
PROTEIN HOMOLOGY DETECTION WITH SPARSE
MODELS

BY PAI-HSI HUANG

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Professor Vladimir Pavlovic

and approved by

New Brunswick, New Jersey

October, 2008

c© 2008

Pai-Hsi Huang

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Protein Homology Detection with Sparse Models

by Pai-Hsi Huang

Dissertation Director: Professor Vladimir Pavlovic

Establishing structural or functional relationship between sequences, for instance to

infer the structural class of an unannotated protein, is a key task in biological analysis.

Protein sequences undergo complex transformations such as mutation, insertion and

deletion during the evolutionary process and typically share low sequence similarity on

the superfamily level, making the task for remote homology detection based on primary

sequence only very challenging.

Based on previous studies stating that knowledge based on only a subset of critical

positions and the preferred symbols on such positions are sufficient for remote homology

detection, we present a series of works, each enforcing different notion of sparsity, to

recover such critical positions. We first start with a generative model and present the

sparse profile hidden Markov models. Such generative approach recovers some critical

patterns and motivates the need for discriminative learning. In our second study, we

present a discriminative approach to recover such critical positions and the preferred

symbols. In our third study, we address the issue of very few positive training examples,

accompanied by a large number of negative training examples, which is typical in many

remote homology detection task. Such issue motivates the need for semi-supervised

learning. However, though containing abundant useful and critical information, large

uncurated sequence databases also contain a lot of noise, which may compromise the

ii

quality of the classifiers. As a result, we present a systematic and biologically motivated

framework for semi-supervised learning with large uncurated sequence databases. Com-

bined with a very fast string kernel, our method not only realizes rapid and accurate

remote homology detection and show state-of-the-art performance, but also recovers

some critical patterns conserved in superfamilies.

iii

Acknowledgements

I would like to thank my advisor, Professor Vladimir Pavlovic, for his guidance, sup-

port and encouragement throughout my Ph.D. studies. I came to him without proper

mathematical and analytical skills. Under Professor Pavlovic’s supervision, I gradually

developed the necessary skills and have become more confident. One of the many great

things I learned from him is from his saying: Pai-Hsi, show me the math, when early

in my Ph.D. career, I used to tell him that I strongly feel that some mathematical

equation can be established. Ever since then, when meeting with him, I always prepare

mathematical derivation for his inspection, which in turn hones my analytical skills.

Second, I want to thank my committee member Professor Ali Shokoufandeh. Ali

graduated from the Computer Science Department in Rutgers and upon graduation,

he started his academic career teaching in Drexel University in Philadelphia, where I

completed my undergraduate study. In my senior year, I took his class, Design and

Analysis of Data Structures and Algorithms and during the semester he encouraged

me to come to Rutgers. Without his encouragement, I cannot imagine having such

academic achievement.

Third, I want to thank my committee member Professor Casimir Kulikowski. Pro-

fessor Kulikowski also served as my committee member in my qualifying exam and his

advice significantly influenced my research direction. Based on his advice, I was also

able to benefit from my internship experiences.

Fourth, I want to thank the rest of my committee member, Professor Dimitris

Metaxas, for his time and interest in this dissertation.

I also want to thank my collaborators. Professor Alexander Kister’s previous works

motivated the first two major studies in this thesis. I also learned a lot from another

collaborator, Pavel Kuksa. Working with Pavel, I learned so many valuable lessons.

iv

For example, there is always a better and faster way and there is still room for improve-

ment. His insisting in producing high-quality work directly benefited the third part of

my thesis: we were able to develop a framework that strongly outperform previously

established state-of-the-art methods. Without his help, it will be very difficult to do it

all by myself.

Finally, I want to thank two very good friends of mine. I met them when I just

came to the United States, alone: Christopher Rajashekar and David Czapla. Pursuing

a Ph.D. degree not only takes a lot of dedication but also requires a lot of support,

especially for someone whose family is thousands of miles and 12 time zones away.

Many a times when I hit a bottleneck and could not see my future clearly, I experienced

fear. Their strong support helped me overcome the emotional hardships so that I could

continue. They are my second family.

v

Dedication

To my parents: Shang-Chang Huang and Hsiu-Chin Lee. Without their continuous

support and love, I cannot achieve anything.

To my family and friends in Taiwan: your love and support travel 12 time zones and

make everything possible.

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

List of Tables . x

List of Figures . xii

1. Introduction . 1

2. Background and Related Works . 7

2.1. Generative and Discriminative Learning 7

2.2. Hidden Markov Models . 11

2.3. Logistic Regression Models . 13

2.4. Kernel-Based Learning . 14

2.5. Support Vector Machines . 17

2.6. Feature Sharing and Joint Training in Multi-class classification 21

2.7. Semi-supervised Learning Paradigm . 24

3. Sparse Generative Models for Protein Homology Detection 26

3.1. Background . 28

3.1.1. Profile hidden Markov models . 28

3.1.2. Sparse Profile Hidden Markov Models 30

3.2. Methodologies . 32

3.2.1. Objects of the investigation . 32

3.2.2. Making inference in a sparse profile HMM 33

vii

3.2.3. The automated learning procedure 33

3.3. Results and Discussion . 37

3.3.1. Selection of optimal order for sparse profile hidden Markov models 37

3.3.2. Classification performance on UNIPROT 41

3.3.3. Discussion . 41

3.4. Conclusion and future work . 42

3.5. Acknowledgments . 43

4. Sparse Discriminative Models for Protein Homology Detection . . . 44

4.1. Related works . 46

4.2. Proposed features and methods . 47

4.2.1. Feature extraction and dimensionality reduction 47

4.2.2. Classification and feature selection via logistic regression 49

4.2.3. Interpretation of the logistic model with the proposed features . 49

4.2.4. Use of sparsity-enforcing Regularizers 51

4.2.5. A similar setting with SVM . 52

4.3. Experiments and results . 52

4.3.1. The sparse models . 56

4.4. Relationship to kernel methods . 60

4.4.1. Comparison with the spectrum-k kernel 61

4.5. Conclusion . 63

5. Joint Training and Feature Sharing for Protein Remote Homology

Detection . 64

5.1. Complexity of the joint training framework 65

5.2. Experimental Results . 66

5.2.1. The sufficient statistics . 66

5.2.2. The mismatch(5,1) features . 67

5.2.3. Discussion . 70

5.3. Conclusion . 71

viii

6. Fast and Accurate Semi-supervised Protein Homology Detection with

Large Uncurated Sequence Databases . 72

6.1. Background . 73

6.1.1. The sequence neighborhood kernel 74

6.2. Proposed methods . 75

6.2.1. The sparse spatial sample kernel 75

6.2.2. Extracting relevant information from the unlabeled sequence database 78

6.2.3. Clustering the neighboring sets 80

6.3. Results on Previously Published Methods 81

6.3.1. The SCOP data set . 82

Supervised learning . 82

Semi-supervised learning . 83

6.4. Experimental Results on Our Proposed Methods 85

6.4.1. Experimental results without clustering 87

6.4.2. Experimental results with clustering 88

6.4.3. Comparison with other state-of-the-art methods 90

6.5. Discussion . 94

6.5.1. Motivation for extracting relevant regions 94

6.5.2. Biological Motivation of the spatial feature sets 95

6.5.3. Complexity comparison . 97

6.5.4. Kernel-induced data manifolds 97

6.6. Conclusion . 98

6.7. Acknowledgments . 99

7. Conclusion . 100

References . 103

Vita . 109

ix

List of Tables

3.1. Number of critical positions vs performance for Beta-Galactosidase (left)

and Cadherin (right) . 39

3.2. Performance measure of the models against UNIPROT 41

4.1. Mean ROC and ROC-50 scores for different homology detection methods 55

5.1. Mean ROC and ROC-50 scores for different number of selected features

using sufficient statistics as features. 67

6.1. Comparison of the performance on the SCOP 1.59 data set under the

supervised setting. 84

6.2. Comparison of the performance under the semi-supervised setting with

the unlabeled sequences extracted from SCOP1.59 85

6.3. The overall prediction performance of all compared methods over various

unlabeled data sets. 86

6.4. The overall prediction performance of all compared methods over various

unlabeled data sets with clustering the neighbor sets. All neighbor sets

are clustered on a 70% sequence identity level and representatives of each

cluster are chosen to form a reduced neighbor set. 89

6.5. The experimental running time (seconds) for constructing the (2862-by-

2862) kernel matrices on each unlabeled data set under different settings.

The experiments are performed on a 3.6GHz CPU. 90

6.6. The overall prediction performance of all compared methods over various

unlabeled data sets. For spatial kernels, all reported scores are based on

extracting the most significant region and performing clustering on the

neighbor sets. 91

x

6.7. Statistical significance (p-values of the Wilcoxon signed-rank test) of the

observed differences between pairs of methods (ROC50 scores) on unla-

beled data sets. Triple denotes the triple-(1,3) neighborhood kernel, dou-

ble denotes the double-(1,5) neighborhood kernel, mismatch denotes the

mismatch(5,1) neighborhood kernel, and profile denotes the profile(5,7.5)

kernel. 92

6.8. Experimental running time of all methods based on all sequences in the

SCOP 1.59 data set. The size of the kernel is 7329-by-7329. For triple and

double kernels, under the semi-supervised setting, the reported running

time are based on extracting relevant regions and performing clustering

on neighboring sets. 94

xi

List of Figures

1.1. Structural Classification of Protein (SCOP) [47]: proteins in the same

family have clear evolutionary relationship and moderate sequence con-

servation; proteins in the same superfamily are likely to share a common

evolutionary origin and are typically low in sequence conservation. . . . 2

2.1. Left panel: A Naive Bayes classifier; The arrows point from the label Y

to the sample space X, indicating assumption or knowledge of the sample

distribution given the label. Further, absence of arcs between all pairs

of random variables indicates that all random variables are mutually

independent given the class (conditional independence). Right panel: A

Logistic Regression classifier, the discriminative counterpart of a Naive

Bayes classifier. Note that the arrows point in the reversed direction,

indicating absence of assumption regarding the sample distribution. . . 9

2.2. A Hidden Markov Model . 12

2.3. An example of two classes (’o’ represents negative class) that are linearly

separable. A support vector machines aims to maximize the margin

between the two classes. 17

xii

2.4. A toy example with four classes: red (crosses), green (squares), blue (di-

amonds) and black (triangles) with the yellow (dots) class as the back-

ground. The features are the vertical and horizontal coordinates. Each

pair of neighboring classes shares a common feature. For example, the

cross and triangle classes share the horizontal feature and therefore form

a mega-class based on this feature; such feature must be within a range

for an example to be considered a member of the mega-class. Sub-figure

(a) shows the ground truth. Sub-figure (b) shows the decision boundary

after 10 boosting rounds. Sub-figure (c) shows the decision boundary

after 20 boosting rounds. The employed weak classifier is the tree stumps. 23

3.1. Left panel: a multiple alignment; the positions marked by an asterisk

correspond to a match state in the estimated PHMM. Right panel: a

profile hidden Markov model . 29

3.2. Sparse profile HMM. Shown is a multiple alignment of a set of protein se-

quences with a corresponding sparse profile states n1, c1, n2, c2. Residues

corresponding to critical states ci are shaded. Also depicted are examples

of duration distributions dni
. Note the small number of critical positions

as well as the sparseness of the distance distribution. 31

3.3. The automated learning procedure. 35

3.4. Performance (recall and precision) as a function of the number of key

positions for (a) beta Galactosidase and (b) Cadherin models constructed

from two ASTRAL seeds. 38

3.5. Empirical distribution of log likelihood ratio scores of sequences in Swiss-

Prot as a function of number of key positions in the Cadherin model (solid

line). We also show the fitted extreme value distribution in dashed lines.

As the number of critical positions increases, we observe better separation

(larger margin) between the members and non-members of the superfamily. 40

4.1. A schematic depiction of our hybrid model. 48

4.2. The density functions of a standard Gaussian (solid line) and a standard

Laplacian (broken line) distributions. 52

xiii

4.3. Comparison of performance of the full and reduced feature sets. The

classifier used here is the logistic classifier with Normal prior. Panel

(a) shows the number of families whose ROC-50 scores are better than

a given threshold for the sets of full and reduced features. Panel (b)

depicts the pairwise scatter-plot of ROC-50 scores for the two classifiers

utilizing these two sets of features. 55

4.4. Comparison of performance of mismatch(5,1) kernel, SVM-Fisher, and

logistic model with Normal and Laplacian priors. Panel (a) shows the

number of families whose ROC-50 scores are better than a given thresh-

old. Panel (b) shows the detail plot of the high ROC-50 score region of

(a). Panel (c) shows the pairwise scatter-plot of ROC-50 scores for the

logistic model with Normal prior and the mismatch(5,1) kernel. Panel

(d) shows the pairwise scatter-plot of ROC-50 scores for the logistic mod-

els with Normal and scatter-plot of ROC-50 scores for the logistic models

with Normal and Laplace priors. 56

4.5. Panel (a): The HMM-logo of the plant defensins family (under the scor-

pion toxin-like superfamily. We obtain this logo from PFam. Panel (b):

The schematic representation of the plant defensins family suggested by

PFam and PROSITE. 58

4.6. Panel (a): The sum of the positive coefficients in each position for the

Plant defensins family. Panel (b): The primary and secondary structure,

in schematic diagrams, of eight sequences belonging to the this family.

We obtain the diagrams from PDBsum. 59

4.7. Panel (a): The HMM-logo of the short-chain scorpion toxins family. This

logo is obtained from PFam. Panel (b): the schematic representation of

this family suggested by PFam and PROSITE. 60

xiv

5.1. ROC50 curve for the sufficient statistics features and full mismatch(5,1)

features. The horizontal axis represents a given ROC50 score and the ver-

tical axis denotes the number of experiments, out of 54, achieved higher

than or equal to the specified ROC50 score. For sufficient statistics, the

number of selected features is denoted by the number of rounds. The

ROC50 curve of mismatch(5,1) is achieved using the full set of features,

which corresponds to 3, 200, 000 features . The sub-figure in the right

panel is a detailed view of the curves in the high ROC50 area. 67

5.2. ROC50 curve for the mismatch(5,1) features. In the left panel, we

show the performance of boosted tree stumps with 100, 200, 300, 400

and 500 iterations (solid color lines) over 652 pre-selected features us-

ing the χ2 scores. We also compare with the kernel induced by the full

mismatch(5,1) features (black dashed line) and the kernel induced by the

pre-selected features (black line with ’+’ sign). In the right panel, we

pre-select 3634 features using χ2 score with knowledge of the positive test

sequences. We compare the boosted tree stumps with 200, 400, 600, 800

iterations (solid color lines), the kernel induced by the full mismatch(5,1)

feature set (black dashed line) and the kernel induced by the pre-selected

features (black line with ’+’). 69

6.1. Contiguous k-mer feature α of a traditional spectrum/mismatch kernel

(top) contrasted with the sparse spatial samples of the proposed kernel

(bottom). 76

6.2. Differences in handling substitutions by the mismatch and spatial fea-

tures. We represent all common features between the original and the

mutated strings, S and S′, with bold fonts and red (light) color. Each

symbol ’X’ under the mismatch representation represent an arbitrary

symbol in the alphabet set Σ. As a result, each feature basis corresponds

to |Σ| features. 77

6.3. Extracting only statistically significant regions (red/light color, bold line)

from the significant hit reported by PSI-BLAST 80

xv

6.4. Left panel: Comparison of the performance (ROC50) in the supervised

setting. Right panel: Comparison of the performance (ROC50) in a semi-

supervised setting using SCOP 1.59 as the unlabeled data set. Spatial

triple kernel outperforms both profile and mismatch neighborhood kernels. 85

6.5. The ROC50 plots of four competing methods using the triple-(1,3) fea-

ture set with PDB, Swiss-Prot and NR databases as unlabeled data sets,

respectively. The ROC50 curves of the method that only extracts rel-

evant regions from the neighboring sequences consistently show strong

dominance over all competing methods. 88

6.6. In the upper panel, we show the ROC50 plots of three different features

using PDB, Swiss-Prot and NR databases as unlabeled data sets, re-

spectively. In the lower panel, we show the scatter-plot of ROC50 scores

of the triple-(1,3) kernel (vertical) and the profile(5,7.5) kernel (horizon-

tal). Any point above the diagonal line in the figures (d),(e),(f) indicates

better performance for the triple-(1,3) kernel. 93

6.7. The importance of only extracting relevant region from neighboring se-

quences (in the middle): in the figure, the colors indicate the member-

ship: yellow (shaded) indicates membership of the positive class and

green (pattern) indicates membership of the negative class. The goal is

to infer the label of the test (unshaded) sequences via the intermediate

neighboring sequences. The arcs in the figure indicate (possibly weak)

similarity and absence of arcs indicates no similarity. The black boxes in

the sequence correspond to the shared features. 95

6.8. The benefit of multi-resolution sampling: in the presence of both muta-

tions and insertions, the spatial kernel still captures substantial amount

of similarities in such moderately conserved region; on the other hand,

the mismatch kernel, which performs fixed-resolution sampling captures

little similarity among related sequences. 96

xvi

6.9. Kernel-induced data manifold for the FAD/NAD(P)-binding domain su-

perfamily (C.3.1) with 4 families under the supervised and semi-supervised

settings for spatial (triple(1,3)) and spectrum-like (mismatch(1,5) and

profile(5,7.5)) kernels on the SCOP 1.59 data set. The green (darker)

and yellow (lighter) nodes are the training and testing sequences, respec-

tively. The numbers in the nodes index the sequences. 99

xvii

1

Chapter 1

Introduction

One of the main problems of the post-genomic era is the ability to classify a genomic

or amino acid sequence into its proper protein family, and thereby to predict, to some

degree of approximation, its structure and function. However, the gap between the

decoded sequences and classified proteins is quickly widening with the advent of large-

scale sequencing techniques. Currently there are more than 61 million DNA sequences

in GenBank [6] and approximately 349, 480 annotated and 5.3 million unannotated se-

quences in UNIPROT [3], thus making development of computational aids for sequence

annotation based on primary sequence only a critical and timely task. In this work,

we focus on the problem of predicting protein remote homology (superfamily) based on

the primary sequence information since it is inexpensive.

In the context of Structural Classification Of Proteins (SCOP) [47], a manually

curated protein data set derived from PDB [7], sequences are grouped in a tree hierarchy

containing classes, folds, superfamilies and families, from the root to the leaves of

the tree. The leaf level represents the family; proteins in the same family have clear

evolutionary relationship. Proteins in the same superfamily, one level above, are likely

to share a common evolutionary origin and therefore perform similar functions. Proteins

in the same fold, one level further above, share a common three-dimensional pattern

and have the same major secondary structures in the same arrangement and with

the same topological connections. Remote homology detection means classification of

protein sequences on the superfamily level. The difficulty of the task arises from low

primary sequence identities among proteins in the same superfamily. We depict the

SCOP assignment in Figure 1.1.

Initial approaches to computationally-aided homology detection involved methods

2

Figure 1.1: Structural Classification of Protein (SCOP) [47]: proteins in the same family
have clear evolutionary relationship and moderate sequence conservation; proteins in
the same superfamily are likely to share a common evolutionary origin and are typically
low in sequence conservation.

such as BLAST [62] and FASTA [63], both of which rely on aligning the query sequence

to a database of known sequences (pairwise alignment). However, the weakness of the

pairwise approach is its lack use of data: alignment is performed on the query sequence

to each of the sequences in the database one at a time without leveraging knowledge

from multiple sequences exhibiting similar features. To overcome the shortcomings of

the pairwise comparison framework, later methods based on profiles [24] and profile

hidden Markov models [19] collect aggregate statistics from a group of sequences known

to belong to the (super)family of interest. The statistics are compiled to construct one

or a library of models [23]. Upon query time, we align an unknown sequence to all

models derived from multiple alignments to detect a significant hit.

Profile hidden Markov models have demonstrated great success in protein homology

detection. The linear structure of a profile HMM offers direct interpretation to the

underlying process that generates the sequences. However, as generative models, profile

HMMs are estimated from sequences known to belong to the same functional group

(positive sequences) and do not attempt to capture the differences between members

(positive sequences) and non-members (negative sequences). Also, various studies have

shown that profile HMMs are unable to detect members with low sequence identity,

which typically occurs in remote homology detection problems (on the superfamily

3

level). On the one hand, there is no doubt that the methods described above have been

very successful, but on the other hand, they all become less reliable when more distant,

less homologous proteins are considered.

To overcome the deficiencies of generative models, Jaakkola et al. proposed SVM-

Fisher in [30]. The idea is to combine a generative model (profile HMM) with a dis-

criminative model (support vector machines, SVM) and perform homology detection in

two stages. In the first stage, the generative model, trained with positive sequences only,

extracts fixed-length features from all sequences (positive and negative). In the second

stage, given the features, the discriminative model constructs the decision boundary

between the two classes. Also, in [45] Liao et al. estimate the similarity between two

sequences induced from a generative model. The authors then use the estimated simi-

larity values to construct a kernel matrix and perform remote homology detection with

kernel-based learning techniques (SVM). Finally, in [35] Kuang et al. represent each

sequence as a generative model and define the similarity between two sequences as the

size of intersection of the local neighborhood induced by the generative models.

The class of direct string kernels, on the other hand, bypasses the need of a genera-

tive model and directly estimate the decision boundaries of the discriminative models.

Similar to the profile kernel, the spectrum kernel [42] and the mismatch kernel [43] de-

termine the similarity between two sequences as a function of the size of the intersection

of the local neighborhood induced by the observed substrings within the sequences. The

two methods operate directly on the strings without estimating any generative model.

The same group of authors also proposed similar direct string kernels based on related

principles such as the gapped kernel, the substitution kernel and the wildcard kernel

in [41]. However, among all the proposed kernels, the mismatch kernel remains the

state-of-the-art. Finally, in [46], Lingner et al. proposed a class of kernels based on

the distance distribution among substrings in the sequences. The distance-based direct

string kernels outperform the mismatch kernel.

We summarize the crucial differences between the generative and discriminative

models in the following. First, discriminative learning involves participation of nega-

tive examples whereas in generative learning only positive examples participate in the

4

estimation procedure. Consequently, in discriminative learning we use more samples

(positive and negative) to estimate a classifier. A discriminative classifier usually has

fewer parameters to estimate when compared to its generative counterpart. Second, dis-

criminative learning focuses on identifying the difference between two groups of examples

whereas generative learning focuses on modeling the commonly shared characteristics

within a group. Since there is no guarantee that no negative examples can posses such

a characteristic, generative models are more susceptible to falsely detect a hit than

the discriminative models. The advantage of the discriminative models for the pro-

tein remote homology detection task largely comes from the use of negative examples

since labeled examples are scarce. We will further discuss generative and discriminative

learning in Section 2.1.

In this study, we present a series of methods for the remote homology detection task.

First in Chapter 3 we start from a set of sparse generative models that focus on a small

set of positions and residues in protein sequences, based on studies [34, 55, 33] showing

that a small number of key residues in a sequence (some 10-20% of the sequence) are

characteristic and specific for a given superfamily. In the study, we describe an auto-

mated procedure to uncover such critical positions and encode the captured information

as a set of probabilistic patterns in sparse profile HMMs. We show that a four-fold com-

pression in model complexity can be achieved while maintaining the performance. Our

further investigation reveals that while some remotely homologous (positive) sequences

skip some less conserved critical positions, another group of unrelated (negative) se-

quences partially conform to the imposed probabilistic pattern, which motivate the use

of discriminative models for the protein remote homology detection task, since the gen-

erative models focus on capturing the commonly shared characteristics among a group

and do not guarantee that such characteristic will be absent in other unrelated groups.

Next, in Chapter 4 we present a hybrid framework as in [30] and propose a set of

biologically motivated features extracted from the generative models. We also propose

to use a sparse discriminative classifier to select the key features. We test the hypoth-

esis again on a larger benchmark data set used in various studies and show that the

combination of the features and sparse classifiers demonstrate comparable performance

5

with the state-of-the-art methods. The combination of the biologically motivated fea-

tures and the sparse discriminative classifier also offers simple and biologically intuitive

interpretation for each superfamily. We are able to recover the critical positions, the

positions that are conserved throughout evolution.

In Chapter 5, we attempt to take advantage of the presence of hierarchy of class ex-

hibited in protein sequences. We employ the joint training and feature sharing learning

paradigm by experimenting on two sets of features. First a generative model extracts

the sufficient statistics (model-based) as features and second a set of features directly

derived from the observed sequences (string-based). Under such learning setting, our

experiments show that while use of sufficient statistics demonstrate good performance

with very few features, relying on different feature extractors for different superfamilies

hinders joint training and feature sharing. On the other hand, though joint training

and feature sharing is possible using features that are directly derived from the ob-

served strings, the high dimensionality and complex correlation structure among the

string features severely degrade the performance. As a result, features that have fixed

dimensionality and are mutually orthogonal might have the most potential of benefiting

from the joint training and feature sharing setting.

Finally, in Chapter 6 we present a systematic and biologically motivated frame-

work for leveraging unlabeled data using large uncurated sequence databases. First,

we propose to use a previously established kernel, the Sparse Spatial Sample Kernels

(SSSK). This class of biologically motivated kernels model mutation, insertion and dele-

tion effectively and induce low-dimensional feature space; moreover, the computational

complexity of kernel evaluation based on feature matching is independent of the size of

the alphabet set and such key characteristics opens the door for rapid large-scale semi-

supervised learning. Second, we propose a biologically meaningful way of extracting

relevant information from the unlabeled database for semi-supervised learning. Third

we propose a method to remove the bias caused by overly represented or duplicated se-

quences which are commonly seen in uncurated sequence databases. Our experimental

results show that the combination of these approaches yields state-of-the-art perfor-

mance that are significantly better than previously published methods and also exhibit

6

order-of-magnitude differences in experimental running time.

We organize our work in the following way. In Chapter 2, we present an overview

of the computational tools that we use for the study. We keep the discussion at a

general level and leave the specific details regarding how the methods are used for later

chapters. In the subsequent four chapters, we demonstrate in detail the three pieces of

major works mentioned in the previous paragraph chronologically. Finally, we give a

conclusion of our study and discuss our future works.

7

Chapter 2

Background and Related Works

2.1 Generative and Discriminative Learning

In a classification problem, one aims to learn or approximate an unknown target function

f : X → Y , or P (Y |X), where X is a random sample drawn from the sample space

and Y the label or class of X. When using generative classifiers we search for the

parameters θ∗ = argmaxθ∈Θ PΘ(X,Y) by maximizing the joint probability, where Θ

denotes the parameter space. We then obtain Pθ(Y = y|X = x), the probability of an

example X = x belonging to class Y = y using the Bayes Rule:

Pθ(Y = y|X = x) =
Pθ(X = x|Y = y)Pθ(Y = y)

∑

y′∈Y Pθ(X = x|Y = y′)Pθ(Y = y′)
. (2.1)

With discriminative classifiers on the other hand we search for θ∗ = argmaxθ Pθ(Y |X)

by directly maximizing the conditional probability. Once we obtain the optimal pa-

rameters with respect to the model, we estimate P (Y = y|X = x) directly with θ∗.

For both classes of classifiers, the final prediction usually is made using the following

decision rule:

y∗ = argmax
y∈Y

Pθ∗(Y = y|X). (2.2)

Estimating the parameters of a generative model typically involves estimating P (Y =

y) and P (X = x|Y = y),∀x ∈ X, y ∈ Y . The second term requires knowledge or as-

sumption of the sample space under each label, y. However, when such assumption is

inconsistent with the truth, the injected bias will degrade the performance of the esti-

mated classifiers. Discriminative classifiers on the other hand make no such assumption

and estimate P (Y = y|X = x) directly. As a consequence, discriminative models are

considered more robust. Comparisons between these two types of classifiers have been

8

the interest of various studies [50, 54, 57]. In the following, we motivate such com-

parison using two related classifiers: the Naive Bayes classifier as a generative model,

and the logistic regression classifier as a discriminative model, as was done by Ng et al.

in [50] and Mitchell in [49].

The generative classifiers operate under the assumption that given the class label,

the distribution of the sample is known. Let X = [X(1), X(2), · · · , X(d)], a random

vector with d random variables. Then for each class y ∈ Y , in addition to θy = P (Y = y)

we also need to estimate:

P (X(1) = x(1), X(2) = x(2), · · · , X(d) = x(d)|Y = y). (2.3)

If all features are discrete, without knowing the dependencies among the features, the

number of parameters we need to estimate in Equation 2.3 is exponential in d, leading to

the problem known as the curse of dimensionality. The Naive Bayes classifiers further

assume that all features are mutually independent given the class. Consequently, given

the class, the joint data likelihood reduces to a product:

P (X(1) = x(1), X(2) = x(2), · · · , X(d) = x(d)|Y = y) =

d
∏

i=1

P (X(i) = x(i)|Y = y)

=

d
∏

i=1

θyi. (2.4)

Equation 2.4 indicates that the number of parameters we need to estimate now is lin-

ear in d. We show a Naive Bayes classifier in Figure 2.1(a). In the figure, the arrows

point from the label Y to the sample space X, indicating assumption or knowledge of

the sample distribution under the label. Further, absence of arcs among all random

variables suggests that all random variables are mutually independent given the label

(conditional independence). We also show a logistic regression classifier, the discrimi-

native counterpart of Naive Bayes classifiers in Figure 2.1(b). Note that in the figure,

the arrows point in the reversed direction, indicating absence of assumption regarding

the sample distribution.

Like the Naive Bayes classifiers, the logistic regression classifiers also assume mutual

independence among all random variables. Denote |Y | as the number of classes, the

parameters need to be estimated are θyj , 1 ≤ y ≤ |Y | − 1, 0 ≤ j ≤ d, where j = 0

9

Y

X
d

X
2

X
1

…

(a) naive Bayes classifier
(generative)

Y

X
d

X
2

X
1

…

(b) logistic regression clas-
sifier (discriminative)

Figure 2.1: Left panel: A Naive Bayes classifier; The arrows point from the label Y
to the sample space X, indicating assumption or knowledge of the sample distribution
given the label. Further, absence of arcs between all pairs of random variables indi-
cates that all random variables are mutually independent given the class (conditional
independence). Right panel: A Logistic Regression classifier, the discriminative coun-
terpart of a Naive Bayes classifier. Note that the arrows point in the reversed direction,
indicating absence of assumption regarding the sample distribution.

corresponds to the constant term1. Let θy = {θyj}dj=0; the parametric form of the

posterior probability of logistic regression is:

P (Y = y|X = x) =

exp(θT
y x)

1+
P|Y |−1

y′=1
exp(θT

y′
x)

if y < |Y |,

1

1+
P|Y |−1

y′=1
exp(θT

y′
x)

if y = |Y |.

When the classification problem is binary, i.e. |Y | = 2, we have

P (Y = 1|X = x) = φ(θ1, x) =
exp(θT

1 x)

1 + exp(θT
1 x)

, (2.5)

where φ(.) is the cumulative distribution function (CDF) of a logistic distribution.

To establish the connection between the Naive Bayes and logistic regression classi-

fiers, consider a binary-class classification problem with only binary inputs. Under the

Naive Bayes classifier, we estimate P (Y = 1|X = x) using the Bayes rule. With some

simple algebraic manipulation, as discussed in [49], we obtain the following:

P (Y = 1|X = x) =
P (X = x|Y = 1)P (Y = 1)

∑

y∈{0,1} P (X = x|Y = y)P (Y = y)

=
θ1
∏d

i=1 θ
xi

1i (1− θ1i)
1−xi

θ1
∏d

i=1(θ1i)xi(1− θ1i)1−xi + θ0
∏d

i=1(θ0i)xi(1− θ0i)1−xi

=
1

1 + exp((ln θ0
θ1

+
∑d

i=1 ln 1−θ0i

1−θ1i
) +

∑d
i=1 xi(ln

θ0i(1−θ1i)
θ1i(1−θ0i)

))

=
1

1 + exp([1 xT]θ̃)
. (2.6)

1We need to augment the random vector X with X
′ = [1 X

T]T

10

Note that Equation 2.6 is exactly the parametric form of a logistic regression classifier,

suggesting that we can train a generative model discriminatively: instead of maximizing

the joint likelihood in Equation 2.4 and obtaining {θy}y∈Y and {θyi}di=1, by maximizing

the conditional likelihood of a Naive Bayes classifier directly with respect to θ̃, we obtain

a discriminative logistic classifier. The logistic classifier is also more economical in the

sense that we only need to estimate (|Y | − 1)(d+ 1) parameters, while for Naive Bayes

classifiers, we need to estimate |Y |(d+ 1) parameters. Equation 2.6 also suggests that

when the variables are discrete, both Naive Bayes and logistic regression classifiers define

linear decision boundaries in the input space. Such statement is in general not true

when the variables are continuous. Mitchell showed in [49] that the decision boundary is

still linear when the variables are normally distributed and share a common covariance

matrix Σ; however, when the variables do not share a covariance matrix, the decision

boundary is quadratic in the input space.

To estimate the parameters of a Naive Bayes classifier, we apply the maximum

likelihood or maximum a posterior principle and obtain the estimates in closed-form.

In contrast, estimating the parameters of a logistic regression classifier is more com-

putationally intensive and relies on iterative procedures. Several methods have been

proposed, for example the Iteratively Reweighted Least Squares (IRLS) or the cyclic

coordinate ascent algorithms. Since the objective function is convex, under mild condi-

tions (full rank outer product matrix) the estimate is guaranteed to be globally optimal.

In [50] Ng et al. discussed the accuracy and convergence properties of the Naive

Bayes and logistic regression classifiers. The authors concluded that regardless of the

truth or falsity of the assumption over the sample distribution under the labels; Naive

Bayes classifiers converge to its (lower) asymptotic accuracy at a higher speed. However,

with more training examples, the logistic regression classifiers finally reach its (higher)

asymptotic accuracy.

11

2.2 Hidden Markov Models

Hidden Markov models (HMMs) are probabilistic graphical models frequently employed

in signal processing, speech recognition, and sequence classification tasks. An HMM

has a set of states, S = {s1, s2, · · · , sn} and each state, when visited, emits an observa-

tion, chosen from a finite discrete 2 alphabet set Σ based on a probability distribution

specified by the emission matrix E; after a state si is visited, the next state sj to be

visited is selected based on another probabilistic distribution specified by the transition

matrix, A; finally, π is a probability distribution over all states, specifying the proba-

bility of the random process starting at each state. We summarize the mathematical

properties of Σ, A, E, and π in the following:

• Σ: a finite and discrete alphabet set with |Σ| = m.

• π = [π1 π2 · · · πn] ∈ rn, where r ∈ [0, 1] with
∑n

i=1 πi = 1.

• A ∈ rn×n, where r ∈ [0, 1]: Row i corresponds to state si. Element Aij specifies

P (St+1 = sj |St = si) with
∑n

j=1Aij = 1,∀i.

• E ∈ rn×m, where r ∈ [0, 1]: Row i corresponds to state si. Element Eil specifies

P (Xt = σl|St = si) with
∑m

l=1Eil = 1,∀i.

The process terminates at a pre-specified time or when the end state, if any, is visited.

We show a very simple HMM in Figure 2.2 in the state space.

HMMs are used when we only observe the output of a stochastic process and need

to obtain information on the sequence of states that emit the sequential observations.

We typically use an HMM to answer the following questions:

1. Given an observed string X = x1 x2 · · · xTX
, and a model H(π,A,E,Σ), what

is the most probable sequence of states, y1 y2 · · · yTX
, that generated X?

2. Given an observed string X = x1 x2 · · · xTX
, and an HMM model H(π,A,E,Σ),

what is P (X|H), the probability that model H generated X?

2HMMs with continuous or mixed emission will not be discussed in this study.

12

43

2 1

Figure 2.2: A Hidden Markov Model

3. Can we use our observation X to adjust H such that P (X|H) is optimal? (Op-

timality in this context means maximizing P (X|H) by adjusting the parameters

in H.)

As generative models, HMMs only require positive examples assumed to be generated

from the same source for training; an HMM attempts to capture common characteris-

tics shared by all training examples. Once the model H is adjusted using the training

examples with the forward-backward smoothing procedure (question 3), given an un-

known observed sequence Xnew we can obtain Y ∗, the most likely hidden sequence of

states that generated Xnew with the Viterbi algorithm (question 1), or we can sum over

all possible generating paths with forward or backward inference procedure (question

2) to obtain P (Xnew|H), the probability that H generated Xnew. We note that the

values P (Y ∗, Xnew|H) and P (Xnew|H) directly depend on the length of the sequence

TXnew : the longer the sequence, the smaller the probability. As a result, when the

final goal is to output a class membership (as oppose to labeling each observation with

a state membership), a decision rule cannot be devised using such quantities alone.

Common practices involve normalizing the negative log-likelihood, also called the score

of a sequence with the sequence length, resulting in the following decision rule:

c(X) = sign(− 1

TXnew

log(P (Xnew|H)) > δ), (2.7)

where δ is a pre-specified positive threshold. If the score is greater than δ, then we deter-

mine that the model H generated Xnew. Alternatively, in some other applications there

13

might beK > 1 competing models with the prior probabilities P (H(1)),P (H(2)),· · · ,P (H(K));

under such situation we assign the membership of Xnew with the following decision rule:

k∗ = argmax
k

P (Xnew|H(k))P (H(k))
∑K

k′=1 P (Xnew|H(k′))P (H(k′))
. (2.8)

Note this equation is consistent with Equation 2.2.

Finally, for a general HMM with n states, making inference on a sequence with

length T takes O(n2T) time. More details of inference algorithms can be found in [53].

2.3 Logistic Regression Models

We discuss the logistic regression classifiers introduced in Section 2.1 in further details

by assuming a binary-class setting (i.e. Y ∈ {−1,+1}). Generalization to a multi-

class setting is straightforward and can be found in [26]. Given the training examples,

D = {(xi, yi)}ni=1, the logistic regression model defines the probability of example xi

belonging to class +1 as:

P (yi = +1|xi, θ) = πi = ψ(θTxi) (2.9)

with the link function ψ(·). When we use the cumulative distribution function (CDF)

of a logistic distribution in place of ψ(·), we obtain a logistic regression model. Al-

ternatively, when we use the CDF of the standard normal distribution, we obtain a

probit [20, 21] regression model. Choice of different link functions usually does not

affect the result in any significant way. In this study, we focus our discussion on the

logistic model; To estimate the model, we search for θ∗,the parameter vector that max-

imizes the following joint likelihood function of the observed data, D:

P (D|θ) =

n
∏

i=1

1

1 + exp(−yix
T
i θ)

. (2.10)

Though no closed-form solution exists, any iterative gradient ascend method can be

employed to find the globally optimal solution of the convex likelihood function.

Use of the logistic model provides a simple and intuitive description of data. If the

assumption P (y = +1|x, θ) = ψ(θTx) holds, then the contribution of each predictor

variable x(j), 1 ≤ j ≤ d, is reflected in the corresponding model parameter θ(j). For a

14

binary predictor, the corresponding parameter being large in absolute value suggests

preference of presence (when positive) or absence (when negative) of feature x(j). For a

continuous predictor, the interpretation is similar; however, caution must be exercised

as the predictors may not have similar scales.

The parameter θ also offers a probabilistic interpretation. Define the odds of an

event with probability p of occurring as p
1−p

; then the odds of an example x belonging

to class +1 is:

odds(y = +1|x, θ) =
π

1− π = exp(θTx), (2.11)

where π is defined in Equation 2.9. Define a new example x′, such that x′(i) = x(i),∀1 ≤

i ≤ d, except x′(j) = x(j) + 1, meaning presence of the jth feature (when feature is

binary) or we increase the jth predictor of x by one unit (when feature is continuous).

The estimated odds of x′ having label +1, is:

odds(y′ = +1|x′, θ) = exp(θTx+ θ(j)) =
π

1− π exp(θ(j)). (2.12)

Equation 2.12 indicates that the odds now are multiplied by exp(θ(j)) when we increase

x(j) by one unit (when x(j) is continuous) or when the feature represented by x(j) is

present (binary).

Finally, the Bayesian learning paradigm naturally incorporates our prior belief upon

the structure of the models. If we expect the model to be sparse (most of the parameter

values are zero), we place a prior distribution centered at the origin on the parameters.

Two popular sparsity-enforcing priors are Gaussian and Laplacian. We will discuss the

effects of these two priors on logistic regression models in Section 4.2.4.

2.4 Kernel-Based Learning

We motivate this section with the least squares (linear) regression problem. Given a set

of input and output pairs {(xi, yi)}ni=1 with Y ∈ R, the goal is to estimate a function

f(x, β) = xTβ such that the sum of squared differences between the target outputs and

the predicted outputs is minimum:

β̂ = argmin
β

(y −Xβ)T (y −Xβ), (2.13)

15

where X = [x1 x2 · · · xn]T , the n-by-(d+ 1) design matrix (with the intercept term),

y = [y1 y2 · · · yn]T and all xi’s are augmented to accommodate the intercept term. If

the inverse of the square matrix XTX exists, we have a closed-form solution for the

least squares problem:

β̂ = (XTX)−1XT y, (2.14)

and the optimal hypothesis (parameter) β̂ is unique. However, when the data set is

small (n < d), the matrix XTX is singular and its inverse does not exist. A general

remedy for singularity is to add a constant λ to the diagonal of the matrix, resulting in

the ridge regression problem. Consequently, with proper choice of λ the solution is:

β̂ = (XTX + λI)−1XT y, (2.15)

where I denotes a (d+ 1)-by-(d+ 1) identity matrix.

We typically want a hypothesis that is consistent with the data and have low com-

plexity, or equivalently, a hypothesis with generalization power for future unseen data

to avoid overfitting. One popular and well-established method of controlling the com-

plexity is to minimize the norm (length) of β and the sum of squares simultaneously.

Minimizing the 2-norm of β leads to the following objective function:

β̂ = argmin
β

1

2
λβTβ + (y −Xβ)T (y −Xβ), (2.16)

where λ ∈ R controls how the regularization term βTβ influences the final hypothesis.

Note that if λ = 0, we have the original least squares problem in Equation 2.13. To ob-

tain β̂, we set the derivative of Equation 2.16 to 0. With some algebraic manipulations,

as shown in the following, we have

∂

∂β
[
1

2
λβTβ + (y −Xβ)T (y −Xβ)]

set
= 0 (2.17)

−XT y + (XTX)β + λβ = 0 (2.18)

β̂ = (XTX + λI)−1XT y. (2.19)

First, note that Equations 2.19 and 2.15 are identical and this establishes the connec-

tion between ridge regression and regularization. Moreover, adding a constant to the

16

diagonal of the matrix XTX is equivalent to placing a set of mutually independent zero-

mean normal distributions as prior distributions on the hypothesis under the Bayesian

learning paradigm3. Finally, deriving the solution in an alternative way reveals that β

is a linear combination of inputs:

∂

∂β

1

2
λβTβ +

n
∑

i=1

(

yi − xT
i β
)2 set

= 0 (2.20)

=⇒ β̂ =

n
∑

i=1

(

yi − xT
i β

λ

)

xi = XTα. (2.21)

Expressing β as a linear combination of the input opens the door for kernel-based

learning. Replacing β with XTα in the objective function, we obtain:

λαTXXTα+ yT y − 2yTXXTα+ αTXXTXXTα (2.22)

= λαTKα+ yT y − 2yTKα+ αTKKα. (2.23)

The matrix K = XXT is an n-by-n kernel matrix4, with each element K(i, j) represent-

ing the inner product (similarity) between two examples xi and xj . The significance of

the kernel matrix is that training and testing examples need not have explicit represen-

tations: all is required is the inner product of any two points in the feature space. Such

property is crucial when the dimensionality of the feature space is high or when map-

ping the examples to a very high-dimensional space is necessary; Let φ(.) : x 7→ φ(x)

be such a mapping function, with φ(x) ∈ Rd′ and d′ large. Explicit mapping of φ(x)

and performing inner product directly in the kernel space might incur prohibitive com-

putational cost; however, if we can perform implicit evaluation of φ(x)Tφ(y) efficiently,

we can apply kernel-based learning techniques to solve the problems at hand.

Solving the problems described in Equations 2.23 and 2.16 will yield identical solu-

tion. The crucial difference is that, in Equation 2.16 the hypothesis β is d-dimensional

whereas in Equation 2.23, the hypothesis α is n-dimensional. In some problems where

obtaining training points is costly and/or d≫ n, estimating β is impractical even with

3Minimizing 1-norm corresponds to placing a set of mutually independent Laplacian (double expo-
nential) distributions as prior distributions on the hypothesis.

4Some literature refer to X
T
X as the Gram matrix.

17

Figure 2.3: An example of two classes (’o’ represents negative class) that are linearly
separable. A support vector machines aims to maximize the margin between the two
classes.

heavy regularization since inverting the outer-product matrix requires O(d3) time. Ker-

nel learning offers a practical alternative: each αi in α corresponds to an example xi

and obtaining α typically requires O(n3) time. Once we have α, we can obtain β using

β =
∑n

i=1 αiφ(xi), if explicit representation of φ(x) is available. The program described

in Equation 2.23 is called the dual form of the primal program described in 2.16. Note

that in the last term of the objective function in Equation 2.23, α appears as a quadratic

term, suggesting that to solve α we need to solve a quadratic programming problem.

The analysis indicates that we can think of kernel-based learning as learning in the

kernel-induced space with regularization. Once the kernel matrix is available, we can

apply various data analysis techniques such as kernel nearest neighbor analysis, kernel

Fisher discriminant analysis [48], kernel principal component analysis [59], and kernel

logistic regression [70]etc. In the next section, we introduce support vector machines

(SVM), a class of discriminative classifier that learns in the kernel space.

2.5 Support Vector Machines

Given a set of linearly separable training data, {(xi, yi)}ni=1, X ∈ Rd, Y ∈ {−1,+1}, a

support vector machine (SVM) [67, 15, 12] aims to produce a hypothesis that is con-

sistent with the data and maximizes the margin. The example is depicted in figure 2.3

with the he symbol ’o’ representing the negative class and the symbol ’x’ the positive

18

class. The hyperplane that maximizes the margin is H, characterized by its normal

vector, w; the dotted hyperplanes H1 and H2 are both parallel to H with training

examples lying on them. The margin is defined as the vertical distance between the

parallel hyperplanes H1 and H2. Expressed mathematically, given a set of linearly

separable data, an SVM solves the following problem:

maximize : d

subject to : xT
i w + b ≥ 1, ∀i : yi = +1

xT
i w + b ≤ −1, ∀i : yi = −1. (2.24)

For any point x+ lying on H2 the following must be true:

(x+)Tw + b = 1. (2.25)

Likewise, for any point o− lying on H1, we have:

(o−)Tw + b = −1. (2.26)

Equations 2.25 and 2.26 together imply:

(x+ − o−)T

wTw
w =

2

wTw
w. (2.27)

Note that the term on the left-hand side is the projection of the vector (x+− o−) on w

and the length of the projection is the margin, d:

√

(
2

wTw
)2wTw =

2

‖w‖2
= d. (2.28)

Equation 2.28 implies that to maximize the margin d, we minimize the 2-norm of w,

leading to the following equivalent program:

minimize :
1

2
‖w‖22

subject to : xT
i w + b ≥ 1, ∀i : yi = +1

xT
i w + b ≤ −1, ∀i : yi = −1. (2.29)

The program in 2.29 seeks a hypothesis w, with minimum 2-norm, that is consistent with

the data. Such formulation has been discussed in Section 2.4 as a form of regularization.

19

The term 1
2 was added for mathematical convenience. The Lagrangian of the program

is:

LP (w, b, α) =
1

2
wTw −

n
∑

i=1

αi[yi(x
T
i w + b)− 1], (2.30)

where all αi’s are the Lagrange multipliers. Setting the derivatives of the Lagrangian

with respect to w and b to zero, we obtain:

w =

n
∑

i=1

αiyixi = XTα (2.31)

n
∑

i=1

αiyi = 0. (2.32)

Equation 2.31 implies that the final solution w is a linear combination of the input.

Substituting Equations 2.31 and 2.32 back into Equation 2.30, we obtain the dual

form:

LD(w, b, α) =

n
∑

i=1

αi −
1

2
αTKα. (2.33)

Therefore, maximizing the primal program in Equation 2.30 is equivalent to minimizing

the dual program in Equation 2.33. The kernel matrix K = XXT in Equation 2.33

implies that SVM is capable of maximizing the margin and estimating a linear classifier

in the (high-dimensional) kernel-induced space. Together with the kernel-based learning

techniques discussed in Section 2.4, we can achieve such learning efficiently given that

we can compute the kernel matrix efficiently.

The KKT complementarity conditions state that the optimal solution, (α∗, w∗, b∗)

must satisfy the followings:

α∗
i [yi(x

T
i w

∗ + b∗)− 1] = 0, and (2.34)

α∗
i ≥ 0, (2.35)

for all 1 ≤ i ≤ n. Moreover, in Equation 2.34 either α∗
i = 0 or yi(x

T
i w

∗ + b∗) − 1 = 0

is true but not both. Therefore, we know that ∀i : yi(x
T
i w

∗ + b∗) − 1 6= 0, α∗
i must

vanish and ∀i : yi(x
T
i w

∗ + b∗) − 1 = 0, α∗
i > 0. Consequently, the points with weight

α∗
i > 0 lie on hyperplanes H1 or H2 in figure 2.3 and are called the support vectors.

20

The support vectors jointly define the decision boundary H. The Lagrange multipliers

α serve as dual variables and also give intuition about the importance of each training

point. The examples with α∗
i = 0 are not considered important and do not affect the

decision boundary in any way; therefore, if removed, the decision boundary H stays

intact whereas removing any examples with α∗
i > 0 re-defines the decision boundary.

In many applications, expecting linear separability among the training examples in

the kernel-induced space may not be practical since noise might be present in the data.

Violation of the linear separability constraint results in no feasible region in the primal

space and consequently, an unbounded objective function. To remedy such situation,

we need to introduce the slack variables ξ. Each slack variable represents the vertical

distance between the corresponding example and H, provided that the examples falls

on the wrong side of H. With ξ, we have a new program:

minimize :
1

2
‖w‖22 + C‖ξ‖

subject to : xT
i w + b ≥ 1− ξi, ∀i : yi = +1

xT
i w + b ≤ −1 + ξi, ∀i : yi = −1,

ξi ≥ 0, ∀1 ≤ i ≤ n (2.36)

where C is a parameter controlling the tolerance for misclassification. Similar analysis

used earlier in this section can be applied to show that the dual form of program

in 2.36 induces a kernel matrix and explicit representation of the data is not necessary.

The support vector machines constructed from the linearly separable and non-linearly

separable cases are also called the hard margin and soft margin support vector machines,

respectively. When the classes are linearly separable in the kernel space, use of soft

margin SVM usually results in smoother decision boundaries. Once we obtain α∗, the

decision rule for classification given an example x is:

ŷ = sign(
∑

i:α∗>0

α∗
i yiK(x, xi)). (2.37)

Equation 2.37 only relies on the kernel value and again does not require explicit rep-

resentation of any example. Additionally, only the support vectors participate in the

decision, suggesting that SVM is a model sparse in the number of support vectors, not

21

to be confused with a model sparse in the number of non-zero parameters. Finally, one

may use any standard quadratic programming package to obtain an SVM. For more

details, please refer to [67, 12, 15].

2.6 Feature Sharing and Joint Training in Multi-class classification

Many frameworks have been proposed in the past decade to solve the multi-class clas-

sification problem (|Y | > 2). First, under the one-vs-all5 framework, we independently

train |Y | binary classifiers, f(Y = y|X), ∀y ∈ Y , with positive examples from class

y and negative examples from all other classes y′ 6= y and assign class membership to

a new example xnew with Equation 2.2. Second, under the all-vs-all6 framework, we

estimate
(|Y |

2

)

binary classifiers for all pairs of classes (y, y′), y, y′ ∈ Y, y 6= y′ and as-

sign membership to a new example by voting. Third, In [68, 67], the authors proposed

to solve a single optimization problem which simultaneously finds |Y | classifiers, in

contrast to the one-vs-all framework, where |Y | optimization problems are solved inde-

pendently. Finally, under the error-correcting code [17] framework, we train L 7 binary

classifiers independently and combine the results of the binary classifiers to perform the

classification task. Note that both one-vs-all and all-vs-all frameworks are special cases

of the error-correcting code framework. Rifken et al. presents a more detailed review

and comprehensive comparison of these approaches in [56].

In some applications, the classes form a hierarchy. For example, in an object classi-

fication problem, we expect the classes television and computer monitor to share many

features and form a sub-cluster under a larger class, say, electronics. Likewise, pro-

teins naturally form a hierarchy due to their structural and functional similarities. The

classifiers trained under the one-vs-all, all-vs-all and one-single-machine frameworks

mentioned in the previous paragraph do not exploit the presence of the hierarchy and

the similarities among subsets of classes, which might result in sub-optimal performance

of classifiers. In [65, 64], Torralba et al. proposed the idea of joint training and feature

5Also known as one-vs-rest.

6Also known as one-vs-one.

7L need not equal to |Y |.

22

sharing. The proposed method, closely related to the error-coding framework, attempts

to exploit the presence of such existing hierarchy. The central idea is to form mega-

classes in which all participating classes jointly share a feature. These mega-classes

are then combined with boosting [58] to estimate a multi-class classifier capable of dis-

criminating objects from |Y |+ 1 class, where the last class is treated as background or

everything else. The authors stated that the joint training and feature sharing frame-

work needs fewer features to achieve a desired level of performance; additionally, more

efficient use of training data also results in faster classification time. They support such

statements with the observation of presence of feature sharing among several different

but similar classes. In applications in which training examples are scarce and the classes

form sub-clusters, making efficient use of data is very important. The joint training and

feature sharing framework combines a series of weak classifiers that discriminate exam-

ples from a subset of classes against all other examples based on the shared feature.

Such practice results in increase of positive examples (within the formed mega-classes).

The authors proposed to use tree stumps as the weak classifier required in the

boosting framework; the tree stump in the mth boosting round has the following form:

hm(v, y) =

aδ(xf > θ) + b if y ∈ S(n),

ky Otherwise,
(2.38)

where f indexes the feature, n indexes all possible mega-classes, δ(.) the indicator

function, y ∈ Y and a, b, θ as well as ky are the parameters to be estimated. The

authors noted that the set of all possible mega-classes, S, in equation 2.38, is the power

set of Y and therefore the proposed method incurs exponential complexity for training.

As a remedy, they proposed using a greedy scheme to search for a combination of classes

and a single feature in each boosting round: each iteration starts with the empty set

being the mega-class and as the search proceeds, new classes are added one at a time to

the existing mega-class. The greedy version of the proposed method now only requires

O(|Y |2) time for training. After M boosting iterations we obtain a collection of tree

stumps H = {hm(v, y)}Mm=1 as the estimated model. Given a new example xnew we

associate with it |Y | scores using H and assign the membership with the decision rule

in Equation 2.2.

23

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Ground Truth

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
10 rounds of boosting

(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
20 rounds of boosting

(c)

Figure 2.4: A toy example with four classes: red (crosses), green (squares), blue (di-
amonds) and black (triangles) with the yellow (dots) class as the background. The
features are the vertical and horizontal coordinates. Each pair of neighboring classes
shares a common feature. For example, the cross and triangle classes share the hori-
zontal feature and therefore form a mega-class based on this feature; such feature must
be within a range for an example to be considered a member of the mega-class. Sub-
figure (a) shows the ground truth. Sub-figure (b) shows the decision boundary after 10
boosting rounds. Sub-figure (c) shows the decision boundary after 20 boosting rounds.
The employed weak classifier is the tree stumps.

To visualize how the joint training and feature sharing framework exploits common

features, we designed a toy example. In figure 2.4(a), we showed 2000 examples belong-

ing to 5 classes: red (crosses), green (squares), blue (diamonds) and black (triangles)

with yellow (dots) as the background class. The features are the horizontal and vertical

coordinates of the examples. Each pair of neighboring classes shares a common feature:

for example, the cross and triangle classes share the horizontal feature; such feature

needs to be within a positive range for an example to be considered a member of the

two classes. Using the tree stump in equation 2.38 as the weak classifier, we performed

10 and 20 boosting rounds and show the resulting decision boundaries in figures 2.4(b)

and 2.4(c), respectively. The decision boundaries made by 20 boosting rounds are al-

ready very close to the ground truth. The ROC score for all (four) classes are greater

than 0.99 after 20 rounds of boosting.

24

2.7 Semi-supervised Learning Paradigm

The performance of the supervised methods depends greatly on the availability and

quality of the labeled data. However, in some applications, labeled data are costly and

laborious to obtain. For example, in an image retrieval problem, obtaining labeled data

requires human annotation and in protein sequence analysis, annotating the function

and structure of a protein sequence requires time-consuming in vitro experiments. In

the presence of limited number of labeled training sequences, the performance of the

classifiers estimated under the supervised setting might be sub-optimal. Enlarging the

size of the training set by leveraging the unlabeled data under the semi-supervised

learning paradigm will very likely improve the accuracy of the classifiers under correct

settings.

Recent advances in computational methods have relied heavily on the use of un-

labeled data. For example, in [14], Cohen et al. leveraged unlabeled data to perform

Bayesian network structure learning for the task of facial expression recognition; Nigam

et al. leveraged unlabeled data in [51], combined with a Naive Bayes classifier, to esti-

mate the parameters of the classifier for text classification tasks; finally, in the context

of protein homology detection, Gough et al. in [23], Weston et al. in [69], and Kuang

et al. in [35] leveraged unlabeled protein sequences to enhance the accuracy of the clas-

sifiers for superfamily detection; all studies have reported significant improvement of

performance once semi-supervised learning setting is adopted.

Traditional semi-supervised learning setting involves use of probabilistic classifiers

under the generative setting. The common goal of such studies is to build more accurate

generative classifiers that summarize the data. In [1], Altschul et al. take advantage

of unlabeled data by iteratively recruit sequences in the unlabeled database to refine

the parameters in a profile [24] for protein sequence analysis. Building a profile for

a set of sequences, known to exhibit certain qualities, for example, belonging in the

same functional group, can be formulated as a generative learning problem. Initially,

the authors build a generative model using the labeled sequences. Next, they use the

estimated models to scan through the unlabeled data set to identify a set of candidates

25

which, in the next iteration, are used as labeled examples to refine the models. We

can imagine such practice as re-estimating the parameters of a probability distribution,

with possibly larger coverage in the feature space after each round of recruiting process.

Under such setting, the candidates absorbed in each iteration by the generative methods

are used in the next iteration to improve the generative classifiers. Gough et al. in [23]

adopted the same framework in subsequent studies for similar tasks.

Alternatively, in other studies, the candidates recruited by the generative classifiers

are used to refine the decision boundaries of the discriminative models. In [69], Weston

et al. used generative models, such as BLAST [62] and PSI-BLAST, to identify candi-

dates and used them to form a neighborhood kernel. The authors also report significant

improvements in performance under such setting. Other alternative approaches such

as transductive learning [61] also exist. However, we do not study the effects of these

approaches in our study.

Finally, the authors in [71, 14] showed that if the models used to identify neighbors

deviate from the true underlying data generating process, use of unlabeled data has

detrimental effect on the quality of the classifiers. Also, we will show in Chapter 6

that in some situations, pre-processing the recruited candidates is necessary and if such

practice is not carried out, the performance of the classifiers will be compromised. We

should always use an recruit unlabeled examples cautiously.

26

Chapter 3

Sparse Generative Models for Protein Homology

Detection

Some of the most powerful early approaches for protein sequence classification are

based on statistical models known as the hidden Markov models [23, 18, 4, 28]. However

various studies show that as the percentage of the sequence identities of related proteins

goes below 30%, the chance of their relationship being detected by these methods

becomes increasingly small. On the one hand, there is no doubt that the hidden Markov

models have been very successful for protein classification, but on the other hand, they

all become less reliable when more distant, less homologous proteins are considered.

To considerably improve reliability of protein sequence classification, there are two

possible directions. First, in [24] Gribskov et al. construct a position-specific profile

from a group of sequences. The profiles exhibit linear structure, which guarantees

linear inference time. Furthermore, each local position posses different degree of prefer-

ence for mutation, insertion and deletion, in contrast to traditional sequence-sequence

comparison techniques in which a global scoring matrix for substitution and a set of

global parameters for opening, extending and closing a gap are utilized. The authors

reported promising results for discriminating members and nonmembers of Globin and

Immunoglobulins sequences. Second, in [13], Casbon et al. reported that matching pro-

files constructed using structure-based sequence alignments by incorporating structural

information to the sequence alignment also show some promise for the remote homology

detection task. The advantages of these two approaches are clear: first, sequence com-

parison based on structural information creates reliable foundation for the alignment,

and second, discovering profiles in the group of proteins can reveal features that may

allow alignment of distantly related proteins.

27

Based on structural alignments, Kister et al. in [34, 33] suggest that a small set of

key residues (positions) residing on some secondary structure are sufficient to discrim-

inate members and non-members of a superfamily. Further, for two neighboring key

positions sitting on a common secondary structure, the number of interposing residues

between them is highly conserved, whereas for two neighboring key positions sitting

on neighboring secondary structures, the number of interposing residues between them

may not be conserved. In the study, each secondary structure corresponds to a word

described by a collection of patterns (regular expressions). The patterns within a sec-

ondary structure (word) consist of a few critical positions that are manually picked by

domain experts. After all patterns in all words are determined, the authors suggest

to perform detection using a filtering approach. To detect members in a database of

sequences, first all sequences matching any patterns in the first word are extracted. The

matching sequences form another (smaller) sequence database. In the next iteration,

all sequences in the newly constructed database matching any pattern in the second

word are extracted, resulting in another (possibly smaller) database. The procedure

iterates and terminates when all words are exhausted. All sequences in the final se-

quence database posses all required patterns and the authors grant them membership

to the group of interest. The authors reported that the proposed approach identified

proteins from the Cadherin superfamily with low false positive rate.

Though the method proposed by Kister et al. successfully identified proteins from

a group of sequences with low false positive rate, the procedure is not automated and

requires knowledge of higher order structural information. The presence of structural

information may improve the quality of the alignment; however, such information is

costly and laborious to obtain. The goal of the study presented in this chapter is to

develop an automated procedure that identifies these key positions without knowledge

of secondary or higher order structure from the protein sequences.

Based on the studies performed by Kister et al. , we further hypothesize that besides

the key positions, the additional knowledge of the distances between each neighboring

pair of key positions allows one to classify an unknown protein into an appropriate

group of sequences and no structural information is required. In this work, the key

28

positions serve as a basis of development of computer algorithms for protein sequence

classification based on sparse profile hidden Markov models. A direct result is a class

of models with lower complexity and therefore fewer parameters to estimate compared

with its dense counter part: the traditional profile hidden Markov models.

3.1 Background

We first introduce the profile hidden Markov models and their biological interpretations.

We then propose a new class of models, by generalizing the profile HMMs, to test our

hypothesis.

3.1.1 Profile hidden Markov models

Profile hidden Markov models (PHMMs) are one of the most commonly used statisti-

cal models for protein sequence analysis [19]. A profile HMM that describes a group

of functionally and/or structurally related proteins is position specific and consists of

three types of states: match, insertion, and deletion. The match states model conserved

positions within the group and are parametrized by a probability distribution. Such

distribution specifies the chance of observing an amino acid residue at each correspond-

ing position. Each match state also accompanies an insertion and a deletion state;

insertion states model the random insertion process in evolution and are parametrized

by emission distributions that are very close to the background distribution of amino

acids; deletion states model the random deletion process in evolution and are mute; in

other words, visitation of such states does not induce observation of a symbol. We show

a profile HMM in Figure 3.1(b). In the figure, the match, insertion and deletion states

are represented using squares, diamonds and circles, respectively.

To estimate a profile HMM that captures the commonly shared characteristics

within a group of sequences, we need a high-quality multiple alignment of the sequences.

We show an example of multiple alignment in Figure 3.1(a). In the figure, each row

corresponds to a sequence and each column marked by an asterisk induces a match

state in the estimated profile HMM. A high-quality multiple alignment from a group of

29

HBA_HUMAN ...VGA--HAGEY...

HBB_HUMAN ...V----NVDEV...

MYG_PHYCA ...VEA--DVAGH...

GLB3_CHITP ...VKG------D...

GLB5_PETMA ...VYS--TYETS...

LGB2_LUPLU ...FNA--NIPKH...

GLB1_GLYDI ...IAGADNGAGV...

 *** *****

(a) multiple alignment

Begin End

(b) PHMM

Figure 3.1: Left panel: a multiple alignment; the positions marked by an asterisk
correspond to a match state in the estimated PHMM. Right panel: a profile hidden
Markov model

related biosequences reveals important evolutionary relationship among the sequences:

for example, in Figure 3.1(a) most of the sequences in the first column emit a sym-

bol ’V’ while the last two sequences have symbols ’F’ and ’I’, suggesting a mutation

or a substitution event at this position; next, a deletion event occurs in the second

sequence in the second column (indicated by ’-’); finally, the last sequence emits two

extra symbols in the columns not corresponding to a match state, suggesting an inser-

tion event. In addition to the evolutionary relationship among protein sequences, the

multiple alignment also provides a general guideline to the structure for the estimated

profile HMM. For example, the multiple alignment in Figure 3.1(a) suggests that the

estimated profile HMM will have 8 columns (8 match states). Moreover, based on the

multiple alignment, we can also obtain an initial estimates for all the parameters from

the alignment under the maximum likelihood framework. The initial estimates some-

times play a crucial role for parameter searching, since we cannot guarantee that only

one global optimum exists.

The estimated profile HMM collects a rich set of statistics from the input multiple

alignment. As a result, we can infer the degree of sequence conservation at each position.

Its characteristic linear structure enables making inference in linear time. For a profile

HMM with m match states, making inference on a sequence X with length TX takes

O(mTX) time, compared to O(n2TX) time for a general-structure HMM with n states.

Finally, the position-specific modeling technique, although effective, often results in

30

models that are too specific, a problem known as overfitting. To avoid such problem,

we usually prefer estimation methods based on the maximum a posteriori principle over

those based on the maximum likelihood principle.

3.1.2 Sparse Profile Hidden Markov Models

To reflect our hypothesis that only a small set of key residues is required to construct

a descriptive model for a protein superfamily, we propose a class of sparse profile hid-

den Markov models, based on generalizing the emission duration of a traditional profile

HMM: in addition to the emission and transition probabilities, each emitting state in

a sparse profile HMM carries information about the state’s duration distribution, the

number of symbols we expect to observe upon visitation of such state. In a tradi-

tional dense profile HMM, each state emits only one symbol and multiple emissions are

modeled by self-looping transitions as shown by the insertion (diamond) states in Fig-

ure 3.1(b). However, use of self-looping transitions implicitly assumes that the number

of emitted symbols follows a geometric distribution: denote D as a random variable for

the number of residues emitted by an insertion state where the self-looping transition

probability is p, then P (D = d|p) = pd−1(1 − p). In a duration-explicit HMM 1, we

remove such assumption by explicitly specifying a probability distribution for the dura-

tion. A direct consequence is that the model obtains more descriptive power, with the

expense of needing to estimate the corresponding parameters. The class of duration-

explicit HMMs have shown great success as a tool for ab-initio identification of genes

in DNA sequences [11].

We define a sparse profile HMM as SPHMM = {S,A,B,D,Σ,Π}, where S,A,B,Σ,Π

are defined in Section 2.2 and D = {dsi
}ni=1 denotes the duration distribution over all

states and n the total number of states in the sparse profile HMM. We partition the

states in a sparse profile HMM into two subsets: critical and non-critical. The critical

states (analogous to the match states in a profile HMM) emit patterns of residues that

are characteristic to a superfamily, which we also refer to as the key residues. The

1Also known as segmental HMMS.

31

Q56307 … FAE--PGEKRLLKIPLPEMDDS----EYF-- …

P20043 … TFGLEPGESGTFALPWPEVADEKG—EVVYR- …

Q59140 … DGANGPLQAGDSLTLTLPTIVAAAEGETW-- …

P24131 … SVA--PDEEKYIELPIGNYNFPE---EIV-- …

P70753 … SCK--PHSSVILPIELPKNNGH----LWL-- …

P23989 … DVK--PGEEATFPVNFVVEASNS---EQI-- …

n1 c1 n2 c2 n3

dn1
dn2

dn3

Figure 3.2: Sparse profile HMM. Shown is a multiple alignment of a set of protein se-
quences with a corresponding sparse profile states n1, c1, n2, c2. Residues corresponding
to critical states ci are shaded. Also depicted are examples of duration distributions
dni

. Note the small number of critical positions as well as the sparseness of the distance
distribution.

non-critical states (analogous to the insertion states in a profile HMM) emit multiple

symbols and the number of emitted symbols follows the specified probability distribu-

tions for duration. Note that in a traditional profile HMM, every match state (position)

is considered as a critical position using our terminology. We assign one non-critical

state between each pair of neighboring critical states. This sparse model is illustrated

in 3.2 where the critical (shaded) states are denoted by the letter ’c’ and the non-critical

(non-shaded) states are denoted by the letter ’n’. While it is not necessary in general,

we assume that the critical states have a fixed duration of one (to relax such condition

one may use a Markov chain to model multiple emissions). To express disinterest in

the residue composition in the non-critical states, we assign background emission prob-

abilities 2 to the non-critical states. The distribution over the duration assigned to one

non-critical state specifies the degree of conservation in distance (number of residues)

between the two neighboring critical positions. As a result, together with the residue

composition specified in the critical states, the durations specified in the non-critical

states form a set of probabilistic patterns that are characteristic to a superfamily. Fi-

nally, it is also possible for a sequence to skip a critical states (i.e. traversing between

neighboring non-critical states ni → ni+1 directly). We model such deletion event with

2Another possibility is the uniform distribution.

32

deletion states in the sparse profile HMMs (not shown in Figure 3.2).

The number of critical states is usually small and we only need on the order of 25%

critical states of what a traditional, dense profile needs, as we will show in later section.

A direct consequence results in lower model complexity and therefore fewer parameters

to estimate for sparse profile HMMs.

3.2 Methodologies

In this section, we first describe the functional groups for the homology detection task.

Next, we discuss the complexity of making inference in a sparse profile HMM. Finally,

we outline our automated learning procedure, inspired by the ones employed by PSI-

BLAST [1] and Superfamily [23], to iteratively recruit unlabeled sequences for improved

model sensitivity.

3.2.1 Objects of the investigation

In this work we analyze three protein superfamilies, Beta-Galactosidase, Cadherin, and

Fibronectin, all under the Immunoglobulin-like beta-sandwich fold. Spatial structures

of sandwich proteins are composed of a class of secondary structure called β-strands,

which form two main β-sheets packing face to face. The determination of H-bonds

between the main chain atoms allows us to determine the arrangements of the strands

and identify those strands that make up the two main sandwich sheets. Analysis of

the arrangements of strands in all known sandwich-like protein with known structures

revealed the definite rule that is valid for almost all sandwich proteins [33]. This rule

describes the formation of a certain fundamental supersecondary sandwich substructure

called interlock, consisting of two pairs of strands. Our goal is to use an automated

procedure to identify the critical positions on these β-strands and discriminate between

members and non-members of these superfamilies.

33

3.2.2 Making inference in a sparse profile HMM

Given a protein sequence X = x1x2 · · ·xTX
and a sparse profile HMM we are concerned

about two tasks: (1) computing the probability that sparse profile HMM generates X

and (2) obtaining the optimal alignment of X with respect to the model. The two

closely related tasks are critical for computational classification of protein sequences

and learning of protein family/superfamily models.

We employ the generalized forward message passing for duration-explicit HMMs [52]

for computing the probability that the sparse profile HMM generates X; on the other

hand, obtaining the alignment of X to the sparse model means computing the most

likely (Viterbi) path that generates the sequence. Let Y = y1y2 · · · yTX
denote such

path, we are interested in finding (Y ∗, D∗) = argmaxY,D P (Y,D|X,SPHMM), where

D∗ denotes the duration for each state induced by the optimal path. We perform the

search with the generalized Viterbi algorithm for duration-explicit HMMs.

In a general-structure duration-explicit HMM, computational complexity for both

algorithms is O(m2DmaxTX), where m denotes the number of states in the model and

Dmax the maximal distance allowed. For sparse profile HMMs, with the linear model

structure accompanying mc critical states, we can further reduce the computational

complexity to O(mcDmaxTX). In contrast, making inference with a traditional profile

with mp states incurs O(mpTX) complexity and this may raise a concern about extra

computational burden of making inference using our models. However, the computa-

tional time of a sparse profile HMM and a traditional profile HMM is similar since

mcDmax ≈ mp.

3.2.3 The automated learning procedure

Our central hypothesis states that a small number of key residues with the distance

between each neighboring pair allows for reliable classification of protein sequences. To

construct a set of sparse profile HMM that represent each superfamily, we implement an

automated learning procedure. The procedure consists of two main steps: (1) construc-

tion of traditional profile HMMs for each superfamily of interest and (2) construction

34

of sparse profile HMMs based on traditional profiles.

We represent each superfamily under investigation with a set of seeds in the AS-

TRAL compendium [9] (in other words, a superfamily might be represented by more

than one model under this setting) and employ an automated procedure inspired by the

ones employed in Superfamily [23] and PSI-BLAST [1] for construction of sparse profile

HMMs. In our experiments, we perform semi-supervised learning by leveraging unan-

notated sequences in the non-redundant (NR) sequence database, containing nearly one

million sequences. We depict the procedure in Figure 3.3. For each seed, we first use

BLAST [62] to define two data sets: the set of close homologues and the set of candidate

remote homologues of the seed, both extracted from the NR database. The set of close

homologues consists of protein sequences that are very similar, on the sequence level, to

the query sequence (seed) and the probability of having such similarity by chance (the

p-value) is extremely low. The set of candidate remote homologues, on the other hand,

consists of (1) diverged sequences that may not be so similar to the query sequence but

are evolutionarily related and (2) unrelated sequences (the negative sequences). During

the iterative recruiting process, we hope to filter out the evolutionarily related sequences

such that incorporation of these sequences into the training set might enlarge the cov-

erage of the generative model and hence, enable us to detect more remote homologues.

Once the iterative procedure terminates with a set of homologous sequences, we use a

commonly employed program, CLUSTALW [32], to produce a multiple alignment, from

which we estimate a profile HMM and use it to scan the candidate set. We remove the

sequences with high scores (low e-values) from the candidate set and append it to the

homologue set. In the next iteration, we use the newly constructed homologue set to

refine the profile HMM and repeat this procedure four times and use the homologue

set obtained in the last iteration to construct our final profile HMM.

Once the iterative procedure terminates, we estimate the conservation of each po-

sition in the constructed profile HMM and extract the highly conserved positions. We

estimate the degree of conservation using the entropy of the emission probabilities. For

each position, if the entropy of the distribution is lower than a pre-selected threshold

δ, we consider it conserved (critical); otherwise, we consider it diverged (non-critical).

35

Validation set

(SWISSPROT)

BLAST

NR database

training set 1

E−value <= 0.00003

Candidate Remote Homologues

0.00003 < E−Value <= 500

multiple alignment of

training set by clustalw

Candidate Remote

 HomologuesHomologues

Remote
training set 2

multiple alignment of

training set by clustalw

Profile HMM 1

Profile HMM 2

Profile HMM 4

seed from ASTRAL compendium

sparse Profile HMM

Candidate Remote

 Homologues

Remote

Homologues
training set 3

multiple alignment of

training set by clustalw

Profile HMM 3

Candidate Remote

 Homologues

Remote

Homologues
training set 4

multiple alignment of

training set by clustalw

Figure 3.3: The automated learning procedure.

36

Next, we estimate the duration distribution of the non-critical states from the multiple

alignment (illustrated in 3.2) by smoothing the empirical distribution.

Our ultimate goal is the selection of a minimal set of key positions (states) while

maintaining a high level of protein classification performance using the sparse models.

To understand how many of these highly conserved positions are necessary to obtain rea-

sonable performance, we perform a model validation step. We construct several models

with different numbers of critical positions and evaluate the classification performance

of the models with Swiss-Prot [8]. We note that not every sequence in Swiss-Prot has

superfamily annotation; therefore we use the sequences detected by Superfamily [23]

as a benchmark. Our empirical studies, outlined in the next section, show that the

performance curves exhibit a plateau for a range of critical states. An optimal order

of the sparse profile HMM is selected as the minimal one after which the classification

performance begins to exhibit serious degradation.

For each sequence X, we first assign it a score based on the log likelihood ratio:

score(X,HSPHMM) = log
P (X|HSPHMM)P (HSPHMM)

P (X|HNULL)P (HNULL)
, (3.1)

where HNULL denotes the null model and we set the prior probabilities of the mod-

els to the uniform distribution. The null hypothesis is simply a model with a single

state, with self-looping transition, emitting observations based on background frequen-

cies. The normalized score of each sequence reflects how well the sequence aligns to

the sparse profile HMM. Altschul et al. showed in [2] that the scores obtained by per-

forming pairwise alignment follow an extreme value distribution when the alignments

are ungapped and when the alignments are gapped the scores only roughly follows an

extreme value distribution. We adopt such reasoning and fit an extreme value distribu-

tion to the scores of all sequences in the database. We estimate the parameters of the

distribution using the procedure for type-I censored data [40] and select an appropriate

e-value threshold for the discrimination task. The e-value of the score s of a sequence is

database dependent and denotes the expected number of sequences with scores higher

than or equal to s by chance: the smaller the e-value, the more significant the hit. The

final decision rule is to assign superfamily membership to a sequence if its e-value is

37

below the threshold.

3.3 Results and Discussion

To test our hypothesis about the sufficiency of sparse models for protein sequence

classification, we perform two sets of experiments. In the first set of experiments, we

compare the performance of sparse profile HMMs as a function of the complexity of

the model (number of key residues). In the second set of experiments, we show the

results of protein classification using the estimated sparse profile models on a large set

of proteins in UNIPROT [3].

3.3.1 Selection of optimal order for sparse profile hidden Markov

models

We validate sparse profile HMMs and select the optimal number of key positions by

evaluating performance of the models on the Swiss-Prot protein database, using the

automated procedure outlined in Section 3.2.3. The performance is summarized using

recall and precision scores. Our preliminary results show that only about 25% of the

sequence positions and distance between each neighboring positions are sufficient to

reliably describe protein superfamilies, as we will show in the following.

To illustrate the study results, we consider models built on two seeds from two

superfamilies, Beta-Galactosidase and Cadherin. The results of the experiments are

summarized in Table 3.1 and Figure 3.4. We define recall as the ratio of the number

of true positives detected by the models to the total number of true positives in the

sequence database and precision as the ratio of number of true positives detected by

the models to the total hits reported. A high recall rate suggests high sensitivity of the

model to the positive sequences while a high precision rate suggests high accuracy of the

model among the selected positive sequences. Using the same seeds, Superfamily detects

19 and 153 hits in Swiss-Prot while our models detected 13 and 152 hits. We observe

that both experiments show serious degradation in performance when the number of

critical positions fall below 25% of the length of the original profile HMM (around 25-30

38

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

Number of C.P

P
e
rf

o
rm

a
n
c
e

Beta−2

recall

precision

(a)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Number of C.P

P
e
rf

o
rm

a
n
c
e

Cadherin−9

recall

precision

(b)

Figure 3.4: Performance (recall and precision) as a function of the number of key
positions for (a) beta Galactosidase and (b) Cadherin models constructed from two
ASTRAL seeds.

positions). For Cadherin, the model demonstrates high precision and recall rate with as

few as 25 key positions; for Beta-Galactosidase, the performance degradation occurs at

around 30 key positions. We note that the dense profile HMM for Beta-Galactosidase

also has a 68% recall rate (the full model in the last row of Table 3.1), benchmarked using

the hits reported by Superfamily. We note that in this study, we estimate the profile

HMMs using very simple and primitive techniques whereas the authors of Superfamily

estimate their profile HMMs using many sophisticated optimization techniques, such

as position-based sequence weighting [27] and estimating sequence weights to achieve

target saving 3, and mixture of Dirichlet priors [10, 60]. As a result, our profile HMMs

focus on sequences that exhibit higher similarity to the training sequences, whereas

the ones in Superfamily exhibit higher generalization power with various optimization

techniques. The reasonable but not optimal recall rate of the sparse profile HMMs is

directly carried over from the dense model and therefore is not a direct consequence

of collapsing states from a traditional profile HMM, as we will show in later sections.

Our experimental results suggest that we are able to maintain the performance of the

models after significantly reducing the complexity of the model.

In Figure 3.5 we show the distribution of the log likelihood ratio scores of Swiss-Prot

3ISMB99 tutorial on using HMMs, available at http://www.cse.ucsc.edu/research/compbio/sam.html

39

Table 3.1: Number of critical positions vs performance for Beta-Galactosidase (left)
and Cadherin (right)

number of number of
critical hits recall precision

positions reported

5 12 0 0
10 0 0 0
15 0 0 0
20 0 0 0
25 6 0.32 1
30 10 0.53 1
35 11 0.58 1
40 11 0.58 1
45 11 0.58 1
50 11 0.58 1
55 11 0.58 1
60 12 0.63 1
65 12 0.63 1
70 12 0.63 1
75 12 0.63 1
80 12 0.63 1
85 12 0.63 1
90 12 0.63 1
95 12 0.63 1

104 (full) 13 0.68 1

Beta-Galactosidase

number of number of
critical hits recall precision

positions reported

5 35 0.00 0.00
10 16 0.21 0.00
15 38 0.93 0.84
20 146 0.95 0.98
25 146 0.99 0.99
30 152 0.99 0.99
35 152 0.99 1.00
40 152 0.99 1.00
45 152 0.99 1.00
50 152 0.99 1
55 152 0.99 1
60 152 0.99 1.00
65 152 0.99 1.00
70 152 0.99 1.00
75 152 0.99 1.00
80 152 0.99 1.00
85 152 0.99 1.00
90 152 0.99 1.00
95 152 0.99 1.00

119 (full) 152 0.99 1.00

Cadherin

40

sequences as a function of key positions of the Cadherin models (horizontal axis). We

observe that clear separation of members (ticks on the right) and non-members (ticks

on the left) of the Cadherin superfamily becomes more pronounced as the number of

critical positions increases. Hence, as the model becomes more sparse, the margins in

scores between the members and non-members become smaller. An important question

is how sensitive the models are to unseen positive sequences in larger databases such

as UNIPROT [3].

−200 0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

(a) #cp=80

−200 0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

(b) #cp=50

−200 −100 0 100 200 300 400 500 600
0

2

4

6

8

10

12

(c) #cp=30

−200 −100 0 100 200 300 400
0

2

4

6

8

10

12

(d) #cp=25

−200 −150 −100 −50 0 50 100 150 200 250
0

2

4

6

8

10

12

(e) #cp=20

−200 −150 −100 −50 0 50 100
0

2

4

6

8

10

12

(f) #cp=15

−200 −150 −100 −50 0 50 100
0

2

4

6

8

10

12

(g) #cp=10

Figure 3.5: Empirical distribution of log likelihood ratio scores of sequences in Swiss-
Prot as a function of number of key positions in the Cadherin model (solid line). We
also show the fitted extreme value distribution in dashed lines. As the number of critical
positions increases, we observe better separation (larger margin) between the members
and non-members of the superfamily.

41

Table 3.2: Performance measure of the models against UNIPROT
number of number of

number of number of hits reported critical positions recall
superfamily critical positions hits reported by Superfamily superfamily has rate

Beta-Galactosidase 25 217 321 107.33 67.60%

Fibronectin 25 858 1858 99.89 69.48%

Cadherin 25 757 876 107.29 86.47%

3.3.2 Classification performance on UNIPROT

We scan through the UNIPROT protein sequence database with the collection of es-

timated sparse profile HMMs, each corresponding to a seed sequence in the ASTRAL

compendium. Again, we benchmark our results based on the reported hits from Su-

perfamily since not every sequence in UNIPROT has superfamily annotation. We sum-

marize the results in Table 3.2. For the models in Superfamily we report the average

length of the profile HMMs. We achieve four-fold compression (from about 100 to 25

key residues) with slightly lower recall rates.

3.3.3 Discussion

To understand why the estimated models have low recall rate, we perform a more de-

tailed investigation. The results of the investigation reveal that first, there are further

diverged families that do not fully conform to the probabilistic patterns specified by

the profile HMMs. Such divergence results in poor alignment of the false negative se-

quences with respect to the dense profile. From the alignment, we observe that the false

negative sequences skipped some critical positions, suggesting that as the sequences in

the superfamily diverge, conservation on some positions will be more relaxed. A subset

of critical positions appears to be more important than the others. The second impor-

tant observation is that some sequences that are non-members of the group partially

conform to the probabilistic patterns imposed by the sparse profile HMMs (false pos-

itives). Though these sequences still have relatively low e-values and are not assigned

membership to the superfamily, the inflated scores bias the estimation of parameters

of the EVD and thus the e-values of each positive sequence. In fact, in the learning

community, it is well-known that generative models focus on capturing the common

42

characteristics among the members within a class. However, there is no guarantee that

no non-members of the class exhibit such characteristics. To make such a distinction

we need to use discriminative models and we will discuss the effect of such models in

the following chapters.

3.4 Conclusion and future work

In this study, we outlined and implemented an automated procedure that estimates

a class of sparse profile HMMs and recovers the critical positions in a superfamily.

We show that the sparse profile HMMs may be used to model several superfamilies of

sandwich-like [33] proteins. The sparsity of the models is based on the hypothesis that

a small subset of key positions in the sequences and the distance between each pair of

neighboring positions are sufficient for discriminating members and non-members of a

superfamily. In the first part of our experiment, we show that our models achieve a

four-fold compression compared to the traditional dense profile HMMs and maintain

reasonable performance. Our investigation reveals first, the models are still too specific

and further diverged families within the superfamily are not captured, thus motivating

the need for using more sophisticated optimization tools for generalizing the profile

HMMs. In the second part of our experiments, we observe that as the sequences in

a superfamily diverge, conservation at some positions become more relaxed and some

undetected members do not fully conform to the probabilistic pattern imposed by the

sparse profile HMMs. We also observe that some non-members of the superfamily

partially conform to the probabilistic patterns imposed by the sparse profile HMMs. We

conclude that use of generative models to capture the common characteristics of a group

of related sequences does not guarantee that no non-members of the group posses such

characteristics. Such conclusion motivates employing discriminative models to perform

protein remote homology detection. We believe that further carefully crafted dense

models and use of negative sequences during the estimation process we will improve the

performance of the sparse models. In future studies, we propose to incorporate Bayesian

learning paradigm into our estimation procedure and make use of the Dirichlet mixtures

proposed by Brown et al. in [10, 60] to further generalize the model and improve the

43

sensitivity. We also propose to employ discriminative learning approaches to make

distinction between the members and non-members of the superfamily.

3.5 Acknowledgments

This work was carried out by jointly working with Professor Alexander Kister.

44

Chapter 4

Sparse Discriminative Models for Protein Homology

Detection

In the previous chapter, we focus our study on protein classification using generative

models and perform experiments on three superfamilies under the Immunoglobulin-

like beta-sandwich fold. In this chapter, we focus our study on protein classification

using discriminative models under the supervised learning setting with a more diverse

benchmark data set. We will also illustrate the differences between the generative and

discriminative approaches in this study.

Early approaches to computationally-aided homology detection, such as BLAST [62]

and FASTA [63] rely on aligning the query sequence to a database of known sequences

(pairwise alignment). However, the weakness of the pairwise approach is its lack use of

data: alignment is performed on the query sequence to each sequence in the database

one at a time. Later methods such as profiles [24] and profile hidden Markov mod-

els (profile HMMs) [19] collect aggregate statistics from a set of sequences known to

belong to the same functionally and/or structurally related group. Upon query time,

we align an unknown sequence to all models to determine if there is a significant hit.

Profile HMMs have demonstrated great success in protein homology detection. The

linear structure of the profile HMM offers direct interpretation to the underlying pro-

cess that generates the sequences: the match states represents positions in the family

that are conserved throughout the evolutionary process. However, such generative ap-

proaches only make use of positive training examples, resulting in the classifier focusing

on capturing the commonly shared characteristics of the examples within the group.

While such practices may be effective, there is no guarantee that no negative examples

posses such characteristics, which renders the generative models susceptible to false

45

positives. The discriminative approaches attempt to capture the distinction between

different classes by considering both positive and negative examples simultaneously to

estimate the decision boundary.

In [30] Jaakkola et al. proposed SVMFisher, a class of discriminative classifiers, for

protein remote homology detection. The idea is to combine a generative model (profile

HMM) and a discriminative model (SVM) and perform homology detection in two

stages. In the first stage, the generative model, trained using positive examples only,

extracts features from all sequences (positive and negative). In the second stage, with

the fixed-length features, the discriminative model constructs the decision boundary

between the two classes.

The class of string kernels, on the other hand, bypasses the first stage and directly

model the decision boundary using SVMs. The spectrum kernel [42], and the mismatch

kernel [43] define different notions of neighborhood for observed contiguous substrings

within the sequences and determine the similarity between the two sequences as a

function of the size of the intersection of such neighborhood.

Previous studies show that both SVMFisher and the class of string kernels are more

effective than the generative models. Despite their great success these two approaches

are not readily interpretable, or when an interpretation of the models is available, it

may not be biologically intuitive. For example, the model should be able to explain how

sequences in the same superfamily evolve over time. Are there certain positions that

are critical to a superfamily? If so, what kind of physical/chemical properties should

such position possess? Although the profile HMMs attempt to offer such explanations

but as generative models they do not make use of negative examples and lack the

discriminative interpretability.

The central idea of this work is to develop an interpretable method for protein remote

homology detection. Our approach is motivated by the results presented in Kister et

al. in [33, 55, 34] that postulate the existence of a small subset of positions and residues

in protein sequences may be sufficient to discriminate among different protein classes.

We aim to recover these critical positions and the corresponding preferred residues with

a new set of features embedded in a class of discriminative models. The combination

46

of the features and the classifier may offer a simple and intuitive interpretation to the

underlying biological mechanism that generates the biosequences.

4.1 Related works

Denote X as a protein sequence. Jaakkola et al. proposed to use the gradient of the

log-likelihood of the sequence X with respect to the model parameters as features

in [30, 31]:

fx̃,s̃ =
∂

∂θx̃,s̃
logP (X|Θ)

=
ξ(x̃, s̃)

θx̃|s̃
− ξ(s̃), (4.1)

where x̃ ∈ Σ, the alphabet set, s̃ ∈ S, the emitting states in the model, Θ represents

the set of parameters of the model, θx̃|s̃ represents the emission probability of symbol

x̃ at state s̃, and ξ(x̃, s̃) as well as ξ(s̃) are the sufficient statistics, obtained using the

forward-backward algorithm in [52]:

ξ(x̃, s̃) =

TX
∑

t=1

P (St = s̃, Xt = x̃|X,Θ)

=

TX
∑

t=1

P (St = s̃|X,Θ)I(Xt = x̃), (4.2)

where TX is the length of X, St is the state that is traversed at time t, Xt is the

tth symbol of X, 1 ≤ t ≤ TX , and I(.) denotes the indicator function. The authors

referred to the extracted fixed-length features as the Fisher scores and use the features to

estimate an SVM for superfamily classification. Feature dimensionality can be further

reduced with use of 9-component Dirichlet mixture prior proposed by Brown et al.

in [10, 60]. The SVMFisher approach has received some criticism due to the need to

perform an inference procedure with quadratic complexity. Although the criticism does

address a valid concern for a general HMM, in the case of a profile HMM, such issue

does not exist: the linear structure enables one to make inference in linear time, as

suggested in the previous chapters.

The methods based on string kernels, on the other hand, bypass the need of a

generative model as a feature extractor. Given a sequence X, the spectrum-k kernel [42]

47

first implicitly maps it to a d-dimensional vector, with d = |Σ|k:

Φk(X) =

(

∑

α∈X

I(α = γ)

)

γ∈Σk

. (4.3)

Next, the similarity between X and Y is defined as:

K(X,Y) = Φk(X)T Φk(Y), (4.4)

where in Equation 4.3 α denotes all k-mers in X and γ denotes a member in the set of

all k-mers induced by Σ, the alphabet set. A k-mer is a contiguous substring of length

k. The mismatch(k,m) kernel ([43]) relaxes exact string matching by allowing up to

m mismatches between α and γ:

Φmismatch(k,m)(X) =

(

∑

α∈X

I(α ∈ N(γ,m))

)

γ∈Σk

, (4.5)

where N(α,m) denotes the set k-mer neighborhood induced by α up to m mismatches.

The complexity for evaluating the N -by-N spectrum-k kernel is O(N2max(u, T)) where

T denotes length of the longest sequence and u the number of unique k-mer extracted

from all sequences; for the mismatch(k,m) kernel, evaluating the kernel value for se-

quences X and Y incurs O(km+1|Σ|m(TX +TY)) computational time. Explicit inclusion

of the amino acid substitution process allows the mismatch kernel to outperform the

spectrum kernel [43].

4.2 Proposed features and methods

Our computational approach to remote homology detection involves two steps: feature

extraction with dimensionality reduction followed by joint classification and feature

selection in the constructed feature space. A crucial aspect of this approach lies in the

ability to impose the sparsity constraint, leading to significant reduction in the number

of utilized features and the interpretability of the final model. We show the proposed

hybrid procedure in Figure 4.1.

4.2.1 Feature extraction and dimensionality reduction

We use the sufficient statistics of the sequences with respect to the profile HMM as

features. This choice of features may allow immediate biological interpretation of the

48

hybrid
modeltraining set

positive training

sequences

negative training

sequences

profile hmm
training procedure

profile hmm
(feature extractor)

representation of

sequences in feature

space (positive

and negative)

dimensionality
reduction

Classifier
(homology detector)

test set

positive test

sequences

negative test

sequences

member?

yes/no

Figure 4.1: A schematic depiction of our hybrid model.

constructed model. In particular, we use the sufficient statistics that are associated

with the symbols of the match states. We focus only on the match states because the

structure of a profile HMM indicates that these states represent the positions that are

conserved throughout evolution. We obtain these features using Equation 4.2 with

P (St = s̃|X,Θ) =
αs̃(t)βs̃(t)

P (X|Θ)
(4.6)

where αs̃(t) and βs̃(t) are the forward and backward probabilities defined in [52]. In

this setting, each example is represented by a vector of length d = m|Σ| where m is the

number of match states in the profile HMM and |Σ| = 20. To reduce dimensionality we

partition all 20 amino acids into the following four groups, according to their chemical

and physical properties:

• Group 1 – Non polar, hydrophobic: {F, M, W, I, V, L, A, P}.

• Group 2 – Negatively charged, polar, hydrophilic: {D, E}.

• Group 3 – No charge, polar, hydrophilic: {C, N, Q, T, Y, S, G}.

• Group 4 – Positively charged, polar, hydrophilic: {H, K, R}.

As a result, we represent each example by the following:

fg,s̃ =
∑

x̃∈Σ

ξ(x̃, s̃)I(x̃ ∈ Group g), (4.7)

49

where g ∈ {1, 2, 3, 4} represents each group of amino acid. The partition reduces the

dimensionality, d, from 20m to 4m, compared to 9m in [31, 30]. Our experiments in

Section 4.3 confirm the effectiveness of this representation 1.

4.2.2 Classification and feature selection via logistic regression

Let fi be the features extracted from the ith sequence, Xi and yi ∈ {1,−1} be the

response variable, where yi = 1 denotes membership of the superfamily. The logistic

regression model defines the probability of sequence Xi belonging to the superfamily of

interest as in Equation 2.9:

P (yi = +1|fi, θ) = πi = ψ(θT fi) (4.8)

where θ is the parameter of the model and the link function ψ(·) is the cumulative

distribution function (CDF) of a logistic distribution. To estimate the parameters, we

use the maximum likelihood principle by maximizing the joint likelihood of the observed

data D:

P (D|θ) =

n
∏

i=1

1

1 + exp(−yif
T
i θ)

. (4.9)

As suggested in Chapter 2 logistic regression model and SVM are both discriminative

classifiers and often yield similar results.

4.2.3 Interpretation of the logistic model with the proposed features

Use of the logistic model provides a simple and intuitive description of data. If the

assumption P (y = 1|f, θ) = ψ(θT f) holds, then the contribution of each predictor

variable f (j), 1 ≤ j ≤ d, is reflected in the corresponding model parameter θ(j). A

coefficient with large absolute value implies that the corresponding position has a strong

preference for a type of amino acids: the position prefers a specific group of amino acids

to be present when the coefficient is large and positive and prefers a specific group of

amino acids to be absent when the coefficient is large and negative.

1We have also performed dimensionality reduction using the 9-component Dirichlet mixtures and do
not notice any significant difference in performance

50

Moreover, θ also offers a probabilistic interpretation. Define the odds of an event

with probability p of occurring as p
1−p

; given the estimated parameter θ̂, and a feature

vector fi representing sequence Xi in the feature space, the estimated odds of sequence

Xi belonging to the superfamily is:

odds(Xi ∈ supFam) =
P̂ (Xi ∈ supFam)

1− P̂ (Xi ∈ supFam)
= exp(θ̂T fi) (4.10)

Define a new sequence Xi′ such that f
(k)
i′ = f

(k)
i ,∀1 ≤ k ≤ d except f

(j)
i′ = f

(j)
i + 1 for

one specific 1 ≤ j ≤ d, meaning we increase the jth covariate of example i by one unit.

In this case, the estimated odds of the new sequence Xi′ is:

odds(Xi′ ∈ supFam) = exp(θ̂T fi + θ̂j)

= odds(Xi ∈ supFam)exp(θ̂j) (4.11)

Equation 4.11 indicates that the odds are multiplied by exp(θ̂j) when we increase the

jth covariate of example i by one unit. For example, suppose that at position s̃, the

corresponding parameter θ̂x̃|s̃ for symbol x̃ is 0.1615 = log(1.175). Then the odds of a

sequence X belonging to the superfamily increases by 17.5 percent if in X the symbol

x̃ aligns to the model at position s̃.

One may argue that the preference or absence of a specific type of amino acids at

a position in a group of sequences is already reflected in the profile HMM and using

a logistic model to recover the desired information is redundant. However, this need

not be the case: one position in a specific superfamily may prefer a certain type of

amino acids which is also preferred by another group of sequences. In this case the

corresponding coefficient in the logistic model we proposed will be insignificant (close

to 0) and this is one of the crucial differences between a generative model (profile

HMMs) and a discriminative model (logistic regression model) as we mentioned in

earlier chapters. A coefficient corresponding to a certain type of amino acids at one

position will be considered significant if those amino acids are present in the superfamily

of interest (the positive examples) and are absent in all other superfamilies (the negative

examples) or vice versa.

51

4.2.4 Use of sparsity-enforcing Regularizers

When the provided positive examples and negative examples are separable, then the

objective function in Equation 4.9 is unbounded and infinitely many solutions exist.

As a result, performing regularization on the parameter θ is necessary. Imposing such

regularization on θ can be interpreted as placing a prior distribution on θ under the

Bayesian learning paradigm.

Our belief that the model may be sparse leads us to choose the prior distribution

θ ∼ N(0, A), with some covariance matrix A. In our study, we set A to be some diagonal

matrix and the induced objective function becomes the posterior distribution of θ:

J(θ)Gaussian ∝ e−
1
2
‖θ‖2

2

n
∏

i=1

1

1 + exp(−yix
T
i θ)

. (4.12)

Such an assignment of covariance matrix states that all θ’s are mutually independent.

The independence assumption is clearly violated, since the features we use are sufficient

statistics. However, it is impractical to assume a general covariance structure for θ, as

we will need to either specify or estimate
(

d
2

)

parameters in advance. On the other hand,

Gaussian priors often do not set the coefficients corresponding to the irrelevant features

to 0, because the shape of the distribution is too mild around the origin. Therefore,

we also use Laplacian priors which promote and enforce sparsity. In such setting, we

assume θi ∼ N(0, τi) for 1 ≤ i ≤ d. Furthermore, we place a hyper prior γ on every τi:

p(τi|γ) =
γ

2
e−

γτi
2

Integrating out every τi, we have

p(θi|γ) =

√
γ

2
e−

√
γ|θi|,

resulting in the following objective function:

J(θ)Laplacian ∝ e−‖θ‖1

n
∏

i=1

1

1 + exp(−yix
T
i θ)

. (4.13)

The hierarchical model shows that each θi now follows a Laplace distribution. The

Laplacian priors produce sparser models than Gaussian priors. We plot the density

functions of standard Gaussian (solid line) and a standard Laplacian (dashed line)

distributions in Figure 4.2.

52

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5
Gaussian

Laplacian

Figure 4.2: The density functions of a standard Gaussian (solid line) and a standard
Laplacian (broken line) distributions.

4.2.5 A similar setting with SVM

Given the feature vectors, we may also build the decision boundary using an SVM. In

the case of a linear kernel, like the logistic model, the SVM also builds a linear decision

boundary to discriminate between the two classes. However, the results produced by

an SVM is interpretable only when a linear (or possible polynomial) kernel is employed.

While the objective functions in an SVM and a logistic regression settings are different,

with proper regularization on the logistic regression model the results are often similar.

4.3 Experiments and results

We use the data set published in [35] to perform our experiments. The data set contains

54 families from SCOP 1.59 [47] with 7329 SCOP domains. No sequence shares more

than 95% identity with other sequence in this data set. Variants of this data set

have been used a s gold standard for protein remote homology detection in previous

studies. Sequences in the SCOP database are domains extracted from proteins in the

Protein Data Bank [7], which is a centralized repository for proteins with known three

dimensional structures. Sequences in SCOP are placed in a tree-like hierarchy. Proteins

in the same family clearly share a common revolutionary origin and proteins in the same

superfamily typically have low sequence identity but are very likely to be evolutionarily

53

related. Remote homology detection means classification on the superfamily level. The

tree hierarchy of the SCOP database is shown in Figure 1.1.

Jaakkola et al. proposed in [31, 30] the following setup for the experiments. Suppose

a superfamily Si with k families is under fold F j . Pick the sequences in the k−1 families

as the positive training sequences and use the sequences in the left-out as the positive

test sequences. Negative training and testing sequences come from two different folds

F l and Fm, l 6= m, l 6= j,m 6= j, to avoid giving the classifier unnecessary advantage.

All sequences in fold F j but not in superfamily Si are not used since their relationship

with the target superfamily Si is uncertain. In subsequent studies, Liao et al. [45],

Leslie et al. [42, 43] and Kuang et al. [35] used different versions of the database as

more sequences are deposited into the SCOP database.

We evaluate all methods using the Receiver Operating Characteristic (ROC) and

ROC-50 scores [25]. The ROC-50 score is the (normalized) area under the ROC curve

computed for up to 50 false positives. With small number of positive testing sequences

and large number of negative test sequences the ROC-50 score is more indicative of the

prediction accuracy of a homology detection method.

We obtain all profile HMMs for our hybrid procedure in the following way: first, we

locate the profile most suitable for the experiment and download the (hand-curated)

multiple alignment from PFam [5]; next, we estimate an initial profile HMM from the

multiple alignment; finally we refine the profile HMM using the labeled positive training

sequences in the data set. We use an algorithm similar to the Expectation-Maximization

(EM) [16] algorithm to refine the profile HMM with 9-component mixture of Dirich-

let priors [10, 60]2. To avoid over-representation of sequences, we also incorporate a

position-based sequence weighting scheme [27]. Once a profile HMM for the superfamily

of interest is estimated, we use it to extract fixed-length features, the sufficient statistics

with respect to the emission probabilities of the match states and we use the extracted

features to train the discriminative classifier, the logistic regression model.

2With mixture of Dirichlet priors, the Maximization step can no longer be performed using closed-
form solutions. As a result, to speed up estimation, instead of obtaining the posterior mode, we obtain
the posterior mean. Typically the likelihood of the observed data increases up to three digits of precision
after the decimal point. Then the algorithm starts bumping around some mode.

54

For logistic models, we perform our experiments on Normal and Laplace priors

using Bayesian Regression Software (BBR) [22]. Precision γ in the Laplace mod-

els are set to the value suggested in the paper. Experiments using linear kernel

SVM make use of an existing machine-learning package called Spider (available at

http://www.kyb.tuebingen.mpg.de/bs/people/spider).

In Figure 4.3, we compare the performance of the full and reduced feature sets.

The classifier used is the logistic classifier with Normal prior. The two sets of features

perform similarly with SVM (linear kernel) and therefore are not reported. The di-

mensionality of the full feature set is |Σ|m = 20m where m denotes the number of

match states whereas the dimensionality of the reduced features is 4m. Figure 4.3(a)

shows the number of families (vertical axis) achieving a corresponding ROC-50 score

(horizontal axis) for the two sets of features. We observe that the performance of the

two sets of features are comparable, although in the area of low ROC-50 scores, the set

of reduced features perform better, implying higher prediction accuracy. Figure 4.3(b)

shows the pairwise scatter-plot of the ROC-50 scores for these two sets of features. A

point falling under the diagonal line in the figure represents a case in which the reduced

feature set achieves better performance. Out of 54 experiments, 28 and 21 of them fall

under and above the diagonal, respectively. The p-value of the sign test is 0.39, indi-

cating no strong evidence to support the claim that dimensionality reduction degrades

the performance. In all subsequent reports, all logistic models use the reduced feature

set.

In Figure 4.4 we compare the performance of different models. Figure 4.4(a) and 4.4(b)

indicate that with ROC-50 score greater than 0.4, both logistic models (Normal and

Laplacian priors) dominate the mismatch-(5,1) kernel. Furthermore, the performance

of both logistic models are comparable in the area of high ROC-50 score (> 0.8); but

in the area of low ROC-50 score, the logistic model with Laplacian prior shows slightly

higher prediction accuracy. Finally, SVMFisher performs well in the are of high ROC-

50 score; however, the performance starts to degrade when ROC-50 score falls under

0.8. In Figure 4.4(c), points falling above the diagonal corresponds to an experiment

in which the logistic model with Normal prior performs better than the mismatch(5,1)

55

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

4m features (reduced)

20m features (full)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

4m features (reduced)

2
0

m
 f

e
a

tu
re

s
 (

fu
ll)

(b)

Figure 4.3: Comparison of performance of the full and reduced feature sets. The
classifier used here is the logistic classifier with Normal prior. Panel (a) shows the
number of families whose ROC-50 scores are better than a given threshold for the sets
of full and reduced features. Panel (b) depicts the pairwise scatter-plot of ROC-50
scores for the two classifiers utilizing these two sets of features.

kernel. Out of 54 experiments, 30 and 22 points fall above and below the diagonal,

respectively, resulting in a p-value of 0.33, indicating no strong evidence to conclude

which one of the two methods performs better. Likewise, in Figure 4.4(d), 25 and 25

fall above and under the diagonal line, suggesting that the performance of the logistic

model with a Laplacian prior is comparable to that of a Normal prior.

We summarize the mean ROC and ROC-50 scores of different methods for a quick

reference and comparison in Table 4.1.

Table 4.1: Mean ROC and ROC-50 scores for different homology detection methods

mean ROC score mean ROC-50 score

Logistic-Normal(4m) .883256 .491564

Logistic-Laplace(4m) .847313 .438070

Logistic-Normal(20m) .813895 .426925

Logistic-Laplace(20m) .864500 .474170

mismatch(5,1) .874890 .416650

SVM-Fisher .756618 .319048

56

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

Logi−Laplace

Logi−Norm

mismatch(5,1)

SVMFisher

(a)

0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

12

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

Logi−Laplace

Logi−Norm

mismatch(5,1)

SVMFisher

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

mismatch(5,1)

L
o
g
i−

N
o
rm

a
l

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Logi−Normal

L
o
g
i−

L
a
p
la

c
e

(d)

Figure 4.4: Comparison of performance of mismatch(5,1) kernel, SVM-Fisher, and
logistic model with Normal and Laplacian priors. Panel (a) shows the number of families
whose ROC-50 scores are better than a given threshold. Panel (b) shows the detail plot
of the high ROC-50 score region of (a). Panel (c) shows the pairwise scatter-plot of
ROC-50 scores for the logistic model with Normal prior and the mismatch(5,1) kernel.
Panel (d) shows the pairwise scatter-plot of ROC-50 scores for the logistic models with
Normal and scatter-plot of ROC-50 scores for the logistic models with Normal and
Laplace priors.

4.3.1 The sparse models

Enforcing sparsity in the number of parameters can be viewed as a feature selection

process. The logistic model with Laplacian priors discards the irrelevant features by

setting the corresponding parameters to 0. Among 54 experiments, there are on av-

erage 480 features to select from. The Laplacian prior selects only about 43 features

per experiment, resulting in more than 90% reduction in the final number of selected

features. At the same time, the performance of the model with the reduced feature set

remains indistinguishable from that of the model with a full feature set.

57

The set of features selected by the sparse model can offer interesting insights into the

biological significance of the discovered critical positions. For example, our experimental

results indicate that the performance of this class of classifiers is good and consistent

on the Scorpion toxin-like superfamily. In one particular family, Plant defensins, out

of 188 features, the logistic model with Laplacian prior selects 19 features, scattered

on approximately 12 positions. The ROC-50 score of the classifier on this superfamily

is 1. Upon further investigation, we extract these critical positions along with their

preferred symbols: {(18[18], E), (20[20], C), (23[23], H), (24[24], C), (29[29], G),

(34[32], G), (35[33], K/Y), (36[34], C), (37[35], D/Y), (38[36], G/N), (41[42], C),

(43[44], C)}, where in each pair, the leading number corresponds to the position in our

profile HMM, the number in the bracket corresponds to the position in the HMM-logo

in Figure 4.5(a), and the letter the preferred symbol at that position. The positions

slightly disagree because we use a different heuristic to determine whether a column in

a multiple alignment corresponds to a match state or an insertion state. We also show

the schematic representation of the family suggested by the PROSITE database [29] in

Figure 4.5(b); in this figure each symbol ’C’ represents a conserved cysteine involved

in a disulphide bond. Hence, our classifier captures some of the conserved cysteine

residues: (positions 20,24,34,41, and 43), with the preferred symbols that are critical

for discerning plant defensins from other similar proteins. Other conserved cysteine

residues are not selected as critical features. Upon detailed examination, it became clear

that while conserved in Plant defensins, these positions also appeared to be conserved in

other similar families with the symbol and were, therefore, not deemed discriminative.

A set of 9 different residues seemed to play a more critical classification role.

Next, we extract the positive coefficients from the estimated θ for the logistic model

and plot the weights in Figure 4.6(a). The figure indicates that there are three critical

region for this family: positions 18− 29, 33− 39, and 40− 44. We obtain the primary

and secondary structure in schematic diagrams of 8 sequences belonging to this family

from the PDBSum database [39]. We observe some common secondary structure among

these 8 sequences: a β-strand occurs in the neighborhood of positions 3− 7, and a helix

occurs in in the neighborhood of positions 18 − 28, followed by two more β-strands

58

10

4030

20

(a)

 1 1 1 1 1

 +−−−+

 | +−−−−−−−−−−−−−−−−−−−+ |

 | | | |

 xxCxxxxxxxxxxCxxxxxCxxxCxxxxxxxxxCxxxxxxCxCxxxC

 | | | |

 +−−−|−−−−−−−−−−−−−−−−+ |

 +−−−−−−−−−−−−−−−−−−+

 0 1 2 3 4

(b)

Figure 4.5: Panel (a): The HMM-logo of the plant defensins family (under the scorpion
toxin-like superfamily. We obtain this logo from PFam. Panel (b): The schematic
representation of the plant defensins family suggested by PFam and PROSITE.

occurring in the neighborhood of positions 32 − 38 and 41 − 48, respectively. There

seems to be some correlation between these conserved secondary structures and the

critical regions indicated by our logistic model with Laplacian prior. We are currently

performing further analysis to understand the connection between them.

We obtain similar results for another family under the same superfamily: the short-

chain scorpion family. The ROC-50 score of the classifier for this family is 0.91. We

show the HMM-logo for this family in Figure 4.7(a). Out of 116 features in this family,

the sparse classifiers selects 14 of them: { (1, C), (4, N), (7, C), (11,C), (15, G), (17,

A), (18, S), (19, G/S), (20, G), (21, Y), (22, C), (24, G), (27, C), (29, C)}. Our

sparse model captures all conserved cysteine residues in this family, indicating that

unlike in the family plant defensins, these conserved cysteine residues are unique to this

family. On the other hand, the conserved lysine (K) residue at positions 12, 21, and 26

in Figure 4.7(a) are deemed insignificant by our sparse model because sequences not

belonging to this family also have such residue aligned to these positions.

Finally, we note that the dense models with Normal priors also achieve classification

performance similar to the sparse model. However, the weights learned by the dense

models did not allow any immediate interpretation of importance nor selection of a

small set of critical discriminative features.

59

0 10 20 30 40 50
0

1

2

3

4

5

position

w
e

ig
h

ts

(a)

1ayj

1bk8

1pgs

1n4n

1gpt

1jkz

1mr4

1myn

(b)

Figure 4.6: Panel (a): The sum of the positive coefficients in each position for the
Plant defensins family. Panel (b): The primary and secondary structure, in schematic
diagrams, of eight sequences belonging to the this family. We obtain the diagrams from
PDBsum.

60

292010

(a)

 +−−−−−−−−−−−−−−−−−−−−−+

 | |

 | |

xxxxxxxCxxxxxCxxxCxxxxxxxxxxxCxxxxCxCxxx

 | | | |

 | +−−−−−−−−−−−−−−−−+ |

 +−−−−−−−−−−−−−−−−−−−−−−+

0 1 2 3

1 1 1 1

(b)

Figure 4.7: Panel (a): The HMM-logo of the short-chain scorpion toxins family. This
logo is obtained from PFam. Panel (b): the schematic representation of this family
suggested by PFam and PROSITE.

4.4 Relationship to kernel methods

Tseuda et al. proposed the marginalized kernels in [66] for biological sequence analysis.

Let x ∈ X be a set of observable variables and h ∈ H be a set of unobservable (hidden)

variables. The authors define Kz(z, z
′) as the joint kernel, where z = (x, h). Then in

the marginalized kernel setting, the similarity between two examples x and x′ is defined

as:

K(x, x′) =
∑

h∈H

∑

h′∈H
p(h|x)p(h′|x′)Kz(z, z

′), (4.14)

where we sum over all hidden variables. Further, given two sequences X and Y , define

the count kernel as:

K(X,Y) =
∑

σ∈Σ

cσ(X)cσ(Y), (4.15)

where cσ(X) denotes the number of times the symbol σ occurs in sequence X. Finally,

let H be the set of states in an HMM, Tseuda et al. showed that the corresponding

marginalized count kernel is:

K(X,Y) =
∑

h,h′

p(h|X)p(h′|Y)Kz(ZX , ZY)

=
∑

x̃,s̃

ξ(x̃, s̃|X)ξ(x̃, s̃|Y) (4.16)

61

for all x̃ ∈ Σ and s̃ ∈ S, where S represents the set of states in the HMM. Equation 4.16

indicates that, under the kernel setting, the kernel induced by our feature set is a

marginalized count kernel. We also note that Equation 4.15 implies that the spectrum-k

kernel is a k-th order count kernel, in which σ spans through all possible k-mers induced

by Σ. Finally Tsuda et al. also showed that the SVMFisher also corresponds to a special

case of marginalized count kernel.

4.4.1 Comparison with the spectrum-k kernel

In Equation 4.16, each hidden variable is associated with a posterior probability ob-

tained from the forward-backward algorithm. We call these the soft labels. However,

one may also use hard labels in such setting: determine the labels using the Viterbi

path, the most probably path that generated the observed sequence. Use of the Viterbi

path results in the following similarity measure between two sequences X and Y :

KV (X,Y) =
∑

t,t′

∑

x̃

[I(Xt = Yt′ = x̃)] ·

[
∑

s̃

I(V (t|X) = V (t′|Y) = s̃)], (4.17)

where V (t|X) denotes the state that symbol Xt aligns to in the Viterbi sequence; on

the other hand, the similarity between X and Y defined by the spectrum-k kernel with

k = 1 is:

KS(1)(X,Y) =
∑

t,t′

∑

x̃

I(Xt = Yt′ = x̃). (4.18)

As a result, the kernel induced by our feature set also has a close relationship with

the spectrum-k kernel. The extra term in the end of Equation 4.17 is imposed by our

feature extractor, in this case, the profile HMM. The impact of this term can be seen in

the following example. Consider a new sequence Y ′, obtained by randomly permuting

Y ; then it is very likely that KV (X,Y ′) 6= KV (X,Y) since Y ′ will align differently with

the feature extractor; on the other hand, it is clear that KS(1)(X,Y
′) = KS(1)(X,Y).

We believe that this is one of the reasons that in the string kernel setting, k must be a

moderately large number, for example 3 or 5. In contrast, our equivalent kernel is able

62

to exploit the existence of latent match states in computing a tractable and empirically

effective similarity score.

Furthermore, upon close examination of Equations 4.17 and 4.18, the kernel induced

by our features using the Viterbi path is a spectrum-1 kernel with an augmented alphabet

set. While the spectrum-k kernel uses the 20 amino acids as the alphabet set, the kernel

induced by our features augments the alphabet set Σ to Σ′ = Σ×Z+
m, where Z+

m is the

set of all positive integers up to m, the number of match states in the profile HMM.

For the mismatch(k,mk) kernel, computing each element in the kernel matrix re-

quires O(kmk+1|Σ|mk(TX + TY)) time. Denote m as the number of match states in

the profile HMM; using our hybrid model with a linear kernel, computation of each

element in the kernel matrix requires O(m) time, since only the inner product of the

sufficient statistics of two sequences needs to be computed. The complexity of the

forward-backward procedure, required to obtain the sufficient statistics of a sequence

X with length TX is O(m(TX + |Σ|)); the complexity is linear instead of quadratic in m

due to the linear structure of the profile HMMs. Finally, the complexity of construct-

ing the feature extractor (profile HMM) is O(mnT) where n is the number of labeled

positive examples and T the length of the longest sequence in the training set. Among

54 experiments, the total number of positive sequences is 1398; each family on average

has 26 positive training sequences. Each profile HMM on average has 123 match states;

the average positive sequence length is 147 residues per sequence. Each profile on av-

erage takes 12 E-M like iterations to train and takes 105 seconds on a 2.80GHz(x2)

machine with 1024MB of RAM; as for logistic models, given the features it takes BBR

on average 1 minute to estimate a model and 3 seconds to predict classification results

per experiment.

More recent methods based on profile kernels [35] have shown significant promise.

Unlike our setting, profile kernels leverage the benefits of unlabeled data. Also each

sequence is represented by a profile, resulting in increased computational complexity

of the classification approach. As a result, the method is fundamentally different from

those compared in this paper and we do not include the comparison in the current

study.

63

4.5 Conclusion

In this study we introduce a method for learning sparse feature models for the remote

homology detection problem. To extract the features, we use a profile HMM that

represents the superfamily of interest. These features are the sufficient statistics of the

query sequence with respect to the designed profile HMM. As such, the features offer

insight to the underlying evolutionary process such as the degree of conservation of each

position in the superfamily.

Using interpretable logistic classifiers with Laplace priors, the learned models exhibit

more than 90% reduction in the number of selected features. These results indicate that

it may be possible to discover very sparse models for certain protein superfamilies, which

might confirm the hypothesis suggested in [33, 55, 34] that a small subset of positions

and residues in protein sequences may be sufficient to discriminate among different

protein classes. We show that the sparse model select some critical positions that are

consistent with current reports. However, at present the full set of selected positions

may not fully agree with the proposed hypotheses. Further analysis is needed to study

the correspondences between the computation and hypothesized models.

In our future work we will further investigate and consider biological interpretation

of the resulting sparse models. In addition, we will expand our framework to utilize

additional sets of physically motivated features as well as the unlabeled data, leveraging

the benefits of large training sets.

64

Chapter 5

Joint Training and Feature Sharing for Protein Remote

Homology Detection

In the brief introduction to the joint training and feature sharing framework presented

in Section 2.6, we noted that in the context of the Structural Classification of Proteins

(SCOP) proteins form a tree-like hierarchy according to their structural similarity, as

shown in Figure 1.1. Naturally, we expect sharing of features among sub-classes. In

this chapter, we test this hypothesis on two different types of features under the joint

training and feature sharing framework:

• The set of sufficient statistics induced by the profile HMMs.

• The mismatch(5,1) features proposed in [43].

We again use the SCOP 1.59 data set for performance evaluation. The data set

contains 54 experiments with 23 superfamilies.

65

5.1 Complexity of the joint training framework

We provide the greedy algorithm discussed in Chapter 2:

Algorithm for joint training and feature sharing

Input: Set of examples {(xi, yi)}Ni=1 and set of labels Y

1. Initialize the weights wy
i = 1 and set H(xi, y) = 0,∀1 ≤ i ≤ N, y ∈ Y .

2. repeat for m = 1, 2, · · · ,M

a: C(0)← {}, C ′ ← Y, n← 1

b: while C ′ 6= {}

i):for each c′ ∈ C ′

S′ ← C(n− 1) ∪ {c′}

Fit shared stump for every feature f :

hm(x, y) =

aδ(xf > θ) + b if y ∈ S′

ky otherwise

Evaluate error for every feature f :

Jwse(n) =
∑

y∈Y

n
∑

i=1

w
y
i (zy

i − hm(xi, y))
2

ii):Find the best combination ((c′)∗, f∗) that maximizes the objective function J .

iii):C(n)← C(n− 1) ∪ {(c′)∗}, C ′ ← C ′\{(c′)∗}, n← n+ 1

c: Find the best candidate set C(i∗) where i∗ = argmini Jwse(i) and the feature f

d: ∀1 ≤ i ≤ N, y ∈ Y , update:

H(xf
i , y)← H(xf

i , y) + hm(xf
i , y)

w
y
i ← w

y
i e

−z
y
i hm(xf

i ,y)

Output: The final boosted joint classifier: H = {hm(f, C∗, a, b, θ)}Mm=1

z
y
i = 1, if the label of example xi is y, otherwise, zy

i = −1

The algorithm is quoted from [65]

With M boosting rounds, N training examples, the complexity of the greedy al-

gorithm is O(NMd|Θ||Y | + dM |Y |3|Θ|) where d is the dimensionality of the feature

space and Θ is the set of all possible values for the parameter θ; for continuous vari-

ables, |Θ| ∈ O(N). The complexity of the algorithm is cubic in the size of Y and with

66

continuous variables, quadratic in the size of the training set.

5.2 Experimental Results

We first present the results obtained using sufficient statistics as features and then we

present the results with mismatch(5,1) features.

5.2.1 The sufficient statistics

The joint training framework requires fixed dimensionality over all experiments. How-

ever, the profile HMMs for each experiments have variable length which indicates that

the dimensionality of the features are different across experiments. Padding the short

feature sets with 0 to accommodate longer feature sets is a possible solution but we need

to select the positions for padding carefully or it will not have any biological meaning.

To obtain the positions for padding, we need to perform a multiple alignment on all

(54) available profile HMMs and possibly with the help of phylogenetic trees. Such

requirement will result in a search problem with a very large search space.

Consequently, under this learning setting we resort to performing all 54 detection

problems separately and independently as binary class problems and we cannot achieve

sharing of features with this feature set. In each detection problem, we set the neg-

ative training sequences as the background sequences. We show the ROC-50 plots in

Figure 5.1. In Figure 5.1(a) we compare the boosted tree stump with 10, 30, 50, 70, 90

boosting iterations (solid, color lines) with the mismatch(5,1) kernel (black dashed line)

and the kernel induced by the whole set of sufficient statistics (black line with ’+’ sign).

Figure 5.1(b) provides a more detailed view in the high ROC-50 area. We observe from

the plot that while boosted tree stumps show some substantial degradation from the

kernel induced by the whole set of sufficient statistics, such performance is accomplished

with as few as 10 features. Moreover, the boosted tree stumps demonstrate comparable

performance with the mismatch(5,1) kernel, which corresponds to 3, 200, 000 features.

We also provide the mean ROC and ROC-50 scores for the competing classifiers in

Table 5.1.

67

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

ξ−10

ξ−30

ξ−50

ξ−70

ξ−90

mism(5,1) full

ξ−SVM−20m

(a)

0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

12

14

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

ξ−10

ξ−30

ξ−50

ξ−70

ξ−90

mism(5,1) full

ξ−SVM−20m

(b)

Figure 5.1: ROC50 curve for the sufficient statistics features and full mismatch(5,1)
features. The horizontal axis represents a given ROC50 score and the vertical axis
denotes the number of experiments, out of 54, achieved higher than or equal to the
specified ROC50 score. For sufficient statistics, the number of selected features is
denoted by the number of rounds. The ROC50 curve of mismatch(5,1) is achieved
using the full set of features, which corresponds to 3, 200, 000 features . The sub-figure
in the right panel is a detailed view of the curves in the high ROC50 area.

Table 5.1: Mean ROC and ROC-50 scores for different number of selected features using
sufficient statistics as features.

mean ROC score mean ROC-50 score

sufficient statistics (10 features) .637628 .367255

sufficient statistics (30 features) .748540 .380518

sufficient statistics (50 features) .750328 .376488

sufficient statistics (70 features) .750428 .370480

sufficient statistics (90 features) .756543 .368080

mismatch(5,1) (3.2M features) .874890 .416650

5.2.2 The mismatch(5,1) features

For the mismatch(k,m) kernel, the dimensionality of the feature space is the set of

all possible k-mers induced by the alphabet set. Moreover, the corresponding feature

extractor is constant across all experiments whereas for the sufficient statistics, each

experiment has a different feature extractor. As a result, the kernel matrix is constant

across all experiments and joint training and feature sharing with the feature set induced

by the mismatch(5,1) kernel is possible. However, as suggested in Section 5.1, the

complexity of joint training and feature sharing framework is cubic in the number of

68

classes, which is 23 on this particular data set and linear in the dimensionality of

the feature space, which is exponential in k (for proteins, |Σ| = 20 and when k=5,

|Σ|k = 3, 200, 000). Therefore pre-selection of features is necessary.

We construct explicit representations for all sequences in the SCOP 1.59 data set.

Such construction is possible only when we employ the sparse representation. The

data matrix is extremely sparse. With 7, 329 sequences, only 117, 366, 759 entries have

non-zero counts, which only constitute 0.5% of the data matrix. The data set induces

3, 189, 331 unique mismatch(5,1) features out of 3.2 million of possible features. On

average, each feature is shared by 37 sequences, which indicates very little overlap in

features. To pre-select features, we use the χ2 statistics, a well-known statistic often

used to determine independence between variables in contingency tables. The larger

the χ2 score is, the less likely that the two variables of interest are independent of each

other. In the experiment, the two variables we pick are the features and the class label.

First we pre-select 652 features and present the ROC-50 plot in Figure 5.2(a).

In the figure, we compare the boosted tree stump with 100, 200, 300, 400 and 500

mismatch(5,1) features (solid color lines), the kernel induced by the full mismatch(5,1)

features (black dashed line) and the kernel induced by the pre-selected 652 features with

high χ2 scores. First, we observe that the kernel induced by the pre-selected features

performs on par with the kernel induced by the full feature set, suggesting that the

quality of the pre-selected features is not compromised. However, the performance of

the boosted tree stumps is very poor. Upon detailed investigation, we observe that

the positive training and test sequences do not share many features. In addition, even

sharing of features among all positive training sequences is scarce.

To further understand the problem, we perform an unfair test. In this unfair ex-

periment, we continue using the χ2 statistics to pre-select the features but with the

knowledge of the positive testing sequences. We show the result of the experiment in

Figure 5.2(b). In the figure we compare the boosted tree stumps with 200, 400, 600, 800

and 1, 000 features (solid color lines), the kernel induced by the full mismatch(5,1)

features (black dashed line) and the kernel induced by the pre-selected mismatch(5,1)

features with the knowledge of positive testing sequences (black line with ’+’ sign).

69

First, we observe that the kernel induced by the pre-selected features demonstrate sig-

nificant improvement over the kernel induced by the full feature set, which is expected.

This suggests again that the quality of the selected features is not compromised. How-

ever, even with such optimal feature set, the boosted tree stumps still demonstrate

poor performance. Though larger rounds of boosting is possible and should be car-

ried out, but with complexity cubic in |Y | the computational time required becomes

unreasonable.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

mism(5,1)−100

mism(5,1)−200

mism(5,1)−300

mism(5,1)−400

mism(5,1)−500

mism(5,1) full

kernel M−652

(a)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

mism(5,1)−200

mism(5,1)−400

mism(5,1)−600

mism(5,1)−800

mism(5,1)−1000

mism(5,1) full

kernel M−3634

(b)

Figure 5.2: ROC50 curve for the mismatch(5,1) features. In the left panel, we show
the performance of boosted tree stumps with 100, 200, 300, 400 and 500 iterations (solid
color lines) over 652 pre-selected features using the χ2 scores. We also compare with
the kernel induced by the full mismatch(5,1) features (black dashed line) and the kernel
induced by the pre-selected features (black line with ’+’ sign). In the right panel, we
pre-select 3634 features using χ2 score with knowledge of the positive test sequences. We
compare the boosted tree stumps with 200, 400, 600, 800 iterations (solid color lines),
the kernel induced by the full mismatch(5,1) feature set (black dashed line) and the
kernel induced by the pre-selected features (black line with ’+’).

With further investigation, we observe that the joint training feature sharing algo-

rithm exhibit some interesting behavior. First, we observe that even among positive

training sequences, sharing of features is scarce: in the mth boosting round, the al-

gorithm picks feature fm, shared by a few positive training sequences (X(m)); the

estimated tree stump makes mistakes on the positive training sequences (X̄(m)) with-

out feature fm, leading to increase of weight for these examples. In the next iteration,

the algorithm focuses on examples X̄(m) and picks a feature fm+1 6= fm shared by

X̄(m). If in examples X(m) feature fm+1 is absent the (m + 1)th tree stump make

70

mistakes on X(m), causing the weights of these examples to increase, which is typically

the case according to our observation. Consequently, the algorithm picks feature fm

in the (m + 2)th boosting round. The learning algorithm ends up bouncing back and

forth on these features.

To resolve the observed problem, we further enforce the constraint that once a

feature is selected by the tree stump, the same feature becomes unavailable and can

never be selected again. Under such constraint, we observe that the mismatch(5,1)

features exhibit complex correlation structure. Denote N(α,m) as the the m-neighbor

of a k-mer feature α (all possible k-mers with up to m mismatch). If any k-mer

α has a high χ2 score, then any γ ∈ N(α,m) is also very likely to have a high χ2

score, since under such feature space, observing α induces observation for all γ ∈

N(α,m). Consequently, all k-mers in N(α,m) and α will be pre-selected and these

highly correlated mismatch(5,1) features form clusters made up of the m-neighbors in

the the pre-selected feature set with the choice of m = 1 in this experiment. This

indirectly breaks the constraint since once a feature is picked by a tree stump, although

the same feature is not eligible for picking, but its 1-neighbor will very likely to be picked

by the tree stump in subsequent boosting iterations; with such dependency structure,

the algorithm exhibit the same behavior discussed in the previous paragraph.

Finally we also note that pre-selection of features should be performed very carefully

when using high-dimensional features with very little overlap such as the mismatch(5,1)

features. We observe that some examples end up with a null representation: they posses

none of the pre-selected features. Numerical problems may occur in such cases when

using classifiers that rely on the rank of the data matrix.

5.2.3 Discussion

In the experiment with sufficient statistics, we show that with fewer than 100 features

the boosted tree stumps achieve performance comparable to that of the mismatch(5,1)

kernel on the full feature set. We provide the following explanation. Let mp denote

the number of match states in the profile. Using sufficient statistics as features, we

obtain |Σ|mp features (|Σ| features for each position). The correlation structure is

71

only present within each position. Between each pair of positions, the correlation has

been integrated out by the forward and backward inference procedure. We believe that

the poor performance of boosted tree stumps on the mismatch(5,1) feature set is not

directly related to the discriminative power of the classifier. We strongly believe the

problem actually comes from the scarce feature overlap among examples in the same

class and the complex correlation structure among the features.

5.3 Conclusion

In this study, we apply the joint training and feature sharing framework to two different

type of features. First we apply the algorithm on the sufficient statistics feature set

and show that with fewer than 100 boosting iterations, the performance of the boosted

tree stumps is comparable to that of the kernel induced by the full set of mismatch(5,1)

features. A major shortcoming of the sufficient statistics is the underlying feature

extractor is not constant over different superfamilies and therefore we cannot take full

advantage of feature sharing framework.

We also apply the algorithm on the mismatch(5,1) feature set. The algorithm re-

quires explicit feature representation and the complexity is linear in the dimensionality

of the features and cubic in the number of classes, thus incurring the need to per-

form feature pre-selection. However, the pre-selection process picks clusters of features,

which makes the algorithm ineffective. In addition, the complex correlation structure

among features also makes combination of this feature set and the boosted tree stumps

undesirable. As we have shown using the toy example designed in Section 2.6 and using

the sufficient statistics to perform protein remote homology detection, the boosted tree

stumps do have discriminative power. The key is to choose a sensible and preferably

orthogonal feature set with sufficient feature overlap among examples in the same class.

For future works, we propose to search for such feature set for protein remote homology

detection. We also propose to group mismatch(5,1) features first, pick a representative

feature from the group with high scores and apply the joint training and feature sharing

algorithm on the pre-selected representatives.

72

Chapter 6

Fast and Accurate Semi-supervised Protein Homology

Detection with Large Uncurated Sequence Databases

Remote homology detection problem is typically characterized by very few positive

training sequences accompanied by a large number of negative training examples. Ex-

perimentally labeling the sequences is costly, leading to the need to leverage unlabeled

data to refine the decision boundary. The profile kernel [35] and the mismatch neighbor-

hood kernel [69] both use large unlabeled data sets and show significant improvements

over the sequence classifiers trained under the supervised setting. We believe the ma-

jor contributions for their great success come from first, leveraging unlabeled data and

second, the use of mutational neighborhood to model the amino acid substitution pro-

cess. However, kernel evaluation based on the induced mutational neighborhood incurs

exponential complexity in the size of the alphabet set hence hindering the use of such

powerful tools.

Another missing component in previous studies for large-scale semi-supervised pro-

tein homology detection is a systematic and biologically motivated approach for lever-

aging the unlabeled data set. In this study, we address both issues. First, we employ a

class of previously established kernels, the Sparse Spatial Sample Kernels (SSSK) [38].

This class of biologically motivated kernels model mutation, insertion and deletion ef-

fectively and induce low-dimensional feature space; moreover the complexity of kernel

evaluation based on feature matching is independent of the size of the alphabet set and

such key characteristics opens the door for rapid large-scale semi-supervised learning.

Second, we propose a biologically meaningful way of extracting relevant information

from the unlabeled database for semi-supervised learning. Third, we also propose a

73

method to remove the bias caused by overly represented or duplicated unlabeled se-

quences, which are common in large uncurated sequence databases. Our experimental

results show that the combination of these approaches yields state-of-the-art perfor-

mance that are significantly better than previously published methods and also exhibit

order-of-magnitude differences in experimental running time.

6.1 Background

In this section, we briefly review previously published state-of-the-art methods for pro-

tein homology detection. We denote the alphabet set as Σ in the whole study. Given

a sequence X the spectrum-k kernel [42] and the mismatch(k,m) kernel [43] induce the

following |Σ|k-dimensional representation for the sequence:

Φ(X) =

(

∑

α∈X

I(α, γ)

)

γ∈Σk

, (6.1)

where under the spectrum-k kernel, I(α, γ) = 1 if α = γ and under the mismatch(k,m)

kernel, I(α, γ) = 1 if α ∈ N(γ,m) and N(γ,m) denotes the set of k-mer mutational

neighborhood induced by the k-mer γ for up to m mismatches or substitutions.

Both spectrum-k and mismatch(k,m) kernel directly extract string features based

on the observed sequence. Under the mismatch representation, all substitutions are

treated as equally likely, which may not be deemed practical due to the physical and

chemical properties of amino acids. The profile kernel [35] takes such constraints into

consideration: given a sequence X and its corresponding profile [24] PX , Kuang et al.

[35, 36] define the |Σ|k-dimensional profile(k,σ) representation of X as:

Φprofile(k,σ)(X) =

∑

i=1···(TPX
−k+1)

I(PX(i, γ) < σ)

γ∈Σk

, (6.2)

where σ is a pre-defined threshold, TPX
denotes the length of the profile and PX(i, γ)

the cost of locally aligning the k-mer γ to the k-length segment starting at the ith

position of PX . Explicit inclusion of the amino acid substitution process allows both

the mismatch and profile kernels to significantly outperform the spectrum kernel and

demonstrate state-of-the-art performance under both supervised and semi-supervised

74

settings [69, 35]. However, such method of modeling substitution process induces a k-

mer mutational neighborhood that is exponential in the size of the alphabet set during

the matching step for kernel evaluation; for the mismatch(k,m) kernel, the size of the

induced k-mer neighborhood is km|Σ|m and for the profile(k,σ) kernel, the size of the

neighborhood is bounded below by km|Σ|m, above by |Σ|k, and is dependent on the

threshold parameter σ. Increasing m or σ to incorporate more mismatches will incur

higher complexity for computing the kernel matrix hence hindering the use of such

powerful tools.

Finally, to construct the sequence profiles required for computation of the profile

kernel, we need to leverage the unlabeled sequences to avoid overfitting of the profile.

For the mismatch string kernel, Weston et al. propose to use the sequence neighborhood

kernel to leverage the unlabeled sequences in [69].

6.1.1 The sequence neighborhood kernel

The sequence neighborhood kernels take advantage of the unlabeled data using the

process of neighborhood induced regularization. Let Φorig(X) be the original represen-

tation of sequence X. Also, let N(X) denote the sequence neighborhood of X 1. Weston

et al. proposed in [69] to re-represent X using:

Φnew(X) =
1

|N(X)|
∑

X′∈N(X)

Φorig(X ′). (6.3)

Under the new representation, the kernel value between the two sequences X and Y

becomes:

Knbhd(X,Y) =
∑

X′∈N(X),Y ′∈N(Y)

K(X ′, Y ′)
|N(X)||N(Y)| . (6.4)

Note that under such settings, all training and testing sequences will assume a new rep-

resentation, whereas in a traditional semi-supervised setting, unlabeled data are used

during the training phase only (the framework we adopted in Chapter 3). The authors

choose the mismatch representation for the sequences and show that the discriminative

1We will discuss how to define N(X) in later sections.

75

power of the classifiers improve significantly once information regarding the neighbor-

hood of each sequence is available. However, the exponential size of the incurred k-mer

mutational neighborhood makes large-scale semi-supervised learning under the mis-

match representation very computationally demanding and cannot be performed using

only moderate computational resources.

6.2 Proposed methods

In this section, we first discuss the sparse spatial sample kernels (SSSK) for protein

homology detection. Such kernels effectively model the insertion, deletion and substi-

tution processes and the complexity of the string matching step for kernel evaluation

is independent of the size of the alphabet set. The kernels show very promising results

under the supervised setting and also under the semi-supervised setting with a small un-

labeled sequence data set [38]. Next, we discuss a systematic and biologically motivated

way to extract only relevant information from the unlabeled database. Finally we also

discuss how to remove the bias caused by duplicated or overly represented sequences

which are commonly found in large uncurated sequence databases. The combination

of the proposed methods enables fast and accurate semi-supervised learning for protein

homology detection.

6.2.1 The sparse spatial sample kernel

The class of sparse spatial sample kernels, proposed by Kuksa et al. [38] have the

following form:

K(t,k,d)(X,Y) =
∑

(a1,d1,...,dt−1,at)

ai∈Σk,0≤di<d

C(a1, d1, · · · , at−1, dt−1, at|X)·

C(a1, d1, · · · , at−1, dt−1, at|Y)
, (6.5)

where C(a1, d1, · · · , at−1, dt−1, at|X) denotes the number of times we observe substring

a1
d1↔ a2,

d2↔, · · · , dt−1←→ at (a1 separated by d1 characters from a2, a2 separated by d2

characters from a3, etc.) in the sequence X. This is illustrated in Figure 6.1. The

kernel implements the idea of sampling the sequences at different resolutions and com-

paring the resulting spectra; similar sequences will have similar spectrum at one or

76

more resolutions. This takes into account possible mutations as well as insertions and

deletions. Each sample consists of t spatially-constrained probes of size k, each of which

lie less than d positions away from its neighboring probes. The parameter k controls

the individual probe size, d controls the locality of the sample and t controls the car-

dinality of the sampling neighborhood. In this work, we use short samples of size 1

(i.e. k = 1) and set t to 2 (i.e. features are pairs of monomers) or 3 (i.e. features

are triples of monomers). The spatial sample kernels, unlike the family of spectrum

kernels [42, 43], not only take into account the feature counts, but also include spatial

configuration information, i.e. how the features are positioned in the sequences. The

spatial information can be critical in establishing similarity of sequences under complex

transformations such as the evolutionary processes in protein sequences. The addition

of the spatial information experimentally demonstrates very good performance, even

with very short sequence features (i.e. k = 1), as we will show in section 6.4.

Figure 6.1: Contiguous k-mer feature α of a traditional spectrum/mismatch kernel
(top) contrasted with the sparse spatial samples of the proposed kernel (bottom).

The use of short features can also lead to significantly lower computational complex-

ity of the kernel evaluations. The dimensionality of the features induced by the spatial

sample kernels is |Σ|tdt−1 for the choice of k = 1. As a result, for triple(1,3) (k = 1,

t = 3, d = 3) and double-(1,5) (k = 1, t = 2, d = 5) feature sets, the dimensionalities

are 72, 000 and 2, 000, respectively, compared to 3, 200, 000 for the spectrum(k) [42],

mismatch(k,m) [43] and profile(k,σ) [35] kernels with the common choice of k = 5. In

Figure 6.2 we show the differences between the spatial (double(1,5)) and the spectrum

(mismatch(5,1)) features on two slightly diverged sequences, S and S′. In the mismatch

features, each symbol ’X’ represent an arbitrary symbol in the alphabet set, Σ. As a

result, each feature basis corresponds to |Σ| features. Such way of modeling substi-

tution induces a k-mer mutational neighborhood in O(km|Σ|m) size. In contrast, the

77

spatial features sample the sequences at different resolutions and therefore performing

string matching does not require neighborhood expansion; matching on a position with

substitution is achieved by extending the current spectrum. Such way of modeling

substitution opens the door for a matching algorithm with low complexity i.e. inde-

pendent of the size of the alphabet, which in turns opens the door for fast large-scale

semi-supervised learning, as we will see in Section 6.4. In the figure, we represent all

common features between the original and the mutated strings with bold fonts and red

(light) color.

S = HKYNQLIM

XKYNQ

HXYNQ

HKXNQ

HKYXQ

HKYNX

XYNQL

KXNQL

KYXQL

KYNXL

YKNQX

XQLIM

NXLIM

NQXIM

NQLXM

NQLIX

XNQLI

YXQLI

YNXLI

YNQXI

YNQLX

XKINQ

HXINQ

HKXNQ

HKIXQ

HKINQ

XINQI

KXNQI

KIXQI

KINXI

KINQX

XQIIM

NXIIM

NQXIM

NQIXM

NQIIX

XNQII

IXQII

INXII

INQXI

INQIX

HK

KY

YN

NQ

QL

LI

IM

H_Y

K_N

Y_Q

N_L

Q_I

L_M

H__N

K__Q

Y__L

N__I

Q__M

H___Q

K___L

Y___I

N___M

H____L

K____I

Y____M

HK

KI

IN

NQ

QI

II

IM

H_I

K_N

I_Q

N_I

Q_I

I_M

H__N

K__Q

I__I

N__I

Q__M

H___Q

K___I

I___I

N___M

H____I

K____I

I____M

mismatch

(5,1)

S’= HKINQIIM

double-

(1,5)

Figure 6.2: Differences in handling substitutions by the mismatch and spatial features.
We represent all common features between the original and the mutated strings, S
and S′, with bold fonts and red (light) color. Each symbol ’X’ under the mismatch
representation represent an arbitrary symbol in the alphabet set Σ. As a result, each
feature basis corresponds to |Σ| features.

To compute the kernel values under the supervised setting, we first extract the

features and sort the extracted features in linear time using counting sort. Finally we

count the number of distinct features and for each observed feature, we update the

kernel matrix. For N sequences with the longest length n and u distinct features,

computing the N -by-N kernel matrix takes linear O(dnN +min(u, dn)N2) time.

Under the semi-supervised setting, on the one hand, direct use of equation 6.4

for computation of the refined kernel values between sequences X and Y requires

|N(X)| × |N(Y)| kernel evaluations (i.e. quadratic running time in the size of the se-

quence neighborhood); on the other hand, use of Equation 6.3 requires explicit represen-

tation of the sequences which can be problematic when the dimensionality of the feature

space is high. As a result, performing such smoothing operation over the mismatch(5,1)

78

representation is computationally intensive for both methods due to first, the exponen-

tial length of the induced k-mer mutational neighborhood and second, the quadratic

running time induced by equation 6.4.

Equation 6.3 lends a useful insight into the complexity of the smoothing operation.

For any explicit representation Φ(X), its smoothed version can be computed in time

linear in the size of the neighborhood N(X), therefore the smoothed kernel can also be

evaluated in time linear in the neighborhood size. As mentioned before, the smoothed

representation under the mismatch features cannot be efficiently computed because of

the exponential size of the induced k-mer neighborhood; however, for the double and

triple feature sets the smoothed representations can be computed explicitly, if desired.

In our experiments, we do not compute the explicit representation and instead use

implicit computations over induced representations: for each neighborhood set N(X),

we first sort the features and then obtain counts for distinct features to evaluate the

kernel. The low-dimensional feature space and efficient feature matching induced by

the kernels ensure low complexity for kernel evaluation. Kuksa et al. provides a more

detailed description of algorithm for spatial kernel evaluation under both supervised

and semi-supervised settings in [37].

6.2.2 Extracting relevant information from the unlabeled sequence

database

Remote homology detection problem is typically characterized by few positive sequences

accompanied by a large number of negative examples. Experimentally labeling the se-

quences is costly, leading to the need to leverage unlabeled data to refine the decision

boundary. In [69], Weston et al. leverage the unlabeled sequences to construct a se-

quence neighborhood kernel under the mismatch representation to refine the decision

boundary. However, in most sequence databases, we have multi-domain protein se-

quences in abundance and thus, such multi-domain sequences can be similar to several

unrelated single-domain sequence, as noted in [69]. Direct use of such long sequences

may falsely establish similarities among unrelated sequences. Under semi-supervised

learning setting, our goal is to recruit neighbors, or homologues of training and testing

79

sequences and use these intermediate neighbors to establish similarity between the re-

motely homologous proteins, which bear little to no similarity on the primary sequence

level. As a result, the quality of the intermediate neighboring sequences is crucial for

inferring labels of remote homologues. Sequences that are too long will contribute ex-

cessive features, while sequences that are too short often have missing features and

hence induce very sparse representation, which in turn bias the averaged neighborhood

representation. As a result, the performance of the classifiers will be compromised with

direct use of these sequences. Weston et al. in [69] proposed to only capture neighboring

sequences with maximal length of 250 as a remedy. However, such practice may not offer

a direct and meaningful biological interpretation and may discard valuable information.

In this study, we propose to extract only statistically significant sequence regions, re-

ported by PSI-BLAST, from the unlabeled neighboring sequences. We summarize all

competing methods in below:

• unfiltered: all neighboring sequences are recruited. This is to show how much

excessive or missing features in neighboring sequences that are too long or too

short compromise the performance of the classifiers.

• extracting the most significant region: for each recruited unlabeled neighboring se-

quence, we extract only the most statistically significant sequence region reported

by PSI-BLAST; such sub-sequence is more likely to be biologically relevant to the

query sequence.

• filter out sequences that are too long or too short: for each query sequence X, we

remove any neighboring sequences Y if TY > 2TX or TY < TX

2 , where TX is the

length of sequence X. This method will alleviate the effect of the excessive and

missing features induced by the unfiltered method.

• maximal length of 250: this is the method proposed by Weston et al. in their

study.

To recruit neighbors of a sequence X, we query the unlabeled database using PSI-

BLAST [1] with two iterations. We recruit all sequences with e-values less than or

80

equal to 0.05 as the neighboring sequences of X. To obtain only relevant informa-

tion from a neighboring sequence, we extract from the unlabeled neighboring sequence

the most significant region (lowest e-value) reported by PSI-BLAST. We illustrate the

procedure in Figure 6.3. In the figure, given the query sequence, PSI-BLAST reports

sequences (hits) containing substrings that exhibit statistically significant similarity

with the query sequence. For each reported hit with e-value less than or equal to 0.05,

we extract the most significant region and recruit the extracted sub-sequence to the

neighboring set of the query sequence.

…

…

query

sequence PSI-BLAST

unlabeled

sequence database

significant hit

statistically significant region

Figure 6.3: Extracting only statistically significant regions (red/light color, bold line)
from the significant hit reported by PSI-BLAST

6.2.3 Clustering the neighboring sets

The smoothing operation in Equation 6.3 is susceptible to overly represented neighbors

in the unlabeled data set since if we we append many replicated copies of a neighbor to

the set, the computed average will be biased towards such sequence. In large uncurated

sequence databases, duplicated and overly represented sequences are common. For

example, some sequences in Swiss-Prot have the so-called secondary accession numbers.

Such sequences can be easily identified and removed. However, there are two other types

of duplication that are harder to find: sequences that are nearly identical and sequences

that contain substrings that have high sequence similarity and are significant hits to

the query sequence. Existence of such examples will bias the estimate of the averaged

representation, hence compromising the performance of the classifiers. Pre-processing

the data is necessary to remove such bias. In this study we propose to cluster the

neighboring sets as a remedy. Conducting clustering analysis typically incurs quadratic

complexity in the number of sequences to be clustered. As a result, though clustering the

81

union of all neighbor sets is more desirable, to minimize the experimental running time

we propose to cluster each reported neighbor set one at a time; for example, the union

of all neighbor sets (e-value less than or equal to 0.05) induced by the NR unlabeled

database is 129, 646, while the average size of the neighbor sets is 115 (reported in later

sections). Clustering each reported neighbor set individually will lead to tremendous

saving in experimental running time.

We use the program CDHit [44] for clustering analysis. The program employs a

heuristic (incremental clustering algorithm) to avoid all-by-all comparisons. First, the

sequences are sorted in decreasing length with the longest one representing the clus-

tering center. Next, each remaining sequences is compared to each existing clustering

center and will be assigned to the first cluster in which the similarity between the clus-

ter representative and the query sequence exceeds a pre-defined threshold. If no such

cluster exists, the sequence will form a new cluster. In this study we perform clustering

at 70% sequence identity level.

6.3 Results on Previously Published Methods

For completeness of this study, we present results on previously published methods in

this section and we will present the experimental results of our proposed method in the

next section. We present experimental results for protein remote homology detection

under the semi-supervised setting on the SCOP 1.59 [47] data set, published in [69]. The

data set contains 54 target families with 7, 329 isolated domains. Only 2, 862 domains

out of 7, 329 are labeled, leading to 4, 467 unlabeled sequences and allowing to perform

experiments in both supervised (labeled sequences only) and semi-supervised (labeled

and unlabeled sequences) settings. Different instances of this data set have been used

as a gold standard for protein remote homology detection in various studies.

We evaluate all methods using the Receiver Operating Characteristic (ROC) and

ROC50 [25] scores. The ROC50 score is the (normalized) area under the ROC curve

computed for up to 50 false positives. With a small number of positive testing sequences

and a large number of negative testing sequences, the ROC50 score is typically more

82

indicative of the prediction accuracy of a homology detection method than the ROC

score.

In all experiments, all kernel values K(X,Y) are normalized using

K ′(X,Y) =
K(X,Y)

√

K(X,X)K(Y, Y)
(6.6)

to remove the dependency between the kernel value and the sequence length. We use

the sequence neighborhood kernel in Equation 6.4, as in [69], under the spatial sample

representation. To perform our experiments, we use an existing SVM implementation

from a standard machine learning package SPIDER2 with default parameters.

6.3.1 The SCOP data set

In the supervised setting, only the labeled sequences participate in the experiments. In

the semi-supervised experiments, we also use the unlabeled data set consisting of the

remaining unlabeled sequences (4467 sequences).

Supervised learning

We compare the performance of our proposed methods with previously published state-

of-the-art methods under the supervised setting. We also include the performance of

generative models (profile HMMs) and the sufficient statistics features that we previ-

ously proposed to facilitate a more complete study. We summarize the performance

in Table 6.1 and the method ξ-SVM-20m corresponds to use of sufficient statistics as

features without dimensionality reduction and with SVM as the classifier. We also note

that the feature extractor for the sufficient statistics make use of the profile HMMs,

which are also a competing method in the comparison and are estimated using positive

training sequences only. From the table we observe that the sufficient statistics and

triple-(1,3) are comparable and have better performance over all other methods. Inter-

estingly, contrary to common findings in previous studies, the profile HMMs demon-

strate reasonably good performance under the supervised setting and also outperform

2http://www.kyb.tuebingen.mpg.de/bs/people/spider

83

the mismatch(5,1) kernel. We believe that such discrepancy comes from the fact that

we used many optimization tools to generalize these profiles (high-quality hand-curated

multiple alignment from PFAM [5] to estimate the initial profiles, position-based se-

quence weighting [27], and 9-component mixture of Dirichlet priors [10, 60]) while in

other studies, only very simple and primitive training was performed. We also show

the ROC-50 plot in Figure 6.4(a). In the plot, the horizontal axis corresponds to the

ROC-50 scores and the vertical axis denotes the number of experiments, out of 54,

with an equivalent or higher ROC-50 score. For clarity, we do not display the plot for

every method. We observe that both model-based methods (profile HMMs and suffi-

cient statistics) show better performance in the area of high ROC scores while in the

area of low ROC scores, the methods based on directly extracting features from the

observed strings (mismatch, double and triple) show better performance. We provide

the following explanation: for a test sequence to obtain high scores in a model-based

method, a good global alignment is required. In the case of profile HMM, if a remote

homologue aligns well globally with the model, the score of the sequence will be high;

on the other hand, using sufficient statistics as features and computing the similarity

between two sequences with their inner product implies global sequence comparison

between the two examples. As the sequences in the superfamily diverge, it becomes

harder to capture similarity by globally aligning two sequences. As a result, while both

model-based methods (profile HMM and sufficient statistics) show good discrimination

power in the area of high ROC-50 scores, as the superfamilies diverge, the discrimina-

tion power starts to degrade in the area of low ROC-50 scores. We have also observe

that among the three string kernels, both triple(1,3) and double(1,5) kernels dominate

the mismatch(5,1) kernel.

Semi-supervised learning

We compare the performance on the same data set in Table 6.2 and in Figure 6.4(b)

under the semi-supervised setting using unlabeled sequences extracted from the SCOP

1.59 data set. All methods except profile HMMs use the kernel smoothing method in

Equation 6.4. For profile HMMs, it is not clear how to smooth over the test sequences

84

Table 6.1: Comparison of the performance on the SCOP 1.59 data set under the super-
vised setting.

Method ROC ROC50 # dim.

(5, 1)-mismatch 0.8749 0.4167 3200000
SVM-pairwise† 0.8930 0.4340 N ‡

(1,5) double 0.8901 0.4629 2000
(1,3) triple 0.9148 0.5118 72000
Profile HMMs 0.8511 0.4597 -
ξ-SVM-20m 0.8864 0.5096 variable
†: directly quoted from [45]
‡: number of training sequences

while smoothing over the training sequences can be performed in a straightforward way

by just appending the neighboring sequences into the training set. Furthermore, the

negative training sequences do not participate in the estimation process. To build each

profile, we run only 2 E-M iterations to ensure reasonable computational time. We show

the ROC-50 plots in Figure 6.4 and summarize the performance in Table 6.2. From

the plot we observe the model-based methods (profile HMMs and sufficient statistics)

demonstrate inferior performance in the area of low ROC-50 scores. Note that for

the profile kernel, the initial representation of each sequence is a profile (model-based)

but the final representation in the k-mer space is induced by performing local align-

ment between two profiles implicitly. Comparison of profile kernel and the pure profile

HMMs method as well as the kernel induced by sufficient statistics provides an inter-

esting contrast. All three models rely on some underlying generative model, where

in profile kernels the similarity value is induced by performing local alignment of sub-

strings; in contrast, when using sufficient statistics as features, the features are obtained

by aligning two sequences under some probabilistic framework globally. Profile kernel

demonstrates inferior performance in the are of high ROC50 scores when compared

with the other two model-based methods. However, in the area of high ROC50 scores,

profile kernel shows better performance, indicating that inferring remote homologues

of diverged superfamilies by locally aligning the sequences might be more effective than

performing a global alignment.

85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

profile HMM
ξ−SVM−20m
mismatch(5,1)
double(1,5)
triple(1,3)

(a) SCOP data set. Supervised setting.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

profile HMMs
ξ−SVM−20m
(5,1)−mismatch
(1,5)−double
(1,3)−triple
(5.7.5)−profile

(b) SCOP data set. Semi-supervised setting

Figure 6.4: Left panel: Comparison of the performance (ROC50) in the supervised
setting. Right panel: Comparison of the performance (ROC50) in a semi-supervised
setting using SCOP 1.59 as the unlabeled data set. Spatial triple kernel outperforms
both profile and mismatch neighborhood kernels.

Table 6.2: Comparison of the performance under the semi-supervised setting with the
unlabeled sequences extracted from SCOP1.59

Method ROC ROC50

(5, 1)-mismatch neighborhood 0.9093 0.6745
(5,7.5)-profile 0.9190 0.6069
(1,5)-double neighborhood 0.9282 0.6383
(1,3)-triple neighborhood 0.9382 0.7262
Profile HMMs 0.8985 0.5732
ξ-SVM-20m 0.8826 0.5804

6.4 Experimental Results on Our Proposed Methods

We present experimental results obtained by our proposed methods in this section

on the spatial features and we no longer show the results for sufficient statistics and

HMMs due to the discussed weakness in the previous chapter. Previously, we show that

the class of spatial sample kernels achieve the state-of-the-art performance under the

supervised setting and semi-supervised setting, where in the semi-supervised setting,

the unlabeled data set comes from the SCOP 1.59 [47] sequence database itself. Note

that sequences in the SCOP database are represented in single domains and therefore,

use of such unlabeled data set does not raise any concern over extracting relevant

86

double(1,5) triple(1,3)
#neighbors ROC ROC50 p-value ROC ROC50 p-value

PDB

unfiltered 14/5/311 .9333 .7324 .3498 .9393 .7444 3.46e-04
region 14/5/311 .9533 .7352 - .9666 .8074 -
no tails 11/3/286 .9255 .6926 .0197 .9433 .7456 3.50e-03
by length 11/2/300 .9254 .6848 6.02e-02 .9418 .7127 4.53e-05

Swiss-Prot

unfiltered 56/28/385 .9145 .6360 6.55e-04 .9245 .6908 2.46e-04
region 56/28/385 .9593 .7635 - .9752 .8556 -
no tails 27/4/385 .9160 .6318 2.12e-04 .9361 .6938 1.55e-06
by length 21/3/385 .9070 .5652 2.03e-05 .9300 .6514 7.33e-07

NR

unfiltered 115/86/490 .9319 .6758 1.40e-03 .9419 .7328 1.07e-05
region 115/86/490 .9715 .7932 - .9824 .8861 -
no tails 55/13/399 .9463 .6775 4.40e-03 .9575 .7438 9.47e-06
by length 38/10/426 .9275 .6656 7.32e-04 .9513 .7401 2.66e-06
∗p-value: signed-rank test on ROC50 scores against region
#neighbors: mean/median/max

Table 6.3: The overall prediction performance of all compared methods over various
unlabeled data sets.

information from a multi-domain sequence. In this study, we use three larger unlabeled

sequence databases, some of which contains abundant multi-domain protein sequences

as well as duplicated or overly represented sequences. The three databases are PDB [7]3

(116,697 sequences), Swiss-Prot [8]4 (101,602 sequences), and the non-redundant (NR)

sequence database (534,936 sequences). To adhere to the true semi-supervised setting,

all sequences in the unlabeled data sets that are identical to any test sequences are

removed.

We use the same evaluation methods (ROC and ROC50) outlined in the previous

chapter, the same benchmark data set (SCOP 1.59), and the same standard machine

learning package, SPIDER, to estimate SVMs with default parameters.

87

6.4.1 Experimental results without clustering

In Table 6.3, we show the performance in ROC and ROC50 scores for the four competing

methods on the double(1,5) and triple(1,3) feature sets using 3 different unlabeled

sequence data sets. We denote the method of filtering out sequences that exhibit a

two-fold difference in length with the query sequence as no tails and the method of

filtering out sequences whose length is greater than 250 as by length. In all but one

case, extracting only relevant regions from the unlabeled sequence leads to significant

improvement in the ROC and ROC50 scores compared to the unfiltered method. In

the second column, we note the number of recruited neighbors (mean, median, and

max). We also calculate the p-values of each competing method against the region

method using Wilcoxon signed-rank test. In all cases except one, we observe statistically

significant improvement in classification performance. Extracting significant regions for

neighborhood smoothing improves the ROC and ROC50 scores on average by 0.0373

and 0.1048, respectively, when compared to the unfiltered method. We show the ROC50

plots of the four competing methods using the triple(1,3) feature set in Figure 6.5.

In the figures, the horizontal axis corresponds to an ROC50 score and the vertical

axis denotes the number of experiments, out of 54, with the corresponding or higher

ROC50 score. In all cases, we observe that the ROC50 curves for region extraction

show strong dominance over all other competing methods. Based on the table and

figures, we also observe that filtering out neighboring sequences based on the length

degrades the performance of the classifiers on the PDB (Figure 6.5(a)) and Swiss-

Prot (Figure 6.5(b)) unlabeled sequence databases while in the case of using the NR

data set (Figure 6.5(a)), the classifier shows slight improvement. Although filtering

out sequences based on the length removes the unnecessary and noisy features from

irrelevant regions within the sequences, at the same time, longer unlabeled sequences

that carry critical information for inferring the class labels of the test sequences are also

discarded. In a larger unlabeled data set (NR), such problem is alleviated since larger

3as of Dec. 2007

4We use the same version as the one used in [69] for comparative analysis of performance

88

databases are more likely to contain short sequences carrying such critical information.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40

45

50

55

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

unlabeled data set: PDB

unfiltered
Region
noTails
L250

(a) PDB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40

45

50

55

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

unlabeled data set: Swiss Prot

unfiltered
Region
noTails
L250

(b) Swiss-Prot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40

45

50

55

ROC50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

unlabeled data set: NR

unfiltered
Region
noTails
L250

(c) NR

Figure 6.5: The ROC50 plots of four competing methods using the triple-(1,3) feature
set with PDB, Swiss-Prot and NR databases as unlabeled data sets, respectively. The
ROC50 curves of the method that only extracts relevant regions from the neighboring
sequences consistently show strong dominance over all competing methods.

6.4.2 Experimental results with clustering

In Table 6.4, we present the performance in ROC and ROC50 scores for the four

competing methods on the double(1,5) and triple(1,3) feature sets using 3 different un-

labeled data sets. All smoothed representations are induced by the reduced neighbor

sets. In contrast to Table 6.3, extracting relevant regions from neighboring sequences

and performing clustering on the neighbor sets significantly improve performance on all

unlabeled data sets. With clustering, extracting regions improves the ROC and ROC50

scores on average by 0.0245 and 0.0994, respectively, when compared to the unfiltered

method. We again observe performance degradation when filtering out neighboring se-

quences based on their lengths. In the second column, we show the number of neighbors

(mean, median, and maximum) after clustering. In most cases, we observe a 2-3 fold

reduction in the number of neighbors contrasting to the neighborhood size reported in

Table 6.3. We note that the reduction in the neighborhood size is critical for faster

training and classification.

Finally we show the experimental running time in Table 6.5 under various settings,

performed on a 3.6GHz CPU, based on the 2, 862 labeled sequences in the SCOP 1.59

data set. The average reduced running time for kernel evaluation is 1.40 seconds for

the double(1,5) kernel and 38 seconds for the triple(1,3) kernel. The average reduction

89

double(1,5) triple(1,3)
#neighbors ROC ROC50 p-value ROC ROC50 p-value

PDB

unfiltered 11/4/116 .9369 .7142 6.74e-02 .9439 .7585 4.70e-03
region 11/4/120 .9599 .7466 - .9717 .8240 -
no tails 9/3/102 .9291 .6902 4.8e-03 .9490 .7545 2.30e-03
by length 7/2/104 .9229 .6589 1.10e-03 .9490 .7211 2.66e-05

Swiss-Prot

unfiltered 30/17/223 .9526 .6397 3.76e-04 .9464 .7474 1.50e-03
region 27/15/210 .9582 .7701 - .9732 .8605 -
no tails 15/3/192 .9214 .6446 1.95e-04 .9395 .7160 2.30e-06
by length 10/2/107 .9100 .5841 1.21e-05 .9348 .6817 7.33e-07

NR

unfiltered 77/55/344 .9403 .6874 5.62e-04 .9556 .7566 2.20e-05
region 67/47/339 .9734 .8048 - .9861 .8944 -
no tails 37/10/310 .9452 .6815 2.90e-04 .9602 .7486 2.06e-07
by length 24/8/263 .9313 .6686 1.00e-03 .9528 .7595 2.56e-07
∗p-value: signed-rank test on ROC50 scores against region
#neighbors: mean/median/max

Table 6.4: The overall prediction performance of all compared methods over various
unlabeled data sets with clustering the neighbor sets. All neighbor sets are clustered
on a 70% sequence identity level and representatives of each cluster are chosen to form
a reduced neighbor set.

in running time for kernel evaluation is 10.32% for the double(1,5) kernel and 10.66%

for the triple(1,3) kernel. Clustering takes very little CPU time; for example, clustering

the neighbor sets induced by the NR sequence database on all 2, 862 labeled sequences

takes 126.24 in total on the region-based method. We want to note the large fold change

in running time by adding one spatial sample (t = 3 for triple in contrast to t = 2 in

double). Increasing the number of spatial samples by 1 implies multiplying the com-

plexity for string matching by d, the maximum number of distance allowed between

two samples. After clustering, the reduction in experimental running time will be sig-

nificant for other tasks that require more spatial samples (increasing t), larger distance

between each spatial samples (increasing d), larger sequence database (increasing N)

or longer sequences (increasing n) since the complexity for feature matching exhibit

multiplicative dependency on these parameters; performing feature matching incurs

O(dt−1HNn) and O(km+1|Σ|mHnN) complexity for spatial and mismatch(k,m) ker-

nels, respectively, where H denotes the size of the sequence neighborhood. Performing

90

double(1,5) triple(1,3)
without clustering with clustering without clustering with clustering

PDB

unfiltered 10.70 10.19 170.45 161.01
region 10.22 9.98 99.57 95.05
no tails 10.17 9.94 103.39 104.49
by length 9.97 9.85 73.85 73.36

Swiss-Prot

unfiltered 16.14 12.84 802.27 719.62
region 12.74 11.17 289.03 240.15
no tails 11.61 10.52 186.06 160.84
by length 10.64 10.01 107.62 94.28

NR

unfiltered 23.26 18.60 1451.52 1345.89
region 15.69 13.54 630.95 531.07
no tails 13.69 12.32 383.80 348.52
by length 11.66 10.74 245.23 213.02

Table 6.5: The experimental running time (seconds) for constructing the (2862-by-2862)
kernel matrices on each unlabeled data set under different settings. The experiments
are performed on a 3.6GHz CPU.

clustering reduces the neighborhood size by two fold on average, which in turn implies

less computational resources for storage: under the discriminative kernel learning set-

ting, we need to save the support vectors along with their corresponding neighbor sets.

The savings in experimental time for kernel evaluation will be even more pronounced

if the previously described parameters are increased simultaneously. For a detailed

analysis of computational complexity, please refer to [37].

6.4.3 Comparison with other state-of-the-art methods

We compare the performance of our proposed method with previously published state-

of-the-art methods over various unlabeled sequence databases and present the overall

prediction performance of all compared methods in Table 6.6. For spatial kernels, all

reported scores are based on extracting the most significant region and performing clus-

tering on the neighbor sets. We perform all experiments on a 3.6GHz machine with 2GB

of memory. Computation of the mismatch neighborhood kernels is computationally de-

manding and typically cannot be accomplished on a single machine for anything but

91

PDB ROC ROC50

double-(1,5) neighborhood .9599 .7466
triple-(1,3) neighborhood .9717 .8240
profile(5,7.5) .9511 .7205

Swiss-Prot

double-(1,5) neighborhood .9582 .7701
triple-(1,3) neighborhood .9732 .8605
profile(5,7.5) .9709 .7914

mismatch nbhd† .955 .810

NR

double-(1,5) neighborhood .9720 .8076
triple-(1,3) neighborhood .9861 .8944
profile(5,7.5)-2 iterations .9734 .8151

profile(5,7.5)-5 iterations‡ .984 .874
profile(5,7.5)-5 iter. with secondary structure‡ .989 .883
†:directly quoted from [69] ;‡:directly quoted from [36]

Table 6.6: The overall prediction performance of all compared methods over various
unlabeled data sets. For spatial kernels, all reported scores are based on extracting the
most significant region and performing clustering on the neighbor sets.

relatively small unlabeled data sets. Therefore, the results for the mismatch neighbor-

hood kernel can only be shown using the previously published summary statistics [69]

on Swiss-prot, a moderately populated sequence database. For each unlabeled data set,

we highlight the best ROC and ROC50 scores; on all unlabeled data sets, the triple(1,3)

neighborhood kernel achieves the best performance. Furthermore, we achieve such per-

formance by only 2 PSI-BLAST iterations. For example, the triple(1,3) neighborhood

kernel with 2 PSI-BLAST iterations outperforms the profile(5,7.5) kernel with 5 PSI-

BLAST iterations. Moreover, the triple(1,3) neighborhood kernel with 2 PSI-BLAST

iterations on the PDB unlabeled data set already outperforms the profile(5,7.5) kernel

with 2 PSI-BLAST iterations on the NR unlabeled data set. We also note that the per-

formance of our kernels is achieved using primary sequence information only. However,

as shown in the table, the triple(1,3) kernel still outperforms the profile(5,7.5) kernel

with added secondary structure information. Such higher order information (e.g. sec-

ondary structure), if available and desirable, can be easily included in the feature set.

In this study, we do not pursue such direction.

We also show the statistical significance of the observed differences between pairs of

92

methods on various unlabeled data sets in Table 6.7. All the entries in the table are the

p-values of the Wilcoxon signed-rank test using the ROC50 scores. For each unlabeled

data set, we highlight the method that has the best overall performance. The triple(1,3)

kernel consistently outperform all other kernels, with high statistical significance.

SCOP 1.59

mismatch profile double triple
mismatch - 2.245e-03 1.804e-02 3.570e-06
profile 2.245e-03 - 2.874e-01 9.615e-09
double 1.804e-02 2.874e-01 - 6.712e-06
triple 3.570e-06 9.615e-09 6.712e-06 -

PDB

double triple profile
double - 1.017e-01 4.762e-02
triple 1.017e-01 - 7.666e-06
profile 4.762e-02 7.666e-06 -

Swiss-Prot

double triple profile
double - 9.242e-05 4.992e-01
triple 9.242e-05 - 2.419e-04
profile 4.992e-01 2.419e-04 -

NR

double triple profile
double - 8.782e-06 9.762e-01
triple 8.782e-06 - 7.017e-06
profile 9.762e-01 7.017e-06 -

Table 6.7: Statistical significance (p-values of the Wilcoxon signed-rank test) of the
observed differences between pairs of methods (ROC50 scores) on unlabeled data sets.
Triple denotes the triple-(1,3) neighborhood kernel, double denotes the double-(1,5)
neighborhood kernel, mismatch denotes the mismatch(5,1) neighborhood kernel, and
profile denotes the profile(5,7.5) kernel.

Next, in the upper panel of Figure 6.6, we show the ROC50 plots of the double(1,5)

neighborhood, triple(1,3) neighborhood and profile(5,7.5) kernels using PDB (first col-

umn), Swiss-Prot (second column) and NR (third column) sequence databases as the

unlabeled data sets. The ROC50 curves of the triple(1,3) neighborhood kernel on all

unlabeled data sets consistently show strong dominance over those of other two kernels.

Furthermore, the performance of the double(1,5) neighborhood kernel is on par with

that of the profile(5,7.5) kernel. In the lower panel, we show the scatter plots of the

ROC50 scores of the triple(1,3) kernel and the profile(5,7.5) kernel. Any point falling

93

above the diagonal line in the figures indicates better performance of the triple(1,3)

kernel over the profile(5,7.5) kernel. As can be seen from these plots, the triple kernel

outperforms the profile kernel on all three data sets (43/37/34 wins and 4/5/10 ties,

out of 54 experiments, on PDB, Swiss-Prot, and NR data sets, respectively).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40

45

50

55

ROC50

N
u

m
b

e
r

o
f

fa
m

ili
e

s

(1,5)−double nbhd
(1,3)−triple nbhd
profile(5,7.5)

(a) PDB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40

45

50

55

ROC50

N
u

m
b

e
r

o
f

fa
m

ili
e

s

(1,5)−double nbhd
(1,3)−triple nbhd
profile(5,7.5)

(b) Swiss-Prot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

10

15

20

25

30

35

40

45

50

55

ROC50

N
u

m
b

e
r

o
f

fa
m

ili
e

s

(1,5)−double nbhd
(1,3)−triple nbhd
profile(5,7.5)

(c) NR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

profile(5,7.5)

(1
,3

)−
tr

ip
le

 n
b
h
d

(d) PDB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

profile(5,7.5)

(1
,3

)−
tr

ip
le

 n
b
h
d

(e) Swiss-Prot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

profile(5,7.5)
(1

,3
)−

tr
ip

le
 n

b
h
d

(f) NR

Figure 6.6: In the upper panel, we show the ROC50 plots of three different features using
PDB, Swiss-Prot and NR databases as unlabeled data sets, respectively. In the lower
panel, we show the scatter-plot of ROC50 scores of the triple-(1,3) kernel (vertical) and
the profile(5,7.5) kernel (horizontal). Any point above the diagonal line in the figures
(d),(e),(f) indicates better performance for the triple-(1,3) kernel.

Finally, in Table 6.8, we show the experimental running time for constructing the

kernel matrix, based on all available sequences in the SCOP 1.59 data set. The size

of the kernel matrix is 7329-by-7329. For the semi-supervised setting (neighborhood

kernels), we report average running time on the data sets used (i.e. PDB, Swiss-Prot,

and non-redundant (NR) sequence databases). As mentioned in previous sections, both

mismatch and profile kernels require higher complexity to perform feature matching due

to the exponential size of the mutational neighborhood, which in turns depend on the

size of the alphabet set, whereas the complexity of performing feature matching for the

spatial features is independent of the alphabet set size. This complexity difference leads

to order-of-magnitude improvements in the running times of the spatial sample kernels

94

over the mismatch and profile kernels. The difference is even more pronounced when

kernel smoothing is used under a semi-supervised setting. The neighborhood mismatch

kernel becomes substantially more expensive to compute for large unlabeled data sets

as indicated in [36, 69] by the authors.

Method Running time (s)

supervised methods

Triple(1,3) kernel 112
Double(1,5) kernel 54
Mismatch(5,1) kernel 948

semi-supervised methods

Triple(1,3) neighborhood kernel 327
Double(1,5) neighborhood kernel 67
Mismatch(5,1) neighborhood kernel -
Profile(5,7.5) kernel 10 hours†
†: the running time reported in [36]

Table 6.8: Experimental running time of all methods based on all sequences in the
SCOP 1.59 data set. The size of the kernel is 7329-by-7329. For triple and double
kernels, under the semi-supervised setting, the reported running time are based on
extracting relevant regions and performing clustering on neighboring sets.

6.5 Discussion

We first illustrate the benefit of extracting only statistically significant regions from

the neighboring sequences from a machine learning perspective and then we discuss the

biological motivation of the spatial feature sets. The spatial features allow alphabet-free

matching and model substitution, insertion and deletion effectively. The combination

of both methods leads to fast and accurate semi-supervised protein remote homology

detection. In the end, we perform complexity comparison and show better sensitivity

of the spatial kernel with other state-of-the-art methods.

6.5.1 Motivation for extracting relevant regions

To illustrate the benefit of extracting only statistically significant regions from an un-

labeled sequence, consider the example in Figure 6.7. In the figure, colors indicate

membership: yellow (shaded) corresponds to the positive class and green (pattern)

corresponds to the negative class. Sequences that demonstrate statistically significant

95

similarity are more likely to be evolutionarily related and therefore to belong to the

same superfamily. The goal is to infer membership of the test (unshaded) sequences

via the unlabeled sequence (in the middle). In the figure, arcs indicate (possibly weak)

similarity induced by shared features, denoted by the black boxes, and absence of arcs

indicates no similarity. As can be seen from the figure, the positive training and test

sequences share no features and therefore have no similarity; however, the unlabeled

sequence shares some features with both sequences in the reported region, which are

very likely to be biologically relevant to both positive training and test sequences and

therefore establishes the similarity between them. On the other hand, if the whole

unlabeled sequence is recruited as a neighbor without discarding irrelevant regions, the

similarity between the positive training and negative testing sequences will be incor-

rectly established, hence compromising the performance of the classifiers.

? ?

+ training

+ test - test

unlabeled sequence

…

Figure 6.7: The importance of only extracting relevant region from neighboring se-
quences (in the middle): in the figure, the colors indicate the membership: yellow
(shaded) indicates membership of the positive class and green (pattern) indicates mem-
bership of the negative class. The goal is to infer the label of the test (unshaded)
sequences via the intermediate neighboring sequences. The arcs in the figure indicate
(possibly weak) similarity and absence of arcs indicates no similarity. The black boxes
in the sequence correspond to the shared features.

6.5.2 Biological Motivation of the spatial feature sets

Compared to mismatch/profile kernels, the feature sets induced by our kernels cover

segments of variable length (e.g. 2-6 and 3-7 residues in the case of the double(1,5) ker-

nel and the triple(1,3) kernels, respectively), whereas the mismatch and profile kernels

cover segments of fixed length (e.g. 5 or 6 residues long) as illustrated in Figure 6.1.

Sampling at different resolutions also allows to capture similarity in the presence of

more complex substitution, insertion and deletion processes, while sampling at a fixed

resolution, the approach used in mismatch and spectrum kernels, limits the sensitivity

96

in the case of multiple insertions/deletions or substitutions. We illustrate the benefit of

multi-resolution sampling in Figure 6.8. In the figure, we show six slightly diverged se-

quences with the presence of both mutation and insertion. We also show the double(1,5)

and mismatch(5,1) kernel matrices. We observe that the spatial kernel still captures

substantial amount of similarities whereas the mismatch kernel, which performs fixed-

resolution sampling captures little similarities among the related sequences. Both im-

ages are shown on the same scales. Increasing the parameter m (number of mismatches

allowed) to accommodate multiple substitutions, in the case of mismatch kernels, leads

to an exponential growth in the size of the k-mer mutational neighborhood, and results

in high computational complexity. On the other hand, increasing the threshold σ in the

profile kernel also incurs an exponential growth in the size of mutational neighborhood

since in a highly diverged region the profile may be flat.

complex biological transformation:

mutation + deletion

S1: SVLLVKMS

S2: SVYFVKMS

S3: SVL-VKMS

S4: SVY-VKMS

S5: SVV--KMS

S6: SVV--RMS

multiple alignment

double(1,5) mismatch(5,1)

Images of the Induced kernel matrices

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

Figure 6.8: The benefit of multi-resolution sampling: in the presence of both mutations
and insertions, the spatial kernel still captures substantial amount of similarities in such
moderately conserved region; on the other hand, the mismatch kernel, which performs
fixed-resolution sampling captures little similarity among related sequences.

97

6.5.3 Complexity comparison

Both mismatch and profile kernels have higher complexity compared to the spatial

sample kernels due to the exponential k-mer neighborhood size and high dimensionality

of the feature space. The cardinalities of the k-mer neighborhood induced by the

mismatch and profile features are O(km|Σ|m) and O(Mσ), with km|Σ|m ≤ Mσ ≤ |Σ|k,

where k ≤ 5 and |Σ| = 20, compared to a much smaller feature space size of dt−1|Σ|t

for the sample kernels, where t is 2 or 3 and d is 3 or 5, respectively. This complexity

difference leads to order-of-magnitude improvements in the running times of the sample

kernels over the mismatch and profile kernels. To compute an N -byN matrix, the

running time for the triple(1,d) kernel is O(d2nM + d2|Σ|3N2), for double(1,d) it is

O(dnN +d|Σ|2N2), for mismatch(k,m) it is O(km+1|Σ|mnN + |Σ|kN2) and profile(k,σ)

it is O(kMσnN + |Σ|kN2).

Finally, in previous studies [69, 36], to achieve good accuracy, the number of PSI-

BLAST iterations needs to be at least 5, while our performance is achieved with only 2

iterations. Each additional PSI-BLAST iteration requires substantial amount of com-

putational resources.

6.5.4 Kernel-induced data manifolds

To further illustrate the sensitivities of different kernels, we compare the data manifolds

induced by the spatial (triple(1,3)) and spectrum (mismatch(5,1) and profile(5,7.5)) ker-

nels in both supervised and semi-supervised settings in Figure 6.95. The figures show

the data manifold for the FAD/NAD(P)-binding domain. The green (dark) nodes repre-

sent the training sequences and the yellow (light) nodes represent the testing sequences.

Each cluster (box) represents a family within the superfamily. We normalize the kernel

as discussed in Section 6.4 to remove the dependencies between the kernel values and

sequence length. We draw an edge between two sequences X and Y if K(X,Y) > δ,

where δ is chosen so that the number of the falsely detected sequences (among negative

training and negative testing sequences) is controlled at 10% of the total number of

5for visualization, we use the fdp package in Graphviz: graphviz.org

98

negative sequences. In the upper panel, we show the triple(1,3) (Figure 6.9(a)) and

mismatch(5,1) (Figure 6.9(b)) kernel-induced manifolds under the supervised setting.

We observe that in the manifold induced by the sparse spatial sample kernel the held-

out family has already been connected to two other training families whereas in the

manifold induced by the mismatch kernel, only one such connection exists. In the lower

panel, we show the manifolds induced by the triple(1,3) (Figure 6.9(c)) and profile(5,7.5)

(Figure 6.9(d)) kernels under the semi-supervised setting by leveraging the unlabeled

sequences in the non-redundant data set. We note that the two manifolds are similar

while the computational cost for constructing the chosen spatial sample kernel (triple)

is much lower than that of the chosen spectrum (profile) kernel. Experimental compu-

tational time for evaluating the triple(1-3) neighborhood kernel on the non-redundant

set takes 112 seconds and evaluating the profile(5,7.5) kernel takes around 10 hours.

We further note that Table 6.6 indicates that the triple(1-3) neighborhood kernel out-

performs the profile(5,7.5) kernel.

6.6 Conclusion

In this study, we propose a systematic and biologically motivated approach for extract-

ing relevant information from unlabeled sequence database under the semi-supervised

learning setting. We also propose to perform clustering on each neighbor sets to remove

the bias caused by duplicated or overly represented neighboring sequences which are

commonly found in large uncurated sequence databases. Combing these approaches

with the sparse spatial sample kernels we achieve fast and accurate semi-supervised

protein homology detection on three large unlabeled sequence databases. The spa-

tial kernels induce low-dimensional feature space, effectively model mutation, insertion,

and deletion with multi-resolution sampling and incur low computational complexity

for kernel evaluation; its running time on string matching is independent of the size of

the alphabet set, making rapid kernel evaluation possible on large sequence databases.

The resulting classifiers based on our proposed methods significantly outperform pre-

viously published state-of-the-art methods in performance accuracy and exhibit order-

of-magnitude differences in experimental running time.

99

c.3.1

c.3.1.2

c.3.1.5

1310

1311

1312

1313

1314

1325

1315

1316

1317

1318 1319

1320

1321
1322

1323 1324 1326

1327

13281329

1330

(a) triple(1,3), supervised

c.3.1

c.3.1.2

c.3.1.4

c.3.1.5

1310

1311

1312

1313

1314

1315

1325

1316

1317
1320

1324

1318

1327

1319

1321

1322
1323

1326

13281329

1330

(b) mismatch(5,1), supervised

c.3.1

c.3.1.1

c.3.1.2c.3.1.4

1310

1311

1320

1321

1322

1323

1312

1313

1314

13151316

13171318

1319

1324

1325

1326

1327

1328

1329

1330

(c) triple(1,3), semi-supervised on nr

c.3.1

c.3.1.1

c.3.1.2 c.3.1.4

1310

1311

1312

1317

1320

1321

1323

1324

1328

1313

1314

1315

1316

1318
1319

1325

1326 1327

1329

1322

1330

(d) profile(5,7.5), semi-supervised on
nr

Figure 6.9: Kernel-induced data manifold for the FAD/NAD(P)-binding domain su-
perfamily (C.3.1) with 4 families under the supervised and semi-supervised settings for
spatial (triple(1,3)) and spectrum-like (mismatch(1,5) and profile(5,7.5)) kernels on the
SCOP 1.59 data set. The green (darker) and yellow (lighter) nodes are the training
and testing sequences, respectively. The numbers in the nodes index the sequences.

6.7 Acknowledgments

This work was carried out by working jointly with Pavel Kuksa.

100

Chapter 7

Conclusion

In this study, we present three major works for protein remote homology detection. We

start from a sparse generative model with the hypothesis that a small set of key positions

with the corresponding preferred residues and the distances between each neighboring

pair of key positions are sufficient to discriminate between members and non-members

of a superfamily. Our automated learning procedure captures the critical positions

and the distances and estimates a collection of sparse profile HMMs, which encode the

captured information into a set of probabilistic patterns. We show that a four-fold

compression of model complexity can be achieved while maintaining performance. We

also observe that as the sequences in the superfamily diverge, conservation in some

critical positions becomes relaxed. Remotely homologous (positive) sequences do not

fully conform to the estimated patterns and skip some of these critical positions; on the

other hand, some unrelated (negative) sequences also conform partially to the imposed

probabilistic patterns. The observations motivate the need to employ discriminative

models for the protein remote homology task since generative models focus on capturing

the commonly shared characteristics within the group and cannot guarantee that such

characteristics will be absent in other unrelated groups.

Next, we construct discriminative models that rely on both positive and negative se-

quences for estimation, which results in richer sets of sequences for the training process.

In the study we present a hybrid model. First, we estimate a generative model (profile

HMMs) based on the positive sequences only. In the second stage, we use the gener-

ative model as feature extractors to construct a set of biologically meaningful features

(sufficient statistics with respect to the generative model) from the provided sequences

for discriminative learning. Combining the features with a class of sparsity enforcing

101

priors under the Bayesian learning paradigm, we obtain a class of simple and intuitive

models that provide meaningful biological interpretation. The features and sparse clas-

sifiers recover the key positions with the corresponding preferred residues. We test the

prediction accuracy of the models on a widely used benchmark protein sequence data

set and show that under the supervised setting, not only do our hybrid models achieve

performance comparable to that of the state-of-the-art methods, but they also offer

simple, intuitive, and biologically meaningful interpretation.

Estimating the similarity between two sequences using sufficient statistics as fea-

tures under the framework in our second study implies matching two sequences glob-

ally. As a result, while the hybrid models demonstrate better performance in the area

of high ROC-50 scores, which corresponds to moderately conserved superfamilies, the

models only achieve moderate discriminative power with diverged superfamilies in the

area of low ROC50 scores, motivating the need to use an approach based on local

alignments of sequences. Also, a missing component in previous studies for large-scale

semi-supervised protein homology detection is a systematic and biologically motivated

approach for leveraging the unlabeled data set. In our final study, we address both

issues. First, we employ a class of previously established kernels, the Sparse Spatial

Sample Kernels (SSSK). This class of biologically motivated kernels model mutation,

insertion and deletion effectively and induce low-dimensional feature space; moreover,

the computational complexity of kernel evaluation based on local feature matching is

independent of the size of the alphabet set and such key characteristics opens the

door for rapid large-scale semi-supervised learning. Second, we propose a biologically

meaningful way of extracting relevant information from the unlabeled database for

semi-supervised learning. Third, we also propose a method to remove the bias caused

by overly represented or duplicated unlabeled sequences which are commonly seen in

uncurated sequence databases. Our experimental results show that the combination of

these approaches yields state-of-the-art performance that are significantly better than

previously published methods and also exhibit order-of-magnitude differences in exper-

imental running time.

We also explore the possibility of taking advantage of the feature sharing and joint

102

training framework. Our preliminary experiments of using sufficient statistics as fea-

tures indicates that decent performance can be achieved with very few features though

such feature set does not permit feature sharing and results in a regular binary clas-

sification problem. On the other hand, use of the mismatch(5,1) feature set results

in various computational difficulties such as exponential dimensionality and complex

correlation structures among the features.

For future works, we propose to apply the algorithm on other tasks such as protein

remote fold recognition and motif elucidation. We also propose to find sensible feature

sets that permits the feature sharing and joint training framework for the possibility

of achieving better biological interpretation. The works presented in this thesis can

also be readily applied to other data with sequential nature, for example, document

classification.

103

References

[1] S. Altschul et al. Gapped Blast and PSI-Blast: A new generation of protein
database search programs. NAR, 25:3389–3402, 1997.

[2] Stephen F. Altschul and Warren Gish. Local alignment statistics. Methods in
Enzymology, 266:460–480, 1996.

[3] Amos Bairoch, Rolf Apweiler, Cathy H. Wu, Winona C. Barker, Brigitte Boeck-
mann, Serenella Ferro, Elisabeth Gasteiger, Hongzhan Huang, Rodrigo Lopez,
Michele Magrane, Maria J. Martin, Darren A. Natale, Claire O’Donovan, Nicole
Redaschi, and Lai-Su L. Yeh. The Universal Protein Resource (UniProt). Nucl.
Acids Res., 33(suppl-1):D154–159, 2005.

[4] P. Baldi, Y. Chauvin, Y. Hunkapliier, and M. McClure. Hidden markov models of
biological primary sequence information. In Proceedings of the National Academy
of Sciences, volume 91, pages 1059–1063, 1994.

[5] Alex Bateman, Lachlan Coin, Richard Durbin, Robert D. Finn, Volker Hollich,
Sam Griffiths-Jones, Ajay Khanna, Mhairi Marshall, Simon Moxon, Erik L. L.
Sonnhammer, David J. Studholme, Corin Yeats, and Sean R. Eddy. The Pfam
protein families database. Nucleic Acids Research, 32(Database-Issue):138–141,
2004.

[6] Dennis A. Benson, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, and
David L. Wheeler. Genbank. Nucl. Acids Res., 33(suppl-1):D34–38, 2005.

[7] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The Protein Data Bank. Nucleic Acids Research,
28:235–242, 2000.

[8] B. Boeckmann, A. Bairoch, R. Apweiler, M.C. Blatter, A. Estreicher, E. Gasteiger,
M.J. Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pilbout, and M. Schneider.
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003.
Nucleic Acids Res, 31:365–370, 2003.

[9] Steven E. Brenner, Patrice Koehl, and Michael Levitt. The ASTRAL compendium
for protein structure and sequence analysis. Nucl. Acids Res., 28(1):254–256, 2000.

[10] Michael Brown, Richard Hughey, Anders Krogh, I. Saira Mian, Kimmen Sjölander,
and David Haussler. Using dirichlet mixture priors to derive hidden markov mod-
els for protein families. In Proceedings of the 1st International Conference on
Intelligent Systems for Molecular Biology, pages 47–55. AAAI Press, 1993.

[11] C. Burge and S. Karlin. Prediction of complete gene structures in human genomic
DNA. J. Mol. Biol., 268:78–94, 1997.

104

[12] Christopher J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[13] James Casbon and Mansoor A. S. Saqi. S4: structure-based sequence alignments
of SCOP superfamilies. Nucleic Acids Research, 33:D219–D222, 2005.

[14] Ira Cohen, Fabio G. Cozman, Nicu Sebe, Marcelo C. Cirelo, and Thomas S. Huang.
Semi-supervised learning of classifiers: Theory, algorithms for bayesian network
classifiers and application to human-computer interaction.

[15] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods. Cambridge University Press,
March 2000.

[16] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Jorunal of the Royal Statistical Society. Series
B, 1977(1):1–38, 1977.

[17] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research, 2:263–
286, 1995.

[18] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological
sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge
University Press, 1998.

[19] SR Eddy. Profile hidden Markov models. Bioinformatics, 14(9):755–763, 1998.

[20] Mário A. T. Figueiredo. Adaptive sparseness for supervised learning. IEEE Trans.
Pattern Anal. Mach. Intell., 25(9):1150–1159, 2003.

[21] Mário A. T. Figueiredo and Anil K. Jain. Bayesian Learning of Sparse Classifiers.
In CVPR (1), pages 35–41, 2001.

[22] Genkin, Alexander, Lewis, D. David, Madigan, and David. Large-scale bayesian
logistic regression for text categorization, August 2007.

[23] Julian Gough, Kevin Karplus, Richard Hughey, and Cyrus Chothia. Assignment
of Homology to Genome Sequences using a Library of Hidden Markov Models that
Represent all Proteins of Known Structure. J. Mol. Biol., 313(4):903–919, 2001.

[24] M. Gribskov, A.D. McLachlan, and D. Eisenberg. Profile analysis: detection of dis-
tantly related proteins. Proceedings of the National Academy of Sciences, 84:4355–
4358, 1987.

[25] M. Gribskov and N. Robinson. Use of receiver operating characteristic (ROC)
analysis to evaluate sequence matching, 1996.

[26] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-
tical Learning. Springer, 2001.

[27] Steven Henikoff and Jorja G. Henikoff. Position-based sequence weights. J Mol
Biol., 243(4):574–8, 11 1994.

105

[28] T J Hubbard and J Park. Fold recognition and ab initio structure predictions using
hidden markov models and beta-strand pair potentials. Proteins, 23:398–402, 1995.

[29] Nicolas Hulo, Amos Bairoch, Virginie Bulliard, Lorenzo Cerutti, Edouard De Cas-
tro, Petra S. Langendijk-Genevaux, Marco Pagni, and Christian J. A. Sigrist. The
PROSITE database. Nucl. Acids Res., 34:D227–230, 2006.

[30] Tommi Jaakkola, Mark Diekhans, and David Haussler. Using the Fisher kernel
method to detect remote protein homologies. In Proceedings of the Seventh Inter-
national Conference on Intelligent Systems for Molecular Biology, pages 149–158.
AAAI Press, 1999.

[31] Tommi Jaakkola, Mark Diekhans, and David Haussler. A discriminative framework
for detecting remote protein homologies. In Journal of Computational Biology,
volume 7, pages 95–114, 2000.

[32] D.G. Higgins J.D. Thompson and T.J. Gibson. CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position specific gap penalties and weight matrix choice. . Nucleic Acids Research.,
22:4673–4680, 1994.

[33] Alexander E. Kister, Alexei V. Finkelstein, and Israel M. Gelfand. Common fea-
tures in structures and sequences of sandwich-like proteins. PNAS, 99(22):14137–
14141, 2002.

[34] Alexander E. Kister, Michael A Roytberg, Cyrus Chothia, Jurii M. Vasiliev, and
Israel M. Gelfand. The sequence determinants of cadherin molecules. Protein Sci,
10(9):1801–1810, 2001.

[35] Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund,
and Christina Leslie. Profile-based string kernels for remote homology detec-
tion and motif extraction. In CSB ’04: Proceedings of the 2004 IEEE Computa-
tional Systems Bioinformatics Conference (CSB’04), pages 152–160, August 2004.
http://www.cs.columbia.edu/compbio/profile-kernel.

[36] Rui Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund, and
Christina Leslie. Profile-based string kernels for remote homology detection and
motif extraction. J Bioinform Comput Biol, 3(3):527–550, June 2005.

[37] Pavel Kuksa, Pai-Hsi Huang, and Vladimir Pavlovic. Kernel methods and algo-
rithms for general sequence analysis. Technical Report RU-DCS-TR630, Depart-
ment of Computer Sciences, Rutgers University, 2008.

[38] Pavel Kuksa, Pai-Hsi Huang, and Vladimir Pavlovic. Spatially-constrained sample
kernel for sequence classification. In The Learning Workshop (SNOWBIRD), 2008.

[39] Roman A. Laskowski, Victor V. Chistyakov, and Janet M. Thornton. PDBsum
more: new summaries and analyses of the known 3D structures of proteins and
nucleic acids. Nucl. Acids Res., 33:D266–268, 2005.

[40] Jerald F. Lawless. Statistical Models And Methods For Lifetime Data. Wiley, 1982.

106

[41] Christina Leslie and Rui Kuang. Fast string kernels using inexact matching for
protein sequences. J. Mach. Learn. Res., 5:1435–1455, 2004.

[42] Christina S. Leslie, Eleazar Eskin, and William Stafford Noble. The spectrum
kernel: A string kernel for svm protein classification. In Pacific Symposium on
Biocomputing, pages 566–575, 2002.

[43] Christina S. Leslie, Eleazar Eskin, Jason Weston, and William Stafford Noble.
Mismatch string kernels for svm protein classification. In NIPS, pages 1417–1424,
2002.

[44] Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and compar-
ing large sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658–1659,
2006.

[45] Li Liao and William Stafford Noble. Combining pairwise sequence similarity and
support vector machines for remote protein homology detection. In RECOMB,
pages 225–232, 2002.

[46] Thomas Lingner and Peter Meinicke. Remote homology detection based on
oligomer distances. Bioinformatics, 22(18):2224–2231, 2006.

[47] L. Lo Conte, B. Ailey, T.J. Hubbard, S.E. Brenner, A.G. Murzin, and C. Chothia.
SCOP: a structural classification of proteins database. Nucleic Acids Res., 28:257–
259, 2000.

[48] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Muller. Fisher discriminant
analysis with kernels, 1999.

[49] Tom M. Mitchell. Generative and Discriminative Classifiers: Naive Bayes and
Logistic Regression, chapter 1, pages 1–17. 2005.

[50] A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes, 2002.

[51] Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M. Mitchell.
Text classification from labeled and unlabeled documents using EM. Machine
Learning, 39(2/3):103–134, 2000.

[52] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. the IEEE, 77(2):257–286, February 1989.

[53] L. R. Rabiner. A tutorial on hidden Markov models and selected apllications
in speech recognition. In A. Waibel and K.-F. Lee, editors, Readings in Speech
Recognition, pages 267–296. Kaufmann, San Mateo, CA, 1990.

[54] R. Raina, Y. Shen, A. Ng, and A. McCallum. Classification with hybrid generative
/discriminative models, 2003.

[55] B. Reva, A. Kister, S. Topiol, and I. Gelfand. Determining the roles of different
chain fragments in recognition of immunoglobulin fold. Protein Eng., 15(1):13–19,
2002.

107

[56] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. J. Mach.
Learn. Res., 5:101–141, 2004.

[57] Teemu Roos, Hannes Wettig, Peter Grünwald, Petri Myllymäki, and Henry Tirri.
On discriminative bayesian network classifiers and logistic regression. Mach.
Learn., 59(3):267–296, 2005.

[58] R. Schapire. The boosting approach to machine learning: An overview, 2001.

[59] Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Kernel prin-
cipal component analysis. Advances in kernel methods: support vector learning,
pages 327–352, 1999.

[60] Kimmen Sjolander, Kevin Karplus, Michael Brown, Richard Hughey, Anders
Krogh, I. S Mian, and David Haussler. Dirichlet mixtures: A method for im-
proving detection of weak but significant protein sequence homology. Technical
report, Santa Cruz, CA, USA, 1996.

[61] Martin Szummer and Tommi Jaakkola. Partially labeled classification with markov
random walks. In Advances in Neural Information Processing Systems, volume 14,
2001.

[62] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic
Local Alignment Search Tool. Journal of Molecular Biology, pages 403–410, 1990.

[63] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence com-
parison. Proceedings of the National Academy of Sciences of the United States of
America, 85:2444–2448, 1988.

[64] Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Sharing visual
features for multiclass and multiview object detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(5):854–869, 2007.

[65] Antonio B. Torralba, Kevin P. Murphy, and William T. Freeman. Sharing features:
Efficient boosting procedures for multiclass object detection. In CVPR (2), pages
762–769, 2004.

[66] Koji Tsuda, Taishin Kin, and Kiyoshi Asai. Marginalized kernels for biological
sequences. Bioinformatics, 18(suppl 1):S268–275, 2002.

[67] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, September
1998.

[68] J. Weston and C. Watkins. Support vector machines for multiclass pattern recog-
nition. In Proceedings of the Seventh European Symposium On Artificial Neural
Networks, 4 1999.

[69] Jason Weston, Christina Leslie, Eugene Ie, Dengyong Zhou, Andre Elisseeff, and
William Stafford Noble. Semi-supervised protein classification using cluster ker-
nels. Bioinformatics, 21(15):3241–3247, 2005.

[70] J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine,
2001.

108

[71] Xiaojin Zhu. Semi-supervised learning literature survey. Technical Re-
port 1530, Computer Sciences, University of Wisconsin-Madison, 2005.
http://www.cs.wisc.edu/∼jerryzhu/pub/ssl survey.pdf.

109

Vita

Pai-Hsi Huang

EDUCATION

October 2008 Ph.D. in Computer Science, Rutgers University, U.S.A.

May 2005 M.S. in Statistics, Rutgers University, U.S.A.

January 2004 M.S. in Computer Science, Rutgers University, U.S.A.

June 2001 B.S. in Computer Science, Drexel University, U.S.A.

EXPERIENCE

Jun.2007—Aug.2007 Biomarker Project Assistant, Oncology BioMarker Group,
Novartis Pharmaceutical, East Hanover, NJ

Sep.2005—Jun.2008 Teaching Assistant, Department of Computer Science,
Rutgers University, New Brunswick, NJ

Jun.2005—Aug.2005 Graduate Associate, Rosetta Inpharmatics (Merck), Seat-
tle, WA

Sep.2004—May.2005 Research Assistant, Department of Computer Science,
Rutgers University, New Brunswick, NJ

Sep.2001—May.2004 Teaching Assistant, Department of Computer Science,
Rutgers University, New Brunswick, NJ

PUBLICATION

Large-Scale Region-based Neighborhood Method for Semi-supervised Protein Se-
quence Classification. Pavel Kuksa, Pai-Hsi Huang and Vladimir Pavlovic. (sub-
mitted for review)

Scalable High-Performance Sequence Classification. Pavel Kuksa, Pai-Hsi Huang
and Vladimir Pavlovic. (submitted for review)

Scalable Algorithms for String Kernels with Inexact Matching. Pavel Kuksa,
Pai-Hsi Huang and Vladimir Pavlovic. (submitted for review)

Fast Protein Homology and Fold Detection with Sparse Spatial Sample Kernels.
Pavel Kuksa, Pai-Hsi Huang and Vladimir Pavlovic. Nineteenth International
Conference on Pattern Recognition (ICPR) 2008, Tampa, Florida, U.S.A.

110

A Fast, Large-Scale Learning Method for Protein Sequence Classification. Pavel
Kuksa, Pai-Hsi Huang and Vladimir Pavlovic. Eighth International Workshop on
Data Mining in Bioinformatics (BIOKDD) 2008, Las Vegas, NV, U.S.A.

Fast and Accurate Multi-Class Protein Fold Recognition with Spatial Sample
Kernels. Pavel Kuksa, Pai-Hsi Huang and Vladimir Pavlovic. Seventh Annual
International Conference on Computational Systems Bioinformatics (CSB) 2008,
Stanford, CA, U.S.A.

Spatially-constrained Sample Kernel for Sequence Classification. Pavel Kuksa,
Pai-Hsi Huang, and Vladimir Pavlovic. Snowbird Learning Workshop, 2008,
Snowbird, UT, U.S.A.

Protein Homology Detection with Biologically Inspired Features and Interpretable
Statistical Models. Pai-Hsi Huang and Vladimir Pavlovic. International Journal
of Data Mining in Bioinformatics. Accepted for submission.

Sparse Logistic Classifiers for Interpretable Protein Homology Detection. Pai-Hsi
Huang and Vladimir Pavlovic. IEEE International Conference on Data Mining
(ICDM) 2006, Hong Kong, under International Workshop on Data Mining in
Bioinformatics.

Inexpensive d-Dimensional Matching. Ljubomir Perkovic, Eric Schmutz and Bae-
Shi Huang. Random Structures and Algorithms, Vol 20, No. 1, 2002, 50-58.

