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The main goal of this dissertation is to propose a new methodology for the 

calibration of traffic simulation models. Simulation is useful in representing complex 

real-world systems, and many alternatives can be compared via different system 

designs. However, to evaluate road conditions accurately, the selection of model 

parameters to be calibrated and the calibration methodology are very important 

aspects of the overall simulation modeling process.  

One of the key elements of this dissertation is the application of the 

Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm (Spall 

(1992))—one of the well-known stochastic approximation (SA) algorithms, to 

determine optimal model parameters. The SPSA algorithm has an inherent advantage 

that can be exploited in both stochastic gradient and gradient-free settings; it can also 

be applied to solve optimization problems that have a large number of variables. 
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One of the main distinctions between this study and previous studies is with 

regards to calibration while considering a wide range of all likely demand conditions. 

Previous studies on calibration have focused on minimizing a deterministic objective 

function, which is the sum of the relative error between the observed data and the 

simulation output from a certain time period in a typical day. Even though this 

approach can be considered a calibration that uses data obtained at one point in time, 

this type of calibration approach cannot capture a realistic distribution of all possible 

traffic conditions. Thus, a more general calibration methodology needs to be 

implemented—one that enables use with any traffic condition. In this dissertation, we 

propose the Bayesian sampling approach, in conjunction with the application of the 

SPSA stochastic optimization method, which enables the modeler to enhance the 

theoretic application to consider statistical data distribution. Thus, this proposed new 

and advanced methodology makes it possible to overcome the limitations of previous 

calibration studies.  

 Testing the methodology for larger networks, as well as for other microscopic 

traffic simulation tools such as CORSIM or VISSIM, are future research tasks. In the 

future, other simulation parameters and more extensive data sets can be used to test 

the strengths and weaknesses of the proposed calibration methodology. 
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Chapter 1 

Introduction 

 

 

1.1 Introduction 

The need for a robust and realistic modeling tool for evaluating various 

intelligent transportation system (ITS) technologies—such as ramp-metering, traffic 

diversion, and others—is clear. Traffic simulation models can be helpful in estimating 

current conditions, such as delays, travel times, queues, and flows. In addition, these 

models can predict future conditions and be used to optimize network operations for 

current and future real-world conditions. However, it is important to validate and 

calibrate a traffic simulation model accurately. 

The focus of this dissertation is to propose a new methodology for calibrating 

previously developed microscopic simulation models, by using one of the popular 

simulation tools—namely, PARAMICS. PARAMICS is a traffic simulation tool 

widely used for modeling traffic networks and various traffic management and 

control strategies. In general, the modeler starts by using its default parameters, which 

might not always represent the observed conditions of the modeled network. The next 

step commonly employed is to change the default parameters manually until various 

observations, such as flows or travel times, match observed values. This is a trial-and-
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error approach that depends on the judgment of the modeler; however, the size of the 

modeled network and the number of variables to be modified dictate the extent and 

effectiveness of this manual calibration process. The manual calibration does not have 

a theoretical basis to assure the modeler about the optimality (or approximate 

optimality) of the new parameters with respect to the outputs they generate. Thus, a 

theoretically sound calibration methodology that takes into account the stochastic 

nature of microscopic simulation is needed to improve this widely used manual 

calibration process. 

 

1.2 Motivation and Background 

Simulation, a popular and widely used method for studying stochastic and 

complex real-world systems, can accurately represent those conditions when 

parameters are effectively calibrated. Simulation is useful in evaluating the 

performance of a current system, and many alternatives can be compared via the 

system designs. The input parameters of the simulation can be modified to match a 

particular experimental condition. 

Estimating real-world traffic conditions is very complex when used to 

evaluate actual traffic conditions and predict future traffic conditions. The costs of 

performing field studies to measure traffic conditions in large networks can be 

prohibitive; moreover, in the real world, it is impossible to evaluate strategies that are 

not yet implemented. For example, one cannot change the geometry of an intersection 

to investigate changed network conditions and its impact on traffic, in terms of delays 

and traffic flows. Simulation effectively addresses these kinds of difficulties. 
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Many papers about traffic simulation models have been published; for 

example, Ding (2003), Gardes et al. (2002), and Lee et al. (2001) simulated various 

freeway sections using the PARAMICS simulation tool, and Toledo et al. (2004) and 

Jha et al. (2004) used MITSIM as a simulation tool. Kim and Rilett (2003) used both 

CORSIM and TRANSIMS and Schultz and Rilett (2004) used CORSIM. AIMSUN, 

DynaMIT-P, VISSIM, and DYNASMART-X were used as simulation tools by 

Hourdakis et al. (2003), Kundé (2002), Park and Qi (2005), and Qin and Mahmassani 

(2004), respectively. 

However, to estimate traffic conditions accurately, an effective calibration of 

the simulation model is required. Ding (2003), Gardes et al. (2002), Ma and Abdulhai 

(2002), and Lee et al. (2001) used mean target headway and mean reaction time as the 

parameters to be calibrated. Hourdakis et al. (2003) and Mahut et al. (2004) calibrated 

global and local parameters, and Toledo et al. (2004) and Jha et al. (2004) used 

origin-destination (O-D) flows and driver behavior parameters as calibration 

parameters. Various methodologies have also been used to calibrate these parameters. 

Lee et al. (2001), Schultz and Rilett (2004), Park and Qi (2005), and Ma and 

Abdulhai (2002) used genetic algorithms (GAs) to calibrate microscopic simulation 

tools. Kim and Rilett (2003) used the simplex algorithm as the calibration 

methodology, while Kundé (2002) used the Simultaneous Perturbation Stochastic 

Approximation (SPSA) algorithm to calibrate a model developed in DynaMIT-P, a 

mesoscopic simulation tool. Ding (2003) calibrated a network model using 

PARAMCS, while employing the SPSA algorithm. Nonetheless, Kundé (2002) and 
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Ding’s (2003) calibration work was incomplete, because they did not consider 

random perturbation vector kΔ .  

These previous calibration studies focused on minimizing the sum of the 

relative error between the observed data during a certain period of time in a typical 

day and the simulation output for the same time period. This static approach can be 

explained as a calibration process that uses data obtained at one point in time. 

However, this type of calibration approach cannot capture a realistic distribution of 

all possible traffic conditions and may produce inaccurate calibration results; thus, a 

more general calibration methodology needs to be implemented—one that can be 

used for any road condition or with any uncertainties in flow data. Molina et al. 

(2005) used a Bayesian approach to overcome these problems and predicted behavior 

of traffic at a signalized intersection in Chicago; however, they did not use a 

stochastic optimization method to find the “best” values for their calibration 

parameters. This dissertation proposes a new calibration methodology—namely, the 

Bayesian sampling approach, in conjunction with the application of the SPSA 

stochastic optimization method (Ex-SPSA)—that considers a wide range of all likely 

demand conditions. 

 

1.3 Organization 

This dissertation is organized as follows. 

Chapter 1 presents the motivation behind the research work and provides an 

overview of the issue of simulation model calibration. Chapter 2 provides a literature 

review. Also, an explanation of the simulation package and a review of 
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comprehensive previous studies with regards to calibration and the validation of 

simulation models are summarized in this chapter. 

Chapter 3 introduces the algorithm that is used in this dissertation. This 

chapter describes the standard SPSA algorithm and the random numbers that affect 

the results. Chapter 4 provides a preliminary test to ensure the effectiveness of the 

algorithm explained in this research work. Rather than apply it to a microscopic 

model, a macroscopic simulation model is used for the test, because the simulation of 

a macroscopic model is quicker and easier to run than a complex microscopic model. 

Chapter 5 presents the methodology behind our calibration work, which uses the 

SPSA algorithm with a microscopic simulation model. In addition, the validation and 

sensitivity analysis, as a verification test, is presented in the latter part of that chapter. 

Chapter 6 describes the concept of calibration, considering input distribution. 

Instead of calibrating with a single demand, input values from randomly generated 

demand matrices are used in the new calibration methodology. Using the enhanced 

SPSA algorithm, the calibration using input data distribution is performed for the 

macroscopic simulation model. 

Chapter 7 explains the advanced calibration methodology, which takes an 

extended SPSA approach and enables one to enhance the theoretic application to 

consider data distribution. In addition, this approach makes it possible to represent 

accurately a wide range of all the likely demand conditions observed at the facility 

that will ultimately benefit from the calibration. This new and advanced methodology 

enables one to overcome the limitations of previous calibration studies. 
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Chapter 2 

Literature Review 

 

 

Many traffic simulation models have been used to analyze road conditions and collect 

vehicle travel times, delays, and flows. This chapter introduces the commercial 

software packages widely used in these analyses and reviews studies wherein traffic 

simulation tools are calibrated and validated. 

   

2.1 Review of Traffic Simulation Packages 

Simulation models can be classified into three types: microscopic, 

macroscopic, or mesoscopic. Some of the most widely used microscopic simulation 

tools are PARAMICS (Ding (2003), Gardes et al. (2002), Lee et al. (2001), Ma and 

Abdulhai (2002), Abdulhai et al. (1999)), CORSIM (Kim and Rilett (2003), Schultz 

and Rilett (2004), Milam (2005), Sacks et al. (2002)), FRESIM (Cheu et al. (1998)), 

MITSIM (Toledo et al. (2004), Jha et al. (2004)), VISSIM (Park and Qi (2005), 

Gomes et al. (2004)), TRANSIMS (Kim and Rilett (2003)), and AIMSUN(Hourdakis 

et al. (2003)). Microscopic simulation models represent an individual vehicle’s 

behaviors and measures each vehicle’s movements. In the past, Ding (2003), Gardes 

et al. (2002), Lee et al. (2001), and Ma and Abdulhai (2002) calibrated PARAMICS 
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simulation models. Toledo et al. (2004) and Jha et al. (2004) calibrated models 

through the use of MITSIM, while Kim and Rilett (2003), Schultz and Rilett (2004), 

and Milam (2005) calibrated CORSIM-based models.  

Among the most popular macroscopic traffic simulation tools are AUTOS 

(Boxill and Yu (2000)), FREQ (Boxill and Yu (2000)), PASSER-Ⅱ (Boxill and Yu 

(2000)), TRANSYT-7F (TRANSYT-7F Users Guide (1998)), and TRANSYT/10 

(Boxill and Yu (2000)). The measures of effectiveness for the calibration of 

macroscopic models are flow, speed, and density.  

DYNAMIT (Kundé (2002), Bottom et al. (1999)), DYNEMO (Boxill and Yu 

(2000)), and DYNASMART (Qin and Mahmassani (2004)) are mesoscopic traffic 

simulation tools. Kundé (2002) calibrated a supply simulator that is part of 

DYNAMIT-P, and Qin and Mahmassani (2004) calibrated the DYNASMART-X 

simulation tool using a transfer function model. 

 

2.1.1 Microscopic Simulation Tools 

PARAMICS (PARAllel MICroscopic Simulation) (PARAMICS programmer 

users guide (2000)) 

PARAMICS, a micro stochastic simulation model, is developed by Quadstone 

Limited and includes five software modules: Modeller, Processor, Analyzer, 

Programmer, and Monitor. PARAMICS can simulate individual vehicle movements 

based on a microscopic car-following and lane-changing model on freeways, arterial 

networks, advanced signal controls, roundabouts, incidents, high occupancy vehicle 

(HOV) lanes, etc. A Graphical User Interface (GUI) with graphical windows provides 
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a three-dimensional animation of car movements through a simulated network. An 

Application Programming Interface (API) can customize car-following, gap 

acceptance, lane-changing, and route choice simulations, and the simulation results 

can be matched with real-world conditions. The API also uses signal optimization, 

adaptive ramp-metering, and incident detection as control strategies. 

Input parameters can be categorized into four different types: network 

characteristics, demand data, assignment, and general configuration. The output 

parameters are travel time, flows, queue length, delay, speed, and density. 

 

CORSIM (CORridor SIMulation) (Boxill and Yu (2000)) 

CORSIM, a microscopic stochastic simulation model, was developed by the 

U.S. Federal Highway Administration (FHWA), and it consists of the NETSIM and 

FRESIM models. The NETSIM model is used for surface street design, while the 

FRESIM model is used for freeway design. In the case of a multiple-model network, 

an urban sub-network is built using NETSIM and freeway sections are modeled using 

FRESIM, both at the same time. Each vehicle in NETSIM can be classified into one 

of nine different types, and driver behavioral characteristics are assigned. Speed, 

acceleration, and status of vehicle can also be specified. Each vehicle’s movement 

and position on the link responds to control devices and demands, and calculations 

are based on car-following logic. Traffic operations are affected by fleet components, 

load factor, turn movement bus operations, HOV lanes, and queue discharge 

distribution, among others.  
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The FRESIM model, a microscopic freeway simulation model, is capable of 

simulating more complex geometric calculations. This model represents more 

detailed freeway situations, with such operational features as a lane-changing model, 

clock-time and traffic-responsive ramp-metering, representations of nine different 

vehicle types, heavy-vehicle movements, 10 different driver habits, and driver 

reactions to upcoming geometric changes.  

 

MITSIM (MIcroscopic Traffic SIMulator) (Boxill and Yu (2000)) 

MITSIM was developed by Ben-Akiva at the MIT ITS program and evaluates 

advanced traffic management systems (ATMS) and route guidance systems. 

MITSIMLab consists of three modules: a Microscopic Traffic Simulator (MITSIM), a 

Traffic Management System (TMS), and a GUI. 

By modifying driver behavior factors—such as desired speed, aggressiveness, 

etc.—MITSIM can specify each vehicle’s characteristics. Individual vehicle 

movements are simulated based on a car-following model and a lane-changing model. 

Real-time information is provided for drivers by route guidance systems, so they can 

make route-choice decisions. 

Control and routing strategies—such as ramp control, freeway mainline 

control, intersection control, variable message sign, and in-vehicle route guidance—

are evaluated through the traffic management simulator. A visualization of vehicle 

movements is available through the GUI, to monitor traffic impact. 
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2.1.2 Macroscopic Simulation Tools 

TRANSYT-7F (TRAffic Network StudY Tool) (TRANSYT-7F Users Guide (1998)) 

TRANSYT-7F, a macroscopic simulation model, was developed by the 

FHWA. It is used to analyze existent traffic signal timing and optimize it to reduce 

delays, stops, and fuel consumption for a two-dimensional network. 

 

PASSER (Progression Analysis and Signal System Evaluation Routine) (Boxill and 

Yu (2000)) 

PASSER, a macroscopic simulation model, was developed by researchers at 

the Texas Transportation Institute (TTI). The PASSER model includes traffic signal 

timing optimization software programs. PASSER-Ⅱ is used to optimize a single 

signalized roadway, while PASSER-Ш is used for diamond interchanges and 

PASSER-IV for single, multiple roadway, and diamond interchanges. 

 

2.1.3 Mesoscopic Simulation Tool 

DYNAMIT (Boxill and Yu (2000)) 

DynaMIT, a mesoscopic traffic simulation tool, was developed by Ben-Akiva 

et al. (www.ivhs.mit.edu/products/simlab) It is a Dynamic Traffic Assignment (DTA) 

system developed for route guidance and traffic prediction and estimation. This tool 

can control real-time operations and accept real-time surveillance data. In addition, 

time-dependent O-D flows are estimated and predicted based on DynaMIT. This 

system also has self-calibration and route-guidance generation capabilities. 
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2.2 Comprehensive Review of Previous Calibration Studies 

This calibration study considers various simulation models. The selection of 

parameters to be calibrated and the methodology followed are very important aspects 

of the overall calibration process. Ding (2003), Gardes et al. (2002), Lee et al. (2001), 

Toledo et al. (2004), Jha et al. (2004), Kim and Rilett (2003), Schultz and Rilett 

(2004), Hourdakis et al. (2003), Park and Qi (2005), and Ma and Abdulhai (2002) 

used microscopic simulation tools. In each study, model parameters were selected and 

various methodologies adopted for calibration, such as the SPSA algorithm (Ding 

(2003), Kundé (2002), Balakrishna et al. (2007), Ma et al. (2007)), GA (Lee et al. 

(2001), Schultz and Rilett (2004), Park and Qi (2005), Ma and Abdulhai (2002), Cheu 

et al. (1998), Kim et al. (2005)), and simplex algorithm (Kim and Rilett (2003)). Ding 

(2003), Kim and Rilett (2003), and Ma and Abdulhai (2002) used mean absolute error 

(MAE) as a validation process. Hourdakis et al. (2003) used the sum of squared errors 

to validate calibrated parameters. Kundé (2002) and Qin and Mahmassani (2004) 

used mesoscopic simulation tools, and the root-mean-square error (RMSE) was used 

in the validation process. In this chapter, comprehensive reviews of previous 

calibration studies are summarized in Table 2.1.  

 

Table 2.1 Summary of previous calibration studies 

Authors Simulation 
Tool 

Calibrated Parameters Optimization 
Methodology 

Type of 
Roadway 
Section 

Objective 
Function 

Validation 
Measure 

Ding (2003) PARAMICS Mean target headway, 
mean reaction time 

SPSA 
algorithm 

Freeway Flow, 
density 

MAE 

Gardes et al. 
(2002) 

PARAMICS Mean target headway, 
mean reaction time 

N/A Freeway Speed, 
Volume 

N/A 

Lee et al. 
(2001) 

PARAMICS Mean target headway, 
mean reaction time 

Genetic 
algorithm 

Freeway Occupancy, 
Flow 

N/A 

Ma and 
Abdulhai 

PARAMICS Mean headway, mean 
reaction time, feedback, 

Genetic 
algorithm 

Roadway Traffic 
counts 

MAE 
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(2002) perturbation, familiarity 
Kundé 
(2002) 

DynaMIT-P Speed–density 
relationship, Capacity 

Box complex, 
SPSA 
algorithm 

Network Free-flow, 
Minimum 
speed 

RMSE 

Kim and 
Rilett (2003) 

CORSIM, 
TRANSIMS 

CORSIM: Car-
following factors, 
driver’s aggressiveness 
factor 
TRANSIMS: O-D 
matrix, PT1 parameters 

Simplex 
algorithm 

Freeway Volume MAER 

Schultz and 
Rilett (2004) 

CORSIM Driver behavior 
parameters, 
vehicle performance 
parameters 

Automated 
Genetic 
algorithm 

Freeway Volume, 
Travel time 

MAE 

Jha et al. 
(2004) 

MITSIMLab Parameters of the 
driving behavior models 
and route choice model, 
O-D flows, habitual 
travel times 

Iterative 
approach 

Urban 
Network 

Travel time N/A 

Balakrishna 
et al. (2007) 

MITSIMLab Driver behavior model 
parameters  

SPSA 
algorithm 

Freeway, 
Parkway 

Traffic 
Counts 

RMSN, 
RMSPE, 
MPE 

Toledo et al. 
(2004) 

MITSIMLab O-D flow, 
behavioral parameters 

Complex 
algorithm 

Freeway 
and 
arterial 

Speed, 
Density 

RMSE, 
RMSP, 
MAE, 
MAPE 

Hourdakis et 
al. (2003) 

AIMSUN Global, local 
parameters 

Trial and 
error 

Freeway Volume RMSP 

Park and Qi 
(2005) 

VISSIM Eight parameters Genetic 
algorithm 

Intersecti
on  

Average 
travel time 

N/A  

Ma et al. 
(2007) 

Microscopic 
simulation 

Global parameters 
(Mean target head, 
mean reaction time etc) 
Local parameters (link 
headway factor, link 
reaction factor, etc.)  

SPSA 
algorithm 

Freeway Capacity N/A 

Kim et al. 
(2005) 

Microscopic 
Simulation 

Various microscopic 
simulation parameters 
in VISSIM 

Genetic 
Algorithm 
with Non-
parametric 
statistical test 

Freeway Travel 
Time 
Distributio
n 

N/A 

Mahut et al. 
(2004) 

EMME/2 
Local parameters, 

global parameters 

Dynamic 

MSA 

equilibration 

algorithm 

Network 

Travel 

time, 

Counts 

N/A 

Qin and 

Mahmassani 

(2004) 

DYNASMA

RT-X 
N/A 

Transfer 

function 

model 

Network Speed RMSE 
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MSA: Method of Successive Averages (Mahut (2004)) 

 

Ding (2003) performed a calibration study of a microscopic simulation model 

developed using PARAMICS. She used mean target headway and mean reaction time 

as the key parameters to be calibrated, since these two parameters affect the car-

following and lane-changing models. SPSA was used as the optimization algorithm, 

and the relative error of density and flow was used as the objective function. The 

selection of these parameters was based on the previous work of Sanwal et al. (1996). 

Ma and Abdulhai (2002) performed a calibration study of microscopic 

simulation models based on combinatorial parametric optimization using a GA. They 

used GENOSIM (a GA-based simulation-optimization system) to solve a 

combinatorial parametric optimization problem; it minimized the relative error 

between field data and simulation output by searching for an optimal value of micro-

simulation parameters.  

Ma and Abdulhai (2002) employed four types of GAs—namely, simple GA, 

steady-state GA, crowding GA, and an incremental GA. In the case of the simple GA, 
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the population was displaced with new individuals; on the other hand, in the steady-

state GA, some parts of the population overlapped with new individuals. The 

crowding-based GA was the same as the simple GA type in selection and 

reproduction, but replacement was discriminated. As the objective function, the MAE 

of the difference between real-world and simulated traffic was used. 

Gardes et al. (2002) performed a calibration and application study of a 

PARAMICS model of Interstate 680, located in the San Francisco Bay Area. In order 

to calibrate input parameter values, significant checks and changes were performed 

for four major categories: network (network geometry, signposting, link speeds), 

demand (vehicle proportions, vehicle mean top speed), overall simulation 

configuration (time steps per seconds, speed memory), and driver behavior factors 

(mean target headway, mean reaction time). Gardes et al. (2002) then included a new 

ramp-metering strategy, in addition to auxiliary lanes and an HOV lane, to evaluate a 

range of operational strategies applicable to the modeled network. 

  Lee et al. (2001) calibrated the parameters of a PARAMICS model of a 

Southern California network using a GA. Mean target headway and mean reaction 

time were employed as key parameters. Mean target headway affects the acceleration 

and deceleration times of each vehicle and mean reaction time affects the acceptable 

gap of the lane-changing model. Using a GA, a number of input parameters were 

repeatedly generated until the parameters were optimized. As a fit test, the differences 

between occupancy and volume, as obtained from the PARAMICS model and field 

data, were used. 
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Kundé (2002) conducted a calibration study of a supply simulator that is a part 

of DynaMIT-P, a mesoscopic traffic simulator. He studied various methodologies 

classified into three categories—namely, path search methods, pattern search methods, 

and random methods. Path search methods estimate a direction to move, from an 

initial vector to an improved point. Response Surface Methodology (RMS) and SA 

are major path search methods, and pattern search methods—such as the Hooke and 

Jeeves method, the Nelder and Mead (simplex search) method, and the Box Complex 

method—search for a characteristic or pattern from the observations. Random search 

methods look for an improved point, without the aid of previous information. The 

stochastic ruler algorithm, stochastic comparison method, and simulated annealing 

are random search methods.  

The calibration methodology used by Kundé (2002) involves three stages, at 

the disaggregate level, the sub-network level, and the entire network level. The first 

stage of the methodology is used to calibrate a study of speed-density relationships 

and the capacities of each segment. The second stage is performed when an accurate 

O-D can be collected from the sensors. In the last step, the stochastic optimization 

problem is carried out, which is the calibration at the entire network level. At this 

stage, the Box Complex method and the SPSA algorithm are employed. 

Kim and Rilett (2003) performed a calibration study of micro-simulation 

modeling using the simplex algorithm. Two micro-simulation models—namely 

CORSIM and TRANSIMS—were tested using the simplex algorithm. The CORSIM 

O-D matrix—which uses the CORSIM O-D estimation model and the automatic 

vehicle identification (AVI) O-D matrix—is the information maximization estimation 
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model they used. In this calibration study, the parameters used in TRANSIMS were 

the O-D matrix and the PT parameters, described as the deceleration probability (PT1), 

the lane-change probability (PT2), and the plan look-ahead distance (PT3). CORSIM 

calibration parameters were car-following factors, acceleration/deceleration factors, 

and lane-changing factors. Both CORSIM and TRANSIMS were calibrated when 

parameter sets were default values. Preliminary calibrations for the AM, PM, or off-

peak time periods were conducted using the simplex algorithm mean absolute error 

ratio (MAER) was used to compare observed CORSIM and TRANSIMS volumes. 

Models calibrated via the simplex approach were found to have a lower MAER than 

the models that used default values. 

Schultz and Rilett (2004) conducted the calibration of a microscopic 

simulation model using the FHWA’s corridor simulation model (CORSIM), and also 

used the distribution of car-following sensitivity factors as the main calibration 

parameter. Car-following sensitivity factors included driver behavior characteristics 

that depended on the car ahead, with specified sensitivity. The author classified 10 

different car-following sensitivity factors and identified them to explain variability 

among driver types. A GA was used for the calibration methodology and the new 

distribution was examined to fit the data. For the car-following sensitivity analysis, 

the author outlined two alternatives that were lognormal and normal car-following 

sensitivity analyses, and compared those with initial distributions. 

Jha et al. (2004) performed a calibration of a large-scale network using 

MITSIMLab, a micro traffic simulation model. They calibrated driving behavior 

parameters with a single freeway section without considering route choice. After 
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driving behavior parameters were calibrated, the values were fixed; the calibration 

work of route-choice parameters, an estimation of O-D flows, and habitual travel 

times was then jointly performed for a large-scale network, using an iterative solution 

approach. As the function of the validation process, the travel times of field data were 

compared with the output of the simulation model. 

Toledo et al. (2004) performed a calibration study of microscopic traffic 

simulation models. They focused on the interactions of O-D flow estimations and 

calibrations of behavior parameters. He proposed an iterative solution approach that 

starts with habitual travel times, because O-D flow estimation needs to generate an 

assignment matrix based on route-choice behavior and experienced travel times. 

Habitual travel times are important variables in solving a driver’s route-choice 

problems. The assignment matrix was generated based on these travel times, and an 

O-D flow estimation was performed using a generalized least squares (GLS) 

formulation. The new O-D matrix is used to recalibrate route choice and driving 

behavior parameters, and this iterative procedure was repeated to minimize the least 

square error. To demonstrate the efficiency of this approach, it was applied to two 

different case studies developed with the use of MITSIMLab, a microscopic traffic 

simulation model (Toledo et al. (2004), Jha et al. (2004)). In the first case study, O-D 

flows were known and route choice was not present in the network. In this case, 

driving behavior was the only parameter to calibrate. As a function of the fit test, the 

RMSE, the root-mean-square percent error (RMSP), the MAE, and the mean absolute 

percent error (MAPE) of the difference between observed and simulated speed 

measurements were used. For the other case study, O-D flow estimations and 
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calibration work with regard to the travel time coefficient of the route choice were 

performed. As a function of the fit test, Toledo et al. (2004) used RMSE and MAE to 

compare the observed and simulated counts. Both of the case studies were good fits. 

Hourdakis et al. (2003) proposed a calibration procedure for microscopic 

traffic simulation models for a 20-km freeway section in Minneapolis. For this 

calibration study, they divided the simulator parameters into global parameters such 

as length, width, desired speed, maximum acceleration/deceleration, and minimum 

headway, as well as local parameters like the speed limits along individual sections of 

the freeway model. Global parameters were closely related to the performance of the 

entire model, and local parameters affected specific parts of the network. 

Hourdakis et al. (2003) divided the calibration process into volume-based 

calibrations and speed-based calibrations. The objective of volume-based calibrations 

was to obtain the volumes from simulation that were as close to the real-world counts 

as possible; the objective of the speed-based calibrations was to obtain the speeds 

from simulation that were as close to the real-world speeds as possible. The sum of 

the squared errors was used as the optimization technique to calibrate the simulator 

parameters, and traffic volumes were used as an objective function to be minimized. 

Park and Qi (2005) performed a calibration of a microscopic and stochastic 

simulation model developed in VISSIM, based on a parameter optimization using a 

GA. The traffic simulator included car-following and lane-changing logic, as well as 

the signal state generator that can decide signal control logic. The location was the 

intersection of U.S. Route 15 and U.S. Route 250 in Virginia, and the average travel 

time was used as the measure of effectiveness. In order to acquire an accurate 
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simulation result, the acceptable ranges of eight parameters were determined and 

multiple simulation runs performed to reduce the stochastic variance with default 

parameter values. A GA approach was applied to calibrate parameter values. In order 

to verify whether the calibrated parameters were statistically significant, a t-test and 

visualization check were also performed. 

Cheu et al. (1998) performed a calibration of a FRESIM-based model of a 

Singapore expressway, using GAs. The existing representative optimization 

algorithms used a gradient approach that lacks robustness. This algorithm has only 

one solution, and this may lead only to a local solution; therefore, a GA was applied 

to reduce this problem and find a global solution. The calibration work was 

performed for a 5.8-km section of the Ayer Rajar Expressway in Singapore. The 

parameters calibrated for FRESIM are free-flow speed and driver behavior 

parameters. As a fit test, Average Absolute Error (AAE) was used between FRESIM 

simulation output and field data from the loop detector. 

Milam (2005) recommends guidelines for the calibration and validation of 

traffic simulation models. The calibration requires modifying traffic control 

operations, traffic flow characteristics, and driver behavior. He summarizes the 

default values of the parameters to be calibrated in CORSIM, as well as their 

effective range. The parameters presented in the validation guidelines were traffic 

volume, average travel time, average travel speed, freeway density, and average and 

maximum vehicle queue lengths. The author recommends each parameter’s 

acceptable range of error between CORSIM simulation results and field data. Tables 

2.2 and 2.3 show the calibrations and their effective range and validation guidelines. 
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For a greater understanding of the validation guideline in Table 2.3, CORSIM output 

was compared with observed data from the town of Lafayette, California, until all the 

ranges of the validation parameters were acceptable. CORSIM is based on stochastic 

algorithms, i.e., the results of each run change, depending on the random seed. For 

more accurate results, the average simulation result of multiple runs with many 

different random numbers was used.   

 

Table 2.2 Calibration parameters and effective ranges (Milam (2005))  

Calibration Parameters (Milam (2005)) 

Parameters Effect Default Value Calibration Range 

Start-up Lost Time 

(Arterials) 
Link Specific 2.0 Seconds 0.5 to 9.9 Seconds 

Start-up Lost Time 

(Freeways) 
Link Specific `1.0 Second 0.5 to 6.0 Seconds 

Queue Discharge Rate 

(Arterials) 
Link Specific 

1.8 Seconds 

(2,000 vphpl) 

1.4 to 2.4 Seconds 

(1,500 - 2,270 vphpl) 

Pedestrian Demand Link Specific 
0 (If left blank) 

No pedestrians 

Demand 0 to 4 

0 – 500 pedestrians 

Car-Following 

Sensitivity Factor 

(Freeways) 

Network-wide 

Driver Type 1 

(0.6 Seconds) to 

Driver Type 10 

(1.5 Seconds) 

0.6 to 1.5 Seconds for 

Driver Types 1 to 10 

Time to complete a lane 

change (Freeways) 
Network-wide 3.0 Seconds 2.0 to 5.0 Seconds 

Acceptable gap in 

oncoming traffic for 

permissive left-turners 

(Arterials) 

Network-wide 

Driver Type 1 

(7.8 Seconds) to 

Driver Type 10 

(2.7 Seconds) 

2.7 to 7.8 Seconds for 

Driver Types 1 to 10 

Acceptable gap in 

oncoming traffic for right-

turns-on-red or right-turn at 

stop sign (Arterials) 

Network-wide 

Driver Type 1 

(10.0 Seconds) to 

Driver Type 10 

(3.6 Seconds) 

3.6 to 10.0 Seconds for 

Driver Types 1 to 10 
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Driver’s Familiarity with 

Network (Arterials) 
Network-wide 

10 Percent 

Recreational 

90 Percent Commuter 

Sum of recreational and 

commuter must equal 

100 

 

Table 2.3 Validation guidelines (Milam (2005)) 

Validation Guidelines 

Parameters Description Validation Criteria 

Volume Served 
Percent difference between input volume 

and CORSIM output or assigned volume 

95 to 105 % of 

observed value 

Average Travel Time 

Standard Deviation between floating car average 

travel times and CORSIM simulated average travel 

time for a series of links 

1 Standard Deviation 

Average Travel Speed 

Standard Deviation between floating car average 

travel speed and CORSIM simulated average 

travel speed for individual links 

1 Standard Deviation 

Freeway Density 

Percent difference between observed freeway 

density (from volume counts and floating car 

travel speed) and CORSIM simulated density 

90 to 110 % of 

observed value 

Average and 

Maximum Vehicle 

Queue Length 

Percent difference between observed queue lengths 

and CORSIM simulated queue lengths 
80 to 120 % of 

observed value 

 

Dowling et al. (2004) recommend the calibration/validation of micro-

simulation models in three steps. The simulation model is first calibrated for capacity 

and then traffic flow, both at a bottleneck section. Finally, the model is calibrated for 

system performance at the entire network level. According to the author, for the 

capacity calibration procedure, the capacity of the given model was estimated by 

counting the maximum possible flow rate of the target section, and parameters that 

directly affect the capacity were selected. The mean squared error (MSE) was used 

for the objective function, and the optimal parameter values were obtained at the 
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point where the MSE was minimized. In the case of matching observed traffic flow, 

the route choice algorithm parameters were adjusted until predicted volumes fit field 

counts. Finally, overall traffic performance was compared with various field data, 

including travel time, queue lengths, and duration of queuing. As an example of 

satisfying the three-step application, Dowling et al. (2004) used the sample problem 

offered by Bloomberg et al. (2003), which compared six simulation models with the 

Highway Capacity Manual (HCM).  

Mahut et al. (2004) performed calibration work based on the dynamic traffic 

assignment (DTA) model. DTA is a procedure where network users choose the best 

route, to minimize overall travel cost. The DTA model used in this study is based on 

an iterative approach, where flows are updated with successive iterations that are 

based on travel times from the simulation model. The EMME/2 software package was 

used to calibrate a DTA trip table that was modified through a matrix adjustment. As 

part of the verification process, three consecutive 15-minute counts were compared 

with calibrated model results. 

Qin and Mahmassani (2004) performed a calibration study of dynamic speed-

density relationships by using data collected from Interstate Freeways I-5 and I-405 in 

California. They estimated the parameters to find the minimum discrepancy between 

observed and simulated speed, using transfer function, one-regime modified 

Greenshields, and two-regime modified Greenshields models. The RMSE of speed 

was used as a goodness-of-fit test. As a result of the comparison, the transfer function 

approach was found to be more accurate than static modified Greenshields models in 

estimating dynamic traffic speed. 
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2.3 Review of Optimization Methods for Parameter Calibration 

Optimization methods can be classified into the random search, pattern search, 

and path search methods. 

1. The random search method, one of the simplest methods, is used to find the 

optimal value where the feasible region (Θ ) is discrete. Each iteration is 

performed, with no input from the previous situation. The new selected value 

is based on loss function, and it is selected if the loss function is lower than 

the previous value. This method is very slow in converging to the optimal 

value. The simple random search, the localized random search, and the 

enhanced localized random search methods are representative random search 

methods (Spall (2003)). 

2. The Hooke and Jeeves method is a well-known example of the pattern search 

method. This method tests multivariate directions from the initial parameters, 

and the improved value becomes the new value Kundé (2002). The nonlinear 

simplex algorithm by Nelder and Mead (Spall (2003)) is also a pattern search 

method. 

3. The path search method estimates the direction of the best vector in finding an 

improved estimate from the current value. The SA, one of the path search 

methods, is the selected value; it is updated until the gradient equals zero, to 

solve the optimization problem Kundé (2002), (Spall (2003)). RSM (Spall 

(2003)) is another path search method; it uses the path of steepest descent 

method, repeating until it finds the final best vector. 



24 
 

 
 

 

Chapter 3 

Overall Calibration Framework Using the SPSA 

Algorithm 

 

 

3.1 Introduction 

The main reason for performing simulation is to test future scenarios under 

conditions similar to real-world conditions. However, since this representation may 

not be accurate if the model parameters are not carefully calibrated, calibrating model 

parameters is a very important task. Selecting appropriate model parameters for 

calibration, as well as the calibration methodology, are both crucial tasks. This 

chapter provides a description of the standard SPSA algorithm and the overall 

calibration process. In this dissertation, the study area is a section of the I-880 

freeway in Hayward, California. For the calibration of the PARAMICS model, the 

mean target headway and mean reaction time—which affect the car-following model 

and lane-changing model—were selected as the key parameters. 

 

3.2 Proposed Research Methodology 

Optimization algorithms can be classified into deterministic and stochastic 

approximation (SA) algorithms; in the latter case, objective function is probabilistic. 
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Each algorithm can be further divided into two general categories: gradient and 

gradient-free settings. The steepest descent method (Spall (2003)) and Newton-

Raphson method (Spall (2003)) use deterministic optimization algorithms. Nelder and 

Mead (1965) proposed the nonlinear simplex algorithm, a deterministic method that is 

based on a gradient-free multivariate optimization method. The steepest descent 

method is a very simple deterministic technique, wherein given value θ  changes to 

the best gradient vector until the solution to ⎥⎦
⎤

⎢⎣
⎡ −

∧∧

≥ ))((min 0 kka agL θθ  is derived. 

Newton-Raphson iterated the algorithm based on the inverse Hessian matrix; this 

method examines worst direction, rather than steepest descent. The nonlinear simplex 

algorithm is based on the gradient-free multivariate optimization method. 

Stochastic objective function of the stochastic approximation (SA) algorithms 

(usually termed as loss function L) can be used in the presence or absence of the 

gradient function )(θg . The stochastic root-finding algorithm by Robbins and Monro 

(1951) is generally used for nonlinear problems when the gradient function is 

available. When measuring the gradient is impossible, such as in the case of 

simulation, a gradient-free approach is applied. The finite-difference (FD) 

approximation is the most well-known gradient approximation method; however, the 

FD approximation is performed only when the noise measurements of the loss 

function are available. SPSA, one of the well-known Stochastic Approximation (SA) 

algorithms, can be applied in both stochastic gradient and gradient-free settings; it can 

also be applied to solve optimization problems that have a large number of variables. 

The SPSA algorithm is proposed as the main calibration mechanism for PARAMICS. 
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The validation process is performed to minimize the relative error of flow and 

density between the real world and the output of a PARAMICS simulation. For the 

independent verification process, a chi-square test is performed on the headway 

distribution; this is the most commonly used method for determining the level of 

statistical significance of certain variables. The chi-square test is used to check 

whether the headway distribution from the simulation is consistent with the observed 

data. Finally, a sensitivity analysis is carried out for the headway distribution, for 

each value of mean target headway. 

Figure 3.1 shows the overall procedure for the calibration and validation 

methodology. 
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Figure 3.1 Overall procedure proposed for the calibration and validation of a 

simulation model 
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The first step is data collection. In this thesis, data was obtained from a section 

of the I-880 freeway in Hayward, California. The data was classified as incident data, 

probe vehicle data, and loop data. Loop data is used for our calibration study. The 

second step is to accurately model the network using PARAMICS. In addition, the 

input parameters to be calibrated—namely, mean target headway and mean reaction 

time—are determined. The next step is to update the simulation input parameters 

using SPSA and repeat the iteration process until the solution is acceptable. 

Differences between simulated and observed flow and density values are compared in 

the next step. If this difference exceeds a pre-determined value, then the input 

parameters are updated again. If the value of the objective function is acceptable, i.e., 

smaller than the pre-determined value, then the verification process is performed to 

test whether or not new parameters are statistically significant. If all these above steps 

are acceptable, then the calibration process is terminated. 

 

3.3 The Simultaneous Perturbation Stochastic Approximation (SPSA) Algorithm 

Stochastic approximation (SA) optimization methods are used in a number of 

areas relevant to statistical modeling and control, e.g., sequential parameter 

estimation, adaptive control, experimental design, and stochastic optimization and 

neural network weight estimation (Spall (1992)). 

The SA algorithm is based on a simultaneous perturbation gradient 

approximation introduced by Spall (1992). It is used to find a root of the multivariate 

gradient equation. 
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A dynamic multi-ramp-metering control using the SPSA algorithm was 

performed by Luo (2003), and the effectiveness of SPSA therein was shown for 

freeway operations. Spall (1997) performed the optimization work to control signal 

timing using the SPSA algorithm, and its effectiveness was proved. The calibration 

study using the SPSA algorithm can be also found in Ding’s (2003) and Kundé’s 

(2002) respective papers.  

Using this SPSA algorithm, the present calibration study is performed to 

determine how well the PARAMICS model represents reality. To minimize the 

relative error between the real world and the model, two key parameters (i.e., the 

mean headway and the mean reaction time) are modified to fit U.S. conditions. In 

addition, the seed value, used by the random number generator, also affects the 

simulation result, and so the simulation is run with several seed values, to determine 

the influence of the random number generator on the PARAMICS output. 

 

3.3.1 Description for Standard SPSA Algorithm (Spall (2003)) 

The SA algorithm normally focuses on finding the vector value Θ∈θ , which 

either minimizes the loss function )(θL  or makes the gradient equation )(θg  equal to 

zero. The SPSA is an applicable stochastic optimization method for multivariable 

equations, and the standard SPSA algorithm has the following form (Spall (2003)): 

 

)(1 kkkkk ga
∧∧∧

+

∧

−= θθθ                                                                                           [3.1] 
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Here, )( kkg
∧∧

θ is the SP of the gradient 
θ
θθ

∂
∂

=
)()( Lg  estimated, based on the 

loss function measurements, at θ = k

∧

θ at the thk  iteration. ka  indicates the step size 

and is a nonnegative scalar coefficient. The basic solution to an optimization problem 

is to minimize the loss function ))(( kkk gaL
∧∧

− θθ  at the thk  iteration. The new value 

of θ , obtained for every iteration, is calculated by subtracting the product of step size 

and the gradient at the present value from the previous value of θ . 

The gradient approximation )( kkg
∧∧

θ  is the most important part of the SPSA 

algorithm. With Stochastic Perturbation (SP), loss measurements are obtained by 

randomly perturbing the elements of k

∧

θ . Assuming that θ  is p -dimensional, the 

Stochastic Perturbation (SP) gradient approximation can be shown in the following 

form: 
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Here, the, p -dimensional random perturbation vector, [ ]Tkpkkk
1

21 ,...,, −ΔΔΔ=Δ is 

a user-specified vector for which the components of kΔ  are normally distributed 1±  

Bernoulli variables. Here, kc is a positive scalar. 

The problem of minimizing )(θLL = for a differentiable loss function is 

equivalent to finding a solution of the gradient approximation 0)()( =
∂

∂
=

θ
θθ Lg . The 

loss function for this study is a standard quadratic measure, as shown below: 

 

⎣ ⎦θθ |)( xxEL T= ,                                                                                               [3.3]         

 

where ⎣ ⎦θ|•E denotes an expected value that is conditional on the set of 

controls with weights θ  (Spall (1997)). 

 

3.3.2 Convergence of the Stochastic Approximation (SA) Algorithm (Spall 

(1992)) 

The convergence theory of SA has been studied for many years, and it is used 

to determine if at the k th iteration k

∧

θ  converges to a minimizing point 
**

Θ∈θ . Most 

of the convergence results for SA are in the almost sure (a.s.) sense. Over many years, 

several conditions have been added for the almost sure (a.s.) convergence of the SA 

recursions in )(1 kkkkk Ya
∧∧

+

∧

−= θθθ . (Here, kY  replaces the exact root-finding function 

)( kkg
∧∧

θ .) 
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Some of the conditions used to determine the almost sure (a.s.) convergence 

are represented below. 

 

0>ka , 0>kc , 0→ka , 0→kc , ∑∞

=
∞=

0k ka , 

∑∞

=
∞=

0k kkca , and ∑∞

=
∞<

0
22 /

k kk ca . 

 

The gain sequence is used to balance the algorithm stability; the desired form 

of the gain sequence is shown below. 

 

α)1( Ak
aak ++

= , γ)1( +
=

k
cck                                                                          [3.4] 

 

The recommended value for A  in the gain sequence is zero. If the numerator 

a  is small, the calculations are initially stable.  However, this may result in slug 

performance for large calculations. On the other hand, a large numerator 0>ka , 

which is used to produce nonnegligible step sizes, leads to instability early in the 

calculation. It is most effective to set the numerator c  to a small positive number. 

Ding (2002) suggests that the values for α and γ  should be set to 0.602 and 0.01 

respectively; these values are used in this dissertation. 

For the iteration process to be successful, a large number of individual 

iterations must be performed until the differential distance between the thk  iteration 
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k

∧

θ  and the optimal value 
*

θ decreases. If the starting point 
∧

0θ  is set near 
*

θ , the 

calculation fluctuates around 
*

θ and the calculation proceeds slowly. 

Figure 3.2 compares calculations with poor convergence (Figure (a)) and good 

convergence (Figure (b)). Graph (a) shows that k

∧

θ  reaches the circled area without 

bouncing. On the other hand, graph (b) shows that the value of k

∧

θ  bounces around 

*

θ  when it reaches the circled area.  

Figure 3.2 Comparison between poorly designed and well-designed SPSA algorithms 

(Spall (2003))  

 

3.3.3 The Effect of Random Seed on the Results 

The random seed is another factor that is studied, to determine its effect on 

simulation results. In a stochastic analysis, a random number is used to represent 

measurement noise; to obtain more accurate results, it is necessary to consider the 

effects of random numbers. Spall (2003) compares the variance of the error 

∧
−

∧
+−+ Δ−−Δ+=− )()( )(

,
)(

,
)()(

kkkkkkkkkk VcQVcQyy θθ  for the gradient estimate from the 

SPSA algorithm, between the common random number (CRN) and non-common 
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random number (non-CRN); the results of the loss values for CRN were lower than 

those for non-CRN. Here, )(±
kV  are random variables that affect noise measurement. 

Thus, it is necessary to perform a simulation with many different random numbers, to 

minimize the variance of the error. 
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Chapter 4 

 Calibration of a Macroscopic Simulation Model 

Using the Simultaneous Perturbation Stochastic 

Approximation Method 

 

 

4.1 Introduction 

Before performing the calibration of the PARAMICS microscopic simulation 

tool by applying the SPSA optimization method, it is necessary to test the 

effectiveness of the SPSA algorithm when applied to simpler traffic simulation 

models.  

In this chapter, the cell transmission model (CTM) developed by Daganzo 

(1994) is used to prove the effectiveness of the SPSA algorithm when various random 

numbers are used, because this model is much faster to run compared to PARAMICS. 

Free-flow speed and jam density were selected as the input parameters, and the 

average gradient with multiple runs from SPSA algorithm was used. 

 

4.2 Cell Transmission Model (CTM) 

To test whether the SPSA algorithm works as intended when applied to traffic 

simulations, the CTM was used. The CTM can be used to represent complex traffic 
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situations such as acceleration/deceleration, stop and go, or shock waves. This model 

defines flow as the minimum value of the upstream capacity of the cell and 

downstream capacity of the cell (Daganzo (1994)). When demand is low, the 

upstream flow is very low (minimum value); on the other hand, when demand is high, 

downstream capacity becomes very low (minimum value). 

The basic shape of the flow density relationship used by the CTM is a 

trapezoid, as shown in Figure 4.1. There, fV  indicates free-flow speed and jK  is the 

jam density. 

 

 

Figure 4.1 Flow-density relationship for the basic CTM (Daganzo (1994)) 

 

4.3 Input Variables of Cell Transmission Model (CTM) 

Demand 

Demand is one of the major input variables. This relation supposes free-flow 

speed fV  under low density and the shock wave speed W  under high density. The 
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maximum number of vehicles in the under-congested condition is the product of the 

jam density and cell length at the cell i ; the maximum number of vehicles in the 

over-congested condition is the capacity of the cell 1−i . 

 

Geometry 

The network geometries in the CTM are the length of the network and number 

of lanes. The number of cells is defined by the length of the network. 

 

4.4 Goodness-of-Fit Test 

The CTM is used to model a section of the I-880 freeway section in California. 

The selected freeway section is two lanes of one-way road where there are no 

intermediate ramps. The length of the section is one mile and this section is divided 

into 20 cells. 

 

 

Figure 4.2 I-880 freeway segment 
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The calibration procedure for the model is as follows. 

The density is used as a criterion to measure performance in the calibration 

study. The relative error—i.e., the sum of the square error between field data and cell 

transmission results of density for every 3 min, for two lanes—is used as the 

objective function. The objective function is the minimum relative error that 

optimizes the free-flow speed and jam density, which are the parameters to be 

calibrated. Because there is no on-off ramp in the network and the number of vehicles 

does not change much, the flow is not included in the objective function. The 

objective function is of the form shown below: 

 

∑∑∑
−

=
LANE real

simreal

DETECTORINTERVAL K
KK

F
2

,                                                               [4.1] 

 

where 

realK : Density for each lane and each detector on the freeway during each time 

interval (veh/mile) 

simK : Density for each lane and each detector in simulation during each time 

interval (veh/mile) 

 

The initial value of the parameters were 55 miles per hour for free flow speed 

( fV ) and 110 vehicles per mile for jam density ( jK ); each iteration process was 

performed with three different seed values. The values of the two variables are shown 

to converge, where there is a small difference in density between real-world data and 
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cell transmission simulation results, reducing the error from 35.72 to 12.37 percent. 

The difference between the two values decreased from (–8.59, 8.59) when k =0 to (–

0.99, 0.99) when k =23. The results of this calibration study are summarized in Table 

4.1. 

Each iteration process was performed multiple times with different random 

numbers. The difference between observed and simulated density was reduced from 

35.72 to 12.37 percent. As the gradient approaches zero, the objective function is 

minimized—i.e. the SPSA algorithm is found to be an effective stochastic 

optimization approach.   

 

Table 4.1 Results of the calibration study 

k  kc  ka  
k

∧

θ  kΔ  
kkk c Δ+

∧

θ  )( kkk cL Δ+
∧∧

θ  
kkk c Δ−

∧

θ  )( kkk cL Δ−
∧∧

θ  )(θkg
∧

 
1+

∧

kθ  

0 0.500 0.200 
(55.00, 

110.00) 

(1, -

1) 

(55.50, 

109.5) 
35.22 

(54.50, 

110.5) 
43.81 

(-8.59, 

8.59) 

(56.72, 

108.28) 

1 0.467 0.132 
(56.72, 

108.28) 

(-1, 

1) 

(56.25, 

108.7) 
30.19 

(57.18, 

107.8) 
25.23 

(-5.32, 

5.32) 

(57.42, 

107.58) 

2 0.448 0.103 
(57.42, 

107.58) 

(-1, -

1) 

(56.97, 

107.1) 
25.43 

(57.87, 

108.0) 
21.63 

(-4.24, -

4.24) 

(57.86, 

108.02) 

3 0.435 0.087 
(57.86, 

108.02) 

(1, -

1) 

(58.29, 

107.6) 
20.41 

(57.42, 

108.5) 
23.71 

(-3.79, 

3.79) 

(58.19, 

107.69) 

4 0.426 0.076 
(58.19, 

107.69) 
(1, 1) 

(58.61, 

108.1) 
19.25 

(57.76, 

107.3) 
23.17 

(-4.60, -

4.60) 

(58.53, 

108.04) 

5 0.418 0.068 
(58.53, 

108.04) 

(1, -

1) 

(58.95, 

107.6) 
18.79 

(58.12, 

108.5) 
20.85 

(-2.46, 

2.46) 

(58.70, 

107.87) 

6 0.412 0.062 
(58.70, 

107.87) 
(1, 1) 

(59.11, 

108.3) 
16.78 

(58.29, 

107.5) 
20.44 

(-4.45, -

4.45) 

(58.98, 

108.15) 

7 0.406 0.057 
(58.98, 

108.15) 

(-1, -

1) 

(58.57, 

107.7) 
19.37 

(59.38, 

108.6) 
16.38 

(-3.68, -

3.68) 

(59.19, 

108.36) 

8 0.401 0.053 
(59.19, 

108.36) 

(1, -

1) 

(59.59, 

108.0) 
15.22 

(58.79, 

108.8) 
18.93 

(-4.62, 

4.62) 

(59.43, 

108.11) 

9 0.397 0.050 
(59.43, 

108.11) 

(-1, 

1) 

(59.04, 

108.5) 
17.66 

(59.83, 

107.7) 
15.09 

(-3.24, 

3.24) 

(59.60, 

107.95) 

10 0.393 0.047 
(59.60, 

107.95) 
(1, 1) 

(59.99, 

108.3) 
14.64 

(59.20, 

107.6) 
17.11 

(-3.14, -

3.14) 

(59.74, 

108.10) 
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11 0.390 0.045 
(59.74, 

108.10) 

(-1, 

1) 

(59.35, 

108.5) 
16.57 

(60.13, 

107.7) 
14.27 

(-2.94, 

2.94) 

(59.88, 

107.97) 

12 0.387 0.043 
(59.88, 

107.97) 

(1, -

1) 

(60.26, 

107.6) 
13.32 

(59.49, 

108.4) 
16.13 

(-3.63, 

3.63) 

(60.03, 

107.81) 

13 0.384 0.041 
(60.03, 

107.81) 

(1, -

1) 

(60.42, 

107.4) 
13.28 

(59.65, 

108.2) 
16.22 

(-3.83, 

3.83) 

(60.19, 

107.66) 

14 0.381 0.039 
(60.19, 

107.66) 

(-1, 

1) 

(59.81, 

108.0) 
15.51 

(60.57, 

107.3) 
12.93 

(-3.37, 

3.37) 

(60.32, 

107.52) 

15 0.379 0.038 
(60.32, 

107.52) 
(1, 1) 

(60.70, 

107.9) 
12.78 

(59.94, 

107.1) 
15.85 

(-4.05, -

4.05) 

(60.47, 

107.68) 

16 0.377 0.036 
(60.47, 

107.68) 

(1, -

1) 

(60.85, 

107.3) 
12.64 

(60.10, 

108.1) 
14.43 

(-2.39, 

2.39) 

(60.56, 

107.59) 

17 0.374 0.035 
(60.56, 

107.59) 

(-1, 

1) 

(60.18, 

108.0) 
14.04 

(60.93, 

107.2) 
12.17 

(-2.51, 

2.51) 

(60.65, 

107.50) 

18 0.372 0.034 
(60.65, 

107.50) 

(-1, -

1) 

(60.27, 

107.1) 
14.12 

(61.02, 

107.9) 
12.25 

(-2.51, -

2.51) 

(60.73, 

107.59) 

19 0.371 0.033 
(60.73, 

107.59) 

(1, -

1) 

(61.10, 

107.2) 
12.21 

(60.36, 

108.0) 
13.80 

(-2.15, 

2.15) 

(60.80, 

107.52) 

20 0.369 0.032 
(60.80, 

107.52) 

(1, -

1) 

(61.17, 

107.1) 
12.32 

(60.43, 

107.9) 
13.92 

(-2.17, 

2.17) 

(60.87, 

107.45) 

21 0.367 0.031 
(60.87, 

107.45) 
(1, 1) 

(61.24, 

107.8) 
12.26 

(60.51, 

107.1) 
13.81 

(-2.11, -

2.11) 

(60.94, 

107.51) 

22 0.365 0.030 
(60.94, 

107.51) 

(1, -

1) 

(61.30, 

107.1) 
12.41 

(60.57, 

107.9) 
13.17 

(-1.04, 

1.04) 

(60.97, 

107.48) 

23 0.364 0.029 
(60.97, 

107.48) 

(-1, 

1) 

(60.61, 

107.8) 
13.36 

(61.33, 

107.1) 
12.63 

(-0.99, 

0.99) 

(61.00, 

107.45) 

24 0.362 0.028 
(61.00, 

107.45) 

(1, -

1) 

(61.36, 

107.1) 
12.63 

(60.64, 

107.8) 
13.82 

(-1.64, 

1.64) 
 

 

4.5 Simulation Results and Summary 

Before the calibration of the microscopic PARAMICS based simulation 

model, a cell transmission-based macroscopic model was used to test the 

effectiveness of the SPSA algorithm when various seeds were used. Two 

parameters—namely, free-flow speed and jam density—were selected and the 

average gradient with multiple runs from the SPSA algorithm was used. The initial 

points were 55 miles per hour for free-flow speed and 110 vehicles per mile for jam 

density. The relative error between the simulated density and observed data was 
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reduced from 35.72 to 12.37 percent. Thus, the convergence process using the SPSA 

algorithm was found to be acceptable. 
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Chapter 5 

Calibration of a Microscopic Simulation Model 

Using the Simultaneous Perturbation Stochastic 

Approximation Method  

 

 

5.1 Introduction 

This chapter presents the implementation of the propose calibration procedure 

for the model developed using the PARAMICS simulation tool. PARAMICS 

software is beneficial, as it has an application programming interface (API) which 

customization of various features of the simulation model, such as car-following, gap 

acceptance, and signal optimization. PARAMICS graphical user interface (GUI) that 

is capable of animating vehicle movement through a simulated network is also a 

useful capability.  

Selecting input parameters and finding optimal values for those parameters is 

crucial to ensure the accuracy of the simulation results. In this dissertation, driver 

behavior factors—namely, mean target headway and mean reaction time—were 

selected as input parameters, because those values affect the outcome of the 

microscopic simulation model. In addition, the evaluation of the performance is 
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studied, if PARAMICS has the ability to replicate read-world conditions; this 

necessarily validates and verifies the model.  

 

5.2 Key Calibration Parameters 

The PARAMICS model developed by Quadstone Limited is a microscopic 

stochastic simulation model that is very comprehensive and has the potential for 

application to a wide set of freeway arterial and network situations (Gardes (2002)). 

PARAMICS is capable of controlling individual vehicle movements that 

address model input parameters, such as car-following parameters, seed value, 

signpost distance, lane-changing, and time step of simulation per second. 

 

Network geometry 

For the calibration procedure, the first step is to accurately represent real-

world conditions in the simulation model. For example, nodes or the stop-line 

position will affect vehicle movement and vehicle speed to a great extent; they can 

suddenly reduce traffic speed or result in unexpected shockwaves. 

  

Signposting 

Signposting is about giving information to drivers about a hazard: traffic 

signals, lane additions, on-ramps or off-ramps, etc. Awareness distance to the hazard 

and reaction time to the hazard can be modified separately. 
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Time steps per second 

The initial value of time steps is set to 2 s; this means that every 0.5 s, the 

simulation is calculated. Simulation results change, depending on time step value. 

 

Driver behavior factors 

Driver behavior factors—namely, the mean target headway and mean reaction 

time—directly influence the car-following model and the lane-changing model. Many 

studies of microscopic calibration work have been performed with these two 

parameters, to modify simulation results. In this dissertation, these two factors were 

used for the calibration process. 

 

Mean target headway 

Headway is the time between two consecutive vehicles that pass a specific 

point. The time interval is calculated from the front (or the rear) bumper of the front 

vehicle to the front (or the rear) bumper of the rear vehicle.  

The average headway in a lane is the reciprocal of the flow rate; thus, at a 

flow of 1,200 vehicles per hour per lane (veh/h/ln), the average headway is 

3,600/1,200 or 3 s. Vehicles do not, however, travel at constant headways; vehicles 

tend to travel in groups, or platoons, with varying headways between successive 

vehicles (HCM (2000)). The HCM (2000) shows the headway distribution that is 

observed on the Long Island Expressway, which has three lanes; this information is 

provided in Figure 5.1. The headway of the third lane is the most uniformly 

distributed. The headway of the second lane is a little more scattered than the 
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headway of the third lane (0.5~0.9 s), and the first lane has a more scattered 

distribution than that of either of the other two lanes (0.5~12 s). Few vehicles have a 

headway of less than 1.0 s. If the headway is 1.0 s, a vehicle driving at 95 km/h would 

have a 26 m gap between its front bumper and the next car’s rear bumper. 

 

 

Figure 5.1 Headway for each lane (Highway Capacity Manual (2000))  

 

Mean reaction time 

The reaction time is the physical response to an unexpected condition, which 

is an important safety factor. A driver reacts in the following sequence of events: 

perception or detection, identification, emotion, and reaction. These events account 

for the time that a driver takes to recognize an unexpected situation and determine 

and enact the appropriate behavior. Reaction time is shorter when a vehicle’s speed is 

high, because the driver is more alert and thus concentrates more on traffic situations 



46 
 

 
 

at increased speeds. At high speeds, one has less time to react to an unexpected 

situation. 

Koppa et al. (1996) performed a reaction time test with expected and surprise 

conditions. The reaction time under surprise conditions was determined by suddenly 

moving a barrel onto the road from a hidden area and measuring the time the driver 

took to brake. Under expected conditions, the reaction time was measured from the 

time it took a driver to brake after seeing a LED illuminate. The result is that the 

driver’s reaction time was shorter for the expected condition than for the surprise 

condition. Table 5.1 shows driver Perception Reaction Time (PRT). 

 

Table 5.1 Perception Reaction Time comparisons (Koppa et al. (1996))  

Condition Car Number Mean STD 25th 95th 99th 

Expected TTI 38 0.60 0.18 0.42 1.05 1.22 

Surprise TTI 38 0.82 0.18 0.64 1.23 1.39 

Expected Own 12 0.62 0.21 0.29 1.36 1.63 

Surprise Own 10 1.04 0.27 0.64 1.83 2.12 

On Road Own 11 1.10 0.21 0.80 1.69 1.91 

Rodger J. Koppa, Daniel B. Fambro, and Richard A. Zimmer, Measuring Driver Performance in Braking Maneuvers, TRB 1550. 

 

Green (2000) also performed a brake reaction time study for three different 

situations: expected, unexpected, and surprise events. The time taken by drivers made 

aware of the signal to apply the brakes was about 0.70 to 0.75 sec. For unexpected 

stops, the time was about 1.25 s, and it took about 1.50 s for surprise events. 

 

 

 



47 
 

 
 

5.3 Data Collection and Extraction 

5.3.1 Data Collection 

The data for this calibration study was acquired from the Freeway Service 

Patrol study conducted by the University of California at Berkeley (Skabardonis et al. 

(1998)). The purpose of that project was to evaluate the effectiveness of the Freeway 

Service Patrol and reduce congestion-related delays. This delay pertained to the time 

needed to detect, respond to, and clear a road incident. The data was collected from 

February 16 to March 19, 1993 and from September 27 to October 29, 1993. The 

collection times for each day in the case of loop data were between 5:00 AM and 

10:00 AM and between 2:00 PM and 8:00 PM. This data was classified as incident 

data, probe vehicle data, and loop data; this data is available from the website 

http://ipa.eecs.berkeley.edu/~pettyk/FSP/, which contains raw data as well as 

processed data. 

The calibration study in this dissertation uses loop data to determine the 

values of key calibration values. The loop detectors sense each vehicle and calculate 

the number of vehicles, their occupancy, and their speeds. On the other hand, data 

collected by probe vehicles may contain errors: Because the drivers therein press a 

sequence of keys when they pass expected points along the roadway, the driver might 

accidentally press the wrong key or forget to press the keys at all. Basically, each 

loop detector obtains flow, speed, and occupancy data. This data is then recorded in 

an individual file. 

The basic file name is shown in the following format. 

{f, g, h}loopXX.{n, s}{s, c, o}Y 
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The “f” character means that there has been no fix applied, and the “g” means 

that the holes in the loop data were fixed; the “h” means that the holes were fixed and 

the consistency errors were corrected. “XX” is the number of each detector. For 

example, if the file name is gloop7, this means is that the loop data is from loop7 and 

that the holes have been corrected. 

The terms {n, s} correspond to the direction, wherein an “n” indicates 

northbound and “s” indicates southbound detectors. The next set of terms, {s, c, o}, 

indicates the type of data: The “s” character stands for speed, “c” stands for the 

counts or flow, and “o” stands for occupancy. Therefore, if the file name is 

“floop3.sc,” the file contains flow data from the southbound direction of loop number 

3 and the data has not been fixed. We can determine the file type by its name. 

The “Y” character is a number from 1 to 5 or the character “d.” The numbers 

indicate either a lane number or an on- or off-ramp. The “d” character stands for the 

average of all lanes. 

 

5.3.2 Data Extraction  

The program consists of fsp and xfsp. fsp is a software tool used to interrogate 

data collected during the Freeway Service Patrol evaluation project; this program 

performs diagnostics on the data, generates error reports, and makes plots of various 

pieces of data. The program takes as its input arguments a file that contains the 

commands that the fsp program needs to run. This fsp program takes as input a runfile, 

an incident filter file, various configuration files, and data. It generates various error 

reports, graphs, and tables as output (Petty (1995)). 
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The procedure of generating the fsp code and running it is as follows: 

1. Download software. 

2. Compile the program using the included makefile. (Set the location of the 

directory from Makefile.)  

3. Install the configuration files using the included makefile. 

4. Input data. 

5. Make a runfile. 

6. Make an incident filter. 

7. Run the fsp program. 

 

This fsp program was originally created for the Unix environment and allows 

users to modify the road environment by changing various options with a makefile. 

Linux is based on the Unix environment, and this program is also compatible with the 

Linux environment. Thus “Red Hat” (version 6.1), which is a Linux system, is used to 

run this fsp program. The downloaded files are in a compressed tar file; these files 

can be unpacked by using “uncompress” commands and should be set to the path of 

the directory from makefile, named “Makefile.” 

 The xfsp program is a GUI to the fsp program. It allows the user to generate 

the runfile and the incident filter that the fsp program requires by pointing and 

clicking on various buttons with the mouse (Petty (1995)). The lists of the xfsp 

program consist of Tcl7.3, Tk3.6, and Expect 5. These files must be compiled and 

installed. In addition, they must also be set to the location of the directory from 

makefile, named “Makefile.” 
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When the fsp program runs, it takes as one of its arguments the name of a file 

that is called the runfile. The runfile contains the commands that tell the program 

what to do: what data to analyze, what tests to run, what output to generate, etc. (Petty 

(1995)). The output contains speed and occupancy, and counts data in each direction 

(southbound and northbound). Each of the speed, occupancy, and counts outputs is 

produced every minute. By changing the “LOOP_OUTPUT_PERIOD” parameter, 

different time intervals for the output can be obtained.  

Fsp program was run with data from September 30, 1993 (093093) and the 

northbound direction of the network. The network was created in the PARAMICS 

model according to the data from the Freeway Service Patrol study. The layout of that 

study section is shown in Figure 5.2. The infrastructure includes six traffic zones, as 

well as lamps and loop detectors. The O-D demand matrix, based on the average 

value of traffic flow, is generated from the fsp program’s output; it is controlled by 

the API code when the PARAMICS simulation package runs. The PARAMICS 

programmer is used to get the optimal calibration results by changing the vehicle 

release rate. In the O-D demand matrix, the default value of the vehicle release rate is 

set to 5 min. This value is too large to achieve more accurate calibration results. 

Therefore, the vehicle release rate was set in the API to 1 min for the O-D demand 

matrix. 
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Figure 5.2 The Freeway Service Patrol study section (Petty (1995))  

 

5.4 The PARAMICS Programmer API Code 

PARAMICS Programmer is a framework that is used to customize many of 

the features of the underlying simulation model. Access is provided through a 

functional interface or API. The functional interface allows the user to develop 
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additional modules referred to as “plug-ins” (PARAMICS Programmer User Guide 

(2000)). The PARAMICS Programmer consists of C source files and is implemented 

from a “dll” file (dynamic linked libraries). 

In our calibration study, one file called “plugin.c” is used, which is modified 

from the tutorial example file in the PARAMICS Programmer User Guide (2000). 

This plug-in uses the Programmer API to provide an interface for specifying vehicle 

release rates between O-D pairs. It uses the parameters file to specify the release rate 

for a given trip. The plug-in uses the name of the API coefficient variable to identify 

the trip, and the variable name has to be of the form “Trips Zone ‘O’ to Zone ‘D,’” 

where O is the origin zone and D is the destination zone. Once the rates are loaded, 

the plug-in then uses random numbers to release the vehicles at approximately the 

release rate specified (PARAMICS Programmer User Guide (2000)).  (Appendix A) 

 

5.5 Measures of Effectiveness for Calibration Study 

For this dissertation, the relative error of flow and density are taken as the 

main measures of effectiveness and the minimum relative error, which optimize the 

mean headway and the mean reaction time, are used as the objective function for the 

calibration study. Every 3 min, the average values of flow and density are applied for 

more accurate comparisons. 

The objective function takes the following form: 

 

∑∑∑
−

+
−

=
LANE real

simreal

real

simreal

DETECTORINTERVAL Q
QQ

K
KK

F ,                                         [5.1] 

where 
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realK : Density for each lane and each detector on the freeway during each time 

interval (veh/mile) 

simK : Density for each lane and each detector in simulation during each time 

interval (veh/mile) 

realQ : Flow for each lane and each detector on the freeway during each time 

interval (veh/h/ln) 

simQ : Flow for each lane and each detector in simulation during each time interval 

(veh/h/ln) 

 

5.6 Calibration Process (Under-Congested Traffic Flow Condition) 

5.6.1 Calibration of Headway and Reaction Time 

The difference between the density and the flow obtained from the Freeway 

Service Patrol real-world data and the PARAMICS simulation results are used as 

input for the objective function that is to be minimized. Thus, the main objective is to 

search for the values of the key parameters that minimize the relative error between 

real-world data and the PARAMICS simulation model. The key parameters selected 

for this calibration study were mean headway and mean reaction time. The data for 

this study were selected from the morning peak data of September 30, 1993, which 

was collected at one-minute intervals; it includes flow in vehicles per hour, speed in 

miles per hour, and density in vehicles per mile. 
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Table 5.2 Average flow, speed, and density of morning peak data (three-minute 

intervals)  

Time  Flow (Veh/hr) Speed (mile/hr) Density (veh/mile) 

09:03 1,147 60.43 18.86 

09:06 1,190 60.58 19.58 

09:09 1,230 61.12 20.16 

09:12 1,123 59.77 18.74 

09:15 1,167 60.52 19.19 

09:18 1,110 61.19 18.07 

09:21 1,157 60.78 18.90 

09:24 1,277 59.63 21.23 

09:27 1,167 59.60 19.48 

09:30 1,010 61.48 16.44 

09:33 1,057 59.83 17.59 

09:36 1,117 60.43 18.44 

09:39 1,223 58.57 20.83 

09:42 1,103 59.10 18.60 

09:45 1,120 60.63 18.33 

09:48 1,170 60.16 19.39 

09:51 1,273 61.12 20.77 

09:54 1,113 60.57 18.28 

09:57 1,197 59.77 19.97 

10:00 975 60.88 15.95 

 

The simulation was run for one hour, from 9:00 AM to 10:00 AM. The reason 

for using one hour of data is that the total flow follows a similar trend for the same 

time period across various days. An ANOVA test was performed to test whether this 

one day’s worth of data is representative of all other data collection periods of other 

days. The mean flow and mean density data for seven randomly selected different 

days were compared. The F-values for the ANOVA test for mean flow and mean 

density were 1.16 and 1.33, respectively. These values were lower than the F critical 
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value, which was 2.12 at the 95 percent confidence level and 2.85 at the 99 percent 

confidence level. This means the flow and density data of September 30, 1993 can be 

assumed to represent all other days. 

The initial points of the two variables ),( 21 xx , where 1x  is the mean headway 

and 2x  is the mean reaction time, were set to (1.00, 1.00), respectively. The sum of 

the relative errors of the flow and the density were used to generate new values of θ  

for the SPSA algorithm every 3 min. To prevent very high or very low values for the 

mean headway or mean reaction time in the SPSA algorithm, we limit the mean 

headway to between 0.2 and 2.5, and mean reaction time of between 0.2 and 2.0 s. 

Optimization of the objective function using the SPSA algorithm: 

 

Minimize ∑∑∑
−

+
−

=
LANE real

simreal

real

simreal

DETECTORINTERVAL Q
QQ

K
KK

F                          [5.2]  

 

Constraints: 

1) Mean headway: 0.2< 1x <2.5 

2) Mean reaction time: 0.2< 2x <2.0 

 

Table 5.3 Relative errors, depending on mean headway and mean reaction time 

Mean headway Mean reaction time 
Loss function 

Relative error 
)( kkcL Δ+

∧

θ  )( kkcL Δ−
∧

θ  

1.00 1.00 24.74 27.83 -3.09 

1.62 0.38 24.96 23.89 1.07 

1.77 0.23 28.49 24.85 3.64 
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1.35 0.65 26.93 25.76 1.17 

1.23 0.54 25.26 26.29 -1.03 

1.14 0.63 24.97 26.82 -1.85 

1.29 0.48 23.55 24.49 -0.94 

1.22 0.41 24.80 25.83 -1.03 

1.29 0.33 26.54 24.48 2.06 

1.43 0.20 25.99 24.34 1.65 

1.33 0.30 25.80 24.93 0.87 

1.27 0.25 24.56 25.57 -1.01 

1.22 0.20 25.70 25.05 0.65 

 

5.6.2 The SPSA Iteration Process (Spall (2003))  

 

Figure 5.3 The example of the SPSA algorithm procedure  
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Step 0: Initialization and coefficient selection 

Set counter index to k =0. The initial point 
∧

0θ  is (1.00, 1.00) and nonnegative 

coefficients a , c , A , α , and γ  in the gain sequence ka  and kc  are determined; 

these sequences are set to: 

 

602.0)1(
2.0

+
=

k
ak , 100.0)1(

5.0
+

=
k

ck  

 

Step 1: Generation of the SP vector and run the simulation with updated parameters  

Generate a p -dimensional random perturbation vector kΔ ; this vector uses a 

Bernoulli 1±  distribution. The updated parameters are acquired from kkc Δ+θ  and 

kkc Δ−θ . 

 

Step 2: Loss function evaluations 

Evaluate the loss function; the values of kc , kΔ  for loss function )( kkcL Δ+
∧

θ  

and )( kkcL Δ−
∧

θ are obtained from steps 0 and 1.  

The PARAMICS simulation is performed, based on the new mean target 

headway and mean reaction time calculated from kkc Δ+θ  and kkc Δ−θ , respectively. 

The simulation results are compared with the observed data, based on loss function. 

 

Step 3: Gradient approximation 
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Based on calculated two loss functions )( kkcL Δ+
∧

θ  and )( kkcL Δ−
∧

θ , the 

gradient approximation )( kkg
∧∧

θ  from equation [3.2] is obtained and then used to 

generate the SP for the gradient approximation )( kkg
∧∧

θ . 

 

Step 4: Update θ  estimate 

Update k

∧

θ  to new value 1+

∧

kθ , using the standard SA form. 

)(1 kkkkk ga
∧∧∧

+

∧

−= θθθ  

 

Step 5: Iteration or termination 

After the new value 1+

∧

kθ  is updated, return to step 1 with the updated 1+

∧

kθ  

instead of k

∧

θ . 

Terminate the algorithm if the fluctuation is smaller than the change in 

successive iterations, or if it is lower than the first set number. k

∧

θ  of the last iteration 

is the optimal value *θ . 

 

5.6.3 Results of the Calibration Study 

The iteration process terminates at the point k

∧

θ  (1.22, 0.20), which is lower 

than the initial gradient approximation )( kkg
∧∧

θ , which was (–0.84, 0.84). The results 

of this calibration study are summarized in Table 5.4. The points of the two variables 

converge into one point where there is only a small difference between real-world 
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data and the PARAMICS simulation results. The difference between the two values 

decreased from (4.07, –4.07) when k =2, to (–0.84, 0.84) when k =12. 

Figure 5.4 shows the movement of the objective function, based on the 

updated parameters. The sum of the relative error reduces from 25.02 when the mean 

target headway and mean reaction time is 1.62 and 0.38, respectively, to 23.29 when 

the updated parameters are 1.22 and 0.20, respectively. The error is not greatly 

reduced. The reason for the small reduction is that the flow number is low, so flow is 

not sensitively affected by mean target headway or mean reaction time. However, if 

the volume reaches or exceeds the capacity, the error is predicted to decrease in a 

more sensitive manner.  

 

Table 5.4 The result of calibration study 

k  kc  ka  
k

∧

θ  kΔ  
kkk c Δ+

∧

θ  )( kkk cL Δ+
∧∧

θ  
kkk c Δ−

∧

θ  )( kkk cL Δ−
∧∧

θ  )(θkg
∧

 
1+

∧

kθ  

0 0.500 0.200 
(1.00, 

1.00) 

(1, -

1) 
(1.50, 0.50) 24.74 (0.50, 1.50) 27.83 

(-3.09, 

3.09) 

(1.62, 

0.38) 

1 0.467 0.132 
(1.62, 

0.38) 

(-1, 

1) 
(1.15, 0.85) 24.96 (2.08, 0.20) 23.89 

(-1.15, 

1.15) 

(1.77, 

0.23) 

2 0.448 0.103 
(1.77, 

0.23) 

(1, -

1) 
(2.22, 0.20) 28.49 (1.32, 0.68) 24.85 

(4.07, -

4.07) 

(1.35, 

0.65) 

3 0.435 0.087 
(1.35, 

0.65) 
(1, 1) (1.78, 1.09) 26.93 (0.91, 0.22) 25.76 

(1.33, 

1.33) 

(1.23, 

0.54) 

4 0.426 0.076 
(1.23, 

0.54) 

(-1, 

1) 
(0.81, 0.96) 25.26 (1.66, 0.20) 26.29 

(1.21, -

1.21) 

(1.14, 

0.63) 

5 0.418 0.068 
(1.14, 

0.63) 

(1, -

1) 
(1.56, 0.21) 24.97 (0.72, 1.05) 26.82 

(-2.20, 

2.20) 

(1.29, 

0.48) 

6 0.412 0.062 
(1.29, 

0.48) 

(-1, -

1) 
(0.88, 0.20) 23.55 (1.70, 0.89) 24.49 

(1.14, 

1.14) 

(1.22, 

0.41) 

7 0.406 0.057 
(1.22, 

0.41) 

(1, -

1) 
(1.63, 0.20) 24.80 (0.81, 0.81) 25.83 

(-1.27, 

1.27) 

(1.29, 

0.33) 

8 0.401 0.053 
(1.29, 

0.33) 

(-1, 

1) 
(0.89, 0.74) 26.54 (1.69, 0.20) 24.48 

(-2.57, 

2.57) 

(1.43, 

0.20) 

9 0.397 0.050 
(1.43, 

0.20) 

(1, -

1) 
(1.83, 0.20) 25.99 (1.03, 0.60) 24.34 

(2.08, -

2.08) 

(1.33, 

0.30) 

10 0.393 0.047 
(1.33, 

0.30) 
(1, 1) (1.72, 0.70) 25.80 (0.93, 0.20) 24.93 

(1.11, 

1.11) 

(1.27, 

0.25) 

11 0.390 0.045 (1.27, (-1, - (0.88, 0.20) 24.56 (1.66, 0.64) 25.57 (1.28, (1.22, 
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0.25) 1) 1.28) 0.20) 

12 0.387 0.043 
(1.22, 

0.20) 

(-1, 

1) 
(0.83, 0.59) 25.70 (1.60, 0.20) 25.05 

(-0.84, 

0.84) 
 

 

 

Figure 5.4 Change in the objective function (equation 5.1)  

  

5.6.4 Goodness-of-Fit Test 

Field data 

The loop data from the Freeway Service Patrol network provides only flow, 

density, and occupancy data. However, because the loop detector does not give 

headway times for individual vehicles, it is extrapolated from flow data for each 

second. 1 s is the minimum interval that can be obtained from the detector readings; 

hence, the headway values are also integers, and more concentrated between 1.0 and 

2.0 s. This field data follows a lognormal distribution. 
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Figure 5.5 Histogram of the headway distribution of the observed data (Freeway 

Service Patrol (1995)) 

 

Simulation data 

After basic models of the I-880 freeway in California were built in 

PARAMICS, calibration was performed for two key parameters namely, mean target 

headway and mean reaction time—which are very significant in controlling vehicle 

movements such as acceleration/deceleration, lane-changing, and acceptance gap. 

The headways of individual vehicles, based on the calibration study of mean target 

headway and mean reaction time, were collected from the PARAMICS simulation; 

headway was distributed between 1.1 and 2.1 s. This simulation data is observed to 

follow a lognormal distribution shown in Figure 5.6. 
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Figure 5.6 Histogram of the headway distribution of the simulated data   

 (PARAMICS) 

 

Chi-square test 

A chi-square test was performed on the headway distribution, as it is the most 

commonly used method for testing level of significance (Smith et al. (1994)). A chi-

square test is used when a random variable is nonnegative and the distribution is 

skewed to the right (Montgomery and Runger (2005)). The best fit for the headway 

distribution from the observed data and the PARAMICS simulation is when the mean 

target headway and mean reaction are 1.22 s and 0.2 s, respectively. The null 

hypothesis assumes that the headway distribution from the simulation is equal to the 

actual headway distribution. The chi-square values from the chi-square distribution 

table (Montgomery and Runger (2005)) where χ2=21.666 at the 99 percent confidence 

level are greater than the chi-square value of the two independent samples, which is 

20.639. Thus, the null hypothesis is accepted. Even if the χ2 value is very close to the 
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critical region, the result of the simulation is significant. Table 5.5 shows the results 

of the chi-square test. 

 

Table 5.5 Results of the chi-square test for goodness-of-fit  

Interval Frequency (FSP) Interval Frequency (Sim) χ2 

1 84 1.1 86 0.048 

2 631 2.1 702 7.989 

3 202 3.1 200 0.020 

4 160 4.1 154 0.225 

5 107 5.1 99 0.598 

6 69 6.1 52 4.188 

7 43 7.1 34 1.884 

8 32 8.1 22 3.125 

9 16 9.1 11 1.563 

10 9 10.1 6 1.000 

  Table 21.666 20.639 

 

5.6.5 Sensitivity Analysis 

A sensitivity analysis was also performed by varying the mean target 

headway; this was done by making changes to flow and density. By increasing or 

decreasing mean target headway every 0.1 s, the flow and density values were 

compared. When mean target headway was increased by 0.1 s from the optimized 

headway of 1.22 s, the total discrepancy of flow and density increases from 5.28 to 

6.11. If the mean target headway decreases by 0.1 s, the total discrepancy of flow and 

density increases to 5.58. As a result, with either an increase or a decrease to mean 

target headway, the total discrepancy will be greater than the optimal value. Figures 
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5.7 and 5.8 show the sensitivity analysis of the mean target headway, based on flow 

and density. 

The sensitivity analysis was performed, based on upper and lower bounds for 

the parameter values. The parameter constraints limited the mean target headway to 

between 0.2 and 2.5 s, and the mean reaction time to between 0.2 and 2.0 s. For four 

different cases—(2.5, 2.0), (2.5, 0.2), (0.2, 2.0), and (0.2, 0.2)—calibrations were 

carried out. Figure 5.9 shows the values of flow and density with extreme parameters.   

 

Table 5.6 Sensitivity analysis depending on the headway 

 Headway, reaction 

time 

Flow Density Sum 

Initial value 1.00, 1.00 2.96 2.93 5.89 

0.2 sec. Decrease 1.02, 0.20 2.50 2.92 5.42 

0.1 sec. Decrease 1.12, 0.20 3.01 2.57 5.58 

Optimized value 1.22, 0.20 2.60 2.68 5.28 

0.1 sec. Increase 1.32, 0.20 3.11 3.00 6.11 

0.2 sec. Increase 1.42, 0.20 3.23 2.90 6.13 

 2.50, 2.00 6.76 25.68 32.44 

 2.50, 0.20 1.98 6.56 8.54 

 0.20, 2.00 3.06 8.33 11.39 

 0.20, 0.20 5.15 7.66 12.81 

 



65 
 

 
 

 

Figure 5.7 (a) Decreased mean target headway (0.2)  

 

 

 

Figure 5.7 (b) Decreased mean target headway (0.1)  
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Figure 5.7 (c) Increased mean target headway (0.1)   

 

 

 

Figure 5.7 (d) Increased mean target headway (0.2) 

Figure 5.7 Sensitivity analysis of mean target headway (flow comparison) 
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Figure 5.8 (a) Decreased mean target headway (0.2) 

 

 

 

Figure 5.8 (b) Decreased mean target headway (0.1)    
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Figure 5.8 (c) Increased mean target headway (0.1)   

 

 

 

Figure 5.8 (d) Increased mean target headway (0.2) 

Figure 5.8 Sensitivity analysis of mean target headway (density comparison) 
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Figure 5.9 (a) Flow comparisons with upper and lower bounds of the parameters (2.5, 

2.0), (2.5, 0.2) 

 

 

 

Figure 5.9 (b) Flow comparisons with upper and lower bounds of the parameters (0.2, 

2.0), (0.2, 0.2) 
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Figure 5.9 (c) Density comparisons with upper and lower bounds of the parameters 

(2.5, 2.0), (2.5, 0.2) 

 

Figure 5.9 (d) Density comparisons with upper and lower bounds of the parameters 

(0.2, 2.0), (0.2, 0.2) 

Figure 5.9 Sensitivity analysis with upper and lower bounds of the parameters (flow 

and density comparison) 
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In addition to the above test, a significance test was carried out for the 

headway distribution, for each value of the mean target headway. All other values 

were kept at a constant value. By changing the mean target headway by 0.1 s, the chi-

square test was performed. From Table 5.7, it is seen that the χ2 value is lowest for a 

mean target headway of 1.22 s. In contrast, the χ2 values for other values of mean 

target headway are more than the chi-square values from the chi-square distribution 

table (Montgomery and Runger (2005)) for the 99 percent confidence level. So, the 

null hypothesis is not rejected at the 99 percent confidence level, only when the mean 

target headway is 1.22 s. 

As a result of the chi-square test of the observed and simulation headway 

values, the frequency fits only when the mean target headway is 1.22 s and other 

headways are rejected by the chi-square test. Thus, it is judged that the χ2 value of 

20.639 when the mean target headway is 1.22 s is statistically significant at the 99 

percent confidence level. 

 

Table 5.7 Chi-square test with different mean target headway values 

Interval 
FSP (1.22, 0.2) (1.02, 0.2) (1.12, 0.2) (1.32, 0.2) (1.42, 0.2) 

Frequency Freq. χ2 Freq. χ2 Freq. χ2 Freq. χ2 Freq. χ2 

1.1 84 86 0.05 357 887.25 184 119.05 62 5.76 28 37.33 

2.1 631 702 7.99 403 82.38 596 1.94 730 15.53 775 32.86 

3.1 202 200 0.02 202 0.00 206 0.08 207 0.12 221 1.79 

4.1 160 154 0.23 162 0.03 148 0.90 152 0.40 127 6.81 

5.1 107 99 0.60 102 0.23 100 0.46 95 1.35 85 4.52 

6.1 69 52 4.19 53 3.71 49 5.80 52 4.19 52 4.19 

7.1 43 34 1.88 38 0.58 34 1.88 29 4.56 32 2.81 

8.1 32 22 3.13 25 1.53 26 1.13 22 3.13 24 2.00 

9.1 16 11 1.56 10 2.25 13 0.56 14 0.25 10 2.25 
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10.1 9 6 1.00 10 0.11 9 0.00 7 0.44 6 1.00 

  20.639 978.076 131.795 35.730 95.565 

 

5.6.6 Validation of the Calibrated PARAMICS Simulation Model 

A validation process for the mean target headway and the mean reaction time, 

obtained through the SPSA algorithm, needs to be conducted to ensure that they are 

suitable for real-world conditions. A comparison between the PARAMICS simulation 

results and real-world data, using the new headway and reaction times, was carried 

out. 

The PARAMICS model outputs the flow, density, and speed. Flow and 

density were used for the validation study. Figures 5.10 and 5.11 compare the 

simulation results with the real-world flow and density data gathered from the loop 

detectors on the freeway. The data was collected from 09:00 AM to 10:00 AM; for 

greater accuracy, we averaged the data every 3 min. The flow and density based on 

optimized parameters represent values similar to the real-world data from the loop 

detectors. The relative error in the calibration study is 5.28 percent, which is lower 

than the value of the relative error before the calibration (i.e., 5.89 percent). As 

mentioned above, the error reduction was not radical in this case; however, if the flow 

reaches or exceeds the capacity, the error is predicted to decrease in a more sensitive 

manner.  
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Figure 5.10 Flow comparison using the observed and simulated data  

 

 

Figure 5.11 Density comparison using the observed and the simulated data 
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5.7 Simulation Results and Summary 

Microscopic traffic simulation models are effective tools that can be used to 

model traffic operations on real-world traffic networks. To represent freeway traffic 

conditions more accurately, some of the important parameters of these tools need to 

be calibrated. The objective of this study was to propose an efficient methodology for 

calibrating microscopic simulation models. PARAMICS was chosen as the traffic 

simulation tool used in this study, due to its popularity among practitioners and 

researchers as well its well-documented capabilities; however, our expectation was to 

be able to use the proposed calibration methodology, irrespective of the specific 

simulation tool itself. Our calibration methodology is based on the SPSA algorithm 

proposed by Spall (1992). The main reason for using this algorithm is the fact that it 

has been shown to work well when applied to highly stochastic systems that are 

similar to the traffic models developed in PARAMICS. However, a comprehensive 

testing of its applicability to our problem is needed before it can be proposed as a 

useful algorithm for calibration. Also, our methodology calls for the careful selection 

of the variables to be calibrated; thus, this dissertation uses the SPSA algorithm only 

as an initial point for the larger problem of calibrating a complex traffic simulation 

model.  

The calibration of PARAMICS was performed for particular parameters—

namely, mean target headway and mean reaction time. The traffic conditions were 

found to be sensitive to the effects of these two parameters. Finding the optimal mean 

target headway and mean reaction time that minimize the relative error, between the 

real-world and simulated flow and density values, is accomplished using the SPSA 
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algorithm. Initially, headway and reaction time were set to 1.00 and 1.00, respectively, 

and the SPSA algorithm was used to update new headway and reaction times until a 

pre-determined convergence criterion was reached. When the gradient of the SPSA 

algorithm is less than 1.0, the iteration process terminates and it stops at the point k

∧

θ  

(1.22, 0.20). The difference between field data and the output of the PARAMICS 

simulation of flow and density with optimized mean target headway and mean 

reaction time was found to be 5.28 percent, which is lower than the value of relative 

error before the calibration (i.e., 5.89 percent). A sensitivity analysis of mean target 

headway was also carried out. Total relative error was calculated by varying mean 

target headway.  

A chi-square test based on headway distribution was also performed. When a 

mean target headway of 1.22 s was used, the relative error was minimized; the chi-

square value of 20.64 was also found to be significant, as it was lower than the value 

from the table, of χ2
k-1, 0.99=21.666. 

However, the error reduction was not drastic in the test cases. It is 

hypothesized that this was mainly due to the fact that the flow-to-capacity ratio for 

the test cases undertaken thus far were low. Thus, flow is not affected very much by 

the mean target headway and mean reaction time at this relatively low v/c level.  
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Chapter 6 

Calibration of a Macroscopic Traffic Simulation 

Model Using Enhanced SPSA Methodology 

 

 

6.1 Introduction 

This chapter presents an enhanced Simultaneous Perturbation Stochastic 

Approximation (E-SPSA) methodology to reflect the effect of the distribution of 

input data. Previous studies on calibration generally focused on minimizing the sum 

of the relative errors between the observed data from a certain period of time in a 

typical day and the simulation output for the same period. This static approach can be 

explained as calibration with data obtained at one point in time. However, this type of 

calibration approach cannot capture a realistic distribution of all possible traffic 

conditions and may produce inaccurate calibration results. 

This dissertation proposes a calibration methodology based on the Bayesian 

sampling approach. Instead of a single demand matrix and corresponding observed 

traffic conditions representing a specific point in time, this calibration methodology 

uses randomly generated demand matrices and corresponding traffic conditions from 

an observed statistical distribution of these variables. The goal of using input values 

generated from an observed distribution of demands is to accurately represent a wide 
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range of all likely demand conditions observed at a facility. Moreover, at each 

iteration, the proposed calibration methodology reestimates optimal parameters by 

using a stochastic optimization algorithm known as the SPSA algorithm. A 

macroscopic simulation model of a portion of I-880 in California based on the cell 

transmission approach is calibrated with the proposed methodology. The proposed 

enhanced SPSA algorithm outperforms a simple SPSA algorithm based on several 

case scenarios studied as part of this dissertation. 

  

6.2 Proposed Enhanced Methodology for Calibrating Cell Transmission Model 

(CTM) 

Calibrating the parameters of a traffic simulation model can be formulated as 

an optimization problem in which the analytical form of the objective function is 

unknown.  This simulation–optimization problem can be more formally stated as the 

minimization of the sum of measures of accuracy for various inputs to the simulation 

model. This function is calculated at the jth iteration as shown in equation [6.1]. 
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where 

j
iD  is the O-D demand vector for the ith time interval,  

0
iD  is the starting O-D demand vector for the ith time interval 

j
iΘ  is the parameter vector for the ith time interval,  

0
iΘ  is the starting parameter vector for the ith time interval,  

ii ΘΘ ,  are the lower and upper bounds for the parameter vectors, respectively, 

Ob
iQ  is the vector of the observed set of flows for the ith time interval,  

S
iQ  is the vector of the simulated set of flows for the ith time interval, 

),...,,,,...,,( 2121
j
k

jjj
k

jj DDDA ΘΘΘ  is the autoregressive assignment matrix for the kth 

period, 

L  is the objective function in the optimization process, and 

321 ,, ggg  are measures of accuracy for traffic flows, O-D demands, and the 

parameter set, respectively. 

 

In addition to the objective function that does not have a closed-form 

representation, the calibration problem is a “stochastic optimization” problem. 

Variables of many traffic simulation models have a stochastic component to reflect 

random variations in real-world observations.  Thus, the traffic simulation calibration 

problem has to be approached as a multivariable stochastic optimization problem that 

does not have a closed form of objective function.  

The functional form of the objective function in stochastic approximation 

(SA) algorithms is probabilistic. Each algorithm can be divided into two general 



79 
 

 
 

categories: gradient and gradient-free settings. The stochastic root-finding algorithm 

by Robbins and Monro (1951) is generally used for nonlinear problems when the 

gradient function is available. SPSA, one of the well-known SA algorithms, can be 

applied in both stochastic gradient and gradient-free settings; it can also be applied to 

solve optimization problems that have a large number of variables. 

In this dissertation, flows and densities were obtained with a macroscopic 

simulation model based on the CTM proposed by Daganzo (1994). Since the goal in 

this dissertation is to introduce a new calibration methodology, a well-accepted but 

easy-to-implement approach was chosen for the simulation component of the study.  

However, it is clear that the proposed calibration methodology can be implemented in 

conjunction with any other simulation tool. The CTM is a simple and accurate 

representation of traffic situations such as acceleration–deceleration, stop and go, and 

shockwaves. CTM limits the flow to the minimum value between the upstream 

capacity and downstream capacity of the cell (Daganzo (1994)). The maximum 

number of vehicles in the undercongested condition is the product of the jam density 

( jK ) and cell length at cell i , and the maximum number of vehicles in the 

overcongested condition is the capacity of the cell 1−i . 

Previously, Munoz et al. (2004) calibrated a cell-transmission-based model of 

a portion of westbound I-210 in Southern California. Free-flow speed and congestion 

parameters were calibrated using a constrained least-square fit on the flow–density 

relationship. 

 The free-flow velocities iv   at the thj  detector: 
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The difference between the simulated and the observed total travel times 

(TTT) is the objective function used to evaluate the performance of the simulation. 

 

 ∑ ∑
= ∈

=
45:11

00:5

)(
k

kk Ci
iis

d

klTTTT ρ  

 

Here, dC indicates the set of cells. 
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However, this approach focused only on the deterministic aspects of the 

calibration problem. 

Almasri and Friedrich (2005) performed a calibration study of a macroscopic 

model developed using a cell transmission model.  

The difference between the simulated and the observed total delay was 

selected as the objective function to evaluate the performance of the simulation. 

 

∑∑=
t j

j tdf )(min  

 

where 

 f  indicates the sum of delays. 

They used genetic algorithm (GA) to solve optimization problem; it 

minimized the relative error between observed data and simulation output.  

Park and Won (2006) used Latin Hypercube Design (LHD) algorithm to 

reduce the number of combinations of parameters. Even if more parameter sets 

provide more accurate simulation results, it takes a considerably high amount of time 

to run the simulation. Thus, Authors performed a calibration of microscopic and 

stochastic simulation models developed in VISSIM and CORSIM, based on LHD-

based parameters. The result of the verification test showed that real-world conditions 

for other days can be fairly captured by the calibrated simulation model. 

 This dissertation proposes using the SPSA approach proposed by Spall 

(1992) in conjunction with a Bayesian sampling methodology. Figure 6.1 shows a 

flowchart of the proposed combined E-SPSA calibration and validation methodology. 
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The basic steps of the proposed methodology can be summarized as follows: 

1. Increment iteration: iteration = iteration + 1 

Iteration:  

a. Generate the O-D demand matrix from a probability distribution function of 

demands developed with real-world data by using the Bayesian sampling 

methodology (Gelman et al. (2004)). 

b. Use the SPSA algorithm to determine the optimal parameters given the 

demand matrix generated. 

2. Compare the output of simulation for the given demand matrix in the current 

iteration—namely, flows and densities—with the observed distribution of flows 

and densities to determine the correlation between the two distributions. If it is 

satisfactory, terminate the iterative process and proceed to the validation step. If 

unsatisfactory, return to Step 1. 

3. If verification and validation tests are satisfactory, then stop. If not, return to Step 1. 
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Figure 6.1 Proposed combined enhanced SPSA simulation calibration methodology 

 

6.3 Description of Sampling Methodology 

The initial distribution consists of random samples generated from the 

observed demand matrix, using WinBUGS, a software package (http://www.mrc-
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bsu.cam.ac.uk/) that performs Markov chain Monte Carlo simulations to randomly 

generate time-dependent O-D demand matrices. Each randomly generated demand 

)( kd  ( ( )Ik ,...,1∈ , n indicates the number of demand matrix) is a random sample of 

the initial demand distribution. This initial distribution is used to find the optimal 

input parameter values of the free-flow speed and the jam density. At each iteration, 

these input parameters are determined by using the SPSA algorithm, as discussed in 

the preceding section.  

 

6.4 Implementation Details of E-SPSA Calibration Methodology for a Freeway 

Segment 

To test the effectiveness of the E-SPSA calibration methodology, a freeway 

segment with and without ramps was considered. 

 

6.4.1 Demand Matrix Generation from Observed Distribution of Demands 

In traffic simulation models, the vehicular demand is modeled by using traffic 

zones. In the case of freeway segments, these zones are usually placed at a segment 

upstream of the segment under study. If the study segment is relatively short and the 

flow is observed on all sections (before and after ramps), the demand generated from 

the zone will, on an average, be equal to the flow observed at the segment under study. 

So, it can be assumed that the flow observed at a point on the freeway is the resulting 

effect of the same amount of demand generated at a zone upstream of the segment. In 

this dissertation, the demand matrices were generated by using the traffic counts (i.e., 

flows from loop detectors). Hence the autoregressive assignment function A  as 
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described in equation [6.1] will depend only on the current O-D demand jD1  and 

parameters j
1Θ . In the case study presented (shown in Figure 6.2), flows are observed 

on all sections. Hence, the demands could be determined uniquely. At each iteration, 

a new demand matrix is formed from the flows, which are randomly selected from the 

distribution of observed flows, which is the prior distribution. Thus, each generated 

demand matrix is effectively a sample from the initial distribution. 

Depending on the existence of intermediate ramps, a random demand matrix 

is formed from the distribution of observed flows for the two distinct geometries. The 

basic calibration procedures of demand originating from a single zone and demand 

originating from two zones may differ slightly because of the sampling methodology. 

For the on-ramp scenario, the prior distribution is obtained from the relationship 

between the flow on the mainline and that on a ramp. For generating the demands 

from two zones, the demands for the mainline and ramp (the two components of jD1 ) 

are sampled simultaneously formed from the flows Ob
iQ . To take into account the 

existence or lack of correlation between the two demands, the demand matrix is 

generated by using conditional or independent samples, respectively. The existence of 

the autoregressive assignment function shows that there can be a correlation (through 

Ob
iQ ) between the ramp demands and mainline demands jD1 . 

 

Table 6.1 Possible demand sampling method 

Demand Sampling Single Zone Two Zones (On-ramp scenario) 

Not Correlated Independent sampling Independent sampling 

Correlated Not applicable Conditional sampling 
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6.4.2 Determination of Optimal Parameters That Minimize the Error Using the 

Enhanced SPSA Algorithm 

Based on the randomly generated demand matrix, the calibration parameters 

are reestimated at each iteration. To select the optimum values of the parameters, a 

stochastic optimization algorithm, the SPSA algorithm, is used. The format of the 

objective function for the given simple freeway section is of the form shown in 

equation [6.2]. 
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where 

L  : objective function, 

real
iQ : observed flows for a given time period i and lane (vph),  

sim
iQ : simulated flows for a given time period i and lane (vph),, 

real
iK : observed density for a given time period i and lane (vpm), 

sim
iK : simulated density for a given time period i and lane (vpm), and 

i: time period ( )Ii ,...,1∈ . 

 

It is apparent from the explanation in the section on demand matrix generation 

that the demands jD1  and flows S
iQ are directly correlated. If the function for the 

measure of accuracy can be assumed to be the same—namely, relative error—then 

the objective function will have same terms repeating twice. Therefore, the objective 

function to be optimized reduces to that shown in equation [6.2]. Because CTM is a 
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macroscopic simulation model, there is an additional term real
iK  density that can be 

measured and calibrated easily. 

CTM simulation is then run multiple times with different random seeds to 

consider the variability in the simulation at each step of the SPSA algorithm. The 

random seeds are an important factor that is studied to determine their effect on the 

simulation results. In the stochastic analysis, the random seeds produce more accurate 

results by representing measurement noise (Hollander and Liu (2008)). In the CTM 

methodology used, the random seeds directly affect the demand and hence the flow. 

Thus, to minimize the variance of errors, it is important to run the simulation with 

several different random seeds. At the end of each simulation run, the relative error 

between the observed and the simulated is calculated with equation [6.2]. The SPSA 

algorithm is implemented to optimized loss function L . Ding (2003) suggested that 

the values of a, c, α , and γ  in equation [3.4] be set to 0.2, 0.5, 0.602, and 0.01, 

respectively; those values are used in this dissertation. 

 

6.4.3 Perform Kolmogorov-Smirnov (K-S) Test 

Random samples from the prior distribution are generated from the observed 

demand matrix. The SPSA algorithm for each generated demand matrix calibrates 

these parameters. When one iteration of the calibration procedure is completed and 

the optimized parameter values are found by the SPSA algorithm, the evaluation 

process is performed. The distribution of the flows and densities from the cell 

transmission is compared with the distribution of the observed values by using the K-
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S test. If there are random samples nxxx ,,, 21 ⋅⋅⋅  from a cumulative distribution 

function )(xFm , and the empirical cumulative distribution function is denoted by 

 

)_(1)( xdataObserved
n

xFn ≤=    

 

oH :  For all random samples nxxx ,,, 21 ⋅⋅⋅ , )()( xFxF nm =  

aH :   For at least one data of random samples nxxx ,,, 21 ⋅⋅⋅ , )()( xFxF nm ≠  

A K-S test determines whether the data follow a specific distribution based on 

the difference between )(xFn  and )(xFm .  

 

)()(sup, xFxFD mnmn −=  

 

Here, sup indicates the supremum of )()( xFxF mn − . For example, sup{10, 11, 

12}=12.  

Normally, the null hypothesis is that the data follows a specific distribution 

and if the test statistic mnD
mn

nm
,+

 is more than a critical value, the null hypothesis 

is rejected at the chosen alpha level. 

If the two distributions pass the K-S test, the procedure moves to the 

validation step. If they do not pass the test, the sampling process is repeated. The 

advantage of using a nonparametric statistical test such as the K-S test is that it does 

not depend on the distribution of the parameter in question. Kim et al. (2005) 
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performed the K-S test to ensure that the distribution of the simulation travel time 

represented real traffic conditions. Hollander and Liu (2008) mentioned that a 

comparison of the probability density function by using the K-S test is better 

validation method than the examination of individual observation.  

 

6.5 Case Study 

The calibration of a single zonal demand case was performed to test the 

effectiveness of the proposed E-SPSA approach. Additionally, the calibration was 

done with two demand zones over an extended road segment (mainline and on-ramp). 

 

6.5.1 Data Collection 

Data were obtained from the database of the Freeway Service Patrol project 

for a portion of the I-880 freeway in Hayward, California (Skabardonis et al. (1998)). 

Data were collected from September 27 to October 29, 1993, from 05:00 to 10:00 and 

from 14:00 to 20:00 for weekdays and were aggregated into 5-minute counts. The 

data were used differently depending on the existence or nonexistence of an 

intermediate ramp. Flow data for all the time periods for 17 different days were 

estimated in the cases with no intermediate ramp. When intermediate ramps were 

present, data were divided into four intervals: depending on morning or evening and 

on peak (reach the capacity) or nonpeak (uncongested) period (05:00 to 07:30, 07:30 

to 10:00, 14:00 to 17:00, and 17:00 to 20:00). In the case of a freeway with a single 

zone (no intermediate ramp), the selected freeway segment is a two-lane one-way 

road and the length of the section is 1 mile. In the case of a freeway with an 
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intermediate ramp, one lane for the mainline and on–ramp, respectively, is used and 

the length of the section is 1.2 miles. 

 

6.5.2 CTM and Selection of Input Parameters 

In the case of single zonal demand (no intermediate ramp), the road segments 

in CTM are initially modeled as a simple road segment to test the effectiveness of the 

E-SPSA approach. The selected freeway segment is a two-lane one-way road and the 

length of the section is 1 mile. The case of an intermediate ramp is modeled as an 

extended road segment as described by Daganzo (1995) (Figure 6.2). The selected 

freeway segment is one lane for the mainline and on-ramp, respectively, and the 

length of the mainline is 1.2 miles. Because the zonal demand, one of the major input 

variables, is sensitive to the flow–density relationship, free-flow speed ( fV ) and jam 

density ( jK ) were selected as the input parameters. 
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Figure 6.2 The network geometry 

 

6.5.3 Demand Matrix Generation from Observed Distribution of Demands 

When a ramp exists, the demand matrix (formed from flows) is generated 

depending on whether the flows from the two zones are correlated. The main 

assumption is that there is no correlation between these flows, which makes it 

possible to sample the mainline and ramp flows independently. 

Figures 6.3 and 6.4 show the histogram of the observed demand matrix 

formed from the flows. 
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Figure 6.3 Histogram based on the distribution of 17 days of observed demand 

matrix: no intermediate ramp 

 

 

Figure 6.4 (a) Mainline 
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Figure 6.4 (b) On ramp 

Figure 6.4 Histogram based on the distribution of 17 days of observed demand 

matrix: intermediate ramp 

 

6.5.4 Determination of Optimal Parameters That Minimize Error Using the 

Enhanced SPSA Algorithm  

No intermediate ramp 

For single zonal demand (no intermediate ramp), the initial values of free-flow 

speed and jam density are taken as 55 mph and 110 vehicles per mile for two lanes, 

respectively. The SPSA algorithm is used to determine the “optimal” values of the 

calibrated simulation parameters for each iteration. The same procedure is repeated 

until the sum of the relative error between observed and simulated values is less than 

the acceptable error of 5%. Each iteration is performed with three different random 

seeds when using the SPSA algorithm. 
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The input parameters converge when there is only a small difference between 

the simulated and observed values of flow and density. These are the optimized input 

parameter values for each generated demand matrix. The best fit for flow and density 

is observed for optimized input parameters of 59.6 mph and 107.0 vehicles per mile 

for two lanes, respectively.  

 

Intermediate Ramp 

For two zonal demand (mainline and on ramp), the resulting output of the 

calibrated cell transmission model is compared with the observed data. The initial 

parameters of free-flow speed and jam density are set to 60 mph and 60 vehicles per 

mile for four time periods. The sum of relative errors for four time periods (05:00 to 

07:30, 07:30 to 10:00, 14:00 to 17:00, and 17:00 to 20:00) were found to be 4.71, 

4.06, 3.97, and 4.43, respectively. Table 6.2 summarizes the results for optimal 

calibration parameters.  

 

Table 6.2 Optimal calibration parameters and other statistics 

Time Period 

Optimal 

Free flow 

speed (mph) 

Optimal 

Jam density 

(vpm) 

Sum of Relative 

Error of Flow 

Sum of Relative 

Error of Density 

Sum of 

Total Errors 

5:00 ~ 7:30 59.4 60.7 2.01 2.70 4.71 

7:30 ~ 10:00 58.7 61.3 2.02 2.04 4.06 

14:00 ~ 17:00 58.6 59.1 1.83 2.14 3.97 

17:00 ~ 20:00 59.3 60.7 2.53 1.90 4.43 

 

 

 



95 
 

 
 

6.5.5 Description of the Kolmogorov-Smirnov Test (Munoz et al. (2004)) 

The obtained flow and density distributions of the macroscopic simulation 

output based on the optimized input parameters were compared with the observed 

distributions, using the K-S test (Miller et al. (1990)).  

 For the single zonal demand case, the K-S test values for flow and density 

distributions are 0.019 and 0.139, respectively. These values are less than the critical 

values of 0.247 and 0.340 obtained from the K-S table at the 95% confidence level. 

For the two zonal demand cases, the critical K-S values from the K-S table are greater 

than the K-S values for flow and density distributions, as shown in Table 6.3. For the 

scenario with two simple road segments, the null hypothesis could not be rejected, so 

there is no reason to doubt about its validity; the null hypothesis states that the 

simulation flow and density distributed are not different from the observed 

distributions. Figures 6.5, 6.6 and 6.7 show the distribution of simulated flow and 

density values when the optimized values of input parameters are used. 

 

Table 6.3 Kolmogorov-Smirnov values for each time period (Intermediate ramp case) 

Time Period 
K-S Value 

of Flow 

K-S Value 

of Density 

Critical Value from K-S 

Table for Flow (95 %) 

Critical Value from K-S 

for Density (95 %) 

05:00~07:30 0.096 0.089 0.340 0.544 

07:30~10:00 0.038 0.063 0.389 0.453 

14:00~17:00 0.040 0.032 0.453 0.544 

17:00~20:00 0.019 0.025 0.340 0.453 
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Figure 6.5 Comparison of simulated and observed flow and density distributions: no 

intermediate ramp 
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Figure 6.6 (a) 05:00~07:30 

 

 

 

Figure 6.6 (b) 07:30~10:00 
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Figure 6.6 (c) 14:00~17:00 

 

 

 

Figure 6.6 (d) 17:00~20:00 

Figure 6.6 Comparison of simulated and observed flow distributions: intermediate 

ramp 
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Figure 6.7 (a) 05:00~07:30 

 

 

 

Figure 6.7 (b) 07:30~10:00 
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Figure 6.7 (c) 14:00~17:00 

 

 

 

Figure 6.7 (d) 17:00~20:00 

Figure 6.7 Comparison of simulated and observed density distributions: intermediate 

ramp 
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6.5.6 Verification and Validation Tests 

The verification test was performed to ensure that the determined optimal 

input parameters (the free-flow speed and jam density) represent realistic and 

accurate values under real traffic conditions. This verification analysis tested whether 

the objective function could satisfy the predetermined stopping criteria (5%). The 

result of this verification test and the performance of the simulation tool show that 

real-world conditions can be fairly captured by the calibrated simulation model.  

When the verification processes were satisfied, the validation of calibrated 

parameter values was performed for different days in the same time period and for the 

same network. It is difficult to compare the calibrated model performance with the 

similar performance results found in other calibration papers. However, the mean 

square variation (MSV) that Sanwal et al. (1996) used is a good method to compare 

the degree of deviations with the observed values.  

Fitness criteria for MSV are shown below: 

 

[ ] [ ]22 /)(1 mm
v
fit vEvvER −−= ,                                                                              [6.3]  

 

Here, mv and v  denote measured speeds and model speeds, respectively. 

 

[ ] [ ]22 /)(1 mm
T
fit TETTER −−= ,                                                                             [6.4] 
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Here, mT and T  denote measured travel times and computed travel times, 

respectively. If the model’s estimations are close to real-world measurements then the 

MSV should be close to one. 

The optimized parameter values were used to simulate randomly selected days 

as a part of the validation process. The results of the validation for the case of the two 

geometric configurations (with and without intermediate ramp) are discussed below. 

 

No intermediate ramp 

The optimized parameter values were used to simulate two randomly selected 

days. The distributions of flow and density based on the optimized parameter values 

are compared with the observed data distributions (Figures 6.8 and 6.9). Based on the 

K-S test, the values of the flow distributions for September 30, 1993, and October 13, 

1993, were 0.019 and 0.018, both less than the critical K-S value from the table 

(0.194). The values of density distributions 0.037 and 0.012 are also less than the 

critical K-S value of 0.453 at the 95% confidence level. According to the K-S test, 

observed and simulated flow and density distributions are proven to have an 

acceptable level of similarity (fit) with respect to each other.  
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Figure 6.8 (a) Flow on September 30, 1993 

 

 

 

Figure 6.8 (b) Flow on October 13, 1993 

Figure 6.8 Comparison of simulated and observed flow distributions 
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Figure 6.9 (a) Density on September 30, 1993 

 
 

 

Figure 6.9 (b) Density on October 13, 1993 

Figure 6.9 Comparison of simulated and observed density distributions  
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Intermediate ramp 

The validation test was performed for three scenarios. The first scenario used 

the E-SPSA approach for four randomly selected days. The second and third 

scenarios tested the SPSA algorithm without the sampling methodology for single 

and multiple days. These tests were performed to determine the effectiveness of the 

E-SPSA approach compared with the SPSA-only approach. Finally, the MSV 

measure used by Sanwal et al. (1996) was applied as an evaluation criterion to 

compare the degree of deviations from the observed values.  

 

First Scenario Optimized parameter values of four time periods match well with the 

distributions of observed values shown in Table 6.3. The optimized parameter values 

were used for four randomly selected days that were not used in the calibration 

process. The statistical test results of this process are shown in Table 6.4. 

 

Table 6.4 Kolmogorov-Smirnov values for each time period 

Time Period 
K-S Value 

of Flow 

K-S Value 

of Density 

Critical Value from K-S 

Table for Flow (95 %) 

Critical Value from K-S 

for Density (95 %) 

05:00~07:30 0.042 0.034 0.272 0.389 

07:30~10:00 0.116 0.026 0.453 0.453 

14:00~17:00 0.028 0.036 0.247 0.453 

17:00~20:00 0.087 0.080 0.194 0.389 

 

For all periods of the time, each calculated K-S value was less than the critical 

K-S values given by the table. This result also shows that two distributions between 

the observed and the simulated flow and density fit closely. Figures 6.10 and 6.11 
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show the fitness between the observed and the simulated distributions of flow and 

density for each time period. 

 

 

Figure 6.10 (a) 5:00~7:30 

 

 

Figure 6.10 (b) 7:30~10:00 
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Figure 6.10 (c) 14:00~17:00 

 

 

 

Figure 6.10 (d) 17:00~20:00 

Figure 6.10 Comparison of simulated and observed flow distributions 
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Figure 6.11 (a) 5:00~7:30 

 

 

 

Figure 6.11 (b) 7:30~10:00 
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Figure 6.11 (c) 14:00~17:00 

 

 

 

Figure 6.11 (d) 17:00~20:00 

Figure 6.11 Comparison of simulated and observed density distributions 
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Second Scenario In the second scenario, the validation test was performed for the 

calibration process based on the SPSA-only algorithm. Calibration was performed 

with a single day’s data until the error was within the bounds. September 30, 1993, 

data were tested to determine optimal parameter values and the resulting relative 

errors were calculated as 2.13, 2.66, 3.51, and 4.56. For three randomly selected days, 

the error was calculated using these optimized parameter values. In the case of the 

third time period, 14:00 to 17:00, the relative errors range from a low of 3.53 on 

October 13, 1993, to a high of 13.53 on October 5, 1993. The resulting relative errors 

are summarized in Table 6.5. On the basis of the SPSA-only algorithm result, flow 

and density distributions for the time period 07:30 to 10:00 on October 13, 1993, 

were compared with observed data distributions using the K-S test. The critical value 

of the K-S test for flow and density distributions is 0.272, which is more than the 

value calculated for simulated flow distribution (0.207) and less than the calculated 

value for the simulated density distribution (0.448). Thus, the null hypothesis is 

rejected for density distribution. 

  

Table 6.5 Sum of relative errors for the validation test for three randomly selected 

days 

 Sum of relative Error of Flow and Density 

Days 05:00~07:30 07:30~10:00 14:00~17:00 17:00~20:00 

09/30/93 2.13 2.66 3.51 4.57 

10/05/93 8.25 11.17 13.53 5.79 

10/13/93 7.36 13.49 3.53 4.06 

10/18/93 5.73 5.51 6.55 6.41 

Average 5.87 8.21 6.78 5.21 
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Third Scenario In the third scenario, the validation test was performed for the same 

time period on multiple days and relative errors of 4.58, 4.82, 4.19, and 4.88 were 

obtained. The optimized parameter values based on the SPSA algorithm were used 

for four randomly selected days and for four different time periods on those days. The 

relative errors increased to 10.42, 16.21, 17.58, and 15.52. With this type of 

calibration approach (SPSA), the two independent data sets for the same facility can 

be different, even if the mean of the observed data distribution closely matches the 

simulated data. Hence, it is concluded that the optimal parameter values from the 

SPSA algorithm are not always transferable to data sets from the same time periods 

on different days. 

On the basis of the variation approach proposed by Sanwal et al. (1996), the 

MSV of flow of four randomly selected days was compared with the simulation 

results obtained from the simulation model calibrated using the E-SPSA algorithm. 

From the morning period between 05:00 and 07:30 to the evening period between 

17:00 and 20:00, the MSVs of flow are 0.968, 0.979, 0.981, and 0.950. Sanwal et al. 

(1996) obtained a value of 0.945 for the variation of speed and 0.968 for the variation 

of travel time when they applied the optimized parameters from one day to another.  

At this point, Even if the reverse case could be happened, normally, the 

simulation results with optimized parameters are more accurate rather than the results 

with applying the optimized parameters for other days. However, the result of the 

transferability tests from Sanwal et al. (1996)’paper was shown that the variation of 

travel time when they applied the optimized parameters to another day had more 

accurate result. The MSV value was 0.885 after parameter fitted and when they 
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applied the optimized parameters to another day, the value was obtained to 0.968.   

However, the values of MSVs of flow for our approach stand for improving the 

results of simulation calibration by accurately capturing a wide range of real-world 

conditions while Sanwal et al. (1996) tested for limited time period.  

 

6.6 Simulation Results and Summary  

Careful calibration of traffic simulation models is necessary to accurately 

represent prevailing traffic conditions. In this chapter, a new calibration methodology 

based on the Bayesian sampling approach is proposed. Instead of using a single 

demand matrix and corresponding observed traffic conditions that represent one point 

in time, the new methodology uses randomly generated demand matrices and 

corresponding traffic conditions from an observed distribution of these variables. The 

goal of using input values, generated from the observed distribution of demands, is to 

enable an accurate wide-range representation of all likely demand conditions 

observed at a facility. Observed demand values were used to determine a distribution 

of observed demands for 17 days.   

Bayesian sampling approach was applied as part of the proposed calibration 

methodology to better represent the distribution of the observed traffic characteristics. 

The main purposes of using Bayesian analysis were to overcome the over- and 

underestimation of calibration parameters and to acquire a realistic distribution of all 

possible traffic conditions. Previously, the Bayesian analysis method was not 

extensively used because of its complex computational requirements. However, 
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improved performance of modern computers, coupled with efficient computational 

techniques, allows the Bayesian method to be widely used in a number of areas. 

At each iteration of the proposed Bayesian sampling framework, a new 

demand matrix, which is randomly sampled from this distribution, is loaded into the 

macroscopic simulation model.  Moreover, at each iteration, the proposed calibration 

methodology re-estimates optimal parameters by using a stochastic optimization 

algorithm, SPSA, and distributions of flow and density from the macroscopic 

simulation are compared with the distribution of the observed flow and density 

(Gelman et al. (2004)).  

A cell transmission-based macroscopic simulation model of a portion of I-880 

in California was calibrated with the proposed methodology. Two relatively simple 

road segments, shown in Figure 6.2, one with a single zonal demand (no intermediate 

ramp) and the other with two zonal demands (mainline and on-ramp), were used as 

case studies. The distribution of output from CTM was obtained by loading demand 

matrices randomly sampled from the distribution of observed demand and from the 

calibrated input parameters, which are the free-flow speed and jam density. The 

distribution of simulation output was compared with the observed data distribution by 

using the K-S test. The null hypothesis for the K-S test stated that simulated flow and 

density distributions are not different than their observed counterparts. For all 

scenarios, the null hypothesis could not be rejected at the 95% confidence level. Thus, 

it can be concluded that the differences between the distributions of observed and 

simulated flow and density values are not statistically significant. 
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The validation test with a single zonal demand was also performed over two 

randomly selected cases using the same time period and network. On the basis of 

optimized input parameters, the flow and density distributions were compared. The 

differences between the observed and the simulated flow and density distributions 

were found to be statistically insignificant at the 95% confidence level. Thus, these 

parameters can be considered to have been validated. 

As an extended simulation model, a road segment with an intermediate ramp 

was modeled using the CTM. The sum of relative errors for four time periods (05:00 

to 07:30, 07:30 to 10:00, 14:00 to 17:00, and 17:00 to 20:00) were found to be 4.71, 

4.06, 3.97, and 4.43, respectively. For three different scenarios, the model parameters 

were tested for validation and for the effectiveness of the E-SPSA approach. From 

Table 6.4, the results of four different time periods were found to satisfy the statistical 

test for accepting the null hypothesis, and it is concluded that parameter values 

calibrated by using E-SPSA are applicable to data from a different day. On the other 

hand, in the second and third scenarios, where SPSA was used without the sampling 

approach as the main calibration algorithm, predetermined validation constraints were 

not always satisfied. According to Table 6.5, none of the average values of the sum of 

relative error of flow and density values satisfied the constraint of an acceptable 

relative error of 5%. In addition, in the scenario, in which parameters were calibrated 

with the SPSA-only methodology, the distributions of simulated flow and density 

values for the time period 07:30 to 10:00 on October 13, 1993 were compared with 

observed data distributions using the K-S test. The critical value of the K-S test for 

flow and density distributions is 0.272, which is less than the calculated value for the 
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simulated density distribution (0.448). The null hypothesis is rejected for density 

distribution.  Therefore, the E-SPSA method was found to improve the results of 

simulation calibration by accurately capturing a wide range of real-world conditions.  
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Chapter 7 

Calibration of a Microscopic Simulation Model 

Using Extended-SPSA Methodology 

 

 

7.1 Introduction 

In microscopic simulation, the parameter values are determined from input 

data that is changeable. To accurately represent real traffic conditions, the parameter 

values need to be calibrated for each input datum generated from an observed 

distribution. However, calibration with the data from multiple days and a wide range 

of time periods makes it too expensive to run the simulation. In addition, a 

consideration of the uncertainties that need to be explained is another issue. 

Simulations for predicted future conditions with parameter values that are optimized 

with a certain day’s data have limitations in representing accurate traffic conditions. 

Waller et al. (2001) studied the influence of demand uncertainty and they compared 

using a single determined value for future demand with true expected future 

performance. Molina et al. (2005) used the Bayesian approach to overcome these 

problems and predicted the behavior of traffic at a signalized intersection in Chicago. 

The Bayesian analysis method proposed by Molina et al. (2005) enables one to find 

the posterior distribution of the parameters of Demand (λ ) and turning probability 
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(P), given the data (C) denoted by )|,( CPλπ that is acquired from a prior distribution 

for λ  and P, with the data density, given λ  and P. However, they did not use a 

stochastic optimization method to find “best” values for the calibration parameters.  

This chapter presents the calibration methodology using the Bayesian 

sampling approach, in conjunction with the application of the SPSA stochastic 

optimization method (Ex-SPSA) to produce more effective calibration of traffic 

simulation models.  

 

7.2 Proposed Methodology for the Calibration of a Microscopic Simulation 

Model 

In this dissertation, we propose the use of the Bayesian sampling approach in 

conjunction with the SPSA approach proposed by Spall (1992). Flows and speeds are 

obtained using a microscopic simulation model based on PARAMICS, which was 

developed by Quadstone Limited (PARAMICS Programmer User Guide (2000)). The 

objective function is shown below: 

 

∑∑ ⎥
⎦

⎤
⎢
⎣

⎡ −
+

−
=

lane time real

simreal

real

simreal

S
SS

Q
QQF |||| ,                                                          [7.1] 

 

where 

F  : The objective function, 

realQ  : Observed flows for a given time period, (vph) 

simQ : Simulated flows for a given time period, (vph) 
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realS : Observed speed for a given time period, (mph) 

simS : Simulated speed for a given time period (mph). 

 

Since, the value of the objective function shown in equation [7.1] is 

determined using a stochastic simulation tool, a stochastic optimization technique is 

required to determine optimal values of calibration parameters that will minimize 

equation [7.1]. The SPSA algorithm is a well-known and efficient stochastic 

optimization technique, which was described in the chapter 3. In addition to using the 

SPSA as the optimization approach, Bayesian sampling approach is used to be able to 

obtain input values that represent the complete range of the observed demand values 

to ensure a more robust calibration of the simulation model for a complete range of 

possible traffic conditions.  

The basic steps of our proposed methodology can be summarized as follows: 

1. Increment iteration: iteration=iteration+1  

Iteration:  

a. Generate the demand from a probability distribution function of demands 

developed using real-world data. 

b. Based on the sampled “ m ” number of data points, which cover the whole 

range of input distributions, the mean target headway ( jh ) and mean reaction 

time ( jr ) are optimized by the SPSA algorithm. Then estimate the distribution 

of ih  and ir  based on the set of optimized values for the complete distribution 

of demands noted as, iI  (where ni ,...2,1= , mj ,...2,1= , nm < ). 
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2.  Compare the output of a simulation for the demand kI  given kh  and kr  in the 

current iteration—namely, flows—with the observed distribution of flows to 

determine the statistical similarity between the two distributions (where 

100,...2,1=k ). If it is satisfactory, terminate the iterative process and proceed to the 

validation step. Else return to Step 1. 

3. If verification and validation tests are satisfactory, then stop. Else return to Step 1. 

Figure 7.1 shows a flowchart of the proposed combined Ex-SPSA calibration 

and validation methodology. 

 

 

Figure 7.1 Proposed extended SPSA calibration methodology and validation 

methodology 
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7.3 Implementation Details of the Proposed Ex-SPSA Calibration Methodology 

The calibration of PARAMICS is performed to prove the effectiveness of the 

Ex-SPSA approach. Using Ex-SPSA, a more effective calibration of traffic simulation 

models is produced. 

 

7.3.1 Data Collection 

Data were obtained from the database of the Freeway Service Patrol project 

for a portion of the I-880 freeway in Hayward, California (Skabardonis et al. (1998)). 

Data from 06:00 AM to 10:00 AM weekdays were collected over September 27, 1993 

to October 29, 1993 and aggregated into 15-minute counts. Data for all time periods 

for 16 different days were estimated. 

 

 

Figure 7.2 Histogram based on the distribution of 16 days of observed demand 

(Skabardonis et al. (1998)) 
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The network was created in the PARAMICS model according to the data from 

the Freeway Service Patrol study (Skabardonis et al. (1998)). The layout of the study 

segment is shown in Figure 7.3. 

 

 

Figure 7.3 The layout of the study segment modeled using PARAMICS 

 

7.3.2 Demand Matrix Generation from the Observed Distribution of Demands 

Selecting a best-fit distribution for the data histogram is crucial to accurate 

data analysis because an inappropriate distribution causes incorrect input data 

generation. How well the selected distribution matches the data distribution is 

determined by a goodness-of-fit test such as the Kolmogorov-Smirnov (K-S) test, 

Anderson-Darling test, or Chi-Square test. Easyfit software is used to determine the 

best-fit distribution for the data set and deals with uncertainties. In addition, the 
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software shows the parameter values and the results of a goodness-of-fit test for 40 

different distributions (www.mathwave.com).  

Easyfit software is used to determine that beta distribution whose parameter 

values are 1α =3.56, 2α =2.18, a =944.5 and b =2100.5 as the best fit for our data set 

(where, a  indicates the minimum value and b  stands for the maximum value of the 

data). Figure 7.4 shows a histogram for the data, with the distribution fitting. 

 

              

Figure 7.4 Histogram and the best fit distribution of the observed data 

(www.mathwave.com) 
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The obtained beta distribution is compared with the observed data distribution, 

using the K-S test (Miller et al. (1990)). The K-S test is appropriate in our case 

because its critical values do not rely on the distribution’s shape. In contrast, 

Anderson-Darling is only applicable to a few types of distributions and a chi-square 

test requires sufficient sample size. 

The null hypothesis states that there is not a statistically significant difference 

between the beta distribution and the observed flow distribution. On the basis of the 

results of the K-S test, summarized in Table 7.1, the null hypothesis cannot be 

rejected at any reasonable confidence levels, i.e., the sampling from the beta 

distribution can be assumed to represent the distribution from the data histogram.  

 

Table 7.1 Results of the K-S test 

Kolmogorov-Smirnov test 

Sample Size 

Statistic 

P-Value 

230 

0.05362 

0.50858 

α 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.071 0.081 0.090 0.100 0.108 

Reject? No No No No No 

 
 

7.3.3 Determination of the Optimal Parameters that Minimize the Error using 

the Extended SPSA Algorithm 

For input data I , the parameter values—mean target headway and mean 

reaction time—of PARAMICS are determined using the SPSA algorithm. In previous 
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studies, simulation calibration was performed with a single input datum 1I  obtained at 

one point in time and parameter values were optimized using a specific methodology, 

such as the genetic, simplex, or trial-and-error method shown in Figure 7.5 (Gardes et 

al. (2002); Lee et al. (2001); Toledo et al. (2004)). 

 

 

Figure 7.5 A conceptual representation of traditional calibration methods (Gardes et 

al. (2002); Lee et al. (2001); Toledo et al. (2004)) 

 

However, a simulation model calibrated using traffic data obtained from a 

limited time period over certain days under an unknown input distribution might not 

be able to represent the traffic conditions on other days. A more robust approach is to 

calibrate for the entire range of the input data ( iI ) to be able to represent a complete 

range of possible traffic conditions as shown Figure 7.6 (where ni ,...2,1= ). However, 

this method requires considerable computing resources to run the simulation for each 

replication of demand. In addition, because traffic flow is variable and all the 

predicted future traffic counts cannot be observed, there are limitations in accurately 

representing predicted traffic conditions with predetermined parameter values that are 

optimized using a certain day’s data. Therefore, rather than calibrating using input 

Single Input Demand  
Optimization of 

Parameters Simulation 

Output (V, K, Q)≅ Observed data Validation 

If not
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1I   ⇒ 1h , 1r  

2I   ⇒ 2h , 2r  

3I   ⇒ 3h , 3r  

  •                                       • 

  •                          • 

  •                          • 

nI        ⇒ nh , nr  
Compare ),|( iii rhIp  vs. Observed data

data from certain time periods only, calibration with the data obtained from a 

complete input distribution is deemed to be necessary.  

 

 

 

                       

 

 

 

Figure 7.6 A conceptual representation of calibration method of complete range of 

possible traffic conditions  

 

In this chapter, based on the randomly sampled “ m ” number of input data 

points, which cover the whole range of the input distribution, the mean target 

headway ( jh ) and mean reaction time ( jr ) are optimized using the SPSA algorithm 

for each sample, and the distributions of the ih  and ir  given the values of iI  (where 

ni ,...2,1= , mj ,...2,1= , m<n) are determined. This process for finding the distribution 

of ( ih , ir | iI ) is shown in Figure 7.7.  
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Figure 7.7 The conceptual representation of the proposed methodology for finding 

the distribution of ih  and ir  given iI  ( ih , ir | iI ) 

 

Based on the optimized values of  jh  and jr  as a function of demand, the 

trend lines and their functional representations are also obtained for both of them. 

These relationships for the mean target headway distribution given demand ( ih  | iI ) 

and for the mean reaction time given demand ( ir  | iI ) are shown in Figures 7.8 and 

7.9. 

 

 

Figure 7.8 Mean target headway distribution  

Optimization of Parameters 
( 1h , 1r ), ( 2h , 2r ), …, ( jh , jr ) SPSA Algorithm Sampled Input jI  

Distributions of  
ih  and ir  

Find Values of  
( ih  ir  | iI ) 

Drawing the graphs 
(h | I) and (r | I) 
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Figure 7.9 Mean reaction time distribution   

 

The calibration test was performed to ensure that the inferred optimal input 

parameters from the trend lines, given the demand, represent realistic and accurate 

values under real traffic conditions for different days. Based on the estimated 

parameter values from the trend lines, given demand, the flow and speed values are 

compared for October 28, 1993 and October 29, 1993. The data from these days were 

not used in the calibration process.  The sums of the relative errors for flow and speed 

values calculated using equation [7.1] were found to be 4.45 for October 28, 1993 and 

4.14 for October 29, 1993. These results satisfied the requirement of an acceptable 

relative error of less than 5%. Figures 7.10 and 7.11 compare the flow and speed 

values based on the estimated parameter values with the observed data for those two 

dates. 
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Figure 7.10 (a) Flow 

 

 

 

Figure 7.10 (b) Speed 

Figure 7.10 Comparison between observed and simulated flow and speed (October 

28, 1993) (Skabardonis et al. (1998)) 
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Figure 7.11 (a) Flow 

 

 

 

Figure 7.11 (b) Speed 

Figure 7.11 Comparison between observed and simulated flow and speed (October 

29, 1993) (Skabardonis et al. (1998))  
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7.3.4 Verification Test  

On the basis of the method of Sanwal et al. (1996) presented in chapter 6, the 

mean square variation (MSV) of speed was compared with the simulation results 

obtained from the calibrated simulation model using the SPSA algorithm. The MSV 

is calculated by subtracting the mean square error from one and the value is close to 

one that states the model’s estimations are close to real-world measurement. 

The values for October 18, 1993 and October 11, 1993 were estimated at 

0.897 and 0.905, respectively, which are greater than the variation of speed, 0.888, 

obtained from Sanwal et al. (1996)’s paper, i.e., even if between the SPSA-only 

methodology and variation approach did not have remarkable differences, the SPSA-

only methodology leads to obtain relatively more accurate results.  

 

7.3.5 Analysis of the Simulation Output for the Optimized Input Parameters  

A simulation output is a function of input data given mean target headway and 

mean reaction time, denoted by )],|[( iii rhIF . One hundred sampled input data ( kI ) 

and optimized parameter values, given kI , were the inputs to PARAMICS, and the 

outputs of the simulation were compared with the observed data distribution obtained 

from real data. Figure 7.12 shows the plot of the distribution of the sampled data from 

a beta distribution using the Bayesian sampling approach. For each sample, the 

generated sample data kI , the mean target headway, and the mean reaction time 

calculated using the estimated equations shown in Figure 7.8 and Figure 7.9. This 

process is summarized in Table 7.2. The K-S test is performed as a goodness-of-fit 
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test to compare the distribution obtained from the simulation outputs using the 

optimized input parameters with the distribution obtained using observed data. 

 

 

Figure 7.12 The estimated distribution of sampled flow data (www.mathwave.com) 

 

Table 7.2 Simulated data, mean target headway, and mean reaction time given flow 

Data Headway Reaction 
time Data Headway Reaction 

time Data Headway Reaction 
time Data Headway Reaction 

time 

1,861 0.98 0.24 1,970 0.95 0.20 1,518 1.04 0.48 1,586 1.03 0.44 
1,934 0.96 0.20 1,683 1.01 0.37 1,676 1.01 0.37 1,780 0.99 0.30 
1,516 1.05 0.49 1,380 1.07 0.58 1,853 0.98 0.25 1,714 1.01 0.35 
1,817 0.99 0.27 1,563 1.04 0.45 1,888 0.97 0.22 1,899 0.97 0.22 
1,411 1.07 0.56 1,614 1.03 0.42 1,835 0.98 0.26 1,722 1.00 0.34 
1,787 0.99 0.30 1,569 1.03 0.45 1,590 1.03 0.43 1,698 1.01 0.36 
1,821 0.98 0.27 1,930 0.96 0.20 1,466 1.06 0.52 1,659 1.02 0.39 
1,869 0.97 0.24 1,560 1.04 0.45 1,642 1.02 0.40 1,462 1.06 0.52 
1,894 0.97 0.22 1,723 1.00 0.34 1,930 0.96 0.20 1,825 0.98 0.27 
1,776 0.99 0.30 1,601 1.03 0.43 1,581 1.03 0.44 1,897 0.97 0.22 
1,887 0.97 0.23 1,572 1.03 0.45 1,855 0.98 0.25 1,525 1.04 0.48 
1,942 0.96 0.20 1,923 0.96 0.20 1,623 1.02 0.41 1,591 1.03 0.43 
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1,325 1.08 0.62 1,777 0.99 0.30 1,909 0.97 0.21 1,863 0.98 0.24 
1,896 0.97 0.22 1,691 1.01 0.36 1,235 1.10 0.68 1,762 1.00 0.31 
1,897 0.97 0.22 1,723 1.00 0.34 1,638 1.02 0.40 1,385 1.07 0.58 
1,704 1.01 0.35 1,578 1.03 0.44 1,827 0.98 0.27 1,605 1.03 0.42 
1,971 0.95 0.20 1,623 1.02 0.41 2,048 0.94 0.20 1,362 1.08 0.59 
1,936 0.96 0.20 1,249 1.10 0.67 1,734 1.00 0.33 1,474 1.05 0.51 
1,718 1.00 0.34 1,920 0.96 0.20 1,406 1.07 0.56 1,279 1.09 0.65 
1,361 1.08 0.59 1,735 1.00 0.33 1,593 1.03 0.43 1,802 0.99 0.28 
1,697 1.01 0.36 1,795 0.99 0.29 1,998 0.95 0.20 1,780 0.99 0.30 
1,317 1.09 0.62 1,587 1.03 0.44 1,656 1.02 0.39 1,817 0.99 0.27 
1,956 0.96 0.20 1,717 1.01 0.34 1,764 1.00 0.31 1,549 1.04 0.46 
1,923 0.96 0.20 1,540 1.04 0.47 1,844 0.98 0.26 1,416 1.07 0.56 
1,621 1.02 0.41 1,695 1.01 0.36 1,712 1.01 0.35 1,763 1.00 0.31 

 

7.3.6 Statistical Comparison of the Distributions Obtained Using Simulated and 

Observed Data  

Kolmogorov–Smirnov (K-S) test was performed to ensure that the distribution 

of the simulation results represented real traffic conditions. A comparison was made 

between the observed data distribution and the distribution of the simulation results 

acquired from 100 sampled input data and their optimal parameter values shown in 

Table 7.2.  

The K-S test value for flow distribution was 0.059, which is less than all of 

the critical values obtained from the K-S table shown in Table 7.3. This result 

indicates that there is no statistically significant difference between the two 

distributions and thus calibrated simulation model represents real-world conditions. 

Figure 7.13 shows a probability comparison between the observed data and 

simulation results. 
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Table 7.3 Results of the Kolmogorov-Smirnov test  

Kolmogorov-Smirnov test 

Sample Size 

Statistic 

P-Value 

100 

0.059 

0.368 

α 0.1 0.05 0.025 0.01 

Critical Value 0.173 0.192 0.209 0.231 

Reject? No No No No 

 

 

Figure 7.13 Comparison of the observed and simulated probabilities of flow  

 

The MSV of flow was also estimated to verify the effectiveness of Ex-SPSA 

methodology. The MSV value of speed was 0.940, which is the greater than the 

variation of speed obtained from SPSA-only and from Sanwal et al. (1996)’s paper, 

i.e., the Ex-SPSA methodology enables one to most accurately represent actual traffic 

conditions. 
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A worst-fit distribution for the data histogram is selected for data analysis to 

test if the use inappropriate distribution causes inaccurate results. Easyfit software 

provides the worst-fit data distribution to a lognormal distribution whose parameter 

values are σ =0.13731 and μ =7.4049. The obtained lognormal distribution is 

compared with the data distribution, using the K-S test (Miller et al. (1990)). As a 

result of the K-S test, the null hypothesis is rejected at confidence levels of less than 

95 percent shown in Table 7.4.  

 

Table 7.4 Results of the Kolmogorov-Smirnov test 

Kolmogorov-Smirnov test 

Sample Size 

Statistic 

P-Value 

229 

0.09483 

0.03041 

α 0.2 0.1 0.05 

Critical Value 0.071 0.081 0.090 

Reject? Yes Yes Yes 

 

One hundred sampled input data from the lognormal distribution was the input 

to PARAMICS model, and the output of the simulation were compared with the 

observed data distribution. A goodness-of-fit test is performed to compare the 

distribution based on the simulation outputs for the optimized input parameters with 

the observed data distribution. The K-S test value for flow distribution was 0.322, and 

this value is more than all the critical values obtained from the K-S table shown in 

Table 7.5. This result indicates that there is a difference between the two distributions 

and thus simulation outputs from sampled input data from the lognormal distribution 
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do not accurately represent real-world conditions. Figure 7.14 shows a probability 

comparison between the observed and simulated data. 

 

Table 7.5 Results of the Kolmogorov-Smirnov test 

Kolmogorov-Smirnov test 

Sample Size 

Statistic 

P-Value 

100 

0.322 

0.368 

α 0.1 0.05 0.025 0.01 

Critical Value 0.173 0.192 0.209 0.231 

Reject? Yes Yes Yes Yes 

 

 

Figure 7.14 Comparison of the observed and simulated values of traffic flow 

 

7.3.7 Validation Test 

After the K-S test was satisfied for the calibration step, a validation test was 

performed for the hold out data that belongs to a different time period that was not 
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used for the calibration study. For the 15-minute flow range of 1200–1400 vehicles, 

eight different days’ simulation output distributions were compared with the observed 

data distributions. Figure 7.15 shows a comparison between the observed data and 

simulation probability results.   

 

 

Figure 7.15 Comparison of the observed and simulated probabilities of flow (For the 

range of 1200~1400) 

 

The K-S test was performed to verify the null hypothesis that there is not a 

statistically significant difference between the distribution of the simulation results 

and that of the observed flow. Based on the K-S test, the value of the flow 

distribution, 0.028, was less than the critical value of 0.192 obtained from the K-S 

table at the 95% confidence level. This demonstrated that the observed and simulated 

flow distributions have an acceptable level of similarity (fit) with each other. 
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7.4 Simulation Results and Summary 

In this chapter, a new calibration methodology using the Bayesian sampling 

approach, in conjunction with SPSA stochastic optimization method, was proposed. 

This methodology enables the use of a wide range of traffic conditions from an 

observed data distribution. It also considers uncertainties. Data were obtained for a 

portion of the I-880 freeway in Hayward, California and aggregated into 15-minute 

counts for 16 different days. The input distribution was estimated using Easyfit 

software. 

A section of the I-880 in California was first modeled in PARAMICS and 

then calibrated using the proposed methodology. The simulation results of a 

microscopic model varies in sensitivity based on the input parameters such as 

geometries, signposting, or factors related to the behavior of drivers. Thus, the 

calibrated parameters for a single demand matrix might not generate accurate results 

for other demands that are likely to occur depending on the time of the day, day of the 

week, the month, or the season.  

The Ex-SPSA approach allows for the calibration of a simulation model for 

the whole range of input data and helps to determine the optimized parameter values 

for this wide-range. In this chapter, based on “ m ” number of sampled data points 

from complete distribution of demands that covers the whole range of the input 

distribution, input parameters were optimized using a well-known stochastic 

optimization algorithm, SPSA, at each iteration ( jh , jr | jI ) (where mj ,...2,1= ). The 

distributions of ih  and ir  given iI  ( ih , ir | iI ) were assumed to follow the trend lines 

shown in Figures 7.8 and 7.9.  
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A verification test over two randomly selected time periods was also 

performed. On the basis of the estimated input parameters, the sums of the relative 

errors for the flow and speed values were found to be 4.45 and 4.14 for October 28, 

1993 and October 29, 1993, respectively, which satisfied the constraint of an 

acceptable relative error of less than 5%. The differences between the observed and 

the simulated flow and speed were found to be statistically significant. Thus, these 

parameters were considered to be validated.  

The distribution of simulation output for one hundred samples of input data 

( kI ) was compared with the distribution of the observed data. The optimized 

parameter values given kI  were determined from Figures 7.8 and 7.9. The K-S test 

was used to ensure that the distribution of the simulation results represented real 

traffic conditions. The K-S test value for flow distribution was 0.059, which was less 

than all of the critical values obtained from the K-S table, that is, the calibrated 

simulation model can capture real-world conditions.  

The Ex-SPSA methodology was compared with the SPSA-only calibration 

method and a variation approach proposed by Sanwal et al. (1996) to evaluate 

accuracy of the proposed Ex-SPSA calibration approach vis-à-vis other calibration 

methods. MSV value of the Ex-SPSA methodology was 0.940, which was better than 

the ones obtained from the SPSA-only methodology (0.897 for October 18, 1993) or 

the variation approach (0.888).  In other words, on the basis of the MSV values, the 

SPSA-only methodology and variation approach by Sanwal et al. (1996) did not have 

major differences but SPSA-only methodology was able to produce slightly more 

accurate results. Thus, it can be safely stated that the Ex-SPSA methodology could 
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more accurately represent a complete range of traffic conditions than the SPSA-only 

or the variation approach proposed by Sanwal et al. (1996).  

A validation test was also performed to verify that the parameter values 

obtained by using the Ex-SPSA were applicable to data from different days that were 

not included in the calibration dataset. For the 15-minute flow range of 1200–1400 

vehicles, the simulation output distributions for eight different days were compared 

with the observed data distributions. Based on the K-S test, the value of the flow 

distribution (0.028) was less than the critical K-S value (0.192) obtained from the K-S 

table at the 95% confidence level, i.e. the simulated flow distribution was not 

statistically different from the observed flow distribution. 

This analysis showed that the Ex-SPSA based calibration method can capture 

day-to-day randomness of traffic because it employs a wide-range of data coming 

from a representative distribution of traffic over different days and within day time 

periods. On the other hand, there are limitations in capturing traffic conditions 

accurately if one wants to perform calibration using SPSA-only or variation 

approaches for the complete input distribution. This is because these methods require 

considerable computational time to run the simulation for each input, and still cannot 

reflect day-to-day randomness of traffic flow mainly due to a lack of robust sampling 

approach that can guarantee an accurate representation of the complete input 

distribution. Therefore, the Ex-SPSA which uses the Bayesian sampling approach 

was found to improve the results of simulation calibration process by accurately 

capturing a wide range of time-dependent real-world conditions, overcoming the 

limitations of previous calibration studies. 
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Chapter 8 

Conclusions and Recommendation for Future 

Research 

 

 

In this dissertation, calibration and validation for a section of the I-880 

freeway was performed using PARAMICS and CTM. Even though, many papers 

about traffic simulation models have been published, their calibration methodology is 

generally based on fitting the simulation output to the observed data from a certain 

period of time in a typical day that is a part of an unknown demand distribution. 

However, this type of calibration approach cannot represent a realistic distribution of 

all possible traffic conditions and may produce inaccurate calibration results. Thus, 

the main purpose of this dissertation is to present a new calibration methodology that 

works well for a wide range of data distributions. 

In this dissertation, first the calibration of the CTM and PARAMICS 

simulation models were performed using the SPSA algorithm. The SPSA algorithm 

can be applied in both stochastic gradient and gradient-free settings; it can also be 

applied to solve optimization problems that have a large number of variables. As the 

results of the simulations, the SPSA algorithm was found to be an effective when it 

was applied to small sample of demand calibration. However, alike previous studies, 



141 
 

 
 

this static approach can be only explained as calibration with data obtained at one 

point in time. 

Second, the CTM calibration was performed using E-SPSA approach to 

reflect the effect of the distribution of input data. Previous studies on calibration 

generally focused on minimizing the sum of the relative errors between the observed 

data from a certain period of time in a typical day and the simulation output for the 

same period.  

Instead of calibrating using a single demand matrix, E-SPSA uses randomly 

generated demand matrices and corresponding traffic conditions from an observed 

distribution of these variables. In the case of single zonal demand (no intermediate 

ramp), the road segments in CTM are initially modeled as a simple road segment to 

test the effectiveness of the E-SPSA approach and the case of an intermediate ramp is 

modeled as an extended road segment. For the single zonal demand case, the K-S test 

values for flow and density distributions are 0.019 and 0.139, respectively. These 

values are less than the critical values of 0.247 and 0.340 obtained from the K-S table 

at the 95% confidence level. For the two zonal demand cases, the critical K-S values 

from the K-S table are greater than the K-S values for flow and density distributions, 

as shown in Table 6.3. The null hypothesis states that the simulation flow and density 

distributed are not different from the observed distributions. For the scenario with two 

simple road segments, the null hypothesis could not be rejected, so there is no reason 

to doubt about its validity. Thus, calibration using input values generated from an 

observed distribution of demands can accurately represent a wide range of all likely 

demand conditions observed at a facility. 
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Finally, a calibration methodology that used the Bayesian sampling approach 

in conjunction with the application of the SPSA optimization method (Ex-SPSA) was 

performed to produce more effective calibration of microscopic traffic simulation 

models. Even if more input data provide more accurate simulation results, it takes a 

considerably high amount of time to run the simulation. In addition, a consideration 

of the uncertainties such as predicted future conditions is very important aspect to 

represent accurate traffic conditions. The Ex-SPSA method can be applied to 

calibration with wide range of data distribution and takes the uncertainties into 

consideration. The observed data distribution was compared with the simulation 

output distribution for one hundred sampled input data using the K-S test. The K-S 

test value for flow distribution was 0.059, and this value is less than all the critical 

values obtained from the K-S table. On the basis of the result of the K-S test, the 

simulation results and observed data distributions were successfully matched.  

The Ex-SPSA methodology was compared with the SPSA-only optimization 

method and variation approach proposed by Sanwal et al. (1996) to ensure that the 

Ex-SPSA enables one to represent more realistic and accurate simulation results. On 

the basis of the MSV of flows, between the SPSA-only methodology and variation 

approach by Sanwal et al. (1996) did not have remarkable differences. However, the 

MSV value of the Ex-SPSA methodology was 0.940, which was notably close to one 

compared to the SPSA-only methodology (0.897 for October 18, 1993) and variation 

approach (0.888). Thus, it was concluded the Ex-SPSA methodology could more 

accurately represent complete range of traffic conditions than the SPSA-only or the 

variation approach proposed by Sanwal et al. (1996).  Therefore, it was shown that 
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the Ex-SPSA not only overcomes the limitation of previous calibration studies but 

also improves the results of simulation model calibration by accurately capturing a 

wide range of real-world conditions. 

Future research tasks include testing the Ex-SPSA for larger networks, as well 

as for other microscopic traffic simulations, such as CORSIM and VISSIM. In the 

future, other simulation parameters and more extensive data sets will be used to test 

the strengths and weaknesses of the proposed Ex-SPSA calibration methodology.  
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Appendix A. PARAMICS Programmer API Code 
/* ----------------------------------------------------------------------- 
 * Paramics Programmer API   (paramics-support@quadstone.com) 
 * Quadstone Ltd.             Tel: +44 131 220 4491 
 * 16 Chester Street          Fax: +44 131 220 4492 
 * Edinburgh, EH3 7RA, UK     WWW: http://www.paramics-online.com 
 * ----------------------------------------------------------------------- */  
 
/* ----------------------------------------------------------------------- 
 * API Example 4 - Vehicle Release. 
 * 
 * The aim of this example is to introduce some of those functions which  
 * control the release of vehicles during a simulation.  The example will 
 * allow the user to set up an API control panel from which the release of 
 * vehicles into the network can be controlled interactively. 
 * 
 * API Control Functions used:  api_setup(....) 
 *    api_coefficient_file(....)     
 *    api_coefficient_value(....)     
 *    zone_action(....) 
 * 
 * API CallBack functions used: api_printf(....) 
 *    net_n_zones(....)     
 *    zone_vehicle_type_set(....)     
 *    zone_vehicle_destination_set(....) 
 *    zone_vehicle_aggression_set(....) 
 *    zone_vehicle_awareness_set(....) 
 *    zone_index(....) 
 *    timestep(....) 
 * 
 * ----------------------------------------------------------------------- */ 
//#define QPV3_TYPES 
#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <math.h> 
 
 
#include "programmer.h" 
 
/* include our function definitions explicit to this example */ 
#include "plugin_p.h" 
 
static int g_nZones;  
static int **g_ReleaseRates; 
static int g_ODRecords = 0; 
static Bool g_Setup = FALSE; 
int g_timerrecord = 0; 
/*float g_divisor = 1.0;*/ 
char *g_ParamFile = "API_Example4"; 
 
/* Start control function calls */ 
/* --------------------------------------------------------------------- 
 * call api_setup once when the full network has been read into modeller 
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 * --------------------------------------------------------------------- */ 
void qpx_NET_postOpen(void)  
{  
    int max_zones = qpg_NET_zones() * qpg_NET_zones(); 
    int i; 
    int j; 
   
    /* first check that the number of zones supplied by the user via the  
     * parameters file and the number provided by modeller match */ 
    if (g_nZones != (qpg_NET_zones())) 
    { 
 qps_GUI_printf("\nERROR: Discrepancy between user supplied number of \n" 
            "       zones (%d), and the number supplied by \n" 
     "       modeller (%d)", g_nZones, qpg_NET_zones()); 
 return; 
    } 
 
    /* how many possible OD records do we have? (netZones^2)  so we must 
     * check if the user has supplied a matrix value for all possible OD  
     * records ,if the not warn the user that all OD records not specified will  
     * be set to zero */ 
     if (g_ODRecords != max_zones) 
     { 
         /* a discrepancy is found */ 
         qps_GUI_printf("\nWARNING: Network requires %d OD records, the parameters " 
         "file only holds %d,\n" 
         "         OD records not defined in the parameters file will " 
  "have target\n"  
         "         release rates set to zero.\n\n",max_zones, g_ODRecords); 
     } 
     /*api_printf("\nParamics Programmer API: Vehicle Release\n");*/ 
     g_Setup = TRUE; 
}  
 
/* -----------------------------------------------------------------------  
 * This call allows the plugin to setup any required structures needed for  
 * the API interface based on data provided in the parameters file. 
 * ----------------------------------------------------------------------- */ 
void api_coefficient_file(char *filename, int count)  
{ 
    if (strcmp(filename,g_ParamFile ) == 0) 
    { 
        /* estimate how many OD records the user has supplied  NOTE: all  
  * coefficients supplied should be od records except the first */  
 g_ODRecords = count - 1; 
    } 
     
    g_Setup = FALSE; 
} 
 
/* -----------------------------------------------------------------------  
 * This call is made for each of the parameters supplied in the plugin 
 * parameter file and is used to store each of the users variables. In 
 * this example we will use it to store the trip rates for each of our OD  
 * pairs supplied in the parameters file. Note that these values will be  
 * updated if the user changes a parameter via the GUI slider bar. 
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 * ----------------------------------------------------------------------- */  
void qpx_GUI_parameterValue(char *filename,int index,char *label,float value)  
{ 
    int from; 
    int to; 
    int max_release; 
    int i; 
    int j; 
    /*api_printf("\nrunning api_coefficient_value function......\n"); 
 api_printf("\ng_ParamFile= %s", g_ParamFile); 
 api_printf("\nfilename= %s", filename);*/ 
    /* check the file name */ 
    if (strcmp(filename, g_ParamFile) == 0) 
    { 
 /* here we must assume that the first coefficient in the API Parameters  
  * file is the number of zones in the network.  We need to do this in  
  * order to properly dimension our storage array before the trip  
  * records can be read and stored */ 
 
  if ((strcmp(label, "Zones in network") == 0) && (index == 0)) 
  { 
      /* the first line of the file with the correct label to identify 
       * the number of zones in the network */ 
      g_nZones = value; 
 
      /* as we now know the size of the matrix we need to build we can 
       * allocate storage */ 
      if (g_ReleaseRates != NULL) free(g_ReleaseRates); 
      g_ReleaseRates = malloc((g_nZones) * sizeof(int *)); 
      for (i = 0; i < (g_nZones); i++) 
  g_ReleaseRates[i] = malloc((g_nZones) * sizeof(int)); 
    
      /* now clear all elements of our matrix prior to reading in the 
       * values from our coefficient file */ 
      for (i =0; i < (g_nZones); i++) 
      { 
  for(j = 0; j < (g_nZones); j++) 
      g_ReleaseRates[i][j] = 0; 
      } 
  } 
  else if ((strcmp(label, "Zones in network") == 0) && (index != 0)) 
  { 
      /* the label identifying the number of zones in the network has 
       * been found but it is not the first coefficient in the  
       * Parameters file :- there is a possibility that the user has  
       * placed the coefficients  in the wrong order, this will cause the  
       * plugin to fail so warn the user */ 
      qps_GUI_printf("\nWARNING: Possible error in parameters file coefficient \n" 
     "         values ordering, please check you input data !"); 
      return; 
  } 
  else 
  { 
      /* store the trip record 
 
      /* scan the label name to find the OD pair */ 
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      sscanf(label, "Trips Zone %d to Zone %d", &from, &to); 
 
   /*api_printf("\nfrom= %d\n", from); 
   api_printf("\nto= %d\n", to);*/ 
 
      /* check for sensible zone numbers in the range 1 - g_nZones */ 
      if (((from < 1) || (to < 1)) || ((from > g_nZones) || (to > g_nZones))) 
      { 
  qps_GUI_printf("\nWarning: Invalid OD pair - coefficient %d in 
parameters " 
                     "file\n", index); 
  return; 
   } 
 
      /* store trips to be released for the correct OD pair */ 
      g_ReleaseRates[from-1][to-1] = value; 
  }  
    } 
} 
 
 
/*------------------------------------- 
function pp_api_coefficient_value 
--------------------------------------*/ 
 
/*static void pp_api_coefficient_value(char *filename,int index,char *label,float value)  
{ 
    int from; 
    int to; 
    int max_release; 
    int i; 
    int j; 
    /* check the file name */ 
/*  label = "Trips Zone 1 to Zone 2"; 
     sscanf(label, "Trips Zone %d to Zone %d", &from, &to); 
  api_printf("\nlabel= %s\n", label); 
   api_printf("\nfrom= %d\n", from); 
  api_printf("\nto= %d\n", to); 
      /* store trips to be released for the correct OD pair */ 
/*      g_ReleaseRates[from-1][to-1] = value; 
   api_printf("\nvalue= %f\n", value); 
 
} 
 
 
/* -----------------------------------------------------------------------  
 * This function sets all the variables needed for releasing a vehicle into 
 * our network. 
 * ----------------------------------------------------------------------- */ 
static void pp_release_vehicle(int type, int dest, int orig) 
{ 
    /* normal will be used as the distrution for our DVU's aggression and  
     * awarness factors */ 
    int normal[9] =  {1, 4, 11, 21, 26, 21, 11, 4, 1}; 
    int aggr; 
    int awar; 
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    int sum; 
    int new_sum; 
    /* maximum integer size */ 
    int max_rand = 32767; 
    int i; 
     
 /*api_printf("\nrunning pp_release_vehicle....\n");*/ 
    /* this callback function set the type of vehicle to be released from the  
     * zone */ 
    qps_ZNE_vehicleType(type); 
 if(orig == 2){ 
  if(type == 2 || type == 16) qps_ZNE_vehicleLane(5);} 
    /* this callback function set the destination zone index of the vehicle 
     * about to be released */ 
    qps_ZNE_vehicleDestination(dest); 
     
     
    /* calculate aggression and awareness factors */ 
    aggr = (((float)rand()/(float)(max_rand)) *100.0); 
    awar = (((float)rand()/(float)(max_rand)) *100.0); 
 
    sum = 0; 
    for(i = 0; i < 9; i++) 
    { 
        new_sum = sum + normal[i]; 
         
        if((aggr > sum) && (aggr <= new_sum)) 
        { 
            qps_ZNE_vehicleAggression(i); 
        } 
 
        if((awar > sum) && (awar <= new_sum)) 
        { 
            qps_ZNE_vehicleAwareness(i); 
        } 
         
        sum = new_sum; 
    } 
} 
 
/* -----------------------------------------------------------------------  
 * This control function is called for each zone in the network for each  
 * time step, to determine if a vehicle should be released or not.  
 * ----------------------------------------------------------------------- */ 
void qpx_ZNE_timeStep(ZONE* zone)  
{ 
    int r = rand(); 
 float vehRand = 0; 
    int max_rand = 32767; 
    int max_release; 
    int sum; 
    int from_zone; 
    int to_zone; 
    int i; 
    int j; 
 int time=60; 
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 int timer; 
/* FILE * pFile;*/ 
    Bool released; 
 
    double divisor[260] = {  
0.84 ,0.99 ,1.16 ,0.91 ,1.01 ,0.98 ,0.98 ,0.92 ,0.91 ,0.99 , 
1.18 ,1.41 ,1.17 ,1.03 ,1.17 ,0.95 ,1.07 ,0.89 ,1.12 ,1.16 , 
1.1 ,1.18 ,0.89 ,1.18 ,0.97 ,1.04 ,1.22 ,1.13 ,1.02 ,0.92 , 
0.8 ,1.21 ,0.94 ,0.8 ,0.93 ,1.09 ,1.03 ,1.22 ,0.92 ,1.19 , 
0.96 ,0.92 ,0.87 ,1.06 ,1.16 ,0.83 ,0.88 ,1.11 ,1.15 ,0.91 , 
0.96 ,1.35 ,0.89 ,1.23 ,1 ,1.19 ,1 ,0.75 ,1.18 ,0.94 , 
1.31 ,1.33 ,1.06 ,1.32 ,1 ,0.85 ,0.88 ,1.04 ,0.86 ,1 , 
0.94 ,0.99 ,1.12 ,0.94 ,0.91 ,1.15 ,1.02 ,0.9 ,0.84 ,0.89 , 
1.03 ,0.83 ,0.93 ,1.01 ,1.17 ,0.88 ,1.11 ,0.87 ,0.95 ,0.96 , 
1.08 ,0.80  ,1.06 ,0.70 ,0.79 ,0.82 ,0.93 ,0.93 ,0.82 ,0.94 , 
1.08 ,0.88 ,0.92 ,1.32 ,0.86 ,1 ,0.98 ,0.97 ,0.82 ,1.03 , 
1.28 ,1.82 ,1 ,1.06 }; 
 
 for (i=0;i<260;i++) 
 { 
  if (divisor[i] == 0.0) 
   divisor[i] = 1.00; 
 } 
 
 /*api_printf("\nrunning zone_action Function...\n");*/ 
 /*--------------------------------------------- 
  *checking the simulation time is whole minute 
  *---------------------------------------------*/ 
    if (((int)qpg_CFG_simulationTime() % time) == 0 && qpg_CFG_simulationTime() 
- (float)floor((double)qpg_CFG_simulationTime())==0.0) 
 { 
  timer=(int)qpg_CFG_simulationTime()/time - 
((int)qpg_CFG_startTime()/time) + 15; /*345 */ 
     /*api_printf("\ntimer= %d\n", timer);*/ 
   
  g_timerrecord = g_timerrecord + 1; 
  /*api_printf("\ng_timerrecord= %d\n", g_timerrecord);*/ 
 
  if (g_timerrecord == 1) 
  { 
   /*api_printf("\n(int)simulation_time()= %d\n", 
(int)simulation_time());*/ 
   /*api_printf("\nsimulation_time()= %f\n", simulation_time() - 
20700.0); 
   api_printf("\ntimer= %d\n", timer); 
   api_printf("\ndivisor[timer]= %f\n", divisor[timer]);*/ 
 
   /*------------------------------ 
    *restoring the OD dimand matrix 
    *------------------------------*/ 
   g_ReleaseRates[1][0] = 5594; /*zone 2 to zone 1 */ 
   /*g_ReleaseRates[1][0] = 500;  /*zone 2 to zone 1*/ 
   g_ReleaseRates[1][2] = 0;  /*zone 2 to zone 3*/ 
   g_ReleaseRates[1][3] = 0;  /*zone 2 to zone 4*/ 
   /*g_ReleaseRates[1][5] = 370;  /*zone 2 to zone 4*/ 
   /*g_ReleaseRates[4][0] = 380;  /*zone 3 to zone 1*/ 



155 
 

 
 

   g_ReleaseRates[4][0] = 300;  /*zone 5 to zone 1*/   
   /*g_ReleaseRates[1][0] = 200;  /*zone 2 to zone 1*/ 
 
 
   for (i=0; i<6; i++) 
   { 
    for (j=0; j<6; j++) 
    { 
      
     g_ReleaseRates[i][j] = g_ReleaseRates[i][j] / 
divisor[timer]; 
     /*api_printf 
("\ng_ReleaseRates[%d][%d]= %d\n", i, j, g_ReleaseRates[i][j]);*/ 
    } 
   } 
 
  }  /*completing (g_timerrecord == 1) */ 
 
 }  /*completing (((int)simulation_time() % time) == 0 && simulation_time() - 
(float)floor((double)simulation_time())==0.0)*/ 
 
 else 
 { 
  g_timerrecord = 0; 
 } 
 
 from_zone = qpg_ZNE_index(zone) - 1; 
 /*api_printf("from_zone= %d", from_zone);*/ 
 
    max_release = (int)(3600.00/qpg_CFG_timeStep()); 
     
    /* generate a random number between 0 and max_release */  
    r = (int) (((float) r / (float) max_rand) * (float) max_release); 
 
     
    /* here we loop through the release rates for the current zone (from_zone) 
     * to each possible destination zone (to_zone), summing the total release rate   
     * as we go, until the sum is greater than our random number (r). At that point  
     * we instruct the current generating zone (from_zone) to prepare to release a  
     * vehicle into the network. 
     * 
     * This will give the effect of releasing  the vehicles randomly but  
     * proportionally to their desired release rates */ 
   
    i = 0; 
    to_zone = 0; 
    released = FALSE; 
    while ((i < (g_nZones)) && !released) 
    { 
        if(i == from_zone) 
        { 
     sum = 0; 
            while (to_zone < (g_nZones) && !released) 
     { 
  sum += g_ReleaseRates[from_zone][to_zone]; 
         if (r < sum && (to_zone != from_zone)) 



156 
 

 
 

  { 
      /* here we use the index of the generating zone as as the 
       * vehicle type to be generated, this is only to allow us 
       * to distinguish between vehicles generated from each zone. 
       * See the vehicles file in the example network for more 
       * details */ 
 
   vehRand = (float)((float)rand() / (float) max_rand); 
            //qps_GUI_printf("Random no. is %f\n",vehRand); 
            if(vehRand<0.77 && vehRand >= 0){ 
 
   //pp_release_vehicle(from_zone +1, to_zone + 1); 
                    pp_release_vehicle(1, to_zone + 1, from_zone + 1); 
 
            } 
            else if(vehRand<0.94 && vehRand >= 0.77){ 
                    pp_release_vehicle(2, to_zone + 1, from_zone + 1); 
                    //if(from_zone == 2)qps_ZNE_vehicleLane(5); 
            } 
 
            else if(vehRand<0.98 && vehRand >= 0.94){ 
                    pp_release_vehicle(12, to_zone + 1, from_zone + 1); 
 
            } 
 
            else if(vehRand<=1.0 && vehRand >= 0.98){ 
                    pp_release_vehicle(16, to_zone + 1, from_zone + 1); 
                    //if(from_zone == 2)qps_ZNE_vehicleLane(5); 
            } 
 
      
 
 
      released = TRUE; 
  } 
     to_zone++; 
     } 
        } 
        i++; 
    } 
} 
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