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ABSTRACT OF THE DISSERTATION

The multiplihedra in Lagrangian Floer theory

by Sikimeti Luisa Mau

Dissertation Director: Chris Woodward

We apply the quilted Floer theory of Wehrheim and Woodward to families of quilted

surfaces parametrized by the Stasheff multiplihedra. Our approach is modeled on the

construction of the Fukaya category, which applies Floer theory to families of pointed

Riemann surfaces parametrized by the associahedra. First, we show that the multipli-

hedra are realized as a moduli space of quilted disks. Using the quilted disks we define

the moduli space of pseudoholomorphic quilted disks, which under suitable transver-

sality assumptions are smooth manifolds. Then we prove a gluing theorem relating

“broken” tuples of pseudoholomorphic quilted disks with boundaries of one-parameter

familes of pseudoholomorphic quilted disks.
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Chapter 1

Introduction

Lagrangian Floer homology was introduced by Floer in [2]. In essence it is a recipe for

associating a homology group HF (L0, L1) to a pair of Lagrangian submanifolds L0, L1

in a symplectic manifold. The chain groups are generated by points of intersection, and

the Floer differential counts pseudoholomorphic strips connecting points of intersection.

The Lagrangian submanifolds of M and associated Floer chain groups have the structure

of an A∞ category, whose main feature is a sequence of products,

µn : CF (Ln−1, Ln) ⊗ . . . ⊗ CF (L0, L1) −→ CF (L0, Ln)

for n ≥ 1, that satisfy a sequence of quadratic relations called the A∞ associativity

relations. The products µn are defined by counting pseudoholomorphic n + 1-gons;

the Floer differential ∂ is essentially µ1. The main impediment to Lagrangian Floer

homology is that the Floer differential can fail to satisfy ∂2 = 0. Fukaya, Oh, Ohta and

Ono [4] have shown that the obstruction can be encoded in a more general A∞ structure,

in which there is a notion of a µ0. The A∞ category encodes more information than

the Floer homology groups alone, and it is called the Fukaya category of the symplectic

manifold M .

As with any topological invariants, it is useful to know how they behave with re-

spect to various notions of morphism at the level of the manifolds. Wehrheim and

Woodward defined a symplectic category in [19], whose objects are symplectic mani-

folds and morphisms are sequences of Lagrangian correspondences. They developed a

quilted version of Floer homology in which Lagrangian correspondences play a visible

and canonical role, and established some functoriality properties of Floer homology

with respect to Lagrangian correspondences. This thesis fits into a larger program of

studying how their constructions extend to the chain level. One goal of the program
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is to show that Lagrangian correspondences induce A∞ functors between Fukaya cat-

egories. The axioms for an A∞ functor include a sequence of composition maps that

satisfy a collection of quadratic relations called A∞ functor relations. The results of

this thesis are motivated by a proposed functor between Fukaya categories, associated

to a Lagrangian correspondence between two manifolds. Its construction is based on

counting pseudoholomorphic “quilted disks” with markings, and these are the objects

studied in this thesis.

A quilted disk is simply a disk with an extra piece of data – an inner circle. Each

d ≥ 1 has an associated moduli space of quilted disks with d + 1 markings, which we

call Rd,1; the elements of Rd,1 are equivalence classes of tuples (D, C, z0, . . . , zd) where

D is the unit disk, C is a circle contained in D and tangent to z0 ∈ ∂D, and z0, . . . , zd

is a configuration of d + 1 distinct points on ∂D, in counterclockwise cyclic order. This

moduli space has a compactification R
d,1

by semi-stable, nodal marked quilted disks,

and the first part of the thesis is devoted to proving:

Theorem. R
d,1

is homeomorhic to a compact, (d−1)-dimensional polytope, the Stasheff

multiplihedron Jd.

This is analogous to the fact that moduli space of marked disks, which are the

domains behind µn in the Fukaya category, realize the associahedra.

z0

z1

z2

z3

Figure 1.1: The compactified moduli space R
3,1

, or multiplihedron J3.
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Following [19, Section 4.2], a quilted surface with striplike ends determines an ellip-

tic boundary value problem once its boundary components are labeled with Lagrangian

submanifolds, seams labeled by Lagrangian correspondences, and striplike ends labeled

with generalized intersection points. Given such labeling data, a pseudoholomorphic

quilted disk is a pair (r, u) where r ∈ Rd,1 parametrizes a quilted Riemann surface

serving as the domain of a pseudoholomorphic quilt u with boundary values in the

specified Lagrangians, and limits along the striplike ends given by the specified gener-

alized intersections. Such pairs can be viewed as the intersection of a certain section

of a Banach bundle with the zero section. Assuming transversality of this intersection,

the moduli space of pseudoholomorphic quilted disks is a smooth manifold, which we

call Md,1(x0, x1, . . . , xd). Here x0, . . . , xd are the generalized intersection points pre-

scribed for the striplike ends; the Lagrangian boundary conditions are suppressed from

the notation. The underlying analysis is largely an extension of the analysis for pseu-

doholomorphic strips. It boils down to the Fredholm properties of certain linearized

operators associated to a pseudoholomorphic quilted surface. When considering pseu-

doholomorphic quilted disks, the domains are not a fixed quilted surface, however their

parameter space Rd,1 is finite dimensional, and the effect of variations in the domain is

to add a compact perturbation to the linearized operator corresponding to a fixed sur-

face. The resulting linearized operators are still Fredholm, so the analytical techniques

remain essentially unchanged.

The second part of this thesis is devoted to proving Theorem 6.1.1, which is a

gluing theorem for certain “broken” pseudoholomorphic quilted disks; it is analogous

to a gluing theorem for pseudoholomorphic “broken” marked disks which is behind

the Fukaya category. Since the boundary strata of Rd,1 also contain copies of moduli

spaces of marked disks (a.k.a. associahedra), which we write as Re, the gluing statement

also references moduli spaces of generalized pseudoholomorphic marked disks, written

Me(x0, . . . , xd), which are pairs (r, u) with r ∈ Re parametrizing a quilted surface

which is the domain for a quilted pseudoholomorphic map u. For the sake of giving

the flavor of the gluing statement, we state the theorem precisely here without having

properly defined all terms in it. We warn that the meaning of regular used to describe
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a pair (r, u) is not a topological meaning, but an analytical meaning which has to do

with a certain linearized operator being surjective. The superscripts 0 and 1 for the

moduli spaces denote their 0-dimensional and 1-dimensional components respectively,

and I(L, L′) denotes a set of generalized intersection points.

Theorem. Let x0 ∈ I(L0,AB, Ld,AB) and for i = 1, . . . , d let xi ∈ I(Li−1, Li). Given

either:

1. a regular pair

(r1, u1) ∈ Md−e+1,1(x0, x1 . . . , xi−1, y, xi+e+1, . . . , xd)
0

(r2, u2) ∈ Me(y, xi, xi+1, . . . , xi+e)
0

where 2 ≤ e ≤ d, 1 ≤ i ≤ d − e, and y ∈ I(Li−1, Li+e);

2. or a regular (k + 1)-tuple

(r0, u0) ∈ Mk(x0, y1
, . . . , y

k
)0

(r1, u1) ∈ Md1,1(y1
, x1, . . . , xd1

)0

(r2, u2) ∈ Md2,1(y2
, xd1+1, . . . , xd1+d2

)0

. . .

(rk, uk) ∈ Mdk,1(yk
, xd1+...+d(k−1)+1, . . . , xd1+...+dk−1+dk

)0

where d1 + . . . + dk = d, di ≥ 1 for each i, and y
i
∈ I(Ld1+...+d(i−1)

, Ld1+...+di
)

(interpreting d0 as 0);

3. or a regular pair

(r, u) ∈ Md,1(x0, . . . , xi−1, y, xi+1, . . . , xd)
0

v ∈ M̃1(y, xi)
0

where 1 ≤ i ≤ d, and y ∈ I(Li−1, Li);

4. or a regular pair

v ∈ M̃1(x0, y)0

(r, u) ∈ Md,1(y, x1, . . . , xd)
0



5

where y ∈ I(L0,AB, Ld,AB),

there is an associated continuous gluing map

g : (R0,∞) → Md,1(x0, . . . , xd)
1

defined for some R0 >> 0, such that g(R) Gromov converges to the given pair/tuple as

R → ∞. Moreover, for sufficiently small ǫ > 0, the gluing map surjects onto Gromov

neighborhoods Uǫ of the given broken pairs/tuples.

1.1 Organization of the chapters

The next chapters are organized as follows. Chapter 2 sketches the background material

that provides the larger context for this thesis, including Lagrangian Floer homology,

the Fukaya category, and quilted Floer theory. It also outlines the construction of an

A∞ functor that motivates this research. Chapter 3 is a self-contained treatment of the

associahedra and multiplihedra, from the point of view of moduli spaces of marked disks

and their compactifications. The relationship between marked disks, the associahedra,

and metric trees is well-established, but we present it in a way which generalizes to the

quilted disks that are relevant to the functor construction. Chapter 3 defines quilts,

following [19], and covers the construction of certain families of quilts that are used in

the construction of the functor. Chapter 4 develops an analytical setting for doing Floer

theory over the multiplihedra, which is completely analogous to the setting for Floer

theory over the associahedra that is used to construct the Fukaya category. Chapter

5 then covers the gluing theorem, and presents the calculations and estimates that are

needed for it.

1.2 What isn’t covered

There are a number of issues that remain to be dealt with for the proposed A∞ functor.

1. Orientations and gradings. The objects of the complete Fukaya category

are really Lagrangian branes. These are Lagrangian submanifolds equipped with

some additional information. The additional information allows one to define two
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things: first, a way of orienting the moduli spaces used in the constructions, and

second, a way of grading the Floer chain groups and defining the degrees of the

composition maps. Orientations are important if one wants to be able to use

coefficients from a field other than Z2. So to prove that the proposed A∞ functor

satisfies the A∞ functor relations for more general coefficient fields, one needs

information on orientations for the moduli spaces of pseudoholomorphic quilts

used to define it, and how the orientations behave with respect to gluing maps.

2. Strips of varying width All strips considered in this thesis have width 1. In par-

ticular, all pseudoholomorphic quilted strips that we consider can be “folded” and

thought of as ordinary pseudoholomorphic strips in a bigger, product manifold.

In particular, results in the literature for ordinary pseudoholomorphic strips can

be applied directly to these strips without needing any modification. Eventually,

as in [19], one wants to allow varying widths and to study what happens as certain

widths approach 0, which should correspond to taking geometric composition of

Lagrangian correspondences.

3. Functors for generalized Lagrangian correspondences, composing func-

tors, and natural transformations In order to fit in with the symplectic cat-

egory picture of [19], there should also be an A∞ functor associated to general

sequences of Lagrangian correspondences between a pair of manifolds. This should

fit in with composing the A∞ functors associated to the individual Lagrangian

correspondences in the sequence. Studying these requires studying moduli spaces

of disks with multiple inner circles. Another issue is to define natural transfor-

mations between these A∞ functors.
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Chapter 2

Background

2.1 Outline of chapter

In this chapter we give an abbreviated treatment of Lagrangian Floer theory, which

is the wider context for the material in this thesis. In Section 2.3 we sketch the con-

struction of Lagrangian Floer homology, following the work of Floer [2] and Oh [12].

In Section 2.4 we give a simplified sketch of the construction of the Fukaya category,

following Seidel’s book [14]. In Section 2.5 we introduce the generalized construction

of Floer homology using quilted surfaces that was developed by Wehrheim and Wood-

ward [19]. Section 2.6 then describes the motivation behind the material in this thesis,

in terms of A∞ functors between Fukaya categories, together with a summary of the

results of the thesis.

2.2 Symplectic preliminaries

Let (M, ω) be a symplectic manifold. This means the following: M is a smooth mani-

fold, of even dimension 2n, and ω is a 2-form on M with the properties

1. dω = 0, in which case we say ω is closed;

2. ωn is a volume form, in which case we say that ω is non-degenerate.

Since M is a symplectic manifold, its tangent bundle TM −→ M is a symplectic

vector bundle. This is almost the same as being a complex vector bundle, and there is

a cohomology class c1(TM) ∈ H2(M ; Z) called the first Chern class (see, for example,

[9, p.74]).
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Definition We say that (M, ω) is monotone if there is a constant τ > 0 such that

[ω] = τc1(TM).

A symplectomorphism between two symplectic manifolds (M1, ω1) and (M2, ω2) is a

diffeomorphism φ : M1 → M2 that preserves the symplectic form, i.e., φ∗ω2 = ω1. The

condition that ω1 and ω2 are non-degenerate forces dim M1 = dimM2.

A submanifold L ⊂ M is called a Lagrangian submanifold if dimL = 1
2 dimM = n,

and ω|L≡ 0.

Example Let φ : (M, ω) → (M ′, ω′) be a symplectomorphism. Consider the product

manifold M := M ×M ′ equipped with the symplectic form ω := −pr∗1ω1 +pr∗2ω2, where

pri denotes projection onto Mi, i = 1, 2. Then the graph of φ,

gr(φ) := {(x, φ(x))
∣∣ x ∈ M1}

is a Lagrangian submanifold of (M, ω), since for a pair (η, φ∗η), (η′, φ∗η
′) ∈ T(x,φ(x))gr(φ),

−ω1(η, η′) + ω2(φ∗η, φ∗η
′) = −ω1(η, η′) + φ∗ω2(η, η′)

= 0.

Let Σ be a Riemann surface with boundary, (M, ω) a symplectic manifold and L ⊂ M

a Lagrangian submanifold. A map

u : Σ → M, u
∣∣
∂Σ

⊂ L

determines a symplectic vector bundle E → Σ whose fibers are Ez = Tu(z)M for z ∈ Σ,

and a subbundle F ⊂ E
∣∣
∂Σ

over the boundary ∂Σ whose fibers are Fz = Tu(z)L for

z ∈ ∂Σ. For such a bundle pair (E, F ) there is a well-defined boundary Maslov index,

µ(E, F ) ∈ Z (see [10, Appendix C].). This index is induced from the Maslov index for

Lagrangian subspaces in (R2n, ω0), where ω0 =
n∑

i=1
dxi ∧ dyi is the standard symplectic

structure. The boundary Maslov index extends to a cohomology class I ∈ H2(M, L; Z),

determining a homomorphism I : π2(M, L) → Z. We write ΣL for the positive generator

of the image of the homomorphism I, and call it the minimal Maslov number of L.
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Definition If (M, ω) is monotone, we say that a Lagrangian submanifold L ⊂ M is

monotone if for all u ∈ π2(M, L),

2A(u) = τI(u),

where A(u) =
∫

u∗ω is the symplectic action.

2.3 Lagrangian Floer homology

By the work of Floer [2] and Oh [12], to a pair of Lagrangian submanifolds L0 and

L1 we can associate a homology HF (L0, L1) with Z2 coefficients, under the following

hypotheses:

A1 M is compact and monotone, with monotonicity constant τ > 0.

A2 L0 and L1 are monotone, with minimal Maslov numbers at least 3.

A3 The image of either π1(L0) or π1(L1) is torsion in π1(M).

To define the homology HF (L0, L1) under assumptions A1, A2 and A3 we need a

few more auxiliary ingredients.

Definition A Hamiltonian perturbation for the pair L0, L1 is a choice of Hamiltonian

Ht ∈ C∞([0, 1] × M) such that if φt is the flow of the associated Hamiltonian vector

field XHt , the submanifold φ1(L0) intersects L1 transversally.

For dimension reasons, if φ1(L0) and L1 intersect transversally, they must intersect

at isolated points in M . Since M is compact there can only be finitely many such

points. There is a one-to-one correspondence between the set of points φ1(L0)∩L1 and

the set of paths

I(L0, L1) := {x : [0, 1] → M
∣∣ẋ − XHt(x) = 0, x(0) ∈ L0, x(1) ∈ L1}

which we call the set of perturbed intersections of L0 and L1 .

We are now able to define the Floer chain complex:

CF (L0, L1) :=
⊕

p∈I(L0,L1)

Z2〈p〉. (2.1)
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The boundary operator ∂ : CF (L0, L1) → CF (L0, L1) is defined using Floer trajec-

tories, which are types of pseudoholomorphic curves.

Definition An almost-complex structure on M is an endomorphism J : TM → TM

such that J2 = −Id. We say that J is compatible with ω if gJ(·, ·) := ω(·, J ·) defines a

Riemannian metric on M .

We denote the set of almost-complex structures on M by J , and the subset of ω-

compatible almost complex structures by Jω ⊂ J .

Fix a t-dependent, ω-compatible almost complex structure Jt ∈ C∞([0, 1],Jω), and

write Z = R× i[0, 1] ⊂ C for the infinite strip with variables (s, t). Floer’s equation for

a map u : Z → M is

∂su + Jt(∂tu − XHt) = 0

u(s, 0) ⊂ L0, u(s, 1) ⊂ L1.



 (2.2)

Remark In the absence of the Hamiltonian perturbation term, Floer’s equation re-

duces to the pseudoholomorphic map equation for the strip Z with boundary in the

given Lagrangians,

∂su + Jt∂tu = 0

u(s, 0) ⊂ L0, u(s, 1) ⊂ L1.



 (2.3)

Definition The energy of a solution of (2.2) is the quantity

E(u) =

∫

Z
|∂su|

2
Jt

ds dt,

where |∂su|
2
Jt

:= ω(∂su, Jt∂su).

If E(u) < ∞, a solution u(s, t) converges to limits x±(t) = lims→±∞ u(s, t) that satisfy

∂tx
±(t) − XHt(x

±(t)) = 0. Therefore, x± ∈ I(L0, L1).

Let M̃(x−, x+; L0, L1; Jt, Ht) be the set of finite energy solutions to Floer’s equation,

with asymptotic limits x± as s → ±∞. There is a natural R action on the maps

in M̃(x−, x+; L0, L1; Ht, Jt) by translation in the s-variable, since the equations are

independent of s.
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Definition The moduli space of finite energy, Jt-holomorphic strips, with boundaries

in L0, L1 and asymptotic limits x± ∈ I(L0, L1) is the quotient

M(x−, x+; L0, L1; Ht, Jt) := M̃(x−, x+; L0, L1; Ht, Jt)/R. (2.4)

Elements of this moduli space are called trajectories.

Theorem 2.3.1 (Floer, Oh). Under the assumptions A1, A2 and A3, there is a Baire

second category subset Jreg ⊂ C∞([0, 1],Jω) such that for every Jt ∈ Jreg,

1. for every pair x−, x+ ∈ I(L0, L1), the moduli space M(x−, x+; Ht, Jt) is a smooth

finite dimensional manifold,

2. the zero dimensional component M(x−, x+; Ht, Jt)
0 ⊂ M(x−, x+; Ht, Jt) is com-

pact,

3. the one-dimensional component M(x−, x+; Ht, Jt)
1 has a compactification as man-

ifold with boundary such that

∂M(x−, x+; Ht, Jt)
1 ∼=

⋃

y∈I(L0,L1)

M(x−, y; Ht, Jt)
0 ×M(y, x+; Ht, Jt)

0.

Remark The assumptions A1, A2 and A3 really come into play in proving the sec-

ond and third statements of the theorem. Statements about compactness are based

on Gromov compactness, which says that every sequence of trajectories with uniformly

bounded energy contains a subsequence that converges to a tuple of pseudoholomor-

phic curves comprising “broken” trajectories and a finite number of pseudoholomorphic

spheres and pseudoholomorphic disks which have “bubbled off”. The monotonicity as-

sumptions force the energy to be directly related to the index, which in turn is directly

related to the dimensions of the moduli spaces. Any pseudoholomorphic spheres and

disks must capture some minimal quantum of energy, and the assumption on the mini-

mal Maslov number gives the minimal possible effect that the captured energy can have

on lowering the index. If one is only considering the 0-dimensional and 1-dimensional

components of the moduli spaces, the dimension cannot be lowered beyond zero, so the

possibility of getting sphere and disk bubbles in the limits can be ruled out.
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Definition For a pair of Lagrangian submanifolds L0, L1, a pair (Ht, Jt) such that

Jt ∈ Jreg is called a Floer datum for L0 and L1.

Based on Theorem 2.3.1, define the Floer differential :

∂ : CF (L0, L1) −→ CF (L0, L1)

〈x〉 7→
∑

y∈I(L0,L1)

#M(x, y)0〈y〉

where #M(x, y)0 counts the number (mod 2) of Floer trajectories in the zero-dimensional

components. To show that ∂ ◦ ∂ = 0: by definition

∂(∂〈x〉) =
∑

y∈I(L0,L1)

Ny〈y〉,

where

Ny =
∑

z∈I(L0,L1)

#M(x, z)0 ×M(z, y)0 mod 2.

It follows from part (c) of the theorem that this is precisely the count of the boundary

points of the compactification of M(x, y)1, which as a 1-manifold with corners must

have an even number of boundary points, so the count (mod 2) is 0.

Therefore the homology of (CF (L0, L1), ∂) is well-defined,

HF (L0, L1) := ker ∂/im∂. (2.5)

Although the Floer chain group and boundary operator depend on the choices of

(Jt, Ht), the homology obtained in the end is independent of the choices:

Theorem 2.3.2 (Floer, Oh). For any two choices of Floer data (Ht, Jt) and (H ′
t, J

′
t)

for L0 and L1, there is a canonical isomorphism of Floer homology groups,

ΦH,J,H′,J ′ : HF (L0, L1; Ht, Jt)
∼=

−→ HF (L0, L1; H
′
t, J

′
t).

2.4 A∞ categories and the Fukaya category

The main reference for this section is Seidel’s book [14]. Let K be a field, from which

all coefficients will be taken. In our applications we will generally use Z2.
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Definition A non-unital A∞ category A consists of a set of objects Ob A, a graded

vector space HomA(X0, X1) for any pair of objects, and composition maps for d ≥ 1,

µd
A : HomA(Xd−1, Xd) ⊗ . . . ⊗ HomA(X0, X1) −→ HomA(X0, Xd)[2 − d]. (2.6)

These composition maps should satisfy the A∞ associativity relations,

∑

e,i

(−1)∗µd−e+1(ad, . . . , ai+e+1, µ
e(ai+e, . . . , ai+1), ai, . . . , a1) = 0, (2.7)

where ∗ = |a1| + . . . + |ai| − i. The summation is over all subsets that are of the form

[i + 1, . . . , i + e] ⊂ [1, . . . , n] of size 1 ≤ e ≤ n.

Remark It is helpful to think of the terms in (2.7) as being indexed by rooted trees

with d leaves, and two vertices, as in Figure 2.1. The upper vertex represents applying

µe to the inputs indexed i+1, . . . , i+e, and the lower vertex represents applying µd−e+1

to the output of µe and the remaining d − e inputs.

Figure 2.1: Tree indexing a term in the A∞ associativity relations.

The Fukaya category is a construction in symplectic topology that produces non-unital

A∞ categories. It concerns underlying structure at the chain level of the homology

groups defined in the previous section. In the following sketch of the construction of

the Fukaya category, the issues of orientation and grading will not be addressed. The

A∞ structure that we describe is therefore that of an ungraded non-unital A∞ category

with coefficients in Z2:
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Definition An ungraded, non-unital, A∞ category A with coefficients in Z2 consists

of a set of objects, Ob A, a vector space HomA(X0, X1) for any pair of objects, and

composition maps for d ≥ 1,

µd
A : HomA(Xd−1, Xd) ⊗ . . . ⊗ HomA(X0, X1) −→ HomA(X0, Xd). (2.8)

These composition maps should satisfy the A∞ associativity relations,

∑

e,i

µd−e+1(ad, . . . , ai+e+1, µ
e(ai+e, . . . , ai+1), ai, . . . , a1) = 0, (2.9)

where the summation is over all subsets [i + 1, . . . , i + e] ⊂ [1, . . . , n] of size 1 ≤ e ≤ n.

Let (M, ω) be a compact, monotone symplectic manifold. Following [14], the pre-

liminary version of the Fukaya category, Fuk(M)pr, is defined for a certain class of

Lagrangian submanifolds of M . Recalling the assumptions A1, A2 and A3 of the

previous section, we update A3 to

A3* The image of π1(L) is torsion in π1(M).

This ensures that in a set of Lagrangian submanifolds satisfying A1, A2 and A3*, any

pair of Lagrangian submanifolds in that set (we do not necessarily assume them to be

distinct) will automatically satisfy A1, A2 and A3.

Definition The preliminary Fukaya category Fuk(M)pr is an ungraded A∞ category

whose objects are the Lagrangian submanifolds of M satisfying A2, A3*, and for any

pair of objects L, L′, Hom(L, L′) := CF (L, L′). Higher composition maps µn for n ≥ 1

are defined by

µn : CF (Ln−1, Ln) ⊗ . . . ⊗ CF (L0, L1) −→ CF (L0, Ln),

〈pn〉 ⊗ . . . ⊗ 〈p1〉 7→
∑

q∈I(L0,Ln)

#M(q, p1, . . . , pn)0 〈q〉

where for each q ∈ I(L0, Ln), the number #M(q, p1, . . . , pn)0 is the count (mod 2)

of elements in the zero-dimensional component of a moduli space of inhomogeneous

pseudoholomorphic n + 1-gons, M(q, p1, . . . , pn).
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z0

z1

z2

L2

L0

L1

u

Figure 2.2: A holomorphic triangle used in the definition of µ2.

When n = 1, the pseudoholomorphic 2-gons are the trajectories defined in (2.4), whose

domain is always the strip Z = R × i[0, 1]. For n ≥ 2, the domains of the pseudoholo-

morphic n + 1-gons are themselves part of the data. The domains are parametrized by

a moduli space of of n + 1-pointed disks, Rn, which is a smooth manifold of dimension

d − 2 (see Chapter 2). The space Rn has a Deligne-Mumford type compactification

by nodal pointed disks, R
n
, which is homeomorphic to the n-th Stasheff polytope, or

associahedron . The one dimensional component Mn(q, p1, . . . , pn)1 has a Gromov-type

compactification by broken pairs, which combined with a gluing argument shows that

the compactification Mn(q, p1, . . . , pn)
1

is a one-manifold with corners, with boundary

∂Mn(q, p1, . . . , pn)1 ∼=
⋃

Md−e+1(q, p1, . . . , pi, y, pi+e+1, . . . , pn)0 (2.10)

×Me(y, pi+1, . . . , pi+e)
0.

The union is over all i, e and all y ∈ I(Li, Li+e). To see that the compositions µn satisfy

the A∞ associativity relations: the sum in (2.9) can be expressed as

∑

q∈I(L0,Ln)

Nq〈q〉

where each coefficient Nq is

∑
(#Md−e+1(q, p1, . . . , pi, y, pi+e+1, . . . , pn)0)(#Me(y, pi+1, . . . , pi+e)

0) (2.11)

where the sum is over i, e and y ∈ I(Li, Li+e). By (2.10) this is the total number of

boundary points of the compact 1-manifold with corners Mn(q, p1, . . . , pn)
1
, which is

an even number and hence (in Z2) 0.
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2.5 Quilted Lagrangian Floer homology

In [19] Wehrheim and Woodward developed a generalized version of Lagrangian Floer

theory, that allowed them to prove functoriality of Lagrangian Floer homology with

respect to Lagrangian correspondences. A Lagrangian correspondence is a notion of

morphism between symplectic manifolds, which includes symplectomorphisms but isn’t

as restrictive.

Definition A Lagrangian correspondence between (M1, ω1) and (M2, ω2) is a Lagrangian

submanifold L of the product manifold (M1 × M2, ω̃), where ω̃ = −pr∗1ω1 + pr∗2ω2. We

will often write M−
1 ×M2 to denote this product symplectic manifold, where the negative

sign in M−
1 represents the negative sign in −pr∗1ω1.

Example Let φ : (M, ωM ) → (N, ωN ) be a symplectomorphism, so φ∗ωN = ωM . Then

the graph of φ,

grφ := {(x, φ(x))
∣∣∣ x ∈ M}

is a Lagrangian correspondence between M and N , since it is a Lagrangian submanifold

of M × N with respect to the symplectic form −prMωM + prNωN .

Definition A generalized Lagrangian submanifold L of a symplectic manifold M is a

sequence of Lagrangian correspondences starting from a point and ending in M ,

L := {pt
L01−→ M1

L12−→ M2
L23−→ . . .

Ln−1,n
−→ M}.

Example A Lagrangian submanifold of M is also a generalized Lagrangian submani-

fold,

pt
L

−→ M.

One would like to extend Floer homology to pairs of generalized Lagrangian submani-

folds of M ,

L = pt
L−r
−→ M−r

L−r,−r+1
−→ . . .M−1

L−1,0
−→ M,

K = pt
Ls−→ Ms

Ls,s−1
−→ . . .M1

L1,0
−→ M.
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Two such sequences can be concatenated at M to get a cyclic sequence from a point to

a point,

pt
L−r
−→ M−r . . .M−1

L−1,0
−→ M

L0,1
−→ M1 . . .Ms

Ls−→ pt. (2.12)

Consider the product symplectic manifold

M := M
σ(r)
−r × . . . × M−

−1 × M × M−
1 × . . . × Mσ(s)

s (2.13)

where M
σ(k)
k = Mk if k is even, M−

k if k is odd. The symplectic form is

ω = (−1)rpr∗−rωr + . . . − pr∗−1ω1 + pr∗0ω0 − pr∗1ω1 + . . . + (−1)spr∗sωs

The concatenated sequence (2.12) determines a pair of Lagrangian submanifolds of M,

by taking products over two alternating subsequences,

L0 := L−r × L−r+1,−r+2 × L−r+3,−r+4 × . . . (2.14)

L1 := L−r,−r+1 × L−r+2,−r+3 × . . . (2.15)

Example If r = 2 and s = 1, suppose we have

L = pt
L−2
−→ M−2

L−2,−1
−→ M−1

L−1,0
−→ M,

K = pt
L1−→ M1

L1,0
−→ M.

Then M = M−2 × M−
−1 × M × M−

1 , and

L0 := L−2 × L−1,0 × L1

L1 := L−2,−1 × L0,1.

Provided that M,L0 and L1 satisfy A1, A2 and A3, we can now appeal to the

“classical” construction of Section 2.3, and define

HF (L, K) := HF (L,L′). (2.16)

However, an alternative approach developed in [19] has the advantages of keeping the

product structure clear.
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Definition A Hamiltonian perturbation Ht ∈ C∞([0, 1]×M) for the Lagrangian sub-

manifolds L,L′ in M is said to be of split type if

Ht = ((−1)rH−r, . . . ,−H−1, H0,−H1, . . . , (−1)sHs),

where Hj ∈ C∞([0, 1], Mj) for each j.

The perturbed intersections are the set

I(L0,L1) = {y : [0, 1] → M|ẏ = XH(y), y(0) ∈ L0,y(1) ∈ L1}.

Since the perturbation is of split type, these are tuples (y−r, . . . , y−1, y0, y1, . . . , ys)

where each yj : [0, 1] → Mj is a solution of ẏj = XHj (yj). (The Hamiltonian vector

field XHj defined on Mj in terms of ωj , is the same as the Hamiltonian vector field X−
−Hj

on M−
j , whose symplectic form is −ωj .) The condition that y(0) ∈ L0,y(1) ∈ L1 says

that

(y−r(0), . . . , y−1(0), y0(0), y1(0), . . . , ys(0)) ∈ L−r × L−r+1,−r+2 × . . .

(y−r(1), . . . , y−1(1), y0(1), y1(1), . . . , ys(1)) ∈ L−r,−r+1 × L−r+2,−r+3 × . . .
(2.17)

By [19, Proposition 3.4.3], Hamiltonian perturbations of split type are enough to achieve

transverse intersection of the time one flow of L0 with L1.

Now we identify a tuple y = (y−r, . . . , y−1, y0, y1, . . . , ys) ∈ I(L0,L1) with a tuple

x = (x−r−1 = pt, x−r, . . . , x−1, x0, x1, . . . , xs, xs+1 = pt)

where for k = −r, . . . ,−1, 0, 1, . . . , s,

xk(t) =





yk(1 − t), k odd

yk(t), k even
. (2.18)

Then the boundary condition (3.1) can be reformulated as

(xi(1), xi+1(0)) ∈ Li,i+1 for all i = −r − 1, . . . ,−1, 0, 1, . . . , s. (2.19)

Definition The set of generalized intersections of L and K is

I(L, K) = {x = (pt, x−r, . . . , x−1, x0, x1, . . . , xs, pt)
∣∣(2.18), (2.19)}. (2.20)
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The generalized Floer chain group, using Z2 coefficients, is

CF (L, K) :=
⊕

x∈I(L,K)

Z2〈x〉.

To define the boundary operator, we set up a definition of generalized trajectories. We

say that an almost complex structure J on M is of split type if

J = ((−1)rJ−r, . . . , J−1, J0, J1, . . . , (−1)sJs)

where each Jk ∈ C∞([0, 1],Jωk
) is a t-dependent almost complex structure on Mk,

compatible with ωk.

Definition A quilted Floer trajectory between x+, x− ∈ I(L, K) is a tuple

u = (u−r, . . . , u−1, u0, u1, . . . , us)

of maps ui : R × [0, 1] → Mi such that

1. lims→±∞(ui(s, t), ui+1(s, t)) = (x±
i , x±

i+1)

2. each ui is a pseudoholomorphic map into Mi,

3. (ui(s, 1), ui+1(s, 0)) ∈ Li,i+1 for all s ∈ R.

The energy of a quilted trajectory u is a sum of the energies on individual strips,

E(u) =
∑

i

∫

Z

|∂sui|
2
Ji

ds dt

=
∑

i

E(ui).

Let M̃(x+, x−) denote the moduli space of quilted trajectories between x+, x−, with

finite energy. There is an R action by translation in the s direction, since the equations

are invariant under translation and the seam conditions transfer the action from strip

to strip. Then

M(x+, x−) := M̃(x+, x−)/R

is the moduli space of quilted trajectories.
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M

N−1
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K−1,0L−2,−1

K−1L−1,0L−2

Figure 2.3: Domain of a quilted trajectory.

The construction of the Fukaya category also extends to generalized Lagrangian

submanifolds. Define an ungraded A∞ category Fuk#Mpr, the generalized preliminary

Fukaya category, as follows. The objects of Fuk#Mpr are generalized Lagrangian sub-

manifolds of M , and Hom(L, K) = CF (L, K). For n ≥ 2 the higher compositions

are defined with pseudoholomorphic quilted n-gons, M(xn, . . . , x1, y). The domains of

quilted n-gons are quilted surfaces corresponding to n + 1 pointed disks, with addi-

tional strips attached to the boundary components. These quilted domains and their

construction are described in more detail in Chapter 3. The important point is that

these domains are still parametrized by the same moduli space as the ordinary Fukaya

category; the quilted domains differ from the unquilted domains by some strips attached

at the boundary, and when the widths of the attached strips are fixed the moduli space

parametrizing the domains is unchanged. In particular, in generic conditions the mod-

uli spaces are smooth finite dimensional manifolds, their zero dimensional components

are compact, and their one dimensional components can be compactified, with a gluing

argument showing that the composition maps

µn : CF (Ln−1, Ln) × . . . × CF (L0, L1) → CF (L0, Ln)

(〈xn〉, . . . , 〈x1〉) 7→
∑

y∈I(L0,Ln)

#M(xn, . . . , x1, y)0〈y〉

satisfy the A∞ associativity relations (2.7).
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2.6 Motivation: A∞ functors for Lagrangian correspondences

Definition A non-unital A∞ functor between non-unital A∞ categories A and B con-

sists of a map Φ : ObA → ObB on objects, together with a sequence of maps Φd, d ≥ 1,

Φd : HomA(X0, X1) ⊗ . . . ⊗ HomA(Xd−1, Xd) −→ HomB(Φ(X0), Φ(Xd))[1 − d],

where the Φd fit together with the µj
A, µk

B to satisfy the A∞ functor relations:

∑

i,j

(−1)∗Φe(ad, . . . , ai+j+1, µ
j
A(aj+i, . . . , ai+1), ai, . . . , a1) = (2.21)

∑

r,i1+...ir=d

µr
B(Φir(ad, . . . , ad−ir), . . . ,Φ

i1(ai1 , . . . , a1)),

where ∗ = |a1| + . . . + |ai| − i. An ungraded non-unital A∞ functor between ungraded

non-unital A∞ categories is the same definition but with all references to gradings

omitted.

Remark It is helpful to think of the terms in the sums in (2.21) as being indexed by

certain types of bicolored rooted trees. Bicolored trees have a distinguished subset of

colored vertices which separate the tree into two levels. In Figure 2.4 the colored vertices

are those with the larger circles, and represent applying the functor to those inputs.

The bicolored tree on the left represents a term on the left hand summation of (2.21)

– the vertex above the colored vertex represents applying the composition map µj
A in

A. The bicolored tree on the right indexes a term in the sum on the right hand side of

(2.21) – the vertex below the colored vertices represents applying the composition map

µr
B in B.

The motivation behind this thesis is the goal of associating to a Lagrangian corre-

spondence, LAB ⊂ M−
A × MB, an A∞ functor

ΦAB : Fuk#(MA) → Fuk#(MB).

At the level of objects, ΦAB concatenates LAB to generalized Lagrangian submanifolds

of MA to give generalized Lagrangian submanifolds of MB, i.e.,

(∗
L−r
−→ M−r

L−r,−r+1
−→ . . .

L−1,0
−→ MA) 7→ (∗

L−r
−→ M−r

L−r,−r+1
−→ . . .

L−1,0
−→ MA

LAB−→ MB).
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Figure 2.4: The two types of bicolored trees indexing the terms in the A∞ functor
relations.

We will write LAB for the generalized Lagrangian submanifold of MB that is obtained

from L by concatenating LAB.

For d ≥ 1, the higher compositions are to be defined by

Φd
LAB

: CF (Ld−1, Ld) × . . . × CF (L0, L1) → CF (ΦLAB
(L0), ΦLAB

(Ld))

(xd, . . . , x1) 7→
∑

y∈I(L0,AB ,Ld,AB)

#Md,1(xd, . . . , x1, y)0 〈y〉

where xi ∈ I(Li−1, Li) for i = 1, . . . , d, y ∈ I(L0,AB, Ld,AB), and Md,1(xd, . . . , x1, y)0 is

the zero-dimensional component of a moduli space of pseudoholomorhic marked quilted

disks, converging at the marked points to generalized intersections xd, . . . , x1, y (see

Figure 2.5).

The quilted surfaces used in the construction of Φd are parametrized by a moduli

space of (d + 1)-marked disks with an interior circle, which we denote by Rd,1. We

will show in Chapter 3 that Rd,1 has a compactification, R
d,1

, by semistable nodal

quilted disks with (d + 1) markings. The main result of Chapter 3 is that R
d,1

is

homeomorphic to a bounded convex polytope of dimension d−1, the d-th multiplihedron.

The multiplihedra are a family of Stasheff polytopes which were originally invented as

CW complexes parametrizing A∞ maps between A∞ spaces. Chapter 4 constructs

families of quilted surfaces with striplike ends that are parametrized by associahedra

and multiplihedra.

Chapter 5 then sets up the analytic framework for doing Floer theory with surfaces

parametrized by the associahedra and the multiplihedra. Let L0, . . . , Ld be generalized
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MA
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LAB
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L2L3

L4
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x2
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Figure 2.5: Marked quilted disks behind the moduli spaces M4,1(x4, x3, x2, x1, y) which
are used to define Φ4

AB.

Lagrangian submanifolds of MA. Given a Lagrangian correspondence LAB between

MA and MB, write L0,AB for the generalized Lagrangian submanifold of MB that is

obtained from L0 by concatenating LAB; similarly write Ld,AB for the concatenation of

LAB to Ld. A (d + 1)-tuple of generalized intersections

(xd, . . . , x0) ∈ I(Ld−1, Ld) × . . . × I(L0, Ld)

determines a moduli space Md(xd, . . . , x0), while a (d + 1)-tuple

(xd, . . . , x1, y) ∈ I(Ld−1, Ld) × . . . ,×I(L0, L1) × I(L0,AB, Ld,AB)

determines a moduli space Md,1(xd, . . . , x1, y). The main result of Chapter 6 is the

gluing theorem in Theorem 6.1.1, which is needed to prove that the proposed ΦAB is

an A∞ functor, satisfying the relations (2.21).



24

Chapter 3

Moduli of disks and Stasheff polytopes

3.1 Outline of chapter

The material in this chapter has already appeared in the preprint [8], and covers two

moduli spaces and their compactifications: a moduli space of marked disks, which is

behind the construction of the Fukaya category, and a moduli space of marked quilted

disks, which is behind the construction of a proposed A∞ functor. From the point of

view of Floer theory, the purpose of this chapter is to establish that these compactified

moduli spaces are homeomorphic to compact polytopes, and to get explicit descriptions

of charts near the boundaries of these polytopes.

In the first half of this chapter, we prove that the compactified moduli spaces of

marked disks are realizations of the Stasheff associahedra. The proof that we give is

a slight modification of the proof in [5], which exploits an equivalence with a moduli

space of metric trees. We also use the theory of toric varieties and moment maps to

draw a direct connection between these moduli spaces and the convex hull realizations

of the associahedra of Loday in [7].

The methods of the first half of the chapter generalize to the moduli space of marked

quilted disks, which is the content of the second half of the chapter. We prove that

the compactified moduli spaces of marked quilted disks are realizations of the Stasheff

multiplihedra, exploiting an equivalence with a moduli space of bicolored metric trees. It

was an open question until quite recently whether the multiplihedra could be realized as

polytopes. This was answered by Forcey in [3], who produced a convex hull realization

of the multiplihedra using a modification of the algorithm in [7]. We draw a direct

connection between the moduli spaces of quilted disks and the convex hull realizations

of [3] using the theory of toric varieties and moment maps.
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3.2 The associahedron.

Let d ≥ 2 be an integer. The d-th associahedron Kd is a CW -complex of dimension d−2

whose vertices correspond to the possible ways of parenthesizing d variables x1, . . . , xd.

(x1x2)(x3x4)

((x1x2)x3)x4

(x1(x2x3))x4

x1(x2(x3x4))

x1((x2x3)x4)

Figure 3.1: Vertices of K4

Each facet of Kd is the image of an embedding

φi,e : Ki × Ke → Kd, i + e = d + 1 (3.1)

corresponding to the expression x1 . . . xi−1(xi . . . xi+e)xi+e+1 . . . xd.

The associahedra are defined by induction as follows. Let K3 be the closed unit

interval. Let d > 3 and suppose that we have constructed the associahedra Ki for

i ≤ d − 1, together with the inclusions Ki × Ke 7→ Kd corresponding to the facets of

Kd. Stasheff [17] defines

Ld =
⋃

(Ki × Ke)/ ∼

where the union is over the facets of Kd, and the equivalence relation ∼ is defined by

identifying the components in the image of the map

Ki1 × Ki2 × Ki3 → (Ki1+i2 × Ki3) × (Ki1 × Ki2+i3).

Define Kd to be the cone on Ld. The faces of Kd also correspond to rooted trees with

d + 1-branches and at least three edges meeting each vertex.

Alternatively the vertices correspond to triangulations of a regular d + 1-gon. The

edges of Kd correspond to changes of one bracketing, that is, changes of the tree by the

move shown in Figure (3.3). The number of edges meeting any vertex is the number
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x1 x2 x3 x4

(x1(x2x3))x4

x1(x2x3)

x2x3

Figure 3.2: Tree corresponding to (x1(x2x3))x4

Figure 3.3: Move corresponding to an edge of the associahedron

d − 2 of internal edges in the corresponding tree.

3.3 Moduli of semistable nodal disks

By disk we will always mean the unit disk in the complex plane,

D := {z ∈ C
∣∣|z| ≤ 1} ⊂ C

We will write ∂D for its boundary.

Definition Let d ≥ 0. A disk with (d + 1) markings is a tuple (D, z0, . . . , zd) where

D is the unit disk, and z0, . . . , zd are distinct points in ∂D, in counterclockwise order.

Two marked disks (D, z0, . . . , zd) and (D′, w0, . . . , wd) are isomorphic if there is a holo-

morphic isomorphism φ : D −→ D′ such that φ(zi) = wi for i = 0, . . . , d. The moduli

space of (d + 1)-marked disks, Rd, is the space of isomorphism classes of disks with

(d + 1)-markings.
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The holomorphic isomorphisms of the unit disk consist of those fractional linear trans-

formations which map the disk to itself. Since there is a unique fractional linear trans-

formation that maps three given distinct points on ∂D to any other three distinct points

on ∂D, the dimension of Rd is d − 2.

Rd can be identified with a component of the real locus of the moduli space M0,d+1

of Riemann spheres with d + 1 marked points. When n ≥ 3 the space M0,n is not

compact, but has a Deligne-Mumford/Grothendieck-Knudsen compactification M0,n by

stable Riemann surfaces of genus zero with n marked points. This compactification is

described in detail in [10, Appendix D], in an approach that uses cross-ratios. We follow

this approach and describe the compactification of Rd by nodal disks with markings,

R
d
.

Definition A nodal disk is a tuple (V, E, (Dα)α∈V , (zαβ)αEβ) of the following data:

1. a finite set V , whose elements will be called vertices, and a set of edges E ⊂ V ×V

such that the pair (V, E) is a tree,

2. a disk Dα for each vertex α ∈ V ,

3. a nodal point zαβ ∈ ∂Dα for each edge (α, β) ∈ E.

The boundary of a nodal disk inherits an orientation from the orientations of the disk

components with pairs of nodal points identified, zαβ ∼ zβα. A set of d+1 markings for

a nodal disk (V, E, (Dα)α∈V , (zαβ)αEβ) is a set {z0, . . . , zd} of points on the boundary

of the nodal disk in counterclockwise order, distinct from the nodal points.

Definition A nodal disk with d + 1 markings is semistable if each disk component

contains at least three nodal points or markings.

The combinatorial type of a nodal disk with d + 1 markings is obtained from the tree

(V, E) by adding semiinfinite edges associated to the markings. The resulting graph T

has a distinguished vertex defined by the component containing the zeroth marking z0.

We call the semiinfinite edge labeled by z0 the root, and the other semiinfinite edges

labeled by z1, . . . , zd the leaves. Thus the combinatorial type of a nodal disk with d+1
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zαβ

α

β

Dα

Dβ

zβα

Figure 3.4: A nodal disk with 5 components.

markings is a rooted tree. If the marked nodal disk is semistable, then the valency of

each vertex of T is at least 3; in this case we will say that T is stable.

Two nodal disks with d + 1 markings are isomorphic if they have the same combi-

natorial type and there is a tuple (φα)α∈V of holomorphic isomorphisms between cor-

responding disk components that preserve the nodal points and markings. Let R(T )

denote the set of isomorphism classes of semistable nodal marked disks of combinatorial

type T , and

Rd =
⋃

T

R(T )

where T ranges over all stable rooted trees with d leaves. There is a canonical partial

order on the combinatorial types, and we write T ′ ≤ T to mean that T ′ is obtained

from T by contracting a subset of internal edges of T .

3.3.1 Topology via cross-ratios

This section is based on [10, Appendix D].

Definition The cross-ratio of four distinct points w1, w2, w3, w4 ∈ C is

ρ4(w1, w2, w3, w4) =
(w2 − w3)(w4 − w1)

(w1 − w2)(w3 − w4)
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z0z1

z2

z3

z5

z6

z7

z4

z0z1

z2

z3

z4
z5

z6

z7

Figure 3.5: A marked disk in R7, and a marked nodal disk in R
7
, with their combina-

torial types drawn below.

and represents the image of w4 under the fractional linear transformation that sends

w1 to 0, w2 to 1, and w3 to ∞.

ρ4 is invariant under the action of SL(2, C) on C by fractional linear transformations.

By identifying P
1 → C ∪ {∞} and using invariance we obtain an extension of ρ4 to P

1,

that is, a map

ρ4 : {(w1, w2, w3, w4) ∈ (P1)4, i 6= j =⇒ wi 6= wj} → C − {0}.

ρ4 naturally extends to the geometric invariant theory quotient

(P1)4//SL(2, C) = {(w1, w2, w3, w4), no more than two points equal}/SL(2, C)
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by setting

ρ4(w1, w2, w3, w4) =





0 if w2 = w3 or w1 = w4

1 if w1 = w3 or w2 = w4

∞ if w1 = w2 or w3 = w4





(3.2)

and defines an isomorphism

ρ4 : (P1)4//SL(2, C) → P
1.

Definition Let C be a circle in the Riemann sphere C∪{∞}. We will say that distinct

points z1, z2, . . . , zn on C are in cyclic order if they fall in that order on C. In particular,

the compactified line R ∪ {∞} is a circle in the Riemann sphere, and distinct points

z1, . . . , zn in R are in cyclic order if there is some cyclic permutation of them such that

they are in strictly ascending or strictly descending order.

Let R
4
+ ⊂ R

4 denote the subset of distinct points (w1, w2, w3, w4) ∈ R
4 in cyclic order.

The restriction of ρ4 to R
4
+ takes values in (−∞, 0) and is invariant under the action of

SL(2, R) by fractional linear transformations. Hence it descends to a map

(R4)+/SL(2, R) → (−∞, 0).

Let D denote the unit disk, and identify D\{−1} with the half plane H by z 7→ 1/(z+1).

Using invariance one constructs an extension

ρ4 : (∂D)4+/SL(2, R) = R3 → (−∞, 0)

where (∂D)4+ is the set of distinct points on ∂D in counterclockwise cyclic order,

z0, z1, z2, z3. ρ4 admits an extension to R
3

via (3.2) and so defines a homeomorphism

ρ4 : R
3
→ [−∞, 0].

For any distinct indices i, j, k, l the cross-ratio ρijkl is the function

ρijkl : Rd → R, [w0, . . . , wd] 7→ ρ4(wi, wj , wk, wl).

Fix four distinct indices 0 ≤ i < j < k < l ≤ d. We extend ρijkl to R
d

as follows: for a

combinatorial type T , let T (ijkl) be the subtree whose ending edges are the semiinfinite
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i l

kj

i l

kj

i l

kj

Figure 3.6: Cross-ratios by combinatorial type: for the first type, ρijkl(p) = −∞, for
the second type ρijkl(p) ∈ (−∞, 0), and for the third type ρijkl(p) = 0.

edges i, j, k, l. The subtree T (ijkl) is one of the three types shown in Figure 3.6. In the

first resp. third case, we define

ρijkl(p) = −∞ resp. 0.

In the second case, let wi, wj , wk, wl be the points on the component where the four

branches meet and define

ρijkl(p) = ρ(wi, wj , wk, wl).

The collection of functions ρijkl restricted to indices 0 ≤ i < j < k < l ≤ d defines a

map of sets

ρd : R
d
7→ [−∞, 0]N

where N =


 d + 1

4


 .

The combinatorial type T of a point p ∈ R
d

can be read off from ρd(p) as follows.

Note that if T is a tree, then removing any finite edge e of T separates T , and in

particular the set Edge∞(T ) of semiinfinite edges, into two components. The tree

can be reconstructed from the set of such partitions of Edge∞(T ). If some cross-ratio

ρijkl(p) is ∞ (resp. 0), the semiinfinite edges i, j, k, l can be separated into pairs i, j

and k, l (resp. i, l and j, k) by removing an edge (Figure 3.6). Thus the combinatorial

structure of p is determined by which cross-ratios are 0 or −∞. The positions of the

marked points on each component with at least 4 markings or singularities can be re-

constructed from the cross-ratios. Hence ρd is injective and so the pull-back ρd of the

topology on the target defines on R
d

the structure of a compact Hausdorff topological

space. The moduli space R
4

is shown in Figure 3.7.
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Figure 3.7: R
4
. Drawing all nodal disks with z0 at the top makes the vertical axis of

symmetry clear.

Remark The map ρijkl : R
d
→ R

3 ∼= [−∞, 0] is a special case of a type of forgetful

morphism considered by Knudsen. More generally, for any subset I ⊂ {0, . . . , n} of

size k we have a continuous map R
d
7→ R

k
obtained by forgetting the positions of the

markings zi, i /∈ I and collapsing the unstable components. By definition the topology

on R
d

is the one for which all forgetful morphisms are continuous, and R
3 ∼= [−∞, 0].

3.3.2 Properties of the cross-ratio coordinates

The ρijkl satisfy the following properties (see [10, Appendix D]), which all follow from

elementary facts about cross-ratios. (Invariance): For all p ∈ R
d
, and for all φ ∈

SL(2, R), ρijkl(φ(p)) = ρijkl(p).

(Symmetry): ρjikl = ρijlk = 1 − ρijkl, and ρikjl =
ρijkl

ρijkl−1 .

(Normalization): ρijkl =





∞, if i = j or k = l,

1, if i = k or j = l,

0, if i = l or j = k.

(Recursion): As long as the set {1,∞, ρijkl, ρijkm} contains three distinct numbers,
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then

ρjklm =
ρijkm − 1

ρijkm − ρijkl
(3.3)

for any five pairwise distinct integers i, j, k, l, m ∈ {0, 1, . . . , d}. There is an equivalent

version of this formula that will sometimes be more convenient to use; and that is that

as long as the set {0,∞, ρmijk, ρmijl} contains three distinct numbers, then

1 − ρjklm =
ρmijk

ρmijl
. (3.4)

3.3.3 Charts using cross-ratios.

The cross-ratios can be used to construct explicit coordinate charts which give R
d

the

structure of a (d − 2) dimensional manifold-with-corners. A chart around a point in

p ∈ R
d

is defined based on the combinatorial type T of p. If |E| is the number of

interior edges of T , the chart is a homeomorphism between (−∞, 0)d−2−|E|× (−∞, 0]|E|

and the open subset

R(T ) := ∪
T ′≤T

R(T ′)

i.e., all points in R
d

whose combinatorial type is obtained from T by contracting a

subset of interior edges.

The charts using cross-ratios are based on the analogous charts in [10, Appendix

D] for M0,n. We include their proof for the sake of completeness. For a combinatorial

type T , a chart consists of

1. nv − 3 cross-ratios for each vertex v ∈ V that represents a disk component with

nv special points (i.e., marked points or nodal points).

2. a cross-ratio ρijkl = 0 for each internal edge e ∈ E, where i, j, k and l are such

that ρijkl = 0 for any combinatorial type modeled on that edge.

This gives a total of

∑

v∈V

(nv − 3) + |E| = d + 1 + 2|E| − 3|V | + |E|

= d + 1 + 3(|E| − |V |)

= d − 2
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coordinates, since the number of edges in a tree is one less than the number of vertices.

Theorem 3.3.1 (Theorem D.5.1 in [10]). Let p ∈ R
n
. Suppose p has combinatorial

type T , and that d − 2 cross-ratios have been chosen as prescribed by (a), (b) above.

Then, in the open set R(T ), all cross-ratio coordinates are smooth functions of those

in the chart. Hence R
d

is a smooth manifold-with-corners of real dimension d − 2.

Proof. Fix a combinatorial type T with d+1 leaves. To show that the d−2 coordinates

described above form a chart in a neighborhood of p, we proceed by induction on the

number of edges |E| of the combinatorial type T .

If |E| = 0, T is the corolla with one vertex, a root and d+1 leaves, corresponding to

the equivalence classes of the unit disk D with d + 1 distinct marked points z0, . . . , zd

on ∂D. The d − 2 cross-ratios

{ρ0123, ρ0124, . . . , ρ012d}

form a chart, since an explicit formula for all other cross-ratios is

ρijkl =
(ρ012j − ρ012k)(ρ012l − ρ012i)

(ρ012i − ρ012j)(ρ012k − ρ012l)

with well-defined limits

ρijkl =





∞, if i = j or k = l,

1, if i = k or j = l,

0, if i = l or j = k.

So assume that the statement holds for all trees with strictly less than |E| edges,

and consider a combinatorial type T with |E| edges. Fix an edge e joining vertices α

and β. Removing the edge e splits T into two subtrees, one containing α and the other

containing β. For each of these trees, put a semiinfinite edge where e was. Let TA be

the tree containing α, and TB the one containing β. Relabeling indices if necessary

we can assume that TA has marked points 0, . . . , m + 1, and TB has marked points

m, . . . , d. Let ρA be the set of cross-ratios with indices in {0, . . . , m, m + 1}, and let ρB

be the set of cross-ratios with indices in {m, m+1, . . . , d}. By the inductive hypothesis,

all cross-ratios in ρA are smooth functions of the cross-ratios in a chart for TA, and all
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cross-ratios in ρB are smooth functions of the cross-ratios in a chart for TB. Fix the

cross-ratio ρ0,m,m+1,d = ∞ to represent the edge e. Note that ρ0,m,m+1,d = ∞ for all

combinatorial types containing the edge e. We need to show that the chart for TA, the

chart for TB, and ρ0,m,m+1,d together form a chart for T . It suffices to show that all

cross-ratios with some indices less than or equal to m and other indices greater than or

equal to m + 1 are smooth functions of cross-ratios in ρA, ρB, and ρ0,m,m+1,d. There

are really only two cases to prove, namely

1. ρijkl where i, j ≤ m and k, l ≥ m + 1, and

2. ρijkl where i, j, k ≤ m and l ≥ m + 1,

since the only other case, i ≤ m and j, k, l ≥ m + 1, is dual to the latter. Since

ρm+1,i,j,l = 0, applying Recursion formula (3.3),

ρi,j,k,l =
ρm+1,i,j,l − 1

ρm+1,i,j,l − ρm+1,i,j,k
,

shows that it is enough to show that ρm+1,i,j,l and ρm+1,i,j,k are smooth functions of

the chart coordinates. Note that if k ≤ m, then ρm+1,i,j,k ∈ ρA, so is a smooth function

of the chart coordinates. Therefore we only need to show that for l > m + 1, the

cross-ratio ρm+1,i,j,l is a smooth function of the chart coordinates. But we also have

that ρm,m+1,l,i = 0, so that the Recursion formula (3.3) holds,

ρm+1,l,i,j =
ρm,m+1,l,j − 1

ρm,m+1,l,j − ρm,m+1,l,i
.

So it is enough to prove that for all i < m and all l > m + 1, the cross-ratio ρm,m+1,l,i

is a smooth function of the chart coordinates.

To show this, first note that ρm,m+1,d,0 = 0 so again by (3.3),

ρm+1,d,0,l =
ρm,m+1,d,l − 1

ρm,m+1,d,l − ρm,m+1,d,0

and since ρm,m+1,d,l ∈ ρB for l > m+1 we conclude that ρm+1,d,0,l is a smooth function

of the chart coordinates.

Next, ρd,m,l,0 = 1 so by the variation (3.4) of the Recursion formula,

1 − ρl,0,m+1,d =
ρd,m,l,0

ρd,m,l,m+1

=⇒ ρd,m,l,0 = ρd,m,l,m+1(1 − ρl,0,m+1,d)
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showing that ρd,m,l,0 is a smooth function of the chart coordinates.

Again using ρd,m,l,0 = 1 and (3.4),

1 − ρm,l,m+1,0 =
ρ0,d,m,l

ρ0,d,m,m+1

=⇒ ρm,l,m+1,0 = 1 −
ρ0,d,m,l

ρ0,d,m,m+1

Next, ρm,m+1,0,l = 1 so by (3.4)

1 − ρ0,l,i,m =
ρm,m+1,0,l

ρm,m+1,0,i

=⇒ ρ0,l,i,m = 1 −
ρm,m+1,0,l

ρm,m+1,0,i
.

Finally, ρm,l,i,m+1 = 1 implies, by (3.4) again,

1 − ρi,m+1,0,m =
ρm,l,i,m+1

ρm,l,i,0

=⇒ ρm,l,i,m+1 = ρm,l,i,0(1 − ρi,m+1,0,m)

proving that ρm,l,i,m+1 is a smooth function of the chart coordinates.

Remark The charts corresponding to maximal combinatorial types – that is, the bi-

nary trees – suffice to cover the whole moduli space, since all combinatorial types can

be obtained from the maximal ones by contracting an edge. From now on we will think

of each chart as being from a maximal tree. We can also assume that all cross-ratios

in the chart are of the form ρijk0 or ρ0ijk, since all edges in a binary tree can be given

coordinates of that form. In other words, we can assume that all chart coordinates

have been chosen relative to the root of the tree, where the root corresponds to the

distinguished marked point z0.

3.3.4 Charts using simple ratios.

We now describe an equivalent topology on Rd using coordinate charts based on ra-

tios that we will call “simple ratios”. The main advantage of simple ratios is that the
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relations between them are of a much simpler form than the relations between the cross-

ratios. By choosing parametrizations such that z0 = ∞, elements of R
d

are identified

with configurations of d distinct points in R,

−∞ < z1 < z2 < . . . < zd < ∞,

modulo translation and scaling. Set Xi = zi+1 − zi. The coordinates X1, . . . , Xd−1

are invariant under translations, and scale simultaneously, so are effectively projective

coordinates (X1 : . . . : Xd−1). The compactification depends on the values of ratios of

the form Xi/Xj , which we call “simple ratios”.

∞ = z0

z1 z2 z3 z4 z5

X1 X3 X4X2

z0

z1

z2

z3
z4

z5

Figure 3.8: Projective coordinates (X1 : X2 : X3 : X4) for a marked disk in R5.

Let T be a maximal tree representing a combinatorial type in R
d
. Each pair of

adjacent leaves in T , i and i + 1 say, determines a unique vertex which we label vi.

Each edge in T is determined by a pair of vertices, say vi and vj . If vi is closer to the

root of the tree than vj , we give the edge the coordinate Xj/Xi.

Example Figure 3.9 shows the two charts for a combinatorial type in R
6
.

3.3.5 Equivalence of charts.

Each cross-ratio in a chart is a smooth function of the simple ratios, and is zero if and

only if the corresponding simple ratio for that edge is zero. The vice-versa is also true,

and the proof is much the same. By symmetry it suffices to consider the edge pictured

in Figure 3.10, where an edge joins vertices vr and vs, and vr is above vs, and the

cross-ratio allocated to the edge is ρijk0. Parametrizing so that z0 = ∞ we can write
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1 2 3 4 5 6

0

ρ2360

ρ3460

ρ0456

ρ0123

1 2 3 4 5 6

0

v1

v2

v3

v5

X5/X3

X1/X2

X4/X5

X3/X2

v4

Figure 3.9: Two equivalent charts, one using cross-ratios and the other using simple

ratios, for a combinatorial type in R
6
.

ρijk0 = −
zj − zk

zj − zi

= −
Xj + Xj+1 + . . . + Xs + . . . + Xk−1

Xi + Xi+1 + . . . + Xr + . . . + Xj−1

= −
Xs

Xr

(
Xj/Xs + Xj+1/Xs + . . . + 1 + . . . + Xk−1/Xs

Xi/Xr + . . . + 1 + . . . + Xj−1/Xr

)
.

The ratios appearing in the big bracket are in general products of chart ratios cor-

responding to edges below vr and vs. The bracketed rational function is smooth for

all positive non-zero ratios and continuous as ratios in the chart go to 0. Moreover

ρijk0 = 0 if and only if Xs/Xr = 0.

Thus the cross-ratio charts define the same topology on R
d

as the simple ratio

charts.

3.4 Metric ribbon trees

In this section we introduce the space of metric ribbon trees, attempting to remain as

consistent as possible with the notation of Fukaya and Oh in [5], and Nadler and Zaslow

in [11].
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Figure 3.10: Comparing a cross-ratio with a simple ratio.

Definition A based metric ribbon tree is a quadruple (T, i, e0, λ) of the following data:

1. T is a finite tree, with d + 1 semi-infinite exterior edges labeled e0, . . . , ed, and

no vertex of valency 1 or 2. We denote by Eint(T ) the set of interior edges of T ,

which are all of finite length, and denote by Vint(T ) the set of vertices of T .

2. i : T →֒ D ⊂ R
2 is an embedding of T in the closed unit disk such that the limit

of the image of each the semi-infinite exterior edge ej is a point in ∂D.

3. e0 is a distinguished exterior edge of T , the root. The other exterior edges,

e1, . . . , ed are called the leaves. The labeling e0, e1, . . . , ed is consistent with their

counterclockwise order on ∂D that comes from the embedding i.

4. λ : Eint(T ) → R+ is an edge length map, that assigns a non-negative real number

to each interior edge.

Two based metric ribbon trees are equivalent if there is an isotopy of the closed disk

which identifies all the data.

We use the same notation as in [5]: for a fixed integer d > 2 and a fixed root e0, let

Gr(T ) be the set of all maps λ : Eint(T ) → R+, and define

Grd =
⋃

T

Gr(T )
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where T runs over all rooted trees with d + 1 leaves, and no vertices of valency 1 or 2.

We now define a topology on Grd. Assume that {λn}n∈N is a sequence in Gr(T ), such

that for each e ∈ Eint(T ) the sequence λn(e) converges to λ∞(e) ∈ [0,∞). We define

the limit of this sequence to be the quadruple (T ′, i′, e′0, λ
′) where

1. T ′ is the tree obtained from T by contracting all edges with λ∞(e) = 0. Thus, T ′

is the image of a surjective morphism of planar rooted trees, p : T → T ′.

2. i′ is the embedding obtained from the embedding i by contracting the collapsed

edges.

3. e0 is the end-vertex in T ′ corresponding to the end vertex of the same label in T .

4. For each edge e ∈ Eint(T
′), we have that p−1(e) ∈ Eint(T ), so we define λ′(e) =

λ∞(p−1(e)).

Write T ′ ≤ T if T ′ is obtained from T by contracting a subset of its interior edges.

With this notation, the closure of Gr(T ) in Grd is

cl Gr(T ) =
⋃

T ′≤T

Gr(T ′).

With respect to this topology, Grd is Hausdorff and closed.

We introduce some relevant terminology about trees here: a geodesic between two

vertices v, v′ in a metric tree T is the (unique) path joining them of shortest total

length; the total length of the geodesic is called the distance from v to v′. Moreover,

the geodesic path is independent of the lengths assigned to the edges, and depends only

on the combinatorics of the tree.

The following theorem is due to Stasheff ([17], [16]), and another proof was given

by Fukaya and Oh [5]. The following proof is a modification of that in [5].

Theorem 3.4.1. Grd is homeomorphic to R
d−2.

Proof. We show this by constructing a homeomorphism Θ : Grd → Rd, and the result

follows from the fact that Rd is homeomorphic to R
d−2.
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For each combinatorial type T , and i = 1, . . . , d− 1, let vi be the (unique) vertex of

T at which the geodesic from ei to e0 first intersects the geodesic from ei+1 to e0.

ΘT : Gr(T ) → Rd

λ ∈ Gr(T ) 7→ (X1 : . . . : Xd−1) ∈ RP d−2 where

Xi = e−dist(vi,e0).

v0

v1 v2 v3 v4 v5

λ1

λ2

λ3

(T, λ)

ΘT (λ)

z0 = ∞

z1 = 0 z2 z3 z4 z5

e−λ3−λ2e−λ21e−λ1

Figure 3.11: Identifying a metric ribbon tree in Gr5 with a marked disk in R5.

The map ΘT is a well-defined, continuous function of λ. It is injective since there

is always a pair ei, ei+1 such that the vertex vi is adjacent to the root e0, so that

Xi = zi+1 − zi = 1 throughout the image of Gr(T ). So if [ΘT (λ)] = [ΘT (λ′)], we must

have zi(λ) = zi(λ
′) for all i. But then one can show inductively on the lengths of paths

from the root e0, that λ(e) = λ′(e) for all edges e in such a path, hence λ = λ′.
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We also note that

ΘT1(Gr(T1)) ∩ ΘT2(Gr(T2)) =
⋃

T<T1,T2

ΘT (Gr(T )).

To see that Θ : Grd → Rd is surjective, we show that given any collection of d

distinct points z1 < z2 < . . . < zd, if we fix the parametrization so that z1 = 0 and

max(zi+1 − zi) = 1, then (z1, . . . , zd) is in the image of some ΘT (Gr(T )). To recon-

struct the combinatorial type T , we start by partitioning the set z1, . . . , zd into disjoint

subsets of consecutive points, I1, . . . , Ik say, by placing a partition between zi+1 and

zi if zi+1 − zi = 1. Now form a tree with root e0, and k leaves ẽ1, . . . , ẽk indexed by

the subsets I1, . . . , Ik. For every subset Ij with at least 2 distinct points in it, we fix

a dilation factor of eλj so that max(zi+1 − zi) = 1 for i ∈ Ij . This in turn determines

a partition of the set Ij , which determines leaves beneath ẽj , and we set λ(ẽj) = λj .

Proceeding inductively in this way, one reconstructs the tree T and the edge lengths

λ ∈ Gr(T ) such that ΘT (λ) = (z1, . . . , zd).

Remark The map Θ is really an identification of each cone Gr(T ) with a corresponding

cone in R
d−2, such that the identifications of cones along their boundaries in R

d−2 are

the same as the identifications along their boundaries in Grd, and the union of all

the cones in R
d−2 is all of R

d−2. To see this explicitly, fix the parametrization of

configurations in Rd so that, for example, zd − zd−1 = 1 and Rd is spanned by the

coordinates X1, . . . , Xd−2 where Xi = zi+1 − zi and all Xi’s are positive. The images

of the cones Gr(T ) are also cones in R
d−2
>0 , where the cones are centered at (1, 1, . . . , 1)

and their union is R
d−2
>0 . The map (x, y) 7→ (log x, log y) identifies R

d−2
>0 with R

d−2, and

maps cones to cones.

Example Consider the map Θ : Gr4 → R4. Fix the parametrization of R4 so that

z2 − z1 = 1, the map Θ is a subdivision of R
2
>0 into five cells, see Figure 3.12.

Each cell Gr(T ) has a compactification by allowing the edge lengths to be infinite.

This induces a compactification Grd of Grd. The map Θ : Grd → Rd extends to a map
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(1, 1)

y = x

y

x(0,0)

y = 1

x = 1

Figure 3.12: The images of the cones of Gr4 in R
2
>0. The map (x, y) 7→ (log x, log y)

identifies them with cones in R
2 whose union is all of R

2.

Θ : Grd → R
d

by taking limits in appropriate charts:

Theorem 3.4.2. Θ : Grd → R
d

is a homeomorphism.

Proof. It follows from the observation that if λ is the edge-length in Gr(T ) assigned

to an edge e, then in the chart R(T ) ⊂ R
d

the ratio Xi/Xj representing that same

edge e has value e−λ. Thus the image of a compactified cell Gr(T ) under the map Θ

corresponds to the part of the chart R(T ) for which the ratios in the chart take values

in [0, 1]. The boundary of Grd, in which some edge lengths are infinite, maps to the

boundary of Rd, in which the corresponding ratios are zero.

3.5 Toric varieties and moment polytopes.

We now show that R
d

can be identified with the non-negative part of an embedded toric

variety in CP k−1, where k(d) = Cd−1 is the (d − 1)-st Catalan number , which counts
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the number of binary planar rooted trees with d leaves. Each such tree determines a

monomial in the d − 1 variables X1, X2, . . . , Xd−1. The weight vector of the monomial

is read directly from the combinatorics of the tree, according to the algorithm given by

Loday [7]. An immediate consequence of the theory of toric varieties (see for example

[15], [6]) is that R
d

is homeomorphic to the moment polytope of the toric variety, which

is the convex hull of the weight vectors.

A point in Rd can be identified with a configuration of d distinct, ordered points on

R, z1 < z2 < . . . < zd, modulo translations and scaling. We get translational invariance

by considering the variables

X1 = z2 − z1, X2 = z3 − z2, . . . , Xi = zi+1 − zi, . . . , Xd−1 = zd − zd−1,

and the Xi’s are unique up to scalar multiplication, so are really projective coordinates,

X = (X1 : X2 : . . . : Xd−1).

To every binary, planar, rooted tree T , we associate a weight vector NT ∈ Z
d−1,

using Loday’s recipe. Each pair of adjacent leaves in T , labelled i and i + 1 say,

determines a unique vertex, which we label vi, in T . Let ai be the number of leaves on

the left side of vi, and let bi be the number of leaves on the right side of vi. Then the

weight vector is

NT = (a1b1, . . . , aibi, . . . , ad−1bd−1),

and the corresponding monomial is

XNT :=
d−1∏

i=1

Xaibi
i .

Example For the tree pictured in Figure 3.13, the weight vector is (1, 8, 3, 1, 2), so the

corresponding monomial is X1X
8
2X3

3X4X
2
5 .

Label the planar, binary rooted trees T1, . . . , Tk. We define a projective toric variety

V ⊂ CP k−1 by

(X1 : . . . : Xd−1) 7→ (XNT1 : . . . : XNTk )

The entries in the weight vectors always sum to d(d − 1)/2, so the monomials all have

the same degree and the map is well-defined on the homogeneous coordinates.
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1 2 3 4 5 6

0

v1

v2

v3

v4

v5

Figure 3.13: The labels on the leaves of a binary tree induce a labeling on the vertices.

Definition We say that two binary trees T and T ′ differ by a flop if there is one interior

edge e of T and one interior edge e′ of T ′ such that if e is contracted in T , and e′ is

contracted in T ′, the resulting trees are the same (see Figure 3.14).

Lemma 3.5.1. Suppose that two maximal trees T and T ′ differ by a single flop across

an edge e of T . Let R denote the simple ratio labeling the edge e in the chart determined

by T . Then

XNT ′

XNT
= Rm

for some integer m > 0. In general, for two trees T and T ′,

XNT ′

XNT
= Rm1

i1
Rm2

i2
. . . Rmr

ir

for some ratios Ri1 , . . . , Rir in the ratio chart associated to T and positive integers

m1, . . . , mr.

Proof. First let us consider the case of a single flop. Without loss of generality consider

the situation in Figure 3.14. Say T is on the left, and T ′ is on the right, and the affected

edges are in bold. The weight vectors NT and NT ′ are the same in all entries except
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flop

vi

vj vi

vj

ai bi bj

aj

a
′
i

b
′
i

a
′
j b

′
j

Figure 3.14: Two trees differ by a single flop if a single interior edge can be contracted
in each of them to produce the same tree.

entries i and j, where

(NT )i = aibi,

(NT )j = ajbj = (ai + bi)bj

(NT ′)i = ai(bi + bj),

(NT ′)j = bibj .

Therefore,

XNT ′

XNT
=

X
ai(bi+bj)
i X

bibj

j

Xaibi
i X

(ai+bi)bj

j

=
X

aibj

i

X
aibj

j

=

(
Xi

Xj

)aibj

and observe that Xi/Xj is the ratio labeling that edge of T .

The vertices are partially ordered by their positions in the tree; the effect of a flop

on the partial ordering is a single change, (vi ≤ vj) 7→ (vj ≤ vi), in between a pair
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of vertices which are adjacent in the partial order. In general, every maximal tree is

obtained from a fixed tree T by a sequence of independent flops – by independent we

just mean that each flop involves a different pair of vertices.

To prove the general case we can do induction on the number of independent flops

needed to get from a fixed maximal tree T , to any other maximal tree T ′. We have

already proved the base case, so consider a tree T ′ obtained after a sequence of k + 1

flops. Write T̃ for a tree which is k independent flops away from T and one flop away

from T ′. Suppose that the the final flop between T̃ and T ′ is described by the change

(vi ≤ vj) 7→ (vj ≤ vi) for a pair of adjacent vertices vi and vj . By the inductive

hypothesis and the base step,

XNT ′

XNT
=

XNT ′

XN eT

XN eT

XNT

=

(
Xi

Xj

)m

Rm1
i1

Rm2
i2

. . . Rmr
ir

for some positive integers m1, . . . , mr and m, and some ratios Ri1 , . . . , Rir in the chart

for T . Since none of the previous flops involved the pair vi and vj , the partial order

in the original tree T must have also had vi ≤ vj , although they were possibly not

adjacent in T . In any case, the ratio Xi/Xj is a product of ratios for the edges in the

path from vi to vj . This completes the inductive step.

Theorem 3.5.2. R
d

is homeomorphic to the non-negative part of the projective toric

variety V .

Proof. We show that each chart R(Ti) is identified with the non-negative part of the

affine slice V ∩ Ai, where

Ai = (ξ1 : ξ2 : . . . : 1︸︷︷︸
ith

: . . . : ξk).

We prove it for the the first affine piece. V ∩ A1 consists of all points

(1 :
XNT2

XNT1
: . . . :

XNTk

XNT1
)
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where the ratios are allowed to be 0. Lemma 3.5.1 says that for any edge in T1, with

ratio say Xi/Xj , there is an entry (Xi/Xj)
m in the slot belonging to the tree obtained

by a flop of that edge. Note that for any positive integer m, the map r 7→ rm is a

homeomorphism for r ∈ [0,∞), which is the domain of the ratios in the chart R(T1).

The other entries are higher products of ratios in R(T1) so depend smoothly on the

chart R(T1). Therefore R(T1) is homeomorphic to the non-negative part of V ∩ A1.

Corollary 3.5.3. R
d

is homeomorphic to a polytope in R
d−1 which is the convex hull

of the weight vectors. In particular it is homeomorphic to the Stasheff associahedron

Kd.

Proof. The non-negative part of a projective toric variety constructed with weight vec-

tors is homeomorphic, via the moment map, to the convex hull of the weight vectors

(see, for example, [6], [15]), which is Loday’s convex hull realization of the associahe-

dron.

3.6 The multiplihedron.

Stasheff also introduced a family of CW -complexes called the multiplihedra, which play

the same role for A∞ maps as the associahedra play in the recognition principle for loop

or A∞ spaces. The d-th multiplihedron Jd is a complex of dimension d−1 whose vertices

correspond to ways of bracketing d variables x1, . . . , xd and applying an operation, say

f . The multiplihedron J3 is the hexagon shown in Figure 3.15.

The facets of Jd are of two types. First, there are the images of the inclusions

Ji1 × . . . × Jij × Kj → Jd

for partitions i1 + . . . + ij = d, and secondly the images of the inclusions

Jd−e+1 × Ke → Jd



49

f(x1(x2x3))

f(x1)f(x2x3)

f(x1)(f(x2)f(x3))(f(x1)f(x2))f(x3)

f(x1x2)f(x3)

f((x1x2)x3)

Figure 3.15: Vertices of J3

for 2 ≤ e ≤ d. One constructs the multiplihedron inductively starting from setting J2

and K3 equal to closed intervals.

Each vertex corresponds to a rooted tree with two types of vertices, the first a

trivalent vertex corresponding to a bracketing of two variables and the second a bivalent

vertex corresponding to an application of f .

Dualizing the rooted tree gives a triangulation of the d + 1-gon together with a

partition of the two-cells into two types, dependening on whether they occur before or

after a bivalent vertex in a path from the root.

The edges of Jd are of two types:

1. A change in bracketing

. . . xi−1(xixi+1) . . . 7→ (xi−1xi)xi+1

(a flop of the type shown in Figure 3.3) or vice-versa

2. A move of the form

. . . f(xixi+1) . . . 7→ f(xi)f(xi+1) . . .
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x2 x3 x4x1

(f(x1)f(x2x3))f(x4)

x2x3

f(x2x3)f(x1)
f(x4)

f(x1)f(x2x3)

Figure 3.16: Tree for (f(x1)f(x2x3))f(x4)

x1

x2

x3

f(x1x2)f(x3)

Figure 3.17: Triangulation corresponding to f(x1x2)f(x3)

or vice versa, which corresponds to moving one of the bivalent vertices past a

trivalent vertex, after which it becomes a pair of bivalent vertices, or vice-versa:

Figure 3.18: Splitting of bivalent vertices

3.7 Moduli spaces of quilted disks

In this section, a quilted disk refers to the unit disk D ⊂ C together with a circle C ⊂ D

(the seam of the quilt) tangent to a unique point in the boundary. Thus C divides

the interior of D into two components. Given quilted disks (D0, C0) and (D1, C1), a
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morphism from (D0, C0) to (D1, C1) is a holomorphic isomorphism D0 → D1 mapping

C0 to C1.

Any quilted disk is isomorphic to the pair (D, C) where D is the unit disk in the

complex plane and C the circle of radius 1/2 passing through 1 and 0. Let H ⊂ C

denote the upper half plane. Consider the map D \ {1} → H given by z 7→ −i/(z − 1).

The image of the circle C is the horizontal line L through i. Thus the automorphism

group of (H, L) is the group T ⊂ SL(2, R) of translations by real numbers.

∞

C L

D H

Figure 3.19: Quilted disk as a quilted half-plane

Definition Let d ≥ 1. A quilted disk with d + 1 markings is a tuple (D, C; z0, . . . , zd)

where D is the unit disk, z0, . . . , zd ∈ ∂D are distinct marked points in counterclockwise

order, and C ⊂ D is a circle such that C ∩ ∂D = {z0}.

In other words, C is an inner circle tangent to z0, of radius between 0 and 1. A morphism

(D0, C0; z0, . . . , zd) → (D1, C1; w0, . . . , wd) is a holomorphic isomorphism D0 → D1

mapping C0 to C1 and zj to wj for j = 0, . . . , d. Let Rd,1 be the set of isomorphism

classes of d + 1-marked quilted disks. We compactify Rd,1 as follows. A nodal (d + 1)-

quilted disk S is a collection of quilted and unquilted marked disks, identified at pairs

of points on the boundary. The combinatorial type of S is a graph Γ with two types

of vertices, depending on whether the corresponding disk component is quilted or not.

We require that

1. The combinatorial type of S is a tree.

2. Each unquilted disk component contains at least 3 singular or marked points.
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3. Each quilted disk component is attached to only unquilted components;

4. The unique non-self-crossing path from the semi-infinite edge marked z0 to the

semi-infinite edge zj crosses exactly one quilted vertex, for each j = 1, . . . , d.

A nodal quilted disk is called semistable if

1. Each quilted disk component contains at least 2 singular or marked points;

2. Each unquilted disk component contains at least 3 singular or marked points.

Thus the automorphism group of any disk component is trivial, and from this one may

derive that the automorphism group of any semistable d + 1-marked nodal quilted disk

is also trivial.

Remark The appearance of the two kinds of disks can be explained by the following

bubbling considerations. Suppose that (Dα, Cα; z0,α, . . . , zd,α) is a sequence in Rd,1. For

any sequence of rescalings ϕα : Dα → Dα consider the following set of real numbers:

dist(zα,i, zα,j), dist(zα,i, Cα), dist(Cα, ∂Dα).

We say that a subset of {zα,i, Cα} of size at least 3 is on the same scale if after some

sequence of re-scalings, the distances approach finite, non-zero values. An admissible

sequence of rescalings is one for which some subset of size at least 3 is on the same

scale. Two admissible sequences of rescalings are equivalent if the numbers above have

the same limits. Each admissible sequence of rescalings defines a partition of the {zα,i}

according to which points have zero distance limit after the rescaling . That is, we say

zα,i ∼ϕα zα,j

if

dist(ϕα(zα,i), ϕα(zα,j)) → 0, α → ∞.

Each admissible sequence of rescalings gives rise to a bubble in the limit, of three kinds:

Either Cα → ∂Dα in the limit, in which case we say that the resulting bubble has no

interior circle (the circle is now at radius 1), or Cα approaches a circle of radius in (0, 1),
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in which case we say that the bubble has interior circle, or the radius approaches zero,

in which case we say that the bubble has no interior circle. Thus the limiting sequence

is a bubble tree, whose bubbles are of the two types discussed above.

Let R
d,1

denote the set of isomorphism classes of semistable d + 1-marked nodal

quilted disks.

Example R
3,1

is a hexagon, see Figure 3.20.

z0

z1

z2

z3

Figure 3.20: R
3,1

3.7.1 Topology via cross-ratios

We introduce a topology on R
d,1

via cross-ratios, as in the previous section for the

moduli space of semistable nodal marked disks. Let D denote the unit disk, C a circle

in D passing through a unique point z0 and z1, z2 ∈ D points in D such that z0, z1, z2

are distinct. Let w be a point in C not equal to z0. Writing Im(z) for the imaginary

part of a complex number z, we define

ρ3,1(D, C, z1, z2) = Im(ρ(z0, z1, z2, w))
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ρ3,1 is independent of the choice of w and invariant under the group of automorphisms

of the disk and so defines a map

ρ3,1 : R3,1 → (0,∞).

We extend ρ3,1 to R
3,1

by setting ρ3,1(S) = 0 if S is the 3-marked quilted nodal disk

with three components, and ρ3,1(S) = ∞ if S is the 3-marked nodal disk with two

components. Thus ρ3,1 extends to a bijection

ρ3,1 : R
3,1

→ [0,∞].

More generally, given d ≥ 3 and a pair i, j of distinct, non-zero vertices, let Γij denote

the minimal connected subtree of Γ containing the semininfinite edges corresponding to

zi, zj , z0. There are three possibilities for Γij , depending on whether the quilted vertex

appears closer or further away than the trivalent vertex from z0, or equals the trivalent

vertex.

Figure 3.21: Tree types for J3

If the first, resp. third case define ρij(S) = 0 resp ∞. In the second case let

(D, C) denote the disk component corresponding to the trivalent vertex, wi, wj ∈ ∂D

the points corresponding to the semiinfinite edges labelled zi, zj , and define

ρij(S) = ρ3,1(D, C, wi, wj).

In addition, for any four distinct indices i, j, k, l we have the cross-ratio

ρijkl : R
d,1

→ [0,∞]

defined in the previous section, obtained by treating the quilted disk component as an

ordinary component. Consider the map

ρd1 : R
d,1

→ R
(d+1)d(d−1)(d−2)/4!+d(d−1)/2
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obtained from all the cross-ratios. Given an element S ∈ R
d,1

, the combinatorial type

of S can be obtained from examining which cross-ratios are 0 or ∞. First, ignoring

types of vertices the tree Γ can be obtained from the cross-ratios ρijkl. The cross-ratios

ρij determine whether the trivalent vertex of the tree Γij is on the same side of the

quilted vertices as z0 or not. In addition, the isomorphism class of each disk component

of S is determined by the cross-ratios ρijkl and ρij with values in (0,∞). Thus the map

ρd,1 is injective and we define the topology on R
d,1

by pulling back the topology on the

codomain. Since the codomain is Hausdorff and compact, so is R
d,1

.

Remark As before, the maps R
d,1

→ R
4
, R

d,1
→ R

3,1
are special cases of forgetful

morphisms constructed as follows. For any subset I ⊂ {0, . . . , n} of size k we have a

forgetful morphism

R
d,1

7→ R
k

obtained by forgetting the position of the circle and collapsing all unstable components.

The map

R
d,1

7→ R
d

deserves special mention. Its fiber over an element S ∈ R
d

consists of a union of point

and intervals whose number is the maximal length of a path from z0 to zi, i 6= 0 in the

combinatorial type of S (resp. minus one). Shown in Figure 3.22 is a fiber consisting

of three points and two open intervals.

Similarly, for any subset J ⊂ {1, . . . , n} of size l we have a forgetful morphism

R
d,1

7→ R
l,1

obtained by forgetting the positions of zj , j /∈ J and collapsing all unstable disk com-

ponents. By definition, the topology on R
d,1

is the minimal topology such that all

forgetful morphisms are continuous and the topology on R
3,1 ∼= [0,∞], R

4 ∼= [−∞, 0]

is induced by the cross-ratio.

3.7.2 Properties of the cross-ratio coordinates.

The properties of the coordinates ρijkl are listed in Section 3.3.2, and remain the same.

For the coordinates ρi,j there are similar properties, whose proofs (which we omit) are
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Figure 3.22: A fiber in R
4,1

→ R
4
. The projection forgets the inner circle and then

collapses any unstable components to a point.

very minor modifications of the proofs for ρijkl:

(Invariance): For all p ∈ R
d,1

, and for all φ ∈ SL(2, R), ρi,j(φ(p)) = ρi,j(p).

(Symmetry): ρi,j = −ρj,i.

(Normalization): ρi,j =





∞, if i 6= j and L = ∞,

0, if i 6= j and L = R.

(Recursion):

ρi,k =
ρi,j

ρj,k
(3.5)

Finally, the two types of coordinate are related by

(Relations):

ρj,k =
ρi,j

−ρijk0
(3.6)

ρi,k =
ρi,j

1 − ρijk0
. (3.7)

To prove (3.6), pick a component of the nodal disk on which zi, zj and z0 are distinct.

Picking some ζ ∈ C, without loss of generality we may set zi = 0, zj = 1, z0 = ∞, zk =
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ρij0k and ζ = ρij0ζ . Then we have,

ρjk0ζ =
(zk − z0)(ζ − zj)

(zj − zk)(z0 − ζ)

=
−(ρij0ζ − 1)

1 − ρij0k

=
(ρij0ζ − 1)

ρij0k − 1

=
ρij0ζ − 1

−ρijk0

Equating imaginary parts yields (3.6). The proof of (3.7) is almost identical.

3.7.3 Charts using cross-ratios

As in the case of the moduli space of nodal disks, one can use the cross-ratios to define

local charts on the space of quilted disks, R
d,1

. However, R
d,1

is not a manifold-with-

corners. We say that a point S ∈ R
d,1

is a singularity if R
d,1

is not combinatorially a

manifold with corners near S.

Example The first singular point occurs for d = 4. The vertex labeled by the expres-

sion (f(x1)f(x2))(f(x3)f(x4)) is adjacent to the expressions

f(x1x2)(f(x3)f(x4)), (f(x1)f(x2))f(x3x4)

f(x1)(f(x2)(f(x3)f(x4))), ((f(x1)f(x2))f(x3))f(x4)

and hence there are four edges coming out of the corresponding vertex. On the other

hand, the dimension of R4,1 is 3, see Figure 3.23. Thus R
4,1

cannot be a manifold with

corners (and therefore, not a simplicial polytope.)

Let Γd,1 be a combinatorial type in R
d,1

. A cross-ratio chart associated to Γd,1

consists of

1. n − 3 cross-ratios for each disk component in Γd,1 that has n special features,

where a special feature is either a marked point, a nodal point, or an inner circle

of radius 0 < r < 1;
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Figure 3.23: R
4,1

, or “Chinese lantern”. The singular point on the boundary, which
has 4 edges coming out of it, corresponds to the nodal quilted disk at right.

.

2. a coordinate ρabcd = 0 for each finite edge in Γ that is incident at each end to a

trivalent vertex;

3. a coordinate ρa,b = 0 for each finite edge in Γ that is incident to a bivalent colored

vertex from above, and a coordinate 1/ρa,b = 0 for each finite edge in Γ that is

incident to a bivalent colored vertex from below,

4. k−1 relations among these coordinates, where k is the number of colored vertices

in Γ.

Rather than computing formulas for the (k − 1) relations between the cross-ratios

in our chart, we will return to them in the next section after introducing an equivalent

collection of charts on R
d,1

, in which the relations are simpler.

Proposition 3.7.1. Let p ∈ R
d,1

. Suppose that p has combinatorial type Γd,1 with k

colored vertices, and suppose that a set of chart coordinates has been chosen following

(a), (b) and (c) above. Then, in a neighborhood of p, all cross-ratios ρi,j,k,l and ρi,j are

smooth functions of those in the chart.
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Proof. First we prove that all cross-ratios of the form ρijkl are smooth functions of those

in the chart associated to Γd,1. Denote by Γd the combinatorial type in R
d

obtained

from Γd,1 by forgetting colored vertices. Taking all cross-ratios of the form ρijkl in the

chart associated to Γd,1 almost gives a chart for Γd in the sense of Section 3.3.3. The

only coordinates that might be missing for the chart are those corresponding to edges

that have a bivalent colored vertex on them. For each bivalent vertex, we can assume

that the lower edge has coordinate ρi,j = ∞ and the upper edge is either ρj,k = 0 or

ρh,i = 0. Assuming the first case, relation (3.6) holds and

ρi,j,k,0 =
−ρi,j

ρj,k
,

expressing ρi,j,k,0 as a smooth function of the chart coordinates, and ρi,j,k,0 is a valid

chart coordinate for the underlying edge in Γd. The other case is very similar, by

relation (3.6),

ρh,i,j,0 =
−ρh,i

ρi,j
,

expresses ρh,i,j,0 as a smooth function of the chart coordinates, and ρh,i,j,0 is a valid

chart coordinate for the underlying edge in Γd. Hence we get a valid chart for Γd. Now

by Theorem 3.3.1 all cross-ratios of the form ρabcd are smooth functions of the chart

coordinates.

Finally, relations (3.6) and (3.7) can be used to obtain all cross-ratios of the form

ρa,b from the cross-ratios of the form ρi,j in the chart, and the appropriate ρijk0’s.

3.7.4 Charts using simple ratios.

As in Section 3.3.4 we describe an equivalent topology on Rn,1 using coordinate charts

based on “simple ratios”. Choosing parametrizations such that z0 = ∞, the elements

of Rn,1 can be identified with configurations of n distinct points −∞ < z1 < z2 <

. . . < zn < ∞ in R ⊂ C, together with a horizontal line L in the upper half plane of

C, modulo transformations of the form z 7→ az + b for a, b ∈ R such that a > 0, i.e.

dilation and translation. For such configurations define coordinates (X1, X2, . . . , Xn, Y )

by Xi = zi+1 − zi, and Y = dist(L, R). A transformation z 7→ az + b for a, b ∈ R sends

(X1, X2, . . . , Xn−1, Y ) 7→ (aX1, aX2, . . . , aXn−1, aY ),
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so they are really projective coordinates, (X1 : X2 : . . . : Xn−1 : Y ).

∞ = z0

z1 z2 z3 z4 z5

X1 X3 X4X2

z0

z1

z2

z3
z4

z5

Y

Figure 3.24: Projective coordinates (X1 : X2 : X3 : X4 : Y ) for a marked quilted disk
in R5,1.

We construct new charts as follows. Each maximal bicolored tree has two types

of edges: those that connect a pair of vertices vi and vj in the underlying graph, and

those that connect a vertex vi with either a colored vertex below it, or a colored vertex

above it. For an edge of the first type: if the vertex vi is below the vertex vj , then

the associated ratio is Xi/Xj . For an edge of the second type: if the vertex vi is

immediately below the colored vertex, then the associated ratio is Y/Xi; if the vertex

vi is immediately above the colored vertex, the associated ratio is Xi/Y . Write R(T )

for the subset of Rd,1 that is covered by a ratio chart corresponding to a maximal

bicolored tree T .

1 2 3 4 5 6

0

ρ1340

ρ3460

ρ3,4

ρ0123

ρ1,2

ρ5,6

1/ρ4,5

1 2 3 4 5 6

0

X3/X2

X5/X3

Y/.X1

X1/X2

Y/X5

Y/X5

X4/Y

Y/X3

Figure 3.25: A cross-ratio chart and a simple-ratio chart for the same maximal bicolored
tree.
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3.7.5 Equivalence of charts

We show that each cross-ratio in the chart is a smooth function of the simple ratios, and

is zero if and only if the corresponding simple ratio is zero. To show the other direction

– that the simple ratios are smooth functions of the cross-ratios – is an argument that

is similarly straightforward so we will not include it. We note again that if vertex vi is

below vertex vj in the tree, then the ratio Xi/Xj is a product of the ratios representing

the edges joining the vertex vi to vj . Hence the proof for a cross-ratio ρijk0 or ρ0ijk

follows from the proof given already in the case of ordinary trees. The only case that

isn’t already covered is that of a cross-ratio ρi,j in the chart. Parametrizing so that

z0 = ∞ and writing Y for the height of the line with respect to this parametrization,

consider an edge such as the one pictured in 3.26, where the cross-ratio assigned to it

in the cross-ratio chart is ρi,j , while the simple ratio assigned to it is Y/Xr. Then we

vr

r r + 1i j

Figure 3.26: Comparing a cross-ratio ρi,j with a ratio Y/Xr.

can write

ρi,j =
Y

zj − zi

=
Y

Xi + . . . + Xr + . . . + Xj−1

=
Y

Xr

(
1

Xi
Xr

+ . . . + 1 + . . . +
Xj−1

Xr

)
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where the ratios appearing in the big bracket are products of chart ratios corresponding

to edges below vr. The bracketed rational function is smooth and invertible for all

positive non-zero ratios and it is continuous as ratios in the chart go to 0. Moreover

ρi,j = 0 if and only if Y/Xr = 0. The other case, of a colored vertex above a regular

vertex, is very similar so we omit it.

So the charts of simple ratios define the same topology on R
d,1

as the charts of

cross-ratios.

3.8 Bicolored metric ribbon trees.

Definition A bicolored metric ribbon tree is a quintuple (T, i, e0, Vcol, λ). T is a tree

with semi-infinite exterior edges labeled e0, e1, . . . , ed, with e0 distinguished as the

“root” of the tree, while e1, . . . , ed are called the “leaves”. The map i : T → D is

an embedding of T into the unit disk such that the images of the exterior edges have a

limit point on the boundary of D, with the limit points of e0, . . . , ed cyclically ordered

following the counter clockwise orientation of ∂D. Vcol ⊂ V (T ) is a collection of colored

vertices, and λ : Eint(T ) → R+ is a map of edge lengths, subject to some conditions.

Recall from Section 3.4 that the geodesic between two vertices v, v′ in a metric tree T is

the (unique) path joining them of shortest total length; the total length of the geodesic

is called the distance from v to v′. The conditions on the data are:

1. In a geodesic from a leaf ei ∈ {e1, . . . , ed} to the root e0, exactly one vertex in the

path is a colored vertex.

2. If a vertex v ∈ V (T ) is bivalent, then v ∈ Vcol.

3. The edge length map λ is such that all colored vertices are the same distance from

the root.
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Example For the tree in Figure 3.27, an edge length map is subject to the relations

λ1 + λ2 + λ3 = λ1 + λ2 + λ4

= λ1 + λ2 + λ5

= λ1 + λ6

= λ7.

λ1

λ2

λ3 λ5
λ4

λ6

λ7

λ8

Figure 3.27: A bicolored ribbon tree. The relations on λ1, . . . , λ8 imply that λ3 = λ4 =
λ5, λ3 + λ2 = λ6, and λ6 + λ1 = λ7.

For each tuple (T, Vcol) satisfying conditions 1 and 2, we denote by Gr(T, Vcol) the

set of all maps λ satisfying condition 3, and then write

Grk,1 =
⋃

(T,Vcol)

Gr(T, Vcol).

We define a topology on Gr(T, Vcol) as follows. Assume that a sequence {λn}n∈N of

edge length maps converges for each interior edge e to a non-negative real number. In

other words, λn(e) → λ∞(e) ∈ [0,∞) for every e ∈ Eint(T ). Then, just as before, we

define the limit to be the data (T ′, i′, V ′
col, λ

′) given by
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1. T ′ is the tree obtained from T by collapsing edges e for which λ∞(e) = 0. this

defines a surjective morphism of bicolored based ribbon trees, p : T → T ′.

2. i′ is the embedding obtained from i by contracting along collapsed edges.

3. V ′
col = p(Vcol)

4. λ′(e) = λ∞(p−1(e)), since every edge e ∈ Eint(T
′) is the image of a unique edge

in Eint(T ).

Proposition 3.8.1. Gr(T, Vcol) is a polyhedral cone in R
n, where n = |Eint|−|Vcol|+1.

Proof. There is an R+ action on Gr(T, Vcol), given by (δ ·λ)(e) := δλ(e), so it is clearly

a cone. The dimension follows from the fact that there are |Eint| variables and |Vcol|−1

relations. The polyhedral structure can be seen by writing |Vcol| − 1 variables as linear

combinations of n independent variables. Then the condition that all λ(e) ≥ 0 means

that Gr(T ) is an intersection of half-spaces.

Example In the example of Figure 3.27, |Eint| = 8, and |Vcol| = 5. We can choose

independent variables to be λ1, λ2, λ3, λ8, and express the remaining variables as

λ4 = λ3

λ5 = λ3

λ6 = λ2 + λ3

λ7 = λ1 + λ2 + λ3.

Thus the space of admissible edge lengths is parametrized by points in the polyhedral

cone that is the intersection of R
4
+ (for the independent variables being non-negative)

with the half-spaces λ4 ≥ 0, λ5 ≥ 0, λ6 ≥ 0 and λ7 ≥ 0.

Theorem 3.8.2. Grk,1 is homeomorphic to Rk,1, hence to R
k−1.

Proof. We define a homeomorphism Θ : Grk,1 → Rk,1.

Suppose first that the combinatorial type T has a single, bivalent, colored vertex.

This is the case if and only if the colored vertex is adjacent to the root on one side, and



65

a vertex of valency at least 3 on the other; call this vertex V . For i = 1, . . . , k− 1 let vi

be the unique vertex where the geodesic from ei to V first intersects the geodesic from

ei+1 to V . Set

z0 = ∞, z1 = 0, zi+1 − zi = e−dist(vi,V ).

If λ ≥ 0 is the edge length of the edge between the colored vertex and V , we set the

horizontal line to be ℑ(z) = eλ. For any other combinatorial type, set

z0 = ∞, z1 = 0, zi+1 − zi = e−dist(vi,V ),

and the horizontal line to be

Im(z) = e−dist(Vcol,V ),

which is independent of vcol ∈ Vcol because they are the same distance from the root.

The continuity of Θ is clear, and injectivity and surjectivity follow as before.

Remark As before one can think of Θ as identifying the polyhedral cones in Grd,1

with cones in R
d−1 in such a way that the boundaries match up as they should, and

the union over the cones is R
d−1.

Example Consider the case d = 3, where we have fixed the parametrization of the

elements of Rd,1 so that the height of the line L is 1. Let x = z2 − z1 and y = z3 − z2.

The image of Θ : Gr3,1 → R3,1 subdivides R
2
>0 into 6 regions, see Figure 3.29, each of

which corresponds to a cone in R
2 via the homeomorphism (x, y) 7→ (log x, log y).

There is a natural compactification of Grd,1 by allowing edges to have length ∞.

The map Θ extends to the compactifications by taking limits in appropriate charts:

Proposition 3.8.3. Θ : Grd,1 → R
d,1

is a homeomorphism.

Proof. It follows from the observation that if λ is the length of an edge in Gr(T ), then

e−λ is the value of the ratio corresponding to that edge. Thus the image of a cone Gr(T )

is contained in the image of the ratio chart R(T ), and is identified directly with the

subset of R(T ) for which all ratios in the chart are restricted to lie in the interval (0, 1].

This identification passes to the limits as λ approaches ∞ and the corresponding ratio

approaches 0. This shows that Θ is a homeomorphism between R
d,1

and Grd,1.
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v0

v1 v2 v3 v4 v5

z1 = 0 z2 z3 z4 z5

λ1

λ2

λ3

λ4 λ5

λ1 = λ3 + λ4

λ4 = λ5

Θ

z0 = ∞
L

e−λ1

e−λ1−λ2 1 e−λ4−λ3 e−λ5−λ3

Figure 3.28: Identifying a bicolored metric ribbon tree in Gr5,1 with a marked quilted
disk in R5,1.

3.9 Toric varieties and moment polytopes.

We show that R
d,1

can be identified with the non-negative part of an embedded toric

variety in CP k, where k is the number of maximal bicolored trees with d leaves. Each

such tree determines a monomial in the d variables X1, X2, . . . , Xd−1, Y . The weight

vector of the monomial is read directly from the combinatorics of the tree, based on

the algorithm of Forcey in [3] for a convex hull realization of the d-th multiplihedron.

An immediate consequence is that Md,1 is homeomorphic to the moment polytope of

the toric variety. Since the moment polytope is the convex hull of the weight vectors,

this is a multiplihedron.

Recall from Section 3.7.4 that a point in Rd,1 can be identified with a projective
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(1, 1)
y = 1

y = x
x = 1

y

x(0,0)

Figure 3.29: The image of the cones of Gr3,1 in the moduli space R3,1.

coordinate

X = (X1 : X2 : . . . : Xd−1 : Y ),

by choosing a parametrization such that z0 = ∞, and setting Xi = zi+1 − zi and Y to

be the height of the line. To every maximal bicolored tree we associate a weight vector

NT ∈ Z
d, following the algorithm of [3].

Each pair of adjacent leaves in T , labelled i and i + 1 say, determines a unique

vertex, which we label vi, in T . Let ai be the number of leaves on the left side of vi,

and let bi be the number of leaves on the right side of vi. Let

δi =





0 if vi is below the level of the colored vertices, and

1 if vi is above the colored vertices.

The weight vector is

NT = (a1b1(1 + δ1), . . . , aibi(1 + δi), . . . , ad−1bd−1(1 + δd−1),−
∑

i

δiaibi).

Example For the tree in Figure 3.30, the weight vector is (2, 16, 6, 1, 4,−14), so the

corresponding monomial is X2
1X16

2 X6
3X4X

4
5Y −14.
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1 2 3 4 5 6

0

v1

v2

v3

v5

v4

Figure 3.30: A maximal bicolored tree, whose weight vector is (2, 16, 6, 1, 4,−14).

Label the maximal bicolored trees T1, . . . , Tk. We define a projective toric variety

V ⊂ CP k−1 as the closure of the image of

(X1 : . . . : Xd−1) 7→ (XNT1 : . . . : XNTk ). (3.8)

The entries in the weight vectors always sum to d(d − 1)/2, so the monomials all have

the same degree and the map is well-defined on the homogeneous coordinates.

Definition For a maximal bicolored tree T , we can define a flop of an interior edge e

as in Definition 3.5, as long as the edge e is incident to a pair of trivalent vertices. We

define a fusion move through an interior vertex vi to be the move by which two colored

vertices immediately below vi become a single colored vertex immediately above vi; the

vice-versa we will call a splitting move. We will say that two maximal bicolored trees

T and T ′ differ by a basic move if they differ by a flop, fusion, or splitting move.

The important point is that any maximal bicolored tree can be obtained from any

other such tree by a sequence of basic moves.
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fusion

splitting vi

in T in T ′

vi

Figure 3.31: The other basic moves in a bicolored tree: fusion and splitting.

Lemma 3.9.1. Suppose that two maximal bicolored trees T and T ′ differ by a single

basic move involving an edge e ∈ E(T ). Let R denote the simple ratio labeling the edge

e in the chart determined by T . Then

XNT ′

NT
= Rm

for some integer m > 0. In general, for two trees T and T ′,

XNT ′

NT
= Rm1

i1
Rm2

i2
. . . Rmr

ir

for some ratios Rii , . . . , Rir in the ratio chart associated to T , and positive integers

m1, . . . , mr.

Proof. Any maximal bicolored tree can be obtained from another by a sequence of basic

moves. The first type, the flop, was dealt with in Lemma 3.5.1, and since the proof is

practically the same we omit it here. For the other types of basic move, consider the

situation in Figure 3.31, in which a colored vertex is below vi in T , and above vi in T ′.

The weight vectors of T and T ′ are identical in all entries except for the i-th entry,

which corresponds to the exponent of Xi, and the n + 1-th entry, which corresponds to

the exponent of Y :

(NT )i = 2aibi,

(NT ′ = aibi,

(NT ′)n+1 − (NT )n+1 = −(0) − (−aibi)
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Therefore

XNT ′

NT
=

Xaibi
i Y −0

X2aibi
i Y −aibi

=
Y aibi

Xaibi
i

=

(
Y

Xi

)aibi

where Y/Xi is the ratio labeling the two edges below vi of T . The general case follows

by induction on the number of basic moves.

Theorem 3.9.2. R
d,1

is homeomorphic to the non-negative part of the projective toric

variety V .

Proof. The proof proceeds just like the proof of Theorem 3.5.2. We show that each

chart R(Ti) is identified with the non-negative part of the affine slice V ∩ Ai, where

Ai = (ξ1 : ξ2 : . . . : 1︸︷︷︸
ith

: . . . : ξk).

We prove it for the the first affine piece. V ∩ A1 consists of all points

(1 :
XNT2

XNT1
: . . . :

XNTk

XNT1
)

where the ratios are allowed to be 0. Lemma 3.5.1 says that for any edge in T1, say

with ratio R, there is an entry Rm in the slot belonging to the tree obtained by a flop

of that edge. For any positive integer m, the map r 7→ rm is a homeomorphism for

r ∈ [0,∞), which is the domain of the ratios in the chart R(T1). The other entries are

higher products of ratios in R(T1) so depend smoothly on the chart R(T1). Therefore

R(T1) is homeomorphic to the non-negative part of V ∩ A1.

Theorem 3.9.3. R
d,1

is homeomorphic to the convex hull of the weight vectors in R
d.

Thus it is a (d− 1)-dimensional polytope, homeomorphic to the Stasheff multiplihedron

Jd.

Proof. The non-negative part of a projective toric variety constructed with weight vec-

tors is homeomorphic, via the moment map, to the convex hull of the weight vectors
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(see, for example, [6], [15]). The proof that it is homeomorphic to the Stasheff multipli-

hedron Kd is by induction on d: the one-dimensional spaces R
2,1

,R
3
, J2 and K3 are all

compact and connected, and so homeomorphic. It suffices, therefore, to show that R
d,1

is the cone on its boundary. This is true since it is homeomorphic to a polytope.
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Chapter 4

Quilts

4.1 Outline of chapter

There are two goals of this chapter. First, to set up the definition of pseudoholomorphic

maps for general Riemann surfaces with striplike ends, and their quilted generalizations.

Second, to construct families of quilted surfaces that are parametrized by the associa-

hedra and multiplihedra, which will be used as domains for the Floer theory of Chapter

5.

4.2 Surfaces with striplike ends

Let S be a compact Riemann surface with boundary ∂S ∼= ∪k
j=1S

1. Suppose that

the boundary is equipped with a collection of distinct marked points ζ1, . . . , ζn ∈ ∂S.

A striplike end for a marked point ζ ∈ ∂S is a proper holomorphic embedding ǫζ :

[0,∞) × [0, 1] → S such that

1. ǫ−1
ζ (∂S) = [0,∞) × {0} ∪ [0,∞) × {1}

2. lims→∞ ǫζ(s, t) = ζ, where the convergence is uniform in t ∈ [0, 1].

We always assume that the images of striplike ends for distinct marked points are

disjoint in S.

4.3 Quilted surfaces

Definition (Wehrheim-Woodward) A quilted surface S with strip-like ends consists

of the following data:
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1. A collection S = (Sk)k=1,...,m of Riemann surfaces with boundary, equipped with

strip-like ends. Let E(Sk) denote the set of boundary components of Sk.

2. A collection Σ of pairwise disjoint 2-element subsets

σ ⊂
m⋃

k=1

{k} × E(Sk),

and for each σ = {(kσ, eσ), (k′
σ, e′σ), a real-analytic identification of the corre-

sponding boundary components

φσ : Ikσ ,eσ

∼
−→ Ik′

σ ,e′σ .

We call each pair σ ∈ Σ a seam of S. The identification map along a seam

should be compatible with the strip-like ends: meaning that if a pair of striplike

ends attached to each side of a seam are holomorphically identified with the half-

infinite strips [0, 1] × [0,∞) and [1, 2] × [0,∞) such that the pair of boundary

components in the seam mapping to 1 × [0,∞), then the seam identification is

the identity map on 1 × [0,∞).

4.4 Pseudoholomorphic quilts

Let S = (Sk)1,...,m be a quilted surface with strip-like ends, and for each component Sk

let jk be its complex structure. For each Sk fix a target symplectic manifold (Mk, ωk).

Write M = (Mk)1,...,m for the collection of target manifolds.

Definition A Lagrangian boundary condition for (S, M) is a set L of Lagrangian sub-

manifolds as labels of each boundary component and seam of S: every boundary com-

ponent of S that is a boundary component of Sk is labeled by a Lagrangian submanifold

of Mk, and every seam identifying a boundary component of Sk with a boundary com-

ponent of Sk′ is labeled by a Lagrangian correspondence L(k,k′) ⊂ M−
k × Mk′ .

Write Ik,i, i = 1, . . . , kj for the boundary components of Sk that are not seams, and

Lk,i ⊂ Mk for their Lagrangian labels. For each seam σ = {(kσ, eσ), (k′
σ, e′σ)} ∈ Σ, write

Lσ ⊂ M−
kσ

× Mk′
σ

for its Lagrangian label.

For each of the symplectic manifolds (Mk, ωk) ∈ M , let
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1. Hk = C∞(Mk, R) be the space of Hamiltonian functions on Mk;

2. Jk be the space of all ωk-compatible almost complex structures on Mk.

A perturbation datum is a pair of tuples (K, J) = (Kk, Jk)k=1,...,m where Kk ∈

Ω1(Sk,Hk) and Jk ∈ C∞(Sk,Jk). Each Kk is a 1-form on Sk taking values in Hk.

Thus Kk determines a 1-form Yk = Ω1(Sk, C
∞(TMk)) taking values in the space of

Hamiltonian vector fields on Mk – for each ξ ∈ TSk, Yk(ξ) is the Hamiltonian vector

field associated to the Hamiltonian Kk(ξ).

Let u = (uk)k=1,...,m be a tuple of maps uk : Sk → Mk.

Definition The inhomogeneous pseudoholomorphic quilt equation for u is

duk(z) + Jk(z, u) ◦ duk(z) ◦ jk = Yk(z, u) + Jk(z, u) ◦ Yk(z, u) ◦ jk

uk

∣∣
Ik,i

⊂ Lk,i, ukσ × uk′
σ

∣∣
(Iσ×φσ I′σ)

⊂ Lσ





(4.1)

for all k = 1, . . . , m and seams σ ∈ Σ.

4.5 Quilted strips

Figure 4.1: A quilted strip.

Let Z = R × i[0, 1] ⊂ C denote the infinite strip with coordinates s + it. Denote its

standard complex structure by j.

Definition A quilted strip is a tuple of strips, Z = (Zk)1,...,m, together with a tuple of

holomorphic isomorphisms φk : Zk → R × i[k − 1, k] such that R × {0} 7→ R × {k − 1}

and R × {1} 7→ R × {k}. The seam maps are defined by the identity maps along the
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overlaps R× i{k} = φk(Zk)∩ φk+1(Zk+1), for k = 1, . . . , m− 1. A quilted strip Z with

k ≥ 1 components has k − 1 seams and 2 boundary components.

Each strip has a one-dimensional family of automorphisms, corresponding to trans-

lation in the s variable. The seam conditions make an automorphism of a single strip

extend to a simultaneous automorphism of all strips, so a quilted strip also has a one-

dimensional family of automorphisms.

4.6 Quilted surfaces parametrized by the associahedron

z0

z1

z2

z4

z3

Figure 4.2: A quilted surface parametrized by a disk with markings, with striplike ends
shaded.

Let d ≥ 2. As in Chapter 3, we denote the d-th associahedron by R
d
. The goal of this

section is to construct, for each d, a smooth fiber bundle Sd −→ Rd of quilted surfaces

with striplike ends. We want these bundles to be consistent with gluing operations

near the boundaries ∂R
d
, in the following sense. Recall that the Deligne-Mumford

compactification of Rd is the union

R
d

=
⋃

T

RT ,

where T ranges over all stable trees with d leaves, and RT denotes all stable nodal

marked disks of combinatorial type T . The boundary, ∂R
d
, is the union over all combi-

natorial types T with at least one interior edge. For small gluing parameters, we want
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a combinatorial type T with interior edges to determine a gluing operation

γT : ×
v∈V (T )

S |v|−1 × (0, ǫ)|Eint(T )| −→ Sd

defined as follows. Each edge e ∈ Eint(T ) is incident to two vertices, v− and v+, where

we write v− for the vertex closer to the root. The edge e represents a striplike end

ǫ−(s, t) of S |v−|−1 and a striplike end ǫ+(s, t) of S |v+|−1. Given a gluing parameter

δ ∈ (0, 1), with corresponding gluing length R = R(δ) := − log δ, we truncate each of

these striplike ends at s = R and identify ǫ−(R, 1 − t) ∼ ǫ+(R, t).

As a first step we construct a smooth fiber bundle Sd −→ Rd, where

• Each fiber Sd
r , r ∈ Rd is a Riemann surface with boundary holomorphically iso-

morphic to the closed disk D with d + 1 distinct boundary points removed.

• Each surface Sd
r is equipped with d + 1 striplike ends.

We will construct the surfaces first with striplike ends, and then fix the complex

structure on each surface such that the complex structure varies smoothly over Rd, and

coincides with the standard complex structure for the strip on the striplike ends.

Constructing the surfaces

We exploit the inductive nature of R
d
. We proceed by induction on d ≥ 2; at each

step we will define the bundle over the boundary in terms of the lower strata, cover a

neighborhood of the boundary using the gluing construction on the striplike ends, and

finally interpolate over the interior.

Basis step: Fix a surface with three boundary components and three striplike ends

for S2, as pictured in Figure 4.3.

Inductive step: Let d > 2. Assume that for 2 ≤ e < d the bundles Se −→ Re have

been constructed. Use the gluing construction to define the bundle S
d
−→ R

d
over an

open neighborhood of ∂R
d
. Observe that all surfaces already defined are diffeomorphic

by orientation preserving diffeomorphisms that identify striplike ends. The space of

such diffeomorphic 2-manifolds with boundary with fixed striplike ends is contractible,

therefore the bundle Sd −→ Rd extends over Rd.
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Figure 4.3: The basic surface S2 with striplike ends shaded.

Fixing the complex structures

Now that we have the surfaces, we fix the complex structure on each surface, again

working by induction.

Basis step: For the surface S2, fix the complex structure on each of the striplike ends

to be the standard complex structure for the strip. Since the boundary is smooth there

is a tubular neighborhood of each boundary component diffeomorphic to a standard

strip [0, δ)×R and for sufficiently small δ these tubular neighborhoods do not intersect

for different boundary components. Moreover we assume that on the striplike ends

these tubular neighborhoods are just ordinary strips. We take the complex structure

to be the standard complex structure for the strip on those tubular neighborhoods;

this ensures that the boundary is real-analytic. Finally, we can smoothly extend the

complex structure over the remainder of the interior of S2 since the space of complex

structures is contractible.

Inductive step: Assume that for 2 ≤ e < d the complex structures on the fibers of

the bundle S
e
−→ R

e
have been determined. Use the gluing construction to determine

the complex structure on the fibers over a neighborhood of the boundary. It remains to

check that the complex structure can be smoothly extended over the bundle Sd → Rd, in

such a way that the boundary is real-analytic and the complex structure is the standard

complex structure for the strip. We observe again that all surfaces are diffeomorphic

by smoothly varying diffeomorphisms that preserve the striplike ends. So if we fix one

of these surfaces as a base surface, call it S, we need to check that there is a smoothly
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varying family of tubular neighborhoods of the boundary and smoothly varying family

of complex structures over the rest of the surface that coincide with the standard

complex structure on the tubular neighborhood. But this is possible since the space

of tubular neighborhoods of boundary components is contractible, and the space of

complex structures is too. Since in dimension 2 all complex structures are integrable,

so this construction produces a fiber bundle of Riemann surfaces with striplike ends.

Attaching strips

We obtain more general quilted surfaces parametrized by the associahedron by attaching

strips to boundary components of the Riemann surfaces in the families defined for d ≥ 2.

By construction we have tubular neighborhoods of the boundary components which are

holomorphically isomorphic to R×i[0, δ), where R×i{0} is identified with the boundary,

and δ is sufficiently small. We get a quilted surface by attaching a strip to the boundary

component via the identification of the tubular neighborhood with the strip R×[1, 1+δ),

and attaching the standard strip R × i[0, 1] along the common seam, R × i.

0

i

i(1 + δ)

Figure 4.4: Attaching strips to boundary components.
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z0

z2

z4

z3

z1

Figure 4.5: A quilted surface with striplike ends parametrized by a quilted marked disk.

4.7 Quilted surfaces parametrized by the multiplihedron

Let d ≥ 1. As in Section 3.7, we denote the d-th multiplihedron by R
d,1

. Our first goal

is to construct a fiber bundle Sd,1 −→ Rd,1, where

• Each fiber Sd,1
r is a contractible 2-manifold with d+1 boundary components, with

an embedded 1-manifold (the seam).

• Each surface Sd,1
r is equipped with d + 1 striplike ends, d of which are a single

strip, and one of which is a quilted strip with three components.

We want these bundles to be consistent with gluing operations near the boundaries

∂R
d,1

, in the following sense. Recall that the Deligne-Mumford-type compactification

of Rd,1 is

R
d+1,1

=
⋃

Γ

RΓ

where Γ ranges over all stable bicolored trees with d leaves, and RΓ denotes all nodal

semi-stable quilted disks of combinatorial type Γ. The boundary, ∂R
d,1

is the union

over all combinatorial types Γ with at least one interior edge. Recall from Section 3.8

that the gluing lengths, hence the gluing parameters, are required to satisfy a collection

of gluing relations. In the framework of gluing lengths, the relations define a cone

G ⊂ (0,∞)|Eint(Γ)|. We call a tuple of gluing lengths admissible if it is in G.

The colored vertices Vcol ⊂ V (Γ) divide the vertex set V (Γ) into three disjoint sets;

we write VA (resp. VB) for the vertices which are closer (resp. further) from the root
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than the vertices in Vcol. From the previous section, fix two fiber bundles of surfaces

parametrized by the associahedra:

1. Sd −→ Rd, where the fibers are Riemann surfaces;

2. Sd
A −→ Rd, where the fibers are quilted surfaces, corresponding to the Riemann

surfaces in Sd with one strip attached to each boundary component.

We want a combinatorial type Γ with interior edges to determine a gluing operation

γΓ : ×
v∈VA

S
|v|−1
A ×

v∈VB

S |v|−1 ×
v∈Vcol

S |v|−1,1 × G −→ Sd

defined as follows. Each edge e ∈ Eint(Γ) is incident to two vertices, v− and v+ where

v− is the vertex closer to the root, and determines an identification of two striplike

ends. Then, given a gluing length for e, we can truncate striplike ends and identify

along cuts as before.

To achieve this property we will again construct the surfaces first with their striplike

ends, and then fix the complex structure on each surface.

Constructing the quilted surfaces

We exploit the inductive nature of R
d,1

. We proceed by induction on d ≥ 1, at each

step defining the bundle over the boundary in terms of the lower strata, extending over

a neighborhood of the boundary using the gluing construction on the striplike ends,

and finally interpolating over the interior.

Basis step: Fix a surface with two boundary components, an embedded 1-manifold

and three striplike ends as in Figure 4.6.

Figure 4.6: The basic surface S1,1 with striplike ends shaded.
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Inductive step: Let d > 1. Assume that for 1 ≤ e < d the bundles Se,1 have been

constructed, and so have the bundles Se −→ Re,Se
A −→ Re over the associahedra as

in the previous section. Then the gluing construction allows us to define the bundle

S
d
−→ R

d
over an open neighborhood of ∂R

d
. Observe that all surfaces defined so far

are diffeomorphic to each other via orientation preserving diffeomorphisms that map

the surface to surface and seam to seam, and are the identity map on the striplike

ends. The space of such diffeomorphic 2-manifolds with boundary and seam with fixed

striplike ends is contractible, therefore the bundle Sd,1 −→ Rd,1 can be extended over

the remainder of the interior of Rd,1.

Fixing the complex structures

Now that we have the quilted surfaces, we fix the complex structure on each of their

components, again working by induction.

Basis step: For the quilted surface S1,1, we first fix the complex structures on each

strip component of the striplike ends to be the standard complex structure for the strip.

Next, we choose a tubular neighborhood of each boundary component diffeomorphic to

a standard strip R × [0, δ), and such that on the striplike ends it is exactly that strip.

We also choose a tubular neighborhood of the seam that is diffeomorphic to R× (−δ, δ)

and is of exactly the form on the parts of the seam that are on the striplike end. We

choose δ small enough that all these tubular neighborhoods are disjoint. We fix the

complex structure on each of the tubular neighborhoods to be the standard complex

structure on those strips; note that these are consistent with the standard complex

structure on the striplike ends because we chose the tubular neighborhoods to coincide

with standard strips of width δ on the striplike ends. This ensures that the boundary

is real-analytic and the seam is a real-analytic submanifold. Finally, we can smoothly

extend the complex structure over the remainder of the interiors of the components of

S1,1 since the space of complex structures is contractible.

Inductive step: Assume that for 1 ≤ e < d the complex structures on the fibers of

the bundle Se −→ Re have been fixed. By assumption the complex structures on the

fibers of the bundles Se −→ Re and Se
A −→ Re constructed over the associahedra have
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been fixed. Since the complex structures are fixed over the striplike ends, the gluing

construction determines the complex structures on the surfaces fibered over a neighbor-

hood of the boundary Rd,1. So one needs to check that the complex structures extend

smoothly over the rest of the bundle Sd,1 −→ Rd,1, in such a way that the striplike ends

are always equipped with the standard complex structure, the boundary components

are always real-analytic, the seam is always a real-analytic embedding. Observe that all

surfaces in the bundle are diffeomorphic by smoothly varying diffeomorphisms that pre-

serve the seam and the striplike ends. If we fix one of these surfaces with seam as a base

surface, S, with embedded 1-submanifold C, we need to check that there is a smoothly

varying family of tubular neighborhoods of the boundary and the seam, and a smoothly

varying family of complex structures over the rest of the surface that on the tubular

neighborhoods is the standard complex structure. But all this is possible because the

space of tubular neighborhoods of boundary components and seam is contractible, and

so is the space of complex structures. Moreover in dimension 2 all complex structures

are integrable, so this construction produces a fiber bundle Sd,1 −→ Rd,1 of quilted

surfaces with striplike ends, in the sense of Section 4.3.

Attaching strips

We obtain more general quilted surfaces parametrized by the multiplihedron by attach-

ing strips to the external boundary components in the families defined for d ≥ 1. By

construction we have tubular neighborhoods of these boundary components which are

holomorphically isomorphic to R× i[0, δ), where R× i{0} is identified with the bound-

ary, and δ is sufficiently small. We get a quilted surface by attaching a strip to the

boundary component via the identification of the tubular neighborhood with the strip

R× [1, 1+δ), and attaching the standard strip R× i[0, 1] along the common seam, R× i.
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Chapter 5

Floer theory for families of quilted surfaces

5.1 Outline of chapter

The goal of this chapter is to describe the analytical framework for quilted Floer theory

for the families of quilted surfaces that were explicitly constructed in the preceding

chapter. The chapter is modeled on [14, Section 9], which describes the Floer theory

for families behind the construction of the Fukaya category.

5.2 Inhomogeneous pseudo-holomorphic maps

Floer and perturbation data

To each striplike end of S, with Lagrangian boundary conditions given by L, we as-

sign a Floer datum, which is a regular pair (H, J) = ((Hk)k=1,...,m, (Jk)k=1,...,m) of a

Hamiltonian perturbation and an almost complex structure of split type.

Fix a collection of generalized Lagrangian submanifolds L0, . . . , Ld of a symplectic

manifold MA. Given a Lagrangian correspondence LAB between MA and MB, the

compositions

L0,AB := L0 ◦ LAB

Ld,AB := Ld ◦ LAB

are generalized Lagrangian submanifolds of MB.

Assign each pair (Li, Li+1) a Floer datum (H i, J i), and assign (L0,AB, Ld,AB) a

Floer datum (HAB, JAB). Then fix a perturbation datum (K, J) which is compatible

with the striplike ends and the Floer data along the striplike ends.
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Fix a quilted surface Sr0
, r0 ∈ Rd,1, which is labeled by the Lagrangians L0, . . . , Ld

and the Lagrangian correspondence LAB. In a neighborhood U of r0 all of the quilted

surfaces are diffeormorphic, giving rise to a family of diffeomorphisms parametrized by

points in U ,

Ψ : U × Sr0 7→ S
∣∣
U

Ψ(r, ·) : Sr0

∼=
−→ Sr

which are “constant on the strip-like ends”, meaning that

Ψ(r, εζ(r0, s, t)) = εζ(r, s, t).

Each quilted surface Sr is equipped with complex structures j
Sr

which can be pulled

back by Ψr to give a family of complex structures on Sr0
parametrized by r:

j(r) := Ψ∗
r(jSr

)

Consistent perturbation data

We assume that a universal choice of perturbation data has been made, and that the

universal choice is consistent, which means, in the language of [14, Section 9], that the

following two conditions hold:

• There is a subset U ⊂ R where the gluing parameters are sufficiently small, such

that the perturbation data obtained from gluing and the perturbation data in the

family agree on the thin parts of the surfaces Sr, r ∈ U .

• Let (K, J) be the first perturbation datum on S (i.e., obtained by gluing), and

(K, J) its extension to the partial compactification S. Then the other datum

(obtained by pullback from Sd+1) also extends smoothly to S and the extension

agrees with (K, J) over the subset {0}Edint(T ) × RT ⊂ R where all the gluing

parameters are zero.

The K in the perturbation datum is a smooth family of 1-forms on the fibers Sr

which take values in the space of Hamiltonian functions on M . Thus, a choice of K

gives rise to a 1-form Y on each fiber Sr, that takes values in the space of Hamiltonian

vector fields on M .
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Bundles

Once we fix a collection of intersection points

(y
0
, x1, . . . , xd) ∈ I(L0,AB, Ld,AB) × I(L0, L1) × . . . × I(Ld−1, Ld)

we can define a fiber bundle

B
S
∣∣
U

−→ U

whose fiber over r is C∞(Sr, M ; {L}), the space of smooth maps from Sr to M , sat-

isfying the required boundary conditions on the seams of the quilt that involve the

Lagrangians labeling the seams. There is another fiber bundle

E
S
∣∣
U

−→ B
S
∣∣
U

,

whose fiber E(r,u) = Ω0,1,r(Sr, u
∗TM) of (0, 1) forms on Sr taking values in the pullback

bundle u∗TM , and the (0, 1) part is with respect to J(r, u) and j(r).

Definition The inhomogeneous pseudo-holomorphic map equation for (r, u) ∈ B is




du(z) + J(r, u, z) ◦ du(z) ◦ j(r) = Y (r, u, z) + J(r, u, z) ◦ Y (r, u, z) ◦ j(r)

u(C) ⊂ LC for all seams C with label LC .
(5.1)

The compatibility of the perturbation datum with the Floer data along the striplike

ends means that the above equation reduces to Floer’s equation along the striplike ends.

In particular, solutions with finite energy converge exponentially along the striplike ends

to elements of

I(L0,AB, Ld,AB) × I(L0, L1) × . . . × I(Ld−1, Ld).

Definition Given a fixed set of intersection points (y
0
, x1, . . . , xd), the moduli space of

pseudoholomorphic quilted disks Md,1(y0
, x1, . . . , xd) is the set of finite energy solutions

(r, u) to (5.1) which converge along the strip-like ends labeled ζ0, . . . , ζd to the respective

intersections (y
0
, x1, . . . , xd).

Since equation (5.1) can be written as (du − Y )0,1 = 0, we will also abbreviate it as

(∂−ν)(r, u) = 0, where ∂(r, u) := (du)0,1 and ν(r, u) := (Y (r, u))0,1, with the 0, 1 taken

with respect to J(r, u, z) and j(r). The operator ∂ − ν defines a section B → E and

solutions of (5.1) correspond to its intersection with the zero-section of E .
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5.3 Local trivializations

We now define local trivializations of the bundle E
S
∣∣
U

−→ B
S
∣∣
U

in a small neighborhood

of a point (r0, u0) ∈ B. This requires identifying fibers that are close to each other.

We will use local exponential maps with respect to Riemannian metrics on the

manifolds to get the trivialization. In order for the exponential maps to preserve the

Lagrangian boundary conditions, we need metrics that make the Lagrangian submani-

folds in the boundary conditions totally geodesic.

The main ingredient in the construction of such metrics is Frauenfelder’s lemma,

which we quote here from [10, Lemma 4.3.3]. We say that a Lagrangian submanifold

L is totally real with respect to an almost-complex structure J on M if at every p ∈ L,

TpL ∩ JTpL = 0. In particular, if J is an almost-complex structure that is compatible

with ω, and L is a Lagrangian submanifold of M , then L is totally real for J . This

follows from the fact that if ξ, η ∈ TpL, then using the metric gJ induced by ω and J ,

gJ(ξ, Jη) = ω(ξ, J2η) = −ω(ξ, η) = 0 as L is Lagrangian.

Lemma 5.3.1 (Frauenfelder). Let (M, J) be an almost complex manifold and L ⊂ M

be a totally real submanifold with 2 dimL = dimM . Then there exists a Riemannian

metric g = 〈·, ·〉 on M such that

(i) 〈J(p)v, J(p)w〉 = 〈v, w〉 for p ∈ M and v, w ∈ TpM ,

(ii) J(p)TpL is the orthogonal complement of TpL for every p ∈ L,

(iii) L is totally geodesic with respect to g.

The statement of (iii) is that L is totally geodesic with respect to the Levi-Civita

connection ∇ of g. However we will also need the associated Hermitian connection ∇̃,

defined by

∇̃vX := ∇vX −
1

2
J(∇vJ)X, (5.2)

so we need to know that L is totally geodesic with respect to ∇̃.

Lemma 5.3.2. Let (M, J) be an almost complex manifold, L a Lagrangian submanifold

of M , and g a metric satisfying (i)-(iii) of Lemma 5.3.1. Let ∇ be the Levi-Civita
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connection of g, and ∇̃ the complex linear connection (5.2). Then L is totally geodesic

with respect to ∇̃.

Proof. We show that L is totally geodesic with respect to ∇̃ by showing that for every

p ∈ L, and every X, Y ∈ TpL, ∇̃XY ∈ TpL. By definition,

∇̃XY = ∇XY −
1

2
J(∇XJ)Y.

where ∇ is the Levi-Civita connection of g. By assumption, L is totally geodesic with

respect to ∇, therefore ∇XY ∈ TpL for all p ∈ L and all X, Y ∈ TpL. So it is enough

to show that J(∇XJ)Y ∈ TpL. Since the orthogonal complement of TpL is JTpL, it

reduces to showing that for all X, Y, Z ∈ TpL, J(∇XJ)Y ⊥ JZ.

g(J(∇XJ)Y, JZ) = g((∇XJ)Y, Z)

= d(g(JY, Z))(X) − g(J∇XY, Z) − g(JY,∇XZ)

= 0

since all three terms in the penultimate line are zero. Hence, L is totally geodesic with

respect to ∇̃.

Let S −→ R be shorthand for either Sd −→ Rd or Sd,1 −→ Rd,1, the fiber bundles

of quilted surfaces defined in section 4.3. Let M = (Mj)j=1,...,k be a collection of target

manifolds for the quilted surfaces in S, and let L be a collection of Lagrangian boundary

conditions for the boundary components and the seams.

A point in S is a pair (r, z), where r ∈ R and z ∈ Sr. Let us denote the set

of Riemannian metrics on Mj by R(Mj), and for a given almost-complex structure

J on Mj we write R(Mj , J) for the set of Riemannian metrics on Mj for which J is

skew-adjoint.

There is a fiber bundle RM −→ S, with fibers RM(r,z) = R(M, J(r, z)) where

J is the almost-complex structure on M from the fixed choice of perturbation data.

More explicitly, the quilt bundle S −→ R consists of a finite set of bundles Sj −→ R of

Riemann surfaces with boundary, where j = 1, . . . , k, together with seam identifications.

For each j there is a bundle R(Mj , Jj) −→ Sj of Riemannian metrics for which the

almost-complex structure Jj is skew-adjoint.
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Definition A compatible metric g for the pair (M, J) is a section g : S → RM , that

is, a tuple of sections gj : Sj → R(Mj , Jj), where for each r ∈ R, z ∈ Sj(r), gj(r, z) is

a Riemannian metric on Mj that is J(r, z)-invariant. We say that g is consistent with

the Lagrangian boundary conditions L, the striplike ends, and the boundary strata of

R, if it has the following properties.

1. For every true boundary component I ⊂ Sj of S, with Lagrangian label L ⊂ Mj ,

gj

∣∣
I

makes L totally geodesic.

2. For every seam σ = ((k, Ie), (k
′, Ie′)) ∈ Σ, with identification φσ : Ik,e −→ Ik′,e′ ,

and Lagrangian label Lk,k′ ⊂ M−
k × Mk′ , the product metric gk × gk′

∣∣
Ie×φσ Ie′

on

M−
k × Mk′ makes Lk,k′ totally geodesic.

3. On the striplike ends the metrics are independent of the parameter space R, and

are constant in the s direction.

4. Near the boundary of Rd (resp. Rd,1), the metric is obtained from the metrics on

the components making up the boundary strata, by gluing along striplike ends.

Lemma 5.3.3. Consistent compatible metrics exist.

Proof. The proof uses the recursive nature of the bundle S −→ R to define the metrics

by induction. We break it up into three steps.

Step 1: Consistent compatible metrics exist for quilted strips.

Proof of Step 1: Take the strips to be Zj = R × [j − 1, j] for j = 1, . . . , k. For each Zj

write (Mj , ωj) for the target symplectic manifold, Jj(t), t ∈ [0, 1] for the t-dependent

almost-complex structure. Write L1, Lk and Lj−1,j for j = 1, . . . , k for the Lagrangian

boundary conditions.

By assumption, L1 is a Lagrangian submanifold of M1 which is totally real with

respect to J1(0), Lk is a Lagrangian submanifold of Mk which is totally real with

respect to Jk(1), and for k = 2, . . . , k, the Lagrangian correspondences Lk−1,k are

totally real submanifolds of M−
k−1 × Mk with respect to the almost complex structure

Jk−1(1) × Jk(0). By Lemma 5.3.1, for each of these Lagrangian submanifolds there
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exists a metric making them totally geodesic; let us call these metrics g̃1, g̃k and g̃j−1,j

for j = 1, . . . , k.

We illustrate how to get a consistent and compatible tuple (gj)j=1,...,k by explaining

how to construct g1; constructing the other gj ’s uses identical lines of reasoning. On

M1, we have two metrics g1 and pr∗1g1,2, where pr1 : M−
1 ×M2 → M−

1 is the projection

map. The space of Riemannian metrics on M is contractible so we can fix a smooth

path g1 : [0, 1] → R(M1) such that g1(0) = g̃1 and g1(1) = g̃1,2. We can even make it a

smooth path of J(t)-invariant metrics by replacing g1(t) 7→ 1
2(g1(t) + J(t)T g1(t)J(t));

note that this does not alter the metrics at t = 0 and t = 1, since they are already J1(0)

and J1(1) invariant, respectively.

Step 2: Consistent compatible metrics exist for the bundles S1,1 −→ R1,1 and

S2 −→ R2.

Proof of Step 2: First we fix, by step 1, a choice of compatible metric on each striplike

end, which depends on the almost complex structures in the Floer datum. Second,

we extend the choice of metric smoothly over the boundary components, as follows.

Note that the complement of the striplike ends on a boundary component I is compact.

On that compact subset, the complex structures J(z, r) in the perturbation datum

vary smoothly over z ∈ I and r ∈ R, interpolating between the complex structures at

each striplike end. It is an important point that for a fixed Lagrangian submanifold,

the metrics of Lemma 5.3.1 can be chosen to depend smoothly on the almost-complex

structure J , and for each almost complex structure J the set of metrics satisfying (i)-

(iii) is convex. Using these facts we can choose metrics g(r, z) satisfying (i) - (iii) that

are parametrized by z ∈ I and r ∈ R, and interpolate between the metrics already

chosen at each striplike end. Once the metrics are chosen for each boundary and seam

component, use the convexity of Riemannian metrics to extend the choice of metrics

smoothly over the interiors of the surfaces. Any smooth family of Riemannian metrics

g(r, z), r ∈ R, z ∈ Sr can be smoothly converted into a family of J(r, z)-invariant

Riemannian metrics, by replacing g(r, z) with 1
2(g(r, z) + J(r, z)T g(r, z)J(r, z)). Note

that this map is the identity map on metrics that are already J(r, z) invariant; in

particular, this map is the identity map on the metrics chosen for the boundary and
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seam components, which are invariant by (i).

Step 3: Consistent compatible metrics exist for all Sd,1 −→ Rd,1 for d ≥ 1, and for

all Sd −→ Rd for d ≥ 2.

Proof of Step 3: This is an inductive argument on d, with the base case covered by

Step 2. Having constructed families of metrics for Rd or Rd,1 for d ≤ k, the gluing

operation determines compatible metrics in a neighborhood of the boundary of Rk+1

or Rk+1,1. To extend over the rest of the interior of Rk+1 or Rk+1,1, again use the fact

that the metrics required to make the Lagrangians totally geodesic depend smoothly on

the choice of almost complex structure J , and in the absence of the geodesic condition

the space of Riemannian metrics is convex. One can therefore choose smooth extensions

that aren’t necessarily J(r, z) invariant but smoothly interpolate between the metrics

chosen on the boundary, then use the map g(r, z) 7→ 1
2(g(r, z) + J(r, z)T g(r, z)J(r, z))

to make each metric J(r, z)-invariant. As noted earlier this map does not affect the

metrics chosen on the boundary, which are already J(r, z)-invariant by (i).

Let ∇ be the Levi-Civita connection associated to the metric g. ∇ has to be un-

derstood componentwise, on the different manifolds that constitute M . Let ∇̃ be the

associated Hermitian connection, as defined in (5.2).

Let M be one of the symplectic manifolds in the collection M , and x ∈ M , ξ ∈ TxM .

We write

Φx(ξ) : TxM → Texpx(ξ)M

to denote parallel transport along the geodesic expx(λξ), λ ∈ [0, 1], with respect to the

Hermitian connection ∇̃ on M . By Lemma 5.3.2, the Lagrangians in the boundary

conditions are totally geodesic with respect to the Hermitian connections ∇̃ belonging

to the metrics parametrized by boundary components and seams of the quilted surfaces.

Since R
d,1

is a d − 1 dimensional convex polytope, we can fix any metric on it and

use it to define a local exponential map expr0
: Tr0U → U in a neighborhood U of r0.

Write S := Sr0 for the quilted surface corresponding to the parameter r0. Then all

maps u : S → M which are sufficiently close to u0 can be expressed as u = expu0
(ξ) for
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some ξ ∈ Ω0(S, u∗
0TM). Define a map

Φu(ξ) : Ω0,1
S(r)(S(r), u∗TM) −→ Ω0,1

S(r)(S(r), expu(ξ)∗TM)

β(z) 7→ Φu(z)(ξ(z))β(z)

where Φr
u(z)(ξ(z)) is the map from Tu(z)M to Texpu(z)(ξ(z))M given by parallel transport

along the geodesic τ 7→ expu(z)(τξ(z)) with respect to the Hermitian connection ∇̃.

We emphasize here that the Hermitian connection ∇̃ depends on r ∈ R, z ∈ Sr and

u(z) ∈ M .

Now define another map

Φr(ρ) : Ω0,1
Sr

(Sr, u
∗TM) → Ω0,1

Sexpr(ρ)
(Sexpr(ρ), u

∗TM)

by defining its inverse to be the projection

Φr(ρ)−1 : Ω0,1
Sexpr(ρ)

(Sexpr(ρ), u
∗TM) → Ω0,1

Sr
(Sr, u

∗TM)

β(z) 7→
1

2
(β(z) + J(r, u, z) ◦ β(z) ◦ j(r)) .

(Note that β, by assumption, is a (0, 1)-form with respect to J(expr(ρ), u, z) and

j(expr(ρ)), i.e. it satisfies the identity β(z) = 1
2 (β(z) + J(r, u, z) ◦ β(z) ◦ j(expr(ρ))).)

We observe that Φu(ξ)−1 commutes with Φr(ρ)−1 – for if ψ ∈ Lp(Sexpr(ρ), Ω
0,1 ⊗J

expu(ξ)∗TM), then

Φu(ξ)−1Φr(ρ)−1ψ = Φu(ξ)−1

(
1

2
(ψ + J(r, expu(ξ)) ◦ ψ ◦ j(r))

)

=
1

2

(
Φu(ξ)−1ψ + Φu(ξ)−1(J(r, expu(ξ)) ◦ ψ ◦ j(r))

)

=
1

2

(
Φu(ξ)−1ψ + J(r, u) ◦ Φu(ξ)−1ψ ◦ j(r)

)

= Φr(ρ)−1Φu(ξ)−1ψ.

Composing Φu(ξ) and Φr(ρ) gives the local trivialization

ΦS,r,u(ρ, ξ) = Φr(ρ) ◦ Φu(ξ) : Ω0,1(Sr, u
∗TM) → Ω0,1(Sexpr(ρ), expu(ξ)∗TM),

and hence the connection that we will use. We denote this connection by ∇.
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Let U ⊂ B, and consider a section ψ : U → E
∣∣
U
. For (r, u) ∈ U and (ρ, ξ) ∈ T(r,u)U ,

let us abbreviate rλ := expr(λρ), uλ := expu(λξ). Then,

∇(ρ,ξ)ψ(r, u) :=
d

dλ

∣∣∣
λ=0

ΦS,r,u(λρ, λξ)−1ψ(rλ, uλ)

=
d

dλ

∣∣∣
λ=0

Φu(λξ)−1Φr(λρ)−1ψ(rλ, uλ)

=
d

dλ

∣∣∣
λ=0

Φu(λξ)−1 1

2
(ψ(rλ, uλ) + J(r, uλ) ◦ ψ(rλ, uλ) ◦ j(r))

=
1

2

(
∇̃ξψ + ∂ρψ + J(r, u) ◦ [∇̃ξψ + ∂ρψ] ◦ j(r)

)

=
1

2

(
∇̃ξψ + J(r, u) ◦ ∇̃ξψ ◦ j(r)

)

+
1

2
(∂ρψ + J(r, u) ◦ ∂ρψ ◦ j(r)) (5.3)

where ∇̃ is the Hermitian connection on M . Note that for each (r, u) ∈ U , ψ(r, u) is a

(0, 1)-form with respect to J(r, u) and j(r), i.e. satisfies the identity

ψ(r, u) =
1

2
(ψ(r, u) + J(r, u) ◦ ψ(r, u) ◦ j(r)

Hence

∇̃ξψ = ∇̃ξ
1

2
(ψ(r, u) + J(r, u) ◦ ψ(r, u) ◦ j(r))

=
1

2

(
∇̃ξψ + ∇̃ξ(J ◦ ψ) ◦ j(r)

)

=
1

2

(
∇̃ξψ + J ◦ ∇̃ξψ ◦ j(r)

)

Putting this into equation 5.3 gives an explicit expression for ∇,

∇(ρ,ξ)ψ(r, u) = ∇̃ξψ +
1

2
(∂ρψ + J(r, u) ◦ ∂ρψ ◦ j(r)) . (5.4)

5.4 The operator FS,r,u.

Let (ρ, ξ) ∈ T(r,u)B ∼= TrR× Ω0(Sr, u
∗TM) and define

F(r,u)(ρ, ξ) := ΦS,r,u(ρ, ξ)−1(∂ − ν)(expr ρ, expu ξ)

Introduce the notation

F̃(r,u)(ρ, ξ) := ΦS,r,u(ρ, ξ)−1∂(expr ρ, expu ξ)

P(r,u)(ρ, ξ) := ΦS,r,u(ρ, ξ)−1ν(expr ρ, expu ξ)
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so that we can write

F(r,u)(ρ, ξ) = F̃(r,u)(ρ, ξ) − P(r,u)(ρ, ξ) (5.5)

(P stands for “perturbation”). Denote the corresponding linearized operators by

DS,r,u := dFr,u(0, 0)

D̃S,r,u := dF̃r,u(0, 0)

PS,r,u := dPr,u(0, 0)

which are related by

DS,r,u = D̃S,r,u − PS,r,u.

5.5 The linearized operator DS,r,u.

We will again use the notation uλ := expu(λξ) and rλ := expr(λρ), to calculate explicit

formulas for the linearized operators defined in the previous section.

DS,r,u(ρ, ξ) := dFr,u(0, 0)(ρ, ξ)

= ∇λ(∂(rλ, uλ) − ν(rλ, uλ))
∣∣
λ=0

= ∇̃λ(∂(r, uλ) − ν(r, uλ))
∣∣
λ=0

+
1

2

[
∂λ(∂(rλ, u) − ν(rλ, u))

∣∣
λ=0

+J(r, u) ◦ ∂λ(∂(rλ, u) − ν(rλ, u))
∣∣
λ=0

◦ j(r)
]
.

Define

D(r)
u (ξ) := ∇̃λ(∂(r, uλ) − ν(r, uλ))

∣∣
λ=0

D(u)
r (ρ) :=

1

2

[
∂λ(∂(rλ, u) − ν(rλ, u))

∣∣
λ=0

+J(r, u) ◦ ∂λ(∂(rλ, u) − ν(rλ, u))
∣∣
λ=0

◦ j(r)
]
.

With this notation we can write DS,r,u(ρ, ξ) = D
(r)
u (ξ) + D

(u)
r (ρ). We similarly define

D̃(r)
u (ξ) := ∇̃λ∂(r, uλ)

∣∣
λ=0

D̃(u)
r (ρ) :=

1

2

[
∂λ∂(rλ, u)

∣∣
λ=0

+ J(r, u) ◦ ∂λ∂(rλ, u)
∣∣
λ=0

◦ j(r)
]

P (r)
u (ξ) = ∇̃λν(r, uλ)

∣∣
λ=0

P (u)
r (ρ) =

1

2

[
∂λν(rλ, u)

∣∣
λ=0

+ J(r, u) ◦ ∂λν(rλ, u)
∣∣
λ=0

◦ j(r)
]
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and with this notation we have the identities

D̃S,r,u(ρ, ξ) = D̃(r)
u (ξ) + D̃(u)

r (ρ), and

PS,r,u(ρ, ξ) = P (r)
u (ξ) + P (u)

r (ρ).

In the following computations, projection onto the (0, 1) component is always un-

derstood to be with respect to J(r, u) and j(r).

D̃(r)
u (ξ) = ∇̃∂(r, uλ)

∣∣∣
λ=0

= ∇̃
1

2
(duλ + J(r, uλ) ◦ duλ ◦ j(r))

∣∣∣
λ=0

=
1

2
(∇̃duλ + J(r, uλ) ◦ ∇̃duλ ◦ j(r))

∣∣∣
λ=0

=
1

2
(∇duλ + J(r, uλ) ◦ ∇duλ ◦ j(r))

∣∣∣
λ=0

−
1

4
(J(r, uλ)∇λJ(r, uλ)duλ + J(r, uλ) ◦ J(r, uλ)∇λJ(r, uλ) ◦ duλ)

∣∣∣
λ=0

=
1

2
(∇ξ + J(r, u) ◦ ∇ξ ◦ j(r)) −

1

2
J(r, u)(∇ξJ)(r, u)∂J(r, u)

= [∇ξ]0,1 −
1

2
J(u)[(∇ξJ)(u)du]0,1

where ∇ is the Levi-Civita connection on M , ∂J(u) = 1
2(du − J ◦ du ◦ j(r)).

D̃(u)
r (ρ) :=

d

dλ
Φr(ρ)−1∂(rλ, u)

∣∣∣
λ=0

=
d

dλ
[∂(rλ, u)]0,1

∣∣∣
λ=0

=

[
d

dλ
∂(rλ, u)

∣∣∣
λ=0

]0,1

=

[
d

dλ

1

2
(du + J(rλ, u) ◦ du ◦ j(rλ))

∣∣∣
λ=0

]0,1

=
1

2
[∂ρJ ◦ du ◦ j(r) + J ◦ du ◦ ∂ρj]

0,1.

P (r)
u (ξ) = ∇̃λν(r, uλ)

∣∣∣
λ=0

= ∇̃λ
1

2
(Y (r, uλ) + J(r, uλ) ◦ Y (r, uλ) ◦ j(r))

∣∣∣
λ=0

=
1

2
(∇̃λY (r, uλ)

∣∣∣
λ=0

+ J(r, u) ◦ ∇̃λY (r, uλ)
∣∣∣
λ=0

◦ j(r))

=
1

2
(∇λY (r, uλ)

∣∣∣
λ=0

+ J(r, u) ◦ ∇λY (r, uλ)
∣∣∣
λ=0

◦ j(r))

−
1

4
(J ◦ ∇λJ(r, uλ)

∣∣∣
λ=0

◦ Y + J ◦ J ◦ ∇λJ(r, uλ)
∣∣∣
λ=0

◦ j(r))

= [∇ξY ]0,1 −
1

2
[J ◦ ∇ξJ ◦ Y ]0,1.
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P (u)
r (ρ) :=

d

dλ
Φr(ρ)−1ν(rλ, u)

∣∣∣
λ=0

= [
d

dλ

1

2
(Y (rλ, u) + J(rλ) ◦ Y (rλ, u) ◦ j(rλ))

∣∣∣
λ=0

]0,1

= [∂ρY ]0,1 +
1

2
[∂ρJ ◦ Y ◦ j + J ◦ Y ◦ ∂ρj]

0,1.

5.6 Banach spaces and norms.

We need the map FS,r,u to be between Banach spaces, so we need to define the Sobolev

completions

Ω0(Sr, u
∗TM) −→ W 1,p(Sr, u

∗TM)

Ω0,1(Sr, u
∗TM) −→ Lp(Sr, Λ

0,1 ⊗J u∗TM).

Let S be a surface, with volume form dvolS . For u : S → R, the norms on W 1,p(S)

and Lp(S) are defined by

‖u‖W 1,p :=




∫

S

|u|p + |du|p dvolS




1/p

(5.6)

‖u‖Lp :=




∫

S

|u|p dvolS




1/p

(5.7)

To define corresponding norms for sections ξ ∈ Ω0(Sr, u
∗TM), we need to fix a metric

and a connection. On the bundle u∗TM → S, for each z ∈ S there is an almost-complex

structure J(z) which is compatible with the symplectic form ω, so defines a metric gJ

on TM ,

|ξ(z)| := ωu(z)(ξ(z), J(z)ξ(z)) := gz(ξ(z), ξ(z))

and a corresponding Levi-Civita connection ∇. Define

‖ξ‖W 1,p(S,u∗TM) :=




∫

S

|ξ|p + |∇ξ|p dvolS




1/p

‖ξ‖Lp(S,u∗TM) :=




∫

S

|ξ|p dvolS




1/p
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Remark (C.f. [10, Remark 3.5.1.]) If ξ ∈ W 1,p(Sr, u
∗TM), then the scalar function

|ξ(z)| ∈ W 1,p(S). This is because

d
√
|ξ|2 + ε = d

√
gz(ξ, ξ) + ε

=
1

2
√

gz(ξ, ξ) + ε
dgz(ξ, ξ)

=
1

2
√

gz(ξ, ξ) + ε
(2gz(∇ξ, ξ) + (∇g)(ξ, ξ)).

Since J(z) is independent of s along the striplike ends, |∇g| can be uniformly bounded

by a constant c. So pointwise,

|d
√
|ξ|2 + ε| ≤

1

2
√

gz(ξ, ξ) + ε
(2|∇ξ||ξ| + c|ξ|2).

In the limit as ε → 0,

|d|ξ|| ≤ |∇ξ| + (c/2)|ξ|.

Hence

‖d|ξ|‖Lp(S,R) ≤ ‖∇ξ‖Lp(S,u∗TM) + (c/2)‖ξ‖Lp(S,u∗TM)

≤ ‖ξ‖W 1,p(S,u∗TM) + (c/2)‖ξ‖W 1,p(S,u∗TM)

= (1 + (c/2))‖ξ‖W 1,p(S,u∗TM).

Therefore we can write:

(
‖|ξ|‖W 1,p(S,R)

)p
:=

(
‖|ξ|‖Lp(S,R)

)p
+

(
‖|d|ξ||‖Lp(S,R)

)p

≤
(
‖ξ‖W 1,p(S,u∗TM)

)p
+

(
(1 + c/2)‖ξ‖W 1,p(S,u∗TM)

)p

= (1 + (1 + c/2)p)
(
‖ξ‖W 1,p(S,u∗TM)

)p

hence

‖|ξ|‖W 1,p(S,R) ≤ (1 + (1 + c/2)p)1/p‖ξ‖W 1,p(S,u∗TM)

where c depends only on the choice of perturbation datum.
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5.7 Gromov convergence

Definition Consider a sequence {(rn, un)}∞n=1 ⊂ Md,1(x0, . . . , xd).

1. For 2 ≤ e ≤ d− 1, we say that the sequence Gromov converges to the broken pair

(r1, u1) ∈ Md−e+1,1(x0, x1, . . . , xi, y, xi+e+1, . . . , xd)

(r2, u2) ∈ Me(y, xi+1, . . . , xi+e)

if

• rn −→ r1#0r2 in the topology of Rd,1 near the boundary point r1#0r2 ∈

∂Rd,1,

• E(un) −→ E(u1) + E(u2),

• un converges uniformly on compact subsets of Sr1 to u1, and converges uni-

formly on compact subsets of Sr2 to u2.

2. For 1 ≤ s1, . . . , sk ≤ d−1 such that s1 + . . .+sk = d, we say the sequence Gromov

converges to the broken tuple

(r0, u0) ∈ Mk(x0, y1
, . . . , y

k
)

(r1, u1) ∈ Ms1,1(y1
, x1, . . . , xs1

)

(r2, u2) ∈ Ms2,1(y2
, xs1+1, . . . , xs1+s2

)

. . .

(rk, uk) ∈ Msk,1(yk, xd−sk+1, . . . , xd)

if

• rn −→ r0#0(r1, . . . , rk) ∈ ∂Rd,1 in the topology of Rd,1 near the boundary,

• E(un) −→ E(u0) + E(u1) + . . . + E(uk),

• un converges uniformly on compact subsets of Srj to uj , for j = 0, . . . , k.

3. For i ∈ {1, . . . , d}, we say that the sequence Gromov converges to the broken pair

(r, u) ∈ Md,1(x0, x1, . . . , xi−1, y, xi+1, . . . , xd)

v ∈ M̃1(y, xi)
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if

• rn → r in Rd,1, where r is in the interior of Rd,1,

• E(un) −→ E(u) + E(v),

• un converges uniformly on compact subsets of Sr to u, and there is a sequence

τn ∈ R (shift parameters) such that if (s, t) denote coordinates on the strip

R × [0, 1], and ǫi : R≥0 × [0, 1] → Sr is the i-th striplike end of Sr, then the

sequence of shifted maps un(ǫi(s + τn, t)) converges uniformly on compact

subsets of R × [0, 1] to a fixed parametrization of the Floer trajectory v.

4. We say that the sequence Gromov converges to the broken pair

(r, u) ∈ Md,1(y, x1, . . . , xd)

v ∈ M̃1(x0, y)

if

• rn → r in Rd,1, where r is in the interior of Rd,1,

• E(un) −→ E(u) + E(v),

• un converges uniformly on compact subsets of Sr to u, and there is a sequence

τn ∈ R (shift parameters) such that if (s, t) denote coordinates on the strip

R × [0, 1], and ǫ0 : R≥0 × [0, 1] → Sr is the 0-th striplike end of Sr, then the

sequence of shifted maps un(ǫ0(s + τn, t)) converges uniformly on compact

subsets of R × [0, 1] to a fixed parametrization of the Floer trajectory v.

The latter two cases are also described as a Floer trajectory breaking off.

5.8 Gromov neighborhoods

We now define what we call Gromov neighborhoods of a broken quilt of Type 1, 2 or

3. For ǫ > 0, we will define a subset Uǫ ⊂ Bd,1. Under these definitions, a sequence

(rν , uν) ∈ Md,1(x0, . . . , xd) will Gromov converge to a broken quilt if, and only if, given

ǫ > 0 there is a ν0 such that (rν , uν) ∈ Uǫ for all ν ≥ ν0.
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Type 1

Let (r1, u1) and (r2, u2) be a broken pair,

(r1, u1) ∈ Md−e+1,1(x0, x1 . . . , xi−1, y, xi+e+1, . . . , xd)
0

(r2, u2) ∈ Me(y, xi, xi+1, . . . , xi+e)
0.

A small neighborhood of the point r1#0r2 ∈ ∂Rd,1 is of the form

U ∼= U1 × U2 × [0, ǫ)

where U1 ⊂ Rd−e+1,1 is a neighborhood of r1, and U2 ⊂ Re is a neighborhood of r2,

and the interval [0, ǫ) represents the gluing parameter. Recall that a gluing parameter

δ corresponds to a gluing length R(δ) = − log(δ).

Fix a metric on U1 ⊂ Rd−e+1,1 and a metric on U2 ⊂ Re, and define a metric

topology on U ∼= U1 × U2 × [0, ǫ) by

distU (r1#δr2, r
′
1#δ′r

′
2) := sup{distU1(r1, r

′
1), distU2(r2, r

′
2), |δ − δ′|}.

By the construction of the surface bundles (Sections 4.6 and 4.7, Chapter 4), we can

suppose that the neighborhood U is sufficiently small that the corresponding neigh-

borhoods U1 ⊂ Rd−e+1,1 and U2 ⊂ Re are also small enough that all surfaces in the

bundles over them are diffeomorphic to each other by diffeomorphisms preserving the

striplike ends. Write Sr1#δr2 = Sδ
r1
∪Sδ

r2
/ ∼, where Sδ

ri
represents the truncation of Sri

along the prescribed striplike end at s = R(δ), and ∼ is the identification of the two

truncated surfaces along the cuts.

Definition Let ǫ > 0 be given. Define a Gromov neighborhood Uǫ ⊂ Bd,1 of the pair

(r1, u1), (r2, u2) as follows: (r, u) ∈ Uǫ if

• r = r̃1#δ r̃2 ∈ U with distU (r̃1#δ r̃2, r1#0r2) < ǫ,

• |E(u1) + E(u2) − E(u)| < ǫ,

• distM (u(z), u1(z)) < ǫ for all z ∈ Sδ
r1

,
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• distM (u(z), u2(z)) < ǫ for all z ∈ Sδ
r2

.

(The metrics on the target manifolds M are those induced by their symplectic

forms ω and the choice of compatible almost complex structures J = J(z).)

Type 2

Let (r0, u0), . . . , (rk, uk) be a broken tuple of the form

(r0, u0) ∈ Mk(x0, y1
, . . . , y

k
)

(r1, u1) ∈ Ms1,1(y1
, x1, . . . , xs1

)

(r2, u2) ∈ Ms2,1(y2
, xs1+1, . . . , xs1+s2

)

. . .

(rk, uk) ∈ Msk,1(yk, xd−sk+1, . . . , xd).

A small neighborhood of the point r1#0r2 ∈ ∂Rd,1 is of the form

U ∼= U0 × U1 × . . . Uk × [0, ǫ)

where U0 ⊂ Rk is a neighborhood of r0, Ui ⊂ Rsi,1 is a neighborhood of ri for i =

1, . . . , k, and the interval [0, ǫ) represents the gluing parameter. Fixing a metric on

U0, . . . , Ui determines a metric topology on U ∼= U1 × U2 × [0, ǫ) by

distU (r0#δ(r1, . . . , rk), r
′
0#δ′(r

′
1, . . . , r

′
k)) := sup{distU0(r0, r

′
0), . . . ,distUk

(rk, r
′
k), |δ−δ′|}.

Taking the neighborhood U to be sufficiently small we can assume that all surfaces

parametrized by U0, . . . , Uk are diffeomorphic via diffeomorphisms that are constant on

the striplike ends. Write Sr0#δ(r1, . . . , rk) = Sδ
r0
∪Sδ

r1
∪. . .∪Sδ

rk
/ ∼, where each Sδ

ri
is the

truncation of the surface Sri along the prescribed striplike end at s = R(δ) = − log(δ),

and ∼ is the identifications of the surfaces along the truncated ends.

Definition Let ǫ > 0 be given. Define a Gromov neighborhood Uǫ ⊂ Bd,1 of the tuple

(r0, u0), . . . , (rk, uk) as follows: (r, u) ∈ Uǫ if

• r = r̃0#δ{r̃1, . . . , r̃k} ∈ U with distU (r, r0#0{r1, . . . , rk}) < ǫ,
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• |E(u0) + E(u1) + . . . + E(uk) − E(u)| < ǫ,

• distM (u(z), ui(z)) < ǫ for all z ∈ Sδ
ri

, i = 0, . . . , k.

Type 3

Let (r0, u0) ∈ Md,1(x0, . . . , xi−1, y, xi+1, . . . , xd) be a pseudoholomorphic quilted disk,

and let v ∈ M̃1(y, xi) be a quilted Floer trajectory. We fix a parametrization of the

Floer trajectory v : R×[0, 1] → M . As in previous sections we write ǫi : [0,∞)×[0, 1] →

Sr for the i-th striplike end, and Zi for the image of this striplike end in Sr.

Definition Let ǫ > 0 be given, and define R(ǫ) = − log(ǫ). Define a Gromov neighbor-

hood Uǫ ⊂ Bd,1 of the pair (r0, u0), v as follows: (r, u) ∈ Uǫ if

• distRd,1(r, r0) < ǫ,

• |E(u0) + E(v) − E(u)| < ǫ,

• for z ∈ S
R(ǫ)
r0 , distM (u(z), u0(z)) < ǫ,

• there exists some τ ≥ 2R(ǫ) such that distM (u(ǫi(s + τ, t), v(s, t)) < ǫ for (s, t) ∈

[−R(ǫ), R(ǫ)] × [0, 1].
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Chapter 6

Gluing

6.1 Outline of chapter

Definition We say that a parametrized pseudoholomorphic quilt (r, u) is regular if

the linearized operator DS,r,u is surjective. Similarly we say that a generalized Floer

trajectory v is regular if the associated linearized operator Dv is surjective.

The goal of this chapter is to prove the following gluing theorem.

Theorem 6.1.1. Let x0 ∈ I(L0,AB, Ld,AB) and for i = 1, . . . , d let xi ∈ I(Li−1, Li).

Given either:

1. a regular pair

(r1, u1) ∈ Md−e+1,1(x0, x1 . . . , xi−1, y, xi+e+1, . . . , xd)
0

(r2, u2) ∈ Me(y, xi, xi+1, . . . , xi+e)
0

where 2 ≤ e ≤ d, 1 ≤ i ≤ d − e, and y ∈ I(Li−1, Li+e);

2. or a regular (k + 1)-tuple

(r0, u0) ∈ Mk(x0, y1
, . . . , y

k
)0

(r1, u1) ∈ Md1,1(y1
, x1, . . . , xd1

)0

(r2, u2) ∈ Md2,1(y2
, xd1+1, . . . , xd1+d2

)0

. . .

(rk, uk) ∈ Mdk,1(yk
, xd1+...+d(k−1)+1, . . . , xd1+...+dk−1+dk

)0

where d1 + . . . + dk = d, di ≥ 1 for each i, and y
i
∈ I(Ld1+...+d(i−1)

, Ld1+...+di
)

(interpreting d0 as 0);
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3. or a regular pair

(r, u) ∈ Md,1(x0, . . . , xi−1, y, xi+1, . . . , xd)
0

v ∈ M̃1(y, xi)
0

where 1 ≤ i ≤ d, and y ∈ I(Li−1, Li);

4. or a regular pair

v ∈ M̃1(x0, y)0

(r, u) ∈ Md,1(y, x1, . . . , xd)
0

where y ∈ I(L0,AB, Ld,AB),

there is an associated continuous gluing map

g : (R0,∞) → Md,1(x0, . . . , xd)
1

defined for some R0 >> 0, such that g(R) Gromov converges to the given pair/tuple as

R → ∞. Moreover, for sufficiently small ǫ > 0, the gluing map surjects onto Gromov

neighborhoods Uǫ of the given broken pairs/tuples.

The gluing map is an application of the Implicit Function Theorem, and the strategy

of proof is standard. To be able to apply the implicit function theorem, the main steps

are the following:

1: For gluing lengths R > 0, define a pre-glued curve, (rR, uR).

2: Compute that ‖(∂ − ν)(rR, uR)‖0,p ≤ ε(R) where ε(R) → 0 as R → ∞.

3: Show that DS,rR,uR
is surjective, and construct a right inverse QR by first con-

structing an approximate right inverse, TR, with the same image.

4: Show there is a uniform bound ‖QR‖ ≤ C for sufficiently large R.

5: Show that for each R, the function FS,rR,uR
satisfies a quadratic estimate

‖dFS,rR,uR
(ρ, ξ) − DS,rR,uR

‖ ≤ c(|ρ| + ‖ξ‖W 1,p) (6.1)

with the constant c independent of R.
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These steps are the content of Sections 6.2 through 6.6 respectively. In Section 6.7

these ingredients are used to define, with the help of an implicit function theorem, a

gluing map associated to each regular tuple, and we show that the image of the gluing

map is contained in the one-dimensional component of the relevant moduli space of

quilted disks, Md,1(x0, . . . , xd)
1. In Section 6.8 we show that the gluing map is surjec-

tive, in the sense that if a pseudoholomorphic quilted disk (r, u) ∈ Md,1(x0, . . . , xd)
1 is

in a sufficiently small Gromov neighborhood of the broken tuple, then it is in the image

of the gluing map associated to that tuple.

6.2 Pregluing

There are three types of pre-gluing to consider - two types arise from the two types of

facet of codimension one in the boundary of R
d,1

(corresponding to whether the inner

circle has bubbled through or not), and the other type arises from a Floer trajectory

breaking off.

Figure 6.1: Three cases of gluing – the last two cases both correspond to a Floer
trajectory bubbling off.

Definition Given a gluing parameter δ > 0, define R(δ) := − log(δ) to be the gluing

length corresponding to δ. So R(δ) → ∞ as δ → 0.

Type 1

Assume that we have a regular pair

(r1, u1) ∈ Md1,1(x0, . . . , xi−1, y, xi+1, . . . , . . . xd1
)0, where i ∈ {1, . . . , d},

(r2, u2) ∈ Md2(y, z1, . . . , zd2
)0.
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The surface parametrized by r1 is a quilted disk, and the surface parametrized by r2 is

a marked, unquilted disk. A marked point labeled ζ− on r1 is identified with a marked

point ζ+ on r2, identifying the pair r1#r2 with a nodal quilted disk. Along the strip-like

ends labelled by ζ±, u1 and u2 converge exponentially to y.

r1

r2

s = 0

s = Rs = R

s = 0

ζ−

ζ+

Figure 6.2: Case 1 of pregluing

The quilted surface rR := r1#Rr2:

Truncate the surface Sr1 along the striplike end labeled by ζ− at s = R, and truncate

the surface Sr2 along the striplike end labeled by ζ+ at s = R, then identify the two

truncated surfaces along s = R. Explicitly, one identifies ǫζ+(R, t) ∼ ǫζ−(R, 1 − t); see

Figure 6.2.
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Let z = (s, t) denote the variables on the striplike end of Sr1 , where s ∈ [0,∞) and

t ∈ [0, 1]. For s >> 0, we know that u1(s, t) is very close to y(t) ∈ I(L, L′).

For such s we can locally model u1(s, t) on a local trivialization around neighborhood

of 0 in Ty(t)M , using exponential maps coming from a family of metrics on M .

As in Section 5.3, fix a tuple of t-dependent metrics (gk(t)))k∈−r,...,s parametrized

by t ∈ [0, 1], such that:

1. For each k and for each t, gk(t) is a metric on Mk, and gk(t)(Jk(t)η, Jk(t)ξ) =

gk(t)(η, ξ) for all η, ξ ∈ TpMk, p ∈ Mj .

2. For each k, gk(1) × gk+1(0) determines a metric on Mk × Mk+1 and is such that

gk(1) × gk+1(0) : Tyk(1)×yk+1(0)Lk,k+1 → Lk,k+1.

3. L−r is totally geodesic with respect to g−r(0), Ls is totally geodesic with respect

to gs(1), and for k = −r, . . . , s−1, the Lagrangian correspondence Lk,k+1 is totally

geodesic with respect to gk(1) × gk+1(0).

For very large s >> 0, define ξ1(s, t) ∈ Ty(t)M by

expy(t)(ξ1(s, t)) = u1(s, t)

where exp is the tuple of exponential maps, expk : [0, 1]×Tyk(·)Mk → Mk, each of which

comes from the Levi-Civita connection on Mk associated to the metric gk(t). Similarly,

we can define ξ2(s, t) ∈ Ty(t)M , for very large s, by

expy(t)(ξ2(s, t)) = u2(s, t).

Now let β : R → [0, 1] be a smooth cut-off function such that β(s) = 1, s ≤ −1, and

β(s) = 0, s ≥ 0 (see Figure 6.3).

We introduce a pair of intermediate approximate pseudoholomorphic quilted sur-

faces (ri, u
R
i ) for i = 1, 2 which are defined as follows.

uR
i (z) =





u1(z), z ∈ Sri \ ǫζ±(s ≥ R/2)

expx(β(s − R/2)ξi(s, t)), R/2 − 1 ≤ s ≤ R/2

y(t), s ≥ R/2.



107

1

−1 0

β

s

Figure 6.3: Cutoff function used to define uR
1 and uR

2 .

Then the pre-glued map u1#Ru2 : Sr1#Rr2 → M is defined by

u1#Ru2(z) =





uR
1 (z), z ∈ Sr1 \ ǫζ−((R,∞) × [0, 1])

uR
2 (z), z ∈ Sr2 \ ǫζ+((R,∞) × [0, 1]),

see Figure 6.4.

Type 2

Assume that we have a collection

(r0, u0) ∈ Mk(x0, y1
, . . . , y

k
)0

(r1, u1) ∈ Md1,1(y1
, z1, z2, . . . , zd1

)0

(r2, u2) ∈ Md2,1(y2
, zd1+1, zd1+2, . . . , zd1+d2

)0

. . .

(rk, uk) ∈ Mdk,1(yk
, zd1+d2+...+dk−1+1, zd1+d2+...+dk−1+2, . . . , zd1+d2+...dk−1+dk

)0

of regular pseudoholomorphic quilted surfaces (r1, u1), . . . , (rk, uk) together with a reg-

ular pseudoholomorphic quilted surface (r0, u0). We label the striplike ends of Sr0 with

ζ(0), ζ(1), . . . , ζ(k), where the map u0 : Sr0 → M converges to y
i
along the striplike end

labeled by ζ(i) for i = 1, . . . , k, and converges to x0 along the striplike end labeled by

ζ(0). For i = 1, . . . , k, each quilted surface Sri has a distinguished strip-like end along

which the map ui : Sri → M converges to y
i
, and we label this striplike end by η

(0)
i .

The quilted surface rR := r0#R{r1, . . . , rk}:

Truncate the surface Sr0 along each of the striplike ends labeled ζ(1), . . . , ζ(d) at s =

R, and truncate the surfaces Sr1 , . . . ,Srk
along their respective striplike ends labeled
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u1

u2

R

R/2

y(t)

y(t)

R/2

R/2 − 1

R/2 − 1
expy(β1ξ1)

expy(β2ξ2)

Figure 6.4: Gluing u1 and u2 along the neck.
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η
(0)
1 , . . . , η

(0)
k at s = R, then identify truncations labeled by pairs ζ(i), η

(0)
i along s = R;

see Figure 6.5.

r0

ζ(2)

ζ(1)

η
(0)
3

η
(0)
2

η
(0)
1

ζ(3)

ζ(4)

ζ(0)

r1

r2 r3

η
(0)
4

r4

Figure 6.5: Pregluing in Case 2.

The approximate pseudoholomorphic map

Let z = (s, t) denote variables for the striplike ends. We know that for s >> 0, the

map u0(ǫζ(i)(s, t)) lands in a normal neighborhood of y
i
(t). For such s we can define

ξi(s, t) ∈ Ty
i
(t)M by

expy
i
(t)(ξi(s, t)) = u0(ǫζ(i)(s, t)).
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Similarly, for i = 1, . . . , k and sufficiently large s we can define ξ
(0)
i (s, t) ∈ Ty

i
(t)M by

expy
i
(t)(ξ

(0)
i (s, t)) = ui(ǫη

(0)
i

(s, t)).

We introduce a collection of intermediate approximate pseudoholomorphic quilted sur-

faces (r0, u
R
0 ), (r1, u

R
1 ), . . . , (rk, u

R
k ) which are defined as follows. The map uR

0 : Sr0 → M

is defined piecewise by

uR
0 (z) =





u0(z), z ∈ Sr0 \
k⋃

i=1
ǫζ(i)(s ≥ R/2 − 1)

expy
i
(t)(β(s − R/2)ξi(s, t)), z = ǫζ(i)(s, t), s ∈ [R/2 − 1, R/2]

y
i
(t), z = ǫζ(i)(s, t), s ≥ R/2.

For i = 1, . . . , k the intermediate maps uR
i : Sri → M are defined by

uR
i (z) =





ui(z), z ∈ Sri \ ǫ
η
(0)
i

(s ≥ R/2 − 1)

expy
i
(t)(β(s − R/2)ξi(s, t)), z = ǫ

η
(0)
i

(s, t), s ∈ [R/2 − 1, R/2]

y
i
(t), z = ǫ

η
(0)
i

(s, t), s ≥ R/2.

Then the pre-glued map u0#R{u1, . . . , uk} : Sr0#R{r1,...,rk} → M is defined by

u0#R{u1, . . . , uk}(z) =





uR
0 (z), z ∈ Sr0 \

k⋃
i=1

ǫζ(i)(s ≥ R)

uR
i (z), z ∈ Sri \ ǫ

η
(0)
i

(s ≥ R).

Type 3

(A Floer trajectory breaks off.) Assume that we have a pair

(r1, u1) ∈ Md,1(x0, x1, . . . , xd)
0

v ∈ M(xi, y)0

where (r1, u1) is a regular pseudoholomorphic quilted disk, and v is a regular Floer

trajectory. Assume without loss of generality that v : R × [0, 1] → M is such that

lim
s→−∞

v(s, t) = xi(t)

lim
s→∞

v(s, t) = y(t),

and let ζ label the striplike end of Sr1 for which lims→∞ u1(ǫζ(s, t)) = xi(t). The Floer

trajectory v is defined only up to an R translation, but we can fix a parametrization of

v to work with.
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The quilted surface

In this case, rR = r1.

The approximate pseudoholomorphic map

For s >> 0 we know that u1(ǫζ(s, t)) and v(−s, t) are exponentially close to xi(t). For

such s, define ξ(s, t), η(−s, t) ∈ Txi(t)
M by the conditions that

expxi(t)
(ξ(s, t)) = u1(ǫζ(s, t)),

expxi(t)
(η(−s, t)) = v(−s, t).

Using the same cutoff function β as used in all previous cases, define an approximate

pseudoholomorphic quilted surface (r1, u
R
1 ) and an approximate pseudoholomorphic

trajectory vR as follows.

uR
1 (z) =





u1(z), z ∈ Sr1 \ ǫζ(s ≥ R/2 − 1)

expxi(t)
(β(s − R/2)ξ(s, t)), z = ǫζ(s, t), s ∈ [R/2 − 1, R/2]

xi(t), z = ǫζ(s, t), s ≥ R/2.

vR(s, t) =





v(s − 2R, t), s ≥ 3R/2 + 1

expxi(t)
(β(−s + 3R/2)η(s − 2R, t)), s ∈ [3R/2, 3R/2 + 1]

xi(t), s ≤ 3R/2.

Then the preglued curve uR is defined by

uR(z) =





uR
1 (z), z ∈ Sr1 \ ǫζ(s ≥ R)

vR(s, t), z ∈ ǫζ(s ≥ R).

6.3 Estimates for the preglued curves.

Proposition 6.3.1. For sufficiently large R0 ≥ 0, there is a monotone decreasing

function ǫ : [R0,∞) → [0,∞) such that

‖(∂ − ν)(rR, uR)‖0,p ≤ ǫ(R)

and ǫ(R) → 0 as R → ∞.

Proof. We estimate it for each of the three types of pregluing separately.
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Type 1

Let (J̃ , K̃) denote the approximate perturbation datum on the preglued surface SrR that

is inherited from the perturbation data (J1, K1) and (J2, K2) for Sr1 and Sr2 respectively

via the pregluing procedure. Let (J(rR), K(rR)) be the perturbation datum on SrR that

comes from the universal choice of perturbation data over the family of quilted surfaces

parametrized by the multiplihedron. In general (J̃ , K̃) and (J(rR), K(rR)) are not

the same, but the assumption of consistency implies that for large values of R, the

data agree on the “thin” part of SrR , while on the complement of the thin part, which

consists of two compact components coming from Sr1 and Sr2 , (J(rR), K(rR)) converges

uniformly to (J1, K1) or (J2, K2) respectively as R → ∞.

Given that

∂(rR, uR) − ν(rR, uR) =
1

2
(DuR + J(rR) ◦ DuR ◦ j(rR))

−
1

2
(Y (rR) + J(rR) ◦ Y (rR) ◦ j(rR))

we will estimate this on different parts of the preglued surface SrR .

Consider a striplike end Z ⊂ SrR . It corresponds to a striplike end on either Sr1

or Sr2 , that was not truncated in the pregluing step; let us denote this striplike end

by Z too, where Z ⊂ Sri for i = 1 or 2. Since j(rR, z), J(rR, u(z), z) and Y (rR, z) are

independent of R and are the same as the corresponding data on Sr1 ,

(∂ − ν)(rR, uR)
∣∣∣
Z

= (∂ − ν)(r1, u1)
∣∣∣
Z

= 0

since we assumed that (∂ − ν)(r1, u1) = 0. This argument proves that (∂ − ν)(rR, uR)

is zero on all of the striplike ends of the glued surface SrR .

Next, for i = 1, 2 let Si denote the complement of the striplike ends on Sri , and

let Si also denote its image in SrR after pregluing. Note that Si is compact, and that
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uR

∣∣∣
Si

= ui

∣∣∣
Si

. Hence,

(∂ − ν)(rR, uR)
∣∣∣
Si

= (∂ − ν)(rR, ui)
∣∣∣
Si

=
1

2
[Dui + J(rR, ui)Duij(rR)]

∣∣∣
Si

−
1

2
[Y (rR, ui) + J(rR, ui)Y (rR, ui)j(rR)]

∣∣∣
Si

.

Since we know that (∂−ν)(ri, ui) = 0, and that j(rR), J(rR, ui) and Y (rR, ui) converge

uniformly to j(ri), J(ri, ui) and Y (ri, ui) on Si, it follows that for sufficiently large R

there is a monotone decreasing function ǫ1(R) → 0 as R → ∞ such that the uniform

pointwise estimate

|(∂ − ν)(rR, uR)(z)| ≤ ǫ1(R)

holds for all z ∈ Si.

Finally, consider the neck of SrR along which the pregluing took place. Let Z1 and

Z2 denote the striplike ends of Sr1 and Sr2 that were truncated along s = R; and by

slight abuse of notation let Z1 and Z2 also denote the images of the truncations after

pregluing. By symmetry it is enough to consider what happens on Z1. There are three

regions to consider,

0 ≤ s ≤ R/2 − 1

R/2 − 1 ≤ s ≤ R/2

R/2 ≤ s ≤ R.

On the region 0 ≤ s ≤ R/2 − 1, (∂ − ν)(rR, uR) = (∂ − ν)(r1, u1) = 0.

On the region R/2 ≤ s ≤ R, we have that uR(s, t) = x0(t), and so

Dx0(t) + J(t, x0(t)Dx0(t)j − XHt − J(t, x0(t))XHtj = 0

because ∂sx0(t) = 0 and ∂tx0(t) = XHt together imply that Dx0(t) − XHt = 0.

On the region R/2 − 1 ≤ s ≤ R/2, since u1(s, t) converges exponentially to y(t) as

s → ∞, we know that |ξ(s, t)| becomes exponentially small in s. Therefore, |β(s)ξ1(s, t)|

is also exponentially small in s. Now, Dy(t) − XHt(y(t)) = 0, so

|D expy(t)(β(s)ξ1(s, t)) − XHt(expy(t)(β(s)ξ1(s, t))| ≤ |D expy(t)(β(s)ξ1(s, t)) − Dy(t)|

+|XHt(y(t) − XHt(expy(t)(β(s)ξ1(s, t)))|
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and since expy(t)(β(s)ξ1(s, t)) is exponentially close to y(t), there is a monotone de-

creasing function ǫ2(R) → 0 as R → ∞ such that

|D expy(t)(β(s)ξ1(s, t)) − XHt(expy(t)(β(s)ξ1(s, t))| ≤ ǫ2(R)

uniformly in t for all s ≥ R/2 − 1.

Using all these estimates, we have




∫

SrR

|(∂ − ν)(rR, uR)|p dvolSrR




1/p

≤




∫

S1

|(∂ − ν)(rR, uR)|p dvolS1




1/p

+




∫

S2

|(∂ − ν)(rR, uR)|p dvolS2




1/p

+




1∫

0

R/2∫

R/2−1

|(∂ − ν)(rR, uR)|p ds dt




1/p

≤ ǫ1(R)vol(S1)
1/p + ǫ1(R)vol(S2)

1/p + ǫ2(R).

Here volSi is the volume of the compact subset Si ⊂ Sri with respect to a fixed volume

form on Sri .

Type 2

The estimate for Type 2 of the pregluing construction is very similar to that of Type 1.

Repeating the same arguments on the corresponding parts of SrR leads to an estimate

‖FS,rR,uR
(0, 0)‖0,p,R =




∫

SrR

|(∂ − ν)(rR, uR)|p dvolSrR




1/p

≤
k∑

i=0




∫

Si

|(∂ − ν)(rR, uR)|p dvolSi




1/p

+

k∑

i=1




1∫

0

R/2∫

R/2−1

|(∂ − ν)(rR, uR)|p ds dt




1/p

≤ ǫ1(R)
k∑

i=0

vol(Si)
1/p + kǫ2(R).



115

Type 3

This type of pregluing is slightly different from the previous two types. Let Z denote

the striplike end of Sr1 on which the pregluing takes place. The perturbation data is

fixed, so on the complement of Z we have that

(∂ − ν)(r1, uR) = (∂ − ν)(r1, u1) = 0.

Thus (∂ − ν)(r1, uR) is not supported away from Z.

For z = (s, t) such that s ∈ [0, R/2 − 1],

(∂ − ν)(r1, uR) = (∂ − ν)(r1, u1) = 0

so (∂ − ν)(r1, uR) is not supported here either.

For z = (s, t) such that s ∈ [R/2, 3R/2],

(∂ − ν)(r1, uR) = (∂ty(t) − XHt(y(t))0,1

= 0

since by assumption, y(t) is the Hamiltonian flow of Ht.

For z = (s, t) such that s ∈ [3R/2 + 1,∞),

(∂ − ν)(r1, uR) = ∂v(s − 2R, t) − XHt(v(s − 2R, t) = 0

as v is a Floer trajectory.

Therefore (∂−ν)(r1, uR) is only supported on the part of Z where s ∈ [R/2−1, R/2] or

s ∈ [3R/2, 3R/2+1]. On the first part, for sufficiently large R, |ξ(s, t)| is exponentially

small in R when s ≥ R/2 − 1, and so for the same reasons as in the previous two

calculations we can find a monotone decreasing ǫ2(R) → 0 as R → ∞ such that

|D expy(t)(β(s − R/2)ξ(s, t)) − XHt(expy(t)(β(s − R/2)ξ(s, t))| ≤ ǫ2(R)
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uniformly in t, whenever s ∈ [R/2 − 1, R/2]. Similarly, for sufficiently large R, |η(s −

2R, t)| is exponentially small and we can find an ǫ2(R) as above such that

|D expy(t)(β(−s + 3R/2)η(s − 2R, t)) − XHt(β(−s + 3R/2)η(s − 2R, t)| ≤ ǫ3(R)

uniformly in t, whenever s ∈ [3R/2, 3R/2 + 1].

Putting all these estimates together we get that

‖FS,r1,uR
(0, 0)‖0,p,R =




∫

Sr1

|(∂ − ν)(rR, uR)|p dvolSrR




1/p

≤




1∫

0

R/2∫

R/2−1

|(∂ − ν)(uR)|p ds dt




1/p

+




1∫

0

3R/2+1∫

3R/2

|(∂ − ν)(uR)|p ds dt




1/p

≤ ǫ2(R) + ǫ3(R).

6.4 Constructing a right inverse

We construct an approximate right inverse for the linearized operator of the preglued

surface and curve, then show that it is sufficiently close to being a right inverse that

an actual right inverse can be obtained from it via a convergent power series. We treat

the three types of pregluing separately.

Type 1

Let

(r1, u1) ∈ Rd1+1,1 × (BSr1
)u1

(r2, u2) ∈ Rd2+1 × (BSr2
)u2
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be such that the linearized operators

DS,r1,u1 : Tr1R
d1+1,1 × W 1,p(Sr1 , u

∗
1TM) → Lp(Sr1 , Λ

0,1 ⊗J u∗
1TM)

DS,r2,u2 : Tr2R
d2+1 × W 1,p(Sr2 , u

∗
2TM) → Lp(Sr2 , Λ

0,1 ⊗J u∗
2TM)

defined using perturbation data (J1, K1) and (J2, K2) respectively, are surjective and

Fredholm, with index zero.

Our goal is to show that DR := DS,r1#Rr2,u1#Ru2 , defined with perturbation da-

tum (J(rR), K(rR)), is also Fredholm and surjective, with a right inverse QR that is

uniformly bounded for sufficiently large R.

Recall the intermediate functions

uR
1 : Sr1 → M

z 7→ u1#Ru2(z) for z ∈ rR
1 ,

y(t) for z ∈ rR
2 ,

and

uR
2 : r2 → M

z 7→ u1#Ru2(z) for z ∈ rR
2 ,

y(t) for z ∈ rR
1 .

For large R, the functions uR
i , i = 1, 2 are W 1,p-small perturbations of ui. Note that the

perturbation data (J(rR), K(rR)) are given by the Floer data along the neck of SrR .

Denote by (Ji(rR), Ki(rR)) the perturbation datum on Sri given by the restriction of

(J(rR), K(rR)) to the truncation of Sri , extended trivially over the rest of the striplike

end of Sri by the given Floer data. The assumption of consistency implies that for large

R, the data (Ji(rR), Ki(rR)) is a compact perturbation of (Ji, Ki).

The properties of being Fredholm and surjective are stable under W 1,p-small and

compact perturbations, hence for sufficiently large R the pairs (ri, u
R
i ) are regular with

respect to (Ji(rR), Ki(rR)). Let Qi,R denote a right inverse for the linearized operator

DS,ri,uR
i
. We observe that Qi,R is actually a left and right inverse, since by assumption

ker DS,ri,uR
i

has dimension 0, so DS,ri,uR
i

is an isomorphism.
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We return to the linearized operator

DR : TrRR
d1+d2,1 × W 1,p(SrR , u∗

RTM) → Lp(SrR , Λ0,1 ⊗J u∗
RTM)

and will now construct an approximate inverse

TR : Lp(SrR , Λ0,1 ⊗J u∗
RTM) → TrRR

d1+d2,1 × W 1,p(SrR , u∗
RTM).

Let η ∈ Lp(SrR , Λ0,1 ⊗J u∗
RTM). Set

η1(z) = η(z), z ∈ rR
1 ,

0, z ∈ r1 \ rR
1

and

η2(z) = η(z), z ∈ rR
2 ,

0, z ∈ r2 \ rR
2

The abrupt cut-off does not matter because the norms involving η1 and η2 are Lp norms,

so involve no derivatives. We now have

η1 ∈ Lp(Sr1 , Λ
0,1 ⊗J (uR

1 )∗TM),

η2 ∈ Lp(Sr2 , Λ
0,1 ⊗J (uR

2 )∗TM).

Using Q1,R and Q2,R we get

Q1,Rη1 =: (τ1, ξ1) ∈ Tr1R
d1+1,1 × W 1,p(Sr1 , (u

R
1 )∗TM)

Q2,Rη2 =: (τ2, ξ2) ∈ Tr2R
d2+1 × W 1,p(Sr2 , (u

R
2 )∗TM).

Our final step is to glue these into a single element of TrRR
d1+d2,1 ×W 1,p(SrR , u∗

RTM).

For large R, local gluing charts near the boundary of Rd1+d2,1 give an isomorphism

TrRR
d1+d2,1 ∼= Tr1R

d1+1,1 ⊕ Tr2R
d2+1 ⊕ TRR

(the last component represents the gluing parameter). Using this isomorphism we get

a well-defined element

τ1#Rτ2 := (τ1, τ2, 0) ∈ TrRR
d1+d2,1.
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Now fix a smooth cut-off function β : R≥0 → [0, 1] such that β(s) = 1 for s ≥ 1 and

β(s) = 0 for s ≤ 1/2, and 0 ≤ β̇ ≤ 2. Let βR(s) := β(s/R).

ξ1#R ξ2(z) :=





ξ1(z) if z ∈ Sr1 \ Z1

ξ1(s, t) + βR(s)ξ2(2R − s, 1 − t) if z ∈ Z1, s ∈ [0, R]

βR(s)ξ1(2R − s, 1 − t) + ξ2(s, t) if z ∈ Z2, s ∈ [0, R]

ξ2(z) if z ∈ Sr2 \ Z2.

To simplify notation, define β1,R : SrR → R by

β1,R(z) :=





1 if z ∈ Sr1 \ Z1,

1 if z ∈ Z1, s ∈ [0, R],

βR(s), if z ∈ Z2, s ∈ [0, R],

0 if z ∈ Sr2 \ Z2

and make a corresponding definition of β2,R. With this notation, we can write ξ1#Rξ2 =

β1,Rξ1 + β2,Rξ2. We define

TRη := (τ1#Rτ2, ξ1#Rξ2).

Now we need to check that for all η ∈ (ESrR
)u, for sufficiently large R,

‖DS,rR,uR
TRη − η‖0,p,R ≤

1

2
‖η‖0,p,R.

Now,

DS,rR,uR
TRη − η = DS,rR,uR

(τ1#Rτ2, ξ1#Rξ2) − η

= DuR
rR

τ1#τ2 + DrR
uR

ξ1#Rξ2 − η.

By construction DuR
rR

and D
uR
1

r1 agree on the support of τ1, which is Sr1 \ Z1. Similarly

D
uR
2

r2 agrees with DuR
rR

on the support of τ2 which is Sr2 \ Z2. Hence,

DuR
rR

τ1#Rτ2 = D
uR
1

r1 τ1 + D
uR
2

r2 τ2.

Since DrR
uR

and Dr1

uR
1

agree on the support of β1,Rξ1, we may write

DrR
uR

β1,Rξ1 = Dr1

uR
1
β1,Rξ1

= (∂sβ1,R)ξ1 + β1,RDr1

uR
1
ξ1,

DrR
uR

β2,Rξ2 = Dr2

uR
2
(β2,R)ξ2

= (∂sβ2,R)ξ2 + β2,RDr2

uR
2
ξ2.
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By construction, Dui
ri

τi +Dri

uR
i
ξi = Dri

uR
i
Qi,Rηi = ηi, where Qi,R is the inverse of DS,ri,uR

i
.

So,

DS,rR,uR
TRη − η = DuR

rR
τ1#Rτ2 + DrR

uR
ξ1#Rξ2 − η

= D
uR
1

r1 τ1 + D
uR
2

r2 τ2 + DrR
uR

(β1,Rξ1 + β2,Rξ2) − η

= D
uR
1

r1 τ1 + D
uR
2

r2 τ2 + Dr1

uR
1
β1,Rξ1 + Dr2

uR
2
β2,Rξ2 − η

= D
uR
1

r1 τ1 + D
uR
2

r2 τ2 + (∂sβ1,R)ξ1 + β1,RDr1

uR
1
ξ1 + (∂sβ2,R)ξ1

+β2,RDr2

uR
2
ξ2 − η

= β1,R(Du1
r1

τ1 + Dr1

uR
1
ξ1) + β2,R(Du2

r2
τ2 + Dr2

uR
2
ξ2)

+(∂sβ1,R)ξ1 + (∂sβ2,R)ξ2 − η

= β1,Rη1 + β2,Rη2 + (∂sβ1,R)ξ1 + (∂sβ2,R)ξ2 − η

= η1 + η2 − η + (∂sβ1,R)ξ1 + (∂sβ2,R)ξ2

= (∂sβ1,R)ξ1 + (∂sβ2,R)ξ2

as the support of ηi is precisely where βi,R = 1, and η1 + η2 = η. We can find a c > 0

and an R0 ≥ 0 such that operator norms ‖Qi,R‖ ≤ c for all R ≥ R0. Therefore

‖ξi‖1,p,R ≤ ‖Qi,Rηi‖R ≤ c‖ηi‖0,p,R

so we can estimate

‖DS,uR,rR
TRη − η‖0,p,R = ‖(∂sβ1,R)ξ1 + (∂sβ2,R)ξ2‖0,p,R

≤ 2/R(‖ξ1‖0,p,R + ‖ξ2‖0,p,R)

≤
2c

R
‖η‖0,p,R

and 2c/R ≤ 1/2 for sufficiently large R.
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Type 2

The construction for Type 2 is essentially the same as for Type 1, and essentially the

same calculations go through. Assuming that

(r0, u0) ∈ Md(y0
, y

1
, . . . , y

k
)0

(r1, u1) ∈ Md,1(y1
, x1, . . . , xi1)0

. . .

(rk, uk) ∈ Md,1(yk
, xi1+...+ik−1+1, . . . , xd)0

are all regular, then for a gluing length R we form the preglued surface and map,

abbreviating

(rR, uR) := (r0#R(r1, . . . , rk), u0#R(u1, . . . , uk)).

For i = 0, . . . , k, denote by (Ji(rR), Ki(rR)) the perturbation datum on Sri given by

the restriction of (J(rR), K(rR)) to the truncation of Sri , extended trivially over the

rest of the striplike end of Sri by the given Floer data. The assumption of consis-

tency implies that for large R, the data (Ji(rR), Ki(rR)) is a compact perturbation of

(Ji, Ki). Also, by construction the intermediate maps uR
i are W 1,p small perturbations

of ui. The properties of being Fredholm and surjective are stable under W 1,p-small and

compact perturbations, hence for sufficiently large R, (r0, u
R
0 ), . . . , (rk, u

R
k ) are regular

with respect to (Ji(rR), Ki(rR)). The linearized operators DS,ri,uR
i

are surjective with

zero dimensional kernel hence are isomorphisms, so let Qi,R be the inverse of DS,ri,uR
i
.

For convenience, for each i we will denote by SR
ri

the truncation of Sri that appears in

the pre-glued surface SrR , denote by Z1, . . . , Zk the striplike ends of Sr1 , . . . ,Srk
that

are truncated in the pre-gluing process, and denote by Z ′
1, . . . , Z

′
k the corresponding

striplike ends of the surface Sr0 .

We construct an approximate right inverse TR for the linearized operator DR as

follows:
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Let η ∈ Lp(SrR , Λ0,1 ⊗J u∗
RTM). Set

η0(z) =





η(z), z ∈ SR
r0

0, else
. . .

ηk(z) =





η(z), z ∈ SR
rk

,

0, else.

The abrupt cut-offs do not matter because the norms involving η0, . . . , ηk are just Lp

norms. We now have

η0 ∈ Lp(Sr0 , Λ
0,1 ⊗J (uR

0 )∗TM),

. . .

ηk ∈ Lp(Srk
, Λ0,1 ⊗J (uR

k )∗TM)

and define

(τ0, ξ0) := Q0,R(η0) ∈ Tr0R
k+1 × W 1,p(Sr0 , (u

R
0 )∗TM)

. . .

(τk, ξk) := Qk,R(ηk) ∈ Trk
Rdk+1,1 × W 1,p(Srk

, (uR
k )∗TM).

The final step is to glue these k+1 things together to get a single element of TrRR
d1+d2,1×

W 1,p(SrR , u∗
RTM). For large R, rR is near the boundary of Rd1+...+dk,1, where local

charts identify

TrRR
d1+...+dk,1 ∼= Tr0R

k+1 ⊕ Tr1R
d1+1,1 ⊕ . . . ⊕ Trk

Rdk+1,1 ⊕ TRR,

the last component coming from the gluing parameter. With this identification set

τ0#R(τ1, . . . , τk) := (τ0, τ1, . . . , τk, 0).

Fix a smooth cutoff function β : R≥0 → [0, 1] such that β(s) = 1 for s ≥ 1 and β(s) = 0

for s ≤ 1/2, and 0 ≤ β̇ ≤ 2. Let βR(s) := β(s/R). Define β0,R : SrR → [0, 1] by the

condition that

β0,R(z) =





1, z ∈ SR
r0

,

βR(s), z ∈ Zi, s ∈ [0, R], i = 1, . . . , k,

0, else,
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and for each i ∈ {1, . . . , k}, let

βi,R(z) =





1, z ∈ SR
ri

,

βR(s), z ∈ Z ′
i ⊂ Sr0 , s ∈ [0, R],

0, else.

Then write

ξ0#R (ξ1, . . . , ξk) :=
k∑

i=0

βi,Rξi.

We define the approximate inverse by

TRη := (τ0#R(τ1, . . . , τk), ξ0#R(ξ1, . . . , ξk).

The construction leads to the estimate

DS,rR,uR
TRη − η = DuR

rR
τ0#(τ1, . . . , τk) + DrR

uR
ξ0#(ξ1, . . . , ξk) − η

=
k∑

i=0

D
uR

i
ri τi +

k∑

i=0

Dri

uR
i
βi,Rξi − η

=
k∑

i=0

D
uR

i
ri τi +

k∑

i=0

βi,RDri

uR
i
ξi +

k∑

i=0

(∂sβi,R)ξi − η

=
k∑

i=0

βi,R(D
uR

i
ri τi + Dri

uR
i
ξi) +

k∑

i=0

(∂sβi,R)ξi − η

=
k∑

i=0

βi,Rηi − η +
k∑

i=0

(∂sβi,R)ξi

=
k∑

i=0

(∂sβi,R)ξi.

Since (τi, ξi) = Qi,Rηi there is a c > 0 such that

‖ξi‖0,p,R ≤ ‖Qi,Rηi‖1,p,R ≤ c‖ηi‖0,p,R,

for all i. Combine everything into a total estimate

‖DS,u,rTη − η‖0,p,R ≤
k∑

i=0

‖β̇/R ξi‖0,p,R

≤ ‖∂sβi,R‖∞

k∑

i=0

‖ξi‖0,p,R

≤
2

R

k∑

i=0

c‖ηi‖0,p,R

≤
2c

R
‖η‖0,p,R
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and for sufficiently large R, 2c/R ≤ 1/2.

Type 3

Assume that

(r1, u1) ∈ Md,1(x0, x1, . . . , xd)
0

v ∈ M(xi, y)0

where (r1, u1) is a regular pseudoholomorphic quilted disk, and v is a regular Floer

trajectory. For large R, the intermediate maps (r1, u
R
1 ) and vR are W 1,p-small per-

turbations of (r1, u1) and v respectively, and since being Fredholm and surjective are

properties that are stable under small perturbations, it follows that (r1, u
R
1 ) and vR

are also regular for sufficiently large R. Let Q1,R be the inverse of DS,r1,uR
1

(which is

invertible), and let QvR be a right inverse for DvR respectively, whose image is the L2

orthogonal complement of the kernel of DvR . Let Σ denote the infinite strip R × [0, 1],

and label by Z the striplike end of Sr1 on which the pregluing takes place. Construct

an approximate right inverse

TR : Lp(Sr1 , Λ
0,1 ⊗J u∗

RTM) → Tr1R
d+1,1 × W 1,p(Sr1 , u

∗
RTM)

of DS,r1,uR
as follows. Let η ∈ Lp(Sr1 , Λ

0,1 ⊗J u∗
RTM). Set

η1(z) = η(z), z ∈ SR
r1

,

0, else,

and ηv = 1 − η1. Then η1 ∈ Lp((Sr1 , Λ
0,1 ⊗J (uR

1 )∗TM), and ηv ∈ Lp(Σ, Λ0,1 ⊗J

(vR)∗TM), and we set

Q1,Rη1 := (τ1, ξ1) ∈ Tr1R
d+1,1 × W 1,p(Sr1 , (u

R
1 )∗TM)

QvRηv := ξ2 ∈ W 1,p(Σ, (vR)∗TM).

We need to glue ξ1 and ξ2 together to get an element of W 1,p(Sr1 , (u1#Rv)∗TM). We

fix a smooth cut-off function β : R≥0 → [0, 1] such that β(s) = 0 for s ≤ 1/2 and
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β(s) = 1 for s ≥ 1, and 0 ≤ β̇ ≤ 2. Let βR(s) := β(s/R). Define β1,R : Sr1 → [0, 1] by

β1,R(z) = 1, z ∈ Sr1 \ Z,

1 − βR(s − R/2), z = (s, t) ∈ Z,

and

β2,R(z) = 0, z ∈ Sr1 \ Z,

βR(s), z = (s, t) ∈ Z.

Putting

ξ1#Rξ2 := β1,Rξ1 + β2,Rξ2

we define TRη := (τ1, ξ1#Rξ2). Now,

DS,r1,uR
TRη − η = DS,r1,uR

(τ1, ξ1#Rξ2) − η

= D
uR
1

r1 τ1 + Dr1

uR
1
β1,Rξ1 + DvRβ2,Rξ2 − η

= D
uR
1

r1 τ1 + (∂sβ1,R)ξ1 + β1,RDr1

uR
1
ξ1 + (∂sβ2,R)ξ2 + β2,RDvRξ2 − η

= β1,R(D
uR
1

r1 τ1 + Dr1

uR
1
ξ1) + β2,RDvRξ2 − η + (∂sβ1,R)ξ1 + (∂sβ2,R)ξ2

= (∂sβ1,R)ξ1 + (∂sβ2,R)ξ2,

and choosing a c > 0, R0 ≥ 0 such that the operator norms ‖Q1,R‖ ≤ c, ‖QvR‖ ≤ c for

all R ≥ R0, we have an estimate

‖DS,r1,uR
TRη − η‖0,p,R ≤

2

R
(‖ξ1‖0,p,R + ‖ξ2‖0,p,R)

≤
2

R
(c‖η1‖0,p,R + c‖η2‖0,p,R)

=
2c

R
‖η‖0,p,R

so 2c/R ≤ 1/2 for sufficiently large R.

We obtain an actual right inverse QR = TR(DRTR)−1 using a power series

(DRTR)−1 = (Id + (DRTR − Id))−1

=
∞∑

k=0

(−1)k(DRTR − Id)k,

which is convergent for large R because of the estimate ‖DRTR − Id‖ ≤ 1/2.



126

6.5 Uniform bound on the right inverse

By construction, the image of QR = TR(DRTR)−1 is the same as the image of TR. The

operator norm of (DRTR)−1 can be uniformly estimated, by the results of the previous

section. Thus it remains to find a uniform bound for ‖TR‖ in order to get a uniform

bound ‖QR‖.

Type 1

TR is a composition of operations. The initial cut-offs define a map

△1 ×△2 : Lp(SrR , u∗
RTM) → Lp(Sr1 , (u

R
1 )∗TM) × Lp(Sr2 , (u

R
2 )∗TM)

where the norm on the product Lp(Sr1 , (u
R
1 )∗TM)×Lp(Sr2 , (u

R
2 )∗TM) is the sum of the

norms. So by construction, the operator norm ‖△1×△2‖ = 1. The next step is the map

Q1,R × Q2,R whose domain is the product Lp(Sr1 , (u
R
1 )∗TM) × Lp(Sr2 , (u

R
2 )∗TM) and

range is the product Tr1R× W 1,p(Sr1 , (u
R
1 )∗TM) × Tr2R× W 1,p(Sr2 , (u

R
2 )∗TM). The

operator norm is estimated ‖Q1,R×Q2,R‖ ≤ ‖Q1,R‖+‖Q2,R‖ ≤ 2c where c is a uniform

bound on the operator norms of Q1,R, Q2,R for large R. (Such a uniform bound c exists

because for large R, Q1,R and Q2,R converge to Q1 and Q2, the respective inverses of

DS,r1,u1 and DS,r2,u2 .) The final step in the construction of TR uses an operator

β1 × β2 : W 1,p(Sr1 , (u
R
2 )∗TM) × W 1,p(Sr2 , (u

R
2 )∗TM) → W 1,p(SrR , (uR)∗TM)

defined using the cut-off functions β1,R and β2,R, which by construction satisfies

‖(β1 × β2)(ξ1, ξ2)‖1,p,R ≤ ‖ξ1‖1,p,R + ‖ξ2‖1,p,R

where the right hand side is the norm of (ξ1, ξ2) on the product W 1,p(Sr1 , (u
R
2 )∗TM)×

W 1,p(Sr2 , (u
R
2 )∗TM). Hence ‖β1 × β2‖ = 1. Putting everything together we get that

‖TR‖ ≤ 2c.

Type 2

By almost identical arguments as above we can conclude that ‖TR‖ ≤ (k + 1)c, where

c is a uniform bound for large R on the operator norms ‖Qi,R‖, for i = 0, 1, . . . , k.
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Type 3

By almost identical arguments as above we can conclude that ‖TR‖ ≤ 2c, where c is a

uniform bound for large R on the operator norms ‖Q1,R‖ and ‖Qv,R‖.

6.6 Quadratic estimate

The goal of this section is to establish a quadratic estimate,

‖dFS,r,u(ρ, ξ) − DS,r,u‖ ≤ c(‖ξ‖W 1,p + |ρ|)

where the norm on the left is the operator norm. The W 1,p norm on the right will

depend on a choice of volume form on S, and in the proof of the gluing theorem it

will be a different volume form for different values of the gluing parameter R. (N.B.

The definition of the operator FS,r,u doesn’t depend in any way on the volume form on

S.) The one thing to ensure is that the constant c in the estimate does not depend on

anything that might vary with the gluing parameter R.

We assume that we are working in a local trivialization of the fiber bundle S → R, in

a neighborhood U ⊂ R of r. We will write S := Sr. Recall that in this neighborhood of

r, all the fibers Sr′ are diffeomorphic to S, and so the varying almost complex structures

can be pulled back to S, as can the perturbation data.

Definition For a fixed volume form on S, define the constant

cp(dvolS) := sup
06=f∈C∞(S)∩W 1,p(S)

‖f‖L∞

‖f‖W 1,p

.

.

That such a constant exists follows from the embedding statements of Appendix A.

Moreover, it follows from Theorem A.0.8 that cp is uniformly bounded for all surfaces

in a given family Sd,1 or Sd.

Proposition 6.6.1 (c.f. Proposition 3.5.3 in [10]). Let p > 2 and fix a quilted surface S

with strip-like ends, and let Sthick(thin) denote the thick (resp. thin) part of a thick-thin

decomposition. Then, for every constant c0 > 0, there exists a constant c > 0 such
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that the following holds for every volume form dvolS on S such that cp(dvolS) ≤ c0 and

vol(Sthick) ≤ c0. If u ∈ W 1,p(S, M), ξ ∈ W 1,p(S, u∗TM), r ∈ R, and ρ ∈ TrR satisfy

‖du‖Lp ≤ c0, ‖ξ‖L∞ ≤ c0, |ρ| ≤ c0, (6.2)

then

‖dFS,r,u(ρ, ξ) − DS,r,u‖ ≤ c(‖ξ‖W 1,p + |ρ|). (6.3)

Here ‖ · ‖ denotes the operator norm on the space of bounded linear operators from

TrR× W 1,p(S, u∗TM) to Lp(S, Λ0,1 ⊗J u∗TM).

Proof. Given x ∈ M , ξ ∈ TxM , r ∈ R and ρ ∈ TrR, define linear maps

Ex(ξ) : TxM → Texpx ξM

ξ̃ 7→
d

dλ

∣∣∣
λ=0

expx(ξ + λξ̃)

Er(ρ) : TrR → Texpr ρR

ρ̃ 7→
d

dλ

∣∣∣
λ=0

expr(ρ + λρ̃)

and a bilinear map

Ψx(ξ) : TxM × TxM → Texpx ξM

(ξ̃, η) 7→
d

dλ

∣∣∣
λ=0

Φx(ξ + λξ̃)η.

Since M and R are compact, there is a constant c1 such that

|Er(ρ)ρ̃| ≤ c1|ρ̃|

|Ex(ξ)ξ̃| ≤ c1|ξ̃|

|Ψx(ξ)(ξ̃, η)| ≤ c1|ξ||ξ̃||η|

for all x ∈ M , r ∈ R, and for all ξ ∈ TxM with |ξ| ≤ c0, and ρ ∈ TrR with |ρ| ≤ c0; the

last inequality is because the bilinear form is 0 when ξ = 0. W define another bilinear

map, for each z ∈ S, by

Ψr,z(ρ) : TrR× (T ∗
z S)0,1

j(r) ⊗J(r) Tu(z)M → (T ∗
z S)0,1

j(expr ρ) ⊗J(expr ρ) Tu(z)M

(ρ, η ⊗ ξ) 7→
d

dλ

∣∣∣
λ=0

Φr(ρ + λρ̃)(η ⊗ ξ).
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We can also assume that for the same constant c1 as above, we have

|Ψr,z(ρ; ρ̃, η ⊗ ξ)| ≤ c1|ρ||ρ̃||η ⊗ ξ|,

for all z ∈ S, r ∈ R, and all ρ ∈ TrR such that |ρ| ≤ c0; this inequality is possible

because when ρ = 0, the corresponding bilinear form is 0.

Observe that on the ”thin” parts of S, the complex structures j and J are indepen-

dent of r ∈ R. Thus Φr(ρ + λρ̃) is the identity for all λ, and

d

dλ

∣∣∣
λ=0

Φr(ρ + λρ̃)(η ⊗ ξ) =
d

dλ

∣∣∣
λ=0

η ⊗ ξ

= 0,

that is, Ψr,z(ρ) ≡ 0 on Sthin.

Now covariantly differentiate the identity

ΦS,r,u(ρ + λρ̃, ξ + λξ̃)FS,r,u(ρ + λρ̃, ξ + λξ̃) = ∂J(expr(ρ + λρ̃), expu(ξ + λρ̃))

with respect to λ, at λ = 0, using the connection ∇, to get

∇λΦS,r,u(ρ + λρ̃, ξ + λξ̃)FS,r,u(ρ, ξ)
∣∣∣
λ=0

+ ΦS,r,u(ρ, ξ)dFS,r,u(ρ, ξ)(ρ̃, ξ̃) (6.4)

= DS,expr ρ,expu ξ(Er(ρ)ρ̃, Ex(ξ)ξ̃)

For typesetting reasons we now abbreviate

F := FS,r,u(ρ, ξ), uξ := expu(ξ), rρ := expr(ρ)

in order to calculate

∇λΦS,r,u(ρ + λρ̃, ξ + λξ̃)F
∣∣∣
λ=0

= ∇λΦr(ρ + λρ̃)Φu(ξ + λξ̃)F
∣∣∣
λ=0

= Φr(ρ)∇̃λΦu(ξ + λξ̃)F
∣∣∣
λ=0

+ Φu(ξ)
d

dλ

∣∣∣
λ=0

1

2
[Φr(ρ + λρ̃)F

+ J(rρ, u) ◦ Φr(ρ + λρ̃)F ◦ j(rρ)]

= Φr(ρ)Ψu(ξ; ξ̃, F ) + Φu(ξ)
1

2
[Ψr(ρ; ρ̃, F )

+J(rρ, u) ◦ Ψr(ρ; ρ̃, F ) ◦ j(rρ)].
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Thus we can rewrite equation (6.4) as

Φr(ρ)Ψu(ξ; ξ̃, F ) + Φu(ξ)
1

2
[Ψr(ρ; ρ̃, F ) + J(rρ, u) ◦ Ψr(ρ; ρ̃, F ) ◦ j(rρ)]

+ ΦS,r,u(ρ, ξ)dFS,r,u(ρ, ξ)(ρ̃, ξ̃) = DS,rρ,uξ
(Er(ρ)ρ̃, Ex(ξ)ξ̃).

Therefore we have

dFS,r,u(ρ, ξ)(ρ̃, ξ̃) − DS,r,u(ρ̃, ξ̃) = − ΦS,r,u(ρ, ξ)−1Φr(ρ)Ψu(ξ; ξ̃, F )

− ΦS,r,u(ρ, ξ)−1Φu(ξ)
1

2
[Ψr(ρ; ρ̃, F )

+ J(rρ, u) ◦ Ψr(ρ; ρ̃, F ) ◦ j(rρ)]

+ ΦS,r,u(ρ, ξ)−1DS,rρ,uξ
(Er(ρ)ρ̃, Ex(ξ)ξ̃)

−DS,r,u(ρ̃, ξ̃)

which simplifies to

dFS,r,u(ρ, ξ)(ρ̃, ξ̃) − DS,r,u(ρ̃, ξ̃) = − Φu(ξ)−1Ψu(ξ; ξ̃, F )︸ ︷︷ ︸
A

− Φr(ρ)−1 1

2
[Ψr(ρ; ρ̃, F ) + J(rρ, u) ◦ Ψr(ρ; ρ̃, F ) ◦ j(rρ)]

︸ ︷︷ ︸
B

+ ΦS,r,u(ρ, ξ)−1DS,rρ,uξ
(Er(ρ)ρ̃, Ex(ξ)ξ̃) − DS,r,u(ρ̃, ξ̃)

︸ ︷︷ ︸
C

.

We now estimate A, B and C in turn.

Estimating A: Pointwise, since Φu(ξ)−1 is an isometry, we can write

|Φu(ξ)−1Ψu(ξ; ξ̃, F )| = |Ψu(ξ; ξ̃, F )|

≤ c1|ξ||ξ̃||F |.

Now

F := FS,r,u(ρ, ξ)

= Φr(ρ)−1Φu(ξ)−1 1

2
[(duξ − Y (rρ, uξ)) + J(rρ, uξ) ◦ (duξ − Y (rρ, uξ) ◦ j(rρ)],

so we can write

|F | = |Φr(ρ)−1Φu(ξ)−1 1

2
[(duξ − Y (rρ, uξ)) + J(rρ, uξ) ◦ (duξ − Y (rρ, uξ) ◦ j(rρ)]|

≤ |duξ − Y (rρ, uξ)|

≤ |duξ| + |Y (rρ, uξ)|.
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There is a constant c2 depending only on c0 and the choice of compatible almost-complex

structures in the perturbation datum (J, K), such that

|d expu ξ| ≤ c2(|du| + |∇ξ|)

whenever ‖du‖Lp ≤ c0 and ‖ξ‖L∞ ≤ c0. There is also a constant c3 such that

|Y (r, x)| ≤ c3

for all r ∈ R, x ∈ M , and all metrics | · | on TM induced by the almost complex

structures in the perturbation datum (J, K). Hence,

‖Φu(ξ)−1Ψu(ξ; ξ̃, F )‖Lp ≤ c1c2‖ξ‖L∞‖ξ̃‖L∞‖du‖Lp + c1c2‖ξ‖L∞‖ξ̃‖L∞‖∇ξ‖Lp

+ c3c1‖ξ‖Lp‖ξ̃‖L∞

≤ c1c2c0‖ξ‖L∞‖ξ̃‖L∞ + c0c1‖ξ̃‖L∞‖∇ξ‖Lp

+c1c3c0‖ξ‖Lp‖ξ̃‖Lp

≤ c1c2c
3
0‖ξ‖W 1,p‖ξ̃‖W 1,p + c2

0c1c2‖ξ̃‖W 1,p‖ξ‖W 1,p

+c0c1c3‖ξ‖W 1,p‖ξ̃‖W 1,p

≤ (c1c2c
3
0 + c2

0c1c2 + c0c1c3)(|ρ| + ‖ξ‖W 1,p)(|ρ̃| + ‖ξ̃‖W 1,p).

Estimating B: Pointwise,

|Φr(ρ)−1 1

2
[Ψr(ρ; ρ̃, F ) + J(rρ, u) ◦ Ψr(ρ; ρ̃, F ) ◦ j(rρ)]| ≤ |Ψr(ρ; ρ̃, F )|

so it suffices to estimate |Ψr(ρ; ρ̃, F )|. Recall that F = FS,r,u(ρ, ξ). We have

|Ψr(ρ; ρ̃, F )| = |Ψr(ρ; ρ̃, F )|

≤ c1|ρ||ρ̃||F |

≤ c1|ρ||ρ̃|(|duξ| + |Y (rρ, uξ)|)

≤ c1c2|ρ||ρ̃|(|du| + |∇ξ|) + c1|ρ||ρ̃||Y (rρ, uξ)|.

Recalling that Ψr(ρ) vanishes on Sthin, and that vol(Sthick) < c0, we get

‖Ψr(ρ; ρ̃, F )‖Lp ≤ c1c2|ρ||ρ̃|‖du‖Lp + c1c2|ρ||ρ̃|‖∇ξ‖Lp

+c1|ρ||ρ̃|‖Y (rρ, uξ)‖∞(vol(Sthick))1/p

≤ c0c1c2|ρ||ρ̃| + c0c1c2|ρ̃|‖ξ‖W 1,p + c1c3c0|ρ||ρ̃|

≤ (2c0c1c2 + c1c3)(|ρ| + ‖ξ‖W 1,p)(|ρ̃| + ‖ξ̃‖W 1,p).
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Estimating C: Using the splitting DS,rρ,uξ
= D

(rρ)
uξ + D

(uξ)
rρ , write

ΦS,r,u(ρ, ξ)−1DS,rρ,uξ
(Er,u(ρ, ξ)(ρ̃, ξ̃)) − DS,r,u(ρ̃, ξ̃)

= [ΦS,r,u(ρ, ξ)−1D
(rρ)
uξ Eu(ξ)(ξ̃) − D(r)

u (ξ̃)]
︸ ︷︷ ︸

C(a)

+[ΦS,r,u(ρ, ξ)−1D
(uξ)
rρ Er(ρ)(ρ̃) − D(u)

r (ρ̃)]︸ ︷︷ ︸
C(b)

and estimate C(a) and C(b) separately.

To estimate C(a), write

ΦS,r,u(ρ, ξ)−1D
rρ
uξEu(ξ)(ξ̃) − D(r)

u (ξ̃) = Φr(ρ)−1[Φu(ξ)−1D
rρ
uξEu(ξ)(ξ̃) − D

(rρ)
u (ξ̃)]

+ [Φr(ρ)−1D
(rρ)
u (ξ̃) − D(r)

u (ρ̃)]

= Φr(ρ)−1[Φu(ξ)−1D̃
rρ
uξEu(ξ)(ξ̃) − D̃

(rρ)
u (ξ̃)]

− Φr(ρ)−1[Φu(ξ)−1P
(rρ)
uξ Eu(ξ)(ξ̃) − P

(rρ)
u (ξ̃)]

+ [Φr(ρ)−1D̃
(rρ)
u (ξ̃) − D̃(r)

u (ρ̃)]

− [Φr(ρ)−1P
(rρ)
u (ξ̃) − P (r)

u (ρ̃)].

Therefore we have, pointwise,

|ΦS,r,u(ρ, ξ)−1D
rρ
uξEu(ξ)(ξ̃) − D(r)

u (ξ̃)|
︸ ︷︷ ︸

C(a)

≤ |Φu(ξ)−1D̃
rρ
uξEu(ξ)(ξ̃) − D̃

(rρ)
u (ξ̃)|

︸ ︷︷ ︸
C(a)(i)

+ |Φu(ξ)−1P
(rρ)
uξ Eu(ξ)(ξ̃) − P

(rρ)
u (ξ̃)|

︸ ︷︷ ︸
C(a)(ii)

+ |Φr(ρ)−1D̃
(rρ)
u (ξ̃) − D̃(r)

u (ξ̃)|︸ ︷︷ ︸
C(a)(iii)

+ |Φr(ρ)−1P
(rρ)
u (ξ̃) − P (r)

u (ξ̃)|︸ ︷︷ ︸
C(a)(iv)

.

Estimating C(a)(i): Since Φu(ξ) is pointwise an isometry, we can estimate

|D̃
rρ
uξEu(ξ)(ξ̃) − Φu(ξ)D̃

(rρ)
u (ξ̃)|

instead. The calculation takes place on a fixed fiber Srρ , so there is no risk of ambiguity

if we now omit the superscript rρ from the notation. Using formula (5.6) for D̃uξ
, we



133

have the identity

D̃
rρ
uξEu(ξ)(ξ̃) − Φu(ξ)D̃

(rρ)
u (ξ̃) = [∇(Eu(ξ)ξ̃) − Φu(ξ)∇ξ̃]0,1

−
1

2
J(u)[(∇Eu(ξ)ξ̃J)(uξ)duξ − Φu(ξ)(∇ξ̃J)(u)du]0,1

where the (0, 1) is with respect to J(rρ, u) and j(rρ). The first of these terms can be

estimated pointwise by

|∇(Eu(ξ)ξ̃) − Φu(ξ)∇ξ̃| ≤ |(Eu(ξ) − Φu(ξ))ξ̃| + |∇(Eu(ξ)ξ̃) − Eu(ξ)∇ξ̃|

≤ c4|ξ||ξ̃| + ‖∇Eu(ξ)‖|ξ̃|

= c4|ξ||ξ̃| + c5(|du||ξ| + |∇ξ|)|ξ̃|.

Taking the Lp norm of both sides, we get

‖∇(Eu(ξ)ξ̃) − Φu(ξ)∇ξ̃‖Lp ≤ c4‖ξ‖L∞‖ξ̃‖Lp + c5‖du‖Lp‖ξ‖L∞‖ξ̃‖L∞

+c5‖∇ξ‖Lp‖ξ̃‖L∞

≤ (c0c4 + c3
0c5 + c0c5)‖ξ‖W 1,p‖ξ̃‖W 1,p

≤ (c0c4 + c3
0c5 + c0c5)(|ρ| + ‖ξ‖W 1,p)(|ρ̃| + ‖ξ̃‖W 1,p).

To estimate the other term, we have

|(∇Eu(ξ)ξ̃J)(uξ)duξ − Φu(ξ)(∇ξ̃J)(u)du|

≤ |(∇Eu(ξ)ξ̃J)(uξ)duξ − (∇Eu(ξ)ξ̃J)(uξ)Φu(ξ)du|

+|(∇Eu(ξ)ξ̃J)(uξ)Φu(ξ)du − Φu(ξ)(∇ξ̃J)(u)du|

≤ |(∇Eu(ξ)ξ̃J)(uξ)||duξ − Φu(ξ)du|

+|((∇Eu(ξ)ξ̃J)(uξ)Φu(ξ) − Φu(ξ)(∇ξ̃J)(u))(du)|

≤ ‖∇J‖L∞ |Eu(ξ)ξ̃|c6(|du||ξ| + |∇ξ|)

+c7|ξ||ξ̃||du|

≤ c8(|ξ̃||du||ξ| + |ξ̃||∇ξ| + |ξ||ξ̃||du|).
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Taking the Lp norm of both sides gives

‖(∇Eu(ξ)ξ̃J)(uξ)duξ − Φu(ξ)(∇ξ̃J)(u)du‖Lp ≤ c8(‖ξ̃‖L∞‖du‖Lp‖ξ‖L∞

+‖ξ̃‖L∞‖∇ξ‖Lp + ‖ξ‖L∞‖ξ̃‖L∞‖du‖Lp)

≤ (2c3
0c8 + c0c8)‖ξ̃‖W 1,p‖ξ‖W 1,p

≤ (2c3
0c8 + c0c8)(|ρ| + ‖ξ‖W 1,p)(|ρ̃| + ‖ξ̃‖W 1,p).

Estimating C(a)(ii): We can write

Puξ
Eu(ξ)(ξ̃) − Φu(ξ)Pu(ξ̃) = [∇Eu(ξ)(ξ̃)Y − Φu(ξ)∇ξ̃Y ]0,1

−
1

2
J [∇Eu(ξ)(ξ̃)JY − Φu(ξ)(∇ξ̃J)Y ]0,1.

The quantity ∇Ex(ξ)(ξ̃)Y −Φx(ξ)∇ξ̃Y is linear in ξ̃, and is zero when ξ = 0. Y depends

smoothly on r ∈ R, and z ∈ S; but R is compact, and Y is constant in the s direction

(direction of infinite length) of the striplike ends of S, so effectively the z-dependence

of Y is only over a compact set. Thus there is a constant c9 > 0 such that

|∇Ex(ξ)(ξ̃)Y − Φx(ξ)∇ξ̃Y | ≤ c9|ξ||ξ̃|

holds for all Y = Y (r, z), and all x ∈ M , ξ ∈ TxM such that |ξ| ≤ c0.

For x ∈ M , ξ, ξ̃ ∈ TxM and η ∈ Texpx ξM , the quantity ∇Ex(ξ)(ξ̃)Jη − Φx(ξ)(∇ξ̃J)η

is linear in η and ξ̃, and zero when ξ = 0. J depends smoothly on r ∈ R, and z ∈ S; R

is a compact set, and J is constant in the s direction of the strip-like ends, so effectively

the z dependence of J is only over a compact set. Thus there is a constant c10 such

that

|∇Ex(ξ)(ξ̃)Jη − Φu(ξ)(∇ξ̃J)η| ≤ c10|ξ||ξ̃||η|

for all x ∈ M , and ξ ∈ TxM such that |ξ| ≤ c0. Putting the pointwise estimates

together gives

‖Puξ
Eu(ξ)(ξ̃) − Φu(ξ)Pu(ξ̃)‖Lp ≤ c9‖ξ‖Lp‖ξ̃‖L∞ + c10‖ξ‖L∞‖ξ̃‖L∞‖Y ‖Lp

≤ c11‖ξ‖W 1,p‖ξ̃‖W 1,p

≤ c11(|ρ| + ‖ξ‖W 1,p)(|ρ̃ + ‖ξ̃‖W 1,p).
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Estimating C(a)(iii): We have

Φr(ρ)−1D̃
(rρ)
u (ξ̃) − D̃(u)

u (ξ̃) = [D̃
(rρ)
u (ξ̃)]0,1 − D̃(r)

u (ξ̃)

=

[
1

2
(∇ξ̃ + J(rρ, u) ◦ ∇ξ̃ ◦ j(rρ))

]0,1

−

[
1

2
(∇ξ̃ + J(r, u) ◦ ∇ξ̃ ◦ j(r))

]0,1

−

[
1

2
J(rρ)

1

2
((∇ξ̃J)(rρ)du + J(rρ) ◦ (∇ξ̃J)(rρ)du ◦ j(rρ))

]0,1

+

[
1

2
J(r)

1

2
((∇ξ̃J)(r) + J(r) ◦ (∇ξ̃J)(r)du ◦ j(r))

]0,1

=

[
1

2
(J(rρ, u) ◦ ∇ξ̃ ◦ j(rρ) − J(r, u) ◦ ∇ξ̃ ◦ j(r))

]0,1

−

[
1

2
J(rρ)

1

2
((∇ξ̃J)(rρ)du + J(rρ) ◦ (∇ξ̃J)(rρ)du ◦ j(rρ))

−
1

2
J(r)

1

2
((∇ξ̃J)(r)du + J(r) ◦ (∇ξ̃J)(r)du ◦ j(r))

]0,1

and therefore a pointwise estimate

|Φr(ρ)−1D̃
(rρ)
u (ξ̃) − D̃(u)

u (ξ̃)| ≤ c12|ρ||∇ξ̃| + c13|ρ||ξ̃||du|.

Taking the Lp norm of both sides gives

‖Φr(ρ)−1D̃
(rρ)
u (ξ̃) − D̃(u)

u (ξ̃)‖Lp ≤ c12|ρ|‖∇ξ̃‖Lp + c13|ρ|‖ξ̃‖L∞‖du‖Lp

≤ c12|ρ|‖ξ̃‖W 1,p + c2
0c13|ρ|‖ξ̃‖W 1,p

≤ (c12 + c2
0c13)(|ρ| + ‖ξ‖W 1,p)(|ρ̃| + ‖ξ̃‖W 1,p).
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Estimating C(a)(iv):

Φr(ρ)−1P
(rρ)
u (ξ̃) − P (r)

u (ξ̃)

=

[
1

2
((∇ξ̃Y )(rρ) + J(rρ)(∇ξ̃Y )(rρ)j(rρ))

]0,1

−

[
1

2
((∇ξ̃Y )(r) + J(r) ◦ (∇ξ̃Y )(r) ◦ j(r))

]0,1

−

[
1

2
J(rρ)

1

2
((∇ξ̃J)(rρ)Y (rρ) + J(rρ) ◦ (∇ξ̃J)(rρ)(Y (rρ) ◦ j(rρ))

]0,1

+

[
1

2
J(r)

1

2
((∇ξ̃J)(r)Y (r) + J(r) ◦ (∇ξ̃J)(r)Y (r) ◦ j(r))

]0,1

=

[
1

2
((∇ξ̃Y )(rρ) + J(rρ)(∇ξ̃Y )(rρ)j(rρ))

−
1

2
((∇ξ̃Y )(r) + J(r) ◦ (∇ξ̃Y )(r) ◦ j(r))

]0,1

−

[
1

2
J(rρ)

1

2
((∇ξ̃J)(rρ)Y (rρ) + J(rρ) ◦ (∇ξ̃J)(rρ)Y (rρ) ◦ j(rρ))

−
1

2
J(r)

1

2
((∇ξ̃J)(r)Y (r) + J(r) ◦ (∇ξ̃J)(r)Y (r) ◦ j(r))

]0,1

We can find a constant c14 > 0 such that a pointwise estimate

|Φr(ρ)−1P
(rρ)
u (ξ̃) − P (r)

u (ξ̃)| ≤ c14|ρ||ξ̃|

holds for all r ∈ R and ρ ∈ TrR with |ρ| ≤ c0. Hence

‖Φr(ρ)−1P
(rρ)
u (ξ̃) − P (r)

u (ξ̃)‖Lp ≤ c14|ρ|‖ξ̃‖Lp

≤ c14(|ρ| + ‖ξ‖W 1,p)(|ρ̃| + ‖ξ̃‖W 1,p).

Now it only remains to estimate C(b). We can write

ΦS,r,u(ρ, ξ)−1D
(uξ)
rρ Er(ρ)(ρ̃) − D(u)

r (ρ̃) = Φu(ξ)−1[Φr(ρ)−1D
(uξ)
rρ Er(ρ)(ρ̃) − D

(uξ)
r (ρ̃)]

+ [Φu(ξ)−1D
(uξ)
r (ρ̃) − D(u)

r (ρ̃)].

Thus, splitting the operator D into its components D̃ and P , and recalling that
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Φu(ξ) is pointwise an isometry, we may estimate

|ΦS,r,u(ρ, ξ)−1D
(uξ)
rρ Er(ρ)(ρ̃) − D(u)

r (ρ̃)|︸ ︷︷ ︸
C(b)

≤ |Φr(ρ)−1D̃
(uξ)
rρ Er(ρ)(ρ̃) − D̃

(uξ)
r (ρ̃)|︸ ︷︷ ︸

C(b)(i)

+ |Φr(ρ)−1P
(uξ)
rρ Er(ρ)(ρ̃) − P

(uξ)
r (ρ̃)|︸ ︷︷ ︸

C(b)(ii)

+ |Φu(ξ)−1D̃
(uξ)
r (ρ̃) − D̃(u)

r (ρ̃)|︸ ︷︷ ︸
C(b)(iii)

+ |Φu(ξ)−1P
(uξ)
r (ρ̃) − P (u)

r (ρ̃)|︸ ︷︷ ︸
C(b)(iv)

.

Estimating C(b)(i): We can estimate it pointwise by

|Φr(ρ)−1D̃
(uξ)
rρ Er(ρ)(ρ̃) − D̃

(uξ)
r ρ̃| ≤ |(Φr(ρ)−1 − Id)D̃

(uξ)
rρ Er(ρ)(ρ̃)|

+|D̃
(uξ)
rρ Er(ρ)(ρ̃) − D̃

(uξ)
r ρ̃|

There is a constant c15 such that the first term can be estimated pointwise by

|(Φr(ρ)−1 − Id)D̃
(uξ)
rρ Er(ρ)(ρ̃)| ≤ c15|ρ||duξ||ρ̃|

≤ c2c15|ρ|(|du| + |∇ξ|)|ρ̃|

and therefore

‖(Φr(ρ)−1 − Id)D̃
(uξ)
rρ Er(ρ)(ρ̃)‖Lp ≤ c2c15|ρ|‖du‖Lp |ρ̃| + c2c15|ρ|‖∇ξ‖Lp |ρ̃|

≤ 2c0c2c15(|ρ||ρ̃| + ‖ξ‖W 1,p |ρ̃|)

≤ 2c0c2c15(|ρ| + ‖ξ‖W 1,p)(|ρ̃| + ‖ξ̃‖W 1,p).

To estimate the other term, we use the explicit formula

D̃(u)
r (ρ) =

1

4
((∂ρJ)(r) ◦ du ◦ j(r) − J(r) ◦ (∂ρJ)(r) ◦ du

+J(r) ◦ du ◦ (∂ρj)(r) − du ◦ (∂ρJ)(r) ◦ j(r))
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to directly compute that

4|D̃
(uξ)
rρ Er(ρ)(ρ̃) − D̃

(uξ)
r ρ̃| ≤ |(∂Er(ρ)ρ̃J)(rρ) ◦ duξ ◦ j(rρ) − (∂ρ̃J)(r) ◦ duξ ◦ j(rρ)|

+ |J(rρ)(∂Er(ρ)ρ̃J)(rρ) − J(r)(∂ρ̃J)(r)||duξ|

+ |J(rρ) ◦ duξ ◦ (∂Er(ρ)ρ̃j)(rρ) − J(r) ◦ duξ ◦ (∂ρ̃j)(r)|

+ |duξ||(∂Er(ρ)ρ̃j)(rρ)j(rρ) − (∂ρ̃)(r)j(r)|

≤ c16|duξ||ρ||ρ̃|

≤ c2c16(|du| + |∇ξ|)|ρ||ρ̃|.

Hence,

‖D̃
(uξ)
rρ Er(ρ)(ρ̃) − D̃

(uξ)
r ρ̃‖Lp ≤

1

4
c2c16‖du‖Lp |ρ||ρ̃| +

1

4
c2c16‖∇ξ‖Lp |ρ||ρ̃|

≤
1

2
c0c2c16(|ρ||ρ̃| + ‖ξ‖W 1,p |ρ̃|)

≤ c0c2c16(|ρ| + ‖ξ‖W 1,p)(|ρ̃| + ‖ξ̃‖W 1,p).

This completes the estimate for C(b)(i).

Estimating C(b)(ii): We can estimate it pointwise by

|Φr(ρ)−1P
(uξ)
rρ Er(ρ)(ρ̃) − P

(uξ)
r ρ̃| ≤ |(Φr(ρ)−1 − Id)P

(uξ)
rρ Er(ρ)(ρ̃)|

+|P
(uξ)
rρ Er(ρ)(ρ̃) − P

(uξ)
r ρ̃|.

The first term can be estimated pointwise by

|(Φr(ρ)−1 − Id)P
(uξ)
rρ Er(ρ)(ρ̃)| ≤ c17|ρ||P

(uξ)
rρ Er(ρ)(ρ̃)|

≤ c17|ρ|(|(∂Er(ρ)ρ̃Y )(rρ, uξ)|

+
1

2
|(∂Er(ρ)ρ̃J)(rρ, uξ) ◦ Y (rρ, uξ)|

+
1

2
|Y (rρ, uξ) ◦ (∂Er(ρ)ρ̃j)(rρ)|).

By construction, Y, J and j do not depend on r ∈ R along the striplike ends. Moreover

they are consistent with the strip-like ends, so in particular they do not depend on

r ∈ R on the images of the finite rectangles that come from the gluing procedure.

Using the language of Seidel’s book, the striplike ends and the finite rectangles arising

from the gluing procedure constitute the ”thin” part of the ”thick-thin decomposition”
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of the surface; our observation is that Y, J and j do not depend on r ∈ R for z ∈ Sthin.

Denote by Sthin ⊂ S the thin part of this decomposition, noting that is a compact

subset. Hence we can find constants a1, a2 and a3 such that

|Y (r, x, z)| ≤ a1, |(∂ρj)(r, z)| ≤ a2|ρ|, |(∂ρJ)(r, x)| ≤ a3|ρ|

for all r ∈ R, x ∈ M and z ∈ S, yielding an estimate

‖(Φr(ρ)−1 − Id)P
(uξ)
rρ Er(ρ)(ρ̃)‖Lp ≤ c17c1|ρ||ρ̃|(vol(Sthin))1/p

+
1

2
c17c1a3a1|ρ||ρ̃|(vol(Sthin))1/p

+
1

2
c1c17a1a2|ρ||ρ̃|(vol(Sthin))1/p

≤ c18|ρ||ρ̃|

≤ c18(|ρ| + ‖ξ‖W 1,p)(|ρ̃| + ‖ξ̃‖W 1,p).

Treating the other term is very similar: using the fact that

P
(uξ)
rρ Er(ρ)(ρ̃) − P

(uξ)
r ρ̃

is linear in ρ̃, and 0 when ρ = 0, and its support is only on Sthin, we get an estimate of

the form

‖P
(uξ)
rρ Er(ρ)(ρ̃) − P

(uξ)
r ρ̃‖Lp ≤ c19|ρ||ρ̃|(vol(Sthin)1/p

≤ c20(|ρ| + ‖ξ‖W 1,p)(|ρ̃| + ‖ξ̃‖W 1,p).

Estimating C(b)(iii): We have pointwise that

|Φu(ξ)−1D̃
(uξ)
r (ρ̃) − D̃(u)

r (ρ̃)| ≤
1

2
|(∂ρ̃J)(uξ) ◦ duξ ◦ j − Φu(ξ)(∂ρ̃J)(u) ◦ duξ ◦ j|

+
1

2
|J(uξ) ◦ duξ ◦ ∂ρ̃j − Φu(ξ) ◦ J(u) ◦ du ◦ ∂ρ̃j|

≤
1

2
|(∂ρ̃J)(uξ)||duξ − Φu(ξ)du|

+
1

2
|(∂ρ̃J)(uξ) − (∂ρ̃J)(u)||du|

+
1

2
|duξ − Φu(ξ)du||∂ρ̃j|

≤ c21|ρ̃|(|∇ξ| + |ξ||du|)

+c22|ρ̃||ξ||du|

+c23(|∇ξ| + |ξ||du|)|ρ̃|.
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Taking Lp norms gives

‖Φu(ξ)−1D̃
(uξ)
r (ρ̃) − D̃(u)

r (ρ̃)‖p ≤ c21|ρ̃|(‖∇ξ‖p + ‖ξ‖∞‖du‖p) + c22|ρ̃|‖ξ‖∞‖du‖p

+c23(‖∇ξ‖p + ‖ξ‖∞‖du‖p)|ρ̃|

≤ c24(|ρ| + ‖ξ‖1,p)(|ρ̃| + ‖ξ̃‖1,p).

Estimating C(b)(iv): By definition of P u
r we have that

Φu(ξ)P
(uξ)
r (ρ̃) − Φu(ξ)P (u)

r (ρ̃) = [(∂ρ̃Y )(uξ) − Φu(ξ)∂ρ̃Y (u)]0,1

+
1

2
[(∂ρ̃J)(uξ) ◦ Y (uξ) ◦ j − φu(ξ)(∂ρ̃J)(u) ◦ Y (u) ◦ j

+J(uξ) ◦ Y (uξ) ◦ ∂ρ̃j − φu(ξ)J(u) ◦ Y (u) ◦ ∂ρ̃j]
0,1.

This leads to pointwise estimates

|Φu(ξ)P
(uξ)
r (ρ̃) − Φu(ξ)P (u)

r (ρ̃)| ≤ |(∂ρ̃Y )(uξ) − Φu(ξ)∂ρ̃Y (u)|

+
1

2
|(∂ρ̃J)(uξ) ◦ Y (uξ) − φu(ξ)(∂ρ̃J)(u) ◦ Y (u)|

+
1

2
|Y (uξ) − Φu(ξ)Y (u)||∂ρ̃j|.

The first term can be estimated by

|(∂ρ̃Y )(uξ) − Φu(ξ)∂ρ̃Y (u)| ≤ c25|ξ||ρ̃|

for some c25 that depends only on the choice of perturbation datum (J, K). Now since

Φu(ξ)J(u) = J(uξ)Φu(ξ), we can write Φu(ξ)(∂ρ̃J)(u) ◦ Y (u) = (∂ρ̃J)(uξ) ◦Φu(ξ)Y (u),

so the second term can be estimated by

|(∂ρ̃J)(uξ) ◦ Y (uξ) − Φu(ξ)(∂ρ̃J)(u) ◦ Y (u)|

= |(∂ρ̃J)(uξ) ◦ Y (uξ) − (∂ρ̃J)(uξ) ◦ Φu(ξ)Y (u)|

≤ |(∂ρ̃J)(uξ)||Y (uξ) − Φu(ξ)Y (u)|

≤ c26|ρ̃||ξ|

where c26 again depends only on the choice of perturbation datum (J, K), that holds

for all ξ such that |ξ| ≤ c0. Taking the Lp norm leads to the estimate

‖(∂ρ̃J)(uξ) ◦ Y (uξ) − Φu(ξ)(∂ρ̃J)(u) ◦ Y (u)‖p ≤ c26(|ρ| + ‖ξ‖1,p)(|ρ̃| + ‖ξ̃‖1,p).
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For the last term, there is a pointwise estimate

|Y (uξ) − Φu(ξ)Y (u)||∂ρ̃j| ≤ c27|ξ||ρ̃|

that holds for all ξ such that |ξ| ≤ c0, where c27 depends only on the choice of pertur-

bation datum and the family of complex structures j(r), r ∈ R.

Taking the Lp norm leads to an estimate

‖(Y (uξ) − Φu(ξ)Y (u))(∂ρ̃j)‖p ≤ c28(|ρ| + ‖ξ‖1,p)(|ρ̃| + ‖ξ̃‖1,p).

6.7 The gluing map

To define the gluing map, we use an infinite dimensional implicit function theorem,

quoted here from [10, Appendix A].

Theorem 6.7.1 (Theorem A.3.4 in [10]). Let X and Y be Banach spaces, U ⊂ X

an open subset of X, and f : U → Y a continuously differentiable map. Suppose that

for x0 ∈ U , D := df(x0) : X → Y is surjective, and has a bounded right inverse

Q : Y → X, and that δ > 0, C > 0 are constants such that ‖Q‖ ≤ C, Bδ(x0) ⊂ U , and

‖x − x0‖ ≤ δ =⇒ ‖df(x) − D‖ ≤
1

2C
.

Suppose that x1 ∈ X satisfies ‖x1 − x0‖ ≤ δ
8 , and ‖f(x1)‖ ≤ δ

4C . Then there exists a

unique x ∈ X such that

f(x) = 0, x − x1 ∈ imQ, and ‖x − x0‖ ≤ δ.

Moreover, ‖x − x1‖ ≤ 2C‖f(x1)‖.

We apply it to our situation as follows. For each R, take a local trivialization of a

small neighborhood of the preglued curve (rR, uR). Identify

X := TrRR× W 1,p(SrR , u∗
RTM)

Y := Lp(SrR , Λ0,1 ⊗JR
u∗

RTM)

f := FS,rR,uR

x0 := (0, 0).
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For δ ≤ 1/(2Cc), the estimate (6.1) says that whenever (|ρ| + ‖ξ‖1,p) ≤ δ then

‖dFS,rR,uR
(ρ, ξ) − DS,rR,uR

‖ ≤ c(|ρ| + ‖ξ‖W 1,p) ≤ cδ ≤ 1/(2C)

For sufficiently large R the constants C and c are independent of R, thus δ can also be

chosen to be independent of R. So now let x1 := (0, 0). Then

‖FS,rR,uR
(0, 0)‖0,p = ‖(∂ − ν)(rR, uR)‖0,p

≤ c ǫ(R).

For sufficiently large R,

‖FS,rR,uR
(0, 0)‖0,p ≤ c ǫ(R)

≤
δ

4C
.

Thus the hypotheses of the Implicit Function Theorem are satisfied, so there exists a

unique (ρR, ξR) ∈ TrRR× W 1,p(SrR , u∗
RTM) such that

FS,rR,uR
(ρR, ξR) = 0

(ρR, ξR) ∈ imQR

|ρR| + ‖ξR‖W 1,p ≤ δ.

Now FS,rR,uR
(ρR, ξR) = 0 if and only if (exprR

ρR, expuR
ξR) ∈ Md,1(x0, . . . , xd). Thus

we can define a continuous gluing map

g : [R0,∞) → Md,1(x0, . . . , xd) (6.5)

R 7→ (exprR
ρR, expuR

ξR)

The implicit function theorem also tells us that

|ρR| + ‖ξR‖W 1,p ≤ 2C‖FS,rR,uR
(0, 0)‖0,p ≤ 2Cǫ(R) → 0

as R → ∞. In particular, the glued curves g(R) converge to the preglued curves

(rR, uR), hence as R → ∞ they Gromov converge to the same limiting broken tuple.

For a gluing length R >> 0, write (rR, uR) for the corresponding preglued curve,

and (r̃R, ũR) for the corresponding glued curve.
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In a local trivialization about the preglued curve (rR, uR), the implicit function

theorem implies that the moduli space of pseudoholomorphic quilts in a neighborhood

of (rR, uR) is modeled on a complement of im QR. In particular, to show that the image

of the gluing map is contained in the 1-dimensional component of the moduli space of

pseudoholomorphic quilted disks, it’s enough to check that im QR has codimension 1.

Since kerDR is a complement to imQR, an equivalent statement is that dim ker DR = 1.

By construction, the right inverse QR has the same image as the approximate right

inverse TR. We will prove that:

Proposition 6.7.2. The images of the gluing maps are contained in the one-dimensional

component of the moduli space, Md,1(x0, . . . , xd)
1

by proving that:

Lemma 6.7.3. For each of the three types of gluing construction, with approximate

right inverse TR,

codim im TR = dim ker DR = 1.

Proof. We prove Lemma 6.7.3 for each type of gluing construction in turn. Since the

constructions behave somewhat differently, the line of proof will be as follows: for Types

1 and 2, we will prove that codim im TR = 1 by finding an explicit description of im TR

and a one-dimensional complement. For Type 3, we will prove the existence of an

isomorphism ker Dv
∼= ker DS,r1,uR

; then, since dim ker Dv = 1, it will follow that

dim ker DS,r1,uR
= 1 too.

Type 1

Suppose that (ρ, ξ) ∈ TrRR
d,1 × W 1,p(SrR , (uR)∗TM). Let β1 + β1,2 + β2 = 1 be a

smooth partition of unity on SrR such that the support of β1 is on the part of SrR that

comes from the truncation of Sr1 on the neck at s = R, the support of β2 is on the part

of SrR that comes from the truncation of Sr2 on the neck at s = R, and the support of

β1,2 is on the subset of the neck of SrR corresponding to R/2 ≤ s ≤ R in Sr1 as well as
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the corresponding piece from Sr2 . For ξ ∈ W 1,p(SrR , (uR)∗TM), it is clear that

β1ξ ∈ W 1,p(Sr1 , (u
R
1 )∗TM),

β2ξ ∈ W 1,p(Sr2 , (u
R
2 )∗TM),

β1,2ξ ∈ W 1,p(Sr1 , (u
R
1 )∗TM) ∩ W 1,p(Sr2 , (u

R
2 )∗TM).

For ρ ∈ TrRR
d,1, we use local charts near the boundary to write ρ = ρg + ρ1 + ρ2,

where ρ1 ∈ Tr1R, ρ2 ∈ Tr2R and ρg ∈ R represents the component in the direction of

the gluing parameter. Thus

(ρ, ξ) = (ρg, 0) + (ρ1, β1ξ) + (0, β1,2ξ) + (ρ2, β2ξ)

and the result follows if we can show that the final three terms on the right hand side

are all in imTR. The cases of (ρ1, β1ξ) and (ρ2, β2ξ) have identical proofs, so we prove

it for the first case.

Consider DS,rR,uR
(ρ1, β1ξ) ∈ Lp(SrR , (uR)∗TM). It is supported on the image of the

truncation Sr1\{s > R} and so it can be identified with image of DS,r1,uR
1
(ρ1, β1ξ). Note

that the operators DS,r,u preserve basepoints on the surface Sr; so that the support of

ξ ∈ W 1,p(Sr, u
∗TM) on Sr is the same as the support of DS,r,u(ρ, ξ) ∈ Lp(Sr, u

∗TM).

Applying this fact we can conclude that the support of DS,rR,uR
(ρ1, β1ξ) is precisely

the support of the cut-off function used in the construction of TR, and therefore

TRDS,rR,uR
(ρ1, β1ξ) = Q1DS,r1,uR

1
(ρ1, β1ξ)

= (ρ1, β1ξ)

where the last equality follows from the standing assumptions that DS,r1,uR
1

is surjective

and has trivial kernel, so that it is an isomorphism; as such its right-inverse Q1 is a

left-inverse too. Hence, (ρ1, β1ξ) ∈ imTR.

For the other piece, consider DS,rR,uR
(0, β1,2ξ). The support of β1,2ξ is on the part

of the neck where all three of the operators DS,rR,uR
, DS,r1,uR

1
and DS,r2,uR

2
coincide,

i.e.,

DS,rR,uR
(0, β1,2ξ) = DS,r1,uR

1
(0, β1,2ξ)

= DS,r2,uR
2
(0, β1,2ξ).
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By assumption both DS,r1,uR
1

and DS,r2,uR
2

are isomorphisms (being surjective with

trivial kernel). Writing η = DS,rR,uR
(0, β1,2ξ), recall that in the construction of TR, one

uses a cut-off function to write η = η1+η2, where the supports of η1 and η2 intersect only

at the truncation line s = R, and then the right inverse Q1 is used on η1 and the right

inverse Q2 is used on η2. We know that Q1η = (0, ξ) and Q2η = (0, ξ). The operator

TR is defined by TRη = Q1η1 + Q2η2. So it is enough to show that Q1η1 = Q2η1. So

suppose for the sake of contradiction that Q1η1 − Q2η1 6= 0. If so, applying DS,r1,uR
1
,

we could write

DS,r1,uR
1
(Q1η1 − Q2η1) = DS,r1,uR

1
Q1η1 − DS,r1,uR

1
Q2η1

= DS,r1,uR
1
Q1η1 − DS,r2,uR

2
Q2η1

= η1 − η1

= 0,

contradicting the assumption that kerDS,r1,uR
1

= 0. Hence, TRη = (0, β1,2ξ). In sum-

mary, we have:

1. If (ρ, ξ) ∈ TrRR
d,1 × W 1,p(SrR , (uR)∗TM) is such that ρ = (0, ρ1, ρ2) ∈ R ×

Tr1R
d−e+,1 × Tr2R

e ∼= TrRR
d,1, then (ρ, ξ) ∈ im TR,

2. If (ρ, 0) ∈ TrRR
d,1 × W 1,p(SrR , (uR)∗TM) is such that ρ = (ρg, 0, 0) ∈ R ×

Tr1R
d−e+,1 × Tr2R

e ∼= TrRR
d,1, then (ρ, 0) /∈ im TR.

Since these elements span TrRR
d,1 × W 1,p(SrR , (uR)∗TM), it follows that

im TR = {(ρ, ξ)
∣∣ρg = 0}. (6.6)

Type 2

Suppose that (ρ, ξ) ∈ TrRR
d,1 × W 1,p(SrR , (uR)∗TM).

Let β0 + β1 + . . . + βk + β0,1 + . . . + β0,k = 1 be a smooth partition of unity on SrR

such that for i = 0, . . . , k, the support of βi is on the part of SrR that comes from the

truncation of Sri on the neck at s = R, and the support of β0,i is on the subset of the
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neck of SrR corresponding to R/2 ≤ s ≤ R in Sr0 as well as the corresponding piece

from Sri . Then for ξ ∈ W 1,p(SrR , (uR)∗TM), it is clear that

β0ξ ∈ W 1,p(Sr0 , (u
R
0 )∗TM),

β1ξ ∈ W 1,p(Sr1 , (u
R
1 )∗TM),

. . .

βkξ ∈ W 1,p(Srk
, (uR

k )∗TM),

β0,1ξ ∈ W 1,p(Sr0 , (u
R
0 )∗TM) ∩ W 1,p(Sr1 , (u

R
1 )∗TM),

. . .

β0,kξ ∈ W 1,p(Sr0 , (u
R
0 )∗TM) ∩ W 1,p(Srk

, (uR
k )∗TM).

For ρ ∈ TrRR
d,1, we use local charts near the boundary to write ρ = ρ0+ρ1+. . .+ρk+ρg,

where for i = 0, . . . , k, ρi ∈ TriR, and ρg ∈ R represents the component of the tangent

vector in the direction of the gluing parameter. Then as in the previous case we can

write

(ρ, ξ) = (ρg, 0) + (ρ0, β0ξ) + (ρ1, β1ξ) + . . . + (ρk, βkξ) + (0, β0,1ξ) + . . . (0, β0,kξ)

and the result follows if all terms except the first on the right hand side of the above

expression are in imTR. The same argument as used for Type 1 proves that all terms on

the right except for (ρg, 0) are in the image of TR, and the result follows. In summary:

1. If (ρ, ξ) ∈ TrRR
d,1×W 1,p(SrR , (uR)∗TM) is such that ρg = 0, then (ρ, ξ) ∈ im TR,

2. If (ρ, 0) ∈ TrRR
d,1×W 1,p(SrR , (uR)∗TM) is such that ρ = ρg, then (ρ, 0) /∈ im TR.

Since these elements span TrRR
d,1 × W 1,p(SrR , (uR)∗TM), it follows that

im TR = {(ρ, ξ)
∣∣ρg = 0}. (6.7)

Type 3

In this case we have glued (r1, u1) ∈ Md,1(x0, . . . , y, . . . , xd)
0 to a Floer trajectory

v ∈ M̃(y, xi)
0. Since the complement of im TR is ker DR, our goal is to show that

the vector space ker DR as the same dimension as ker Dv, which by assumption is 1.
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From this it would follow that the image of the gluing map lies in a one dimensional

component of the moduli space.

To show that the finite dimensional vector spaces ker Dv and ker DR have the

same dimension, it is enough to produce a pair of injective linear maps, Φ : ker Dv −→

ker DR and Ψ : ker DR −→ ker Dv. Write fR for the pregluing map.

Claim 1: Φ := (1 − QRDR)dfR : ker Dv −→ ker DR is injective.

By hypothesis kerDv is one-dimensional, so we know that an explicit basis is {∂sv}.

It suffices therefore to show that for sufficiently large R, there is a constant c > 0 such

that

‖∂sv‖1,p ≤ c‖(1 − QRDR)dfR(∂sv)‖1,p. (6.8)

We prove the estimate by proving two separate inequalities

‖dfR(∂sv)‖1,p,R ≥ c1‖∂sv‖1,p (6.9)

‖DRdfR(∂sv)‖0,p,R ≤ ǫ(R)‖∂sv‖1,p (6.10)

where c1 > 0 and ǫ(R) → 0 as R → ∞. Together these imply (6.8), since the uniform

bound on the right inverse

‖QRξ‖1,p ≤ C‖ξ‖0,p

holds for R sufficiently large, and so

‖(1 − QRDR)dfR(∂sv)‖1,p ≥ ‖dfR(∂sv)‖1,p − ‖QRDRdfR(∂sv)‖1,p

≥ c1‖∂sv‖1,p − C‖DRdfR(∂sv)‖0,p

≥ c1‖∂sv‖1,p − Cǫ(R)‖∂sv‖1,p

≥ c−1‖∂sv‖1,p (6.11)

for some c > 0 for sufficiently small ǫ(R).

To prove (6.9), we write vλ(s, t) := v(s + λ, t). With this notation, ∂λvλ

∣∣
λ=0

= ∂sv.

Thus,

dfR(∂sv)(s, t) =
d

dλ

∣∣∣
λ=0

vλ#Ru1,
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which by construction is supported only on the region s ≥ 3R/2 on the striplike end.

The pre-gluing map on this region is

fR(vλ, u1) = vλ#Ru1(s, t) =





expy(t)(β(−s + 3R
2 )ηλ(s − 2R, t)), s ∈ [3R

2 , 3R
2 + 1]

vλ(s − 2R, t), s ≥ 3R
2 + 1.

and we need to take the derivative with respect to λ. On the region s ≥ 3R/2 + 1 we

have that

dfR(∂sv)(s, t) =
d

dλ

∣∣∣
λ=0

vλ(s − 2R, t)

= (∂sv)(s − 2R, t).

Note that

‖dfR(∂sv)(s, t)‖1,p ≥ ‖dfR(∂sv)(s, t)‖1,p;[3R/2+1,∞)

= ‖(∂sv)(s − 2R, t)‖1,p;[3R/2+1,∞)

= ‖∂sv‖1,p;[−R/2+1,∞).

Because of the exponential convergence of ∂sv, there is a c1 > 0 such that for all

sufficiently large R,

‖∂sv‖1,p;[−R/2+1,∞) ≥ c1‖∂sv‖1,p

which proves (6.9).

To prove (6.10), observe first that by construction, DRdfR(∂sv) is supported only on

the interval s ∈ [3R/2, 3R/2+1]. It follows that the Lp norm of DRdfR(∂sv) is controlled

by the W 1,p norm of dfR(∂sv) on that interval. Introduce the abbreviated notation

βR(s) := β(−s+3R/2) and ηR(s, t) := η(s−2R, t). On the interval s ∈ [3R/2, 3R/2+1],

dfR(∂sv)(s, t) =
d

dλ

∣∣∣
λ=0

expy(t)(βRηλ(s − 2R, t))

=
d

dλ

∣∣∣
λ=0

expy(t)(βR(s)ηR(s + λ, t))

= d expy(t)(βRηR)
d

dλ

∣∣∣
λ=0

(βRηR(s + λ, t))

= βRd expy(t)(βRηR)(∂sη)(s − 2R, t).

The identity

expy(t) η(s − 2R + λ, t) = v(s − 2R + λ),
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implies that

d expy(t)(η(s − 2R, t))(∂sη)(s − 2R, t) = ∂sv(s − 2R).

The linear operator d expy(η) : TyM → Texpy ηM is the identity for η = 0, so is in-

vertible for small η. In particular for sufficiently large R, the exponential convergence

of trajectories means that η(s − 2R, t) is uniformly small for s ∈ [3R/2, 3R/2 + 1].

Therefore on this interval, we can write

dfR(∂sv)(s, t) = βR(s)d expy(t)(βRηR)[d expy(t)(η(s − 2R, t))]−1∂sv(s − 2R).

Thus there is a constant c2 ≥ 0 such that

‖dfR(∂sv)(s, t)‖1,p;[3R/2,3R/2+1] ≤ c2‖∂sv(s − 2R, t)‖1,p;[3R/2,3R/2+1]

= c2‖∂sv(s, t)‖1,p;[−R/2,−R/2+1]

≤ ǫ(R)‖∂sv(s, t)‖1,p

where the last inequality and the term ǫ(R) reflects the fact that the ratio

‖∂sv‖1,p;[−R/2,−R/2+1]/‖∂sv‖1,p

goes to 0 as R → ∞. This proves (6.10), hence we have proved Claim 1.

Now let β : R → [0, 1] be a smooth cut-off function such that β(s) = 0 for s ≤ −1/4

and β(s) = 1 for s ≥ 1/4, and 0 ≤ β̇ ≤ 3. Define a shifted and rescaled cut-off function

βR(s) := β((s − R)/R). Then βR has the properties that βR = 0 for s ≤ 3R/4 and

βR = 1 for s ≥ 5R/4, and 0 ≤ β̇R = β̇/R ≤ 3/R.

Claim 2: Ψ := (1−QuR
1
DuR

1
)(1−βR)×(1−QvRDvR)βR : ker DR −→ ker DuR

1
⊕ker DvR

is injective.

Let ξ ∈ ker DR. Then ξ = (1 − βR)ξ + βRξ. On the support of (1 − βR)ξ, the

linearized operators DR and DuR
1

coincide, so

DuR
1
(1 − βR)ξ = DR(1 − βR)ξ

= −β̇Rξ + (1 − βR)DRξ

= −β̇Rξ.
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Hence

‖DuR
1
(1 − βR)ξ‖0,p ≤ 3/R‖ξ‖0,p.

Similarly on the support of βRξ, the linearized operators DR and DvR coincide, so

DvRβRξ = DRβRξ

= β̇Rξ + βRDRξ

= β̇Rξ,

hence

‖DvRβRξ‖0,p ≤ 3/R‖ξ‖0,p.

Let c1 and c2 be uniform bounds for the right inverses QuR
1

and QvR respectively. Then

we have:

(1 − QuR
1
DuR

1
)(1 − βR) × (1 − QvRDvR)(ξ) = [(1 − βR)ξ + QuR

1
(β̇Rξ), βRξ − QvR(β̇Rξ)]

Combine the identity (1 − βR)ξ + βRξ = ξ with the estimates

‖QuR
1
(β̇Rξ)‖1,p ≤ 3c1/R‖ξ‖0,p

‖QvR(β̇Rξ)‖1,p ≤ 3c2/R‖ξ‖0,p

to get that for R sufficiently large, there is a constant c ≥ 0 such that

‖(1 − QuR
1
DuR

1
)(1 − βR) × (1 − QvRDvR)(ξ)‖1,p ≥ c‖ξ‖0,p.

This proves Claim 2, completing the proof of Lemma 6.7.3.

6.8 Surjectivity of the gluing map

The final step is to prove the surjectivity of the gluing maps near the broken tuples. We

begin by defining a neighborhood Uǫ ⊂ Bd,1 that is to be associated to a broken tuple

of each type and a sufficiently small ǫ > 0. Our goal will be to show that for sufficiently

small ǫ and sufficiently large R, the gluing map associated to the given tuple surjects

onto Md,1(x0, x1, . . . , xd)
1 ∩ Uǫ. We will prove surjectivity separately for the different

types of gluing constructions.
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Type 1

Proposition 6.8.1. Let (r1, u1) ∈ Md−e+1,1(x0, . . . , xi, y, xi+e+1, . . . , xd) and (r2, u2) ∈

Me(y, xi+1, . . . , xi+e) be regular, and let Uǫ be a neighborhood as defined above. Given

δ > 0, there is an ǫ > 0 such that the following holds. If (r, u) ∈ Uǫ∩Md,1(x0, . . . , xd)
1,

then there is a pre-glued curve (rR, uR) and a (ρ, ξ) ∈ TrRR
d,1 × Ω0(SrR , u∗

RTM) such

that exprR
ρ = r, expuR

ξ = u, |ρ| + ‖ξ‖1,p < δ, and (ρ, ξ) ∈ im QR.

Proof. We will prove it by contradiction. Suppose there were a δ > 0, and sequences

ǫν → 0, δν ≤ ǫν → 0, Rν = − log(δν) → ∞, and (rν , uν) ∈ Md,1(x0, . . . , xd)
1, and

r̃1,ν → r1, r̃2,ν → r2 such that rν = r̃1,ν#δν r̃2,ν , with the following properties as ν → ∞:

E(uν) → E(u1)+E(u2), and writing (rRν , uRν ) for the preglued curve constructed with

gluing length Rν ,

inf{|ρ| + ‖ξ‖1,p

∣∣(rν , uν) = (exprRν ρ, expuRν ξ)} ≥ δ. (6.12)

Our goal is to contradict 6.12.

Writing ρ = ρg +ρ1+ρ2 where ρg is the component of ρ in the direction of the gluing

parameter, it follows from the choice of gluing length Rν that ρg = 0. For sufficiently

small ǫν , the condition exprRν ρ = rν determines ρ uniquely, so let us call it ρν . The

convergence of r̃i,ν to ri for i = 1, 2 implies that |ρν | → 0.

By assumption, uν → u1 uniformly on compact subsets of Sr1 and uν → u2 uni-

formly on compact subsets of Sr2 ; moreover since the maps are pseudoholomorphic,

convergence on these compact subsets is uniform in all derivatives. The preglued maps

uRν have the same convergence properties, so for large ν there is a unique section

ξ
ν
∈ Ω0(SrRν , (uRν )∗TM) such that expuRν ξ

ν
= uν . So it is enough to show that

‖ξ
ν
‖1,p < δ for sufficiently large ν, contradicting (6.12). Equivalently, we will show

that the Lp norms of ξ
ν
,∇sξν

and ∇tξν
can be made arbitrarily small by taking ν

sufficiently large.

It follows from the uniform convergence in all derivatives on compact subsets that

on such subsets of Sr1 ∪ Sr2 , the Lp norms of ξ
ν
,∇sξν

and ∇tξν
all go to zero as

ν → ∞. We can choose these compact subsets to be such that their complement is



152

on the striplike ends and neck. Hence, without loss of generality, it suffices to prove

that the Lp norms of ξ
ν
,∇sξν

and ∇tξν
converge to zero along the striplike ends and

neck of the preglued surfaces. The exponential convergence of uν as well as uRν
along

the striplike ends means that the Lp norms of ξν and its first derivatives can be made

arbitrarily small too; so the essential thing to prove is that the Lp norm of ξ
ν

along the

neck of the preglued surface can be made arbitrarily small with sufficiently large ν.

The neck consists of two finite strips of length Rν identified along an end to form a

single strip,

[−Rν , Rν ] × [0, 1] ∼= [0, Rν ] × [0, 1] ∪ [0, Rν ] × [0, 1]/ ∼,

where ∼ is the identification of (Rν , 1 − t) of the first strip with (Rν , t) of the second,

for t ∈ [0, 1].

Let ǫ0 > 0 be given. Fix R > 0 large enough that limν→∞ E(uν ; [R, Rν ] × [0, 1] ∪

[R, Rν ]× [0, 1]/ ∼) < ǫ0. Without loss of generality we can assume that ǫ0 > 0 is small

enough that |∂suν | satisfies, by Proposition B.0.11,

|∂suν | ≤ ce−κ2s

for all ν and for all s ∈ [R, Rν ], for some c, κ > 0.

Since uν satisfies Floer’s inhomogeneous pseudoholomorphic equation (2.2) on this

strip, this implies the inequality

|∂tuν(s, t) − XHt(uν(s, t))| ≤ ce−κ2s. (6.13)

Let φt be the flow of the Hamiltonian vector field XHt , and consider the function

ũν := φ1−t(uν(s, t)). Then

∂tũν = (φ1−t)∗(∂tuν − XHt(uν))

and (6.13) leads to an estimate

dist(ũν(s, 1) − ũν(s, 0)) ≤

∫ 1

0
|∂tũν | dt

≤ c̃e−κ2s.
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Since ũν(s, 1) ∈ L1 and ũν(s, 0) ∈ φ1(L0), this means that both are very close to an

intersection point p ∈ φ1(L0)∩L1. The assumption of transversality of their intersection

implies that there is a constant a > 0 such that

dist(ũν(s, 0), p) ≤ a dist(ũν(s, 0), L1)

≤ a dist(ũν(s, 0), ũν(s, 1))

≤ a c̃ e−κ2s.

Now for every other t,

dist(ũν(s, t), p) ≤ dist(ũν(s, t), ũν(s, 0)) + dist(ũν(s, 0), p)

≤ c̃e−κ2s(t) + a c̃ e−κ2s

≤ b e−κ2s.

In terms of the original function uν , and writing φ1−tx(t) = p, this estimate translates

back into an estimate

dist(uν(s, t), x(t)) ≤ b̃e−κ2s.

By construction, the preglued curves uRν satisfy a similar inequality, and so

dist(uν(s, t), u
Rν (s, t)) ≤ dist(uν(s, t), x(t)) + dist(x(t), uRν (s, t))

≤ C e−κ2s.

This implies

|ξν(s, t)| ≤ C ′ e−κ2s.

Taking the Lp norm on a strip [R, Rν ] × [0, 1] gives

∫ Rν

R

∫ 1

0
|ξν |

p ds dt ≤ C ′

∫ Rν

R
e−pκ2s ds

=
C ′

pκ2
(e−pκ2R − e−pκ2Rν ),

and this can be made arbitrarily small by choosing R large enough. By symmetry the

same estimate holds for the strip [R, Rν ] × [0, 1] on the other side of the neck. Thus,

the Lp norm of ξ on the neck can be made arbitrarily small as ν → ∞.
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Now we consider the Lp norms of ∇sξν and ∇tξν . First note that since uν converges

uniformly in all its derivatives on compact subsets of Sr1 and Sr2 to the limits u1 and

u2, we see that on such compact subsets we have uniform estimates for |∇sξν | → 0 and

|∇tξ| → 0. On the striplike ends of Srν , the exponential convergence of uν and uRν to

the same limits mean that the Lp norms here can be made arbitrarily small. Therefore

what we need to show is that the Lp norms of ∇sξν and ∇tξν on the neck, which varies

in length with ν, can be made arbitrarily small with large ν.

Write exp : TM → M , and consider d exp : T (TM) → TM . At a fixed point

(p, ξ) ∈ TM we can take a tangent vector (ζ, η), ζ ∈ TpM, η ∈ TpM , and write

d exp(p,ξ)(ζ, η) = D1 exp(p,ξ)(ζ) + D2 exp(p,ξ)(η)

where D1 expp,ξ corresponds to varying the basepoint p while keeping all else fixed, and

D2 expp,ξ corresponds to fixing the basepoint p and varying the tangent vector ξ. In

particular D1 expp,0 and D2 exp(p,0) are the identity, so for small values of ξ they are

invertible. So

∂suν = ∂s expRν
u ξν

= (D1 exp)(uRν ,ξν)∂su
Rν + (D2 exp)(uRν ,ξν)(∇sξν)

which implies

(D2 exp)−1
(uRν ,ξν)

(∂suν − (D1 exp)(uRν ,ξν)∂su
Rν ) = ∇sξν . (6.14)

Similarly,

(D2 exp)−1
(uRν ,ξν)

(∂tuν − (D1 exp)(uRν ,ξν)∂tu
Rν ) = ∇tξν . (6.15)

First we analyze (6.14). The operators (D2 exp)−1
(uRν ,ξν)

and (D1 exp)(uRν ,ξν) can be

uniformly bounded for all p ∈ M, ξ ∈ TpM with |ξ| < δ, so by Proposition B.0.11 we

get on each strip [R, Rν ] × [0, 1] on either side of the neck,

|∇sξν | ≤ c1|∂suν | + c2|∂su
Rν |

≤ Ae−κ2s

for some constant A > 0, and therefore
∫ Rν

R

∫ 1

0
|∇sξν |

p ds dt ≤
A

pκ2
(e−pκ2R − e−pκ2Rν )
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which can be made arbitrarily small by choosing R large enough. The same estimate

holds by symmetry on the other side of the neck. From this we conclude that ‖∇sξν‖Lp

can be made arbitrarily small for large ν.

Now we analyze (6.15). We can write

∂tuν = Jt(uν)(∂suν) + XHt(uν)

∂tu
Rν = Jt(u

Rν )(∂su
Rν ) + XHt(u

Rν ) + Eν(s, t)

where Eν(s, t) is an error term that is supported only on the compact interval s ∈

[Rν/2, Rν/2 + 1] of each of the two strips making up the neck, with |Eν(s, t)| ≤ δν → 0

as ν → ∞. Together with (6.15) this yields a pointwise estimate

|∇tξν | = |(D2 exp)−1
(uRν ,ξν)

(∂tuν − (D1 exp)(uRν ,ξν)∂tu
Rν )|

≤ c|∂tuν − (D1 exp)(uRν ,ξν)∂tu
Rν |

≤ c1|∂suν | + c2|∂su
Rν |

+c3|XHt(uν) − (D1 exp)(uRν ,ξν)XHt(u
Rν )|

+c4|Eν(s, t)|

≤ c5(|∂suν | + |∂su
Rν | + dist(uν , u

Rν ) + |Eν(s, t)|).

From this, applying the estimates for |∂suν |, |∂su
Rν | and dist(uν , u

Rν ) and |Eν(s, t)| we

get

∫ Rν

R

∫ 1

0
|∇tξν |

p ds dt ≤ c6

∫ Rν

R

∫ 1

0

(
|∂suν |

p + |∂su
Rν |p

+dist(uν , u
Rν )p + |Eν(s, t)|

p
)

ds dt

≤ c7

∫ Rν

R
e−κ2s ds +

∫ Rν/2

Rν/2−1
δp
ν ds

≤ c8(e
−κ2R − e−κ2Rν ) + c7δ

p
ν ,

and it is clear that this can be made arbitrarily small by taking R large enough.

This provides a contradiction to (6.12). Hence, given δ > 0, there is an ǫ > 0

such that whenever (r, u) ∈ Md,1(x0, . . . , xd)∩Uǫ, there is a gluing length R such that

r = exprR
ρ, u = expuR

ξ, with |ρ| + ‖ξ‖1,p ≤ δ, and with ρg = 0. By (6.6), this implies

that (ρ, ξ) ∈ im QR.
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Surjectivity for Type 2

Proposition 6.8.2. Let (r0, u0), (r1, u1), . . . , (rk, uk) be regular, and define Uǫ as above.

Given δ > 0, there is an ǫ > 0 such that the following holds. If (r, u) ∈ Uǫ ∩

Md,1(x0, . . . , xd)
1, then there is a pre-glued curve (rR, uR) and a (ρ, ξ) ∈ TrRR

d,1 ×

Ω0(SrR , u∗
RTM) such that exprR

ρ = r, expuR
ξ = u, |ρ|+‖ξ‖1,p < δ, and (ρ, ξ) ∈ im QR.

Proof. The proof is so similar to the proof for Type 1 that, rather than repeat all

the calculations, we will only outline the argument. As before we observe that for

sufficiently small ǫ > 0, if distR(r, r0#0{r1, . . . , rk}) < ǫ, the local charts near the

boundary provide a unique way of writing r = r̃0#δr{r̃1, . . . , r̃k} with 0 ≤ δr ≤ ǫ and

with each r̃i in an ǫ-neighborhood of ri. So now suppose that there were a δ > 0 and

sequences ǫν → 0, (rν , uν) ∈ Md,1(x0, . . . , xd)
1, and 0 < δν ≤ ǫν , Rν = − log δν → ∞

such that rν = r̃0,ν#δν{r̃1,ν , . . . , r̃k,ν}, and distM (u(z), ui(z)) ≤ ǫν on all compact

subsets of Sri , but

inf{|ρ| + ‖ξ‖1,p

∣∣rν = expRν
ρ, uν = expuRν

ξ} ≥ δ. (6.16)

Then the convergence would be uniform in all derivatives on those compact subsets,

and we could choose the compact subsets to be large enough that their complements

comprise the striplike ends and the k necks of the glued surfaces Sr0#δν {r1,...,rk} = SrRν
.

However on these striplike ends and these necks, the energy of uν must approach 0,

and the same exponential decay arguments would imply that uν = expuRν
ξν for some

ξν ∈ Ω0(SrRν
, u∗

Rν
TM) with ‖ξν‖1,p → 0 as ν → ∞. Since |ρν | → 0 also, we would

get a contradiction to (6.16). Hence given δ > 0 we could find an ǫ > 0 such that

(r, u) ∈ Md,1(x0, . . . , xd)
1 ∩ Uǫ could be written as r = exprR

ρ, u = expuR
ξ for some

preglued curve (rR, uR), with |ρ| + ‖ξ‖1,p ≤ δ. Moreover, this ρ is such that ρg = 0, so

it follows from (6.7) that (ρ, ξ) ∈ im QR.

Surjectivity for Type 3

Proposition 6.8.3. Let (r0, u0) and v be regular. Given δ > 0, there is an ǫ > 0 such

that the following holds. If (r, u) ∈ Uǫ ∩Md,1(x0, . . . , xd)
1, then (r, u) is in the image

of the gluing map.
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Proof. We will prove this in a slightly different way from the previous cases. We will

argue that it suffices to prove the following:

Claim 1: Given R1 >> 0, and δ > 0, there is an ǫ > 0 such that the following

holds. If (r, u) ∈ Uǫ ∩Md,1(x0, . . . , xd)
1, then there is an R ≥ R1, and a preglued curve

(rR, uR) and a (ρ, ξ) ∈ TrRR
d,1 × Ω0(SrR , u∗

RTM) such that exprR
ρ = r, expuR

ξ = u,

and |ρ| + ‖ξ‖1,p < δ.

To see how Claim 1 implies Proposition 6.8.3, the argument is as follows. From Section

6.7 we know that the image of the gluing map is contained in the one dimensional

component of the moduli space of pseudoholomorphic quilted disks, Md,1(x0, . . . , xd)
1.

By the continuity of g, the image of [R0,∞) is a connected component of this one-

dimensional manifold. The implicit function theorem also tells us that in a local triv-

ialization about a preglued curve (rR, uR), we get a local chart for Md,1(x0, . . . , xd)
1.

This chart contains g(R), so the piece of the manifold Md,1(x0, . . . , xd)
1 covered by the

chart intersects the image of the gluing map. So we want to show that if R is sufficiently

big, and δ is sufficiently small, then the piece of the one-manifold determined by the

local chart about (r0, uR) is contained in the image of the gluing map.

The preglued curves uR are defined on the same domain Sr0 , but by construction

any two of them will differ by a translation in the s direction sufficiently far along the

striplike end Zi. The magnitude of the distance between these translations depends on

distances between points in v, and the size of the difference in gluing lengths. Since v is

non-constant we can chooose δ > 0 small enough that for any R1, there will eventually

be an R′ > R1 such that the preglued curves uR for R ≥ R′ can not be written

uR = expuR1
ξ with ‖ξ‖1,p ≤ δ. In particular, for R ≥ R′ the preglued curves (r0, uR) are

not in a δ-neighborhood of the local trivialization about (r0, uR1
), and similarly (r0, uR1

)

is not in a δ-neighborhood of the local trivialization about (r0, uR). So considering the

gluing map g : [R0,∞) → Md,1(x0, . . . , xd)
1, by making δ > 0 smaller if necessary we

can assume that the hypotheses of the implicit function theorem are satisfied. Then we

can fix an R1 > R0 such that the respective δ-neighborhoods of (r0, uR1
) and (r0, uR0

)
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are disjoint. If we suppose, as in Claim 1, that (r, u) ∈ Md,1(x0, . . . , xd)
1 is such that

r = expr0
ρ, u = expuR

ξ for some R ≥ R1, and |ρ| + ‖ξ‖1,p < δ, then (r, u) is in the

local chart around (r0, uR). But since R ≥ R1 we see that g(R0) is not in this chart,

and we can choose an R2 >> R large enough that g(R2) is also not in that chart, but

by the connectedness of the image of the gluing map this means that the whole chart

is contained in the image of the gluing map.

Proof of Claim 1 For the sake of contradiction suppose that the assertion were false.

Then there would be some δ > 0, and sequences ǫν → 0, Rν = − log ǫν → ∞, τν ≥

2Rν → ∞, and (rν , uν) ∈ Md,1(x0, . . . , xd)
1 such that

• distR(rν , r0) < ǫν ,

• |E(u0) + E(v) − E(uν)| < ǫν ,

• distM (uν(z), u0(z)) < ǫν for all z ∈ SRν
r0

, and

• dist(uν(s + τν , t), v(s, t)) < ǫν for all s ∈ [−Rν , Rν ],

and yet for every ν,

inf{|ρ| + ‖ξ‖1,p

∣∣rν = expr0
(ρ), uν = expuR

(ξ)} ≥ δ. (6.17)

For large ν, the condition expr0
ρ = rν uniquely determines ρ =: ρν , and the convergence

implies that |ρν | → 0. So the quantity |ρ| becomes insignificant in (6.17). We will arrive

at a contradiction by showing that the norms ‖ξ‖1,p in (6.17) must also go to 0 for large

ν. The assumptions show that uν converges to u0 uniformly on compact subsets of Sr0 ,

and since both are pseudoholomorphic the convergence is uniform in all derivatives. On

the striplike end Zi, uν(s + τn, t) converges uniformly on compact subsets of R × [0, 1]

to v(s, t); and since they are pseudoholomorphic curves the convergence is uniform

in all derivatives. Moreover, the preglued curves (r0, uτν
) converge in the same way.

For each ν the energy of uν restricted to the subsets [R(ǫν), τn − R(ǫν)] × [0, 1] and

s ≥ τn + R(ǫν) of the striplike end Zi goes to zero. Thus, the proof reduces to the

same calculations as done for Type 1. That is, the uniform estimates of convergence on

those compact subsets of Sr0 , combined with exponential decay estimates based on the
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vanishing energy of the strips in the complement of those compact subsets, show that for

sufficiently large ν there is a unique section ξν ∈ Ω0(Sr0 , uτν
) for which expuτν

ξν = uν ,

and ‖ξν‖1,p → 0, contradicting 6.17.
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Appendix A

W 1,p embeddings.

Here we collect some relevant W 1,p embedding statements, following Adams [1]. They

are needed to show that for each quilted surface S constructed in Chapter 4, there

exists a constant cp such that

‖f‖L∞(S) ≤ cp(S)‖f‖W 1,p(S)

and that for the families constructed in Chapter 4, there is a uniform bound cp(S) ≤ c0.

Theorem A.0.4. Let S ⊂ R
2 be a compact Lipschitz domain. Let u ∈ C∞(S). Then

there is a constant c, depending only on p, such that

sup
S

|u(s, t)| ≤ c‖u‖
W 1,p

std
.

Here the W 1,p
std norm refers to the standard volume form ds ∧ dt on R

2.

For a general volume form dvolS , we have the following consequence of Theorem

A.0.4.

Corollary A.0.5. Let S ⊂ R
2 be a compact Lipschitz domain, and dvolS = f(s, t)ds∧dt

a volume form on S. Let u ∈ C∞(S). Then there is a constant c = c(p) (in fact it is

the same constant as in Theorem A.0.4) such that

sup
S

|u(s, t)| ≤
c

(fmin)1/p
‖u‖W 1,p(S)

for all z ∈ S, where ‖ · ‖W 1,p(S) denotes the W 1,p norm defined by the volume form

dvolS, as in (5.6), and fmin = min
S

f(s, t).

Proof. Since f(s, t)ds ∧ dt is a volume form, f(s, t) > 0 for all (s, t) ∈ S. Moreover, S

is compact so f achieves a minimum fmin > 0. Hence, using the constant c of Theorem
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A.0.4,

sup
(s,t)∈S

|u(s, t)| ≤ c‖u‖W 1,p

= c




∫∫

S

|u|p + |du|pds ∧ dt




1/p

= c




∫∫

S

|u|p + |du|p
f(s, t)

f(s, t)
ds ∧ dt




1/p

≤ c




∫∫

S

|u|p + |du|p
f(s, t)

fmin
ds ∧ dt




1/p

=
c

fmin




∫∫

S

|u|p + |du|pf(s, t)ds ∧ dt




1/p

=
c

fmin
‖u‖W 1,p(S).

A similar result holds for unbounded domains R
2 whose geometry satisfies a cone

condition:

Definition A domain Ω ⊂ R
2 satisfies the cone condition if there is a finite cone

C = C(rc, θc) such that each x ∈ Ω is the vertex of a finite cone Cx contained in Ω and

congruent to C.

Theorem A.0.6. Let Ω ⊂ R
2. Suppose that Ω satisfies the cone condition for some

finite cone C = C(rc, θc), and let p > 2. Then there is a constant c = c(rc, θc, p) > 0

such that for every f ∈ C∞(S) ∩ W 1,p(Ω), and every x ∈ Ω,

|f(x)| ≤ c‖f‖W 1,p .

The theorem relies on the following Lemma.

Lemma A.0.7.

1

vol(C)

∫∫

Cx(rc,θc)

|u(y) − u(x)|dvoly ≤
1

θc

∫∫

Cx(rc,θc)

|Du(y)|

|x − y|
dvoly
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where vol(C) = 1
2θcr

2
c is the area of the cone, and dvoly is the standard volume form

on R
2, with the subscript y to indicate integration with respect to y ∈ Cx(rc, θc).

Proof. Without loss of generality we can chose polar coordinates on R
2 such that

Cx(rc, θc) = {x + reiθ|0 ≤ r ≤ rc, 0 ≤ θ ≤ θc}.

Then we have, for any 0 ≤ θ ≤ θc, and 0 ≤ s ≤ rc,

|u(x + seiθ) − u(x)| = |

s∫

0

d

dt
(u(x + teiθ)) dt |

= |

s∫

0

d

dt
(u(x + teiθ)) dt |

≤

s∫

0

|Du(x + teiθ)| dt.

Integrating both sides with respect to θ in the cone C gives

θc∫

θ=0

|u(x + seiθ) − u(x)|dθ ≤

θc∫

θ=0

s∫

t=0

|Du(x + teiθ)| dt dθ

=

s∫

t=0

θc∫

θ=0

|Du(x + teiθ)|

t
t dt dθ

(putting y = x + teiθ) =

∫∫

Cx(s,θc)

|Du(y)|

|x − y|
dvoly

≤

∫∫

Cx(rc,θc)

|Du(y)|

|x − y|
dvoly.

Multiplying both sides by s and integrating over 0 ≤ s ≤ rc gives the inequality

∫∫

Cx(rc,θc)

|u(y) − u(x)| dvoly ≤

(∫ r

s=0
s ds

) ∫∫

Cx(rc,θc)

|Du(y)|

|x − y|
dvoly

=
r2
c

2

∫∫

Cx(rc,θc)

|Du(y)|

|x − y|
dvoly.

Dividing both sides by vol(C) = 1
2θcr

2 gives

1

vol(C)

∫∫

Cx(rc,θc)

|u(y) − u(x)|dvoly ≤
1

θc

∫∫

Cx(rc,θc)

|Du(y)|

|x − y|
dvoly.
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Proof of Theorem. Fix x ∈ Ω; we now write Cx for the cone. Then

|u(x)| =
1

vol(C)

∫∫

Cx

|u(x)|dvoly

≤
1

vol(C)

∫∫

Cx

|u(y) − u(x)|dvoly +
1

vol(C)

∫∫

Cx

|u(y)|dvoly

by Lemma ≤
1

θc

∫∫

Cx

|Du(y)|

|x − y|
dvoly +

1

vol(C)

∫∫

Cx

|u(y)|dvoly

Hölder’s inequality ≤
1

θc




∫∫

Cx

|Du(y)|pdvoly




1/p 


∫∫

Cx

1

|x − y|q
dvoly




1/q

+
1

vol(C)




∫∫

Cx

|u(y)|pdvoly




1/p 


∫∫

Cx

dvoly




1/q

≤
1

θc
‖u‖W 1,p(Ω)




θc∫

0

dθ

rc∫

t=0

t1−q dt




1/q

+ vol(C)1/q−1‖u‖W 1,p(Ω)

= (θ1/q−1
c

(
r2−q
c

2 − q

)1/q

+ vol(C)1/q−1)‖u‖W 1,p(Ω)

where q = p/(p − 1) = 1 + 1/(p − 1) < 2 since p > 2.

Theorem A.0.8. Let S = S1 ∪ . . .∪Sl be a surface defined by a union of open sets Si,

such that each Si is one of the following types:

1. The closure of Si is diffeomorphic to a compact Lipschitz domain S̃i ⊂ R
2.

2. The closure of Si is diffeomorphic to a domain S̃i ⊂ R
2 that satisfies the cone

condition, for some cone Ci = (ri, θi), and the volume form on S restricted to Si

is the pull-back of the standard volume form on R2.

Then there is a constant c, depending on p, the cones in the cone condition, and the

volume form dvolS restricted to the Si’s of type (a), such that

sup
S

|u| ≤ c‖u‖W 1,p(S)

for all u ∈ C∞(S) ∩ W 1,p(S).
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Proof. Let {ρi} be a partition of unity subordinate to the cover S1∪ . . .∪Sl of S. Then

u =
l∑

i=1
ρiu, and each ρiu ∈ C∞(Si)∩W 1,p(Si). By Corollary A.0.5 and Theorem A.0.6,

there is a constant ci which depends on p and, in the case of the subsets of type (a),

the volume form dvolS restricted to those components, such that

sup
S

|ρiu| = sup
Si

|ρiu| ≤ ci‖ρiu‖W 1,p(Si) = ci‖ρiu‖W 1,p(S) ≤ ci‖u‖W 1,p(S).

Hence,

sup
S

|u| = sup
S

|
l∑

i=1

ρiu|

≤ sup
S

l∑

i=1

|ρiu|

≤
l∑

i=1

sup
S

|ρiu|

≤

l∑

i=1

ci‖u‖W 1,p(S)

=

(
l∑

i=1

ci

)
‖u‖W 1,p(S)

= c‖u‖W 1,p(S).
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Appendix B

Exponential decay

Results on exponential decay for Floer trajectories with small energy follow from two

things: a convexity estimate for the energy density of a trajectories in a sufficiently

small neighborhood of a generalized intersection point, and a mean-value inequality

that converts L2 energy density estimates to pointwise estimates. The results we collect

here are based on the convexity estimates in [13], and mean-value inequality in [18].

Without loss of generality, we only need to consider solutions to

∂su + Jt∂tu = 0, (B.1)

u(s, 0) ⊂ L0, u(s, 1) ⊂ L1,

where L0 and L1 are transversely intersecting Lagrangians. This is because a solution

of the inhomogeneous equation,

∂su + Jt(∂tu − XHt(u)) = 0 (B.2)

u(s, 0) ⊂ L0, u(s, 1) ⊂ L1,

can be translated into a solution of type (B.1) by setting ũ(s, t) = φ1−t(u(s, t)), where

φt is the time t flow of the Hamiltonian vector field XHt , and J̃t := (φ−1
1−t)

∗Jt, which

satisfies

∂sũ + J̃t∂tũ = 0,

ũ(s, 0) ⊂ φ1(L0), ũ(s, 1) ⊂ φ0(L1) = L1,

and by assumption the Hamiltonian perturbation is such that φ1(L0) intersects L1

transversely.

Consider a solution u : I × [0, 1] → M of (B.1) where I = [−T, T ], [T,∞) or

(−∞,−T ] for some T > 0. We assume that I is fixed. The energy density of u on
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this strip is defined to be

e(s, t) := ω(∂su(s, t), Jt∂su(s, t)) = ‖∂su(s, t)‖2
Jt

= ‖∂tu(s, t)‖2
Jt

(B.3)

By [18, Lemma A.1], the energy density satisfies inequalities

△e ≤ ae2

∂e

∂ν

∣∣
H

≤ be3/2,

where a ≥ 0 and b ≥ 0 depend only on the data M, ω, J and Lagrangians L0, L1. Then

by Theorem 1.3 of [18], we can choose δ to be small enough that there is a mean-value

inequality

|e(s, t)| ≤
C

r2

∫

Dr(s,t)
e(s, t)ds dt (B.4)

where Dr(s, t) ⊂ I × [0, 1] is the partial disk of radius r > 0 centered at (s, t). Fix

r = 1
2 , so that each partial disk is at most the intersection of a disk with a half-plane.

(B.4) implies

|e(s, t)| ≤ C ′

∫

Dr(s,t)
e(s, t)ds dt

≤ C ′E(u)

so if δ > 0 is chosen to be small enough, we have a uniform bound

‖∂tu‖
2
Jt

= ‖∂su‖
2
Jt

≤ C ′δ, (B.5)

at least for points (s, t) where s is a distance at least 1/2 from the boundary of the

interval I. In particular, for a fixed value of s, the path γs : [0, 1] → M defined by

γs(t) := u(s, t) satisfies

distM (γs(0), γs(1)) ≤ C1

∫ 1

0
‖γ̇s‖Jt dt

≤ C1(

∫ 1

0
‖∂tu‖

2
Jt

dt)1/2

≤ C1(C
′δ)1/2. (B.6)

Thus if δ > 0 is small, each path γs lies entirely in a small neighborhood of an inter-

section point of L0 and L1. By the transversality of the intersection L0 ∩ L1, and the
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compactness of M , intersection points are isolated in M so if δ is small enough, all

paths γs are close to the same intersection point p ∈ L0 ∩ L1 for all s ∈ I1/2 where by

I1/2 we mean either [−T + 1/2, T − 1/2], [T + 1/2,∞) or (−∞,−T − 1/2].

Define f : I1/2 → R by

f(s) =
1

2

∫ 1

0
‖∂tu‖

2
Jt

dt. (B.7)

It follows from [13] that given an intersection point p ∈ L0∩L1, there is a neighborhood

U of p such that the the function f(s) satisfies a convexity estimate

f̈(s) ≥ κ2f(s) (B.8)

for some κ > 0. Therefore, choose δ small enough that all paths γs are contained in

such a neighborhood. Combining this convexity estimate with the mean value inequality

again, we can prove the following standard exponential decay results for strips.

Proposition B.0.9. Let u : [0,∞) × [0, 1] −→ M be a solution of (B.1), such that

E(u) < ∞. Then there exist constants κ > 0 and A > 0 such that

|∂su(s, t)| ≤ A e−κs. (B.9)

Proof. We can safely ignore a compact subset [0, T ] × [0, 1] of the strip, which can

be bounded by some fixed constant. So choosing sufficiently large T we can assume

without loss of generality assume that the strip is of the form [T,∞)× [0, 1], the energy

of u restricted to this strip is less than δ for which the convexity estimate (B.8) holds.

Note that the fact that E(u) < ∞ implies that ∂su → 0 as s → ∞, so in particular

f(s) = ‖∂su‖
2
Jt

→ 0 as s → ∞. Then for s ≥ T , we have that

f̈(s) ≥ κ2f(s).

This convexity estimate on f(s) implies (explained, for instance, in [13]) an inequality

f(s) ≤ ce−κs for some c > 0, i.e.,

f(s) =

∫ 1

0
‖∂su(s, t)‖2

Jt
dt ≤ ce−κs.
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By the mean-value inequality (B.4) applied to disks of radius 1/2 we get

‖∂su‖
2
Jt

≤ C

∫

D1/2(s,t)
‖∂su‖

2
Jt

ds dt

≤ C

∫ s+1/2

s−1/2
f(s) ds

≤ Cce−κ(s−1/2)

= Ae−κs.

Proposition B.0.10. There is a δ > 0 so that the following holds. For any solution

v : [−ρ, ρ] × [0, 1] → M of (B.1) with E(v) < δ, there is a κ > 0 such that

E(v; [−ρ + T, ρ − T ] × [0, 1]) ≤ e−κT E(v) (B.10)

for all 1 ≤ T ≤ ρ/2.

Proof. Take δ to small enough that E(v) < δ implies the a priori estimate (B.5) for all

−ρ + 1 ≤ s ≤ ρ − 1, as well as the convexity estimate (B.8). Let us write

E(T ) := E(v; [−ρ + T, ρ − T ] × [0, 1]).

Then in terms of f , we have

E(T ) =

∫ ρ−T

−ρ+T
f(s)ds

is a monotone decreasing function of T . Taking the derivative with respect to T ,

E′(T ) = −f(ρ − T ) − f(−ρ + T ).

So

E′′(T ) = ḟ(ρ − T ) − ḟ(−ρ + T )

=

∫ ρ−T

−ρ+T
f̈(s)ds

≥ △2

∫ ρ−T

−ρ+T
f(s)ds

= κ2E(T ).
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Thus e−κT (E′(T ) + κE(T )) is monotone increasing. An inequality E′(T ) + κE(T ) > 0

would imply that

e−κT (E′(T ) + κE(T )) > α > 0,

so that

E′(T ) + κE(T ) > eκT α

=⇒ (eκT E(T ))′ > e2κT α

which would imply that E(T ) grows exponentially, which is impossible since by con-

struction E(T ) decreases with T . Hence

E′(T ) + κE(T ) ≤ 0,

so eκT E(T ) is monotone decreasing, and

eκT E(T ) ≤ E(0) = E(v)

=⇒ E(T ) ≤ e−κT E(v).

Applying the mean-value inequality we get the following corollary, which describes

the behavior of long pseudo-holomorphic strips with small energy.

Corollary B.0.11. There is a δ > 0 so that the following holds. For any solution

v : [−ρ, ρ] × [0, 1] → M of (B.1) with E(v) < δ, there is a κ > 0 and A > 0 which

depend only on M, ω, Jt, L0 and L1, such that

‖∂sv‖
2
Jt

≤ Aδe−κ|s| (B.11)

for all s ∈ [−ρ + 1, ρ − 1].

Proof. This is just an application of the mean-value inequality to the previous lemma.
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By (B.4) using r = 1/2 we have, for each s ∈ [−ρ + 1/2, ρ − 1/2],

‖∂su(s, t)‖2
Jt

≤ 4C

∫

D1/2(s,t)
‖∂su‖

2
Jt

ds dt

≤ 4C

∫ |s|−1/2

−|s|+1/2

∫ 1

0
‖∂su‖

2
Jt

ds dt

= 4CE(|s| − 1/2)

≤ 4CE(v)e−κ(|s|−1/2)

≤ 4Cδeκ/2e−κ|s|

=: Aδe−κ|s|.
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