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ABSTRACT OF THE DISSERTATION

Graphical Models for Object Segmentation

by Rui Huang

Dissertation Director: Professor Dimitris N. Metaxas

Object segmentation, a fundamental problem in computer vision, remains a challenging task

after decades of research efforts. This task is made difficult by the intrinsic variability of

the object’s shape, appearance, and its surrounding. It is compounded by the uncertainties

arising from mapping the 3D world to the image plane and the noise in the acquisition systems.

However, the human visual system often effectively entails the segmentation of the object from

its background by fusing the bottom-up image cues with the top-down context. In this thesis

we propose a novel probabilistic graphical modeling framework for object segmentation that

effectively and flexibly fuses different sources of information, top and bottom, to produce highly

accurate segmentation of objects in a computationally efficient manner. The main contributions

of our work are:

1) We present a graphical model representing the relationship of the observed image features,

the true region labels, and the underlying object contour based on the integration of Markov

Random Fields (MRF) and deformable models. We propose two different solutions to this

otherwise intractable joint region-contour inference and learning problem in the graphical model.

2) We introduce a Profile Hidden Markov Model (PHMM) built on the shape curvature

sequence descriptor to improve the segmentation of specific objects. The special states and

structure of PHMMs allow considerable shape contour perturbations and provide efficient infer-

ence and learning algorithms for shape modeling. Further embedding of the PHMM parameters

captures the long term spatial dependencies on a shape profile, hence the global characteristics

of a shape class.
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3) We incorporate the proposed methods in a spatio-temporal MRF model to solve the video-

based object segmentation problem. Our new model is a simultaneous object segmentation,

background modeling, and pose estimation framework, which combines the top-down high-level

object shape constraints with the bottom-up low-level image cues, and features a flexible graph

structure induced by the motion information for more reliable temporal smoothness.

We demonstrate the effectiveness and robustness of all our methods in a wide variety of

thorough experiments.
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Chapter 1

Introduction

1.1 Graphical models for mid-level vision problems

Graphical models are a marriage between probability theory and graph theory [51]. A graphical

model is a probabilistic model defined in terms of a graph in which the nodes represent random

variables and the edges describe the probabilistic relationships among these variables. In par-

ticular, these probabilistic relationships are usually defined by conditional probabilities among

the related variables or potential functions on the cliques of the graph, depend on whether the

graph is directed or undirected. The joint probability distribution of a set of variables or the

whole system can then be computed by taking products over the conditional probabilities or

the potential functions defined on relevant nodes. The graph theory side of graphical models

provides both an intuitive and compact representation for the complex probabilistic system, and

well-studied graph-theoretic data structures for efficient graph-based algorithms. Probability

theory, on the other hand, ensures the consistency of the whole system, and provides various

statistical inference and learning methods to relate models to data. The intuitive and compact

graph representation and its ability to model complex probabilistic systems make graphical

models a powerful modeling tool in various research areas.

Graphical models have recently received extensive attention from many different research

communities, including artificial intelligence, machine learning, computer vision, etc. One of

the most successful examples in the computer vision area is the application of the Markov

Random Field (MRF) model, a special case of undirected graphical models, to the low-level

vision problems [34]. MRFs have been used for decades to model these problems because of

their ability to capture the context of the image (i.e., dependencies among the neighboring image

pixels) and to deal with the noise. Even though such problems can be elegantly represented

by Markov random fields, the resulting energy minimization problems have been widely viewed

as intractable. The MRF model has recently been revived largely because of the theoretical

and computational developments in the graphical model area, especially the developments of

efficient energy minimization algorithms such as Loopy Belief Propagation (LBP) [95] and graph
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cuts [9], among others [87].

As we mentioned above, the power of the MRF model lies in its ability to capture the

contextual information in the images, that is, besides the data energy term that relates the

model to the data, there is also a smoothness energy term that imposes spatial smoothness on

the model variables. From a Bayesian point of view, the data energy term is the likelihood term,

the smoothness energy term is the prior term, and the model variables are solved by Maximum

A Posteriori (MAP) estimation. The smoothness term is usually an Ising/Potts model, which

is defined on a discrete collection of pairs of variables, with an energy which has one value when

the two variables are the same, and a second value when the two are different. In most cases

the first energy value is lower than the second to encourage spatial smoothness. Such a simple

prior term can drastically improve the results of many low-level vision problems, yet this is still

a low-level prior given that it is imposed globally and uniformly on the model variables without

considering any specific knowledge to the content of the images.

Throughout this study, we consider a general problem, that is, can we solve a high-level

vision problem by imposing a higher-level prior to the MRF model, and how? The general idea

is to add a new layer of nodes representing the higher-level prior to the graph representation of

the MRF model, hence a new set of variables to the probabilistic system, which naturally leads

to some additional terms in the energy minimization procedure. The newly developed efficient

energy minimization algorithms allow us to deal with such otherwise intractable problems. In

particular, we investigate the object segmentation problem in both static 2D images/3D volumes

and video sequences. As a side quest, we developed a new shape model to impose specific shape

prior in our object segmentation framework, which turns out to be a comprehensive shape

modeling method and bears the same idea of adding a new layer of nodes to a traditional

graphical model (e.g., hidden Markov model in this case) to impose higher-level constraints.

The same idea can be also used for object recognition and other mid-level vision problems,

which will be briefly discussed in the end for future directions.

1.2 Image-based object segmentation

1.2.1 Problem statement

Image segmentation is one of the fundamental problems in computer vision. It is important to

other computer vision tasks such as image understanding and retrieval, object recognition and

categorization, etc., and medical imaging applications such as computer-aided diagnosis and

surgery, etc. The main goal of image segmentation is to partition an image into its constituent
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segments that have strong homogeneities with respect to certain criteria (e.g., image features).

In practice, all the regions in an image are not always equally important, and one or more of

them usually belong to a meaningful object, i.e., region of interest that is desired by the user

or critical to the following tasks. In this study, we mainly focus on the object segmentation

problem. That is, the goal of our segmentation algorithms is to find one specific object (region

of interest) surrounded by a smooth and closed boundary contour. A seed point or small region

is manually specified and the region of interest containing it is then segmented automatically.

Therefore, without significant loss of modeling generality, we simplify the model parameters

and avoid possible problems caused by segmenting multiple regions simultaneously.

Besides the object segmentation on 2D images, we also generalize the problem and our

methods to 3D volumes. In the 3D case, accordingly, a 3D object (volume of interest) with

smooth and closed surface is segmented. In the later part of this study, we further investigate

the video-based settings, where the same object across all the frames is segmented.

1.2.2 Previous work

There are two major categories of the segmentation methods: region-based segmentation and

boundary-based segmentation. These two types of methods are naturally different in the way

in which the image segments are represented (e.g., region labels vs. boundary locations), and

also they are often different in the image features used for segmentation (e.g., region statistics

vs. edges), therefore they have respective advantages and disadvantages.

Region-based methods assign image pixels to homogeneous regions according to the image

features computed at individual pixels. Besides the classical region growing methods [44], this

representation can naturally work with a wide variety of clustering and classification methods.

The major disadvantages of these methods are that they do not explicitly model the region

boundaries, hence it is hard to impose smoothness, topology, and shape constraints on the

regions.

On the other hand, boundary-based methods extract region boundaries from the image. The

boundary smoothness can be easily imposed because of the explicit modeling of the boundaries,

although the oversmoothing sometimes may be hard to avoid. In the case of object segmen-

tation, a priori knowledge of the object topology and shape can also be easily incorporated

into boundary-based methods. Because these methods often rely on edge features, they are

sometimes sensitive to image noise and initializations.

Figure 1.1 shows two example images and the segmentation results from a representative
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(a) Input 1 (b) MRF output 1 (c) DM output 1

(d) Input 2 (e) MRF output 2 (f) DM output 2

Figure 1.1: Examples of 2D synthetic image segmentation

region-based method, a Markov Random Field model, and a representative boundary-based

method, a Deformable Model (DM), respectively. The images were synthesized in a way sim-

ilar to that in [26]. In [26] the 64 × 64 perfect image contains only 2 intensities in the total

256 intensity levels representing respectively the object (intensity level 160) and the background

(intensity level 100), and Gaussian noise with mean 0 and standard deviation 60 is then added

to the perfect image. In our example the background is made further complicated by introduc-

ing a non-uniform intensity level gradient. More precisely, the intensity level of the object is

160. The intensity levels of the background are increasing from 100 to 160 along the normal

direction of the object contour (Figure 1.1(a)). This is motivated by the observation that in

real world images, the background is often cluttered and contains overlapping image features

of the foreground object, while in the local areas around the object boundaries the foreground

and the background are usually still separable. Figure 1.1(b) shows the segmentation result

of the MRF-based method using pixel intensities as image features. The object is segmented

correctly, but some regions in the background are misclassified due to the overlapping features

of the foreground and background. On the other hand, the deformable model (more precisely,

the balloon model [21]) shows oversmoothing effect, i.e., either leaking from or not reaching the

high-curvature parts of the object boundary, where the gradient in the normal direction is weak

and unstable (Figure 1.1(c)).
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The second example image (Figure 1.1(d)) is generated by adding Gaussian noise with

mean 0 and standard deviation 60 to Figure 1.1(a). Note that the standard deviation of the

noise is large enough to generate more overlapping image features and further confuse the

foreground and the background. The segmentation result of the MRF-based method on this

noisy image (Figure 1.1(e)) is somewhat similar to that in Figure 1.1(b), which shows that the

MRF model can deal with image noise to some extent. But more significant misclassification

occurs, especially in the background, because of the high noise level and more overlapping image

features. The deformable model (Figure 1.1(f)) either sticks to the strong spurious edges caused

by image noise or leaks from the weak true edges. We usually choose relatively conservative

balloon forces to avoid leaking.

Throughout this study, we will show the experimental results in the same manner as Fig-

ure 1.1, that is, the results of MRFs are shown as label images, and those of DMs and our

methods are shown as contours superimposed on the original images.

1.2.3 Motivation

A natural way to improve the segmentation results of a single methodology (either region-based

or boundary-based) is to combine them and take advantages of both, especially when the two

methodologies have complementary properties. In this study, we propose a graphical model

framework to combine the region-based and the boundary-based segmentation methods, more

specifically, the MRF model and the deformable model. To integrate these two fundamentally

different traditional segmentation methods tightly, we need to construct a single graphical model

to represent the relationship of the observed image pixels y, the true region labels x and the

underlying object contour c.

It is natural to imagine that a real world image of an object is generated in such a way

that the object shape is drawn first, and the image pixels inside the shape boundary is then

considered the object and outside the background, and finally the object and the background

appearances are rendered and noise is probably introduced by this rendering procedure. From

a generative graphical model point of view, the object contour c is generated first with certain

prior P (c) (e.g., closed and smooth), and the region labels x are then generated conditioned

on the object contour c with certain models P (x|c) (e.g., soft labeling or hard labeling), and

finally the image pixels y are generated conditioned on the region labels x according to the

appearance models of different regions P (y|x) (e.g., Gaussian models with different means and

variances), as shown in Figure 1.2.
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x (region labels)

y (image features)

c (object contour)

Figure 1.2: Generative graphical model for image segmentation

Another important reason to build our model in such a three-layer configuration is because

the MRF model is a powerful tool to deal with the low-level vision problems, while the de-

formable model can be used to incorporate high-level cues into MRFs in addition to the simple

Ising/Potts prior. It has been established that a combined top-down and bottom-up segmen-

tation approach outperforms either of the one-direction methods [7, 59], because the top-down

approaches can usually obtain a coarse segmentation efficiently using the high-level object-

specific prior information, which can then be significantly refined by the bottom-up approaches

using the low-level image cues. Our model bears the same idea of combining top-down and

bottom-up segmentation.

1.2.4 Challenges and proposed solutions

The main goal of the first part of this study is to establish such a graphical model for the object

segmentation problem. There are three challenges. The first challenge is the model structure

problem. Though one can label regions according to boundaries or extract boundaries from

regions, it is not easy to incorporate them in the same model, especially to have them take

effect at the same time. This problem addresses how to fill in the missing part in Figure 1.2

and define the dependencies among the model variables. The second challenge is the inference

problem. Once the model is defined, the object segmentation problem is considered an inference

problem of the model. However, exact inference in such a model is usually intractable because of

the huge state space and the couplings of model variables. The third challenge is the parameter
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estimation problem. We also want to estimate the model parameters at the same time of

performing inference (i.e., segmentation).

To tackle these problems we propose two different solutions to the integration of MRFs

and DMs. The first solution uses a variational inference method to seemingly decouple the

integrated model into two simpler models: one extended MRF model and one probabilistic

deformable model, and the MAP estimation in the original model is obtained by solving the

MAP problems of the two simpler models iteratively and incrementally. The second solution

directly adapts the traditional deformable model formulation to explicitly model the relationship

between the region labels and the contour nodes, and then solves the inference problem using

the LBP algorithm. Both solutions also estimate the model parameters using the Expectation-

Maximization (EM) algorithm. These two algorithms produce similar object segmentation

results on 2D static images.

Besides the obvious implementation differences between the two solutions, the first solution

is a tightly coupled model through variational inference in the seemingly decoupled submodules.

The decoupling actually allows us to employ well-studied inference algorithms for both MRFs

and DMs, making tasks such as the generalization to 3D object segmentation straightforward.

The second solution, on the other hand, is a fully coupled probabilistic model that can be solved

by a single statistical inference algorithm. It also allows us to investigate different inference

methods and different message updating and passing schemes in LBP, which in a way justifies

the decoupling in the first solution. The adaptation of the traditional deformable model contour

representation also makes it easier to incorporate a more specific shape prior model instead of

the global smoothing effect in the balloon model.

1.3 Video-based object segmentation

1.3.1 Problems and challenges

In this part of the study we address the problem of video-based object segmentation, that is,

to segment the same object across all the frames in a video sequence. This task has become

more and more important due to many applications such as human-computer interaction, video

surveillance, video indexing and retrieval, etc., especially with the increasing availability of

video data. Even though the modern static image segmentation algorithms have shown fairly

good results with mild user interactions, it is still very difficult in practice to directly use these

methods to segment video data either frame by frame or as 3D volumes. This is because the

relatively low quality and high quantity of most video data often degrade the performances of
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many static image segmentation algorithms, both in accuracy and running time, and sometimes

forbid user interactions. On the other hand, the temporal dependencies carried in the video

sequences usually provide many useful cues for potentially better and faster segmentation.

1.3.2 Previous work and our solution

We again employ the MRF model for the video-based object segmentation problem, because

one particular advantage of the MRF model is that it can be easily extended to represent

high dimensional data. For the video-based segmentation problem, a spatio-temporal MRF is

usually constructed by adding to the regular MRFs one additional dimension that represents

time. More precisely, a regular 2D MRF is used to model a single frame in the video sequence,

and all the 2D MRFs can be stacked into one 3D MRF to model the whole sequence of 2D

frames. A spatio-temporal MRF model naturally combines the spatial and temporal aspects of

a video sequence and allows one to easily explore and integrate multiple cues for video-based

object segmentation. In most previous work, however, only the dynamic information (e.g., the

image differences) is used as the observation, and the appearance information is ignored. This

is efficient for motion detection but not suitable for video-based object segmentation. Another

potential problem of the traditional spatio-temporal MRF model is that the video sequences

are usually treated as regular 3D volumes. Even though the smoothness constraint is imposed

on the temporal dimension, due to the possible large movements of the object across different

frames, the regular 3D structure does not correctly describe the temporal relationship between

those model variables, hence the temporal smoothness is often incorrectly imposed.

We try to address these problems and also include the higher-level shape prior we used in

the static image-based object segmentation framework in our new spatio-temporal MRF. There

are four main modules in our model, which involve the four most important aspects of the

video-based object segmentation problem. First, the bottom-up appearance model captures the

low-level cues computed from the input data (e.g., intensity, color, texture, motion field, etc.).

Second, the top-down prior model brings in the high-level object priors (e.g., topology, shape,

color, texture, etc.) usually learned from the training data to guide the bottom-up approaches.

Note that some features such as color and texture can be used as both low-level and high-level

cues, but in different ways. In the bottom-up approaches, color and texture are only used for

discovering homogeneous regions, while in the top-down approaches, specific distributions of

color and texture learned from the training data are sought to separate different regions. Third,

the spatial constraint term imposes spatial region smoothness on the segmentation in the image

plane. This constraint greatly helps eliminate the inconsistencies in the segmentation caused by
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the noise or other static imaging processes. Fourth, the temporal constraint term determined

by the motion information (e.g., optical flow), instead of the regular 3D grid, imposes temporal

smoothness on the otherwise unrelated static image frames. Again, we emphasize that even

though the video-based object segmentation is performed on a stack of 2D images, i.e., a 3D

volume, it is different from the 3D object segmentation we described in the first part of this

study, and extra effort needs to be made to take into account the dynamic information among

the 2D frames. All these four submodules are systematically incorporated into our framework.

Furthermore, when some of these aspects are not known in advance (e.g., the shape prior),

one can typically employ the Expectation Maximization (EM) algorithm to estimate the model

parameters and perform segmentation simultaneously.

1.4 Shape analysis

1.4.1 Problems and challenges

As mentioned above, both static image-based and video-based object segmentation can be

greatly improved by incorporating top-down shape priors, which leads to this part of the study,

boundary-based 2D shape analysis. Shape analysis is also an important process for many

computer vision and image processing applications, including image classification, recognition,

retrieval, registration, segmentation, etc. An ideal shape model should be both invariant to

global transformations (e.g., translation, rotation, scaling, etc.), and robust to local distortions

(e.g., nonrigid transformations, occlusion, missing parts, etc.). To be used in our segmenta-

tion framework, the shape model also needs to provide both efficient and accurate matching

algorithm. Here we present a new shape modeling framework that achieves all these goals.

Application-wise, a comprehensive shape model should also be able to deal with various shape

analysis tasks, e.g., shape matching, shape classification/recognition, shape segmentation, shape

reconstruction, etc. Therefore we also investigate the effectiveness and robustness of our new

shape model in all these different settings for completeness, even though the model is mainly

motivated by the segmentation problem.

1.4.2 Previous work and our solution

Shape models can also be generally categorized into two classes: region-based shape models and

boundary-based shape models. Region-based shape analysis methods make use of all the pixels

within a shape region, hence are more robust to noise and suitable for shapes with complicated
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internal structures and topologies. Boundary-based methods, on the other hand, mainly exploit

the shape boundary information, which in many applications is both effective and efficient. For

example, in image retrieval, the object contour is arguably the most convenient query that can

be easily input by a user; in image segmentation, many boundary-based segmentation methods

can be improved by a prior model of the boundary shape.

From the model perspective, there are two different levels in shape modeling. Adopting the

terminology of [60], we use shape description to denote the numerical feature vector extracted

from a given shape instance using a certain method (e.g., a curvature sequence), and shape

representation the non-numerical, high-level representation of the shape (e.g., a graphical model)

which preserves the important characteristics of the shape class.

To be consistent with the deformable model representation of the object contour used in

our segmentation, in our shape model a shape instance is described by a curvature sequence de-

scriptor. The curvature sequence descriptor has some attractive properties. First, it is invariant

to the object translation. Second, the curvature computed at each contour point is rotationally

invariant, so the descriptor is also invariant to the object rotation if the starting point is given.

Otherwise, the object rotation causes a circular shift of the curvature sequence, which can be

handled by the starting point detection procedure. Finally, the curvature sequence descriptor

is not strictly invariant to the object scaling since a change of the contour length usually leads

to a change of the curvature sequence length. One possible solution is to normalize all the

shape contours to the same length or, equivalently, sample the contours to a fixed number of

points. However, when there are nonrigid or local deformations or missing parts on the contour,

the contour length may not be proportional to the actual object scale. Fortunately, the high-

level representation of our shape model, a Profile Hidden Markov Model (PHMM) built on the

low-level curvature sequence descriptions can address these problems and represent a class of

similar shapes. PHMMs are a particular type of Hidden Markov Models (HMMs) with special

states and architecture that can tolerate considerable shape contour perturbations, including

rigid and non-rigid deformations, occlusions, and missing parts. PHMMs are more effective

in the sequence matching task than ergodic HMMs because each observed salient feature in

the observation sequence is modeled by a different state in the PHMM, instead of sharing a

state with other observations as in the ergodic HMM. The sparseness of the PHMM structure

provides efficient inference and learning algorithms for shape modeling and analysis. It is even

more efficient than the ergodic HMM despite the larger number of states because of its strongly

linear, left-to-right model structure. To capture the global characteristics of a class of shapes,

the PHMM parameters are further embedded into a subspace that models long term spatial
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dependencies. The new framework can be applied to a wide range of problems, such as shape

matching/registration, classification/recognition, etc., and ultimately we can incorporate it into

our object segmentation framework.

1.5 Organization

As outlined above, this study consists of three major contributions in the following three areas:

static image-based object segmentation, video-based object segmentation, and 2D contour-

based shape analysis. The remainder of this thesis, therefore, is organized as follows: Chapter 2

reviews the related work in all the three areas. This chapter also serves the purpose of defining

the notations that will be used throughout the rest of the thesis. Chapter 3 describes the

two different solutions to the image-based object segmentation problem. The 2D model is

further generalized to 3D in this chapter. Since the shape analysis algorithms are extensively

used in our video-based object segmentation method, we present our new shape model and

its applications in Chapter 4, followed by Chapter 5, where the spatio-temporal framework for

video-based object segmentation is presented. And finally we conclude and discuss the future

work in Chapter 6.
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Chapter 2

Related Work

2.1 Introduction

In this chapter, we review the related work in the three areas where we made our major con-

tributions, which are image-based object segmentation, shape analysis, and video-based object

segmentation. These topics are very broad and extensively studied, and we limit references to

the work to which our work are most related, without meaning to slight the large body of other

significant contributions. We also define the notations that will be used throughout the rest of

the thesis.

2.2 Image-based object segmentation

As stated in Section 1.2.1, image-based object segmentation solves the problem of segmenting

a specific object from the background in an image. We first review some general image seg-

mentation methods, and then in greater detail the two representative methods, Markov random

fields and deformable models, upon which our method is built. And finally some other object

segmentation algorithms built on general image segmentation methods.

2.2.1 Image segmentation

Image segmentation is one of the fundamental problems in computer vision and has been ex-

tensively studied for decades. It is also one of the most difficult vision problems considering

the wide variety of the image characteristics and contents. Numerous algorithms have been

proposed over the years based on different assumptions to the input images and different ap-

proximations to the output results [83, 81, 32, 41], hence each method has its own advantages

and disadvantages.
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2.2.2 Region-based image segmentation and Markov random fields

Region-based methods assign image pixels to homogeneous regions according to the image fea-

tures computed at individual pixels. The region growing method [44] and its variants are the

early representatives in this category. MRFs are also an important region-based method, which

has long been studied since 1980s [39, 5, 63]. MRFs and their discriminative counterpart, Con-

ditional Random Fields (CRFs) or Discriminative Random Fields (DRFs) [57], have recently

become the state-of-the-art segmentation methods due to the success of some newly developed

energy minimization algorithms [87] such as BP [73] (more precisely, LBP [95]) and Graph

Cuts [9]. These methods treat the segmentation problem as a classification problem (more

specifically, a pixel-labeling problem), i.e., the image pixels are classified into different classes

(regions) according to their features. Another representative group of region-based segmenta-

tion methods, graph partitioning methods such as Normalized Cuts [82], solve the segmentation

problem in a flavor of clustering instead of classification, that is, the image pixels are grouped

into clusters (regions) using clustering algorithms such as the spectral graph partitioning tech-

niques. Since we focus on the MRF-based image segmentation method in this study, we briefly

introduce MRFs in the rest of this section.

MRFs are a special case of undirected graphical models. See [52] for a comprehensive

introduction to graphical models and [51] for more advanced topics. MRFs have been extensively

used in many image analysis tasks, because of their ability to capture the context of the image

(i.e., dependencies among the neighboring image pixels) and to deal with the noise. The MRF-

based image segmentation methods are region-based methods, and the region labels are modeled

by the MRF hidden variables and solved as a MAP inference problem.

A typical MRF model for image segmentation, as shown in Figure 2.1, is a graph with two

types of nodes: observable nodes (shaded nodes in Figure 2.1, representing the image features

computed at each pixel) and hidden nodes (clear nodes in Figure 2.1, representing the unknown

region labels). The edges in the graph depict the probabilistic relationships among the nodes.

Let n = w×h be the number of the hidden/observable nodes (i.e., the number of pixels in a

image of w by h). A configuration of the hidden layer is: x = (x1, ..., xn), where xi ∈ L, i ∈ V .

L is a set of region labels, e.g., L = {object, background}, and V = {1, 2, ..., n} is the pixel/node

index set. Similarly, a configuration of the observable layer is: y = (y1, ..., yn), where yi ∈ Rd,

i ∈ V , and Rd is the d dimensional real space of the image features.

The probabilistic relationship between the hidden nodes and the observable nodes can be de-

scribed by the association potential function: φi(xi, yi), which is usually a conditional model of
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Figure 2.1: MRF model for image segmentation

the image feature given the region label at pixel i (e.g., a Gaussian or Gaussian mixture model);

the pairwise relationship between the neighboring hidden nodes is described by the interaction

potential function: ψij(xi, xj), which usually penalizes differences between the neighboring re-

gion labels to keep region smoothness (e.g., an Ising/Potts model). Note that the interaction

potential functions can involve more hidden nodes if one divides the graph of the hidden layer

into larger cliques. Here we mainly focus on the two node cliques, and accordingly, the pair-

wise interaction potential functions, which are adequate for our applications and simplify the

inference problem. More details about these potential functions will be discussed later.

The image segmentation problem can be viewed as a problem of estimating the MAP solution

of the MRF model:

xMAP = arg max
x

P (x|y) (2.1)

where

P (x|y) ∝ P (y|x)P (x) ∝
∏

i∈V

φi(xi, yi)
∏

(i,j)∈N

ψij(xi, xj) (2.2)

where V , as mentioned above, is the pixel/node index set, and N is the edge set among the

hidden nodes. The most commonly used edge set is defined by the regular grid on the image

plane. Higher order neighborhood system can be used to capture the relationship among the

nodes that are farther away.

The above MRF-MAP inference problem is equivalent to an optimization problem of mini-

mizing the following energy function:

E(x) = −log(P (x|y)) =
∑

i∈V

−log(φi(xi, yi)) +
∑

(i,j)∈N

−log(ψij(xi, xj)) + Const (2.3)
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Note that we discarded y since it is known and can be encoded into the potential functions.

Because the exact MAP inference in the MRF model is computationally infeasible due to

the large state space of x (i.e., |L|n), most MRF-based segmentation methods mainly differ

in the means of approximating the MAP estimation or minimizing the corresponding energy

function. These various techniques include Markov Chain Monte Carlo (MCMC) [39], iterated

conditional modes (ICM) [5], maximizer of posterior marginals (MPM) [63], etc. Recently the

BP algorithm [73] (more precisely, the loopy belief propagation algorithm [95]) and the Graph

Cuts algorithm [9] have become the state of the art for the MRF-MAP inference problem. [26]

presents a comparative analysis of some of the classical methods, while [88] focuses on the BP

algorithm and the Graph Cuts algorithm. A more recent empirical study is presented in [87].

The MRF model parameters (i.e., the parameters in the potential functions) are often learned

using the EM algorithm [98]. However, in the presence of multiple regions in the image, the

automatic determination of the number of regions and the initial guess of the parameters could

be difficult. More importantly, like other region-based methods, MRFs do not take account of

object shape and topology, which means they may generate rough object boundaries and holes

inside the objects.

2.2.3 Boundary-based image segmentation and deformable models

Boundary-based methods extract region boundaries from the image. These methods usually

rely on edge detection to begin with, and the detected edges can then be linked together to

form region boundaries [17]. Some methods directly extract higher-level geometric primitives

such as lines and curves [27] using, e.g., Hough transform [45]. In this study we focus on

another well-studied representative of boundary-based methods, deformable models, which fit

a parameterized geometric primitive to the detected edges. We briefly review the DM-based

image segmentation methods here.

A deformable model is usually a parameterized geometric primitive, whose deformation is

determined by geometry, kinematics, dynamics, and even more sophisticated constraints (e.g.,

material properties, etc.) [66]. Snakes [54], a simple and widely used deformable model (also

know as active contour model), are a parametric contour:

Ω = [0, 1] → R2

s → c(s) = (x(s), y(s))
(2.4)

where s is the parametric domain and x and y are the coordinate functions. The energy of the

contour:
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E(c) = Eint(c) + Eext(c) =
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+ F (c(s))ds (2.5)

where ω1(s) and ω2(s) control the “elasticity” and “rigidity” of the contour (i.e., the internal

properties of the model), and F is the potential associated to the external forces determined by

the image features or the user-desired model behaviors (e.g., expanding, shrinking, etc.). The

final shape of the contour corresponds to the minimum of this energy.

To minimize the above energy term, one can use the discretized first order Lagrangian

dynamics equation:

ḋ + Kd = f (2.6)

where d is discretized version of c, K is the stiffness matrix determined by ω1(s) and ω2(s),

and f is the generalized force vector determined by F .

Image gradient forces are most commonly used external forces to attract a deformable model

to edges. However, when initialized far from the true boundary, the model often gets attracted

to spurious image edges. Many variants of deformable models, such as Balloons [21] and Gra-

dient Vector Flow (GVF) Snakes [94], have introduced different external forces to address this

problem. In balloon models, namely, the deformable model is considered a balloon, which is

inflated or deflated by additional forces along the normals of the deformable contour, and only

stopped by stronger edges. The initial contour need no longer be close to the true bound-

ary. Mathematically, a force along the normal direction to the curve at point c(s) with some

appropriate amplitude f is added to the original forces:

f ′ = f + f−→n (s) (2.7)

Deformable models can also be viewed in a probabilistic framework [65]. The internal energy

Eint(c) leads to a Gibbs prior distribution of the form:

P (c) =
1

Zi

exp(−Eint(c)) (2.8)

while the external energy Eext(c) can be converted to a sensor model with conditional proba-

bility:

P (I|c) =
1

Ze

exp(−Eext(c)) (2.9)

where I denotes the image, and Eext(c) is a function of the image I.
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The deformable models can then be fitted by solving the MAP problem:

cMAP = arg max
c

P (c|I) (2.10)

where

P (c|I) ∝ P (c)P (I|c) (2.11)

One limitation of the DM-based methods is their sensitivity to the image noise, a common

drawback of boundary-based methods. This may result in the deformable model being “stuck”

in a local energy minimum of a noisy image. See [65] for a review of deformable models and [66]

for further details about deformable models.

Besides the above mentioned explicit deformable models, the implicit deformable models

such as level sets [70, 80, 71] are also widely used in image segmentation. The most obvious

difference between these two types of deformable models is whether the boundary locations

are modeled explicitly. Namely, in the explicit deformable models the boundary is modeled

by a sequence of coordinates of the boundary points and evolved by moving the boundary

points directly, while in the implicit deformable models the boundary is represented by the

zero level set of a distance function and manipulated implicitly through the distance function.

This intrinsic model difference leads to another difference between the two, that is, whether

the region topology is strictly preserved. The level set methods make it easy to follow topology

changes of the boundary (e.g., splitting, merging, developing holes, etc.), while the explicit

deformable models are more suitable when the boundary topology is to be preserved (e.g., to

impose strong shape constraints). It is worth noting, however, that there are both topologically

adaptable snakes (explicit deformable models) [64] and topology preserving level sets (implicit

deformable models) [42].

2.2.4 Hybrid image segmentation methods

Hybrid approaches attempt to combine region-based and boundary-based segmentations to

alleviate deficiencies of the individual methods and improve the segmentation results. Many

modern segmentation methods are formulated as an energy minimization procedure with both

region-based and boundary-based features as energy terms, hence tend to blur the boundary

between the two categories of segmentation methods. For example, many level set methods are,

rather, considered region-based or hybrid methods. There are also various ways to incorporate

region information into the explicit deformable models [76][49]. The most direct inspiration
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of our work is [19], in which the authors proposes a way of integrating MRFs and deformable

models. MRFs are used to initially estimate the region labels of the noisy images. Balloons are

then used in the noise-reduced region maps to fit the object boundary. The result of the fitting

is in turn used to update the MRF parameters and region label estimation. Final segmentation

is achieved by iteratively integrating these processes. While this hybrid method attempted to

take advantage of both MRFs and deformable models, the model coupling was loose. This may

cause failure of deformable models if the initial estimation of the boundary by MRF is not

closed, and it may also yield oversmoothed boundaries. Since our first attempts at building

a fully coupled graphical model to combine MRFs and deformables [46][47], there have been

other different choices of the combination. For example, the OBJ CUT algorithm [56] combines

MRFs and the layered pictorial structures, the Pose Cut algorithm [11] combines MRFs and

the stick figure model for human body segmentation, and the CRF-driven implicit deformable

models [90] combine the Conditional random field model and the level set, etc.

2.3 Shape modeling

Many shape modeling techniques have been developed over years with different concerns and

respective advantages [2, 60, 97]. We first review some HMM-based shape models that are most

related to our work, and then introduce some successful and comprehensive shape models and

their differences to our work.

2.3.1 Hidden Markov models for shape modeling

From the model perspective, our work is most similar to the HMM-based methods [43, 33, 3,

16, 6, 89]. Most HMM-based shape models are boundary-based shape models. The boundary

of a shape is first extracted to form a shape contour, which can be further discretized into a

set of landmark points. The shape description is then a sequence of shape attributes (e.g.,

curvature, radius, orientation, etc.) computed at these landmarks. HMMs are an ideal prob-

abilistic sequence modeling method for the shape representation, because HMMs provide not

only robust inference algorithms but also a probabilistic framework for training and building the

model [74]. One of the earliest works on HMM-based shape model [43] used the autoregressive

model parameters derived from the radius sequence of the contour points for shape description,

and stationary or non-stationary HMMs with 2 to 6 states for shape representation. Promising

results were presented. In [33], a shape was described by an 8-directional differential chain code.
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Both fully connected and left-right HMMs were used for shape representations, and the left-

right HMM achieved slightly higher classification rates than the fully connected HMM. A similar

chain code description was also used in [3], but with a topologically different HMM for repre-

sentation. This circular HMM-based shape model is insensitive to scaling and rotation to some

extent. [16] used a Fourier spectral feature descriptor, and proposed a specially designed HMM

topology and parameter re-estimation procedure to directly deal with these type of features.

Recently, Bicego et al. [6] combined a curvature descriptor with an ergodic HMM for shape

classification. Curvatures are treated as mixtures of Gaussians, and the Bayesian inference

criterion was applied to select optimum number of the HMM states. This work was improved

in [89], which used similar representation and description while focuses more on the design of

the classification function by combining HMMs with generalized probabilistic descent method.

However, most of these HMM-based methods concentrated on shape classification/recognition,

while ignoring another important aspect of shape modeling: shape matching/registration [91].

In this study, we propose a new framework for shape modeling. Our model is easier to

train and incorporates the global shape constraints that is critical for the shape matching,

thus can be applied to more different and difficult tasks. The new model is a combination

of the curvature sequence descriptor and Profile Hidden Markov Models (PHMMs) [28, 29].

PHMMs are strongly linear, left-right HMMs. A PHMM can model the entire shape profile

more specifically than a general ergodic HMM, because each observed salient feature in the

observation sequence is modeled by a different state in the PHMM, instead of sharing a state

with other observations as in the ergodic HMM. This is crucial for shape matching. The special

architecture of PHMMs contains insert and delete states, in addition to the regular match states,

resulting in robustness to considerable shape contour perturbations, including rigid and non-

rigid deformations, occlusions and missing contour parts. The adopted framework also leads

to a computationally efficient set of algorithms for shape analysis. A further embedding of the

model parameters can capture more global characteristics of a class of shapes. The embedding

idea is similar to that of the statistical shape models such as the active shape models [23], except

that we are embedding and constraining the global dependencies of the 1D curvature sequences,

instead of the 2D spatial landmarks. Unlike previous HMM-based methods, our new framework

is more comprehensive and comparable in performance to the state-of-the-art approaches. We

will point out the differences between our model and those works in the next section.
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2.3.2 Other shape models

In recent years, several comprehensive shape models have been proposed and widely used. Active

shape models [23] represent similar shapes as variants of a mean shape. The “legal” variations

are parameterized using statistical analysis, which requires the same number of corresponding

sample points on each shape instance. For 2D contour shapes, a minimum description length

approach [25] was proposed to find the correspondences before one can build the statistical mod-

els. The model embedding part of our model is similar to the shape variance parameterization

part of the active shape models, however our model is more flexible without requiring the same

number of sample points across all the shape instances, and the 1D nature of our model makes

it more efficient to handle large rotation and occlusions. [1] presents an automatic learning

framework for shape modeling using a differential-geometric treatment of planar shapes. It is

also a statistical framework like our work, but no results on handling occlusions is reported.

From the application perspective, our work is more similar to [37], which is based on syntactic

matching. Our work is different in that we can build fully probabilistic models over classes

of shapes. Shape context [4] also proves to be a successful descriptor for many shape analysis

problems but it is not a high level representation. While such contour-less shape models using

2D descriptors can handle topologically more difficult shapes, our contour-based shape model-

ing approach can be both computationally efficient and robust to significant deformations, and

it is easier to incorporate into contour-based segmentation methods. Disjoint region connecting

methods such as [15] also allow our model to be applied to a wider range of 2D shapes.

2.4 Video-based object segmentation

As stated in Section 1.3.2, we address the video-based object segmentation problem with an

improved spatio-temporal MRF model, which allows us to combine four different cues into the

same framework. We first review the traditional spatio-temporal MRF model, and then the

individual modules that we incorporate into it.

2.4.1 Spatio-temporal Markov random fields

One particular advantage of the MRF model is that it can be easily extended to represent

high dimensional data. A spatio-temporal MRF model is constructed by stacking the regular

MRFs that are used to model the data at different times to form a one dimensional higher MRF

model. More precisely, for the video-based object segmentation problem, a regular 2D MRF

is used to model a single frame in the video sequence, and all the 2D MRFs can be stacked



21

into one 3D MRF to model the whole sequence of 2D frames [62, 53, 92, 96]. In this setting,

the spatio-temporal MRF model is three dimensional, though it is possible to have even higher

dimensional models (e.g., a series of 3D volumes forming a 4D model).

A spatio-temporal MRF model naturally combines the spatial and temporal aspects of a

video sequence and allows one to easily explore and integrate multiple cues for video-based

object segmentation. In most previous work, however, only the dynamic information (e.g., the

image differences) is used as the observation, and the appearance information is ignored. This

is efficient for motion detection but not suitable for video-based object segmentation. Another

potential problem of the traditional spatio-temporal MRF model is that the video sequences

are usually treated as regular 3D volumes. Even though the smoothness constraint is imposed

on the temporal dimension, due to the possible large movements of the object across different

frames, the regular 3D structure does not correctly describe the temporal relationship between

those model variables, hence the temporal smoothness is often incorrectly imposed.

Our model, on the other hand, tries to address these problems and also includes the higher-

level shape prior we used in the static image-based object segmentation framework. There are

four main modules in our model, which involve the four most important aspects of the video-

based object segmentation problem. These are top-down high-level priors, bottom-up low-level

features, spatial smoothness and temporal smoothness.

2.4.2 Combining top-down and bottom-up approaches

It has been established that a combined top-down and bottom-up segmentation approach out-

performs either of the one-direction methods [7, 59]. The top-down approaches can usually

obtain a coarse segmentation efficiently using the high-level object-specific prior information,

which can then be significantly refined by the bottom-up approaches using the low-level image

cues. MRFs are a powerful tool to deal with the low-level vision problems [34], and many efforts

have been made to incorporate high-level cues into MRFs in addition to the simple Ising/Potts

prior. These high-level priors can be generic shape and topology constraints, e.g., deformable

models used in [46], or more object-specific shape models such as layered pictorial structures

used in [56] and the stick figure model for human body used in [11]. Many of these shape prior

models are formulated in the form of distance maps, commonly used in the level-set literature

[78], for a proper probabilistic interpretation. In most cases, the shape prior is not given in

advance, but has to be estimated at the same time of performing segmentation. This is usually

solved iteratively using the EM algorithm.
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Background subtraction is an effective approach to detect moving regions in image sequences.

The usually low-level features (e.g., color) of each pixel in the background scene are modeled

by a mixture of Gaussian distributions [36, 85], or a non-parametric model [30]. During the

background subtraction process, false detection may occur due to the random noise or small

movements of the background scene or the camera which are not captured by the background

model. This can be suppressed by an additional stage of processing using spatial contextual

information [30].

2.4.3 Combining spatial and temporal constraints

The other line of research addresses the noise problem using the spatio-temporal MRF model

[62, 53, 92, 96]. The spatial smoothness is intrinsically improved due to the Ising/Potts prior in

MRFs. Most of these models, however, are defined on a regular 3D grid neighborhood system,

i.e., each node in the current frame is connected to the nodes with the same image coordinates

in the previous and next frames, which may belong to different regions due to the possible

large motions of the object. Therefore the regular Ising/Potts prior along the time dimension

may oversmooth different regions. In [53] the image frames are divided into small patches and

each patch is connected to the corresponding patches, determined by patch matching, in the

neighboring frames. A different idea to determine real temporal neighbors is suggested in [58],

where the optical flow is used to detect pixel correspondences in the time dimension, and the

model nodes are connected to their real temporal neighbors defined by these correspondences

instead of the 3D grid.

Another problem of the traditional spatio-temporal MRFs is that only the temporal infor-

mation (e.g., the image differences between consecutive frames) is taken into account as the

MRF observation model (i.e., the bottom-up features), and the appearance information is ig-

nored, that is, they only model the motion information instead of the object or background

appearance information. Hence these methods are more suitable for motion detection instead

of object segmentation.

2.4.4 Relation to our work

Our goal is to build a spatio-temporal MRF model for video-based object segmentation. In-

stead of using the motion information between the image frames for the observations as in

the traditional spatio-temporal MRF models, we use such dynamic information (e.g., optical
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flow) to generate our model structure. Therefore our model is defined on a more flexible struc-

ture instead of the regular 3D grid, allowing the nodes in the model to be connected to more

reliable temporal neighbors. The observation model of our framework is based on the fore-

ground/background appearances, similar to the static image segmentation methods and the

background modeling methods mentioned above, hence our model is more suitable for object

segmentation. Furthermore, we incorporate a shape model into the otherwise bottom-up-only

approach to improve the performance. To the best of the authors’ knowledge, this is the first

work to integrate all these different aspects for video-based object segmentation.
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Chapter 3

Image-based Object Segmentation Using Graphical

Models

3.1 Introduction

In this chapter we present two solutions to the image-based object segmentation problem. Recall

the statement in Section 1.2.4, i.e., the main goal of this chapter is to establish a graphical

model for the image-based object segmentation problem. There are three challenges. The

first challenge is the model structure problem. Though one can label regions according to

boundaries or extract boundaries from regions, it is not easy to incorporate them in the same

model, especially to have them take effect at the same time (i.e., how to fill in the missing part in

Figure 1.2) and define the dependencies among the model variables. The second challenge is the

inference problem. Once the model is defined, the object segmentation problem is considered an

inference problem of the model. However, exact inference in such a model is usually intractable

because of the huge state space and the couplings of model variables. The third challenge is the

parameter estimation problem. We also want to estimate the model parameters at the same

time of performing segmentation.

To tackle these problems we propose two different solutions to the integration of MRFs

and DMs. The first solution uses a variational inference method to seemingly decouple the

integrated model into two simpler models: one extended MRF model and one probabilistic

deformable model, and the MAP estimation in the original model is obtained by solving the

MAP problems of the two simpler models iteratively and incrementally. The second solution

directly adapts the traditional deformable model formulation to explicitly model the relationship

between the region labels and the contour nodes, and then solves the inference problem using the

loopy belief propagation algorithm. Both solutions also estimate the model parameters using

the Expectation-Maximization (EM) algorithm. These two algorithms produce similar object

segmentation results on 2D static images, yet have respective advantages, as we show in the

experiments. The first solution can be straightforwardly extended to 3D object segmentation,

while the second solution can be easily incorporated with a specific shape prior model instead
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of the generally smoothed balloon model. We show results of 3D object segmentation in this

chapter, and the results of object segmentation with specific shape prior are shown later after

we introduce the embedded PHMM-based shape model in Chapter 4.

3.2 Solution I: Integration via variational inference

3.2.1 Integrated model I

As shown in Figure 1.2, the integrated model consists of three layers: the image feature layer

y, the region label layer x, and the object contour layer c.

The segmentation problem can be viewed as a joint MAP estimation problem:

(c,x)MAP = argmax
c,x

P (c,x|y) (3.1)

where

P (c,x|y) ∝ P (y|x)P (x|c)P (c) (3.2)

according to our generative model formulation.

One of the challenges is the huge state space of the model variables (i.e., all possible binary

labelings x of the image on top of all possible contour configurations c in the image plane).

However, as shown in Section 2.2.2 and Section 2.2.3, both the MRF-based and the deformable

model-based segmentation methods have been extensively studied and both offer effective and

efficient inference algorithms. To utilize these algorithms, one can loosely couple these two

models as in the previous work [19]. More precisely, the MRF model is solved first, which gets

rid of most noise. The binary label image is then used to fit the deformable model, which

generates the smooth object boundaries. The MRF model parameters are updated according

to the deformable model segmentation. This procedure repeats until convergence. However, in

this loosely coupled model, suboptimal results from one model can cause serious problem to the

other model.

Our first solution to the integrated model also tries to solve the two submodules separately

but the structured variational inference technique is used to ensure the combination of the

solutions to the two submodules is as close as possible to the original integrated model. Since

one can solve the object contour c by the physics-based deformable model approaches, we do

not need to model the object contour explicitly. This is achieved, as depicted in Figure 3.1,

by having a single hidden node c in the object contour layer to represent the whole contour.

This compact contour representation makes the model structure between the region label layer
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Figure 3.1: Graphical model I: integrated model

x and the object contour layer c rather simple (i.e., the contour node c is connected to every

region label node xi).

Under this model structure, Equation (3.2) can be factorized as

P (c,x|y) ∝ P (y|x)P (x|c)P (c)

∝
∏

i∈V

φi(xi, yi)
∏

(i,j)∈N

ψij(xi, xj)
∏

i∈V

P (xi|c)P (c) (3.3)

φi(xi, yi) is the same as the association potential function in the traditional MRF model.

If we assume the image features are simply the pixel intensities and are corrupted by white

Gaussian noise:

φi(xi, yi) =
1

√

2πσ2
xi

exp

(

−
(yi − µxi

)2

2σ2
xi

)

(3.4)

One can easily replace the Gaussian model with multivariate Gaussian if the image features

have higher dimensions, and it is also straightforward to use more sophisticated observation

models such as Gaussian mixture models or even non-parametric models.

φij(xi, xj) is the interaction potential function to penalize differences between the neighbor-

ing labels (i.e., to keep local region smoothness), e.g.,

φij(xi, xj) = exp

(

−
(xi − xj)

2

2σ2

)

(3.5)

where σ controls the desired smoothness of neighboring hidden states. Data-dependent terms

have been used in [8, 56], which assign different σ values depend on the image locations and
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the local features. In our experience, this is not as critical of an issue as one is led to believe.

It is clear that inference in a contrast-insensitive edge MRF captures the contrast (in appear-

ance) between neighboring pixels. The data-dependent smoothing term is different from the

Ising/Potts model (to some extent it is a more refined Ising/Potts model) in that it reinforces

the standard observation model, at the expense of: 1) further departure from a generative MRF

and 2) increased complexity and sensitivity in model estimation. Similar effects can often be

accomplished using the differential (contrast-sensitive) observation features. Contrast-sensitive

edges could be useful when the image is of high resolution and boundary details are important

(e.g. in GrabCut [77] for image matting), here we choose the simple term to keep the clean

structure of a generative model.

The dependency between the region labels x and the object contour c is modeled by the

softmax function:

P (xi = object|c) = 1/ (1 + exp(−λdist(i, c)))

P (xi = background|c) = 1 − P (xi = object|c) (3.6)

induced by the signed distance of pixel i from contour c:

dist(i, c) = sign(i)min
s∈Ω

‖loc(i) − c(s)‖ (3.7)

where sign(i) = 1 if pixel i is inside contour c (i.e., belongs to the object), sign(i) = −1 when it

is outside (i.e., belongs to the background), and loc(i) denotes the spatial coordinates of pixel i.

This can be achieved efficiently by computing the Euclidean distance transform, both in 2D [12]

and 3D [35].

Note that the dependency between the region labels and the object contour is defined prob-

abilistically, and the strength of the dependency is controlled by the parameter λ. As shown

in Figure 3.2, the larger λ is, the more deterministic the dependency is. In particular, when

λ = inf , the region labels and the contour are completely interdependent, and when λ = 0,

they are completely independent. The uncertainty in region labels for a given contour allows

us to process the two variables separately, and also arise as an attempt to model, e.g., image

aliasing and changes in region appearance at boundaries.

Lastly, the prior term P (c), as in Equation (2.8), can be represented as a Gibbs distribution

when the shape prior is given by a parametric contour c. Despite the compact graphical

representation of the integrated model, the exact inference in the model is computationally
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Figure 3.2: Dependency between the region labels and the object contour.

intractable due to the large state space of the model variables and the existence of loops in the

graphical model, which preclude polynomial-time inference. To deal with these problems we

propose an approximate, yet tractable, solution based on structured variational inference.

3.2.2 Approximate inference using structured variational inference

Structured variational inference techniques [50, 72] consider parameterized distribution which

is in some sense close to the desired posterior distribution, but is easier to compute. Namely,

for a given image y, a distribution Q(c,x|y, θ) with an additional set of variational parameters

θ is defined such that the Kullback-Leibler (KL) divergence between Q(c,x|y, θ) and P (c,x|y)

is minimized with respect to θ:

θ∗ = arg min
θ

∑

c,x

Q(c,x|y, θ) log
P (c,x|y)

Q(c,x|y, θ)
(3.8)

The dependency structure ofQ is chosen such that it closely resembles the dependency structure

of the original distribution P . However, unlike P the dependency structure of Q must allow a

computationally efficient inference.

In our case we define Q by decoupling the MRF model and the deformable model com-

ponents of the original integrated model in Figure 3.1. The original distribution is factorized

into two independent distributions: an extended MRF model QM with variational parameter

a (Figure 3.3(a)) and a probabilistic deformable model QD with variational parameter b (Fig-

ure 3.3(b)). The extended MRF model means we have an additional layer to the traditional

MRF model to deal with the shape prior, and the probabilistic deformable model means the

contour is not fitted to the image directly, but to the probabilistic label image.

Because QM and QD are independent,
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Figure 3.3: Graphical model I: decoupled models

Q(c,x|y,a,b) = QM (x|y,a)QD(c|b) (3.9)

According to the extended MRF model, we have:

QM (x|y,a) ∝ QM (y|x)QM (x|a)

∝
∏

i∈V

φi(xi, yi)
∏

(i,j)∈N

ψij(xi, xj)
∏

i∈V

P (xi|ai) (3.10)

On the other hand, the probabilistic deformable model yields:

QD(c|b) ∝ QD(b|c)QD(c)

∝
∏

i

P (bi|c)QD(c) (3.11)

The optimal values of the variational parameters θ = (a,b) are obtained by minimizing the

KL-divergence. It can be shown, using e.g., [40], that the optimal parameters θ∗ = (a∗,b∗)

should satisfy the following equations:

logP (xi|a
∗
i ) =

∑

c

QD(c|b∗) logP (xi|c) (3.12)

logP (b∗i |c) =
∑

xi∈L

QM (xi|y,a
∗) logP (xi|c) (3.13)



30

Notice that the inference solutions, Equation (3.10) and Equation (3.11), together with

the parameter optimizations, Equation (3.12) and Equation (3.13), form a set of fixed-point

equations. Solution of this fixed-point set yields a tractable approximation to the intractable

original posterior.

Since the state space of c (all possible contour configurations in the image plane) is too large,

Equation (3.12) is still intractable. We simply use the winner-take-all strategy and approximate

QD(c|b) as a delta function:

Q′
D(c|b) =







1 if c = argmax
c

QD(c|b)

0 else
(3.14)

and Equation (3.12) can be simplified to:

P (xi|ai) = P (xi|c) (3.15)

where c = arg max
c

QD(c|b).

3.2.3 Algorithm description

The variational inference algorithm for the integrated MRF-DM model can now be summarized

as:

Table 3.1: Image-based object segmentation algorithm I

Initialize contour c;
while (error > maxError) {

1. Calculate a band area B around c. Perform the remaining steps inside B;
2. Calculate P (xi|ai) based on Equation (3.15) using c;
3. Estimate MRF-MAP solution QM (xi|y,a) based on Equation (3.10) using P (xi|ai);
4. Calculate logP (bi|c) based on Equation (3.13) using QM (xi|y,a);
5. Estimate DM-MAP solution QD(c|b) based on Equation (3.11) using logP (bi|c);

}

Simply put, in the extended MRF model, the true region labels are estimated using the BP

algorithm in a band area around the estimated contour from the probabilistic deformable model,

and the result in turn guides the probabilistic deformable model to an improved estimation of

the contour. Steps 2 and 4 follow directly from Equation (3.15) and Equation (3.13). The

details of steps 3 and 5, i.e., the inference in the two component models, are discussed in the

following sections.
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3.2.4 Extended Markov random field mdel

In step 3, the EM algorithm is used to estimate both the MAP solution of region labels x and the

parameters of the model. In this study we primarily focus on the MRF association potential

function parameters (we dropped the dependency on these parameters in Equation (3.2) for

clarity).

Particularly, in E step, the MAP solution of region labels x is estimated based on current

model parameters using BP. This is similar to the BP inference in the traditional MRFs, except

that in our extended MRF model the association function is now extended to:

Φi(xi) = φi(xi, yi)P (xi|ai) (3.16)

We again note the difference from a traditional MRF model, due to the incorporated shape

prior P (xi|ai), which is calculated in step 2 of the algorithm. φi(xi, yi) and ψ(xi, xj)can be

calculated using current MRF parameters.

BP is an inference method proposed by Pearl [73] to efficiently estimate Bayesian beliefs

in the network by the way of iteratively passing messages between neighbors. It is an exact

inference method in a network without loops. Even in a network with loops, the method often

leads to good approximate of the otherwise intractable problems [93]. We hereby use the Loopy

Belief Propagation algorithm [95].

As shown in step 1, in our algorithm belief propagation is again restricted to a single band of

model variables around the current contour estimates because the region labels of the pixels far

from the current contour are mostly determined by Equation (3.6) to be strongly either “object”

or “background”, hence there is no need to do inference there. Moreover, the banded inference

significantly speeds up the whole algorithm. Although convergence of the banded algorithm is

not guaranteed, in our experiments, the LBP algorithm does converge, usually in only several

iterations.

In M step, the MRF association potential function parameters are updated based on the

MAP solution of the region labels x using the following equations:

µl =
∑

i

QM (xi = l|yi, ai)yi/
∑

i

QM (xi = l|yi, ai) (3.17)

σ2
l =

∑

i

QM (xi = l|yi, ai)(yi − µl)
2/

∑

i

QM (xi = l|yi, ai) (3.18)

where l ∈ L.
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3.2.5 Probabilistic deformable model

In step 5, according to Equation (2.9), we use the negative log term, − logP (b|c), as the external

energy in the deformable model. Given this “label image” energy landscape, the image force

is simply ∇(logP (b|c)). With the additional balloon forces, this leads to the discretized first

order Lagrangian dynamics equation:

ḋ + Kd = ∇(logP (b|c)) + k−→n (s) (3.19)

We note that this formulation is different from that of [19] where the deformable model is

fitted to a binary label image obtained from the MAP configuration of x. In our method, we

use a probabilistic measurement of the label of each pixel as specified in Equation (3.13).

Finally, following the definition in Equation (3.6) and Equation (3.7), we note that the

gradient of the coupling energy at pixel i, ∇(logP (b|c)), can be shown to be:

∂ logP (b|c)

∂c
= −

∂ logP (b|c)

∂loc(i)
(3.20)

3.2.6 Experiments - Model I

Our algorithm was implemented in MATLAB/C, and all the experiments were tested on a

normal PC. Most of the experiments took a time varying from dozens of seconds to several

minutes depending on the size of the images and the objects.

Experiments - Model I: synthetic images

The initial study of properties and utility of our method was conducted on the set of synthetic

images (Figure 1.1(a) and Figure 1.1(d)) introduced in Section 1.2.1.

For the clean image (Figure 3.4(a)), Figure 3.4(b) shows the result of the traditional MRF-

based method. The object is segmented correctly, however some regions in the background are

misclassified due to the varying background. On the other hand, the deformable model fails

because of the leaking from the high-curvature part of the object contour, where the gradient

in the normal direction is too weak or unstable (Figure 3.4(c)). Our hybrid method, shown in

Figure 3.4(d), results in a significantly improved segmentation.

On the noisy version (Figure 3.4(e)), Figure 3.4(f) shows more significant misclassification

because of the high noise level and more overlapping image features, even though MRFs can

usually deal with noise to some extent. The deformable model either sticks to spurious edges
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(a) Input (b) MRF (c) DM (d) GM I

(e) Noisy (f) MRF (g) DM (h) GM I

Figure 3.4: Experiments on synthetic images

caused by image noise or leaks because of the weakness of the true edges (Figure 3.4(g)). Unlike

the two traditional methods, our hybrid algorithm, depicted in Figure 3.4(h), correctly identifies

the object boundaries despite the excessive image noise.

We further investigated the impact of different noise levels to these segmentation methods,

and show the quantitative results in Figure 3.5. We added Gaussian noise with mean 0 to the

clear image (Figure 3.4(a)), and increased the standard deviation of the noise from 0 to 70 by

10 each time, and tested the performances of the four methods (the second graphical model

will be introduced next in Section 3.3). Note that the noise level 0 and 60 have been shown

in(Figure 3.4)

The first observation is that both of our hybrid methods are more robust to the initializations

than the MRF model and the deformable model, as shown in Figure 3.6. For the MRF model, we

initialize both the object model and the background model at multiple positions (shown as small

circles in Figure 3.6), and use the best results for the quantitative comparison in Figure 3.5.

For the deformable model, we also initialize the Balloons from different positions inside the

object and keep the best results. For our own models, the position of the seed point does not

affect the results substantially, so we use the same initialization position (i.e., the second case

in Figure 3.6) for the comparison in Figure 3.5.

The second observation is that the results from the MRF model are noticeably worse than
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(a) σ = 10 (b) σ = 20 (c) σ = 30 (d) σ = 40 (e) σ = 50 (f) σ = 70
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(m) σ = 10 (n) σ = 20 (o) σ = 30 (p) σ = 40 (q) σ = 50 (r) σ = 70

(s) σ = 10 (t) σ = 20 (u) σ = 30 (v) σ = 40 (w) σ = 50 (x) σ = 70
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Figure 3.5: Comparison of different segmentation methods on different noise levels
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(a) MRF init. 1 (b) MRF init. 2 (c) MRF init. 3 (d) MRF init. 4

(e) DM init. 1 (f) DM init. 2 (g) DM init. 3 (h) DM init. 4

(i) GM I init. 1 (j) GM I init. 2 (k) GM I init. 3 (l) GM I init. 4

(m) GM II init. 1 (n) GM II init. 2 (o) GM II init. 3 (p) GM II init. 4

Figure 3.6: Comparison of different segmentation methods on different initializations
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the other methods. However, one important reason is that the way the error rates are com-

puted favors the other object-oriented methods. We count the misclassified pixels in both the

foreground (false negatives) and the background (false positives), and the MRF model often

has significant error in the background, even though the segmentation of the object is relatively

good. This shows that the MRF model does not focus on the object, but treats all the regions

in the image equally. On the other hand, the deformable model either leaks from the high

curvature parts of the object contour or sticks to the false edges inside the object. Since we al-

ways use relatively conservative balloon forces to avoid leaks, the error of the deformable model

appears to be smaller than that of the MRF model due to significantly less false positives, but

the segmented objects by the deformable model are often not as accurate as the ones by the

MRF model due to more false negatives. This in some sense justifies why we need to combine

these two models.

The third observation is that even though our hybrid methods clearly outperform the MRF

model and the deformable model in most cases, their performance degrades severely when the

noise level is extremely high. In this situation, due to the simple initialization method we use,

the MRF component of our hybrid method cannot be estimated accurately.

Experiments - Model I: medical images

The above experiments with synthetic images outlined some of the benefits of our hybrid

method. The real world images usually have significant, often non-white noise and contain

multiple regions and objects, rendering the segmentation task a great deal more difficult. In

this section we show results of applying our method to some medical images on which we can

hardly get satisfying results with either the MRF-based or the deformable model-based methods

alone.

In the following comparisons, we manually specified the inside/outside regions to get an

initial guess of the parameters for the MRF-only method. For the deformable model method,

we started the balloon model at several different initial positions and use the best results for

the comparison. Again, our hybrid method is significantly less sensitive to the initialization of

the parameters and the initial seed position.

Figure 3.7(a) shows a 2D MR image of the left ventricle of the human heart. Figure 3.7(b)

is the result of the MRF-based method. While it is promising, the result still exhibits rough

edges and holes. Figure 3.7(c) depicts the result of the DM-based method. Although we

carefully chose the magnitude of the balloon forces, parts of the contour begin to leak while

others stick to spurious edges. Our hybrid method, started from the initial contour shown in



37

(a) Input (b) MRF (c) DM (d) GM I

(e) Init. (f) Inter. (g) Energy (h) DM Energy

Figure 3.7: Experiments on medical images (1)

Figure 3.7(e), generated better result (Figure 3.7(d)). One of the intermediate iterations is

shown in Figure 3.7(f). The corresponding external energy in the band area is depicted in

Figure 3.7(g) (image intensities are proportional to the magnitude of the energy), showing a

more useful profile than the traditional edge energy −|∇(Gσ ∗ I)|2 shown in Figure 3.7(h).

Figure 3.8(a) is an ultrasound image. The MRF gets rough edges and holes in the objects

(Figure 3.8(b)) while the deformable model cannot escape a local minimum (Figure 3.8(c))

without leaking from other locations. Our hybrid method eliminates the rough edges and holes

caused by the MRF while outlining the region more accurately than the deformable model

(Figure 3.8(d)).

Figure 3.9(a) is an example of difficult images with complicated global properties, which

makes it hard for the MRF-based method to automatically determine the number of regions

and the initial values of the parameters. Figure 3.9(b) is obtained by manually specifying

the inside/outside regions to get an initial guess of the parameters for the MRF model. Our

method avoids this problem by creating and updating an MRF model locally and incrementally.

Another problem with MRF-based method is that we cannot get a good representation of the

segmented object directly from the model (e.g., extra efforts often need be made to extract the

boundaries). The image is also difficult for deformable models because the boundaries of the
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(a) Input (b) MRF (c) DM (d) GM I

Figure 3.8: Experiments on medical images (2)

(a) Input (b) MRF (c) DM (d) GM I

Figure 3.9: Experiments on medical images (3)

objects to be segmented have many high-curvature parts. Figure 3.9(c) exemplifies the over-

smoothed deformable models. Our method’s results, shown in Figure 3.9(d) does not suffer

from the problems. For the deformable model method, we started the balloon model at several

different initial positions and use the best results for the comparison. On the other hand, our

hybrid method is significantly less sensitive to the initialization of the parameters and the initial

seed position.

Finally, we show an image with both low contrast and low gradient (Figure 3.10(a)). Nei-

ther MRFs nor DMs can generate satisfying results, while our method’s result, shown in Fig-

ure 3.10(b) does not suffer from either of the problems.

Experiments - Model I: natural images

We also applied our method to some natural images (Figure 3.11). In these experiments, the

RGB color instead of gray-scale at each pixel is used as the image feature. A 5-component

Gaussian mixture model is used as the object model and a 10-component Gaussian mixture

as the background model. The adaptation is straightforward, i.e., only Equation (3.17) and

Equation (3.18) need to be slightly modified.
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(a) Input (b) GM I

Figure 3.10: Experiments on medical images (4)

(a) Zebra (b) Cheetah (c) Panda

(d) Cow 1 (e) Cow 2 (f) Cow 3

Figure 3.11: Experiments on natural images
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Figure 3.12: Graphical model II

3.3 Solution II: Integration via contour factorization

3.3.1 Integrated model II

Recall that one of the challenges is the huge state space of the variables. However, as shown in

Section 2.2.2, the MAP estimation can be approximated by algorithms such as BP and Graph

Cuts if the model is properly factorized. Note that we can factorize the upper two layers of the

model identical to the traditional MRF model. So the second solution we propose to solve this

problem is to factorize the lower part of the model as well. We first discretize the object contour

into a sequence of contour nodes d = (d1, ..., dm) where di = (xdi
, ydi

) are the contour node

coordinates in the image plane, i ∈ U , and U = {1, 2, ...,m}. We then restrict the searching

space of each contour node to a set of limited positions along the contour normals to reduce

the state space of the contour model (Figure 3.12(a)). That is, the state space of each contour

node di is restricted to a small number, e.g., k, of distinct locations.

Another challenge is to model the relationship between the contour nodes and the region

labels. It is easy to define the region label of a pixel given the whole contour (e.g., region

label is object if the pixel is inside the contour, and background outside), as shown in our

first solution Equation (3.6), but not so given a single contour node. Thus we propose an

adaptation to the traditional deformable model representation. We define c = (c1, ..., cm)

where ci = (di, di+1), i ∈ U , and dm+1 = d1. That is, each node ci in the new representation

is a segment of the object contour (Figure 3.12(a)). In turn, the state space of each contour

segment ci is of size k2. The edges between the x layer and the c layer are determined based

on the distance between the image pixels and the contour segments: each region label node xi

is connected to its nearest contour segment ci′ where
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i′ = argmin
j∈U

dist(i, cj) (3.21)

This, again, is achieved efficiently by computing the Euclidean distance transform. Hence, the

graph structure depends on the state of the contour nodes ci′ . A model of this type is often

referred to as a multinet [38]. The new integrated model structure is depicted in Figure 3.12(b).

Now we can factorize Equation (3.2) as follows:

P (c,x|y) ∝ P (y|x)P (x|c)P (c)

=
∏

i∈V

φx
i (xi, yi)

∏

(i,j)∈N

φxx
ij (xi, xj)

∏

i∈V

φxc
ii′ (xi, ci′)

∏

i′∈U

φcc
(i′−1)i′(ci′−1, ci′)

∏

i′∈U

φc
i′(ci′)

(3.22)

The association and interaction potential functions are identical to those defined before.

φxc
ii′ (xi, ci′) models the dependency between the region labels x and the contour c using the

softmax function:

φxc
ii′ (xi = object|ci′) = 1/ (1 + exp(−λdist(i, ci′)))

φxc
ii′ (xi = background|ci′) = 1 − φxc

ii′ (xi = object|ci′) (3.23)

induced by the signed distance of pixel i from the contour segment ci′ (see Figure 3.12(c)):

dist(i, ci′) = (di′ − loc(i)) × (di′+1 − di′)/|di′+1 − di′ | (3.24)

where loc(i) denotes the spatial coordinates of pixel i. This equation only holds when the pixel

is close to the contour, which accords with our assumption. When the contour nodes are ordered

counter-clockwise, the sign is positive when pixel i is inside the contour (i.e., belongs to the

object) and negative when it is outside (i.e., belongs to the background).

φcc
(i′−1)i′(ci′−1, ci′) simulates the discretized contour smoothness term:

φcc
(i′−1)i′(ci′−1, ci′) = exp

(

−ω1
|di′−1−di′+1|

2

4h2 − ω2
|di′−1+di′+1−2di′ |

2

h4

)

(3.25)

where ω1(s) and ω2(s) are the “elasticity” and “rigidity” parameters of the contour as in the

traditional deformable models.

Finally φc
i′(ci′) can simulate the balloon force by defining
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φc
i′ (ci′ , j, h) = pdi′j

× pdi′+1h (3.26)

where pdi′j
is the prior of the state j at the contour node di′ .

There are several desirable properties of the modified deformable segment model. It allows

us to model the dependency between the region labels and the object contour, and the second

order contour smoothness which involves three contour nodes is now conveniently modeled by

a pairwise potential function.

3.3.2 Algorithm description

The inference algorithm for the integrated MRF-DM model can now be summarized as

Table 3.2: Image-based object segmentation algorithm II

Initialize contour c;
while (error > maxError) {

1. Calculate a band area B around c. Perform the remaining steps inside B;
2. Determine the links between the x layer and the c layer (Equation (3.21));
3. Calculate the k discretized states at each contour node along its normal;
4. Estimate the MAP solution (c,x)MAP (Equation (3.1)) using BP with schedule S;
5. Update model parameters θMAP (Equation (3.30)) and contour position dMAP;

}

3.3.3 Inference and learning

Again, the inference algorithm is carried out in a band area around the current contour. In this

model, the primary reason for the band-limited BP update is that the definition of the signed

distance requires the pixels to be close to the segments.

The implementation of BP in this model is slightly more difficult than the BP algorithm in

a traditional MRF model, since the model structure is more complicated and keeps changing.

One can solve this by converting the model into equivalent a factor graph, and use the BP

algorithm for factor graphs [55, 95]. Here we give the straightforward modified algorithm for

our specific model Figure 3.13.

Examples of the message passing rules are given in the following equations:
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Figure 3.13: Message passing rules

mxx
ji (xi) =

∑

xj

[φx
j (xj , yj)

∏

k∈N (j)\i

mxx
kj (xj)m

cx
j′j(xj)φ

xx
ij (xi, xj)]

mxc
ii′ (ci′) =

∑

xi

[φx
i (xi, yi)

∏

k∈N (i)

mxx
ki (xi)φ

xc
ii′ (xi, ci′)]

mcx
i′i(xi) =

∑

ci′

[φc
i′(ci′ )

∏

k′∈U(i′)

mcc
k′i′(ci′)

∏

k∈N ′(i′)\i

mxc
ki′(ci′ )φ

xc
ii′ (xi, ci′)]

mcc
j′i′ (ci′) =

∑

cj′

[φc
j′ (cj′)

∏

k′∈U(j′)\i′

mcc
k′j′(cj′ )

∏

k∈N ′(j′)

mxc
kj′ (cj′ )φ

cc
j′i′(cj′ , ci′)] (3.27)

We have defined N as the set of neighbors in the region label layer, and here N ′ denotes the set

of neighbors in the contour layer. These rules are based on the sum-product scheme. The max-

product has analogous formula, with the marginalization replaced by the maximum operator.

We empirically study these two message update schemes in Section 3.3.4. At convergence, the

beliefs of the pixel labels and contour segments are

bi(xi) = φx
i (xi)

∏

k∈N (i)

mxx
ki (xi)m

xc
i′i(xi) (3.28)

bi′(ci′) = φc
i′(ci′ )

∏

k′∈U(i′)

mcc
k′i′(ci′)

∏

k∈N ′(i′)

mxc
ki′ (ci′) (3.29)

A crucial question in this BP process is that of the “right” message passing schedule [55,

95]. Different schedules may result in different stable/unstable configurations. For instance, it

is widely accepted that short graph cycles deteriorate the performance of the BP algorithm.

We empirically study this question in Section 3.3.4 and show that good schedules arise from

understanding of the physical processes involved.
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Lastly, the model parameter are estimated using the EM algorithm. More precisely, when

the BP algorithm converges, the MRF association potential function parameters can be updated

using following equations:

µl =
∑

i

b(xi = l)yi/
∑

i

b(xi = l)

σ2
l =

∑

i

b(xi = l)(yi − µl)
2/

∑

i

b(xi = l) (3.30)

where l ∈ {object, background} and b(·) denotes the current belief of the region labels.

In this model, the contour c is also updated according to the belief propagation (instead

of the physics-based approach used in the previous model). Because the edges between the x

layer and the c layer are determined by the distance between pixels and contour nodes, they

also need to be updated after each iteration in the inference process. With the newly linked

model, a new iteration can be executed.

3.3.4 Experiments - Model II

Experiments - Model II: Comparison of different segmentation methods

Again, the initial study of properties and utility of our method was conducted on the set

of synthetic images (Figure 1.1(a) and Figure 1.1(d)). The results (Figure 3.14(d) and Fig-

ure 3.14(h)) are similar to those of the first solution (Figure 3.4(d) and Figure 3.4(h)). A more

detailed quantitative comparison was previously shown in Figure 3.5.

Figure 3.15 shows one of the intermediate iterations. Figure 3.15(a) depicts the linkage be-

tween the region label layer and the deformable contour (i.e., the Voronoi map) at the beginning

of the iteration. The intensity of a Voronoi region is proportional to the index of a contour node,

that is, all the pixels in one of the Voronoi regions are connected to the same contour node.

The zero intensity region is outside the band and hence ignored. Figure 3.15(b) is the belief

image of region labels after belief propagation, and the intensity of each pixel is proportional to

the probability of that pixel being inside the contour. Figure 3.15(d) shows beliefs of contour

nodes which imply their tendency of movement. We can clearly observe from the figure that

most of the nodes have stopped moving (horizontal bright line in the middle of Figure 3.15(d))

while very few are still moving forward or backward. The contour position after that iteration

is shown in Figure 3.15(c).

Another set of synthetic experiments are shown in Figure 3.16.
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(a) Input (b) MRF (c) DM (d) GM II

(e) Noisy (f) MRF (g) DM (h) GM II

Figure 3.14: Experiments on synthetic images (1)

(a) V-map (b) b(s) (c) cMAP

(d) b(c)

Figure 3.15: Intermediate results
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(a) Input (b) MRF (c) DM (d) GM II

(e) Noisy (f) MRF (g) DM (h) GM II

Figure 3.16: Experiments on synthetic images (2)

(a) Input (b) MRF (c) DM (d) GM II

Figure 3.17: Experiments on medical images

Figure 3.17(a) is the same brain image that we experimented on in Section 3.2.6. We obtain,

again, a similar result to the previous one using the second graphical model.

Experiments - Model II: Comparison of different inference methods

We compared the two variants of the BP algorithm (sum-product and max-product, see [95])

with two other similar methods: iterative conditional modes (ICM), and Gibbs sampling.

In all our experiments there was no substantial visible difference between the segmentation

results of sum-product and max-product estimates, as exemplified by Figure 3.18(a) and Fig-

ure 3.18(b). Comparison of log likelihood profiles (Figure 3.18(e)) during inference revealed

small differences – as expected, the sum-product inference outperforms the max-product in
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(a) sum-product (b) max-product (c) ICM (d) Gibbs
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Figure 3.18: Comparison of different inference methods

noisy situations. On the other hand, the use of ICM and Gibbs inference resulted in signifi-

cantly worse final segmentation. For instance, ICM and Gibbs-driven segmentation lead to final

estimates shown in Figure 3.18(c) and Figure 3.18(d). Surprisingly, the differences in the log

likelihood estimates appear to be less indicative of this final performance. Note that the use of

the two approximate inference methods (ICM and Gibbs) is only in the MRF layer. When used

in the DM layer, they resulted in very poor segmentation (not shown here). Another difference

is the running time, and the BP algorithm took seconds to converge while the other two took

minutes without converging.

Experiments - Model II: Comparison of different message passing schedules

The choice of the message passing schedule in the BP algorithm is an interesting and still open

problem. We experimented with two different schedules. The two message passing schedules
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(a) S1

(b) S2

(c) Log-likelihood plot

Figure 3.19: Comparison of different message passing schedules

were chosen to study the importance of within-model (e.g., inside MRFs and DMs) local con-

sistency and between-models (e.g., between MRF-layer and DM-layer) local consistency. In the

first schedule S1 we first update messages mij(xj) in x-layer until convergence (this usually

takes two or three iterations in our experiments), and then send messages mii′ (c
′
i) once (which

is essentially passing message from x-layer to c-layer). Next, we update messages mi′j′(c
′
j) in

c-layer until convergence (usually in one or two iterations), and finally update messages mi′i(xi)

once, i.e., send messages back from c-layer to x-layer. In the other schedule S2 we started from

the top of the model, update all the messages mij(xj), mii′ (c
′
i), mi′j′ (c

′
j), and mi′i(xi) in this

sequence exactly once and repeat, until convergence (Figure 3.13).
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The former message passing schedule is intuitively more appealing considering the physi-

cal difference of the two models (MRFs and DMs) we are coupling. Traditional energy-based

methods also point in the direction of this schedule; integration of forces is usually first com-

puted in the individual horizontal layers. Moreover, S1 leads to better experimental results.

Figure 3.19(a) and Figure 3.19(b) show the performance of the two schedules. The estimates

of likelihood resulting from the two schedule, shown in Figure 3.19(c), also indicate that S1

is preferred to S2. Note that we did the experiments on Figure 1.1(d) and superimpose the

contour on Figure 1.1(a) for visualization purposes.

3.4 Image-based object segmentation: from 2D to 3D

3.4.1 Method

Increasing availability of high-resolution 3D image data using modalities such as magnetic res-

onance (MR) and computed tomography (CT) has prompted the need for 3D segmentation

approaches. However, 3D image segmentation remains an extremely difficult problem, due to

the complex topology of 3D objects, the massive data, and demanding computational algo-

rithms. Many 3D approaches are often 2D in nature (i.e., applying the 2D algorithm slice by

slice to the 3D volume data [20]). The lack of interaction among individual slice solutions,

however, leads to results that are inferior to true 3D-based solutions [22].

In this section, we generalize our framework to 3D image segmentation based on the integra-

tion of 3D MRFs and deformable surface models. The proposed method is a true 3D method

that fully exploits the structure of the 3D data, resulting in improved object segmentation. The

generalization is straightforward using the graphical model representation, and the variational

inference in the graphical model also leads to computationally more efficient solutions, which,

in the 3D case, is still of main concern.

A 3D MRF model is shown in Figure 3.20. The hidden nodes are positioned at the vertices

of a regular 3D grid of the same size as the volume data (Figure 3.20 left). Each hidden node

xi is connected to 6 neighboring hidden nodes (more neighbors can be connected by adding

diagonals in the grid) and one observable node yi (Figure 3.20 right). Again, the observable

nodes represent the voxel values of the 3D volume data and the hidden nodes represent the

region labels of corresponding voxels.

As to the deformable models, Finite-Element Method (FEM)-based balloon models [22] and

Polygonal Geometrically Deformed Model (GDM) [67] are commonly used for representation of

3D surfaces and segmentation of volume data.
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(x,y,z)
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(x,y+1,z)
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yi (image voxel)

xi (region label)

Figure 3.20: 3D MRF model
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Figure 3.21: 3D graphical model: integrated and decoupled

Similar to the 2D case, a new hidden node representing the underlying boundary surface is

added to the 3D MRF model (Figure 3.21 left, only one pair of voxel/label nodes is drawn for

simplicity). We again use the structured variational inference technique to seemingly decouple

the integrated model into two simpler models (Figure 3.21 right): one extended 3D MRF model

with shape prior constraints and one probabilistic deformable surface model.

The 3D algorithm is similar to the 2D one. However, the expansion process of the 3D

balloon model far away from the true boundary can be time-consuming and needs frequent

reparametrization, and often suffers from local energy minima in noisy images. An interactive

initialization procedure or a learned shape prior would be helpful. When there is no shape

prior, one can use the 3D MRF segmentation algorithm alone to generate an initial region

segmentation and apply the Marching Cubes algorithm [61] to the 3D belief image to generate

an initial surface. Marching Cubes is an algorithm for constructing triangle models of constant

density surfaces from discrete volume data. The resulting surface representation is suitable for

the FEM-based balloon model. The rest of the 3D algorithm is a straightforward generalization

of the 2D one.
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3.4.2 Experiments - 3D

Experiments - 3D: synthetic images

Our 3D method was also first experimented on a set of synthetic images. The perfect image

contains 2 gray levels representing the object (gray level is 160) and the background (gray level

is 100) respectively. Gaussian noise with mean 0 and standard deviation 60 is added to the

whole image to generate the test image.

The first experiment intended to show the advantages of the true 3D method over the 2D

slice-based method. In this experiment, we generated a 100 × 100 × 100 3D image containing

a ball-like object. Figure 3.22a shows several slices of the perfect image. Our test image

is generated by cutting out a part of the object in the middle frame (#50) and adding the

Gaussian noise (Figure 3.22b). The segmentation results by 2D MRFs and 3D MRFs are shown

in Figure 3.22c and Figure 3.22d. Both models handled noise successfully. The 3D MRF

model obviously recovered the missing part of the object in the 50th frame by retaining region

smoothness in the direction perpendicular to the frame. Here the natural assumption is that

the region smoothness should also be applied to the third dimension of the volume data. The

2D MRF model cannot achieve this due to the lack of interaction between neighboring frames.

The boundary of the results from 3D MRFs also look smoother.

The second experiment was performed on a 64×64×64 volume containing a “5”-like object

similar to Figure 1.1(a). The thickness of the object is 8 (i.e., frames 29 to 36 contain the

object). Besides the zero mean Gaussian noise, extra noise with mean 160 is also added to a

part of the two successive frames 32 and 33. The test image slices are shown in Figure 3.23a.

The results of 2D MRFs are shown in Figure 3.23b. Each slice is quite different from others,

especially for the two frames with extra noise. The slices in Figure 3.23c (results of 3D MRFs),

however, are smoother and similar to their neighbors, except for the first and last frames, which

suffered more interference from the background. These two outermost frames are improved

by coupling the DM with the 3D MRF model, and other frames are also slightly smoother

(Figure 3.23d). The average error rates (misclassified voxels divided by the total volume) of the

three methods are 3.98%, 2.79% and 1.62%.

Experiments - 3D: medical images

Experiments with synthetic images in the previous section outlined the advantages of both the

3D method over the 2D method and the hybrid method over the MRF-only method. In this

section we show experimental results of applying our methods to 3D medical images. We do not
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(a) Perfect image slices (Frame 30, 40, 49, 50, 51, 60, 70)

(b) Noisy corrupted slices

(c) 2D MRF segmentation slices

(d) 3D MRF segmentation slices

Figure 3.22: Experiments on 3D synthetic images (1)

show the results of the slice-based method with 2D MRFs as in previous experiments mainly

because this method is sensitive to initialization and we cannot get satisfying results on these

medical images. While our 3D method also needs manual initialization when the shape prior is

not given, the slice-based method requires manual initialization for almost each single slice.

We first test our algorithms on simulated brain MRI data from BrainWeb [10]. The database

contains simulated brain MRI data based on two anatomical models: normal and multiple

sclerosis. For both of these, full 3D data volumes have been simulated using three sequences

(T1-, T2-, and proton-density (PD)-weighted) and a variety of slice thicknesses, noise levels, and

levels of intensity non-uniformity. We segmented the white matter from three different normal

brain data volumes using the hybrid method. Figure 3.24(a) shows a slice from the ground truth

data of the white matter. Figure 3.24(d) is the result from our hybrid method. Figure 3.24(e)

shows the segmentation result on the T1 image without noise and intensity non-uniformity, i.e.,

RF inhomogeneity) (Figure 3.24(b)). The segmented white matter is slightly thicker than the

result from the ground truth, because some of the grey matter is misclassified due to its similar

grey value to the white matter. Same misclassification can be observed in Figure 3.24(f), which
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(a) Noisy corrupted slices (Frame 29 to 36)

(b) 2D MRF segmentation slices (error = 3.98%)

(c) 3D MRF segmentation slices (error = 2.79%)

(d) 3D MRF + DM segmentation slices (error = 1.62%)

Figure 3.23: Experiments on 3D synthetic images (2)

is the segmentation result on the T1 image with 9% noise and 40% intensity non-uniformity

(Figure 3.24(c)). One possible solution to the misclassification problem is using the 3D MRF-

only algorithm to do a multi-region segmentation first.

Finally, we show some results on a real medical image [84], which is an MR image of a head

with the skull partially removed to reveal the brain. Figure 3.25a is one of the slices from the

volume. The results of our methods are shown in Figure 3.25b and Figure 3.25c. To show the

difference between the two algorithms (i.e., the effect of adding deformable models), the upper-

right parts of Figure 3.25b and Figure 3.25c are magnified in Figure 3.25d and Figure 3.25e.

The arrows show that some incorrect patches are eliminated by the deformable fitting process.

Surface smoothness can be easily controlled by tuning the parameters in the stiffness matrix.

Because the white matter itself is a complicated object with high curvature, the parameters are

usually chosen according to experts’ opinion.
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(a) Ground truth slice (b) T1 image slice (c) Noisy T1 image slice

(d) Result on ground truth (e) Result on T1 image (f) Result on noisy T1 image

Figure 3.24: Experiments on 3D medical images (1)

(a) Test image slice (b) 3D MRFs only (c) 3D MRFs + DM

(d) Upper-right part of b (e) Upper-right part of c

Figure 3.25: Experiments on 3D medical images (2)
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3.5 Summaries

We proposed a new framework to combine the MRF-based and the DM-based segmentation

methods. The framework was developed under the auspices of the graphical model theory

allowing us to employ a well-founded set of statistical inference and learning techniques. In par-

ticular, we developed two solutions to integrate MRFs and DMs. The first model employed the

variational inference method, which seemingly decouples the integrated MRF and deformable

model. Both components can then be solved by the well-studied algorithms for MRFs and

DMs, respectively. This also makes the generalization to 3D applications straightforward. The

second model is a fully coupled probabilistic model that allows us to employ an approximate,

computationally efficient solution (e.g., the BP algorithm) to the otherwise intractable inference

of region boundaries. We have presented two different message passing schedules and pointed

to their central role in the segmentation process. We did observe some over-smoothing effect

in some of the results, which motivated us to investigate various shape modeling techniques to

incorporate shape prior in our segmentation framework. In the next Chapter, we will intro-

duce our work in this direction, and later a more challenging problem, the video-based object

segmentation.
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Chapter 4

Contour-based Shape Modeling Using Embedded PHMMs

4.1 Introduction

Shape modeling is an important process for many computer vision applications, e.g., image

classification, recognition, retrieval, matching, registration, segmentation, etc. Many shape

modeling techniques have been developed over the years [60, 91], and it still remains a challeng-

ing problem considering all the concerns about robustness, computational efficiency, scalability,

interpretability, etc. We started out looking for a proper shape prior model for our segmentation

framework and realized after investigating various shape models that there was still improve-

ment to be made. In particular, we are looking for a contour-based shape model for its efficiency

and its compatibility with our segmentation methods. Accurate matching of different shapes is

most important for us but we also want to develop a general shape model that is as compre-

hensive as possible. An ideal shape model should be both invariant to global transformations

(e.g., translation, rotation, scaling, etc.), and robust to local distortions (e.g., non-rigid trans-

formations, occlusion, missing parts, etc.). Finally a good probabilistic interpretability of the

model is also our desire.

In this chapter, we develop a new shape model for 2D shape analysis. A shape instance is

described by a curvature-based shape descriptor. A Profile Hidden Markov Model (PHMM) is

then built on such descriptors to represent a class of similar shapes. PHMMs are a particular

type of Hidden Markov Models (HMMs) with special states and architecture that can tolerate

considerable shape contour perturbations, including rigid and non-rigid deformations, occlu-

sions, and missing parts. The sparseness of the PHMM structure provides efficient inference

and learning algorithms for shape modeling and analysis. To capture the global characteristics

of a class of shapes, the PHMM parameters are further embedded into a subspace that models

long term spatial dependencies. The new framework can be applied to a wide range of problems,

such as shape matching/registration, classification/recognition, etc. Our experimental results

demonstrate the effectiveness and robustness of this new model in these different settings.



57

(a) Contour
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(b) Curvature

Figure 4.1: Curvature sequence descriptor

4.2 Low-level shape description

From the model perspective, there are two different levels in shape modeling. Adopting the

terminology of [60], we use shape description to denote the low-level, numerical feature vector

extracted from a given shape instance using a certain method (e.g., a curvature sequence), and

shape representation the non-numerical, high-level representation of the shape (e.g., a graphical

model) which preserves the important characteristics of the shape class. We introduce the shape

description part of our model in this section and the shape representation next.

4.2.1 Feature extraction

In this work we employ the curvature sequence descriptor. Assuming that the shape contour has

been extracted into an ordered list of equally spaced points, the shape can then be described by

the sequence of the curvatures computed at these points. To compute the curvature accurately,

one may need to upsample the point set by interpolation. A Gaussian filter may be applied to

the point coordinates before computing the curvatures to reduce the noise effect. Given three

consecutive points xi−1, xi and xi+1 on the contour, we define ~si−1 = −−−−→xi−1xi and ~si = −−−−→xixi+1,

and the bending angle at xi which represents the local curvature is

θi = sign(~si−1 ×~si) arccos(
~si−1 ·~si

|~si−1||~si|
) (4.1)

Figure 4.1 shows an example of a shape contour and the extracted curvature sequence.

4.2.2 Feature selection

After computing the curvatures, one can downsample a dense curvature sequence to reduce the

model complexity. Again note that one should only downsample the dense curvature sequence

instead of the sample point sequence before the curvatures are computed, because sparse sample

points degrade the accuracy of the curvature computation. A good strategy to downsample the
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sequence is to keep all the local extremes in the sequence (because the high curvature parts of the

shape contour are usually more informative, i.e., they are the salient features), and then choose

equally spaced points in between. The spatially equal-distance sampling is also important to

the reconstruction of the shape contour from the curvature sequence descriptor. It should be

noted that not all objects have distinguished key points (think of a circle for instance), and

using key points alone sacrifices the shape information available in smooth portions of object

contours.

4.2.3 Shape reconstruction

One can reconstruct the 2D shape contour from a 1D curvature sequence descriptor. According

to the definition of the bending angle (Equation (4.1)),

xi+1 − xi = ~si = Ri~si−1 = Ri(xi − xi−1) (4.2)

where

Ri =





cos θi − sin θi

sin θi cos θi



 (4.3)

is the rotation matrix. We then have a linear system (for a closed contour)



















R1xn − (R1 + I)x1 + x2 = 0

Rixi−1 − (Ri + I)xi + xi+1 = 0, i = 2, · · · , n− 1

Rnxn−1 − (Rn + I)xn + x1 = 0

(4.4)

Given a set of boundary conditions, e.g., x1 = (x1, y1)
T, x2 = (x2, y2)

T, one can solve

the system using the least squares method. Note that the choice of the constants x1, y1, x2, y2

actually determines the translation, rotation and scaling of the reconstructed shape contour.

This shows some attractive properties of the curvature sequence descriptor. First, it is invariant

to the object translation. Second, the curvature computed at each contour point is rotationally

invariant, so the descriptor is also invariant to the object rotation if the starting point is given.

Otherwise, the object rotation causes a circular shift of the curvature sequence, which can be

handled by the PHMM-based representation. Finally, the curvature sequence descriptor is not

strictly invariant to the object scaling since a change of the contour length usually leads to a

change of the curvature sequence length. One possible solution is to normalize all the shape

contours to the same length or, equivalently, sample the contours to a fixed number of points.
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However, when there are nonrigid or local deformations or missing parts on the contour, the

contour length may not be proportional to the actual object scale. Fortunately, PHMMs can

also address the scaling problem, as well as the nonrigid deformations and missing contour

parts.

4.3 High-level shape representation

A curvature sequence descriptor can capture the characteristic of a given shape instance. How-

ever, two similar shapes of the same class can still have quite different curvature sequence

descriptors. To model a class of shapes, one needs a higher-level model to take into consider

all the variations within the class. As we pointed out in Section 2.3.1, HMMs are an ideal

probabilistic sequence modeling method for the shape representation. However most previous

HMM-based methods model the feature sequences with ergodic HMMs. As a consequence, sev-

eral potential problems may arise. First, most of the states may be used to explain multiple

observations along the shape profile. This potentially makes shape matching a complex prob-

lem. Second, the training procedure in general ergodic models is typically plagued by sensitivity

to the model structure selection, model initialization, and local optima of parameter estimation.

We show that these problems can be effectively address in the new PHMM framework.

4.3.1 Profile hidden Markov models

PHMMs are a particular type of HMMs well suited for describing general sequence profiles

and sequence matching. PHMMs have shown outstanding success in computational molecular

biology for modeling of DNA and protein sequences [28, 29].

As shown in Figure 4.2, a PHMM is a left-right HMM with three different types of states:

Match states M1, · · · ,Mn are regular states of a left-right HMM with emission models

eMi
(Oj). Note that the match states can not be revisited, hence each match state is used to

explain no more than one observation segment, a salient feature of the modeled shape. This

significantly simplifies the matching problem.

Insert states I0, · · · , In are used to model the portions of the observation sequences that

do not correspond to any match states in the model (e.g., the stretched parts on the observed

shape contour). They have emission distributions eIi
(Oj).

Delete states D1, · · · , Dn are used to handle the portions of the model that do not ap-

pear in the observation sequences (e.g., occluded or missing parts in the observations). These

situations can also be handled by forward jump transitions between non-neighboring match
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Figure 4.2: Profile hidden Markov model

states. However, to allow for arbitrary deletions the match states need to be completely for-

ward connected. Introducing delete states is an alternative way to model transitions from any

match state to any subsequent state with fewer transitions in the model. These states are silent

states, which do not emit any observations. Another two silent states B(egin) and E(nd) are

introduced for modeling both ends of a sequence.

A profile model may appear more complex than the alternative ergodic model as it typically

contains more states (the number of match states is close to the number of salient features in

a typical shape instance). However, the transitions of a PHMM are very sparse: there are at

most three transitions to and from each state. This significantly reduces the complexity of its

algorithms. More importantly, it also addresses a number of problems that the ergodic model

may have. For example, with the model structure fixed, the number of states can be easily

determined by the number of salient features in the curvature sequence descriptors, and the

model parameters are much easier to learn (see Section 4.3.3).

4.3.2 Model inference

Even though PHMMs have different types of states from traditional HMMs, they inherit most

of the HMM algorithms [74] with simple adaptations.

Forward algorithm

The forward variable of the PHMM is defined as the probability of the partial observation

sequence O1 · · ·Oj and the state X at time j, i.e.,

FX(j) = P (O1 · · ·Oj , Sj = X |Θ) (4.5)

where Θ are the model parameters. It can be computed inductively:
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FMi
(j) = [FMi−1

(j − 1)aMi−1Mi
+ FIi−1

(j − 1)aIi−1Mi

+FDi−1
(j − 1)aDi−1Mi

]eMi
(Oj)

FIi
(j) = [FMi

(j − 1)aMiIi
+ FIi

(j − 1)aIiIi

+FDi
(j − 1)aDiIi

]eIi
(Oj)

FDi
(j) = FMi−1

(j)aMi−1Di
+ FIi−1

(j)aIi−1Di

+FDi−1
(j)aDi−1Di

(4.6)

The forward variable can be used to compute the likelihood of a sequence given the model

parameters:

P (O1 · · ·Ot|Θ) =
∑

X
FX(t) (4.7)

where t is the length of the observation sequence.

Backward algorithm

The backward variable is defined as the probability of the partial observation sequenceOj+1 · · ·Ot

given state X at time j, i.e.,

BX(j) = P (Oj+1 · · ·Ot|Sj = X,Θ) (4.8)

It can be computed in the same manner as the forward variable, but in the opposite direction:

BMi
(j) = aMiMi+1

eMi+1
(Oj+1)BMi+1

(j + 1)

+aMiIi+1
eIi+1

(Oj+1)BIi+1
(j + 1)

+aMiDi+1
BDi+1

(j)

BIi
(j) = aIiMi+1

eMi+1
(Oj+1)BMi+1

(j + 1)

+aIiIi+1
eIi+1

(Oj+1)BIi+1
(j + 1)

+aIiDi+1
BDi+1

(j)

BDi
(j) = aDiMi+1

eMi+1
(Oj+1)BMi+1

(j + 1)

+aDiIi+1
eIi+1

(Oj+1)BIi+1
(j + 1)

+aDiDi+1
BDi+1

(j) (4.9)
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Combining the forward and backward variables, one can compute the probability of being

in state X at time j, given the observation sequence O, i.e., the posterior state distributions:

P (Sj = X |O,Θ) =
FX(j)BX(j)

∑

X FX(j)BX(j)
(4.10)

which can be used to measure the certainty of a specific matching.

Viterbi algorithm

Viterbi algorithm has similar recurrence equations to the forward algorithm, but with the sum

operation replaced by max operation. This algorithm can be used to find the single best state

sequence given the observation and the model parameters, i.e., the optimal state sequence

arg maxS P (S|O,Θ):

VMi
(j) = eMi

(Oj) × max



















VMi−1
(j − 1)aMi−1Mi

VIi−1
(j − 1)aIi−1Mi

VDi−1
(j − 1)aDi−1Mi

VIi
(j) = eIi

(Oj) × max



















VMi
(j − 1)aMiIi

VIi
(j − 1)aIiIi

VDi
(j − 1)aDiIi

VDi
(j) = max



















VMi−1
(j)aMi−1Di

VIi−1
(j)aIi−1Di

VDi−1
(j)aDi−1Di

(4.11)

where VX(j) is the highest probability of the partial observation sequence O1, · · · , Oj , along

a single path, ending at state X at time j. One can then trace backwards to find the optimal

state sequence using these Viterbi variables.

It is important to note that the computational complexity of all three algorithms (i.e.,

Forward, Backward, and Viterbi) is only O(nt) time (in contrast to O(n2t) of ergodic HMMs)

and O(nt) space for a model of n states and an observation sequence of length t. This may lead

to significant computational savings when dealing with complex shapes. In practice, most of

these algorithms take seconds to run on a normal PC, with a magnitude of 102 for n and t.

4.3.3 Model learning

As mentioned above, the building of the PHMM is much easier than that of the ergodic HMM.

The model structure is fixed, we only need to specify the number of the match states, which can
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be either a fixed number specified by the user or the number of the salient features in a typical

training sequence (the rest of the features will be modeled by the insert states). One can also

use more states for better performance, since the complexity of most algorithms only increase

linearly. The model parameters are simple to estimate and the variance in their estimates does

not significantly impact the model performance [28].

In our implementation, we consider a homogeneous transition model:

aXiMi+1
= α

aXiIi
= β

aXiDi+1
= γ = 1 − α− β (4.12)

where i = 1, · · · , n,X ∈ {M, I,D}, and α usually dominates β and γ, signifying the importance

of match states for modeling the shape. One typical choice for the observation models eMi
(Oj)

and eIi
(Oj) are Gaussian models. Insert states use a single zero-mean Gaussian model as they

are usually used to model the smoothly stretched contour parts. This ultimately results in the

small set of parameters, Θ = (µ1, σ1, · · · , µn, σn, σI).

The PHMM parameters Θ can be estimated in the traditional EM formalism without the

need for labeled state correspondences. However, training a PHMM from multiple initially

unaligned shape sequences is a difficult problem, usually tackled with local optimizers [29].

Fortunately, unlike general ergodic models, PHMMs allow a viable strategy starting with a

PHMM initialized from a single sequence. This model is subsequently reestimated by matching

the remaining training sequences to the initial model, and finally refined with all the aligned

sequences.

Estimation of ergodic shape models typically shows significant dependency on initial model

estimates. In PHMMs this dependency is reduced due to a simpler model structure. Our

initialization procedure relies on a set of general steps.

1. Given a curvature sequence, θ1, · · · , θn, the sequence may be downsampled to keep mostly

the salient features. However, since we start building the model from a single sequence,

we usually keep all to be match states.

2. The n match states in the PHMM are assigned Gaussian emission models eMi
(Oj) =

N(Oj ; θi, σi). σi can be initialized uniformly to some constant, or more specifically ac-

cording to our knowledge about the deformation capability of different parts of the contour.

These parameters can easily control the flexibility of the model.
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3. The insert states also have Gaussian emission distributions eIi
(Oj) = N(Oj ; 0, σI). The

zero mean suggests that the insert states are simply an extension of the current contour,

which is useful for modeling the scaling effects and stretched shape parts. σI is chosen to

control the rigidity of such extensions, and usually smaller than σi.

Once the initial model is built, the remaining training sequences are aligned to it, and the

model parameters are fitted to the data. In this way, we avoid labeling the training data.

4.3.4 Model embedding

The regular PHMM is both efficient and effective for many shape analysis tasks, as we show

in Section 4.4. However, inconsistent shape matching may occur because of the lack of global

shape constraints in PHMMs. Such constraints impose global dependencies between spatially

distant parameters (e.g., match states) in an otherwise local model.

One way to impose global constraints is to embed the PHMM parameters Θ into a lower

dimensional subspace that spans the range of Θ. While there are numerous ways to achieve this

embedding, both linear and nonlinear, we here adopt the embedding via Probabilistic Principal

Component Analysis (PPCA). PPCA formalism matches our probabilistic formulation and is

typically a first stage of many nonlinear embedding techniques, such as the nonlinear or kernel

PCA. Unlike the nonlinear methods, PPCA is efficient and often produces satisfactory results

in practice.

Let Θ = (µ1, · · · , µn)T be the vector of the model parameters whose embedding we seek,

then

P (Θ|h) = N(Θ;Wh, δI) (4.13)

where W 1 is the principal component matrix, h is the principal factor, and δI is the covariance

of the noise model. It is common to assume a prior distribution over the latent variable h, e.g.,

a Gaussian prior

P (h) = N(h; 0, λI) (4.14)

where λI is also learned from the training data.

The latent factors h correlate the otherwise, in the regular PHMM, uncorrelated match

states. The complete model can now be expressed as

1
W includes the offset term h̄.
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P (O,S, h|W ) =

∫

Θ

P (O|S,Θ)P (S|Θ)P (Θ|W,h)P (h)dΘ (4.15)

This Embedded PHMM (EPHMM) is now parameterized by a new set of global shape

parameters W,λ. Latent factor h represents the global deformation of the shape and needs to

be estimated during the inference stage, in addition to hidden states S. We accomplish this

using the following coordinate ascent fixed point equations that amounts to an approximate

MAP inference:

S∗ = arg max
S

P (O,S|Θ∗, h∗,W )

(h∗,Θ∗) = arg max
h,Θ

P (O,S∗|Θ, h,W ) (4.16)

The first task is the PHMM Viterbi algorithm. The second is the PPCA inference (solved in

the manner similar to active shape models). Given the above inference procedure, estimation of

the embedding matrix W is carried out in the standard EM framework. λ is typically treated

as a hyperparameter.

4.4 Applications and results

In this section, we show how our new framework can be applied to shape classification and

matching. We demonstrated its effectiveness and robustness on several data sets. Note that

in all the experiments, besides the parameters learned from the data, we used the same set of

values for all the other parameters (e.g., α = .998, β = .001, γ = .001, σI = 1, etc.). The number

of samples in each sequence is usually controlled to be around 100.

4.4.1 Shape rotation (starting point) detection

As we mentioned before, the curvature sequence descriptor is not strictly rotation invariant when

the starting point is not given. In most cases, we start extracting features from the leftmost point

on the boundary and following the boundary in a clockwise manner, so the object rotation leads

to a circular shift of the curvature sequence. Given model Θ and observation O, the starting

point can be computed as follows, j∗ = argmaxj P (OjOj+1 · · ·OtO1O2 · · ·Oj−1|Θ). The brute

force approach needs O(nt2) time to evaluate the likelihood of all the t sequences starting from

O1, · · · , Ot respectively using the Forward algorithm.

One approximate but efficient way of accomplishing the same task is to modify the model

parameters involving the states I0 and In with broad distributions of contour features (i.e., to
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allow higher variances), which then act like two “don’t-care” states. The Viterbi algorithm is

then run on the sequence (O,O), a twice concatenated original sequence. Ideally, I0 and In will

absorb most of the repeated observations from the two ends, and the sub-sequence started from

the actual starting point will be matched to the original model. In this manner we may reduce

the complexity of starting point detection to O(nt) in many cases.

We subsequently assume that the curvature sequences have been obtained and if necessary,

downsampled according to Section 4.2.2 and aligned to the same starting point using one of the

above methods.

4.4.2 Shape similarity measure

Similarity measure is fundamental to many pattern recognition problems. In this section, we

define the shape similarity measure based on our framework, and apply it to several different

problems. The similarity score between two shapes is defined as:

P (O1, O2) =
∑

Θ

P (O1|Θ)P (O2|Θ)P (Θ)

≈ P (O1|Θ∗
1 )P (O2|Θ∗

1 )P (Θ∗
1 ) +

P (O1|Θ∗
2 )P (O2|Θ∗

2 )P (Θ∗
2 ) (4.17)

where Θ∗
i = argmaxΘ P (Θ|Oi) = arg maxΘ P (Oi|Θ) for uniformative model priors. This is

solved by the Forward algorithm.

We first test this measure on a corpus callosum data set with the image query task. The

data set contains 65 corpus callosum images [13, 75, 86]. Figure 4.3 shows a real corpus callosum

image and five extracted contour images from the data set. Figure 4.4 shows the results of three

different image queries in rows. In each of the three rows, the first image is the query image.

We then show the three most similar and three most dissimilar images from the whole data

set found by our algorithm (similarities decrease from left to right in each row).

We also performed classification on the shape data set created by Sebastian et al. [79], which

consists of 9 classes of objects, each having 11 images, bearing all the variances we mentioned.

Figure 4.5 shows some examples from the data set (top row: one shape from each class; bottom

row: all the shapes in the class “hand”). In the most straightforward fashion, we measured

the distance between each pair of shapes, and then used the nearest neighbor classifier and

leave-one-out strategy to achieve a 100% classification rate. This is not trivial considering the

large in-class variance and a general set of parameters were used for all the images. Instead of
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Figure 4.3: Corpus callosum shape data set

Figure 4.4: Shape similarity measure

computing distance between every pair of shapes, one can build a PHMM for each class, and

then evaluate the likelihood of the test image given models of different classes. This usually

requires more training images. More sophisticated methods can be used to build the PHMMs,

e.g., [89], to further improve the classification rate.

4.4.3 Shape matching

Shape similarity measure is mainly related to a basic problem for HMMs, i.e., evaluating the

likelihood of the observation sequence given the model. On the other hand, shape matching

corresponds to another basic problem, finding the optimal explanation of the observation se-

quence. The input to the shape matching algorithm is two curvature sequences O1 and O2, and

the output is the point correspondence.

First we build the PHMM model Θ of sequence O1 (also known as the target) using the

method described in Section 4.3.3. We then compute the optimal state path of the second

sequence O2 (the source) given this model as S∗ = arg maxS P (O2, S|Θ). Here S denotes the

sequence of states under model Θ and it depicts an optimal correspondence between the two

sequences. This is solved by the Viterbi algorithm straightforwardly.

Robustness

We first investigate the robustness of our algorithm to global transformations. Since the curva-

ture sequence descriptor does not encode the location information, it is invariant to transition.

It is not invariant to rotation unless the starting point is given. In the first experiment, we

test the robustness of our algorithm to rotation. We rotate Figure 4.6(a) by 30, 60, ..., 330

degrees and then match the resulted shapes (Figure 4.6(b) to Figure 4.6(l)) to the original

shape (Figure 4.6(a)). Each shape is sampled from the leftmost point (i.e., the starting point
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Figure 4.5: Sebastian shape data set

is not given, but detected automatically using the algorithm in Section 4.4.1). The numbers

along the shape contour indicate the correspondences to the first shape. The color indicate the

matching certainty for each observation computed according to Equation (4.10). In very rare

cases some observations are not correctly matched, e.g., there are two consecutive observations

are matched to state 5 in Figure 4.6(b). More precisely, the first 5 means match state 5 and the

second means insert state 5. This mostly happens when the observation point is on a nearly

straight line and is misclassified as an insert state. Also the matching certainty measure is often

lower along the straight lines where the curvature features are not salient.

In the second experiment, we test the robustness of our algorithm to scaling. We resize

Figure 4.7(a) by factors of s = 2, 3/2, 2/3, and 1/2, and then match the resulted shapes

(Figure 4.7(b) to Figure 4.7(i)) to the original shape (Figure 4.7(a)). There are two ways to

handle scaling, either using the curvature sequence descriptions or using the PHMM represen-

tation. Given two shapes with different scales, the first way is to sample the two shapes at

different step-sizes to get the curvature sequences with roughly the same length (as shown in

Figure 4.7(b), Figure 4.7(d), Figure 4.7(f), and Figure 4.7(h)). The second way is to sample at

the same step-size and let the insert and the delete states in the PHMM to handle the scaling

(as shown in Figure 4.7(c), Figure 4.7(e), Figure 4.7(g), and Figure 4.7(i)). Both strategy work

well. Again, most salient feathers are matched perfectly, and the only ambiguity occurs when

there are nearly straight lines along the shape contour.

The third experiment shows the robustness of our algorithm to local deformations. We take

the class of 11 hand shapes in Sebastian’s shape database [79], use the first shape (a normal hand

shape) as the target and match all the other 10 shapes to it (Figure 4.8). The only problematic

result is the third one because the large extra part on the shape contour. Surprisingly, this

mismatch does not affect the classification results (recall the 100% classification rate we obtained

on this database) since this shape is still closer to its own class than the other classes in the

database. This also explains why the traditional ergodic HMMs were successful for shape

classification tasks, even though they are not suitable for shape matching.

Figure 4.9 is another example from this database where we match two shapes from two
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Figure 4.6: Robustness to rotation
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(i) s=1/2,d=5,n=54

Figure 4.7: Robustness to scaling
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Figure 4.8: Robustness to local deformation
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Figure 4.9: Matching of two animal shapes

different objects, which can also be considered non-rigid deformations and missing parts. In the

top row, the cat shape is used to build the model and the donkey as the observation, and vice

versa in the bottom row. Note the correct correspondence between the labeled points. While

the tail and one of the ears of the donkey cannot be seen, they don’t affect the correct matching

of the rest parts.

Finally we show the robustness of our algorithm to both global transformations (i.e., rotation,

scaling) and local deformations (i.e., distortions or missing parts), at the same time. The

left image of Figure 4.10 is the shape used to build the model, and the right one is treated

as observations. Some representative points are highlighted and labeled similar to previous

figures. Both sequences start from the leftmost contour points (“1” and “M44” respectively).

The algorithm successfully detected the corresponding start point on the observation. Note the

insertions on the index finger (18 observations vs. 8 match states) and the deletions on the

third finger, which is missing in the observations (5 observations vs. 16 match states).
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Figure 4.10: Matching of two hand shapes

One of the typical and difficult examples in the corpus callosum data set is shown in Fig-

ure 4.11. The upper image is the target shape used to build the model, where the numbers

below the (red) points are the match state id’s. The middle image is the source shape treated

as the observation, where the numbers below the (blue) points indicate which match state this

observation is matched to according to our algorithm (the repeated numbers are matched to

corresponding insert states). We also show some of the observation id’s (after the starting point

detection) around the matching labels for reference purposes. Note that the randomly chosen

starting point of the observation sequence is not the same as the model starting point, and the

lengths of the two sequences are also different. These situations pose both the rotation and

scaling problems, which are successfully solved by our algorithm. As for the non-rigid defor-

mations, the splenium (to the right in the figure) of the observation sequence is larger than

that of the model sequence, so there are insertions between some of the points (e.g., 24 and

25 are repeated, etc.). On the other hand, the genu of the observation sequence (to the left in

the figure) is remarkably smaller than that of the model, where we observed deletions (e.g., 64

jumped to 67, 71 jumped to 75, etc.). In the lower graph of Figure 4.11, we show the matching

certainty for each observation computed according to Equation (4.10). One can interpret it

as a measurement of how good a specific match is, individually. For example, our algorithm

accurately matches O83 to M64. However, the local deformation on shape O around O83 causes

it to be significantly different from the model shape M aroundM64. The low matching certainty

score P (S83 = M64|O,Θ) points to this discrepancy. Similarly, other points of low matching

score correspond to changes in local shape O away from the original shape M . This information

can be particularly useful for detection of abnormalities in medical imaging applications.
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Figure 4.11: Matching of two corpus callosum shapes

The above experiments show the power of the curvature+PHMM-based shape model. How-

ever we did observe some mismatching in the “aircraft” class of the Sebastian data set. The

reason is that the shape contour of an aircraft often has multiple high curvature parts with sim-

ilar feature values, separated by nearly straight lines, and distributed evenly along the contour.

The regular PHMM may fail due to the strongly ambiguous features. Instead, we trained an

embedded PHMM as described in Section 4.3.4 and used the inference procedure outlined in

Equation (4.16).

Role of embedding

Figure 4.12 shows examples of the aircraft shapes collected from NASA Dryden online gallery.

Note that auto-alignment on this data set is not easy. To avoid manually labeling the data, we

used only 25 shapes in the data set that are easy to be aligned automatically. Figure 4.13 shows
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Figure 4.12: NASA Dryden aircraft shape data set
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Figure 4.13: Reconstructed mean shape

the mean shape we trained from the 25 shapes according to Section 4.3.3 and Section 4.3.4 and

reconstructed according to Section 4.2.3. The upper-left image of Figure 4.14 shows the initial

matching using the regular PHMM, where it can hardly handle the strong ambiguities. The

upper-right image is the reconstructed shape contour from the matched observations. It is far

away from a reasonable shape of an aircraft, indicating a low probability of the latent variable

h. After we regularize it using the PPCA, we get a new sets of parameters for the PHMM match

states Θ∗ (the reconstructed shape contour is shown in lower-right figure, which is reasonably like

an aircraft), and rematch the observation sequence to the new adapted PHMM. This procedure

usually converges in several iterations in our experiments. The lower-left image of Figure 4.14

is the final matching result. Figure 4.15 shows another example where the constrained PHMM

outperforms the regular PHMM. It is worth noting that the seemingly simpler shapes actually

causes more ambiguities and are often harder to match than others, and the matching of such

shapes can be achieved by matching each of them to the mean shape using the embedded

PHMM.
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Figure 4.14: Shape matching using embedded PHMMs (1)

4.4.4 Shape segmentation

Another important application of the shape model is that of serving as the shape prior for image

segmentation [68, 24]. For example, the traditional deformable model based segmentation often

generates oversmooth boundaries, because the global internal energy term:

Eint(C) =
∑

i

[αi|Pi − Pi−1|
2/2h2+

βi|Pi−1 − 2Pi + Pi+1|
2/2h4] (4.18)

imposes homogeneous smoothing over the contour. To capture the high curvature parts of

the boundaries, one has to increase the density of the contour points. Another way to solve this

problem is to use a shape prior to impose locally different internal energy terms. In the following
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Figure 4.15: Shape matching using embedded PHMMs (2)

experiment, we first use the method presented in Section 3.2 to get an initial segmentation. Then

the segmented contour is aligned to a shape prior model. We then replace the original internal

energy term with the following:

Eint(C) =
∑

i

ωi|θi − θ̂i|
2 (4.19)

where θi is the bending angle at contour point Pi, while θ̂i is the bending angle given by

the shape prior model. Once the “standard” internal energy terms is replaced with the one

computed using the shape prior, we again run the segmentation algorithm of Section 3.2. This

way, the high curvature parts of the contour can be more precisely captured with less contour

points. The test image is again the synthetic image Figure 1.1(a) from Section 1.2.1. Note

that the shape model is built on a standard shape (Figure 4.16(b)) that is different from the

groundtruth of the testing image by a shear transform. Note that the method with shape prior

(Figure 4.16(d)) segmented the high curvature contour better than the one without shape prior
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(a) Input (b) Prior (c) W/O shape (d) With shape

Figure 4.16: Object segmentation with shape prior

(Figure 4.16(c)) (results are superimposed on ground truth image for clarity).

4.5 Summaries

In this chapter we proposed a new shape modeling framework based on curvature sequence

descriptors and profile hidden Markov models. The curvature sequence descriptor is invariant

to the object translation, rotation (if the starting point is given). The PHMM representation

can address the starting point detection and the scaling problem, as well as the nonrigid de-

formations and missing contour parts. The structure and sparseness of PHMMs allows for a

set of computationally efficient algorithms to be developed for multiple shape analysis tasks.

A embedded PHMM model can further capture the global shape information. We applied this

framework to various shape analysis problems and showed its robustness to rigid and non-rigid

deformations, occlusions and missing contour parts.

An important application of our model is that of serving as the shape prior for image segmen-

tation. In the following chapter, we employ this model to improve the video-based object seg-

mentation. We are currently exploring different higher dimensional shape features/descriptors

and the representations based on random fields, so that in the future we can extend the current

framework to 3D shape modeling.
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Chapter 5

Video-based Object Segmentation Using Graphical

Models

5.1 Introduction

In this chapter we address the video-based object segmentation problem. As stated in Sec-

tion 1.3.2, simply treating the video data as a stack of independent 2D frames or even an

isotropic 3D volume and then directly applying the static image segmentation methods on it is

potentially problematic. One obviously needs to utilize the temporal dependencies carried in

the video sequence to improve the performance. On the other hand, video-based object segmen-

tation is different from the object tracking or motion detection problem, since more accurate

labeling of the related pixels is required. In this chapter we propose a new spatio-temporal

MRF framework for video-based object segmentation.

5.2 A new spatio-temporal Markov random field model

A spatio-temporal MRF model is constructed by stacking the regular MRFs that are used to

model the data at different times to form a one dimensional higher MRF model (Figure 5.1(a)).

In the video-based object segmentation setting, the spatio-temporal MRF model is three di-

mensional, though it is possible to have even higher dimensional models (e.g., a series of 3D

volumes forming a 4D model). More specifically, given a video sequence of resolution H by W

and length T , the 3D spatio-temporal MRF model can be depicted by a graph that consists

of N = H ×W × T nodes representing a set of random variables x = {x1, ..., xN}. Each ran-

dom variable xi represents the label of the corresponding pixel i in the image sequence, i.e.,

xi ∈ L, where L is a set of region labels, e.g., L = {foreground, background}. Each node

is connected to a number of other nodes according to a neighborhood (clique) system. The

connections among the nodes depict the probabilistic dependencies among the corresponding

random variables, defined by compatibility functions (clique potentials). The observation at

each node represents the features (e.g., intensity, color, texture, optical flow, etc.) observed at
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tt-1 t+1 ......

(a) Spatio-temporal MRF

x (region labels)

y (image features)

θ (shape priors)
MRF 

Model

(b) 2D model for a single frame

Temporal 

Neighbor

(c) Temporal neighbors (top: the optical flow between two con-
secutive frames; bottom left: temporal neighbors defined by the
regular grid; bottom right: temporal neighbors defined by the
optical flow)

Figure 5.1: Spatio-temporal MRF model for video-based object segmentation
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the corresponding pixel, denoted by y = {y1, ..., yN}. Note that feature yi can be computed

not only from the single pixel i, but often from a neighborhood centered at that pixel.

The segmentation problem can be viewed as a problem of inferring the MAP solution of the

MRF model:

xMAP = arg max
x

P (x|y) (5.1)

which is equivalent to an optimization problem of minimizing the following energy function:

E(x) =
∑

i∈V

φi(xi) +
∑

(i,j)∈N

ψij(xi, xj) (5.2)

where V = {1, 2, ..., N} is the pixel/node index set, N is the edge set among the nodes, and

φi(xi) and ψij(xi, xj) are the unary (association) and pairwise (interaction) potential functions,

respectively. Note that we discarded y since it is known and can be encoded into the potential

functions.

The association potential function φi(xi) is usually used to model the local information that

can be exploited to infer the label xi. We define this function as the sum of two different terms,

corresponding to the bottom-up low-level and top-down high-level information, respectively.

φi(xi) = φlow
i (xi) + φhigh

i (xi) (5.3)

where the first term

φlow
i (xi, yi, θlow) = −logP (yi|xi, θlow) (5.4)

is the traditional observation model which constrains the label to be consistent with the local

low-level features, and the second term

φhigh
i (xi, θhigh) = −logP (xi|θhigh) (5.5)

is the high-level prior term which constrains the label to be consistent with our, usually object-

specific, knowledge about this image location. θlow and θhigh are the bottom-up and top-down

model parameters, respectively (Figure 5.1(b)).

The interaction potential function ψij(xi, xj) is a prior term used to impose region smooth-

ness in the traditional MRFs. In the spatio-temporal MRFs, though, we argue that the tempo-

ral dimension has a different physical meaning from the spatial dimensions, hence the temporal

smoothness constraints should also be different. In the image plane, when one has no knowledge
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about the locations of the region boundaries, the Ising/Potts model imposes spatially generic

region smoothness on the whole image. Along the time dimension, however, the additional

dynamic information in the video sequences implies where the discontinuities occur. For ex-

ample, if one knows a point is moving from location (x, y) to (x + δx, y + δy) from time t to

time t + 1, then there is a discontinuity between nodes (x, y, t) and (x, y, t + 1), even though

they are a pair of neighbors in the traditional 3D MRF structure. Instead, one should impose

region smoothness between nodes (x, y, t) and (x + δx, y + δy, t + 1) (Figure 5.1(c)). In our

framework, we use such a more flexible neighborhood defined by the optical flow, and impose

different smoothness constraints for spatial and temporal neighbors.

More precisely, to achieve both spatial and temporal smoothness, we divide the above edge

set N into two subsets of spatial connections Ns and temporal connections Nt. The sum of the

interaction potential functions hence becomes the sum of two different terms, corresponding to

the spatial smoothness and temporal smoothness, respectively:

∑

(i,j)∈N

ψij(xi, xj) =
∑

(i,j)∈Ns

ψspa
ij (xi, xj) +

∑

(i,j)∈Nt

ψtemp
ij (xi, xj) (5.6)

Ns is defined in each frame similarly to the traditional 2D MRFs, i.e., each node is connected to

its closest neighbors on the regular 2D grid. The size of the neighborhood is usually determined

by different applications.

ψspa
ij (xi, xj , θspa) =







0 xi = xj

θspa xi 6= xj

(5.7)

where θspa controls the strength of the smoothing effect. Nt, on the other hand, should be

defined by proper pixel correspondences in the neighboring frames. Once Nt is defined, one can

use an Ising/Potts model with different parameters for the temporal smoothness.

ψtemp
ij (xi, xj , θtemp) =







0 xi = xj

θtemp xi 6= xj

(5.8)

To summarize, in our framework, Equation (5.2) becomes:

E(x,Θ) =
∑

i∈V

φlow
i (xi, yi, θlow) + φhigh

i (xi, θhigh)

+
∑

(i,j)∈Ns

ψspa
ij (xi, xj , θspa) +

∑

(i,j)∈Nt

ψtemp
ij (xi, xj , θtemp) (5.9)
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where Θ is a collection of the parameters in each individual module.

The exact MAP inference in MRFs is computationally infeasible, and various techniques have

been used for approximating the MAP estimation. In our method, we use the LBP algorithm

for a few preferable advantages (more discussion later). The MRF model parameters (i.e., the

parameters in the potential functions) can be learned using the EM algorithm.

5.3 A practical implementation

In this section, we show an example of how to fully exploit various cues and combine them

together using our framework to perform video-based object segmentation. It is extremely

difficult, if not impossible, to consider a general object segmentation problem. Even for a

small number of objects, it still requires successful object categorization, which is also an open

problem. Therefore, we consider a specific task in this study, that is, the segmentation of the

pedestrian in video sequences. This is still a very hard problem considering all the different

human physiques, gaits, and poses, and we do not assume the training data from a specific

subject is available.

5.3.1 Incorporating bottom-up information

The bottom-up information is incorporated by the local observation model Equation (5.4). In

this case, we choose to use the normalized RGB color features (i.e., the chromaticity coordinates)

suggested by [30], hence the observation y can be computed:

yi =











Ri/(Ri +Gi +Bi)

Gi/(Ri +Gi +Bi)

(Ri +Gi +Bi)/3











(5.10)

whereRi, Gi, Bi ∈ [0, 1] are the RGB color of pixel i. The foregroundP (yi|xi = foreground, θfgd)

is modeled with a mixture or Gaussian with 10 components in the normalized RGB space. The

background model P (yi|xi = background, θbgd) is a single Gaussian at each background pixel.

While there are more sophisticated background models such as the adaptive mixture model

[85], the Non-parametric model [30], etc., part of our goal is to show how the simple modules

can be combined and improved by our framework, so we opted for the simpler models. The

foreground mixture model can be estimated from the initialization and re-estimated along with

the segmentation procedure as in [46]. In other words, the pixels that are segmented as the

foreground will be used to update the foreground model. A particular advantage of the LBP
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algorithm for the MRF-MAP inference is that a belief between 0 and 1, instead of a binary

label, is assigned to each variable xi, which allows one to update the model parameters with

soft weights. The background model can be learned from the training data or, if the clean

background data is not available, estimated in the same way as the foreground model.

5.3.2 Incorporating top-down information

The top-down information is incorporated by Equation (5.5). In our case, this is a shape prior

term. More specifically, this shape prior term is again a softmax function induced by the signed

distance of a pixel to a specific a priori shape contour:

P (xi = foreground|θshape) =
1

1 + exp(−θmag × θdist(i))
(5.11)

where θmag controls the magnitude of the shape prior, and θdist is the signed distance map

computed from the contour of the chosen shape prior. The probability maps of the background

given the shape prior is simply:

P (xi = background|θshape) = 1 − P (xi = foreground|θshape) (5.12)

Since we do not assume the training data from a specific subject is available, we generated

two sets of silhouette images using the standard male and female figure models in PoserR© as the

training data. Like other model parameters, in most cases, one needs to choose the appropriate

shape prior for a particular frame, in other words, estimate the pose at the same time of

performing segmentation. A simultaneous segmentation and 3D pose estimation method could

be quite complicated [11]. Since we have relatively sparse samples (60 frames for one full walking

cycle), we simply use the closest training instance to the current segmentation result as the shape

prior for the next iteration of segmentation. However, because the usual distance metrics (e.g.,

Euclidean distance) in the original image space are not necessarily accurate descriptions of the

distance between shapes and are very sensitive to the segmentations, one might need to employ

some shape manifold embedding approaches to the image space as in [31] or use an explicit

shape matching method, which is what we used in our implementation.

Contour-based shape models are usually both effective and efficient in this scenario. We chose

the profile hidden Markov model based shape model [48] due to its efficiency and robustness to

missing parts and local distortions. More specifically, from a segmented silhouette image, one

can easily obtain the shape contour, which is then compared to the profile models of the prior

shape contours. The prior shape contour that is closest to the segmented shape contour is used
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to generate the signed distance map θdist, from which the final probability maps are computed

according to Equation (5.11). Since the shape prior images are generated from the standard

figure models, and there are always differences in physiques, gaits, and poses between the priors

and the actual data, an annealing schedule is applied to the parameter θmag to weaken the

top-down model and allow the bottom-up model to better refine the segmentation results. Note

that the bottom-up model is re-estimated and improved over time, so its impact should be

strengthen over the top-down model in the later stage of the procedure.

5.3.3 Incorporating spatial constraints

We used the traditional region smoothness term as defined in Equation (5.7). More complicated

data-dependent terms have been used in [8, 56], which assigned different θspa values depend on

the image locations and the local features, yet in our case we found the simple term works well

enough.

5.3.4 Incorporating temporal constraints

The temporal constraints can be simply defined in the same way as the spatial constrains,

with different value of θtemp. One more important and difficult task is the construction of Nt.

It has been shown in [58] that the temporal neighbors can be defined by using optical flow

algorithms to detect the pixel correspondence in neighboring frames. The problem, however, is

that multiple optical flows from different nodes in one frame could point to the same node in the

next frame. This causes the unstable structure of the MRF model, i.e., each node in the network

could have different numbers of neighbors, which forbids a simple and efficient LBP algorithm.

In our implementation, given any two consecutive frames, we compute the optical flows in both

directions, i.e., one from frame t to frame t + 1, and the other from frame t + 1 to frame t

[69]. Only those pairs of nodes that have matched flows are connected as temporal neighbors.

Two nodes from neighboring frames at the same image coordinates are also considered temporal

neighbors if they both do not have any optical flow, which is useful for imposing smoothness in

the static background. Figure 5.1(c) shows a simple example of this strategy. Note that some

of the nodes could have no temporal neighbors at all.

5.3.5 Inference using sequential loopy belief propagation

We have argued that a video sequence should be treated as a 3D spatio-temporal data instead

of a batch of independent images. However, to process a whole video sequence as a single 3D
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volume can also be problematic, especially in computational requirements, considering the time

dimension can be virtually infinite. In practice, most of the spatio-temporal frameworks apply

a small window on the time dimension, i.e., work on k(k ≥ 2) consecutive frames at one time.

Most of the time a small window can be used in the image plane as well. So only a small (but

still 3D) part of the entire model is being processed at one time. The LBP algorithm is used

for the inference in the small chunk of 3D data. In each step, the first frame is considered

correctly segmented in the last step and the following frames are segmented, which will then

be used as initialization in the next step. With this strategy, one only needs to initialize the

very first frame of the video sequence. We usually start with the forward sweep with k = 2,

i.e., two frames at one time, and after the forward propagation, backward sweep is sometimes

performed to get smoother results. The whole procedure is then repeated for a few times till

convergence. This procedure is essentially a limited sequential loopy belief propagation on the

whole 3D data. One can increase the number k for a more aggressive message passing scheme,

which may converge faster but at the cost of more memory and possible suboptimal results.

The whole algorithm is outlined below in Table 5.1

Table 5.1: Video-based object segmentation algorithm

Input: image sequence, shape prior images;
Output: binary segmentation of the object in the sequence;
Algorithm:
Initialization

Segment the first frame, and initialize the foreground and background models;
Compute the optical flow, and determine the spatio-temporal MRF structure;

Repeat #Sweeps or until convergence
{

Repeat #Subsets (forward sweep)
{

estimate shape prior
Repeat until convergence
{

Use the LBP algorithm to solve the MRF-MAP problem of segmentation
Estimate the shape prior;

}
}
Backward sweep if necessary;
Update the foreground and background model using the segmentation

}
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5.4 Experiments

5.4.1 Synthetic data

The first experiment is carried out on the synthetic data similar to the one used in [96]. The

background is a 64 × 64 image whose pixels have uniformly distributed intensities between 0

and 1, and the foreground (moving object) is a 16× 16 patch generated in the same way as the

background. First, this is a perfect example to show the importance of the dynamic information

to segmentation in video sequences. It is impossible to detect this type of camouflaged object

without going through the time dimension, as shown in Figure 5.2(a), on which we overlaid the

groundtruth to obtain Figure 5.2(b). Second, while it might be easy for regular spatio-temporal

MRFs based on image differences to recover the moving object in this noisy sequence, it is

very hard for most appearance-based methods, as pointed out in [96]. Since the observation

model in our framework is based on the foreground/background appearances instead of image

differences, it would also be hard for our method if we ignored the temporal constraints. For

example, Figure 5.2(c) shows the segmentation results of our model defined on the regular

3D grid structure. Since the background is static, the pixel-based Gaussian background model

handles the background fairly well, but the Gaussian mixture foreground model cannot separate

the object from the background clearly enough. However, this problem is rectified by the special

optical flow induced temporal neighborhood structure of our model, as shown in Figure 5.2(d).

We argue that the optical flow induced temporal neighborhood system essentially encoded the

image difference information used by traditional spatio-temporal MRF methods such as [62, 96].

On the other and, we even get better results than those in [96] because of the decent appearance

model. Note the small holes and rough boundaries in their results, which is acceptable in

tracking and motion detection, but not in segmentation.

5.4.2 Real data

In this experiment, we show the segmentation results on a human walking sequence. Note

that the subject is walking in place, so the major part of the upper body is only moving

slightly, which makes this sequence very hard for the traditional spatio-temporal MRFs based

on the image differences. On the other hand, the moving belt of the treadmill and the highly

cluttered background are very hard for simple background modeling methods. To achieve good

segmentation performance, one has to combine multiple cues. Figure 5.3(a) shows image frames

from the input sequence. Figure 5.3(b) depicts the beliefs from the bottom-up observation
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(a) Input sequence

(b) Ground truth

(c) Results from regular 3D MRFs with appearance-based observation model (544 pixels misclassified)

(d) Results from our model with reliable temporal constraints induced by optical flow (32 pixels misclassified)

Figure 5.2: Experiment on synthetic videos

model described in Section 5.3.1, i.e., the pixel-based Gaussian background model and the 10

components Gaussian mixture foreground model. This result can be considered as a result from

a variant of ordinary background subtraction. After incorporating the spatial and temporal

smoothness constraints, we can obtain the results in Figure 5.3(c). This procedure has the

similar effect of the false detection suppressing process used in [30], and eliminates most of the

random noise. Finally we incorporate the shape prior model and obtain the satisfying results

in Figure 5.3(d) using our complete framework.

In Figure 5.4 we show a difficult example of an outdoor human walking sequence. In this

sequence, the subject is moving from one side to the other. There are other moving objects

in the background, and there is severe interlacing between the foreground and the background.

Our model is able to obtain relatively smooth object boundaries.

Finally we show some segmentation results on real world video sequences from the Caviar

Database [18]. These sequences are more difficult than the previous ones in that the image

quality is lower, the motion of the subject is larger, and the reflection on the floor is severer.

Another difficulty is that we do not have clean background data for the background modeling,

hence the background is initialized by averaging over the whole sequence. In Figure 5.5(a), we
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(a) Input sequence

(b) Results using only low-level information

(c) Results after imposing spatio-temporal constraints

(d) Results after incorporating shape prior

Figure 5.3: Experiment on real world videos (1)

Figure 5.4: Experiment on real world videos (2)
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(a) Input sequence with output overlaid (estimated shape prior images inlaid)

(b) Initial background (c) Estimated background
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Figure 5.5: Experiment on real world videos (3)

show the results with all the cues combined, overlaid on the input images. We also show the

estimated prior shapes which are embedded in the corresponding images. The the prior shapes

are noticeably different from the test images, even though the estimated poses are close enough.

Therefore, one really needs to rely on the bottom-up model to capture the fine details, especially

in these low quality images. In other words, it is important to update the bottom-up model

along with the segmentation. In the second row of Figure 5.5 we show the improvement of the

estimation of the background model. Figure 5.5(b) is the averaged background, Figure 5.5(c) is

the re-estimated mean of the background model based on the segmentation, and Figure 5.5(d)

is the difference between the former two. Note that the re-estimated background is much

cleaner than the initial one, which has visible artifacts such as the phantoms of the human

foot in multiple locations. The bottom row of Figure 5.5 shows the comparison of the variance

maps of the initial averaged background (Figure 5.5(e)) and the final re-estimated background

(Figure 5.5(f)). One can clearly see that the variance becomes significantly smaller after model

parameter update, which means a stabler background model.

Figure 5.6 shows a sequence with considerably different poses from our training shapes.
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Figure 5.6: Experiment on real world videos (4)

Since our shape prior model is based on a softmax function of the signed distance map, and

the strength of the shape prior is gradually weakened by an annealing schedule applied to the

parameter θmag in Equation (5.11), our framework is able to tolerate quite large variances of the

object shape, and achieve satisfactory performance even when the shape prior is not accurate.

5.5 Summaries

In this chapter we have presented a general framework for video-based object segmentation

using spatio-temporal Markov random fields. This framework allows us to incorporate both

top-down and bottom-up information, and impose reliable spatial and temporal constraints.

The loopy belief propagation algorithm provides an effective and efficient solution for the in-

ference problem. Moreover, one can perform segmentation and estimate the model parameters

simultaneously using the EM algorithm.

While we showed results of one practical implementation that combined several specific

modules in our framework, one can easily replace one or more of these modules with other

methods for various applications. Improvements can be made in some different aspects. For

example, currently, the optical flow induced temporal constraints has not been taken special

care of. That is, we compute the optical flow as a preprocessing and do not update it like other

model parameters. There could be problems caused by the failed optical flow, as shown in [58].

We are further exploring the possibility to refining the optical flow estimation and changing

the temporal neighborhood structure dynamically. Another particularly interesting problem is

how one can utilize the dynamic information carried in the shape prior model. Currently we

use some simple assumptions to reduce the search space when we estimate the shape prior.

Theoretically, the training shape sequences should follow the similar dynamics of the objects

in the image sequences. Better predictions can be achieved by learning the dynamics. We are

also interested in the shape manifold learning [31]. A properly learned manifold and distance

metric can help us work with the shape images without resorting to an explicit shape model for
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the shape matching problem.

We are working on a Gaussian process latent variable model based shape manifold, which will

be able to handle 3D poses and multiple views, instead of the simple silhouette based prior.In

object-specific shape prior models, the training shape instances often vary mainly in poses. In

such cases, these shapes can be modeled as a smooth finite-dimensional manifold of the infinite-

dimensional shape space using the manifold learning techniques [31]. This is especially useful

in the video-based object segmentation problem, since the shape manifold often followed the

same dynamics carried in the image sequence. For example, theoretically, the shape priors for a

human walking sequence will most probably traverse the human pose manifold. One can hence

have better predictions of the shape priors. Spectral Regression [14] is an efficient regularized

subspace learning technique based on regression and spectral graph analysis. We use spectral

regression in our implementation to embed a sequence of silhouette based shape priors into a

subspace.
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Chapter 6

Conclusions

In this thesis, we addressed the task of object segmentation, a mid-level vision problem, by

incorporating the high-level prior information into the low-level image cues, under a unified

graphical model framework. In particular, we investigated the object segmentation problem in

both image and video settings, and made the following contributions.

First, for static 2D images, we proposed a single generative graphical model framework to

couple deformable models with Markov random fields. The model fuses two different sources of

information in a stochastic setting: the region appearance cues modeled by the MRF and the

shape outline cues embodied in the deformable model. Fusing the two aspects of object appear-

ance leads to discernible improvements in accuracy of object segmentation but it also increases

the method’s robustness to background clutter and image noise. Despite these benefits, the

joint formulation can introduce significant computational burden to the segmentation process.

To solve this problem we presented two approximate solutions that exploit the probabilistic

graphical structure of the model. One is a variational approach that seemingly decouples the

MRF and deformable model, resulting in reduced computational effort, but retains the inter-

action through an iterative inference process. We contrasted this approach to inference in the

fully coupled probabilistic model using contour factorization, solved by loopy belief propagation.

Both methods can lead to similar segmentation accuracy for 2D images, yet they have respective

advantages. The fully coupled model shows a theoretically tighter coupling of the two sets of

cues, while the variational approach provides the flexibility to adopt other modeling methodolo-

gies such as physics-based modeling. We demonstrated that the variational approach directly

generalizes to the 3D, and potentially higher dimensional, data while retaining the ability to

easily incorporate many standard computational models, such as the Finite Element Method.

This opens a vast potential to further improve performance of segmentation approaches by com-

bining multiple state-of-the-art methods in a coupled but computationally tractable stochastic

modeling manner.

In the second contribution we focused on the task of modeling specific classes of shapes

that can be used as shape priors (top-down context), replacing the above, generic deformable
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models. To achieve this, we developed a new contour-based shape modeling method based on

the family of Profile HMMs. Profile HMMs, a strongly linear subclass of HMMs, have shown

great success in modeling biological sequences in a computational efficient manner. We showed

that this class of models can bring in substantial benefits to modeling of the shape, across

different tasks such as shape matching or shape classification. The profiles are translation and

rotation invariant, with the ability to sustain significant changes in scale and local deformations

that appear within a class of shapes. At the same time, using the profile structure we developed

an O(#observations) running time algorithm for analysis of shapes, a significant improvement

over the quadratic complexity of traditional ergodic HMM shape models. We finally proposed

an extension to the model to handle the important long-range dependencies that characterize

typical multi-part structure of complex objects. We achieved this by a second-level embedding

of the profile model match parameters onto the learned shape manifold. This model showed

significant improvements in shape matching on some extremely difficult shape families but still

retained efficiency of the profiles it is based upon.

The last part of our work demonstrated that the segmentation and contextual shape mod-

eling can be easily coupled in a graphical model framework to solve the challenging problem of

object segmentation in video sequences. We proposed a new spatio-temporal MRF framework

that combines top-down high-level prior information, bottom-up low-level image features, spa-

tial region smoothness, and temporal constraints simultaneously. Our experiments show that

all the modules are important for accurate segmentation of objects whose shape changes in

each frame of the video sequence. The top-down shape prior helps eliminate incorrect topol-

ogy and obtain a coarse segmentation efficiently, which can then be significantly refined by the

bottom-up approaches using the low-level image cues. The temporal smoothness constraints

that abandon the traditional fixed-grid structure of prior spatio-temporal MRF approaches in

favor of more accurate temporal neighbors are critical for improved segmentation performance.

Unfortunately, inclusion of these constraints intimately relies on accurate estimation of the

temporal structure which can be easily overwhelmed by noise.

Our work also reveals the opportunity for a number of possible improvements and new

research directions to further our understanding and computational modeling of the interplay of

bottom-up and top-down influences on middle-vision processes, such as the object segmentation.

Some of the most interesting aspects are:

• Extension of coupled segmentation framework to the 4D case. To properly handle the 4D

task using our current framework, the 2D shape model needs to be extended to 3D. This
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requires a higher dimensional shape description and representation, e.g., a surface-based

descriptor and a random field based representation.

• We presented one practical implementation of the new spatio-temporal MRF model for

video-based object segmentation. It is currently working on fixed camera settings because

of the background modeling method we are using. One can generalize this to the moving

camera settings by adopting other background modeling methods.

• Another particularly interesting problem is how to utilize the dynamic information carried

in the shape prior model. As we shown in Figure 5.1(a), we currently use independent

shape priors for different frames. Theoretically, the prior shape sequences should follow

the similar dynamics of the objects in the image sequences. Better predictions can be

achieved by learning the dynamics.

• The presented object segmentation framework could potentially be extended to the prob-

lem of object recognition. For example, the traditional MRF model can be easily adapted

to patch-based object recognition tasks, and a new layer of nodes that carry higher-level

information such as object poses can be added into the otherwise only low-level image

cues.
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