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ABSTRACT OF THE THESIS

Combining Speech Recognition and Speaker Verification

by Aanchan K Mohan

Thesis Director: Professor Lawrence R. Rabiner

Traditional fixed pass-phrase or text-dependent speaker verification systems are vul-

nerable to replay or spoofing attacks. Random pass-phrase generation, speech verifica-

tion and text-independent speaker verification could be combined to create a composite

speaker verification system, robust to this spoofing problem. This thesis deals with com-

bining speech verification with text-independent speaker verification for this purpose.

A method to perform robust, automatic speech verification using a speech recognizer in

a forced alignment mode is proposed and evaluated. A text-independent speaker verifi-

cation system was developed in MATLAB for training and evaluating Gaussian mixture

density-based, target speaker and background speaker models. Equal-error rate is the

performance metric used in all speaker verification evaluations. To speed up background

model training, a simple technique based on sub-sampling or decimating speech frames

is presented. Evaluation of two different feature extraction implementations along with

an evaluation of the impact on performance of different configurations of the speech

features is also carried out. Further, to mitigate problems with reduced training data

and to improve performance, Bayesian adaptation of background speaker models with

target speaker training data is used to create target speaker models. The performance

of these models is evaluated and compared with conventional target speaker models.

The impact of the length of test-utterances, variance limiting and the use of training

ii



data from multiple recording sessions has also been investigated.
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Chapter 1

Introduction

1.1 Problem Definition

Speaker recognition is a term that is collectively used to describe the task of either

automatically identifying a speaker from a sample of speech provided by the speaker or

verifying an identity claim made by a speaker against a sample of speech provided by

the speaker. The former task is called speaker identification and the latter task is called

speaker verification. This thesis concerns itself with the task of speaker verification in

the context of its application in voice-based authentication.

A speaker verification system is “trained” to “learn” certain characteristics that are

unique to a speaker’s voice from a sample(or samples) of speech that is(are) specifi-

cally and willingly provided by the speaker during a formal enrollment session. The

characterization of the speaker’s voice that the system obtains through the process of

“training” is commonly referred to as a speaker model. Individuals who willingly enroll

themselves into the speaker verification system are called customers. Voice-based au-

thentication systems typically employ two-factor authentication by combining the use

of speaker verification with some sort of personal identification such as a PIN, which

allows a user to make an identity claim. A customer’s speaker model is then directly as-

sociated with this form of personal identification forming a one-to-one mapping between

the two.

Once enrolled, a user, would want to subsequently access certain services or infor-

mation that is protected by a voice-based authentication system. For this the user

must obtain the appropriate authorization from the system. This happens during an

authorization session. Initially, the user makes an identity claim using the said piece

of personal information. Further, the user is required to say a pass-phrase, into the
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speaker verification system, thereby providing a speech sample. The speech sample

thus obtained is then tested by the verification system against the identity claim made.

Depending on the kind of authentication system, the content and the nature of the

pass-phrase could remain fixed, requiring it to be repeated during each authentication

session by the user. Or, the user may be prompted to say a different pass-phrase

during each authentication session. Fixed pass-phrase systems are thus those systems in

which the text of the speech samples provided during the enrollment and authentication

sessions is identical. Such systems are commonly referred to as text-dependent speaker

verification systems. There exists a second category of speaker verification systems in

which there is absolutely no constraint placed on the text of the pass-phrase. Thus

the text of the speech samples, provided during the enrollment and authentication

sessions are independent of each other. Systems in this second category are called

text-independent speaker verification systems.

Any authentication system may suffer attacks from malicious individuals who in-

tentionally want to break through a security system. Such individuals are commonly

referred to as impostors. Impostors are people who tend to pose as valid customers. A

possible attack that voice-based authentication systems can suffer is what is known as

a replay or a spoofing attack. In such an attack, during an authorization session, an

impostor first makes an identity claim by posing to be a valid customer. The impostor

then replays pre-recorded speech actually spoken by the customer into the speaker veri-

fication system in order to gain access through the system. Such an attack is especially

dangerous in a fixed pass-phrase voice authentication system where the pass-phrase

does not change from one authentication session to the next.

Fixed pass-phrase or text-dependent systems provide good authentication perfor-

mance and have been commercially deployed. As stated in [5], one of their major draw-

backs though is that they are vulnerable to replay attacks, such as the one described

previously. Thus there is certainly a need for voice-based authentication systems that

are robust to such attacks. Such robustness could be obtained by the use of a veri-

fication system that uses randomized pass-phrases. Such a system could be realized
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using text-independent rather than text-dependent processing provided there is an in-

dependent process for verifying the text of the input speech sample. This thesis thus

concerns itself with the development of a text-independent speaker verification system

which includes spoken text verification.

The idea around developing such a text-independent system is that during the au-

thentication session instead of using a fixed pass-phrase, the user would be prompted

to say a short 5-7 word unique system-specified pass-phrase after making an identity

claim. The nature of this pass-phrase, in terms of its text, should then be unique to

each authentication session or in other words it should be truly random. In such a

paradigm, after an identity claim is made and a speech sample is provided by saying

a randomly generated system-specified pass-phrase, the authentication system would

then need to,

1. verify that the text of the speech sample provided by the user matches the text

of the system specified pass-phrase. This is called speech verification. The goal

of performing speech verification is to essentially overcome any spoofing attempt

that uses pre-recorded speech.

2. verify the speaker’s identity claim by “testing” the speech sample against the

claimed customer’s speaker model, once the text of the speech sample matches

the text of the pass-phrase. Since the nature of the text is not known during the

process of enrollment a text-independent speaker verification system needs to be

used.

Thus the main goal of this thesis is naturally subdivided into separately studying

the best way to perform both of the above tasks, so that they can be combined to

provide a novel and a more robust method for performing speaker verification.

1.2 A Description of the Dynamic Pass-phrase Voice Security System

Figure 1.1 gives an overall view of a voice authentication system, whose need was

motivated in Section 1.1. This system is called a Dynamic Pass-phrase Verification

System. The figure shows both the enrollment and the authentication phases.
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Figure 1.1: The Dynamic Pass-phrase Verification System

In the enrollment phase legitimate users or customers provide speech samples for

the purpose of “training” the system. The content of these training samples could

be read text. In the figure we refer to the text used in the enrollment session as

enrollment text. The “training” speech for each customer is acquired using a speech

acquisition device, which could be a microphone or a telephone handset. This acquired

speech is then passed through the feature extraction module to extract features which

provide a parsimonious representation of the speech. Mel-Frequency Cepstral Coef-

ficients(MFCCs) [6] and their derivative approximations are used as features in this

system. These features are then used to “train” a speaker dependent model which aims

at statistically characterizing the enrolling customer’s voice. A second set of models

called Background Models[7], intended to statistically characterize the global set of

speakers is also created. The training of these Background Models is done by pooling

speech from a large number of speakers not including the customers. The customer

models and background models use statistical representations called Gaussian mixture

probability density functions [7, 8, 9] to obtain a text-independent characterization of

the statistical properties of voices of specific customers in the customer speaker models

and a global representation in the background model.

During the authentication phase a user first makes an identity claim by using a PIN
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or an account number. The identity claimant is then prompted to utter a randomly

generated pass-phrase of length 5-7 words, generated by the pass-phrase generation

module. After acquiring this speech utterance, the system then extracts the sets of

MFCC feature vectors. Using these extracted features, first the speech verification

module tries to verify that the claimant did say the required system-specified pass-

phrase. If this verification is positive then the speaker verification module compares the

features extracted from the voice sample against the identity claimant’s GMM(Gaussian

mixture speaker model) and his/her Background GMM model to obtain a confidence

score. Depending on whether this score is above or below a system and user specific

threshold, the verification module either accepts or rejects the identity claim. Two types

of errors can occur. The system might falsely reject the identity claim of a legitimate

customer, or the system might falsely accept the speaker identity claim of an impostor.

For the purpose of evaluating performance the threshold score is set experimentally for

each customer to equalize these two error rates. We call this threshold the equal-error

rate threshold.

1.3 Real World Applications

The applications of voice-based authentication systems, such as the one that forms the

subject of study of this thesis, are numerous and varied. The list below, discusses some

of the possible application areas:

 Access Control: To control access to physical facilities which need a high level of

security and restricted access. For additional security, voice-based authentication

systems could also be used in combination with other biometric personal identi-

fication systems such as fingerprints and retinal scans. Additional applications

could include access to personal computers, access to computer networks or per-

sonal access to ones own car, or allowing restricted access to certain documents

available electronically(document authorization).

 Transaction Authentication: In the financial services industry, robust voice-based

authentication is an attractive option to carry out sensitive transactions over
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the telephone or other communication networks. Telephone banking is a good

example of such an application of this technology.
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Chapter 2

Speech Verification

2.1 What is Speech Verification?

Section 1.1 suggested a way to combat spoofing of current text-dependent voice au-

thentication systems, and section 1.2 described the outline of the Dynamic Pass-phrase

System which aims at combatting this problem of spoofing through the use of a random

pass-phrase generation module.

The idea is that an identity claimant I who claims to be customer S, is prompted by

the system to say a random pass-phrase with text P. It is assumed that I will say the

pass-phrase, by providing a voice sample X within a certain system specified time-out

period. To ascertain that I did say the required pass-phrase, the linguistic content

of the speech signal X must match the text P . This is basically the goal of speech

verification. If I tries to spoof the system with pre-recorded speech then there is a

very high likelihood that the linguistic content of X will not match P. Such a scenario

calls for a speech verification module which can reliably and accurately overcome this

spoofing attempt by I on the basis of the mismatching text of the pass-phrases. If

the attempt is overcome at this stage then there is no need to go on to the speaker

verification stage where the identity claim of I being S needs to be verified on the

basis of the voice utterance X. The speech verification and the random pass-phrase

generation module essentially stand guard to reduce the chances of malicious impostors

exploiting the vulnerabilities in the speaker verification system.
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2.2 The proposed method for Speech Verification

In this thesis we propose a new method for speech verification using a speech recognition

engine in a forced alignment mode.

2.2.1 Forced Alignment Speech Recognition

A speech recognizer is a search engine which tries to recognize an incoming speech

signal and convert it into text. It does so by the use of a set of acoustic models for the

phonemes (the basic language sounds), a language model which describes the syntax

of valid sentences and a dictionary of words that it will encounter in the context of

the application for which the recognizer is used. This set of models is also known as a

speech recognizer’s knowledge base.

An acoustic model consists of a set of statistical representations of the basic sounds

(phonemes) of speech that make up each word. A language model on the other hand

determines the probabilities of sequences of words occurring in a language. Given a

speech utterance X, a speech recognizer, using its existing knowledge base tries to find

the most probable word string W
′

that best fits the given utterance in a probabilistic

sense, an acoustic sense and a linguistic sense. To better understand this process, we

review the probabilistic formulation of the speech recognition problem.

First, let X = {xn}
T
n=1 represent a set of speech feature vectors and W = {wi}

N
i=1

represent a string of words of length N which come from a vocabulary V . Then, if

P (W |X) is used to denote the probability that the words W were spoken, given that

the evidence X was observed, the recognizer attempts to find the word string W
′

the

maximizes the probability of the word string given the set of speech feature vectors,

i.e.,

W
′

= arg max
W

P (W |X) (2.1)

With good quality spoken input and a good recognizer, the word string W
′

that provides

the highest probability score is the actual spoken word string or a close approximation.

A speech recognizer tries to maximize this probability P (W |X), while performing its
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Figure 2.1: The Speech Recognition Process (After The Institute of Signal and Infor-
mation Processing [1].)

search for the most probable word string W
′

. Based on Bayes’ rule the probability to

be maximized can be simplified to the form,

P (W
′

) = max
W

P (X|W )P (W ) (2.2)

where P (W ) is called the likelihood of the word string W and P (X|W ) is called the

likelihood of the observation X for a particular word string W . P (W ) forms the language

model component of the total likelihood score and P (X|W ) forms the acoustic model

component of the total likelihood score. For simplicity we denote the acoustic model

log-likelihood score by A and the language model log-likelihood score by L. In the

log-domain then the total log-likelihood score is obtained by adding A and L. The

total log-likelihood score is thus a measure which helps one quantify how good a fit the

recognition hypothesis W is for the given speech utterance X. Fig. 2.1 illustrates the

speech recognition process.

Acoustic models of phonemes are obtained by a process of “training”, using a

database of recordings of speech utterances along with their corresponding text tran-

scriptions. This training process usually bootstraps itself from an initial set of acoustic

models(often obtained from a completely different context) and iteratively improves

over multiple passes with the training data. Essentially the training process iteratively

determines the best alignment of the training speech with the set of phonemes corre-

sponding to the spoken inputs, and then builds up models for each of the phonemes

based on the current alignments with the training speech.
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Figure 2.2: The Forced Alignment Process, (After The Institute of Signal and Informa-
tion Processing [1].)

Figure 2.2 illustrates the forced alignment process and shows how it is different from

the process of (unconstrained)speech recognition in Figure 2.1. In contrast to the pro-

cess of speech recognition, where the recognizer has a language model and a dictionary

to work with, in the forced alignment process the speech recognizer is given a speech

utterance X and its exact transcription. As mentioned in [1], using the set of acoustic

models for the phonemes of the language, the system then aligns the given transcription

with the speech utterance X , identifying which time segments in the speech utterance

correspond to individual words in the transcription. During the process of forced align-

ment, the recognition engine also provides a probabilistic score, called the acoustic

likelihood score(since only the acoustic model is used during the forced alignment pro-

cess), for each word in the transcription, and a total acoustic likelihood score for all the

words in the transcription(i.e., the spoken sentence). Henceforth we shall refer to the

term acoustic score to mean the total acoustic score of an utterance which we denote by

Â. This acoustic score can help in quantifying how well a given transcription matches a

recorded speech utterance X or vice-versa. We utilize this system capability in our use

of a speech recognizer in the forced alignment mode as a means of speech verification.
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2.2.2 Proposed method for Speech Verification

As briefly mentioned in Section 2.2.1 during the general recognition process the speech

recognizer uses a trained acoustic model and a language model. Therefore for an un-

known speech utterance X the speech recognizer searches for the optimum string of

words, i.e., the string that is valid within the constraints of the vocabulary and lan-

guage model of the speech recognizer, and that has the highest log-likelihood matching

score among all valid sentences. We call this recognized string the best unconstrained

string. On the other hand as mentioned in section 2.2.1, during the forced alignment

process the speech recognizer performs a highly constrained search using only the acous-

tic models that exactly match the given input string of words.

In the context of the Dynamic Pass-phrase System that was talked about in Sec-

tion 1.2, we assume that the pass-phrase generation module generates a pass-phrase

with text P . Once the prompted identity claimant I says the pass-phrase with text P ,

by providing a speech utterance X, the speech recognizer first operates in an uncon-

strained mode to recognize the linguistic content of X resulting in a word string W
′

and acoustic score A
′

and language model score L
′

. The recognition engine is then run

in a forced alignment mode, thereby optimally aligning the text of the pass-phrase P

with the speech utterance X to give an acoustic score Â. We would normally expect

the unconstrained acoustic score A
′

, for the best(recognized) word sequence, W
′

, to

almost always be identical to the recognition score for the constrained input, Â with

the actual spoken word sequence, W . The only cases when these acoustic scores would

differ are,

1. The recognizer makes an unconstrained recognition error whereby a different score

W
′′

gets a better acoustic score than the true sentence W
′

. Even, when this type

of recognition error occurs, the acoustic scores for W
′

and W
′′

are generally almost

identical and thus the difference between A
′

and A
′′

is small.

2. The spoken sentence doesn’t match the one requested by the pass-phrase system

in which case the difference between A
′

and Â is relatively large and is a very

strong indication that an incorrect sentence was spoken.
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In summary, if I spoke the text of the pass-phrase P correctly then the difference

between A
′

and Â should be close to zero. If, on the other hand I turns out to be an

impostor trying to spoof the system and speaks a different utterance, then the difference

between A and Â should be very large. In chapter 7, we verify experimentally that the

difference score between A
′

and Â can be used as a reliable, robust and accurate metric

to verify (or reject) the incoming speech sample X.
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Chapter 3

Speaker Verification:An Overview

3.1 The Bases for Speaker Recognition

Humans use several perceptual cues to distinguish between speakers. There are high

level perceptual cues such as accent, diction, idiolect, pronunciation and various speaker

idiosyncrasies. Middle level perceptual cues include prosodics, speech rhythm, intona-

tion and volume modulation. Low-level cues such as the acoustic properties of speech,

which are due to the spectral differences associated with the size and shape of an in-

dividual’s speech articulators, tend to capture the physical traits of each individual.

Though there are no exclusive speaker identity cues, low-level acoustic cues are most

commonly used in automatic speaker recognition systems because they are the easi-

est to extract. To understand how these low-level acoustic cues could be captured,

it is important to understand the physiological processes that underlie human speech

production.

The human speech apparatus, illustrated in Figure 3.1, consists of the vocal tract,

Figure 3.1: The Human Vocal Tract. (After Cummins [2].)
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the nasal tract, the vocal cords or the glottis and the sub-glottal system which consists of

the lungs and the diaphragm. The vocal tract, begins at the glottis, includes the mouth

or the oral cavity and ends at the lips. The nasal tract, extends from the velum(or the

soft palate) to the nostrils. The nasal tract acoustically couples to the vocal tract when

the velum is lowered. The vocal cords, while interacting with the sub-glottal system,

periodically contract and relax to release puffs of air, into the vocal tract. As mentioned

in [10], the configuration of the vocal tract(which can be thought of as a configuration

of concatenated tubes) then imposes its resonance structure upon this excitation(the

periodic puffs of air) so as to produce the different sounds of voiced speech. Unvoiced

speech is produced either due to the rushing of air though a constriction in the vocal

tract or due to a sudden release of air after a complete closure of a part of the vocal

tract. The process of human speech production is illustrated in Fig. 3.2(a).

For voiced sounds, the resonances imposed upon the voiced excitation by the vocal

tract appear as relative peaks in the speech spectrum. These spectral peaks associated

with the periodic resonances are referred to as speech formants. Further, as stated in

[11], the locations in frequency, and to a lesser degree the shapes of the resonances

help to distinguish one speech sound from another. This is illustrated in Fig. 3.3. The

temporal evolution of various vocal tract configurations, for the production of various

speech sounds, occurs rather slowly as time progresses. Vocal tract configurations can

thus be modeled by a slowly time-varying linear filter which captures the shape and lo-

cation of speech formants at various instances in time. Fig. 3.2(b) illustrates the human

vocal tract as a source filter model. Excitation for voiced sounds is produced by a peri-

odic pulse generator and excitation for unvoiced sounds is produced by a random noise

generator. Fig. 3.2(c) completes the picture by illustrating, in the frequency domain,

how the vocal tract shapes the glottal spectrum to produce the speech spectrum.

Further, as stated in [11]:

Formant locations and bandwidths and spectral differences, associated with the
overall size of the vocal tract, serve to distinguish the same sounds spoken by
different speakers. The shape of the nasal tract which determines the quality
of nasal sounds, also varies significantly from speaker to speaker. The mass of
the glottis is associated with the basic fundamental frequency for voiced speech
sounds. The average basic fundamental frequency is approximately 100 Hz for
adult males, 200 Hz for adult females and 300 Hz for children. It also varies
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Figure 3.2: Human Speech Production
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Figure 3.3: Voiced speech sounds “oh” and “ee” with their respective speech waveforms
and speech spectra. It is illustrative to see how formant locations help in distinguishing
these two voiced speech sounds. (After Johnson [3].)

from individual to individual. This in essence allows the speech signal to capture
certain traits specific to a speaker, and hence finds its use as a biometric for
personal identification and verification.

It should be noted that pitch information is rarely employed in automatic speaker

recognition, for reasons that are mentioned a little later in this thesis.

Spectrograms in Fig. 3.4 illustrate how different the vocal tract configurations can

be when two different people utter the same speech sounds.
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Figure 3.4: Spectrograms with the formants enhanced of two different female speakers
saying the utterance “She had your dark suit”
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3.2 What is Speaker Verification?

Speaker recognition is a term that usually encompasses the two different tasks of speaker

identification and speaker verification. In the speaker identification task a voice sample

from an unknown speaker is compared with a set of labeled speaker models. When

the set of speaker models includes all of the speakers of interest, the identification task

is referred to as a closed-set identification task. Therefore if there are N valid labeled

speaker models, a closed-set identification system determines the single closest match

for the incoming unknown voice sample from the set of N labeled models. On the other

hand when the task involves determining whether the speaker is who he/she claims

to be then the task is called a speaker verification task. This task is also commonly

referred to as an open-set task since the set of impostors(those falsely claiming to be a

valid user) is generally not known to the system. In this case the open-set task involves

making a binary(yes/no) decision. One can also merge the two tasks by adding a “none-

of-the-above” option to the closed-set identification task, to create another task called

the open-set identification task, which is necessary only when there is a possibility of a

match to a speaker outside the set of known speakers. As mentioned in Section 1.1 the

speaker verification task, in general, could also be classified as either text-dependent or

text-independent.

3.3 Approaches to Speaker Recognition

Speaker recognition methods chiefly differ in the manner in which the true speak-

ers or customers are modeled. Depending on the method of modeling the speaker, a

method can be broadly classified as either a parametric or a non-parametric method

of speaker modeling. In non-parametric approaches to speaker modeling, which tend

to be employed in text-dependent systems, no formal structural model is assumed for

characterizing a valid speaker’s voice. Parametric approaches, on the other hand, make

structural assumptions about the speaker model. As such, in text-independent systems,

less-detailed models (parametric models) that model the overall acoustic space of the

user’s utterances tend to be effective. In [11] it is mentioned that,
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Nonparametric models make few structural assumptions and are effective when
there is sufficient enrollment data that is matched to the test data. Parametric
models allow a parsimonious representation of the structural constraints and can
make effective use of the enrollment data if the constraints are appropriately
chosen.

Template-matching and Nearest-Neighbour modeling are examples of non-parametric

approaches to speaker modeling. In the template-matching approach [12], all of the fea-

ture vectors extracted during the enrolment phase are retained to serve as templates

of the customer’s voice. Dynamic time-warping is then used to align and measure the

similarity between the test speech vectors and the retained voice templates to obtain a

match score during the verification process [5]. In the Nearest Neighbour approach [13],

akin to the template-matching approach, the speech feature vectors from the enrollment

session are stored to serve as the reference feature vectors of the enrolled speaker. Dur-

ing the testing phase, the match score between the test feature vectors and reference

features are calculated as the cumulated distance of each test feature to its k nearest

neighbours in the set of reference vectors [5].

Among parametric approaches, discriminative modeling techniques such as neural

networks(NNs) [14, 15, 16] and more recently support vector machines(SVMs) [17, 18]

have been used in speaker recognition tasks. In these techniques speaker models are

trained to distinguish a particular speaker from a set of alternative speakers. This

lends them to be applied in both the speaker recognition and verification tasks, but

re-training these discriminative models, especially NNs could be difficult and cum-

bersome [5]. Further, quantized vector codebooks, designed using appropriate Vector

Quantization(VQ) algorithms [19, 20], on the other hand seek to represent a speaker

using a codebook of vectors [21], trained on a speaker’s enrollment data. VQ codebooks

in [21] were very successfully applied to the text-dependant speaker identification task.

Additionally, statistical methods seek to characterize the speaker’s voice using prob-

ability density functions and/or probabilistic models. In [22], a uni-modal Gaussian

probability distribution function is used to model the characteristics of a speaker’s voice

in a text-independent speaker identification task. Probabilistic models such as the Hid-

den Markov Model(HMM) [23, 24] have also been used speaker recognition tasks in
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[25, 26, 27, 28]. Probability density functions consisting of a mixture of Gaussians, also

called a Gaussian Mixture Model(GMM), have been studied extensively in [7, 8] for the

purpose of modeling a speaker’s voice in the text-independent speaker recognition task.

3.4 Motivation for the use of Probabilistic Methods in Speaker Veri-

fication

Probabilistic methods, especially the HMM and the GMM are the dominant techniques

for modeling speakers in both text-dependent and text-independent speaker recognition

tasks. These methods are mathematically well understood, lend themselves to efficient

implementation in hardware and software, are generalizable to new data, and have

been shown to give the best performance in noisy environments with appropriate sig-

nal processing and normalization techniques. HMMs tend to give better performance

in text-dependent tasks since they tend to model temporal transitions between basic

speech units well. In the text-independent task, on the other hand, the number of tem-

poral transitions that need to be captured are too many and thus, GMMs(degenerate

one-state HMMs) which are thought to model the acoustic space of the units of spoken

language, indeed provide the best performance. In the speaker identification task, prob-

abilistic modeling allows the use of the Bayes’ rule to arrive at a decision to determine

the most probable speaker among a closed-set of N speakers(eg. [9]). Further proba-

bilistic methods are useful since they allow a statistical characterization for the speaker

or customer in the form of a speaker model and a separate statistical characterization

for a set of alternative speakers or impostors in the form of an anti-speaker or a back-

ground model. This allows probabilistic models to be used in a likelihood-ratio detector

framework for the speaker verification task (e.g., [7, 29]). Since this thesis concerns

itself with the text-independent speaker verification task, we shall discuss Gaussian

Mixture Models in this context in greater detail in a later chapter.
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Chapter 4

Feature Extraction

4.1 The nature of features used and the analysis of speech

Section 3.1 spoke about low-level perceptual cues that encode the physical traits of each

individual. As stated in [30], among these, the pitch information, though it reflects the

frequency of excitation from the glottis, is seldom used in speaker recognition since

it is strongly affected by factors other than anatomical structure, such as a speaker’s

emotional state and speech effort. Also, as discussed in Section 3.1, the speech spectrum

tends to capture many useful lower-level perceptual cues.

Representations of the speech signal based on the short-term speech spectrum cap-
turing low-level acoustic cues, have proven extremely useful in speaker recognition. As
stated in [8],

Common spectrum representations are linear predictive coefficients(LPC) and
their various transformations(reflection coefficients, PARCOR coefficients, cep-
stral coefficients etc) [10], and filter bank energies and their cepstral representa-
tion [6]. One drawback of the LPC representation is that it is based on an all-pole
filter model which may omit significant spectral characteristics of speech contami-
nated with noise. The filterbank energies, however are direct measurements of the
energy in different frequency bands and are not subject to any model constraints.
Furthermore, the center frequencies and bandwidths of the filters can be adjusted
to match the critical bands of the ear so that the filter energies better capture the
perceptually important characteristics of the speech signal [6]. The critical band
or mel-scale filter bank energies and their cepstral transformation(better known
as Mel-Frequency Cepstral Coefficients or MFCCs), thus serve as features that
are suited to speaker recognition tasks.

Also, as stated in Section 3.1, the temporal evolution of various vocal tract configu-

rations for the production of various speech sounds, occurs rather slowly with time.

As a result the vocal tract properties can be assumed to be stationary for small win-

dows of time(approx. 20-30ms), while slowly changing to a new configuration as time

progresses. For this reason, Short-time Fourier Analysis of speech, is often done over
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small “sliding” time windows called speech frames. Each successive frame is allowed

some degree of overlap(between 50-90%) with the previous frame. For speech sampled

at 8KHz, as in the MFCC implementations studied in this thesis, analysis windows of

size 20ms, with a delay of 10ms between the start of successive frames(thereby allowing

a 50% overlap between successive frames), were used.

For telephone speech, the quality of the speech signal often gets degraded by the

characteristics of the telephone channel. The telephone channel, is often modeled as a

linear time-invariant filter with impulse response h[n]. For the nth mel-cepstral feature

vector {xn}
T
n=1 , the effect of the filter appears as an additive component [8] as,

zn = xn + h, (4.1)

where z is an observed cepstral vector, x is the input speech cepstral vector and h is the

channel filter cepstral vector. In order to minimize the channel filter effects, as stated

in [9], it is important to use “channel invariant features”, such as cepstrum difference

coefficients. First order difference coefficients, taken ±W1 frames apart, are calculated

as,

∆zn = zn − zn−W1
(4.2)

= xn − xn−W1
. (4.3)

The first order difference seeks to remove the fixed transmission factor h introduced

by the channel filter. In addition the second order difference is often calculated in a

similar manner over the first order difference frames taken ±W2 frames apart, i.e.,

∆2xn = ∆∆xn = ∆xn − ∆xn−W2
. (4.4)

The first and second order difference coefficients thus computed, are simply concate-

nated to the static MFCC feature vector to give a feature vector with added dimen-

sionality.

Additionally, the first and second order difference coefficients, incorporate dynamic

information regarding the variation of the static features or the MFCCs over time. The

difference coefficients have been shown to contain speaker specific information and to
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Figure 4.1: Top: The Mel Filter Bank consisting of 32 Equal Area triangular filters
used in MFCC routine in Slaney’s Auditory Toolbox; Bottom: The Mel Filter Bank
consisting of 24 Equal Area triangular filters used in the AT&T MFCC routine

be fairly uncorrelated with the static MFCCs [9]. The difference coefficients on their

own though, do not perform as well as static coefficients when used as features. This

has been verified in the experiments in Chapter 8. In addition the experiments show

how the performance of a speaker verification system is affected by using static features

alone, static features concatenated with first order difference coefficients, and static

features concatenated with first and second order difference coefficients.

4.2 A study of two feature extraction implementations

As a part of this work two different MFCC implementations, one from AT&T Labs, and

the other from Malcom Slaney’s Auditory Toolbox in MATLAB [31], were studied in

detail. Details regarding these implementations are discussed in the following sections,

while evaluation of performance of these implementations on the speaker verification

task is presented in Chapter 8.
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Figure 4.2: Steps involved in extracting MFCC feature vectors as implemented in
Slaney’s Auditory Toolbox in MATLAB

4.2.1 MFCC feature extraction in Malcom Slaney’s Auditory Toolbox

in MATLAB

An Overview of the Implementation

Figure 4.2 shows the steps involved in extracting MFCC feature vectors as implemented

in Malcom Slaney’s Auditory Toolbox in MATLAB.

The input speech is first pre-emphasized with a Finite Impulse Response(FIR) pre-

emphasis filter with coefficients [1 − .97]. The pre-emphasis is done in order to correct

the spectral tilt in the speech spectrum. After pre-emphasis the feature extraction

process is carried out by analyzing the speech signal in frames. A speech frame of size

20ms is extracted and multiplied with a Hamming window, to give a vector which we

denote by y. For speech sampled at 8Khz the window size is 160 samples, and the

frame shift is 10ms or 80 samples. The Slaney implementation uses a 161 point Ham-

ming window truncated to a 160 point Hamming window, at a sampling rate of 8Khz.

A 512-point Discrete Fourier Transform {Y (k); k = 1, . . . , 512}, of y, using the na-

tive MATLAB FFT routine is then calculated. Subsequently, the absolute magnitude

{|Y (k)|; k = 1, . . . , 512} and squared magnitude {|Y (k)|2; k = 1, . . . , 512} are calcu-

lated. The squared magnitude, {|Y (k)|2; k = 1, . . . , 512}, is used to calculate the energy

in the frame. The absolute magnitude signal denoted by, {|Y (k)|; k = 1, . . . , 512}, is

then passed through a Mel Filter Bank consisting of 32 triangular, equal area filters

covering a bandwidth of 133.33Hz-3954.26Hz, to extract the energy in each frequency

band covered by each of the 32 filters.
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The filter bank used in this implementation is displayed in the top figure of Fig. 4.1.

The center frequencies of the filters are warped according to the Mel scale, with

the center frequencies being linear until 1000Hz, and logarithmic above 1000Hz. For

M = 32 filters, M+2 boundary points are required to describe the filter bank(M

center frequencies and 2 extreme boundary frequencies). Let {fci
i = 1, . . . , M} de-

note the center frequency of the ith filter. Also, let {fbj
j = 1,. . . ,M+2} denote

the M + 2 boundary points. It is important to note that for this implementation

{fci
= fbj

for i = 1, . . . , M , and j = 2, . . . , M + 1}. To simplify notation, therefore,

the boundary points for the ith filter could simply be stated by the points fbi−1
and

fbi+1
.

The center frequencies of the first 13 filters are linearly spaced, in the range [200-

1000]Hz, with a spacing of 66.67Hz between the center frequency of each filter. The

center frequencies of the remaining 19 filters are logarithmically spaced in the range

[1071-3954.26]Hz. The center frequencies for these 19 filters are calculated as,

fci
= 1.0711703 × fci−1

i = 14, . . . , M

The filter weights for the ith triangular filter,denoted Hi by are calculated as,

Hi(k) = 0 if w(k) < fbi−1

=
2(w(k) − fbi−1

)

(fci
− fbi−1

)(fbi+1
− fbi−1

)
if fbi−1

≤ w(k) ≤ fbi

=
2(fbi+1

− w(k))

(fci
− fbi−1

)(fbi+1
− fbi−1

)
if fbi

≤ w(k) ≤ fbi+1

= 0 if w(k) > fbi+1

where {k = 1, . . . , 512} denotes a DFT frequency index, and {w(k), k = 1, . . . , 512}, is

used to denote the physical DFT frequencies on the unit circle. The log energy output

of the ith filter, denoted by mfe(i), is then calculated as,

mfe(i) = log (

fbi+1
∑

k=fbi−1

Hi(k)|Y (k)|). (4.5)

Finally the cepstral coefficients are computed using an inverse Fourier transform, which

for real signals can be implemented using a cosine transform. The mth cepstral coeffi-

cient is denoted by mfcc(m), where {m = 0, . . . , C−1} and C is the number of required
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Figure 4.3: Graphs detailing outputs at each stage of the processing of the MFCC
feature extraction program from the Auditory ToolBox

coefficients, is then calculated as,

mfcc(m) =
1

M

M
∑

l=1

mfe(l) cos(m(l −
1

2
)

π

M
) m = 0, . . . , C − 1 (4.6)

In the evaluations studied in this thesis we used C = 13 coefficients. The mfcc(0)

component is the average log energy and is not used in the experiments in this thesis.

Thus an extracted MFCC feature vector has a dimensionality of D = 12.

It is very informative to view the output at each stage during the processing of a

speech frame. Fig. 4.3 displays the output of each stage for one such speech frame.

The last of the six plots displays the value mfcc(0) coefficient due to which a vector of

dimensionality C = 13 is seen instead of D = 12.
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Figure 4.4: Delta and Delta-Delta Computation applied to feature vectors from Mal-
com Slaney’s Auditory Toolbox; Fig(a)Delta Computation;Fig.(b)Delta-Delta Compu-
tation;Fig.(c)Concatenated feature vector for frame n

Calculation of the Delta Cepstrum

Fig. 4.4 shows how the calculations for the delta cepstrum and delta-delta cepstrum are

implemented. As shown in Fig. 4.4(a) the delta cepstrum is calculated over ±2 speech

frames, with corresponding frames being multiplied by the coefficients [-.2 -.1 0 .1 .2],

and then added together. The delta-delta cepstrum values are similarly calculated over

±2 delta-cepstrum frames as shown in Fig. 4.4(b). The delta-cepstrum and delta-delta

cepstrum are then simply concatenated with the concerned frame as shown in Fig. 4.4(c)

to either give a feature vector of dimensionality 2D = 24 or 3D = 36, as required.

4.2.2 MFCC feature extraction implementation from AT&T Labs

An Overview of the implementation

Figure 4.5 shows the steps involved in extracting MFCC feature vectors as in the im-

plementation from AT&T Labs.

A speech frame of size 20ms is extracted and multiplied by a Hamming window, to

give a vector which we denote by y. As mentioned in Section 4.2.1, for speech sampled
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Figure 4.5: Steps involved in extracting MFCC feature vectors in the AT&T Labs
implementation

at 8Khz the window size is 160 samples, and the frame shift is 10ms or 80 samples.

A Hamming window of 160 samples is used in this implementation. Next a 512-point

Discrete Fourier Transform {Y (k); k = 1, . . . , 512}, of y, is calculated using an FFT

routine. The DFT coefficients computed by this routine and the native MATLAB

FFT routine differ by a constant scale factor. Subsequently, the squared magnitude

{|Y (k)|2; k = 1, . . . , 512} is calculated, and is used to calculate the energy in the frame.

The squared magnitude signal, {|Y (k)|2; k = 1, . . . , 512}, is then passed through a

pre-emphasis filter thereby correcting the spectral tilt in the speech spectrum, to give

the pre-emphasized signal which we denote by {A(k); k = 1, . . . , 512}. If we allow

{w(k), k = 1, . . . , 512}, to denote the physical DFT frequencies on the unit circle, then

coefficients for the pre-emphasis filter are calculated as,

P (k) = 1 +
w(k)2

2.5 × 105
k = 1, . . . , 512. (4.7)

The pre-emphasized signal {A(k); k = 1, . . . , 512} is computed as,

A(k) = |Y (k)|2P (k) ;k = 1, . . . , 512. (4.8)

The pre-emphasized signal {A(k); k = 1, . . . , 512} is then passed through a Mel Filter

Bank consisting of 24 triangular, equal area filters covering a bandwidth of 0Hz-4000Hz,

to extract the energy in each each frequency band covered by each of the 24 filters.

The filter bank used in this implementation is shown in the bottom figure of Fig. 4.1.

Similar to the filter bank described in Section 4.2.1, the center frequencies of the fil-

ters are warped according to the Mel scale, with the center frequencies being linear till
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1000Hz, and logarithmic above 1000Hz. Notation developed in Section 4.2.1 is used to

describe the parameters of the Mel Filter Bank used in this implementation and is re-

peated here for convenience. M = 24 is the number of triangular filters, {fci
i=1,. . . ,M}

to denote the center frequencies of the triangular filters, and the boundary points for

the ith filter are the points fbi−1
and fbi+1

where {fbj
j = 1,. . . ,M+2} are the M + 2

boundary points and {fci
= fbj

for i = 1, . . . , M , and j = 2, . . . , M + 1}.

The center frequencies of the first 10 filters are linearly spaced, in the range [100-

1000]Hz, with a spacing of 100.00Hz between the center frequency of each filter. The

center frequencies of the 14 remaining filters are logarithmically spaced in the range

[1100-3797.5]Hz. The center frequencies for the logarithmically spaced filters are calcu-

lated as,

fci
= 1.1 × fci−1

i = 11, . . . ,M

The filter weights for the ith triangular filter,denoted Ti by are calculated as,

Ti(k) = 0 if w(k) < fbi−1

=
(w(k) − fbi−1

)

(fci
− fbi−1

)
if fbi−1

≤ w(k) ≤ fbi

=
(fbi+1

− w(k))

(fci
− fbi−1

)
if fbi

≤ w(k) ≤ fbi+1

= 0 if w(k) > fbi+1

This equation gives a Mel Filterbank identical to the one mentioned by Davis et al.

in [6]. Each filter Ti is then normalized to give equal area filters denoted by Hi,

Hi(k) =
Ti(k)

w(k)=fbi+1
∑

w(k)=fbi−1

Ti(k)

where {k = 1, . . . , 512} denotes a DFT frequency index, and {w(k), k = 1, . . . , 512}, is

used to denote the physical DFT frequencies on the unit circle. As seen in Fig. 4.1, the

last filter is clipped off just before 4000Hz, to prevent aliasing. The log energy output

of the ith filter, denoted by mfe(i), is then calculated as,

mfe(i) = 10 log (

fbi+1
∑

w(k)=fbi−1

Hi(k)A(k)) − 40. (4.9)
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Figure 4.6: Graphs detailing outputs at each stage of the processing of the MFCC
feature extraction program from AT&T Labs

A discrete cosine transform as is then applied to the log energy calculated in Eq. (4.9)

to obtain the Mel Frequency Cepstral Coefficients denoted by mfcc. The coefficient

mfcc(0), which represents the average log energy, is discarded, and the resulting dimen-

sionality of the vector is D = 12.

It is very informative to view the output at each stage during the processing of a

speech frame. Fig. 4.6 displays the output of each stage for one such speech frame.

The last of the six plots displays the value mfcc(0) coefficient due to which a vector of

dimensionality C = 13 is seen instead of D = 12.
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Figure 4.7: Computation of Delta Coefficients in the AT&T MFCC feature extraction
program

Calculation of the Delta Cepstrum

The technique for calculation of the delta cepstrum in this implementation is shown in

Fig. 4.7. We assume that MFCC feature extraction, as explained in Section 4.2.2, yields

a stack of N feature vectors or frames. Three copies of the first frame are appended

to the head of the stack of N frames and similarly three copies of the last frame are

appended to the tail of the stack of N frames. The delta cepstrum is calculated over

five “sliding” windows each of size N + 2 frames. The first window of extends from the

first copy of the first frame, to the N −1th frame. At every stage, the “sliding” window

advances by one frame. All the frames within the range of the window are multiplied

by the corresponding coefficient in the vector [−0.7488 −0.3744 0 +0.3744 +0.7488],

at a given stage of a calculation as shown in Fig. 4.7. The results from each stage are

then added up to yield a stack of N + 2 frames, in which the first and last frames are

redundant, and are discarded. The N frames that are thus retained are the required

delta cepstrum frames. A similar procedure is used for the calculation of the second

difference MFCC coefficients.

4.3 Energy Computation and Energy Clipping

It was mentioned in Sections 4.2.1 and 4.2.2 that the squared magnitude of the Discrete

Fourier Transform {|Y (k)|2; k = 1, . . . , 512}, of the windowed portion yn of a speech

utterance is used in the computation of the energy in the frame. The energy in the
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speech frame yn is thus calculated using Parseval’s Equation, and is given by

E(yn) =
1

NFFT

NFFT−1
∑

k=0

|Y (k)|2 (4.10)

where E denotes the short-time energy of a speech vector yn and NFFT = 512 denotes

the number of points in the FFT. For each frame the log energy is then computed as,

Elog(yn) = 10 log10(E(yn)) − 40.

Once the log energy for each frame has been computed, the energy in dB, EdB, is then

computed for each frame, relative to the frame in the utterance which has the maximum

log energy. If Emax
log is used to denote the maximum log energy value encountered in a

given set of frames, then the energy in dB for a frame is computed as,

EdB(yn) = Elog(yn) − Emax
log

To perform energy clipping once an energy threshold value Ethr in dB is specified,

any frame whose energy satisfies the relation EdB < Ethr is simply dropped to give a

set of feature vectors whose energy is above the specified energy threshold.
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Chapter 5

Pattern Recognition for Speaker Verification

5.1 The Gaussian Mixture Model

A Gaussian Mixture density can be written as a linear superposition of K Gaussian

densities of the form:

p(x|Λ) =

K
∑

k=1

πkN(x|µk,Σk) (5.1)

where x is a D-dimensional MFCC speech vector, N(x|µk,Σk) , k = 1, . . . , K, are the

component Gaussian densities and πk, k = 1, . . . , K, are called the mixing coefficients

or mixture weights. Each component Gaussian density is a D-variate Gaussian of the

form:

N(x|µk,Σk) =
1

(2π)D/2|Σk|1/2
exp {−

1

2
(x − µk)

′Σ−1
k (x − µk)} (5.2)

with a D×1 mean vector µk and a D×D covariance matrix Σk. All mixing coefficients

satisfy the conditions:
K

∑

k=1

πk = 1. (5.3)

and

0 ≤ πk ≤ 1 (5.4)

which ensures the mixture is a true probability density function. A Gaussian Mixture

density can thus be parameterized by:

Λ ≡ [µk,Σk, πk] k = 1, . . . ,K. (5.5)

which is used to denote the set of mixture wights, mean vectors and covariance matrices

for each of the K component mixture densities.
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5.2 Reasons for using GMMs in Text-Independent Speaker Recogni-

tion1

The first main motivation for using GMMs is the intuitive notion that the component

densities of a multi-variate density, such as a mixture of Gaussians, model a set of un-

derlying acoustic classes. It can be assumed that the acoustic space corresponding to a

speaker’s voice can be characterized by a set of acoustic classes representing some broad

phonetic events such as vowels, nasals, or fricatives. These acoustic classes reflect some

general speaker-dependant vocal tract configurations that are useful for characterizing

speaker identity. The spectral shape of the kth acoustic class can be represented by

the mean µk and the variations of the average spectral shape can be represented by the

covariance matrix Σk. Since the training and testing of speech is unlabeled or unsuper-

vised, the acoustic classes are “hidden” in that the class of an observation is unknown.

With the assumption of independent feature vectors, the observation density of feature

vectors drawn from these hidden acoustic classes is thus a Gaussian mixture.

Another motivation for using GMMs is that a linear superposition of a set of Gaus-

sian basis functions is capable of representing a large class of sample distributions.

One of the powerful attributes of the GMM is its ability to form smooth approxima-

tions to arbitrarily shaped densities. The classical unimodal Gaussian speaker model

represents a speaker’s feature distribution by a position(mean vector) and an elliptic

shape(covariance). A VQ code-book, on the other hand represents a speaker’s distribu-

tion by a discrete set of characteristic templates. In a K component VQ code-book the

kth vector could be thought of as a template that is representative of a feature from

a particular acoustic class. In the acoustic feature space these could be thought of as

a set of impulses at the points whose co-ordinates are represented by the individual

elements of the kth vector. To allow some variability in the representation of each of

the K acoustic classes the K impulses could instead be replaced by K multi-variate

Gaussians with respective means and covariances, this giving rise to a GMM. Thus a

discrete set of Gaussian functions, each with their own mean and variance, model the

1Material in this section is borrowed from Section II-C of [9]
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set of underlying acoustic classes better when compared to a discrete VQ code-book or

a unimodal Gaussian.

Further, because the component Gaussians are acting together to model the overall

pdf, full covariance matrices are not necessary even if the features are not statistically

independent. The linear combination of diagonal covariance Gaussians is capable of

modeling the correlations between feature vector elements. The effect of using a set of

M full covariance Gaussians can be equally obtained by using a larger set of diagonal

covariance Gaussians.

5.3 The Gaussian Mixture Model as a generative model

Given a set of observation feature vectors X = {xn}
T
n=1, one can view the production

of an observation vector xn from a Gaussian Mixture density as a generative process. A

“hidden” trial is first performed where the mixture component(or the acoustic class) k is

picked with a prior probability πk, following which xn is picked from the kth Gaussian.

Performing this “hidden” trial could be quantified by introducing a binary random

variable zn, such that choosing the kth component of the Gaussian mixture would

mean that the kth element of zn, znk = 1 and znj = 0 for j 6= k, ∀j, k = 1 . . . K and
K

∑

k=1

znk = 1. Therefore zn could be in one of K possible states. With this interpretation,

a complete description of the generative process is available when the set of feature

vectors X is accompanied by a set of corresponding random variables Z = {zn}
T
n=1 from

which zn would indicate the “hidden” trial that was performed in order to generate an

observation vector xn. This generative process is illustrated in Figure 5.1

The probability of performing the hidden trial can be expressed in terms of the

mixing coefficients as,

p(znk = 1) = πk (5.6)

p(zn) =
K
∏

k=1

πznk

k

and the probability of drawing the vector xn conditioned on performing this hidden

trial can be expressed as,



36

�
�

�
�

�
�

�
�

Figure 5.1: Illustration of the GMM as a generative model generating an observation
sample xn.pk is the prior probability πk and Nk is a component Gaussian N(x|µk,Σk)

p(xn|znk = 1) = N(xn|µk,Σk) (5.7)

p(xn|zn) =
K
∏

k=1

N(xn|µk,Σk)
znk

As stated in [8], the generative process for drawing each of the observation vectors in

the set X = {xn}
T
n=1 is very similar to that of a HMM, except that for a GMM there are

no Markovian constraints for the selection of classes since the text is unconstrained and

it is unlikely that there is any speaker specific information in acoustic class sequencing.

Therefore, GMM models only the acoustic classes which comprise a person’s speech but

not the temporal ordering of the acoustic classes.

5.4 Estimation

The process of “training” consists of obtaining estimates for the parameters that char-

acterize a probability distribution. Both Maximum A Posteriori(MAP) and Maximum

Likelihood(ML) estimation methods are used to obtain estimates of these parameters.

Using notation from [32], if we let θ denote a random vector taking values in the space

Θ as the parameter vector to be estimated from a set of observations X which are

assumed to be drawn from a probability density function(pdf) p(.|θ), and if g is the

prior pdf over θ then the MAP estimate, θMAP , is defined as the mode of the posterior
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pdf of θ denoted as g(.|X),i.e.

θMAP = arg max
θ

g(θ|X) (5.8)

= arg max
θ

p(X|θ)g(θ) (5.9)

If the prior pdf g is non-informative or in other words if all values of θ in the

parameter space Θ are equally likely then the MAP estimate θMAP is equivalent to the

ML estimate denoted by θML and is equivalently estimated by

θML = arg max
θ

p(X|θ) (5.10)

Equivalently, the maximum likelihood estimate θML is one that satisfies the equation,

θML =
∂p(X|θ)

∂θ
= 0 (5.11)

The quantity p(X|θ) is by definition called the likelihood function or simply the likelihood

of the p.d.f p(.|θ) given the data set X and Eq. (5.11) is called the likelihood equation.

The Gaussian Mixture density is characterized by the set of parameters mentioned in

Eq. (5.5) namely, the mean vectors, mixture weights and the covariance matrices of the

mixture components. This chapter discusses the MAP and ML estimation procedures

to obtain estimates of these parameters.

5.5 ML Estimation and the EM Algorithm

In viewing the GMM as a generative model as in Section 5.3 it is evident that a complete

description of the data is provided by specifying the observation feature vectors X =

{xn}
T
n=1 and by specifying the component distribution Z = {zn}

T
n=1 from the Gaussian

mixture density that generated each one of them. In unsupervised learning problems

such as the estimation of parameters Λ of a Gaussian Mixture density the random

variables in set Z are never really observed, and in fact remain hidden or latent. The only

observable quantities are the observation vectors X from which the parameters for the

Gaussian Mixture density need to be estimated. Therefore this is an estimation problem

with incomplete, latent, or hidden data. Estimation of parameters of a distribution
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from incomplete data can be achieved by an iterative algorithm called the Expectation-

Maximization(EM) Algorithm[33]. The basic idea of the EM Algorithm is, given an

initial estimate of the model Λ, to estimate a new model Λ
′

, such that p(X|Λ
′

) ≥

p(X|Λ). The new model then becomes the current model and the process is repeated

until some convergence threshold is reached [8]. ML Estimation via the EM Algorithm

was first discussed in [33] and specifically for Gaussian Mixtures is discussed in [8, 9, 34].

Though [33] mentions that the EM Algorithm is also applicable in the MAP estimation

framework, a detailed treatment of MAP estimation of parameters for a GMM via the

EM algorithm is provided in [4, 32]. The discussion regarding Bayesian Adaptation and

MAP Estimation for GMMs is deferred until Section 5.7

5.5.1 The Need for an Auxiliary Function

For the sake of completeness it is necessary to mention the complete data likelihood

p(X,Z|Λ) and how the incomplete data likelihood p(X|Λ) develops from this quantity.

Given X and Z, from Eqs. (5.6) and (5.7) the complete data likelihood p(X,Z|Λ),

is given by,

p(X,Z|Λ) =
T

∏

n=1

K
∏

k=1

πznk

k [N(xn|µk,Σk)]
znk (5.12)

where we let znk to be the kth component of zn. Then the observed(incomplete) data

likelihood p(X|Λ) can be written as,

p(X|Λ) =
∑

Z

p(X,Z|Λ) (5.13)

=

T
∏

n=1

K
∑

k=1

πkN(xn|µk,Σk) (5.14)

by marginalizing the complete data likelihood p(X,Z|Λ) over all possible acoustic states

Z.

It can be shown that, given a model Λ and the data X, we can, in reality, obtain

only posterior knowledge of the latent variables Z by computing the quantity p(Z|X,Λ)

from Eqs. (5.6) and (5.7) and the Bayes’ Theorem as,
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p(Z|Λ,X) ∝
T

∏

n=1

K
∏

k=1

πznk

k N(xn|µk,Σk)
znk (5.15)

In estimation, for analytical(and computational) purposes, it is usually easier to

work with the logarithm of the likelihood rather than the likelihood itself [20]. In

problems of parameter estimation of probability distributions involving latent variables,

it is usually much more tractable to work with the joint log-likelihood over the complete

data i.e., ln p(X,Z|Λ) rather than the log-likelihood of the incomplete data p(X|Λ).

Baum et al. in [35] suggested the use of an auxiliary function Q(Λ,Λ
′

) that makes use

of ln p(X,Z|Λ) and allows achieving the objective of estimating a new model Λ
′

, such

that p(X|Λ
′

) ≥ p(X|Λ), where Λ is a previous estimate of the model.

5.5.2 Maximum Likelihood and The EM Algorithm

For ML estimation auxiliary function Q(Λ,Λ
′

) is,

Q(Λ,Λ
′

) =
∑

Z

ln (p(X,Z|Λ
′

))p(Z|Λ,X) (5.16)

The expression for the auxiliary function in Eq. (5.16) is also viewed as the con-

ditional expected value of the complete data log-likelihood ln (p(X,Z|Λ
′

)),taken with

respect to the conditional distribution of Z, p(Z|Λ,X), given Λ and the set of obser-

vations X.

An analytical expression for the auxiliary function, as stated in Eq. (5.16), can be

obtained by making use of Eqs. (5.12) and (5.15) as,

Q(Λ,Λ
′

) =
T

∑

n=1

K
∑

k=1

γ(znk){lnπ
′

k + lnN(xn|µ
′

k,Σ
′

k)} (5.17)

where γ(znk) is given by,

γ(znk) =
πkN(xn|µk,Σk)
K

∑

l=1

πlN(xn|µl,Σl)

n = 1, 2, . . . , T (5.18)
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The ML parameter estimates, for the new model Λ
′

= [µ
′

k,Σ
′

k, π
′

k] k = 1, . . . , K can

be obtained by setting
∂Q(Λ,Λ

′

)

∂Λ′
= 0 instead of setting the partial derivative of the

likelihood function, as in Eq. (5.11), with respect to the parameters to zero.

The ML Estimate of the mean µ
′

k is obtained by setting
∂Q(Λ,Λ′)

∂µ
′

k

= 0 and is given

by,

µ
′

k =
1

Tk

T
∑

n=1

γ(znk)xn (5.19)

The ML estimate of the covariance matrix Σ
′

k is given by setting
∂Q(Λ,Λ

′

)

∂Σ
′

k

= 0

and is given by,

Σ
′

k = [
1

Tk

T
∑

n=1

γ(znk)x
2
n] − µ

′2

k (5.20)

The ML estimate of the mixture weights π
′

k is given by setting
∂Q(Λ,Λ

′

)

∂π
′

k

= 0 and

is given by,

π
′

k =
Tk

T
(5.21)

where

Tk =

T
∑

n=1

γ(znk) (5.22)

The EM Algorithm for ML Estimation can thus be summarized as:

Given a model Λ for a Gaussian Mixture Model with parameters [µk,Σk, πk] for k =

1, . . . , K we obtain a new model Λ
′

with parameters [µ
′

k,Σ
′

k, π
′

k] for k = 1, . . . , K such

that p(X|Λ
′

) ≥ p(X|Λ),

E Step Using the old model Λ compute the quantity γ(znk) as in Eq. (5.18).

M Step After computing γ(znk) obtain the parameter estimates of the new model Λ
′

using Eqs. (5.19), (5.20), (5.21) and (5.22)

Update Compute the log-likelihood as log p(X|Λ
′

) and check for the convergence of

the log-likelihood. If the convergence criterion is not satisfied then update Λ ← Λ
′

and return to the E Step.
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5.5.3 Initializing the EM

The initial estimate to the EM algorithm for Λ, is obtained by constructing a VQ code-

book using the Linde-Buzo-Gray(LBG) Algorithm [19]. The following algorithm was

taken directly from [19].

Before stating the algorithm it is necessary to mention the distortion measure used

to calculate the distance between two vectors. The current implementation of the LBG

Algorithm uses the Euclidean distance between two vectors as the distortion measure.

Given two vectors of dimensionality D, p = [p1, . . . , pD] and q = [q1, . . . , qD],

d(p,q) =

√

√

√

√

D
∑

i=1

(pi − qi)
2 (5.23)

(0) Initialization: Fix K = 2R, where R is an integer, and K is the largest number of

levels(codebook size) desired. Fix N = 10(the maximum number of iterations),

T = length of training sequence, ε = 0.005. Let M denote the intermediate

number of levels in the codebook (which doubles after each binary split), until

M = K, the final number of required levels is reached. Initially, set M = 1.

Given a training sequence X = [x1, . . . ,xT] set A = X, the training sequence

alphabet. Define Â(1) = x̂(A), the centroid of the entire training sequence by

setting it as the mean of all the training vectors.

(1) (Splitting) Given Â(M) = {yi, i = 1, . . . , M} split each reproduction(codebook)

vector yi into yi + ε and yi − ε, where ε is a fixed perturbation vector. Set

Â0(2M) = {yi + ε, yi − ε i = 1, . . . ,M} and then replace M by 2M .

(2) Let m denote the mth iteration, until convergence or until the maximum number

of iterations N = 10 is reached, for an intermediate code-book with M-levels.

Initially, set m = 0 and D−1 = ∞.

(3) Given Âm(M) = {y1, . . . , yM},find its optimum partition P(Âm(M)) = {Si, i = 1, . . . , M}

that is, xjεSi if d(xj, yi) ≤ d(xj, yl), all l. Compute the resulting distortion
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Dm = D({Âm(M), P(Âm(M))})

= T−1
T

∑

j=1

min
yεÂm

d(xj, y)

(4) (Convergence) If (Dm−1 − Dm)/Dm ≤ ε, then go to step (6). Otherwise continue.

(5) Find optimal reproduction alphabet Âm+1(M) = x̂(P(Âm(M))) = {x̂(Si); i = 1, . . . , M}

for P(Âm(M)). Replace m by m + 1 and go to (3).

(6) Set Â(M) = Âm(M). The final M -level quantizer is described by Â(M). If M = K,

halt with final quantizer described by Â(K), otherwise go back to step (1).

The final codebook is then,

Â(K) = x̂(P(Â(K)))

= x̂(Si); i = 1, . . . , K

= µk; k = 1, . . . , K

The number of vectors ηk in each partition {(Sk); k = 1, . . . , K}, is preserved, and

divided by the total number of vectors T , to give the set of mixture weights as,

πk = ηk/T ; k = 1, . . . , K

And the covariance matrices Σk; k = 1, . . . , K are calculated as,

Σk = [
1

ηk

∑

xjεSk

x2
j ] − µ2

k; k = 1, . . . , K

5.6 Speaker Verification as a Hypothesis Testing Problem

Hypothesis testing is a process of establishing the validity of a hypothesis [36]. In the

verification task an identity claimant I claims to be a speaker S and provides a voice

sample X to the system. The system then needs to determine if I and S are the same

person from an observation X provided by I. H0 would then be the hypothesis that X
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is from the speaker S. This is called the null hypothesis. A complementary hypothesis

H1 would be the that X is not from the speaker S. This hypothesis is also called the

alternative hypothesis.

Mathematically, H0 is represented by a model Λ which denotes the parameters of

the Gaussian Mixture density that characterizes the customer’s voice. We call Λ the

speaker model. Similarly H1 is mathematically represented by Λ̄ which denotes the

parameters of a Gaussian Mixture density that characterizes the set of impostors. Λ̄ is

referred to as the anti-speaker or background model.

Given these two probability density functions, two likelihoods namely the likelihood

of the speech utterance X given Λ, denoted by p(X|Λ), and the likelihood of X given

Λ̄, denoted by p(X|Λ̄). The ratio of these two likelihoods, called the likelihood-ratio

statistic, is computed and compared against a threshold θ, which depends on prior

probabilities, to either accept the null hypothesis H0 or accept the alternative hypothesis

H1. More formally, this verification decision test can be summed up as,

p(X/Λ)

p(X/Λ̄)







≥ θ accept H0

< θ accept H1

(5.24)

which is the equation for a likelihood-ratio detector.

The evaluations used in this thesis make use of the ratio of the average log-likelihood

score L(X) given by,

L(X) =
1

T
log p(X|Λ) −

1

T
log p(X|Λ̄) (5.25)

where T denotes the total number of feature vectors in the set X, and the likelihoods

p(X/Λ) and p(X/Λ̄) are calculated as mentioned in Eq. (5.14) given the models Λ and

Λ̄.

System evaluation consists of scoring a set of utterances from the valid speaker(or

customer or client) and a set of utterances from designated impostors, to obtain two

sets of log-likelihood ratio scores. The figure on the left hand side of Figure 5.2, dis-

plays histogram plots of the log-likelihood scores from both of these classes, namely

the set of client scores or Class I and the set of imposter scores or Class II. Picking a



44

Figure 5.2: Illustration of the EER

threshold, θ, as specified in Eq. (5.24) involves choosing a point on the score axis of

this histogram plot, to decide a boundary between the two classes. Once the threshold

is chosen there are instances from both classes that would be misclassified as being

from the other, based on the scores that are observed. The case where an imposter

score is misclassified as a customer score is called a false acceptance, and the case where

a customer score is misclassified as an impostor score is called a false rejection. The

frequency of instances being misclassified on either side, accordingly gives us the prob-

ability of false acceptances(FA), denoted by p(FA) or the False Acceptance Rate(FAR)

and the probability of false rejections(FR), denoted by p(FR) or the False Rejection

Rate(FRR). The p(FA) is the area under the histogram(or the probability density func-

tion approximation) of Class II that is misclassified as being from Class I and vice versa

with p(FR). Choosing a threshold θ then, is always a tradeoff between acceptable rates

of FA and FR, depending on the task at hand. There exists a threshold where the FAR

equals the FRR. This threshold is defined as the Equal Error Threshold(EET) and the

probability of error this threshold is called the Equal Error Rate or EER. The EET is

then, the point of intersection of the Cumulative Distribution Functions of both classes

as illustrated by the figure on the right hand side of Figure 5.2. The EER is used as

a performance metric, in order to evaluate the effectiveness of the Speaker Verification

system, in this thesis.
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5.7 Model Training and Bayesian Adaptation

The standard approach for creating speaker models, both individual target speaker

models and composite speaker background models, makes use of the expectation-

maximization (EM) algorithm in the Maximum Likelihood framework applied to the

training data. We refer to such individually trained speaker models as “scratch” mod-

els. A second approach for creating individual target speaker models is to adapt them

from a so-called universal background model (UBM) by means of a form of Bayesian

adaptation [4, 32]. This method of creating a target speaker models the falls under the

MAP estimation framework using the EM.

5.7.1 The Auxiliary Function and Bayesian Adaptation

The auxiliary function for MAP estimation can be stated as [32, 34]:

R(Λ,Λ
′

) = Q(Λ,Λ
′

) + log p(Λ) (5.26)

where Q(Λ,Λ
′

) is the auxiliary function stated in Section 5.5.1 for the EM Algorithm

in an ML framework and p(Λ) is the prior distribution over the respective parameters

of Gaussian Mixture density, and is equivalent to the prior distribution g(θ) stated

in Section 5.4. Although a discussion about the nature of these prior distributions

over each parameter is beyond the scope this thesis, Gauvain et al. discuss the topic

of suitable prior distributions in [32] . Further, with certain constraints imposed on

the distributions, a form of Bayesian Adaptation can be employed for adapting the

parameters of a speaker model from a UBM [4, 32].

Following Reynolds in [4], given a UBM with parameters Λ ≡ [µk,Σk, πk] k = 1, . . . , K

the mean parameter µk can be adapted to an individual’s training data using the for-

mulation,

µ
′

k = αkEk(X) + (1 − αk)µk (5.27)
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Figure 5.3: Pictorial example of two steps in adapting a hypothesized speaker model.
(a)The training vectors (x’s) are probabilistically mapped into the UBM mixtures (b)
The adapted mixture parameters are derived using the statistics of the new data and
UBM mixture parameters. The adaptation is data dependent, so UBM mixture param-
eters are adapted by different amounts. Taken from [4]

where,

Ek(X) =
1

nk

T
∑

t=1

Pr(k|xt)xt (5.28)

Pr(k|xt) =
πkN(xt|µk,Σk)
K

∑

l=1

πlN(xt|µl,Σl)

t = 1, 2, . . . , T (5.29)

and

nk =
T

∑

t=1

Pr(k|xt) (5.30)

The adaptation coefficient, αk, controls the relative weight of the training data for

updating the model parameter, µk. A typical value for αk is given by,

αk =
nk

nk + r
(5.31)

where r is a fixed, so-called, relevance factor. As stated in [4], the relevance factor is

generally set to a value of 16.

The first step in the Bayesian Adaptation process is similar to the E-step of the

EM Algorithm for estimating the parameters of the GMM in a ML framework. This

involves calculating estimates of the sufficient statistics of the speaker training data

computed for each mixture of the UBM. These sufficient statistics are calculated as in
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Eqs. (5.28), (5.29), and (5.30). The new sufficient statistics thus calculated are used

to adapt parameters of the mixtures of the UBM as is done in Eq. (5.27) for the mean

parameter. Although other parameters, πk and Σk can be similarly adapted, in the

experiments carried out as a part of this thesis, only the set of mean vectors, µk, were

adapted. Fig. 5.3, illustrates the two steps of the process of Bayesian Adaptation.

After a single Bayesian Adaptation step of creating a target speaker model by adapting

from the UBM, the process of adaptation can continued to be performed iteratively,

by substituting µ
′

k for µk in each iteration. In the experiments performed here, the

performance of target speaker models obtained by, both, a single Bayesian Adaptation

step and a single Bayesian Adaptation step followed by four iterations of the same,

were carried out and compared. It is also useful to mention here that to gauge how

“far” the adapted target speaker model has moved from the UBM, the Bhattacharya

distance [37], between the component Gaussians of the UBM and the adapted speaker

model can be calculated.
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Chapter 6

Experimental Setup

6.1 Experimental Setup for Speech Verification

6.1.1 An Overview of the Software Utilities

Version 3.7 of the Sphinx Speech Recognition System [38] from Carnegie Mellon Univer-

sity(CMU)(henceforth referred to simply as Sphinx) was the Automatic Speech Recog-

nition system that was used to develop the Speech Verification system. The Sphinx

package consisted of a set of programs which could be used to:

 train speaker independent acoustic models using continuous mixture density Hid-

den Markov Models (HMMs)

 force-align transcriptions to a sequence of acoustic models representative of the

linguistic sounds within the transcription

 decode and recognize unknown speech utterances using a given (trained) set of

acoustic and language models.

All of these programs were used during the training and the task evaluation stages.

Sphinx did not come with its own Language Model(LM) training utility, and there-

fore an external LM training toolkit (called the CMU-Cambridge Statistical Language

Modeling (SLM) Toolkit [39]) was used.

Training data from the CMU Communicator Project Database was used for training

the acoustic and language models. Speech utterances and their transcriptions from

the CMU Communicator Project Database were also used in the speech verification

experiments.



49

���������	�
��
�����
������������
�������
��
�	����	�	�����

�
��������
�����������
��
�	����	�	�����
���	���
��
���	�����	�

�����
���������	�
��
�����
���	���������������
 ��������	�
������	��	�
�����������
�	����	�	�����
!��������	�
������	��	�����"�"�
�	���
		�
�
#����
��
�	������
	�������	���
��
���	�����	�

$�
���������
��������
�%��	���
��
���	�����	�


Figure 6.1: Sample Transcriptions of Speech utterances from the Communicator Corpus

6.1.2 The CMU Communicator Corpus

The CMU Communicator Corpus was created as a part of the data collection phase of

the ATIS (Air Travel Information System) project which was funded by the DARPA

Communicator program [40]. The resulting database consists of approximately 90 hours

of transcribed speech data, containing 180,605 speech utterances. The data was col-

lected from a large population of callers (approx. 2000) who called into the CMU

Travel Planning System. The speech data was sampled at 8 Khz and quantized using

16 bit samples. The entire data-set includes 10,417 distinct words. Apart from accu-

rate word level transcriptions, the transcriptions include labels for acoustic events of

importance including environmental noise, human-generated noise, system intrusions,

and meta-tags which flag asides and comments. A set of sample transcriptions of 10

speech utterances from the Communicator Corpus is shown in Fig. 6.1.

6.2 Experimental Setup for the Speaker Verification system

6.2.1 Data Collection for the Speaker Verification system evaluation

The speech samples used to evaluate the speaker verification system were recorded over

dialed-up telephone lines using a THAT-1 Telephone Handset Audio Tap available from

BK Audio Products. Recordings were made using an ordinary telephone handset in a

quiet office environment. 42 male, native-born, speakers of English were recruited to

participate in the recordings. Speakers provided either one or two recording sessions for

a total of 59 sessions. When 2 sessions were provided, they were made on different days.
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Figure 6.2: Training Text

Each recording session was carried out using two types of read text. The first type was a

newspaper story of about 4 minutes in duration, as shown in Fig. 6.2. The second type

consisted of a list of 20 different 5- to 7-word long sentences that were automatically

generated according to a supplied word grammar and were both grammatically and

syntactically correct. An example of one such set of 20 different utterances is shown

in Fig. 6.3. The 4-minute newspaper story was the same for all recording sessions. A

different 20-sentence list was used for each speaker and recording session.

6.2.2 Speaker Verification Evaluation

The experimental speaker set was divided into two sets. There were 17 speakers who

completed two recording sessions. These speakers were designated “customers” or target

speakers. The remaining 25 speakers, who each completed just one recording session

were designated “imposters” or false speakers. Target speaker models were constructed

using the 4-minute news story recorded in the speaker’s first recording session. Target

speaker test data was obtained from the 20-sentence list recorded in the speaker’s second
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Figure 6.3: Example of a set of 20 testing phrases used in Speaker Verification Evalu-
ation

recording session. Imposter test data consisted of all the 20-sentence lists recorded by

the 25 1-session speakers.

In speaker verification, test utterances are compared both with the target model

and a (jack-knifed) speaker background model. Speaker background models are used

to normalize and stabilize test scores and improve performance. Speaker background

models are ideally constructed from training data obtained from a large population of

speakers with a range of texts and under conditions similar to those used for training

target speakers. In this data collection there was an insufficient amount of data and

number of speakers to provide an independent universal background model for all target

speakers. Instead a different background model was constructed for each target speaker

consisting of the pooled training data from the remaining 16 target speakers.

Verification performance was measured in the following way. For each target speaker,

the 20 test sentences were compared with the target speaker and background speaker

models to provide a set of “true” speaker scores. In addition, the 20 test sentences

from each of the 25 imposters, for a total of 500 sentences, were also compared with

the target speaker and background speaker models to provide a set of “false” speaker

scores.
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Figure 6.4: Empirical true and false cumulative probability distributions for an indi-
vidual target speaker showing the equal-error threshold and rate

The true speaker and false speaker scores were sorted to provide empirical cumula-

tive true and false probability distributions of the scores, an example of which is shown

in Fig. 6.4. The value of the threshold at the intersection of the true and false score

plots is the so-called equal-error threshold. At this threshold, the estimated probabil-

ity of rejecting a true speaker test utterance is equal to the estimated probability of

accepting a false speaker test utterance. The estimated equal-error probability was the

figure of merit used for verification performance in this evaluation.

6.2.3 MATLAB Toolbox for Speaker Verification

Speaker Verification evaluations were initially carried out using a set of programs writ-

ten in C and C++ from AT&T Labs. To further development and research of the

Dynamic Pass-phrase Voice Security System, there was a requirement that a Speaker

Verification system be developed at Rutgers. Therefore, as a part of this work, a new

software implementation was written in MATLAB for the speaker verification evalua-

tion task that was described in Section 6.2.2. This implementation was base-lined on
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Spkr EER(%)

WS1 3.6

CM1 0.6

JW1 0.0

JM1 20.0

JS1 2.0

IS1 7.2

JW2 1.2

KM1 0.0

AM2 10.0

AG1 0.6

MA1 5.0

NR1 5.0

LR1 0.0

AR1 0.0

OH1 18.6

JD1 19.4

DG1 40.00

avg/mdn 7.6/3.6

Table 6.1: Equal Error Rates in % for the 17 speakers modeled by 32 mixture GMMs,
with feature vectors clipped at -35dB

results obtained from the AT&T Labs Speaker Verification system as shown in Fig. 6.5.

Table 6.1 shows experimental values of the equal-error rates for the 17 customers along

with the average(avg.) and the median(mdn.) error rates(The details of this run i.e.,

the number of mixtures, clipping level etc. are discussed in a later chapter.). To meet

the requirement of training speaker models with reduced amounts of training data,

additional routines in MATLAB were written to adapt target speaker models from a

speaker background model.

The layout of the MATLAB system is shown in Fig. 6.6. A main control script,

within which a number of system options can be set, controls the flow of execution.

The control script chooses the front end implementations(AT&T Labs or the MAT-

LAB Auditory Toolbox), chooses a target speaker(from the 17 customers) and a list of

background speakers, and enables one of the following:

 training “scratch” speaker models

 training of speaker background models
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Figure 6.5: Comparison of the AT&T and the MATLAB systems based on the Equal
Error Rates for each individual speaker(The EERs are normalized to 1, and are not
presented in % as mentioned in Table 6.1.). The speech vectors for training are clipped
at an energy threshold of -35dB, with 32-mixture GMMs used for target and background
models.
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 training of adapted speaker models

 testing and evaluating performance for a given set of verification system param-

eters

by calling on various scripts depending on the options that are chosen by the user.
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Chapter 7

Speech Verification Experiment

7.1 Training and Preparation

7.1.1 Training the Acoustic and Language Models

The acoustic models provided by CMU were trained on a subset of the CMU Com-

municator Corpus, which consisted of 124,760 utterances with a training dictionary of

9757 words and 55 phones. The feature vector for each frame of speech consisted of

a set of 13 mel-frequency cepstral, 13 delta mel-frequency cepstral and 13 delta-delta

mel-frequency cepstral coefficients, for a total of 39 features per frame. The acoustic

models were trained using three state HMMs with 32, 64 or 128 Gaussian mixtures per

state, and 2000 tied states. For the speech verification experiments discussed in this

thesis, acoustic models trained with 32 Gaussian mixtures per state were used.

The language model was trained using the Statistical Language Modeling(SLM)

Toolkit. The procedure for training a language model is provided in [40]. A traditional

tri-gram language model (using a backoff strategy for low count tri-grams) was created

using the given transcriptions and the dictionary provided with the CMU Communi-

cator Corpus. Care was taken to remove filler words and words that were used to

describe events in the transcription like /CLICK/ or /FEED/. Once the transcriptions

were stripped of these words, there remained 117,429 utterances in the reduced training

set.

7.1.2 Data preparation for the Speech Verification Experiments

A subset of 3000 utterances out of the 117,429 speech utterances, whose transcriptions

were used to train the language model, were used in the speech verification experiments.
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Figure 7.1: Original Transcriptions and Shuffled Transcriptions

The Sphinx setup uses a text file, called a “transcription” file to store transcriptions

of all the speech utterances. A “control” file contains the names of the files of the

speech utterances to which each transcription in the “transcription” file corresponds,

thereby providing a one-to-one mapping between a sentence level transcription and its

corresponding speech file. For the experiments performed in this research two subsets

of 3000 utterances were created, one in which the correspondence between sentence

level transcriptions and their speech files were maintained intact, and a second set of

transcriptions in which there was no correspondence between a sentence-level tran-

scription and its speech utterance. The first set of transcriptions were called “original”

transcriptions, and the second set was called the set of “shuffled” transcriptions.

The “shuffled” transcriptions were obtained by shuffling the set of “original” tran-

scriptions by using the Fisher-Yates Shuffle Algorithm [41] implemented in PERL, which

was taken from [42]. Fig. 7.1 shows examples of “original” and “shuffled” transcriptions

of several utterances.

7.2 The Speech Verification Experiment

The set of transcriptions that was used for training the language model was also used

for a speech verification experiment that is described in this section.
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For the experiment two sets of transcriptions were created. The first set, which we

call “original transcriptions”, were transcriptions that were correctly matched to their

corresponding speech utterances. Next, the “original transcriptions” were randomly

shuffled at the sentence level to create a second set of transcriptions, which essentially

removed the one-to-one correspondence between each speech utterance and its corre-

sponding word-level transcription. We call this set the “shuffled transcriptions” set.

The first step in the speech verification experiment was to use the trained acoustic

and language models to recognize a subset of 3000 out of the 117,429 speech utter-

ances, in order to provide a set of recognition hypotheses, along with acoustic and

language model likelihood scores for each word in each utterance. Only the acoustic

model scores were used; the language model scores were discarded. Next, the “origi-

nal transcriptions” were forced aligned with their corresponding speech utterances, to

give a set of what we call “original forced-aligned acoustic likelihood scores”. In the

same manner the “shuffled transcriptions” were forced aligned against the same set of

utterances to give “shuffled forced-aligned acoustic likelihood scores”.

Intuitively if an incorrect transcription is forced aligned against an utterance, the

acoustic likelihood score for that transcription should differ greatly from the score for

the correct word transcription. The best acoustic word score that can be achieved

occurs when the recognizer gets to consider all possible word sequences; however dur-

ing forced alignment all that the recognizer had to work with was the transcription

that was provided. There was no formal language model used during forced-alignment.

Therefore following this rationale, we argue that the difference between the acoustic

recognition score for an unconstrained utterance and for forced alignment of the same

utterance against its correct transcription should essentially be zero. Similarly the dif-

ference between the unconstrained recognition score and the forced alignment score

to an improper word transcription should be much larger and should vary widely de-

pending on the degree of word mismatch in the shuffled transcriptions. Therefore if

we create a plot of the distributions of these two difference scores, for the first case we

would expect a distribution that was essentially an impulse at zero, and for the second

case we would expect a spread out distribution with a long tail.
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Figure 7.2: Plot of the Difference Scores

Figure 7.3: Plot of the CDF of the Difference Scores
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Fig. 7.2 shows histogram plots of the measured difference scores for both sets of

data. (These histogram plots essentially are estimates of the probability density func-

tions of the difference scores for each of the two sets of data.) The distribution of

the unconstrained recognition scores minus the constrained recognition score for the

correctly transcribed utterance is shown in Fig. 7.2 and is seen to essentially be an im-

pulse around zero value. The distribution of the unconstrained recognition score minus

the constrained recognition score for an incorrectly transcribed utterance is the second

histogram in Fig. 7.2 and is seen to have a mean that is significantly above zero and a

large variance (as compared to the variance of the first distribution).

The point at which the two distributions of Fig. 7.2 intersect is called the Equal

Error Threshold (EET) and the integrated value of the area under the curve from the

Equal Error threshold to infinity (for the impulse-like distribution) is called the Equal

Error Rate (EER). In order to estimate the EET, it is convenient to plot the cumulative

distribution function for the two classes, as shown in Figure 7.3. It can be seen in this

figure that the EET is slightly above zero, and the EER is a small fraction of 1%; i.e.,

there is virtually no overlap between the two distributions.

7.3 Conclusion

Based on the results of Figs. 7.2 and 7.3 it can be seen that the Sphinx Speech Rec-

ognizer can reliably (and essentially with no error) distinguish spoken sentences that

do not exactly match the provided transcription from those that do exactly match

the provided transcription. Hence it can be concluded that the speech verification en-

gine performed its desired task well, namely guaranteeing that the speaker spoke the

requested sentence, and with negligibly small error rate.
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Chapter 8

Speaker Verification Experiments

8.1 Preliminaries

Before discussing performance of the speaker verification system, we begin with a dis-

cussion of convergence issues of the training algorithms, namely the Vector Quantization

and the Expectation Maximization algorithms that were discussed in Chapter 5. Fur-

ther it is well known that training large speaker background models is a challenging task

since the EM algorithm is known for its high space and time complexity. Therefore, we

propose and show the properties of a simple decimation technique which significantly

speeds up the training process, with essentially no loss in accuracy of the resulting

speaker verification system.

8.1.1 Convergence of the VQ and EM Algorithms

Figs. 8.1-8.3 illustrate the convergence properties of the VQ and EM Algorithms that

were implemented as a part of the MATLAB Toolbox that was discussed in Section

6.2.3. Fig. 8.1 shows how the global average distortion(of the VQ design method) is

reduced as the code-book size increases. Fig. 8.2 shows the convergence of the VQ global

average distortion to within a specified threshold when a 64-element VQ code-book is

created from a 32-element VQ code-book after a binary split. Finally Fig. 8.3 shows

the convergence of the value of the log-likelihood of the model being estimated(via

the EM method) with increasing number of iterations. Though the figure does not

explicitly show convergence of the log-likelihood within the threshold, such convergence

is guaranteed by increasing the number of iterations beyond 5. The performance gained

by running the EM method for more than 5 iterations is negligible, and thus all results

presented here are based on 5 iterations of the EM method.
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Figure 8.1: A plot showing the decreasing log-average distortion as a function of the
number of bits needed to represent the number of elements in the code-book as a power
of 2.
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Figure 8.2: A plot of the average distortion showing the convergence of VQ Algorithm,
while creating a 64-element code-book after a binary split on the corresponding 32-
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Figure 8.3: A plot of the log-likelihood showing the convergence of the EM Algorithm,
for a 64-mixture GMM, where the starting point was the VQ code-book whose conver-
gence plot is shown in Fig. 8.2.
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8.1.2 A method to speed up background model training

Training speaker background models with large amounts of training data(order of

384,000 vectors) is quite a time consuming and memory intensive task. In fact, it is

virtually impossible to run efficient vectorized implementations of training algorithms

in MATLAB, while using large amounts of training data to train background models

with the order of K ≥ 128 mixtures, due to insufficient virtual memory.

In training speaker background models, the training data consists of speech pooled

from a large number of speakers(16 in our experiments). In speaker verification tasks,

such as the one described in Chapter 6, where the enrollment data consists of large

amounts of read text(order of 4 minutes/talker), neighbouring speech frames from the

training data of a single background speaker(or an impostor), tend to be highly corre-

lated. Taking advantage of the large amount of data pooled in from various background

speakers and the high degree of correlation among adjacent speech frames, the process

of training background models can be significantly speeded up by down-sampling the

speech frames used from each background speaker’s training data. This process of

down-sampling, which is called decimation, can be employed by selecting one frame out

of every N frames or in other words by decimating the number of training frames from

a background speaker’s training data by a factor of N : 1. The decimation factor N is

empirically determined for a given training set and depends on the number of mixtures

being employed to train the background model. The performance loss is negligible,

with a large reduction in the time required to train a background model. For the given

speaker verification database, based on experimentation, the decimation factor N was

chosen as given in Table 8.1. For training models with up to 128 mixture components, a

decimation factor of 32 is appropriate reducing the training set size to about 12,000 vec-

tors, or about 120 vectors per mixture on average. For training models with more than

128 mixture components, the decimation factor is reduced to keep about 120 vectors

per mixture; hence we only decimate by a factor of 4 for 1024 mixture models.

To see the effect that decimation has on the VQ procedure, it is illustrative to look

at plots of the variation of the global log-average distortion as the number of elements
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Number of Mixtures Decimation factor N

2-128 32

256 16

512 8

1024 4

Table 8.1: Decimation Factors that are chosen depending upon the number of mixtures
in the background model

64 mix. 128 mix. 256 mix. 512 mix.

Decimation 41.04 s 180.95 s 520.58s 1386.22 s

No Decimation 1628.34 s 6369.3 s 13503.5 s ≥25000 s

Table 8.2: Comparison of the approximate training time in seconds for background
models with increasing number of mixtures. It can clearly be seen that employing
decimation greatly speeds up training with little or no loss in accuracy.

in the VQ code-books increase. Fig. 8.4 and Fig. 8.5 show that nothing is gained by

retaining a larger number of highly correlated frames, and that the process of decimation

has little or no effect on the final computed code-book vectors of the VQ-codebook.

Further to see the effect that the decimation process has on the EM procedure

it is illustrative to look at the convergence of the log-likelihood value both with and

without decimation being employed. Fig. 8.6 shows one such plot. The figure shows

that though the two values of the likelihoods are numerically fairly close to one another,

the value of the likelihood when decimation is used is slightly higher than when using

the full training set(i.e., without decimation). This is true in almost all instances where

decimation is employed.

Thus, the process of decimation yields a model that is very close to the actual

one and yields performance that is very similar to a background model that is trained

without decimation. The real advantage of decimation though can only be appreciated

if one looks at the comparative values of the amount of time that is needed to train a

background model both with and without decimation. Table 8.2 shows that the amount

of time that is saved in training background models by employing this simple process

of decimation is substantial.
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8.2 Speaker Verification Experiments

A series of experiments was undertaken to evaluate the performance of the speaker

verification system of Section 6.2.3. As described in Section 6.2.2 the figure of merit for

verification performance is the equal-error rate(EER). The set of speaker verification

experiments and their results are presented in three sets in this section.

First, the performances results are presented for both front-end implementations

that were described in Chapter 4. The goal of this first step was to determine which

of the two front-end implementations better suited the speaker verification task at

hand. Next the impact of using different configurations of MFCC feature vectors on the

speaker verification task was studied. Following this, the next set of experiments show

the effect of reducing the amount of training data on the equal-error rate performance.

It will also be shown that there is an advantage of using adapted speaker models over

scratch models for limited amounts of training data. The results of all experiments

are shown in the form of the variation of mean equal-error rate as the the number of

mixture components in the GMMs vary from a small number of components to a large

number of components. The last set of experiments investigate the performance impact

of:

 using longer test utterances

 using two-sessions of training data for scratch models

 a technique called variance limiting on scratch models trained with limited amounts

of training data

The baseline results were already presented in Table 6.1 of Section 6.2.3 in the con-

text of comparing the MATLAB and the AT&T speaker verification systems. Table 6.1

shows individual equal error rate performance for models with 32-component GMMs.

The features used were 12 MFCC coefficients appended with 12∆ MFCCs. An energy

clipping level of -35dB was used, where speech frames whose relative energy fell below

this threshold level were clipped or discarded. The mean and the median equal-error

rates for the 17 customers are shown in the last row. It can be seen that there is a large
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Figure 8.7: Mean EER values for models of size 2-128 mixtures, at clipping levels of
-35dB,-40dB and -100dB, for the MFCC implementation from AT&T Bell Labs

variation in individual speaker performance. The mean equal-error rate was 7.6% while

the median was 3.6%. For one speaker, DG1, the equal error rate was 40.0% which was

unacceptably large. Another 4 speakers have equal-error rates between 10% and 20%,

while 8 speakers had equal-error rates less than 2%.

8.2.1 Experimental evaluation of the AT&T and the MATLAB Audi-

tory Toolbox front-end implementations

Two different MFCC feature extraction implementations were studied as a part of this

thesis. The details of the two different implementations(AT&T and the MATLAB Au-

ditory Toolbox) were discussed in Chapter 4. The goal of the first experiment was to

determine which of the two MFCC feature extraction implementations provided the

highest performance for the database of Chapter 6. The key variables of the system
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-35dB,-40dB and -100dB, for the MFCC implementation from the MATLAB Auditory
Toolbox
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Spkr EER(%)

WS1 0.00

CM1 0.20

JW1 0.00

JM1 19.20

JS1 0.00

IS1 5.00

JW2 0.40

KM1 0.00

AM2 5.00

AG1 0.60

MA1 8.60

NR1 2.20

LR1 0.00

AR1 0.00

OH1 10.60

JD1 5.00

DG1 30.00

avg/mdn 5.11/0.6

Table 8.3: Equal-error rates in% for the individual speakers along with the average and
the median equal-error rate in the last column. 12MFCC+12∆ MFCC features were
extracted using the AT&T Front end implementation, with energy clipping maintained
at a -100dB level. Each speaker is modeled by 128 mixture GMMs.
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were the number of mixtures, K, in the GMM speaker and background models and

the energy clipping level. The features used here again were 12 MFCCs appended with

12∆ MFCCs. For both front-end implementations, the variation of the mean equal-error

rate is presented as the number of mixtures vary from 2-128. This experimental evalu-

ation was repeated for three energy clipping levels namely -35dB, -40dB and -100dB. It

must be noted that though the front-end implementations are different, the Gaussian

Mixture Models trained as a result, used the same implementation (the MATLAB im-

plementation discussed in 6.2.3 and 8.1.1) of the training algorithms (namely the VQ

and the EM Algorithms). Fig. 8.7 displays these results for the AT&T Labs front-end

implementation and Fig. 8.8 displays these results for the MATLAB Auditory Toolbox

front-end implementation. Fig. 8.9 combines results from both these experiments.

Looking at both plots(Figs. 8.7 and 8.8) the first general trend one notices is that

the performance steadily improves as the number of mixtures in the models increase.

Usually choosing a model order(the number of mixtures K) is in general a non-trivial

task and is heavily dependent on the nature and the amount of training data available.

It is also dependent on the dimensionality and the nature of features used. It can, in

general, be said that with sufficient training data, increasing the model order allows the

model to capture a greater number of speech variations that occur in the training data.

Increasing the model order beyond a point however tends to deteriorate performance,

if there is insufficient training data to accurately fit the model. Higher model orders

also cause a significant increase in the computational complexity for both training and

testing.

Energy clipping is an important part of the the front-end processing (see Chapter 4).

The source of low energy vectors is either background noise or low energy speech sounds.

It is believed that eliminating these low-energy vectors from the training set of the

speaker models would lead to performance improvements. However, a contrary point

of view takes the position that including all data available in the recordings of speech

samples leads to better models and performance. As stated in Chapter 4, low energy

vectors are simply trimmed by omitting vectors whose log energy falls below a specified

level relative to the peak log energy in sample utterances for both training and test
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utterances. As mentioned earlier, the effect of three clipping levels on the performance

is investigated, namely -35dB, -40dB and -100dB. At a level of -35dB approximately

40% of the vectors are omitted, at -40dB approximately 30-35% of the vectors are

omitted, while at -100dB no vectors are omitted.

From the performance plots for the AT&T front end implementation(Fig. 8.7) it can

be seen that while the performance at higher trimming levels of -35dB and -40dB are

comparable, the performance with no energy trimming(-100dB) is uniformly better.

On the other hand from the performance plots for the MATLAB Auditory Toolbox

front end implementation(Fig. 8.8) it can be seen for all energy trimming levels the

performance is comparable for smaller size models(≤ 64 mixtures), while for larger size

models(> 64 mixtures) the performance with no energy trimming(-100dB) is signifi-

cantly better.

Overall, it can be argued that including all the training data for speaker modeling

prove to be a definite advantage. It should be noted that both the training and testing

data were of reasonably good quality and were hand endpointed. It is therefore highly

likely that energy trimming might be more advantageous with lower quality data and

less accurate endpointing.

To compare the performance between the two front-end implementations the per-

formance plots for both front-ends are shown on a common plot in Fig. 8.9. Among all

the different configurations of clipping levels and front-end implementations it can be

seen that one configuration, namely the AT&T front-end implementation at a clipping

energy level at -100dB emerges as the highest performance implementation. For this

configuration the best performance was for models of size 128 mixtures. The individual

speaker equal-error rates for this configuration are presented in Table 8.3. By examin-

ing the plots in Figs. 8.7-8.9 one can also draw the conclusion that speaker verification

performance is, in fact, sensitive to the configuration of the filters in the Mel filter bank.

The AT&T front end configuration is thus better tuned to extracting more perceptually

important features that are vital to the speaker verification task.
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Figure 8.10: A comparison of the performance of different choices of features
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8.2.2 Experiments to determine the best configuration of features

The next set of experiments deal with investigating the best configuration of MFCC

features to use for the speaker verification task. The feature configurations explored

are 12 MFCCs, 12MFCC+12∆ MFCC, 12MFCC+12∆ MFCC+12∆∆ MFCCs and 12∆

MFCCs. Following from the first set of experiments, an energy clipping level of -100dB

was used, and the features were extracted using the AT&T front end implementation,

for all the feature configurations explored. Also, the number of mixtures, K, is varied

between 2-128 mixtures as was done for the first set of experiments, for all feature

configurations.

The results of the experiments are shown in Fig. 8.10. The role and importance of

using difference coefficients was discussed in Section 4.1. In the same section it was

also mentioned that the difference coefficients alone do not perform as well as the static

MFCC features. This can clearly be seen in the plot where the performance using only

∆MFCC vectors was significantly worse than any other feature vector choice. On the

other hand the best overall performance is obtained by using 12 MFCC appended with

the first difference coefficients. The performance of the two remaining feature sets(the

MFCC alone and the MFCC+∆MFCC+∆∆MFCC) was somewhat worse than the

performance using MFCC+∆MFCC over the range 2 ≤ K ≤ 64 mixtures. For 128

mixtures however, the performance of the 12 MFCCs appended with the first and

second differences seemed to match the performance of 12 MFCCs appended with the

first difference coefficients.

By using features consisting of 12 MFCCs appended with first and second difference

frames, we are essentially increasing the dimensionality to 36 features. Increasing the

dimensionality is much of a debated issue in Pattern Recognition literature. While

adding additional features may aid in incorporating extra information in order to boost

performance, there are certain caveats. Higher dimensional features demand increased

computational complexity. Further, higher dimensional features require the use of more

complex models. It is clear from Fig. 8.10 that for the 36-dimensional features, the lower

order and simpler models just cannot capture all the variations of the feature set in
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the higher dimensional feature space. As the number of mixtures increase, the GMMs

start to better model the variations in the features in the higher dimensional space. It

will be seen, in the subsequent experiments, that as the model size grows larger the

performance using these higher dimensional features dramatically improves.

8.2.3 Experiments with reduced training and Bayesian Adaptation
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Figure 8.11: A comparison of the performance of Bayesian Adaptation with a single
adaptation step and four iterations vs scratch model training. 12MFCC+12∆ MFCC
were used as features.Top Left:30 sec of Training;Top Right:1 min of Training;Bottom
Left:2 min Training;Bottom Right:4.25 min of Training of training.

As indicated at the beginning of Section 8.2, target models constructed by adapting

speaker background models using Bayesian adaptation techniques can be advantageous

when relatively small amounts of training data are available. To obtain good perfor-

mance the background models should be constructed from large amounts of training
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Figure 8.12: A comparison of the performance of Bayesian Adaptation with four it-
erations vs scratch model training. 12MFCC+12∆+12∆∆ MFCC were used as fea-
tures.Top Left:30 sec of Training;Top Right:1 min of Training;Bottom Left:2 min Train-
ing;Bottom Right:4.25 min of Training of training.
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Training no. of components
dur(mins) 64 128 256 512

All 5.6/2 5.1/0.6 4.6/0.6 4.2/0.4

2 6.6/3.4 5.9/2.0 5.3/1.2 6.3/0.8

1 6.6/2.8 6.8/5.0 7.4/5.0 7.6/4.8

0.5 8.3/5.0 9.0/5.0 9.8/5.0 -

Table 8.4: Average and median (avg/mdn) equal-error rates in% as a function of train-
ing data and no. of mixture components for scratch models. No energy trimming is
performed and the features used are 12MFCC+12∆MFCC.

Training no. of components
dur(mins) 64 128 256 512

All 6.0/4.6 4.6/2.8 4.6/3.2 4.3/1.8

2 6.6/3.8 5.1/2.4 4.8/5.0 4.9/0.8

1 5.9/4.2 5.5/4.0 5.7/5.0 5.6/5.6

0.5 6.7/5.0 5.7/5.0 6.2/5.2 6.9/5.0

Table 8.5: Average and median (avg/mdn) equal-error rates in% as a function of train-
ing data and no. of mixture components for adapted models. Four iterations of adap-
tation were employed. No energy trimming is performed and the features used are
12MFCC+12∆MFCC.

data from many speakers. The number of mixture components should also be large to

give adaptation a chance to capture features closely matching the target speaker. To

illustrate the effects on performance of adapted models with reduced training data we

have selected the -100dB trimming level that results in no vectors omitted from either

the test or training data.

The results are presented with the first feature set consisting of 12MFCC + 12∆MFCC

features and the second feature set consisting of 12MFCC + 12∆MFCC + 12∆∆MFCC

features. Reference results for models created from scratch are shown in Table 8.4 for

the first feature set and in Table 8.6 for the second feature set. Results for models cre-

ated by Bayesian adaptation of speaker background models, in which the adaptation is

iterated 4 times(there are indications that slightly better performance is obtained with

adaptation iterated 4 times as compared with a single adaptation step), are shown in

Table 8.5 for the first feature set and in Table 8.7 for the second feature set. Results are

shown as a function of the amount of training data, ranging from all the training data

(approx. 4.25 mins. average), 2 min.,1 min. and 0.5 min. of training data, and the
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Training no. of components
dur(mins) 64 128 256 512

All 7.0/4.4 5.1/2.2 4.8/0.6 4.1/0.4

2 6.6/5.0 5.7/1.8 5.26/0.8 5.85/0.6

1 6.2/3.3 6.1/3.9 7.1/1.6 7.8/4.1

0.5 8.6/5.0 8.2/5.0 - -

Table 8.6: Average and median (avg/mdn) equal-error rates in% as a function of train-
ing data and no. of mixture components for scratch models. No energy trimming is
performed and the features used are 12MFCC+12∆MFCC+12∆∆MFCC.

Training no. of components
dur(mins) 64 128 256 512

All 7.0/5.0 5.1/2.0 4.2/1.8 3.4/0.8

2 7.4/5.0 5.7/2.9 4.7/1.6 4.17/1.0

1 6.9/5.0 5.7/4.5 5.7/4.0 5.1/2.3

0.5 7.3/8.1 6.6/5.0 6.9/5.0 6.0/3.8

Table 8.7: Average and median (avg/mdn) equal-error rates in% as a function of train-
ing data and no. of mixture components for adapted models. Four iterations of adap-
tation were employed. No energy trimming is performed and the features used are
12MFCC+12∆MFCC+12∆∆MFCC.

number of mixture components, ranging from 64 to 512. Fig. 8.11(for the first feature

set) and Fig. 8.12(for the second feature set) combine these results into four different

plots(one each for the amount of training data) that are displayed together. For the

purpose of comparison, in Fig. 8.11, the mean equal-error rates for the adaptation of

the speaker models with a single adaptation step are also presented.

For the reference results the general trend, as expected, is that performance degrades

as the amount of training data decreases. In addition, when all the training data is

used performance increases as the number of mixture components increases up to 512

components. However, as the training data is truncated performance degrades for

models with large numbers of mixture components. This is expected since smaller

amounts of training data cannot adequately support large models. In the most extreme

conditions, namely 0.5 mins. training data and 512 components for the first feature

set, and 0.5 mins. training data and 256 and 512 components for the first feature set,

no models can be constructed because the amount of training data per component falls

below the allowable threshold set for the computation.
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For the results for models created by adaptation of background models, the same

general degradation in performance is seen as the amount of training data decreases.

However, the degradation is significantly less than the case with no adaptation. In

addition, for the most part, performance actually improves as the model size increases,

even for smaller amounts of training data. The contrast in performance between scratch

and adapted models can be seen clearly for both feature sets from the plots in Figs. 8.11

and 8.12. As an example for the first feature set, for 2 mins. of training data and

512 components the scratch model equal-error rate was 6.3% while the adapted model

performance was 4.9%. From Fig. 8.11 it can also generally be inferred that slightly

better performance is obtained for adapted models where the adaptation was carried

out with 4 iterations. For both feature sets, even when using all the training data

available, models created by adaptation of background models performed generally

as well or better than scratch models. An additional observation that can be made

for scratch versus adapted model performance is that the median equal-error rate is

generally higher for adapted models compared with scratch models. This indicates a

more uniform performance across speakers for adapted models.

It is also important to determine which among the two feature sets actually gave

better performance. For this it is instructive to look at the plot in Fig. 8.13, which

collectively plots the average equal-error rates for target models obtained by adaptation,

by iterating four times. Between the two it is clear that the performance of the 36

dimensional features consisting of 12MFCC + 12∆MFCC + 12∆∆MFCC is superior.

Even though a degradation in the performance is observable for this feature set as the

amount of training data is reduced, it is clear that the degradation in this case is much

lower. For example for 0.5 min of training, adapted models with 24-dimensional features

had a mean equal-error rate of 6.9% compared to 6% in the case of 36 dimensional

features. In fact, the lowest equal-error rates, for different amounts of data, were

obtained using the 36-dimensional feature set with adapted models with 512 mixtures.

The lowest equal-error rate 3.4% was obtained with this configuration, while using

all available training data. The individual equal-error rates for this configuration are

shown in Table 8.8.
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Spkr EER(%)

WS1 0.0

CM1 0.6

JW1 0.0

JM1 10.4

JS1 0.8

IS1 3.5

JW2 0.2

KM1 0.2

AM2 5.0

AG1 0.4

MA1 5.6

NR1 1.9

LR1 0.0

AR1 0.0

OH1 10.4

JD1 4.4

DG1 15.0

avg/mdn 3.4/0.8

Table 8.8: Equal-error rates in % for 17 speakers, for adapted models with 512 mixtures,
trained using 4.25 min. of training data. The features used were 12MFCC + 12∆MFCC
+12∆∆MFCC.

8.2.4 Experiments with longer testing utterances and two-session train-

ing

Average and median equal-error rates as a function of test trial length and number

of mixture components for both target and background speaker models are shown in

Table 8.9. Test trial length refers to the number of test utterances used in a single test

trial. Recall that there were 20 test utterances available for each speaker. When the test

trial length was set to 1 there were 20 test trials for each speaker each comprising 1 test

utterance. When the test trial length was set to a number greater than 1, successive

test utterances were combined to form a test trial. Thus when the test trial length

was set to 2, the first test trial comprised test utterances 1 and 2, the second trial,

test utterances 3 and 4, and so forth. When the test trial length was 2 there were 10

test trials per speaker and when the test trial length was 3 there were 6 test trials per

speaker. Because the number of test trials for the true speaker was reduced significantly

when the test trial length was increased, a control experiment was carried out in which



86

the number of test trials remained at 20 by overlapping the test utterances for each

trial. Thus, for test trial length set to 2, the first test trial consisted of test utterances

1 and 2, the second, 2 and 3, the third 3 and 4, and so forth. In this case the test

trials were no longer independent. However, the results for overlapped test trials were

essentially the same as non-overlapped test trials.

The results shown in the table indicate that performance improves both as the num-

ber of mixture components and the test trial length increase. However, performance

improvements are greater as a function of test trial length. The best performance

obtained, for test trial length equal to 3 and 128 mixture components averaged 3.2%

equal-error rate with a median equal-error rate performance of 0. Although the per-

formance has improved significantly over the baseline performance, there is still a large

discrepancy between the average and median error rates.

Individual equal-error rates for this combination of conditions are shown in Ta-

ble 8.10. Comparing the performance in this table with the individual performances

shown in Table 6.1 it can be seen that there are significant improvements for almost

all speakers. 11 speakers now have equal-error rate equal to 0. However, the error rate

for speaker DG1 has improved only from 40.0% to 33.3%. It turned out that there was

marked difference in sound quality between the two recording sessions for this speaker.

Since the training utterances were from session 1 and the test utterances were from

session 2, it follows that there was a significant mismatch between the reference and

test conditions for this speaker. Because of the mismatch, test trials for this speaker

would be repeatedly rejected. In this situation the customer could request retraining to

produce new models. The data obtained from the new training session could then be

combined with the original training data to provide a new model. This newly trained

model should incorporate the mismatched conditions and thereby be tolerant of test

utterances matched to either of the conditions. Although we did not have sufficient data

from target speakers to simulate this situation, we could provide a flawed simulation

by retraining the speaker model incorporating the data from both recording sessions

and retesting. The flaw is that the testing data is no longer independent of the training

data since it comes from the same session as half of the new training data.
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test no. of components
length 32 64 128

1 utt. 7.4/1.6 6.3/1.8 5.2/1.0

2 utt. 5.8/0.8 3.7/0.4 3.9/0.0

3 utt. 3.7/0.0 3.5/0.0 3.2/0.0

Table 8.9: Average and median (avg/mdn) equal-error rates in % as a function of no.
of mixture components and test trial length

Spkr EER(%)

WS1 0.0

CM1 0.6

JW1 0.0

JM1 16.7

JS1 0.0

IS1 1.3

JW2 0.0

KM1 0.0

AM2 0.0

AG1 0.0

MA1 0.0

NR1 1.3

LR1 0.0

AR1 0.0

OH1 0.0

JD1 2.0

DG1 33.3

avg/mdn 3.2/0.0

Table 8.10: Individual Equal-error rates for 17 speakers with 3 utterances per test trial,
128 components GMMs and -35dB energy trimming level

test no. of components
length 32 64 128

1 utt. 3.4/0.6 3.2/0.4 2.2/0.4

2 utt. 2.0/0.0 1.1/0.0 0.6/0.0

3 utt. 0.8/0.0 0.4/0.0 0.2/0.0

Table 8.11: Average and median (avg/mdn) equal-error rates in % as a function of no.
of mixture components and test trial length with 2-session training
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The results for such 2-session training are shown in Table 8.11. It can be seen

that these results are greatly improved. The best result, for 3-utterance test trials

and 128 components was just 0.2% average equal-error rate and 0.0% median. These

results are only suggestive, however, because of the above-mentioned flaw and it should

also be kept in mind that all the target speakers here have retrained, not just the

markedly mismatched speaker DG1. A more representative condition is to substitute

the 2-session performance only for DG1. With 2-session training this speaker’s error

rate falls to 0 and the revised performance for 3-utterance test trials and 128 component

models becomes 1.2% average equal-error rate and 0.0% median equal-error rate.

8.2.5 Experiments with variance limiting

Training no. of components
dur(mins) 64 128 256 512

All 5.6/2 5.1/0.6 4.6/0.6 4.2/0.4

2 6.6/3.4 5.9/2.0 5.3/1.2 6.3/0.8

1 6.6/2.8 6.8/5.0 7.4/5.0 7.6/4.8

0.5 8.3/5.0 9.0/5.0 9.8/5.0 -

Table 8.12: Average and median (avg/mdn) equal-error rates in % for scratch models
with no variance limiting applied to the nodal variances

Training no. of components
dur(mins) 64 128 256 512

All 5.75/2.2 5.27/1.2 4.4/0.6 4.5/0.6

2 5.5/2.8 5.9/2.4 5.5/1.0 5.9/2.6

1 6.0/2.4 6.9/5.0 7.3/3.4 7.7/5.0

0.5 8.3/5.0 9.6/5.0 9.6/5.0 -

Table 8.13: Average and median (avg/mdn) equal-error rates in % for scratch models
with variance limiting applied to the nodal variances.

When there is insufficient data to reliably estimate the values for the variances of

the Gaussian mixture components can become quite small in magnitude. These small

variances produce a singularity in the model’s likelihood function and could degrade

verification performance.

In order to avoid these singularities, a variance limiting constraint was applied to

each variance value along each dimension of the D × D covariance matrix(recall that
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D is the number of features in each feature vector), for each component mixture of the

Gaussian density. Therefore for a particular Gaussian the mixture, the variance value

σ2
i for i = 1, . . . , D the variance limiting constraint is applied as,

σ2
i =







σ2
i if σ2

i > mσ2
i
− vσ2

i

mσ2
i
− vσ2

i
if σ2

i < mσ2
i
− vσ2

i

where was mσ2
i

the estimate of average value of σ2
i and vσ2

i
was an estimate of the

variance of σ2
i in the ith dimension, calculated over all mixture components. The

limiting therefore seeks clips the variance at a value one standard deviation away from

the mean variance value. This limiting was applied after each iteration of the EM

procedure.

Tables 8.12 and 8.13 show results for the cases where scratch model training was

carried out with and without variance limiting. The results indicated that applying

variance limiting does not really help nor hurt. One could draw the conclusion that

for majority of mixture components the values of the variances are closer to or greater

than the estimated average value of the variance, and do not become small enough for

variance limiting to have a major effect. In other words there seems to be enough data

to reliably estimate the variance components.

8.3 Conclusions

The following conclusions can be drawn from the experimental results. Models created

by adaptation of background models perform as well or better than scratch models.

The advantage is especially significant when only smaller amounts of training data are

available. Additionally, the 36-dimensional feature set with 12MFCC + 12∆MFCC +

12∆∆MFCC seems to be the best configuration of features to use along with Bayesian

Adaptation, while employing larger size models(≥ 512 mixtures). With respect to test

trial length, it was found that performance for test trials consisting of a single 5- to

7-word sentence utterance was associated with inadequate performance. Performance

improved significantly with 2-sentence test trials and continued to improve with 3-

sentence test trials. Mismatched training and test conditions can lead to markedly
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poor performance. It was shown that it was possible to remediate this condition if it

was detected by using an additional training session with additional data to retrain the

models. With respect to the amount of training data used to train models, it was shown

that performance degraded fairly steadily as the amount of training data was reduced.

It is best to enroll and train new speaker models with the greatest practicable amount

of training data.
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