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ABSTRACT OF THE THESIS

Indoor Localization in Wireless Sensor Networks

by Amar H Patel

Thesis Director: Dr. Marco Gruteser

We considered the issue of indoor localization through the use of wireless sensor net-

works (WSN). We value not necessary the algorithm that provides the best accuracy but

the one that provides a good enough level of accuracy in a simple and efficient manner.

In the first part of our work we examined some state-of-the-art localization techniques

that are deployable on wireless sensor motes. These techniques are evaluated to a set

of criteria that an indoor WSN-based localization application must consider. In our

investigation, we considered not only accuracy but many other factors that determine

a suitable indoor WSN-based localization system. These factors among other things

determine energy efficiency. We broadly separate the criteria list into two categories:

efficiency-based and accuracy-based. We discovered that one of the techniques, Ecolo-

cation, evaluates quite well to the efficiency-based criteria, but the evaluation of the

accuracy-based criterions is not as promising. However, the inherent simplicity and po-

tential for good performance (based on open environment results) make the algorithm

quite attractive. We proceeded to modify the algorithm to improve its accuracy while

maintaining its positive qualities. Our Weighted-Constraints algorithm, named as such

due to the nature of the modification, performs in terms of average error 13.1% better

than the original Ecolocation algorithm in an open environment. Furthermore, our

modified algorithm shows it is more robust to noise compared to the original algorithm

by perform on average 21.2% better in a noisy environment.
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Chapter 1

Introduction

In this thesis we study whether an efficiency-based localization technique for wireless

sensor networks will be sufficient to provide accurate estimation in indoor environments.

Efficiency is defined in terms of energy, time, and mote usage and accuracy in terms of

best-case and robustness to corruption. Both terms are defined in more detail later.

1.1 Localization in Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are characterized by the use of a large number of

resource-constraint devices, called motes, deployed autonomously to monitor the envi-

ronment ([7], [24]). The use of wireless device makes mobility an issue. That is, unlike

wired sensors, the wireless motes are not tethered to a physical location and hence

can be moved unknowingly. As a result, the monitoring data acquired from such a

mote believed to be at Location A will be meaningless and destructive since it will in

fact be coming from Location B. Localization is important to make the sensor data

valuable when the position of the mote is in doubt. In a building, it is conceivable

that certain sensors are in known static locations as they are monitoring for a specific

reason (a temperature sensor monitor a particular section of a room) [16]. However,

the nature of wireless sensors is that they can be easily added anywhere. As a result,

it may be necessary to quickly deploy additional sensors in a room temporary to mon-

itor additional section of the room. In such a scenario, it doesn’t make sense to do

time-consuming measurement to determine the location of these temporary non-static

sensors. Furthermore, some wireless sensor motes are designed to be used in a mobile

fashion. For example, a pulse rate sensor is attached to a patient and hence will move

anywhere a patient moves. In such a case, localization can be used to determine where
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the patient currently is.

Although, much research has been done in localization [14], using wireless sensor

networks presents the following unique limitations. Wireless sensor motes are not pow-

erful devices in the sense that they are constrained in terms of computation power and

memory. Additionally, we must consider energy efficiency to avoid depleting the battery

life of the motes too quickly with cumbersome signal processing on the motes. However,

there are also advantages that wireless sensor networks provides to localization. The

high density, large mote deployment is an attractive feature. For example, in a building

deployment, a large number of the deployed motes will be in known locations. As a

result, these motes provide us with reference points we can exploit in the localization

of the mobile motes.

1.2 Problem Statement and Contributions Summary

This Section offers a brief description of the main contributions the thesis aims to

provide.

Indoor localization requires foot-level accuracy because of the confined nature of

indoor environments. A typical office room may not be bigger than 100 square feet. As

a result, location inaccuracies of more than a couple of feet would be very unacceptable

in certain scenarios; at the same time, accuracies in the realm of a few inches may not

be extremely necessary. Take for example a surveillance monitoring station in which

rooms are equipped with sensors. In such a scenario, it is not necessary for the camera

to point directly at the sensor when an event is detected since the station worker would

have the ability to pan and tilt the camera, but it is important that the camera points

in the general direction of the event given the camera’s peripheral vision. As wireless

sensor networks become more of a commonplace in indoor environments, such as homes

and office buildings, they present an attractive deployment platform for localization

services [10]. A small wireless sensor mote can be attached to any moveable object and

use existing known location motes as reference points in the localization process.

To this extent, we investigate existing WSN localization techniques to find ones
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that can provided fine-grain accuracy yet are efficient in their nature. We identify

seven state-of-the-art localization techniques that can be classified as WSN-compatible:

Cricket, Active Bat, Centroid, A.P.I.T., Ecolocation, RF Time-of-Flight, and R.I.P.S.

We evaluate simplicity based on a set of criteria we develop, outlined in Chapter 4. By

wanting to use an infrastructure (reference motes) whose sole purpose is not localization,

a non intrusive technique is necessary to avoid compromising the infrastructures primary

function. Several of the techniques measure up favorably to one or two criteria, but

evaluate poorly to the remaining criteria. Ecolocation is the only one of the techniques

we studied that conforms well to most of the criterions and claims to have the potential

to provide fine-grain accuracy. However, in the process of testing the accuracy of

the algorithm in an indoor environment, we find that accuracy is reasonably good in a

clutter-free environment, but the performance drops off dramatically as the environment

is made noisier. An acceptable level of accuracy would be highly dependent on the

localization situation being used. As a result, for testing purposes we define a reasonable

accuracy level based on our reference mote deployment.

In the experiments, the reference motes are deployed in a grid fashion where the

minimum separation between two motes in 4 feet. Therefore, we use an average error

2 feet as a rough guideline for determining if the error is reasonable. While some of

the techniques we study claim to provide better indoor accuracy than Ecolocation,

none of them can provide without requiring complex signal exchanges and processing.

Such complex algorithms would require dedicated reference motes, since too much of a

signaling and computation burden would be placed on motes that any other function

would be disturbed. The simplicity of the algorithm and its ability to use reference

motes passively is a very attractive feature of Ecolocation. Furthermore, in the best case

conditions performance evaluation, Ecolocation performed reasonably well which means

that the algorithm has the potential to provide the level of accuracy we are seeking. As a

result, we modified the Ecolocation algorithm to improve accuracy in environments were

data corruption is an issue without comprising the inherent simplicity of the algorithm.



4

1.3 Report Outline

The subsequent chapters of the thesis will proceed as follows.

In Chapter 2, we will give an overview of localization from the point-of-view of

how techniques can be classified into different categories and an explanation of select

prior localization techniques that paved the ground work for the field of study will be

presented.

In Chapter 3, we discuss localization techniques that were developed with Wireless

Sensor Networks in mind, by introducing techniques that work with existing commercial

motes and those that require additional hardware integration.

In Chapter 4, we establish a set of criteria that indoor WSN-based localization

techniques should possess and explain how existing solutions evaluate to the criteria.

In Chapter 5, we present the details that were involved to setup the experimental

testbed.

In Chapter 6, we present the experimental performance analysis of the Ecolocation

algorithm.

In Chapter 7, we introduce the design details for our modified algorithm and com-

pare the experimental performance analysis with the original algorithm.

Chapter 8 presents the conclusions for the thesis and we close out the thesis by

imparting some future work thoughts in Chapter 9.
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Chapter 2

Localization Background Overview

Since location estimation is needed for wide ranging applications, much research has

gone on in this field. As a result, a multitude of different approaches for location

estimation have become known. These approaches vary from the type of signal used to

the actual information extracted from the signal. The most common types of signals

used are radio frequency (RF), acoustic, infrared (IR), or magnetic. Now given the

type of signal used, there are a variety of parameters that can be determined to use

in the localization method such as the received signal strength (RSS), time-of-flight

(TOF), angle-of-arrive (AOA), or phase difference. Additionally, localization techniques

differ in the way they use the extracted signal information. While some techniques

use the information to determine the ‘absolute’ distance to a reference node (range-

based), others make no assumption that the absolute distance can be determined by

the information provided (range-free). The exact approach one chooses depends highly

on the application involved. We will discuss these classification groups in turn in the

subsequent Sections of this Chapter. Please note that, unless otherwise mentioned, we

will refer to transmitters as the nodes which have known location and receivers as the

nodes with unknown location.

Following our discussion about the different approaches to localization, we will dis-

cuss how a few historically relevant techniques that laid the ground work for localization

utilized these approaches. The techniques we selected to highlight are GPS, RADAR,

and Active Bat.
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2.1 How Are The Metrics Are Used?

In this Section, we will discuss the classification group that divides localization tech-

niques in to two mutually exclusive categories based on how they handle the gathered

data: range-based or range-free. Range-based techniques try to strictly calculate dis-

tance values while range-free techniques try to strictly avoid calculating distance.

2.1.1 Range-Based

In range-based localization techniques (e.g. [5], [15], [6]), the goal is to try to use the

observed signal metric (whether time, signal strength, angle, or other) of the trans-

mitter’s signal to estimate what the true distance between the receiver and each of

the transmitters is. Once all estimated distances between receiver and transmitters

are determined, some method of triangulation is used to determine the location of the

receiver. In its simplest and perhaps most well-known form, the triangulation method

determines the location of a receiver by finding the intersection of three circles [25]. By

knowing the distances to at least three transmitters, these distances can be used as the

radii of circles centered at the location of the transmitters. The location of the receiver

can then simply be determined to be the intersection of the circles (see Figure 2.1).

Figure 2.1: Simple triangulation of receiver based on three idea distance measurements
to transmitters.
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Now of course for this simple triangulation method to work, the distance measures

must be perfect. That is, the circles will not intersect at one unique point when the

radii are not of correct length. Naturally, there are many different methods available to

solve such a problem. One common method to estimate position given a set of “noisy”

range method is the non-linear least squares method [25]. The non-linear least squares

solution can be found be solving the equation:

(x̂0, ŷ0) = arg min
(x0,y0)

N∑

i=1

(
√

(xi − x0)2 + (yi − y0)2 − di)2 (2.1)

where

di = “noisy” range estimate

xi, yi = transmitter coordinates

That is, the estimate position is the location that minimizes the sum of the squared

differences of the predicted range
√

(xi − x0)2 + (yi − y0)2 and observed range, di.

2.1.2 Range-Free

In range-free localization techniques (e.g. [9], [29], [19]), the algorithm is developed so

that the receiver location can be estimated without the need to determine the distances

to each transmitter. The motivation for such types of algorithms is that using that

technique’s observed signal metric it may not be possible to determine such a distance

or if it is possible the determined distance may not be a reliable estimate. These types

of techniques try to infer something like a ‘pattern’ in the location space. That is,

they determine location by finding proximity to particular transmitters or determine

what an expected signal environment should look like in certain places in the location

space. The absence of a requirement of channel parameters is an attractive feature for

those localization systems that desire low set-up or configuration overhead and ease of

deployment.
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2.2 Signal Metric Used to Localize

Now that we have seen how signal metrics are used in localization, let’s take a deeper

look at which of the signal metrics are typically extracted from a signal. Among the

many parameters that can be extracted from a signal, the ones commonly used in

localization techniques are time-of-flight, angle-of-arrival, and received signal strength

(e.g. [15], [21], [8]).

2.2.1 Time-of-Flight

The time-of-flight ranging technique is a quite simple concept at its heart. To determine

the distance between two points, one must just find the time it takes to travel from one

point to the other. That is, given the velocity of propagation for the signal (typically

a RF or acoustic), the distance between the points is simply the propagation velocity

multiplied by the propagation time (assuming the receiver is not moving). However,

one quickly learns that the problem of determining this propagation time is not quite as

simple as the concept behind it. The complications that arise range from the ability to

accurately determine the arrival time of the line-of-sight signal (LOS), since non-LOS

paths take longer and do not represent the true distance between the transmitter and

receiver, to the necessitate of precisely synchronized clocks. The actual time-of-flight

value is typically determined via the use of a matched filter or correlation receivers.

The time is estimated as the instant that the output of the match filter is peaked or the

time-shift needed for a template signal to produce the largest cross-correlation (auto-

correlation if no error) with the received signal [22]. Time-of-flight based techniques

can be further broken down into two different categories depending on the level of

synchronization among the devices. These categories are time-of-arrival (TOA) and

time-difference-of-arrival (TDOA).

Time-of-Arrival

In the TOA technique, the transmitters and receivers must share a common clock.

Therefore, a transmitter can send a time-stamped signal to the receiver which can
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determine the propagation time by calculating the difference between the arrival time

and the time-stamp. If the transmitter and receiver do not maintain highly synchronized

clocks, the time calculated by the receiver would be arbitrary and meaningless since it

would be offset by the difference in the ‘time’ kept by each of them. Now multiplying

the propagation time with the velocity, we determine the absolute distance to the

transmitter (see Figure 2.2).

Figure 2.2: Distance calculation based on synchronized Time-Of-Arrival

In [22], they showed that the TOA ranging can achieve the inequality (in multipath-

free channel):

var(TOA) ≥ 1
8πBTSF 2

c SNR
(2.2)

where

B = bandwidth (Hz),

Ts = signal duration (s),

Fc = center frequency (Hz)

Therefore, we can expect to receive higher accuracy with systems that use larger band-

widths or have higher SNR.

For completeness, it should also be pointed out that for fully unsynchronized sys-

tems, a round-trip TOA method can be used. In this method, both devices are trans-

mitters and receivers; therefore, we will refer to them as Device One and Device Two.

Device One starts by sending a signal to Device Two. After an internal delay, Device

Two transmits its own signal to Device One. Device One measures the time it took

from when it sent the signal to when it received the response. This time is twice the

propagation time between the devices plus the internal delay time of Device Two (see

Figure 2.3).

Therefore, once Device Two tells Device One its internal delay (whether it is a known
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Figure 2.3: Distance calculation based on roundtrip Time-Of-Arrival

quantity or a measured), Device One can determine the distance between the two

devices.

Time-Difference-of-Arrival

The TDOA technique can be used when the receiver cannot calculate the actual time

it took a signal to travel from a single transmitter because there is an absence of

synchronization between the transmitter and receiver. However, this technique requires

that all the transmitters are synchronized to a common clock. Unlike with the time-

of-arrival technique where the receiver determines the distance between itself and a

transmitter, in time-difference-of-arrival the receiver tries to determine the difference

in distance in relation to itself and two transmitters. That is, the receiver determines

the signed value of the difference between the distance to one transmitter with the

distance to another transmitter (see Figure 2.4).

Figure 2.4: Distance calculation based on Time-Difference-Of-Arrival

Since the transmitters are synchronized, the receiver can simply subtract the ‘perceived’

time-of-arrival from each of the transmitters and effectively eliminate the clock offset in

the unsynchronized transmitter-receiver pair to determine the time difference. As stated

before, the distance difference can be determined by multiplying the time difference with

the propagation velocity. Therefore, we now know that the receiver lies on a locus of

points which have a constant difference in distance to two fixed points. This curve
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is simply a hyperbola with the two transmitter locations as the foci. The estimated

location can be determined by the intersection of several such hyperbolic curves.

2.2.2 Angle-of-Arrival

The AOA technique exploits the fact that a triangle can be defined by one of its side’s

length and the two angles at the ends of that side. Therefore, using two transmitters as

two point of a triangle (the receiver will make up the third point), we can know one side

length of the triangle. Now if we know the angles between the two transmitters and

the receiver, we can determine the location of the receiver uniquely (see Figure 2.5).

Figure 2.5: Estimating receiver location using Angle-Of-Arrival

As a result, at the root of the AOA technique is the method to determine the direction

of the signal propagation incident on the receiver. To determine the angles, there are

two common methods used [22]. Antenna arrays are the most popular solution for

AOA. A transmitter sends out a single signal which is picked up by the antenna array.

Each antenna in the array determines the arrival time of the signal. By using the time

difference in the arrival times, the array knows the relative phase differences observed

at each antenna (which are in known locations relative to the device). Therefore, with

the known positions of the antennas and the difference in phase, the incident angle can

be determined.
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2.2.3 Received Signal Strength

The RSS method works on the principle that the energy of a signal decreases as it

move farther away from its source. Therefore, if one knows the relationship between

the decrease in energy and the distance traveled (i.e. a path-loss equation), the distance

between the receiver and transmitter can be calculated from the signal strength observed

at the receiver. One simple form of the path-loss equation is:

P (d) = P0 − 10n log
d

d0
(2.3)

where

n = path-loss exponent,

P0 = power at distance d0 (dBm)

However, a major problem with RSS is that, unlike with the simple form presented

above, the power attenuation in realistic conditions is not monotonically decreasing .

Instead, the observed signal strength at the receiver suffers from problems in multipath

and shadowing, just to name a few. Therefore, in environments with many obstructions,

it becomes quite difficult to accurately infer distance based on RSS. As a result, for

indoor propagation, most people added an extra uncertainty variable into the simple

path-loss model called the shadowing effect. The model is expressed as:

P (d) = P0 − 10n log
d

d0
+ Xσ (2.4)

where

Xσ = N(0, σ2)

Environments that suffer from large shadowing effects are expressed with a higher

variance Gaussian random variable. In [11], they show that distance estimation based

on RSS achieve the inequality:

√
var(d̂) ≥ ln 10

10
σsh

n
d (2.5)
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where

σsh = standard deviation of shadow effect,

d = distance between devices

Therefore, we can expect lower accuracy for larger ranging distance and in environments

with more obstructions (represented by a higher standard deviation due to shadowing).

Despite the short comings of a RSS based method, much research has gone into finding

effective ways to use it in localization. The main reason for its appeal is the relative

easy of use and inexpensive cost. That is, most wireless devices already have a Received

Signal Strength Indicator (RSSI) circuit build into them. Therefore, no additional

hardware is required for such systems and because RSS can be measured from any

ordinary communications packet, you may not even require additionally communication

bandwidth.

2.3 Signals Types Used in Localization

After having an understand about the primary metrics preferred by localization tech-

niques, it is important to know from which type of signals these metrics are extracted

from. We will focus on the two main types of signals used in localization techniques:

radio frequency and sound. Although there are techniques that use other signals, such

as infrared or magnetic, they are quite rare and as a result, we do not focus on them.

However, in Section 2.4.3, we will discuss the use of infrared in Active Badge.

2.3.1 Radio Frequency

Radio Frequency (RF) signals are electromagnetic waves in the frequency range from 3

Hz to 300 GHz . There are several properties about RF propagation that are pertinent

to their use in localization techniques. Firstly, the signal power weakens as it traverses

in distance away from the source because the wavefront of the signal energy expands as

it traverses. The free space loss in signal power of a wavelength λ signal at a distance

d can be represented as:

Lfs = (
4πd

λ
)2 (2.6)
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In addition to the free space loss, signal power also attenuates as it passes through

objects such as walls because the objects absorb some of the signal power. One very

important problem that is critical in relation to localization is multipath. Multipath

is the process by which a signal can interfere with itself. That is, a signal can travel

in a non-line-of-sight path by bouncing off of objects and combine with the line-of-

sight signal. The result of the latter two properties is that signal attenuation is no

longer a deterministic relationship with distance. Another important characteristic of

RF propagation is the bandwidth of the signal. The bandwidth of a signal is basi-

cally the difference between the highest frequency component and the lowest frequency

component in the signal.

Narrowband vs. UWB

Narrowband signals are generally regarded as those whose message bandwidth is quite

trivially compared to the channel’s full bandwidth. Conversely, when the message

bandwidth is much larger than the channel bandwidth, the signal is referred to as

wideband. Ultra-Wideband (UWB) signals have bandwidth in excess of 500 MHz or

20% of their center frequency. Narrowband signals typically transmit message data by

modulating it onto a carrier wave (normally a sinusoid). UWB transmission doesn’t

require any carrier. Instead, the message is sent via extremely short pulses spaced

accordingly. From the point of view of localization, the type of RF signal used can

provide some unique advantages.

The use of short duration pulses by UWB allows the combating of multipath effects

since any reflected pulse arriving after a duration period from the arrival of the line-

of-sight pulse can be properly detected as multipath components. For example, when

a line-of-sight pulse is able to be detected, UWB is better equipped to be able to

determine the time-of-flight since the direct path can be resolved from the multipath

components. That is, since the time-of-flight is determined as the peak position of

the correlation of the transmitted signal and the received signal, any corruption of the

received signal will shift the peak away from the true position. Narrowband signals

are highly susceptible to multipath interfere which causes the received signal to not
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only be the time-shift version of the transmitted signal, but also the summation of all

the multipath components. Additionally, as we saw in Section 2.2.1, we can expect

higher time-of-flight accuracy with larger bandwidths. However, one problem with

UWB signals is that communication range is significantly shorter than with narrowband

signals.

2.3.2 Sound

A sound signal travels through the air as a wave of mechanical energy disturbance caused

by alternating pressure. These signals can vibrate at various frequencies. Typically

humans can hear sounds in the frequency range from 20 to 20,000 hertz which is referred

to as acoustic sound. Sound at a frequency greater than 20,000 hertz is referred to as

ultrasound. Since ultrasound is inaudible to humans, it is the typical form of sound

signal used in localization so as to remain stealthy and non-hostile to humans. The

speed of sound in air is about 343 meters/s. Considering the relatively slower speed

of sound compared to RF signals, it makes sound signal propagation time calculation

less complex and a more attractive solution than using RF signals. However, the use

of high frequencies causes the range of the signals to diminish compared to the audible

range frequencies. Additionally, the high frequency causes the sound waves to travel in

a narrow beam causing a directionality dilemma.

2.4 Primordial Localization Techniques

The following select historic techniques attempted to use the different principles out-

line above in their own manner to determine location. Although these techniques are

not fully feasible for wireless sensor networks, their underlying methodologies provide

valuable insight into the problem of localization.

2.4.1 GPS

The Global Positioning System (GPS) is probably the most popular and best known

localization technique in the industry [5]. GPS is a radio frequency-based time-of-flight
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system that is primarily suited for outdoor localization using earth orbiting satellites

as transmitters. By determining the distance to the satellites via a time-difference-of-

arrival calculation, the receiver can determine its location through triangulation. The

system is made up of three separate segments: a space segment, a control segment, and

a user segment. The space segment consists of at least twenty-four orbiting satellites

which are highly synchronized via atomic clocks. Each satellite follows a well-defined

orbit; therefore, their absolute locations can be determined and the orbits are defined

such that at least four of them are always reachable at any location and at any time.

The satellites continuously transmit a unique code which consists of the orbital loca-

tion and clock information (called Navigation Message). The control segment consists

of four monitoring stations and one master control station. The monitoring stations

continuously receive data from the satellites and pass them to the master control sta-

tion. The master control station analysis the data and sends correction information

about the orbital and clock to the satellites. The user segment is simply the receiver

trying to find its location. By using the orbital information, the receiver can determine

the location of each satellite it communicates with. The satellites transmit a pseudo-

random noise code of which the receiver has a locally generated copy. To find the

time-of-arrival, the receiver just determines how much time shift is required to match

the code. Time-difference-of-arrival technique is used to determine the location because

the receivers are not as highly synchronized to the satellites. One major problem GPS

faces is the time delay cause by the atmosphere because the signal slows down. The

accuracy is also affected by the number of satellite and the relative position of them.

That is, accuracy is better when more satellites are present and when the satellites are

spatially diverse at wide angles. And of course error can be cause by incorrect orbital

and clock information (the job of the control segment is to minimize this source of

error). With these sources of error in consideration, the accuracy range is typically

6-to-12 meters.
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Differential GPS

Differential GPS (DGPS) was developed as an enhancement to GPS to reduce some

of the sources of error. Conventional GPS use a model to estimate the atmospheric

delays; however, DGPS can provide actual delay information. DGPS works by using

a network of reference stations (GPS receivers) at fixed location on the earth. The

system works by calculating the ranging error associated with satellites by comparing

the range determined by the received signal to the range determined by the actual

position location. This correction information is transmitted to the DGPS receivers

who can use the information to improve their location calculation. DGPS reduces the

position error down to a range of 1-to-5 meters.

2.4.2 RADAR

One of the earliest and most popular localization techniques for indoor location es-

timation based on signal strength called RADAR is presented in [8]. The technique

is deployed using a buildings’ existing wireless LAN network. In the paper, the au-

thors present two implementation methods for RADAR. There are three base stations

on the floor that together cover the entire location space. In both methods, the re-

ceiver collects an RSS triplet for the basestations. However, one of the implementa-

tions uses “empirically-determined” data to determine the most likely location of the

receiver based on the triplet, where as, the second implementation uses “theoretically-

computed” data to determine the most likely match for the triplet. The two methods

represent a trade-off between accuracy of location estimation and ease of deployment.

Pattern Matching Method

The pattern matching method of RADAR requires two phases. In the initial phase,

a database of RSS values is created by going to various points in the location space

and storing the signal strength of each basestation at the point (averaging multiple

beacons). Additionally, at each location point, the orientation of the receiver (north,

south, west, and east) is changed and RSS values at each orientation are stored. The
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authors generate the database based on all four directions at seventy location points.

The final phase of the method is to determine the location of the receiver by searching

the database created in the initial phase. Basically, after determining the RSS values

observed from each of the basestations, a nearest neighbor search is done on the database

to determine the most likely location. The authors claim that the method provides sub

3 meter location error 50 percent of the time.

Triangulation Method

The authors propose the triangulation method to eliminate the need for the initial

phase of the pattern matching method. In this method, the database is created using

an indoor signal propagation model. Using this model, the signal strength data in the

database at each location is theoretically calculated. In essence, they are estimating

distance based on signal strength. That is, once the receiver obtains the RSS values of

each basestation, it searches the theoretical database to determine the closest match.

Furthermore, the receiver discovers the location it should be at if the observed RSS

values were used to determine the ranging from the basestation based on the path-loss

model. They study several model and adapt Floor Attenuation Factor Model to the

Wall Attenuation Factor model:

P (d) = P0 − 10n log
d

d0
−





nW ∗WAF if nW < C

C ∗WAF if nW ≥ C
(2.7)

They define C to be the maximum number of walls up which the attenuation makes

a difference, nW is the number of walls between receiver and transmitter, and WAF

is the wall attenuation factor (which is empirically determined for the environment).

This theoretically method provides an error of 4.3 meters 50 percent of the time.

The triangulation method results in an error of more than a meter as compared to

the pattern matching method. However, the less accurate results are compensated by

the fact that an extensive empirical data collection phase is not required. Only the

empirical estimation of a channel parameter (WAF) is necessary.
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2.4.3 Active Badge

The Active Badge system proposed in [26] is one of the earliest attempts at performing

indoor localization. The system is proximity based and allows room level granularity

without the real possible of achieving fine localization if desired. The system makes

use of infrared technology to achieve the receiver to transmitter communication. The

unknown object in this system is a small badge that transmits an infrared signal while

the known reference location is a sensor that detects the signal. Therefore, in this section

we will explicitly refer to the unknown location as a badge and the known location as

a sensor (since the receiver/transmitter roles are reversed in reference to our previous

stipulation). In the system, each badge periodically transmits a unique infrared signal

(every badge has its own code) to identify itself. The signals are picked up by fixed

location infrared sensor around the building. All the sensors are networked together

to a central server that aggregates the sensor readings to provide location information

about each badge in the system. Since infrared signal don’t penetrate through walls,

the badge can be accurately located to within room boundaries.

2.5 Chapter Summary

In this Chapter, we have given a broad overview of the different factors the one can

consider for a localization technique. We have seen that some techniques try to make

pair-wise distance estimations for the end goal of determine location, whereas, others try

to infer location by processing the gathered data without making distance estimations.

Additionally, we have observed some of the helpful metrics that can be extracted from

signals and also some of the challenges that these metrics face when trying to be useful,

such as synchronization or corruption. Finally, we looked into the common signal types

used by localization techniques along with there inherent issues when used in practice,

like obstructions or audibility.

GPS’s requirement for sophisticated hardware prelude direct use of in wireless sensor

localization. However, the essential time-of-flight methodology for determining location



20

can be universally used if a less stringent method, in terms of hardware, for determin-

ing time was implemented. Similarly, it is conceivable to implement the RADAR’s RSS

methodology on wireless sensor motes given we can shift the computationally expensive

database and search algorithm to a central server. Additionally, with wireless sensor

networks dense population it is reasonable to think with more known location basesta-

tions, the accuracy could be improved. Active Badge use of infrared prevents it from

direct use in wireless sensor networks. However, coarse localization can be implemented

in wireless sensor networks using RSS data instead. If one could strategically install

motes in every room that sent periodic beacons to that room only (adjusting power level

to avoid spillover into next room), a mobile mote could be localized to the room that

corresponds to the high strength RSS receiver (highest strength since it is reasonable

to assume the any spillover would have low strength).
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Chapter 3

State-of-the-Art Wireless Sensor Networks Localization

Techniques

In this Chapter, we will discuss some of the state-of-the-art techniques proposed for

localization in wireless sensor networks. We have split these techniques up into two cat-

egories depending on their level of hardware requirements. One category of techniques

requires no additional hardware modification to existing mote technologies. That is, the

hardware already equipped in commercially available wireless sensor motes will be suf-

ficient for deployment of the localization techniques. The other category of techniques

requires that additional specialized hardware is necessary for use of the techniques. We

first present the category of techniques that require additional hardware.

3.1 Require additional hardware

We first investigate two novel techniques that are in theory suitable to be used with

Wireless Sensor Networks: Cricket and Active Bat. However, both techniques make use

of acoustic signaling via hardware not typically found on commercial wireless sensor

motes.

3.1.1 Cricket

The Cricket Location Support system proposed in [23] is a time-of-flight based system

that makes use of both RF and acoustic signals. Cricket was developed with a specific

emphasis on user privacy and scalability. To achieve the scalability goal, the system

was designed in a decentralized manner in which the individual components in the

system need not be kept accounted for by a central unit. That is, a transmitter (or

receiver) can be added into the existing system without the need to be configured and
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installed by a special administrator of the overall system. The system is such that a

newly installed transmitter need not follow strict guidelines to avoid causing chaos to

existing transmitters. To insure the privacy of the receiver, the system is designed such

that the receiver is the only one who has all the necessary information to determine

location. In this way, the receiver performs all the localization calculations necessary

and determines its own location, and as a result, a central database cannot store the

receiver’s location unless the receiver chooses to publish its own location.

Cricket exploits the orders of magnitude difference between radio frequency and

acoustic signals to calculate the time-of-flight range. The transmitters will broadcast

an RF signal while at the same time transmit an ultrasonic pulse. Basically, the RF

signal with its much faster speed will act as a time synchronizing mechanism while

the ultrasonic pulse is the signal used to determine time-of-flight. The receiver will

hear the RF signal and wait for the ultrasound pulse. The time difference between

the first reception of the RF signal and the ultrasonic pulse can be estimated as the

time-of-flight of the ultrasonic pulse. Also, to define the time interval the receiver

should expect the ultrasonic pulse to arrive, the authors used a low data rate message.

The message is design so that any receiver in range to hear the RF signal should

hear the ultrasonic pulse before the completion of reception of the RF signal. This

eliminates the possibility that the valid ultrasonic pulse is lost and a stray pulse from

another transmitter is not falsely considered. In addition, to alleviate the interference

resulting from the decentralized and uncoordinated transmitters, the authors implement

a randomized algorithm for broadcasting by the transmitters.

The Cricket system employs both a proximity method and allows for fine-grain

localization through triangulation. The proximity method is implement by having the

transmitters determine regions in the location space. When a transmitter is configured,

it is coded with a specific string that the owner determines as referring to the region.

Whenever a beacon is placed to demarcate a physical or virtual boundary

corresponding to a different space, it must be placed at a fixed distance

away from the boundary demarcating the two spaces. [23]
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In this manner, a receiver determines the region it is in by using proximity information

about the transmitters. Simply put the receiver associates with the transmitter it

determines is the closest in distance (the smallest time-of-flight value). Furthermore,

if the receiver chooses to determine its fine-grain location in terms of coordinates, it

can simply use the ranging information (distances calculated by time-of-flight) it has

about the transmitters, and their position information, to perform a triangulation to

determine the absolute location.

3.1.2 Active Bat

The Bat System proposed in [12] and [27] is a time-of-flight based system that makes

use of both RF and acoustic signals. Like with Cricket, the Bat system exploits the

great orders of magnitude difference between the speeds of propagation of a radio signal

and an acoustic signal. By using the much faster RF signal to synchronize the trans-

mitter and receiver, the system is able to use the acoustic signal to perform a ranging

calculation. In this section, we will explicitly refer to the unknown location objects as

Bats and the fixed location reference objects as Ultrasound receiver units. The Bats are

constructed from a radio transceiver, microprocessor, and a couple of ultrasonic trans-

ducers. Each Bat is also uniquely identified by an ID. The Ultrasound receiver units

consist of an ultrasonic detector and a serial network interface. A grid of Ultrasound

receiver units are mounted on the ceiling and connected to each other through the serial

interface. There is a central computer that has a base station attached to it and is also

connected to the receiver unit network. Periodically the base station sends out a RF

signal with the unique code of the Bat being localized and at the same time sends a

reset to all the Ultrasonic receiver units through the wired serial network. Upon the

Bat receiving the RF signal, it transmits an ultrasonic pulse to the grid of receivers.

The Ultrasonic receiver units will determine the time-of-flight by measuring the dif-

ference in time from the reset signal to the detection of the first ultrasonic pulse. To

eliminate the use of reflected ultrasonic pulses, the authors implemented a “statistical

outlier rejection algorithm.” Once the time-of-flight measurements are determined the

Ultrasonic receiver units send the information to the central computer for processing.
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The location estimate is computed by a process of multilateration.

Cricket and Active Bat are quite similar in their underlying methodology as both

use some form of time-of-flight ranging using RF and acoustic signaling. However,

Active Bat relies on a central computer for determining location, while Cricket focus

on a decentralized approach. Additionally, Active Bat has the unattractive feature of

requiring a wired network of receiver units.

3.2 Work with existing mote hardware

We will now explore five techniques that can be readily deployed using the existing

mote hardware: Centroid Method, Approximate Point-In-Triangle, Ecolocation, RF

Time-of-Flight, and RIPS. These techniques make use of the radio hardware typically

found on motes along with varying degree of complexity in their algorithms.

3.2.1 Centriod

The Centroid method proposed in [9] is a RSS based method which is range-free. It use

a simple proximity based algorithm that can provide coarse-grain location estimates

while requiring almost no setup. The estimation technique is simply that the receiver

localizes itself to the centroid of the transmitters that are in its “proximity range.”

The “proximity range” is determined by a connectivity metric which is the number

of beacons received by the receiver divided by the number of beacons sent by the

transmitter. If the connectivity metric is above a certain threshold, then the transmitter

is determined to be in “proximity range.” Once the N “proximity range” transmitters

are determined, the receiver localizes itself to the location:

(Xest, Yest) =
(

X1 + · · ·+ XN

N
,
Y1 + · · ·+ YN

N

)
(3.1)

Because the algorithm relies on a spherical radio propagation model to setup boundaries

in the connectivity range, the authors test the validity of the connectivity in indoors

and outdoors environment. They reach the conclusion that the model is not valid

for indoor, but performs reasonable well for outdoor environments. As a result, they

perform outdoor test with four reference nodes at the corners of a 10 meter-by-10 meter
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area (nodes of range about 9 meters). Taking measurements at 1 meter intervals in both

directions, the results were an average error of 1.83 meters and a maximum error of

4.12 meters.

3.2.2 Approximate Point-In-Triangle

The approximate point-in-triangle technique proposed in [13] is a RSS based method

which is range-free. The basic procedure is to determine if the receiver is in a triangle

formed by a set of three transmitters. This “in-triangle” determination is done for all

set of three transmitters possible. The estimated location is the center of gravity of

the maximum region of all overlapping “in-triangles.” The theory the authors use for

determining whether a receiver is in a triangle is based on what they call the “Perfect

P.I.T. Test Theory” which is stated as:

If there exists a direction such that a point adjacent to M is further/closer to

points A, B, and C simultaneously, then M is outside of ∆ABC. Otherwise,

M is inside ∆ABC [13].

Although the perfect P.I.T. would guarantee the correctness of the decision, the authors

develop an approximation of the test because in practice the perfect P.I.T test would

not be possible. They base their approximation on the weak assumption that signal

strength is monotonically decreasing for a particular direction. That is, between two

neighboring receivers, the receiver closer to a transmitter should observe higher signal

strength (though no assumption is made that the values will follow a well-defined path-

loss model). The “Approximate P.I.T Test” is defined as:

If no neighbor of M is further from/closer to all three anchors A, B, and C

simultaneously, M assumes that it is inside triangle ∆ABC. Otherwise, M

assumes it resides outside this triangle [13].

In essence, the neighbors are acting like the movement of the receiver (in finite direc-

tions) trying to determine if it is in the triangle in the perfect P.I.T. test. Therefore,

the neighbors communicate their observed RSS values from the transmitters with the
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receiver, the one trying to localize itself (though the neighbors are also localizing them-

selves via communications with their neighbors, for simplicity we refer to the receiver

as the only one localizing itself). Based on the comparison with its own observed

RSS values, the receiver determines which neighbors are closer to/farther from which

transmitter relative to its own location. The authors point out that the APIT test

suffers from the fact that, unlike with the perfect P.I.T. test, only a finite number of

directions can be tested, represented by the direction of the neighbors. The location

estimation is determined by the maximum triangle overlap. The method they propose

for this determination is making a location space grid and incrementing the grid points

which correspond to an “in-triangle” and decrementing the ones that correspond to an

“out-triangle.” The center of gravity of the grid points that have the maximum value

is estimated to be the location of the receiver.

In the paper, the authors don’t provide any experimental results for the algorithm.

However, they do present simulation results based on the varying of different system

parameters. They perform the simulations with three other range-free schemes, namely,

Centroid [9], DV-Hop [20], and Amorphous Positioning [18]. They conjure that A.P.I.T

is most desirable when there is random transmitter placement and if there is an irregular

radio pattern in addition to low communication overhead.

3.2.3 Ecolocation

The Error COntrolling LOCAlizaTION (Ecolocation) algorithm proposed in [29] is an

RF based range-free localization technique. The key idea behind the algorithm is that

the localization space can be divided into distinct non-overlapping regions based on

the ordered sequence of transmitters. The ordered sequence of transmitters is defined

as the sequence of the transmitters ordered from closest to farthest. That is, every

point in the localization space can be associated with one and only one ordering of the

transmitters based on each transmitters distance from that point.

Each transmitter sends out beacons and the receiver determines the RSSI of each

received signal. An ordered sequence is generated based on the RSSI. Now for each

point in the location space, a theoretical distance based ordered sequence is generated.
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Both ordered sequences are converted into a constraint matrix. The constraint matrix

is essentially an n-by-n (n is number of transmitters) matrix of -1’s, 0’s, and 1’s where

the elements obey:

element(i, j) =





−1 if transmitter i is farther than transmitter j

0 if transmitter i and transmitter j are equidistance

1 if transmitter i is closer than transmitter j

(3.2)

Equation 3.2 implies that the RSSI constraint matrix is generate by the sign function

as, element(i, j) = sign(RSSI(i) − RSSI(j)) and the theoretical constraint matrix

is generated based on the negative sign function as, element(i, j) = −sign(dist(i) −
dist(j)).

For every location space point, a theoretical constraint matrix is generated and com-

pared with the RSSI constraint matrix. The number of constraint matches is determined

and the locations with the maximum number of matches are found. The centroid of

these locations is calculated and used as the estimated location. The algorithm is able

to overcome minor errors in the RSSI because it uses the relative comparison rather

than absolute values. That is, even if the absolute values are corrupted, as along as

the relative rank is still correct the algorithm is unaffected. Furthermore, the technique

allow for correcting errors through the redundancy in constraints. Hence, the name

Error COntrolling LOCAlizaTION because of the similarity to error controlling codes.

The authors perform experiments in indoor and outdoor environments. In the out-

door environment, they randomly placed eleven Crossbow Mica2 [1] motes in a 12

meter-by-12 meter open parking lot. They localized each mote by using the other ten

as reference transmitters. To quantify the results, they used a metric called percent-

age of average inter-reference nodes distance. The maximum error observed was about

80%; however, the other ten localization points resulted in error of sub 25% with four

of those sub 5%. An indoor office building scenario representing a cluttered RF en-

vironment was also tested. They placed twelve reference nodes along a corridor and

in a room. They performed the test at five location points. The results showed the

maximum error was about 50% with three others in a 30-40% range and the lowest at

about 10%. As expected, the technique works better in a relatively open RF channel
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with low interference.

Sequence-based

A similar technique based on ordered sequences was proposed by the same authors

in [28] called Sequenced-Based Localization (SBL). Again, the transmitters send out

beacons which the receiver uses to generate an ordered sequence based on the RSSI.

However, the determination of location is not performed through a constraint matrix

method. Instead, a pre-defined “location sequence table” is used to determine the clos-

est match sequence to the RSSI determined sequence. The location sequence table is a

mapping of all feasible sequences in the location space to a unique location. Basically,

the location space (in two-dimensions) is divided into distinct regions by the perpen-

dicular bisector of each line joining pairs of transmitters. As a result, each region is

defined by a unique ordered sequence of the transmitters by distance. The centroid of

the region is taken to be the unique location defined by that ordered sequence. The

authors provide a pseudo-code of determining the location sequence table. The tech-

nique exploits the fact that the number of feasible ordered sequences is much less than

all possible ordered sequences. Given all ranking of the transmitters is possible the

number of possible sequences is O(nn); however, the authors prove that the number

of feasible sequences is O(n4). Therefore, an erroneous RSSI based ordered sequence

can be corrected by finding the nearest feasible sequence in the location sequence table.

The authors use two methods to determine the nearest feasible sequence: Spearman’s

Rank Order Correlation Coefficient and Kendall’s Tau. They notice through simulation

results that Kendall’s Tau performs slightly better than Spearman’s correlation as the

number of reference nodes increases.

3.2.4 RF Time of Flight

In [15], the authors propose a system of measuring the time of flight in sensor motes

based on radio frequency signals. Their design is for narrowband signals in the 2.4

GHz ranges and based on future 2nd generation motes because they require access to

the signal at the physical layer. Because tight clock synchronization is not possible in
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ad hoc wireless sensor networks, the approach proposed uses roundtrip time-of-flight

measurements. Since the choice is to use narrowband signals, they conclude that for

accurate time-of-flight calculation they should determine the phase offset of the signal.

As a result, they choose to use pseudorandom noise (PN) code signals because of their

property to have a large peak at the phase offset.

The system works in two phases: online measurement phase and offline range ex-

traction phase. The system uses a clock which is the same as one period of the PN code.

Because both devices will act as receivers and transmitters in the roundtrip scheme, we

will refer to them explicitly as Device One and Device Two. First the devices are syn-

chronized to the level of one clock period. Then Device One transmits multiple copies of

the PN code modulated onto the carrier signal. The system requires that Device One

start transmitting after waiting one clock period after synchronization. Device Two

starts receiving these copies after waiting two clock period from synchronization and

averages the demodulated signal and creates a local copy. This averaged signal is then

transmitted in multiple copies back to Device One using the same principle of waiting.

Device One creates the received signal by averaging the copies. Now both devices have

finished the first phase and the second phase can begin. The second phase is simply

determining the cross-correlation between the estimated received signal by Device One

and the initial transmitted signal by Device One. The peak of the function is found

to determine the round trip time of flight. To combat multipath errors, they propose

taking multiple measurements at multiple carrier frequency since multipath interference

is highly dependent on the frequency of the signal.

The authors also discuss some of the impacts that the system parameters have

on ranging performance. Since the correlation peak (effective SNR) of the PN code

is linearly dependent on the code length, the ranging accuracy can be improved by

increasing the code length at the cost of computational complexity. However, this only

improves the error caused by noise; as a result, the code length should not be increase

without bound. Multipath induced errors can be combated by increasing the code chip

rate, effectively increasing the bandwidth. That is, by reducing the chip period, the

multipath signals with large path delays can be rejected. However, the authors point



30

out that increasing the chip rate has little affect until the chip period is similar to the

multipath signal delay. They show through simulation that signals with 1 Mchips/s and

5 Mchips/s have almost the same performance and a further increase to 10 Mchips/s has

a very slight improve. Only when the rate is increased to 20 Mchips/s and 50 Mchips/s

does the performance error improve. As a result, very large bandwidth will improve

results; however, increasing bandwidth of low bandwidth signals will have negligible

affect on performance while needlessly increasing energy consumption. The authors

state the Cramer-Rao lower bound on the accuracy of RF time-of-flight is:

σ2
TOF =

1
8π · SNR · √α ·BW 2 ·N (3.3)

where

SNR = average SNR,

α = # of copies averaged,

BW = bandwidth,

N = # of chips

The authors provide experimental results done in different indoor and outdoor set-

tings. The signal parameters chosen for the experiments are 1 Mchips/s code chip

rate, 8 chips code length, and 8 code copies averaging. To combat multipath interfer-

ence, they average results using multiple frequencies. Furthermore, averaging multiple

measurements at each frequency is done to reduce noise interference. They claim to

observe typically better than one meter error outdoors and better than three meters

error indoors.

3.2.5 RIPS

In [17], the authors present a radio interferometry based technique for localization

which they call Radio Interferometric Positioning System (RIPS). The technique has its

origins in the fields of physics, geodesy, and astronomy. The location of a radio source

can be determined by two receivers at know locations by cross correlating the radio

signal received resulting in an interference signal that can be analyzed to determine
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location. However, since radio interferometers are complex and expensive devices, the

technique can’t be directly use in its traditional sense. Instead, the authors propose to

create the interference signal directly by using two transmitters. By using two slightly

offset frequencies, the resulting signal has a low frequency envelope that can easily

be measured by the typical radio chips on sensor motes. The authors propose making

multiple measurements using different carrier frequencies using a minimum of 8 motes in

the network to avoid tight synchronization requirements. That is, using only the single

interference signal to determine the relative position of the two transmitters and receiver

would require additional hardware to meet the synchronization constraints. However,

they determine that the phase offset of the signal associated with two receivers would be

a function of the relative location of the four motes (two transmitters and two receivers)

and the carrier frequency. Furthermore, they determine that to solve for all relative

positions a minimum of 8 motes is required.

Using two transmitter motes, A and B, the relative phase offset of the received

signal at the two receiver motes, C and D, is determined. As noted before, the two

transmitters transmit pure sine waves simultaneously at slightly different frequencies,

fA and fB, resulting in an interference signal with a low beat frequency of |fA − fB|.
The phase of the interference signal is determined at each receiving mote. The authors

proved that the relative phase offset between the signal detected at C and at D is

constrained by the equation:

∆φ = φC − φD = 2π
dABCD

λcarrier
(mod 2π) (3.4)

where

dABCD = dAD − dBD + dBC − dAC ,

λcarrier =
2c

fA + fB

Since the phase offset is modulo the carrier frequency, multiple measurements at differ-

ent carrier frequencies are necessary to determine the range value dABCD. Furthermore,

the authors state that at most there can be n(n−3)/2 linearly independent set of mea-

surable ranges in an n-mote network. Coupled with the fact that in 3D the number of
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unknowns is 3n − 6, a minimum of 8 motes are needed in the network for there to be

more measurements than unknowns.

The authors implemented there algorithm on Crossbow Mica2 [1] motes because it

uses the Chipcon CC1000 [2] radio chip which is very configurable. They required a

custom driver for the radio chip so they could transmit unmodulated pure sine wave at

distinct frequencies. Additionally, to ensure that the relative phase offset was measured

correctly, the author design a scheduling scheme for transmission and reception times

to create a common time instant between the participating motes. Furthermore, a fair

amount of tuning is required to set the two frequencies of the transmitting motes.

The phase offset equation can be recast and for each carrier frequency used we

obtain the set of equations (for their tests the author used 10 different frequencies):

dABCD(i) = λini + γi (3.5)

where

γi = λi
∆φi

2π
,

ni = integer

Because of error introduced by the noisy environment, the equations can’t be solved

exactly. Instead the range value dABCD is determined by finding the minimum of the

error function:

error =
√∑

i

(dABCD − dABCD(i))2 (3.6)

Since the ranging values are derived for distance separation among four motes, instead

of pair-wise, the estimation of location can’t be determined via simple triangulation

or some other common method. As a result, the authors decide to develop a method

based on genetic algorithms to determine the relative positions of motes based on a set of

range values. We refer the reader to [17, Section 6] for a more detailed description of the

genetic algorithm. The author noticed that interference patterns could be observed up

to twice the communication range. The experiments were conducted using 16 motes, in

a 4-by-4 grid, deployed in an 18-by-18 meter open field with no obstructions. They state

that the entire localization process, including the required frequency tuning, multiple
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measurements, etc, takes roughly 80 minutes. However, they believe that after further

optimization, and in a smaller scale setup, the process should be able to finish in about

5 minutes. The observed accuracy on average was 3 cm; however, they note that the

mote placement was only to an accuracy of 5 cm so they simply claim this indicates

the RIPS can achieve high precision.

3.3 Chapter Summary

In this Chapter, we presented localization techniques that where design with Wireless

Sensor Networks in mind or are directly applicable to them. We first explored two

similar techniques that require acoustic signaling and receiving hardware and found

they differ in the principle of centralization. We next shifted our focus to techniques

that could be easily implemented on commercial wireless sensor motes. We found

that they ranged from providing coarse-grain localization using ordinary signals and

simple algorithms to promising more fine-grain localization using specialized signals

and complex algorithms.
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Chapter 4

Evaluation of Localization Techniques

This Chapter focuses on the set of design criteria that an indoor Wireless Sensor Net-

works based localization technique should possess in many applications and why they

are important. The criteria can be broadly classified as efficiency-based and accuracy-

based. We explain how the localization techniques from the previous Chapter evaluate

to these criteria and in particular, we show that only one of the techniques examines well

to the efficiency-based criteria. However, the published test cases do not cover some of

the scenarios we are seek to have performance details for and so we conclude the section

by indicating which test scenarios remain unanswered to evaluate the accuracy-based

criteria.

4.1 Design Considerations

The techniques examined in the previous Chapter are merely techniques that have the

potential to be deployed on wireless sensor motes but may not necessarily be fully appro-

priate for many indoor applications. Indoor localization with wireless sensor networks in

such applications must meet the requirements that follow. The first five criteria are re-

ferred to as efficiency-based and the last two are considered accuracy-based. Therefore,

any technique that evaluates well to the first five criteria will be referred to as ‘efficient’

and those that evaluate well to the last two criteria will be considered ‘accurate’.

1. Deployable on Commercial Motes With No Hardware Integration

A major benefit to using wireless sensor motes in localization is that they are cheap

devices deployed in a large number. As the use of sensor motes becomes more

and more prevalent, it is possible to use some of the motes deployed for purposes

such as monitoring temperature (we refer to them as non-localization motes) as
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reference motes in a localization technique. This is an attractive development

for localization systems since it allows the use of many reference points without

any monetary or otherwise investment from the localization system. However,

it is important to remember to not interfere with the primary function of these

non-localization motes.

A technique that requires specialized hardware whose sole purpose is for localiza-

tion adds extra monetary cost to the solution. In additional, it precludes the use

of non-localization motes which means the large deployment benefits of wireless

sensor motes is lost. Any motes used in the localization system will have to have

specialized hardware integrated. This criterion demonstrates cost efficiency and

efficient use of motes in a wireless sensor network.

2. Low Communication Overhead

A low communication overhead is desirable to converse battery power and reduce

interfere within the wireless sensor network. Wireless sensor motes operate on

batteries so energy efficiency needs to be one of the utmost concerns. A technique

that uses the mote’s radio extensively for transmission would deplete a mote’s

battery quicker than a technique which requires fewer signal exchanges. In ad-

dition, extensive signaling would cause a large communication overhead which

would interfere with non-localization bandwidth. This criterion demonstrates en-

ergy efficiency and efficient use of the channel in a wireless sensor network.

3. Low Complexity Algorithm

Although an algorithm’s complexity can be carried out by the limited capabili-

ties of the motes, it may be at the expensive of energy-efficiency. That is, the

microcontroller would be able to complete all the computations, but the lengthy

computations would result in the microcontroller drawing a lot of power from the

batteries. Additionally, this would be a time consuming process that could pre-

clude the use of the algorithm in real-time localization. This criterion would also

imply that technique avoid using too many complex signals, since the generation

and reception of them is energy demanding. This criterion demonstrates energy
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efficiency and efficient use of localization time.

4. Ease of Initial Setup

Given that it is an indoor deployment, there are many factors to consider. Firstly,

an indoor environment is transient so the initial deployment setup should not be

too cumbersome because you may need to redeploy as things change. Also, wire-

less sensor networks are meant to be autonomous so a requirement to place motes

in carefully decided locations defeats the purpose. This criterion demonstrates

deployment time efficiency and efficient use of motes in a wireless sensor network.

5. Flexible to Deployment Environment

The localization system should be flexible to different environments. That is,

localization may be required in a room where only a few reference motes are

present. Even if it means poorer accuracy, the localization system should be able

to work in such conditions. This criterion demonstrates efficiency in adapting to

the localization environment.

6. Potential Accuracy Level

Potential accuracy level remains important because a fully ‘efficient’ technique

that doesn’t provide a reasonable level of accuracy would be completely useless.

However, many applications don’t require absolute accuracy. For such applica-

tions, a technique that gives needless pinpoint accuracy at the expense of efficiency

considerations would be highly undesirable. As a result, we don’t immediately

discard techniques that provide foot level accuracy as uninteresting. Here we look-

ing for accuracy in an environment without obstructions. The accuracy coverage

are must also be considered. That is, the technique shouldn’t just provide high

accuracy in certain regions of the localization area while providing substandard

accuracy in the remaining locations. This criterion demonstrates accuracy in low

multipath and shadowing environment and coverage.

7. Robustness to Multipath and Shadowing

Finally, above all, since we are working in an indoor environment that can have

many obstructions, the algorithm must be robust enough to not be significantly
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affected by noise (multipath and shadowing effects). It is expected that the accu-

racy suffers more as there is an increase in multipath interference and shadowing

effects; however, the level of drop off should not be such that accuracy is com-

plete lost, otherwise, it means that the technique is not appropriate for indoor

use. This criterion demonstrates accuracy in dealing with harsh environments.

Many times localizations techniques are judge solely on the accuracy-based criteria.

Although accuracy is a very important criteria, we must remember that for wireless

sensor networks the efficiency-based criteria are equally important. Tables 4.1 and 4.2

summarize how each technique evaluated to the efficiency-based criteria.

 
Commercial 

motes 

Communication 

Overhead 

Algorithm 

Complexity 

Initial 

Setup 

Flexibility to 

Environment 

Cricket No Moderate Low Moderate High 

Active Bat No Moderate Low High High 

Centroid Yes Low Low Low High 

APIT Yes Moderate Low-moderate Low Low 

Ecolocation Yes Low Low Low High 

RF TOF No High Moderate Low High 

RIPS Yes High High Low-moderate Moderate 

 
  Table 4.1: Evaluation of localization techniques to efficiency-based criteria listed in

Section 4.1

With the efficiency-based criteria in mind, the most suitable techniques out of those

discussed in the previous Chapter are the Centroid method and Ecolocation/Sequenced-

Based method. The Cricket and Active Bat techniques require specialized hardware in

the form of ultrasonic transducers and detectors and a dedicated channel for ultrasound

communication; as a result, they are not so attractive solutions and were eliminated

from our list of possible choices. While A.P.I.T. requires relatively low communica-

tion overhead for exchanging RSSI measures between unknown location receivers, its

requirement of many receivers to accurately determine the in-triangle decision is highly

undesirable. It means that the technique is not too flexible to systems where a sin-

gle mote is trying to localize itself. With this in consideration, A.P.I.T. doesn’t seem

too appropriate. In addition to specifically being designed in mind for second gen-

eration motes, the RF time-of-flight technique is also precluded because it requires a
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Commercial 

motes 

Communication 

Overhead 

Algorithm 

Complexity 

Initial 

Setup 

Flexibility to 

Environment 

Cricket 
Ultrasound 

transducers and 

speakers 

Require dedicated 

channel for 

Ultrasound 

Triangulation based 

on RF-Ultrasound 

time-of-flight data 

Beacon 

placement in 

strategic 

locations  

Can Localize with 

few reference motes 

Active Bat 
Ultrasound 

transducers and 

speakers 

Require dedicated 

channel for 

Ultrasound 

Triangulation based 

on RF-Ultrasound 

time-of-flight data 

Require wired 

network of 

reference motes 

Can Localize with 

few reference motes 

Centroid N/A 

can use any 

communication 

packet for RSSI data 

Centroid of 

reference locations 

in “proximity” 

range 

Just need 

reference motes 

Can Localize with 

few reference motes 

APIT N/A 

can use any 

communication 

packet for RSSI data, 

but requires much 

neighbor node 

communication 

Classifying all 

triangles as “in-or-

out-triangles” based 

on neighbors 

Just need 

reference motes 

Require neighbor 

nodes for APIT test 

Ecolocation N/A 

can use any 

communication 

packet for RSSI data 

Comparing RSSI 

constraint matrix 

with grid point 

constraint matrices 

Just need 

reference motes 

Can Localize with 

few reference motes 

RF TOF 
2nd Generation 

motes 

Multiple special 

signals 

Correlating PN 

signals for time-of-

flight data 

Just need 

reference motes 

Can Localize with 

few reference motes 

RIPS None 
Multiple special 

signals 

Determining phase 

offset for multiple 

interference signals 

and solving a 

system of equations 

Need motes 

with special 

signaling 

Require minimum 

eight nodes 

 

Table 4.2: Explanation of evaluations from Table 4.1

large communication overhead of multiple special signals. Finally, not only does RIPS

require specialized signaling using different frequency sinusoids, but it requires inter-

node communication to resolve the ranging. This process is both time-consuming and

energy-consuming. The technique claims to provide 3 cm, but it comes at too great an

expense.

With the use of wireless sensor motes indoors in a relatively small room, all trans-

mitters would be in radio range of the unknown location receiver and therefore, would

make the connectivity calculation of the Centriod method meaningless. Additionally,

the nature of the simple technique is to provide only coarse-grain proximity location

and our desire to achieve a reasonable level of accuracy steers us away from the use

of this method. As a result, Ecolocation/Sequence-Based seems to be the only tech-

niques able to evaluate successfully to the first five criteria while claiming to provide an

acceptable level of accuracy. However, as we will discuss in the following section, the

published results are insufficient to evaluate criteria 6 and 7. The technique would be
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unsatisfactory if it doesn’t have the potential to achieve a reasonable level of accuracy

or if it is able to perform well in the presence of obstructions.

Ecolocation and Sequence-Based Localization are quite similar techniques. However,

Sequence-Based Localization requires the generation and storage of a large sequence

table while Ecolocation doesn’t. As a result, from this point on we will only consider

Ecolocation.

4.2 Ecolocation Performance Evaluation

We have seen that Ecolocation provides the ‘efficient’ technique that we were trying

to find. However, for it to be a suitable solution, it must be ‘accurate’. To determine

the potential level of accuracy a technique can obtain, the experimental test must be

performed in a low obstruction scenario. In [29], the authors have not addressed such

a scenario. Furthermore, by repeating the same procedure used in those tests with

the addition of obstructions, the technique’s robustness to multipath and shadowing

can be inferred with a direct comparison to the obstruction-free scenario’s results. The

performance of Ecolocation in such a case also remains unknown.

The authors neglect to test the performance in a low error scenario. That is, the

authors in [29] claim via simulations that a low error environment is with low standard

deviation, high reference mote density, and grid-style deployment. However, neither of

the real world experiments looked at in [29] try to show such an environment. The

outdoor example provides a low standard deviation environment, but reference motes

are deployed in a low density random fashion. Additionally, the nature of the outdoor

implementation meant that each unknown node observed a different reference node

deployment. The disjoint nature of the indoor and outdoor testing doesn’t allow for

a direct comparison to be made to infer robustness to multipath and shadowing. By

testing in just few locations (11 points outdoors, 5 indoors), the localization coverage

area also remains an open issue.

As a result, we will test the performance of the Ecolocation algorithm ourselves.

Chapter 6 presents the result of this performance evaluation, and Chapter 5 outlines
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the systematic approach we took in determining accuracy to the criteria’s standards.

4.3 Chapter Summary

In this Chapter, we first explained what aspects an indoor wireless sensor networks

technique should feature and our reasoning for them. After eliminating those techniques

that failed to meet efficiency-based criteria, we identify that the Ecolocation algorithm

is an efficient solution. However, we determine that the original paper didn’t provide

some of the performance results we were looking for in evaluating accuracy.
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Chapter 5

Implementation and Experimental Setup

In this section, we explain our procedure to evaluate the Ecolocation algorithm in

terms of potential accuracy level and robustness to multipath and shadowing. First,

we investigate which of the commercially available mote platforms is most suitable for

use with the Ecolocation technique. We then give a more comprehensive description

of the algorithm and the details of how we implemented it. The Chapter finishes off

by explaining the experimental testbeds for a low-error scenario to determine potential

accuracy level and a high-error scenario to determine robustness.

5.1 Choice of Mote Platform

Now that we have determined that we must conduct experiments, we must decide

which mote platform to use. During the decision process we must keep in mind which

platform is most suitable for Ecolocation. In this section, we will present an overview

of the commercially available wireless sensor motes and how they different in respect to

their effectiveness in use with Ecolocation. Additionally, we perform experiments with

each of the motes to determine which it the best choice for us.

5.1.1 Motes of Consideration

With the commercially available wireless sensor motes in the market on mind, our

decision was to choose among the Crossbow Mica2 [1] and the MicaZ [3], and the Moteiv

Tmote Sky [4] sensor motes (see Table 5.1). As a result, we compared the sensors motes

based on their differences in relation to the chosen localization technique. That is, for

our chosen technique of Ecolocation, the determination (and as a consequence the

accuracy) of the RSSI values between exchanged message is of the utmost importance.



42

 Crossbow Mica2 Crossbow MicaZ Moteiv Tmote Sky 

Microcontroller 
Atmega128L (8MHz, 

4K RAM, 128K Flash) 
Atmega128L (8MHz , 

4K RAM, 128K Flash) 
TI MSP430 (8MHz,  

10K RAM, 48KFlash) 

Transceiver 
Chipcon CC1000 (38.4 

Kbaud, 868/916 MHz) 

Chipcon CC2420 

(250 kbps, 2.4 GHz) 

Chipcon CC2420 

(250 kbps, 2.4 GHz) 

RSSI 16-bit analog 8-bit digital 8-bit digital 

Outdoor Range 75 to 100 m 75 to 100 m 125 m 

Indoor Range 20 to 30 m 20 to 30 m 50 m 

Integrated 

Antenna 
No No Yes 

Integrated 

Sensors 
No No Yes 

I/O Connector 
51-pin expansion 

connector 

51-pin expansion 

connector 
USB 

 

Table 5.1: Data specifications of three commercially available Wireless Sensor Networks
motes

Hence, we look at how each mote determines the RSSI value of the received packet. We

discovered that the Crossbow Mica2’s provide the best precision for RSSI values and

so in theory the technique should provide the most accurate results using these motes.

Both the MicaZ’s and Tmote Sky’s provided their digital RSSI values with eight bit

signed precision while the Mica2’s provide an analog RSSI value with sixteen bits of

precision. It should be noted that based on this determination, the authors in [29] also

chose to test with Mica2.

5.1.2 Experimental Evaluation

Although Mica2 motes provide the most precise RSSI value, the Ecolocation algorithm

doesn’t make use of the absolute RSSI value and so it is not so obvious that Mica2

motes would be the best to use. The Ecolocation algorithm implicitly assumes that

there is a correlation between RSSI and distance between transmitter and receiver.

Therefore, the mote that provides the best correlation relationship between RSSI and

distance is the best mote platform for the algorithm. As a result, we test the three

mote platforms of interest. We place a receiver mote at the center of a fourteen feet-

by-twelve feet rectangle and take measurements from a transmitter which is moved in

one foot intervals in the x- and y-directions starting at the origin. We average ten

RSSI measurements from each location point. To quantify the amount of distance
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to RSSI value correlation present in the motes, we calculate a correlation percentage.

The correlation percentage is simply the percent of times two location points exhibit a

positive correlation (the further location point has a lower RSSI value) for all 18,915

(195 choose 2) combinations.

Figure 5.1: (a) Scatter-plot and (b) Surface-plot of RSSI data for Mica2 motes

Figure 5.2: (a) Scatter-plot and (b) Surface-plot of RSSI data for MicaZ motes

Figures 5.1a, 5.2a, and 5.3a are scatter-plots for RSSI versus distance for Mica2,

MicaZ, and Tmote Sky, respectively. Figures 5.1b, 5.2b, and 5.3b are surface-plots

of the same data. From the figures, it is quite obvious that Mica2 outperforms MicaZ

and Tmote Sky. Figure 5.1a shows Mica2 has a clear inverse relationship between
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Figure 5.3: (a) Scatter-plot and (b) Surface-plot of RSSI data for Tmote Sky motes

RSSI and distance. Furthermore, the surface-plot in Figure 5.1b shows how the RSSI

drops off radial from the position of the receiver. It can be seen that MicaZ seems to

perform somewhat adequately. Figure 5.2a shows that there is a downward trend for

RSSI-distance relationship with MicaZ; however, we can see from the surface-plot in

Figure 5.2b that the radial drop off is not as good as with the Mica2. The Tmote have

been found to be not adequate for the algorithm. From Figure 5.3a, we see that the

Tmote RSSI and distance are not very uncorrelated. Figure 5.3b shows that there is

no radial trend. The correlation percentages are 81.1%, 55.2%, and 67.9% for Mica2,

Micaz, and Tmote Sky, respectively. As a result, we have chosen to use the Crossbow

Mica2 for the implementation of the Ecolocation algorithm.

5.2 Ecolocation: In-depth Look

Before we proceed with the description of the experimental testbed, we will provide

a more thorough explanation of the Ecolocation technique. First the localization area

is defined to some rectangular region defined by an x-maximum and y-maximum. At

fixed known location in the localization space, a certain number, n, of reference nodes

are placed (see Figure 5.4). After the unknown location node collects all RSSI values

for the reference node, the RSSI constraint matrix is formed according to the element
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Figure 5.4: Shows a localization region defined 12 feet-by-12 feet with 9 reference nodes.

definition:

Rn×n(i, j) = sign(RSSIi −RSSIj) (5.1)

Figure 5.5 shows an example RSSI collection from nine reference nodes and the corre-

sponding RSSI constraint matrix.

Figure 5.5: A sample RSSI collection for all nine reference nodes and the corresponding
RSSI constraint matrix.

Now a scanning resolution is chosen to determine the grid points at which a con-

straint match test should be taken. The scanning resolution should be small enough to
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insure enough grid points are used in the algorithm, but it should be kept in mind that

the finer the scanning resolution, the larger computational cost. In Figure 5.6, we see

an example with a scanning resolution of three inches. The grid points are represented

by every intersection of the crossing lines.

Figure 5.6: The localization region with scanning resolution of 3 inches. Every grid
point is represented by the intersection of the crossing lines.

For each grid point (m, n), the distance to each reference node k is determined as:

d
(m,n)
k =

√
(xk −mx)2 + (yk − ny)2 (5.2)

Figure 5.7 shows an example for grid point (10, 35) which represents location (2.5, 8.75)

feet in real units.

Now the distance calculations are converted into a grid point constraint matrices

for each grid point according to the element definition:

C
(m,n)
n×n (i, j) = −sign

(
d

(m,n)
i − d

(m,n)
j

)
(5.3)

Figure 5.8 shows the grid point constraint matrix for the grid point (10, 35).

Now the RSSI constraint matrix is compared with each of the grid point constraint

matrix to determine which grid point is the most likely location of the unknown node.
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Figure 5.7: An example grip point (10, 35) which with 3 inch resolution represents
location (2.5, 8.75) feet and the distances to all the reference points.

Figure 5.8: The distance values from grid point (10, 35) to all the reference nodes and
the corresponding grid point constraint matrix for that grid point.
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For each element (i, j) in the RSSI constraint matrix and grid point constraint matrix

that match, a counter is increment; otherwise, the counter is decremented. The counter

value for each grid point is calculated based on:

counter(m,n)+ =





1 if C
(m,n)
n×n (i, j) = Rn×n(i, j)

−1 otherwise
(5.4)

For example, for grid point (10, 35) the counter value is 13 because there are 47 con-

straints matched out of a possible 81 (see Figure 5.9).

Figure 5.9: Comparison of the RSSI constraint matrix with the constraint matrix of
grid point (10, 35). The 47 constraint matches out of a total 81 constraints are outlined.

The estimated location is determined as the centroid of all the grid points that have

the maximum counter value. In this example, the maximum counter value is 81 and

13 grid points correspond to this value (see Figure 5.10). The centriod of these values

is (5.096, 3.904) feet and that is the estimated location determine by the Ecolocation

algorithm for the receiver who obtained the RSSI values in Figure 5.5.

5.3 Actual Implementation

Given the details about the Ecolocation algorithm, we must decide how we want to

implement the algorithm in a wireless sensor network. The implementation is done for

testing purpose but in a way that it can easily be converted for realistic deployment.
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Figure 5.10: The 13 grid points that correspond to the maximum counter of 81 for the
sample RSSI values in Figure 4.2.

5.3.1 Coding

We begin the description of the experimental implementation by first explaining the

code that runs on the wireless sensor motes and a PC. In our implementation, there

are three designations of wireless sensor motes: basestation motes, reference motes,

and mobile motes. The basestation motes are attached to the PC and facilitate the

acquisition of the data packets. The reference motes are wireless sensor motes in the

network that have known locations while the mobile motes are the motes that require

the localization service to determine their location. The PC is used as a location engine

that aggregates the data from the sensor motes and analyzes the acquired data to

determine the location. In our implementation, the mobile motes will transmit periodic

beacons to the reference motes. The reference motes will simply determine the RSSI

value of the beacon and forward it to the basestation. By ‘passively’ using the known

location motes, we avoid putting a localization burden on reference motes. We feel the

known location motes have their own purpose, such as monitoring temperature of a
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room or vibration of a conveyor belt, and by using them in this manner, we can use

them in our localization system without causing problems in their primary function. In

addition, both the reference motes and mobile motes are uniquely identified by an ID

number. The wireless sensor motes are programmed in NesC using TinyOS 1.1.15. On

the PC the application and Ecolocation algorithm are programmed in C# with .NET

Framework using Microsoft Visual Studio 2005.

We acknowledge that a reference mote would suffer a substantial burden if there

are many beacons being received (either from a single mobile mote or multiple ones)

and it has to forward everyone individually as in our implementation. However, this

is only for testing purposes; in a realistic deployment, the RSSI information could be

piggybacked on communication packets generated by the reference mote.

Figure 5.11: Screenshot of Sensor Localization Application. The black dots are the
reference motes, the small colored dots are the actual location, and the big colored dots
are the estimate locations.

On the PC, we designed an interactive application called Sensor Localization (see Fig-

ure 5.11), which will start and stop the localization process and display the estimated

locations of the mobile motes along with the reference motes on a floorplan of the
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room. To start the localization process, the user enters the MoteId of the mobile mote

he wishes to locate and also the quantity of reference motes to use (for our simple

implementation we simple use the reference motes numbered from 1 to the quantity

specified).

Figure 5.12: The communication process for determining the unknown location of the
Mobile Mote based on the know locations of the reference motes. A basestation is
attached to a PC via wired connection (typically USB or serial) and is responsible for
forward message from the PC to the WSN and vice-versa.

The Sensor Localization application will give these values to the basestation and the

basestation will transmit a special “Start Sending” message. When the mobile mote

with the corresponding MoteId receives this message, it will enter the “Localization

State” and begin periodically transmitting beacons in the form of “Localization Re-

quest” message with its MoteId embedded in the message. To minimize collision and

insure fast localization, we time-division multiplex the transmission of the beacons.

That is, we send the “Localization Request” messages with a ReferenceId and as a

result, only the reference node with the corresponding ReferenceId will acknowledge

the packet. The mobile mote starts with ReferenceId equal one and cycles through to
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the quantity number extracted from the “Start Sending” message in intervals of half

a second and an then starts back at one. When the corresponding reference mote re-

ceives the beacon, it extracts the MoteId from the packet and determines the RSSI and

transmits a “Localization” message with these two values along with its ReferenceId

to the basestation. The basestation forwards “Localization” messages to the applica-

tion. The application extracts the MoteId, ReferenceId, and RSSI and creates a list for

each MoteId containing a mapping of ReferenceId and RSSI. After a complete list is

formed (contained all ReferenceIds based on quantity specified), the list is passed to the

Ecolocation algorithm. We refer to this complete list as a RSSI sequence. Figure 5.12

illustrates this sequence of events.

5.3.2 Experimental Implementation Open Area

For our first experiment, we wanted to test indoors but with the minimum obstructions

possible (least interference and multipath affects). Therefore, we decided to use an open

area on the floor of the RFID Lab at Siemens Corporate Research in Princeton, NJ (see

Figure 5.13). This environment gets us a low-error scenario to determine a baseline for

potential accuracy level. That is, if accuracy is not reasonable in this environment then

the algorithm is not worth considering.

Although there are various tables and cabinets in the room, we use the area in the

middle of the room so that between all motes there are no obstacles. The localization

area is 14 feet-by-12 feet and we deploy 12 reference nodes in a grid of 4-by-3 with 4

feet separation in the x-direction and 5 feet in the y-direction (see Figure 5.14). The

reference motes are deployed in a grid-style because the authors determined in [29]

that provide better results over a random deployment. Starting at the origin of the

localization space, location estimation measurements are taken in one foot intervals in

both the x- and y-directions for a total 195 location points. We systematically test at

many points over the entire localization area to get a more conclusive accuracy level

and not just at a random 5 or 11 points as in [29]. Additionally, by covering the whole

area, we can observe if there are any deadspots in the localization area. At each point,

we collected several independent complete RSSI sequences and calculate the location
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Figure 5.13: Photograph of deployment area showing that all motes are in line-of-sight
with no obstructions in between.

Figure 5.14: Configuration of reference mote deployment (blue dots are reference motes)
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estimation and subsequent location error. We use the mean of the location errors at the

point as the error for the point. It should be noted that we observed relatively small

standard deviation in the error at a particular point (typically less than three percent)

and therefore, average only about ten samples at each point.

5.3.3 Experimental Implementation Noisy Environment

For our second set of experimental results, we wanted to test performance in a more

realistic, harsher environment (suffering from reasonable interference and multipath).

As a result, we add barriers into the first experiment’s area (from Section 5.3.2). The

barriers are constructed from quarter inch thick masonite hardboard cut into 2 feet

wide and 8 inches high pieces with one side of the barriers covered with aluminum foil.

Figure 5.15 shows the configuration of the barriers in the 14 feet by 12 feet area and

Figure 5.16 is a photo of the area. We again systematically test at the 195 location

points from the first experiment. By conducting the experiments in the same place and

at the same locations, we are able to actually compare the algorithms robustness to

multipath and shadowing since the two tests only differ in the level of noise present.

Figure 5.15: Configuration of barriers within mote deployment area (Gold lines are
walls and blue dots are reference motes)
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Figure 5.16: Photograph of deployment area showing that barriers create obstructions
between motes preventing them from being in line-of-sight with each other.
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5.4 Chapter Summary

First, we focused on choosing which commercially available wireless sensor motes to

deploy the Ecolocation technique on. We found that Crossbow Mica2 motes provided

the best RSSI to distance correlation. We then presented an in-depth look at the

Ecolocation algorithm which we followed up by explaining how we implemented the

algorithm with the coding on the motes and PC. Finally, we discussed the testbed we

used to determine potential accuracy and robustness to multipath and shadowing.
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Chapter 6

Best-case Indoor Performance of Ecolocation and

Robustness to Noise

In this Chapter we will test the performance accuracy of the Ecolocation algorithm. As

we mentioned in Section 4.2, the authors of [29] failed to test Ecolocation in what they

claim to be a low-error scenario. With our initial experiment we aim to create a testbed

that emulates such an environment. Additionally, we will observe how the results

are affected when a more higher-error scenario is tested to determine the algorithms

robustness to multipath and shadowing.

6.1 The Ecolocation Results

6.1.1 Results in Open Environment

We analysis the performance results of Ecolocation and determine its validity and use-

fulness in terms of accuracy in a low-error scenario. The reason for this is to get baseline

best accuracy possible results which will allow us to determine whether this algorithm

is even worth considering.

The Cumulative Distribution Function (CDF) for the 195 locations point with re-

spect to error in feet is shown in Figure 6.1. The mean error observed over all the

location points is 1.559 feet with nearly 60% of the points falling below this mean. A

maximum error of 6.917 feet is observed. Knowing that the minimum separation be-

tween two adjacent reference motes is 4 feet, it is important to note that 75% of the

location points have error below 2 feet.

Uniform error distribution over the entire localization space is an important feature

for a localization technique to have. This shows that the technique has good coverage
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Figure 6.1: The CDF of estimation error in feet for Ecolocation. The y-axis is the
percent of the 195 points that have error equal to or below the x value.

Figure 6.2: The surface-plot of the error observed at each location point. Blue low
error, red high error (see Figure 6.3)

Figure 6.3: Color Bar representing error in feet for surface plots
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Figure 6.4: Configuration of reference mote deployment (blue dots are reference motes):
(a) Scenario 1 (12 reference motes), (b) Scenario 2 (8 reference motes), (c) Scenario
3 (8 reference motes), (d) Scenario 4 (6 reference motes), (e) Scenario 5 (6 reference
motes), and (f) Scenario 6 (6 reference motes).
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range. Figure 6.2 shows the surface plot of the location errors. We can see that the

algorithm doesn’t suffer from any real deadspots and that high estimation accuracy is

not isolated to one spot. This results seem to show that Ecolocation can provide the

reasonable level of accuracy we are looking for.

Sensitivity to Reference Node Deployment

We stored RSSI sequences collect at each location points so we could examine perform

in several deployment scenarios. That is, by using only a subset of the RSSI values

in the sequence, we are able to create sequences based on fewer reference motes and

in different arrangements. The five additional Scenarios (along with Scenario 1 being

the full 12 reference motes) are depicted in Figure 6.4. Scenarios 2 and 3 have 8

reference motes while Scenarios 4-6 have 6 nodes each. The CDF of all the Scenarios is

shown in Figure 6.5. As logically expected, with fewer reference motes, the localization

Figure 6.5: The CDF of Ecolocation for all six Scenarios.

performance in terms of error is worse. The mean error in Scenarios 2 and 3 are 1.987

and 2.013 feet, respectively, resulting in an average of 2.000 feet error in the 8 reference

mote scenarios. The mean error in Scenario 4, 5, and 6 are 2.522, 2.765, and 2.898 feet,

respectively, resulting in an average of 2.728 feet error in the 6 reference mote scenarios.

One possible reason for Scenario 4 outperforming the other two 6 node scenarios is by



61

the inclusion of the two interior reference motes. Scenarios 5 and 6 perform reasonably

similar with both make use of only exterior reference motes.

Although Scenario 1 gave favorable results, we have observed a considerable fall off

in accuracy with the use of fewer reference motes. Only about 40% of the time is error

below 2 feet in the 6 reference mote scenarios compared to the 75% observed with 12

reference motes. To judge the significance of this fall off, in the following sub-section

we focus on performing a baseline comparison.

6.1.2 Comparison with Baseline Techniques

To further test the performance of the Ecolocation algorithm, we compare its results

with other simple RF-based localization techniques, namely, nearest reference and

weighted 3-centroid. The nearest reference technique simply estimates the unknown

location as the location of the nearest reference mote (the mote with the highest RSSI

measurement). In weighted 3-centroid method, we calculate the location as the weighted

centroid of the reference locations of the three highest received RSSI values (each refer-

ence location is weighted by its RSSI value – higher the RSSI value, larger the weight).

We choose to compare Ecolocation against these two techniques because they are sim-

ple, low computation cost techniques that provide a baseline for localization estimates

and can be used to provide a ‘sanity’ check. That is, if Ecolocation can’t outperform

these techniques, than its usefulness is not justified. We perform the comparison using

the same data, and in the six scenarios outlined from the previous Section.

The CDF and surface plots (with Color Bar from Figure 6.3) for the error in Scenario

1-6 is shown in Figures 6.6- 6.11. For Scenario 1, the mean error for the Ecolocation

is 1.559 feet, as previously noted, while the mean error for the nearest reference and

weighted 3-centroid are 1.625 feet and 1.832 feet, respectively.

Observing Figure 6.6a, we can see that Ecolocation’s CDF is for the most part higher

than the weighted 3-centroid’s with it being an average of 10.33% points greater in the

error range 0.75-2.25 feet (with a maximum of 13.85% at 1.3 feet). As a result, it seems

that Ecolocation outperforms weighted 3-centroid rather nicely. The analysis based

on the nearest reference technique is not as easy. For starters, the nearest reference
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Figure 6.6: For Scenario 1: (a) The CDFs of the three techniques, and the surface plots
for (b) Ecolocation, (c) Nearest Reference, (d) Weighted 3-Centroid (see Figure 6.3 for
Color Bar)

technique expectedly exhibits an undesirable staircase CDF because of the nature of the

point measurements made. Additionally, at the beginning the nearest reference CDF is

below Ecolocation, however, at 2.25 feet, it becomes higher. Because of the near-ideal

conditions, the nearest reference is almost always able to be correctly picked out. As

a result, the location points corresponding to the reference mote location provide an

estimate with zero error. On the other hand, Ecolocation provides an average error

of 1.834 feet at those locations. The surface plots in Figures 6.6b-c show that nearest

reference work well near the reference points whereas the performance of Ecolocation

is distributed across the localization area.

For Scenario 2, it is easier to see that Ecolocation outperforms the other two simple

techniques. The mean errors for nearest reference and weighted 3-centriod are 2.338

feet and 2.835 feet. In the case of weighted 3-centriod, Ecolocation’s CDF is on average

greater than 20% point for a spanning of the range 0.9-3.8 feet (with a maximum

of 25.13% at 2.35 feet). Additionally, we see that with fewer reference motes, nearest

neighbor’s performance drops off much more than Ecolocation’s performance. Similarly,

for the other 8 reference mote scenario, Scenario 3, Ecolocation outperforms the other
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two techniques (see Figures 6.7- 6.8).

Figure 6.7: For Scenario 2: (a) The CDFs of the three techniques, and the surface plots
for (b) Ecolocation, (c) Nearest Reference, (d) Weighted 3-Centroid (see Figure 6.3 for
Color Bar)

For the three 6 reference mote scenarios, Scenario 4-6, Ecolocation’s outperformance

is not quite as significant. It clearly outperforms weighted 3-centriod. Based on the

CDF curves, the Ecolocation algorithm seems to be no better than simply choosing the

closest reference mote as the location estimate. However, if we look at the surface plots

in Figure 6.9- 6.11b-c, we see a different story. Nearest reference performs well near the

reference motes, however, at all other locations it performs quite badly. On the other

hand, Ecolocation performs adequately across the localization area and provides few

dead spots.

Table 6.1 summarizes the comparison of Ecolocation with the two simple techniques

for all six Scenarios.

6.1.3 Results in Noisy Environment

Now that we know Ecolocation can provide a good level of accuracy in obstruction-free

environments, we want to know how much accuracy is affected with a more realistic

environment. Using again the 195 test points outlined in previously, we generate a
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Figure 6.8: For Scenario 3: (a) The CDFs of the three techniques, and the surface plots
for (b) Ecolocation, (c) Nearest Reference, (d) Weighted 3-Centroid (see Figure 6.3 for
Color Bar)

Figure 6.9: For Scenario 4: (a) The CDFs of the three techniques, and the surface plots
for (b) Ecolocation, (c) Nearest Reference, (d) Weighted 3-Centroid (see Figure 6.3 for
Color Bar)
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Figure 6.10: For Scenario 5: (a) The CDFs of the three techniques, and the surface plots
for (b) Ecolocation, (c) Nearest Reference, (d) Weighted 3-Centroid (see Figure 6.3 for
Color Bar)

Figure 6.11: For Scenario 6: (a) The CDFs of the three techniques, and the surface plots
for (b) Ecolocation, (c) Nearest Reference, (d) Weighted 3-Centroid (see Figure 6.3 for
Color Bar)
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 Ecolocation 
Nearest 

Reference 

Weighted 

3-centriod 

Scenario 1 1.559 1.625 1.832 

Scenario 2 1.987 2.338 2.835 

Scenario 3 2.013 2.413 2.809 

Scenario 4 2.522 2.683 3.253 

Scenario 5 2.765 2.745 3.269 

Scenario 6 2.898 2.817 3.393 

 

Table 6.1: Summary comparison of mean estimation error in feet for all six scenarios

CDF curve for the error associated with the Ecolocation algorithm. In Figure 6.12,

we can see that the performance is severely impacted. The average jumps from 1.559

feet in the open area to 2.465 feet in the area with barriers which is a 58.1% increase.

Now only 42% of the test points have error of 2 feet or less compared to the near 75%

exhibited in the open area. We see that Ecolocation is not robust enough to multipath

and shadowing and so it cannot be considered and adequate solution for the problem

discussed in Section 4.1.

Figure 6.12: The CDFs of esimation error in feet for Ecolocation in open area and with
noise.
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6.2 Chapter Summary

Following a description of how we implement the coding on the motes and PC, we

illustrated our experimental open environment. The algorithm was tested over several

different reference mote deployments. We expectedly found that more reference motes

meant better accuracy. To validate the performance of Ecolocation, a comparison

between two simply techniques was done. From the comparisons between the three

techniques, it is apparent that in most cases Ecolocation outperforms the other two.

From the surface plots, we have seen that Nearest Neighbor technique can provide areas

of great accuracy if the mobile mote is right next to one of the reference motes, but

other locations provide much worse results. On the other hand, Ecolocation provides

few areas with great accuracy while still possessing a wide coverage region with above

adequate performance. This presents a trade-off between a desire to have great accuracy

but only in a few regions and having slightly less accurate but much wider coverage

region.

A hybrid technique many be possible to get the best of both worlds. That is, when

a mobile mote is near a reference mote use Nearest Reference and in other cases use

Ecolocation. One possible implementation could be to determine if a single dominant

RSSI value is present in the sequence since this might imply that the mobile mote is

near that reference mote. In this situation, the hybrid localization algorithm could use

the Nearest Neighbor technique. However, when a single dominant RSSI value is not

present, we can assume that the mobile mote is not near a reference mote and as a

result, the hybrid localization algorithm would decide to use the Ecolocation technique

for its wider coverage.

However, when barriers were added to the open area, the performance of Ecolocation

was severely impacted negatively. As a result, it was shown that the algorithm was not

robust to multipath interference and shadowing effects and so none of the existing

localization solutions satisfy the requirements listed in Section 4.1.
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Chapter 7

A Weighted Algorithm and its Robustness

In Chapter 4, we showed that the Ecolocation algorithm possessed many of the ‘effi-

ciency’ qualities necessary for in an indoor WSN-based localization system. However,

the issue of accuracy remained a critical open topic. Our performance analysis pre-

sented in the previous Chapter showed that Ecolocation performed well in environments

where the RSSI values could be trusted and, as a result, had the potential to provide

a reasonable level of accuracy. However, as RSSI values became more corrupted, the

performance deteriorated quite significantly showing that it was not very robust to

multipath and shadowing.

Nevertheless, Ecolocation has the ability to provide good accuracy in obstruction-

less situations while being efficient. As a result, our task was now to explore if we

could improve the algorithm’s accuracy in noisy environments while still maintaining

the ‘efficiency’ of the original algorithm.

7.1 Introduction

In the Ecolocation algorithm, the constraint matrices are based on a balance ternary

system consisting only of -1’s, 0’s, and 1’s. The constraints are chosen depending on

whether a RSSI value (or distance) is less than, equal to, or greater than the RSSI value

(or distance) it is being compared to. Note that the raw values are never utilized except

for the sign function evaluation involved in the comparison to generate the constraint

matrices. The reason for avoiding raw values is logical in that to make sense of them

it is required, whether by estimation or other means, some sort of channel parameters.

In addition, raw values are easily corrupted by multipath fading and shadowing, and as

a result cannot be fully trusted to be accurate. Hence, Ecolocation relies on them to a
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very minimal extent in making the sign comparison. However, it is our premise that the

raw values also should not be entirely ignored. That is, some valuable information can

be extracted from them even if they cannot be fully trusted. Our reasoning is simple,

if the raw values cannot be trusted, then even comparing them is meaningless. The

fact is the raw values can be trusted to some level (depending on the harshness of the

environment) and we should try to use them as much as possible rather than as little

as possible, which is currently the case in the Ecolocation algorithm.

This Chapter will present our suggested improvement to the Ecolocation algorithm

along with some insight to the modification.

7.2 The Modified Algorithm

In this Section, we will discuss the implementation details of our modified algorithm

which we refer to as Weighted-Constraints do to the nature of the modification involved.

We will also present some rationale behind why the algorithm was designed as such and

the affect some parameters have on it. Additionally, we will point out a key effect the

results from the modification.

7.2.1 Weighted-Constraints Algorithm

Our proposed modification is to in some way consider the amount a pair of RSSI values

differ by in addition the sign of their difference for determining the constraint values.

Since the raw values cannot be fully trusted, we do not use them as is, but we associate

a certain significance to the amount a pair of RSSI values differ by. Thus, instead

of just -1, 0, and 1 representing the constraints, we fix the constraints to range from

-x to +x (x is some positive integer parameter, a design choice), where the sign again

signifies less than or greater than comparison and zero mean equality and the magnitude

representing the amount the value differ by, with 1 meaning they differ only slightly

and x meaning they differ a lot. We will refer to x as the scale value and our algorithm

as Weighted-Constraints because we weighted every element in the constraint matrix

based on its relative magnitude.
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Let us illustrate the Weighted-Constraints algorithm with the same example setup

used to demonstrate the Ecolocation algorithm in Section 5.2. In this example, we

will take x = 5. The RSSI constraint matrix is populated according to the element

definition:

Rn×n(i, j) = sign(RSSIi −RSSIj) ∗ Ceiling

( |RSSIi −RSSIj |
RSSI∆MAX

∗ x

)
(7.1)

where

RSSI∆MAX = RSSImax −RSSImin

which simplifies to:

Rn×n(i, j) = Ceiling

(
RSSIi −RSSIj

RSSI∆MAX
∗ x

)
(7.2)

The first part of the equation is the same sign function used in Ecolocation; the

second part is where our suggested modification is introduced. The second part takes

into account the degree of difference between the two RSSI values. Using the example

RSSI data, Figure 7.1 shows the RSSI constraint matrix generated.

Figure 7.1: Using the RSSI data from Section 5.2, the corresponding RSSI constraint
matrix for the Weighted-Constraints algorithm is generated. RSSI∆MAX = 15.

As with the Ecolocation Algorithm, we chose a scanning resolution and determine

the grid point constraint matrix for each grid point. The Weighted-Constraints grid
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point constraint matrix is populated according to the element definition:

C
(m,n)
n×n (i, j) = −sign

(
d

(m,n)
i − d

(m,n)
j

)
∗ Ceiling




∣∣∣d(m,n)
i − d

(m,n)
j

∣∣∣
d∆MAX

∗ x


 (7.3)

where

d∆MAX = dmax − dmin

which simplies to:

C
(m,n)
n×n (i, j) = −Ceiling

(
d

(m,n)
i − d

(m,n)
j

d∆MAX
∗ x

)
(7.4)

Notice again that the first part of the equation is simply the negative sign function

used by the Ecolocation algorithm in determining the grid point constraint matrix and

the second part is where the weighted-constraints modification is introduced. Based on

the two element definitions, the special case of x = 1 leads to the Ecolocation algorithm.

Figure 7.2 shows the grid point constraint matrix for the example grid point (10, 35).

Figure 7.2: The distance values from grid point (10, 35) to all the reference nodes
and the corresponding grid point constraint matrix based on the Weighted-Constraints
Algorithm.

For determining which location constraint matrix most closely matches the RSSI

constraint matrix, we compare like in the Ecolocation the cells of the matrix to see

which ones match and which ones don’t. As before, we add one if the constraints



72

match; however, for non-matching constraints, we subtract based on there amount of

difference. That is, the count is updates based on the equation:

counter(m,n)+ = 1−
∣∣∣C(m,n)

n×n (i, j)−Rn×n(i, j)
∣∣∣ (7.5)

As a result, the count is incremented by a maximum 1 and a decremented by a maximum

2 ∗ x − 1. For the example grid point of (10, 35) the counter has a value -139. The

estimated location is the centroid of the location points with the maximum counter

value. For this example, the maximum counter value is 73 and it occurs at the single

grid point (20, 16) representing location (2.5, 8.75).

7.2.2 Algorithm Discussion

The idea behind using weighted-constraints is simply to get a sense of how well matched

the constraints are. The original algorithm hinges on the assertion that RSSI and

distance separation are correlated. As a result, we simply want to know how strongly

or weakly matched the constraints are based on this assertion. That is, if a mobile

mote sees a large RSSI difference between two reference motes, it is reasonable to think

that the there is a large difference between the distances to these reference motes.

Therefore, if we have a RSSI constraint matrix element that has a value +10 and a grid

point constraint matrix element that has a value +2 based on reference motes ‘One’ and

‘Two’, the Weighted-Constraints algorithm tells us that this constraint is only weakly

match whereas Ecolocation would just say it is a match. We are saying that a grip

point constraint matrix element with a larger positive value would be a better match

for this RSSI constraint matrix element since both would convey that ‘One’ is closer to

the grid point than ‘Two’; however, Ecolocation doesn’t allow for such a determination

to occur. Figure 7.3 illustrates this point. Likewise, if we have the scenario where the

RSSI constraint matrix element that has a value +2 and a grid point constraint matrix

element that has a value -1, the Weighted-Constraints algorithm can tell us that the

constraint is reasonably matched whereas Ecolocation would simply dismiss it as a no

match.

The strength/weakness of the comparison between constraints is taken into account
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Figure 7.3: We will compare two grid points to see which is a better estimate. We have
received a high RSSI value from Reference Mote 1 and a low RSSI value from Reference
Mote 2 causing a large positive constraint element. From grid point 1, Reference Mote
1 is only slightly closer then Reference Mote 2 causing a small positive constraint
element. From grid point 2, Reference Mote 1 is much closer then Reference Mote
2 causing a large positive constraint element. Based on this single constraint, the
Weighted-Constraints algorithm would consider grid point 2 to be a better estimate
than grid point 1, while Ecolocation would consider them equally good.

by how the count is incremented. As stated before, when the comparison results in a

perfect match, the count value is increment; otherwise it is decremented by the amount

of difference. The institution behind decrementing it as such is that a weak match

implies an incorrect grid point (this grid point is not a good estimated location based

on the RSSI values) and the difference implies the level it is incorrect. As a result, a

higher difference means a worse estimate, so the count is decremented more.

The design parameter ‘x’ directly relates to how much you trust the RSSI values

and the environment. In the extreme case where the environment is ideal and RSSI

values are perfectly correlated with distance, ‘x’ should be infinite.

7.2.3 Smooth-out Effect

By using weighted constraints, we are able to smooth out the estimated regions deter-

mined by the count values. Let us illustrate what we mean by take a look at the surface

plot of the count values for a particular test point (using the RSSI data gathered in

Section 6.1.1). Location points with high count values are represent by red and those

with low are represent by blue. In Figure 7.4, we show the surface plots of the original

and weighted-constraints algorithm for test point (9, 5) feet (the location of the mobile

mote). The Ecolocation surface plot shows that the regions are rigidly defined. This
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observation is to be expected considering that the localization space is divided into re-

gions based on the perpendicular bisectors. The counter for all location points in those

regions would be the same and hence the surface plot has rigid, protruding boundaries.

However, observing the Weighted-Constraints’ surface plot, we see that the boundaries

are smooth and fluid with a gradual transition. The benefit of this is that not only is

the maximum region more well defined, but also allows the use of lesser regions to fine

tune the estimation since the regions fall off radially.

7.3 The Weighted-Constraints Results

We will now compare the performance of Weight-Constraints with Ecolocation in terms

of accuracy. We will use the same experimental environments used in the analysis of

Ecolocation in the previous Chapter.

7.3.1 Results in Open Environment

We will first present results using real data from the relatively non-harsh environment.

For analyzing the performance of the algorithms, we generate cumulative distribution

functions (CDFs) for the estimation error based on the 195 test points outlined in

Section 5.3.2 and the stored RSSI sequences. In Figure 7.5 , the CDF with the scale

value of 10, along with the Ecolocation algorithm, is shown and it can be seen that the

Weighted-Constraints algorithm outperforms the original algorithm. For the low error

range between 0.5 feet and one foot, the performance difference is not very significant

with the weighted-constraints algorithm performing on average only 2.84% points better

(the height difference between the curves). However, for the range of 1 foot of error to

2.6 feet, weighted-constraint algorithm performs on average 7.43% points better with a

maximum of 11.79% at 1.65 feet. Furthermore, the original algorithm provides location

estimates of the tests point with an average error of 1.559 feet. On the other hand, the

Weighted-Constraints algorithm exhibits a 13.1% improvement resulting in an average

error of 1.355 feet.
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Figure 7.4: (a) Ecolocation and (b) Weighted-Constraints: The surface-plot of count
value over all grid points for a mobile mote located at (11, 8) feet. Red signifies high
values, blue signifies low values
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Figure 7.5: The CDF of Ecolocation and Weighted-Constraints (with x=10)

Figure 7.6: The CDF of Weighted-Constraints and Weighted-Constraints with mini-
mum 100 location points used in estimation. Both with x=10.
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Fine-tuning

As we mentioned in Section 7.2.3, the Weighted-Constraints has the feature that the

count value forms a radial pattern. As a result, it is conceivable that accuracy could be

improved my including grid point with count value below the maximum. The another

reason for doing this is that Weighted-Constraints’ count values are more unique than

Ecolocation which can mean only one grid point could be with the maximum value (as

was the case with the example in Sections 5.2 and 7.2.1 where Ecolocation produced

13 grid points whereas Weighted-Constraint had only 1 grid point). In Figure 7.6, we

show the performance obtain when we require the Weighted-Constraints algorithm to

use a minimum 100 location points in the centroiding (the 100 highest count values are

used). The average error with fine-tuning improves on Weighted-Constraints by 4.5%

resulting in 1.295 feet of error.

7.3.2 Results in Noisy Environment

The true benefits of the Weighted-Constraints algorithm will be fully recognized when

compared with the performance of the original algorithm in a noisy environment. In

this Section, we will see that Weighted-Constraints’ performance is not as severely

deteriorated when the RSSI values become corrupted. Furthermore, the Weighted-

Constraints algorithm continues to get a reasonable level of accuracy in the presence of

multipath and shadowing.

Using the stored RSSI sequence from Section 6.1.3, we generate the CDF curve

associated with the Weighted-Constraints algorithm. In Figure 7.7, we see the compar-

ison of the performance in the open area and the area with the barriers. Although, the

accuracy takes a performance hit, it is not as severe as was the case with Ecolocation in

Figure 6.12. In the noisy environment, Weighted-Constraints performs with an average

error of 1.942 feet compared to the average error of 1.355 feet in the open area which

is a 43.3% increase.

Finally, in Figure 7.8, we see the performance of both algorithms in the noisy envi-

ronment. We see that with a harsher environment Weighted-Constraints more greatly
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Figure 7.7: The CDFs of Weighted-Constraints in open area and in noise.

Figure 7.8: The CDFs of Ecolocation and Weighted-Constraints in noise.
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outperforms Ecolocation than it did in a relatively ideal environment. That is, Ecolo-

cation provides on average 2.465 feet of error while Weighted-Constraints improves on

Ecolocation by 21.2% resulting in an average error of 1.942 feet. Compared to the

13.1% improve Weighted-Constraints showed in the open area, this result shows that

Weighted-Constraints can even more greatly outperform Ecolocation in harsh environ-

ments which means it is more robust to multipath and shadowing. Furthermore, with

Weighted-Constraints increased performance, nearly 65% of the location points have

error less than 2 feet in the noisy conditions which is only a 10% drop observed with

Ecolocation in the obstruction-less case.

7.4 Chapter Summary

In this Chapter, we have described our suggested improvement to the Ecolocation algo-

rithm, Weighted-Constraints, to provide higher accuracy when environment conditions

are not ideal. The concept of strongly/weakly match constraints was introduced and

how they can produce more insightful constraint comparisons was shown. We revealed

the inherit smooth-out effect the modification has to the count value for the grid points

and how this feature can be used to our advantage by allowing the grid point of lower

count values to help in the location estimation. Next, we displayed how the Weighted-

Constraints algorithm compared in the same two test environments used to evaluate

Ecolocation performance. We see that Weighted-Constraints outperforms Ecolocation

in both cases and we see that its improvement is even more prevalent in the noisy envi-

ronment. Futhermore, Weighted-Constraints satisfies all the criteria from Section 4.1.
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Chapter 8

Conclusions

The problem of whether an efficient solution is feasible to provide accurate position

estimates in wireless sensor networks based localization has been solved as shown in

the performance results of Section 7.3.2. In Chapters 3-4, we found that only one of

the existing state-of-the-art WSN-based localization techniques, Ecolocation, satisfied

the efficiency-based criteria. We discovered in Section 6.1.1 that Ecolocation had the

potential to provide a necessary level of accuracy; however, in Section 6.1.3, we saw that

accuracy performance diminished greatly in the presence of multipath fading and shad-

owing effects. As a consequence, Ecolocation was determined not to be an acceptable

solution to our problem and so none of the existing solutions meet the entire criteria

necessary for an indoor WSN-based localization system.

However, Ecolocation’s ability to be efficient and have potential for necessary accu-

racy made it an attractive possibility. As a result, we enhanced the algorithm to keep

the efficient qualities while improving the accuracy, specifically accuracy in a noisy

environment. Our revised algorithm is called Weighted-Constraints and Section 6.1.1

showed that it provided an 13.1% improve in terms of average error in an open environ-

ment compared to the original Ecolocation algorithm. Furthermore in Section 7.3.2, we

found that Weighted-Constraints is more robust to noise by observing that the addition

of noise to the environment causes an accuracy loss of only 43% compared to the 58.1%

that Ecolocation suffered. As a result, Weighted-Constraints greatly out-performed

Ecolocation in terms of average error in a noisy environment by 21.2%. We created a

localization solution that was efficient and provides accurate results.
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Chapter 9

Future Work

The performance of the algorithm using less correlated motes remains an open issue.

We identified that Mica2 provide better distance-to-RSSI value correlation than Micaz

and Tmote Sky. However, the amount and the manner in which the less correlation will

effect performance is unclear. This type of error is not the same we experience with

multipath and shadowing where RSSI values are randomly corrupted. In this case, the

RSSI value themselves can’t be trusted to begin with.

We believe a study into whether Ecolocation and as an extension Weighted-Constraints

can be deployed in 3-dimensions is necessary. That is, currently we have studied perfor-

mance with the unknown mote and all reference motes in a single plane. By requiring

all reference motes be mounted on a single plane, the reference motes have placement

restrictions which make them dedicated localization motes. That is to say, motes being

used around the building for other functionality (such as monitoring ambient temper-

ature) may not be used passively as reference motes because they may not be on the

same plane and it is unfeasible to require them to be placed in such a manner. A 3-

dimensional algorithm provides a more realistic deployment and that non-localization

motes can be as reference motes by the localization system. It is unclear whether the

accuracy gains in the z-direction will cause accuracy losses in the x- and y-directions

and if it does will the gains outweigh the losses.

A study into reference mote placement would also be useful. This includes two

parts. First, we need to see the affects a non-grid style reference mote deployment

has. Unless we use dedicate localization reference mote, it may not be feasible to for

non-localization motes to be located in a grid. The second part is to determine if their

can be benefits had with a clustering of reference motes. That is, if there are several
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motes in close proximity to each other, is it beneficial to treat them as a single cluster.

Multipath and shadowing vary greatly in direction so each individual reference mote

would experience a different level of corruption. Using the different RSSI values in some

combination and treating the individual reference motes as a single cluster at a single

location might help alleviate some of the multipath and shadowing effects.

Finally, it would be valuable to see if the algorithm can be modified such that fixed

location reference nodes are not needed and relative locations are determined. The

algorithm can work with few reference motes but we have see that accuracy suffers

quite a lot in those case. For example, using 10 unknown location motes and having

each of them determine their RSSI sequence based on the others. Can we use the 10

RSSI sequences together to determine the relative location of the 10 motes?
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