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ABSTRACT OF THE THESIS

Feature Tracking of 3D Scalar Datasets in the ‘VisIt’

Environment

by Rohini M Pangrikar

Thesis Director: Professor Deborah Silver

Visualization of 3D scientific time varying datasets is a challenging task due to the

large amount of data to be processed. Such datasets can contain evolving patterns,

visualization of which can give an intuitive interpretation of a dataset under study. The

Vizlab at Rutgers has pioneered in the development of feature tracking of 3D scalar

datasets by isolating features or region of interest and tracking them over subsequent

time steps by using spatial matching. Once these features are extracted and tracked,

their evolutionary information can be used for iso-surface visualization by color coding

each feature such that evolving patterns are easy to follow.

This thesis presents the development of Feature Tracking of 3D scalar datasets in

VisIt, a free interactive parallel visualization and graphical analysis tool for viewing

scientific data. The implementation is divided into two modules. The first module,

implemented as ‘FeatureTrack’ operator plug-in, performs feature extraction, quantifi-

cation and stores iso-surface information for each timestep, then tracks features over

subsequent timesteps. The second module, implemented in conjunction with the ‘poly-

file’ reader plug-in, ‘TrackPoly’ operator plug-in and ‘PolyDataPlot’ plot plug-in, per-

forms visualization. Separation of visualization from feature tracking enables ‘selective

enhanced visualization’ so only features of interest are selected and tracked over time.
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Chapter 1

Introduction

Scientific data visualization is the field of science which represents the usually com-

plex and massive scientific data, through visual images. Such scientific data, often

referred to as a ‘dataset’, can be the output of scientific simulation, output data of any

laboratory experiments or sensor data in the fields of geology, medicine, physics, etc.

These datasets can be of various sizes and structures. Visualization of these datasets

is done using computer graphics to create visual images which can give an intuitive

interpretation of the data, this can aid in better understanding of the numerical data.

Scientific visualization is often a part of scientific process, where data visualization aids

in observing desired features or region of interest, certain anomalies or evolving pat-

terns. Customized computer graphics softwares, dedicated for scientific visualization

are mostly used for this purpose.

In addition, time varying simulations are part of many scientific domains. Time

varying datasets are outcome of experiments/simulations where a phenomenon is ob-

served over a period of time and samples of data are collected at regular intervals.

Such time varying simulations/observations are often used to study evolution of certain

physical phenomenon. An example of this is visualizing cloud data to observe evolv-

ing cloud patterns over a period of time. Such time varying datasets can be difficult

to comprehend by using standard visualization techniques [1]. Standard visualization

techniques which generally employ surface/volume animation can fail to capture impor-

tant features or evolving phenomenon, for example in the study of cloud formation over

time, standard visualization techniques do not highlight continuously evolving cloud

patterns effectively. Rather a technique is essential which can isolate region of interest
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or features and highlight these phenomenon over time [7]. It is essential to have a re-

gion based approach like feature tracking and feature quantification. Also, the standard

visualization tools available may not provide a quantitative description of the features

or region of interest. For such purposes an automatic feature tracking tool is required

which can highlight the stages in evolution of the desired features. This would essen-

tially reduce the amount of data to process and also aid the scientists to focus on the

region of interest by reducing the visual clutter. Nonetheless such a tracking tool needs

to tackle three primary issues:

1. obtaining desired features and their quantitative information

2. tracking them over time

3. visualizing the features such that their evolution over time is easy to understand.

Vizlab at Rutgers has developed an efficient feature tracking application for scalar

dataset in the AVS (Advanced Visualization System) environment [1, 7]. AVS is an

interactive visualization software which allows the user to add plug-ins to perform

specific visualization tasks [8]. The following steps describe the feature tracking process

in AVS. Figure 1.1 shows the AVS pipeline for Feature Tracking. The major steps are:

� Feature Extraction - First identify and segment features of interest in the

scalar dataset. Usually features are defined as threshold-connected components

(See section 2.1.1 for details)

� Feature Quantification - After feature extraction each feature can be quanti-

fied. e.g.: Mass, Centroid, Surface Area etc. can be calculated.

� Feature Tracking - Next the evolution of the extracted features is followed over

a period of time (See section 3.2 for details)

� Visualization and Event querying - Using the tracking information additional

visualization steps like ‘Event querying’, which involves gathering information of

evolution of features of interest, or even visualization of one object to view its

evolution with time are performed [2].
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Figure 1.1: Feature Tracking pipeline implemented in AVS [1]
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This Feature Tracking application has been successfully used by scientists from

various labs. However, since AVS is a licensed software, the use of this application is

restricted.

To make this application more useful it is essential to port the existing utility on

an open source scientific visualization platform. This thesis presents the porting of the

Feature Tracking utility developed earlier in AVS to VisIt [9]. VisIt, is a free interactive

parallel visualization and graphical analysis tool for viewing scientific data. This thesis

explores the VisIt environment for creating plug-ins to perform feature tracking and

visualization. It also explains in brief about VTK (Visualization Tool Kit [10]), its

format for data representation, which is inherently used in VisIt for all data modeling

purposes.

The organization of this thesis is as follows: Chapter 2 is an overview of the Related

Work done in this field. Chapter 3 gives the overview of the Feature Tracking algorithm

as implemented in AVS. Chapter 4 gives an overview of the VisIt platform and the VTK

datasets. Chapter 5 gives the implementation of Feature Tracking algorithm in VisIt.

Chapter 6 details the results obtained based on the code developed and the various

datasets tested. Finally Chapter 7 gives the limitation of the existing utility and pro-

poses future work. Also, Appendix A give the formats of the input/intermidiate/output

files created during Feature tracking and visualization. Appendix B gives the installa-

tion procedure for VisIt.
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Chapter 2

Related Work

2.1 Importance of Feature Tracking in Visualization

Time varying simulations/observations are often used to study the evolution of certain

physical phenomenon. This evolution information can help the scientists understand

and analyze the inherent process or factors that cause the evolution. At times such

information can help build predictive models. For example studying the cloud data to

understand the cloud evolution can help scientists build a weather prediction model.

Standard visualization techniques which rely on surface and/or volume animation

often fail to capture the evolving features and quantify their attributes. Scientists may

have queries such as, what is the centroid of the biggest feature? What is the shape

of the feature? What is its volume? In this regard, a feature tracking technique to

automatically extract the features and quantify them [7] becomes very useful.

2.1.1 What are ‘Features’?

In the context of Feature Tracking, ‘Features’ of the scalar datasets can be broadly

defined as the connected coherent structures. The features can be obtained based

on ‘threshold’ values, e.g., all the threshold connected components obtained using a

region growing algorithm [7, 11]. The parameters to define features differs based on the

application domain of the dataset.
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2.2 Existing 3D scalar data Feature Tracking algorithms

Existing 3D scalar field feature tracking algorithms can be broadly classified into four

categories which are briefly discussed below, please see [12] for a more in-depth discus-

sion:

(a) Attribute based feature tracking:

An attribute-based feature tracking algorithm was proposed in [13, 14]. The algorithm

extracts the features in each timestep and computes their attributes like size, location,

etc. These attributes are then matched with features from subsequent time steps in a

prediction-verification mode. Once the path of a set of feature’s is found, a prediction

is made by the authors using linear extrapolation with the path in the next timestep.

The prediction is then compared with the real features in the next frame and a search

for a match is performed. If one or more matches are found, they add the feature with

the best match to the end of the path and continue into the next frame.

(b) Higher dimensional iso-contouring based feature tracking:

A higher dimensional iso-contouring feature tracking is explained in [15]. This method

provides interactive tracking of user-selected local features. A local feature is defined

as a connected component from an iso-surface or an interval volume computed from a

scalar field. When tracking subsequent timesteps a 4D dataset is created from the two

frames and 4D iso-contour is obtained. The 4D iso-contour is further sliced to obtain

3D iso-surface.

(c) Surface propagation based feature tracking:

In [1] iso-surface propagation is used and the seed set of the data to track the surfaces

of the features. Surface propagation can identify merging, splitting, disappearance,

continuum of the features in subsequent timesteps. To identify newly formed objects,

a seed set is used.

(d) Overlapping based feature tracking:

In [16], five possibilities when tracking features in time varying datasets (continua-

tion, creation, dissipation, bifurcation or amalgamation of features over subsequent

timesteps) are defined. This classification is used in many volume tracking algorithms
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[17, 7, 11]. In Chapter 3 this methodology is explained in detail. The current feature

tracking algorithm in AVS is an overlapping-based feature tracking.

A feature is defined as a set of volume elements. These are extracted from the dataset

as a best of nodes which compose the feature. Once extracted the set of features can

be compared to the next timestep’s set of features. This tracking algorithm works in

two phases:

(1) VO-test: Overlap detection, which is to limit the candidates for best matching

(2) Best matching test: to find the correlation between features

Refer to section 3.2 for details of VO-test and Best matching test.

Use of Linked list Data Structure:

In [11], an overlapping-based feature tracking algorithm using a linked list data struc-

ture is described. Initially, features of a 3D scalar dataset are extracted generating an

object list. Each object list contains information of object id, attributes and all nodes

that are part of the object. After feature extraction of each timestep, all nodes of all

the features are sorted according to the node ids, generating a sorted node list. Refer

to section 3.2 for details.

Parallel and Distributed Feature Tracking:

The algorithm in [11] has limitation of handling large datasets due to limited processing

capabilities of the single processors. [18] explains feature tracking of large datasets by

using the powerful capabilities of parallel and distributed processing. In the distributed

algorithm feature merge scheme, uses a binary swap algorithm [19] to communicate

between processors. The tracking server sequentially operates on the output of the

distributed feature extraction system and tracks features. A ‘partial merge’ strategy

was also proposed. In this algorithm, after each processor does its own feature extrac-

tion, processors communicate with their immediate boundary neighbors to determine

the local connectivity. The partial-merge data (given as a set of tables) is enough to

reconstruct the full connectivity, which can be done by a visualization accumulator as

a preprocess step to visualization (Explanation cited from [12]).

[2] has given the detailed explanation of implementing feature tracking in distributed

mode. In this implementation each processor broadcasts the information of the local
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minimum and local maximum data values from which a global minimum and maximum

value of the data being processed in decided and used further for thresholding. [2] also

mentions about implementing the feature tracking for large dataset on a single machine

by simulating the behavior of multiple processors, such that subset of data processed

by each processor in parallel is now handled sequentially by the single processor. This

implementation was flawed as it would not find the global minimum or maximum for

thresholding, instead it would just use the local minimum and maximum of the subset

of data it was processing for the purpose of thresholding. This gave incorrect results.

As a part of this thesis, the flaw was removed by first finding the global maximum and

minimum value for thresholding and then using the same value for each subset of data

handled by the single processor sequentially.

AMR (Adaptive Mesh Refinement) Feature Tracking:

In [20] a distributed feature tracking process for AMR datasets is described. AMR is

used in computational simulations to concentrate grid points with varying resolutions

[21]. Because features can span multiple refinement levels and multiple processors,

tracking must be performed across time, across levels and across processors. The AMR

tracking can be viewed as a grid of levels vs. time. Since some of the computation

is redundant, tracking is computed temporally across the lowest refinement level and

then computed across spatial levels of refinement. When a new feature is formed at a

higher level of refinement it must be tracked in subsequent timesteps. The resulting

visualization is represented as a ‘Feature Tree’. (Explanation cited from [12])

In this thesis we build on the prior work done in Vizlab based on Feature Tracking

explained in section 2.2. In this thesis the feature tracking application is ported to

VisIt [9] and visualization module is separated from feature tracking module to provide

selective visualization.
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Chapter 3

Overview of the Feature Tracking Algorithm

Implementation

The feature tracking algorithm as implemented in the AVS (or VisIt) environment, can

be broadly divided into 3 parts (See Figure 3.1):

1. Feature extraction and quantification

2. Feature Tracking

3. Visualization of the Features

The current algorithm implementation handles only 3D structured dataset (rectilinear

 Data

Feature Extraction

Feature Tracking

Output attribute files:

1. .poly file

2. .attr file

3. .trak file

4. .uocd file

Output file:

1. .trakTable file

Visualization

Display

Input

Parameters

Execution

Figure 3.1: Implementation of Feature Tracking Algorithm

dataset type, refer section 4.5.2 for details).
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3.1 Feature Extraction and Quantification

The most important part of feature tracking is defining what features to track. General

methods like segmentation [22], volume intervals define features based on some con-

nectivity criteria. In the current implementation, the features are defined as connected

voxels, satisfying the threshold criteria [7]. These components are later visualized using

iso-surface routine. Following is the procedure to extract features:

1. Process Input:

a. Read the point data, point co-ordinates, cell connectivity of the dataset (field data

in AVS or vtkdataset in VisIt).

b. Mark all the points above user defined threshold. For all these points create a list

of cells incident on each point.

2. Object Segmentation (Figure 3.2 shows the Feature extraction and Object Seg-

Write attribute files

Figure 3.2: Feature Extraction, image taken from [1]

mentation process):

Segmentation works in a loop until all possible features are extracted. In each loop

start with a ‘seed’ defined as the highest unchecked data value above the threshold.

� Create a list of all the cells incident on each node with this data value. Mark the

node as ‘used’. Create a new object . Assign this object a unique object number.

� Based on the connectivity criteria [23] each cell is tested for inclusion in the
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object. Add all the cells which pass the inclusion test to the object’s cell list

and assigned each cell the object’s number (if the cell is not already assigned any

object number).

� If no cell in the object’s cell list has a previously assigned number, a new feature

is found. Increment the object count.

� If any of the cell is already assigned an object number implies that the current

object is connected to another object. Merge the current object’s cell list with the

previous object and assign the previous object’s unique number to all the cells in

current objects list. Delete the current object.

3. Feature Quantification:

Once the features are extracted, their attributes like its centroid, volume, mass, moment

are calculated and stored in files for each timestep.

3.2 Feature Tracking

Once the features are extracted, they are characterized by the following evolution of

Continuation, Bifurcation, Amalgamation, Dissipation or Creation1[7]. These events

are illustrated in the Figure 3.3

Continuation: Rotation or translation of the feature may occur and it may grow

in size or become smaller in the next timestep

Bifurcation: A feature separates into two or more features in the next time step

Amalgamation: Two or more features merge in the next timestep

Dissipation: A feature becomes weak and fades into the background i.e., it falls below

the threshold value

Creation: A new feature appears in the next timestep (it cannot be matched to

any feature in the previous timestep)

Matching features from one timestep to another is known as the correspondence

problem. [7] explains in detail the correspondence problem and the matching test for

1The definitions are taken from [7]
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Figure 3.3: Evolution of features over time [1]
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overlapping based volume (set of voxels) tracking, using octree data structure. Following

is the brief description of the overlapping based volume tracking [7] as implemented.

This tracking algorithm works in two phases:

(1) VO-test: Overlap detection, limits the candidates for the best matching test. For

each timestep create a list of all the nodes in each object and sort the list (See Figure

3.4). Compare the sorted list of timestep ti and ti+1 to detect overlap and store the

result in the overlap table.

Implementation of Overlap Detection test:

 

     

Figure 3.4: Sort Node lists from two subsequent timesteps for Overlap Detection, image
taken from [1]

 

Figure 3.5: Overlap Detection, image taken from [1]
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1. Create an Overlap table (2D array of size m*n where m and n are number of objects

in timesteps ti and ti+1 respectively)

2. Start from the first node in each of the sorted list for timestep i and subsequent

timestep i+1 respectively

3. Compare the values

4. If the values of the nodes match, update the overlap table corresponding to the

object no. to which each of the node belongs in timestep i and i+1.

5. Else if value of node in list 1 is > list 2 go to the next node in list 2 until the two

values match or the list 2 reaches its end

6. Else go to the next node in list 1 till the two values match or the list 1 is over.

After the overlap table is computed, it is used to do best matching. The best matching

test checks all combinations of overlap to determine whether an object continues in the

next timestep, or breaks up in two or more objects in the next timestep.

Figure 3.5 depicts the overlap detection process.

pseudo-code of overlap detection (taken from [1]):

pi /*pointer to nodes of timestep i */

pi+1 /*pointer to nodes of timestep i+1 */

while(pi < NumNodes1 or pi+1 < NumNodes2)

R1 = pi; R2 = pi+1;

if R1.NodeID == R2.NodeID

then Overlaptable[R1.NodeID, R2.NodeID]

pi++

pi+1++

else if R1.NodeID > R2.NodeId

then pi+1++

else

pi++

(2) Best matching test: Finds the correlation between the features (explanation

taken from [1]).
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The correspondence metric to find the best match is given as:

M = Oi
A ∗ −Oi+1

B

(Oi
A refers to a feature A in timestep i and

Oi
B refers to a feature B in timestep i+1 )

M = max(Oi
A −Oi+1

B , Oi+1
B −Oi

A )

The best match is the one minimizing M. If two objects exactly match, then M = 0.

Alternatively, the correspondence metric can be approximated as

M = Oi
A

⋂
Oi+1

B

This is maximized when two objects are identical. To normalize the result of matching,

R can be computed as below:

R = V olume(Oi
A

⋂
Oi+1

B )√
V olume(Oi

A)V olume(Oi+1
B )

 

Figure 3.6: Calculate Scoreboard to begin tracking of objects, image taken from [1]

Figure 3.6 depicts the scoreboard calculation to begin classification of features. Thus

to summarize, Feature Tracking algorithm works as follows, for the two consecutive

timesteps ti and ti+1 [1]:

1. Extract the features from the two datasets and store each in a sorted link list.
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2. Construct a forest which is nothing but union of all the features Oi
A (The Oi

A

refers to a feature A in timestep i) in given timestep

Fi =
⋃

p∈ti
Oi

p

Fi+1 =
⋃

q∈ti+1
Oi+1

q

/*Use Oi
p as template for matching */

3. For each feāture Oi
p ∈ Fi merge it into the forest,Fi+1, Identify all the

overlapping regions of Oi
p in ti+1. Store this in a list called OverlapOi

p[ ]

/*Determine bifurcation and continuation*/

4. For all combinations of features in OverlapOi
p[ ]

5. Compute Oi
p*-UOverlapOi

p[]

If the lowest difference is below the tolerance,

Mark Oi
p as bifurcating into the object and remove them all from the search space

Next Oi
p

/*Else, Determine Amalgamation*/

6. For each remaining feature in Oi+1
q merge it into the forest, Fi and test for amalga-

mation

/*This is the same as bifurcation with the inputs*/

7. Take the remaining Oi
p in ti as dissipation

8. Take the remaining Oi+1
q in ti+1 as creation

3.3 Visualization

Once the features are extracted and tracked visualization is performed using iso-surface

information (in AVS, visualization is performed for each time step after tracking and

in VisIt visualization is implemented as a separate module which runs after feature

tracking is completed). Each object in the first timestep has a color-code ( R,G,B

value) assigned to it (In AVS this color-code is based on volume, mass or randomly

based on the user option, in VisIt user can either write own colormap file or VisIt

assigns random colors). A color table is internally created based on the color-code for

each object. In the subsequent steps, objects are assigned colors based on tracking
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information.

When an object bifurcates in next timestep each child object has the same color as

 Two objects with different colors 
merge in next timestep

Merged object gets the color of 
the bigger of the two merging 
objects 

Figure 3.7: Coloring scheme when two objects merge, image taken from [2]

that of the parent object. When two or more objects merge, the new object gets the

color of the bigger object. Figure 3.7 shows color-coding scheme when two objects

merge in subsequent timesteps. If the object is created in a subsequent timestep, then

it is assigned a color based on the original coloring scheme selected.
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Chapter 4

VisIt

4.1 What is VisIt?

Scientific data visualization is an important part of many scientific experiments (see

section 1 for more details). With more and more powerful machines now available for

scientific computations, the datasets can be massive. With advancements in Computer

Graphics, the emphasis on realistic rendering of scientific data has increased. With

the efforts of many developers and research organizations, many open source scientific

data visualization tools are now available which can handle large datasets and provide

flexible functional modules for effective rendering. Some of these tools cater to specific

datasets like GGobi is an open source visualization tool for exploring high dimensional

data [24]. Another example is Paraview, which is an open source parallel visualization

application to efficiently handle large datasets on the distributed systems [25].

This thesis explains the feature tracking application developed in the VisIt envi-

ronment. VisIt is a free, open source, interactive, parallel visualization and graphical

analysis tool for viewing scientific data on the Unix and PC platforms. It has a rich

set of functionalities to handle scalar, vector and tensor field visualization. VisIt also

provides qualitative and quantitative analysis of rendered data. It is a platform which

supports multiple mesh types and is extensible with provision of dynamically loaded

plug-ins. It can handle large datasets and has parallel and distributed architecture for

visualization. In addition to these key features, VisIt is supported on multiple plat-

forms and supports C++, Python and Java interfaces which enables a user to provide

an alternate user interface or plug-in user created modules to VisIt (these key features

are described in [26]).
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4.2 VisIt Architecture

VisIt is composed of multiple, separate processes, which are sometimes referred to as

components. Figure 4.1 shows the interaction of various VisIt components. Table in

Figure 4.2 gives a brief description of the VisIt components1.

At the lowest level, these separate component programs communicate over sockets.

      Figure 4.1: VisIt components: Connectivity and Communication. Image taken from [3]

Since each of these components must communicate, a common protocol is needed to

simplify the passage of messages over the socket. VisIt uses state objects, which are

essentially C++ structs. State objects are sent over the socket in between VisIt com-

ponents and on either side, appropriate action is taken when they are received. Each

state object knows how to serialize itself onto VisIt’s sockets and can be reconstituted

on the other side of the communication once the entire state object has been read from

the socket. Two separate layers are built over the top of the sockets:

1. The first is for exporting state. The viewer keeps all of its state in various instances

of VisIt’s AttributeSubject class. UI modules subscribe to this state. Thus, when state

1the table is taken from [3]: The component-ized design of VisIt
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Figure 4.2: Description of the VisIt components [3]
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changes on the viewer, the AttributeSubjects automatically push this state out to its

subscribers.

2. The second is for remote procedure calls (RPCs). When a component wants another

component to perform an action, it issues an RPC. For example Viewer causing the

mdserver to perform an action, such as opening a file or Viewer causing the engine to

perform an action, such as drawing a plot. [State objects as defined in [27]]

4.3 Visualizing 3D Dataset in VisIt

VisIt has three kinds of plug-in to read a dataset, manipulate and visualize it. To

visualize a 3D dataset in VisIt, a pipeline consisting of a file reader, operator and plot

plug-ins can be created (in the GUI). Following is the brief description of each of these

plug-ins:

1. Database Plug-in:

This plug-in is loaded when the user selects a dataset file to read/open (mdserver shown

in the Figure 4.1 loads this plug-in). Depending on the file extension a database file

reader plug-in is internally loaded dynamically to read the file correctly. If VisIt does

not have a built-in reader for the data type, a user can write a new database file reader

plug-in. The dataset reader outputs the data in generalized vtkdataset (see section 4.5

for details of vtkdataset) format. Output of the plug-in is generally in the vtkDataset

format.

2. Operator Plug-in:

Once the data is read by the database reader plug-in, the data is now available to

be visualized. The input as well as output data to the plug-in is generally in the

vtkDataset format (see section 4.5 for details of vtkdataset format). Often, one wants

to manipulate the data or apply a filter to make the data visualization more meaningful.

VisIt provides it own set of operators such as iso-surface, iso-volume, slicing etc. Users

can write their own operator plug-in to perform specific filtering operations on the data.

User should select an operator plug-in after a data file is opened and a plot is selected

(When the engine shown in Figure 4.1 executes, it loads the selected operator). The

operator is dynamically loaded. Multiple operators can be sequentially applied.
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3. Plot Plug-in:

Plot plug-in is used to visualize the data. Again, VisIt provides a rich set of plot plug-ins

like pseudocolor, mesh, histogram etc. User can write a plot plug-in to perform special

visualization tasks. User should select a plot plug-in after opening a data file. The

plot plug-in is dynamically loaded. Input to the plug-in is generally in the vtkDataset

format ( see section 4.5 for details of vtkdataset).

Figure 4.3 shows the two possible pipelines a user can create in GUI to visualize

data in VisIt. Besides the above mentioned plug-ins, when a user selects a file and
  
  

Figure 4.3: Two possible pipelines in GUI to visualize data in VisIt

applies plot and/or operator, VisIt internally creates its own pipeline such that user

selected operators and plots are correctly loaded and executed.

4.4 AVT in VisIt

AVT stands for the ‘Analysis and Visualization Toolkit’. It is basically a data flow

network design created within VisIt. Its base types are data objects and components.

It provides the network for data processing based on the user request through the GUI.



23

 
  

                                                                         .
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      avtSource

   Filter 1

   Filter 2

   Filter n

      avtSink

   v1

   vn

 vn+1

Figure 4.4: AVT pipeline of Source, Filters and Sink [4]

4.4.1 Overview

The components of AVT can be sources, sinks, or filters. ‘Sources’ only output data

objects, ‘sinks’ only input data objects, and filters have both an input and an output.

A pipeline in AVT data flow network has a source (example file reader) followed by one

or many filters followed by a sink (example a rendering engine). Pipeline operation is

based on demand. Generally the sink starts a ‘pull’ which forces the sink to generate

an update request that propagates up the pipeline through each filter in the pipeline

and terminates on the source. Once the source is reached, the source outputs the

requested data, and then execute phases propagate reverse down the pipeline until the

sink is reached. The network uses ‘Contracts’ to propagate requests. See Figure 4.4.

(Description taken from [4]).

4.4.2 Use of AVT in VisIt pipelines

The engine assembles AVT network and executes it. The Viewer and mdserver also

use AVT libraries (which are basically C++ abstract or concrete classes). When a
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user opens a file the mdserver opens an avtFileFormat and reads the data. When the

user selects a plot or an operator the engine creates an AVT network to execute the

call. When ‘Draw’ button is clicked, AVT network is executed. The ‘FeatureTrack’

operator plug-in created for feature tracking uses the ‘avtTimeLoopFilter’ from the

AVT library to keep track of the current timestep. Figure 4.5 shows the AVT pipeline

created internally in VisIt when the user selects the Slice operator to display slice of

input dataset (Description from [4]).
 

Figure 4.5: AVT pipeline created internally when executing Slice operator on a dataset.
Image taken from [4]

4.5 vtkDataset

VisIt uses the generalized ‘vtkdataset’ to represent scientific datasets with different

structures and attributes and for data modeling. The vtkDataset is defined in VTK

(Visualization Tool Kit - an open source Image Processing and Visualization tool [10]).

Once the data is read into the vtkdataset form, VisIt can use different algorithms for

data manipulation and rendering. Following subsections give a brief description of the

structure and topology of the vtkdataset2.

2all VTK definitions taken from [28]
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4.5.1 vtkDataset structural description

� Structure: Dataset structure has two parts: topology and geometry. Topology

is the set of properties invariant under certain geometric transformations like ro-

tation, scaling etc. Geometry is instantiation of the topology, the specification of

position in 3D space. The structure consists of cells and points.   

Figure 4.6: Different cell types. Image from [5]

– Points: Points are the discrete locations where data is known. Points specify

the geometry of the dataset.

– Cells: Cells are the fundamental building blocks of visualization system.

They define the topology of the dataset. Each cell is an ordered list of

points called connectivity list. The cells can be 0,1,2 or 3D. Examples of

cell types are vertex, polyvertex, line, triangle, quadrilateral, polygon, voxel,

hexahedron etc. Figure 4.6 shows different cell types identified by VTK.

� Attribute Data: Dataset attributes are additional information associated with
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the geometry and/or topology. Example of attributes are scalars, vectors (data

with magnitude and direction), normals (direction vectors), texture co-ordinates

etc.

4.5.2 Types of vtkDataset

VTK defines following types of datasets, characterized by structure whether its regular

(single mathematical relation within the composing cells and points) or irregular. Figure

4.7 shows different dataset types identified by VTK.

Figure 4.7: Different dataset types identified by VTK. In this thesis only vtkRectilinear
dataset is handled. This image is taken from [6]

� Polygonal Data: Topology and geometry are unstructured, cells composing the

dataset vary in dimension (0,1 and 2D).

� Structured Points: Topology and geometry are structured and can be implicitly

represented. Also called uniform grid. Points and cells are arranged on regular

rectangular lattice.

� Rectilinear grid: Topology is regular and geometry is partially regular. Points

and cells are arranged on regular rectangular lattice. Topology is implicitly rep-

resented while geometry is represented by specifying x,y z co-ordinates.

� Structured grid: Topology is regular and geometry is irregular. Composing

cells are quadrilaterals or hexahedron.
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� Unstructured Points: No topology and unstructured geometry. Points are

irregularly located in space.

� Unstructured Grid: Most general form of dataset. Topology and geometry are

both unstructured.
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Chapter 5

Feature Tracking and Visualization of 3D Scalar Datasets

in VisIt Environment

The Feature tracking implementation is divided in two major algorithmic modules as

follows:

1. Object Segmentation and Feature Tracking

2. Visualization using iso-surface information

5.1 Object Segmentation and Feature Tracking

                                                      
                                                      .visit file generated                                    Intermediate files generated 

    
  Start VisIt                                             Attributes                                Click Draw 
  
  
                                                                                                                  
                                                                                  Input Parameters
                            Input Stage

                                                                                                                                   Output      files

                                                                                                                          

  
                                                                                                                          Output

1. Select .bov files to 
track
2. Select Pseuodocolor 
Plot
3. Select FeatureTrack 
operator

Fill the operator 
attributes 

Final output files generated for each 
timestep:
1. .poly file
2. .attr file
3. .ucod file
4. .trak file
Also a single .trakTable file is created 

Feature 
Extraction 

T
r
a
c
k
i
n
g

Figure 5.1: Steps to execute Object Segmentation and Feature Tracking module in
VisIt
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For each selected timestep object segmentation is performed based on the threshold

given by the user followed by tracking of features. For each timestep attribute informa-

tion of each object is stored in files. Also the tracking information of all the timesteps

is stored in a single file. Figure 5.1 gives the description of the actual process to execute

Feature Tracking module in VisIt. In the following subsection, each stage of execution

is explained.

5.1.1 Using the Software

Creation of the pipeline in GUI

Figure 5.21 shows the initial window when VisIt starts.

As shown in Figure 5.3 a pipeline of ‘.bov2 file’ reader, ‘FeatureTrack’ operator to

  
   Figure 5.2: Initial windows that appear when VisIt starts

1Plot and operator selection is disabled. Plot selection is enabled when file is opened and operator
selection is enabled when file is opened and plot is selected

2.bov is a file reader built-in in VisIt. ‘.bov’ files are used to read binary datasets in VisIt. Its format
is given in the Appendix A. It has additional information to read in binary data
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Figure 5.3: Pipeline created in GUI to perform Feature Tracking

perform object segmentation and feature tracking and ‘Pseudocolor’ plot is to be created

to perform feature tracking. The plot selection is actually not required in this part as

visualization is a separate process, but since VisIt does not permit selection of any

operator without selection of a plot, plot is selected.

VisIt allows selection of single or multiple files at a time. If multiple files are

selected such that the operator or plot is applied to each file, then VisIt gives an option

of grouping the files (see Figure 5.5) to create a .visit file. The file reader then guesses

the cycle number for each file in the group. Figure 5.4 and Figure 5.5 show how single

and multiple files respectively can be selected.

After the file is selected, it should be opened (Figure 5.2 shows ‘open’ button, select a

  
   

Figure 5.4: Select single ‘.bov’ file

  
   

Figure 5.5: Select multiple files. Click
‘group’: creates .visit file
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Figure 5.6: Selection of a Plot

  
   

Figure 5.7: Operator Selection

file and click on ‘open’) to enable selection of plot and operator. Figure 5.6 and Figure

5.7 show how ‘Pseudocolor’plot and ‘FeatureTrack’operator are selected.

Set attributes

Most of the plots and operators have multiple attributes, which can be set as per specific

tasks to perform. Figure 5.8 shows the attributes that should be set for ‘FeatureTrack’

attribute. Click on the ‘opAtts’ on GUI and select ‘FeatureTrack’ operator to set its

following attributes:

a. inputBaseFilePath: The user needs to specify the complete path of the files (.bov

files) to be tracked. Actually the user specifies the ‘labelname’. e.g.: For the vorticity

dataset, the files are named vorts1.data, vorts2.data, and so on. Hence the labelname

to be entered is vorts.

b. initialTimeStep, FinalTimeStep, timestepIncrement: Enter the number of

the timestep from where tracking should start, end and also the increment in which

files should be tracked e.g.: For the vorticity dataset, if the start value, end value and
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Figure 5.8: Operator Attributes for FeatureTrack

increment are 1,5 and 2 respectively then the files which are going to be tracked are

vorts1,vorts3,vorts5.

c. percentThreshold: The actual threshold calculated for segmentation is based on

this input.

thresh = (max data value−min data value) ∗ percentThreshold/100

d. smallestObjVolToTrack: While tracking datasets large number of small objects

which are extraneous to the regions of interest, the user can choose to blank out these

unwanted features smaller than a certain volume by using this slider. (Volume of an

object is defined by the number of nodes contained within it). ( Explanation from [2]).

e. timestepPrecision: This indicates the style of numbering of the files to the soft-

ware. e.g.: If the files to be tracked are named vorts01,vorts02, etc, the user still enters

1 and 2 as the start and end value and chooses a precision of 2. This is done in order

to keep the values passed as start and end values uniform without any trailing zeroes.

The default precision is 1 (explanation from [2]).
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Execution

After selecting the plot and operator and setting the operator attributes, click on the

‘Draw’ button to begin feature tracking. When feature tracking is successfully per-

formed, for each timestep attributes such as moments, centroid, mass etc are calculated

and attribute files are written. Following attribute files are written:

� .trak file

� .attr file

� .uocd file

� .poly file3

Apart from these file one .trakTable file is created which is used to track features across

timesteps. Appendix A has the description of all these files. These files are created in

the subdirectory under the data directory from where the .bov files are selected.

< pathof.bovfiles > /GENERATED TRACK FILES/ < attributefiles >

Source Code

The source code for this part is in the ‘FeatureTrack’ operator directory.

< visitpath > /src/operators/FeatureTrack/

When the operator plug-in is created using XMLeditor, VisIt creates certain files such

     
                                                                     FeatureTrack

                                             Interface           ObjSegment           Ftrack 

Figure 5.9: Directory structure of the FeatureTrack operator source files

that the plug-in is correctly loaded when user selects it. Also the attribute (.C and

3this file has the co-ordinate and connectivity information to visualize each object of given timestep
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.h) files parse the attributes set by the user for the operator. The most important files

created by VisIt are the avt < operatorname > Filter.C and avt < operatorname >

Filter.h files. User can add the code to implement desired functionality in these files.

Apart from files created by VisIt, following folders/files are present in the ‘FeatureTrack’

operator source code (see Figure 5.9):

Interface: This folder contains files to validate data given by user through the user

interface.

ObjSegment: This folder contains files which perform object segmentation.

Ftrack: This folder contains files that perform feature tracking.

See Appendix B for details of creating a new plug-in and using the XMLeditor.

5.2 Visualization Using the Iso-surface Information
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                   .visit file generated                                                                       
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Figure 5.10: Steps to execute Visualization module in VisIt
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In the second part, visualization is performed. The advantage of separating the

feature tracking process from the visualization is that the user can now select to visualize

all or subset of timesteps tracked in the first part. Sometimes interesting features begin

to evolve a few timesteps from the first frame tracked. In such cases, its important that

the user has the flexibility to select the timestep to start visualization. Also, with the

separation of visualization, the user now has the flexibility of assigning specific colors

to certain objects of interest in first timestep selected for visualization. User can keep

intact the visual tracking of other objects or fade others so that evolution of features

of interest only is tracked over the remaining timesteps. A colormap file is created for

each timestep which is used for coloring each object in that timestep. Figure 5.10 gives

the description of the actual process to execute Visualization module in VisIt. In the

following subsection, each stage of execution is explained.

5.2.1 Using the Software

Creation of the pipeline in GUI

  
  

Figure 5.11: Pipeline to visualize .poly files

Figure 5.11 shows how pipeline of plug-ins is created to perform visualization of

.poly files. A file reader is written so that .poly files can be read into VisIt for visual-

ization. Operator ‘TrackPoly’ is a plug-in written to create colormap (if first timestep
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is visualized) or update the colormap with the aid of the track table (for subsequent

timesteps). ‘PolyData’ plot is written to visualize all the objects in a given timestep. It

reads the colormap written by the ‘TrackPoly’ operator to visualize the objects. This

plot is customized such that colormap created by ‘TrackPoly’ can be used to map colors

to the objects.

Set Attributes

  
   

Figure 5.12: Operator Attributes of the ‘TrackPoly’ operator

Figure 5.12 shows the attributes that should be set for the ‘TrackPoly’ operator and

Figure 5.13 shows the attributes that should be filled for the ‘PolyData’ plot. Click on

the ‘opAtts’ button in the GUI and select the ‘TrackPoly’ operator to set the following

attributes:

a. polyFilePath: Give the path of the folder where the .poly files reside.

b. TrakTableFile: Give the name and complete path of the .trakTable file generated

in the feature tracking module.

c. StartVisualizeTimestep, EndVisualizeTimestep: Enter the number of the

timestep from where visual tracking should start and end. The operator will start

reading from the track table from the start value given and read till the end value

based on the increment used in the feature tracking module.
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d. OutputColormapFile: Give the complete path where the colormap file cre-

ated/modified in each timestep should be stored. The name of the colormap file is

any valid text file name.

e. InitialColorScheme: User can either select ‘Random’ or ‘UserSelectedFile’. If

Random option is selected then ‘TrackPloy’ operator will randomly assign colors to all

the objects in the first timestep selected. In subsequent timesteps each object will be

assigned a color depending on the tracking information. If the user selects the ‘UserS-

electedFile’ then the ‘SelectedFile’ attribute is enabled and user can give the complete

path of the user defined colormap for the first timestep. ‘TrackPloy’ operator will assign

colors to all the objects in the first timestep selected based on this colormap file. Again

in subsequent timesteps each object will be assigned a color depending on the tracking

information.

Click on the ‘PlotAtts’ and select the ‘PolyData’ plot to set the following attribute:
  
  

Figure 5.13: Plot Attributes of the ‘PolyData’ plot

a. colormapfile: Give the complete path where the colormap file created/modified

by ‘TrackPoly’ is stored. The name of the colormap file should match the name of

colormap file in the ‘TrackPoly’ operator attributes.
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Execution

After selecting the plot and operator and setting their attributes, click on the ‘Draw’

button to begin visualization. When visualization is successfully performed, for each

timestep ‘TrackPoly’ operator would write the colormap (object no, RGB value and

transparency for each object). ‘PolyData’ operator would read the same map for each

timestep and use it to display all objects in the given timeframe.

Source Code

The source code for this part is in three separate directories.

� Following is the path for the ‘Poly’ file reader database:

< visitpath > /src/databases/Poly.

When the file reader plug-in is created using XMLeditor, VisIt generates all the

files required for correct loading of the plug-in. User has to modify the avt <

filereadername > FileFormat.Cfile to read the desired data type.

� Following is the path for the ‘TrackPoly’ operator:

< visitpath > /src/operators/TrackPoly/.

When the operator plug-in is created using XMLeditor, VisIt generates all the

files required for correct loading of the plug-in. User has to modify the avt <

operatorname > Filter.Cfile to perform the desired filtering operation.

� Following is the path for the ‘PolyData’ plot:

< visitpath > /src/plots/P loyData/.

When the plot plug-in is created using XMLeditor, VisIt generates all the files re-

quired for correct loading of the plug-in. User has to modify the avt < plotname >

Filter.Candavt < plotname > Plot.Cfiles to perform the desired display oper-

ation.

See Appendix B for details of creating a new plug-in and using the XMLeditor.



39

Chapter 6

Results and Discussion

Feature tracking results are obtained for the following datasets:

1. Vorticity dataset: size 128*128*128 (75 timesteps)

2. Surfactant molecular dataset (Modeling and Simulation Department, P&G): size

47*47*47 (100 timesteps)

The feature tracking application is successfully ported to VisIt. The number of

objects obtained in each timestep and their attributes are compared to the results

obtained by AVS feature tracking utility. The object segmentation, quantification and

tracking results in AVS and VisIt are identical.

Visualization is implemented as a separate module. Separation of Visualization

from Feature Tracking enables the user to select any timestep to start the visualization

process. Also, the user can select certain features to track by changing their color or by

changing the transparency of the other undesired objects. This way user can highlight

features of interest and fade other objects (completely or partially) in the background.

Various tests were run to test the stability and correctness of the application. For each

of the following tests performed, see section 5.1 to execute Feature Tracking and section

5.2 to execute visualization modules in VisIt.

6.1 Feature tracking and visualization of consecutive timesteps

Figure 6.1 shows the iso-surface visualization of 5 consecutive timesteps of vorticity

data (available with the Vizlab). Each of the following dataset is of size 128*128*128:

1. vorts1.data

2. vorts2.data

3. vorts3.data
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                   vorts1.data                                vorts2.data                                      vorts3.data 
 
 

                   vorts4.data                                  vorts5.data 

Figure 6.1: Iso-surface visualization of 5 consecutive timesteps. Each object of the first
timestep vorts1.data is color-coded randomly. vorts2.data, vorts3.data, vorts4.data,
vorts5. data have their objects color-coded based on tracking information.

4. vorts4.data

5. vorts5.data

First the feature tracking module is executed to generate the attribute files. The

.poly file (contains iso-surface information) is used for visualization in the second part.

6.2 Feature tracking and selective visualization of consecutive timesteps

Figure 6.3 show the selective iso-surface visualization of 5 consecutive timesteps of

vorticity data (available with the Vizlab). Each of the following dataset is of size

128*128*128:

1. vorts1.data

2. vorts2.data

3. vorts3.data

4. vorts4.data

5. vorts5.data
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                                 Part A                                                               Part B

Object 'C'

Object 'G'

Object 'H'

Figure 6.2: Selective Visualization: Part A - vorts1.data. is the first timestep, each
feature is color-coded randomly. Part B - Color code of the three labeled objects is
changed in the colormap file and visualization is performed again.

  

                     vorts1.data                                    vorts2.data                                         vorts3.data
  

                vorts4.data                                         vorts5.data

Figure 6.3: Selective iso-surface visualization of 5 consecutive timesteps. Colors of three
objects in vorts1.data are modified as shown in Figure 6.2. vort2.data, vorts3.data,
vorts4.data, vorts5.data have their objects colored as per tracking information
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Figure 6.2 (part A), shows the objects in the first timestep generated by VisIt. Each

of its features are randomly color-coded. In the same figure (part B) three objects

(labeled as C,G and H) are of interest and should be tracked in subsequent timesteps,

keeping the visual tracking of other objects intact. User can change the R,G,B color

codes assigned to these objects in the colormap file and start the visualization process

again (rest of the objects have the same color), this time making the colormap file

selection as ‘UserSelectedFile’ (see section 5.1.1 to set operator attributes). Figure 6.3

shows the tracking of the 5 consecutive timesteps.

First the feature tracking module is executed to generate the attribute files. The

.poly file (contains the iso-surface information) is used for visualization in second part.

Colors of all the objects in the first timestep can be changed. Such selective visual-

ization helps to focus on evolution of specific features.

6.3 Feature tracking and visualization of non-consecutive timesteps

Figure 6.4 shows the iso-surface visualization of 3 non-consecutive timesteps of molec-

ular data (available with Vizlab). Each of the following dataset is of size 47*47*47:

1. volmap3.bin

2. volmap5.bin

3. volmap7.bin

 
 
 
 
 

                 volmap3.bin                                   volmap5.bin                                     volmap7.bin
 

Figure 6.4: Iso-surface visualization of 3 non-consecutive timesteps. volmap3.bin is
the first timestep hence each of its feature is color-coded randomly. volmap5.bin,
volmap7.bin have their objects color coded as per tracking information
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First the feature tracking module is executed to generate the attribute files. The

.poly file (contains the iso-surface information) is used for visualization in second part.

Since VisIt tries to display any size of data on same size window, these images of

smaller data size are not smooth.

6.4 Feature tracking and enhanced visualization: change transparency

of the objects

Figure 6.5 show the iso-surface visualization of 3 consecutive timesteps of molecular

data (available with Vizlab). Each of the following dataset is of size 47*47*47:

1. volmap3.bin

2. volmap4.bin

3. volmap5.bin

 
 

               volmap3.bin                                      volmap4.bin                                      volmap5.bin

Figure 6.5: Iso-surface visualization of 3 consecutive timesteps. volmap3.bin is the first
timestep hence each of its feature is color-coded randomly. volmap4.bin, volmap5.bin
have their objects color-coded as per tracking information.

volmap3.bin is the first timestep and each of its features are randomly color-coded.

Assume three objects (labeled as G,H and I) are of interest and should be tracked in

subsequent timesteps. User can just fade the other object by changing the transparency

of other objects in the colormap file and start the visualization process again, this

time making the colormap file selection as ‘UserSelectedFile’ (see section 5.1.1: to set

operator attributes). Figure 6.6 shows the tracking of the three selected objects and
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              volmap3.bin                                     volmap4.bin                                  volmap5.bin

object 'G'
object 'H'

object 'I'

Figure 6.6: Enhanced iso-surface visualization: volmap3.bin is the first timestep hence
each of its feature is color-coded randomly. Except the three labeled objects all objects
have their transparency reduced. volmap4.bin, volmap5.bin have their objects color-
coded as per tracking information.

other objects faded.

First the feature tracking module is executed to generate the attribute files. The

.poly file (contains the iso-surface information) is used for visualization in second part.

Such kind of visualization reduces the visual clutter and allows to focus on specific

features only.

As seen in the sections above, user can select the objects in each timestep and change

their color codes for selective visualization. This is achieved by using the ‘NodePick’

option in VisIt. When a user activates this option and selects any object in the display

window, VisIt picks up that node and shows the information as shown in the Figure

6.7. The node value corresponds to the object number and is used to change the color

code in the colormap file. See Appendix A (A.2) for the format of the colormap file.

6.5 Execution time for Feature Tracking and Visualization modules

Table 6.1 gives the details of execution time of Feature Tracking test on vorticity and

molecular datasets in VisIt. The test is run on consecutive timesteps without altering

the color-code of any object manually. Test is run on machine1 with the following

configuration:

Processor: Intel Core2 Duo
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Figure 6.7: Three nodes are picked and labeled. Information of each node is shown.
The node value is used to change the color- code in colormap file

RAM: 1GB

OS: Linux (Kubuntu)

Dataset NumTimesteps Execute FeatureTrack Execute Visualization
vorts 75 1800 sec 250 sec
volmap 100 175 sec 115 sec

Table 6.1: Time to run Feature Tracking and Visualization for vorts and volmap dataset
in VisIt on machine1

Table 6.2 gives the details of execution time of Feature Tracking test on vorticity and

molecular datasets in VisIt. The test is run on consecutive timesteps without altering

the color-code of any object manually. Test is run on machine2 with the following

configuration:

Processor: Intel Pentium 4

RAM: 512MB

OS: Linux (Redhat)

Table 6.3 gives the details of execution time of the Feature Tracking test on vorticity and

molecular datasets on AVS. The test is run on consecutive timesteps without altering
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Dataset NumTimesteps Execute FeatureTrack Execute Visualization
vorts 75 2520 sec 375 sec
volmap 100 234 sec 155 sec

Table 6.2: Time to run Feature Tracking for vorts and volmap dataset in VisIt on
machine2

the color-code of any object manually. Test is run on machine2 with the following

configuration:

Processor: Intel Pentium 4

RAM: 512MB

OS: Linux (Redhat)

Dataset NumTimesteps Execute FeatureTrack Execute Visualization
vorts 75 2380 sec 355 sec
volmap 100 240 sec 155 sec

Table 6.3: Time to run Feature Tracking for vorts and volmap dataset in AVS on
machine2

Table 6.2 and Table 6.3 show a comparison of execution time of Feature Tracking and

Visualization on AVS and VisIt on the same machine configuration.
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Chapter 7

Conclusion and Future Work

Feature tracking is an effective way to study the evolution of features over the time

varying datasets. Vizlab at Rutgers has successfully developed the feature tracking

utility in AVS, a commercial scientific visualization application. In this thesis the

feature tracking utility is ported to VisIt, a free interactive scientific visualization tool.

This would allow more scientists to use the feature tracking application. The feature

tracking on VisIt was tested on different datasets and results match the AVS based

Feature Tracking results. Separation of visualization from feature tracking allows the

flexibility of selective visualization which helps to reduce the visual clutter.

Table 7.1 gives a comparison of various features of VisIt and AVS when developing or

running feature tracking in VisIt and AVS.

Features VisIt AVS
Inherent data
type used

vtkDataset (less
flexible)

field Data (more
flexible)

Input parame-
ters

Input data files
twice

Input data files
only once

Non Consecu-
tive timesteps

No additional
handling required

Additional han-
dling required

Single timestep Not possible in
Feature Tracking

Possible in Fea-
ture Tracking

Selective visu-
alization

Allows to high-
light any object

Allows to isolate
only a single ob-
ject

Changing col-
ors of displayed
objects

Possible Not possible

Table 7.1: Comparison of the Features of VisIt and AVS

The current implementation for ‘Feature Tracking’ operator inherits from the ‘avt-

TimeLoop’ Filter to obtain information of the current timestep. This filter requires
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atleast two timesteps to work correctly. This limitation can be possibly removed by

writing a customized file reader for the ‘.bov’ file which would provide the information

to the ‘FeatureTrack’ operator about the current timestep, thus eliminating the need

of ‘avtTimeLoop’ filter. This way Feature tracking module can be executed for a single

timestep also. Use of such a file reader will also facilitate correctly writing the .visit file

for grouping multiple timesteps. Currently, the .bov file reader guesses the sequence of

timesteps selected for feature tracking, which at times requires re-ordering manually.

Current implementation handles only 3D rectilinear data type. This implementation

can be extended to handle 2D structured data as well.

VisIt has the underlying capability to perform visualization on multi-processors or

in distributed mode. The current implementation of feature tracking in VisIt does

not utilize this powerful feature and hence it cannot be effectively used for very large

datasets. Vizlab at Rutgers has developed a stand alone Feature Tracking utility which

works in distributed mode [20] which can handle large datasets. The current feature

tracking utility in VisIt can be made more powerful by extending it to work in the

distributed mode which would allow the handling of very large datasets.
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Appendix A

Format of Input/Output/Intermediate Files

A.1 Input/Output files created during the execution of Feature Track-

ing module

When the feature tracking module is executed, it reads the .bov files as input. .bov is a

VisIt defined format for reading the information related to binary data files. Its format

is as follows:

.bov file format:

TIME: < givetimetoenable.bovreadertoguesscycle. >

DATA FILE: < nameoftheactualbinarydatafile >

DATA SIZE: < dataextentinXY Zdirection >

DATA FORMAT: < datatypewhichcanbebyte, short, f loatetc >

VARIABLE: < variablenametoidentifythedataduringplotting >

DATA ENDIAN: < BIGendianorLITTLEendian >

BRICK ORIGIN: < OriginofthedatasetinXY Zdirections >

BRICK SIZE: < MaxextentofdatainXY Zdirectionbasedonorigin >

Sample - .bov file:

TIME: 1.2345

DATA FILE: vorts0.data

DATA SIZE: 128 128 128

DATA FORMAT: FLOAT

VARIABLE: vorts

DATA ENDIAN: BIG

BRICK ORIGIN: 0 0 0
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BRICK SIZE: 127 127 127

When the feature tracking module is executed, a ‘GENERATED TRACK FILES’ sub-

folder is created under the directory from where the .bov files are read. The output

attribute files generated are saved in this folder.

< pathof.bovfiles >GENERATED TRACK FILES/

Following output attribute files are written when the ‘Feature Tracking’ module runs:

1. .poly file - .poly file is written for each timestep. It contains node co-ordinates of

the polygon vertices and their connectivity information for iso-surface visualization.

2. .attr file - .attr file is written for each timestep. It contains information about every

object like centroid, moments, max node value, etc.

3. .uocd file - .uocd file is written for each timestep. It contains information pertaining

to the frame. Some of the main points are No. of objects, Cell information.

4. .trak file - .trak file is written for each timestep. It contains number of objects

and number of nodes to be used for memory allocation for tracking with successive

timestep.

5. .trakTable file - A single .trakTable file is written which is updated in each timestep.

This file contains the results of tracking. It gives the evolution history of each object

frame by frame along with an indication of any events that occur.

A description of the file formats are as follows :

.poly file format:

< red > < green > < blue >

< numnodes >

< x0 > < y0 > < z0 >

< x1 > < y1 > < z1 >

< x2 > < y2 > < z2 >

< x3 > < y3 > < z3 >

< x4 > < y4 > < z4 >

.
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.

.

< numofconnections >

3 < vertexID > < vertexID > < vertexID >

3 < vertexID > < vertexID > < vertexID >

3 < vertexID > < vertexID > < vertexID >

.

.

.

0

< red > < green > < blue >

Sample - .poly file :

0 158 96

6774

67.234009 102.000000 112.000000

68.000000 102.000000 111.367813

68.000000 101.106598 112.000000

.

.

.

13488

3 1 3 2

3 4 6 5

3 7 9 8

.

.

0

10 255 0

.
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.

.attr file format:

object < objID > attributes:

Max position: (< maxX >, < maxY >, < maxZ >) with value: < maxnodevalue >

Node No.: < numnodemin >

Min position: (< minX >, < minY >, < minZ >) with value: < minnodevalue >

Node No.: < numnodemax >

Integrated content: < integratedcontent >

Sum of squared content values: < sumsquaredcontentvalue >

Volume: < volume >

Centroid: (< x >, < y >, < z >)

Moment: Ixx = < Ixx >

Iyy = < Iyy >

Izz = < Izz >

Ixy = < Ixy >

Iyz = < Iyz >

Izx = < Izx >

Sample - .attr file:

object 0 attributes:

Max position: (63.000000, 56.000000, 127.000000) with value: 12.139389

Node No.: 2087999

Min position: (50.000000, 66.000000, 117.000000) with value: 6.073445

Node No.: 1925426

Integrated content: 52753.316406

Sum of squared content values: 420312.062500

Volume: 6857

Centroid: (54.960667, 66.905724, 118.313576)

Moment: Ixx = 81.173683

Iyy = 175.838699
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Izz = 76.425446

Ixy = -105.836067

Iyz = -90.048668

Izx = 46.851215

————————————————

object 1 attributes:

.

.

.uocd file format:

< time >

< numobjects >

< objID > // starts from 0

< volume > < mass > < centroidX > < centroidY > < centroidZ > // volume

is the points number

< Ixx > < Iyy > < Izz > < Ixy > < Iyz > < Izx >

< pointID > < pointX > < pointY > < pointZ > < pointvalue > // pointID

starts from 0

< pointID > < pointX > < pointY > < pointZ > < pointvalue >

< pointID > < pointX > < pointY > < pointZ > < pointvalue >

.

. < objID >

.

.

Sample - .uocd file :

10.000000

38

0

12637 83432.195312 68.521065 97.046165 99.475235

234.301193 51.264282 245.409286 -85.529694 79.158249 -222.195129
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1798593 65.000000 99.000000 109.000000 10.520865

.

. 1

.

.

The .trak file format :

< filebasename > < time > < mass > < volume > < centroidX > < centroidY >

< centroidZ >

< filebasename > < time > < mass > < volume > < centroidX > < centroidY >

< centroidZ >

.

.

.

Sample - .trak file :

/u61/rohinip/data/GENERATEDTRACKFILES/vorts10 10.000000 83432.195312

12637 68.521065 97.046165 99.475235

/u61/rohinip/data/GENERATEDTRACKFILES/vorts10 10.000000 42605.246094

6316 62.313812 117.506172 39.228920

/u61/rohinip/data/GENERATEDTRACKFILES/vorts10 10.000000 40073.558594

5771 62.039474 46.921017 4.576792

.

. The .trakTable file format sample:

In this file ’-1’ is used as delimiter to indicate an event

frame No.11

11 -1 13 26 // obj 11 of timestep 10 splits into 13 and 26 in timestep 11

19 21 -1 17 // obj 19, 21 of timestep 10 merge into obj 17 in timestep 11

1 -1 1 // obj 1 of timestep 10 continues as 1 in timestep 11

2 -1 2

.
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.

.

-1 23 // new object 23 created in frame timestep 11

9 -1 // obj 9 of timestep 10 disappears in timestep 11

11 -1

Frame No.12

.

.

.

A.2 Input/Intermediate/Output files created during the execution of

Visualization module

Visualization module reads the input .poly files (Format of .poly files is described in

A.1 ). The file reader generates the intermediate ‘curpoly.txt’ file which the ‘TrackPoly’

operator reads to know the current .poly file being read for visualization. This ‘cur-

poly.txt’ file is created/updated for each timestep in the same folder where the input

.poly files reside.

< pathfor.polyfiles > /curpoly.txt

curpoly.txt file format:

< currentpolyfileread >

Sample - curpoly.txt:

vorts1

The TrackPoly operator generates the intermediate ‘colormap’ file. This file contains

the RGB color code for each object in the timestep as well as its transparency value.

This file is read by the plot to create a color table. The file is created at the location

given by the user in the ‘TrackPoly’ attributes.

< colormapfile >.txt file format:

< objectnumber > < Rvalue(between0 − 255) > < Gvalue(between0 − 255) > <

Bvalue(between0− 255) > < transparencyvalue(between0− 1) >
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Sample - curpoly.txt:

0 225 44 89 1

1 0 255 0 0.5

.

.

.
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Appendix B

Installing VisIt

VisIt can be installed in two ways:

1. To use the existing VisIt functionalities without modifications:

For this purpose executables can be directly downloaded from VisIt homepage [9] and

installed on the user machine.

2. To use existing VisIt functionalities as well as modify VisIt’s source code:

For this purpose the user can download a script from VisIt homepage [9] and run it to

install VisIt automatically on the user machine or download the VisIt source code and

install VisIt manually by compiling the source code. Both of these installations allows

the user to modify existing plugins, add new plugins etc.

Directory structure of VisIt source files:

Once the VisIt is installed on the user’s machine, VisIt has a default directory structure

as shown in the figure B.1.

Installing a new plugin in VisIt

User can add a database, operator or plot plugin to VisIt. Following are the steps to

create a new operator plugin. Similar steps should be followed to create database or

plot plugin:

                                                     ...........                         .............                 ........

Visit

srcdata

databases operators plots

Figure B.1: The Default directory structure when VisIt is installed
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  Figure B.2: xmlEditor allows the user to give information to create a customized plugin

1. Create a subfolder in the < visitlocation/src >/operator directory. The name of

the subfolder should be same as the name of the new operator plugin.

2. VisIt makes the process of creation and compilation of plugins easier by providing

the user with xml framework to create source code and makefile for the new plugin. On

the command line, go to the folder < newoperator >. Type

< visitpath/src/bin/ > xmledit < newoperator > .xml

This will open an xml file for the user. Fill in the required fields and save the file.

(Details about filling different fields is given in the VisIt developer’s manual). Figure

B.2 shows the xmleditor.

3. Then type < visitpath/src/bin/ >xml2plugin < newoperator > .xml

This command would internally invoke a series of commands to create source code and

makefile for the new plugin as per the input in the ¡newoperator¿.xml file.

4. Type ‘make’. When the user types make for the first time, VisIt gives an error in

the ‘avt< newoperator >Filter.C’ file. This is expected since the user has to add code

to make the plugin work. In other words, the steps mentioned till now will create a

framework for the user to create a new plugin.

5. After making any changes to code, just type ‘make’. Once the plugin compiles
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successfully, go to the command line and type:

. < visit/src >/bin/visit

The new plugin created should be seen in the list of operators.

To add a plugin to VisIt created by another user using source code:

Assume that the plugin contains the ‘FeatureTrack’ operator.

1. Create a folder under < visitpath > /src/operator with the name FeatureTrack.

Copy the source files to this folder.

2. cd FeatureTrack

3. < visit >/bin/xml2makefile FeatureTrack.xml

4. make

This should create and install the FeatureTrack plugin.
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