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The p53 protein has been called the “gatekeeper” of the cell. After DNA damage, p53

transcriptionally activates downstream pathways to prevent cancer from occurring. Target

genes are activated to cause cell cycle arrest, DNA repair, cell senescence, and apoptosis.

However, the exact transcriptional program that determines the specific outcome of a certain

cell stress is not completely understood. We present an analysis to help shed light on the

mechanisms of transcriptional regulation by the p53 protein.

First, we present a detailed analysis of the known modes of p53-regulation, and a dataset

of 160 functional human p53-binding sites curated from the literature. Second, we present

a new method (called p53HMM) to model p53-binding sites using Profile Hidden Markov

Models (PHMMs). This new method is the most accurate predictor of functional p53 single-

sites and cluster-sites to date. Third, we show that functional sites with low estimated

relative affinity scores are highly correlated with distances from the TSS. Fourth, we show

that the capability to fold into a non-linear cruciform DNA structure is an important

predictor in estimating the overall binding affinity of a functional p53-binding site. We
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use UNAFold to calculate free energies and probabilities of p53-binding sites folding into

different non-linear cruciform structures. Fifth, we present a new motif-finding algorithm

(called PURE) that uses relative entropy to find over- and under-represented motifs near

functional p53-binding sites. The goal is to find possible motifs (like co-factor motifs) that

can help designate functional p53-binding sites, thereby reducing the false positive rate that

currently plagues motif-finding algorithms.
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Chapter 1

Introduction

The goal of this work is to increase our understanding of the mechanisms of transcriptional

regulation by the p53 protein. The research is presented in five logical segments. Each

segment (chapter) focuses on different characteristics of p53 transcriptional regulation and

different computational approaches to help in our understanding.

In chapter 2, we present a detailed analysis of the known modes of p53 trans-activation

and repression. We also present a detailed dataset of the 160 functional human p53-binding

sites that we curated from the literature.

In chapter 3, we present a new method (called p53HMM) to model p53-binding sites

using Profile Hidden Markov Models (PHMMs). This new method proposes a novel training

method that leverages the redundant information in the repeated, palindromic p53-motif to

increase predictive accuracy. We also present a new p53 cluster-site accuracy that correctly

models experimental measurements. This new method is the most accurate predictor of

functional p53 single-sites and cluster-sites to date.

In chapter 4, we show that functional sites with low estimated relative affinity scores are

highly correlated with distances from the TSS. By using a Dynamic Acceptance Threshold

during site searches, we are able to reduce the false positive rate three-fold.

In chapter 5, we show that a functional p53-binding site’s capability to fold into a

non-linear cruciform structure is an important predictor variable in estimating the overall
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binding affinity of the binding-site. We leverage UNAFold to calculate free energies and

probabilities of p53-binding sites folding into different non-linear cruciform structures. We

then construct linear models that use both sequence similarity and folding capacity to

predict measured binding affinities. Differences between the models provide insight into the

differences between the in vitro and in vivo conditions of the experiments.

In chapter 6, we present a new motif-finding algorithm (called PURE) that uses relative

entropy to find over- and under-represented motifs near functional human p53-binding sites.

The goal of de novo motif discovery is to find possible motifs (like co-factor motifs) that

can help designate functional p53-binding sites, in the hope of reducing the false positive

rate that currently plagues motif-finding algorithms. We also analyze the new algorithm by

attempting to “re-discover” known transcriptional and post-transcriptional motifs in human

genes.
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Chapter 2

Review and Analysis of p53-binding Sites

The p53 pathway responds to a wide variety of cellular stress signals (the input) by acti-

vating p53 as a transcription factor (increasing its concentration and protein modifications)

and transcribing a programme of genes (the output) to accomplish a variety of functions.

Together, these functions prevent errors in the duplication process of a cell that is under

stress, and as such the p53 pathway increases the fidelity of cell division and prevents can-

cers from arising. The goals of this review are: first, to bring together in one source a list of

p53-regulated genes and the criteria that permits this classification; second, to analyze the

p53 response elements (REs) in DNA that bind the p53 protein and promote transcriptional

control; third, to organize and explore the functions of the p53-regulated genes; and finally,

to review useful algorithms that can detect p53-regulated genes by their associated REs in

DNA from various sources.

The value of this exercise is to bring together a large body of literature that has mostly

been assembled one gene and one publication at a time. This has not permitted an appre-

ciation of the cooperative and broad nature of the functions of many p53-regulated genes

in altering the cell and the extracellular matrix (ECM), and the role of the p53 response in

communicating with various organ systems of the body. There is good evidence that the

nature of the stress signal (the input) and the cell type can both modulate the transcrip-

tional pattern of p53-responsive genes that respond with a transcriptional programme (the
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output) [293, 71]. Because we have imperfect information about cell and tissue types and

the nature of the stress signal for every gene discussed here, we can provide only a broad

overview of the transcriptional programme regulated by the p53 protein. Where there is

detailed information about cell and tissue type, and stress response, it will be discussed.

2.1 Criteria used to identify p53-responsive genes

Four sets of experimental criteria have been employed to identify a p53-regulated gene. The

first is the presence of a p53 RE in the DNA near or in the gene. The second is a demon-

stration that the gene is indeed either up- or down-regulated at the RNA and protein levels

by the activated wild type p53 protein (and not the mutant protein). The third line of

evidence is to clone the p53 RE from that gene, place it near a test gene, such as luciferase,

and demonstrate that the p53 protein can regulate the test gene. The fourth approach is

to employ chromatin immunoprecipitation with a p53-specific antibody to demonstrate the

presence of the p53 protein on the RE site in the DNA. In some cases a gel shift assay is

also employed to demonstrate that the p53 protein binds in vitro to the p53 RE sequence

from that gene.

These criteria may be modified by the cell or tissue specificity of some p53-regulated

genes or by the nature of the stress signal that is responded to by the p53 pathway. In this

review we have included a list of p53-responsive genes that have met a minimum of three

out of four of these criteria. Based upon these criteria, Tables 2.3 on page 30 and 2.4 on

page 38 contain 129 genes and 160 p53 REs from both the human and viral genomes (several

of the genes contain more than one p53 RE). Table 2.3 on page 30 provides the gene name,

the full description of this name, its accession number, a description of the p53 RE, and its
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spacer, if it employs one. Table 2.4 on page 38 provides the name of the gene, the location

of the p53 RE, whether this RE functions as a transcriptional activator or a repressor, the

distance from the transcriptional start site (TSS) of the p53 RE, the proposed functions of

the gene product, and a reference to the publication that describes these properties of the

p53-regulated gene. Table 2.2 lists the 15 p53 cluster sites that are present in tables 2.3 and

2.4, and the number of half-sites found in each (p53 REs with more than two half-sites are

referred to as cluster sites). We should note that the p53-target list found in tables 2.3 and

2.4 is most probably not exhaustive, and will very likely grow as additional experimental

evidence is acquired.

2.2 The p53 Consensus Motif

Two different groups first identified a p53 consensus sequence in the DNA to which the p53

protein bound with high affinity and specificity [79, 57]. The sequence was degenerate and

was composed of 5′-RRRCWWGYYY-3′ where R is a purine, Y a pyrimidine, W is either

A or T (adenine or thymine) and G is guanine and C is cytosine (see Table 2.1 on the

following page) [79, 57]. The p53-binding site in the genomes of many organisms is com-

posed of a half-site RRRCWWGYYY followed by a spacer, usually composed of 0-21 base

pairs, which is then followed by a second half-site RRRCWWCYYY sequence. By labeling

each quarter-site RRRCW as −→ and WGYYY as ←−, the first discovered p53 consensus

sequence can be graphically represented by −→←− spacer −→←−. This configuration of the

four quarter-sites is often referred to at the head-to-head (HH) orientation. The two other

possible orientations of the quarter-sites are tail-to-tail (TT, ←−−→ spacer ←−−→), and

head-to-tail (HT, −→−→ spacer −→−→). (TH is not used since the complementary strand

would contain an HT-oriented site).
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Table 2.1: Original Data Used To Define The p53 Consensus Binding Site

1st Half-site 2nd Half-site
Clone 5′ Region R R R C W W G Y Y Y Spacer R R R C W W G Y Y Y 3′ Region

s57 CGACCTGTCA caccg G G G C C T G T C A C A G C A T GaC C T acctgtcacaccggg

N22 atttt CACCATGCTT C T G C A T G T C T A G G C A A G T C A ccttctc CACTGGCC

11A2 ccccatcctccatcc A A A C AaT G C C C A G A C T T G T C T ct CCGCCTGAAT ga

W211 tttgtcctaccatcc A G G C A T G C C T - - - - T T G C C T CACTCGTTA tttcct

W7B2 tatct GTGCAGCTG t G G G C A T G T T T t A G G C A A G C T T cct GTGCTAGTTC cc

3H AACTAGATC cttttc A G A C A T G T T A T A A C A A G T C A GTACAAGTTT atttt

8A gctggt GCACAAGAG T G A C A T G T C C C G A C G T G T T T tgtc

532 CATCATGCCA cctgc A G G C A T G T T C tggat G G G C - T G T C T t GTGCTTTGTTG ttt

64A2 c AAACCAGGGT gtct T G A C T T G C C T atcctgggaggt T G A C A T G T T C ctccccttccccctc

W7A1 gccaaacataaccac C A G C - T G C C A A G G C A T G C A G tacc ACGCTCAGCCC

s61 c C A A C T T G T C T attctgtgttgat G G A C A T G T T C ccgtttttggctatt
11B3 actgttgatgatgaa A G A C A A G C C T a G G G C A G G T C C tggggggtgggg

N42 gcagtgtggtggagg A A A C A A G C C C a G G A T G T G C C C a GGGCAGGCTG ggac

s201 tgttc ATACCTGTCC A C A C T T G T C T A T A C C T G C C T ACACCTGTCT tgttt

s1583 ctttaattcagttgt A A A C A T GaC T T gttcattata T G A C A T G T T C aattacaattcgatt

s592I ctcagttctcagctg G G A C T T G C C C T G G C C A G C C C tgg GGTCACTGCTG c

s592II tgcctcagcacctcc A G G T TcT G C C - G G G C T T G T T C ctttcctttcagcat

2NB gcctttgttgtgccc T G A C T T G C C C A G A C A T G T T T gggaa TGTCTTGTGC

9H gtattctcttttcct A A G C A T G C C T T G A C T T G T T C tttcatctcctctga

CBE10d tgaaagcaggtagat T G C C T T G C C T G G A C T T G C C T GGCCTTGCCT tttct

This table presents the original DNA fragments from El-Deiry et al., that were collected
from a genome-wide, p53-antibody immunoprecipitation and were used to define the
head-to-head (HH) p53 Consensus Binding Site [57]. The yellow columns corresponding to
the 1st and 2nd half-sites were used to define the consensus p53 motif. The p53-binding site
is highly degenerative. Within the yellow columns, notice that seven of the 20 DNA target
sites (35%) had at least one nucleotide insertion (green), deletion (red), or both (magenta)
relative to the discovered 10bp-spacer-10bp consensus. Since insertions and deletions throw
off the reading frame of a weight matrix, any PSSM approach will inherently mis-score at
least 35% of these 20 sites. Alignments of the 160 experimentally validated p53-binding
sites also reveal that any PSSM approach would inherently mis-score at least 30% of them
as well. Another observation is that additional p53 half-sites are immediately adjacent
(in yellow) to the ones used to define the consensus in 15 of the 20 target sites (75%).
Since the genome-wide immunoprecipitation study was designed to pull down the highest
affinity sites, the fact that 75% of the target sites are actually p53 cluster-sites is the first
indication that cluster-sites of 3 or more half-sites confer higher binding affinity [20].

In almost all natural p53-binding sites, the two half-sites share the same orientations of

their quarter-sites. Experiments have shown that the tetramer p53 protein can bind all three

(HH, TT, HT) orientations of the quarter-sites with equally high affinity [57]. However,

only a few of the experimentally validated p53-binding sites in this analysis do not have the
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head-to-head (HH) orientation. Due to allowed insertions and deletions (indels) relative to

the consensus, half-sites can vary in size between 8 to 12 base pairs, although most have 10.

Also, some p53 REs have more than two half-sites, and as such are referred to as cluster

sites. A variety of experiments have shown that the level of binding affinity and subsequent

trans-activation increases linearly with the number of adjacent half-sites [122, 20, 246].

Finally, some genes contain multiple p53-binding sites in different locations within the gene

and promoter region, where each p53 RE can contribute to the p53 response. For example a

−→−→−→←−−→ cluster site is present in the promoter of the CDKN1A (p21) gene ≈ 900

base pairs 3′ to a canonical −→←− spacer −→←− site, and both of these sites contribute to

the induction of CDKN1A mRNA after a p53 stress response [58, 64, 215].

2.3 The p53 pathway and the functions of p53-regulated genes

The mechanisms of activation of the p53 pathway and the cellular outcomes produced by

p53-activated genes are presented in Figure 2.1. Many proteins are involved in the p53

pathway in order to respond to stress signals and then to produce the proper response.

Stress signals determine the transcriptional programme. The p53 pathway responds to a

wide variety of stress signals. These include several types of DNA damage: telomere short-

ening, hypoxia, mitotic spindle damage, heat or cold shock, unfolded proteins, improper

ribosomal biogenesis, nutritional deprivation in a transformed cell, or even the activation of

some oncogenes by mutation (see Figure 2.1) [267, 137]. These stress signals are detected

by a variety of protein activities that mediate the information about cellular damage (via

protein modifications) to the p53 protein or to its negative regulator, MDM2 – a ubiquitin

ligase that both blocks p53 transcriptional activity directly (sterically) and mediates the
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degradation of the p53 protein [136].

The half-life of the p53 protein in many cells varies between 6 to 20 minutes. After a

stress signal the MDM2 protein poly-ubiqutinates itself, and this results in the degrada-

tion of MDM2 and an increase in the half-life of the p53 protein from minutes to hours.

Other mediators of the stress response act through protein modifications of p53. These

rapid mechanisms of p53 protein modification and the greatly increased half-life of the p53

protein do not depend upon the slower mechanisms of transcription (of a damaged DNA

template) or RNA transport. Thus the response to stress is rapid and it has been proposed

(but not proven) that the nature of the stress signal determines the form of the protein

modification and therefore the transcriptional programme of the p53 protein.

This is one way to integrate the nature of cellular stress signals at a single protein in

the cell, whereby the activated p53 protein then binds to the p53 REs in the DNA and

promotes a transcriptional programme that responds to that particular stress. There have

been a number of experiments that suggest that, in addition to a transcriptional response

to cellular damage, the p53 protein can act directly to trigger a response such as apopto-

sis [152]. While this is an active area of research, detailed mechanisms describing how p53

acts on or in the mitochondria to promote apoptosis are still lacking.

Outcomes of transcriptional activation. There are three major outcomes after the acti-

vation of p53: apoptosis, senescence, or cell cycle arrest. The first two are terminal for the

cell, while cell cycle arrest can permit repair processes to act and damage to be reversed,
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so that the cell survives. The choice between these three outcomes in a stressed cell de-

pends upon a number of other variables, which indicates that the p53 pathway is sensing

the activities of other signal transduction pathways. For example, glucose starvation of

normal cells results in the phosphorylation by AMP kinase of the p53 protein on serine 15

but no further activation of p53-mediated transcription. By contrast, glucose starvation

of a transformed cell results in p53-mediated apoptosis [71]. p53 activation in some cell

types that typically results in apoptosis can be reversed or reduced by the treatment of

those cells with interleukin [206, 284]. The introduction of an activated RAS oncogene into

a normal cell results in a p53-mediated senescence [281]. As part of this senescent state,

p53-mediated transcripts produce cytokines that attract inflammatory cells, which in turn

eliminate the RAS-transformed cell from an organ [281]. Thus, it is clear that elements of

the p53 pathway are regulated by inputs of other signal transduction pathways, resulting

in different programmes of transcription by the p53 protein.

While these three functional responses (apoptosis, senescence, and cell cycle arrest) are

well appreciated, there are a number of other cellular processes that are altered by gene

products regulated by the p53 protein. These include both positive and negative feedback

loops in the p53 pathway [93], regulation of other signal transduction pathways and au-

tophagy [71, 72], alterations in the extracellular matrix of cells, alterations in the cytoskele-

ton of cells, activation of the endosome compartment of cells with increased exosomal and

endosomal activity [286], and the regulation of protein translation [37, 59, 196, 283], heat

shock proteins [292, 2], and DNA repair processes [246, 172, 247, 232].

The above processes all occur within or around a cell at the molecular and cellular levels,
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but there are also physiological or systemic consequences of a p53 response to a stress.

Exosomes produced by p53 activation of the endosomal compartment in an apoptotic cell,

after a p53 response to stress, combine with dendritic cells in the body and can enhance

the immunization process for antigens in the stressed cell [286]. A variety of p53-regulated

genes that express and act in the central nervous system can alter communication between

neurons or result in neurodegeneration in some situations [70]. The p53 regulation of the

LIF (leukemia inhibitory factor) gene in the uterus can directly regulate the efficiency of

implantation of embryos in mice [106]. Thus, the p53-mediated transcriptional process can

have systemic consequences in a host and communicate a stress signal throughout the body.

These types of functions are reviewed in Table 2.4 on page 38.

2.4 Modes of p53 regulation

The p53 protein can either activate or repress the transcription of a gene. The major mode

of transcriptional activation is through direct, sequence-specific DNA binding. A number of

the genes listed in Table 2.4 on page 38 are transcriptionally repressed by p53. P53 employs

both direct and indirect methods to repress gene transcription.

Activation by p53 through direct binding and co-factor recruitment. Almost all p53-activated

genes have at least one putative DNA-binding site that moderately matches the consen-

sus p53 response element. Through protein-protein interactions, p53 can bind to and

then recruit general transcription proteins (TAFs) to the promoter-enhancer region of p53-

regulated genes to induce transcription [67, 253]. Recent experiments have shown that

p53 can also recruit the histone acetyltransferases (HATs) CBP, p300, and PCAF to the

promoter-enhancer region of genes (via high-affinity protein-protein binding) [86, 85]. These
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HATs acetylate lysine residues of histones within chromatin, which increases transcriptional

activity.

Repression by p53 through direct and indirect means. In some genes, p53 binds to its

response element (RE) resulting in direct repression of that gene. It is not clear as to what

distinguishes an RE sequence from being a transcriptional activator site versus a repressor

site. There are currently three generally accepted methods of direct p53-mediated repres-

sion: first, binding-site overlap (steric interference); second, p53 squelching of transcrip-

tional activators; and third, p53-mediated recruitment of histone deacetylases (HDACs).

The p53-mediated repression by steric interference involves sequence specific DNA bind-

ing by p53 that overlaps the binding site of another (more powerful) transactivating pro-

tein. Examples of genes repressed by the method of p53 steric interference include: AFP,

BCL2, HBV (Hepatitis B virus). In these examples, the corresponding activators that

are occluded by DNA-bound p53 are FOXA1, POU4F1, and both RFX1/ABL1, respec-

tively [134, 24, 188]. An entire family of cell cycle regulatory genes now appear to share

the same squelching mechanism, whereby p53 binds to and suppresses bound and unbound

activators of the CCAAT box, namely heterotrimeric NF-Y and CEBP. Examples of genes

that share this mechanism are: cyclin A2, cdc25c, cdc2, hsp70, chk2, cdk1, FN1, BRCA1,

and PTGS2 (COX2) [3, 11, 29, 30, 109, 288, 116, 159, 2, 112, 240].

The p53 squelching (inactivation) of other DNA-bound and DNA-unbound activators

occurs through p53-mediated protein-protein interactions. Examples of p53-squelching of

other transactivating genes are: Cyclin B1, TERT, IGF1R, ALB, and MMP1. The corre-

sponding DNA-bound proteins that are inactivated by direct p53-binding are Sp1, Sp1, Sp1,
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CEBPB, and AP1, respectively [111, 117, 184, 129, 241]. Due to the observation that p53

binds the transcription machinery proteins TBP, TAF6 (TAFII70), TAF9 (TAFII31), and

others in vitro, it was initially believed that p53 repression was achieved via p53 binding and

suppression of these TATA-bound basal factors in vivo [220, 258, 67, 253]. Experimental

evidence suggests that the preferred in vivo method of p53-mediated squelching is achieved

by binding and inhibiting the transactivators of the CCAAT box [68, 2, 288]. However, it

remains unclear whether or not these squelching mechanisms of repression are employed in

vivo under normal physiological conditions.

The p53-mediated recruitment of histone deacetylases (HDACs) occurs through p53

binding to the repressor protein SIN3A, which in turn binds the histone deacetylase HDAC1

[176]. After p53-mediated recruitment to the promoter-enhancer region of a gene, HDAC1

deacetylates lysine residues of histones within chromatin, which represses gene transcrip-

tion [176, 92]. Examples of genes repressed through this p53-mediated mechanism include

MAP4, STMN1, and HSP90AB1 [176, 292].

There are two generally accepted modes of indirect p53-mediated repression. The first

method of indirect repression by p53 comes about by p53-mediated activation of CDKN1A

(p21), which in turn inhibits the cyclin D–CDK4 complex through direct binding. The

consequence of this inhibition of cyclin D–CDK4 is the absence of hyperphosphorylation of

the retinoblastoma (RB) protein in the G1 stage of the cell cycle [138]. Unphosphorylated

RB represses the function of the E2F family of transcription factors through direct binding

(forming an E2F–DP1–RB complex), thereby inhibiting the many downstream targets of

E2F (including cyclin E, cyclin A, DNA polymerase, and thymidine kinase), and halting the

cell cycle in G1 phase. It appears that many genes are fully or partially repressed through
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p53-mediated induction of CDKN1A and ensuing repression of E2F via RB unphosphory-

lation [138]. Table 2.4 on page 38 shows only those genes that are directly repressed by the

p53 protein (and thus have an experimentally-validated p53 RE). In the second method of

indirect p53-mediated repression, p53 binds to another transcription factor and, together,

they repress a gene without a p53-specific RE.

2.5 Less established modes of p53 regulation

Investigators have also put forth other, and sometimes controversial, models for additional

mechanisms of p53 repression and activation. One model proposes that the switch between

p53 activation and repression is determined by the length of the spacer [100]. The hypothesis

is that p53 proteins bound to a 3-bp spacer binding site are ineffective in recruiting the

necessary additional activation proteins, while simultaneously occluding them from adjacent

or overlapping REs. Investigators were able to convert direct p53-repression of the BIRC5

(survivin) gene into direct p53-activation by deleting the 3-bp spacer present in the p53

RE [100]. In this analysis, we show that experimentally validated repressor-sites do indeed

have longer spacers (see Figure 2.2). However, many activator-sites have spacers of three

or more base pairs as well.

Another model proposes that the existence of an adjacent response element (designated

“EP” which binds RFX1 and ABL1 proteins) is sufficient to transform an activating p53 RE

to a repressing RE [188]. Interestingly, Ori et al. succeeded in transforming the direct p53

repression found in the enhancer of HBV into direct p53 activation by mutating the adjacent

EP response element. They also succeeded in transforming the direct p53 activation of

mdm2 into direct p53 repression by inserting an EP response element adjacent to the p53

RE.
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Yet another model proposes that the orientation of the quarter-sites within the p53 bind-

ing element determines activation versus repression. Johnson et al. propose that head-to-

head (HH) p53-binding sites produce p53 activation, while head-to-tail (HT) sites produce

p53 repression [115]. Interestingly, they succeeded in converting the p53-repressed ABCB1

gene into p53-activated by replacing the HT p53 RE in the promoter with an HH p53 RE.

No experiments were performed with tail-to-tail (TT) p53-binding sites. However, it should

be noted that all other experimentally validated repressing p53 REs in this analysis have a

head-to-head (HH) configuration, and that the HT cluster site in the 5′ UTR of the TP53i3

(PIG3) gene confers p53 transactivation, rather than repression. In the case of the heat

shock gene HSP90AB1, investigators discovered a biphasic p53 regulatory system, where

the co-factor p300 mediated p53 activation, and the co-factors SIN3A and HDAC1 medi-

ated p53 repression [292]. Another important co-factor for p53 regulation in some genes,

including CAV1, is E2F [17]. Combining these observations draws the following conclusions:

first, properties of the p53 RE and adjacent co-factor REs confer the potential for direct

p53 activation, respression, or both; and second, the induction of the right combination

of p53 and co-factor proteins is required to regulate any potentially functional target site,

when either activating or repressing.

2.6 Factors that affect p53 regulation

Experiments have shown that many factors can affect the mode and degree that p53 reg-

ulates different target genes. These factors include co-factors, spacer-lengths, quarter-site

orientation, nucleosomes, and post-translational modifications of the p53 protein.

The Role of p53 post-translational modifications. An area of controversy is the role of
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post-translational modifications of p53 in determining the mode and efficacy of p53 tran-

scriptional regulation. Experiments have shown that post-translational modifications of

the p53 protein, such as phosphorylation, methylation, and acetylation, alter the stability

and DNA-binding affinities of p53 [268, 148, 87, 34]. Investigators have shown that p53

needs post-translational modifications in the C-terminal domain to bind to naked DNA in

vitro, but requires no modifications in the presence of chromatin to bind to p53 REs [64, 9].

This also coincides with experiments that showed that the deacetylated C-terminal domain

inhibited binding to p53-binding sites in linear DNA and promoted binding to sites in non-

linear, circularized DNA [163]. The p53-binding sites in circularized DNA segments mimic

in vivo conditions where DNA is wrapped around histones. These experiments suggest

that the C-terminal domain of the p53 protein confers DNA structure specificity (while the

DNA-binding domain confers sequence specificity). In direct contradiction to these results,

other investigators have shown that some of the experimentally validated p53-binding sites

do not require any phosphorylation or acetylation of the p53 protein in order to confer

high-affinity binding in vitro in the absence of chromatin [275].

Nevertheless, there are cases in which these post-translational modifications appear to

play a major role. Investigators found that the induction of p53AIP1 is dependent upon the

phosphorylation of the Ser46 residue of p53 [183]. Investigators also found that phospho-

rylation of the Ser15 and Ser392 residues conferred p53-activation of the APC gene, while

un-phosphorylated p53 served as a repressor of APC [113].

The strongest evidence that supports that post-translational modifications of p53 are

relevant to the p53 regulatory mechanism is the fact that HDAC inhibitors have been shown

to simultaneously increase levels of acetylated p53 and induce apoptosis and senescence in



16

cancerous and normal cells [92, 168]. HDAC inhibitors are currently in clinical trials as can-

cer chemotherapeutics and initial results look promising [168]. Although post-translational

modifications of p53 are certainly important, the ability to properly quantify which ones

are relevant, under which conditions, has been elusive. Further experimentation is needed

to shed light on this complex mechanism of regulation in the p53 pathway.

The flexible CATG affect. It has been shown experimentally that in the head-to-head

orientation, p53 greatly prefers the repeated RRRCATGYYY motif [89, 189]. Based upon

X-ray crystallography studies of the p53 DNA-binding core domain bound to a p53-RE

DNA sequence, the most critical bases for interactions with the p53 protein are the central

RCWWGY, which come in close contact with the amino acids from the p53 core domain [33].

In conjunction with this, the most conserved positions after aligning all experimentally val-

idated, functional p53 binding sites are exactly the central CWWG nucleotides within each

half-site, especially the C and G (see Figure 3.3). Therefore, changes in the nucleotides

in these central positions should affect binding affinity the most. Indeed, binding affinity

measurements of 20 p53-binding sites revealed that 50% of the high-affinity sites contained

the CATG at the center of both half-sites [275]. Investigators also found that replacing the

central CATG with CTAG in both half-sites reduced transactivation 20-fold [110].

It is known that the CATG sequence element is unusually flexible and exhibits extreme

bending and kinking in many DNA–protein complexes [7, 187]. Therefore, it is widely

assumed that the flexibility of the p53 response element also affects binding affinities. p53-

DNA binding affinity experiments have shown that p53 exhibits higher binding affinity for

sites in cell cycle control target-genes than for sites in apoptotic target-genes, and that these

differences coincide with the prevalence of the highly flexible CATG in both groups [275].
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p53 RE sites that are not functional. Investigators have repeatedly found that p53 reg-

ulation of minimal promoters can be profoundly different from their respective full-length

promoters. Examples include when experiments showed that p53 would no longer bind in

the natural promoter [278], and even though experiments confirmed the presence of bound

p53, the p53 RE was no longer functional in the natural promoter [41, 252]. These results in-

dicate that the presence of co-factor sites and the p53-RE occlusion by nucleosomes or other

proteins play a major role in p53 regulation. Examples of genes that contain p53-binding

sites that have been shown not to be functional in vivo include: the intron 5 cluster site in

AIFM2, the -328 site in TP53i3, and the promoter cluster site in human BAX [278, 41, 252].

In addition, experiments have shown that an adjacent SP1 RE is necessary to confer p53-

mediated activation of the BBC3 (PUMA) and BAX genes [126, 251]. Clearly binding to

DNA is not sufficient for transcription.

The affects of distance and DNA looping. It is well known that the distance between a

cis-element binding site and the Transcription Start Site (TSS) can greatly affect the degree

of regulation of a gene. In the case of p53, investigators showed that inserting an additional

200bp segment between a p53 RE and the TATA box eliminated a 45-fold p53-mediated

induction [42]. It is also known that eukaryotic cells contain TF-binding proteins that bind

together (“sticky” TF-proteins), and thereby mediate DNA looping. This process can bring

distal TF-bound binding sites near the TATA box and thereby confer regulation. In the

case of p53, investigators using electron microscopy techniques showed that p53 tetramers

stack in register (on top of each other) when bound to a p53 RE, and thereby link distant

p53-binding sites via DNA looping [237]. They also showed that distant p53-binding sites
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alone induced transcription poorly, but in the presence of a site proximal to the TSS, induc-

tion by the distal site is increased 25-fold [237]. p53-tetramer stacking translocates distally

bound p53 protein to the promoter and increases the concentration of local p53 near the

TSS.

In the absence of a proximal p53 RE, other “sticky proteins” may serve as a surrogate,

provided that their response elements are present near the TSS and the distal p53 RE. An

example of a proven “sticky protein” that mediates DNA looping is the known p53 co-factor

SP1. An example may be found in the MDM2 gene, where a functional SNP (SNP309 T/G)

within a cluster of SP1 binding sites affects the level of regulation of nearby estrogen and

p53 REs, and has been associated with an early onset of breast cancer in pre-menopausal

women [19]. In contradiction to this model, other investigators have hypothesized that

distal sites may reduce transcription by attracting p53 proteins away from the start site

of transcription [25]. For example, in the PLK2 gene the distant site is a repressor while

nearer sites are activators [25]. Further investigation will be necessary to determine exactly

how and when distant p53 REs regulate gene expression.

The effects of the spacers. Experiments have shown that the spacers separating the half-sites

can greatly affect the binding affinity for the p53 protein. For example, Tan et al. showed

that by mutating the spacer of a p53 RE from a GG to a T increased binding affinity

6.6-fold [246]. Two series of experiments using minimal promoter assays found a bimodal

induction distribution, where the two induction peaks occurred with spacer-lengths of 0 and

10 bp [271, 42]. The authors theorized that optimum binding occurred with the half-sites

aligned along the same face of the double-helix (stereospecific alignment), either with the



19

half-sites adjacent or separated by a helical turn (10 bp). Other investigators showed that

under certain experimental conditions, specific spacers with spacer lengths of size 4, 13,

and 14 considerably decreased the RE’s binding affinity for p53 as compared to having no

spacer at all; however, a spacer length of 10 was not tested [254].

Unfortunately, only one spacer, as opposed to all possible spacers, of a certain length

was tested for binding affinity in these experiments. Interestingly, our database of 160

functional p53-binding sites does not show a bimodal distribution of spacer lengths. It is

possible that spacer lengths may affect binding affinity and regulatory function differently,

in that high-binding affinity does not necessarily confer regulatory function. Although it

is obvious that different spacers affect the function of p53 REs differently, the ability to

quantify these effects has been elusive.

Rescue by p63 and p73. Yet another proposed p53-mediated activation mechanism is the

rescue of weak p53-binding sites by the p53 homolog p63 and p73. Investigators have found

that in mouse fibroblasts both p63 and p73 are required for p53-dependent transactivation

of the NOXA and BAX genes [75].

To our knowledge, no experiments have been performed that may elucidate how these

seemingly disparate determinants of p53 regulation (spacer-lengths, quarter-site orientation,

co-factors, nucleosomes, and post-translational modifications of p53) may relate to each

other in determining functional p53 repression and/or activation. It is obvious that our

understanding of the mechanism(s) that determine p53 repression versus activation is not

complete, and requires further study.
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2.7 Experimental approaches and considerations

There are special considerations that need to be taken into account when attempting to

experimentally validate putative p53-binding sites. Wei and his colleagues have employed

chromatin immunoprecipitation with p53-specific antibodies to collect all of the tight bind-

ing sites for the p53 protein in the genome of a cancer cell line [274]. They then sequenced

the DNA fragments selected for by p53 protein binding, and identified the genes in asso-

ciation with the p53 protein. They went on to validate, by other criteria, that a subset of

these genes did indeed have a p53 RE and were regulated by p53. This has been a useful

approach for identifying candidates, but it is clear from the outset that binding to an RE

is not necessarily equivalent to regulating a gene. In addition, this approach requires tight

binding and longer residence times of p53 at a site which could just store p53 proteins

on the DNA for rapid use (not diffusion limited) at a regulated gene. Also, this method

could identify p53-like sites on retroviruses and LINE elements (repetitive elements in the

genome), both of which are observed by p53 RE algorithms [101].

In addition to this approach, others have employed RNA microarrays to explore the

increases and decreases in the steady-state levels of RNAs in cells after the induction of

p53 or exposure to a stress signal [293]. This too has been useful in identifying new p53-

regulated genes, but they need to be shown to be directly regulated by p53, and not the

consequence of a secondary event (such as the induction of a transcription factor by p53

that then acts upon other genes). In addition, any stress signal employed to induce p53

(such as UV exposure) may well induce the transcription of a gene by a pathway not

involving p53. For example, the GADD45A gene is induced by p53 (following exposure

to UV, as verified by CHIP) but is also induced by UV in a p53-null or mutant cell (by
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another mechanism). For these reasons, an inducible p53 gene or a temperature-sensitive

p53 gene in a cell are often better employed to increase p53 levels and activity than a

DNA-damaging agent. However, an inducible p53 gene may not contain the same protein

modifications of the natural p53 protein that are observed in a stress response. Those

modifications (acetylation, phosphorylation, methylation, ubiquitination, sumolation, etc.)

could well lead to the choice of a transcriptional programme resulting from that particular

stress signal (UV versus IR for example) [293]. Finally, the choice of cell lines to follow

p53-regulated genes, used in these experiments for convenience, ignores the fact that there

are cell-type and tissue-type specificities in the p53 response.

2.8 Conclusion

This analysis of the p53 REs, the genes they regulate and the properties they confer can add

new information to our understanding of the p53 pathway and p53-mediated transcriptional

control. First of all, the location of the p53 RE in a gene (Figure 2.3) is most commonly

in the 5′ promoter-enhancer region of the gene (50%) or in intron 1 (25%). More rarely

it is located in introns 2 or 3 of a gene. Surprisingly, some functional p53 REs are in

exon 1 or even exon 2. When this occurs, however, the p53 RE is predominately in the

5′-UTR or the intron-exon boundary. Also, since ≈ 50% of the experimentally validated

p53 sites are downstream of the TSS, intronic 5′-UTR regions are equally important to

promoter-enhancer regions in conferring p53 regulation. The p53 RE is commonly located

near additional transcription factor RE sites.

Second, the distance of the p53 RE from the transcription start site (TSS) helps to

determine the threshold for accepting any putative p53 RE based upon the normalized
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affinity score of the p53 protein for the known p53 REs (see Figure 2.4). Functional, low-

affinity p53 RE sites in the DNA only exist around the TSS. Therefore, computational

methods can employ a dynamic affinity-threshold to reduce false-positives during p53-site

searches.

Third, ≈ 50% of the p53 RE sites have no spacer between the half sites, and the

distribution of spacer lengths is relatively uniform for spacer lengths from 4 to 15 base

pairs. This distribution contradicts in vitro experiments that would predict functional p53

RE sites based upon the half-sites being located on the same face of the DNA helix (see

Figure 2.2). Interestingly, the distribution of spacer lengths in the p53 RE is different

for genes that are transcriptionally activated by p53 and those that are repressed by p53

protein (see Figure 2.2). The spacer lengths in the p53 REs of repressed genes do not show

a great preference for zero length or small spacers. This difference between spacer length

and gene activation/repression is especially clear for those genes not involved in apoptosis

of the cell (see Figure 2.5). Non-apoptotic p53-regulated genes that are repressed by p53

have no preference for zero length spacers.

The list of known p53-regulated genes collected in one place gives us a new feeling for the

breadth of functions regulated in response to stress signals. After a p53-mediated response

to stress, there are changes in the intracellular compartments, cytoskeleton, endosomal

and exosomal functions, heat shock induction, and cellular repair processes. There are

also changes in the extracellular matrix, increased secretion of exosomes and proteins that

impact upon angiogenesis, growth factor functions, and the immune response. The p53

response sets up a series of positive and negative feedback loops that regulate p53-mediated

functions, as well as other signal transduction pathways. In addition to these local effects of

a p53 response, systemic signals are p53-regulated. Both exosomes and cytokines engage the
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immune response of the body. P53-mediated responses in the brain alter signal transmission

in the central nervous system. Additionally, angiogenic signals and interactions with growth

factors and their receptors can all have wider systemic impact. Clearly, the list of genes

involved in a stress response mediated by p53 has a broad impact upon the host as well as

the host cell.
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Figure 2.1: Methods of p53 activation and regulation of downstream targets (A)
The cell undergoes stress that could lead to cancer. (B) Signal mediator proteins activate
p53 by phosphorylating certain residues or inhibiting ubiquitination by MDM2. (C) Both
processes increase the half-life of p53 protein (by inhibiting ubiquitination). The increased
half-life, from minutes to hours, quickly produces higher p53 concentrations. (D) Further
p53 protein modifications by acetyltransferases (CBP, p300, PCAF) and methyltransferases
(SET9) can further stabilize the p53 protein and increase site-specific DNA binding. (E)
The deacetylase HDAC2 can inhibit p53 binding to DNA by deacetylating the protein. (F)
The p53 tetramer binds to a p53 response element to regulate transcription of a nearby gene.
(G) p53 also recruits cofactors such as histone acetyltransferases (HATs) and TATA-binding
protein associated factors (TAFs). (H) For this example, p53 mediates transactivation of its
target gene. However, p53 can also mediate repression of transcription. (I) The p53 protein
transactivates many genes whose protein products are involved in a variety of pathways.
(J) The most important pathways involved in tumor suppression that are activated by p53
are DNA repair, cell cycle arrest, senescence, and apoptosis.
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Figure 2.2: Histograms of spacer-lengths by regulation types. (A) The histogram
of all 160 spacer-lengths of known, functional p53-binding sites reveals the following: (1)
approximately 50% of the p53-binding sites have no spacer sequence (spacer-length = 0bp),
and (2) the distribution is relatively uniform for spacer-lengths from 4 to 15 base pairs. This
distribution does not match experimental results which would suggest a bimodal distribution
with peaks at 0 and 10 base pairs, which would place the two half-sites on the same face
of the DNA double-helix [271, 42]. (B,C) Repression-sites have a different distribution of
spacer-lengths compared to activation-sites. Most importantly, repression-sites do not show
a great preference for 0bp spacers.
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Figure 2.3: Histogram of p53-binding sites by gene region. The histogram of 160
functional p53-binding sites (by gene region) reveals the following: (1) there are slightly
more p53 REs upstream of the TSS than downstream (83 of the 160 sites are completely in
the promoter region, 3 straddle the TSS, and 74 are completely downstream of the TSS),
(2) there are significantly more p53 REs in non-coding regions (cyan) than in coding regions
(purple), and (3) there is an exponential decay of p53 REs as the distance from the TSS
increases. 13 of the 15 Exon 1 REs (87%) are in the 5′-UTR region. (Note: some p53 REs
straddle both coding and non-coding regions and are counted twice.)
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Figure 2.4: Box plots of normalized affinity scores by 10Kb block distances from
the TSS. All low affinity sites are within the 1st 10Kb block from the TSS. Median scores
of the 10Kb blocks rise as a function of distance.
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Figure 2.5: Histogram of spacer-lengths by regulation type and gene-target func-
tion. Non-apoptotic-target sites (in purple) have a higher frequency of repressor-sites
compared to apoptotic-target sites (16.5% versus 8.5%). In addition, non-apoptotic-target
sites have no preference for 0bp-length spacers (bottom histogram). Thus, p53-repressor
binding sites have significantly longer spacers of average.
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Gene Name(s) Short Description Half-site #

BTG2, TIS21 BTG family, member 2 4

CDKN1A, p21 cyclin-dependent kinase inhibitor 1A (p21, Cip1) 2.5

DDB2 damage-specific DNA binding protein 2, 48kDa 4

GML GPI anchored molecule like protein 3

HRAS, c-Ha-Ras Harvey rat sarcoma viral oncogene homolog 8

IGFBP3 insulin-like growth factor binding protein 3 11

mdm2 Mdm2, transformed 3T3 cell double minute 2 4

PCNA proliferating cell nuclear antigen 5

SH2D1A, SAP SH2 domain protein 1A, Duncans disease 4

TP53i3, Pig3 tumor protein p53 inducible protein 3 7.5

TP73, p73 tumor protein p73 3

TRPM2 transient receptor potential cation channel, M2 3

TYRP1, TRP-1 tyrosinase-related protein 1 6

VDR vitamin D (1,25- dihydroxyvitamin D3) receptor 3

HBV hepatitis B virus 3

Table 2.2: cluster sites regulated by p53. This table lists genes that contain cluster-site

REs that have been shown experimentally to confer transcriptional regulation by p53. A

cluster-site RE is defined as any RE which contains three or more half-sites, each separated

by no more than 15 base-pairs.
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Chapter 3

Modeling p53-binding Sites with PHMMs

3.1 Computational Methods to model DNA binding sites

Several algorithms have been devised to detect p53 REs in the DNA of all organisms and

identify possible p53-responsive genes [101, 8, 49, 239, 256, 273, 282]. These computational

algorithms have been used extensively to help the experimental process of finding func-

tional p53-binding sites, transcriptional gene targets of p53, and functional SNPs in the

p53 pathway. Although these algorithms have been extremely useful, they also have serious

drawbacks. All the algorithms attempt to approximate the relative binding affinity of a pu-

tative p53-binding site by training a probabilistic model from a dataset of experimentally

validated, functional p53 REs (’training set’). Therefore, the strength and predictive power

of any such model is completely dependent on the sampling size and quality of the training

set.

In addition, experiments have shown repeatedly that relative binding affinity is not the

only thing when it comes to response elements (see above). Other important variables

that affect the degree of function of a p53 RE include: adjacent co-factor binding sites,

spacer-length, distance from the TSS, nucleosome positioning, and possibly others. For

these reasons, all the algorithms that approximate relative binding affinity alone have very

high false positive rates (for most TF-binding sites) [273]. In order to seriously boost predic-

tive power, future algorithms will need to include at least some of the additional variables
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mentioned above.

The common Position Specific Score Matrix. By far the most common computational

method for predicting p53 REs (and all other response elements) is the Position Specific

Score Matrix (PSSM or weight matrix), which attempts to estimate the binding affinity of

a putative site [239]. Besides the drawbacks mentioned above, PSSMs have other serious

limitations in their attempts to approximate relative binding affinity. The PSSM model

contains the probabilities of each nucleotide at each position in the motif (or the logarithms

of the probabilities), and is therefore static in length. So, PSSMs cannot model allowed nu-

cleotide insertions into, or allowed deletions from, the consensus motif, since any nucleotide

insertion or deletion (indels) throws off the PSSM reading frame. This is clearly a problem

because the p53 RE is very degenerate and ≈ 30% of the 160 functional p53-binding sites in

Table 2.4 on page 38 have at least one nucleotide insertion or deletion (indel) relative to the

consensus. Any PSSM approach would thereby mis-score at least 30% of the binding sites

in the dataset. Examples of genes that contain these degenerate sites are: BAI1, CAV1,

EEF1A1, HSP90AB1, PCBP4, SH2D1A, TYRP1, and LIF.

3.2 PHMMs can model nucleotide insertions and deletions

Profile Hidden Markov Models provide a coherent theory for probabilistic modeling of degen-

erate binding sites where random nucleotide insertions into and deletions from the motif are

tolerated at certain positions [127, 55]. Natural selection suggests that critical nucleotides

are conserved over evolutionary time, while non-critical nucleotides (including tolerated in-

sertions in the motif) are not conserved. The match state emissions of the PHMM serve

to model the critical positions in the motif with their observed nucleotide frequencies. The
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additional hidden deletion and insertion states at each position enable the model to train

for (relatively rare) observed deletions and insertions (indels) at different positions in the

motif (see Figure 3.1 on page 53). Although the probability of any particular insertion or

deletion of a nucleotide at a certain position in a functional motif may be rare, the accu-

mulated probability over all the positions in the motif that an insertion or deletion event

may occur can be significant. The training set of observed insertions and deletions (indels)

serves to fine-tune the model to be properly sensitive to tolerated deviations from the most

prevalent consensus motif. The main strength of the PHMM is this trained flexibility to

properly model variable length motifs. The major drawback is that more data is required

to train the extra parameters not found in weight matrices (PSSMs).

3.2.1 The Theory of Modeling TF-Binding Sites with Profile Hidden

Markov Models

Given a set S of experimentally validated binding sites s for a TF-protein (and a few

assumptions) it is possible to use the set S to estimate the relative binding free energy

−∆G(x) of any putative site x (without having to perform direct experimental measure-

ments of binding constants). This bioinformatic approach using PHMMs (and PSSMs) is

an attractive alternative, if a sufficient set S of experimentally validated binding sites is

available.

The Assumptions:

1. The positions of a binding site contribute independently and additively to the binding free-energy.

2. Background DNA sequences are generally random samples from some k-mer distribution.
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Neither of these assumptions are always true [238]. The first assumption can be relaxed

by calculating di-nucleotide, tri-nucleotide,....,nth-nucleotide frequencies from the training

set S, but at some point an additivity assumption must be applied. Also, genomes are

generally not random, but can be closely approximated by a 3rd or 4th Order Markov

Model [248]. For simplicity in the examples here, we will assume that the background

DNA can be modeled by a simple 0th Order Markov Model (i.e. by mononucleotide content

alone). This assumption greatly simplifies the calculation of the partition function [238].

From the additivity assumption we have that for any putative site x:

−∆G(x) =
length(x)∑
i=1

−∆Gj(b)

where we define . . .

−∆Gj(b) = the independent contribution of base b observed at

position j to the over-all binding free energy (3.1)

The Profile Hidden Markov Model (PHMM) provides a completely probabilistic model

for observing a sequence x within the modeled motif. The PHMM achieves this by incor-

porating the probabilities of different nucleotide insertions, deletions, and motif matches at

each position in the motif [127]. In this application, the PHMM model is used to calculate

the probability Phmm(x) of observing the putative site x in a real transcription factor bind-

ing site that is modeled by the PHMM. The probability Phmm(x) is used to find the site

log-odds score of a putative site x. The site log-odds score Gs(x) calculated by a PHMM
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trained by S is given by:

Gs(x) = ln
(

Phmm(x)
Pbackground(x)

)
(Site Log-odds Score)

=
length(x)∑

j=1

Gsj(b)

where we define:

Gsj(b) = ln
(

Phmm(j, b)
Pbackground(j, b)

)
(Nucleotide Log-odds Score)

j = position in the sequence x, j ∈ {1 . . . length(x)}

b = observed nucleotide base, b ∈ {A,C,G, T}

Phmm(j, b) = probability of base b at position j in the PHMM model

Pbackground(j, b) = probability of base b at position j in the null (background) model

(3.2)

With these definitions, and assuming independence of positions, we have:

Phmm(x) = probability of candidate site x in the PHMM model

Pbackground(x) = probability of candidate site x in the null (background) model

The Site Log-odds Score Gs(x) can be considered proportional to the relative binding free

energy −∆G(x) when the Fermi-Dirac Equation for the equilibrium probability of a protein-

bound binding site can be approximated by the Maxwell-Boltzmann Equation [49]. Another

assumption is that the training set S consists of a proper sampling of functional binding sites

that were collected under similar experimental conditions (like temperature T ). However,

this is likely not the case. A last assumption is that we are able to perfectly train the PHMM
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from our training set S, so that we can accurately predict the probability Phmm(x) for all

possible putative sites x. However, properly training a PHMM from a limited training set

S is a challenging problem. But with our idealizations and assumptions, the Nucleotide

Log-odds Score Gsj(b) (calculated by our perfectly trained PHMM) is directly proportional

to the binding free energy contribution of each observed base b at each position j in the

sequence x.

Thus, under ideal conditions the log-odds scores that a trained Profile Hidden Markov

Model calculates for any candidate site x is directly proportional to the free energy of

binding to that candidate site. (Typically, proper scaling of Gs if not performed to make

Gs(x) ≈ −∆G(x). Instead, Gs is only proportional to −∆G(x).) [53] If the Profile Hidden

Markov Model has no insertion or deletion states, then the PHMM is essentially a PSSM

(weight matrix), and the probability Phmm(j, b) is equivalent to the (b, j)th entry in the

(probability) weight matrix.

Three dynamic programming algorithms are used to calculate the probability Phmm(x) of

observing the putative site x in the model. The forward and backward algorithms calculate

Phmm(x) by summing up the probability of observing x for all possible paths π through the

model:

forward(x) = backward(x) = Phmm(x) =
all paths∑

π

P (x, π) (3.3)

The Viterbi algorithm calculates both the optimal alignment of the putative site x which

produces the path π∗(x) with the highest log-odds score, and the probability P π
∗

hmm(x) of

observing that optimal path in the model. These two results of the Viterbi algorithm are

commonly referred to as the Viterbi path and the Viterbi score, respectively:
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V iterbi path(x) = π∗(x) = argmax
π [P (x, π)]

V iterbi score(x) = P π
∗

hmm(x) = Phmm(x, π∗(x))

In the case of modeling transcription factor binding sites, it is commonly assumed that

the log-odds score of the optimal path that best aligns the putative site x to the model is

the only significant contributor to the over-all log-odds score. When this is indeed true, the

Viterbi score can be used as a good approximation to Phmm(x):

V iterbi score(x) = Phmm(x,π∗(x)) ≈
∑all paths
π P (x,π) = Phmm(x) = forward(x) (3.4)

However, we see that this assumption is not true when modeling p53 cluster sites, where

experiments suggest that the p53 protein can bind to overlapping combinations of adjacent

half-sites. In this scenario, the true probability Phmm(x) provided by the forward and

backward algorithms is needed to properly model experimental results.

All three dynamic programming algorithms are highly efficient, and when applied to

PHMMs run in O(NM) time and O(NM) space for a PHMM with M states and a sequence

of length N [55]. For further details about the forward, backward, and Viterbi algorithms

please see [53].

Example: Log-Odds Scoring of the sequence ACCG in Figure 3.1. Let’s

assume that the PHMM in Figure 3.1 models a transcription factor binding site, and that

the depicted path through the PHMM is the optimal path for the candidate sequence ACCG

obtained by the Viterbi algorithm. Let’s further assume that the log-odds score for this

optimal alignment is a good approximation for the overall log-odds score Gs(ACCG) (which

would include the probabilities of observing ACCG for all paths through the model, not

just the optimal path). Now, with the optimal alignment of the sequence ACCG, we can
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A Path for Sequence ACCG after alignment with a Trained PHMM

Figure 3.1: A State Path through the topology of a PHMM. A possible path for the
sequence ACCG through a trained PHMM is highlighted in red. The match, insertion, and
deletion states are green, blue, and orange respectively. The arrows represent transitional
probabilities between the states. P(tr) and P(N) are the probabilities of a transition between
states and the probabilities of emitting nucleotide N within a state, respectively. In this
path, A is an inserted nucleotide, both C’s are matches to the consensus, consensus position
3 is absent in the sequence, and G matches the final consensus position. A model with only
the match states (green), and no insertion or deletion states, would be synonymous with a
weight matrix (PSSM).

calculate the log-odds scores of the sequence and get an estimate of the relative binding

affinity for this site. Here, we will assume a uniform background distribution at each position

so that Pbackground(j, b) = Pbackground(b) = .25 for each base b.

Gs1(A) = ln

(
Phmm(1,A)

Pbackground(A)

)
= ln( .18·.3

.25 ) = ln(.18)+ln(.3)−ln(.25) = −1.532

Gs2(C) = ln

(
Phmm(2,C)

Pbackground(C)

)
= ln( .41·.37

.25 ) = ln(.41)+ln(.37)−ln(.25) = −.499

Gs3(C) = ln

(
Phmm(3,C)

Pbackground(C)

)
= ln( .76·.45

.25 ) = ln(.76)+ln(.45)−ln(.25) = .313

Gs4(G) = ln

(
Phmm(4,G)

Pbackground(G)

)
= ln( .016·.96·.29·.93

.25 ) = −4.100

Gs(ACCG) =

length(ACCG)∑
j

Gsj(b) = −1.532+−.4995+.313+−4.100 = −5.819 (3.5)
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Therefore the Log-Odds Score of sequence ACCG is -5.819, which is not a good score. A

negative score signifies a site that better fits the random (uniform) background distribution

than it fits the trained Profile Hidden Markov Model (trained by the set S of known binding

sites). This means that this site has a binding affinity that is on par with the binding affinity

of a random sequence from the given background distribution. Therefore, ACCG is not a

potential binding site in this example. Notice that the biggest contributors to this negative

score are the inserted and deleted nucleotides relative to the motif. It is often the case that

nucleotide insertions and deletions (indels) within a binding site have a heavy associated

cost that greatly lessons the total site score.

3.2.2 The Proof that the Log-odds Score Gs(x) is proportional to −∆G(x)

It has been shown experimentally that in general, transcription factor proteins have a

weak affinity for background DNA (any non-consensus sequence) and a strong affinity for

consensus sites. Within the nucleus (or general cell in prokaryotes) the DNA concentration

is high enough that an activated TF-protein is bound somewhere on the DNA essentially all

the time (to a 1st approximation) [239]. Therefore, the binding specificity (the ability of the

TF protein to distinguish a functional site from background DNA) must be adequately high

for proper regulation to occur [239]. The goal is to quantify the free energy of binding to

a candidate site x through statistical mechanics, thermodynamics and Information Theory.
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We start with the mass action kinetics of a TF-protein binding to a site:

p = transcription factor protein

x = a candidate DNA binding site

px = Bound Protein-Binding Site Complex

k+ = forward equilibrium binding constant

k− = backward equilibrium binding constant

p+ x
k+



k−

px

Kx
eq =

k+

k−
= equilibrium association constant for site x (3.6)

We normalize Kx
eq in order to obtain the specific association constant Kx

s that quantifies

specificity:

1. Kavg
eq = Average Keq for all sites x

2. Kx
s = Kx

eq

Kavg
eq

, (avg(Kx
s ) = 1)

3. Specificity of Valid Site: Kvalid site
s ≈ 106

4. Specificity of Background: Kbackground
s < 1

In experiments performed in E. Coli cells, with about 5 × 106bp of DNA, a single TF-

protein and a single binding site with a specificity of 106 will be bound together only about

20% of the time. During the other 80% of the time, the protein will be transiently bound to

other random places along the genome. However, with 20 copies of the protein the binding

site will be occupied about 99% of the time [73].
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The specific association constant Kx
s is related to the binding free energy −∆G(x) by

the following:

−∆G(x) = − kβ · T · ln(Kx
s )

and

−Kx
s =

k+

k− ·Kavg
eq

= e−∆G(x)/kβT (3.7)

Now lets estimate the probability that a putative binding site x is bound by a TF-protein

in a well-mixed solution at equilibrium. Let P (x bound) be the probability that the binding

site x is bound by a TF-protein. Then we have:

P (x bound) =
binding rate

binding rate + unbinding rate

=
[p] · k+

[p] · k+ + k−

=
[p] ·Kavg

eq · e−∆G(x)/kβT

[p] ·Kavg
eq · e−∆G(x)/kβT + 1

(3.8)

which can be re-written into the form known as the Fermi-Dirac Equation, where µ =

kβT ln(Kavg
eq · [p]) is the chemical potential dependent on the protein concentration [p]:

P (x bound) =
1

e(∆G(x)−µ)/kβT + 1
(Fermi-Dirac)

In the low concentration limit the Fermi-Dirac Equation for the probability P (x bound)



57

can be approximated by the Maxwell-Boltzmann Equation:

P (x bound) ≈ 1
e(∆G(x)−µ)/kβT

when ∆G(x)� µ

≈ eµ/kβT · e−∆G(x)/kβT (Maxwell-Boltzmann)

≈ ze−∆G(x)/kβT (z = eµ/kβT = fugacity) (3.9)

Now we are ready to analyze a sampling set S of known transcription factor binding

sites for a given TF-protein. A version of this proof exists for weight matrices (PSSMs)

in [99, 49]. Here we provide a general proof that it is applicable for any fully probabilistic

model that calculates Pbackground(x) and PsetS(x).

Assume that we attain the set S from a single experiment so that all the sites are

collected under identical conditions. Assume that we have a very large number of DNA

sequences of roughly similar length from a given genome mixed in solution with a certain

concentration of TF-proteins. At equilibrium some of the DNA sequences with bound TF-

protein are extracted (precipitated) and sequenced to create our sampling set S.

The probability of observing exactly the set S is given by:

P (observing the set S) =
∏
x∈S

(Pexist(x)·Pbound(x)·Pextract(x))·
∏
x 6∈S

(1−Pexist(x)·Pbound(x)·Pextract(x))

≈
∏
x∈S

(Pexist(x)·Pbound(x)·Pextract(x))·e

∑
x 6∈S

(Pexist(x)·Pbound(x)·Pextract(x))
(3.10)
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The likelihood function L for the P (observing the set S) can now be approximated:

L = ln[P (observing the set S)]

≈ ln

[ ∏
x∈S

(Pexist(x)·Pbound(x)·Pextract(x))·e

∑
x 6∈S

(Pexist(x)·Pbound(x)·Pextract(x))
]

≈
∑
x∈S

ln(Pexist(x)·Pbound(x)·Pextract(x))−
∑
x6∈S

(Pexist(x)·Pbound(x)·Pextract(x)) (3.11)

Now plug-in the Maxwell-Boltzmann approximation ze−∆G(x)/kβT for P (x bound), and for

simplicity assume that Pextract(x) = Pextract is identical for all x:

L ≈
∑
x∈S

ln
(
Pexist(x)·ze−∆G(x)/kβT ·Pextract

)
−
∑
x 6∈S

(
Pexist(x)·ze−∆G(x)/kβT ·Pextract

)

≈ Ns·ln(z·Pextract)+
∑
x∈S

(
ln(Pexist(x))·−∆G(x)

kβT

)
−z·Pextract

∑
x 6∈S

(
Pexist(x)·e−∆G(x)/kβT

)
(3.12)

Where Ns is the size of the sampling set S. We are now ready to maximize the likelihood

function L by taking the partial derivatives with respect to zPextract and ∆Gi(b) and setting

them equal to 0. We have From the additivity assumption that for any putative site x:

−∆G(x) =
length(x)∑
i=1

−∆Gi(b)

where we define . . .

−∆Gi(b) = the independent contribution of base b observed at position i

−∆Gi(x, b) = −∆Gi(b) · x(i, b)

x(i, b) = 1 if xi = b, and 0 if xi 6= b (3.13)
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After taking the partial derivatives we have:

∂L
∂(zPextract)

= Ns
z·Pextract

−
∑
x 6∈S

(
Pexist(x)·e−∆G(x)/kβT

)
= 0

∂L
∂(∆Gi(b))

=

∑
x∈S

x(i,b)

kβT
−
[
z·Pextract

kβT
·Pexists(i,b)·e−∆Gi(b)/kβT ·

∏
j 6=i

∑
b′
Pexists(j,b

′)·e−∆Gj(b′)/kβT
]

= 0

(3.14)

We can combine the results from the partial derivatives to obtain:

1
Ns

∑
x∈S

x(i,b) =

Pexists(i,b)·e−∆Gi(b)/kβT ·
∏
j 6=i

∑
b′
Pexists(j,b′)·e−∆Gj(b′)/kβT

∑
x 6∈S

(
Pexist(x)·e−∆G(x)/kβT

) (3.15)

If we make the observation that:

∑
x 6∈S

(
Pexist(x)·e−∆G(x)/kβT

)
=

∑
b′
Pexists(i,b

′)·e−∆Gi(b
′)/kβT ·

∏
j 6=i

∑
b′
Pexists(j,b

′)·e−∆Gj(b′)/kβT

then we have that:

1
Ns

∑
x∈S

x(i,b) =

Pexists(i,b)·e−∆Gi(b)/kβT ·
∏
j 6=i

∑
b′
Pexists(j,b′)·e−∆Gj(b′)/kβT

∑
b′
Pexists(i,b′)·e−∆Gi(b

′)/kβT ·
∏
j 6=i

∑
b′
Pexists(j,b′)·e−∆Gj(b′)/kβT

=
Pexists(i,b)·e−∆Gi(b)/kβT∑

b′
Pexists(i,b′)·e−∆Gi(b

′)/kβT

=
Pexists(i,b)·e−∆Gi(b)/kβT

C

1
Ns

∑
x∈S

x(i,b)

Pexists(i,b)
·C = e

−∆Gi(b)/kβT

ln

 1
Ns

∑
x∈S

x(i,b)

Pexists(i,b)

+lnC = −∆Gi(b)

kβT

ln

 1
Ns

∑
x∈S

x(i,b)

Pexists(i,b)

 ≈∝ −∆Gi(b) (3.16)
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Now we make the following observations:

1
Ns

∑
x∈S

x(i, b) = probability of observing base b at position i in our set S

= PsetS(xi(b))

Pexists(i, b) = Pbackground(i, b) (3.17)

So now we have:

Gsi (b) = ln
[

PsetS(xi(b))
Pbackground(i,b)

]
≈∝ −∆Gi(b)

Gs(x) = ln
[

PsetS(x)
Pbackground(x)

]
≈∝ −∆G(x) (by the additivity assumption)

�

Training a PHMM with validated binding sites. Before a PHMM can be used to

estimate the relative binding affinity for any putative binding site, the PHMM must be

trained to properly model a functional binding site of interest. When training a PHMM for

a particular motif, the goal is to choose the parameters of the model in order to maximize

the likelihood of the sequences in the training set, without over-fitting. Again, under ideal

conditions the log-odds score (log-likelihood ratio) Gs(x) to be maximized for the collection

of binding sites in the training set is proportional to the estimated binding free energy

−∆G(x) of these binding sites. When the state paths for the training sequences are not

known, no known closed form solution exists for the parameter estimations [53]. The Baum-

Welch algorithm is the most commonly used iterative Expectation Maximization (EM)

method to train the parameters of the model. The Baum-Welch algorithm always climbs

the gradient (to increase the combined scores of the training set) and uses the optimized

dynamic programming forward and backward algorithms [53].
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3.3 Results and Discussion

3.3.1 p53HMM: using a training method that boosts predictive power.

To increase the predictive power of our p53-motif PHMMs, we attempt to exploit the a priori

knowledge that when proteins bind as homodimers or homotetramers, their corresponding

binding sites typically have a palindromic, repeat, and/or reverse complement structure

(see Figure 3.2). This prior knowledge can be used to correspond (fully or partially tie) the

parameters between positions in order to exploit the inherent redundancy in the information

of the motif. Within a set of corresponding positions, the updating of emission and transition

probabilities can borrow strength from each other by sharing information. In addition, the

degree of sharing of information for any set of corresponding positions can be optimized

during training. The process of corresponding parameters can greatly reduce the parameter

search-space during the training of the model, and provide the ability to train for rare

occurrence insertion and deletion events (See Figure 3.3).

This general technique has been effectively used when HMMs have been applied to speech

and handwriting recognition problems, and has been referred to as parameter tying [133].

We introduce an extension to this method that allows for the setting or training for an

optimal level of partial or full parameter tying. In the domain of protein-DNA binding

sites, even if a palindromic, repeat, or reverse complement structure of a binding site is

not known a priori, all the known structural motifs can be tested, and the structure can be

discovered (inferred) from the ROC curve that maximizes predictive accuracy. For example,

of the six structural models tested for the p53-binding motif, the palindromic motif that

completely corresponds the two half-sites is the discovered motif, since it is the best classifier

(see Figure 3.5).
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3.4 The Corresponded Baum-Welch algorithm

In order to include the prior knowledge of the structural motif (or in an attempt to dis-

cover it), a novel “Corresponded Baum-Welch” algorithm is proposed to enforce or learn

the optimal correspondence between expectations of parameters for corresponding positions

after each iteration of the Baum-Welch algorithm (see Methods). For example, assume that

we have prior knowledge that a transcription factor protein binds to the DNA in homod-

imer form, where each monomer interacts with 5 DNA base pairs. Then a corresponding

palindromic motif for the nucleotide positions would be: 1 2 3 4 5 5 4 3 2 1, while a

reverse-complement palindromic motif would be: 1 2 3 4 5 5̃ 4̃ 3̃ 2̃ 1̃ (where ã has the com-

plement nucleotide emission distribution of a). All the emission distributions for each of

the five sets of synonymous positions would be made corresponding, as well as all the tran-

sition probabilities between synonymous positions. In this example, if all the parameters

between synonymous positions were fully corresponding (tied), then the parameter search

space would be roughly cut in half. The level of correspondence between the parameters for

synonymous positions can be given a priori, or trained for if the training set is sufficiently

large. One optimal level of correspondence, c, can be calculated for the whole motif (for all

the corresponding positions), or a separate one can be found for each set of corresponding

positions.

3.4.1 Details of the Corresponded Baum-Welch Algorithm

The standard Baum-Welch EM algorithm is used to estimate the expected transition and

emission probabilities from the training set. The Baum-Welch algorithm is an optimized,

iterative EM method that always climbs the gradient and uses the dynamic programming

forward and backward algorithms [53].
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Let:

s = binding site The nucleotide sequence of a binding site

si = nucleotide The ith nucleotide in the binding site s

S = training set The training set of binding sites sj

π = path The state sequence of a binding site s

πi = state The ith state in the path π

pskl = pseudocount Prior bias of probability of transition from k to l

psk(b) = pseudocount Prior bias of probability of emitting symbol b in state k

ψ = {pskl, psk(b)} , ∀k, l, b The set of all pseudocounts in the model

akl = P (πi = l|πi−1 = k) The probability of transition from state k to state l

ek(b) = P (si = b|pii = k) The probability of emitting symbol b in state k

θ = {akl, ek(b)} , ∀k, l, b The set of all parameters in the model

abackgroundkl = Pbackground(πi = l|πi−1 = k) The probability of transition from state k to state l

in the null (background) model

ebackgroundk (b) = Pbackground(si = b|pii = k) The probability of emitting symbol b in state k

in the null (background) model

Akl = expected akl counts Number of transitions from k to l in the training set

Ek(b) = expected ek(b) counts Number of emissions of b from state k in the training set

fk(i) = P (s1 . . . si, πi = k) The probability of the sequence up to and including si,

requiring that πi = k

fk(i+ 1) = ek(si+1) ·
∑states
j (fj(i) · ajk) Recursive formula for fk(i+ 1) going forward

bk(i) = P (si . . . sL, πi = k) The probability of the sequence from si to the end,

requiring that πi = k, L = length of the sequence s

bk(i− 1) = ek(si−1) ·
∑states
j (bj(i) · ajk) Recursive formula for bk(i− 1) going backward

The goal is to choose the parameters θ of the model in order to maximize the log-

likelihood of the sequences s in the training set S, without over-fitting. To avoid over-fitting,

the goal is to find the Posterior Mean Estimator (PME), a Bayesian approach that uses the

pseudo-counts ψ as a prior from a Dirichlet family of distributions and all the paths π for

all sequences s in the training set S [53]:

θPME =
argmax

θ

[∑
s∈S

logP (s|θ, ψ)

]
=

argmax
θ

[∑
s∈S

∑
π

logP (s, π|θ, ψ)

]
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The Baum-Welch algorithm climbs the gradient during each iteration and is guaranteed to

converge within some epsilon to a local maximum, which may or may not be the PME [53].

Theoretically, the Corresponded Baum-Welch algorithm has the advantage of using prior

motif knowledge to greatly reduce the parameter space and to potentially “flatten” the

space. Both of these improvements can increase the probability of the algorithm converging

to the PME.

In each iteration, the Baum-Welch algorithm calculates the expected number of times

each transition and emission is used by the training set sequences (calculates Akl and Ek(b)),

given the current model parameters (akl and ek(b)). Then the model parameters are updated

to the new posterior mean estimators a′kl and e′k(b), calculated from the new expectation

counts (Akl and Ek(b)).

Notice that the probability that akl is used at position i of binding site sequence s with

current model parameters θ is given by:

P (πi = k, πi+1 = l|s, θ) =
fk(i) · akl · el(si+1) · bl(i+ 1)

P (s)

By summing over all training sequences and positions, we can derive Akl and Ek(b), the

expected number of times that akl and ek(b) are used by the training set, given the current
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model parameters θ:

N = number of training sequences

L = length of the sequence sj

W (sj) = sequence weight of sj

Akl =
N∑

sj∈S

W (sj)
P (sj)

L∑
i=1

f jk(i) · akl · el(sji+1) · bjl (i+ 1)

Ek(b) =
N∑

sj∈S

W (sj)
P (sj)

L∑
i|sji=b

f jk(i) · bjk(i) (3.18)

The sequence weight W (sj) is used to vary the importance of different sequences in the

training set S and to vary their influence in training the model. A weight W (sj) > 1

increases the expected counts in sequence sj , and a weight W (sj) < 1 decreases them.

Sequence weights are used when we do not fully trust that the training set S provides a

proper distribution of valid binding sites, and we attempt to remedy that deficiency by

weighting the known sequences. Most sequence weighting methods attempt to penalize

the expected counts of similar sequences and to enhance the expected counts of distant

sequences [53].

Additionally, the process by which the training set S was ascertained may be biased

toward a certain subset of sites independent of their sequences (ascertainment bias). In the

derivation for our approximation for −∆G(x) in the next section, we relied on the assump-

tion that the probability Pextract(x) of extracting a TF-bound binding site was independent

of the sequence in or around x. This may not always be the case. For example, if we know

that a certain antibody preferentially binds to adjacent binding sites compared to ones with

no neighbors, then after precipitation our training set S would be biased toward adjacent
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binding sites that appear in tight clusters in the DNA. We could attempt to compensate for

this inherent bias by penalizing those sequences found adjacent to each other in the genome

and promoting the ones with no neighbors. Different sequence weighting schemes can be

found in [250, 81, 5, 227, 56, 95, 128].

From these new expected counts, we can now calculate new maximum likelihood esti-

mators for each position:

a′kl =
Akl

states∑
m

Akm

e′k(b) =
Ek(b)

{A,C,G,T}∑
n

Ek(n)

(3.19)

However, if we believe the training set S to be incomplete and intend to avoid over-

fitting the data, we add pseudocounts as priors to our expected counts. Here, pseudocounts

are distributed in proportion to the null (background) model. The pseudocount weight w

represents how many counts from the null (background) model we want to include in the

expected counts of our model. From the expected counts, we calculate the new posterior
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mean estimators using pseudocounts for each position:

w = pseudocount weight

pskl = w · abackgroundkl

psk(b) = w · ebackgroundk (b)

a′kl =
pskl +Akl

w +
states∑
m

Akm

e′k(b) =
psk(b) + Ek(b)

w +
{A,C,G,T}∑

n

Ek(n)

(3.20)

Now we use the prior knowledge (or make a guess) of the repeat and/or palindromic

motif and correspond (partially or fully tie) the new posterior mean estimators based upon

corresponding positions. This prior knowledge can be used to reduce the parameter space

and increase the statistical accuracy of the model. The degree of sharing of information

between corresponding positions is controlled by a correspondence factor c, which can be

fixed or trained to an optimum value. One can estimate a correspondence factor based on
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the initial conditions by the following:

dist = a probability distribution in the set of corresponding distributions

var = a variable in the probability distributions

N = number of corresponding distributions

P (var) = average probability of a variable over all corresponding distributions

c0 = initial correspondence factor

= 1 − 1
N − 1

∑
dist

∑
var

∣∣∣P (var)− P (var)
∣∣∣ (3.21)

We calculate the corresponding posterior mean estimator (PME) after calculating the av-

erage emission and transition probabilities for all the corresponding positions:

c = correspondence factor

a′ = Avg(a′kl) (over all transitions from k to l in the set of corresponding positions)

e′(b) = Avg(e′k(b)) (over all emissions in the set of corresponding positions)

a′′kl = a′kl + c
[
a′ − a′kl

]
e′′k(b) = e′k(b) + c

[
e′(b)− e′k(b)

]
(3.22)

If we wish to train for the optimum correspondence factor, then we calculate a new c′

for each emission and transition probability at each position in the set of corresponding
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positions:

c′kl =
c · a′

a′kl + c
[
a′ − a′kl

] =
c · a′
a′′kl

c′k(b) =
c · e′(b)

e′k(b) + c
[
e′(b)− e′k(b)

] =
c · e′(b)
e′′k(b)

(3.23)

Now, we can calculate a new correspondence factor c′ by averaging over sets of the c′kl

and c′k(b) values. The one optimum correspondence factor for the whole motif or separate

correspondence factors for sets of corresponding positions are obtained by averaging over

different sets:

c′ = c′k(b) (over all bases b and all emissions and transitions k)

or

(over all bases b and corresponding emissions and transitions k) (3.24)

We can now update the parameters of the model to the new posterior mean estimators

that have been made corresponding (fully or partially tied) by our prior knowledge (or

guess) of the motif:

akl =⇒ a′′kl

ek(b) =⇒ e′′k(b)

c =⇒ c′ (3.25)
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This process is then iterated to obtain new Akl and Ek(b) values from the new model

parameters. At each iteration the log likelihood of the training set increases to a local max-

imum. Since convergence is in a continuous-valued space, the maximum is never actually

reached. Typically, the iterations are stopped when the change in the total log likelihood

is sufficiently small or after some fixed number of iterations, whichever comes first [53].

Derivation of finding optimum correspondence. The method of finding the locally

optimum degree of correspondence (sharing of information) between corresponding posi-

tions starts by introducing the new parameter c for each set of corresponding positions. If

we interpret the correspondence factor c as the probability P (identical) that the positions

are completely synonymous, then we can interpret that every emission and transition prob-

ability P (x) for each corresponding position in the model can now be replaced by a new

probability P ′(x):

P ′(x) = P (identical) · P (x) + (1− P (identical)) · P (x)

= P (x) + c
[
P (x)− P (x)

]
(3.26)
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where P (x) is the average of the corresponding emission and transition probabilities. Now

we can calculate new correspondence factors c′ for each corresponding emission and transi-

tion probability in the set of corresponding positions:

c′ =
P (identical) · P (x)

P (identical) · P (x) + (1− P (identical)) · P (x)

=
c · P (x)

P (x) + c
[
P (x)− P (x)

]
=

c · P (x)
P ′(x)

(3.27)

Now we can calculate a new correspondence factor c′′ for the set of corresponding parameters

by averaging over the new c′ for all the corresponding emission and transition probabilities:

c′′ = c′ (over all c′ in the set of corresponding positions) (3.28)

Example. Assume that we have prior knowledge (or we guess that) the binding motif of

a 10-bp binding site is singly palindromic: 1 2 3 4 5 5 4 3 2 1. Then the positions that

have been made corresponding are: 1 and 10, 2 and 9, 3 and 8, 4 and 7, 5 and 6. (There

are five sets of corresponding positions in this example.) First, each of the 10 distributions

of the posterior mean emission probabilities for each of the 10 positions in the motif are

now corresponding and sharing data with its partner position. Then the posterior mean

transition distributions between positions are similarly made corresponding (for example

1-2 and 2-1 ). Separate correspondence calculations are performed for each of the sets of

corresponding positions. A correspondence factor of c = 1 would fully correspond (tie) the

parameters between synonymous positions to the average over all corresponding parameters.

(In this case, the parameter space would roughly be cut in half, and the training data per
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parameter would roughly double.) A correspondence factor of c = 0 would not change the

initial distributions of emission and transition probabilities at a position at all, thus creating

no correspondence between the positions. The correspondence factor c can be regarded as

our known prior belief in the level of correspondence between synonymous positions in a

palindromic, repeat, and/or reverse-complement binding-site motif. Alternatively, the cor-

respondence factor c can be regarded as the unknown probability of correspondence between

synonymous positions that needs to be determined. In the latter case, the Corresponded

Baum-Welch algorithm will converge on the (locally) optimum c that maximizes the total

log likelihood of the training set.

Comparing the different p53 corresponding (structural) motifs. Since the 20bp-

tetrameric p53-binding site has a repeated and nested palindromic structure, different cor-

respondence motifs can be constructed to train the PHMM models, and cross validation

can be used to compare their predictive properties. The motifs that are compared are:

the repeat or T-coupled motif (1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 ), the (reverse-

complement) palindromic or H-coupled motif (1 2 3 4 5 6 7 8 9 10 1̃0 9̃ 8̃ 7̃ 6̃ 5̃ 4̃ 3̃ 2̃ 1̃ ),

the independently (reverse-complement) palindromic or Q-coupled motif (1 2 3 4 5 5̃ 4̃ 3̃ 2̃

1̃ 6 7 8 9 10 1̃0 9̃ 8̃ 7̃ 6̃, and the repeated, fully-palindromic or combined motif (1 2 3 4 5

5̃ 4̃ 3̃ 2̃ 1̃ 1 2 3 4 5 5̃ 4̃ 3̃ 2̃ 1̃ ) (see Figure 3.2) [149]. We perform 1000 iterations of ten-fold

random-split cross validation on each model to gain statistics on their predictive accuracy.

The positive set contains 160 experimentally validated p53 binding sites from [202], and

the negative set contains 40bp random samples from the mononucleotide content of the

training set. Then we utilize Receiver Operating Characteristic (ROC) curves in order to
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compare the predictive power of the classifiers in an unbiased, threshold-independent (non-

parametric) manner. This is achieved by calculating the true positive and false positive

rates for all possible threshold values for each model. The summary statistic for comparing

the ROC curves is the AUC (Area Under the Curve). AUC values lie somewhere between

1.0 and 0.5 (where an AUC of 1.0 would correspond to a perfect classifier, and an AUC of

0.5 would correspond to a classifier that is no better than random coin flipping.)

Training Insert State Emissions. A major consideration when training Profile Hid-

den Markov Models (PHMMs) is which parameters to train for at each position, and which

parameters to fix at each position to the over-all average. The more non-fixed parameters

that must be trained for at each position in the motif, the more data that is needed to

properly train the model. Ideally, a sufficiently large training set is available to be able

to train for all the parameters in the PHMM at each position. Unfortunately, in the case

of transcription factor binding sites, this is rarely the case. Typically, when using PH-

MMs to model DNA binding sites, both the insert probabilities and insert state nucleotide

emissions probabilities are set to the binding site averages, since there are rarely enough

examples of these rare occurrence events at a particular position to train those parameters

for that position alone [154]. By corresponding (fully or partially tying) positions and in

effect increasing the training data for each position, it may be possible to train the insertion

state emissions distributions for these corresponding positions. This could possibly boost

predictive power of the models, if the p53 protein is selective as to which nucleotides can be

inserted into the motif at certain positions without compromising the binding affinity of the

site. A common example of such selective sequence insertions can be found in functional
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protein families, whereby hydrophobic or hydrophilic amino acid insertions may be toler-

ated at certain positions, provided that the insertions are present either in the core or at

the surface of the protein, respectively, after folding. Notice that fixing the insertion state

emission distributions at every position to the amino-acid average for the whole sequence

would be very inappropriate in this example.

The final results. The (reverse-complement) palindromic or H-coupled motif (1 2 3 4

5 6 7 8 9 10 1̃0 9̃ 8̃ 7̃ 6̃ 5̃ 4̃ 3̃ 2̃ 1̃ ) outperforms all other structural motifs (see Figures

3.4 and 3.5). However, the repeat and independently palindromic motifs perform nearly as

well. Finally, the combined motif (1 2 3 4 5 5̃ 4̃ 3̃ 2̃ 1̃ 1 2 3 4 5 5̃ 4̃ 3̃ 2̃ 1̃ ) also performs on

par with the above models, although it contains roughly half the degrees of freedom. These

results suggest that there exist correlations between the positions in all four of the motifs

above for the p53-binding site, although the correlations within the palindromic motif are

the strongest. Furthermore, it can be seen that training the insert state emissions per

corresponding position also boosts the predictive power of all the models (see Figures 3.4

and 3.5). In addition, the more correspondence placed between the synonymous positions

during each training iteration, the better the resulting classifier at that point in the training

(results not shown). For this training set, all the palindromic models with fixed correspon-

dence factors between c = 0.4 and c = 1.0 eventually converged to the same predictive

model, although lower correspondence factors required more iterations to do so. All the

models converged on correspondence factors between c = .98 and c = .999 when training

for optimum correspondence. Therefore the best predictive model completely corresponds

(ties) the two half-sites in a palindromic structure during each iteration of the training.

Our published p53HMM algorithm is this best predictive model: trained on the dataset of



75

160 functional p53 REs, fully corresponding the data per position based on the palindromic

structural motif, and training the insert state emissions.

Validation of the p53HMM algorithm. The new p53HMM algorithm was used

to screen for putative p53-binding sites in the endosomal compartment genes, which led

to the discovery of a functional p53 site and a new p53-regulated gene, CHMP4C [287].

The putative p53RE sequence AAACAAGCCC agtagcagcagctgctcc GAGCTTGCCC was

predicted in the promoter region (-497 to -460bp) of the CHMP4C gene. The data from

the chromatin immunoprecipitation and the luciferase reporter assays showed that p53

protein can bind to this sequence and induce CHMP4C gene expression. Additionally,

analysis by p53HMM found an alternative putative p53 binding site in the LIF gene that

corresponds to a 5 bp shift to the right relative to the recently published putative site

in intron 1 [106]. The p53HMM algorithm predicted the site GGACATGTCGGGACA–

GCTC, which matches the consensus RRRCWWGYYYRRRCWWGYYY perfectly except

for the gap (“–”, deletion) at position 16. A PSSM approach predicted the shifted site

AAcCAgGaCatGtCggGaCa, which is the best “gap-less” p53 site in the region conferring

p53 regulation, but it still matches the consensus very poorly (consensus mismatches are

in lowercase)[106]. A few genes in the dataset of 160 functional p53 binding sites have a

deletion relative to the consensus exactly between the well-conserved C and G as seen above,

including the genes: EGFR, TYRP1, EEF1A1, HSP90AB1, and BAI1. This discovery of

an alternative p53-binding site that better matches known functional sites, by modeling for

observed insertions and deletions, highlights some of the advantages of the new p53HMM

algorithm.

Special considerations for the p53HMM algorithm. Although the spacer within

a p53 RE has been shown to greatly affect the binding affinity for p53 protein, the ability
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to properly quantify this effect for all possible spacers of lengths 0-21 base pairs has been

elusive. Therefore like previous algorithms, we have chosen to initially ignore the spacers

of the training set and putative REs [101]. We are able to ignore arbitrary-length spac-

ers by inserting a no-cost Free Insertion Module (FIM) between the two half-sites of the

single-site PHMM [107, 10]. Similarly, we can ignore spacers with lengths between 1 and

N base pairs by inserting a no-cost Finite Emission Module (FEM-N) between the two

half-sites (see Figure 3.6). A prior p53 RE search algorithm (p53MH) was based upon a

PSSM approach and a novel filtering matrix [101]. Unfortunately, the tables were not sym-

metric and the filtering table over-fit the available data at the time. The combined result

was that the p53MH method completely rejects 58 of the 160 experimentally validated sites

to date (receiving a score of 0 out of 100, where 100 represented the maximum relative

binding affinity). Additionally, some sites received very high scores approaching 100, while

the reverse-complement received a score of 0, and vice-versa. Due to these observations, we

have purposely designed the p53HMM algorithm to be symmetric, so as to give identical

scores for putative sites and their reverse complements. Secondly, we chose to abandon the

filtering matrix to avoid over-fitting the available data. A feature that we preserved from

p53MH is the normalizing of scores by the highest possible affinity for the motif (×100), so

that the highest possible normalized score is 100.

Modeling dependencies between positions. PSSMs assume that all nucleotide po-

sitions within the motif contribute independently to the binding affinity of the binding site,

which has been shown experimentally to not always be the case [239]. Recent research has

focused on modeling dependencies between positions in protein-DNA binding sites [8, 294].

Typically Tree Bayesian Networks and Mixtures of trees have been used to attempt to
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model these dependencies between positions, which have been shown through cross vali-

dation to increase the predictive power of these models [8]. Our PHMM models do not

attempt to model dependencies between the positions, however they can be extended to do

so by using higher-order Profile Hidden Markov Models. Unfortunately, the ability to train

for positional dependencies, and boost predictive power, is dependent upon the sampling

size of the training set and requires larger training sets to train the extra parameters.

3.5 Modeling p53 cluster-sites

Binding affinity measurements have been obtained for certain p53 cluster-sites of different

lengths by mutating or truncating known p53 cluster-sites in the genes: DDB2, TP53i3,

CKM, IGFBP3, and RGC (See Table 3.1 and Figure 3.1) [246, 41, 20, 122]. Based on

the relative binding affinities of these p53 cluster-sites, we propose a new p53 cluster-site

algorithm that utilizes the trained PHMM to calculate and sum up the relative estimated

binding-affinities, above a certain threshold, of all viable full-sites in the cluster with a

spacer of 14bp or less (See Table 3.1). This model predicts a linear increase in p53 binding

affinity dependent upon the number of half-sites in the cluster-site and the length of spacers

between them. For example, for p53 cluster-sites with 2, 3, 4, 5, or 6 adjacent p53 half-

sites, the number of possible full-sites with spacer-lengths ≤ 14bp would be 1, 3, 5, 7, and

9, respectively. Let N be the number of half-sites in the cluster-site, then the number of

full-sites (to calculate binding affinities for and sum up) is given by the expression 2N − 3

(N ≥ 2). Although there exist functional sites with spacers ≥ 15bp, experiments suggest

that their contribution to the overall binding affinity within a cluster-site is negligible.

These p53 cluster-site scores are attained through a two step process. The first step
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uses the cluster-site model which contains a generalized p53 half-site PHMM and a back-

transition that limits any spacer between two half-sites to no more than 14bp (see part e of

Figure 3.6). The dynamic programming Viterbi algorithm is used to find the highest scoring

p53 half-sites in the sequence (that are separated by no more then 14bp). The second step

then parses the state-path generated from step 1 and generates viable p53 full-sites with

any spacers removed, while conserving the property that the half-sites in the cluster-site

were not separated by more than 14bp. Now we use the more flexible p53 single-site model

to score these viable full-sites using the Viterbi algorithm (see part d of Figure 3.6). We

maintain a running sum of the log-odds scores of the candidate full-sites that are above a

certain threshold. The log-odds score threshold and spacer-length limit (14bp) are chosen

so as to best fit the experimental data (See Figure 3.7). Additionally, this p53 cluster-site

model follows statistical mechanics, in that the overall binding affinity for the complete RE

is proportional to the probability of any p53 protein binding to any of the allowed motifs

found in the cluster-site.

3.5.1 Details of the p53 cluster-site algorithm

The p53 cluster-site algorithm is a two step process designed to sum the estimated relative

binding affinities of all viable full-sites within a cluster-site. The first step uses the cluster-

site model that contains a generalized p53 half-site PHMM and a back-transition through

a no-cost FEM-14 module (see part e of Figure 3.6). The no-cost Finite Emission Module

(FEM) of length 14 can match any sequence of length ≤ 14bp with no contribution to the

over-all score. We score the entire putative cluster-site using the p53 cluster-site model

and the Viterbi algorithm to find the best-supported path through the cluster-site. This

path provides the strongest affinity half-sites that are not separated by more than 14bp. If
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Table 3.1: Normalized Experimental Affinity of Cluster-sites

Number of Half-sites
2 3 4 5 5.5 6 7 7.5 8 8.5 9 10 11 12

Cluster Site Relative Binding Affinity
DDB2 1 5
TP53I3 3 6 10 12 16
Theoretical Affinity Approximations
# of Full-sites with spacers ≤ 14bp 1 3 5 7 8 9 11 12 13 14 15 17 19 21
# of Full-sites with spacers ≤ 24bp 1 3 6 9 10.5 12 15 16.5 18 19.5 21 24 27 30
# of Full-sites with any size spacer 1 3 6 10 15 21 28 36 45 55 66

This table contains the normalized experimental affinities of different cluster-sites depen-
dent upon the number of half-sites contained in the RE. These affinity measurements
were obtained by mutating or truncating p53 cluster-sites in the genes DDB2, and
TP53i3 [246, 41]. These two p53 cluster-sites are chosen because they match the assump-
tion of the theoretical models that no spacer sequences are present between the half-sites.
All affinities are normalized by the two half-site (full-site) affinity respective of the RE. The
theoretical models assume that all the half-sites in each cluster-site are identical, which
is not the case for either of the two cluster-sites. Experimental results support a linear
affinity growth model based upon the number of full-sites with spacers no longer than 14bp
(in yellow).

we use the notation “[14]” for any spacer sequence of length 0 to 14 and H for a half-site

sequence, then we can represent the cluster-site sequence path as:

H1[14]H2[14]H3[14]....[14]HN (where N = number of half-sites in the path)

Step 2 now parses the cluster-site sequence path and generates a list of all viable full-sites,

which are concatenations of any two half-sites such that they are not separated by more

than 14bp:

Set of viable full-sites = {H1H2, H1H3, H2H3, ....}

Now we use the more flexible (and more accurate) single-site model with the Viterbi algo-

rithm to estimate the relative binding affinity of all the viable full-sites in the cluster-site.

The cluster-site affinity score is the sum of all viable full-site scores that exceed a certain
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threshold. If F denotes a viable full-site then:

cluster-site affinity score =
{H1H2,H1H3,H2H3,....}∑

F

contribution(F )

contribution(F ) =


V iterbi(F ) if V iterbi(F ) ≥ threshold;

0 if V iterbi(F ) < threshold.
(3.29)

The spacer-length upper bound and the affinity-score lower bound were fit to best match

the experimental results. In the case for p53-binding sites, the best fit is a spacer-length of

no more than 14bp and a log-odds score of at least 27.5 (see Figure 3.7 on page 86).
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Repeat or T-coupled Motif
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

R R R C W W G Y Y Y < spacer > R R R C W W G Y Y Y

(Reverse-Complement) Palindromic or H-coupled Motif
1 2 3 4 5 6 7 8 9 10 1̃0 9̃ 8̃ 7̃ 6̃ 5̃ 4̃ 3̃ 2̃ 1̃

R R R C W W G Y Y Y < spacer > R R R C W W G Y Y Y

Independent (Reverse-Complement) Palindromic or Q-coupled Motif
1 2 3 4 5 5̃ 4̃ 3̃ 2̃ 1̃ 6 7 8 9 10 1̃0 9̃ 8̃ 7̃ 6̃

R R R C W W G Y Y Y < spacer > R R R C W W G Y Y Y

Repeated, Fully-Palindromic or Combined Motif
1 2 3 4 5 5̃ 4̃ 3̃ 2̃ 1̃ 1 2 3 4 5 5̃ 4̃ 3̃ 2̃ 1̃

R R R C W W G Y Y Y < spacer > R R R C W W G Y Y Y

Figure 3.2: The Four p53 Correlation Motifs. The four correspondence motifs for the
repeated, palindromic p53 RE are graphically represented. In the top three motifs, each
line signifies correspondence between two synonymous positions. In the bottom motif, the
previously independent half-sites are made “corresponding” (tied) by the yellow connecting
lines so that now four synonymous positions are corresponded. (R = A or G, W = A or T,
and Y = C or T. Position ã has the complement nucleotide emission distribution of a.)
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Figure 3.3: (a) The match-state sequence logo for the palindromic p53 motif: 1 2 3 4 5 6
7 8 9 10 1̃0 9̃ 8̃ 7̃ 6̃ 5̃ 4̃ 3̃ 2̃ 1̃. (Motif position ã has the complement nucleotide-emission
distribution of a.) The height of each letter is made proportional to its frequency at each
position, and the letters are sorted in descending frequency order. The height of the entire
stack at each position is then adjusted to signify the information content (in bits) of that
position [218]. The match-state nucleotide positions 4, 7, 14, and 17 (motif positions 4, 7,
7̃, and 4̃ respectively) are the most conserved and are the main points of contact with the
p53 protein. (b) The insert-state sequence logo for the combined-palindromic p53-model:
1 2 3 4 5 5̃ 4̃ 3̃ 2̃ 1̃ 1 2 3 4 5 5̃ 4̃ 3̃ 2̃ 1̃. These nucleotide insertions occur in-between the
nucleotide positions shown in part a. The specificity motif of the insert-state emissions is
different from that of the match-state emissions.
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Figure 3.4: Cross Validation with Receiver Operating Characteristic (ROC)
curves reveals increased predictive power over weight matrices. 1000 iterations
of 10-fold random-split cross validation reveal that the most predictive model is the palin-
dromic structure. The positive set contains 160 experimentally validated p53 binding sites,
and the negative set contains 40bp random samples from the mononucleotide content of
the training set. The true positive and false positive rates are calculated and plotted for all
possible threshold values for each model. The predictive measure for comparing the curves
is the AUC (Area Under the Curve). In all the PHMM models the insert state emissions
are fixed to the A, G, C, T nucleotide distribution of the training set. The best classifier
uses the palindromic training motif. (Position ∼a has the complement nucleotide emission
distribution of a).
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Figure 3.5: Cross Validation with Receiver Operating Characteristic (ROC)
curves reveals increased predictive power when training insert state emissions.
All the PHMM models in this comparison train the insert emission distributions based on
positional insertions occurring in the training set. Again, 1000 iterations of 10-fold random-
split cross validation reveal that the most predictive model is the palindromic structure.
The positive set contains 160 experimentally validated p53 binding sites, and the negative
set contains 40bp random samples from the mononucleotide content of the training set. The
true positive and false positive rates are calculated and plotted for all possible threshold
values for each model. The predictive measure for comparing the curves is the AUC (Area
Under the Curve). The AUC values improve for all the PHMM models compared to Fig-
ure 3.4, but not for the weight-matrix model (which does not use the insert states). The
best classifier (with the palindromic training motif) was used for the p53HMM algorithm.
(Position ∼a has the complement nucleotide emission distribution of a).
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Figure 3.6: The Topologies of p53 Single-site and Cluster-site Models. (a) A
Profile Hidden Markov Model (PHMM) contains three hidden states for each position in
a sequence motif of length n: a match state (green squares), an insertion state (orange
diamonds), and a delete state (gray circles). The arrows represent allowed transitions
between states and have associated probabilities. The match and insertion states also have
associated nucleotide emission probabilities. The first and last insertion states (I-0 and
I-n) and associated transitions (in red) are shown for completeness. However, they are
not present in the p53 models since they are replaced by FIM and FEM models. (b) The
topology of the Finite Emission Module (FEM) of length N allows the ability to model
any distribution of spacer-lengths between 1 and N. For the p53 models, the model and
background probabilities within the FEM modules are identically uniform so that there is
no-cost for spacer-lengths between 1 and N , and are referred to as “no-cost FEMs”. (c) The
topology of the Free Insertion Module (FIM) allows for the ability to model an exponentially
decaying distribution of spacer-lengths. However, by setting the model and background
probabilities to identically uniform, the FIM can model any sequence of infinite length with
no associated cost to the overall score (hence the word “Free”). (d) The main components of
the p53 single-site model are the left and right half-site PHMMs, which potentially contain
corresponding positions between them. These two half-site models are separated by a no-
cost FEM model that limits the length of any intervening spacer sequence to 20bp. The
half-site models are also wrapped by two FIMs that allow the Viterbi algorithm to find the
best matching motifs anywhere in the candidate sequences. (e) The topology of the p53
cluster-site model consists of a single PHMM that models a general half-site, and two back-
transitions that allow for modeling an infinite number of half-sites within the cluster-site.
The back-transition through the no-cost FEM-14 model limits the spacer-sequence between
the half-sites to lengths ≤ 14bp.
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Figure 3.7: Comparison of Cluster-site scores and Luciferase Activity This graph
compares the estimated relative binding affinity given by the cluster-site score to the lu-
ciferase activity from four experiments for four different p53 cluster-sites. The four cluster-
sites regulate the genes DDB2 (blue), CKM (red), IGFBP3 (green), and TP53I3 (cyan).
In all four experiments the luciferase activity of truncated mutants of the respective p53
cluster-site were compared to the luciferase activity of the full cluster-site. All cluster-site
scores and activity measurements are normalized by the full-site (two half-sites) measure-
ment. The cluster-site scores are attained by summing the estimated binding affinity of all
viable full-sites in the cluster-site that have an affinity above a lower bound and spacer-
lengths below an upper bound. The full-site affinity lower bound and spacer-length upper
bound were chosen to best match the experimental data. The best fit was attained by
enforcing that spacer-lengths not exceed 14bp and affinity scores exceed 27.5.
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3.6 Conclusions

Profile Hidden Markov Models (PHMMs) can boost predictive power over weight matrices

(PSSMs) when the binding motif is highly degenerative and tolerates insertions and/or

deletions at various positions. The increase in predictive power for the p53-binding motif

can be seen in Figures 3.4 and 3.5. When the RE has a known repeated and/or palindromic

motif, this prior knowledge can be used to correspond parameters in the model to exploit

the redundancy in the information in the motif. We propose a novel “Corresponded Baum-

Welch” training algorithm that significantly boosts the predictive power of the p53-RE

model, as seen in Figure 3.5. When the motif is not known, all possible motifs for the given

size can be sampled and cross-validation techniques leveraged to infer the correct motif that

maximizes predictive power. For example, Figure 3.5 reveals that the maximally predictive

p53-binding motif corresponds the two half-sites in a palindromic structure.

Our algorithms demonstrate the best predictive capability to date in classifying puta-

tive p53-binding sites. One algorithm uses a novel “Corresponded Baum-Welch” training

method that exploits the repeated palindromic structure of the p53 motif to train for al-

lowed insertions and deletions relative to the consensus. The second algorithm properly

models the relative increase in binding affinity for p53 cluster-sites (REs with ≥ 3 adjacent

half-sites) by using a two step process that scores all viable full-sites in the cluster-site

while restricting the spacer-length to 14bp. This new cluster-site algorithm best matches

the experimental data (see Figure 3.1 on page 79).

The faithfulness within the p53 RE. Analysis of the 37 total p53-binding sites from El-

Deiry et al., 1992 and Funk et al., 1992 showed that the left half-site appeared to be more

faithful than the right half-site, graphically expressed as −→←− spacer −→←−. It also
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appeared that the ←− motif was more faithful than the −→ motif within each half-site,

graphically expressed as −→←− spacer −→←−. However, these differences were not sta-

tistically significant [101]. Our findings with the current dataset of 160 p53-binding sites

show no significant differences in the faithfulness between the quarter-sites. Additional ev-

idence that the half-sites share the same binding properties is given by the fact that the

best computational predictor in this analysis assumes and leverages that the two half-sites

share the same binding preferences.
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Chapter 4

Dynamic Acceptance Thresholds

4.1 Accepting affinity scores as a function of the distance from the TSS

An interesting finding from the analysis of our dataset of 160 functional p53-binding sites

is that the low relative affinity scores from our model are significantly correlated with short

distances from the Transcription Start Site (TSS). We find that low affinity sites exist only

in a tight band around the TSS (see Figure 4.1 on the following page). Therefore a dynamic

binding-affinity acceptance threshold, dependent upon the putative site’s distance from the

TSS, can greatly reduce the false positive rate of our classifier. With a dynamic acceptance

threshold, putative sites will require higher calculated binding affinities as their distance

from the TSS increases in order to be accepted as potentially functional.

For example, consider the linear dynamic acceptance threshold 65.16+ .00107∆X shown

in Figure 4.1, with the additional restriction that the putative sites must be within 5,000bp

upstream and 1,000bp downstream of the gene. Let the static acceptance threshold be

all normalized scores above 70 with the same restriction that the putative sites must be

within 5,000bp upstream and 1,000bp downstream of the gene. Even though the restricted

dynamic threshold has a false negative rate of 22 out of 158 validated p53 sites (13.9%),

and the restricted static threshold 32 out of 158 (20.3%), the restricted static threshold

generates over 3.2 times as many positive hits when scoring all 39,288 isoforms of known

genes in the human genome (hg18). Thus, the dynamic acceptance threshold has a lower
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Figure 4.1: Normalized affinity scores versus distances from the TSS. (Upper)
This plot presents the normalized affinity scores returned from the p53 single-site model
versus the distance from the Transcription Start Site (TSS) for 158 experimentally validated
p53-binding sites. Low affinity sites exist in a tight band around the TSS (cyan vertical
line). p53 activation-sites are plotted in green, repression-sites in red, and both activation
and repression in black. All sites ≥ 11Kb from the TSS have relative affinity scores above
the average of ≈ 78 (purple horizontal line). (Lower) This plot presents the estimated
normalized affinity scores versus the positive distance (absolute value) from the TSS. Two
linear dynamic acceptance thresholds are shown for scoring for putative p53-binding sites.
The orange threshold corresponds to the formula 54.69+ .00163∆X and has a false negative
rate of 7 out of 158 validated p53 sites (4.4%). The blue threshold corresponds to the formula
65.16 + .00107∆X and has a false negative rate of 18 out of 158 validated p53 sites (11.4%)
(∆X = distance from TSS).
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known false negative rate and a considerably lower false positive rate.

Functional low-affinity p53-sites only exist near the TSS. Therefore the binding affinity

threshold for accepting a putative site should be dependent on the putative site’s distance

from the TSS. By this method, putative sites with relatively low calculated binding affinities

that are near the TSS may be accepted, while those sites with equal scores but more distant

from the TSS will be rejected. A dynamic threshold, as a function of the distance from

the TSS, can greatly reduce the false positive rate when searching for putative p53-sites in

genes.



92

Chapter 5

The Effects of Non-linear DNA conformations

5.1 Introduction

Experiments have been performed to directly or indirectly measure the binding affinities of

certain p53-binding sites in vitro. One group measured the in vitro dissociation constants

of 20 known p53 response elements using fluorescence anisotropy [275]. Another group

measured the in vitro dissociation constants for the functional human p53-RE found in

the DDB2 gene and 11 mutants using competitive EMSA (Electrophoretic Mobility Shift

Assay) [246]. A third group indirectly measured p53-RE binding affinities through yeast

luciferase-transactivation experiments for 22 known p53 response elements and four mu-

tants [110]. Other than different p53 REs at the same positional location, the yeast strains

were isogenic. All three groups reported that there was no correlation between their ex-

perimental results and relative binding affinity scores from available weight matrix models

(PSSMs, PWMs).

Although the palindromic PHMM models more accurately classified known p53-REs

compared to PWMs, simple linear models using the PHMM relative-affinity scores still failed

to closely match experimental measurements (see Figure 5.1 on the next page). However,

an analysis of the PHMM normalized affinity scores versus their distance from the TSS

revealed that all the lowest affinity scores (as measured by sequence similarity) only exist

within a relatively tight (3kb) band on either side of the TSS (see Figure 4.1 on page 90). It
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Figure 5.1: Weinberg experimental measurements versus p53HMM scores. A
plot of the experimental p53 binding affinity measurements (y-axis) versus linear fitted
values, where the only predictor variable is the PHMM relative binding affinity score using
the palindromic p53 model (x-axis). The adjusted R-squared is 0.0657 and the F-statistic
p-value is 0.1438.

appears that there may be some other affinity variable (besides similarity to the consensus

site) that may be rescuing these poorly-matching p53 sites near the TSS.

5.2 p53 Binding to Holliday Junctions

Experiments have revealed that the p53 protein is pleiotropic, in that it performs multi-

ple functions in the cell. The primary, well-known role is that of a transcription factor to

activate cancer-suppression pathways, such as cell cycle arrest and apoptosis, after DNA

damage events. The secondary, less well-known role is to bind to Holliday junctions with

high affinity and recruit other proteins (including T4 endonuclease VII and T7 endonuclease
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I) to form a complex that resolves (cleaves and separates) the DNA helices [135]. Holli-

day junctions are produced by homologous recombination events that occur spontaneously

or during DNA damage repair. They are potentially lethal DNA structures if they pass

unresolved across the G2/M phase check-point. Once in metaphase, during chromosome

condensation and segregation, a Holliday junction can lead to chromosome loss, duplication,

or breakage in one of the daughter cells.

Lee, et al. used electron microscopy (EM) and gel retardation assays to show that p53

tetramers bind with very high specificity to four-way Holliday junctions (and with ≈ 3-fold

less affinity to three-way junctions) in a completely structure-dependent and sequence- in-

dependent manner [135]. In addition, the locus for binding to Holliday junctions is found in

the C-terminal domain of the p53 protein, as opposed to the DNA-binding domain used for

transcriptional regulation. Therefore, the p53 protein has two completely different mecha-

nisms for binding to DNA. One DNA-binding mechanism, mediated through the Holliday

junction-binding domain, is completely DNA-structure dependent and DNA-sequence inde-

pendent. The other DNA-binding mechanism, mediated through the DNA-binding domain,

appears completely DNA-sequence dependent and DNA-structure independent.

5.3 p53-REs readily form cruciform structures

As mentioned before, the p53-binding site consists of repeated palindromes, possibly sepa-

rated by a spacer sequence. This motif is ideal for forming stable cruciform (double-hairpin)

structures, although the activation barrier to go from linear B-DNA to a non-linear cruci-

form conformation can be prohibitive. However, we know that strand separation, mediated

by enzymes, occurs near the TSS to form the transcription bubble. In addition, we know

from experiments that many transcription initiation events fail to produce full-length mRNA
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transcripts [4]. Therefore, the region of DNA around the TSS of a gene can be a very dy-

namic environment with frequent strand separation events. Once the two complementary

DNA strands separate, the activation barrier has been breached and local hairpin structures

are very likely to occur along palindromic motifs, where base-pair complementarity facili-

tates local, single-stranded alpha-helix formations. Another important observation is that

cruciform (double hairpin) DNA conformations locally mimic four-way Holliday junctions,

the exact same DNA structure to which p53 binds with high specificity. Once these cruci-

form DNA conformations form, then the high activation barrier must be breached again in

order for the DNA to re-assume a linear B-DNA conformation. Thus these cruciform DNA

structures may have long residence times before they are resolved. (In addition, p53 may

play a role in resolving these cruciform structures in a fashion similar to how it helps to

resolve Holliday junctions.) Therefore, it’s possible that DNA conformation may also play

an important role in p53 binding to its response elements and regulating its transcriptional

target genes.

Recent experiments support this theory by showing that p53 prefers to bind to p53-REs

forced into non-linear conformations in vitro. Prives, et al. showed that p53 prefers to bind

to bent, circularized p53 response elements over linear, B-DNA conformation sites [163].

Even more convincing, the Deppert Lab has shown through EMSA and electron microscopy

(EM) that p53 prefers to bind to its response elements when one strand is forced into a

hairpin structure [124, 82]. They were able to force one of the strands of the p53-RE into

a hairpin (stem-loop) structure in vitro by annealing that strand with an opposite strand

that is missing the p53-RE sequence. Kim, et. al also showed that p53 can bind to a single

p53 half-site sequence with high affinity if that half-site is presented at the end of a hairpin

DNA structure [124]. Both labs showed that modifications to the carboxy-terminal domain
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of the p53 protein greatly affect the preference for non-linear DNA sites versus linear B-

DNA p53-binding sites. Experiments suggest that unmodified p53 tetramers prefer to bind

to response elements in non-linear, cruciform structures. In fact, the unmodified C-terminal

domain appears to hinder binding to linear conformation sites. However, p53 proteins with

C-terminal modifications, such as phosphorylation or C-terminal binding to other proteins

(like antibody PAb421), prefer to bind to linear B-DNA binding sites. Therefore C-terminal

modifications of the p53 protein affect its mode of binding.

5.4 Using UNAFold to estimate p53-RE folding profiles

I used a computational approach to find whether the capability to fold into a cruciform

(double hairpin) structure is a factor that affects the overall binding affinity of a p53-RE for

the p53 protein. I used the UNAFold folding software to find the probabilities and minimum

free energies of different possible cruciform conformations of the 160 known human p53-

binding sites. Interestingly, the human p53-RE (single-site) with the highest known binding

affinity is also an ideal cruciform folder(see Figure 5.2 on the next page) [275, 110]. This

highest affinity site is the 5′ p53-RE found in the CDKN1A (p21) promoter. Using this

CDKN1A p53-RE as the template, we see that there are five stable structures possible.

They are labeled as: the linear B-DNA conformation, the full cruciform, the left cruciform,

the right cruciform, and the double cruciform (left and right together) (see Figure 5.2 on

the following page).

It should be noted that adjacent 5′ and 3′ sequence surrounding a p53-RE, and the

spacer-sequence, can all have a considerable effect on the folding capability of a p53-site,

by either reinforcing a fold, weakening a fold, or affecting the activation barrier to separate

the two DNA strands. For example, over-represented poly-A and poly-T signals near the



97

Figure 5.2: Folding Conformations of a CDKN1A (p21) p53-RE We present four of
the five stable structures of the same CDKN1A p53-RE embedded in a DNA sequence. The
coding-strand p53-RE is shown in blue, the template-strand p53-RE in red. Mismatches
to the p53-RE consensus (RRRCWWGYYY) are displayed in lower-case. Watson-Crick
base pairing is displayed as “-”, and wobble base pairing as “·”. a. The linear B-DNA
conformation shows good similarity with only two nucleotide mismatches to the p53 con-
sensus. b. The full cruciform structure is very stable with seven Watson-Crick base pairs
per strand. c. The left cruciform is reinforced by the 5′ sequence that contributes two extra
Watson-Crick base pairs per strand for a total of five per strand. The template strand also
contains two wobble (G · T ) base pairs. d. The right cruciform structure contains only
four Watson-Crick base pairings per hairpin. The double cruciform structure (not shown)
is a combination of the left and right cruciforms put together, with possible interactions
(stacking) between the stems and loops of the hairpins.

TSS are known to lower the activation barrier to separate the two strands to form the

transcription envelope. After computing the folding capacity values, I created simple linear
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and non-linear models that predicted overall binding affinity based upon two sets of predictor

variables: (1) sequence similarity to the consensus motif (the p53HMM score), and (2)

the calculated folding probabilities and free energies of assuming any of the p53-preferred

cruciform conformations (estimated by UNAFold).

It should be noted that p53-REs that closely match the consensus RRRCWWGYYY will

also on average fold better. However, this property is not guaranteed for any one particu-

lar p53-RE. For example, the two hypothetical p53-REs GGGCATGCCCGGGCATGCCC

and AAACATGCCCAAACATGCCC both match the p53-consensus perfectly. However,

the former sequence is by far a better cruciform folder since it contains many possible

Watson-Crick base-pairings while the latter possesses very few. Another perfect, hypothet-

ical p53-RE GGGCATGTTTGGGCATGTTT would rank in between those two sequences

in capability to cruciform-fold, since it contains many possible wobble base pairings (G-T).

In addition, it is not necessary to match the p53 consensus at all in order to be a great

cruciform-folder.

UNAFold is an extension of the Zuker (mfold) folding algorithm [155]. The software

suite provides a unified format to predict hybridization and secondary structure (folding)

of DNA and RNA molecules using equilibrium thermodynamic models and dynamic pro-

gramming [299, 297, 298, 155, 47]. The methods assume an additive-free energy model

where the overall free energy of a fold is the sum of the individual free energy contributions

of atomic structures found in the fold (see Figure 5.3 on the next page). Individual free

energy contributions include: base-pair stackings, hairpin loop lengths, bulge loop lengths,

interior loop lengths, multi-branch loop lengths, and terminal mismatches of stems. The

individual free energy contributions for both DNA and RNA structures are fitted to ther-

modynamic measurements of small DNA and RNA fragments [77, 259, 214]. UNAFold
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Figure 5.3: UNAFold Free Energy Calculation UNAFold uses dynamic programming
algorithms to calculate the free energy of DNA and RNA secondary structures using a free-
energy additive model. Free energy contributions include base-pair stackings, hairpin loop
lengths, bulge loop lengths, interior loop lengths, multi-branch loop lengths, and terminal
mismatches of stems. All the free energy parameters for both RNA and DNA calculations
have been fitted to thermodynamic measurements of small DNA and RNA fragments. The
DNA values shown here are from the SantaLucia tables [214]. The overall free energy of
a secondary structure is the sum of the individual contributions. UNAFold is also able to
calculate the minimum free energy fold, the partition function, and the probabilities of all
possible base-pairings [299, 161, 155].

uses the dynamic-programming Zuker algorithm to efficiently find the minimum free energy

structure. In addition, UNAFold uses the McCaskill algorithm to calculate the partition

function and probabilities of all possible base pairs. The McCaskill algorithm converts free

energies into probabilities by using the Gibbs-Boltzmann equation e−
∆G(s)
RT , and sums the

probabilities of all possible structures instead of finding the minimum free energy structure.

Predicting RNA and DNA secondary structure can be approached as a stochastic context-

free grammar (SCFG) problem [53]. SCFGs are ideal for modeling a palindromic language
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and finding nested palindromes in sequences. The RNA and DNA secondary structure

problem is essentially equivalent to finding the nested stem-loops (palindromes) that give

the minimum free energies, and thus can be viewed through a SCFG-context. The Zuker

algorithm can be viewed as a variant of the Cocke-Younger-Kasami (CYK) algorithm that

finds the optimum nested stem-loop (palindromic) structure with the minimum free energy.

In addition, the McCaskill algorithm can be viewed as a variant of the inside-outside algo-

rithm that sums over all possible structures (paths) to calculate the partition function of

the sequence and sub-sequences [53]. SCFG models define rules that create nested, long-

distance pairwise correlations between terminal symbols. However, SCFGs cannot model a

copy language where long-distance pairwise correlations can cross over each other (and are

no longer nested) [53]. Therefore, SCFGs (and the Zuker algorithm) cannot model RNA

(or DNA) pseudoknots which contain inter-hairpin base-pairing that violates the nesting

property [47, 48]. Because of this limitation, the UNAFold algorithm cannot model possible

(though unlikely) base pairing between any of the hairpins found in a fold of a p53-RE (see

Figure 5.2 on page 97). We can only look at DNA conformations where base pairing is

restricted to occur within a particular hairpin.

5.5 Constructing models to predict binding-affinity measurements

I constructed simple linear models to predict the measured binding affinity (or luciferase

activity) using the p53HMM score and calculations from folding both strands into four

of the possible stable cruciform structures presented in Figure 5.2. We refer to these four

possible folds, that are very stable for the functional human p53-RE with the highest known

affinity, as the “p53-preferred conformations”. I force all of the binding sites into these

p53-preferred conformations by first aligning the sequences to the p53 consensus (using a
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PHMM) and then using constraints to force base pairings that comply with the preferred

fold. We fold both strands (independently) since their folding profiles are not necessarily

the same (although they tend to be similar on average.) This difference in the folding

profiles between the strands is partially due to the fact that the reverse complement of

wobble base pairs (G-T) do not themselves base pair (e.g. G-T can possibly base pair

but A-C cannot). I also calculate the probability of a strand folding into any non-linear

structure (i.e. forming any base pairing) by taking the minimum of the probabilities of all

possible base pairings. When measuring the similarity to the p53-consensus sequence, we

need to calculate only one p53HMM score for both strands since the p53HMM algorithm

is symmetric (gives the same score for the reverse complement of any putative site). The

folding predictor-variables calculated for each DNA strand are: the minimum free energy

of all possible folds, the probability of folding into the minimum energy structure, the

probability of folding into any non-linear conformation, the probability of folding into each

of the four p53-preferred conformations, the free energy of folding into each of the four p53-

preferred conformations, the minimum free energy of all four p53-preferred conformations,

the sum of the probabilities of folding into the four preferred p53-conformations, and the

sum of the probabilities of all possible base-pairings. It should be mentioned that many of

these predictor variables can be highly correlated. The goal is to find the smallest subset

of predictor variables that generates the best predicting model.

5.6 Results

We refer to the three datasets under analysis as the Weinberg, Inga, and Tan datasets. The

Weinberg and Tan datasets are similar in that they both contain dissociation measurements

from in vitro experiments (fluorescence anisotropy and EMSA, respectively). The Inga
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dataset is different in that it contains relative luciferase-activity measurements from the

in vivo context of isogenic yeast strains. Comparisons of the predictive models reveals

interesting differences between the two in vitro and one in vivo datasets.

Analysis of the Weinberg dataset reveals two interesting properties. First, both (1)

the calculated probability of the two strands folding into any of the four p53-preferred

structures, and (2) the calculated probability of folding into any non-linear structure, were

slightly better stand-alone predictor variables than the p53HMM measure of how well the se-

quence matches the p53 consensus. The model that predicts the measured binding affinity

solely on the calculated probability of the two strands folding into any of the four p53-

preferred structures has a Multiple R-squared of .1417 and an F-statistic p-value of 0.1019.

The model that predicts the measured binding affinity solely on the calculated probability

of folding into any non-linear structure has a Multiple R-squared of .1403 and an F-statistic

p-value of 0.1037. Finally, the model that predicts the measured binding affinity solely on

the p53HMM measure (of how well the sequence matches the p53 consensus) has a Mul-

tiple R-squared of .1149 and an F-statistic p-value of 0.1438. These results indicate that

in the Weinberg in vitro experiments (performed in duplicate), the capability to fold into

hairpin structures is a slightly more important determinant of p53 binding affinity than

matching the p53 consensus. Second, the fact that the calculated probabilities of different

folds are better predictor variables than the free-energy calculations suggests that the calcu-

lated equilibrium partition function sufficiently models the in vitro folding landscape in the

Weinberg experiments. Using a forward step procedure and the AIC criterion for choosing

predictor variables, we generate a combined binding-affinity model with the p53HMM score

and the 12 best folding variables, with an adjusted R-squared of 0.8385 and an F-statistic

p-value of 0.0074 (see Figure 5.4 on the next page).
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Figure 5.4: The Weinberg Binding Affinity Model Using a forward step procedure and
the AIC criterion for choosing predictor variables, we generate a combined binding-affinity
model with the p53HMM score and the 12 best folding variables. The adjusted R-squared
is 0.8385 and an F-statistic p-value is 0.0074. We combine the p53HMM score with the
12 best folding variables to generate a linear binding-affinity model with an adjusted R-
squared of 0.8385 and an F-statistic p-value of 0.0074. The folding variables include the
calculated probabilities and free-energy calculations for all four p53-preferred cruciform
conformations for both strands. The x-axis displays the fitted values while the y-axis
displays the experimental measurements.

Analysis of the Tan dataset is even more surprising. All of the effective predictor vari-

ables are highly correlated. In addition, similar to the Weinberg results we see that some of

the folding variables are better stand-alone predictors than the p53HMM sequence-similarity

score in predicting the measured binding affinity. For example, the model that predicts the

measured binding affinity solely on the calculated ∆G of the minimum free energy non-

linear structure of the template-strand has a Multiple R-squared of .6324 and an F-statistic

p-value of 0.001987. The model that predicts the measured binding affinity solely on the

p53HMM measure (of how well the sequence matches the p53 consensus) has a Multiple
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R-squared of .4369 and an F-statistic p-value of 0.01926. In fact, the best combination of

any two predictor variables for predicting the measured dissociation constants are the ∆G

calculations of the minimum free energy, non-linear folds of the two separate strands. The

fact that the probability calculations were not very effective predictor variables suggests

that our calculated equilibrium partition function does not fully match the in vitro folding

landscape of the experiment. This suggests that the conditions of the Tan experiments

were favorable for some of the binding sites to readily assume the minimum free energy,

non-linear conformations, and that the affinity scores are mostly driven by the p53-affinity

to non-linear structure in a sequence-independent manner. Using a forward step procedure

and the AIC criterion for choosing predictor variables, we generate a binding-affinity model

with only two structural predictor variables (the free energy calculations of the minimum

free energy fold of both strands), with an adjusted R-squared of 0.6203 and an F-statistic

p-value of 0.0052 (see Figure 5.5 on the following page).

Analysis of the in vivo luciferase (Inga) dataset shows surprising differences in compari-

son to the two in vitro experiments. First, the two best binding-affinity predictor variables

were the free energy calculations of both strands in the right cruciform conformation (com-

bined Multiple R-squared of .5257 and F-statistic p-value of 0.0001297). The model that

predicts the measured binding affinity solely on the p53HMM measure (of how well the

sequence matches the p53 consensus) has a Multiple R-squared of .2255 and an F-statistic

p-value of 0.01233. This suggests two interesting properties of the Inga experiments. First,

the folding properties of the two hairpins that make up the right palindrome (nearest the

TSS) are most indicative of the measured luciferase activity. Although the reason for the

disproportionate dependence on the folding profile of the right palindrome is not known, the

reason may be that strand separation did not readily extend to include the left palindrome.
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Figure 5.5: The Tan Binding Affinity Model Using a forward step procedure and the
AIC criterion for choosing predictor variables, we generate a binding-affinity model with
only two structural predictor variables (the free energy calculations of the minimum free
energy fold of both strands), with an adjusted R-squared of 0.6203 and an F-statistic p-value
of 0.0052 It’s clear that the model is less accurate in predicting the low-affinity sites. The
x-axis displays the fitted values while the y-axis displays the experimental measurements.

Second, the fact that the probability calculations for forming the right cruciform were not

nearly as effective in predicting binding affinity as the free-energy calculations, suggests

that our calculated equilibrium partition function does not completely model the in vivo

folding landscape of the experiment. This is not surprising, since forming the transcription

envelope, and transcription itself, in vivo are enzymatic and energy-driven processes (not

equilibrium processes). Using a forward step procedure and the AIC criterion for choosing

predictor variables, we generate a combined binding-affinity model with the p53HMM score

and the 10 best folding variables, with an adjusted R-squared of 0.799 and an F-statistic

p-value of 3.818e− 05 (see Figure 5.6 on the next page). The one slight outlier in the Inga
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Figure 5.6: The Inga Binding Affinity Model Using a forward step procedure and
the AIC criterion for choosing predictor variables, we generate a combined binding-affinity
model with the p53HMM score and the 10 best folding variables (with an adjusted R-
squared of 0.799 and an F-statistic p-value of 3.818e − 05). The folding variables include
the calculated probabilities and free energy calculations for all four p53-preferred cruciform
conformations for both strands. The one slight outlier in the Inga dataset is the m-FAS
p53-RE. It’s clear that the model is less accurate in predicting the high-affinity sites. The
x-axis displays the fitted values while the y-axis displays the experimental measurements.

dataset is the m-FAS p53-RE, which exhibits luciferase activity higher than predicted. The

accuracy of the model is somewhat surprising, considering the inherent noisiness found in

luciferase expression assays.

5.7 Variable Selection

Our goal with variable selection is to find the “best”, or at least a “good”, subset of

predictors in order to explain the binding-affinity measurements in the simplest way. In the

process we wish to remove un-necessary or redundant predictors. If there are p predictor
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variables, then in order to find the “best” (optimum) model we would need to fit all the

possible 2p models and choose the best one according to some criteria. However, to generate

our models for the three datasets, we utilized a forward step criterion-based procedure. The

forward step method is a greedy procedure that iteratively adds predictor variables that

minimize the criterion at each step. This method is not guaranteed to find the optimal set

of predictor variables of any set size except one. However, the method tends to find “good”

sets of predictors of any given size. Two popular criteria are the following:

Akaike Information Criterion (AIC) = n log
RSS

n
+ 2p

Bayes Information Criterion (BIC) = n log
RSS

n
+ p log n

RSS = Residual Sum of Squares

n = Number of observations

p = Number of parameters (5.1)

We wish to minimize the AIC or BIC at every step. Notice that as models grow they will

fit better and so have a smaller RSS, but they will also have more parameters. Therefore

the iterative process will stop when the model has the proper balance of fit and model size.

The BIC penalizes larger models more heavily, and so will tend to generate smaller models

compared to those generated by the AIC criterion. We used the AIC criterion to generate

all our models.

5.8 Conclusion

By taking into account the capability of the p53 tetramer to bind to non-linear, cruciform

DNA structures, I was able to create simple linear models with a high degree of accuracy in
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predicting experimental measurements. The differences between the models are indicative

of the different in vitro and in vivo conditions of the experiments. The Weinberg and Inga

models depend almost equally on both the degree of matching the p53 consensus sequence

and the degree of folding into cruciform structures. However, the Tan model depends

only on the degree of folding into cruciform structures. Similarity to the p53 consensus

sequence has little bearing on the binding affinity measurements performed by Tan, et.

al. Interestingly, the in vivo Inga model exhibits a very strong dependence on the folding

capacities of the two strands of just the right half-site (the palindrome that is nearest to

the TSS). It’s possible that in this experimental setting of gene transcription in yeast, the

strand separation did not (or could not) readily extend to allow for possible hairpin-folding

of the left half-site. Analysis of the two in vitro models shows no preference for the folding

profile of either half-site.

Unfortunately, our equilibrium partition function calculation may not always accurately

model the folding landscape of either in vitro or in vivo conditions. Further experimentation

is required to measure the actual amounts and probabilities of non-linear conformations in

both in vitro and in vivo conditions. Then we can build better predictive models that can

more properly model the folding landscapes and more accurately estimate binding affinities.
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Chapter 6

Searching for Nearby Motifs

6.1 Introduction

Chromatin Immunoprecipitation microarray (ChIP-Chip) analysis has shown that not all

putative DNA binding-sites that are found through sequence analysis can be bound by

their corresponding transcription-factor proteins [273]. In fact, ChIP-chip analysis has

shown that a small percentage of putative binding sites are found to bind to transcription

factors for any given cell type [273]. A popular theory explaining this phenomenon is that

most putative sites are not accessible to the TF-proteins due to nucleosome positioning and

chromatin silencing [4]. In addition, TF-factors can be occluded from binding sites through

competition with other proteins. Another important factor is that TF-binding alone to

a promoter region is not sufficient to confer TF-regulation of a gene for a particular TF-

protein [41, 252]. There are examples where adjacent co-factor sites are necessary in order

to exhibit a p53-response [126, 251]. Also, it has been shown experimentally that the p53

response can change drastically (from activation to repression, and vice versa), dependent

upon which co-factor sites are adjacent to the p53 site [126]. Finally, it has been shown that

adjacent co-factor sites that effectively mediate DNA-looping can confer “functional-ness”

to p53-binding sites very far from the transcription start site (TSS) of the regulated gene.

Due to these observations, it is apparent that the surrounding sequence of a putative

p53-binding site is an important variable in determining whether a putative site can be
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functional, and the form and degree of that function (activating or repressing). Therefore,

sequence analysis of the DNA segments around the set of 160 experimentally validated p53-

binding sites may shed light into the co-factor binding sites (and other motifs) necessary to

confer “functional-ness” of a site. If we can stratify the set of functional p53-binding sites

by tissue-type and p53-response (apoptosis, DNA repair, etc.), we may also be able to find

the “DNA footprints” that determine these behaviors as well.

The ability to determine “functional-ness” of a putative site is an open and challenging

problem. In addition, the ability to discover the shared binding motif in the promoter and

intronic regions of genes that are believed to be co-regulated by the same transcription

factor is also an open and challenging problem. The difficulty is multi-fold: (1) DNA

is not random and in general contains many over-represented motifs [248], (2) the DNA

segments containing genes can vary greatly in their GC and AT contents (isochores), (3) the

promoter, exonic, intronic, and downstream regions in and around genes differ considerably

in oligonucleotide content, and (4) enhancer regions of genes can be extremely far from

the genes they regulate and the problem of determining functional enhancer regions is

still un-solved. Therefore the oligonucleotide content of DNA differs considerably, and is

dependent upon nested contexts. In essence, the motif discovery problem boils down to

attempting to find a functional, over-represented motif (a needle) in a haystack of many

non-functional, over-represented motifs. Therefore, it is imperative to have a thorough

model that correctly captures all of the non-functional motifs found in the background

DNA, in order that the functional motif of interest stands out above the background. To

properly model background DNA, a 3rd Order Markov Model or higher, or a mixture of

2nd Order Markov Models have been used (where each mixture member models a certain

isochore type in the genome) [248]. All attempts at the Motif Discovery problem center
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on finding over-represented oligonucleotides that are present in the sequences of interest

and are similar to each other by some distance metric [44]. The challenge lies in finding

the over-represented motifs with respect to the proper expected background distribution of

DNA oligonucleotides.

6.2 Motif Discovery Methods

Many algorithms have been proposed in order to find a commonly shared transcription

factor binding site (TFBS) within a set of promoter sequences believed to be co-regulated,

which is commonly known as the Motif Discovery Problem [256]. These sets of putatively co-

regulated genes often come from micro-array experiments, where the genes in question share

similar mRNA expression profiles [256]. The most common techniques to find shared motifs

use iterative Expectation Maximization or Gibbs Sampling methods in order to maximize

the log-likelihood or information content of the training sequences (or some other similar

measure), where the training sequences are the members of the set of promoter sequences

believed to be co-regulated [55]. Most Motif Discovery algorithms use PSSMs that assume

independence between the nucleotide positions. Newer algorithms use HMM’s or Bayesian

Networks in attempts to learn possible dependencies between the positions. However, these

more complex models require larger datasets in order to train the extra parameters [8].

The many methods proposed for discovering over-represented motifs in biological se-

quences generally fall into two major categories: probabilistic and deterministic [44]. Prob-

abilistic models estimate probabilities for nucleotides at each position, using Bayesian in-

ference or maximum-likelihood methods. These probabilistic models are not guaranteed to

find the optimal solutions, but only locally optimal solutions. Examples of probabilistic

motif finders are Gibbs sampling, expectation maximization (EM), and greedy methods.



112

Deterministic models typically rely on counting and comparing oligonucleotide (word) fre-

quencies through exhaustive enumeration. Deterministic models typically guarantee global

optimality, but finding long motifs through exhaustive enumeration has been computation-

ally intractable.

Examples of published deterministic methods are Oligo/Dyad-Analysis, YMF, Moby-

Dick, Brazma’s regular expression method, Marsan and Sagot’s suffix tree method, Weeder

(a suffix tree method), MITRA (a suffix tree method), QuickScore, MaMF, MDScan, and

WINNOWER [263, 265, 26, 255, 230, 21, 156, 192, 63, 200, 194, 103, 144]. Examples

of published probabilistic methods are Consensus, Lawrence and Reilly’s EM method,

MEME (an EM method), Gibbs sampling, AlignACE (a Gibbs sampling method), Mo-

tifSampler (a Gibbs sampling method), BioProspector (a Gibbs sampling method), Gibb-

sST (a Gibbs sampling method), GLAM (a Gibbs sampling method), and NestedMICA

[97, 132, 6, 131, 207, 249, 143, 222, 78, 52] (It should be noted that MEME does have an

exhaustively enumerative component that can iterate over all possible seeds.) Reviews and

comparisons of these methods can be found in [273, 256, 104, 44]. The reviews of these

methods revealed that the performance of these algorithms degrades significantly as the

length of the analyzed sequences increases. The comparisons also revealed that the best

performers were ensemble methods (like EMD) that use multiple algorithms and a voting

scheme to leverage the inherent advantages of the different approaches [104, 105, 44].

I have approached the Motif Discovery problem around functional p53 binding sites

using methods from information theory and statistical physics. In the process, I have

developed a method called PURE (Patterns Using Relative Entropy) to find over- and

under-represented motifs in different regions of human genes. PURE has a few advantages

over current motif-finding methods. The method centers on finding meaningful, over- and
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under-represented DNA motifs that contribute most to the relative entropy (Kullback-

Leibler pseudo-distance) between two real DNA sequences, or between a real DNA sequence

and a randomly generated background sequence that preserves certain properties of the real

sequence. A major advantage of the method is that by integrating simultaneous searches

of both the coding and template strands, I can define measures to classify over- and under-

represented motifs as either strand-independent or strand-dependent.

In most cases, this classification also labels a motif as either transcriptional or post-

transcriptional. A transcriptional (strand-independent) motif is defined as being found with

relatively equal frequency on both strands, while a post-transcriptional (strand-dependent)

motif is found disproportionately only on the coding strand. For example, transcriptional

motifs include TF-binding sites and fixed nucleosome positions; while post-transcriptional

motifs include splice sites, exonic splice enhancers (ESEs), intronic splice enhancers (ISEs),

translational target sites, microRNA binding sites, and 3′ polyadenylation sites. The above

classification almost always applies since our analysis shows that the only known tran-

scriptional motif that appears to exhibit a strand preference is the TATA-box. Our analysis

coincides with promoter analysis performed by [74]. However, all known post-transcriptional

signals have considerable bias for occurring on the coding strand versus the template strand,

unless they happen to be palindromes.

6.3 Using Relative Entropy to find over- and under-represented words

A Relative-Entropy Algorithm has been used to find the over- and under-represented oligonu-

cleotides (words) of the coding regions of bacteria, independent of codon usage [203]. These

codon-usage independent words were sufficient in establishing bacterial host-phage relation-

ships [203]. In that analysis, the relative entropy algorithm ranks the oligonucleotides that
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contribute the most to the relative entropy (Kullback-Leibler Distance) between the observed

distribution of oligonucleotides in the coding regions and the expected background distri-

bution after sufficient random shuffling of the positions of synonymous codons [203, 204].

A crucial part of the method is the ability to re-scale out the contribution of the most-

contributing word to the relative entropy at each step before searching for the next most

over- or under-represented word (see Equations 6.15.1 on page 141). This is necessary since

the frequency of words of different lengths are not independent (e.g. if TGAC is over-

represented, then TGACA will be as well). Another Relative-Entropy algorithm has been

used to rank the constraints and dependencies that contribute most to the relative entropy

of 5′ and 3′ splice sites compared to an expected background distribution [282].

6.4 The PURE method: using Relative Entropy to find motifs

Motivated by the success of the relative-entropy approach, I augmented the approaches

above by adding methods to systematically agglomerate over- and under-represented words

into binding motifs, and methods that use information from both strands to maximize the

ability to learn different types of DNA motifs.

The difference between two nucleotide sequences can be measured by their relative en-

tropy, also known as Kullback-Leibler (KL) pseudo-distance DKL (see Appendix). One of

the nucleotide sequences is real DNA sequence from which we wish to find over- and under-

represented motifs. The other nucleotide sequence is either a randomized version of real

DNA or some different, real DNA sequence that represents background DNA. A measure

that gives the contribution S(w) of a word w to the overall Kullback-Leibler pseudo-distance
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between the two distributions is:

S(w) = PR(w) log
PR(w)
PB(w)

+ [1− PR(w)] log
(

1− PR(w)
1− PB(w)

)
(6.1)

where PR(w) and PB(w) represent the probabilities of w in the real and background dis-

tributions, respectively. S(w) can be interpreted as the Kullback-Leibler pseudo-distance

between the coarse-grained real and background distributions, where all we know is that

a given word in the distribution is w or not. The advantageous property of S(w) is that,

unlike other methods, it allows for a fair comparison of words of different lengths [203, 204].

The method from Ref [203] finds the most significant word wmax, defined as that one

with the highest S(w). An essential part of the algorithm is that after the most significant

word wmax is found, the background distribution is rescaled so that S(wmax) = 0. Then

the whole procedure is repeated to find the next most-significant word, and the procedure

is iterated. The rescaling is necessary since the frequencies of words of different lengths are

not independent. For example, if TGAC is functional and over-represented, then (before

rescaling) TGACA and GAC will also likely be over-represented, although neither may

be functional (they are just being dragged in by the functional TGAC word). In such a

case, after rescaling the relative entropy, contributions of TGACA and GAC will become

negligible if they aren’t over- or under-represented outside of the context of TGAC.

Experiments have shown that proteins and microRNAs typically do not bind to just

one oligosequence, but usually binds to a family of similar oligosequences that form a motif.

Often, the binding specificity of a protein or microRNA is represented using a weight matrix

(PSSM or PWM) that quantifies the binding specificity for each position in the motif and

assumes binding affinity independence between positions [239]. If we know that the binding
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motif of a TF-protein consists of only two words w1 and w2 of the same length, then we

can represent the relative entropy contribution S(m) of this motif {w1, w2} as:

S(m) = S(w1, w2) = PR(w1) log
PR(w1)

PB(w1)
+ PR(w2) log

PR(w2)

PB(w2)
+ [1− PR(w1)− PR(w2)] log

(
1− PR(w1)− PR(w2)

1− PB(w1)− PB(w2)

)
(6.2)

Similarly, we can calculate the relative entropy contribution S(m) for any motif m that

consists of a set of different words {w1, w2, ..., wN} of the same length:

S(m) = S(w1, w2, ..., wN ) =
N∑

i=1

(
PR(wi) log

PR(wi)

PB(wi)

)
+

1−
N∑

i=1

PR(wi)

 log

(
1−

∑N
i=1 PR(wi)

1−
∑N

i=1 PB(wi)

)
(6.3)

Similar to equation (6.1), we can interpret equation (6.3) as the Kullback-Leibler pseudo-

distance between the coarse-grained real and background distributions, where all we know

is that a given word is in the motif m or not. If we wish to find the set of words {wi} that

constitute an over- or under-represented motif m, then our goal is to find the set of words

{wi} that maximize S(m) with the constraint that d(wj , wk) ≤ C (a constant) for all wj

and wk in the motif m, where d(wj , wk) is a distance measure. This approach is central to

all the methods used by PURE to find different types of DNA motifs.

In order to adequately measure the sequence-similarity distance between motifs and

words, we associate a position-specific scoring matrix (PSSM, weight matrix, or PWM) to

each motif m = {wi} and to each single word w. These PSSMs provide a statistical summary

of the per-position nucleotide frequencies over all the words in a motif m, and are referred

to as the PSSM(m). A PSSM consists of a 4×N matrix where each column represents the

probability distribution Pm(ni) at motif position i = 1...N and where ni ∈ {A,C,G, T}.

The emission probabilities are assumed to be independent at each position, so that for any

sequence n1n2...nN the probability Pm(n1n2...nN ) of seeing the sequence in the PSSM(m)

is given by Pm(n1n2...nN ) =
∏N
i=1 Pm(ni).
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PURE uses a weighted, normalized Jensen-Shannon divergence (JS-entropy) as the dis-

tance measure between two PSSMs p and q that are associated with two motifs m1 and

m2, respectively. The JS-entropy assumes that if the PSSMs p and q are similar, then they

will be close to their weighted average. I normalize the JS-entropy by the length of the two

motifs:

d(p, q) =
[
wt1 ·DKL(p||wt1 · p+ wt2 · q) + wt2 ·DKL(q||wt1 · p+ wt2 · q)

N

]
(6.4)

where N is the number of columns in the PSSMs, and wt1 and wt2 are the weights that

represent the combined probability (or occurrences) of seeing any of the words wi ∈ m1 or

wj ∈ m2, respectively, over their combined sum (in the foreground sequences):

wt1 =

∑
wi∈m1

PR(wi)

∑
wi∈m1

PR(wi) +
∑

wj∈m2

PR(wj)

=

∑
wi∈m1

NR(wi)

∑
wi∈m1

NR(wi) +
∑

wj∈m2

NR(wj)

wt2 =

∑
wj∈m2

PR(wj)

∑
wi∈m1

PR(wi) +
∑

wj∈m2

PR(wj)

=

∑
wj∈m2

NR(wj)

∑
wi∈m1

NR(wi) +
∑

wj∈m2

NR(wj)

NR(w) = Number of occurrences of the word w in the real sequences (6.5)

In equation (6.4), wt1 · p + wt2 · q represents the weighted average PSSM of p and q.

Since we have that for any sequence n1n2...nN the probability P (n1n2...nN ) of seeing the
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sequence in a PSSM(m) is given by Pm(n1n2...nN ) =
∏N
i=1 Pm(ni), then we have that:

DKL(s||t) =
N∑
i=1

{A,C,G,T}∑
nj

Ps(n
j
i ) log

(
Ps(n

j
i )

Pt(n
j
i )

)

(wt1 · p+ wt2 · q)ji = wt1 · Pp(nji ) + wt2 · Pq(nji ) ∀i = 1..N, ∀nj ∈ {A,C,G, T} (6.6)

The distance measure in PURE is similar to the ones used by MEDUSA and the ag-

glomerative information bottleneck algorithm [165, 231]. A single word w can be associated

to a PSSM(w) by using 0 or 1 emission probabilities. If we believe that a motif m is an

incomplete sampling of all the words that should be in the motif, then we can add pseu-

docounts as prior knowledge from the background distribution to make the PSSM(m) less

stringent. When two similarly over- or under-represented motifs m1 and m2 are close in

distance (d(PSSM(m1), PSSM(m2)) ≤ C), then they are merged to form a new motif

m = m1 ∪m2 that consists of the union of the words in m1 and m2. The new motif m has

the combined relative entropy contribution S(m1,m2), and the associated weight matrix

PSSM(m) = wt1 · PSSM(m1) + wt2 · PSSM(m2), which is the weighted average motif.

6.5 Finding Transcriptional (strand-independent) signals

PURE takes advantage of the fact that human DNA is double-stranded, where one strand

is the reverse complement of the other. By analyzing both strands, PURE is able to use

this apparently redundant information in order to boost the ability to find meaningful

biological motifs. It has been previously noticed that TF-biding sites can be found on

either strand [4]. Since experiments have shown that TF-proteins bind to double-stranded

DNA (possibly in the presence of chromatin), this implies that most known TF-proteins do

not exhibit a 5′ to 3′ or 3′ to 5′ directional bias with regards to its binding motif [4]. Our
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analysis of the promoter regions of all known isoforms of human genes suggests that known

human TF-binding sites occur with equal over-representation on both strands (see Table 6.1

on page 144). The only known exception is the TATA-box, which is on average more

over-represented on the coding strand. Therefore, in the case of transcriptional (strand-

independent) signals, the over-represented word w and its reverse complement w are in

fact the same motif. Furthermore, the combined tuple (w,w) should be over- or under-

represented if there is no biological pressure to prefer one over the other.

PURE is able to take advantage of this additional information by searching for tuples

(w,w) that contribute most to the relative entropy contribution of a motif m. Remember

that a word w can be either over-represented or under-represented relative to the expected

background, and that the word’s relative entropy contribution is a positive measure of

the degree of over- or under-representation. (A word w that is neither over- nor under-

represented (i.e. PR(w) = PB(w)) has a relative entropy contribution of 0.) Let us define:

w = word on the coding strand

w = template-strand version of w (reverse complement of w)

m = {w1, w1, w2, w2, ..., wN , wN}

Wover = {w ∈ m | w is over-represented}

W over = {w ∈ m | w is over-represented}

Wunder = {w ∈ m | w is under-represented}

W under = {w ∈ m | w is under-represented} (6.7)

Assuming statistical independence, word probabilities are multiplicative and entropies are
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additive. PURE uses these properties to define a new measure Sovertxn to find the transcrip-

tional (strand-independent), over-represented motifs that are found on both strands:

Sovertxn (m) = S(Wover ∪W over)− S(Wunder ∪W under) (6.8)

Similarly, PURE defines a new measure Sundertxn to find the transcriptional (strand-independent),

under-represented motifs that are absent from both strands:

Sundertxn (m) = S(Wunder ∪W under)− S(Wover ∪W over) (6.9)

6.6 Finding Post-transcriptional (strand-dependent) signals

Transcription of DNA results in a single-stranded messenger RNA (mRNA) or non-coding

RNA (ncRNA) molecule. (Non-coding RNAs include tRNAs, microRNAs, ribosomal RNAs,

etc.) Therefore, there is evolutionary pressure to maintain post-transcriptional signals on

the coding strand, but not on the template strand. Thus, we expect that post-transcriptional

signals will be over-represented on the coding strand with respect to both the template

strand and the background DNA. Similar to finding transcriptional motifs, PURE uses

the additional information found on the template strand to define two new measures

Soverpost−txn(m) and Sunderpost−txn(m) to find the over- and under-represented coding-strand motifs

relative to both the template strand and background DNA, respectively:

Soverpost−txn(m) = S(Wover ∪W under)− S(Wunder ∪W over)

Sunderpost−txn(m) = S(Wunder ∪W over)− S(Wover ∪W under) (6.10)
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Some transcriptional signals are very strong and can have both relatively high tran-

scriptional and relatively high post-transcriptional entropy contributions. This can happen

if the coding-strand word w and the template-strand word w are both significantly over-

represented, and w is more over-represented than w. In these cases, post-transcriptional

signals can be “drowned-out” by the transcriptional signals. PURE uses an entropy measure

Rpost−txn(m) to find relatively weak post-transcriptional signals by finding the percentage

contribution of the post-transcriptional measure in the sum of the transcriptional and post-

transcriptional measures:

Roverpost−txn(m) =
Soverpost−txn(m)

Sovertxn (m) + Soverpost−txn(m)

Runderpost−txn(m) =
Sunderpost−txn(m)

Sundertxn (m) + Sunderpost−txn(m)
(6.11)

with the additional constraint that Spost−txn(wi) ≤ C (a constant) for all wi in the motif m.

The entropy measure Rpost−txn(m) is used to find the motifs that have the highest percent-

age of post-transcriptional entropy contribution relative to their combined transcriptional

and post-transcriptional entropy contributions, independent of how the entropy contribu-

tions compare to others from words not in the motif. This entropy percentage measure has

the property that 0 ≤ Rpost−txn(m) ≤ 1. The entropy measure Rpost−txn(m) is extremely

useful in finding weak post-transcriptional motifs such as ESEs and ISEs.

6.7 The PURE Algorithm

PURE iterates through a two step process. The first step is to find the seed tuple (wmax, wmax)

that maximizes the particular entropy contribution measure S(m) or R(m) of interest.

In the second step, PURE iterates through all possible tuples (w,w) to find the words
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{w1, w1, w2, w2, ..., wN , wN} that maximally increase the entropy contribution measure S(m)

or R(m) at each step, until the increase in the entropy contribution measure is below a cer-

tain threshold. The additional constraint is that the newly added word wn+1 and the

current motif m = {w1, w2, ..., wn} must be adequately similar, as determined by their

normalized, weighted JS-entropy distance. After step 2, the newly discovered motif is

compared to the previously inferred motifs (using the normalized, weighted JS-entropy dis-

tance) to weed-out duplicates. Step 1 is repeated again with the next highest seed tuple

(wmax, wmax) that maximizes the particular entropy contribution measure S(m) or R(m)

of interest, after we re-scale out the last seed tuple from the background distribution (so

that S(wmax, wmax) = 0). This entire process is repeated until the entropy contribution of

the seed tuple (wmax, wmax) is below a given threshold, or all seed tuples are exhausted.

PURE returns a list of the discovered over- or under-represented motifs, sorted by their

entropy contribution measures S(m) or R(m), and the words included in each motif. (See

Appendix for further details.)

6.8 Properties of the Stxn(m) and Spost−txn(m) Measures

By looking at the entropy contribution measures Sovertxn (w,w) and Sundertxn (w,w) for a single

tuple (w,w), we see some obvious but interesting properties:

Sovertxn (w,w) = − Sundertxn (w,w) (6.12)

Stxn(w,w) = Stxn(w,w) (6.13)

Stxn(w,w) = sgn(w) · S(w) for w = w (6.14)

where sgn(w) = sgn
(
PR(w)
PB(w)

− 1
)



123

(i.e., sgn(w) = 1 if w is over-represented, sgn(w) = −1 if w is under-represented, and

sgn(w) = 0 if PR(w) = PB(w).) Property (6.12) allows us to efficiently find both over- and

under-represented transcriptional motifs using the same method. Property (6.13) implies

that for any tuple (w,w) ∈ m, it does not matter which words we label as the coding-

strand word and as the template-strand word when finding either over- or under-represented

motifs. Property (6.14) implies that palindromes contribute equally to S(m) and Stxn(m)

when finding either over- or under-represented motifs.

The entropy contribution measures Soverpost−txn(w,w) and Sunderpost−txn(w,w) for a single tuple

(w,w) also have some obvious but interesting properties:

Soverpost−txn(w,w) = − Sunderpost−txn(w,w) (6.15)

Spost−txn(w,w) = 0 for w = w (6.16)

Spost−txn(w,w) = sgn(w) · S(w) for PR(w) = PB(w) (6.17)

where sgn(w) = sgn
(
PR(w)
PB(w)

− 1
)

Property (6.15) allows us to efficiently find both over- and under-represented post-transcriptional

motifs using the same method. Property (6.16) implies that we cannot detect palindromes

as post-transcriptional (strand-dependent) signals. Property (6.17) implies that if w is a

completely post-transcriptional (strand-dependent) signal (i.e., there is no signal on the

template strand), then w contributes equally to Spost−txn(w,w) and S(w).

Finally, the entropy contribution ratios Roverpost−txn(w,w) and Runderpost−txn(w,w) for a single
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tuple (w,w) also have some obvious but interesting properties:

Roverpost−txn(w,w) = −Runderpost−txn(w,w) (6.18)

Rpost−txn(w,w) = 0 for w = w (6.19)

Property (6.18) allows us to efficiently find both weakly over- and under-represented post-

transcriptional motifs using the same method. Property (6.19) implies that we cannot

detect palindromes as post-transcriptional (strand-dependent) signals.

6.9 Safe Mode

There exists a Motif Discovery scenario that presents a difficult problem to motif-finding

algorithms. Consider the hypothetical case where we have ten genes we believe are co-

regulated, and we wish to find a commonly shared CIS-regulatory motif. If five of the

promoter regions share highly over-represented motifs and the other five promoter regions

share some other highly over-represented motifs, then the less over-represented motifs that

all ten genes may share may be drowned out. Thus, we wish to discover the over-represented

motifs that are maximally over-represented for each promoter region. PURE addresses this

optimization problem by having a “safe-mode”, whereby we wish to maximize the relative

entropy measure S(m) while also minimizing the variance of S(m) across the different

sequences being analyzed:

SMS(m) = S(m)× 1

[varianceseqs(S(m))]k
(6.20)

where k is a constant that controls the level of preference for less variance in the signal

across the different sequences. Since varianceseqs(S(m)) is a fraction, the preference for
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less variance increases as k increases from 0. Although the safe-mode has advantageous

characteristics, it is much more computationally cumbersome to calculate S(m) for every

sequence. I have found that the safe-mode is usually not necessary, but can be useful in

certain circumstances similar to the hypothetical case above.

6.10 S(m1 ∪m2) is Preferable to S(m1) + S(m2)

If we consider w1 and w2 to be similar words that are members of the same motif m, then

we wish to merge the two motifs (to their weighted average), and calculate the relative

entropy contribution of both words together. If we compare the calculations S(w1 ∪ w2)

and S(w1) + S(w2), we see that all the terms in the resulting sum are identical except for

the last terms:

[1− PR(w1)− PR(w2)] log

(
1− PR(w1)− PR(w2)

1− PB(w1)− PB(w2)

)
6= [1− PR(w1)] log

(
1− PR(w1)

1− PB(w1)

)
+ [1− PR(w2)] log

(
1− PR(w2)

1− PB(w2)

)
(6.21)

Where the left-hand side is the last summand of S(w1∪w2), and the right-hand side contains

the last two summands of S(w1) + S(w2). Close analysis of the differences reveals that the

calculation S(w1) + S(w2) is problematic. The problem is that every word wi should be

represented only once in the summation of relative entropy contributions. However, in the

calculation S(w1) + S(w2) every word wi which is not w1 or w2 is represented twice in the

overall summation, which leads to “over-counting”. By using induction over sets of words,

we see that for any two motifs m1 and m2 that we wish to merge, the last terms of the
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calculations S(m1 ∪m2) and S(m1) + S(m2) are not equivalent:

1−
m1∪m2∑

wi

PR(wi)

 log


1−

m1∪m2∑
wi

PR(wi)

1−
m1∪m2∑

wi

PB(wi)

 6=

1−
m1∑
wi

PR(wi)

 log


1−

m1∑
wi

PR(wi)

1−
m1∑
wi

PB(wi)

+

1−
m2∑
wi

PR(wi)

 log


1−

m2∑
wi

PR(wi)

1−
m2∑
wi

PB(wi)



(6.22)

Similarly, the calculation S(m1 ∪ m2) is the preferable, exact calculation of S(m) where

m = m1 ∪m2. Furthermore, the calculation S(m1) + S(m2) can be considered an inexact

approximation to S(m1 ∪m2).

6.11 Modeling Background DNA

I have used three different background models in our analysis. The first background model is

for non-coding regions and it contains the expected counts of all oligonucleotides, assuming:

(1) random DNA, and (2) the mononucleotide content of all the sequences under analysis.

This background model is easy to calculate, but has a distinct disadvantage: the over- and

under-represented motifs relative to this random background DNA may be common to all

DNA segments, or at least common to some larger class of segments than the one of interest.

The second background model is for coding regions and it contains the expected counts of

all oligonucleotides, assuming: (1) random DNA, and (2) the codon usage of all the coding

sequences under analysis. A method that models the codon usage in the background DNA is

described in [203], whereby synonymous codons are randomly shuffled while still preserving

the amino acid sequence. Both of the background DNA models above are maximum entropy

distribution (MED) models subject to different constraints (mononucleotide content (no

constraints) and codon-usage) [282, 204].
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Figure 6.1: Methods for Modeling Background DNA Different models for obtain-
ing expected background DNA sequences are presented. The proposed background se-
quences are shown in yellow. The foreground sequences from which we wish to find over-
or under-represented motifs are in purple. Coding sequence is shown in cyan. a. This
background/foreground (DNA) model is proposed when we wish to find over- or under-
represented transcription factor binding sites (TFBSs) in the promoter regions and first
three introns of human genes. The foreground/background boundary location can be moved
depending on the organism (e.g., humans have longer promoter regions than yeast). b. This
background/foreground model is used to find under or over-represented co-factor motifs
around a set of known, functional TF-binding sites. c. This foreground/background model,
which avoids coding sequence, is used when we wish to search in a particular intron for
motifs. d. This foreground/background model, which avoids non-coding sequence, is used
when we wish to search a particular exon for motifs. e. We use this foreground/background
model to find splice-sites and intronic splice enhancers (ISEs) within the first 50 base pairs
on the intron-side of exon/intron boundaries. f. We use this foreground/background model
to find exonic splice enhancers (ESEs) within the first 50 base pairs on the exon-side of
exon/intron boundaries.

The third background model uses real DNA from regions different from the numerator

DNA, and directly counts the oligonucleotide content. If the goal is to find motifs found

in a region of DNA that stand out, versus some other region, then the third method is

preferable. For example, when searching for ESE signals in the 50-bp regions at either end
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of exons, the numerator sequences should be the 50-bp sequences from both ends, and the

background DNA should be the exons themselves minus those 50-bp end-regions (see part

f of Figure 6.1 on the preceding page). In this example, one would not want to use the

mononucleotide-content background, since the list of over-represented motifs would include

many motifs that are global to all regions of exons (like codons). Using the codon-shuffled

exon background is also problematic, since we wish to find the ESE motifs that stand out

versus the interior regions of the exons, not the maximum entropy distribution of all coding

regions. I have found that using real background DNA, from either side of the DNA regions

of interest, has been more effective in finding known biological motifs. By using real DNA

from regions nearby the sequences being analyzed, the background DNA model takes into

account regional sequence-biases that are not of interest (e.g., isochore biases). For example,

in order to analyze promoter regions of genes, one should use real DNA just upstream of

these promoter regions (see part a of Figure 6.1 on the previous page). Additionally, to

analyze a certain exon or intron, one should use other exonic or intronic sequences from the

same gene or nearby genes (see parts c and d of Figure 6.1 on the preceding page).

6.12 Properties of PURE

PURE has many desirable properties that are advantageous for discovering functional reg-

ulatory DNA motifs:

1. PURE assumes a TCM model (Two Component Mixture, zero or more occurrences

per sequence), as opposed to a an OOPS model (One Occurrence Per Sequence)

or ZOOPS model (Zero or One Occurrence Per Sequence) [6]. The TCM model

is generally considered more appropriate for most motif discovery problems [195]. In

addition, PURE includes a safe-mode where a parameter k controls a smooth change in
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the search bias toward motifs with less variance in their over- or under-representation

across the sequences. In effect, PURE allows for a configurable, smooth transition

from a TCM model to a OMOPS model (One or More Occurrences Per Sequence).

2. PURE is a combination of a deterministic and a probabilistic model. PURE is de-

terministic in that it can iterate over all possible motifs to guarantee finding the

globally optimal solution. PURE is probabilistic in that it generates probabilistic

models (PWMs) of motifs based completely on the relative entropy contributions of

the words that have been combined to form the motif.

3. We incorporate a high-order Markov-chain background model of real DNA from DNA

regions within or near the sequences of interest. This method helps to find the over-

and under-represented motifs relative to similar background sequences that contain

general, un-important motifs.

4. PURE analyzes both strands in order to exploit all the available information in

double-stranded DNA sequences to find biologically-relevant transcriptional and post-

transcriptional motifs.

6.13 Results

In order to test the performance of PURE when applied to the Motif Discovery Problem in

humans, I attempted to “re-discover” already known motifs in well-studied regions of the

human genome: (1) the 50bp region upstream of the start sites of transcription, and (2)

the 50bp region in both directions of the exon-intron boundary within genes. PURE found

the known motifs in the first 50-bps upstream region of human transcription start sites
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(TSSs): the TATAA-Box, BRE -box, Poly-T signal, Poly-A signal, CpG-signal, CAAT -

box, INR-box, and others (see Table 6.2 on page 146). The method was also successful in

finding the motifs known to exist on either side of the exon-intron boundary within human

genes: 5′ and 3′ splice sites, and 5′ and 3′ exonic splice enhancers (ESEs) (see Figures 6.3

on page 147, 6.4 on page 149, 6.5 on page 151, and 6.6 on page 153, and Tables 6.3 on

page 148, 6.4 on page 150, 6.5 on page 152, and 6.6 on page 153. The 5′ and 3′ splice

sites are typically strong signals and are relied on heavily by modern gene-finders to classify

Open Reading Frames (ORFs) [282]. The 5′ and 3′ ESEs are typically much weaker

signals, but can enhance and rescue the splicing activity at nearby, weak splice sites in vitro

[65, 66]. Also, in vivo experiments have shown that mutations in splice sites and ESEs can

produce alternative splicing events that can greatly alter the structure and function of the

translated protein [65]. This loss or reduction of protein function by alternative splicing

can have severe effects on regulatory pathways, and can lead to disease and cancer [65].

The PURE algorithm also discovered other over-represented motifs in these regions that

currently have no known function.

By looking at the reverse complements of the most under- and over-represented words in

the 50-bp region upstream from human transcription start sites (TSSs), some very interest-

ing features surfaced. First, the reverse complements of the top under- and over-represented

words (all of which were TF-binding sites or Poly-A signals) had nearly equal estimated con-

tributions to the relative entropy (see Table 6.1 on page 144). The only exception was the

TATAA box, where the coding-strand TATAA signal was about ten times higher. This is in

stark contrast to the splice-site and ESE motifs, which are known to be post-transcriptional,

mRNA splicing signals. The estimated entropy contributions of the coding-strand splice-site

and ESE motifs were hundreds or thousands of times higher than their reverse complement
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words.

Second, it is well-known that the CpG dinucleotide motif is under-represented in general

in the human genome, but over-represented in the promoter regions of genes [273]. These

“CpG islands” correlate with the locations of promoters to varying degrees depending on

the organism (≈ 60% of human promoters co-locate with CpG islands) [273]. The prevailing

theory for the observed difference in CpG content between intergenic and genic regions is

that CpGs are lost over evolutionary time in intergenic regions due to the conversion of

CpGs to TpGs by the process of methylation and deamination [4]. However, there appears

to be evolutionary pressure to preserve the CpG content in promoters in order to facilitate

the regulatory mechanism of gene inhibition through methylation [273]. Our analysis of

the promoter regions of human genes suggests a slightly more complicated picture. It

is more accurate to say that CpG dinucleotides are over-represented in human promoter

regions only when surrounded by other cytidines (Cs) and guanines (Gs) (see Table 6.1

on page 144). In fact, the CpG dinucleotide motif is actually highly under-represented

in human promoters when it is accompanied by adjacent adenosines (As) or thymidines

(T ’s) on either side. Therefore, there appear to be two evolutionary pressures at work with

respect to the CpG content of promoter regions. The first evolutionary pressure promotes

over-representation of CpGs in the local context of surrounding Cs and Gs, presumably to

facilitate regulatory gene-inhibition through methylation. The second evolutionary pressure

promotes under-representation CpGs in the local context of immediately adjacent As and

T s. A proposed biological explanation for this second evolutionary pressure is found in the

innate immune response. In the innate immune response, the toll-like receptor 9 (TLR9)

protein recognizes unmethylated NpWpCpGpWpN motifs as foreign DNA and activates the

NFKB immunostimmulatory response [260]. Therefore, through high under-representation
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of the WpCpGpW motif, human genes with unmethylated promoters are able to label

themselves as “self” and evade the innate immune response. In addition, recent analysis

has revealed that viruses that successfully jump to humans quickly evolve to mimic the

WpCpGpW under-representation found in human genes in order to evade the host’s immune

system [84].

After validating that the PURE de novo motif discovery method could successfully “re-

discover” known motifs, I attempted to discover over-represented transcriptional motifs in

the regions around experimentally validated p53-binding sites. I searched all 400bp segments

centered around the 159 human, experimentally validated p53-sites, while using the regions

from 500 to 2000bp on either side of the sites as background DNA (See part b of Figure 6.1

on page 127). In addition to finding the known p53 binding sites in the sequences, PURE

was able to discern other over-represented transcriptional motifs (See Figure 6.7 on page 155

and Table 6.7 on page 155). One notable entry is the full-length motif of the GC box which

binds SP1, a known co-factor of p53. Thus, the presence of the full SP1 binding motif

(GGGCGGG) and its variants can help discern functional p53-binding sites.

In an attempt to validate our de novo motifs discovered by PURE, we used MAPPER

to perform a known-motif search through the same 400bp-segment regions centered around

the 159 human p53-binding sites. MAPPER uses PHMMs to model 1,079 TFBSs, us-

ing experimentally determined functional sites provided by the TRANSFAC and JASPAR

databases [154, 160, 213]. MAPPER models are built from TFBS sequences from the hu-

man, mouse, fly, worm, and yeast genomes [154]. The top three motifs with the highest

number of hits when searching for sequence matches to all 1,079 models, with an E-value

cut-off of 25, are the human p50, p53, and SP1 binding motifs. The p50-binding site is very

similar to the p53-binding motif, but lacks the high specificity at positions four and seven.
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Therefore, there is a good correlation between the results from the over-represented de novo

motif search and the most over-represented known-motif search. From these results we con-

clude that PURE can find biologically relevant, over- and under-represented transcriptional

motifs.
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6.14 Future Improvements to PURE

There has been a great deal of research, publications, and algorithms presented to solve the

Motif Discovery Problem in DNA sequences. Here I present some improvements that can be

applied to PURE to: (1) increase predictive performance, and (2) integrate other possibly

available data. By integrating data from other sources, the goal is to weed-out the high

number of false positives that plague motif-finding algorithms. Analysis has shown that with

our current database of ≈ 700 known binding motifs, an exhaustive motif search of human

DNA generates at least one hit (of some motif) every several base pairs [273]. It has been

shown that many of these putative sites can bind to their respective TF-proteins in vitro,

but not in vivo [257]. Therefore, in vivo conditions exist that determine a binding site’s

“functional-ness”, that are not currently considered by our motif-finding methods. In fact,

it has been estimated that only 0.1% of putative sites, predicted by models of individual

binding sites (like PWMs), are actually functional. (This estimate has been labeled the

“futility theorem”) [273].)

1. Integrating Phylogenetic Footprinting. By assuming that functional motifs are

more evolutionarily conserved than non-functional sequences, analyzing orthologous

sequences of differing evolutionary distances has been very helpful in finding functional

sites [38, 18, 13, 39, 270, 28, 44]. Example algorithms that perform motif discovery

using phylogenetic footprinting include CONREAL, CLUSTAL W, PHYLONET, and

PhyloScan. In addition, combining phylogenetic footprinting analysis with sequence

analysis of co-regulated genes has improved searches for functional motifs even fur-

ther [80, 162, 121, 195, 174, 228, 229]. These integrated methods combine motif over-

representation and cross-species sequence conservation into one probabilistic score
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to predict functional sites. Example algorithms of this integrated approach include

OrthoMEME, PhyloCon, PhyME, EMnEm, PhyloGibbs, and Stubb. Evidence from

these recent successes suggests that adding phylogenetic footprinting capability to

PURE should improve its functional motif-finding capabilities as well.

2. Search for spaced dyad (gapped) motifs. Many TF-binding sites consist of two

conserved half-sites separated by an un-conserved gap (spacer) region. This occurs

when the TF-protein binds as a dimer or tetramer, and the complex makes two sep-

arate contacts with the DNA sequences. Some spaced dyad motifs have a variable

length spacer while others have a fixed length [44]. Since spaced dyad motifs are so

prevalent, it makes sense to augment PURE to look for over- and under-representation

of those particular motifs. Algorithms that specifically consider the spaced dyad motif

include MEDUSA, Oligo/Dyad Analysis, and BioProspector [165, 265, 143] Currently,

PURE will recognize the conserved half-sites as separate motifs (or one identical motif

if the two half-sites are identical).

3. Integrating Expression Data. Levels of mRNA expression from microarry analysis

can also be used to help find functional motifs. Algorithms that integrate co-expression

profiles with sequence analysis include REDUCE, matrixREDUCE, MEDUSA, Mo-

tifRegressor, KIMONO, cis/TF, and FIRE [27, 76, 165, 40, 102, 16, 60].

4. Model Inserts and Deletions in a Motif. Weight matrices (PSSMs or PWMs) are

able to model the effects of mutations at each position in a motif, assuming indepen-

dence between positions. However, they are not able to model insertions and deletions

of nucleotides within the motif. Some TF-proteins are able to bind to variable length

motifs, where deletions and insertions within the motif affect binding specificit but
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are still tolerated [202]. Profile Hidden Markov Models (PHMMs) provide a consis-

tent probabilistic model to include the binding-affinity effects of possible insertions

and deletions of nucleotides within a motif [127, 55]. By augmenting PURE to utilize

PHMMs (instead of PWMs), PURE will be able to find over- and under- represented

motifs that model tolerated nucleotide insertions and deletions.

5. Integrating Positional Clustering of Motifs. Analysis has shown that functional

binding sites tend to occur in tight clusters in the DNA sequence [120, 276, 198, 14,

221]. There is much experimental evidence to support that functional binding sites

significantly coincide with regions of DNA with low nucleosome occupancy. These

short open windows occur between long DNA segments that are subject to chromatin

silencing. Therefore, looking for over-represented motifs that are spatially near other

(or the same) over-represented motifs will help reduce the false positive rate of PURE.

Examples of algorithms that use positional clustering to improve motif prediction are

COMPEL, Stubb, and CREME [120, 229, 221].

6. Integrating Nucleosome Occupancy Data. New technologies are allowing for

whole or partial genome-wide nucleosome occupancy maps [166]. This additional

data can be merged with PURE to further reduce the false positive rates.

7. Integrating Positional Bias Relative to the TSS. Many functional binding sites

in vivo exhibit a positional bias relative to the Transcription Start Site (TSS) [74,

235, 279, 202]. Algorithms that attempt to discover a possible positional bias relative

to the TSS (in order to reduce the false positive rate) include: ITB, AlignACE, and

PositionAnalysis [123, 207, 264].
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6.15 Appendix

6.15.1 Appendix A - Relative Entropy Methods

Let:

WN = Set of words of length N

W i
N = A word in the set WN

NB(W i
N ) = The background count of the word W i

N

NR(W i
N ) = The observed (real) count of the word W i

N

PB(W i
N ) = The probability of W i

N in the (expected) background

PR(W i
N ) = The probability of W i

N in the observed (real) distribution

w = any word of length 1 to N

NB(w) = Approximated background count of the word w

NR(w) = Approximated observed (real) count of the word w

PB(w) = Approximated probability of w in the (expected) background

PR(w) = Approximated probability of w in the observed (real) distribution

C(W i
N , w) = The number of times w is contained in W i

N

L(w) = The length of the word w

Γ = The overall length of the sequence

Maintaining and repetitively re-scaling the background distribution of all words of length

1 to N is very computationally intensive. In order to achieve gains in execution time and
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memory usage, we have implemented shortcuts in the algorithm, similar to [203], at the

expense of complete accuracy . We actually maintain the background (and foreground)

distribution of all words of only length N. Then we closely approximate the distributions

of all shorter words with lengths less than N . In order to closely approximate the counts

of a word w with length < N , we consider all the W i
N s of length N that include it, and

there are (N + 1)− L(w) such W’s, assuming we are not near an edge of a sequence. The

time performance gain during re-scaling is considerable, while the accuracy loss do to “edge

effects” is minimal. The inaccuracies are introduced at the very beginning and end regions

(of length N) that butt against an “edge” of a sequence. The accuracy loss due to edge

effects decreases as the length of the separate sequences in the background and foreground

increase. In effect, the method presented here to approximate the probability of observing a

word shorter than N is completely accurate only in the hypothetical case of infinite sequence

length.

Then we have that for any word w of length 1 to N :

NB(w) =
4N−1∑
i=0

NB(W i
N )× C(W i

N , w)
(N + 1)− L(w)

NR(w) =
4N−1∑
i=0

NR(W i
N )× C(W i

N , w)
(N + 1)− L(w)

PB(w) = NB(w)/ Γ

PR(w) = NR(w)/ Γ
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The Kullback-Leibler pseudo-distance between the observed (real) and background prob-

ability distributions (PR and PB) is given by:

DKL(PR‖PB) =
4N−1∑
i=0

PR(W i
N ) log

PR(W i
N )

PB(W i
N )

The Kullback-Leibler divergence gives a distance measure between two distributions. How-

ever, it is not a true metric, since it is not symmetric and does not satisfy the triangle

inequality:

DKL(D1‖D2) 6=DKL(D2‖D1)

DKL(D1‖D3) 6≤DKL(D1‖D2) +DKL(D2‖D3)

However, there is a symmetric version known as Jeffreys’ J-Divergence:

JDiv(D1, D2) = DKL(D1‖D2) +DKL(D2‖D1)

Both of the versions are always non-negative and are zero if and only if the two distri-

butions are identical:

DKL(D1‖D2) ≥ 0

JDiv(D1, D2) ≥ 0

DKL(D1‖D2) = 0 ⇐⇒ D1 = D2

JDiv(D1, D2) = 0 ⇐⇒ D1 = D2
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The Jensen-Shannon divergence gives the mean of the relative entropy of each distribu-

tion to the mean distribution of D1 and D2:

JS(D1, D2) =
1
2

(
DKL(D1‖

1
2

(D1 +D2)) +DKL(D2‖
1
2

(D1 +D2))
)

While both the Kullback-Leibler divergence and Jeffreys’ J-divergence range between

zero and positive infinity, the Jensen-Shannon divergence ranges from zero and ln 2 (i.e. 1

bit). It can be shown that Jeffrey’s J-divergence JDiv and the Jensen-Shannon divergence

JS are related by the inequality [43]:

JS(D1, D2) ≤ ln

(
2

1 + exp
(
−1

2JDiv(D1, D2)
))

A measure that gives the contribution of a word w, of length 1 to N , to the overall

Kullback-Leibler pseudo-distance between the two distributions is:

S(w) = PR(w) log
PR(w)
PB(w)

+ [1− PR(w)] log
(

1− PR(w)
1− PB(w)

)

S(w) can also be interpreted as the Kullback-Leibler pseudo-distance between the coarse-

grained real and background distributions, where all we know is that a given word in the

distribution is w or not.

In order to find the most over- and under-represented words, we want to find the words

with the highest S(w). An important property of these words is that their contributions

S(w) are not independent [203]. For example, if TGAC is over-represented, then TGACA

(probably) will be as well. If we believe that only one of the words in an over-represented,

nested cluster has biological significance, and that all the other words are being dragged
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along, then we would want to somehow remove the effects of the significant word from the

nested cluster. A proposed method is to re-scale the background after each iteration of

finding the wmax = max(S(wi))∀wi, and removing the effects of wmax on the contributions

S(wi) for all other words wi [203]. With this method we will attain a sorted list of the

words that independently contribute most to the Kullback-Leibler pseudo-distance between

the two distributions.

Rescaling the background as presented in [203]

We want to remove the contribution of w, S(w), to the DKL by making the contribution of

w identical in the observed and background distributions. For the rescaling to be minimal,

we re-scale all of the words W i
N with the same C(W i

N , w) by the same factor. Therefore, we

partition the set WN into disjoint subsets, where each element in a given subset contains w

an equal number of times. The sets are thus defined:

KJ(w) =
{
W i
N | C(W i

N , w) = J
}

J = 1, 2, .., N

K0 ∪ ... ∪KN = WN

Since we want to re-scale these disjoint subsets so that the probabilities of being in a

given subset are equal for both the observed and background distributions, we calculate:
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QR(KJ) =
∑

W i
N∈KJ

PR
(
W i
N

)
QB(KJ) =

∑
W i
N∈KJ

PB
(
W i
N

)

Then we use them to re-scale all the background counts in the containment set KJ :

NB(W i
N ) −→ QR(KJ)

QB(KJ)
NB(W i

N ) ∀ W i
N ∈ KJ

Then the contribution of w to the DKL has been removed since now we have:

Srescaled(w) = 0
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6.15.2 Appendix B - Discovered Motifs using Relative Entropy Methods
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Ranked List of the most over/under-represented words in the Human Promoter Regions (-50,0)
against the mononucleotide background and with Re-scaling

Rank w +/- S(w) w̄ S(w)− S(w̄)
1 TTT + 0.00669622 AAA 0.00136639
2 AAA + 0.00560457 TTT 0.00560457
3 TCG - 0.00463774 CGA 0.000162366
4 ACG - 0.0051526 CGT 0.00171207
5 TA - 0.00294945 TA 0
6 CGA - 0.00331754 TCG 0.00326504
7 CGT - 0.00301892 ACG 0.00297245
8 GGGCGGG + 0.00225123 CCCGCCC 0.000493133
9 GGT - 0.00190124 ACC 3.50562e-05
10 ACC - 0.00213444 GGT 0.00213444
11 CCCGCCC + 0.00163478 GGGCGGG 0.0016275
12 GGGGCGG + 0.00157568 CCGCCCC 0.000141837
13 GGCGGGG + 0.00153286 CCCCGCC 0.000150364
14 ATG - 0.00151373 CAT 0.000746087
15 CCGCCCC + 0.0013982 GGGGCGG 0.00139753
16 GGAGG + 0.00135808 CCTCC 0.000175457
17 CCCCGCC + 0.00135835 GGCGGGG 0.00135802
18 GCGGCGG + 0.00133634 CCGCCGC 0.000628948
19 GGCGGCG + 0.00125388 CGCCGCC 0.000630252
20 CCTCC + 0.00121439 GGAGG 0.00121436
21 GCGGGGC + 0.00106887 GCCCCGC 0.000426889
22 CGGCGGC + 0.00105062 GCCGCCG 0.000553378
23 GGAAG + 0.000919067 CTTCC 0.000229621
24 GAG + 0.000896704 CTC 0.000331838
25 ATAAA + 0.000876449 TTTAT 0.000635312
26 CAA - 0.000782654 TTG 2.93757e-05
27 TTG - 0.000838625 CAA 0.000838625
28 ATC - 0.000788353 GAT 0.000283002
29 CCGCCGC + 0.000690018 GCGGCGG 0.000689678
30 TCT + 0.000669254 AGA 0.000495494
31 GCCCCGC + 0.000632698 GCGGGGC 0.000632593
32 CTTCC + 0.000631985 GGAAG 0.000631198
33 CGCCGCC + 0.000626285 GGCGGCG 0.000626282
34 TGACGT + 0.000600157 ACGTCA 0.000178186
35 GACGTCA + 0.000523123 TGACGTC 0.000474148
36 GCCGCCG + 0.000493553 CGGCGGC 0.000493527
37 TTAA + 0.000460568 TTAA 0
38 AGAA + 0.000462243 TTCT 0.000348979
39 ACACACA + 0.00041932 TGTGTGT 0.000205603
40 CTCCCTC + 0.000390886 GAGGGAG 0.000297069
41 TTATT + 0.000383781 AATAA 0.000223584
42 GTCCG - 0.000362307 CGGAC 0.000105473
43 CTCCTC + 0.000357151 GAGGAG 0.000302533
44 GCGCG + 0.000357186 CGCGC 5.50704e-05
45 CGGGGCG + 0.000356865 CGCCCCG 0.000160819
46 CGCCCCC + 0.000346089 GGGGGCG 4.4485e-05
47 CACGTG + 0.000344168 CACGTG 0

Table 6.1: This ranked list gives the most over- and under-represented words in the first
50-bp region just upstream of the transcription start site, relative to the mononucleotide
background, for all human genes. The degree of over- and under-representation (+ or -)
is measured by the words’ contribution S(w) to the relative entropy distance between the
promoter sequences’ oligo distribution and the expected background distribution. Notice
that words and their reverse complements appear close together in the list. For example,
the first two motifs (in yellow) are reverse complements of each other: TTT and AAA.
Interestingly, we see from entries three, four, six, and seven (in cyan), that the word WpCpG
and its reverse complement CpGpW are highly under-represented in the promoter regions
of human genes (W represents an A or T ). However, we see from the green entries that
CpG dinucleotides that are surrounded by other cytidines (Cs) and guanines (Gs) are over-
represented.
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Figure 6.2: The Top 10 Over-represented, Transcriptional Promoter-Region Mo-
tifs. This list provides the top 10 most over-represented motifs in the Promoter Regions
(-50,0) just upstream of the TSS of all known human genes. These motifs consist of sets
of tuples m = {wi, w̄i} that maximize the transcriptional entropy-contribution measure
Sovertxn (m), against the mononucleotide background and with Re-scaling. When using the
transcriptional entropy-contribution measure Sovertxn (m), words wi and their reverse comple-
ments w̄i are considered to be equivalent motifs on different strands. Motifs 1, 5, 7, and
9 match the GC box (or parts thereof). Motif 6 matches the TATA box. Motifs 2 and 8
match the poly-A signals that facilitate melting (strand separation). Motif 4 matches part
of the Myo D site. Motif 7 matches the BRE Box. Motif 10 matches part of the MTE Box.
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Ranked List of the most over-represented tuple-motifs m = (w, w̄) in the Promoter Regions (-50,0) of human genes
that maximize the transcriptional entropy contribution measure Sovertxn (m)

against the mononucleotide background and with Re-scaling

Rank w/w̄ +/- / +/- Sovertxn (m) Motif
1 AAA/TTT (+/+) 0.012142963710993378 Melting
2 CCGCC/GGCGG (+/+) 0.005390318878979367 GC Box
3 CTCC/GGAG (+/+) 0.005026509691252731 INR Box
4 CAG/CTG (+/+) 0.003968616965861579 MTE Box
5 CTTCC/GGAAG (+/+) 0.003621381090718398 INR Box
6 CCC/GGG (+/+) 0.003426268046064107 GC Box
7 AGAG/CTCT (+/+) 0.0028801831501160547 INR Box
8 GCGC/GCGC (+/+) 0.0030939789817518125 BRE Box
9 AGAA/TTCT (+/+) 0.002250242063324839 INR Box
10 CGCCGC/GCGGCG (+/+) 0.0019246152501235865 BRE Box
11 GCCCCGC/GCGGGGC (+/+) 0.001932352334181332 BRE Box
12 AA/TT (+/+) 0.0015966934925324798 Melting
13 CCTC/GAGG (+/+) 0.0018545477188168947 INR Box
14 GC/GC (+/+) 0.0014391322584564985 BRE Box, GC Box
15 CCCGCCC/GGGCGGG (+/+) 0.0012773504502755781 GC Box
16 TATAA/TTATA (+/+) 0.0012251911453985663 TATA Box
17 ACACACA/TGTGTGT (+/+) 0.0011046525156472357
18 AGGAA/TTCCT (+/+) 9.5014580515938E-4
19 CGCCCCC/GGGGGCG (+/+) 9.445259312556126E-4 GC Box
20 CCGCCCC/GGGGCGG (+/+) 9.418208908182862E-4
21 CACACAC/GTGTGTG (+/+) 9.071697357169304E-4
22 CCCCGCC/GGCGGGG (+/+) 8.963002122745756E-4 GC Box
23 AGGAGGA/TCCTCCT (+/+) 8.214503794956535E-4
24 CCCGGCC/GGCCGGG (+/+) 7.761861997016208E-4
25 CGCCCCG/CGGGGCG (+/+) 7.704076592416819E-4
26 TCA/TGA (+/+) 7.577933165127584E-4
27 TATATA/TATATA (+/+) 7.709336565496528E-4 TATA Box
28 CGCCCGC/GCGGGCG (+/+) 7.428765635318227E-4
29 CCGG/CCGG (+/+) 7.386923586819713E-4
30 AG/CT (+/+) 7.517047729841807E-4
31 CGGCGGC/GCCGCCG (+/+) 9.000636832637893E-4 BRE Box
32 CGGCCGC/GCGGCCG (+/+) 7.84350369174976E-4 BRE Box
33 AAT/ATT (+/+) 7.687319863343943E-4
34 CC/GG (+/+) 9.324056539551373E-4
35 ACA/TGT (+/+) 7.911599972864622E-4
36 CCGCG/CGCGG (+/+) 8.569034102541627E-4 BRE Box
37 AAG/CTT (+/+) 7.040562865587774E-4
38 ATAAA/TTTAT (+/+) 6.544494394750478E-4 TATA Box
39 GACGTCA/TGACGTC (+/+) 6.382596575954781E-4
40 GCC/GGC (+/+) 5.911944240261525E-4 GC Box
41 CCACC/GGTGG (+/+) 5.989664730584919E-4
42 TTAA/TTAA (+/+) 5.962556290507563E-4
43 ATAT/ATAT (+/+) 5.598002690177426E-4 TATA Box
44 CCGGAA/TTCCGG (+/+) 4.988653407326678E-4
45 GGGA/TCCC (+/+) 5.059598094653579E-4
46 CA/TG (+/+) 5.225650828928757E-4
47 AAATA/TATTT (+/+) 4.724946860629666E-4 TATA Box
48 ACTTCCG/CGGAAGT (+/+) 4.711535261116658E-4
49 CACTTC/GAAGTG (+/+) 4.6060928779331897E-4
50 GAGC/GCTC (+/+) 4.3514651677507756E-4

Table 6.2: This ranked list gives the most over-represented words (of lengths 1-7 bp) on
both strands in the first 50-bp region just upstream of the transcription start site (TSS),
relative to the mononucleotide background, for all known human genes. Words and their
reverse complements are considered to be equivalent motifs on different strands. This list
shows individual tuples that help construct motifs like those shown in Figure 6.2 on the
preceding page.
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Figure 6.3: The Top 10 Over-represented, Post-Transcriptional Motifs in the be-
ginning regions of human introns. This list provides the top 10 most over-represented,
post-transcriptional motifs (of lengths 1-7 bp) in the first 50-bp region of all introns in all
known human genes. These motifs consist of sets of tuples m = {wi, w̄i} that maximize
the post-transcriptional entropy-contribution measure Soverpost−txn(m), against the mononu-
cleotide background and with Re-scaling. The 5′ splice site motifs are AG|GTRAGT .
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Ranked List of the most over-represented tuple-motifs m = (w, w̄) in the intron(0,50) regions of human genes
that maximize the post-transcriptional entropy contribution measure Soverpost−txn(m)

against the mononucleotide background and with Re-scaling

The 5′ splice site motifs are AG|GTRAGT .

Rank w/w̄ +/- / +/- Soverpost−txn(m)

1 CC/GG (+/+) 0.007606766746999127
2 GTGAGTG/CACTCAC (+/+) 0.0035345230403304667
3 TTTT/AAAA (+/+) 0.0035166662597895604
4 GTAAGTA/TACTTAC (+/+) 0.0028037376152889337
5 ACG/CGT (-/-) 0.0022861839759536215
6 GTAAGTG/CACTTAC (+/-) 0.0019748315901672994
7 GTGAGTA/TACTCAC (+/-) 0.0016464615904590617
8 GTAAGTT/AACTTAC (+/+) 0.0015163907155177042
9 ACC/GGT (-/-) 0.0014581593422086166
10 ATC/GAT (-/-) 0.0010697489964987617
11 GTAAGAA/TTCTTAC (+/+) 9.978881792188908E-4
12 GTGAGTC/GACTCAC (+/-) 9.13115114341284E-4
13 CGG/CCG (-/-) 7.628159639648325E-4
14 ACTA/TAGT (-/-) 7.166235003200293E-4
15 GTAAGTC/GACTTAC (+/-) 6.204129270896352E-4
16 CTGG/CCAG (+/+) 5.87422155379456E-4
17 GTGAGGC/GCCTCAC (+/+) 5.813557402606899E-4
18 TTTATTT/AAATAAA (+/+) 5.417887188773696E-4
19 TTTCTTT/AAAGAAA (+/+) 5.391521969078973E-4
20 TGAGTGG/CCACTCA (+/+) 5.317088409123245E-4
21 GTGAGTT/AACTCAC (+/+) 5.283389406390586E-4
22 CGAA/TTCG (-/-) 5.205673026696406E-4
23 GTAAGGA/TCCTTAC (+/-) 5.020747725017928E-4
24 TAAGTAT/ATACTTA (+/-) 5.003749691899603E-4
25 GTAAGAG/CTCTTAC (+/-) 4.917754758013632E-4
26 AAC/GTT (-/-) 4.4460502523030693E-4
27 TCT/AGA (+/+) 4.4554307457174815E-4
28 GTAAGCA/TGCTTAC (+/-) 4.358782978838502E-4
29 GTGAGCA/TGCTCAC (+/+) 4.325548972385005E-4
30 TGAGTGC/GCACTCA (+/-) 4.0612873794146294E-4
31 GTGAGCC/GGCTCAC (+/+) 4.043522744980639E-4
32 GTGTGTG/CACACAC (+/+) 4.0248045177062404E-4
33 TAAGTAA/TTACTTA (+/+) 3.904893238429955E-4
34 GTAAGAT/ATCTTAC (+/-) 3.864091183130103E-4
35 GTGAGGG/CCCTCAC (+/+) 3.7965824723958097E-4
36 TTTGTTT/AAACAAA (+/+) 3.785126414799403E-4
37 GTGAGGA/TCCTCAC (+/+) 3.702997718645142E-4
38 TAAGTTT/AAACTTA (+/+) 3.691004242378078E-4
39 CAGG/CCTG (+/+) 3.5533079297743377E-4
40 TGTGTGT/ACACACA (+/+) 3.594304946610601E-4
41 GGC/GCC (+/+) 3.1281568559348707E-4
42 TTC/GAA (+/+) 3.7324310338131164E-4
43 GTAGGTG/CACCTAC (+/+) 3.2439785516657355E-4
44 GTGGGTG/CACCCAC (+/+) 3.027167350972143E-4
45 TGAGTGT/ACACTCA (+/+) 2.956203475809266E-4
46 CTCG/CGAG (-/-) 2.890462277561072E-4
47 AGCG/CGCT (-/-) 2.920001328187347E-4
48 TGAGTGA/TCACTCA (+/+) 2.802466362977953E-4
49 GTGAGAG/CTCTCAC (+/+) 2.358937466940281E-4
50 GTACGTG/CACGTAC (+/+) 2.338330144353744E-4

Table 6.3: This ranked list gives the most over-represented words (of lengths 1-7 bp) on
the coding strand in the first 50-bp region of all introns, relative to the mononucleotide
background, for all known human genes. The motifs in yellow match known 5′ splicing sites.
This list shows individual tuples that help construct motifs like those shown in Figure 6.3
on the preceding page.
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Figure 6.4: The Top 10 Over-represented, Post-Transcriptional Motifs in the end-
regions of human introns. This list provides the top 10 most over-represented, post-
transcriptional motifs (of lengths 1-7 bp) in the last 50-bp region of all introns in all known
human genes. These motifs consist of sets of tuples m = {wi, w̄i} that maximize the post-
transcriptional entropy-contribution measure Soverpost−txn(m), against the mononucleotide
background and with Re-scaling. The 3′ splice site motifs are Y Y Y Y Y Y Y Y NCAG|G.
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Ranked List of the most over-represented tuple-motifs m = (w, w̄) in the intron(-50,0) regions of human genes
that maximize the post-transcriptional entropy contribution measure Soverpost−txn(m)

against the mononucleotide background and with Re-scaling

The 3′ splice site motifs are Y Y Y Y Y Y Y Y NCAG|G.

Rank w/w̄ +/- / +/- Soverpost−txn(m)

1 TTTT/AAAA (+/+) 0.00679548011286107
2 CGA/TCG (-/-) 0.005732036100534097
3 CCC/GGG (+/+) 0.004801817827452967
4 CTC/GAG (+/+) 0.0030133726199413156
5 CTG/CAG (+/+) 0.0028841926440741307
6 TTTCTTT/AAAGAAA (+/+) 0.002206934799593214
7 GTA/TAC (-/-) 0.002078496830381361
8 ACG/CGT (-/-) 0.0021178845193865897
9 TTTGTTT/AAACAAA (+/+) 0.0014631306022040065
10 ATAG/CTAT (-/-) 0.0013129866927489248
11 CTA/TAG (-/-) 0.0013169423530145089
12 GAT/ATC (-/-) 0.001066940407302762
13 CGGA/TCCG (-/-) 8.892641383403599E-4
14 AACT/AGTT (-/-) 8.858653381139908E-4
15 CCCACAG/CTGTGGG (+/+) 8.567071054391215E-4
16 TGTGT/ACACA (+/+) 8.432170953661942E-4
17 CCTGCAG/CTGCAGG (+/-) 7.939848600523447E-4
18 AGCG/CGCT (-/-) 7.397867332593134E-4
19 AA/TT (+/+) 6.65538458253628E-4
20 TTG/CAA (-/-) 6.855802020798427E-4
21 CGCA/TGCG (-/-) 6.395493626828244E-4
22 GACT/AGTC (-/-) 5.840965262054558E-4
23 CTTCC/GGAAG (+/+) 5.27498012899531E-4
24 GAGT/ACTC (-/-) 4.672858869555445E-4
25 CTTGCAG/CTGCAAG (+/-) 4.621166221933004E-4
26 ACC/GGT (-/-) 4.5649342983299047E-4
27 CTGA/TCAG (-/-) 4.457877088462007E-4
28 TTTGCAG/CTGCAAA (+/-) 4.4143917635133497E-4
29 TCCACAG/CTGTGGA (+/-) 4.0850681770532234E-4
30 TTTCTAG/CTAGAAA (+/+) 3.999312728056908E-4
31 AATA/TATT (+/+) 3.7271414529173395E-4
32 TTTATTT/AAATAAA (+/+) 3.802204823007458E-4
33 GTG/CAC (+/+) 3.77520798316819E-4
34 CTTTCAG/CTGAAAG (+/-) 3.762032213717009E-4
35 TTTTCTT/AAGAAAA (+/+) 3.621841552421502E-4
36 TTTTCAG/CTGAAAA (+/-) 3.608805217530901E-4
37 TCTTTC/GAAAGA (+/+) 3.4657828887014726E-4
38 TGAC/GTCA (+/-) 3.4290848962098444E-4
39 TTTACAG/CTGTAAA (+/-) 3.4113537391334224E-4
40 CCCGCAG/CTGCGGG (+/+) 3.4119463052312087E-4
41 TTTGTAG/CTACAAA (+/+) 3.25728667958095E-4
42 AATG/CATT (+/-) 3.214057651093297E-4
43 TTGTTTT/AAAACAA (+/+) 3.1572096818088455E-4
44 CGGGA/TCCCG (-/-) 2.931151350453779E-4
45 TTTCCTT/AAGGAAA (+/+) 2.750504788257974E-4
46 CTTACAG/CTGTAAG (+/-) 2.707506609703922E-4
47 TTTATAG/CTATAAA (+/+) 2.675940705690651E-4
48 ATTTCAG/CTGAAAT (+/-) 2.5307405487761373E-4
49 AAAGAAA/TTTCTTT (-/-) 2.483977819827864E-4
50 AAAAGGG/CCCTTTT (-/-) 2.4428483026164036E-4

Table 6.4: This ranked list gives the most over-represented words (of lengths 1-7 bp) on
the coding strand in the last 50-bp region of all introns, relative to the mononucleotide
background, for all known human genes. The motifs in yellow match known 3′ splicing sites.
This list shows individual tuples that help construct motifs like those shown in Figure 6.4
on the preceding page.
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Figure 6.5: The Top 10 Over-represented, Post-Transcriptional Motifs in the be-
ginning regions of human exons. This list provides the top 10 most over-represented,
post-transcriptional motifs (of lengths 1-7 bp) in the first 50-bp region of all exons in
all known human genes. These motifs consist of sets of tuples m = {wi, w̄i} that maxi-
mize the post-transcriptional entropy-contribution measure Soverpost−txn(m), against the inte-
rior Exon(+50, -50) background and with Re-scaling. (See part f of Figure 6.1 on page 127).
All the motifs except six, eight, and ten are known 5′ ESEs, or parts thereof.
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Ranked List of the most over-represented tuple-motifs m = (w, w̄) in the exon(0,50) regions of human genes
that maximize the post-transcriptional entropy contribution measure Soverpost−txn(m)

against the interior Exon(+50, -50) background and with Re-scaling

Rank w/w̄ +/- / +/- Soverpost−txn(m)

1 GAAG/CTTC (+/+) 0.004048695844903189
2 CTA/TAG (-/-) 0.0031626782674147574
3 AGA/TCT (+/+) 0.003597415670708517
4 TG/CA (+/+) 0.0030390368605560762
5 GGA/TCC (+/+) 0.0030209950050174607
6 AAA/TTT (+/+) 0.0027024617258089552
7 CCTG/CAGG (+/+) 0.002000831841100705
8 TAC/GTA (-/-) 0.001166299895974904
9 CTAC/GTAG (+/+) 9.232782370311172E-4
10 AG/CT (+/+) 8.87224053352953E-4
11 CCC/GGG (+/+) 0.0010670541402720561
12 CTTCG/CGAAG (-/-) 8.821105770158426E-4
13 CGA/TCG (-/-) 6.012246432176632E-4
14 AGCAG/CTGCT (+/+) 5.13578689611971E-4
15 ATGA/TCAT (+/+) 5.263563383366894E-4
16 GCTG/CAGC (+/+) 5.104968410438596E-4
17 GAAA/TTTC (+/+) 5.437925316063626E-4
18 GTGG/CCAC (+/+) 5.451328746207387E-4
19 GAGGAG/CTCCTC (+/+) 4.610834473725388E-4
20 TATG/CATA (-/-) 3.878252196743954E-4
21 GCG/CGC (-/-) 3.7824814203015356E-4
22 CAAG/CTTG (+/-) 3.3903049323965055E-4
23 CTTCC/GGAAG (-/-) 3.372971442782766E-4
24 TTA/TAA (-/-) 3.3589605432150695E-4
25 GAC/GTC (-/-) 3.569341051760807E-4
26 AACG/CGTT (-/-) 3.112534217600703E-4
27 GCGGC/GCCGC (+/+) 2.881812697542727E-4
28 CGAG/CTCG (+/+) 2.364466390925624E-4
29 GTG/CAC (-/-) 2.1951130672369872E-4
30 ACCA/TGGT (+/+) 2.2188110414978076E-4

Table 6.5: This ranked list gives the most over-represented words (of lengths 1-7 bp) on
the coding strand in the first 50-bp region of all exons, relative to the mononucleotide
background, for all known human genes. The motifs in yellow match known 5′ Exonic
Splice Enhancer Sites (ESE) sites, or parts thereof. This list shows individual tuples that
help construct motifs like those shown in Figure 6.5 on the preceding page.
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Figure 6.6: The Top 10 Over-represented, Post-Transcriptional Motifs in the
end-regions of human exons. This list provides the top 10 most over-represented, post-
transcriptional motifs (of lengths 1-7 bp) in the last 50-bp region of all exons in all known
human genes. These motifs consist of sets of tuples m = {wi, w̄i} that maximize the post-
transcriptional entropy-contribution measure Soverpost−txn(m), against the interior Exon(+50,
-50) background and with Re-scaling. (See part f of Figure 6.1 on page 127). All motifs
except four, six, and ten are known 3′ ESEs, or parts thereof.
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Ranked List of the most over-represented tuple-motifs m = (w, w̄) in the exon(0,50) regions of human genes
that maximize the post-transcriptional entropy contribution measure Soverpost−txn(m)

against the interior Exon(+50, -50) background and with Re-scaling

Rank w/w̄ +/- / +/- Soverpost−txn(m)

1 AAA/TTT (+/+) 0.004890672357847098
2 AC/GT (-/-) 0.0037109233655847444
3 TGGA/TCCA (+/+) 0.0026383706247931284
4 AG/CT (+/+) 0.002748678133590105
5 CTA/TAG (-/-) 0.004323377196141551
6 CCTG/CAGG (+/+) 0.0018340860030188527
7 GTG/CAC (+/+) 0.0015307591979683748
8 AGAA/TTCT (+/+) 0.0016197696903002797
9 AATAAA/TTTATT (+/+) 0.0012238205650436298
10 AGGA/TCCT (+/+) 8.716431556973791E-4
11 ATCG/CGAT (-/-) 7.153304205296418E-4
12 TTCG/CGAA (-/-) 6.510006830113184E-4
13 CTTA/TAAG (-/-) 6.596903937702932E-4
14 GAAGA/TCTTC (+/+) 6.085246758769655E-4
15 CGAG/CTCG (-/-) 5.767545886029121E-4
16 CGT/ACG (-/-) 5.654842220159089E-4
17 CTAC/GTAG (+/+) 6.25154370798946E-4
18 TATG/CATA (-/-) 6.111898071316576E-4
19 GCTG/CAGC (+/+) 5.427852699728579E-4
20 CCA/TGG (+/+) 5.371913774101849E-4
21 TACC/GGTA (-/-) 4.447578973180086E-4
22 ATGAA/TTCAT (+/+) 4.2831695444750387E-4
23 CAAG/CTTG (+/-) 3.325868100797346E-4
24 GTTA/TAAC (-/-) 3.012283020482866E-4
25 AGATG/CATCT (+/+) 2.7674563598791273E-4
26 GATT/AATC (-/-) 2.588528691282514E-4
27 CAACA/TGTTG (+/+) 2.3843637374700683E-4
28 TTTG/CAAA (+/-) 2.3231056828609673E-4
29 TCA/TGA (+/+) 2.3012803300291942E-4

Table 6.6: This ranked list gives the most over-represented words on the coding strand
in the last 50-bp region of all exons, relative to the mononucleotide background, for all
known human genes. The motifs in yellow match known 3′ Exonic Splice Enhancer Sites
(ESE) sites, or parts thereof. The motif in cyan matches the known polyadenylation signal
(AATAAA), which is present in the last 50bp of the last exon of most genes. This list shows
individual tuples that help construct motifs like those shown in Figure 6.6 on the preceding
page.
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Figure 6.7: The Top 10 Over-represented, Transcriptional Motifs within a 400bp
window centered around the 160 functional human p53 REs. This list provides
the top 10 most over-represented, transcriptional motifs (of lengths 1-8 bp) within a 400bp
sequence-window centered around 160 functional human p53 REs. These motifs consist of
sets of tuples m = {wi, w̄i} that maximize the transcriptional entropy-contribution measure
Sovertxn (m), against the background DNA from the regions from 500 to 2000bp on either side
of the site (see part b of Figure 6.1 on page 127), and with Re-scaling. All motifs except
two, seven, and eight are known conserved regions of p53 REs. The most prevalent (and
best binding) p53-RE is RRRCATGYYY. Motif eight is an obvious GC Box (Binds SP1)
and is a known co-factor of p53.
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Ranked List of the most over-represented tuple-motifs m = (w, w̄) in the 400bp regions around 160 functional
human p53 REs

that maximize the transcriptional entropy contribution measure Sovertxn (m)
against the background of surrounding DNA and with Re-scaling

Rank w/w̄ +/- / +/- Soverpost−txn(m)

1 CC/GG (+/+) 0.022271277247304003
2 CAG/CTG (+/+) 0.01017801589079955
3 AAA/TTT (+/+) 0.006598455938214537
4 CTC/GAG (+/+) 0.005445456500169858
5 GC/GC (+/+) 0.004990412898294265
6 ACATG/CATGT (+/+) 0.0024903889414493027
7 AAG/CTT (+/+) 0.0022252200341660363
8 CC/GG (+/+) 0.0021687592658422294
9 CA/TG (+/+) 0.0019961710418497057
10 AGGA/TCCT (+/+) 0.0014510752955463587
11 AAA/TTT (+/+) 0.00147698496112573
12 AGAA/TTCT (+/+) 0.0012327432433121054
13 CCCCGCCC/GGGCGGGG (+/+) 0.0012104230074030968
14 CCGCGG/CCGCGG (+/+) 8.782962712328938E-4
15 GCC/GGC (+/+) 8.519916066560516E-4
16 CTCC/GGAG (+/+) 8.583415478638848E-4
17 CAC/GTG (+/+) 8.934930894683394E-4
18 GGAA/TTCC (+/+) 9.860706055785018E-4
19 AGA/TCT (+/+) 8.464009430879868E-4
20 CCCAGGC/GCCTGGG (+/+) 7.623347087374656E-4
21 CATACACA/TGTGTATG (+/+) 7.457168267390651E-4
22 CCCGGG/CCCGGG (+/+) 7.390237189098721E-4
23 ATGCATAC/GTATGCAT (-/+) 7.028478871238439E-4
24 ATACACAA/TTGTGTAT (-/+) 6.947631924228929E-4
25 AATATT/AATATT (+/+) 6.499039639025234E-4
26 CCGCCGC/GCGGCGG (+/+) 6.497484416861103E-4
27 TAATCCCA/TGGGATTA (+/+) 6.464885086453086E-4
28 CCCGCCCC/GGGGCGGG (+/+) 6.37243590059867E-4
29 GCATACAC/GTGTATGC (+/+) 6.301308888700846E-4
30 GCCCCGC/GCGGGGC (+/+) 6.298752695265208E-4
31 GAATTGAA/TTCAATTC (+/+) 6.222284901025285E-4
32 TGAA/TTCA (+/+) 5.939564765509615E-4
33 TGCATACA/TGTATGCA (+/+) 5.887318248210412E-4
34 AGGCATG/CATGCCT (+/+) 5.671330125574255E-4
35 AGCCCAGG/CCTGGGCT (+/+) 5.6733052098333E-4
36 CATGCATA/TATGCATG (+/+) 5.656501252690313E-4
37 CGGCCGC/GCGGCCG (+/+) 5.613866839799184E-4
38 ATGTACAT/ATGTACAT (+/+) 5.209388827425665E-4
39 CCGGGCA/TGCCCGG (+/+) 5.156724545478054E-4
40 ACAAGC/GCTTGT (+/+) 4.953541242437797E-4
41 AATAATAA/TTATTATT (-/+) 4.905815461607241E-4
42 CTGTAATC/GATTACAG (+/+) 4.8515599235118254E-4
43 GCCCAGAC/GTCTGGGC (+/+) 4.521413353905173E-4
44 AACAAAA/TTTTGTT (+/+) 4.5117534304659726E-4
45 ATTACAGG/CCTGTAAT (+/+) 4.5075000153572227E-4
46 ATGCTCAC/GTGAGCAT (+/+) 4.4835242259512464E-4
47 CGCCGCCG/CGGCGGCG (+/+) 4.413389977119478E-4
48 AGGCTGAG/CTCAGCCT (+/+) 4.331792008631744E-4
49 AAACTAG/CTAGTTT (+/+) 4.32894597860302E-4
50 CCCCACCC/GGGTGGGG (+/+) 4.2336074017180407E-4

Table 6.7: This ranked list gives the most over-represented words (of lengths 1-8 bp) on
both strands within a 400bp window centered around the 160 functional human p53 REs,
relative to surrounding DNA. Words and their reverse complements are considered to be
equivalent motifs on different strands. The motifs in yellow match regions of the p53
consensus binding-site RRRCWWGYYY. The motifs in cyan match possible GC boxes
that bind the SP1 transcription factor, a known co-factor of p53. This list shows individual
tuples that help construct motifs like those shown in Figure 6.7 on the preceding page.
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