, Self-replication and scrapie, Nature 215 (105) (1967) 1043–
1044.

[31] D. Schenk, Opinion: Amyloid-β immunotherapy for alzheimer’s disease: the
end of the beginning, Nat. Rev. Neurosci. 3 (10) (2002) 824–828.

[32] K. S. Satheeshkumar, R. Jayakumar, Conformational polymorphism of the
amyloidogenic peptide homologous to residues 113-127 of the prion protein,
Biophys. J. 85 (1) (2003) 473–483.

[33] M. Bouchard, J. Zurdo, E. J. Nettleton, C. M. Dobson, C. V. Robinson,
Formation of insulin amyloid fibrils followed by ftir simultaneously with cd
and electron microscopy, Protein Sci. 9 (2000) 1960–1967.

[34] J. Lansbury, Peter T., P. R. Costa, J. M. Griffiths, E. J. Simon, M. Auger,
K. J. Halverson, D. A. Kocisko, Z. S. Hendsch, T. T. Ashburn, et al., Struc-
tural model for the β-amyloid fibril based on interstrand alignment of an
antiparallel-sheet comprising a c-terminal peptide, Nature Structural Biol-
ogy 2 (11) (1995) 990–998.

[35] F. Chiti, P. Webster, N. Taddei, A. Clark, M. Stefani, G. Ramponi, C. M.
Dobson, Designing conditions for in vitro formation of amyloid protofila-
ments and fibrils, Proc. Natl. Acad. Sci. U. S. A. 96 (7) (1999) 3590–3594.

[36] H. Abe, H. Nakanishi, Novel observation of a circular dichroism band origi-
nating from amyloid fibril, Anal. Sci. 19 (1) (2003) 171–173.

[37] R. Carrotta, R. Bauer, R. Waninge, C. Rischel, Conformational character-
ization of oligomeric intermediates and aggregates in β-lactoglobulin heat
aggregation, Protein Sci. 10 (7) (2001) 1312–1318.



109

[38] V. Baskakov Ilia, G. Legname, A. Baldwin Michael, B. Prusiner Stanley,
E. Cohen Fred, Pathway complexity of prion protein assembly into amyloid,
J. Biol. Chem. 277 (24) (2002) 21140–21148.

[39] A. Quintas, M. J. Saraiva, R. M. Brito, The tetrameric protein transthyretin
dissociates to a non-native monomer in solution. a novel model for amyloido-
genesis, J. Biol. Chem. 274 (46) (1999) 32943–32949.

[40] J. Safar, P. P. Roller, D. C. Gajdusek, J. Gibbs, C. J., Scrapie amyloid (prion)
protein has the conformational characteristics of an aggregated molten glob-
ule folding intermediate, Biochemistry 33 (27) (1994) 8375–8383.

[41] S. Srisailam, S. Kumar Thallampuranam Krishnaswamy, D. Rajalingam,
M. Kathir Karuppanan, H.-S. Sheu, F.-J. Jan, P.-C. Chao, C. Yu, Amyloid-
like fibril formation in an all β-barrel protein. partially structured intermedi-
ate state(s) is a precursor for fibril formation, J. Biol. Chem. 278 (20) (2003)
17701–17709.

[42] P. M. Gorman, A. Chakrabartty, Alzheimer β-amyloid peptides: structures
of amyloid fibrils and alternate aggregation products, Biopolymers 60 (5)
(2001) 381–394.

[43] T. H. J. Huang, D.-S. Yang, P. E. Fraser, A. Chakrabartty, Alternate ag-
gregation pathways of the alzheimer β-amyloid peptide. an in vitro model of
preamyloid, J. Biol. Chem. 275 (46) (2000) 36436–36440.

[44] S. Uhrinova, M. H. Smith, G. B. Jameson, D. Uhrin, L. Sawyer, P. N.
Barlow, Structural changes accompanying ph-induced dissociation of the β-
lactoglobulin dimer, Biochemistry 39 (13) (2000) 3565–3574.

[45] L. Sawyer, G. Kontopidis, The core lipocalin, bovine β-lactoglobulin,
Biochim. Biophys. Acta 1482 (2000) 136–148.

[46] L. M. C. Sagis, C. Veerman, E. Van der Linden, Mesoscopic properties of
semiflexible amyloid fibrils, Langmuir 20 (3) (2004) 924–927.

[47] M. Buck, Trifluoroethanol and colleagues: cosolvents come of age. recent
studies with peptides and proteins, Quarterly Reviews of Biophysics 31 (3)
(1998) 297–355.

[48] G. Chikenji, M. Kikuchi, What is the role of non-native intermediates of
β-lactoglobulin in protein folding?, Proc. Natl. Acad. Sci. U. S. A. 97 (26)
(2000) 14273–14277.

[49] V. Forge, M. Hoshino, K. Kuwata, M. Arai, K. Kuwajima, C. A. Batt,
Y. Goto, Is folding of β-lactoglobulin non-hierarchic? intermediate with
native-like β-sheet and non-native α-helix, J. Mol. Biol. 296 (4) (2000) 1039–
1051.



110

[50] D. Hamada, Y. Goto, The equilibrium intermediate of β-lactoglobulin with
non-native α-helical structure, J. Mol. Biol. 269 (4) (1997) 479–487.

[51] D. Hamada, S.-i. Segawa, Y. Goto, Non-native α-helical intermediate in the
refolding of β-lactoglobulin, a predominantly β-sheet protein, Nature Struc-
tural Biology 3 (10) (1996) 868–873.

[52] K. Kuwata, M. Hoshino, S. Era, C. A. Batt, Y. Goto, α → β transition
of β-lactoglobulin as evidenced by heteronuclear nmr, J. Mol. Biol. 283 (4)
(1998) 731–739.

[53] F. Bergasa-Caceres, H. A. Rabitz, Sequential collapse folding pathway of
β-lactoglobulin: Parallel pathways and non-native secondary structure, J.
Phys. Chem. B 107 (v 15) (2003) 3606–3612.

[54] K. Kuwajima, H. Yamaya, S. Sugai, The burst-phase intermediate in the
refolding of β-lactoglobulin studied by stopped-flow circular dichroism and
absorption spectroscopy, J. Mol. Biol. 264 (4) (1996) 806–822.

[55] K. Kuwata, R. Shastry, H. Cheng, M. Hoshino, C. A. Batt, Y. Goto,
H. Roder, Structural and kinetic characterization of early folding events in
β-lactoglobulin, Nature Structural Biology 8 (2) (2001) 151–155.

[56] N. K. Kella, J. E. Kinsella, Structural stability of β-lactoglobulin in the pres-
ence of kosmotropic salts. a kinetic and thermodynamic study., International
Journal of Peptide and Protein Research , pp. 32 (1988) 396–405.

[57] L. K. Creamer, Effect of sodium dodecyl sulfate and palmitic acid on the
equilibrium unfolding of bovine β-lactoglobulin?, Biochemistry 34 (1995)
7170–7176.

[58] L. D’Alfonso, M. Collini, G. Baldini, Trehalose influence on β-lactoglobulin
stability and hydration by time resolved fluorescence, European Journal of
Biochemistry 270 (11) (2003) 2497–2504.

[59] W. Kirk, E. Kurian, W. Wessels, Photophysics of ans v. decay modes of ans
in proteins: The ifabp-ans complex, Biophys. Chem. 125 (2007) 50–58.

[60] O. K. Gasymov, A. R. Abduragimov, B. J. Glasgow, Characterization of
fluorescence of ans-tear lipocalin complex: Evidence for multiple-binding
modes, Photochem. Photobiol. 83 (2007) 1405–1414.

[61] R. Khurana, J. R. Gillespie, A. Talapatra, L. J. Minert, C. Ionescu-Zanetti,
I. Millett, A. L. Fink, Partially folded intermediates as critical precursors of
light chain amyloid fibrils and amorphous aggregates, Biochemistry 40 (12)
(2001) 3525–3535.



111

[62] M. Lindgren, K. Sorgjerd, P. Hammarstromy, Detection and characterization
of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using flu-
orescence spectroscopy, Biophys. J. 88 (2005) 4200–4212.

[63] J. T. Giurleo, D. S. Talaga, Global fitting without a global model: Regular-
ization based on the continuity of the evolution of parameter distributions,
The Journal of Chemical Physics 128 (2008) 114114–(1–18).

[64] A. Lomakin, G. B. Benedek, D. B. Teplow, Monitoring protein assembly
using quasielastic light scattering spectroscopy, Method in Enzymology 309
(1999) 429–459.

[65] A. J. Modler, K. Gast, G. Lutsch, G. Damaschun, Assembly of amyloid
protofibrils via critical oligomers-a novel pathway of amyloid formation, J.
Mol. Biol. 325 (1) (2003) 135–148.

[66] F. S. Waldrop, H. Puchtler, S. N. Meloan, Fluorescent thiazole stains for
amyloid without differentiation, Journal of Histotechnology 7 (3) (1984) 123–
126.

[67] A. Elhaddaoui, A. Delacourte, S. Turrell, Spectroscopic study of congo red
and thioflavin binding to amyloid-like proteins, J. Mol. Struct. 294 (1993)
115–118.

[68] I. LeVine, Harry, Thioflavine t forms uniquely fluorescent complexes with
amyloid structures of synthetic alzheimer’s disease β-amyloid peptides and
insulin in solution, Amyloid Amyloidosis 1993, Proc. Int. Symp. Amyloidosis,
7th (1994) 383–385.

[69] I. LeVine, Harry, Thioflavine t interaction with amyloid β-sheet structures,
Amyloid 2 (1) (1995) 1–6.

[70] T. Ban, D. Hamada, K. Hasegawa, H. Naiki, Y. Goto, Direct observation of
amyloid fibril growth monitored by thioflavin t fluorescence, J. Biol. Chem.
278 (19) (2003) 16462–16465.

[71] R. Schirra, Dye aggregation in freezing aqueous solutions, Chem. Phys. Lett.
119 (1985) 463–466.

[72] R. R. C. Retna Raj, γ-cyclodextrin induced intermolecular excimer formation
of thioflavin t, Chem. Phys. Lett. 273 (1997) 285–290.

[73] M. Groenning, L. Olsen, M. van de Weert, J. M. Flink, S. Frokjaer, F. S.
Jørgensen, Study on the binding of thioxavin t to β-sheet-rich and non-β–
sheet cavities, Journal of Structural Biology 158 (2007) 358–369.

[74] W. F. Weiss, T. K. Hodgdon, E. W. Kaler, A. M. Lenhoff, C. J. Roberts,
Nonnative protein polymers: Structure, morphology, and relation to nucle-
ation and growth, Biophys. J. 93 (2007) 4392–4403.



112

[75] M. Gaczynska, P. A. Osmulski, Afm of biological complexes: What can we
learn?, Current Opinion in Colloid Interface Science in Press.

[76] L. D’Alfonso, M. Collini, G. Baldini, Does β-lactoglobulin denaturation occur
via an intermediate state?, Biochemistry 41 (2002) 326–333.

[77] S. J. Strickler, R. A. Berg, Relationship between absorption intensity and
fluorescence lifetime of molecules, The Journal of Chemical Physics 37 (1962)
814–822.

[78] D. W. Miller, K. A. Dill, Ligand binding to proteins: The binding landscape
model, Protein Sci. 6 (1997) 2166–2179.

[79] C. M. Dobson, Protein misfolding, evolution and disease, Trends Biochem.
Sci. 24 (9) (1999) 329–332.

[80] S. L. Crick, M. Jayaraman, C. Frieden, R. Wetzel, R. V. Pappu, Fluorescence
correlation spectroscopy shows that monomeric polyglutamine molecules
form collapsed structures in aqueous solutions, Proc. Natl. Acad. Sci. U.
S. A. 103 (2006) 16764–16769.

[81] A. Vitalis, X. Wang, R. V. Pappu, Quantitative characterization of intrinsic
disorder in polyglutamine: Insights from analysis based on polymer theories,
Biophys. J. 93 (2007) 1923–1937.

[82] T. C. Messina, H. Kim, J. T. Giurleo, D. S. Talaga, Hidden markov model
analysis of multichromophore photobleaching, J. Phys. Chem. B 110 (2006)
16366–16376.

[83] C. L. Lawson, R. J. Hanson, Solving Least Squares Problems, Prentice-Hall,
Inc., 1974.

[84] S. W. Provencher, A contrained regularization method for inverting data rep-
resented by linear algebraic or integral equations, Comput. Phys. Commun.
27 (1982) 213–227.

[85] W. Brown (Ed.), Dynamic Light Scattering, The Method and Some Appli-
cations, Oxford Science Publications, 1993.

[86] J. L. Banks, H. S. Beard, Y. Cao, A. E. Cho, W. Damm, R. Farid, A. K. Felts,
T. A. Halgren, D. T. Mainz, J. R. Maple, R. Murphy, D. M. Philipp, M. P.
Repasky, L. Y. Zhang, B. J. Berne, R. A. Friesner, E. Gallicchio, R. M. Levy,
Integrated modeling program, applied chemical theory (impact), J. Comput.
Chem. 26 (2005) 1752–1780.



113

Chapter 4

Exploring αSyn with covalently attached

fluorophores using time-resolved and single

molecule imaging spectroscopy

4.1 Summary

In recent years, time-resolved fluorescence techniques have become very useful

for elucidating a host of biophysical problems. Using conformationally sensitive

fluorescent probes allows the differentiation of local environments and the abil-

ity to infer conformational changes in the host molecule. The downside is that

multiple lifetimes acquired for a single system can be complicated to understand.

We take two approaches to solve this: global analysis of bulk data and utilizing

single molecule imaging spectroscopy. The first approach can be accomplished

by acquiring data transients while simultaneously, but smoothly, perturbing an

experimental coordinate, such as temperature, wavelength, denaturant concen-

tration, etc. It is then applicable to utilize the globally regularized interior point

gradient method to determine the lifetime components of the system without the

need to a specify a model a priori (see Chap. 2 for details). [1] In the second ap-

proach, we can avoid the ensemble averaging present in all bulk experiments by

employing single molecule lifetime imaging [2] to identify characteristic lifetimes

species-by-species.
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Figure 4.1: The number of publications between the years 1962 to 2007, with the
concepts of fluorescence, lifetimes and protein. The importance of time-resolved
fluorescence has grown substantially in recent years. Information was provided
by the Chemical Abstract Service.

4.2 Introduction

Time-resolved fluorescence (TRF) and single molecule fluorescence techniques

have become an important contributors to the field of biophysics. [3] They have

been the beneficiaries of critical advances during the last 25 years in molecular

biology (such as polymerase chain reaction), laser technology (tunable and pulsed)

and detection systems (microchannel plates and fast avalanche photodiodes). [4]

These advances allow for practical, biologically relevant research.

Using fluorescence to monitor biological systems has several advantages. First,

fluorescence spectroscopy is sensitive because it is (usually) trivial to separate the

background from signal. If necessary, measurements can be made at picomolar

concentrations. Second, the amount of time spent in the excited state is usually on

the order of several nanoseconds. From a protein folding point-of-view, this is the

optimal timescale for investigating secondary and tertiary structural changes. [4,

5] A few nanoseconds in the excited state is a sufficient amount of time for a probe

to become in contact with a quencher, diffuse, reorientate, and/or form transient

complexes with the solvent. All of these environmental factors can modulate the

fluorescence properties. The goal is to connect the spectral observable with the
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molecular features of the system.

In this chapter, we evaluate the fluorescence properties of three different cova-

lently attached fluorophores to α-synuclein (αSyn) using time-correlated single-

photon counting (TCSPC). αSyn is an intrinsically disordered protein (IDP) [6]

found in the brain. αSyn aggregates into highly structured pathogenic fibrils and

is implicated in Parkinson’s Disease. [7, 8]

Time-averaged, or steady-state, fluorescence measurements fall quantitatively

short of reporting on the multi-state properties of the system. [4] Only by measur-

ing fluorescence lifetimes can the separate components of the intensity signal be

ascertained. In chapter 3, we showed the power of elucidating the evolution life-

time distribution of an environmentally-sensitive, non-covalently attached probe

in order to determine aggregation states of β-lactoglobulin A. [9]

The lifetime distribution of a covalently attached fluorophore can report envi-

ronmental changes undergone by αSyn along an experimental coordinate (temper-

ature, incubation time, etc.). However, as the number of environments increases,

the lifetime analysis can become unstable. In chapter 2, we combat this issue by

applying a novel global analysis method to stabilize lifetime fitting called globally

regularized interior point gradient method (GIPG). [1]

Single molecule fluorescence imaging of aggregates with covalently attached

fluorophores can be utilized to elucidate the lifetime components on a species-by-

species basis. To differentiate between monomers, aggregates and fibrils, several

images are taken. With each pass, species photobleach. Monomers are expected

to be dim and photobleach easily in just a few image passes. Oligomers will

stepwise lose intensity as the dye is bleached. Fibrils are expected to have at

least two defining features: high intensity and several hundred nanometers long

or more. By keeping track of photobleaching steps for any aggregate, it is possible

to calculate the number of monomers per aggregate [10].

Nile Red (NR) is a solvatochromatic dye. The emission of NR is red-shifted
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in polar environments. By non-covalent intercalation, NR has been used to probe

hydrophobic protein surfaces [11], membrane interfaces [12], and polymer matrices

on a single molecule level [13]. Covalent attachment of NR via an aliphatic linker

was used to study the environmental changes in a bacterial chaperonin with its

cofactor [14]. By covalently attaching NR to a cysteine mutant of human αSyn

(A19C), we plan on measuring bulk and single molecule fluorescence lifetimes

to monitor conformational changes along αSyn self-assembly leading to amyloid

formation.

The chromophores Atto 590 (Atto) and Alexa Fluor 488 (Alexa) are considered

conjugation candidates for studying αSyn aggregation via TRF techniques. These

experiments include a full incubation of Alexa-αSyn or Atto-αSyn conjugate with

lifetime analysis, similar to that completed in Chap. 3. Also considered is a

co-incubation fluorescence resonance energy transfer (FRET) experiment study

described in more detail in Chap. 6. A cysteine conjugate of Alexa (Alexa-cys)

also is prepared as a control for the possible quenching of Alexa-αSyn with the

amino acid side chains.

Property Alexa 488 Atto 590

τ / ns 4.1 3.7
τn /ns 4.7 4.2
CF260 ? 0.42
CF280 0.10 0.44
εmax 72,000 120,000
λ / nm 493 594
Supplier Atto-Tec Invitrogen
Price / $ 188 400
A493 1 0.04

Table 4.1: Physical properties and other information concerning Alexa 488 and
Atto 590. τ is the lifetime, τn is the calculated natural lifetime, CF280 is the
correction factor at 280 nm, or A280 divided by the absorption at maximum, CF260

is the same as CF280 but at A280, εmax extinction coefficient, λ is wavelength at
absorption maximum, A493 is relative to the Atto absorption at 493 nm.
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Figure 4.2: Structures of the fluorophores featured in this chapter. A) Alexa Fluor
488, B) Atto 590 and C) Nile Red.

4.3 Methods

4.3.1 Selected materials

Atto 590 C5 maleimide was purchased from Atto-Tec (GmbH) and Alexa Fluor

488 C5 maleimide from Invitrogen (Carlsbad, CA). TCEP (tris-(2-carboxyethyl)phosphine)

was also purchased from Invitrogen. Nile Red maleimide was generously donated

by Professor W. E. Moerner (Stanford University). Cysteine was purchased from

Sigma-Aldrich (St. Louis, MO).

Protein Preparation

Escherichia coli BL21 DE3 strain (Invitrogen Inc.) were transfected by plasmids

(pT7-7) encoded human αSyn A19C mutant and were gifts from Professor Jean
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Baum (Rutgers University). Expression and purification of mutant αSyn followed

published protocols. [15]

4.3.2 Protein conjugation

Invitrogen’s protocol for thio-reactive probes was followed for the protein conjuga-

tion of NR-αSyn, Alexa-αSyn and Atto-αSyn. We note several changes/preferences.

Buffer used 10 mM phosphate, pH 7.0. Dyes were dissolved in 50 µL, or less,

of DMSO. TCEP was used to reduce disulfide bonds. Bio-Gel P-10 (BioRad)

columns were used for removing unreacted dye. β-mercaptoethanol was used to

stop the reaction. Alexa-αSyn and Atto-αSyn were filtered through a 100 kDa

molecular weight cutoff filter prior to experiments. Final concentrations were

about 1 mg/mL.

4.3.3 Cysteine conjugation

Along with the above protocol alterations, Alexa/cysteine conjugation requires

special attention to remove excess reactants. For this reaction, a 10X molar excess

of cysteine to Alexa maleimide was used. Removal of free cysteine was performed

by dialyzing against buffer with a low binding 500 Da cutoff Spectra/Por CE

dialysis bag.

4.3.4 Fluorescence spectroscopy

Temperature steady-state emission spectra were taken on a Cary Eclipse spec-

trometer (Varian Inc.). Excitation was set to 493 nm, and emission was 505 to

600 nm. Slit widths were set to 5 nm.

Data was taken every 5 Co from 5 to 95 ◦C, then back to 5 ◦C at a rate of

1 Co/min.
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Time-resolved fluorescence

TRF was measured by TCSPC. For NR-αSyn, the experimental set up has been

previously described [10]. Temperature was maintained by a Quantum North-

West TLC150 Peltier controller sample chamber (Spokane, WA). Three experi-

ments were performed by the NR-αSyn conjugate. First, emission lifetime was

monitored at nine different wavelengths (ranging from 635 to 715 nm) with a

10 nm slit while held at 37 ◦C. Then NR emission was measured at 655 nm as

the temperature was increased. The experiment was repeated but observing at

690 nm. Temperatures used were 15, 25, 37, 50, and 75 ◦C.

For Alexa-cys, Alexa-αSyn and Atto-αSyn conjugates, experimental setup

was the same except that the Spectra Physics Tsunami Ti:Sapphire laser was

operated in femtosecond mode. The laser was tuned to 450 nm (after frequency

doubling) for the Alexa-cys and Alexa-αSyn experiments. Alexa-cys emission was

monitored at 516 nm with a 10 nm slit at 15, 25, 37, 50, and 75 ◦C. The emission

for the Alexa-αSyn was collected in similar fashion, except that temperatures

ranged from 5 to 85 ◦C, every ten degrees.

The absorption maximum of Atto-αSyn is at 593 nm and is well outside the

tunable range of the mid-range (M) optics set. Instead, a 400 nm excitation

beam was used where there is a small absorption band, most likely the second

excited state S2. We assume that excitation into this band will result in a fast

relaxation process (tens of femtoseconds, perhaps) to the first excited state, S1,

then radiatively emit back to the ground state, S0. Emission was monitored at

635 nm with a 10 nm slit and ranged from 10 to 90 ◦C, every ten degrees.

Single molecule imaging

Two NR-αSyn samples were prepared for imaging: time-zero and after 8 days of

incubation at 37 ◦C. These samples were diluted to 100 pM, and 20 µL of sample
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was placed on a glass slide cleaned with strong acid and base. Experimental setup

for acquiring images was described in Ref. [10]. After drying, an 8 × 8 µm area

of slide was imaged.

4.3.5 Data analysis

Globally regularized IPG method (GIPG) was implemented as the analysis tool

for all bulk lifetime measurements using a second derivative continuity condi-

tion. [1] All data was fit on a 99-point, linear-spaced lifetime grid ranging from

0.1 to 10 ns with 500,000 iterations and a step parameter of 0.9. Probability-to-

reject for all fits were less than 0.01 (as compared to an Active Set fit). Lifetime

analysis of single molecule images were calculated by Becker-Hickl SPCM software

(as part of the Becker-Hickl SPC-630 correlator board).

4.4 Results and Discussion

4.4.1 Properties of Alexa 488
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Figure 4.3: Steady-state emission spectra versus temperature. Left panel: steady-
state emission at the start, middle and end of temperature cycle. The spectrum
exhibits typical thermal broadening at high temperatures, but is reversible after
the completion of the cycle. Right panel: a contour plot of the evolving emission
spectra across the temperature cycle. There is slight loss of signal as the sample
returns to back 5 ◦C and suggests irreversible fluorescence quenching.
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Steady-state fluorescence emission spectra of Alexa-αSyn broadens with tem-

perature, but the shape is reversible when returning to low temperatures as shown

in the right panel of Fig. 4.3. The overall intensity of the peak maximum de-

creases with increasing temperature and increases with decreasing temperature.

This feature is consistent with a temperature-dependent quenching mechanism.

However, there is an overall intensity loss while cycling from low to high and back

to low temperature suggesting a quenching mechanism has become irreversible.

We expect that this feature is the consequence of protein aggregation as shown

by dynamic light scattering data (shown in Chap. 5).

Figure 4.4: Lifetime dependence of temperature of Alexa-αSyn conjugate. The
main 4.1-ns component does not shift with temperature, but there is a small
contribution from a 800-ps species that appears as the temperature increases.
Both features are marked with circles and will be referred to later in the text
when describing the Alexa-αSyn conjugate lifetime evolution. Reduced chi-square
of the fit is 1.19.

Measuring the fluorescence lifetime properties of Alexa-cys conjugate is a con-

trol for the Alexa-αSyn experiments. From 15 to 75 ◦C there is no significant

change in the lifetime distributions as shown in Fig. 4.4. There is a fast 800-ps

component that appears at the high temperatures but is only 1% of the total
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Figure 4.5: Lifetime dependence of temperature of Alexa-αSyn conjugate. Two
new features, marked by squares at 1.1 and 3.4 ns appear as the temperature
increases. The Alexa-cys control is marked by circles. Reduced chi-square of the
fit is 1.11.

fluorescence. The majority feature is a 4.1 ns component and does not change

with temperature. In Fig. 4.4, we detail these features in the control with circles.

Fig. 4.5 shows the lifetime distribution of Alexa-αSyn evolving with temper-

ature. At low temperatures, the amplitude of the long lifetime is slightly shifted

to 4.3 ns as compared to the control. As the temperature increases to about

65 ◦C, the amplitude decreases substantially while a new feature at 3.4 ns ap-

pears. Also, a shorter 1.1 ns component begins to show significant population

that is not present in the control. We designate these different features with

squares. As in the control, the 900-ps feature is present at high temperatures.

Interpretation

The decrease in intensity is due to the loss of the 4.3 ns species. As the tempera-

ture increases, two new short lifetimes appear in the protein conjugate that does

not appear in the control (squares versus circles) suggesting that quenching may

be related to contact with the polypeptide side chains. If the quenching is due to
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amino acid interactions, aggregation may enhance this effect. By utilizing TRF,

Alexa is a potential fluorescent probe candidate for monitoring the intermediate

species during protein aggregation.

4.4.2 Properties of Atto 590
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Figure 4.6: Lifetime dependence of wavelength of Atto-αSyn conjugate at 37 ◦C.
As the temperature increases, we expect a slight shift to shorter lifetimes as
potential pathways out of the excited state increase. Reduced chi-square is 1.17

The Atto-αSyn is fairly consistent in terms of lifetime in range of temperatures

tested. There is a small shift from 4.4 ns to 4.1 ns with increasing temperature. By

65 ◦C, a minority 600 ps component appears. Finding a probe with fluorescence

properties that do not modulate with temperature (and possibly aggregation) is

advantageous for FRET experiments. Because the properties do not change with

conditions, changes in signal will be purely dictated by the FRET properties.

Interpretation

Alexa and Atto fluorophores were considered candidates FRET measurements

such as in the experiments described in Chap. 6. Since the monomer hydro-

dynamic radius of αSyn is about 3.3 nm, as measured in Chaps. 5 and 6, an
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Alexa-αSyn /Atto-αSyn dimer should allow energy transfer. We have identified

at least one potential problem with a FRET experiment that must be considered:

the lifetime of Alexa-αSyn conjugate has a temperature dependence. Fortunately,

at 37 ◦C majority of the Alexa conjugate fluorescence has a 4.3 ns lifetime.

Alexa

Em.

Atto 

Ex.

Alexa

Ex.

Atto

Em.

Figure 4.7: Absorption and emission spectra for Alexa 488 and Atto 590.

4.4.3 Properties of NR-αSyn

The lifetime evolution along the emission band of NR-αSyn helps to identify

different local environments NR is experiencing. A 1.7 ns species, designated by

a pentagon, provides the majority population. This feature does change much

over the emission band from 635 to 715 nm. A feature at 4.0 ns shifts to 3.8 ns

and narrows while moving to the red wavelengths. We note the two lifetimes

which change considerably across the experimental coordinate. First is a 350 ps,

that only exists at wavelengths less than 660 nm emission. The second is a species

that begins to grow in at 900 ps starting at 635 nm and increases in population

with redder emission. These two features, marked with a diamond and triangle,

have the most potential to report the local environments of NR.

At 655 nm at low temperatures, three main components exist: 350 ps (dia-

mond), 1.3 ns (pentagon) and 3.3 ns. The most populated species shifts from 1.3

to 1.1 ns as the temperature increases, but this shift may be partially due to a
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Figure 4.8: Lifetime dependence of wavelength of αSyn-NR conjugate at 37 ◦C. By
scanning over emission wavelengths, local polarity environments are probed. At
blue emission the local environment of NR is less polar than at red emission. We
draw attention to features that change with wavelength and overlap at 655 nm:
the 350 ns feature with diamonds and the 900 ps feature with triangles. Pentagons
represents a species that does not have significant changes with wavelength.

fitting artifact to be explained later. The 350 ps component, however, converts

to a new species at about 420 ps. The 3.3 ns is a minority component that is lost

at higher temperature. At the 45 ◦C, a 900 ps feature appears (triangle).

The 900-ps and 1.7-ns features shift slightly in the 690-nm lifetime distribu-

tions. A 4.0-ns species, which was fairly intense in the emission sweep (Fig. 4.8),

is much less intense then expected. This species shifts and disappears as the

temperature increases.

Interpretation

There are several features present in the lifetime distributions shown, however, we

will focus on the few that dynamically change along our experimental coordinates.

Further interpretation of the data would require more control experiments (i.e.

higher temperature data, and or measuring NR-cys conjugates).
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Figure 4.9: Lifetime temperature dependence of αSyn-NR conjugate at 655 nm
emission. At 655 nm emission, NR should be reporting a mixture of from polar
and non-polar environments. 350 ps feature shifts (diamonds) to longer decay
times where as the 1.7 ns feature (pentagons) shifts to shorter decay times. There
is also 900 ps component (triangles) at highest temperature measured.

A 900 ps lifetime feature appears in the red-edge emission, suggesting this

lifetime reflects NR in a polar environment (triangle in Fig. 4.8). The short

350 nm feature exists only in the blue-edge emission, and therefore reflects NR

in a less-polar environment (diamond in Fig. 4.8). The short lifetimes may be

indicative of NR protein interactions and/or amino acid quenching.

Observing fluorescence emission at 655 nm should reflect both hydrophobic

and hydrophillic environments of NR (Fig. 4.9). Since NR is a hydrophobic

fluorophore, it is reasonable to hypothesize that there are greater driving forces

for interacting with non-polar amino acids than with the solvent. We expect that

increasing the temperature will balance the forces and allow NR to experience

more time in the solvent. As the temperature increases to 35 ◦C, the 350-ps

feature shifts to 420 ps, consistent with less interactions amino acids residues. A

900 ps species is replaced by a 1.3-ns feature present at low temperatures and

shifts to 1.1 ns at 45 ◦C. This may be the product of a fitting artifact.
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Figure 4.10: Lifetime temperature dependence of αSyn-NR conjugate at 690 nm
emission. At 690 nm emission, NR should be reporting from a polar environment.
As the temperature decreases, there are slight shifts in the 900 ps feature (tri-
angle) and the 1.7 ns feature (pentagons) to longer decay times. A long lifetime
component (4.0 ns) disappears with increasing temperature.

From the wavelength dependence fit (Fig. 4.8), there are two clearly separable

populations present (900 ps and 1.7 ns) demonstrating the utility of the GIPG

fitting technique. However, less data and more subtle changes in the tempera-

ture dependent lifetime distributions at 655 nm (Fig. 4.9) make differentiating

between sub-populations difficult. Therefore, 1.3 ns species is most likely to be

a combination of the 900 ps and 1.7 ns features, and shifts to 1.1 ns when the

900 ps species dominates. Notice a 900-ps species gains population at this high

temperature. If the temperature course were extended, this fitting artifact would

not be an issue.

It must be noted that because NR is hydrophobic, NR conjugates may induce

a collapsing mechanism. [16] This is especially true because αSyn is an IDP.

Temperature dependence lifetime changes may be indicative of the driving forces

of NR to be buried within hydrophobic sections of the protein. Therefore, as with

any experiment that uses extrinsic labeling, a control for protein aggregation must
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be performed on the wild type protein with an independent measure of amyloid

growth.

4.4.4 SM

Single molecule imaging allows the separation of lifetimes of different sized NR-

αSyn aggregates found in the bulk solution. Monitoring the discrete drops in

intensity of an imaged particle for each successive scan, it is possible to identify

the number of probes per spot. Coupled with lifetime analysis, a lifetime can be

designated for a particular size or type of aggregate. [10].

The single molecule images shown in Figs. 4.11 and 4.12 are of time-zero and

day 8 NR-αSyn, respectively, and is colored by lifetime. In panel A, there are

several spots with lifetimes ranging from 2 to 4 ns. After a second scan (panel

B), several of these features go dark including the one inside the circle. Panel C

represents a third pass; most of the fluorescence has disappeared except for the

blue spot (4 to 6 ns) in the white box. Panel D reveals recovery by some molecules

(for example, on the far left), but the blue spot has almost disappeared. After 8

days of incubation, fibrils have formed as determined by atomic force microscopy

(data not shown). Typical fluorescence of a fibril is shown in Fig. 4.12. The

lifetime for a fibril is consistently short, i.e. 0.4 to 1.0 ns.

Interpretation

Monomers, aggregates, and fibrils can be distinguished by their NR lifetimes using

single molecule fluorescence. Features with similar low intensity and photobleach

by scan B, such as in the white circle shown panel A to B in Fig. 4.11, suggest

these molecules are monomeric NR-αSyn. The lifetime for the monomer ranges

from 2 to 4 ns suggesting the environment allows the non-polar regions of protein

to be available to NR even though it is partially exposed. Oligomers are round

and amorphous, take multiple steps to photobleach, and exhibit longer lifetimes



129

A B

C D

400 ps 6000 ps

Figure 4.11: Single molecule images of NR-αSyn monomers and aggregates col-
ored by lifetime. By performing several scans, single particles will photobleach.
Particles that photobeach in a single step are speculated to be single NR-αSyn
molecules. Multiple photobleaching steps, or descrete intensity drops, suggest
aggregates species. Lifetimes of the particles are simultaneously measured and
therefore it is possible to correlate a lifetime to species size. The same image field
was taken in four consecutive scans A through D.

ranging from 4 to 6 ns. Unstructured aggregation of proteins allows more polar

regions of the protein to be available to NR and reduces exposure to solvent.

Conversely, amyloid fibrils are highly structured in cross-β formation. There are

many photobleaching steps needed because of large numbers of proteins forming

the fibril. The organization of proteins in fibrils forces more exposure of NR to

solvent, reducing fluorescent lifetime.
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Figure 4.12: An αSyn fibril with covalently attached NR. The lifetime of a fibril
is very short compared to the monomeric conjugate.

4.5 Conclusions

TRF measurements of covalently labeled αSyn can be used to qualitatively iden-

tify conformational states of intermediate species during a protein aggregation.

There also is promise that Alexa and Atto dyes can be used for future FRET

measurements. Based on bulk and single molecule lifetime images, NR may have

proven that it can be effectively used as a probe to identify intermediate species

along the amyloid formation pathway. However, we need to be prudent and real-

ize that extrinsic labeling may affect the protein aggregation mechanism, making

it necessary to conduct independent control experiments.
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Chapter 5

Thermodynamic studies of α-synuclein

5.1 Summary

α-Synuclein is an intrinsically disordered protein found in the brain and is impli-

cated in Parkinson’s disease. It has no known function but its primary sequence

is highly conserved across species. Understanding its monomeric conformational

properties may led to elucidating its function. Little has been published on the

thermodynamic states of α-synuclein. We show that there are subtle spectroscopic

transitions present in the ellipticity and 287 nm absorption. The spectroscopic

transitions are connected to the microscopic states of the system through the

partition function. We take advantage of the partition function to calculate the

temperature at which a transition occurs and speculate how these transitions

relate to secondary and tertiary conformational changes.

5.2 Introduction

Disease

Parkinson’s disease (PD) affects over half-a-million people in the the United

States. [1] Clinical symptoms of PD include characteristic resting tremors and in-

ability to control the extent of their movements. α-Synuclein (αSyn) is the main

component of the intracytoplasmic proteinaceous deposits found in the brains of

70 to 80% of patients clinically diagnosed with PD. [1]. Neuronal inclusion bodies,

called Lewy bodies, contain aggregated αSyn in the form of fibrils which exhibit
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cross-β quaternary structure. However, pathological implications of Lewy bodies

have been questioned and has led to research on the pre-fibrillar oligomeric aggre-

gation states of αSyn. [2, 3, 1] One of the interesting features of αSyn is that it

belongs to a class of protein that is intrinsically disordered. In an intrinsically dis-

ordered protein, or IDP, there is no evidence of a single native structure. Study-

ing the aggregation mechanism of αSyn begins with a basic understanding of the

properties of the monomeric protein.

Intrinsically disordered protein

IDPs can be characterized by using X-ray crystallography, NMR spectroscopy,

circular dichroism spectroscopy, protease digestion, and hydrodynamic radius de-

termination. Researchers using X-ray crystallography were the first to discover

there were segments of a protein that had indiscernible structure but were abso-

lutely necessary for function. [4] Because of the dynamic nature of NMR, it since

become a powerful technique in recognizing segmental conformational ambigu-

ity. [5]

The structure-function paradigm has become a cornerstone of protein struc-

ture prediction and structural genomics. [4] The relationship between primary

sequence → 3 dimensional structure → function has helped structural biologists

to understand features of protein when one or two parts are unknown. However,

the obvious prerequisite is that the protein has to have either a function or a

native structure to be useful in this paradigm.

The function of αSyn in the brain is poorly understood [2, 1], but it is known

that the expression levels in the brain are high [6], and it is highly conserved across

species. [7] We presently aware of only two thermodynamic studies of αSyn but

they were conducted in the presence of sodium dodecyl sulfate [8] and phospho-

lipid vesicles. [9] Remeta and Minetti have recently conducted differential scan-

ning calorimetry experiment at high concentrations of αSyn, but have not seen
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any sign of an enthalpic transition. (personal communication).

Two thermodynamic states

Two-state transitions are often used to describe protein folding mechanisms when

no intermediate species are observed. Observing versus not observing intermedi-

ates when these species do exist may be the consequence of several factors. For

example, the experimental timescale needs to be comparable to the lifetime of

species. Also, the signal needs to be sensitive to intermediate species. Ensem-

ble averaging of the signal adds another confounding complication to the differ-

entiating intermediate species. Single molecule spectroscopy has been used to

circumvent the last condition. [10, 11, 12] Discussions concerning protein folding

transitions are described in detail elsewhere. [13, 14, 15, 16].

Since αSyn has very little intrinsic structure, the classic folding paradigm

innately does not apply. However, when αSyn is heated, certain spectroscopic

observables modulate. A simple way to describe the change in the observable

is to consider the protein is moving from one thermodynamic state to another.

This is in spite of not having a single native state conformation. Moving from

an intrinsically disordered to state to an even greater, or extrinsically, disordered

state, there are low expectations for a large observable transition. Because of this

the nuances of the transitions are not explicitly discussed here.

The partition function connects the macroscopic thermodynamic properties

with the microscopic states. The partition function can then be formulated such

that the multiplicity of the upper state and the energy gap are parameters which

fit the spectroscopic observables. If the data supports greater degeneracy in the

upper state, this suggests a more cooperative transition. The energy and the

“cooperativity” parameters can be used to predict the transition temperature,

Tm, as the system moves from one spectroscopic state to another.

Three biophysical techniques are used to monitor the thermodynamics of
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αSyn. Circular dichroism (CD) is utilized to monitor the evolution of mean

residue molar ellipticity and give clues of overall secondary structure changes.

Dynamic light scattering (DLS) is used to follow the average change in hydro-

dynamic radius (RH). Lastly, modulation in the ultraviolet absorption (UV)

at 287 nm is often indicative of some tertiary structural changes of the tyrosyl

moieties. [17] UV measurements in this range can be confounded by absorption

overlap with tryptophan; fortunately, αSyn does not have tryptophan in its pri-

mary sequence. These techniques may lay down the ground work for future more

complicated experiments, such as NMR and computer simulations, which can

theoretically yield information on a residue-by-residue basis.

5.3 Methods

5.3.1 Preparation and Purification

Escherichia coli BL21 DE3 strain (Invitrogen Inc.) were transfected by plas-

mids (pT7-7) encoded human αSyn and was a gift from Professor Jean Baum

(Rutgers University, Piscataway, NJ). Expression and purification followed pub-

lished protocols. [18] αSyn was lyophilized and stored until it was reconstituted

to 1.0 mg/mL in 10 mM phosphate, pH 7.0 buffer at the time of the experiment.

To remove the insoluble and soluble aggregates from protein solution for any ex-

periment, the sample was filtered through a Microcon 100 kDa molecular weight

cutoff filter (YM-100, Millipore).

5.3.2 UV

Temperature-dependent UV melting experiments were performed on an Aviv

Model 14 UV/Vis spectrophotometer (Aviv Biomedical Inc., Lakewood, NJ).

Samples in quartz cuvettes of 1.0 cm pathlength were heated in the thermostatted
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sample compartment over the temperature range of 0 to 100 ◦C. The absorbance

at 287 nm was recorded at 0.5 Co increments following integration for 10 seconds

to monitor the absorbance changes as a function of temperature. Though a pre-

liminary melt on the VARIAN was performed at 250, 280, 287, and 350 nm, only

the 287 nm absorption had a visible transition.

5.3.3 DLS

Round borosilicate glass cuvettes (Kimble Glass) were for the DLS measurement.

In order to minimize dust contamination, the cuvette was rinsed with Millipore

water. It was then placed in a micro-centrifuge, inverted (open-side face-down),

then spun dry and stored face down. After the sample was quickly and carefully

added to the cuvette, it was covered with transparent tape to keep it dust-free,

then wrapped in Parafilm for an additional seal.

Fluctuations of scattered light intensity were measured using a homodyne

technique. At a particular temperature, T , the intensity correlation function

g2(t, T ), was measured by a modified Nicomp Model 380 Particle Size Analyzer

from Particle Sizing Systems. Scattered light from the incident laser, λ=532 nm,

was collected orthogonally, θ=90◦. The system employs a linearly-scaled 64-

channel digital autocorrelator. The native autocorrelator was bypassed by an

ALV-6010 Multi-Tau autocorrelator (ALV-GmbH, Langen, Germany) for the max-

imum possible statistical accuracy across several orders of magnitude in decay

time. [19]

DLS correlation functions were fit using regularized GIPG with a linear con-

tinuity condition. [20] The Laplace transform was performed using a grid of ex-

ponential decay times. A particle’s decay time is related to the translational

diffusion constant though the scattering vector, q, such that D = Γ/q2, where

q = 4nπ/λ sin(θ/2), n is the refractive index. The diffusion constant can then

be converted to a Stokes-hydrodynamic radius (RH) using the Stokes-Einstein
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relation, RH = (kbT )/(6πη0D), assuming a spherical shape of the monomer. For

these experiments, T is the temperature, η0 is the viscosity of the buffer, and kb

is the Boltzmann constant. Changing the temperature will not only affect the

conversion of D to RH , but also there is a temperature dependence of n and η0.

Properties of water were provided by the Ref. [21] and were considered for the

conversion.

The 116-point grid was composed with a varying density of decay times to

maximize the regions of Laplace space that would represent the monomer accu-

rately. In order to have true continuity, the grid of decay times were shifted with

respect to continuity in RH from temperature to temperature. The decay grid

was logarithmically spaced in equivalent RH from approximately 0.1 to 2.0 nm

(15-points), linearly spaced from 2.0 to 6.0 nm (41-points), and the remaining

logarithmically spaced to 106 nm. The resulting GIPG parameters that represent

RH between 2.0 and 6.0 nm were fit to a normal distribution in order to identify

the mean radius for the monomer only.

5.3.4 CD

Circular dichroism spectra were recorded on an AVIV model 400 circular dichro-

ism spectrophotometer (AVIV Biomedical, Lakewood, NJ, USA) equipped with a

programmable thermoelectrically controlled sample compartment. The thermal

stability of αSyn secondary structure was monitored by heating samples contain-

ing 25.0 µM (362.32 µg/mL) protein at a programmed rate of 60 deg h−1 over

the range of 0 to 100 ◦C in a 0.1 cm quartz cuvette. The ellipticity was recorded

at 0.1 C◦ intervals employing a time constant (integration period) of 6 s to gen-

erate temperature-dependent circular dichroism profiles at 222 nm and 198 nm.

The data was normalized and plotted in units of mean residue molar ellipticity



139

([Θ]mrw,λ) according to the following relation:

[Θ]MRW,λ =
(MRW)Θλ

10dc
(5.1)

where Θλ is the observed ellipticity (degrees) at wavelength λ, d is the cuvette

pathlength (cm), and c is the protein concentration (g mL−1). MRW is the Mean

Residue Weight of the peptide bond as calculated from the relation:

MRW = MW (N − 1)−1 (5.2)

where MW is the molecular mass (Da) of the polypeptide chain, N is the number

of amino acids in the chain, and N − 1 is the number of peptide bonds in the

chain. In the specific case of αSyn, MW is 14,460.1 Da and N is 140 residues.

Substituting these relevant parameters into Eq. 5.2, a Mean Residue Weight of

104.03 Da is calculated for αSyn. The mean residue molar ellipticity ([Θ]MRW,λ)

of αSyn is determined by normalizing the observed ellipticity at 222 nm (Θ222) or

198 nm (Θ198) with the relevant parameters of MRW (104.03 Da), d (0.1 cm), and

c (362.32 × 10−6g mL−1) in Eq. 5.1. The units of mean residue molar ellipticity

are deg cm2 dmol−1.

5.3.5 Two-state model

The partition function connects the macroscopic thermodynamic properties with

the microscopic states. We can use the partition function to specify how the

different structures are partition throughout all accessible states. For a two-state

model, let us consider a ground (energy is set to zero, or ε0 = 0) and one excite

macrostate, ε, comprised of γ microstates. By adding a factor of γ degeneracy to

the excited state, the entropy of the upper state is greater. The partition function

is then,

Q = 1e−0/RT + γeε/RT . (5.3)
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The probability of being in the ground state or excited state is therefore (1 +

γeε/RT )−1 or γeε/RT (1 +γeε/RT )−1, respectively. The observed signal is the expec-

tation value of the signals coming from the ground and excited states,

S(T ) = O0

(
1

1 + γe−ε/RT

)
+ O1

(
γe−ε/RT

1 + γe−ε/RT

)
. (5.4)

where O0 and O1 are representative of the pure macrostate observables of ground

and excited states, respectively. R is the gas constant and T is in Kelvin. For CD

data, two observables were monitored and were globally fit with ε and γ as global

parameters. O0 and O1 represent the local parameters for ellipticity at 222 nm,

and O′0 and O′1 are the local parameters for 198 nm.

The temperature at which the transition occurs can therefore be calculated

by,

Tm =
ε

R ln(γ)
. (5.5)

All data was fit with Eq. 5.4 using nonlinear least-squares fitting by imple-

menting IGOR’s Levenberg-Marquardt curvefit package.

5.4 Results

5.4.1 UV

Fig. 5.1 demonstrates how the UV absorption changes in as temperature increases.

The inset shows the difference of spectrum. A feature at 287 nm changes over the

temperature range and is attributed purely to tyrosine absorption. There is also

no red-shift in the absorption maximum 278 nm. A change in the UV difference

spectra of tyrosine absorption has been used to monitor protein tertiary structure

of globular proteins as they denature. [17, 22, 23, 24] Fig. 5.2 shows an increase

in absorption as the temperature increases. A transition temperature of 302 K

is calculated from Eq. 5.5 after a fit to Eq. 5.4. Since three of the four tyrosines
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Figure 5.1: Temperature dependent absorption spectra of αSyn The spectra of
αSyn at 0 ◦C (blue), 100 ◦C (red), and the difference spectra (magenta) is also
shown in the inset. Note that the peak maximum at 278 nm has not shifted with
temperature.

are located in the C-terminal region, this may imply a conformational change is

occurring in this region.

Future studies will require parallel melting of model compounds, L-tyrosine,

to determine the overall temperature-dependence of tyrosine residues that is not

associated with structure changes. Also, baseline shifts should be taken into

account by simultaneously monitoring at 315 nm.

5.4.2 Circular Dichroism

CD has been used to evaluate protein secondary structure characteristics for 40

years. [25, 26] X-ray crystallography advanced the field by generating more accu-

rate basis spectra for α-helix, random coil, β-pleated sheet and β-turn. Since the

basis functions are generated from crystalized protein structures, they may not be
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Figure 5.2: Fit to the absorption evolution at 287 nm of αSyn versus temperature.
In the bottom graph, data is represented by the red circles and the fit line is in
blue. The residuals are plotted in the top graph in red circles.

applicable to understand IDPs directly. Fig. 5.3 shows the change in CD spectra

at low and high temperatures. The magenta difference spectrum is characteristic

of a extended-β secondary structure. By first glance, the αSyn appears to be fold-

ing as the temperature increases. There is very little aggregation of the protein at

high temperatures and we do not expect this to be the cause of the phenomenon.

The spectra may be deceptive because CD reports on the weighted average of

the gross secondary structure components based on folded protein conformations.

Nonetheless, by monitoring evolution the 198 and 222 nm ellipticities there is a

small inflection point suggesting a change in state. (Fig. 5.4) We calculate this

point to be at 290 K. The transition occurs 12 degrees cooler than in the tyrosine

absorbance measurement. This just may be indicative that CD is reporting on

different conformational aspects of the protein.
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Figure 5.3: CD spectra at high and low temperature. Blue squares and red circles
represent CD spectra at 10 and 110 ◦C, respectively. The inset shows the represen-
tative spectra for a characteristic random coil, β-sheet and α-helix. The difference
spectrum is plotted in magenta triangles and mimics the β-sheet spectrum.

5.4.3 Dynamic Light Scattering

DLS is used to monitor the hydrodynamic radius profile over the temperature

incubation. As the temperature increases, the RH becomes bigger ranging from

about 3.08 nm at low temperature to 3.22 nm at high temperature. The increase

does not have any noticeable inflection point. When fit to the two state model,

the γ parameter converges to approximately 1. One could speculate that there is

no cooperative transition in the RH . However, this data set has only 13 points

making a possible transition point difficult to identify. For perspective, consider

that CD and UV data have hundreds of data points. Therefore, the data may

not be strong enough to call this experiment non-cooperative.
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Figure 5.4: Global fit to the evolution of CD ellipticity at 198 and 222 nm at
287 nm of αSyn versus temperature. In the bottom graph, the blue and red
dots represent the data of the 198 and 222 ellipticity, respectively. The fit is
represented by a solid line of the same respective color. The residuals are plotted
on the top of graph.

Method γ ε O0 O1 O0′ O1′ Tm

CD 246 13300 1.48 -3.71 -25.1 -3.41 290K
UV 96200 28900 0.126 0.189 n.a. n.a. 302K
DLS 1.31 3290 2.34 5.30 n.a. n.a. No Trans.

Table 5.1: Table of fit parameters and Tm for spectroscopic fit. Fit parameters
are described in the text. Tm is calculate from Eq. 5.5. O0′ and O1′ are used for
the global fitting of 198 and 222 nm CD data. The observables (O) are in units
of the measurement, γ is dimensionless, and ε is in Joules.

5.5 Discussion

The transition temperatures observed in the CD (Fig. 5.4) and UV (Fig. 5.2) data

are different, yet have a common feature: the protein seems not to exhibit classic
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Figure 5.5: The evolution of hydrodynamic radius as a function temperature
for αSyn. RH increases linearly over the temperature incubation from 3.08 to
3.22 nm.

unfolding behavior. The native to unfolded transition is typically characterized

by an increase in random coil secondary structure, and a red-shift in the UV

spectrum. Instead, there is no shift in the spectrum and there is an increase of

ellipticity at 198 nm (in lieu of decrease at 222 nm) corresponding to gaining

structure. However, DLS data (Fig. 5.5) clearly shows the protein is swelling as

the temperature increases.

In chapter 4, we conducted preliminary time-resolved fluorescence (TRF) ex-

periments using a conformationally sensitive fluorophore to probe local environ-

ments and infer conformational changes in αSyn. The advantage of TRF is two-

fold: fluorescence is a very sensitive technique (as compared to UV and CD which

are absorption measurements), and lifetime analysis allows for elucidating local
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environmental local states of the probe. Evaluating fluorescent lifetime distri-

butions using the same statistical mechanical formalism used in this chapter is

possible. Unfortunately, for the experiments that were conducted, there is not

enough data (five to nine temperatures) to prepare a fit and generate a Tm.

We can still inspect the lifetime evolution for trends. The transitions are

loosely consistent with those in UV and CD. In Fig. 4.5, a fast lifetime component

(designated by a the left square) appears at about 293 K for Alexa conjugated

αSyn. We speculated that this was due to a quenching mechanism resulting from

contact with the protein at higher temperature. The temperature dependence of

the NR conjugated αSyn in Fig. 4.9, shows a shift of a feature (diamonds) to a

longer lifetime with a mid-point of approximately 303 K.

Though the probes are covalently attached to the protein at the same position

(cysteine residue 19), they have significantly different properties. Alexa is fairly

hydrophilic and may prefer to spend most of its time in the solvent. At about

293K, the protein interactions with Alexa seem to increase at approximately the

same time as the increase in CD signal corresponding to an extended β-structure.

Since the protein is labeled on the N-terminal portion, this suggest there is a

conformational change occurring in this region. UV absorption changes occur at

approximately 302 K. Three of the four tyrosines are in the C-terminal region

suggesting that different parts of the protein are conformationally changing at

different temperatures.

The NR is harder to explain because its hydrophobic qualities may induce

some local collapse. The lifetime temperature trend is similar to 287 nm absorp-

tion but the connect between the two phenomenon is not known.

5.5.1 Future studies

We suspect that NMR studies of αSyn backbone may differentiate the structural

changes on a per residue basis. Theoretically, the same statistical mechanical
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formalism can be applied such that chemical shifts for each unit in the polypep-

tide chain (N=140) has its own parameter for the lower (On
0 ) and upper (On

1 )

pure observable, cooperativity (γn), and energy (εn). After each unit is fit locally,

parameters can be coupled based on their similarity. Then a global model can

be implemented with (hopefully) substantially less parameters. The global model

may point to different regions of the protein that may go under conformational

changes independently from the rest of the system, in other words, exhibit lo-

cal cooperativity. Similarly, an ensemble of structures can be generated through

computer simulations. By increasing the temperature, the ensemble of struc-

tures should change. With atomic coordinates available, converting to a physical

observable, for example RH or secondary structure propensity is trivial.

5.6 Conclusions

αSyn is a intrinsically disordered protein that has no known function. How-

ever, its primary sequence is highly conserved across species. Understanding

the monomeric conformational properties may lead to elucidating its function.

We have shown that with increasing temperature there are subtle spectroscopic

transitions present in the CD and UV data. The CD signals suggest there is a

secondary structural change occurring at a Tm of 290 K. Tyrosine absorption evo-

lution suggests a transition at 302 K and may be indicative of a conformational

change in the C-terminal region. The spectroscopic transitions are subtle and the

connection to the macroscopic thermodynamic states are speculative. However,

this type of analysis does help to formulate the hypothesis that different regions of

the protein are going through conformational changes at different temperatures.
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Chapter 6

Aggregation methods of α-synuclein.

6.1 Summary

Proposed aggregation mechanisms of α-synuclein fit a sigmoidal model of in vitro

amyloid formation. This includes lag, growth and elongation phase. The phases

are usually explained via nucleation mechanism. We show that differences in

sample preparation and aggregation conditions change self-assembly rates and

suspect that the balance of critical intermediate species are shifted. We have found

that methods typically used for investigation of amyloid formation in vitro involve

incomplete filtering and vigorous shaking. We suggest several other experiments

that can be done to elucidate the intermediate species in a more controlled way.

6.2 Introduction

Mechanism and amyloid formation.

The dogma surrounding the mechanism of amyloid formation is rooted in the

observations of sigmoidal fibril growth in vitro. 6.1 The kinetics are described in

three main phases:

1. a lag phase, in which monomers conformationally convert to nuclei exhibit-

ing the typical amyloid cross-β structure. This continues until a critical

concentration of nuclei is reached, marking the beginning of the

2. growth phase. During this phase, nuclei quickly grow into protofilaments
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Figure 6.1: Classic sigmoidal kinetics of amyloid fibrils in vitro. Left panel: The
canonical explanation of amyloid growth has been proposed from histological
staining assays in vitro. The explanation involves three phases: lag, growth and
elongation. Right panel: Adding pre-formed seeds eliminates the lag phase. [27]

via monomer addition. After the monomer concentration is sufficiently de-

pleted, the

3. elongation phase begins; fibers elongate and laterally assemble but few new

fibers are formed.

This construct was determined by assaying for loss of monomer and growth of

amyloid. Consistent with the model is evidence that “seeding” the aggregation

with fibrils eliminates the need for a lag phase. Even so, without fundamentally

violating the three phases a variety of kinetic mechanisms have been hypothe-

sized [16, 19, 8, 13] because the intermediates, the nuclei, are never observed

directly.

Parkinson’s Disease is the second most prevalent late-onset neurodegenera-

tive in the United States. [2] The disease is technically defined by the clinical

symptoms, which include resting tremors and deficient initiation of motor skills.

Only up to 30% of diagnosed patients meet the pathological criteria a substantial

presence of neuronal Lewy bodies in the substantia nigra leading to neuron loss.

This has led researchers to shift attention to pre-fibrillar aggregates in lieu of the
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fibrils themselves. Understanding the nuances of the true mechanism (i.e. identi-

fying intermediate species) may have direct relevance to the development of the

effective preventative therapeutic agents. [22, 24, 7]

Incubation conditions affect aggregation rates.

α-Synuclein (αSN) is the major fibrillar component of Lewy bodies. [3, 2] Table

6.2 is a select list of publications that have investigated αSN amyloid forma-

tion properties. The preparation of monomeric protein and incubation conditions

(i.e. shaking, stirring, quiescent, etc.) have the largest effect on aggregation

rates. Having pure monomeric protein at the start of any incubation is critical.

Remember, the canonical explanation of amyloid formation involves the notion

that reseeding eliminates the lag phase. Incubation conditions are also very im-

portant since it was shown nearly 80 years ago that shaking promotes protein

aggregation.[21]. Stirring with Teflon stir bars has also been shown to increase

aggregation rates, even when the headspace has been eliminated. [23]

As shown in Table 6.2, starting and incubation conditions are critical factors

for the rate of amyloid formation. Not only must these have to be considered dur-

ing experimental design but also when considering potential mechanisms. In fact

ignoring these effects may lead to a gross misunderstanding of the experimental

observations.

Experimental design

In this chapter, we investigate six possible starting and three different aggregation

conditions in order to (1) establish an appropriate protocol for generating αSN

fibrils, (2) investigate and explain any differences in timescales of amyloid forma-

tion due to starting and aggregation conditions, and (3) design future meaningful

experiments.

Native gel electrophoresis is utilized to investigate the content of the starting
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material prepared for two different methods typically found in the literature of

preparing the αSN. A fluorescent stain adds several orders of magnitude sensi-

tivity as compared to visible stains in order to more easily identify aggregates.

Method 1 dissolves lyophilized αSN in an unbuffered strong base, then neutral-

izes with strong acid, followed by centrifuging to remove insoluble aggregates.

Method 2 reconstitutes lyophilized protein in buffer directly, passed through a

100 kDa molecular weight cutoff (MWCO) filter to remove insoluble material.

Method 3 is a variation of Method 1 but not used for the incubation studies.

This method utilizes buffered basic and acidic conditions to dissolve aggregates

as a way to keep the protein from being exposed to extreme pH conditions and

to potentially have increased reproducibility of the method.

The four starting/incubation conditions studied are:

1. Method 1 (100 kDa MWCO filtering) / shaking or FS

2. Method 3 (base dissolving, centrifuge) / shaking or US

3. Method 3 (base dissolving, centrifuge) / rotating or UR

A fourth unfiltered, quiescent experiment is also conducted as a control. It was

monitored only with light scattering because its gestation time was expected to

be much longer than its agitated counterparts.

The presence of amyloid is assayed using steady-state thioflavinT lumines-

cence (SS), static light scattering (SLS) and atomic force microscopy (AFM).

ThioflavinT (ThT) gains a new excitation band at 450 nm when dimers (or more)

couple in a structured environment. ThT luminescence is often used to assay for

amyloid cross-β structure. Atomic force microscope images were taken to con-

firm the presence of amyloid fibrils at the conclusion of experiment. Though not

a specific test for amyloid, SLS can be a useful tool for reporting the change of

the size of scatters in solution. As the solute aggregates, the scattering intensity

will increase.
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Time-resolved fluorescence (TRF) and dynamic light scattering (DLS) are two

methods utilized to gain more specific information about species in solution along

the incubation time course. DLS has been used extensively to monitor protein

aggregation [15, 17] and will be used primarily to track the early aggregation

stages. ThT lifetime measurements are useful in elucidating different types of

binding modes or aggregate species along the amyloid formation pathway. [5] The

GIPG procedure [6] was used to fit the evolution of the lifetime and particle size

distributions over the time course for the TRF and DLS, respectively.

6.3 Methods

Chemicals

ThT, aminopropyltriethoxysilane (APTES), and dibasic and monobasic sodium

phosphate were purchased from Sigma.

Protein Preparation

Escherichia coli BL21 DE3 strain (Invitrogen Inc.) were transfected by plasmids

(pT7-7) encoded human αSN A19C mutant and were gifts from Professor Jean

Baum (Rutgers University, Piscataway, NJ). Expression and purification of mu-

tant αSN followed published protocols. [25]

Sample preparation for time-zero Native Gel

Three primary methods were used to compare different preparation methods for

αSN:

Method 1 was adopted from Ref. [18] by the best of our abilities. 1 mg

of lyophilized αSN was reconsitutied in 10 µL of Millipore water with 3 µL of

0.1 N NaOH at room temperature to dissolve insoluble aggregate species. After

20 minutes, 3 µL of 0.1 N HCl was then added to lower the pH. 894 µL of 10mM
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Ref Time /
days

Conc. /
mg mL−1

Buffer Polishing Step Aggregation
Conditions

[18] 0.4-2.9 1.0 0-1000 mM
NaCl, 10 mM
NaPhos, pH 8.4

pH 10 w/ NaOH,
then pH 7 w/
HCl, ultracentri-
fuge at 105 rpm
for 5 min

agitated
w/ plate
reader and
teflon ball

[11] 1 1.0 20 mM Tris-
HCl,100 mM
NaCl, pH 7.5

see Ref.[18] agitated
w/ stir bar

[9] 1.3 1.0 100 mM NaCl,
20 mM NaPhos,
pH 7.5, 20 mM
ThT

See Ref. [18] shake at
600 rpm

[14] 2.1 1.0 20 mM Tris-
HCl, pH 7.5 and
20 mM acetate,
pH 3.0

Ref. [18], ultra-
centrifuge at
14,000 rpm for
10 min

agitated
w/ stir bar

[10] 3.3 1.1 TBS 100 kDa MWCO
filter

rotated
60 rpm

[26] 17 15 25 mM Tris-HCl,
pH 7.5, 1 M
NaCl

used directly af-
ter chromatogra-
phy

quiescent

[1] 30 4.3 20 mM NaPhos,
pH 7.5, 0.03%
NaN3

100 kDa MWCO
filter

quiescent

[3] 60+ 4.3 10 mM NaPhos,
2.7 mM KCl,
137 mM NaCl,
pH 7.4

100 kDa MWCO
filter

quiescent

Table 6.1: A select list publications concerning aggregation of αSN. Time to the
beginning of the growth phase is dependent on preparation of monomer protein
and agitation conditions. All incubations in this list carried out at 37 ◦C.

phosphate, 200 mM NaCl, pH 7.4 was added to reach a total volume of 1 mL.

Th final pH was tested to be 7.15. Sample was split. One portion was spun at

16,000 rpm in an Eppendorf centrifuge at 10 ◦C and the supernatant was placed

in Lane 8 of the Native Gel. The other portion placed in Lane 9.
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Method 2 replaces the base dissolving step with reconstituting protein di-

rectly into 10 mM phosphate, 200 mM NaCl, pH 7.4 buffer then passed through a

100 kDa MWCO Microcon centrifuge filter from Millipore. The filtrate was placed

in lane 3, while the retentate was placed in lane 4. Similarly, sample passed via a

30 kDa filter was placed in lane 5 and the retentate in lane 6. Unfiltered samples

were placed in lanes 2 and 3.

Method 3 dissolves the lyophilized protein in a basic buffer. 6.5 mg of αSN

was dissolved in 1 mM Na3PO4 at pH 11 for 20 minutes at room temperature.

116 µL of 0.5M phosphate buffer at pH 6.8 was utilized to bring the pH back

down. After 1mL of 1.2M NaCl was added, the concentration of the protein was

determined to be 1.77 mg/mL using an extinction coefficient αSN of 0.4 mg cm2.

Millipore water was added to a final concentration of 1 mg/mL. Sample was

centrifuged as above and placed in Lane 7.

Sample preparation for incubation

Samples were prepared labeled UR, US, FS, for unfiltered-rotated, unfiltered-

shaken, filtered-shaken, respectively. US and UR were prepared by Method 1

using 1.2 mL of the stock 1.0 mg/mL αSN in matched type-47 semi-micro quartz

cuvettes with screw cap from NSG Precision Cells Inc. (Farmingdale, NY). FS

was prepared by Method 2 and added to the cuvette. Samples were incubated

in the presence ThT as in Ref. [18]. 6 µL of 1 mM ThT was added making a final

concentration of 5 µM. All samples were very gently mixed prior to incubation.

There was about 1.7 mL of headspace in each cuvette. UQ was prepared by

reconstituting Method 2 but was not filtered. Only SLS was measured on this

sample.

A homemade shaker tray was built for these experiments and made from a

Styrofoam cuvette holder attached to a FISHERbrand Vortex Genie 2 (model

2-812). The tray was oriented such that two cuvettes laid flat with the wider
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inner dimension parallel to the plane of the floor. The shaking rate was measured

to be about 590 rpm. For the rotated sample, the cuvette was secured on ”Roto-

Torque” (model 7637) wheel rotator at 47 rpm. Samples were agitated at 37 ◦C.

Every 45 to 60 minutes, a sample was removed and measurements were taken in

a quiescent condition. The total incubation (including measurement time) was

nearly 20 hours long.

ThioflavinT assay

SS measurements of ThT luminescence was made using a Cary with a Peltier

heating unit. Excitation was 450 nm with a 5 nm slit. Emission was observed

from 462 to 650 nm at a rate of 300 nm per minute with a 5 nm slit.

TRF measurements were acquired by time-correlated single-photon counting

with a setup previously described [5]. In order to monitor laser stability during

a particular incubation time point, ten separate data transients were taken, each

for 30 seconds. After ensuring that time-zero populations for each data trace were

consistent, the data was added together. Peak intensity ranged from several hun-

dred counts at the beginning of the incubation to over 100,000 by the timecourse

completion.

ThT lifetime distributions were globally fit using GIPG [6] on a 60-point

grid, logarithmically-spaced in lifetime ranging from 0.01 to 10 ns. GIPG only

assumes that there is a smooth transition of fit parameters (in this case, the in-

verse Laplace transform of a instrument-response-convoluted exponentials) along

the experimental coordinate. Over the course of 20 hours of incubation time,

laser fluctuations may corrupt this continuity condition. Therefore a correc-

tion factor was applied to the overall intensity of the transients based on the

SS ThT intensity measurements because they have a more reliable and consistent

power source. This was done by first completing an Active-Set fit on the unper-

turbed data. [6, 12] The GIPG algorithm was originally set up to fit TCSPC on
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a population-weighted basis, but the parameters can intensity-weighted by mul-

tiplying the amplitude of a parameter by its corresponding lifetime. A correction

factor was created by comparing the sum of the intensity-weighted parameters for

a particular incubation time (not considering the scattering or baseline terms) to

the total sum intensity of the steady-state emission between 478 to 487 nm (cor-

responding to the slit width used for the lifetime measurement). A multiplicative

correction factor was applied to the TCSPC data for each transient and the error

was propagated accordingly. The data was fit using 200,000 iterations with a step

parameter of 0.9. Probability-to-reject (as compared to the Active-Set fit) was

always less than 0.05.

DLS and SLS assay

DLS experimental setup and cleaning procedure has been described previously [5],

with the exception that the samples were contained in reduced volume cuvettes.

Three correlation functions were obtained per sample, per incubation time for

30 seconds at 37 ◦C. Data was averaged and error was propagated accordingly.

On occasion, correlation functions were discontinuous and were discarded. This

occurred most with the unfiltered samples, especially at late incubation times.

Scattering count rates (SLS) were simultaneously recorded with correlation func-

tions.

Data was fit using the GIPG method on a 91-point, logarithmically-spaced

grid containing seven decades of decay time from 0.0001 to 100 ms. The first and

last decades each had five points, whereas the remaining contained twenty decay

times per decade. Third derivative regularizer was implemented and all fits had

a probability-to-reject of less than 0.01 as compared to an Active Set fit. 100,000

iterations and a step parameter of 0.9 were used.

Decay time was converted to hydrodynamic radius as shown in Ref. [5]. The

viscosity of the buffer solution, η0, at 37 ◦C was 0.7345, measured by VISCOlabs
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4100 viscometer. The refractive index of the buffer was taken to be 1.334. The

characteristic density of the αSN determined from assignment of a temperature

titration DLS experiment in chapter 5 was used to scale the oligomer sizes by

RH,monomerN
1/3, where N is monomers per aggregate.

AFM

Preparation and execution of AFM measurements have been previously described

in Ref. [5]. AFM was taken at the conclusion of the experiment.

Native gel electrophoresis

A precasted Novex Tris Glycine Native gel was run via the Invitrogen protocol.

NativeMark Unstained Protein Standard was used as the marker. The gel was

stained with the fluorescent SYPRO Ruby Protein Stain (BIORAD).

Photograph of final product

A photograph was taken at the completion of the incubation with a Samsung

Flipshot (SCH-U900) cellular phone.

6.4 Results

6.4.1 Initial conditions

Native gel electrophoresis reveals the differences in preparation procedures. 6.2

The monomer band sits just below the 146 kDa molecular weight marker. In

contrast to the standards, αSN is not a globular protein. In fact the hydrodynamic

radius of αSN is more similar to the characteristic radius of human insulin protein,

molecular weight of 65 kDa. Filtering with a 100 kDa filter may remove particles

as small as αSN dimers and certainly tetramers.



161

2
) 
N
e
u
tr
a
l 
b
u
ff
e
r

1
0
) 
N
e
u
tr
a
l b
u
ff
e
r

3
) 
1
0
0
k
D
 fi
lt
e
ra
te

5
) 
3
0
kD
 fi
ltr
a
te

4
) 
1
0
0
kD
 r
e
te
n
ta
te

6
) 
3
0
kD
 r
e
te
n
ta
te

9
) 
8
 b
u
t 
n
o
t 
sp
u
n
 

8
) 
In
 S
tr
o
n
g
 B
a
s
e
 /
 S
p
u
n
 

7
) 
In
 w
/ 
B
u
ff
e
re
d
 B
a
se
 

1
) 
M
W
 M
a
rk
e
r

X.He

Aggregate

Monomer

Figure 6.2: Fluorescently-stained native gel electrophoresis of selected preparations
of αSN. Lanes are fully explained in the text. Specifically, lanes 2-10 (UQ), 3 (FS)
and 8 (UR and US) represent the three starting conditions used for incubation in
this chapter. The 100 kDa filtering method is the only effective way to remove
pre-formed aggregates. (lane 3).

The control samples, lanes 2 and 10, were dissolved directly into buffer and

contained a significant population of higher molecular weight species. Protein

prepared by methods 1 and 2, in lanes 7, 8 and 9, were dissolved at high pH.

Method 2 was designed around the notion that protein should always be under

buffering conditions. A side benefit may be increased reproducibility as compared

to method 1. Unfortunately, neither of these methods remove higher order ag-

gregates as compared to the control even when centrifuged for 20 minutes (as in

lane 8). Lane 3 (method 3) shows no presence of aggregates, presumably because



162

100 kDa filter removed them. It is apparent from the 100 kDa retentate in lane

4 that aggregates are present in the unfiltered samples. As a final test, a 30 kDa

filter was implemented in lanes 5 and 6, but the results were puzzling. Lane

5 is the filtered solution but looks similar to the unfiltered control, but less in-

tense. Though the retentate in lane 6 has aggregate species, there is a significant

monomer contribution.

6.4.2 Final product - Visual Inspection and AFM

Visually inspecting the samples at the completion of the experiment is a reality

check for the spectroscopic measurements and is shown in Fig. 6.4. All samples

exhibited bubbles filling the headspace. Both FS and US have a similar bubble size

and density as compared to UR. Crudely estimating, there are 3 larger bubbles

and 5 smaller bubbles that stretch across the 1 cm width of the cuvette for UR

and US, respectively.

US had a yellow “milky” color with fine suspended particulates. UR had a

yellow tint, but also had large particulates that were prone to settle to the bottom

of the cuvette. Conversely, the FS sample was clear and had a slight yellow hue

similar to that of a stock 5µM stock solution of ThT.

AFM images in Fig. 6.3 were taken to ensure amyloid fibrils were being gen-

erated. The results were consistent with the visual inspection of the sample after

the conclusion of the experiment. Several AFM images of the FS sample were

taken; fibrils were a rare find. This may be expected since the sigmoidal pattern

of static light scattering and ThT luminescence was not observed for this sample.

Furthermore, the sample was still clear to the eye by the time the AFM sample

was prepared.

On the other hand, US was hazy visually and the corresponding AFM image

exhibited a fairly dense fibril network across the entire modified mica surface.

This suggests that if fibril species do exist they will adhere to the surface. Proper
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UR US
FS

Figure 6.3: AFM images of the UR, US and FS samples. Images only show the
presence of fibrils in US. However, we suspect that particulates are too large in
UR to stick to the modified mica surface. FS shows no signs of aggregation in
any assay and therefore the resulting image is expected.

AFM images of UR, however, showed an occasional round particle with nothing

much else sticking to the surface. Recall that this sample had large, chunky

particulates that sank to the cuvette bottom. This suggests that particles were

massive that could not survive the rinsing step necessary to take an image.

6.4.3 SS ThT Assay

Using the ThT luminescence the canonical expectation of the sigmoidal character

is shown in Fig.6.5. All three samples have a similar lag phase in the first 3 hours

of incubation. US and UR have a large increase in ThT signal at approximately

hour 10. This is indicative of a growth phase of protofibrils. US begins to plateau

after about 16 hours, marking the beginning of the elongation phase. During this

phase, fibrils extend while few new fibrils are formed. UR reaches this plateau over

an hour later (hour 17). After hour 10, there is a slow increase in luminescence

for FS. However, relative to US and UR, FS appears not to have reached the

dramatic growth phase. Based only on this data set, it is difficult to determine if

this sample would ever reach a growth phase.
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UR US
FS

Figure 6.4: Photograph of the final condition of αSN agitation experiment in the
presence of ThT. The UR, US and FS samples are labeled. The image shows that
agitation was rigorous enough to create bubbles to fill the headspace. FS is clear
and does not show any visible signs of aggregation. US has very finely suspended
particulates, whereas UR has large precipitate with some settling at the base.

Preparation and condition had a profound affect on the aggregation profile of

αSN. This is compounded by the fact that the lag phase appears to be bifurcated

into early and late lag sub-phases. This trend is the most obvious in US. After

hour 3, US increases slightly suggesting that a species is being generated that has

the ability to bind ThT in a specific way. There is an increase in FS and UR at

this time, but not as dramatic.

Above we drew attention to specific incubation time points where there existed

a consistent change in ThT luminescence across the samples. We have drawn three

lines of demarcation defining four stages of signal change at hours 3, 10 and 16.

For the remaining sections of this chapter, we will refer to stages I through IV,

instead of phases, when comparing samples. Stage is only a phenomenological
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Figure 6.5: steady-state ThT luminescence assay for amyloid fibrils. The trend
of fibril formation differs with each sample. Vertical purple, brown, and magenta
dashed lines demarcate four stages (full explanation in the text).

construct to help organize congruent timescales in order to avoid using the term

“phase” since mechanistic explanation of the data is then implied.

6.4.4 SLS

The average scattering intensity along the incubation time course is plotted in

Fig. 6.6. SLS is very sensitive to aggregation trends of a sample during the

early stages of the incubation. The disadvantage is the lack of specificity for

protein conformation. Regardless, the expected classic sigmoidal growth pattern

is observed for unfiltered samples within the 20 hour time window.

During stage I, both UR and US have an immediate intensity increase. There

is no increase for FS. FS remains at essentially the same count rate well into stage

III. UR, on the other hand, continues to slowly and smoothly increases during

stage II . US increases by two-and-a-half times from the beginning to end of stage

II. This is the same stage which produced ThT luminescence for US. During

stage III, the count rates for UR and US are both growing fast, while FS is just
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Figure 6.6: Static light scattering assay. Average count rates were recorded to
monitor generic protein aggregation. The classic sigmoidal curves show the typical
lag and growth phases of amyloid formation.

beginning to gain signal at approximately 14 hours. US plateaus at 15 hours, but

UR continues to grow as bigger particles are generated. UR reaches its plateau

at the end of stage IV, as FS records a big change in scattering intensity. It is

possible to retrieve a unimodal particles size distributions from SLS data. Protein

aggregate distributions are expected to be multimodal with sub-populations of

evolving over time. Fitting SLS data loses applicability in this case, and DLS is

utilized instead.

A single sample of completely unfiltered αSN was examined to determine the

timescale of aggregation without agitation of any kind. In Fig. 6.7, SLS of a

quiescent sample was monitored over 90 hours. Even though this sample was

reconstituted directly in buffer, with no filtering step, the quiescent sample did

not begin to aggregate until 75 hours after the start of the incubation.
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Figure 6.7: Static light scattering assay of UQ. Average count rates were recorded
to monitor generic protein aggregation. Note that the lag phase is about seven
times longer for a quiescent sample.

6.4.5 Dynamic Light Scattering

GIPG analysis of DLS was used to elucidate particles size evolutions across incu-

bation time (see Fig. 6.8). The fit parameters are converted to spherical particles

sizes represented by the hydrodynamic radius, RH . Spherical shape may be a de-

cent approximation for monomeric and oligomeric species (3.3 to 10 nm). Under

conditions where amyloid formation is not expected, spherical medium to large

protein aggregates (10 to 200 nm) is also a valid assumption. However, under the

current setup, there is no way to know if these aggregates are globular or rod-like.

This represents the first caveat. A second caveat concerns the inability to detect

small particles in the presence of large ones. DLS is only useful at early times

when most particulate matter is less than half the wavelength of the incident

light (or about 215 nm in this experiment). The reduced data is displayed out to

400 nm only to give a sense of the size of super-aggregates (< 200 nm) along the
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Figure 6.8: The fit parameters of the DLS data using GIPG. US, UR and FS are
labeled from top to bottom. Orange, green and blue mesh lines correspond to
the predicted hydrodynamic radius of a spherical monomer, dimer and tetramer,
respectively.

evolution.

At time zero all samples have a monomeric peak with an approximate RH of

3.4 nm. However, there are significant initial medium-sized aggregates for both

UR and US. Orange, green and blue lines represent monomer, dimer and tetrameric
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species by scaling the monomer unit by constant density. Even though UR and

US were prepared in identical fashion, US has slightly larger and greater concen-

tration of initial aggregates. FS does not have any aggregates. The time-zero

aggregates were consistent with native gel.

As stage I progresses, there is immediate oligomerization in all samples. UR

has a wide particle size distribution for the oligomeric species with a mean about

the same as a tetramer. Also, the initial medium-sized aggregates have grown to

large (70 nm) species. This distribution is wide suggesting a range of particles

sizes. DLS data was corrupted during hours 1 and 2 for US and were not used in

the analysis. We cannot comment on the evolution during this stage. There are

no aggregates formed in FS as measured by DLS. In this sample, the monomer

oligomerized to form a narrow distribution of dimeric species.

At the start of stage II, fairly monodisperse, large (180 nm) aggregates domi-

nate the intensity signal in the US. US also self-associates monomers into narrow

distribution of sizes consistent with a trimer. This peak slowly decreases and shifts

to large oligomers by the conclusion of stage II. In terms of large aggregates, in

the US sample there is steady decrease, whereas UR slowly gain population. FS

does not have any detectable aggregates present. Keep in mind, the parameters

represented in Fig. 6.8 are intensity-weighted and do not reflect number of par-

ticles in solution. Converting intensity-weighted parameters to number-weighted

parameters reveal that the large aggregates are seven to eight orders of magnitude

less in number than the time-zero monomer population. This would be consis-

tent with the notion that metastable species present in the amyloid formation

mechanism are short lived (or low population).

For UR and US, stage III represents the approximate time of the growth

phase where there are significant increases in scattering and ThT luminescence.

By the start of stage III, there are super-aggregates (approximately 300 nm) being

generated in US. The disappearance of the oligomeric and large aggregates may



170

be due to the presence of super-aggregates swamping the signal and not due to the

complete conversion of these species. Similarly, oligomeric and aggregate species

in the UR sample are overwhelmed by super-aggregates after hour 12.

FS does not change much until the end of stage III. At this point, there is a

slow decrease in signal coinciding with an increase in static light scattering (see

Fig. 6.6). Without any evidence of intermediate aggregate particles present by

DLS, the aggregation is most likely due to super-aggregates.

6.4.6 Time-Resolved ThT luminescence

The time-resolved fluorescence resolves details concerning binding environments

of the intercalated fluorophore. ThT lifetimes evolve across the incubation time-

course as species begin to bind ThT in a luminescence-competent way. At the

beginning of the incubation little binding of ThT is observed.

The final incubation time is useful to characterize first because there is pre-

sumably fibril-bound ThT. At the conclusion of the UR and US incubation, a

plateau of ThT luminescence is reached (see Fig. 6.5). 95.6% of the final intensity-

weighted lifetime distribution of UR is represented by a 2.0-ns species. Most of

the remaining intensity is from a shorter 660-ps species (3.6%) and longer 5.0-ns

(0.58%) species. The US sample has the same 2.0-ns species but has slightly less

of the majority at 93.6%. Conversely, there is small increase in the intensity of

the 640 ps component to 5.7%. Also, there is a small contribution (0.28%) of a

170 ps component which is not present in the UR sample. The longest lifetime

component is shifted to about 6.3 ns and represents 0.20% of the intensity. In

contrast, FS has not reached a plateau in SLS or SSF by 19 hours. This is re-

flected by a different lifetime distribution, centered at 1.6 ns (93.0%) and 660 ps

(5.9%).

At the beginning of stage III, US exhibits a 1.4-ns feature. This feature shifts

slowly to 1.6 ns by the middle of this stage, as shorter 660 ps feature appears.
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Figure 6.9: Lifetime analysis of TRF data using GIPG. US, UR and FS are
labeled from top to bottom. Red, yellow and cyan mesh lines correspond 660 ps,
1.6 ns and 2.0 ns, respectively. We attribute the 2.0 ns lifetime feature to amyloid
fibril binding, and the 1.6 ns lifetime with protofibril formation. We speculate
that the 660 ps feature represents ThT bound to amyloid fibrils but an alternative
binding or quenched state.

As stage III ends, most of luminescence results from a 2.0 ns component. The

increasing trend of this species plateaus during stage IV. UR has a similar lifetime

trend as US. Both have an increase growth of a 1.6-ns species which shifts to 2.0 ns
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later in the stage. However, UR does not have a 1.4-ns feature.

The small ThT SS intensity present at the end of stage III in FS (see Fig. 6.5)

is due to a short 1.2-ns lifetime. The lifetime shifts during stage IV to 1.6 ns.

This lifetime has preceded the growth of a 2.0-ns species that was present at the

end of the growth phase in UR and US. The added lifetime information suggests

that FS is on pathway to form amyloid fibrils.

6.4.7 Data recapitulation

FS

Filtering reconstituted αSN with a 100 kDa MWCO filter left only monomeric

species shown by native gel (Fig. 6.2) and time-zero DLS (Fig. 6.8). Particle size

distribution evolution measured by DLS showed an initial dimerization within

stage I, but no significant increase in SLS signal was reported (Fig. 6.6). In

fact a significant scattering trend did not occur until the middle of stage III.

However, ThT luminescence (Fig. 6.5) increased from stage II through stage IV,

without the sharp growth phase as shown by UR and US. The majority lifetime

responsible for this increase starts at approximately 1.2 ns and shifts to 1.6 ns.

The 1.6 ns feature was shown by both UR and US during the stage III, or the

growth phase. AFM images (Fig. 6.3) do not show any fibril structures attached

to the modified mica surface and, upon visual examination (Fig. 6.4), the sample

was clear without particulates present.

US

Native gel and time-zero DLS showed presence of aggregate species at the start

of the experiment. During the stage I, a narrow distribution of oligomeric species

were created from self-associating monomers. At the end of stage I, there was a

significant increase in scattering signal as shown by SLS. Interpretation of DLS
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suggests that the increase of SLS signal was most likely due to large, narrowly

distributed particles converted from the presence of time-zero aggregates.

No ThT signal was demonstrated until the beginning of stage II. During stage

II there was a modest ThT and SLS increase, while presence of large aggregates

disappeared, suggesting a conversion to super-aggegrates. ThT and SLS signal

increased at a greater rate at the beginning of stage III and was attributed to a

growth phase. ThT lifetime distributions shifted from 1.4 to 1.6 ns, then to 2.0 ns

by the conclusion of stage III. This may suggest the conversion of protofibril to

amyloid fibril structures. Alternative binding orientations may be responsible for

shorter lifetime components of approximately 650 ns.

By stage IV the SLS and ThT intensity plateaued as shown in Fig. 6.5. The

intensity trend is indicative of a slower rate to the creation of new aggregates;

the 2.0 ns lifetime implies the aggregates are amyloid fibrils. The argument is

strengthened by AFM imaging (Fig. 6.3). Amyloid fibrils stuck to the surface

and demonstrated a network of fibrillar structures and was consistent with the

final solution of small suspended particulates. (Fig. 6.4).

UR

As in US, native gel and time-zero DLS showed presence of aggregate species at

the start of the experiment. During the stage I, self-associating monomers created

a large distribution of oligomeric species. At the same time, a wide distribution

of aggregates were converted from the initial aggregate left after reconstitution.

At the end of stage I, there was a slight increase in scattering signal as shown by

SLS in Fig. 6.6. Interpretation of DLS suggests that contrary to shaking, rotating

does not create a significant population of super-aggregates early on.

Little ThT or SLS signal was demonstrated until the end of stage II at which

there was a dramatic change. ThT and SLS signal increased at a greater rate at

the beginning of stage III and was attributed to a growth phase. ThT lifetime
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distributions shifted from 1.6 to 2.0 ns by the conclusion of this stage. The 1.4-ns

feature was not present in UR.

By the end of stage IV, the SLS and ThT intensity plateaued. As in US, the

2.0 ns lifetime suggests the aggregates are amyloid fibrils. US generated a thick

precipitate that was not well suspended, rendering it a difficult sample for AFM

imaging.

6.5 Discussion

Differences in methods

There are several recurring methodological differences present in the literature

regarding amyloid incubations. These methods result in kinetics that are only

marginally similar. Timescales of aggregation are often very different from inves-

tigator to investigator. We have challenged two such methods. If these differences

affect the rates of aggregation, they should be included in any mechanistic expla-

nation thereof.

6.5.1 Preparation Effects

Lyophilization is a common way to store protein in a stable environment for

months at a time. Unfortunately, the drying process can create significant pre-

cipitate upon reconstitution in buffer (see Fig. 6.2) The lag phase has been shown

to be eliminated by the addition of nuclei, or “seeds”, to an incubating protein

sample. One method to dissolve particulates has been to invoke a high pH treat-

ment. Fluorescently-stained native gel and DLS show that even this method did

not remove the smaller soluble aggregates completely. Whether using a controlled

system of buffers, or strong bases/acids to monomerize protein, both are equally

deficient by native gel. More importantly, the presence of these aggregates affect

the overall rate of the amyloid formation mechanism.
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The initial soluble aggregates may not be seeds per se. Seeds are most often

thought to have the amyloid cross-β structure and act as template for monomer

addition. We have not seen evidence that lyophilizing protein generates amyloid

fibrils in a single step. ThT luminescence does not support the notion that the

seeds present in unfiltered samples have this highly-ordered conformation.

There are subtle similarities in ThT luminescence signal between FS and US.

Crudely, the aggregation of FS is one stage behind US (see Fig. 6.5). Shown in

Fig. 6.9, stage II in US and stage III in FS both have short lifetime species dom-

inating the signal. The lifetime distributions at the interface of stages II and III

for US match those at III and IV for FS. Finally, the 1.6-ns species present at the

end of stage IV is found in the middle of the growth phase of US. Unfortunately,

without knowing the binding constants or quantum yields of different ThT in-

tercalation orientations, converting the intensity of an intermediate feature to a

population of species can only be speculated.

Initial soluble aggregates are present in the unfiltered samples and do not have

the cross-β structure. Because they still facilitate aggregation, the argument of

a colloidal aggregation mechanism is strengthened. However, it is presumptu-

ous to formulate a mechanism of aggregation without considering that agitation

technique also affects the intermediate species present as shown by UR and US

data.

6.5.2 Agitation Effects

As shown in Fig. 6.7, quiescent samples will aggregate much slower than when

agitated. In this particular case the sample was neither filtered nor prepared

through a base dissolving treatment. This suggests that driving forces for aggre-

gation are provided largely by agitation. We have not seen any literature that

casts an amyloid mechanism while considering agitation effects. However, general

protein coagulation by surface interactions has been discussed.
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A paper published by Ascherson (cited within Ref. [21]) nearly 170 years

ago, described protein solutions forming elastic “skins” in a spontaneous fashion

around oil droplets. One hundred ten years later, Cumper and Alexander [4],

performed a comprehensive study to measure the elasticity and surface viscos-

ity of protein solutions at the air-water and oil-water interface under different

ionic strengths, pHs and temperatures. They found a surface denaturation phe-

nomenon in thin films, and proposed a general mechanism:

1. globular proteins diffuse to the surface, then

2. “unroll” on the surface by denaturing, and finally

3. the concentration of denatured protein packs at the surface, allowing for

coagulation.

After diffusion takes a protein near the surface, a small amount of energy is

needed to adsorbed it. Surface denaturation follows when hydrophiliic side chains

partition into the solution and hydrophobic search for the surface. Depending on

buffer conditions, the surface can become saturated with polypeptide chains that

stretch across the interface. Lateral association becomes energetically favorable

via protein-protein hydrogen bonds and salt bridges. [4]

We speculate that when a thin film forms and is left undisturbed, it stays in

a metastable state. Changing over the surface, for example by shaking, nudges

the protein out of the metastable state. When the film enters the bulk solution

again, it can bud, forming an aggregate. The aggregate would still have some

of the residual structure that formed at the surface. αSN is an intrinsically

disordered protein (IDP) and there is no propensity to gain secondary structure

in solution. To break the aggregate, a driving force, perhaps the entropy penalty

by gaining structure, would have to overcome the energy holding the aggregate

together. Of course there is an entropic gain by the water when creating a single

larger particle.
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The authors also invoke the example that egg albumin cannot be heat aggre-

gated (Ref. [4] and references within). However, native and heat denatured egg

albumin will self-associate when shaken. If the aggregation process is entropi-

cally driven, i.e. many different states exist but only a few are aggregate-prone,

raising the temperature does not help. Raising the temperature will only work if

there is an enthalpic barrier that needs to be crossed to aggregate. The driving

forces behind shaking are two-fold: forces to denature (enthalpic) and organize

(entropic). In the case of αSN, elucidating the thermodynamic properties of the

monomer has been discussed in chapter 4.

6.5.3 Mechanistic consequences

Filtered quiescent samples take several weeks or longer to aggregate [3, 1], whereas

a quiescent but unfiltered sample (UQ) showed signs of aggregation in just after

three days. It is apparent that removing the initial soluble aggregates changes

the kinetic mechanism by increasing the concentration of the available unstruc-

tured or colloidal aggregates. These loosely held aggregates do not show a ThT

luminescence response and, therefore, does not have latent cross-β structure. In

Chap. 3, we describe the first step of the self-assembly of partially denatured

β-lactoglobulin A (β-LGA) in terms of “Aggregate A” (aggA). αSN is an IDP

but can utilize aggregation as a way to stabilize a hydrophobic core. The parti-

tioning of hydrophobic side chains into a central core is one of the driving forces

for globular proteins to fold. [20] Here, we suggest that the core of the unfiltered

particulates can conformationally rearrange without losing critical hydrophobic

contacts. The consequence is that the lag phase is shortened.

Shaking versus rotating

By rotating we observe fewer, but bigger, bubbles in the headspace. We consider

rotating to be a more gentle method of turning over of surface proteins to the
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bulk, evident by the large chunky particulates at the experiment’s conclusion. We

estimate at any given time during the shaking process, there is more than 40 cm2

of bubble surface in the 1.6 mL of headspace. Rotated sample is closer to 28 cm2.

Recall, aggA is expected to be malleable by definition. Consider that they may

remain intact but breach at the surface; conditions may better align hydrophobic

core on the surface before it returns back to the bulk. The steady-state ThT

luminescence increases slowly during this stage for both US and FS just prior to

the growth phase. This would insinuate that this process expedites the formation

of “Aggregate B” (aggB). In Chap. 3, we describe aggB as a metastable colloidal

assembly of proteins that has cross-β like structure. We can only speculate that

these species exist based on the evidence that the typical lifetime present prior

to the growth phase is shorter than that of protofibrils (>1.6 ns).

There is little evidence of a high concentration of the aggB component in

UR. However, both UR and US form amyloid. Is aggB just a way to get to a

protofibril, but not the way? Searching for these intermediate species by rotating

versus shaking would require a host of rigorous control experiments, in order to

determine how the physics of these two methods affect aggregation rates.

6.5.4 Biological relevance of in vitro agitation studies

What can we learn from in vitro experiments probing amyloid formation mech-

anisms that is still applicable in situ? Do the possible protein interactions with

hydrophobic biological matter, such as in between a cell membrane, justify ag-

itating protein samples to facilitate self-assembly? We speculate the answer is,

maybe. Agitation and filtering methods vary from investigator to investigator,

and the results reflect this.

Why, as a community, are we investigating mechanism with inconsistent ex-

perimentation, obtaining different results, and claiming that it is all the same?

We believe that this question precludes both the former. The dogma surrounding
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amyloid formation in vitro is very strong, and yet so vague that even if the results

are inconsistent within the field but do not contradict the dogma, the results are

considered without question. The consequence is, of course, that nothing new is

learned. This and future work will hopefully convince the field that inconstan-

cies are unacceptable, and persuade the field that the development of consistent

methodologies and experiments are critical tools needed by the community to

solve this outstanding problem.

6.5.5 Future experiments

Teflon beads - No head space - Rotated

It is difficult to investigate the influence of the hydrophobic air-water interface

present in all samples with head space in a controlled way. Instead, we will co-

incubate αSN with hydrophobic surface of Teflon beads. Without headspace,

samples will be subjected to constant rotating in the presence of beads. ThT,

SLS and DLS assays will be conducted. We expect that by increasing the number

of beads, the aggregation rates will increase. Given that the surface area of the

bead is known, the driving forces due to hydrophobic interactions with the bead

can be quantitatively discussed.

Quiescent- No head space - Filtered

The amyloid formation will have to be confirmed for a non-agitated, seed-free

sample without the air-surface interface. This control experiment will have to

preclude any investigations involving these conditions. It is expected that this

experiment will take months to complete because these three factors seem to be

the biggest contributors to fast aggregation. Essentially, two practical questions

can be answered at the expense of relatively simple biophysical techniques:

1. How long to incubate?
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2. What time points should we pay the most attention to?

Elucidating intermediate species with TRF studies covalently-labeled

αSN.

One part of understanding kinetic mechanism means identifying all relevant species.

The other is to monitor the concentrations changes with time. As shown in chap-

ter 4, there is promise for conformationally sensitive fluorophores to be used as a

tool to identify species along the amyloid pathway.

The first experiment will involve a co-incubation of Alexa Fluor 488 con-

jugated αSN (Alexa-αSN) with native αSN. We see a lifetime distribution of

Alexa-αSN change as the temperature increases beyond 37 ◦C. We believe the

probe become quenched by coming in contact with amino acid side chains. If

the effect is duplicated by aggregation, there may be an independent measure of

conformation that is not ThT dependent.

There are two unwanted effects that should be avoided for this experiment.

First, fluorescence resonance energy transfer (FRET) between two nearby Alexa-

αSN in the same aggregate may change the lifetime distribution in a complex way.

Second, the properties of the probe itself may change the aggregation rate. By

using 20:80 mixture of Alexa-αSN to αSN, a good balance between the number of

conjugates and the number of monomers aggregate can be obtained. For example,

invoking the binomial distribution a dimer has a 32% probability of having one

Alexa-αSN and only 4% having two.

FRET study of the co-incubation of two different αSN conjugates

If the TRF studies of Alexa-αSN show no change in the lifetime across the in-

cubation but still aggregates to form fibrils, a second experiment utilizing FRET

can be formulated. We have found that the lifetime distribution of Atto 590 αSN

conjugates (Atto-αSN) does not change much with temperature and therefore
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can be considered as a good FRET acceptor for Alexa-αSN. The Förster radius

for this pair is 6.0 nm, or slightly larger than hydrodynamic radius of the dimer

αSN (see Chap. 6 for explanation). The experiment begins with two sets of sam-

ples. Set A has co-incubated αSN with Alexa-αSN, and set B has co-incubated

αSN with Atto-αSN. At different time points along the incubation, a sample from

set A is mixed with sample from set B and the FRET signal is monitored over

the remaining incubation. If no FRET signal is measured, each sample has al-

ready aggregated into a stable pre-fibrillar particle. Otherwise, there should be

exchange of conjugates and FRET will be detected. The fluorescence signals seen

only from these species should be directly related to the creation the colloidal

intermediates formed prior to the growth phase.

6.6 Conclusions

The mechanism of amyloid formation is not well understood. In the case of αSN

in vitro aggregation, we have brought to light the major discrepancies in pub-

lished aggregation rates. We have connected the differences to preparation and

incubation conditions. We need to be careful that when describing the mechanism

of amyloid formation in terms of driving forces, these experimental considerations

are taken into account. We have shown in our experiments that there are unmis-

takeable kinetic differences between filtered or unfiltered samples, and agitated or

quiescent incubation conditions. Because these effects cannot be ignored, we have

proposed other experiments that have potential to identify intermediate species

in a controlled way.
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Chapter 7

Supplementary Materials

7.1 Summary

As with any dissertation, not every scrupulous detail can be included into any one

particular chapter. Nevertheless, some “details” are quite important especially if

they provide a baseline understanding of an experiment, ultimately facilitating

the proper interpretation of data. This chapter consist of four figures and a short

section of IGOR computer code. Explanations for each figure are given in their

own section and figure caption.

7.2 Simulating DLS data

In chapter 2, we introduced a new approach to global data fitting based on a

regularization condition that invoked continuity in the global data coordinate.

Dynamic light scattering (DLS) was used as the original experiment for the peda-

gogical example (as opposed to time-correlated single-photon counting, TCSPC).

DLS is used to measure particle size distributions. By numerically solving a set

of differential equations developed to describe the fibrillogenesis of amyloid β-

peptide [1], we set out to simulate particle size distribution evolutions along an

incubation timecourse. A considerable amount of intellectual effort was put forth

to ensure the proper conversion from particle size distributions to the simulated

DLS data and is explained below. Unfortunately, we found that the process for
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Figure 7.1: Simulated DLS correlation functions. A) DLS correlation functions
representing a particle size evolution g2(t). B) The exemplar decay time dis-
tribution evolution used to generate the correlation functions in panel A. C) Fit
parameters determined from a GIPG analysis to the g2(t). It took about one week
to generate the DLS data for this particle size evolution. GIPG underperformed
under example. However, we found that other fitting methods, such as local
regularization, maximum entropy, active-set, etc., also underperformed with less
accuracy than GIPG. Parameters used to simulate the correlation functions: 219

points in the correlation function,125 ns was the bin width, 50 ms was the largest
correlation time and 50 correlation functions per transient in order to generate
the standard deviations for the data.

generating correlation functions was very time-consuming. Also, we were not con-

vinced that a micelle mediated kinetic model proposed in Ref. [1] was realistic.

We ultimately abandoned the kinetic model and DLS data generation for the

work that was eventually completed in chapter 2 (and Ref. [2]).

When generating DLS data, the key is to see that the fluctuations of the

intensity at the detector are equal to the square of the electric field phase compo-

nents of each of the diffusing species. The fluctuations exponentially decay, e−Γit,

where Γi is the characteristic decay rate for a diffusing particle, i. The variance

of the electric-field depends on the number of particles as well as the scattering

cross-section. The relative amounts of scattering for different sized particles can



187

be estimated by a Gaussian random variable with a mean of zero and a standard

deviation equal to the square root of the characteristic scattering intensity for that

size (and shape) particle. We then impose the correlation that each species ex-

hibits onto the electric-field trajectory. Adding the resulting electric-fields yields

the net electric-field trajectory. The electric-field squared gives intensity trajec-

tory. To make intensity trajectory realistic, shot noise is added. Autocorrelating

the resulting trajectory yields the intensity correlation function often referred to

as g2(t). This data now has noise due to both the electric-field and intensity com-

ponents. Replicate transients can be generated in order to calculate the standard

deviation of the data.

Fig. 7.1 shows the evolution of generated correlation functions when the pep-

tide concentration is at the critical micelle concentration. The particle evolution

was generated by numerically solving the differential equations in Ref. [1]. The

particle size is related to a diffusion constant via the Stokes-Einstein equation.

The decay time evolution is then related to the diffusion through scattering vec-

tor, Di = Γi/q
2 (see chapter 3). The intensity of each scattering particle was

estimated by:

Ii = CA3Na

(
2πMwi (dn/dc)

Naλ2D

)2

Io (7.1)

where C is the concentration, A is the area of the detector, Mw is the average

molecular weight of particle, (dn/dc) is the index of refraction change, Na is

Avogadro’s Number, λ is the wavelength of the incident light, D is the distance

to the detector and Io is the incident light power. The total intensity of all the

particles for each transient was scaled to 300 kHz.

7.2.1 Generating DLS data, IGOR code

Function sim_ACF_photons(simpnts,tres,taumax, int)

variable simpnts,tres,taumax, int
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Wave int_factor, rel_conc, tau

variable/g AvgRate

//simpnts = numpnts in the correlation function

//tres = bin width (xscale of correlation)

//taumax = the longest correlation for a particle size

//int = the laser intensity scale factor to keep the count

// rates reasonable.

//Tau is the correlation time for g1 not for g2. You can

//change this if you so desire.

//Intensity factor is the relative scattering intensity,

//not the correlation amplitude or the electric field

//amplitude.

//Rel_conc is the relative concentration.

//The first function includes just the correlated noise

//contributions. The second function also

//scales for the proper overall scattering intensity

//and generates the ACF with only correlated noise

//(sim) and the ACF with both types of noise (phot).

// closestgoodFFT is a list of good fft numbers

make /o/n=(closestgoodFFT(simpnts)) sim=0,temp=0,phot=0

make /o/n=(closestgoodFFT(taumax/tres)) dls_cor = 0

SetScale/P x 0,tres,"s", dls_cor, sim, temp, phot
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sim=0

variable ind=0, sumwave = 0, holdsigma

do

if(int_factor[ind] > 0)

holdsigma=sqrt(int_factor[ind]*int*tau[ind]*2)

temp = gnoise(holdsigma) // calculates var. of intensity

dls_cor=exp(-x/tau[ind])// calculates decay function

sumwave = sum(dls_cor)

dls_cor /= sumwave //normalization

Correlate/c dls_cor, temp // correlated noise of e-field

sim+=temp //add them all together

endif

ind+=1

while (ind<numpnts(int_factor))

fastop sim=sim*sim // square to get intensity traj.

AvgRate += mean(sim)

AvgRate/=tres

phot=poissonNoise(sim) // Shot noise

variable mean_phot = mean(phot)

phot=(phot-mean_phot)/mean_phot

correlate phot phot // Autocorrelate for g2(t)

End
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Figure 7.2: Spectral properties of γ-CD bound ThT. γ-cyclodextrin (γ-CD) has
been shown to bind ThT and exhibit dimer luminescence signal. A) Steady-state
luminescence spectra of ThT titrated into 21 mM γ-CD. Excitation wavelength
was set at 450 nm. Slits were set to 5 nm. As the concentration of ThT increases,
a 482 nm emission band grows. Note: it may take an hour or more for the
complete intercalation of ThT into γ-CD. This data was taken after three days
of incubation. B) The lifetime distribution of the time-resolved luminescence
ThT / γ-CD. ThT to γ-CD concentration ratio was 26 µM to 21 mM. Locally
regularized IPG was used as the fitting algorithm with a χ2

r = 1.05. Data is
displayed as total integrated intensity. Note that there are three components: 15-
ps, 790-ps and 2.5-ns species. The 15-ps feature is due to free ThT. The 790-ps
and 2.5-ns features were also exhibited in the presence of protofibrils and mature
amyloid fibrils, respectively (see Fig. 3.5). (Fitting parameters: 50,000 iterations,
0.9 step, quadratic continuity condition, 131-point logarithmically-spaced lifetime
grid from 1 ps to 21.5 ns, probability-to-reject as compared to active set < 0.01).

7.3 γ-cyclodextrin (γ-CD)

In chapter 3, we assayed for the presence of amyloid using Thioflavin T (ThT)

luminescence. When bound to amyloid, ThT exhibits a new absorption band
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Figure 7.3: GIPG fit parameters for the urea titration of β-LGa in the presence
of ANS. β-LGa was placed into different concentrations of urea, allowed to sit
for 15 minutes before ANS was added. TCSPC was used to measure the ANS
fluorescence lifetime of the resulting solution. The data was fit with GIPG with
a χ2

r = 1.03 By following the evolution of lifetimes it was possible to assign
certain lifetime features to ANS binding environments. Long lifetime features
were attributed to ANS sequestering in the calyx. Note that at 5 M urea there is
a loss / shift of the long lifetime features suggesting a major calyx change. (Fitting
parameters: 1.75 × 106 iterations, 0.9 step, linear continuity condition, 68-point
logarithmically-spaced lifetime grid from 10 ps to 33.5 ns, probability-to-reject as
compared to active set < 0.01).

at 450 nm that has been attributed to ThT binding to the cross-β structure.[3,

4, 5, 6, 7, 8] The spectroscopic properties of ThT in amyloid are consistent ThT

dimer formation.[9, 10, 11] We discussed that a single β-LGa could bind two ThT

molecules creating a small amount of dimer signal, as was shown by intercalation

of ThT in γ-cyclodextrin (γ-CD).[10, 11] Because of the potential confounding

effects of ThT-bound monomer, time-resolved luminescence evolution of aggre-

gating β-LGa (see Fig. 3.5) was not explicitly discussed. However, a γ-CD / ThT

control experiment was performed in Fig. 7.2 to help understand the lifetime dis-

tribution of under the initial conditions.
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widest at about 5 M urea. Secondly, we point out that upon going from 0 M
to 2 M urea, the RH becomes smaller implying that the native dimer has been
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7.4 Urea titration of β-LGa

Urea titration was useful to control for understanding the partially denatured

states of β-LGa. In chapter 3, ANS multi-peaked “fingerprint” analysis required

the use of day 0 βLGa / ANS control (Fig. 7.3). Specifically, the control was

used to assign the first fingerprint describing lifetime distribution of the various

monomeric and monomer-like components. By increasing the urea concentration,

the nature of the different binding modes were easier to elucidate. Also this control

helped to understand the binding site reversibility in the ANS reversibility assay.

Upon introducing the protein back into native conditions, we could comment

on the reversibility of the binding sites depending if the lifetimes resembled a

partially denatured or native-like environment.

The DLS measurements showed that the protein had swelled and had a broad
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distribution of hydrodynamic radius. In a titration from 0 M to 7 M urea

(Fig. 7.4), the width of the DLS RH distribution was broadest at 5 M urea.

Since the width of the distribution was resolvable, this implied the exchange

time within that distribution was longer than the characteristic diffusion time of

∼20 µs for the monomer. Amyloid formation from βLGa has been observed to be

fastest at 5 M urea.[7] The day 0 DLS results showed that the conditions giving

the maximum rate of amyloidogenesis were coincident with those that created the

maximum variance in the hydrodynamic radius of βLGa.
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Chapter 8

Explanation of Global Regularization Code

8.1 Summary

In this chapter, the computational set up and implimentation of the globally

regularized interior point gradient method (GIPG) is described. First, the code

is introduced and the options are described. Next, there is an explanation of

the fast regularized GIPG using three dimensional matrix multiplications. This

procedure decreased overall computation by at least an order of magnitude, as

compared the method described in chapter 2. Flow charts are provided to help

navigate through the IGOR source code. The code itself is written in IGOR 6.03

format and found chapter 9.

8.2 Introduction

Globally regularized interior point gradient method (GIPG) [1] was developed

using IGOR Pro (WaveMetrics) platform. IGOR was chosen due to its built in

curve-fitting capabilities, ability to handle large data sets, implimenation of fast

matrix operations (LAPACK libraries), high speed data displaying and user pro-

gramming environment which allows for automation. Throughout this chapter,

we employ a few terms from the IGOR vernacular, including the terms “wave”

(short for waveform) to describe single column array of numbers contained in

the rows, matrix to describe waves with multiple columns, and 3D matrix as a

matrix with multiple layers. Lastly, the term x-scaling refers to abscissa values
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corresponding to a wave if plotted on the ordinate.

GIPG only requires three inputs: the data, a design matrix, and number of

iterations. However, the typical GIPG user may prefer set up options to expedite

the implementation GIPG for a host fitting applications. IGOR’s pop up menu

capabilities serves as a useful tool for entering inputs such as:

• data

• options

• parameters.

To run the globally regularized IPG code, one must include the data which is to

be fit and a set of basis functions to fit them. The basis functions can be supplied

as either a set of “fingerprints” or as a grid of exponentials. For global fitting, the

data must be supplied as a matrix, with each column of the matrix representing a

single data transient. The order of the data waves within the data matrix should

correspond to a continuity condition that the GIPG algorithm implies. Secondary

data inputs include instrument response functions matrix and shift constants wave

(for convolution of data), standard deviations matrix and x-scaling wave of the

data. For secondary data matrices, their columns should match the corresponding

columns in the data matrix.

GIPG has already been utilized to globally fit time-correlated single-photon

counting [2], temperature-dependent Stokes-shift steady state fluorescence [3],

dynamic light scattering [2] data sets. Deconvolution of circular dichroism or

infrared absorption spectra also can be fit using regularized GIPG if altering an

experimental variable results in a continuity of the fit parameters. Several options

have been made available to facilitate the general applicability of fitting a variety

of spectroscopic data sets. The options include:

• setting the standard deviations equal to the square root of the data,
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• invoking the Seigert relation for IPG fitting homodyne dynamic light scat-

ting data,

• convoluting of a fingerprint matrix by a grid of exponential functions,

• regularizing using linear or quadratic continuity condition or local maximum

entropy method,

• selecting a range of grid points to regularize,

• fitting locally or globally,

• pre-normalizing data and standard deviations,

• calculating effective free parameters,

• estimating time to complete fit,

• and/or saving the fit results.

These options should allow for fitting various data set types using different

methods. In chapter 3 of this thesis, there are examples of regularized GIPG

fitting with some of these options implemented. For example, Seigert relation was

used to globally fit the dynamic light scattering data of an aggregating protein

along a timecourse. Time-correlated single-photon counting was used to measure

evolution fluorescence lifetime distributions of an extrinsically labeled protein

over time. The data was first fit using a grid of convoluted exponential decays

to obtain a set of lifetime distribution fingerprints. The data was then fit using

instrument response convoluted fingerprints to generate a global model of reduced

parameters. Maximum entropy method was added by popular demand. It utilized

IGOR’s built in curvefit capabilities. Unfortunately, it is unstable for large data

sets (several hundred parameters) and is to be used at your own risk.

The user must set a few parameters before the fit can be started. They include:
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• strength of regularizer

• number of iterations

• size of each IPG step

• and number of display updates.

Once the fitting has started, there are several displays for user evalution, such as,

• a fit window containing the x-scaled data, the fit, calculated reduced chi-

squared (χ2
r), change in χ2

r, and a counter for the remaining updates

• fit parameters vs basis function coordinate

• and plot of χ2
r and probability-to-reject vs update number

GIPG (and for that matter, IPG) is an iterative fitting method without an explic-

itly defined convergence criteria. Instead, the user inputs the number of iterations

to perform. After completion, the user decides if the fit has converged. For con-

venience, the algorithm displays useful parameters mentioned in the list above,

and greater detail in chapter 2 of this thesis. Many users may decide that if χ2
r is

close to 1.0, and/or the change of χ2
r is very small, and/or probability-to- reject

< 0.5, the algorithm has converged.

8.2.1 Fast GIPG

Recall the minimization principle in Methods section of chapter 2,

(AT
l Al + γH)xl −AT

l bl = 0, (8.1)
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where Al is a design matrix for a local data transient, and H is the regularization

matrix,

H[K×K] ≡



1 −2 1 0 0 0 0 · · · 0

−2 5 −4 1 0 0 0 · · · 0

1 −4 6 −4 1 0 0 · · · 0

0 1 −4 6 −4 1 0 · · · 0

...
. . .

...

0 · · · 0 1 −4 6 −4 1 0

0 · · · 0 0 1 −4 6 −4 1

0 · · · 0 0 0 1 −4 5 −2

0 · · · 0 0 0 0 1 −2 1



. (8.2)

The GIPG algorithm can gain more than an order of magnitude faster com-

putation time by rearranging and recasting the left term in Eq. 8.1, as compared

to the GIPG version first presented in Chapter 2. By invoking three dimensional

matrix operations and a single transpose step, many pointless zero-zero multipli-

cations can eliminated. For pedagogical purposes, matrix and vector diagrams are

utilized to help visualize the conversion to three dimensional matrix operations.

Figure 8.1 shows the first term in equation 8.1. In general, dimensions of all the

arrays shown in the figures were rendered to be consistent with the text.

When global regularized IPG is used, the global regularization matrix G (see

Eq. 15 in Chapter 2), replaces H in Eq. 8.1,

(ATA + γG)× x−ATb = 0. (8.3)

The distributive property can be conjured to split Eq. 8.3 into two terms,

ATA× x + γG× x−ATb = 0. (8.4)

The right expression in Eq. 8.4, visualized in Fig. 8.2, can be rearranged in

three dimensions by “folding” each AT
l Al design matrix along the block diagonal
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A
l

TA
l

Hγ*+

H

Regularizer matrix
Colors denote the

diagonal, 1
st
 and 

2nd off-diagonals

[K ⨉ K] 

Parameter vector 
Colors represent a 

parameter set of for each 

data transient, l

[K ⨉ 1]

Number of Grid Points,                     K

Number of Data Transients,              Y

l ∈ {1 ... Y}Transient Number, 

Regularizer Strength Parameter, γ A
l

TA
l

[K ⨉ K]

Square of the local
design matrix A

l

Key

x
l

x
l -     ATb   =   0

Figure 8.1: Pedagogical diagram and key for matrix operations. A key is provided
as to link the components of the diagram with mathematical expression in the
text. The details of the design of these matrices and vectors were described in
Methods section of Chapter 2 under IPG Regularization. The bracketed values
are the dimensions of the matrices/vectors used.

of ATA into Y layers, to generate a K×K×Y 3D matrix. The global parameter

vector, x, must also be rearranged as shown in Fig. 8.3.

In order to reduce the total number of zero-zero multiplications, a similar

rearrangement as shown above can be performed upon G, however, a transpose

is also required. Note that the regularization components represented are in the

diagonals components of the off-diagonal blocks in G. The regularizer structure

can be set up with K layers and each layer is a Y × Y H matrix. Each layer

represents a single parameter over the evolution coordinate. Similarly, the global

parameter vector needs to be arranged accordingly. For example, the first layer

of the x is the first fit parameter of each data transient. The second layer is the
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+

(x)[KY ⨉ 1]  (ATA) [KY ⨉ KY]   (γ G)[KY ⨉ KY]  (x)[KY ⨉ 1]  

Figure 8.2: Visual representation of Eq. 8.4 The “white space” are zeroes and
the black grid lines are demarcate K × K matrices. The right vector represent
the concatenated parameter waves represented by different colors for each data
transient.

Y

K

+
γ *

K

Transpose  

to

K ⨉ 1 ⨉ Y 

Y

 (γ G)[Y⨉Y ⨉K]  (x)[Y ⨉1 ⨉K]  (ATA) [K ⨉K ⨉Y]  (x)[K ⨉1 ⨉Y]  

Figure 8.3: The first two terms in Eq. 8.4 is represented pictorially in 3D matrix
format. All of the local AT

l Al and xl are layered for each data transient. The
second term includes the global regularization matrix transposed such that each
layer represents the a set of parameters that are a priori thought to be continous
along the experimental domain.

second parameter of each transient, and so on. In order to add the two halves

of Eq. 8.4, a transpose is necessary with each GIPG iteration. This step is

insignificant to the brute force matrix multiplication of Eq. 8.3 for large GIPG

problems.
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8.3 Flow charts

Flow charts were developed to help user understand the actions of the source

code. Fig. 8.4 shows the overall structure of the GIPG, including a key which

is applicable to all of the subsequenct schemes. Colored boxes point to high-

light very important steps. Fig. 8.5 describes the setup of the relevant design

and regularization matrix depending on type of basis functions chosen. Also,

this is where the appropriate data, standard deviations, and x-scaling waves are

prepared. Setup Reg Part1 in Fig. 8.6 is potentially slowest step of the GIPG

algorithm. Normalization and calculation of the effective free parameters are also

performed.
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User Input

GIPG Frontend:

SetupRegGeneral_JTGPrompt()

Data Matrix

Std. Dev. Matrix

X Scaling Wave

Grid Matrix (Wave)

Instr. Resp. Matrix.

Lag Wave

Fingerprint Matrix

Seigert Relation?

Time Iterations?

Normalize?

Calc. Deg. of Free.?

Regularization Type?

Exponentiate 

user-defined

 Fingerprints

Prepare Basis

Functions Now

Local / 

Global?
L

Y

N

Parse Data into 

Separate Waves

Make 

Design and 

Reg 

Matices

G

No. of Iterations

No. of Updates

Gamma

Step

Offset Reg Grid Edges

dsgnmat_basis

Setup Reg

Part 1

Local / 

Global?

L

Local IPG

Global IPGG

END

MEM?

Y

Non-linear

Fit (LM)

Manual

Input

Save

Data

Input
Predefined

Process

Decision

connection

Start/Stop

Direction of Flow

G - Global

L - Local

N - No

Y - Yes

Data

Key

N

Figure 8.4: The front end user interface.
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Setup Reg

Part 1

Active Set 

Func

Active Set Parameters

EFP0,Chi_nnls, Va0

dsgnmat_g,Regkern3d

datayw,globalstd

globalgrid, No. iterations 

No. updates, Gamma

Tau, Normalize?

EFP 

Calc or 

Local
YSVD

HtH

SingValues datayw, globalstd, pw, Htb, 

pwtemp, dsgtemp, efp, 

AInitialGuess

Calc 

AInitialGuess

Normalize?Y

N

Use Active Set 

to Normalize

Figure 8.6: Sets up data structures for IPG or GIPG.
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Local IPG

datayw, globalstd, pw, htb, 

pwtemp, dsgtemp, 

dsgnmat_g, efp, SingValues, 

regkern3D, regbins, hth, 

AInitialGuess, Chi_nnls,Va0, 

efp0. No. iterations, No. 

Updates, tau, ScaleAlpha

Update hthr &

Calculate EFP

IPG Algorithm

End IPG Loop

Update?

Generate Fit for 

Display

F-test and chi 

squared value

Y

Completed 

Iterations?

Y

N

Generate Fit for 

Display

END

Figure 8.7: Recursive algorithm for locally regularized IPG.
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Global IPG

datayw, globalstd, pw, 

htb, pwtemp, dsgtemp, 

dsgnmat_g, efp, 

SingValues, regkern3D, 

regbins, hthr, hth, 

AInitialGuess, 

Chi_nnls,Va0, efp0

No. iterations, No. 

Updates, tau, ScaleAlpha

GIPG Algorithm

End IPG Loop

Update?

Generate Fit for 

Display

F-test and chi 

squared value

Y

Completed 

Iterations 

Y

N

Generate Fit for 

Display

END

Update hthr &

Calculate EFP

Figure 8.8: Recursive algorithm for Globally regularized IPG.
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Chapter 9

Globally regularized interior point gradient

method, Igor code

//Global Regularization

//Developed by Jason T. Giurleo on Feb 17, 2007

//Version 1.0 by May 2008

// The commented number - letter refer to the top function@

//and its subfunctions

#pragma rtGlobals=1// Use modern global access method.

Menu "Macros"

"Graph or Table to Matrix", Trace2TablePrompt()

"Truncate Your Matrices",

TruncateDataMatrix_Prompt()

"Find The Best IRF ", FindTheBestIRF_Prompt()

"Make A Grid", MakeAGrid_Prompt()

"Setup GIPG Fit ", SetupRegGeneral_JTGPrompt()

"Continue GIPG Fit", GIPGContinued()

End

// Table of Contents

//1 - A Trace2TablePrompt//4 - A MakeAGrid_Prompt

//1 - B Trace2Table//4 - B MakeLogGridname

//
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//2 - A TruncateDataMatrix_Prompt//5 - A SetupReg@

//General_JTGPrompt

//2 - B SetCursors1//5 -B MakeDesignandRegMatices

//2 - C SetCursors2//5 - C MakeRegMatrix

//2 - D UserCursorAdjust//5 - D SetupGIPG_part1

//2 - E UserCursorAdjust_ContButtonProc//5 - E LoopActiveSet

//5 - F ActiveSetFunc

////5 - G Global_IPG

//3 - A FindTheBestIRF_Prompt//5 - H MultexpMEM

//3 - B FindTheBestIRF //5 - I CalcFtest

//3 - C Create_LimitWv//5 - J fdist

//3 - D FitConvIRFMultExp//5 - K Local_IPG

//6 - A GIPGContinued

//

//**** EXTRAS ****

//DLS_Loader

//OrganizeDLS

//calctau

//calcRad

//AsciiWithSetup (for Becker-Hickl TCSPC asc files with@

//setup)

//***** 1 - A ***** \\

Function Trace2TablePrompt()

String WindowName_STR = StrVarOrDefault("Root@

:JTG_IPGfolder:gWindowName_STR", "WindowName")

String MatrixName_STR = StrVarOrDefault("Root:J@
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TG_IPGfolder:gMatrixName_STR", "MatrixName")

Prompt WindowName_STR,"Name of the window @

containing data traces or columns"

Prompt MatrixName_STR,"Name matrix to put data@

in"

DoPrompt "Convert Graph or Table to Matrix", @

WindowName_STR, MatrixName_STR

Trace2Table(WindowName_STR, MatrixName_STR)

If (DataFolderExists("root:JTG_IPGfolder") == 0)

NewDataFolder root:JTG_IPGfolder

EndIf

String savedDataFolder = GetDataFolder (1)

// save

SetDataFolder Root:JTG_IPGfolder:

String/g gWindowName_STR = WindowName_S@

TR, gMatrixName_STR = MatrixName_STR

SetDataFolder savedDataFolder// and restore

End

//***** 1 - B ***** \\

Function Trace2Table(WindowName, MatrixName)

//This function will place all the waves in the specIfied @

//graph or table window into a matrix.
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String WindowName, MatrixName windowname = "WIN:"+

windowname

String Wvlist = WaveList("*", ";",WindowName)

Variable ii = 0, numwvs = ItemsInList(WvList)

String wvnm = StringFromList(ii, WvList) // gets waves from

//list

Duplicate/o $wvnm wv

Variable dx = deltax(wv)// x scaling If it exists.

Variable pts = numpnts(wv)

Make/o/n=(pts , numwvs) GraphMat

do

wvnm = StringFromList(ii, WvList)

Duplicate/o $wvnm wv

GraphMat[][ii] = wv[p]

ii+=1

while(ii < numwvs)

SetScale/P x 0, dx,"", Graphmat// scales matrix

Duplicate/o Graphmat $matrixname

Killwaves/z Wv, GraphMat

End

//***** Conclusion of 1 ***** \\

//***** 2 - A ***** \\

Function TruncateDataMatrix_Prompt()

Make/o/n=0 ’Data is X scaled’
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String datamat_STR = StrVarOrDefault("Root:JTG_IPG@

folder:gDatatrunc_str", "MatrixName")

String secondwave_STR = StrVarOrDefault("Root:JTG_@

IPGfolder:gIRFtrunc_str", "MatrixName")

String XWAVE_STR = strVarOrDefault("Root:JTG_IPG@

folder:gXWAVE_str", "XwaveName")

Prompt datamat_STR, "Data Matrix", popup, Wavelist("*",@

";", "")

Prompt secondwave_STR,"IRF Matrix or STD Matrix", @

popup, Wavelist("*", ";", "")

Prompt XWAVE_STR,"Choose an X-scaling Wave (If @

necessary)", popup, Wavelist("*", ";", "")

DoPrompt "Truncation", datamat_STR, secondwave_ST@

R, XWAVE_STR

If(V_flag ==1)

Abort "User Cancelled Truncation"

EndIf

If (DataFolderExists("root:JTG_IPGfolder") == 0)

NewDataFolder root:JTG_IPGfolder

EndIf

String savedDataFolder = GetDataFolder(1)// save

SetDataFolder Root:JTG_IPGfolder:

String/g gDatatrunc_str = datamat_STR, gIRFtrunc_str = @

secondwave_STR, gXWAVE_str = XWAVE_STR

SetDataFolder savedDataFolder// and restore
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If(cmpstr(XWAVE_STR, NameOfWave(’Data is X scaled’)) @

== 0)

Make/o/n=1e8 dumx = 0

XWAVE_STR = "dumx"

EndIf

SetCursors1(datamat_STR, secondwave_STR, XWAVE_@

STR)

killwaves/z dumx, dumx_trunc

End

//***** 2 - B ***** \\

Function SetCursors1(wvnm, irfwvnm, xw_str)

String wvnm, irfwvnm, xw_str

DoWindow/k Truncate_Window

Display $wvnm

ShowInfo

ModIfyGraph log(left)=1

DoWindow/c Truncate_Window

If (UserCursorAdjust("Truncate_Window") != 0)

return -1;

EndIf

SetCursors2(wvnm, irfwvnm, xw_str)

End



215

//***** 2 - C ***** \\

Function SetCursors2(wvnm, irfwvnm, xw_str)

String wvnm, irfwvnm, xw_str//cursors on the data wave@

//as you like.

String wave_trunc = wvnm + "_trunc"//set your cursons on @

//a data wave you want to

String irfwvnm_trunc= irfwvnm + "_trunc"

String xw_str_trunc = xw_str + "_trunc"

Variable start , finish, sr = screenresolution

If (strlen(csrinfo(A))==0)

start = 0

Print "Warning: Are you sure you Donot want to truncate @

your waves?!"

Else

start = pcsr(A)

EndIf

If (strlen(csrinfo(B))==0)

Finish = Dimsize($wvnm, 0)

Print "Warning: Are you sure you Do not want to truncate @

your waves?!"

Else

finish = pcsr(B)

EndIf
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Finish = selectnumber(mod(finish-start, 2 )== 0, finish, @

Finish+1)

Duplicate/o $wvnm $wave_trunc

Duplicate/o $irfwvnm $irfwvnm_trunc

Duplicate/o $xw_str $xw_str_trunc

Redimension/n=(Finish,-1) $wave_trunc, $irfwvnm_trunc,@

$xw_str_trunc

Deletepoints 0, Start, $wave_trunc, $irfwvnm_trunc, $xw_@

str_trunc

If (DataFolderExists("root:JTG_IPGfolder") == 0)

NewDataFolder root:JTG_IPGfolder

EndIf

String savedDataFolder = GetDataFolder(1)// save

SetDataFolder Root:JTG_IPGfolder:

Variable/g gCursorFinish = Finish, gCursorStart = Start

SetDataFolder savedDataFolder

Dowindow/k Truncate_Window

End

//***** 2 - D ***** \\

Function UserCursorAdjust(grfName)
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String grfName

DoWindow/F $grfName// Bring graph to front

If (V_Flag == 0)// VerIfy that graph exists

Abort "UserCursorAdjust: No such graph."

return -1

EndIf

NewPanel/K=2 /W=(139,341,382,432) as "Pause for @

Cursor"

DoWindow/C tmp_PauseforCursor// Set to an unlikely name

AutoPositionWindow/E/M=1/R=$grfName// Put panel near@

the graph

DrawText 21,20,"Adjust the cursors and then"

DrawText 21,40,"press Continue."

Button button0,pos={80,58},size={92,20},title="Continue"

Button button0,proc=UserCursorAdjust_ContButtonProc

PauseForUser tmp_PauseforCursor,$grfName

return 0

End

//***** 2 - E ***** \\

Function UserCursorAdjust_ContButtonProc(ctrlName) :@

ButtonControl

String ctrlName

DoWindow/K tmp_PauseforCursor// Kill self
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End

/// ******* Conclusion of 2 *******///

//***** 3 - A ***** \\

Function FindTheBestIRF_Prompt()

// Prompt for finding the best IRF for a fit. See the@

//function FindTheBestIRF for explanation.

//The prompts just sets up the main function. The other @

//useful feature

//is If a initial guess parameter wave was not chosen, one@

//can be chosen for you.

// Need data, irfs and initial guesses (If available).

String datamat_STR = StrVarOrDefault("gdata_STR", @

"MatrixName")

String irfmat_STR = StrVarOrDefault("girf_STR",@

"MatrixName")

String InitialGuess = StrVarOrDefault("gInitialGuess", "Do @

a 2 Exp Fit, Makes a wave called W_coef")

Prompt datamat_STR, "Data Matrix", popup, Wavelist("*", "@

;" "")

Prompt irfmat_STR,"IRF Matrix", popup, Wavelist("*", ";", "")

Prompt InitialGuess, "Initial Parameter Wave", popup,"Do @

a 2 Exp Fit, makes a wave called W_coef;" + Wavelist("*", @

";", "")
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DoPrompt "Find The BestIRF", datamat_STR, irfmat_STR,@

InitialGuess

If(V_flag ==1)

Abort "User Cancelled Quick Fits"

EndIf

String/g gdata_STR = datamat_STR, gIrf_Str = irfmat_@

STR, gInitialGuess = InitialGuess

Duplicate/o $datamat_STR Datamat_

Duplicate/o $irfmat_STR IRFmat_

// Sets up some dummy waves for fit.

Make/o/n=(dimsize(datamat_, 0)) SingleDataWave, Std@

SingleDataWave

SingleDataWave = Datamat_[p][0]

StdSingleDataWave = sqrt(Datamat_[p][0]+1)

SetScale/P x 0,deltax(Datamat_),"", SingleDataWave, Std@

SingleDataWave

WaveStats/q SingleDataWave

//If you want IGOR to Make initial guesses.

If( CmpStr(InitialGuess, "Do a 2 Exp Fit, Makes a wave @

called W_coef") == 0)

killwaves/z W_coef

CurveFit/n/q dblexp_XOffSet SingleDataWave[X2Pnt@

(SingleDataWave,V_maxLoc) + 50,Numpnts(SingleData@

Wave)-1] /W=StdSingleDataWave /I=1
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Wave W_coef

Insertpoints 0, 1, W_coef

W_coef[0] = .01

Duplicate/o W_coef Epwv

FindTheBestIRF(Datamat_, W_coef, IRFmat_)

//otherwise

Else

Duplicate/o $InitialGuess DumCoefs

Duplicate/o DumCoefs Epwv

FindTheBestIRF(Datamat_, DumCoefs, IRFmat_)

Duplicate/o DumCoefs $InitialGuess

EndIf

Dowindow/K DiscreteFits

killwaves/z DumCoefs, Datamat_, IRFmat_, StdSingle@

DataWave, SingleDataWAve, W_sigma, W_fitConstants

killwaves/z Epwv, Fit_testwv, Stdtestwv, Holdwc, res_@

testwv, testwv, , res_Testwv, testwv, fit_testwv, lags

killwaves/z root:DiscreteParms, dum, epslnwv, fit_testwv,@

IM, instrument_response_, Lagmat, resmat, limitwv

End

//***** 3 - B ***** \\\

Function FindTheBestIRF(mat,wc, Allirfs)

// Many instrument response functions may be taken@

//throughout an experiment. To choose the best IRF for@

//any particular data trace, use this function. Every data@

//trace is fit via multiple exponential convolution fitting to@

//every available IRF. The chi squared values are saved. @
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//The fits with the best IRFs’ will have the lowest chi @

//squared and are choosen and placed in a matrix called@

//’FinalIRFMatrix’. For added convenience,the lag@

//parameters corresponding,to the best IRFs are also @

//stored in a wave called ’finallags’.

// Mat == Data matrix

// wc == initial guesses for multiple exponential convolu@

//tion fitting

// allirfs == all the irfs that you have

wave mat, wc, allirfs

// Make data waves matrices If not already

If(dimsize(mat, 1)==0)

redimension/n=(-1, 1) mat

EndIf

If(dimsize(Allirfs, 1)==0)

redimension/n=(-1, 1) Allirfs

EndIf

//Set up some Variables.

Variable/g V_fitoptions = 4, V_FitMaxIters = 100, V_fitNum@

Iters, V_fiterror = 0 // curvefit Variables, see IGOR docume@

//ntation

Variable ii = 0, jj = 0
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//Set up dummy waves for fitting

Make/o/n=(dimsize(mat, 1)) lags= 0, res = 0

Make/o/n=(dimsize(mat, 0)) testwv, stdtestwv, instrument_@

response_, fit_testwv = 0

SetScale/p x 0,deltax(mat),"", testwv, stdtestwv, instrument@

_response_, fit_testwv

Make/o/n=(numpnts(wc), dimsize(mat,1)) DiscreteParms

Duplicate/o wc holdwc

Make/o/n=(numpnts(wc)) epwv = 1e-6

// Make a fit window

dowindow/k discretefits

display testwv, fit_testwv

ModIfyGraph log(left)=1

ModIfyGraph rgb(fit_testwv)=(1,3,39321)

Dowindow/c Discretefits

Duplicate/o mat FinalIRFMatrix

Make/o/n=(numpnts(res), dimsize(Allirfs, 1)) resmat = 0

Make/o/n=(numpnts(res), dimsize(Allirfs, 1)) lagmat = 0

// Create a constraint wave, but remove the positivity const@

//raint on the first parameter (lag).

create_limitwv(wc)

deletepoints 0, 1, limitwv

do
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instrument_response_ = Allirfs[p][jj]

do

Duplicate/o wc holdwc

testwv= mat[p][ii]

stdtestwv=sqrt( mat[p][ii] +1)// std. dev. always the square@

//root of the data.

FuncFit/q/ODR=1/L= (numpnts(testwv)) FitConvIRFMultEx@

p wc testwv /W=stdtestwv /I=1 /D /R/c=limitwv/E = EPWV

res[ii] = v_chisq

lags[ii] = wc[0]

DiscreteParms[][ii] = wc[p]

//If there is an error Dothe fit again with user input.

If(V_fiterror!=0)

dowindow/k parms

edit/K=1 wc, holdwc

dowindow/c parms

pauseforuser parms

Variable changed = wc -holdwc

If(changed == 0)

wc += (gnoise(WC/100))

EndIf

V_fiterror = 0

Else
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ii +=1

EndIf

V_fiterror = 0

while(ii<dimsize(mat, 1))

// Record chi squared and lags in a matrix

resmat[][jj] = res[p]

lagmat[][jj] = lags[p]

ii = 0

jj+=1

while(jj<dimsize(allirfs, 1))

jj = 0

Variable v_minloc

Make/o/n=(dimsize(allirfs, 1)) dum = 0

Make/o/n=(dimsize(FinalIRFMatrix, 1)) finallags = 0

// Choose the lowest chi squared and its cooresponding @

//lag parameter and IRF.

do

dum[]= resmat[jj][p]

If(numpnts(dum)==1)

FinalIRFMatrix[][jj] = Allirfs[p][0]

finallags[jj] = lagmat[jj][0]

Else
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wavestats/q dum

FinalIRFMatrix[][jj] = Allirfs[p][v_minloc]

finallags[jj] = lagmat[jj][v_minloc]

EndIf

jj +=1

while(jj<dimsize(FinalIRFMatrix, 1))

If(dimsize(mat, 1)==1)

redimension/n=(-1,0) mat

EndIf

If(dimsize(allirfs, 1)==1)

redimension/n=(-1,0) allirfs

EndIf

End

//***** 3 - C ***** \\

function create_LimitWv(grd)

//This function Makes a text wave in the form that curvefit@

//expects a constaint text wave.

//Also an epsilon wave is generated. The length of each

//wave is the same as the number of paramters inputted.

wave grd

Variable TotalGrid = numpnts(grd) , ii = 0

Make/o/n=(TotalGrid)/T LimitWv

String ks
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do

ks = "K" + num2str(ii) + ">1e-6"

LimitWv[ii] = ks

ii +=1

while(ii<TotalGrid)

Make/d/o/n=(totalGrid) epslnwv = 1e-6

End

//***** 3 - D ***** \\

Function FitConvIRFMultExp(pw, yw, xw) : FitFunc

// Multiexponential convolution fitting of TCSPC data. This@

//function also allows for a lag parameter, which shIfts the @

//IRF by a fraction

// of a bin. This allows for very very small shIfts in the @

//IRF, without scarIficing chi squared.

// pw[0] = time lag

// pw[1] = baseline

// pw[2*m] = amp m

// pw[2*m+1] = exp rate m

Wave/Z pw, yw, xw

Variable dx=deltax(instrument_response_)

Variable npnts = numpnts(yw)

Duplicate/O instrument_response_, IM

Wave instrument_response_
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Variable lag = pw[0]

IM = instrument_response_(p*dx+lag)

Variable IMsum = sum(IM, -inf, inf)

IM /= IMsum// normalize instrument response to 1.0

fastop yw = 0 // initialize model values to zero so we can

accumulate exponential terms

Variable numCoefs = numpnts(pw)// calculate number of@

//exponential terms desired

Variable ii=2

do

yw +=pw[ii]*exp(-pw[ii+1]*(p*dx))//DeltaX value is multipli@

//ed by each point in Xwave to get the proper

ii+=2//scaling and lag

While (ii<numCoefs)

If (mod(numcoefs,2)!=0)

yw[0]+=pw[numpnts(pw)-1]

endif

Convolve IM,yw// this operation lengthens yw to contain M@

//+N points, where M is length of instrument response, @

//and N is length of yw

yw+=pw[1]//baseline

redimension/N=(npnts)yw// this removes the extra points

End

/// ******* Conclusion of 3 *******///

//***** 4 - A ***** \\\
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Function MakeAGrid_Prompt()

String traceName = StrVarOrDefault("Root:JTG_IPGfolder@

:gGrid", "ChooseAGridName")

String LogLin = StrVarOrDefault("Root:JTG_IPGfolder:gL@

oL", "Lin")

Variable Start = NumVarOrDefault("Root:JTG_IPGfolder:g@

Start", .1)

Variable Finish = NumVarOrDefault("Root:JTG_IPGfolder@

:gFinish",10)

Variable PntsPerDec= NumVarOrDefault("Root:JTG_IPG@

folder:gPntsPerDec",10)

Prompt LogLin, "Log or Linear", popup "Log;Linear;"

Prompt TraceName,"Name Your Grid"

Prompt Start, "First Point"

Prompt Finish, "Last Point"

Prompt PntsPerDec, "Points Per Decade (LOG) or@

Increments (LIN)"

DoPrompt "Make A Grid", Start, Finish, PntsPerDec, Trace@

Name, LogLin

If ( V_flag == 1)

abort "User Cancelled MakeAGrid"

EndIf

If (DataFolderExists("root:JTG_IPGfolder") == 0)

NewDataFolder root:JTG_IPGfolder

EndIf
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String savedDataFolder = GetDataFolder(1)// save

SetDataFolder Root:JTG_IPGfolder:

Variable/G gStart = Start, gFinish = Finish, gPntsPerDec =@

PntsPerDec // Save for next time

String/g gGrid = tracename, gLoL = LogLin

SetDataFolder savedDataFolder // and restore

If(CmpStr(traceName, "ChooseAGridName")==0)

TraceName = "Grid"

Print "Because you didn’t pick name for the grid, I did... @

your grid is now called ... GRID"

EndIf

If( CmpStr(LogLin, "Log") == 0)

MakeLogGridname(Start, Finish, PntsPerDec, TraceName)

Print "Number of Points", numpnts($TraceName)

Else

Variable dum1 = Finish - Start, dum2 = floor(dum1/PntsPe@

rDec)

Make/o/n=(dum2) DumGrid = Start + PntsPerDec*p

Duplicate/o DumGrid $TraceName

Print "Number of Points", numpnts(DumGrid)

Killwaves/z DumGrid

EndIf

End
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//***** 4 - B ***** \\\

Function MakeLogGridname (first, last, ptsperdec, name)

Variable first, last, ptsperdec

String name

Variable Ptmax = ceil(ptsperdec*log(last/first))

Make/o/d/n=(Ptmax+1) Lgrid

LGrid = first*10^(p/ptsperdec)

Duplicate/o Lgrid $Name

Killwaves/z lgrid

End

/// ******* Conclusion of 4 *******///

//***** 5 - A ***** \\\

Function SetupRegGeneral_JTGPrompt()

// String and Variable Declarations

String datamat_STR= StrVarOrDefault("Root:JTG_IPGfold@

er:gData_str", "DataMatrixName")

String STDmat_STR = strVarOrDefault("Root:JTG_IPGfold@

er:gSTD_str", "IRFMatrixName")

String XWAVE_STR = strVarOrDefault("Root:JTG_IPGfold@

er:gXWAVE_str", "XwaveName")

String grd_STR= StrVarOrDefault("Root:JTG_IPGfolder:g@
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grid", "GridName")

String irfmat_STR = strVarOrDefault("Root:JTG_IPGfolder:@

gIRF_str", "IRFMatrixName")

String lags_STR = StrVarOrDefault("Root:JTG_IPGfolder:@

glags_STR", "ChooseALagName")

String DerivativeNumber_Str = StrVarOrDefault("Root:JT@

G_IPGfolder:gDN", "2")

String SeigertRelation_str = StrVarOrDefault("Root:JTG_I@

PGfolder:gSeigertRelation", "No")

String FingerPrints_str = StrVarOrDefault("Root:JTG_IPGf@

older:gFingerPrints_str", "FingerPrintMatrix")

String FingerPrintsExp_str = StrVarOrDefaut("Root:JTG_I@

PGfolder:gFingerPrintsExp_str", "FingerPrintGrid")

String LocalorGlobal = StrVarOrDefault("Root:JTG_IPGfol@

der:gLocalorGlobal", "Global")

String Save_Str= StrVarOrDefault("Root:JTG_IPGfolder:g@

Save_Str", "Yes")

String TestRun_Str= StrVarOrDefault("Root:JTG_IPGfold@

er:gTestRun_Str", "No")

String Normalize_Str = StrVarOrDefault("Root:JTG_IPGfol@

der:gNorm", "Yes")

String V_DoSVD_Str = StrVarOrDefault("Root:JTG_IPGfol@

der:gV_DoSVD_str", "Yes")

String DisplayStr = ""

Variable numiters_VAR = NumVarOrDefault("Root:JTG_I@

PGfolder:gnumiters_VAR", 100000)

Variable Numupdates_Var = NumVarOrDefaul("Root:JTG@
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_IPGfolder:gNumupdates_Var", 100)

Variable Alpha_VAR = NumVarOrDefault("Root:JTG_IPGf@

older:gAlpha_Var", 1e-4)

Variable Step_Var = NumVarOrDefault("Root:JTG_IPGfol@

der:gStep_Var", .9)

Variable OffSetBeg= NumVarOrDefault("Root:JTG_IPGfol@

der:gOffSetBeg", 1)

Variable OffSetEnd= NumVarOrDefault("Root:JTG_IPGfol@

der:gOffSetEnd", 1)

Variable basisfunctions = 0, Deriv = 2, ii = 0, MEM_var = @

1, norm_, numwvs, numbasis_1

Variable/g V_fitMaxIters = 50, V_FitError = 0

// Waves to cue the use of special functions

Make/o/n=0 ’Use square root of data’, ’Not Applicable’, ’Da@

ta is X scaled’, ’Use a Finger Print Matrix’

Make/o/n=1 ’Use Ones for Std Dev’

// Waves that will be used later

wave Probmat, ActiveSet, epslnwv, datayw, fit, globalstd, @

globalxw, dsgnmat_g_LM, ProbmatMEM, pw wave/t limitwv

// Prompts for the dIfferent parts of the setup menus

Prompt IRFmat_STR,"IRF Matrix (for Convolution)",popup@

,WaveList("*",";","")

Prompt Lags_STR,"Lag Wave (for Convolution)",popup,@

WaveList("*",";","")

Prompt datamat_STR,"Data Matrix",popup,WaveList @
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("*",";","")

Prompt STDmat_STR,"STD Matrix",popup,WaveList@("*",";","")

Prompt XWAVE_STR,"X Wave",popup,WaveList("*",";","")

Prompt grd_STR,"Grid Wave or Matrix",popup,WaveList@

("*",";","")

Prompt DerivativeNumber_Str, "Derivative Number", popu@

p, "2;3;MEM (Local Fit)"

Prompt SeigertRelation_str, "Seigert Relation? (For DLS)"@

,popup, "No;Yes;"

Prompt FingerPrints_str, "Finger Print Matrix",popup,Wave@

List("*",";","")

Prompt FingerPrintsExp_str, "Finger prints as a reduced s@

et of exponentials?",popup,WaveList("*",";","")

Prompt numiters_VAR, "Number of Iterations"

Prompt Numupdates_Var, "Number of Updates"

Prompt Alpha_VAR, "Gamma"

Prompt Step_Var, "Step Size (0 - 1)"

Prompt Normalize_STR, "Normalize", popup, "Yes;No;"

Prompt LocalorGlobal, "Local or Global Regularization",@

popup, "Global;Local;"

Prompt V_DoSVD_Str, "Calculate Deg of Free (expensive@

)", popup, "Yes;No;"

Prompt Save_Str, "Save Experiment with Current Name", @

popup, "Yes;No;"

Prompt TestRun_Str, "Do a short Test run to get an idea @

how long this will take (Global Only)", popup, "Yes;No;"

Prompt OffSetBeg, "Range of Reg. Starts with Bin:"
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Prompt OffSetEnd, "Range of Reg. Ends with Bin:"

// Executes Prompt 1

DoPrompt "GIPG Setup Part I", datamat_STR,STDmat_ST@

R,XWAVE_STR, irfmat_STR,lags_STR, grd_STR, Deriva@

tiveNumber_Str, SeigertRelation_str, OffSetBeg, OffSetEnd

// If you decide to abort

If(V_flag ==1)

Abort "GIPG Setup Cancelled"

EndIf

// Wave_ is a temporary hold wave. The underscore is set@

//because it probably will not conflict with any of the@

//user’s wave names

Duplicate/o $grd_STR Grid_

// If the grid is zero points, then a finger print matrix@

//will be used, instead of a grid of exponentials.

// This prompt asks the user If the fingerprints are going @

//to be used as is, or convoluted by a grid of exponentials.

If(dimsize(Grid_, 0) == 0)

DoPrompt "GIPG Setup Part Ia, Finger Prints", FingerPrint@

s_str, FingerPrintsExp_str

If(V_flag ==1)

Abort "GIPG Setup Cancelled"

EndIf

Duplicate/o $FingerPrintsExp_str Grid_
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Duplicate/o $FingerPrints_str FingerPrints_

if(numpnts(grid_) != 0)

variable Exponentiate = 1

endif

make/o/n=(dimsize(FingerPrints_, 1)) grid_ = p

basisfunctions = 1

Else// no fingerprint matrix is used, then...

Make/o/n=0 FingerPrints_

Duplicate/o $grd_STR Grid_

basisfunctions = 0

EndIf

// If you need to abort

If(V_flag ==1)

Abort "GIPG Setup Cancelled"

EndIf

// Last prompt

DoPrompt "GIPG Setup Part II ", LocalorGlobal, numiters_@

VAR, Numupdates_Var,Alpha_VAR, Step_Var, Normalize@

_Str, V_DoSVD_Str, Save_str, TestRun_str

// If a cancel button is pressed.

If(V_flag ==1)

Abort "GIPG Setup Cancelled"

EndIf
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If (DataFolderExists("root:JTG_IPGfolder") == 0)

NewDataFolder root:JTG_IPGfolder

EndIf

// Type of regularization

// The first two options are for linear IPG/GIPG fitting. The@

//second is for a non-linear MEM fit.

If (cmpstr(DerivativeNumber_Str, "2")== 0)

Deriv = 2

DisplayStr = "2nd Derivative Condition"

ElseIf(cmpstr(DerivativeNumber_Str, "3")== 0 )

Deriv =3

DisplayStr = "3rd Derivative Condition"

ElseIf(cmpstr(DerivativeNumber_Str, "MEM (Local Fit)")==@

0 )

MEM_var =0

Deriv = 2

DisplayStr = "2nd Derivative Condition and MEM Fit"

EndIf

// Start function

// This is just a cute way to tell the user what condtions @

//they chose
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Print "********** Starting IPG ", LocalorGlobal, " Fitting@

**********"

Print "****** You have chosen ", DisplayStr, " ******"

// Sets all the global Variables so that they are stored and @

//Do not have be reentered every time the prompts are @

//envoked.

// This may be a little out of order but made sense when @

//the code was written.

String savedDataFolder = GetDataFolder(1)// save

SetDataFolder Root:JTG_IPGfolder:

Variable/g V_DoSVD = 1, gOffSetBeg = OffSetBeg, gOffS@

etEnd = OffSetEnd

String/g gdata_STR = datamat_STR ,gSTD_STR= STD@

mat_STR, ggrid = grd_STR, gXwave_str = XWAVE_STR, @

gDN = DerivativeNumber_Str

String/g glags_STR = lags_STR, gIRF_str= irfmat_STR, @

gSeigertRelation=SeigertRelation_str

Variable/g gNumiters_var = Numiters_var, gNumupdates@

_Var= Numupdates_Var, gAlpha_Var = Alpha_Var, gStep@

_Var = Step_Var

String/g gLocalorGlobal = LocalorGlobal, gNorm = @

Normalize_Str, gV_DoSVD_str = V_DoSVD_Str

String/g gSave_Str= Save_Str, gTestrun_str = TestRun_@

str, gFingerPrints_str = FingerPrints_str, gFingerPrintsExp@

_str =FingerPrintsExp_str

SetDataFolder savedDataFolder // and restore
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// Translates important input Strings to waves that exist in @

//memory.

Duplicate/o $datamat_STR Datamat_

Duplicate/o $STDmat_STR STDmat_

Duplicate/o $XWAVE_STR XWAVE_

Duplicate/o $lags_STR lags_

Duplicate/o $irfmat_STR irfmat_

//* The following set of If statements report setting values to

//command window, check for improper combinations of @

//pull down options (i.e. global fitting

// with MEM option), and initial set up of certain data @

//structures to be feed into the main GIPG setup functions.

//MEM fits are local

If(MEM_var==0 && cmpstr(LocalorGlobal, "Global")== 0)

Print "No point to Dofit globally, setting to local fitting"

LocalorGlobal ="Local"

EndIf

//If datawave was entered, converts it to a matrix

If(dimsize(Datamat_, 1) == 0)

redimension/n=(-1, 1) Datamat_, stdMat_, irfmat_

EndIf

//Makes the IRF matrix the same number of columns as @

the data matrix. THIS MAY BE A PROBLEM
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If(dimsize(Datamat_, 1) != dimsize(irfmat_, 1))

redimension/n=(-1, dimsize(Datamat_, 1)) irfmat_

irfmat_ = irfmat_[p]

EndIf

// When square root of data is selected. Plus 1 is set to @

eliminate the possibility of dividing by zero in the future.

If(dimsize(STDmat_,0) == 0)

Duplicate/o Datamat_, STDmat_

STDmat_ = sqrt(abs(Datamat_[p][q])+1)

Print "Using square root of data"

Elseif(dimsize(STDmat_,0) == 1)

Duplicate/o Datamat_, STDmat_

STDmat_ = 1

Print "Standard deviations are set to 1"

endif

// ’data was xscaled’ was selected, but an x-wave still @

//needs to be generated.

If(dimsize(Xwave_,0) == 0)

Make/o/n=(dimsize(Datamat_, 0)) Xwave_ = 0

Xwave_ = deltax(Datamat_)*p

Print "Making Xwave from Xscaling"

EndIf

//If you selected an xwave, but it does not have enough @
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//points

If(numpnts(Xwave_)!= dimsize(Datamat_,0))

abort "Xwave and Datawave have dIfferent lengths"

EndIf

//Seigert Relation is used for DLS data. When performing @

//a DLS heterodyne experiment, the correlation functions @

//are represented by g_2(t). Inverting g_2 requires a non-@

//linear fitting technique. To get around that, converting to @

//g_1, Makes the problem linear, and therefore GIPG is @

//applicable. See Wyn Brown 1993.

If (cmpstr(SeigertRelation_str, "Yes")== 0)

Datamat_ = selectnumber(Datamat_ [p][q]< 0, sqrt(Data@

mat_[p][q]), -sqrt(abs(Datamat_[p][q])))

STDmat_ = .5*STDmat_[p][q]/abs(Datamat_[p][q])

Print "Using Seigert Relation"

EndIf

// Normalize the data?

If (cmpstr(Normalize_STR, "Yes")== 0)

Norm_ = 1

Else

Norm_ = 0

EndIf

//*

// The user may not want every bin in the grid is to be @

//regularized (either globally or locally). In this case the @
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//user can truncate the termini of the grid

// that are used for regularization.

// RegBins is a wave of ones and zeroes: Ones -> @

//regularize, Zeroes-> don’t regularize.

Duplicate/o Grid_ regbins

regbins = 1

regbins[0, abs(OffSetBeg-1)] = selectnumber(OffSetBeg=@

=0, 0,1)

regbins[numpnts(regbins) - OffSetBeg-1, numpnts@

(regbins)-1] = selectnumber(OffSetBeg==0, 0,1)

Duplicate/o regbins root:JTG_IPGfolder:regbins// Save @

//wave in special folder.

// If basis functions are used then a special set up for @

//design matrix needs to be considered.

// Design matrix is going to be 3D. Some waves are going @

//to made in this If statement only.

//This option is only used If the user is going to convolute @

//thier fingerprint matrix with a grid of exponentials. This @

//Makes a design matrix, with scattering and baseline terms.

If (basisfunctions==1 && Exponentiate == 1)

numbasis_1 = dimsize(FingerPrints_, 1)-1//Makes lIfe @

//easier for 3D matrixops

Make/o/n=(dimsize(FingerPrints_, 0), 1 , numbasis_1+1) @

Basisfunct3D = 0//Ready to hold basis functions in 3D

//format,
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Basisfunct3D = FingerPrints_[p][r]

//Notice that it is still essentially 2D!

Make/d/o/n=(numpnts(Xwave_), numpnts(grid_)) Dsgn@

Mat_L= exp(-Xwave_[p]/(grid[q]))//Make local Design matrix.

Duplicate/o DsgnMat_L DsgnMat_g, Dsgnmat_basis

//Use it to generate the 3D matricies for later.

redimension/d/n=(-1,-1, numbasis_1+1) DsgnMat_G

DsgnMat_G = DsgnMat_L[p][q]

//Copies the local design matrix into 3D.

Matrixop/o temp_L = DsgnMat_G[][][0, numbasis_1] x@

Basisfunct3D[][][0,numbasis_1]//Convolutes basisfunction@

//with grid of exponentials

redimension/n=(-1, numbasis_1+1) Dsgnmat_basis

Dsgnmat_basis= temp_L[p][0][q]//Transposing the new@

design matrix to 2D.

InsertPoints/M=1 0, 1, Dsgnmat_basis //Adding scattering terms

Dsgnmat_basis[0][0] = 1 //part two of adding scattering term

redimension/n=(-1, dimsize(Dsgnmat_basis, 1)+1) @

Dsgnmat_basis //Setup the addition of the baseline term

redimension/n=(numpnts(Xwave_), numbasis_1+1, @

numwvs) DsgnMat_g//Sets DsgnMat_g to the correct@

//dimensions

Dsgnmat_basis[][dimsize(Dsgnmat_basis, 1)-1] = 1

//Added baseline term

Make/o/n=(dimsize($(FingerPrints_str), 1)+2) Grid_

//Added baseline and scattering term to grid.

// or Else the grid is the grid, and 3D matrix will be made@

//later.
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EndIf

// For local fitting, a loop is used. Essentially, all the@

//important waves need to Do the IPG fit are generated on @

//it own, fit, then goes the next wave. This turns out to be@

// less complicated in the long run. Trust me.

If(cmpstr(LocalorGlobal, "Local")== 0)

DoWindow/k ActiveSetWindow

// Kill existing windows

DoWindow/k CompiledProbs

DoWindow/k CompiledAS

DoWindow/k MEMProbs

Duplicate/o grid_ grid__

// A new Grid wave, same as before. May be unnecessary.

redimension/n=(-1, 0) grid__

Make/o/n=(dimsize(grid__,0), dimsize(datamat_, 1))@

ProbmatIPG=0, ProbmatAS=0, ProbmatMEM=0

//While we are at it, generate matrix to hold local @

//parameters.

//*Setting up graphs and/or contour plots

Display/I /W=(0,9,5,12)

If(dimsize(datamat_, 1) == 1) //If 1D, graph

AppEndtoGraph ProbmatIPG vs grid__

Else //If 2D, contour plot

AppEndMatrixContour ProbmatIPG vs {grid__,*};@

DelayUpdate

ModIfyContour ProbmatIPG labels=0
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EndIf

Label left "Experimental Coordinate"

Label bottom "Laplace Coordinate"

DoWindow/C CompiledProbs

Display/I /W=(5,9,10,12)

If(dimsize(datamat_, 1) == 1)

AppEndtoGraph ProbmatAS vs grid__

Else

AppEndMatrixContour ProbmatAS vs {grid__,*};Delay@

Update

ModIfyContour ProbmatAS labels=0

EndIf

Label left "Experimental Coordinate"

Label bottom "Laplace Coordinate"

DoWindow/C CompiledAS

//Setting up MEM plot If it was choosen.

If(MEM_var == 0)

Display/I /W=(11,9,16,12)

If(dimsize(datamat_, 1) == 1)

AppEndtoGraph ProbmatMEM vs grid__

Else

AppEndMatrixContour ProbmatMEM vs {grid__,*};DelayUpdate

ModIfyContour ProbmatMEM autoLevels={0,*,11}

ModIfyContour ProbmatMEM labels=0

EndIf
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Label left "Experimental Coordinate"

Label bottom "Laplace Coordinate"

DoWindow/C MEMProbs

Duplicate/o grid__ pwmem

DoWindow/k Probmat_4_Mem

Display/I /W=(11,5,16,8)

AppEndtoGraph pwmem vs grid__

Label left "Experimental Coordinate"

Label bottom "Laplace Coordinate"

DoWindow/C Probmat_4_Mem

EndIf

//*

// Preparing global waves just for doing local fits, these @

//will be deleted later.

ii = 0

numwvs = dimsize(datamat_, 1)

Duplicate/o datamat_ datamat_Temp, stdmat_Temp

Duplicate/o grid_ Grid_Temp

redimension/n=(-1, 1) datamat_Temp, stdmat_Temp, Grid_Temp

// Still local fitting...

do

// Put column of data into a wave for fitting.

datamat_Temp[][0] = datamat_[p][ii]

stdmat_Temp[][0] = StdMat_[p][ii]

Grid_Temp[][0] = Grid_[p][ii]
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//Sets up general waves

//!@$% **** 5 - B **** %$@!\\

MakeDesignandRegMatices_JTG (datamat_Temp, IRF@

mat_,Grid_Temp, Lags_, stdmat_Temp, Xwave_, Finger@

Prints_, deriv)

// Setup design matrix, etc. for GIPG

Duplicate/o root:JTG_IPGfolder:regkern3d kern_

//Sets up general waves

wave datayw,globalstd, globalxw, globalgrid, fit

//!@$% **** 5 - D **** %$@!\\

SetupGIPG_part1(datayw, globalstd, globalxw,@

root:JTG_IPGfolder:dsgnmat_g, kern_, globalgrid,@

numiters_VAR, Numupdates_Var,Alpha_Var, Step_Var,@

Norm_)

//Recursive GIPG function

//!@$% **** 5 - G **** %$@!\\

Local_IPG(Numiters_var,Numupdates_Var, Alpha_Var,@

Step_Var)

// A LevenbergMarquardt is used as the minimization @

//algorithm MEM fitting.

If(MEM_var == 0)

// Need the design matrix... but need to multiply out the @

//standard deviations.
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Duplicate/o root:JTG_IPGfolder:dsgnmat_g dsgnmat_g_LM

dsgnmat_g_LM*=globalstd[p]

//The fit, data, std. dev. and x scaling need to have one @

//more point added to it. This is where the regularized @

//functional value goes.

redimension/n=(numpnts(datayw) + 1) datayw, fit, global@

std, globalxw

datayw[Numpnts(datayw)-1] = 0

globalstd[Numpnts(datayw)-1] = 1

globalxw[Numpnts(datayw)-1] = globalxw[Numpnts@

(datayw)-2]*1.01

Duplicate/o root:JTG_IPGfolder:pw pwmem//hold the@

parameters for fit.

// A constrait wave is needed to keep parameters positive.@

Also an epsilon wave is generated. See IGOR curvefit@

documentation for explanation

//!@$% **** 3 - C **** %$@!\\

Create_Limitwv(pwmem)

wave/T limitwv

wave epslnwv

// The fit function call.

//!@$% **** 5 - H **** %$@!\\

FuncFit/ODR=1/q/L= (numpnts(datayw)) MultexpMEM @

pwmem datayw /W=globalstd /I=1 /D=fit /c=limitwv/E = @

epslnwv
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V_FitError = 0

Nvar Va0 = root:JTG_IPGfolder:Va0

Nvar Efp0 = root:JTG_IPGfolder:Efp0

Duplicate/o pwmem pwmem1

// to calculate degrees of freedom. A threshold was @

//chosen to be 1e-6

pwmem1 = selectnumber(pwmem1<1e-6, 1, 0)

// Report F-test and Chi Squared values

// 5- I \\

print "F-test for MEM:", 1 - CalcFtest(Va0, Efp0, V_chisq, @

sum(pwmem1),numpnts(datayw)), "Reduced Chi @

Squared:", v_chisq/(numpnts(datayw)-sum(pwmem1))

ProbmatMEM[][ii] = pwmem[p]

redimension/n=(numpnts(datayw) -1) datayw, fit, @

globalstd,globalxw

//Reset waves to proper length.

EndIf

Print "--------------------%%%%%%%%--------------------"

// Put each set of fit parameters into a matrix to be displayed

wave probmat, Activeset

ProbmatIPG[][ii] = probmat[p]

ProbmatAS[][ii] = ActiveSet[p]

ii +=1
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while(ii<numwvs)

killwaves/z datamat_Temp, irfmat_Temp, lag_Temp

Else // **** GLOBAL GIPG *****

//!@$% **** 5 - B **** %$@!\\

MakeDesignandRegMatices_JTG (Datamat_, IRFmat_,@

Grid_, Lags_, STDmat_, Xwave_, FingerPrints_, deriv)

Duplicate/o grid_ root:JTG_IPGfolder:grid_

duplicate/o grid_ thegrid

redimension/n=(-1, 0) thegrid

If (cmpstr(V_DoSVD_Str,"Yes")==0 )

Duplicate/root:JTG_IPGfolder:RegKern_For_Global_EPF@

kern_

Else

Duplicate/o root:JTG_IPGfolder:regkern3d kern_

Endif

//Sets up general waves

wave datayw,globalstd, globalxw, globalgrid

//!@$% **** 5 - B **** %$@!\\

SetupGIPG_part1(datayw, globalstd, globalxw, root:JTG@

_IPGfolder:dsgnmat_g, kern_, globalgrid, numiters_VAR,@

Numupdates_Var,Alpha_Var, Step_Var, Norm_)

//* Active Set, setup... plus a decision to Make graph or @

contour plot

dowindow/k ActiveSetwindow
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Wave ActiveSet

If (basisfunctions==0)

If (dimsize(ActiveSet, 1) >1)

Display/I /W=(7,0,12,3);AppEndMatrixContour ActiveSet @

vs {root:JTG_IPGfolder:thegrid,*};DelayUpdate

ModIfyContour ActiveSet labels=0,autoLevels={*,*,20}

Label left "Experimental Coordinate"

Else

display/I /W=(7,0,12,3) ActiveSet vs Grid_

EndIf

dowindow/c ActiveSetwindow

Label bottom "Laplace Coordinate"

EndIf

//*

//If using basis functions, a contour plot is not used. @

//Instead, each set of parameters are overlayed on a @

//single graph

If (basisfunctions==1)

Dowindow/f Probabilitycoefs

removecontour probmat

appEndtograph probmat[0][]

ii = 1

do

appEndtograph probmat[ii][]

ii +=1
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while (ii<dimsize(probmat, 0))

Dowindow/c Probabilitycoefs

EndIf

Duplicate/o root:JTG_IPGfolder:pw pw

//Start with a small number.

pw = 1e-32

If(cmpstr(TestRun_Str, "Yes") ==0 && cmpstr(Localor@

Global, "Local")!= 0)

//*This is a generic timer function. There are two steps: 1) @

//kill all existing timers If there are none available, 2) @

//start timer for short fit.

ii = 0

Variable timerRefNum , Seconds

timerRefNum = startMSTimer

If (timerRefNum == -1)

do

seconds = stopMSTimer(ii)

ii +=1

while(ii < 9)

EndIf

//!@$% **** 5 - K **** %$@!\\
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Global_IPG(1000,5, Alpha_Var, Step_Var)

Seconds = stopMSTimer(timerRefNum)/1e6

Print Numiters_var, "iterations will take approximately", @

round(Seconds *Numiters_var/1000/60), "minutes."

//*

Else

If( cmpstr(LocalorGlobal, "Local")==0)

print "Cannot Do a test of local fit. Sorry about that."

LocalorGlobal = "Global"

EndIf

//The fit algorithm for IPG

//5 -K \\

Global_IPG(Numiters_var,Numupdates_Var, Alpha_Var, @

Step_Var)

EndIf

//Duplicate/o probmat GIPG

EndIf

// Save Experiment?

If(cmpstr(Save_Str, "Yes") ==0)

SaveExperiment

EndIf

Print "********** End of GIPG ", LocalorGlobal, " Fitting@

**********"

killwaves/z kern_, root:Grid_, root:’Data is X scaled’, root:@

’Use square root of data’, root:irfmat_, root:yaxis, regbins,@
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’Use a Finger Print Matrix’

killwaves/z Datamat_, temp_L FingerPrints_, STDmat_, @

Xwave_, Lags_, root:’Not Applicable’, root:instrument_@

response_

End

//***** 5 - B ***** \\\

function MakeDesignandRegMatices_JTG (datamat, @

irfmat, grd, lags, Stdmat, Xwave, FingerPrints,Derivative@

Number)

wave datamat, irfmat, grd, lags, Stdmat, Xwave, FingerPrints

Variable DerivativeNumber

Variable Doconvolution = 0, BasisFunctions = 0

// If there are fingerprints, then use them.

If(dimsize(FingerPrints, 0)!=0)

BasisFunctions = 1

EndIf

// If there is need to Dothe convolution (i.e. TCSPC)

If(dimsize(irfmat, 0)!=0)

DoConvolution = 1
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EndIf

//making a grid mat, If it isn’t already a matrix... this is just a@

//check, and may not be necessary anymore.

If(dimsize(grd,1)== 0)

Duplicate/o grd gridmat

redimension/n=(-1, dimsize(datamat,1)) gridmat

gridmat = grd[p]

Else

Duplicate/o grd gridmat

EndIf

//Make the data matrix 2d, If only only 1D. Again may not @

//be necessary.

If(dimsize(datamat, 1)==0 || dimsize(datamat, 1)==1@

redimension/n=(-1, 1) datamat, gridmat

EndIf

Variable Xpts =dimsize(Xwave, 0), ii = 0, jj = 0, kk = 0, @

npnts,numwvs, numwvs_1, sumim, dumvar = 0

Variable grdpts = selectnumber(dimsize(FingerPrints, 0)!@

=0, dimsize(gridmat, 0), dimsize(FingerPrints, 1)// the # @

//of gridpoints may be defined by the fingerprint matrix

numwvs = selectnumber(dimsize(datamat,1) == 0, dim@

size(datamat,1), 1)

numwvs_1 = selectnumber(dimsize(datamat,1) == 0, dim@

size(datamat,1)-1, 0)
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Variable/G chi_g =1 , Counter_g = 0, DeltaChi = 0

SVAR V_DoSVD = root:JTG_IPGfolder:gV_DoSVD_str

// Only calculate the regularization matrix, If the fits are @

global

MAY NOT BE NECESSARY! the old way!

// This is only to be used for calculating EFP for global fits.

If (numwvs >1 && cmpstr(V_DoSVD,"Yes")==0 )

//!@$% **** 5 - C **** %$@!\\

MakeRegMatrix( numwvs, grdpts, DerivativeNumber)

//this setup is for global ONLY!

wave regkern_g

Duplicate/o regkern_g root:JTG_IPGfolder:RegKern_@

For_Global_EPF

Killwaves/z regkern_g

EndIf

//* Generates matricies for 2nd and 3rd derivatives for @

//global fits to be used for the 3D Method.

If(numwvs>1)

If(DerivativeNumber == 3)

Make/s/o/n=6 der = {0, -1, 3, -3, 1, 0}

Make/s/o/n=(numwvs-3, numwvs) bmat = der [1+(q-p)]

Make/s/o/n=(6*numwvs) der_g = 0

ElseIf(DerivativeNumber == 2)
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Make/s/o/n=5 der = {0, -1,2, -1, 0}

Make/s/o/n=(numwvs-2, numwvs) bmat = der [1+(q-p)]

Make/s/o/n=(5*numwvs) der_g = 0

EndIf

//*

Else

If(DerivativeNumber == 3)

Make/s/o/n=6 der = {0, -1, 3, -3, 1, 0}

Make/s/o/n=(grdpts-3, grdpts) bmat = der [1+(q-p)]

Make/s/o/n=(6*grdpts) der_g = 0

ElseIf(DerivativeNumber == 2)

Make/s/o/n=5 der = {0, -1,2, -1, 0}

Make/s/o/n=(grdpts-2, grdpts) bmat = der [1+(q-p)]

Make/s/o/n=(5*grdpts) der_g = 0

EndIf

EndIf

Matrixop/o regkern = bmat^t x bmat

//Save waves in special folder

Duplicate/o regkern root:JTG_IPGfolder:regkern3d,Reg_3D

// need a regkern3d WHICH IS ACTUALLY 2D FOR @

//SOME REASON

redimension/n=(-1, -1, grdpts) Reg_3D

Reg_3D = regkern[p][q]

Duplicate/o Reg_3D root:JTG_IPGfolder:Reg_3D

// reg_3d is the reg matrix that has regbins taken into@

//account.
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//Setting up temp waves to Dothe fitting. They are 1D.

Duplicate/o datamat tempwv, tempstdwv, datayw, global@

xw, fit_temp, fit

Duplicate/o irfmat, instrument_response_

Duplicate/o gridmat globalgrid

redimension/d/n=(numpnts(globalgrid)) globalgrid

//*For irf convolution fitting

If(DoConvolution == 1)

//making lags a matrix, If it isn’t already a matrix

If(dimsize(lags,0)== 0)

Make/o/n=(dimsize(datamat,1)) lags = 0

EndIf

If(BasisFunctions==1)

// This section uses Finger Prints to describe the design@

//matrix (a reduced parameter set).

wave Dsgnmat_basis

Duplicate/o/d Dsgnmat_basis DsgnMat_L, DsgnMat_g

redimension/d/n=(-1,-1, numwvs) DsgnMat_G

Else // or just use a grid of exponentials for the design matrix

Make/d/o/n=(xpts, grdpts) DsgnMat_L= exp(-Xwave[p]/@

(gridmat[q][0]))

Duplicate/o DsgnMat_L DsgnMat_g

redimension/d/n=(-1,-1, numwvs) DsgnMat_G
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DsgnMat_L[0][0] = 1

// for scattering

DsgnMat_L[1, numpnts(XWAVE)-1][0] = 0

// for scattering continued

redimension/d/n=(-1,-1, numwvs) DsgnMat_G

EndIf

Duplicate/o dsgnmat_L dsgnmat_irf

SetScale/P x 0,deltax(datamat),"ns", datamat, irfmat

//resets scaling to begin at zero.

redimension/n=(Xpts) tempwv, tempstdwv, fit_temp

//ensures waves are the correct size

redimension/n=(dimsize(irfmat, 0)) instrument_response_

// fill in design matrix, loop through, Doirf convolution for @

//each exponential grid point

ii = 0

do

tempstdwv = stdmat[p][ii]

Duplicate/o tempwv im

instrument_response_ = irfmat[p][ii]

IM = instrument_response_(x+lags[ii])

sumim = sum(im)

im /=sumim

fastop tempwv = 0

DsgnMat_L= exp(-Xwave[p]/(gridmat[q][ii]))/gridmat[q][ii]

DsgnMat_L[0][0] = 1
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// for scattering

DsgnMat_L[1, numpnts(XWAVE)-1][0] = 0

// for scattering continued

do

tempwv[] = dsgnmat_L[p][jj]

convolve im, tempwv

redimension/d/n=(numpnts(im)) tempwv

doupdate

dsgnmat_irf[][jj] = tempwv[p]

jj +=1

while (jj < grdpts)

jj = 0

dsgnmat_irf[][grdpts-1]= 1

dsgnmat_irf /=tempstdwv[p]

DsgnMat_G[][][ii] = DsgnMat_irf[p][q]

DsgnMat_G = selectnumber(DsgnMat_G<1e-16,Dsgn@

Mat_G, 1e-16)

// keep the design matrix positive (necessary for IPG)

ii += 1

while (ii <numwvs)

abort

//*

//* Without covolution with grid of exponentials.

Else

If(BasisFunctions==1)
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Duplicate/o FingerPrints Dsgnmat_L, Dsgnmat_G

redimension/n=(-1, -1, numwvs) Dsgnmat_G

DsgnMat_G = DsgnMat_L[p][q][r]/StdMat[p][r]

DsgnMat_G = selectnumber(DsgnMat_G<1e-16,DsgnMat_G, 1e-16)

Else

Make/d/o/n=(xpts, dimsize(gridmat, 0), numwvs) Dsgn@

Mat_L= exp(-XWAVE[p]/(gridmat[q][r]))

Duplicate/o DsgnMat_L DsgnMat_G

DsgnMat_L[0][0][0, numwvs-1] = 1 // for scattering

DsgnMat_L[1, numpnts(XWAVE)-1][0][0, numwvs-1] = 0

// for scattering continued

DsgnMat_L[][grdpts-1][0, numwvs-1]= 1

// baseline

DsgnMat_G = DsgnMat_L[p][q][r]/StdMat[p][r]

DsgnMat_G = selectnumber(DsgnMat_G<1e-16,Dsgn@

Mat_G, 1e-16)

EndIf

EndIf

//*

//*Generate graphs probabilities, chi squared and f-test@

//values.

//Set up waves for display
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dowindow/k Probabilitycoefs

Duplicate/o gridmat TheGrid

redimension/n=(-1, 0) TheGrid

Duplicate/o stdmat globalstd

globalxw = xwave[p]

redimension/d/n=(numpnts(datamat)) datayw, globalstd, @

globalxw, fit

// Fit to the data

dowindow/k RegFits

display datayw, fit vs globalxw

dowindow/c RegFits

ModIfyGraph log(left)=1

ModIfyGraph rgb(fit)=(0,0,39168)

ValDisplay valdisp1 title="RedChi",size={100,25},value=#"Chi_g"

ValDisplay valdisp0 pos={100,2},value=#"counter_g"

ValDisplay valdisp0 title="Remaining Updates",size=@

{130,15}

ValDisplay valdisp2 title="Delta Chi",pos={240,2}, size=@

{130,15},value=#"DeltaChi"

ModIfyGraph axisEnab(left)={0,0.93}

//Chi squared values on left and F-Test values on the right

dowindow/k ChiSquaredFtest

Display/I /W=(5.2,5,10.2,8)

Make/o/n=100 fwave=nan, cwave=nan

appEndtograph cwave
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appEndtograph/r fwave

ModIfyGraph rgb(cwave)=(2,39321,1),rgb(fwave)=@

(1,3,39321)

Label left "\\F’Symbol’c\\F’Arial’\\Br\\S\\M\\S2"

Label right "Prob2Rej"

dowindow/C ChiSquaredFtest

// Parameters versus the grid. Decision is made If @

parameters should be shown as a graph or contour plot.

DoWindow/k ProbabilityCoefs

Make/o/n=(dimsize(Dsgnmat_g,1),dimsize(Dsgnmat_g,@

2)) probmat = 0

Display/I /W=(0,5,5,8)

If(Numwvs == 1)

appEndtograph probmat vs TheGrid

Label left "Intensity"

Label bottom "Laplace Coordinate"

Else

AppEndMatrixContour probmat vs {TheGrid,*};DelayUpdate

ModIfyContour probmat labels=0,autoLevels={*,*,20}

Label left "Experimental Coordinate"

Label bottom "Laplace Coordinate"

EndIf

DoWindow/C ProbabilityCoefs

Duplicate/o dsgnmat_g root:JTG_IPGfolder:dsgnmat_g

Duplicate/o datayw root:JTG_IPGfolder:datayw

//This may not be necessary



263

Duplicate/o globalstd root:JTG_IPGfolder:globalstd

//This may not be necessary

Duplicate/o globalxw root:JTG_IPGfolder:globalxw

//This may not be necessary

killwaves/z dsgnmat_g, regkern_L, regkern_G, dsgnmat_@

L, GlobalRegWave, regkern, regbins

killwaves/z tempwv, im, tempstdwv, fit_temp, dummymat,@

bmat, der_g, der, xw, DsgnMat_IRF, Stdmat

End

//***** 5 - C ***** \\\

function MakeRegMatrix(grdpts, numwvs, dervnum)

Variable grdpts, numwvs, dervnum

If(dervnum == 3)

Make/s/o/n=6 der = {0, -1, 3, -3, 1, 0}

Make/s/o/n=(grdpts-3, grdpts) bmat = der [1+(q-p)]

Make/s/o/n=(6*grdpts) der_g = 0

ElseIf(dervnum == 2)

Make/s/o/n=5 der = {0, -1,2, -1, 0}

Make/s/o/n=(grdpts-2, grdpts) bmat = der [1+(q-p)]

Make/s/o/n=(5*grdpts) der_g = 0

EndIf
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Matrixop/o regkern = bmat^t x bmat

Make/s/o/n=(numwvs*grdpts, numwvs*grdpts) RegKern_@

L = 0

RegKern_L = selectnumber( floor(p/ grdpts) == floor(q/ @

grdpts), 0, regkern[mod(p, grdpts)][mod(q, grdpts)])

Make/s/o/n=(grdpts, numwvs) GlobalREGWave = 1

redimension/n=(numpnts(GlobalRegWave))GlobalregWAve

If(numwvs*grdpts-grdpts*dervnum >0)

Make/s/o/n=(numwvs*grdpts-grdpts*dervnum, numwvs*@

grdpts) dummymat

der_g = selectnumber(mod(p,grdpts ) == 0, 0, der[floor(p/@

grdpts)])

dummymat = der_g [grdpts+(q-p)]

matrixop/o RegKern_G = dummymat^t x dummymat

regkern_g*=GlobalRegWave[p]

EndIf

killwaves/z GlobalRegWave, dummymat

End

//***** 5 - D ***** \\\

Function SetupGIPG_part1(dwv, swv, xw, dsg, regkernel, grd,@

numiters, updates, scalealpha, tau, normalize1_non@

Normalize0)

//dwv, swv, xw are the data, expected standard deviations,@

//xscaling waves respectively. They are 1D
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//regkernel is the regularization matrix that will be @

//eventually incorporated into the regularized design@

//matrix hth

//grd is a matrix

//numiters, updates, scalealpha, tau, normalize1_non@

//Normalize0 are Variables

wave dwv, swv, xw, dsg,regkernel, grd

Variable numiters, updates, scalealpha, tau, normalize1_@

nonNormalize0

wave SingValues, ActiveSet, REG_3D

/////////////////////////////////////// Initial Setup

Variable/g Alpha, chi_g, AInitialGuess

Variable grdpts =numpnts(grd), updaterate = round@

(numiters/updates), ii = 0, alphastar

Variable datapts = dimsize(dsg,0), Parmpts = dimsize@

(dsg,1), Numwvs, fitpts = numpnts(dwv), numwvs_1

Variable normalize = normalize1_nonNormalize0, , @

Parmpts_1 =Parmpts -1

wave ActiveSet

Make/o/n=(dimsize(dsg, 1)) ones = 1// This ones wave will@

//be used for normalization. It is for a trick to Do a quick @

//sum across a matrix

ones[numpnts(ones)-1] = 0
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//But Donot include the baseline term

numwvs = selectnumber(dimsize(dsg,2) == 0, dimsize@

(dsg,2),1)

numwvs_1 = numwvs - 1

//Make sure there are enough iterates for the fit. Cannot @

//have more updates than iterations.

If (numiters < updates)

updates = numiters

EndIf

//Active Set fitting and possibly normalize here

//!@$% **** 5 - E **** %$@!\\

LoopActiveSet(dsg, dwv, swv)

Wave ActiveSet

matrixop/o sumofprobmat = ActiveSet^t x ones

//* The design matrix is multiplied through to get rid of its@

//incorporation of the standard deviations. The point of @

//this section is remove std deviations, possibly normalize@

//the data

//and standard deviations based on the Active Set fit, then@

//re-incorporate them into the design matrix.

// If thought about harder, theses steps may be avoided.
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Make/d/o/n=(dimsize(dsg, 0), 1, dimsize(dsg,2)) swv2 = @

swv[r*dimsize(dsg, 0) + mod(p,dimsize(dsg, 0))]

//Make a 3D std matrix

dsg *= swv2[p][r]

//multiple out std from the design matrix

// this is a trick to normalize or not based on the sum of the@

//active set fit and to transpose into a 3D matrix

//(notice it is really a 2D matrix projected into a third@

//dimension)

Make/d/o/n=(dimsize(dsg, 0), 1, dimsize(dsg,2)) dwv2 = @

dwv[r*dimsize(dsg, 0) + mod(p,dimsize(dsg, 0))] / select@

number(normalize==1,1, sumofprobmat[r])

Make/d/o/n=(dimsize(dsg, 0), 1, dimsize(dsg,2)) swv2 =@

swv[r*dimsize(dsg, 0) + mod(p,dimsize(dsg, 0))] / select@

number(normalize==1,1, sumofprobmat[r])

dsg /= swv2[p][r]//re-introduce normalized standard@

//deviations.

Duplicate/d/o dwv2 dwv1

dwv1[][0][] /= swv2[p][0][r]

//*

//Set up important wave for fitting and display purpose@

//which will be left in the root folder.

Make/d/o/n=(parmpts, 1, numwvs)/d pwtemp = 0

Duplicate/o dwv fit, res

Make/d/o/n=(grdpts) pw = 1e-16, alphawv = 0, pk = 0,@

dumones = 1

Make/o/n=(parmpts, numwvs) probmat = 0
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// Again, removing the std deviations from design matrix. @

//Why this time? Because this dsgtemp will be used to@

//generate the display fit. The fit will look really weird If the@

// std. dev. are in it.

Duplicate/d/o dsg dsgtemp

dsgtemp *= swv2[p][r]

//some 3D matrix mutiplication to get htb and hth_3d.

matrixop/o htb = (dsg[][][0, numwvs_1] + 0.0)^t x (dwv1[][]@

[0, numwvs_1] + 0.0)

matrixop/o hth_3d = (dsg[][][0, numwvs_1] + 0.0)^t x (dsg@

[][][0, numwvs_1] + 0.0)

// ensure double precision

redimension/d hth_3d

// Scaling the regulization parameter (in Giurleo2008,@

//gamma). This formula is found in Numerical Recipes in@

//C++ (2nd Ed.) equation 18.5.16.

matrixop/o REG_3dtrace = trace(REG_3d[][][0, Parmpts_@

1]+ 0.0)

matrixop/o hthtrace = trace(hth_3d[][][0, numwvs_1] + 0.0)

AInitialGuess = sum(hthtrace) / sum(REG_3dtrace)

// Guess alpha

alpha = AInitialGuess*scalealpha

//scaled by user... yields the alpha which will be used.
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redimension/d/n=(numpnts(htb)) htb

//* This is only to calculate number of free parameters.@

//Not happy that it has to be done this way. Waves are@

//enormous, and SVD is need, which is expensive.

// See S. W. Provencher, Comput. Phys. Commun. 27, 213@

//(1982) for calculating degrees of freedom.

//convert a 3D matrix to a 2d matrix with lots of zeroes! Its@

//a block diagonal matrix.

//Do SVD, this can be expensive and unnecessary If the@

//designmatrix has not changed

//Variable/g V_DoSVD

svar V_DoSVD = root:JTG_IPGfolder:gV_DoSVD_str

If(cmpstr(V_DoSVD,"Yes")==0 || numwvs ==1)

Make/d/o/n=(parmpts*numwvs, parmpts*numwvs)/d hth = 0

// currently only being used to calculate degrees of@

//freedom, very expensive If large.

hth = selectnumber( floor(p/parmpts) == floor(q/parmpts), @

0,hth_3d[mod(p, parmpts)][mod(q, parmpts)] [ floor(p/@

parmpts)])

MatrixSVD/B HtH

If(numwvs ==1)

Duplicate/o hth root:JTG_IPGfolder:hthr, root:JTG_IPG@

folder:hth

EndIf

killwaves/z hth, hthr
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Else

Make/o/d/n=(grdpts) w_w = 1

EndIf

Duplicate/o/d w_w, w_wdenom, SingValues

fastop w_wdenom = (alpha) + W_W

fastop w_w = w_w / w_wdenom

Make/o/n=1/d efp = sum(w_w)//EFP stands for effective@

//free parameters. It changes depEnding on alpha.

//*

//* Generate fit for display. Also find chi squared for the@

//active set fit.

Duplicate/o ActiveSet PW2

redimension/d/n=(numpnts(pw2)) PW2

pwtemp = pw2[r*parmpts + mod(p,parmpts)]

matrixop/o fit = (dsgtemp[][][0, numwvs_1] + 0) x (pwtemp@

[][][0, numwvs_1] + 0)

redimension/d/n=(fitpts) fit

matrixop/o res = (fit - dwv)/swv

fastop res = res * res

Duplicate/o ActiveSet tempmat

tempmat = selectnumber(ActiveSet<1e-6, 1, 0)

//*

//If the data was normalized, then datayw and globalstd@

//are updated
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Duplicate/o dwv2 datayw

Duplicate/o swv2 globalstd

redimension/n=(numpnts(dwv2)) datayw, globalstd

//incase ti does not exist already... but this may be @

//unnecessary.

If (DataFolderExists("root:JTG_IPGfolder") == 0)

NewDataFolder root:JTG_IPGfolder

EndIf

//* Place important wave and Variable in special folder

Duplicate/o datayw root:JTG_IPGfolder:datayw

Duplicate/o globalstd root:JTG_IPGfolder:globalstd

Duplicate/o pw root:JTG_IPGfolder:pw

Duplicate/o htb root:JTG_IPGfolder:htb

Duplicate/o pwtemp root:JTG_IPGfolder:pwtemp

Duplicate/o dsgtemp root:JTG_IPGfolder:dsgtemp

Duplicate/o efp root:JTG_IPGfolder:efp

Duplicate/o SingValues root:JTG_IPGfolder:SingValues

Variable/g root:JTG_IPGfolder:Va0 = sum(res)

Variable/g root:JTG_IPGfolder:EFP0 = sum(tempmat)

Variable/g root:JTG_IPGfolder:chi_nnls = sum(res) / (fitpts@

- sum(tempmat))

Variable/g root:JTG_IPGfolder:AInitialGuess = AInitialGuess

//*
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killVariables/z AInitialGuess, chi_nnls,EFP0, Va0

killwaves/z pk, ones, data, dumones, regkern_g, regkern@

_l, dumwave, fIftyline

killwaves/z pw, hthr, hth, pwtemp, dsgtemp, efp, Chosen@

RegKernel, SingValues, ap, apwv, alphawv, temp, tobe@

Zeroed, Tempmat, res

killwaves/z swv2, dwv2, dwv1, w_wdenom, pw2, onemat,@

probmatvar, wtedalphas, holddwv, sumofprobmat, hth_@

3d, htb, hthtrace

killwaves/z holdswv, holddata, holdstd, m_b, m_a, @

zeroed, temp2, err, m_u, m_v, w_w, w_wdenom, pw1, @

pwz, qk, new, regtrace

End

//***** 5 - E ***** \\\

function LoopActiveSet(dsgnmat, datawv, stdwv)

// The setup and loop function for Active Set Alogrithm.

// Need to input the design matrix, data, and erros. The @

//rest is taken care of (whether or not you are looping it.)

wave dsgnmat, datawv, stdwv

Variable numwvs = dimsize(dsgnmat, 2), numparms = @

dimsize(dsgnmat, 1), numdata = dimsize(dsgnmat, 0), ii = 0

// dummy waves temporarily set up

Make/o pw1

Make/d/o/n=(numdata, numparms) tempdsg1 = 0
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Make/d/o/n=(numpnts(datawv)) dumdata1 = datawv / stdwv

//requires that the data be divided by the errors.

Make/d/o/n=(numdata, numwvs ) dumdata2 = dumdata1@

[p+ q*numdata]

//this transforms the 1D data/std wave into a matrix@

//(Redimension will also Dothis)

Make/d/o/n=(numdata) dumdata3 = 0

Make/d/o/n=(numparms, numwvs) ActiveSet = 0

// loop through one wave at a time (this is always a global fit)

do

tempdsg1 = dsgnmat[p][q][ii]

dumdata3[] = dumdata2[p][ii]

//!@$% **** 5 - F **** %$@!\\

ActiveSetFunc(tempdsg1, dumdata3)

ActiveSet[][ii] = pw1[p]

//place in a matrix called ActiveSet

ii+=1

while(ii<numwvs)

killwaves/z tempdsg1, dumdata3, dumdata2, dumdata1

//kill unnecessary waves.

End

//***** 5 - F ***** \\\

Function ActiveSetFunc(dsgnmat, data2)

//This function was adopted from C. L. Lawson and R. J.@
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//Hanson, Solving Least Squares Problems (Prentice@

//-Hall, Englewood ClIffs, NJ, 1974) active set (NNLS) fitting

//algorithm. I gave it the good ol’ college try to keep the@

//Variables and waves names consistant.

wave dsgnmat, data2

// Pw is the parameter wave

// zeroed is the bad parameters to be zeroed

// positiveset are the good parameters

// PWZ are the NEW parameters

// AlphaWv is the value to perturb the parameters.

Duplicate/d/o data2 data

Make/d/o/n=(dimsize(dsgnmat, 1)) PW1 = 0, Zeroed = 1 - @

PW1, temp = 0, PositiveSet = 1 - Zeroed, PwZ = 0, Alpha@

Wv = 0, new =0

Make/d/o/n=(dimsize(dsgnmat, 0),Sum(PositiveSet) ) Ap = 0

redimension/d Ap, data

Matrixop/o Err = dsgnmat^t x data - (dsgnmat^t x dsgnmat)

@x PW1

//Creates the Error Wave

Variable SumZeroedSet = sum(zeroed)//Way of knowing@

//how may parameters are being opted

Variable maxPWZ, jj= 0, ii = 0

Do

temp = (Err)* Zeroed//This should remove params not@

//optimized
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WaveStats/Q Temp//What is the max error value....

maxPWZ = V_Max

Zeroed[V_Maxloc] = 0

//Remove it.

PositiveSet = 1 - Zeroed// Optimize this set

Duplicate/o temp increment

increment = p

//Just an increment wave to get p-scaling

//Make Ap, a reduced design matrix that holds only the@

//Bad parameters, in the correct columns

Duplicate/o increment apwv

Make/d/o/n=(dimsize(dsgnmat, 0),Sum(PositiveSet) ) Ap = 0

ii = 0; jj =0

do

If(positiveset[ii] == 1)

ap[][jj] = dsgnmat[p][ii]

jj+=1

EndIf

ii +=1

while (ii < numpnts(positiveset))

ii = 0; jj =0

MatrixLLS Ap data//The QR decomposition

wave M_B

redimension/n=(Sum(PositiveSet))M_B//Remove@

//residuals, IGOR thing
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new = selectnumber(positiveset[p] == 0, sum(positiveset,@

0,p) ,0)//New Parameters, which have to go into the@

//correct elements.

pwz = selectnumber(new == 0, M_B[new[p]-1] ,0)

WaveStats/q pwz

Variable MinPwZ = V_min , a

matrixop/o fit1 = dsgnmat x pwz

do

If (MinPwZ >= 0)

break // This breaks out of the loop.

EndIf

a = 1e300

for(ii = 0;ii < numpnts(pwz);ii +=1)// initialize Variables;@

//continue test

If(zeroed[ii] == 0 && PwZ[ii] < 0)

a =min(a, selectnumber(numtype(PW1[ii] / (PW1[ii] - pwz@

[ii]))!=0, PW1[ii] / (PW1[ii] - pwz[ii]) ,1e300))

// condition;update loop Variables

EndIf

Endfor

PW1 += a *(pwz - PW1)

Duplicate/o PositiveSet ToBeZeroed

//ToBeZeroed *=Abs(pw)
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ToBeZeroed = selectnumber( abs(PW1)*PositiveSet <@

1e-13, 0 ,1)

PW1 = selectnumber(ToBeZeroed == 1, PW1 ,0)

Zeroed =selectnumber(ToBeZeroed ==1, Zeroed,@

ToBeZeroed)

fastop zeroed = tobezeroed

PositiveSet = 1 - Zeroed

Make/d/o/n=(dimsize(dsgnmat, 0),Sum(PositiveSet) ) Ap = 0

ii = 0; jj =0

do

If(positiveset[ii] == 1)

ap[][jj] = dsgnmat[p][ii]

jj+=1

EndIf

ii +=1

while (ii < numpnts(positiveset))

ii = 0; jj =0

MatrixLLS Ap data

redimension/n=(Sum(PositiveSet)) M_B

//Remove residuals, IGOR thing

new = selectnumber(positiveset[p] == 0, sum(positiveset,@

0, p) ,0)

//New Parameters, which have to go into the correct@

//elements.

pwz = selectnumber(new == 0, m_b[new[p]-1] ,0)
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WaveStats/Q PWZ

MinPwZ = V_min

//doupdate

while(1)

fastop PW1 = pwz

Matrixop/o Err = dsgnmat^t x data - (dsgnmat^t x@ dsgnmat) x PW1

//Creates the Error Wave

SumZeroedSet = sum(zeroed)

doupdate

Duplicate/o err temp2

temp2 =(Err )* Zeroed

Wavestats/q temp2

maxPWZ = V_Max

while(SumZeroedSet > 0 && (maxPWZ) > 1e-6)

killwaves/z pwz, positiveSet, temp, increment, apwv, ap,@

err, m_b, m_a, fit1, temp2, tobezeroed, ones, sumofprobmat

End

//***** 5 - G ***** \\\

function Local_IPG(numiters,updates, scalealpha, tau)

//This is more or less the original IPG code developed by@

//M. Merritt and Y. Zhang, J. Optim. Theory Appl. 126, 191@

//(2005). I attempted to use the same
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//same dummy waves as they did, such as DK, QK, PK,@

//etc. HTH is the square of the design matrix, HTHr has@

//the regularization matrix incorporated in it.

//See Giurleo2008 for details.

Variable numiters,updates, scalealpha, tau

print "Started", Date(), Time()

//**** Setup Starts Here

//Resurrect important waves from special folder

Duplicate/o root:JTG_IPGfolder:datayw datayw// Data that@

//will be fit

Duplicate/o root:JTG_IPGfolder:globalstd globalstd// Stan@

//dard deviations of data

Duplicate/o root:JTG_IPGfolder:pw pw// Parameter wave

Duplicate/o root:JTG_IPGfolder:htb htb// Design matrix@

matrix multiplied by data

Duplicate/o root:JTG_IPGfolder:pwtemp pwtemp// Para

//meter Matrix for displaying fit

Duplicate/o root:JTG_IPGfolder:dsgtemp dsgtemp// Des@

//ign matrix for displaying fit

Duplicate/o root:JTG_IPGfolder:dsgnmat_g dsgnmat_g@

// Design matrix

Duplicate/o root:JTG_IPGfolder:efp efp// Effective free@

//parameters wave (one point)

Duplicate/o root:JTG_IPGfolder:SingValues SingValues@
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// Singular values from SVD calculation

Duplicate/o root:JTG_IPGfolder:regkern3dregkern3d//The@

//regularization matrix that will be truncated by regbins

Duplicate/o root:JTG_IPGfolder:regbins regbins// Wave@

//that sets the limits of the regularization

Duplicate/o root:JTG_IPGfolder:hthr hthr// Design matrix @

//times design matrix plus regularizer matrix

Duplicate/o root:JTG_IPGfolder:hth hth//Design matrix@

//times design matrix plus

//Duplicate/o root:JTG_IPGfolder:ChoosenRegKernel@

//ChoosenRegKernel

// Regularizer matrix

// This wave is in the root directory

wave probmat

nvar AInitialGuess= root:JTG_IPGfolder:AInitialGuess

nvar Chi_nnls= root:JTG_IPGfolder:Chi_nnls

nvar Va0= root:JTG_IPGfolder:Va0

nvar efp0= root:JTG_IPGfolder:efp0

Variable/g chi_g = nan, alpha = AInitialGuess@

* scalealpha, counter_g = updates, DeltaChi

Variable ii = 0, updaterate = round(numiters/updates),@

parmpts = dimsize(probmat, 0)

Variable numwvs_1= dimsize(probmat, 1) -1, fitpts =@
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numpnts(datayw), SaveChi =100, numwvs = dimsize@

(probmat, 1)

Variable Va, AS_IPG

Make/o/n=(updates) AS_IPGwave= nan, fwave=nan,@

cwave=nan

Make/o/d/n=(numpnts(pw)) dumones = 1

fastop hthr = hth

hthr += (alpha) * regkern3d

//Calculates effective free parameters

Duplicate/o SingValues w_w, w_wdenom

fastop w_wdenom = (Alpha) + W_W

fastop w_w = w_w / w_wdenom

efp = sum(w_w)

// Dummy waves are used to speed up the alogrithm.

Matrixop/o dumwv = HtHr x PW

Duplicate/o dumwv dk, qk, pk, alphawv

//**** Setup Ends Here

//**** Algorithm Starts Here

Do

//Step 1, Make re useable waves

Matrixop/o dumwv = HtHr x PW

Fastop Qk = Dumwv - htb
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Fastop Dk = PW / Dumwv

Fastop Pk = (-1)* Dk*Qk

//Step 2, Make alphaWv

MatrixOp/O AkSTAR = dumones x ((-pk^t x Qk ) / pk^t x Ht@

Hr x pk)

Fastop alphawv = (-tau) * PW / Pk

//Step 3, Update PW

AkSTAR = selectnumber(pk[p]<0 , akstar[p],min(AlphaWv@

[p],AkSTAR[p]))

//* Step 3a, Update the fit.

// This requires reranging pw so a matrixop can be used @

//to generate a fit.

//Also Chi squared is calculated and probmat is updated.

If(mod(ii,updaterate )==0)

pwtemp = pw[r*parmpts + mod(p,parmpts)]

matrixop/o fit = (dsgtemp[][][0, numwvs_1] + 0) x (pwtemp@

[][][0, numwvs_1] + 0)

redimension/d/n=(fitpts) fit

matrixop/o res = (fit - datayw)/globalstd

fastop res = res * res

Va = sum(res)
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chi_g = Va/(fitpts - efp[0])

probmat = pwtemp[p][0][q]

counter_g -= 1

AS_IPG = (Va - Va0) / Va0

//This updates the f-test value and Chi Squared as part of@

//the graph window.

If (updates-counter_g >2)

AS_IPGwave[updates-counter_g-2] =AS_IPG

cwave[updates-counter_g-2] = Chi_G

//!@$% **** 5 - I **** %$@!\\

fwave[updates-counter_g-2] = 1 - CalcFtest(Va0, Efp0,@

Va,Efp[0], fitpts)

DeltaChi = cwave[updates-counter_g-3] - cwave[updates-@

counter_g-2]

EndIf

Duplicate/o pw root:JTG_IPGfolder:pw

doupdate

//*

EndIf

SaveChi = Chi_g

fastop PW = PW + AkSTAR * Pk

ii +=1

while(ii<numIters )

//**** Algorithm Ends Here
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// After completing all the iterations, the last fit and@

//probmat updates are made

pwtemp = pw[r*parmpts + mod(p,parmpts)]

matrixop/o/nthr= 1 fit = (dsgtemp[][][0, numwvs_1]) x @

(pwtemp[][][0, numwvs_1])

redimension/d/n=(fitpts) fit

probmat = pwtemp[p][0][q]

Duplicate/o pw root:JTG_IPGfolder:pw

Duplicate/o AS_IPGwave root:JTG_IPGfolder:AS_IPGwave

print "Total Number of iterations:", ii , "Chi Squared",Chi_g

Killwaves/z qk, dk, w_wDenom, dumwv, dumx, pwtemp,@

singvalues, dsgtemp, dumones, efp, pw

Killwaves/z pk, alphawv, w_w, AkSTAR, hthr, hth, Alpha@

Wv, htb, res, AS_IPGwave, ChoosenRegKernel

Variable/g root:JTG_IPGfolder:Counter_g = Counter_g

print "Finished", Date(), Time()

End

//***** 5 - H ***** \\\

Function MultexpMEM(pw, yw, xw)

wave pw, yw, xw

wave/z dsgnmat_g_LM //Global Waves... u know the lag@

//already....

Nvar alpha = root:JTG_IPGfolder:gAlpha_Var
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Variable ppts = numpnts(pw)-1, SumOFPw, mt= 1/ppts,@

RVal

//If (waveexists(probwave)!= 1 || numpnts(probwave)==@

//ppts+1)

Make/d/o/n=(ppts+1) probwave = pw[p], entropy = mt

Make/d/o/n=(ppts) probwave1 = selectnumber(pw<1e-16,@

pw,1e-16)

//EndIf

wave/z probwave1, probwave, entropy

SumOFPw= sum(probwave1)

matrixop/o yw1 = dsgnmat_g_LM x probwave

probwave1/=SumOFPW

entropy = probwave1 - mt - probwave1 *ln(probwave1/mt)

RVal =-sum(entropy)

yw = yw1[p]

yw[numpnts(yw)-1] = sqrt(Rval*alpha)

End

//***** 5 -I ***** \\\

Function CalcFtest(chi1, efp1, chi2, efp2, pts)

// When comparing two distributions, a the likelihood that@

//the two distributions are not statistically signIficantly

// dIfferent can be calculated by use of the F-Test.@

//Provencher uses this form of the F-Test in

//S. W. Provencher, Comput. Phys. Commun. 27, 213@

//(1982).
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Variable chi1, efp1, chi2, efp2, pts

Variable F, Prob, dum1, dum2

If(chi2> Chi1)

F = ((chi2 - chi1) / chi1)* ((pts- EFP1) /efp1)

// 5 - J\\

PROB=Fdist(F, EFP1, pts - EFP1)

Else

dum1 = chi2

dum2 = chi1

F = ((dum2 - dum1) / dum1)* ((pts- EFP2) /efp2)

//!@$% **** 5 - I **** %$@!\\

PROB=Fdist(F, EFP2, pts - EFP2)

EndIf

return PROB

End

//***** 5 - J ***** \\\

Function fdist(F, V1, V2)2

//Calculate the F distribution. Found in Numerical@

//Recipesin C++.

Variable F, V1, V2

Variable prob, HDF1, HDF2, DUM

HDF1 = V1*.5

HDF2 = V2*.5
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Variable Fst = V2/(V2 + F*V1)

If (Fst <0)

Fst= 1

EndIf

Variable incbeta =betai( HDF2, HDF1 ,FST, 2e-16)

prob = selectnumber(incbeta > 1, incbeta ,incbeta)

If (numtype(prob) == 2)

prob= 100

EndIf

return prob

End

//***** 5 - K ***** \\\

function Global_IPG(numiters,updates, scalealpha, tau)

// This function is an adaption of the orginal function, @

//GIPG_Part2, but can be orders of magnitude faster for@

//global IPG.

// PK, PW, DK, QK, etc, are the same as they are in M.@

//Merritt and Y. Zhang, J. Optim. Theory Appl. 126, 191@

//(2005),

// where the IPG alogrithm was developed. The problem@

//has been split into a regularization part (symbolized with@

//having

//an ’R’ at theEnd of the wave name) and a non-regular@

//ized part (the least squares part). The function GIPG_Part2

// shows pretty much the original setup of the code. The@
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//trick to these block matricies are more obvious If you@

//draw them out.

Variable numiters,updates, scalealpha, tau

print "Started", Date(), Time()

//Record time

//**** Setup Starts Here

//Resurrect important waves from special folder

Duplicate/o root:JTG_IPGfolder:datayw datayw// Data that@

//will be fit

Duplicate/o root:JTG_IPGfolder:globalstd globalstd@

// Standard deviations of data

Duplicate/o root:JTG_IPGfolder:pw pw// Parameter wave@

Duplicate/o root:JTG_IPGfolder:htb htb// Design matrix @

//matrix multiplied by data

Duplicate/o root:JTG_IPGfolder:pwtemp pwtemp@

//Parameter Matrix for displaying fit

Duplicate/o root:JTG_IPGfolder:dsgtemp dsgtemp@

// Design matrix for displaying fit

Duplicate/o root:JTG_IPGfolder:dsgnmat_g dsgnmat_g

// Design matrix

Duplicate/o root:JTG_IPGfolder:efp efp// Effective free @

//parameters wave (one point)

Duplicate/o root:JTG_IPGfolder:SingValues SingValues@

// Singular values from SVD calculation

Duplicate/o root:JTG_IPGfolder:regkern3d regkern3d@

// The regularization matrix that will be truncated by regbins



289

Duplicate/o root:JTG_IPGfolder:regbins regbins// Wave@

//that sets the limits of the regularization

// This wave is in the root directory

Wave Probmat

nvar AInitialGuess= root:JTG_IPGfolder:AInitialGuess@

// regularizer paramter

nvar Chi_nnls= root:JTG_IPGfolder:Chi_nnls// Reduced@

//Chi squared from Active Set Fit

nvar Va0= root:JTG_IPGfolder:Va0// Chi squared from@

//Active Set Fit

nvar efp0= root:JTG_IPGfolder:efp0//Effective free@

//paramters from Active Set Fit

Variable/g chi_g = nan, alpha = AInitialGuess *@

scalealpha, counter_g = updates, DeltaChi

Variable ii = 0, updaterate = round(numiters/updates),@

parmpts = dimsize(probmat, 0), parmpts_1 = dimsize@

(probmat, 0)-1

Variable numwvs_1= dimsize(probmat, 1) -1, fitpts =@

numpnts(datayw), SaveChi =100, numwvs = dimsize@

(probmat, 1)

Variable Va= 0, AS_IPG = 0

Variable SumOf_PosDef, sum2, npts = numpnts(PW)

//Make waves to be used for later

Make/o/n=(updates) AS_IPGwave= nan, fwave=nan,@
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cwave=nan

Make/o/d/n=(numpnts(pw)) dumones = 1

Duplicate/o pw dumwv, dk, qk, pk, alphawv, pw2d

// Calculate effective free parameters

Duplicate/o SingValues w_w, w_wdenom

fastop w_wdenom = (Alpha) + W_W

fastop w_w = w_w / w_wdenom

efp = sum(w_w)

//This Makes a regularization matrix that takes into@

//account bins the user does NOT want to include for@

//regularization

Duplicate/o regkern3d Reg_3D

redimension/n=(-1, -1, parmpts) Reg_3D

Reg_3D = selectnumber(regbins[r]==1, 0,regkern3d[p][q]

*alpha)

// These waves allow for the splitting of the problem into

//parts, Chi squared functional and the regularizer functional

redimension/n=(parmpts, numwvs)/d pw2d// PW as a 2D

//matrix

Make/o/n=(parmpts, 1, numwvs)/d PW3d = pw2d[p][r]// PW@

//2d as a 3D matrix, with only one column

Make/o/n=(numwvs, 1, parmpts)/d PW3dR = pw2d[r][p]// P@

//W3D transposed for the regularizer part
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Make/d/o/n=(parmpts,1, numwvs) pk3d// PK as a 3D@

//matrix,with only one column

Make/d/o/n=(numwvs,1, parmpts) pk3dr// PK3D trans@

//posed for the regularizer part

Make/d/o/n=(1,parmpts, numwvs) pk3dt// PK as a dIfferent@

//3D matrix, only one row

Make/d/o/n=(1,numwvs, parmpts) pk3drt// pk3dt trans@

//posed for the regularization part

// A block matrix of hth is needed

matrixop/o hth_3d = (dsgnmat_g[][][0, numwvs_1] +0)^t x@

(dsgnmat_g[][][0, numwvs_1] + 0.0)

Make/o/n=(parmpts, numwvs) dumwvRt = 0// A hold wave

//**** Setup Ends Here

//**** Algorithm Starts Here

do

Duplicate/o pw pw2d

//There is a redimension step every iteration unfortunately@

//redimension/n=(parmpts, numwvs)/d pw2d

PW3dR = pw2d[r][p]

PW3d = pw2d[p][r]

Make/o/n=(parmpts, numwvs) dumwvRt = 0

//step 1

Matrixop/o dumwv = hth_3d[][][0, numwvs_1] x PW3d[][][0,@

numwvs_1]
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Matrixop/o dumwvR = Reg_3D[][][0,parmpts_1] x PW3dR @

[][][0, parmpts_1]

dumwvRt= dumwvR[q][0][p]

redimension/n=(npts)/d Dumwv, dumwvRt

Dumwv += dumwvRt

Fastop Qk = Dumwv - htb

Fastop Dk = PW / Dumwv

Fastop Pk = (-1)* Dk*Qk

Duplicate/o pk pk2d

redimension/n=(parmpts, numwvs)/d pk2d

pk3dr = pk2d[r][p]

pk3drt = pk2d[r][q]

pk3d = pk2d[p][r]

pk3dt = pk2d[q][r]

Matrixop/o positiveDef = pk3dt[][][0, numwvs_1] x hth_3d@

[][][0,numwvs_1] x pk3d[][][0, numwvs_1])

Matrixop/o positiveDefR = pk3drt[][][0, parmpts_1] x@

Reg_3D[][][0,parmpts_1] x pk3dr[][][0, parmpts_1])

SumOf_PosDef = sum(positiveDef) + sum(positiveDefR)

//Step 2, Make alphaWv

MatrixOp/O AkSTAR = dumones x ((-pk^t x Qk ) / SumOf_@

PosDef)
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Fastop alphawv = (-tau) * PW / Pk

//Step 3, Update PW

AkSTAR = selectnumber(pk[p]<0 , akstar[p],min(AlphaWv@

[p],AkSTAR[p]))

//* Step 3a, Update the fit.

// This requires reranging pw so a matrixop can be used@

//to generate a fit.

//Also Chi squared is calculated and probmat is updated.

If(mod(ii,updaterate )==0)

pwtemp = pw[r*parmpts + mod(p,parmpts)]

matrixop/o fit = (dsgtemp[][][0, numwvs_1] + 0) x (pwtemp@

[][][0, numwvs_1] + 0)

redimension/d/n=(fitpts) fit

matrixop/o res = (fit - datayw)/globalstd

fastop res = res * res

Va = sum(res)

chi_g = Va/(fitpts - efp[0])

probmat = pwtemp[p][0][q]

counter_g -= 1

AS_IPG = (Va - Va0) / Va0

//This updates the f-test value and Chi Squared as part of@

//the graph window.

If (updates-counter_g >2)
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AS_IPGwave[updates-counter_g-2] =AS_IPG

cwave[updates-counter_g-2] = Chi_G

//!@$% **** 5 - I **** %$@!\\

fwave[updates-counter_g-2] = 1 - CalcFtest(Va0, Efp0, Va, Efp[0]@

, fitpts)

DeltaChi = cwave[updates-counter_g-3] - cwave[updates-@

counter_g-2]

EndIf

Duplicate/o pw root:JTG_IPGfolder:pw

doupdate

//*

EndIf

SaveChi = Chi_g

fastop PW = PW + AkSTAR * Pk

ii +=1

while(ii<numIters )

//**** Algorithm Ends Here

// After completing all the iterations, the last fit and@

//probmat updates are made

pwtemp = pw[r*parmpts + mod(p,parmpts)]

matrixop/o fit = (dsgtemp[][][0, numwvs_1]) x (pwtemp[][][0,@

numwvs_1])

redimension/d/n=(fitpts) fit

probmat = pwtemp[p][0][q]

Duplicate/o pw root:JTG_IPGfolder:pw
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Duplicate/o AS_IPGwave root:JTG_IPGfolder:AS_IPGwave

print "Total Number of iterations:", ii , "Chi Squared",Chi_g

Killwaves/z qk, dk, w_wDenom, dumwv, dumx, pwtemp, @

singvalues, dsgtemp, dumones, efp, pw,dumwvRt,dum@

wvR,pk2d,positiveDef,positiveDefR

Killwaves/z pk, alphawv, w_w, AkSTAR, hthr, hth, Alpha@

Wv, htb, res, AS_IPGwave, ChoosenRegKernel

killwaves/zREG_3dtrace,dsgnmat_g,regkern3d,pw2d,@

PW3dR,PW3d,pk3dr,pk3drt,pk3d,pk3dt,hth_3d

Variable/g root:JTG_IPGfolder:Counter_g = Counter_g

print "Finished", Date(), Time()

End

/// ******* Conclusion of 5 *******///

//***** 6 - A ***** \\\

function GIPGContinued()

Variable numiters_VAR = NumVarOrDefault("Root:JTG_@

IPGfolder:gnumiters_VAR", 100000)

Variable Numupdates_Var= NumVarOrDefault("Root:@

JTG_IPGfolder:gNumupdates_Var", 100)

Variable Alpha_VAR= NumVarOrDefault("Root:JTG_IPG@

folder:gAlpha_VAR", .0001)

Variable Step_Var= NumVarOrDefault("Root:JTG_IPG\@
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folder:gStep_Var", .5)

String reinit_Str= StrVarOrDefault("Root:JTG_IPGfolder:g@

Reinit_STR", "Yes")

String Save_Str= StrVarOrDefault("Root:JTG_IPGfolder:g@

Save_Str", "Yes")

String TestRun_Str= StrVarOrDefault("Root:JTG_IPG@

folder:gTestRun_Str", "No")

Prompt numiters_VAR, "Number of Iterations"

Prompt Numupdates_Var, "Number of Updates"

Prompt Alpha_VAR, "Gamma"

Prompt Step_Var, "Step Size (0 - 1)"

Prompt reinit_Str, "Reinitialize Starting Values to Zero or@

Continue Where You Left Off?", popup, "Zero;Continue;"

Prompt Save_Str, "Save Experiment with Current Name",@

popup, "Yes;No;"

Prompt TestRun_Str, "Do a short Test run to get an idea@

how long this will take", popup, "Yes;No;"

wave probmat, probmatIPG

If(dimsize(probmat, 1) == 1 && dimsize(probmatIPG, 1) >@

1)abort "Cannot continue when performing multiple local @

fits. You must start over. Sorry, my PhD is not Computer @

Science."

EndIf

DoPrompt "Last Regularization Step ", numiters_VAR, @

Numupdates_Var, Alpha_VAR, Step_Var, reinit_Str, @
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Save_Str, TestRun_Str

If(V_flag ==1)

Abort "User Cancelled Regularization"

EndIf

If (DataFolderExists("root:JTG_IPGfolder") == 0)

NewDataFolder root:JTG_IPGfolder

EndIf

String savedDataFolder = GetDataFolder(1)// save

SetDataFolder Root:JTG_IPGfolder:

Variable/g gNumiters_var = Numiters_var, gNum@

updates_Var= Numupdates_Var, gAlpha_Var = Alpha_Var

Variable/g gStep_Var = Step_Var

String/g greinit_Str = reinit_Str, gSave_Str= Save_Str, g@

Testrun_str = TestRun_str

SetDataFolder savedDataFolder

wave probmat

Duplicate/o root:JTG_IPGfolder:pw pw

wave pw

//Variable/g ContinuingCounter

String moviestr

If(cmpstr(reinit_Str, "Zero") ==0)

//ContinuingCounter = 0

pw = 1e-32
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Duplicate/o pw root:JTG_IPGfolder:pw

Else

//ContinuingCounter+=1

EndIf

If(cmpstr(TestRun_Str, "Yes") ==0)

Variable timerRefNum, ii

Variable Seconds

timerRefNum = startMSTimer

If (timerRefNum == -1)

do

seconds = stopMSTimer(ii)

ii +=1

while(ii < 9)

EndIf

If(dimsize(probmat, 1)==1) //If local fit //***** 5 - G ***** \\\

Local_IPG(1000,5, Alpha_Var, Step_Var)

Else

Global_IPG(1000,5, Alpha_Var, Step_Var)//If global fit

//***** 5 - K ***** \\\

EndIf

Seconds = stopMSTimer(timerRefNum)/1e6

Print Numiters_var, "iterations will take approximately", @

round(Seconds *Numiters_var/1000/60), "minutes."
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Else

If(dimsize(probmat, 1)==1)

//If local fit //***** 5 - G ***** \\\

Local_IPG(Numiters_var,Numupdates_Var, Alpha_Var,@

Step_Var)

Else // 5- K\\

//If global fit

Global_IPG(Numiters_var,Numupdates_Var, Alpha_Var,@

Step_Var)

EndIf

EndIf

If(cmpstr(Save_Str, "Yes") ==0)

SaveExperiment

EndIf

End

//***** 6 - A ***** \\\

// @@@@@@@ Helpfully loaders and functions I have@

//developed @@@@@@@ \\

/// %%%% Data Loader for DLS

Menu "Load Waves"

"Load Ascii data from ALV 6000", DLS_Loader("","")

End
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function DLS_Loader(pathname, filename)//Define path@

//for ascii files created with bh board

String pathname, filename

Variable index = 0

If (strlen(pathname)==0)// Declare a path

newpath/o temporarypath

pathname = "temporarypath"

EndIf

filename =indexedfile($pathname, index, ".asc")//loadfiles@

//iteratively

LoadWave/q/F={2,15,0}/o/N=Column /D/K=0/L={0,26,0,0,@

2}/P=$pathname filename

wave column0, column1

Variable ii = 0, AClen, CRLen

do

If (numtype(column0[ii]) == 2)

AClen = ii

break

EndIf

ii+=1

while (ii < numpnts(column0))

ii +=2

do
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If (numtype(column0[ii]) == 2)

CRlen = ii

break

EndIf

ii+=1

while (ii < numpnts(column0))

do

filename =indexedfile($pathname, index, ".asc")//loadfiles@

//iteratively

If (strlen(filename)==0)

break

EndIf

OrganizeDLS(filename, pathname, AClen, CRlen)

index += 1

while (1)

print "Number of files loaded: ", index,". Have fun@

analyzing, sucka!"

End

Function OrganizeDLS(filename, pathname, ACLen, CRlen)

String filename, pathname

Variable AClen, CRlen

LoadWave/q/F={2,15,0}/o/N=Column /D/K=0/L={0,26,0,0,@

2}/P=$pathname filename

wave column0, column1
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String wvnm = cleanUpName(filename[0, strlen(filename)@

-9],1)

String number = cleanUpName(filename[strlen(filename)@

-8, strlen(filename)-5],1)

print wvnm

print number

String CR = "CR_" + wvnm + number

String CRTime = "CRT_" + wvnm + number

String DTime = "X_" + wvnm + number

String Dcy = "D_" + wvnm +number

String STD = "Std_" +wvnm +number

Duplicate/o/r=[0, ACLen-1] Column0 $DTime

Duplicate/o/r=[0, ACLen-1] Column1 $Dcy

Duplicate/o/r=[AClen+2, CRlen-1] Column0 $CRTime

Duplicate/o/r=[AClen+2, CRlen-1] Column1 $CR

Duplicate/o/r=[numpnts(column0)- AClen, numpnts@

(Column0)-1] Column1 $STD

Duplicate/o/r=[0, ACLen-1] Column1 $Dcy

Duplicate/o/r=[numpnts(column0)- AClen, numpnts@

(Column0)-1] Column1 $STD

//killwaves column0, column1

End

///// % End of DLS data loader
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// Theses functions translate radius into decaytime in@

//milliseconds (or vice versa) using Stokes-Einstein@

//Equation.

// Of course, this equation Makes assumptions about the@

//state of the system that are not discussed here.

// This can be useful for DLS data.

function calctau(rad_nm, temp_C, eta_cp, lam_nm, ri)

Variable rad_nm, temp_C, eta_cp, lam_nm, ri

Variable kb = 1.3806503e-023

temp_C+= 273; lam_nm*=1e-9

Variable scatvect = 4*pi/lam_nm* sin(pi/4)*Ri

return (kb * temp_C /6/pi/eta_cp/(rad_nm*1e-9)*scatvect^@

2)^-1

End

function calcRad(Tau_ms, temp_C, eta_cp, lam_nm, ri)

Variable Tau_ms, temp_C, eta_cp, lam_nm, ri

Variable kb = 1.3806503e-023

temp_C+= 273; lam_nm*=1e-9

Variable scatvect = 4*pi/lam_nm* sin(pi/4)*Ri

return (kb * temp_C /6/pi/eta_cp*(tau_ms)*scatvect^2)*1e9

End

#pragma rtGlobals=1// Use modern global access method.

Menu "Load Waves"

"Load TCSPC Ascii File with setup included", AsciiWith@

Setup("","")
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End

function AsciiWithSetup(pathname, filename)//Define path@

//for ascii files created with bh board

string pathname, filename

variable index = 0

if (strlen(pathname)==0) // Declare a path

newpath/o temporarypath

pathname = "temporarypath"

endif

do

filename =indexedfile($pathname, index, ".asc")//loadfiles@

//iteratively

if (strlen(filename)==0)

break

endif

//print filename

loadlong(filename, pathname)

index += 1

while (1)

end

Function Loadlong(filename, pathname)

string filename, pathname
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LoadWave/q/F={2,19,0}/A/O/N=fixedfield/E=0/K=2/P=@

$pathname filename

// loads the ascii file into two columns

// in order to extract dx and totalbin parameters

wave/t fixedfield0

//two columns are created

wave/t fixedfield1

string dx

dx= fixedfield1[38]

// delta x

dx=cleanUpName(dx[0, strlen(dx)-2],1)

//print str2num(dx)

string totalbinnum

totalbinnum = fixedfield1[40]

// total number of bins

totalbinnum=cleanUpName(totalbinnum[0, strlen@

(totalbinnum)-2],1)

//print str2num(totalbinnum)

LoadWave/q/G/N=column/O/E=0/P=$pathname filename

variable startrow, endrow, cycles, numberofpoints

variable index
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wave sumup

numberofpoints = numpnts(column0)

//print numberofpoints

cycles = 0

cycles = numberofpoints/str2num(totalbinnum)

//print num2str(cycles)

string namesumUP

if (cycles<10)

namesumUP = cleanUpName(filename[0, strlen@

(filename)-5],1) + "_sum_0" + num2str(cycles)

elseif (cycles>=10)

namesumUP = cleanUpName(filename[0, strlen@

(filename)-5],1) + "_sum_" + num2str(cycles)

endif

do

startrow = 0

endrow = 0

startrow =index*str2num(totalbinnum)

index =index +1

endrow =index*str2num(totalbinnum)-1

string wvnm = UniqueName(cleanUpName(filename[0,@

strlen(filename)-5],0), 1, 100)

Duplicate/R=[startrow,endrow] column0 $wvnm

//appendtotable $wvnm

SetScale/P x 0,str2num(dx)*10^9,"ns", $wvnm
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duplicate/o $wvnm dummy

if (index ==1)

duplicate/o dummy sumup

sumup = 0

endif

sumup +=dummy

// display $wvnm

// ModifyGraph log(left)=1

while (index<cycles)

if (cycles >1)

duplicate/o sumup $namesumup

endif

end

function quickfittraces(mat, wc, irfmat)

wave mat , wc, irfmat

if(dimsize(mat, 1) == 0)

redimension/n=(-1, 1) mat, irfmat

endif

make/o/n=(dimsize(mat, 1)) lags= 0, epwv = 1e-6, res = 0

make/o/n=(dimsize(mat, 0)) testwv, stdtestwv, instrument_@

response_, fit_testwv = 0

SetScale/p x 0,deltax(mat),"", testwv, stdtestwv, instrument@
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_response_, fit_testwv

variable/g V_fitoptions = 4, V_FitMaxIters = 100, V_fitNum@

Iters

variable ii = 0, V_fiterror = 0

make/o/n=(numpnts(wc), dimsize(mat,1)) DiscreteParms

duplicate/o wc holdwc

create_limitwv(wc)

wave/T limitwv

deletepoints 0, 1, limitwv

make/o/n=(numpnts(wc)) epwv = 1e-6

dowindow/k discretefits

display testwv, fit_testwv

ModifyGraph log(left)=1

ModifyGraph rgb(fit_testwv)=(1,3,39321)

Dowindow/c Discretefits

do

instrument_response_ = irfmat[p][ii]

duplicate/o wc holdwc

testwv= mat[p][ii]

stdtestwv=sqrt( mat[p][ii] +1)

FuncFit/ODR=1/q/L= (numpnts(testwv)) FitConvIRFMult@

Exp wc testwv /W=stdtestwv /I=1 /D /R/c=limitwv/E = EPWV

res[ii] = v_chisq

lags[ii] = wc[0]

DiscreteParms[][ii] = wc[p]
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if(V_fiterror!=0 || v_chisq/(numpnts(testwv) -numpnts(wc)) @

> 2 )

dowindow/k parms

edit/K=1 wc, holdwc

dowindow/c parms

pauseforuser parms

variable changed = wc -holdwc

if(changed == 0)

wc += (gnoise(WC/100))

endif

V_fiterror = 0

else

ii +=1

endif

V_fiterror = 0

while(ii<dimsize(mat, 1))

Dowindow/k DiscreteFits

ii = 0

variable NumExps = (numpnts(holdwc) - 2)/2, jj = 2

string Ewv, Awv

make/o/n=(dimsize(DiscreteParms, 1)) Exp_, Amp_

do

Ewv= "Exp" + num2str(ii)

Awv= "Amp" + num2str(ii)
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Exp_ = 1/DiscreteParms[jj+1][p]

Amp_ = DiscreteParms[jj][p]

Duplicate/o Exp_ $Ewv

Duplicate/o Amp_ $Awv

ii +=1

jj +=2

while(ii < numexps)

killwaves/z Exp_, Amp_, instrument_response_, Discrete@

Parms

end
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