
DIAGNOSIS AND ERROR CORRECTION

FOR A FAULT-TOLERANT ARITHMETIC

AND LOGIC UNIT FOR MEDICAL

MICROPROCESSORS

BY VARADAN SAVULIMEDU VEERAVALLI

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Michael L. Bushnell

and approved by

New Brunswick, New Jersey

October, 2008

ABSTRACT OF THE THESIS

Diagnosis and Error Correction for a

Fault-Tolerant Arithmetic and Logic Unit for

Medical Microprocessors

by Varadan Savulimedu Veeravalli

Thesis Director: Prof. Michael L. Bushnell

We present a fault tolerant Arithmetic and Logic Unit (ALU) for medical

systems. Real-time medical systems possess stringent requirements for fault tol-

erance because faulty hardware could jeopardize human life. For such systems,

checkers are employed so that incorrect data never leaves the faulty module and

recovery time from faults is minimal. We have investigated information, hard-

ware and time redundancy. After analyzing the hardware, the delay and the

power overheads we have decided to use time redundancy as our fault tolerance

method for the ALU.

The original contribution of this thesis is to provide single stuck-fault error

correction in an ALU using recomputing with swapped operands (RESWO). Here,

we divide the 32-bit data path into 3 equally-sized segments of 11 bits each, and

then we swap the bit positions for the data in chunks of 11 bits. This requires

multiplexing hardware to ensure that carries propagate correctly. We operate the

ALU twice for each data path operation – once normally, and once swapped. If

there is a discrepancy, then either a bit position is broken or a carry propagation

ii

circuit is broken, and we diagnose the ALU using diagnosis vectors. First, we test

the bit slices without generating carriers – this requires three or four patterns to

exercise each bit slice for stuck-at 0 and stuck-at 1 faults. We test the carry chain

for stuck-at faults and diagnose their location – this requires two patterns, one to

propagate a rising transition down the carry chain, and another to propagate a

falling transition. Knowledge of the faulty bit slice and the fault in the carry path

makes error correction possible by reconfiguring MUXes. It may be necessary to

swap a third time and recompute to get more data to achieve full error correction.

The hardware overhead with the RESWO approach and the reconfiguration

mechanism of one spare chunk for every sixteen chunks for the 64-bit ALU is

78%. The delay overhead for the 64-bit ALU with our fault-tolerance mechanism

is 110.96%.

iii

Acknowledgements

I would like to express my gratitude to everyone who has helped me complete

this degree. I am thankful to Prof. Michael Bushnell whose cooperation and

encouragement made this work possible. Dr. Bushnell guided me throughout the

project and helped me complete it successfully. I would also like to thank Prof.

Tapan Chakraborty for his encouragement and help with this project.

I would also like to acknowledge my parents for their support throughout my

graduate school years. They stood by me through thick and thin and I would

have never achieved anything in my life without their persisting motivation and

hard work.

I would like to thank all my friends Aditya, Roystein, Sharanya, Hari Vijay,

Rajamani, Omar and Raghuveer. I would especially like to thank the technical

staff William Kish and Skip Carter for their support.

iv

Dedication

To my parents Charumathy and Padmanaban, my grandparents Naryanan and

Chellam, my sister Srikrupa, my brother Vignesh, and all my teachers.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . xi

List of Figures . xii

1. Introduction . 1

1.1. Contribution of this Research . 2

1.2. Motivation and Justification of this Research 3

1.3. Snapshot of Results of the Thesis 6

1.4. Roadmap of the Thesis . 7

2. Prior Work . 8

2.1. Coding Theory . 9

2.2. Self-Checking Circuits . 10

2.3. Error-Detecting and Error-Correcting Codes 11

2.3.1. Two-Rail Checker (TRC) 11

2.3.2. Berger Codes . 12

2.3.3. Hamming Codes . 13

2.3.3.1. Hamming Distance 14

2.3.3.2. Single Error Correcting Code 15

2.3.4. Reed Solomon (RS) Codes 16

vi

2.3.4.1. Architectures for Encoding and Decoding Reed

Solomon Codes 17

2.3.4.2. Encoder Architecture 17

2.3.4.3. Decoder Architecture 18

2.3.5. Residue Codes . 19

2.3.6. IBM’s Research on Error Correcting Codes 21

2.4. Hardware Redundancy . 22

2.4.1. Duplication of the Hardware 22

2.4.2. Triple Modular Redundancy 22

2.5. Time Redundancy . 25

2.5.1. Recomputing with Shifted Operands (RESO) 26

2.5.2. Recomputing with Alternating Logic 27

2.5.3. Recomputing with Swapped Operands (RESWO) 29

2.6. Fault Diagnosis . 30

2.7. Summary – Best of Prior Methods 31

3. Fault-Tolerant Technique for an ALU – Implementation Study

and Justification . 32

3.1. Architecture of the ALU . 32

3.1.1. Adders . 34

3.1.1.1. Brent-Kung Adder 35

3.1.1.2. Kogge-Stone Adder 35

3.1.1.3. Sklansky Adder 35

3.1.2. Multipliers . 36

3.1.2.1. Booth Encoding Multiplier 37

3.1.2.2. Wallace Tree Multiplication 38

3.1.2.3. Dadda Tree Multiplication 39

3.2. Justification for Recomputing Using Swapped Operands for Fault

Tolerance . 40

vii

3.2.1. Why Information Redundancy Is Not Useful 40

3.2.2. Why Hardware Redundancy Is Not Useful 42

3.2.3. Why the other Time-redundancy Mechanisms Are Not Useful 43

3.3. Results . 43

4. Diagnosis of ALU Using RESWO and Test Vectors and Recon-

figuration for Error Correction . 46

4.1. Diagnosis Method . 46

4.1.1. Fault Dictionary . 47

4.1.2. Diagnosis Tree . 47

4.1.3. Why We Use a Diagnosis Tree 48

4.2. Comparison with Alternative Methods 48

4.2.1. Implementation of Diagnosis for ALU 48

4.2.1.1. Design the ALU as One Piece 49

4.2.1.2. Design the ALU with Reconfigurable 4-bit ALU

Chunks . 49

4.2.1.3. Design the ALU with Reconfigurable 2-bit ALU

Chunks . 49

4.2.1.4. Design the Boolean, Addition, Subtraction and

Shifting Operations Using Reconfigurable 2-bit ALU

Chunks. Design the Multiplier Separately 50

4.2.1.5. Design the Boolean, Addition, Subtraction and

Shifting Operations Using Reconfigurable 1-bit ALU

Chunks. Design the Multiplier Separately 52

4.2.2. Minimal Test Set for 100% Fault Detection 52

4.3. Results . 55

5. Optimal Reconfiguration Scheme for the ALU 57

5.1. Reconfiguration Analysis . 57

5.2. Reconfiguration Schemes . 58

viii

5.2.1. For Every Two Chunks Provide One Spare Chunk 59

5.2.2. For Every Four Chunks Provide One Spare Chunk 61

5.2.3. For Every Eight Chunks Provide One Spare Chunk 63

5.2.4. For Every Sixteen Chunks Provide One Spare Chunk . . . 65

5.3. Hardware Overheads of Different Types of Reconfiguration Schemes

66

5.3.1. ALU Without Multiplier 66

5.3.2. Booth Encoder . 68

5.3.3. Booth Selector . 70

5.3.4. Full Adder and Half Adder 70

5.3.5. Carry Propagation Adder 74

5.4. Results . 74

6. Reliability Analysis . 78

6.1. TMR with Single Voting Mechanism 78

6.2. TMR with Triplicated Voting Mechanism 79

6.3. Our Fault-Tolerance Mechanism 80

6.4. Results . 83

7. Conclusions and Future Research 84

7.1. Statement of Original Ideas . 84

7.2. Comparison of Our Scheme . 85

7.2.1. TMR Single Voting Mechanism 85

7.2.2. TMR Triplicated Voting Mechanism 86

7.2.3. Residue Codes and RESWO Checkers as Fault-Tolerance

Mechanisms . 86

7.3. Statement of Results . 87

7.4. Benefits of Our Scheme . 89

7.5. Future Work Directions . 90

References . 91

ix

Appendix A. Validation of ALU Design 97

Appendix B. Validation of Fault-Tolerance Method 100

Appendix C. Validation of Reconfiguration Method 103

Appendix D. Reliability Analysis Calculations 107

Appendix E. Testing of the ALU with the Reconfiguration Mecha-

nism . 117

x

List of Tables

1.1. Diagnosis Vectors for Booth Encoded Dadda Tree Multiplier . . . 6

2.1. Hardware Overhead of Berger Code 12

2.2. Types of Hamming Code . 16

3.1. Results for a 16-bit ALU . 44

3.2. RESWO Implementation for Different Architectures of the ALU . 44

4.1. Test Vectors for the Booth Selector Circuit 53

4.2. Test Vectors for the Full Adder Circuit 54

4.3. Test Vectors for the Half Adder Circuit 55

4.4. Diagnosis Vectors for Different Diagnosis Implementations 55

4.5. Diagnosis Vectors for Booth Encoded Dadda Tree Multiplier . . . 56

6.1. Reliability for TMR with Single Voting Mechanisms 80

6.2. Reliability for TMR with Triplicated Voting Mechanisms 81

6.3. Reliability for our Fault-Tolerance Mechanism 82

7.1. Diagnosis Vectors for Booth Encoded Dadda Tree Multiplier . . . 88

C.1. Reconfiguration of the 64-bit ALU 104

D.1. Reliability Analysis . 115

E.1. Fault Coverage of Different Circuits 119

xi

List of Figures

1.1. Variation of SER with Technology 4

2.1. Typical Diagram of a System with an Error Correcting Code . . . 10

2.2. Logic Diagram of a TRC . 11

2.3. Block Diagram of Berger Code . 12

2.4. Block Diagram of Check Bit Generator for 7 Information Bits . . 13

2.5. Block Diagram of Hamming Code 14

2.6. Diagram for Hamming Distance 15

2.7. Block Diagram of System with Reed Solomon Code 16

2.8. Typical Block Diagram of Reed Solomon Encoder 18

2.9. Typical Block Diagram of Reed Solomon Decoder 18

2.10. Block Diagram of System with Duplication of Hardware Mechanism 23

2.11. Triple Redundancy as Originally Envisaged by Von Neumann . . 23

2.12. Triple Modular Redundant Configuration 24

2.13. Time Redundancy for Permanent Errors 26

2.14. Structure of RESO System . 27

2.15. Structure of Recomputing with Alternating Logic System 28

2.16. Structure of RESWO System . 29

3.1. Sklansky Tree Adder . 36

3.2. Radix-4 Booth Encoder and Selector 37

3.3. Wallace Tree Multiplier . 39

3.4. Dadda Tree Multiplier . 40

4.1. Booth Selector Circuit . 53

4.2. Full Adder Circuit . 53

xii

4.3. Half Adder Circuit . 54

5.1. Reconfiguration Scheme – For Every Two Chunks Provide One

Spare Chunk . 60

5.2. Reconfiguration Scheme – For Every Four Chunks Provide One

Spare Chunk . 61

5.3. Reconfiguration Scheme – For Every Eight Chunks Provide One

Spare Chunk . 64

5.4. Hardware Overhead of 2-bit ALU Chunks with Different Reconfig-

uration Schemes . 66

5.5. Hardware Overhead Comparison of 2-bit ALU and 1-bit ALU Chunks

with Different Reconfiguration Schemes 67

5.6. Hardware Overhead of Booth Encoder with Different Reconfigura-

tion Schemes . 69

5.7. Hardware Overhead of Booth Selector with Different Reconfigura-

tion Schemes . 71

5.8. Hardware Overhead of Full Adder with Different Reconfiguration

Schemes . 72

5.9. Hardware Overhead of Half Adder with Different Reconfiguration

Schemes . 73

5.10. Hardware Overhead of Carry Propagation Adder with Different

Reconfiguration Schemes . 75

5.11. Hardware Overhead of the 64-bit ALU (Including the Multiplier)

with Different Reconfiguration Schemes 76

6.1. Venn Diagram of Triple Modular Redundant System 79

6.2. Reliability of Different Fault-Tolerance Mechanisms 83

D.1. Full Adder Circuit . 108

D.2. Half Adder Circuit . 109

D.3. Booth Encoder Circuit . 110

D.4. Booth Selector Circuit . 110

xiii

D.5. Carry Propagation Circuit . 111

D.6. 2:1 MUX Circuit . 112

D.7. 4:1 MUX Circuit . 112

D.8. 8:1 MUX Circuit . 113

D.9. 16:1 MUX Circuit . 114

E.1. Fault Coverage for the ALU . 117

xiv

1

Chapter 1

Introduction

The role of electronics in every branch of science has become pivotal. Integrated

circuits, digital and analog, are used extensively in applications ranging from

medical to home-automation. System reliability has been a major concern since

the dawn of the electronic digital computer age [61]. As the scale of integration

increased from small/medium to large and to today’s very large scale, the relia-

bility per basic function has continued its dramatic improvement [24]. Due to the

demand for enhanced functionality, the complexity of contemporary computers,

measured in terms of basic functions, rose almost as fast as the improvement in

the reliability of the basic component. Secondly, our dependence on computing

systems has grown so great that it becomes impossible to return to less sophis-

ticated mechanisms. Previously, reliable computing has been limited to military,

industrial, aerospace, and communications applications in which the consequence

of computer failure had significant economic impact and/or loss of life [3, 41].

Today even commercial applications require high reliability as we move towards

a cashless/automated life-style. Reliability is of critical importance in situations

where a computer malfunction could have catastrophic results. Reliability is used

to describe systems in which it is not feasible to repair (as in computers on board

satellites) or in which the computer is serving a critical function and cannot be

lost even for the duration of a replacement (as in flight control computers on an

aircraft) or in which the repair is prohibitively expensive. Systems that tolerate

failures have been of interest since the 1940’s [45] when computational engines

were constructed from relays.

2

1.1 Contribution of this Research

The main aim of this research is to come up with a new fault-tolerant scheme for

an Arithmetic and Logic Unit (ALU), with a better hardware and power overhead

compared to the current fault tolerance techniques. In order to achieve this, we

will employ single stuck-fault error correction in an ALU using recomputing with

swapped operands (RESWO). Here, we divide the 32-bit data path into 3 equally-

sized segments of 11 bits each, and then we swap the bit positions for the data

in chunks of 11 bits. This requires multiplexing hardware to ensure that carries

propagate correctly. We operate the ALU twice for each data path operation –

once normally, and once swapped. If there is a discrepancy, then either a bit

position is broken or a carry propagation circuit is broken, we diagnose the ALU

using special diagnosis vectors. Knowledge of the faulty bit slice and the fault in

the carry path makes error correction possible.

A diagnosis test is characterized by its diagnostic resolution, defined as the

ability to get closer to the fault. When a failure is indicated by a pass/fail type

of test in a system that is operating in the field, a diagnostic test is applied. We

have employed different types of diagnosis mechanisms for the ALU. We found

that the best diagnosis mechanism for the 64-bit ALU is designing the Boolean,

addition, subtraction and shifting operations with thirty two reconfigurable 2-

bit ALU chunks and designing the multiplier separately. We had to split the

multiplier into identical bit slices of Booth encoders, Booth selectors, full adders,

half adders and carry propagation adders. It was easy to reconfigure the multiplier

once it was split into identical bit slices.

If a fault is detected and a permanent failure located, the system may be

able to reconfigure its components to replace the failed component or to isolate

it from the rest of the system [24]. The component may be replaced by backup

spares. We employed different reconfiguration schemes for the 64-bit ALU. We

decided that the best reconfiguration mechanism for the 64-bit ALU is to use

one spare chunk for every sixteen chunks. The reconfiguration mechanism of one

3

spare chunk for every sixteen chunks can correct up to four faults, provided that

they are not in the same sixteen-bit chunk.

1.2 Motivation and Justification of this Research

The reason for the use of the fault-tolerant design is to achieve a reliability or

availability that cannot be attained by the fault-intolerant design. The main argu-

ment against the use of fault-tolerance techniques in computer systems has been

the cost of redundancy. High performance general-purpose computing systems

are very susceptible to transient errors and permanent faults. As performance

demand increases, fault tolerance may be the only course to building commercial

systems. The most stringent requirement for fault-tolerance is in real time control

systems, where faulty computation could jeopardize human life or have high eco-

nomic impact. Computations must not only be correct, but recovery time from

faults must be minimized. Specially designed hardware must be employed with

fault-tolerance mechanisms so that incorrect data never leaves the faulty module.

As the dimensions and operating voltages of electronic devices are reduced to

satisfy the ever–increasing demand for higher density and low-power, their sensi-

tivity to radiation increases dramatically. A soft error arises in the system upon

exposure to high energy radiation (cosmic rays, α particles, neutrons, etc.). In

the past, soft errors were primarily a concern only in space applications. Signif-

icant single event upsets (SEUs) arise due to α particle emissions from minute

traces of radioactive elements in packaging materials [7]. Even though SEUs are

the preponderant phenomenon, there are important instances in which multiple

event upsets occur. Multiple event upsets are those where an incident heavy ion

can cause a SEU in a string of memory cells, in a microcircuit, that happen to lie

physically along the penetration ion track. The problem gets severe and recurrent

with shrinking device geometry. Shorter channel lengths mean fewer number of

charge carriers, resulting in a smaller value of critical charge. The critical charge

4

of a memory array storage cell is defined as the largest charge that can be in-

jected without changing the cell’s logic state. SEUs were initially associated with

small and densely packed memories, but are now commonly observed in combi-

national circuits and latches. Exponential growth in the amount of transistors in

microprocessors and digital signal processors has led the soft error rate (SER) to

increase with each generation, with no end in sight. The most effective method

of dealing with soft errors in memory components is to use additional circuits for

error detection and correction.

Figure 1.1: Variation of SER with Technology [8]

Figure 1.1 illustrates the variation of soft-error rate with respect to chip tech-

nology [8]. This trend is of great concern to chip manufacturers since SRAM

constitutes a large part of all advanced integrated circuits today. The soft-error

rate is measured in units of failures in time (FITs). One FIT is equivalent to one

failure in 1 billion (109) operational hours.

As the complexity of microelectronic components continues to increase, design

5

and reliability engineers will need to address several key areas to enable advanced

SoC (System-on-a-chip) products in the commercial sector. The first challenge

will be to develop improved and more accurate system level modeling of soft er-

rors including not just device and component failure rates but architectural and

algorithmic dependencies as well [9]. With these improved models, the next chal-

lenge will be to develop optimized memory and logic mitigation designs that offer

a good balance between performance and robustness against soft errors and single

energy transients (SETs). The last challenge will be the development of viable

commercial fault-tolerant solutions that will render complex systems relatively

insensitive to soft errors at the operation level.

Fault tolerance is no longer an exotic engineering discipline rather than it

is becoming as fundamental to computer design as logic synthesis. Designs will

be compared and contrasted not only by their cost, power consumption, and

performance but also by their reliability and ability to tolerate failures. These

countermeasures never come for free and impact the cost of system being devel-

oped. Also, the resulting system will be slower and may feature an increased block

size. There will always be a trade–off between cost, efficiency and fault-tolerance

and it will be a judgment call by designers, developers and users to choose which

of these requirements best suit their needs.

We need a better fault-tolerance mechanism for the ALU that has the hard-

ware overhead lower than 100% because the current fault-tolerance mechanisms

have the hardware overhead more than 200%. In this research our top prior-

ity is the hardware overhead, then the power and the delay overheads. There

is no fault-tolerance mechanism that can handle both the transient errors and

the permanent errors. Our main goal here is to come up with a fault-tolerance

mechanism than can handle both the hard and the soft errors with a hardware

overhead not more than 100%.

6

1.3 Snapshot of Results of the Thesis

We used time redundancy as the fault-tolerance mechanism for the ALU after a

very brief analysis. We chose REcomputing with SWapped Operands (RESWO) as

it had 5.3% lower hardware, 9.06% lower power and 3.26% lower delay overheads

than Recomputing with Alternating Logic. The RESWO approach has been shown

to be less expensive, particularly when the complexity of individual modules of the

circuit is high. Once a fault is detected in the ALU using the RESWO approach

we diagnose the ALU with diagnosis vectors and locate the fault.

When there is a discrepancy in the circuit (either a bit position is broken or a

carry propagation circuit is broken), we diagnose the ALU using special diagnosis

vectors. We have implemented different diagnosis mechanisms for the ALU. After

a very brief analysis we found that the best diagnosis mechanism for the 64-bit

ALU is designing the Boolean, addition, subtraction and shifting operations with

thirty two reconfigurable 2-bit chunks and designing the multiplier separately.

We had to split the multiplier into identical bit slices of Booth encoders, Booth

Selectors, full adders and carry propagation adders.

Table 1.1: Diagnosis Vectors for Booth Encoded Dadda Tree Multiplier

Architecture Number of
Diagnosis Vectors

2-bit ALU without Multiplier 22
Booth Encoder 7
Booth Selector 4

Full Adder 5
Half Adder 4

Carry Propagation Adder 7

Once the fault is located we have to reconfigure the circuit and remove the

faulty part. We developed different reconfiguration mechanisms for the 64-bit

ALU. After analyzing all the reconfiguration mechanisms we decided to use one

spare chunk for every sixteen chunks as our reconfiguration mechanism because

it has a much lower hardware overhead of 78% (2.49% of this overhead is for the

7

RESWO checkers) compared to the hardware overheads of TMR with single vot-

ing mechanism (201.87%) and TMR with triplicated voting mechanism (207.5%)

and an error correction rate of 6.25%.

Reliability analysis showed that our fault-tolerance mechanism is better than

the current fault-tolerant mechanisms. If the reliability of all the sub-modules of

the 64-bit ALU with fault-tolerance mechanism is 90%, then the entire system

reliability is 99.99%.

1.4 Roadmap of the Thesis

This thesis is organized as follows. In Chapter 2 we survey the related work. In

this chapter we present a detailed introduction to the different fault-tolerant tech-

niques (error detecting and error correcting codes), diagnosis and reconfiguration.

The next chapter describes the architecture and the most optimum fault-tolerant

mechanism for the Arithmetic and Logic Unit ALU. Chapter 4 explains the dif-

ferent implementations of diagnosis mechanisms with an analysis and results.

Chapter 5 describes the different implementations of reconfiguration mechanisms

with a brief analysis and results. Chapter 6 explains the reliability of different

fault-tolerance mechanisms. Chapter 7 concludes this thesis. The first section

gives us the essence of the work and the last section discusses the directions for

this work in the future.

8

Chapter 2

Prior Work

In fault tolerance, we will discuss prior work focusing on information, hardware

and time redundancy. First, we will review the work that has been done in the area

of fault tolerance. Then we will discuss the different fault-tolerant mechanisms.

Later we will discus the work done in diagnosis and reconfiguration of Arithmetic

and Logic Units (ALUs).

Systems that tolerate failures have been of interest since the 1940’s when

computational engines were constructed from relays. Fault detection provides no

tolerance to faults, but gives warning when they occur [45]. If the dominant form

of faults is transient/intermittent, recovery can be initiated by a retry invoked

from a previous checkpoint in the system at whose time the system state was

known to be good. Design errors, whether in hardware or software, are those

caused by improper translation of a concept into an operational realization [2, 4,

6, 38]. The three major axes of the space of fault-tolerant designs are: system

application, system structure, and fault-tolerant technique employed [60]. The

most stringent requirement for fault tolerance is in real-time control systems,

where faulty computation could jeopardize human life or have high economic

impact [56]. Computations must not only be correct, but recovery time from faults

must be minimized. Specially designed hardware is employed with concurrent

error detection so that incorrect data never leaves the faulty module [43].

Major error-detection techniques include duplication (frequently used for ran-

dom logic) and error detecting codes [36]. Recovery techniques can restore enough

of the system state to allow a process execution to restart without loss of acquired

information. There are two basic approaches: forward and backward recovery.

9

Forward recovery attempts to restore the system by finding a new state from

which the system can continue operation. Backward recovery attempts to recover

the system by rolling back the system to a previously saved state, assuming that

the fault manifested itself after the saved state. Forward error recovery, which

produces correct results through continuation of normal processing, is usually

highly application-dependent [53]. Backward recovery techniques require some

redundant process and state information to be recorded as computations progress.

Error detection and correction codes have proven very effective for regular logic

such as memories and memory chips have built-in support for error detection and

correcting codes [36, 40, 51]. With the ever-increasing dominance of transient and

intermittent failures, retry mechanisms will be built into all levels of the system

as the major error-recovery mechanism [3, 41]. Fault tolerance is no longer an

exotic engineering discipline; rather, it is becoming as fundamental to computer

design as logic synthesis. Designs will be compared and contrasted not only by

their cost, power consumption, and performance but also by their reliability and

ability to tolerate failures [61].

2.1 Coding Theory

A stream of source data, in the form of zeros and ones, is being transmitted over

a communications channel, such as telephone line [12]. How can we tell that

the original data has been changed, and when it has, how can we recover the

original data? Here are some easy things to try: Do nothing. If a channel error

occurs with probability p, then the probability of making a decision error is p.

Send each bit 3 times in succession. The bit gets picked by a majority voting

scheme. If errors occur independently, then the probability of making a decision

error is 3p2 − 2p3, which is less than p for p < 1/2. Generalize the above; Send

each bit n times and choose the majority bit. In this way, we can make the

probability of making a decision error arbitrarily small, but communications are

inefficient in terms of transmission rate. From the above suggestion we see the

10

basic elements of encoding of data: Encode the source information, by adding

additional information, sometimes referred to as redundancy, which can be used

to detect, and perhaps correct, errors in transmission. The more redundancy we

add, the more reliably we can detect and correct errors but the less efficient we

become at transmitting the source data.

Sends Source
Message

May Introduce
Errors

Source
1011

Encoder Channel

1011010

1010010

1011

DecoderReceiver

Receives
Source
Message

Corrects error
and Reclaims
Source Message

Encodes Source
Message into
Codeword

Figure 2.1: Typical Diagram of a System with an Error Correcting Code

2.2 Self-Checking Circuits

• Definition I: A combinational circuit is self-testing for a fault set F if and

only if for every fault in F, the circuit produces a non-codeword output dur-

ing normal operation for atleast one input code word [40, 63, 65]. Namely,

if during normal circuit operation any fault occurs, this property guarantees

an error indication.

• Definition II: A combinational circuit is Strongly-Fault-Secure (SFS) for a

fault set F iff, for every fault in F, the circuit never produces an incorrect

output code-word [26, 65].

• Definition III: A combinational circuit is Self-Checking circuit SCC for a

fault set F iff, for every fault n F, the circuit is both self-testing and strongly

fault secure [13, 63, 65].

11

2.3 Error-Detecting and Error-Correcting Codes

2.3.1 Two-Rail Checker (TRC)

A one bit output is insufficient for a Totally Self-Checking (TSC) circuit since a

stuck-at-fault on the output resulting in the “good” output could not be detected

[36, 40, 51, 65]. The output of a TSC circuit is typically encoded using a two

rail (1-out-of-2) code. The checker is said to be TSC circuit iff, under the fault

X0

Y0

X1

Y1

f

g

Figure 2.2: Logic Diagram of a TRC

models:

1. The output of the checker is 01 or 10 whenever the input is a code word

(strongly-fault-secure property).

2. The output is 00 or 11 whenever the input is not a code word (code-disjoint

property).

3. Faults in the checker are detectable by test inputs that are code words and,

under fault-free condition, for at least two inputs X and Y , the checker

outputs are 01 and 10, respectively.

12

2.3.2 Berger Codes

Berger codes are perfect error detection codes in a completely asymmetric channel.

A completely asymmetric channel is one in which only one type of error occurs,

either only zeros converted to ones or only ones converted to zeros. They are

separable codes [10]. The Berger code counts the number of 1’s in the word and

expresses it in binary. It complements the binary word, and appends the count to

the data. Berger codes are optimal systematic AUED (All Unidirectional Error

Check bit
Generator

Rail
Twobits

I

K
bits

Circuit

g
Checker

f

Figure 2.3: Block Diagram of Berger Code

Table 2.1: Hardware Overhead of Berger Code
Information Check Overhead

Bits (k) Bits (c)
4 3 0.7500
8 4 0.5000

16 5 0.3125
32 6 0.1875
64 7 0.1094

128 8 0.0625
256 9 0.0352
512 10 0.0195

Detecting) codes [36, 40, 51]. A code is optimal if it has the highest possible

information rate (i.e., c/n). A code is systematic if there is a generator matrix for

the code. It is optimal because the check symbol length is minimal for the Berger

13

code compared to all other systematic codes. Less logic is required to implement

the Berger check error detection. It detects all unidirectional bit errors, i.e, if

Full
i1
i2
i3

i4
i5
i6

i7

c1

c3

Adder
Full

Adder
Full

Adder
Full

Adder c2

Figure 2.4: Block Diagram of Check Bit Generator for 7 Information Bits

one or more ones turn into zeros it can be identified, but at the same time, zeros

converted into ones cannot be identified. If the same number of bits flips from

one to zero as from zero to one, then the error will not be detected. If the number

of data bits is k, then the check bits (c) are equal to log2(k + 1) bits. Hence, the

overhead is log2((k+1)/k). These codes have been designed to be separable codes

that are also perfect error detection codes in a completely asymmetric channel

[10]. The major purpose has been to demonstrate that this unique feature of the

fixed weight codes can also be achieved with separable codes so that advantage

may be taken of the asymmetry of a channel while still maintaining the flexibility

and compatibility associated with separable codes.

2.3.3 Hamming Codes

The study is given in consideration of large scale computing machines in which

a large number of operations must be performed without a single error in the

end result [33]. In transmission from one place to another, digital machines use

codes that are simply sets of symbols to which meanings or values are attached

[36, 40, 51]. Examples of codes that were designed to detect isolated errors are

numerous; among them are the highly developed 2-out-of-5 codes used extensively

14

in common control switching systems and in the Bell Relay Computers. The codes

S
T
E
M

R
O
C

R

T
C

I

N

E

O

CheckInput
Bit

Check
bits

data

Check

Generator

Uncorrected data

Generator

Generator

Syndrome
bits

Syndrome

Bit

Correctedbits

data

Input data

S
Y

Check

Figure 2.5: Block Diagram of Hamming Code

used are called systematic codes. Systematic codes may be defined as codes in

which each code symbol has exactly n binary digits, where m digits are associated

with the information while the other k = n−m digits are used for error detection

and correction [32]. Application of these codes may be expected to occur first

only under extreme conditions. How to construct minimum redundancy codes is

shown in the following cases:

1. Single error detecting codes

2. Single error correcting codes

3. Single error correcting plus double error detecting codes.

2.3.3.1 Hamming Distance

The Hamming distance (Hd) of a code, the distance between 2 binary words, is the

number of bit positions in which they differ. Example: For 1001000 to 1011001,

the Hamming distance is 2. Codes 000 and 001 differ by 1 bit so Hd is 1. Codes

000 and 110 differ by 2 bits so Hd is 2. A Hd of 2 between two code words implies

that a single bit error will not change one code word into the other. Codes 000

and 111 differ by 3 bits so Hd is 3. A Hd of 3 can detect any single or double bit

error. If no double bit errors occur, it can correct a single bit error.

15

000

010

100

001

101

011

111110

Figure 2.6: Diagram for Hamming Distance

2.3.3.2 Single Error Correcting Code

There are k information positions of n positions. The c remaining positions are

check positions: c = n − k. The value of c is determined in the encoding process

by even parity checks. Each time the assigned and observed value of parity checks

agree, we write a 0, else we write a 1. Written from right to left, the c 0’s and 1’s

gives the checking number. The checking number gives the position of any single

error. The checking number describes k + c + 1 different things.

2c ≥ k + c + 1 (2.1)

First parity check: 1’s for the first binary digit from the right of their binary

representation. Second parity check: 1’s for the second binary digit from the right

of their binary representation. Third parity check: 1’s for the third binary digit

from the right of their binary representation. Parity checks decide the position of

the information and check bits.

A subset with minimum Hd = 5 may be used for:

1. Double error correction, with of course, double error detection.

2. Single error correction plus triple error detection.

3. Quadruple error detection.

16

Table 2.2: Types of Hamming Code
Minimum Meaning
Distance

Hd

1 Uniqueness
2 Single error detection
3 Single error correction
4 Single error correction and double error detection
5 Double error correction

2.3.4 Reed Solomon (RS) Codes

Reed Solomon (RS) codes have introduced ideas that form the core of current

commonly used error correction techniques [55]. Reed Solomon codes are used for

Data Storage, Data Transmission, Wireless or Mobile Communications, Satellite

communications and Digital Video Broadcasting (DVB). A Reed Solomon encoder

Reed Solomon
Encoder

Communication
channel or
storage device

Reed Solomon
Decoder

Data
In

Noise/Errors

Out
Data

Typical System

Figure 2.7: Block Diagram of System with Reed Solomon Code

takes a block of digital data and adds extra redundancy bits. Errors occur during

transmission or storage [54, 73]. A Reed Solomon decoder processes each block

and attempts to correct errors and recover [15]. The number and type of errors

that can be corrected depends on the characteristics of the code. A RS code

is specified as RS(n, k) with s-bit symbols. It takes k data symbols of s bits

each and adds parity symbols to make an n-bit symbol. The Reed Solomon

decoder can correct up to t symbols that contain errors in a code word, where

2t = n − k. The minimum code word length (n) for a RS code is n = 2s − 1. A

large value of t means that a large number of errors can be corrected, but requires

17

more computational power than a small value of t. Sometimes error locations are

known in advance, and those errors are called erasures. When a code word is

decoded there are three possible outcomes:

• If 2s + r < 2t (s errors, r erasures) then the original transmitted code word

will always be recovered.

• The decoder will detect that it cannot recover the original code word and

indicate this fact.

• The decoder will misdecode and recover an incorrect code without any in-

dication.

The probability of each of three possibilities depends on the particular Reed

Solomon code and on the number and distribution of errors.

2.3.4.1 Architectures for Encoding and Decoding Reed Solomon Codes

The codes are based on a specialized area of mathematics known as Galois fields.

The encoder or decoder needs to carry out arithmetic operations and it requires

special hardware to implement. This code word is generated using a special

polynomial of the form:

g(x) = (x − αi) (x − αi+1)(x − αi+2t) (2.2)

The code word is constructed using:

c(x) = g(x) i(x) (2.3)

where g(x) is the generator polynomial, i(x) is the information block, c(x) is the

valid code word and α is the primitive element of the field.

2.3.4.2 Encoder Architecture

The 2t parity symbols in a systematic RS [44] code word are given by:

p(x) = i(x) (xn − k) (g(x)) (2.4)

18

P(x)
+

g2

+ +

g0

Reg 2 Reg 3

g1

Reg 1

i(x)

Figure 2.8: Typical Block Diagram of Reed Solomon Encoder

2.3.4.3 Decoder Architecture

The received code word r(x) is the original (transmitted) code word c(x) plus

errors e(x), i.e., r(x) = c(x)+e(x). A Reed Solomon code word has 2t syndromes

that depend only on errors [50]. A syndrome can be calculated by substituting

the 2t roots of the generator polynomial g(x) into r(x). Finding the symbol error

locations involves solving simultaneous equations with t unknowns. Several fast

algorithms are available to do this. The error locator polynomial is done using

the Berlekamp Massey algorithm or Euclid’s algorithm [11, 12]. Roots of the

polynomial are done using the Chien search algorithm [21]. Symbol error values

are analyzed using the Forney algorithm [29].

Input

Si
L(x)

σ

Xi
Yi C(x)

Output
R(x)

Error

Chien
Search

Error

Forney
ErrorSyndrome

Generator

Error
Polynomial

Berlekamp
Algorithm

Location Magnitude

Algorithm
Corrector

Figure 2.9: Typical Block Diagram of Reed Solomon Decoder

19

The properties of Reed-Solomon codes make them especially well-suited to

applications where errors occur in bursts. This is because it does not matter to

the code how many bits in a symbol are in error – if multiple bits in a symbol

are corrupted it only counts as a single error. Conversely, if a data stream is

not characterized by error bursts or drop-outs but by random single bit errors,

a Reed-Solomon code is usually a poor choice. RS codes have huge amounts

of hardware and take many clock cycles to encode or decode a stream of data.

The RS code increases the data path width to three times the hardware of an

ALU, additional hardware is needed for the RS encoder and decoder, and it takes

twelve clock cycles to encode the data. In designing fault-tolerance for ALUs huge

amounts of hardware and delay overhead cannot be afforded. Hence, RS codes

cannot be used as a fault-tolerance technique for a microprocessor.

2.3.5 Residue Codes

Residue codes are separable codes and in general have been used to detect errors in

the results produced by arithmetic operations [70]. A residue is simply defined as

the remainder after a division. An introduction to residue arithmetic computation

will now be given. The residue of X modulo m, denoted ‖X‖m is the least positive

remainder when an integer X (a variable operand) is divided by another integer

m (the modulus operator, normally built into the computer in some way). X and

m are assumed positive here, although this restriction is readily removable. A

symbolic statement of this condition is

X = m
[

X

m

]

+ ‖X‖m (2.5)

where the meaning of the square brackets is that the integer quotient [X/m] is the

largest integer less than or equal to the improper fraction X/m. In consequence

of this definition of ‖X‖m, inherently:

0 ≤ ‖X‖m ≤ m − 1 (2.6)

Evidently ‖X‖m must be the smallest positive integer which can be expressed

as X − Am, where A is an integer. Equation 2.5 is the “fundamental identity”

20

of residue arithmetic; despite the use of specialized notation, all it states is the

familiar algebraic fact that one integer divided by another yields a quotient and

a remainder that are also integers.

Residue Number System (RNS) arithmetic and Redundant Residue Number

System (RRNS) based codes as well as their properties are reviewed [30, 70].

RNS-based arithmetic exhibits a modular structure that leads naturally to paral-

lelism in digital hardware implementations. The RNS has two inherent features,

namely, the carry-free arithmetic and the lack of ordered significance amongst

the residue digits. These are attractive in comparison to conventional weighted

number systems, such as, for example, the binary weighted number system repre-

sentation. The first property implies that the operations related to the different

residue digits are mutually independent and hence the errors occurring during

addition, subtraction and multiplication operations, or due to the noise induced

by transmission and processing, remain confined to their original residue digits.

In other words, these errors do not propagate and hence do not contaminate

other residue digits due to the absence of a carry forward [20, 22, 28]. The above-

mentioned second property of the RNS arithmetic implies that redundant residue

digits can be discarded without affecting the result, provided that a sufficiently

high dynamic range is retained by the resultant reduced-range RNS system, in

order to unambiguously describe the non-redundant information symbols. As it

is well known in VLSI design, usually so-called systolic architectures are invoked

to divide a processing task into several simple tasks performed by small, (ideally)

identical, easily designed processors. Each processor communicates only with its

nearest neighbor, simplifying the interconnection design and test, while reduc-

ing signal delays and hence increasing the processing speed. Due to its carry-free

property, the RNS arithmetic further simplifies the computations by decomposing

a problem into a set of parallel, independent residue computations.

The properties of the RNS arithmetic suggest that a RRNS can be used for self-

checking, error-detection and error-correction in digital processors. The RRNS

technique provides a useful approach to the design of general-purpose systems,

21

capable of sensing and rectifying their own processing and transmission errors

[37, 70]. For example, if a digital receiver is implemented using the RRNS having

sufficient redundancy, then errors in the processed signals can be detected and

corrected by the RRNS-based decoding. Furthermore, the RRNS approach is the

only one where it is possible to use the very same arithmetic module in the very

same way for the generation of both the information part and the parity part of

a RRNS code word. Moreover, due to the inherent properties of the RNS, the

residue arithmetic offers a variety of new approaches to the realization of digital

signal processing algorithms, such as digital modulation and demodulation, as

well as the fault-tolerant design of arithmetic units. It also offers new approaches

to the design of error-detection and error-correction codes.

2.3.6 IBM’s Research on Error Correcting Codes

Arrays, data paths and control paths were protected either by parity or Error

Correcting Codes (ECCs). High coverage error checking in microprocessors is

implemented and done by duplicating chips and comparing the outputs. Dupli-

cation with comparison is, however, adequate only for error detection. Detection

alone is inadequate for S/390, which singularly requires dynamic CPU recovery

[64]. G3, G4 and G5 are various IBM file server models. The G5 server delivers

this with a (72, 64) Hamming code (it can correct upto 5 simultaneous errors

in the memory). For G3 and G4 servers, a code with 4-bit correction capability

(S4EC) was implemented. It was not necessary to design a (78, 64) code, which

could both correct one 4-bit error and detect a second 4-bit error [68]. The (76,

64) S4EC/DED ECC implemented on G3 and G4 servers is designed to ensure

that all single bit failures of one chip, occurring in the same double word, as

well as a 1-4 bit error on a second chip are detected. G5 returns to single bit

per chip ECC and is therefore able to again use a less costly (72, 64) SEC/DED

code and still protect the system from catastrophic failures caused by a single

22

array-chip failure. The 9121 processor cache uses an ECC scheme, which cor-

rects all single-bit errors and detects all double bit errors within a single byte.

The Power-4 (a power PC machine) error-checking mechanisms, including parity,

ECC, and control checks, have three distinct but related attributes. Checkers

provide data integrity. Checkers initiate appropriate recovery mechanisms from

bus retry based on parity error detection, to ECC correction based on hardware

detection of a non-zero syndrome in ECC logic, to firmware executing recovery

routines based on parity detection [16]. Recovery from soft errors in the power

L2 and L3 caches is accomplished by standard single-error-correct, double error

detect Hamming ECCs.

2.4 Hardware Redundancy

2.4.1 Duplication of the Hardware

TSC circuits use hardware redundancy. For a given combinational circuit we

synthesize a duplicate circuit and logic for the TSC comparator [47, 67]. The

original part of the circuit has true, while its copy has complemented output

values. Whenever the natural and complementary outputs differ from each other,

or whenever a fault affects one of the self-checking TRC checkers, the error signal

reports the presence of faults. The procedure for generating logic for the TSC

comparator is adapted to the number of signals to be compared. Finally, the

duplicated logic and the TSC equality comparator are technology mapped to

VLSI IC’s.

2.4.2 Triple Modular Redundancy

To explain triple-modular redundancy, it is first necessary to explain the concept

of triple redundancy as originally envisaged by Von Neumann [46]. The concept

is illustrated in Figure 2.11 given below, where the three boxes labeled M are

identical modules or black boxes, which have a single output and contain digital

23

Complemented
Primary outputs

Primary Outputs
Checker circuit

Primary
inputs error

signal

Function
Logic
Copy 1

Logic
Copy 2

Function TRC

TRC

TRC

Figure 2.10: Block Diagram of System with Duplication of Hardware Mechanism

equipment. (A black box may be a complete computer, or it may be a much less

complex unit, for example, an adder or a gate.) The circle labeled V is called a

majority organ by Von Neumann. In here it will be called a voting circuit because

it accepts the input from the three sources and delivers the majority opinion as

an output. Since the outputs of the M ’s are binary and the number of inputs is

odd, there is bound to be an unambiguous majority opinion. The reliability of

M

M

M

V

Figure 2.11: Triple Redundancy as Originally Envisaged by Von Neumann

the redundant system illustrated in Figure 2.11 is now determined as a function

of the reliability of one module, R, assuming the voting circuit does not fail. The

24

redundant system will not fail if none of the three modules fails, or if exactly one

of the three modules fails. It is assumed that the failures of the three modules

are independent. Since the two events are mutually exclusive, the reliability R of

the redundant system is equal to the sum of the probabilities of these two events.

Hence,

R = R3

M + 3R2

M (1 − RM) = 3R2

M − 2R3

M (2.7)

Several observations can be made regarding the above equation. Note that ap-

plication of this type of redundancy does not increase the reliability if RM is less

than 0.5. This is an example of the general truth that reliability, even by the use

of redundancy, cannot be obtained if the redundancy is applied at a level where

the non-redundant reliability is very low. The closer RM is to unity, the more ad-

vantageous the redundancy becomes. In particular, the slope of the curve for the

redundant case is zero at RM = 1. Thus, when RM is very near unity, R departs

from unity only by a second-order effect. A non-redundant system is one which

M

M

M

V

V

V

Figure 2.12: Triple Modular Redundant Configuration

fails if any single element in the system fails [23, 42]. The exponential failure law

for non-redundant systems has been justified for a wide class of complex systems

for periods of observation that are short compared with the mean-time-to-failure

of an individual component. Although most of the analysis that follows is valid

for any type of dependency of the non-redundant reliability on operating time, it

is interesting to examine the specific case where the non-redundant reliability is

25

a decaying exponential of the operating time, i.e., where:

RM(t) = e−ft = e−t/MTF (2.8)

In this formula f is a constant, called the failure rate; and MTF is its reciprocal,

called mean-time-to-failure. The reliability of the triple redundant system is now

given by

R(t) = 3 e−2t/MTF − 2 e−3t/MTF (2.9)

Note that for t > MTF , which is the range of time, R < RM . This means that

triple redundancy at the computer level should not be used to improve reliability

in this case. To obtain improvement in reliability by the use of triple redundancy,

we require t < MTF . This can be achieved in the present situation by breaking

the computer into many modules, each of which is much more reliable than the

entire computer. If these triply redundant modules are now reconnected to assem-

ble an entire triple-modular-redundant (TMR) computer, an over-all improvement

in the reliability of the computer will be achieved.

2.5 Time Redundancy

The basic idea of time redundancy is the repetition of computations in ways that

allow errors to be detected [1, 40, 52]. To allow time redundancy to be used to

detect permanent errors, the repeated computations are performed differently, as

illustrated in Figure 2.13. During the first computation of time t0, the operands

are unmodified and the results are stored for later comparison. During the second

computation at time t0 +∆, the operands are modified in such a way that perma-

nent errors resulting from faults in F (X) have a different impact on the results

and can be detected when the results are compared to those obtained during the

first computation. The basic concept of this form of time redundancy is that the

same hardware is used multiple times in differing ways such that comparison of

the results obtained at the two times will allow error detection.

26

Time t0

X
Encode

F(X)
Function Decode

Result Compare

StorageFunction
F(X)

Time t0 + D

Figure 2.13: Time Redundancy for Permanent Errors

2.5.1 Recomputing with Shifted Operands (RESO)

Let the function unit F be an ALU, the coding function c be a left shift operation,

and the decoding function c−1 be a right shift operation [48]. Thus, c(x) = left

shift of x and c−1(x) = right shift of x. With a more precise description of c, e.g.,

logical or arithmetic shift, by how many bits, what gets shifted in and so forth, it

can be shown that for most typical operations of an ALU, c−1(F (c(x))) = F (x).

During the initial computation step the operands are passed through the shifter

unshifted and then they are input to the ALU. The result is then stored in a

register unshifted. During the recomputation step, the operands are shifted left

and then input to the ALU. The result is right shifted and then compared with

the contents of the register. A mismatch indicates an error in computation. This

is one way of detecting error using recomputing with shifted operands. The other

way of detecting error using RESO is as follows. Here we input the unshifted

operands during the first step as before, but we left shift the result and then

store it in the register. In the second step, we input the left shifted operands to

the ALU and then compare the output directly with the register. An inequality

signals an error. The penalty paid for using RESO is that all of the components of

the system must be extended to accommodate the arithmetic shift. For example

to perform the addition of 32-bit operands using a one-bit shift, the adder and

the shift registers are required to be 33 bits and the storage register and the

comparator to be 34 bits. In many applications, the penalty may be even more

27

shifter

Comparator

Shifter

Extra
cell

Shifter

Operand BOperand A

System
Cout

Error Signal

Storage/

Cin

Figure 2.14: Structure of RESO System

severe [5, 31]. For example, in a semi-custom design environment, the smallest

available entity may be a four-bit adder, in which case the need for an extra bit

in the adder would require providing the extra bits.

2.5.2 Recomputing with Alternating Logic

Let the function unit F be an ALU, the coding function c be a complement

operation, and the decoding function c−1 be a complement operation [58]. Thus,

c(x) = complement of x and c−1(x) = complement of x. With a more precise

description of c, it can be shown that for most typical operations of an ALU,

c−1(F (c(x))) = F (x). During the initial computation step the operands are

passed through the complementation operator uncomplemented and then they

are input to the ALU. The result is then stored in a register uncomplemented.

During the recomputation step, the operands are complemented and then input

to the ALU. The result is complemented and then compared with the contents of

the register. A mismatch indicates an error in computation. This is one way of

28

Operand A

Storage
Register

Error signal

Complement
Operation

Operand B

System

Comparator

Operation
Complement

Figure 2.15: Structure of Recomputing with Alternating Logic System

29

detecting error using recomputing with alternating logic. The primary difficulty

with complementation is that the function, F (x), must be a self-dual to allow

error detection to occur. In many cases, 100% hardware redundancy is required

to create a self-dual function from some arbitrary function [19, 27, 35, 72].

MUX MUX Half
System System

Storage/
Swapping

Half

Swapping

Storage

Storage/

Storage
RegisterRegister

Comparator

Error

Comparator

Cout

C1

Error

C1C2

Cin

A BA

MUX

C2

B

Cin

Figure 2.16: Structure of RESWO System

2.5.3 Recomputing with Swapped Operands (RESWO)

RESWO is a variation of the RESO technique [34, 57]. The encoding and decoding

functions are swapping the upper and lower halves of each operand. At time t the

30

computations are performed using unmodified operands. At time t+∆t, however,

the upper and lower halves of each operand are swapped, and the computations

are repeated. A mismatch indicates an error in computation. The RESWO

approach has been shown to be less expensive, particularly when the complexity

of individual modules of the circuit is high [59]. This has an advantage of being

quick and easy to implement.

2.6 Fault Diagnosis

Diagnosis is the process of locating the fault present within a given fabricated copy

of the circuit [18]. For some digital systems, each fabricated copy is diagnosed

to identify the faults so as to make the decisions about repair. The objective of

diagnosis is to identify the root cause behind the common failures or performance

problems to provide the insights on how to improve the chip yield and/or perfor-

mance. A diagnostic test is designed for fault isolation or diagnosis. Diagnosis

refers to the identification of a faulty part. A diagnosis test is characterized by

its diagnostic resolution, defined as the ability to get closer to the fault. When

a failure is indicated by a pass/fail type of test in a system that is operating

in the field, a diagnostic test is applied. For an effective field repair, this test

must have a diagnostic resolution of the Lowest Replaceable Unit (LRU). For a

computer system that LRU may be a part such as a memory board, hard drive

or keyboard. The diagnostic test must identify the faulty part so that it can be

replaced. The concepts of fault dictionary and diagnostic tree are relevant to any

type of diagnosis. The disadvantage of a fault dictionary approach is that all tests

must be applied before an inference can be drawn. Besides, for large circuits, the

volume of data storage can be large and the task of matching the test syndrome

can also take a long time. It is extremely time consuming to compute a fault

dictionary.

An alternative procedure, known as the diagnostic tree or fault tree, is more

efficient. In this procedure, tests are applied one at a time. After the application

31

of a test, a partial diagnosis is obtained. Also, the test to be applied next is

chosen based on the outcome of the previous test. The depth of the diagnostic

tree is the number of tests on the longest path from the root to any leaf node. It

represents the length of the diagnostic process in the worst case. The presence

of several shorter branches indicates that the process may terminate earlier in

many cases. The maximum depth of the diagnostic tree is bounded by the total

number of tests, but it can be less than that also. Misdiagnosis is also possible

with the diagnostic tree. The notable advantage of the diagnostic tree approach

is that the process can be stopped any time with some meaningful result. If it is

stopped before reaching a leaf node, a diagnosis with reduced resolution results.

In the fault dictionary method, any early termination makes the dictionary look

up practically impossible.

2.7 Summary – Best of Prior Methods

So far, we have seen most of the fault-tolerant design techniques in the literature.

Our motive is to come up with a fault-tolerant design technique that can correct

errors. Berger codes, two-rail checkers and duplication of hardware mechanisms

are not useful because they can only detect errors. Hamming codes can correct

single-bit to multi-bit errors. Reed-Solomon codes can also correct multi-bit errors

at a time but the hardware architecture is very complex. Residue codes can

correct errors but the hardware needed for correcting one bit is huge. We can

correct as many errors as we want by modifying the architecture for these codes.

All these fault-tolerant design techniques have their own merits and de-merits.

Triple modular redundancy also can correct errors, if at any given time only

one hardware module is broken. Time redundancy mechanisms explained above

cannot correct errors, they can only detect errors. So, we cannot really say in

general which is the best-fault tolerance technique. But, the Hamming code, Reed

Solomon codes and Residue codes are the best error correcting fault-tolerance

techniques compared with other fault-tolerant techniques in the literature.

32

Chapter 3

Fault-Tolerant Technique for an ALU –

Implementation Study and Justification

The goal of this work is to implement error correction with 100% hardware over-

head and at most 100% delay overhead. We decided to analyze the different

fault-tolerant techniques in the literature. We analyzed the hardware redundancy,

the information redundancy and the time redundancy methods. After analyzing,

we discovered that we cannot achieve fault-tolerance with 100% hardware over-

head using hardware or information redundancy. Even the Reed-Solomon and the

Residue codes required more than 100% hardware to implement fault-tolerance.

So, we decided to use time redundancy as our fault-tolerance mechanism for the

ALU. In order to choose the best time redundancy mechanism, we had to com-

pare the hardware, the delay and the power overhead of the different mechanisms.

Based on these criteria we decided to use Recomputing Using Swapped Operands

as our fault-tolerance mechanism.

3.1 Architecture of the ALU

An Arithmetic-Logic Unit (ALU) is the part of the Central Processing Unit (CPU)

that carries out arithmetic and logic operations on the operands in computer

instruction words. In some processors, the ALU is divided into two units, an

arithmetic unit (AU) and a logic unit (LU). Typically, the ALU has direct in-

put and output access to the processor controller, main memory (random access

memory or RAM in a personal computer), and input/output devices. Inputs and

outputs flow along an electronic path that is called a bus. The input consists of

33

an instruction word that contains an operation code (sometimes called an “OP

CODE”), one or more operands and sometimes a format code. The operation

code tells the ALU what operation to perform and the operands are used in the

operation. The output consists of a result that is placed in a storage register

and settings that indicate whether the operation was performed successfully. In

general, the ALU includes storage places for input operands (operands that are

being added), the accumulated result and shifted results. The flow of bits and the

operations performed on them in the subunits of the ALU is controlled by gated

circuits. The gates in these circuits are controlled by a sequence logic unit that

uses a particular algorithm or sequence for each operation code. In the arithmetic

unit, multiplication and division are done by a series of adding or subtracting and

shifting operations. There are several ways to represent negative numbers. In the

logic unit, one of 16 possible logic operations can be performed, such as compar-

ing two operands and identifying where bits do not match. The design of the

ALU is obviously a critical part of the processor and new approaches to speeding

up instruction handling are continually being developed. In computing, an ALU

is a digital circuit that performs arithmetic and logic operations. An ALU must

process numbers using the same format as the rest of the digital circuit. For

modern processors, that almost always is the two’s complement binary number

representation. Early computers used a wide variety of number systems, including

one’s complement, sign-magnitude format, and even true decimal systems, with

ten tubes per digit. ALUs for each one of these numeric systems had different

designs, and that influenced the current preference for two’s complement nota-

tion, as this is the representation that makes it easier for the ALUs to add and

subtract. Most of a processor’s operations are performed by one or more ALUs.

An ALU loads data from input registers, executes the operation and stores the

result into output registers. ALUs can perform the following operations:

1. Integer arithmetic operations (addition, subtraction and multiplication)

2. Bitwise logic operations (AND, NOT, OR, XOR), and

34

3. Bit-shifting operations (shifting a word by a specified number of bits to the

left or right).

We implemented a Sklansky tree adder [62] for addition and subtraction instead of

Brent-Kung [17] or Kogge-Stone [39] trees. We chose it because it has the fewest

wires and minimum logic depth. The Sklansky adder topology is the most energy

efficient compared to the other two adders [49] in the 90nm technology. We imple-

mented Booth-encoding [14] to reduce the partial products of the multiplier and

for adding the partial products we used a Wallace Tree [69]. We used the radix-4

Booth encoding scheme for the ALU. For the Carry Propagation Adder (CPA)

at the final stage of the Wallace tree, we reused the Sklansky adder designed for

addition.

3.1.1 Adders

Addition forms the basis of many processing operations, from counting to mul-

tiplication to filtering. As a result, adder circuits that add two binary numbers

are of great interest to digital system designers. An extensive, almost endless,

assortment of adder architectures serve different speed/area requirements. The

simplest design is the ripple-carry adder in which the carry-out of one bit is sim-

ply connected as the carry-in of the next, but, in the carry propagation adders,

the carry-out influences the carry into all subsequent bits. Faster adders look

ahead to predict the carry-out of a multi-bit group. Long adders use multiple

levels of lookahead structures for even more speed. For wide adders, the delay

of carry-lookahead adders becomes dominated by the delay of passing the carry

through the lookahead stages. This delay can be reduced by looking ahead across

the lookahead blocks. In general, one can construct a multi–level tree of looka-

head structures to achieve delay that grows with log N . There are many ways to

build the lookahead tree that offer tradeoffs among the number of stages of logic,

the number of logic gates, the maximum fanout on each gate, and the amount of

wiring between the stages. Three fundamental trees are the Brent-Kung, Sklansky

35

and Kogge-Stone architectures.

3.1.1.1 Brent-Kung Adder

The Brent-Kung tree computes prefixes for 2-bit groups. These are used to find

prefixes for 4-bit groups, which in turn are used to find prefixes for 8-bit groups

and so forth. The prefixes then fan back down to compute the carries-in to each

bit. The tree requires 2(log2 N) − 1 stages. The fanout is limited to 2 at each

stage.

3.1.1.2 Kogge-Stone Adder

The Kogge-Stone tree achieves both (log2 N) stages and fanout of 2 at each stage.

This comes at the cost of many long wires that must be routed between stages.

The tree also contains more Propagate and Generate cells; while this may not

impact the area if the adder layout is on a regular grid, it will increase power

consumption.

3.1.1.3 Sklansky Adder

The Sklansky tree reduces the delay to (log2 N) stages by computing intermedi-

ate prefixes along with the large group prefixes. This comes at the expense of

fanouts that double at each level: The gates fanout to [8,4,2,1] other columns.

These high fanouts cause poor performance on wide adders unless the gates are

appropriately sized or the critical signals are buffered before being used for the

intermediate prefixes. Transistor sizing can cut into the regularity of the layout

because multiple sizes of each cell are required, although the larger gates can

spread into adjacent columns. Note that the recursive doubling in the Sklansky

tree is analogous to the conditional-sum adder. The conditional-sum adder per-

forms carry-select starting with group of 1-bit and recursively doubling to N/2

bits.

36

Figure 3.1: Sklansky Tree Adder [62]

3.1.2 Multipliers

In microprocessors, the multiplication operation is performed in a variety of forms

in hardware and software depending on the cost and transistor budget allocated

for this particular operation. Multiplication is a less common operation than ad-

dition, but is essential for microprocessors, digital signal processors, and graphics

engines. The speed of the multiply operation is of great importance in digital

signal processing as well as in the general purpose processors of today, especially

given the widespread use of media processing. In the past, multiplication was

generally implemented via a sequence of addition, subtraction and shift opera-

tions. Multiplication algorithms will be used to illustrate methods of designing

different cells so that they fit into a larger structure. There are a number of

techniques that can be used to perform multiplication. In general, the choice is

based upon factors such as latency, throughput, area and design complexity. The

different types of multiplier are unsigned array multiplication, 2’s complement ar-

ray multiplication, Booth encoding, Wallace tree multiplication and Dadda tree

multiplication.

37

3.1.2.1 Booth Encoding Multiplier

Booth Encoding was originally proposed to accelerate serial multiplication [14].

The conventional multipliers compute the partial products in a radix-2 manner.

Radix 2r multipliers produce N/r partial products, each of which depend on r

bits of the multiplier. Fewer partial products leads to a smaller and faster Carry-

Save Adder (CSA) array. For example, a radix-4 multiplier produces N/2 partial

products. Each partial product is 0, Y , 2Y , or 3Y , depending on a pair of bits of

X. Computing 2Y is a simple shift, but 3Y is a hard multiple requiring a slow-

carry propagation addition of Y +2Y before product generation begins. Modified

Booth encoding allows higher radix parallel operation without generating the hard

3Y multiple by instead using negative partial products. Negative partial products

are generated by taking the 2’s complement of the multiplicand. Hence, partial

products are chosen by considering a pair of bits along with the most significant

bit from the previous pair.

Figure 3.2: Radix-4 Booth Encoder and Selector [71]

In a radix-4 Booth-encoded multiplier, each group of three bits is decoded into

several select lines (Xi, 2Xi, and Mi) and driven across the partial product row

as shown in the Figure 3.1.2.1. The multiplier Y is distributed to all of the rows.

38

The select lines control Booth selectors that choose the appropriate multiple of Y

for each partial product. The Booth selectors substitute for the AND gates of a

simple array multiplier. Figure 3.1.2.1 shows a conventional Booth selector design

that computes the jth partial product bit of the ith partial product. If the partial

product has a magnitude of Y , yi is selected. If it has a magnitude of 2Y , yi−1 is

selected. If it is negative, the multiple is inverted. Even in an unsigned multiplier,

negative partial products must be sign-extended to be summed correctly. Large

multipliers can use Booth encoding of higher radix. Higher-radix Booth encoding

is possible, but generating the other hard multiples appears not to be worthwhile

for multipliers of fewer than 64 bits. Similar techniques apply to sign-extending

higher-radix multipliers.

3.1.2.2 Wallace Tree Multiplication

In his historic paper, Wallace introduced a way of summing the partial product

bits in parallel using a tree of Carry Save Adders (CSA), which became generally

known as the Wallace Tree [69]. A CSA is effectively a “1 counter” that adds

the number of 1’s on the A, B and C inputs and encodes them on the SUM and

CARRY outputs. A CSA is therefore also known as a (3,2) counter because it

converts three inputs into a count encoded in two outputs. The carry-out is passed

to the next more significant column, while a corresponding carry-in is received

from the previous column. Therefore, for simplicity, a carry is represented as

being passed directly down the column. The output is produced in carry-save

redundant form suitable for the final Carry Propagation Adder. The column

addition is slow because only one CSA is active at a time. Another way to speed

the column addition is to sum partial products in parallel rather than sequentially.

Figure 3.3 shows a Wallace Tree using this approach. The Wallace tree requires

levels of (3,2) counters to reduce N inputs down to 2 carry-save redundant form

outputs. Although this may seem to be a complex process, it yields multipliers

with delay proportional to the logarithm of the operand size N . The Wallace

Tree was widely used in the implementation of the parallel multipliers.

39

Figure 3.3: Wallace Tree Multiplier [69]

3.1.2.3 Dadda Tree Multiplication

A suggestion for improved efficiency of addition of the partial was published by

Dadda. In his historic 1965 paper, Dadda introduces the notion of a counter

structure that will take a number of bits p in the same bit position (of the same

“weight”) and output a number q, which represents the count of ones at the input

[25]. Dadda has introduced a number of ways to compress the partial product

bits using such a counter, which is known as “Dadda’s counter.” This process is

shown for an 8 × 8 Dadda Multiplier in Figure 3.4. Columns having more than

six dots are reduced using half adders and full adders so that no column will have

more than six dots. Partial products are shown by “dots,” half adders are shown

by a “crossed” line and full adders are shown by a line. The height of the tree is

determined by working back from the last two rows of the partial products and

limiting the height of each tree to the largest integer that is no more than 1.5

times the height of its successor. Since the number of stages is logarithmically

related to the number of bits in the words to be multiplied, the delay of the matrix

reduction process is proportional to log(n). Since the adder that reduces the final

40

Figure 3.4: Dadda Tree Multiplier [25]

two row matrix can be implemented as a carry propagation adder, the total delay

of the multiplier is proportional to the logarithm of the word size. An extensive

study of the use of Dadda’s counters was undertaken by Stenzel and Kubitz in

1977 [66]. In their paper they have also demonstrated a parallel multiplier built

using ROM to implement counters used for partial product summation.

3.2 Justification for Recomputing Using Swapped Operands

for Fault Tolerance

3.2.1 Why Information Redundancy Is Not Useful

Information redundancy means using error-detecting codes and error-correcting

codes as fault-tolerance mechanisms. There are many error detecting codes in

the literature such as repetition schemes, parity schemes, checksums, cyclic re-

dundancy checks, etc. But, the error detecting codes are not useful because we

41

want to correct the hard and soft errors in the ALU. So, we decided to use error-

correcting codes. Some of the error correction schemes are Hamming codes, Reed-

Solomon codes, Reed-Muller codes, Golay codes, Turbo codes, Viterbi codes,

Residue codes, Bose-Chaudhuri-Hocquenghem (BCH) codes, etc. But, not all

error-correcting codes are useful for the application of fault-tolerance for an ALU.

So, we decided to examine three of the error correcting codes, namely Hamming,

Residue and Reed-Solomon codes.

We chose the Reed-Solomon (RS) code because the architecture is the same

as for BCH and Reed-Muller codes, and it is more efficient than those two codes.

RS codes are defined over GF (2m) for 3≤ m ≤ 8 (GF means Galois Fields). For

m = 3, the RS encoder will require 21 extra bits for encoding all the inputs in a

three input bit sequence. So, at a time we can process only three input bits, and

if we have to process all of the 32 bits, then we have to do it 11 times. This would

cost us a huge delay. The data path overhead will cost us 66% overhead and when

we include the hardware of the encoder and then the hardware overhead of the

encoder becomes 109.1%. We did not calculate the hardware overhead of the RS

decoder as the hardware overhead of RS encoder is more than 100%. Hence, we

decided not to use the RS codes as the fault-tolerance mechanism for the ALU.

We tried a residue code as the fault-tolerance mechanism for an ALU. The

main concept of residue codes is calculating a remainder. The main problem of

a residue code is designing the most optimal implementation for calculating the

remainder. Residue codes need four moduli in total to correct a single bit error.

Each modulus requires 11 bits and we require 44 bits in total. This increases

the data path overhead by 137.5 %. Not only does it require 44 extra bits but

the mod operators required to calculate the residues require much hardware. We

have the hardware required for the “mod” operation as 58% considering that we

reuse the hardware. The total overhead would be 195.5 %. Above all else, residue

codes do not work with the Boolean operations of the ALU. So, we decided not

to pursue the residue codes as the fault-tolerance mechanism.

We finally decided to try a Hamming code as the fault-tolerance mechanism

42

for an ALU. Hamming codes are really good with the Boolean operations of the

ALU. But, they do not work with arithmetic operations of ALU. For example:

• Let us assume A = 0111 and B = 0111. We will design a (7,4) single bit

error correcting Hamming code.

• Let us assume a0, a1, a2 and a3 are data bits; p0, p1 and p2 are parity bits.

• p0 = a0 ⊕ a1 ⊕ a3 ; p1 = a0 ⊕ a2 ⊕ a3 ; p2 = a1 ⊕ a2 ⊕ a3

• The symbol is a3a2a1p2a0p1p0

• H(A) = 0110100; H(B) = 0110100; H(A) + H(B) = 1101000

• H(A + B) = 1111000

H(A) + H(B) 6= H(A + B) (3.1)

Here “H” represents the Hamming code. Though the hardware overhead was less

than 100%, we were not able to use Hamming codes in arithmetic. So, information

redundancy is not useful as the fault-tolerance mechanism for an ALU.

3.2.2 Why Hardware Redundancy Is Not Useful

Real–time systems are equipped with redundant hardware modules. Whenever a

fault is encountered, the redundant modules takeover the functions of the failed

hardware module. Hardware redundancy methods are mainly charectrized as

duplication with comparison and triple modular redundancy. Duplication with

comparison can only detect errors, but our aim is to correct errors. The hardware

overhead with the duplication with comparison method is 117%. With triple

modular redundancy we can correct errors. Triple modular redundancy uses two

extra copies of the same ALU and that increases the hardware overhead by 200%.

The hardware needed for the triplicated voting mechanism is around 25%. The

total hardware overhead with the triple modular redundancy mechanism is around

43

225%. But, our goal is to have the hardware overhead not more than 100%. So,

hardware redundancy is not useful as a fault tolerance mechanism for ALU.

3.2.3 Why the other Time-redundancy Mechanisms Are

Not Useful

As information and hardware redundancy were not useful, we decided to use time

redundancy as the fault-tolerance mechanism for the ALU. The key to the ef-

fectiveness and efficiency of the time redundancy method is the selection of the

encoding and decoding functions, so we investigated in total three candidate func-

tions, namely, Recomputing using Shifted operands (RESO), Recomputing with

Alternating logic and Recomputing with Swapped operands (RESWO). We had to

choose one of the functions as our fault-tolerance mechanism. The only way we

could make a decision is by implementing all three functions as the fault-tolerance

mechanism for the ALU and comparing the hardware, the delay and the power

overheads of each of the functions. Whichever function gives the best trade-off

would be chosen as the fault-tolerance mechanism for the ALU. We give the first

priority to the hardware overhead, then the power overhead and finally the delay

overhead. So, based on this strategy we chose RESWO as our fault-tolerance

mechanism. We have tabulated the comparison of overheads in Section 3.3.

3.3 Results

We have implemented different types of fault tolerance mechanisms for the 16-bit

ALU. We discovered that error detecting codes such as the Two-Rail checker and

Berger codes are no longer useful, as our aim is error correction. So, we imple-

mented error correcting codes such as the Hamming, Residue and Reed-Solomon

codes as a fault-tolerance mechanism. Hamming codes are not invariant for arith-

metic operations and the hardware overheads of Residue and Reed-Solomon codes

are extremely huge. So, we decided to use Time Redundancy as the fault-tolerance

mechanism for the ALU. The basic idea of time redundancy is the repetition of

44

Table 3.1: Results for a 16-bit ALU
Architecture Hardware Delay Power

Overhead Overhead Overhead
Recomputing with 93.1% 89.89% 195.00%
Shifted Operands

Recomputing with 82.6% 117.87% 135.37%
Alternating logic

Recomputing with 77.3% 114.61% 126.31%
Swapped Operands

computations in ways that allow errors to be detected. In order to choose the

best fault-tolerance mechanism we had to calculate the delay, the power and the

hardware overheads. Our main concern was the hardware and the power over-

heads, and then the delay overhead. Results are shown in Table 3.1. So, we

chose REcomputing with SWapped Operands as it had 5.3% lower hardware and

9.06% lower power overheads than Recomputing with Alternating Logic. The best

fault tolerance mechanism for the ALU is REcomputing with SWapped Operands

(RESWO). The RESWO approach has been shown to be less expensive, particu-

larly when the complexity of individual modules of the circuit is high. This has

an advantage of being quick and easy to implement. The hardware overhead of

RESWO with respect to different architectures of the ALU is shown in Table 3.2.

Table 3.2: RESWO Implementation for Different Architectures of the ALU
Architecture Hardware Delay Power

Overhead Overhead Overhead
16-bit 77.30% 114.61% 126.31%
32-bit 33.62% 112.76% 120.99%
64-bit 16.58% 110.96% 113.90%

We operate the ALU twice for each data path operation once normally and

once swapped. When there is a discrepancy in the circuit (either a bit position

is broken or a carry propagation circuit is broken), we diagnose the ALU using

special diagnosis vectors. Knowledge of the faulty bit slice makes error correction

possible, which will be achieved by reconfiguring the ALU. This is covered in the

45

later Chapters 4 and 5.

We use two different swapping mechanisms to detect the soft errors of the

64-bit ALU. The first time we run the operations normally without swapping the

input operands. The second time we run the operations by swapping 32 bits of the

64-bit input operands. We compare these two outputs and check whether there

is a discrepancy in the circuit. If there is no discrepancy in the circuit this will be

the last swap. We swap the operands the third time only if the outputs from the

first time and the second time disagree with each other. If there is a discrepancy

in the circuit we use a different swapping mechanism (we run the operations by

swapping 16 bits of the 64-bit input operands) to check whether it is a soft error

or a hard error. If all the three outputs produced by the ALU with the different

swapping mechanisms differ from each other then there is a hard error in the

ALU. If one of the outputs differs from the other two outputs then there is a soft

error in the ALU. If we use just one swapping mechanism (swapping 32 bits of the

64-bit input operands), then in order to detect the soft errors we have to run the

operations four times. The first time we run the operations normally, the second

time we run it with one swapped mechanism. If a fault is detected then we again

perform the two operations to check whether it is a soft error or hard error. The

advantage of using one swapping mechanism instead of two swapping mechanisms

is we have reduced operand swapping hardware and the disadvantage is increased

delay.

46

Chapter 4

Diagnosis of ALU Using RESWO and Test

Vectors and Reconfiguration for Error

Correction

The goal of this work is to implement the best diagnosis scheme for the ALU

with a minimum number of diagnosis vectors. We implemented the diagnosis

mechanisms for the ALU in five different ways. We found that designing the ALU

with 2-bit ALU chunks requires a minimum number of diagnosis vectors, but we

had some issues with the multiplier. So, after further analyzing the diagnosis

mechanisms we finally decided to design the Boolean, addition, subtraction and

shifting operations, either with 2-bit ALU chunks or with 1-bit ALU chunks and

then design the multiplier separately.

4.1 Diagnosis Method

Diagnosis is the process of locating the fault present within a given fabricated copy

of the circuit [18]. For some digital systems, each fabricated copy is diagnosed

to identify the faults so as to make decisions about repair. The objective of

diagnosis is to identify the root cause behind the common failures or performance

problems to provide insights on how to improve the chip yield and/or performance.

A diagnostic test is designed for fault isolation or diagnosis. Diagnosis refers

to the identification of a faulty part. A diagnosis test is characterized by its

diagnostic resolution, defined as the ability to get closer to the fault. When a

failure is indicated by a pass/fail type of test in a system that is operating in the

field, a diagnostic test is applied. The aim of this test is to identify the faulty

47

part that should be replaced. The environment of the system repair determines

the level or the units to be identified. The cardinality of the suspected set of

Lowest Replaceable Units (LRUs) that the test identifies is defined as its diagnostic

resolution. An ideal test will have the diagnostic resolution of 1. Such a test will

be able to exactly pinpoint the faulty unit and will allow the most efficient repair.

The concepts of fault dictionary and diagnostic tree are relevant to any type of

diagnosis.

4.1.1 Fault Dictionary

Application of a test simply tells us whether or not the system-under-test is

faulty. We must further analyze the test result to determine the nature of the

fault, so that it can be fixed. A fault dictionary contains the set of test symptoms

associated with each modeled fault. One disadvantage of the fault dictionary

approach is that all tests must be applied before an inference can be drawn.

Besides, for large circuits, the volume of data storage can be large and the task

of matching the test syndrome can also take time.

4.1.2 Diagnosis Tree

In this procedure, tests are applied one at a time. After the application of a test

a partial diagnosis is obtained. Also, the test to be applied next is chosen based

on the outcome of the previous test. The maximum depth of the diagnostic tree

is bounded by the total number of tests, but it can be less than that as well. The

depth of the diagnostic tree is the number of tests on the longest path from the

root to any leaf node. It represents the length of the diagnostic process in the

worst case. The diagnostic tree can be arranged in several ways. One approach

is to reduce the depth. We start with the set of all faults as “suspects.” Tests

are ordered such that the passing of each test will reduce the suspect set by the

greatest amount. This may sometimes increase the depth of the tree on the side

of the failing tests.

48

4.1.3 Why We Use a Diagnosis Tree

We chose to use a diagnosis tree instead of a fault dictionary for many reasons.

One notable advantage of the diagnostic tree approach is that the process can be

stopped any time with some meaningful result. If it is stopped before reaching

a leaf node, then a diagnosis with reduced resolution (a larger set of suspected

faults) results. The disadvantage of a fault dictionary approach is that all tests

must be applied before an inference can be drawn. The storage requirements of

a diagnosis tree are typically smaller than for a fault dictionary. If we use a fault

dictionary for large circuits, then the volume of data storage can be large and the

task of matching the test syndrome can also take a long time. It is extremely time

consuming to compute a fault dictionary. In order to avoid these complications

we decided to use a diagnosis tree.

4.2 Comparison with Alternative Methods

4.2.1 Implementation of Diagnosis for ALU

After the Recomputing with Swapped Operands mechanism detects that there is

a permanent fault in the Arithmetic and Logic Unit (ALU), we need to diagnose

the ALU and locate the faulty part in the ALU. In order to diagnose the ALU

we decided to use a diagnosis tree. So, we attempted to implement the diagnosis

tree for the ALU in five different ways. They are:

1. Design the ALU as one piece.

2. Design the ALU with reconfigurable 4-bit ALU chunks.

3. Design the ALU with reconfigurable 2-bit ALU chunks.

4. Design the Boolean, addition, subtraction and shifting operations using

reconfigurable 2-bit ALU chunks. Design the multiplier separately.

49

5. Design the Boolean, addition, subtraction and shifting operations using

reconfigurable 1-bit ALU chinks. Design the multiplier separately

4.2.1.1 Design the ALU as One Piece

We can diagnose the 32-bit ALU as one piece and find the special vectors needed to

locate the faults. The total number of vectors needed to diagnose the entire 32-bit

ALU is approximately 1100. The Booth encoded Wallace tree multiplier designed

initially was not the optimal architecture. We do not know how many vectors it

will take if we optimized the multiplier architecture. As the number of vectors

for diagnosing the ALU is huge, we decided not to pursue this implementation.

4.2.1.2 Design the ALU with Reconfigurable 4-bit ALU Chunks

We designed the 32-bit ALU with eight reconfigurable 4-bit ALU chunks and

diagnosed the 4-bit ALU chunks to locate the faults. The total number of vectors

needed to diagnose the 4-bit ALU is 46. Our goal is to use less than 30 diagnosis

vectors to diagnose the ALU. So, we decided not to pursue this implementation.

4.2.1.3 Design the ALU with Reconfigurable 2-bit ALU Chunks

We designed the 32-bit ALU with sixteen reconfigurable 2-bit ALU chunks and

diagnosed the 2-bit ALU chunks to locate the faults. The total number of di-

agnosis vectors needed to diagnose the 2-bit ALU is 33. We found that some of

the diagnosis vectors were just used to detect either 2 or 3 stuck-at faults in the

circuit. So, we manually calculated the diagnosis vectors needed for detecting all

of the stuck-at faults in the 2-bit ALU. We found that we can eliminate 6 diag-

nosis vectors that were detecting either 2 or 3 stuck-at faults, as these stuck-at

faults can be detected by the other 27 diagnosis vectors. Hence, with 27 diagnosis

vectors we can detect all the stuck-at faults in the 2-bit ALU. With this imple-

mentation we met our goal of diagnosing the ALU with less than 30 diagnosis

vectors. But, the problem with this implementation is the multiplier. In a 32-bit

50

multiplier, we have to multiply two 32-bit inputs. In this implementation we can

multiply only two 2-bit inputs.

The 32-bit multiplier implementation should be

z[63 : 0] = a[31 : 0] × b[31 : 0] (4.1)

The 2-bit ALU implementations will be

z[3 : 0] = a[1 : 0] × b[1 : 0] (4.2)

z[7 : 4] = a[3 : 2] × b[3 : 2] (4.3)

...
...

...

z[63 : 60] = a[31 : 30] × b[31 : 30] (4.4)

But, in order to get the actual output of the 32-bit multiplier from the 2-bit

multipliers, we have to multiply a[1 : 0] with all other data bits of “b,” i.e.,

b[31 : 2]. Similarly, we have to multiply the other data bits of “a” (i.e., a[31 : 2])

with the data bits of “b.” If we try to implement this hardware separately it is

almost like designing an extra multiplier. To diagnose this extra hardware we

would need many diagnosis vectors. In order to overcome this difficulty we have

to modify the architecture of the multiplier.

4.2.1.4 Design the Boolean, Addition, Subtraction and Shifting Op-

erations Using Reconfigurable 2-bit ALU Chunks. Design the

Multiplier Separately

We can design the Boolean, addition, subtraction and shifting operations using

sixteen reconfigurable 2-bit ALU chunks. We can design the multiplier for the

32-bit ALU separately. The total number of diagnosis vectors needed to diagnose

the ALU without the multiplier is 22. The number of diagnosis vectors needed

to diagnose the 32-bit multiplier is 85. But, our goal is to keep the number of

diagnosis vectors less than 30. In order to achieve this we had to modify the

architecture of the multiplier.

51

We decided to diagnose the Booth encoding separately and the Wallace tree

[69] separately. The number of diagnosis vectors needed to diagnose the Booth

encoding method is 63 and it did not meet our goal. So, we decided to modify

our diagnosis scheme for the Booth encoding method. We decided to diagnose

the Booth encoder and the Booth selector separately. The number of diagnosis

vectors needed to diagnose the Booth encoder (Booth selector) separately is 35

(40).

The number of diagnosis vectors needed to diagnose the Wallace tree is 70. So,

we decided to diagnose the carry save adders (CSA) separately and tried using

similar adders but it increased the hardware of the Wallace tree. This is because

the Wallace tree is not a regular structure. So, we decided to use a Dadda tree

multiplier [25] (which is a regular structure), instead of the Wallace tree for the

ALU. The number of diagnosis vectors used to diagnose the Dadda tree is 50.

Our main aim of this research is to keep the hardware overhead less than 100%.

Once a fault is detected in the Dadda tree we have to replace the entire Dadda

tree. Even if there is a fault in the Booth encoder or the Booth selector, we have

to replace the entire Booth encoder or the Booth Selector. This replacement

hardware will boost the hardware overhead of the multiplier to 100%. In order

to overcome this we have to re-design the diagnosis scheme.

We decided to split the Booth encoder into 16 identical bit slices. To diagnose

one bit slice of the Booth encoder it took 7 vectors. Just like the Booth encoder,

the Booth selector was split into 33 identical bit slices. To diagnose one bit slice

of the Booth selector, it took 4 vectors. The advantage of the Dadda tree is that

it uses full adders and half adders of equal bit slices. The Dadda tree consisted of

433 full adders and 71 half adders. The total number of diagnosis vectors needed

to diagnose the full adders (half adders) was 5 (4). We decided to split the carry

propagation adder of the Dadda tree into identical 2-bit slices. The total number

of diagnosis vectors needed to diagnose the carry propagation adder is 7. Hence,

we were able to diagnose the multiplier with a minimum number of diagnosis

vectors.

52

4.2.1.5 Design the Boolean, Addition, Subtraction and Shifting Op-

erations Using Reconfigurable 1-bit ALU Chunks. Design the

Multiplier Separately

For the 32-bit ALU, we can design the Boolean, addition, subtraction and shifting

operations using thirty two reconfigurable 1-bit ALU chunks. The total number

of diagnosis vectors needed to diagnose the ALU without the multiplier is 17. We

used the same architecture of the multiplier and the same diagnosis scheme as

explained in Section 4.2.1.4.

4.2.2 Minimal Test Set for 100% Fault Detection

In Section 4.2.1 we discussed the number of diagnosis vectors used to detect the

stuck-at faults in a circuit. To diagnose a Booth encoder, a full adder and a half

adder we need 7, 5 and 4 diagnosis vectors, respectively. We proposed that to

diagnose one-bit slice of the Booth selector circuit we need 4 diagnosis vectors and

we are going to prove this using a Theorem. We use the Checkpoint Theorem to

generate diagnosis vectors. The Checkpoint Theorem states that a test set that

detects all single (multiple) stuck-at faults on all checkpoints of a combinational

circuit, also detects all single (multiple) stuck-at faults in that circuit.

We use an automated test pattern generator (EST) and the Checkpoint the-

orem to create the test pattern for all faults in the Booth selector (Figure 4.1),

which are listed in Table 4.1. We collapse thses vectors into the four diagnosis

vectors {T1, T2, T3, T4}, which detects both stuck-at faults s/1 and s/0 for the

Booth selector circuit. {T1, T2, T3, T4} = {11001, 10101, 10110, 01010}

Similarly, we calculate the collapsed test vectors {T1, T2, T3, T4, T5} to detect

both stuck-at faults s/1 and s/0 for the full adder circuit, in Figure 4.2. The

vectors {T1, T2, T3, T4, T5} = {101, 001, 010, 110, 100} are listed in the Table 4.2.

Finally, using the same procedure, we calculate the collapsed test vectors

{T1, T2, T3, T4} to detect both stuck-at faults s/1 and s/0 for the half adder circuit,

in Figure 4.3. The vectors {T1, T2, T3, T4} = {00, 01, 10, 11} are listed in the Table

53

5

3

4

1

c2

6

7
8

11
a

b e
f

10

3.1

9

8.1

3.2

8.2
d

Figure 4.1: Booth Selector Circuit

Table 4.1: Test Vectors for the Booth Selector Circuit

Circuit Test Vector for Test Vector for
Line Stuck-at-0 Faults Stuck-at-1 Faults

1 1XX1X 0XX1X
2 X1XX1 X0XX1

3.2 10110 11001
3.1 10101 01010

4 1XX1X 1XX0X
5 X1XX1 X1XX0
6 10X10 01X10
7 11X01 01X10

8.2 01010 11001
8.1 10101 10110

9 01010 10101
10 01010 11001

g4 10

11
9

8

7

6
5

3.3

3.2

3.1

4.1

4.2

2.2

1.2
1.1
2.11

2

3

b

f

a
c

d

e
h

Figure 4.2: Full Adder Circuit

54

Table 4.2: Test Vectors for the Full Adder Circuit

Circuit Test Vector for Test Vector for
Line Stuck-at-0 Faults Stuck-at-1 Faults
1.1 11X 01X
1.2 11X 01X
2.1 11X 10X
2.2 11X 10X
3.1 001 110
3.2 001 110
3.3 101 010
4.1 100 110
4.2 101 001

5 001 101
6 110 101
7 001 101
8 001 110
9 001 101

10 110 101
11 001 110

3

3.1

3.2

2.1

2.2

2.3

1

2

4

6

5

8

7

d

a b

f

e

c

Figure 4.3: Half Adder Circuit

55

Table 4.3: Test Vectors for the Half Adder Circuit

Circuit Test Vector for Test Vector for
Line Stuck-at-0 Faults Stuck-at-1 Faults

1 1X 0X
2.1 01 00
2.2 11 10
2.3 11 10

3 0X 1X
3.1 01 11
3.2 00 10

4 11 01
5 11 01
6 11 10
7 11 00
8 01 11

4.3.

4.3 Results

We have implemented different types of diagnosis mechanisms for the 32-bit ALU.

The number of diagnosis vectors needed to detect the faults in the 32-bit ALU,

with different diagnosis mechanisms is shown in Table 4.4. We discovered that

if we split the 32-bit ALU into sixteen 2-bit ALU chunks, then in order to get

the output of the 32-bit multiplier, we need 256 2-bit multipliers in total. So, we

modified the implementation of the multiplier. We decided to design the Boolean,

Table 4.4: Diagnosis Vectors for Different Diagnosis Implementations

Architecture Number of
Diagnosis Vectors

32-bit ALU 1100
4-bit ALU 46
2-bit ALU 27

2-bit ALU without Multiplier 22
1-bit ALU without Multiplier 17

56

addition, subtraction and shifting operations together, and the multiplier sepa-

rately. So, we decided to design the Boolean, addition, subtraction and shifting

operations of the 32-bit ALU, either with sixteen reconfigurable 2-bit ALU chunks

or with thirty two reconfigurable 1-bit ALU chunks.

Table 4.5: Diagnosis Vectors for Booth Encoded Dadda Tree Multiplier

Architecture Number of
Diagnosis Vectors

Booth Encoder 7
Booth Selector 4

Full Adder 5
Half Adder 4

Carry Propagation Adder 7

We decided to use the Dadda tree multiplier instead of Wallace tree multiplier

as it was regular in structure. So, we finally designed the Booth encoded Dadda

tree multiplier. The multiplier had three parts: the Booth encoder, the Booth

selector and the Dadda tree. If there is a fault detected in any one of these parts

we have to replace the entire part. This replacement hardware of the multiplier

will boost the hardware overhead of the multiplier to 100%. So, we split the

multiplier into identical bit slices of Booth encoder, Booth selector, full adder,

half adder and carry propagation adder. It was easy to reconfigure the multiplier

once it was split into identical bit slices. The number of diagnosis vectors needed

to diagnose the Booth encoded Dadda tree multiplier is shown in Table 7.1.

Hence we found that the best diagnosis mechanism for the 32-bit ALU is

designing the Boolean, addition, subtraction and shifting operations with either

sixteen reconfigurable 2-bit ALU chunks or thirty two reconfigurable 1-bit ALU

chunks, and designing the multiplier separately. In order to choose the best of

these two mechanisms we need to analyze the hardware overhead of the ALU with

the different reconfiguration mechanisms, which is covered in Chapter 5.

57

Chapter 5

Optimal Reconfiguration Scheme for the ALU

After the diagnosis test identifies the location of the fault, we have to reconfigure

or replace the faulty part. We designed the Boolean, addition, subtraction and

shifting operations of the 64-bit ALU with thirty two reconfigurable 2-bit ALU

chunks (the lowest replaceable unit (LRU) for the 64-bit ALU) and designed the

multiplier separately. We implemented the reconfiguration mechanisms for the

ALU in four different ways. We compared the hardware overhead of the 64-bit

ALU with the different reconfiguration mechanisms. We found that the best

reconfiguration mechanism is to use, one spare chunk for every sixteen chunks.

5.1 Reconfiguration Analysis

Reconfiguration is the ability of a system to replace the failed component or to

isolate it from the rest of the system, when a fault is detected or a permanent fail-

ure is located. The component may be replaced by backup spares. Alternatively,

it may simply be switched off and the system capability degraded; this process is

called graceful degradation. The component diagnosed as failed is replaced.

As with reconfiguration, repair can be either on-line or off-line. In off-line

repair, either the failed component is not necessary for system operation, or the

entire system must be brought down to perform the repair. In on-line repair,

the component may be replaced immediately by a back-up spare in a procedure

equivalent to reconfiguration or the operation may continue without the compo-

nent, as is the case with masking redundancy or graceful degradation. In either

case of on-line repair, the failed component may be physically replaced or repaired

58

without interrupting system operation.

Reconfiguration can be implemented with one of two strategies in mind. The

first strategy is to restructure a system in the presence of faults so that the

performance is degraded as little as possible. The second strategy is to restructure

a system in presence of faults using spare modules so that the original performance

is retained. We cannot afford a degraded ALU for the medical system as it has to

do some crucial computations. The system restructuring using spare modules can

be achieved with a hardware overhead of 75.5%, as shown in Figure 5.11. Hence,

the second approach is preferred here as the system under consideration is a part

of medical system and it seems to be a modular approach to fault tolerance.

5.2 Reconfiguration Schemes

Reconfiguration is defined as an operation of replacing faulty components with

spares while maintaining the original interconnection structure. The important

criteria for evaluating a reconfiguration scheme are as follows:

1. Reconfiguration effectiveness – the probability that an array with a given

number of faulty cells is reconfigurable,

2. Hardware overhead for reconfiguration and

3. Overall yield and reliability.

The reconfiguration effectiveness represents the ability of a reconfiguration and

redundancy scheme to tolerate a given number of faults in an array. It also

indicates the utilization of spare cells under a redundancy and reconfiguration

scheme. The reconfiguration effectiveness and hardware overhead are functions

of the redundancy and reconfiguration scheme. The yield and reliability are also

important criteria. They are strongly related to the reconfiguration effectiveness

and the hardware overhead. Our design goals are to reduce the hardware overhead

for reconfiguration, and to increase the yield and reliability.

59

After taking all these factors into consideration, we decided to implement

reconfiguration for the 64-bit ALU (designed the Boolean, addition, subtraction

and shifting operations of the 64-bit ALU with thirty two reconfigurable 2-bit

ALU chunks and with a multiplier designed separately) in four different ways:

1. For every two chunks provide one spare chunk,

2. For every four chunks provide one spare chunk,

3. For every eight chunks provide one spare chunk and

4. For every sixteen chunks provide one spare chunk.

5.2.1 For Every Two Chunks Provide One Spare Chunk

In this reconfiguration scheme, we will use one spare module for every two mod-

ules. In order for this reconfiguration scheme to work both the modules should

be identical. Figure 5.1 shows the block diagram of this reconfiguration scheme.

There are three modules M1, M2 and a spare module. Module M1 has inputs

X, Y , Z and the output connected to the input B4 of a MUX. Module M2 has

inputs A, B, C and the output connected to the input B5 of a MUX. The spare

module has inputs F , G, H and output OUT . There are totally five 2 : 1 MUXes.

The inputs X, Y , Z of module M1 are connected to the inputs B3, B2 and B1 of

the MUXes. The inputs A, B, C of module M2 are connected to the inputs A3,

A2 and A1 of the MUXes. The outputs O1, O2, O3 of the MUXes are connected

to the inputs F , G, H of the spare module. The output OUT of the spare module

is connected to the inputs A4 and A5 of the MUXes. The MUX with inputs A1,

B1 and output O1 has a select signal Sa. The MUX with inputs A2, B2 and

output O2 has a select signal Sa. The MUX with inputs A3, B3 and output O3

has a select signal Sa. The MUX with inputs A4, B4 and output OUT1 has a

select signal Sa. The select signal Sb is generated from the select signal Sa. The

MUX with inputs A5, B5 and output OUT2 has a select signal Sb. If one of the

modules M1 or M2 goes faulty then the select signals Sa or Sb will be activated

60

M

A3

B3

B2

A2

B1

A1

OUT

O3

O2

O1

SPARE
MODULE M1 MODULE M2

MUX MUX

Sa

SaSa

Sa

Sa Sb

OUT1 OUT2

A5 B5A4 B4

X Y Z A B C

MODULE

U
X

M

U
X

M

U
X

GF H

Figure 5.1: Reconfiguration Scheme – For Every Two Chunks Provide One Spare
Chunk

61

accordingly to replace the faulty module with the spare module. Once the faulty

module is replaced the original performance of the system is retained.

5.2.2 For Every Four Chunks Provide One Spare Chunk

In this reconfiguration scheme, we will use one spare module for every four mod-

ules. In order to make this reconfiguration scheme work we should make sure all

Module
M1

Module
M2

Module
M3

Module
M4

A2

B2
C2
D2

B1
C1
D1

YX

Out

Z2

Z1

A1

MUX MUX MUX MUX

Out4Out3Out2Out1

A3 B3 A4 B4 A5 B5 A6 B6

Spare
Module

P Q R S T U V W

Sc Sd SfSe

Sb
Sa

M
U
X

M
U
X

Sb
Sa

Figure 5.2: Reconfiguration Scheme – For Every Four Chunks Provide One Spare
Chunk

the modules are identical. Figure 5.2 shows the block diagram of this reconfigu-

ration scheme. There are five modules M1, M2, M3, M4 and a spare module.

Module M1 has inputs P , Q and output is connected to the input B3 of the

62

MUX . Module M2 has inputs R, S and output is connected to the input B4 of

the MUX. Module M3 has inputs T , U and output is connected to the input B5

of the MUX. Module M4 has inputs V , W and output is connected to the input

B6 of the MUX. The spare module has inputs X, Y and output Out. There are

two 4 : 1 MUXes and four 2 : 1 MUXes. The inputs P , Q of the module M1 are

connected to the inputs of MUXes D2 and D1. The inputs R, S of the module

M2 are connected to the inputs of MUXes C2 and C1. The inputs T , U of the

module M3 are connected to the inputs of MUXes B2 and B1. The inputs V ,

W of the module M4 are connected to the inputs of MUXes A2 and A1. The

outputs Z1, Z2 of the MUXes are connected to the inputs X, Y of the spare

module. The output Out of the spare module is connected to the inputs A3, A4,

A5 and A6 of the MUXes. The MUX with inputs A1, B1, C1, D1 and output

Z1 has select signals Sa and Sb. The MUX with inputs A2, B2, C2, D2 and

output Z2 has select signals Sa and Sb. The select signals Sc, Sd, Se and Sf are

generated from the select signals Sa and Sb.

Sc = Sa Sb; (5.1)

Sd = Sa Sb; (5.2)

Se = Sa Sb; (5.3)

Sf = Sa Sb; (5.4)

The MUX with inputs A3, B3 and output Out1 has a select signal Sc. The MUX

with inputs A4, B4 and output Out2 has a select signal Sd. The MUX with

inputs A5, B5 and output Out3 has a select signal Se. The MUX with inputs

A6, B6 and output Out4 has a select signal Sf . If one of the modules M1, M2,

M3 or M4 goes faulty then the select signals Sc, Sd, Se or Sf will be activated

accordingly to replace the faulty module with the spare module. Once the faulty

module is replaced the original performance of the system is retained.

63

5.2.3 For Every Eight Chunks Provide One Spare Chunk

In this reconfiguration scheme, we will use one spare module for every eight

modules. In order to make this reconfiguration scheme work all of the modules

must be identical. Figure 5.3 shows the block diagram of this reconfiguration

scheme. There are nine modules M1, M2, M3, M4, M5, M6, M7, M8 and a

spare module.

Module M1 has inputs P , Q and output is connected to the input B3 of the

MUX. Module M2 has inputs R, S and output is connected to the input B4 of

the MUX. Module M7 has inputs T , U and output is connected to the input B9

of the MUX. Module M8 has inputs V , W and output is connected to the input

B10 of the MUX. The spare module has inputs X, Y and output Out. There are

two 8 : 1 MUXes and eight 2 : 1 MUXes. The inputs P , Q of the module M1

are connected to the inputs H2 and H1 of the MUXes. The inputs R, S of the

module M2 are connected to the inputs G2 and G1 of the MUXes. The inputs

T , U of the module M7 are connected to the inputs B2 and B1 of the MUXes.

The inputs V , W of the module M8 are connected to the inputs A2 and A1 of

the MUXes. The outputs Z1, Z2 of the MUXes are connected to the inputs X,

Y of the spare module. The output Out of the spare module is connected to the

inputs A3, A4, A5, A6, A7, A8, A9 and A10 of the MUXes. The MUX with

inputs A1, B1, C1, D1, E1, F1, G1, H1 and output Z1 has select signals Sa, Sb

and Sc. The MUX with inputs A2, B2, C2, D2, E2, F2, G2, H2 and output Z2

has select signals Sa, Sb and Sc. The select signals Sd, Se, ..., Sj and Sk are

generated from the select signals Sa, Sb and Sc.

Sd = Sa Sb Sc; (5.5)

Se = Sa Sb Sc; (5.6)

Sf = Sa Sb Sc; (5.7)

Sg = Sa Sb Sc; (5.8)

Sh = Sa Sb Sc; (5.9)

64

Module Module
M2

Module
M7

Module
M8M1

YX

B1

A1

G1

H1

B2

A2

G2

H2

Z2

Z1

Out

Module
Spare

MUX MUX MUX MUX

A3 B3 A4 B4 A9 B9 A10 B10

Out1 Out2 Out7 Out8Se Sj Sk

P Q R S T U V W

Sd

M
U
X

M
U
X

Sa
Sb
Sc

Sa
Sb
Sc

Figure 5.3: Reconfiguration Scheme – For Every Eight Chunks Provide One Spare
Chunk

65

Si = Sa Sb Sc; (5.10)

Sj = Sa Sb Sc; (5.11)

Sk = Sa Sb Sc; (5.12)

The MUX with inputs A3, B3 and output Out1 has a select signal Sd. The

MUX with inputs A4, B4 and output Out2 has a select signal Se. The MUX

with inputs A9, B9 and output Out7 has a select signal Sj. The MUX with

inputs A10, B10 and output Out8 has a select signal Sk. If one of the modules

M1, M2, M3, M4, M5, M6, M7 or M8 goes faulty then the select signal Sd,

Se, Sf , Sg, Sh, Si, Sj or Sk will be activated accordingly to replace the faulty

module with the spare module. Once the faulty module is replaced the original

performance of the system is retained.

5.2.4 For Every Sixteen Chunks Provide One Spare Chunk

In this reconfiguration scheme, we will use one spare module for every sixteen

modules. In order to make this reconfiguration scheme work we should make sure

that all of the modules are identical. There will be totally seventeen modules

namely M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, M11, M12, M13,

M14, M15, M16 and spare module. We have seen how the reconfiguration or

replacement of the faulty part works, for the other three reconfiguration schemes.

The procedure is same for this reconfiguration scheme too. Basically, if any one

of the sixteen modules goes faulty, then it will be replaced by the spare module A.

We have explained all the reconfiguration schemes in general. Now, we are going

to implement these schemes for the ALU and analyze the hardware overheads,

which is explained in Section 5.3.

66

5.3 Hardware Overheads of Different Types of Reconfig-

uration Schemes

5.3.1 ALU Without Multiplier

Figure 5.4: Hardware Overhead of 2-bit ALU Chunks with Different Reconfigu-
ration Schemes

The ALU designed here can perform addition, subtraction, Boolean and shift-

ing operations. This ALU does not have a multiplier as we have designed the

multiplier separately. If a fault is detected in the 64-bit ALU, we can locate the

faulty part using the diagnosis tree and then we have to reconfigure or replace the

faulty part. We have already discussed our reconfiguration strategies in Section

5.2. Now, we are going to apply all our reconfiguration strategies to the 64-bit

67

ALU and compare the hardware overheads of the different schemes.

The hardware overhead comparison with different reconfiguration mechanisms

is shown in Figure 5.4. Basically this hardware overhead comparison is to find out

which one of the reconfiguration strategies is the best for the 64-bit ALU without

a multiplier. Our main goal is to design the reconfiguration scheme for the 64-bit

ALU with minimum hardware and power overhead. We have already discussed

that we can design the 64-bit ALU using either thirty two reconfigurable 2-bit

ALU chunks or sixty four reconfigurable 1-bit ALU chunks. In order to find the

best design, we are going to compare the hardware overheads of the 2-bit ALU

chunks and the 1-bit ALU chunks with the different reconfiguration mechanisms

for the 64-bit ALU. The hardware overhead comparison between the 2-bit ALU

and 1-bit ALU chunks are shown in Figure 5.5.

Figure 5.5: Hardware Overhead Comparison of 2-bit ALU and 1-bit ALU Chunks
with Different Reconfiguration Schemes

From the bar diagram we can see that the hardware overhead of thirty two

68

2-bit ALU chunks with respect to different reconfiguration schemes is less than

the hardware overhead of the sixty four 1-bit ALU chunks. Based on the results

we have decided that the best way to implement a 64-bit ALU is using thirty

two 2-bit ALU chunks. The reconfiguration scheme of one spare chunk for every

thirty two 2-bit ALU chunks has a better hardware overhead (15.62%) compared

to the reconfiguration scheme one spare chunk for every sixteen 2-bit ALU chunks

(18.8%). The error correction rate for the reconfiguration scheme one spare chunk

for thirty two 2-bit ALU chunks is less compared to the reconfiguration scheme

one spare chunk for sixteen 2-bit ALU chunks, because with the reconfiguration

scheme one spare chunk for sixteen 2-bit ALU chunks we can correct 2 faults,

whereas we can correct only one fault with the reconfiguration scheme one spare

chunk for thirty two 2-bit ALU chunks. We can correct 2 faults in a 64-bit ALU

with the reconfiguration scheme one spare chunk for sixteen 2-bit ALU chunks

provided that there is only one fault in each of the sixteen chunks. So, the

best reconfiguration scheme for the 64-bit ALU is to use one spare chunk for

every sixteen chunks as it has a better error correction rate and a considerable

hardware overhead. We can consider the reconfiguration scheme one spare chunk

for sixty four 1-bit ALU chunks only if we have to correct one error and the error

correction rate is very low.

5.3.2 Booth Encoder

Booth encoding was originally proposed to accelerate serial multiplication. Booth

multiplication is a technique that allows for smaller, faster multiplication circuits,

by recoding the numbers that are multiplied. It is the standard technique used in

chip design, and provides significant improvements over the “long multiplication”

technique. The Booth encoder part of the multiplier has been split into thirty

three identical chunks to handle the sign extension of partial products. We have

already discussed our reconfiguration strategies in Section 5.2. Now, we are going

to apply all of our reconfiguration strategies to the Booth encoder and compare

69

Figure 5.6: Hardware Overhead of Booth Encoder with Different Reconfiguration
Schemes

70

the hardware overheads of the different schemes.

The hardware overhead comparison with different reconfiguration mechanisms

is shown in Figure 5.6. Basically, this hardware overhead comparison is to find

which one of the reconfiguration strategies is the best for the Booth encoder.

After analyzing the different reconfiguration schemes we have decided that the

best reconfiguration scheme for the Booth encoder is to use one spare chunk for

every sixteen chunks as it has the lowest hardware overhead.

5.3.3 Booth Selector

The Booth selectors choose the appropriate multiple for each partial product

which are controlled by select lines (outputs of the booth encoder). The Booth

selectors substitute for the AND gates of a simple array multiplier. The Booth

selectors compute the partial products. The Booth selectors of the multiplier has

been split into thirty three identical parts. Each of the Booth selector part has

been divided into sixty five identical 1-bit chunks. We have already discussed

our reconfiguration strategies in Section 5.2. Now, we are going to apply all of

our reconfiguration strategies to the Booth selector and compare the hardware

overheads of the different schemes.

The hardware overhead comparison with different reconfiguration mechanisms

is shown in Figure 5.7. Basically this hardware overhead comparison is to find

which one of the reconfiguration strategies is the best for the Booth selector.

After analyzing the different reconfiguration schemes we have decided that the

best reconfiguration scheme for the Booth selector is to use one spare chunk for

every sixteen chunks as it has the lowest hardware overhead.

5.3.4 Full Adder and Half Adder

Dadda introduces a notion of a counter structure that will take a number of

bits p in the same bit position (of the same “weight”) and output a number q

that represents the count of ones at the input. Dadda has introduced a number

71

Figure 5.7: Hardware Overhead of Booth Selector with Different Reconfiguration
Schemes

72

of ways to compress the partial product bits using such a counter, which later

became known as “Dadda’s counter.” We are designing the Dadda tree for the

64 × 64 multiplier. The Dadda tree uses half adders and full adders. A Dadda

tree uses one thousand eight hundred and ninety eight identical full adders (1-bit

chunks) and one hundred and seventy six identical half adders (1-bit chunks) in

total. We are going to analyze the hardware overhead of the full adders and half

adders for the different reconfiguration schemes (which we have already discussed

in Section 5.2).

Figure 5.8: Hardware Overhead of Full Adder with Different Reconfiguration
Schemes

The hardware overhead comparison with different reconfiguration mechanisms

for the full adder is shown in Figure 5.8. The hardware overhead comparison for

the half adder with respect to different reconfiguration mechanism is shown in

73

Figure 5.9: Hardware Overhead of Half Adder with Different Reconfiguration
Schemes

74

Figure 5.9. Basically, the hardware overhead comparison is to find out which one

of the reconfiguration strategies is the best for the half adders and full adders.

After analyzing the different reconfiguration schemes we have decided that the

best reconfiguration scheme for the full adders and the half adders is to use one

spare chunk for every sixteen chunks as it has the lowest hardware overhead.

5.3.5 Carry Propagation Adder

At the last stage of the Dadda tree we use a fast carry propagation adder to

produce the output. We used the Sklansky tree to design the carry propagation

adder. We implemented the carry propagation adder of the Dadda tree in 2-

bit chunks. The carry propagation adder has been split into sixty two 2-bit

chunks. We are using the previously designed Sklansky tree adder (designed

using thirty two 2-bit ALU chunks for the 64-bit ALU) for the carry propagation

adder of the multiplier. We are going to analyze the hardware overhead of the

carry propagation adder for the different reconfiguration schemes (which has been

discussed in the section 5.2). The hardware overhead comparison with different

reconfiguration mechanisms for the carry propagation adder is shown in Figure

5.10. Basically, the hardware overhead comparison is to find out which one of

the reconfiguration strategies is the best for the carry propagation adder. After

analyzing the different reconfiguration schemes we have decided that the best

reconfiguration scheme for the carry propagation adder is to use one spare chunk

for every sixteen chunks as it has the lowest hardware overhead.

5.4 Results

We have implemented the four different reconfiguration schemes for the 64-bit

ALU. We have also compared the hardware overhead for the different parts of

the ALU including the multiplier (1-bit ALU chunks without the multiplier, 2-

bit ALU chunks without the multiplier, the Booth encoder with 1-bit chunks,

the Booth selector with 1-bit chunks, the half adders with 1-bit chunks, the full

75

Figure 5.10: Hardware Overhead of Carry Propagation Adder with Different Re-
configuration Schemes

76

Figure 5.11: Hardware Overhead of the 64-bit ALU (Including the Multiplier)
with Different Reconfiguration Schemes

77

adders with 1-bit chunks and the carry propagation adder with 2-bit chunks) with

all of the reconfiguration schemes. After analyzing the hardware overheads of the

thirty two 2-bit ALU chunks without the multiplier and the sixty four 1-bit ALU

chunks without the multiplier with the different reconfiguration schemes, we came

to a conclusion that thirty two 2-bit ALU chunks without the multiplier is the

best design because it has a lower hardware overhead (explained in Section 5.3.1).

The hardware overhead comparison with different reconfiguration mechanisms

for the 64-bit ALU including the multiplier is shown in Figure 5.11. Basically the

hardware overhead comparison is to find out which of the reconfiguration strate-

gies is best for the 64-bit ALU. After a very brief analysis we decided that the best

reconfiguration mechanism for the 64-bit ALU is to use one spare chunk for every

sixteen chunks as it has a better error correction rate and a considerable hardware

overhead (explained in Section 5.3.1). Hence, we have successfully designed the

fault-tolerance mechanism for the 64-bit ALU including the multiplier.

78

Chapter 6

Reliability Analysis

In some applications of electronic systems high levels of reliability, or low proba-

bilities of failure are required. Here we are going to analyze the reliability of the

system without fault-tolerance, TMR with a single voting mechanism, TMR with

a triplicated voting mechanism and with our fault-tolerance method. Here we will

provide the equations for total reliability of a system with different fault-tolerant

schemes. We will also provide a graph that shows the reliability of the system

with different fault-tolerance mechanisms.

6.1 TMR with Single Voting Mechanism

Let the reliability of the voting unit be Rv and the reliability of each triplicated

module be Rm. Let Rtm be the total reliability of the triplicated module sub-

system and R be the total reliability of the system. The three systems used

for triple modular redundancy are indicated as 1, 2 and 3, shown in Figure 6.1.

The gray color space in the Figure 6.1 indicates that one of the two systems is

faulty (systems 1, 2 are good and 3 is faulty; systems 2, 3 are good and 1 is faulty;

systems 1 and 3 are good and 2 is faulty). The gray color space is mathematically

represented as R2
m(1 - Rm). The black color space in the Figure 6.1 indicates

that all the three systems are good. The black color space is mathematically

represented as R3
m. The total reliability of the triple modular redundancy system

would be the sum of the gray and black color spaces. The total reliability of the

TMR with a single voting mechanism system is the product of reliability of TMR

system and reliability of voter.

79

Figure 6.1: Venn Diagram of Triple Modular Redundant System

R = Rtm × Rv (6.1)

Rtm = 3R2

m − 2R3

m (6.2)

R = (3R2

m − 2R3

m)Rv (6.3)

Based on these equations we have created Table 6.1. In this table we have

assumed the values of the reliability of triplicated modules Rm and the reliability

of the voter Rv. Based on the assumed values of reliability we calculated the total

reliability of the system.

6.2 TMR with Triplicated Voting Mechanism

Let the reliability of the voting unit for the final single output be Rv, the reliability

of the triplicated modules be Rm and the reliability of the triplicated voters be

Rv1. Let Rtm be the total reliability of the triplicated module sub-system, Rtv1

be the total reliability of the triplicated voters and R be the total reliability of

the system. The total reliability of the TMR with a triplicated voting mechanism

system is the product of the reliability of TMR system, the reliability of triplicated

voters and the reliability of the voter for the final single output.

R = Rtm × Rtv1 × Rv (6.4)

80

Table 6.1: Reliability for TMR with Single Voting Mechanisms
Rm Rv Rtm R
0.9 0.99 0.972 0.963
0.8 0.99 0.896 0.887
0.9 0.9 0.972 0.875
0.8 0.9 0.896 0.806
0.7 0.99 0.784 0.776
0.7 0.9 0.784 0.706
0.6 0.99 0.648 0.642
0.6 0.9 0.648 0.583
0.5 0.99 0.5 0.495
0.5 0.9 0.5 0.45
0.4 0.99 0.352 0.349
0.4 0.9 0.352 0.317
0.3 0.99 0.216 0.214
0.3 0.9 0.216 0.194
0.2 0.99 0.104 0.103
0.2 0.9 0.104 0.0936
0.1 0.99 0.028 0.0277
0.1 0.9 0.028 0.0252

0.05 0.99 0.007 0.007

Rtm = 3R2

m − 2R3

m (6.5)

Rtv1 = 3R2

v1 − 2R3

v1 (6.6)

R = (3R2

m − 2R3

m) × (3R2

v1 − 2R3

v1) × Rv (6.7)

Based on these equations we have created Table 6.2. In this table we have

assumed the values of the reliability of triplicated modules Rm, reliability of

triplicated voters Rv1 and the reliability of the voter for single final output Rv.

Based on the assumed values of reliability we calculated the reliability of the

system.

6.3 Our Fault-Tolerance Mechanism

Let the reliability of the ALU without the multiplier be Ralu, the reliability of

the Booth selector unit, the Booth encoder unit, the half adder, the full adder

and the carry propagation adder be Rbsel, Rbenc, Rha, Rfa and Rcpa. Let the

81

Table 6.2: Reliability for TMR with Triplicated Voting Mechanisms
Rm Rv1 Rv Rtm Rtv1 R

0.95 0.99 0.99 0.993 0.999 0.983
0.9 0.95 0.99 0.972 0.993 0.955

0.85 0.9 0.99 0.939 0.972 0.904
0.8 0.85 0.99 0.896 0.939 0.833

0.75 0.8 0.99 0.844 0.896 0.748
0.7 0.75 0.99 0.784 0.844 0.655

0.65 0.7 0.99 0.718 0.784 0.558
0.6 0.65 0.99 0.648 0.718 0.461

0.55 0.6 0.99 0.575 0.648 0.369
0.5 0.55 0.99 0.5 0.575 0.285

0.45 0.5 0.99 0.425 0.5 0.211
0.4 0.45 0.99 0.352 0.425 0.148

0.35 0.4 0.99 0.282 0.352 0.098
0.3 0.35 0.99 0.216 0.282 0.0603

0.25 0.3 0.99 0.156 0.216 0.034
0.2 0.25 0.99 0.104 0.156 0.016

0.15 0.2 0.99 0.0608 0.104 0.006
0.1 0.15 0.99 0.028 0.0608 0.001

0.05 0.1 0.99 0.007 0.028 0.0002

total reliability of the ALU without the multiplier, the Booth selector unit, the

Booth encoder unit, the half adder unit, the full adder unit, the carry propagation

adder be RTalu, RTbsel, RTbenc, RTha, RTfa and RTcpa. Let the total reliability of

multiplier be Rmult and the total reliability of the system be R. Here Ra1 and

Ra2 are the reliabilities of the MUXes used for the reconfiguration of the ALU.

Similarly, Rb is for the Booth selector unit, Rc is used for the Booth encoder unit,

Rd is used for the full adder unit, Re is used for the half adder unit and Rf is

used for the carry propagation unit.

RTalu = (1 − (1 − (RaluRa1)) × (1 − (RaluRa2))) (6.8)

RTbsel = (1 −
134
∏

i=1

(1 − (RbselRbi))) (6.9)

RTbenc = (1 − (1 − (RbencRc1)) × (1 − (RbencRc22))) (6.10)

RTfa = (1 −
119
∏

i=1

(1 − (RfaRdi))) (6.11)

82

RTha = (1 −
11
∏

i=1

(1 − (RhaRei))) (6.12)

RTcpa = (1 −
4

∏

i=1

(1 − (RcpaRfi))) (6.13)

Rmult = RTbenc × RTbsel × RTfa × RTha × RTcpa (6.14)

R = (1 − (1 − RTalu) × (1 − Rmult)) (6.15)

Based on these equations we have created Table 6.3. In this table we have

Table 6.3: Reliability for our Fault-Tolerance Mechanism
Ralu Rfa Rha Rcpa Rbenc Rbsel Rmult R
0.9 0.9 0.9 0.9 0.9 0.9 0.989 0.9999

0.85 0.85 0.85 0.85 0.85 0.85 0.977 0.9995
0.8 0.8 0.8 0.8 0.8 0.8 0.959 0.998

0.75 0.75 0.75 0.75 0.75 0.75 0.934 0.9959
0.7 0.7 0.7 0.7 0.7 0.7 0.903 0.991

0.65 0.65 0.65 0.65 0.65 0.65 0.864 0.9834
0.6 0.6 0.6 0.6 0.6 0.6 0.8185 0.9710

0.55 0.55 0.55 0.55 0.55 0.55 0.765 0.952
0.5 0.5 0.5 0.5 0.5 0.5 0.703 0.926

0.45 0.45 0.45 0.45 0.45 0.45 0.6328 0.8889
0.4 0.4 0.4 0.4 0.4 0.4 0.555 0.8398

0.35 0.35 0.35 0.35 0.35 0.35 0.4703 0.7762
0.3 0.3 0.3 0.3 0.3 0.3 0.3799 0.6962

0.25 0.25 0.25 0.25 0.25 0.25 0.2864 0.5986
0.2 0.2 0.2 0.2 0.2 0.2 0.1943 0.4843

0.15 0.15 0.15 0.15 0.15 0.15 0.1105 0.3573
0.1 0.1 0.1 0.1 0.1 0.1 0.04484 0.2263

0.05 0.05 0.05 0.05 0.05 0.05 0.0078 0.1045
0.01 0.01 0.01 0.01 0.01 0.01 0.00004 0.0199

assumed the values of the reliability of the ALU without the multiplier to be

Ralu, the reliability of the Booth selector unit, the Booth encoder unit, the half

adder, the full adder and the carry propagation adder to be Rbsel, Rbenc, Rha, Rfa

and Rcpa, respectively. We have also assumed the values of the MUXes used in for

the reconfiguration of the system. We gave the values 0 or 1 for the reliability of

MUXes. If the reliability of one of the MUXes is zero, it will not bring any critical

change to the whole reliability of the system. Based on the assumed reliability

values we calculated the total reliability of our fault-tolerance mechanism.

83

6.4 Results

We have analyzed and derived the equations for reliability for the fault-tolerance

mechanisms TMR with a single voting mechanism, TMR with a triplicated voting

mechanism and our own fault tolerance mechanism. Based on these equations we

are going to plot the reliability values of the all the fault-tolerance mechanisms,

shown in Figure 6.2. Here the reliability is plotted with respect to time. The

graph shows the reliability curves of all the three fault-tolerance mechanisms and

the reliability curve of the normal system. We assumed that the reliability of

individual modules decrease with respect to time (every year). For every year we

assumed the reliability decreases by 10%.

Figure 6.2: Reliability of Different Fault-Tolerance Mechanisms

84

Chapter 7

Conclusions and Future Research

We have proposed a fault tolerant ALU for medical systems. When compared

with the existing fault-tolerant mechanisms the only one that can correct both

the permanent and the transient errors is our fault-tolerance mechanism. We

compared our design with the triple modular redundancy (TMR) with single vot-

ing and TMR with triplicated voting mechanisms. The hardware overhead of

our fault-tolerance mechanism is less compared to the other two fault-tolerant

mechanisms.

The different steps of our fault-tolerance mechanism is explained as follows.

We detect the stuck-at faults using the Recomputing with Swapped Operands

(RESWO) mechanism. Once the fault is detected we diagnose the ALU to lo-

cate the fault using the special vectors. As soon as we know the fault location

we will replace the faulty part with our online reconfiguration mechanism (for

sixteen chunks one spare chunk). We have designed a 64-bit ALU (2-bit ALU

chunks without the multiplier, the Booth encoder with 1-bit chunks, the Booth

selector with 1-bit chunks, the half adders with 1-bit chunks, the full adders with

1-bit chunks and the carry propagation adder with 2-bit chunks) with the online

reconfiguration mechanism of one spare chunk for every sixteen chunks.

7.1 Statement of Original Ideas

The RESWO mechanism was originally developed by Hana and Johnson [34]. We

used the RESWO mechanism in our research to detect the stuck-at faults and

correct the soft errors. For correcting the stuck-at faults we developed original

85

diagnosis and reconfiguration mechanisms. We designed different diagnosis mech-

anisms for the ALU, which are discussed in detail in Chapter 4. We found that

the best diagnosis mechanism for the 64-bit ALU is designing the Boolean, addi-

tion, subtraction and shifting operations with thirty two reconfigurable 2-bit ALU

chunks and designing the multiplier separately. We implemented four different

reconfiguration schemes for the 64-bit ALU, which are discussed in great detail

in Chapter 5. After a very brief analysis we decided that the best reconfiguration

mechanism for the 64-bit ALU is to use one spare chunk for every sixteen chunks

as it has a error correction rate of 6.25% and much less hardware overhead of 78%

(2.49% of this hardware overhead is for the RESWO checker) compared to the

hardware overheads of TMR with a single voting mechanism (201.87%) and TMR

with a triplicated voting mechanism (207.5%). Hence, we were able to correct

the stuck-at faults using the RESWO mechanism.

7.2 Comparison of Our Scheme

In order to prove that our fault-tolerance mechanism is the best we have to

compare it with the conventional fault-tolerance mechanisms such as TMR with

the single voting mechanism and the TMR with the triplicated voting mechanism.

The hardware overhead with our fault tolerant mechanism is 78%.

7.2.1 TMR Single Voting Mechanism

In computing, triple modular redundancy (TMR) is a fault tolerant form, in which

three identical systems perform a process and that result is processed by a voting

system to produce a single output. Here, we are going to use three copies of the

ALU to perform either arithmetic or Boolean operations and that result would

be voted on by a single voting mechanism to produce a single output. The voter

used in this fault-tolerance mechanism is assumed to be perfect. The hardware

overhead for the TMR with a single voting mechanism is 201.87%, which is com-

paratively higher than the hardware overhead of our fault-tolerance mechanism.

86

The voter used in this system should be fail safe.

7.2.2 TMR Triplicated Voting Mechanism

We are going to use three identical copies of the ALU to perform either arith-

metic or Boolean operations and that result would be produced by a triplicated

voting mechanism to produce three outputs. The three outputs produced by the

triplicated voting mechanisms would be voted on by a single voting mechanism

to produce a single output. In the TMR with a single voting mechanism we have

only one voter whereas in the TMR with triplicated voting mechanisms we have

four voters in total. The hardware overhead of a voter with respect to the entire

ALU is 1.87%. The single voter used to produce a single output is assumed to be

perfect and it should also be fail safe. The hardware overhead for the TMR with

a triplicated voting mechanism is 207.5 %, which is comparatively higher than

the hardware overhead of our fault-tolerance mechanism.

7.2.3 Residue Codes and RESWO Checkers as Fault-

Tolerance Mechanisms

For detecting the permanent errors in the arithmetic operations we use the modulo-

3 residue codes and for the Boolean operations we use the RESWO mechanism.

The hardware overhead with residue codes is 58.4% and with the RESWO check-

ers is 20 %. Once a fault is detected we diagnose and reconfigure the 64-bit ALU.

The hardware overhead with reconfiguration mechanism one spare chunk for ev-

ery sixteen chunks is 75.51%. The total hardware overhead for this fault-tolerance

mechanism is 153.91%, which is comparatively higher than the hardware overhead

of our fault tolerance mechanism. This fault-tolerance mechanism cannot handle

transient errors for arithmetic operations. The advantage of this mechanism is

that it has no extra hardware delay.

87

7.3 Statement of Results

We have implemented different types of fault tolerance mechanisms for the ALU.

We discovered that error detecting codes such as the two-rail checker and Berger

codes are no longer useful, as our aim is error correction. So, we tried implement-

ing error correcting codes such as the Hamming, residue and Reed-Solomon codes

as fault-tolerance mechanisms. Hamming codes are not invariant for arithmetic

operations and the hardware overheads of Residue and Reed-Solomon codes are

extremely huge. So, we decided to use Time Redundancy as the fault-tolerance

mechanism for the ALU. We chose REcomputing with SWapped Operands (RESWO)

as it had 5.3% lower hardware and 9.06% lower power overheads than Recom-

puting with Alternating Logic, discussed in Chapter 3. The best fault tolerance

mechanism for the ALU is REcomputing with SWapped Operands (RESWO). The

RESWO approach has been shown to be less expensive, particularly when the

complexity of individual modules of the circuit is high. The delay overhead for

the 64-bit ALU with the RESWO approach is 110.96%.

We have implemented different types of diagnosis mechanisms for the ALU,

discussed in Chapter 4. We found that the best diagnosis mechanism for the 64-

bit ALU is designing the Boolean, addition, subtraction and shifting operations

with thirty two reconfigurable 2-bit ALU chunks and designing the multiplier sep-

arately. We had to split the multiplier into identical bit slices of Booth encoders,

Booth selectors, full adders, half adders and carry propagation adders. It was

easy to reconfigure the multiplier once it was split into identical bit slices. The

number of diagnosis vectors needed to diagnose the Booth encoded Dadda tree

multiplier is shown in Table 7.1.

We implemented four different reconfiguration schemes for the 64-bit ALU,

discussed in Chapter 5. We decided that the best reconfiguration mechanism for

the 64-bit ALU is to use one spare chunk for every sixteen chunks as it has a error

correction rate of 6.25% and a much lower hardware overhead (explained in Sec-

tion 5.3.1) of 78%(2.49% of this overhead is for the RESWO checkers) compared

88

Table 7.1: Diagnosis Vectors for Booth Encoded Dadda Tree Multiplier

Architecture Number of
Diagnosis Vectors

Booth Encoder 7
Booth Selector 4

Full Adder 5
Half Adder 4

Carry Propagation Adder 7

to the hardware overheads of TMR with single voting mechanism (201.87%) and

TMR with triplicated voting mechanism (207.5%). We are using this reconfig-

uration mechanism though it has a higher hardware overhead compared to the

reconfiguration mechanism one spare chunk for every thirty two chunks because

it has a better error correction rate. The reconfiguration mechanism one spare

chunk for every sixteen chunks can correct two faults whereas the reconfiguration

mechanism one spare chunk for every thirty two chunks can correct only one fault.

The hardware overhead for the 64-bit ALU with the reconfiguration mechanism

of one spare chunk for every sixteen chunks is 78% (2.49% of this overhead is for

the RESWO checkers).

Duplication with comparison cannot correct the hard or the soft errors. TMR

with a single voting mechanism can give a correct output iff the fault occurs in

one of the three modules. If the fault occurs in two of the three modules or

in the voter circuit then TMR with a single voting mechanism will produce a

incorrect output. TMR with a triplicated voting mechanism can give a correct

output iff the fault occurs in one of the three modules or in one of the three

voters. If the fault occurs in two of the three modules or in two of the three

voters or the voter that produces the single output then TMR with a triplicated

voting mechanism will produce an incorrect output. The error correction rate

of TMR with a single voting mechanism is 33.33%. The error correction rate of

TMR with a triplicated voting mechanism is 33.33%. But, in our fault-tolerance

mechanism we can handle as many as 4 faults, provided that they are not in the

89

same sixteen-bit chunk. The reliability of TMR with a single voting mechanism

and TMR with a triplicated voting mechanism are less than the reliability of our

fault-tolerance mechanism. The probability of faults occuring in more than one

of the sixteen-bit chunks is less than the probability of faults occurring in more

than one of the three 64-bit ALU units. Hence, our fault-tolerance mechanism

for correcting faults is more reliable than the other mechanisms.

The hardware overhead with the RESWO approach and the reconfiguration

mechanism of one spare chunk for every sixteen chunks for the 64-bit ALU is

78%. The delay overhead for the 64-bit ALU with our fault-tolerance mechanism

is 110.96%. Hence, we have successfully designed the fault-tolerance mechanism

for the 64-bit ALU, including the multiplier, that can correct both transient and

permanent errors.

7.4 Benefits of Our Scheme

With this method we have a hardware overhead of 78% (2.49% of this overhead

is for the RESWO checkers)– this is much lower than for TMR, Reed-Solomon

codes, or residue codes. In this method, we can correct one stuck-at fault for

every sixteen bit slices. So, the error correction rate is 6.25%. It can also correct

single-bit transient faults. The diagnosis overhead occurs only when an error hap-

pens, and not during correct machine operation. When an error occurs, we stall

the processor, perform diagnosis and correct the data. In high-performance ma-

chines, where delay overhead is tolerable, we use this fault-tolerance mechanism.

Reliability analysis showed that our fault-tolerance mechanism is better than the

current fault-tolerant mechanisms. If the reliability of all the sub-modules of

the 64-bit ALU with fault-tolerance mechanism is 90%, then the entire system

reliability is 99.99%.

90

7.5 Future Work Directions

Fault-tolerance has been studied greatly since the dawn of the electronic digital

computer age. The probability of both permanent and temporary faults is in-

creasing, making fault-tolerance a key concern in scaling chips. Here we propose

a comprehensive solution to deal with both permanent and transient errors af-

fecting the VLSI chips. We have to improve the fault-tolerance mechanism to

handle multiple transient errors. We have to reduce the delay overhead for our

fault-tolerance mechanism. We have to invent a new error correcting code that

has a hardware overhead less than 100%. We have to improve the error correction

rate of our fault-tolerance mechanism.

91

References

[1] D. A. Anderson. Design of Self-Checking Digital Networks Using Coding
Techniques. Research Report # 527, Univ. of Illinois, Urbana Champaign,
Coordinated Science Lab., September 1971.

[2] T. Anderson and P. A. Lee. Fault Tolerance Principles and Practices.
Prentice-Hall, London, U. K., 1981.

[3] A. Avizienis. Architecture of Fault-Tolerant Computing Systems. In Proc.
of the Int’l. Conf. on Fault-Tolerant Computing Systems, IEEE Computer
Society, pages 3–16, 1975.

[4] A. Avizienis and L. Chen. On the Implementation of N-Version Programming
for Software Fault Tolerance During Execution. In Proc. of the Computer
Software and Applications Conference, pages 149–155, 1977.

[5] A. Avizienis, G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr, and
D. K. Rubin. The STAR Computer: An Investigation of the Theory and
Practice of Fault-Tolerant Computer Design. IEEE Trans. on Computers,
C-20(11):1312–1321, November 1971.

[6] A Avizienis and J. P. J. Kelly. Fault-Tolerance by Design Diversity: Concepts
and Experiments. Computer, IEEE Computer Society, 17(8):67–80, August
1984.

[7] R.C. Baumann. Soft Errors in Advanced Semiconductor Devices – Part I:
The Three Radiation Sources. IEEE Transactions on Device and Materials
Reliability, 1(1):17–22, Mar 2001.

[8] R.C. Baumann. Radiation-Induced Soft Errors in Advanced Semiconduc-
tor Technologies. IEEE Transactions on Device and Materials Reliability,
5(3):305–316, Sept. 2005.

[9] R.C. Baumann. Soft Errors in Advanced Computer Systems. IEEE Design
and Test of Computers, 22(3):258–266, 2005.

[10] J. M. Berger. A Note on Error Detection Codes for Asymmetric Channels.
Information and Control, 4(7):68–73, March 1961.

[11] E. R. Berlekamp. Nonbinary BCH Decoding. IEEE Trans. on Information
Theory, 14(2):242–242, March 1968.

92

[12] E. R. Berlekamp. Algebraic Coding Theory. Agean Park Press, Laguna Hills,
CA, 1984.

[13] C. Bolchini, R. Montandon, F. Salice, and D. Sciuto. Design of VHDL-
Based Totally Self-Checking Finite-State Machine and Data-Path Descrip-
tions. IEEE Trans. on VLSI Systems, 8(1):98–103, February 2000.

[14] A. Booth. A Signed Binary Multiplication Technique. Quarterly J. of Me-
chanics and Applied Mathematics, 4(2):236–240, June 1951.

[15] R. C. Bose and D. K. Ray-Chaudhuri. On a Class of Error Correcting Binary
Group Codes. Information and Control, 3(1):68–79, March 1960.

[16] D. C. Bossen, A. Kitamorn, K. F. Reick, and M. S. Floyd. Fault-Tolerant De-
sign of the IBM p-series 690 Systems Using POWER4 Processor Technology.
IBM J. of Research and Development, 46(1):77–86, January 2002.

[17] R. T. Brent and H. T. Kung. A Regular Layout for Parallel Adders. IEEE
Trans. on Computers, C-31(3):260–264, March 1982.

[18] M. L. Bushnell and V. D. Agrawal. Essentials of Electronic Testing for
Digital, Memory, and Mixed-Signal VLSI Circuits. Springer, Boston, 2000.

[19] W. C. Carter and P. R. Schneider. Design of Dynamically Checked Com-
puters. Proc. of the International Federation for Information Processing,
2(1):878–883, August 1968.

[20] P. W. Cheney. A Digital Correlator Based on the Residue Number System.
Institute of Radio Engineers Trans. on Electronic Computers, EC-10(1):63–
70, March 1961.

[21] R. T. Chien. Cyclic Decoding Procedure for the Bose-Chaudhuri-
Hocquenghem Codes. IEEE Transactions on Information Theory, 10(4):357–
363, October 1964.

[22] Yaohan Chu. Digital Computer Design Fundamentals. McGraw-Hill, New
York, 1962.

[23] M. Cohn. Redundancy in Complex Computers. In Proceedings of the Na-
tional Conference on Aeronautical Electronics, pages 231–235, May 1956.

[24] D. P. Siewiorek. Architecture of Fault Tolerance Computers: A Historical
Perspective. Proc. of IEEE, 79(12):1710–1734, December 1991.

[25] L. Dadda. Some Schemes for Parallel Multipliers. Alta Frequenza, 34(5):349–
356, May 1965.

[26] D. Das and N. A. Touba. Synthesis of Circuits with Low-Cost Concurrent
Error Detection Based on Bose-Lin Codes. Journal on Electronic Testing:
Theory and Applications (JETTA), 15(1):145–155, August 1999.

93

[27] E. S. Davidson. An Algorithm for NAND Decomposition under Network
Constraints. IEEE Trans. on Electronic Computers, C-18(12):1098–1109,
December 1969.

[28] I. Flores. The Logic of Computer Arithmetic. Prentice-Hall, Englewood
Cliffs, NJ, 1963.

[29] G. D. Forney. On Decoding BCH Codes. IEEE Transactions on Information
Theory, 11(4):549–557, October 1965.

[30] H. L. Garner. The Residue Number System. IRE Trans. on Electronic
Computers, EC-8(6):140–147, June 1959.

[31] H. L. Garner. Error Codes for Arithmetic Operations. IEEE Trans. on
Electronic Computers, EC-15(5):763–770, October 1966.

[32] Marcel J. E. Golay. Notes on Digital Coding. Proceedings of the I.R.E.,
37(6):657, June 1949.

[33] R. W. Hamming. Error Detecting and Error Correcting Codes. The Bell
System Technical Journal, 29(2):147–160, April 1950.

[34] H. H. Hana and B. W. Johnson. Concurrent Error Detection in VLSI Circuits
Using Time Redundancy. In Proc. of the IEEE Southeastcon ’86 Regional
Conf., pages 208–212, March 1986.

[35] J. P. Hayes. A NAND Model for Fault Diagnosis in Combinational Logic
Networks. IEEE Trans. on Computers, 20(12):1496–1506, December 1971.

[36] B. W. Johnson. Design and Analysis of Fault Tolerant Digital Systems.
Addison-Wesley, Reading, MA, 1989.

[37] Y. A. Keir, P. W. Cheney, and M. Tannenbaum. Division and Overflow
Detection in Residue Number Systems. IRE Trans. on Electronic Computers,
11(5):501–507, August 1962.

[38] J. C. Knight, N. G. Leveson, and L. St. Jean. A Large-Scale Experiment
in N-Version Programming. In Proc. of the Int’l. Conf. on Fault-Tolerant
Computing Systems, IEEE Computer Society, pages 135–139, 1985.

[39] P. M. Kogge and H. S. Stone. A Parallel Algorithm for the Efficient Solution
of a General Class of Recurrence Equations. IEEE Trans. on Computers,
C-22(8):786–792, August 1973.

[40] P. K. Lala. Self-Checking and Fault-Tolerant Digital System Design. Morgan
Kaufman Publishers, San Francisco, 2001.

[41] J. C. Laprie. Dependable Computing and Fault-Tolerance: Concepts and
Terminology. In Proc. of the Int’l. Conf. on Fault-Tolerant Computing Sys-
tems, IEEE Computer Society, pages 2–11, June 1985.

94

[42] R. E. Lyons and W. Vanderkulk. The Use of Triple-Modular Redundancy
to Improve Computer Reliability. IBM J. of Research and Development,
6(2):200–209, April 1962.

[43] A. Mahmood and E. J. McCluskey. Concurrent Error Detection Using
Watchdog Processors – A Survey. IEEE Trans. on Computers, 37(2):160–
174, February 1988.

[44] R. J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer
Academic Publishers, Boston, 1987.

[45] E. F. Moore and C. E. Shannon. Reliable Circuits Using Less Reliable Relays.
J. of the Franklin Institute, 262(3):191–208, September 1956.

[46] J. V. Neumann. Probabilistic Logics. In C. Shannon and J. McCarthy, edi-
tors, Automata Studies, Princeton University Press, pages 43–98, Princeton,
NJ, 1956.

[47] B. E. Ossfeldt and I. Jonsson. Recovery and Diagnostics in the Central
Control of the AXE Switching System. IEEE Trans. on Computers, C-
29(6):482–491, June 1980.

[48] J. Patel and L. Fung. Concurrent Error Detection in ALUs by Recomputing
with Shifted Operands. IEEE Trans. on Computers, 31(7):589–595, July
1982.

[49] D. Patil, O. Azizi, M. Horowitz, R. Ho, and R. Ananthraman. Robust
Energy-Efficient Adder Topologies. In ARITH ’07: Proceedings of the 18th
IEEE Symposium on Computer Arithmetic, pages 16–28, Washington, DC,
USA, June 2007. IEEE Computer Society.

[50] W. W. Peterson. Encoding and Error-Correction Procedures for the Bose-
Chaudhuri Codes. IRE Transactions on Information Theory, 6(4):459–470,
September 1960.

[51] D. K. Pradhan. Fault-Tolerant Computing: Theory and Techniques, vol-
ume I. Prentice Hall, Englewood Cliffs, New Jersey, 2003.

[52] D. K. Pradhan. Fault-Tolerant Computing: Theory and Techniques, vol-
ume II. Prentice Hall, Englewood Cliffs, New Jersey, 2003.

[53] B. P. Randell, P. A. Lee, and P. C. Treleavan. Reliability Issues in Computer
System Design. Computing Surveys, 10(2):123–165, June 1978.

[54] I. S. Reed. A Class of Multiple-Error-Correcting Codes and the Decoding
Scheme. Trans. of the I.R.E.; Professional Group on Information Theory,
4(4):38–49, 1954.

95

[55] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304,
June 1960.

[56] D. A. Rennels. Distributed Fault-Tolerant Computer Systems. Computer,
IEEE Computer Society, 13(3):55–65, March 1980.

[57] D. A. Rennels, A. Avizienis, and M. Ercegovac. A Study of Standard Build-
ing Blocks for the Design of Fault-Tolerant Distributed Computer System.
In Proc. of the 8th Int’l. Conf. on Fault-Tolerant Computing Systems, pages
208–212, June 1978.

[58] D. A. Reynolds and G. Metze. Fault Detection Capabilities of Alternating
Logic. IEEE Trans. on Computers, 27(12):1093–1098, December 1978.

[59] J. Shedlesky. Error Correction by Alternate Data Retry. IEEE Trans. on
Computers, 27(2):106–112, February 1978.

[60] D. P. Siewiorek, C. G. Bell, and A. Newell. Computer Structures: Principles
and Examples. McGraw-Hill, New York, 1982.

[61] D. P. Siewiorek and R. S. Swarz. Reliable Computer Systems: Design and
Evaluation. A. K. Peters, Ltd., Wellesley, MA, 1998.

[62] J. Sklansky. Conditional-Sum Addition Logic. IRE Trans. on Electronic
Computers, EC-9(2):226–231, June 1960.

[63] I. E. Smith and P. Lam. A Theory of Totally Self-checking System Design.
IEEE Trans. on Computers, 32(9):831–844, September 1983.

[64] L. Spainhower and T. A. Gregg. IBM S/390 Parallel Enterprise Server G5
Fault Tolerance: A Historical Perspective. IBM J. of Research and Develop-
ment, 43(5/6):863–873, November 1999.

[65] T. R. Stankovic, M. K. Stojcev, and G. Ordjevic. Design of Self-Checking
Combinational Circuits. In Proc. of the International Conf. on Telecommu-
nications in Modern Satellite, Cable and Broadcasting Services, volume 17,
pages 763–768, October 2003.

[66] W. J. Stenzel, W. T. Kubitz, and G. H. Garcia. A Compact High Speed
Parallel Multiplication Scheme. IEEE Transactions on Computers, C-
26(10):948–957, February 1977.

[67] W. Toy. Fault-Tolerant Design of Local ESS Processors. Proc. of the IEEE,
66(10):1126–1145, October 1978.

[68] P. K. Turgeon, A. R. Steel, and M. K. Charlebois. Two Approaches to Array
Fault Tolerance in the IBM Enterprise System/9000 Type 9121 Processor.
IBM J. of Research and Development, 35(3):382–389, May 1991.

96

[69] C. S. Wallace. A Suggestion for a Fast Multiplier. IEEE Trans. on Electronic
Computers, EC-13(1):14–17, February 1964.

[70] R. W. Watson and C. W. Hastings. Self-Checked Computation Using
Residue Arithmetic. Proceedings of the IEEE, 54(12):1920–1931, December
1966.

[71] Neil H. E. Weste and David Harris. CMOS VLSI Design: A Circuits and
Systems Perspective. Addison-Wesley, Boston, MA, 2004.

[72] H. Yamamoto, T. Watanabe, and Y. Urano. Alternating Logic and its Ap-
plication to Fault Detection. In Proc. of the 1970 IEEE International. Com-
puting Group Conference, Washington, DC, pages 220–228, June 1970.

[73] N. Zierler. Linear Recurring Sequences. Journal of the Society for Industrial
and Applied Mathematics, 7(1):31–48, June 1959.

97

Appendix A

Validation of ALU Design

We have designed a 64-bit ALU that can perform the Boolean, addition, subtrac-

tion, multiplication and shifting operations. We used a Sklansky tree adder for

addition and subtraction and a Booth–encoded Dadda tree multiplier for the mul-

tiplication operation. We implemented the Boolean, the addition, the subtraction

and the shifting operations using 32 2-bit ALU chunks without the multiplier for

the 64-bit ALU. We designed the multiplier of the 64-bit ALU separately using

the Booth encoder unit, the Booth selector unit and the Dadda tree unit. We

split the multiplier into identical bit slices of Booth encoder, Booth selector, full

adder, half adder and carry propagation adder. It was easy to reconfigure the

multiplier once it was split into identical bit slices. The carry look–ahead stage

of the multiplier uses the 64-bit Sklansky adder designed for the addition and the

subtraction operations of the ALU.

The verilog code for the 64-bit ALU with the test bench is located at /ece/grad/

varadan/Appendixchapter/ALUwithmultmodi5.v

We wrote a test bench for the 64-bit ALU to verify the functionality of all of

the operations. We wrote the verilog code for the 64-bit ALU, synthesized the

verilog code and optimized the code using the Synopsys Design Analyzer. We

verified the design using the Synopsys VCS simulator. The input signals for the

64-bit ALU are “a”, “b”, “CIN”, “lshift”, “rshift”, “logic” and “enable.” The

output signals for the 64-bit ALU are “z” and “COUT.” Signals “a” and “b” are

the 64-bit input operands to the ALU. Signal “CIN” is the carry-in for the ALU.

Signal “COUT” is the carry-out for the ALU. Signal “z” is the 128-bit output of

the ALU. Signal “lshift” is the left shift by 1 command signal for the ALU. Signal

98

“rsh
ift”

is
th

e
righ

t
sh

ift
b
y

1
com

m
an

d
sign

al
for

th
e

A
L
U

.
S
ign

al
“logic”

is
th

e

in
p
u
t

sign
al

th
at

d
iff

eren
tiates

b
etw

een
th

e
B

o
olean

an
d

arith
m

etic
op

eration
s.

Time (1 s)

-10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

C1

Virtual Simulator Environment
Copyright 1993-2000
Synopsys, Inc.
All Rights Reserved.

User : varadan@ece-ws11.rutgers.edu
Design :
Project :
Date : Thu Aug 28 01:45:37 2008

Signal Slice : 1 of 1; signals 1-9 of 9 Page : 1 of 1
Time Range : [0, 95]
Time Slice : 1 of 1; time [0, 95]

Group AutoGroup0

V1

V1

V1

V1

V1

V1

V1

V1

V1

tbench.a[63:0]

tbench.b[63:0]

tbench.CIN

tbench.COUT

tbench.enable[1:0]

tbench.logic

tbench.lshift

tbench.rshift

tbench.z[127:0]

*ffffffff *00000000 *00000000 ffffffffffffffff *000003ff *ffffffff *fffc007f *ffffffff

ffffffffffffffff *e0000000 *0000ffff ffffffffffffffff *01ffffff *ffffffff

22 00 11 33 22 00 11

*00000001 *ffffffff *00000001 *ffffffe0 *ffffffff *ffffffff *00000000 *0003ff80 *ffffffff

If
“logic”

is
0

(1),
th

en
th

e
A

L
U

w
ill

p
erform

A
rith

m
etic

(B
o
olean

)
op

era-

tion
s.

T
h
e

“en
ab

le
[1:0]”

sign
al

in
d
icates

th
e

d
iff

eren
t

B
o
olean

an
d

arith
m

etic

op
eration

s.
T

h
e

sign
als

“logic”
1

an
d

“en
ab

le”
0

in
d
icate

th
e

in
vert

op
eration

.

99

The signals “logic” 1 and “enable” 1 indicate the OR operation. The signals

“logic” 1 and “enable” 2 indicate the XOR operation. The signals “logic” 1 and

“enable” 3 indicate the AND operation. The signals “logic” 0 and “enable” 0

indicate the addition operation. The signals “logic” 0 and “enable” 1 indicate the

subtraction operation. The signals “logic” 0 and “enable” 2 indicate the multiply

operation. The signals “logic” 0, “lshift” 1 and “enable” 3 indicate the left shift

operation. The signals “logic” 0, “rshift” 1 and “enable” 3 indicate the right shift

operation. The signals “logic” 0, “rshift” 0, “lshift” 0 and “enable” 3 represents

no shift operation. The left shift and the right shift operations can only shift

1-bit at a time.

The simulation graph of both the arithmetic and the Boolean operations per-

formed by the ALU is presented here. We have verified the design by writing the

test bench and simulating it. We validated both the arithmetic and the Boolean

operations of the ALU and found that all of the operations perform perfectly.

100

Appendix B

Validation of Fault-Tolerance Method

We have designed the fault-tolerance mechanism recomputing with swapped

operands for the 64-bit ALU, which can perform the Boolean, addition, sub-

traction, multiplication and shifting operations. We decided to run the operands

without swapping once, the second time we decided to swap 32 bits of the 64-bit

operands and the third time we decided to swap 16 bits of the 64-bit operands.

This requires multiplexing hardware to ensure that carries propagate correctly.

We operate the ALU twice for each data path operation – once normally, and

once swapped. If there is a discrepancy, then either a bit position is broken or

a carry propagation circuit is broken, and we diagnose the ALU using diagnosis

vectors. Knowledge of the faulty bit slice and the fault in the carry path makes

error correction possible. It may be necessary to swap a third time and recompute

to get more data to achieve full error correction of soft errors.

We use two different swapping mechanisms to detect the soft errors of the

64-bit ALU. The first time we run the operations normally without swapping the

input operands. The second time we run the operations by swapping 32 bits of

the 64-bit input operands. We compare these two outputs and check whether

there is a discrepancy in the circuit. If there is no discrepancy in the circuit this

will be the last swap. We swap the operands the third time only if the outputs

from the first time and the second time disagree with each other. If there is a

discrepancy in the circuit we use a different swapping mechanism (we run the

operations by swapping 16 bits of the 64-bit input operands) to check whether it

is a soft error or a hard error. If all the three outputs produced by the ALU with

the different swapping mechanisms differ from each other then there is a hard

101

error
in

th
e

A
L
U

.
If

on
e

of
th

e
ou

tp
u
ts

d
iff

ers
from

th
e

oth
er

tw
o

ou
tp

u
ts

th
en

th
ere

is
a

soft
error

in
th

e
A

L
U

.

Time (1 s)

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

Virtual Simulator Environment
Copyright 1993-2000
Synopsys, Inc.
All Rights Reserved.

User : varadan@ece-ws11.rutgers.edu
Design :
Project :
Date : Wed Sep 10 20:14:03 2008

Signal Slice : 1 of 1; signals 1-10 of 10 Page : 1 of 1
Time Range : [1, 45]
Time Slice : 1 of 1; time [1, 45]

Group AutoGroup0

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

tbench.a[63:0]

tbench.b[63:0]

tbench.clk

tbench.comp1_res

tbench.comp2_res

tbench.enable[1:0]

tbench.logic

tbench.reset_n

tbench.sel[1:0]

tbench.z[127:0]

00000000000000ff00000000000000ff

*000000000ff *000000000fe 00000000000000ff00000000000000ff

22 11 00 11 22 33 00

00 11 22 00 11 22 00 11 22 00 11 22 00 11 22 00 11 22 00 11 22

*0000000fe01 *00000000001 *000000001fe *000000000ff *00000000000 *000000000ff *fffffffff00

If
w

e
u
se

ju
st

on
e

sw
ap

p
in

g
m

ech
an

ism
(sw

ap
p
in

g
32

b
its

of
th

e
64-b

it
in

p
u
t

op
eran

d
s),

th
en

in
ord

er
to

d
etect

th
e

soft
errors

w
e

h
ave

to
ru

n
th

e
op

eration
s

fou
r
tim

es.
T

h
e

fi
rst

tim
e

w
e

ru
n

th
e

op
eration

s
n
orm

ally,
th

e
secon

d
tim

e
w

e
ru

n

102

it with one swapped mechanism. If a fault is detected then we again perform the

two operations to check whether it is a soft error or hard error. The advantage of

using one swapping mechanism instead of two swapping mechanisms is we have

reduced operand swapping hardware and the disadvantage is increased delay.

The verilog code for the fault-tolerance method Recomputing with swapped

operands with the test bench is located at /ece/grad/varadan/Appendixchapter/

ReswappedALU64.v

We wrote a test bench for the recomputing with swapped operands design for

the 64-bit ALU to verify the functionality of all of the fault-tolerance operations.

We wrote the verilog code for the recomputing with swapped operands for the 64-

bit ALU, synthesized the verilog code and optimized the code using the Synopsys

design analyzer. We verified the design using the Synopsys VCS simulator. The

input and the output signals of the 64-bit ALU are listed in Appendix A.

The simulation graph of recomputing using swapped operands for the 64-bit

ALU is presented here. The “sel[1:0]” signal 0 indicates that the operands were

not swapped. The “sel[1:0]” signal 1 indicates that 32 bits of the 64-bit operands

were swapped. The “sel[1:0]” signal 2 indicates that 16 bits of the 64 bit operands

were swapped. The remaining signals were already explained in Appendix A. We

have verified the design by writing the test bench and simulating it. We validated

the recomputing with swapped operands mechanism for the ALU and found that

all the operations perform perfectly.

103

Appendix C

Validation of Reconfiguration Method

We have designed different reconfiguration mechanisms for the 64-bit ALU. We

chose to use the reconfiguration mechanism of one spare chunk for every sixteen

chunks for the 64-bit ALU. The reconfiguration mechanisms have been explained

in great detail in Chapter 5. We have implemented all of the parts of the 64-

bit ALU using identical chunks. In order for this reconfiguration mechanism to

work, all sixteen chunks should be identical. If one of the sixteen chunks has a

fault, we can replace the faulty chunk with the spare chunk using the four select

signals used for reconfiguration. These select signals are for the MUXes used to

reconfigure or replace the faulty part. As the reconfiguration mechanism is one

spare chunk for every sixteen chunks, we need sixteen different signals to replace

the faulty chunk. So, these four select signals will internally generate sixteen

different signals.

Let us assume that the select signals are Sa, Sb, Sc and Sd. The select signals

S1, S2, ..., S15 and S16 are internally generated by the four select signals Sa, Sb,

Sc and Sd.

S1 = Sa Sb Sc Sd; (C.1)

S2 = Sa Sb Sc Sd; (C.2)

S3 = Sa Sb Sc Sd; (C.3)

S4 = Sa Sb Sc Sd; (C.4)

S5 = Sa Sb Sc Sd; (C.5)

S6 = Sa Sb Sc Sd; (C.6)

S7 = Sa Sb Sc Sd; (C.7)

104

S8 = Sa Sb Sc Sd; (C.8)

S9 = Sa Sb Sc Sd; (C.9)

S10 = Sa Sb Sc Sd; (C.10)

S11 = Sa Sb Sc Sd; (C.11)

S12 = Sa Sb Sc Sd; (C.12)

S13 = Sa Sb Sc Sd; (C.13)

S14 = Sa Sb Sc Sd; (C.14)

S15 = Sa Sb Sc Sd; (C.15)

S16 = Sa Sb Sc Sd; (C.16)

The internally generated select signals will have the value of 0 by default.

Whenever a chunk has to be replaced then the corresponding internally generated

select signal will be turned to 1. Let us number the sixteen chunks from 1 to 16.

Let us keep the order of the select signals as Sa, Sb, Sc and Sd. We will list the

values of select signals Sa, Sb, Sc and Sd and the internally generated signals in the

Table C.1. We will also show which chunk will be replaced for the corresponding

select signal.

Table C.1: Reconfiguration of the 64-bit ALU

Sa Sb Sc Sd Chunk to be S1 S2 S3 S4 S5 S6 S7 S8

Replaced
0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 2 0 1 0 0 0 0 0 0
0 0 1 0 3 0 0 1 0 0 0 0 0
0 0 1 1 4 0 0 0 1 0 0 0 0
0 1 0 0 5 0 0 0 0 1 0 0 0
0 1 0 1 6 0 0 0 0 0 1 0 0
0 1 1 0 7 0 0 0 0 0 0 1 0
0 1 1 1 8 0 0 0 0 0 0 0 1

The verilog code for the 64-bit ALU with the test bench is located at

/ece/grad/ varadan/Appendixchapter/ReconfigALUwithmultfinalmodi1.v

105

Time (1 s)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

C1

Virtual Simulator Environment
Copyright 1993-2000
Synopsys, Inc.
All Rights Reserved.

User : varadan@ece-ws11.rutgers.edu
Design :
Project :
Date : Thu Aug 28 05:36:00 2008

Signal Slice : 1 of 1; signals 1-25 of 25 Page : 1 of 1
Time Range : [10, 104]
Time Slice : 1 of 1; time [10, 104]

Group AutoGroup0

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

V1

tbench.a[63:0]

tbench.b[63:0]

tbench.CIN

tbench.COUT

tbench.enable[1:0]

tbench.logic

tbench.lshift

tbench.recon_sel1

tbench.recon_sel2

tbench.recon_sel3

tbench.recon_sel4

tbench.recon_sel5

tbench.recon_sel6

tbench.recon_sel7

tbench.recon_sel8

tbench.rshift

tbench.sel1

tbench.sel5

tbench.sel4

tbench.sel3

tbench.sel2

tbench.sel6

tbench.sel7

tbench.sel8

tbench.z[127:0]

ffffffffffffffffffffffffffffffff

ffffffffffffffffffffffffffffffff

22 00 11 33 22 00 11

*000000001 *ffffffffe *000000000 *fffffffe0 *fffffffff *fffffffff *0000000000000000000 *fffffffff

W
e

w
rote

a
test

b
en

ch
for

th
e

recon
fi
gu

ration
m

ech
an

ism
(on

e
sp

are
ch

u
n
k

for

six
teen

ch
u
n
k
s)

u
sed

b
y

th
e

64-b
it

A
L
U

to
verify

th
e

fu
n
ction

ality
of

th
e

m
ech

-

an
ism

.
W

e
w

rote
th

e
verilog

co
d
e

for
th

e
recon

fi
gu

ration
m

ech
an

ism
(on

e
sp

are

ch
u
n
k

for
six

teen
ch

u
n
k
s),

sy
n
th

esized
th

e
verilog

co
d
e

an
d

op
tim

ized
th

e
co

d
e

u
sin

g
th

e
S
y
n
op

sy
s

D
esign

A
n
aly

zer.
W

e
verifi

ed
th

e
d
esign

u
sin

g
th

e
S
y
n
op

sy
s

106

VCS simulator. The input signals for the reconfiguration mechanism (one spare

chunk for sixteen chunks) are “reconsel1,” “reconsel2,” “reconsel3,” and “recon-

sel4.” The input and output signals of the 64-bit ALU are explained in Appendix

A. Signals “reconsel1,” “reconsel2,” “reconsel3,” and “reconsel4” are the four se-

lect signals used by the reconfiguration mechanism to replace one of the sixteen

faulty chunks with the spare chunk.

The simulation trace of the reconfiguration mechanism of one spare chunk

for sixteen chunks used by the ALU is presented here. The signals “reconsel1,”

“reconsel2,” “reconsel3,” and “reconsel4” internally generate sixteen select signals

to replace one of the sixteen faulty chunks. For every spare chunk of the 64-bit

ALU we need four select signals for reconfiguration. We injected the fault in the

ciruit by connecting the faulty wires to 0 (1) for stuck–at 0 (1) faults. We have

verified the design by writing the test bench and simulating it. We validated

the reconfiguration mechanism of the ALU and found that the reconfiguration

mechanism works perfectly for the 64-bit ALU.

107

Appendix D

Reliability Analysis Calculations

We are going to analyze the reliability of the system with our fault-tolerance

mechanism. Let the reliability of the ALU without the multiplier be Ralu, the

reliability of the Booth selector unit, the Booth encoder unit, the half adder, the

full adder and the carry propagation adder be Rbsel, Rbenc, Rha, Rfa and Rcpa.

Let the total reliability of the ALU without the multiplier, the Booth selector

unit, the Booth encoder unit, the half adder unit, the full adder unit, the carry

propagation adder be RTalu, RTbsel, RTbenc, RTha, RTfa and RTcpa. Let the total

reliability of multiplier be Rmult and the total reliability of the system be R.

We are going to calculate reliability of the full adder used in the 64-bit ALU.

The gate level representation of the full adder circuit is shown in Figure D.1. The

equations to calculate the reliability of the full adder is given below.

R1 = RINV × (1 − (1 − RAND)2)ROR (D.1)

R2 = RNAND × (1 − (1 − RNAND)(1 − ROR)) (D.2)

R3 = (1 − (1 − R1)(1 − R2)) × RXOR (D.3)

Rfa = R16

3 + 15R15

3 (1 − R3) (D.4)

Now, we are going to calculate the reliability of the half adder used in the

64-bit ALU. The gate level representation of the half adder circuit is shown in

Figure D.2. The equations to calculate the reliability of the half adder is given

below.

R4 = RINV × RAND (D.5)

R5 = (1 − (1 − RNAND)(1 − ROR)) × RNAND (D.6)

108

sum cout

a b c

Figure D.1: Full Adder Circuit

109

R6 = RINV × (1 − (1 − R4)(1 − R5)) (D.7)

Rha = R16

6 + 15R15

6 (1 − R6) (D.8)

sum cout

ba

Figure D.2: Half Adder Circuit

So far we have given the reliability equations of the half adder and the full

adder circuit. Now, we are going to calculate the reliability of the Booth encoder

circuit used in the 64-bit ALU. The gate level representation of the Booth encoder

circuit is shown in Figure D.3. The equations to calculate the reliability of the

half adder is given below.

R7 = (1 − (1 − RXOR)(1 − RXOR × RAND)) (D.9)

Rbenc = R16

7 + 15R15

7 (1 − R7) (D.10)

Now, we are going to calculate the reliability of the Booth selector circuit used

in the 64-bit ALU. The gate level representation of the Booth selector circuit is

shown in Figure D.4. The equations to calculate the reliability of the Booth

selector circuit is given below.

R8 = (1 − (1 − RAND)(1 − RAND)) (D.11)

110

X2i2i-1 X2i+1

X M2X

X

Figure D.3: Booth Encoder Circuit

R9 = R8 × RNOR × RXNOR (D.12)

Rbsel = R16

9 + 15R15

9 (1 − R9) (D.13)

Yj 2XXM

PP

Yj-1

Figure D.4: Booth Selector Circuit

Now, we are going to calculate the reliability of the carry propagation circuit

used to calculate the final output of the multiplier. The gate level representation

of the carry propagation circuit is shown in Figure D.5. The equations to calculate

111

the reliability of the carry propagation circuit are given below.

R10 = (1 − (1 − RAND)2) × ROR (D.14)

R11 = (1 − (1 − ROR)(1 − RNAND)) × RNAND (D.15)

R12 = (1 − (1 − RAND)2) × RNOR (D.16)

R13 = (1 − RXOR × R12 × RINV × R10) (D.17)

R14 = (1 − RINV × R11)(1 − RXOR × R12) (D.18)

R15 = (1 − R13 × R14) (D.19)

Rcpa = R16

15 + 15R15

15(1 − R15) (D.20)

Cout

z[0]

z[1]a1

a0
b0

b1

Cin

Figure D.5: Carry Propagation Circuit

So far we have given the reliability equations of the full adder, the half adder,

the Booth encoder, the Booth selector and the carry propagation circuits. Now,

we are going to give the equation for the MUXes used to reconfigure the 64-bit

ALU. The gate level representation of the 2:1 MUX is shown in Figure D.6. The

equations to calculate the reliability of the 2:1 MUX is given below.

RMUX21 = RINV × (1 − (1 − RNAND)(1 − RNAND) × RNAND (D.21)

112

A
S

B

Z

Figure D.6: 2:1 MUX Circuit

Now, we are going to give the equation for the 4:1 MUX circuit used to

reconfigure the 64-bit ALU. The gate level representation of the 4:1 MUX is

shown in Figure D.7. The equation to calculate the reliability of the 4:1 MUX is

given below.

RMUX41 = RNAND4 × (1 − (1 − RNAND3)
4) × (1 − (1 − RINV)2) (D.22)

D

C

B

A

Sb

Sa

ZNAND4
gate

Figure D.7: 4:1 MUX Circuit

Now, we are going to give the equation for the 8:1 MUX circuit used to

reconfigure the 64-bit ALU. The gate level representation of the 8:1 MUX is

shown in Figure D.8. The equation to calculate the reliability of the 8:1 MUX is

113

given below.

RMUX81 = (1 − (1 − RMUX41)
2) × RMUX21 (D.23)

Sa

ScM
U
X

M
U
X

M
U
X

4

2 Z

4

Sb

Sa Sb

A
B
C
D

E
F
G
H

Figure D.8: 8:1 MUX Circuit

Now, we are going to give the equation for the 16:1 MUX circuit used to

reconfigure the 64-bit ALU. The gate level representation of the 16:1 MUX is

shown in Figure D.9. The equation to calculate the reliability of the 16:1 MUX

is given below.

RMUX161 = (1 − (1 − RMUX81)
2) × RMUX21 (D.24)

So far we have given the equations of the MUXes being used to reconfigure

the 64-bit ALU. The equation to calculate the total reliability of the MUX used

to reconfigure one spare chunk is given below.

RMUX = (1 − (1 − RMUX161)
3) × (1 − (1 − RMUX21)

16) (D.25)

Here Ra1 and Ra2 are the reliabilities of the MUXes used for the reconfigura-

tion of the ALU. Similarly, Rb is for the Booth selector unit, Rc is used for the

114

B

A1
B1
C1
D1
E1
F1
G1
H1

Sa Sb Sc

Z
M
U
X

2

Sd
E
F
G
H

A

C
D

M
U
X

8

SbSa Sc

M
U
X

8

Figure D.9: 16:1 MUX Circuit

115

Booth encoder unit, Rd is used for the full adder unit, Re is used for the half

adder unit and Rf is used for the carry propagation unit. Now we are going to

put all the equations together and calculate the reliability of the 64-bit ALU.

The equations given below use the parameters which have been derived in the

equations above.

Ra1 = RMUX (D.26)

Ra2 = RMUX (D.27)

Rb = RMUX (D.28)

Rc1 = RMUX (D.29)

Rc2 = RMUX (D.30)

Rd = RMUX (D.31)

Table D.1: Reliability Analysis

RINV ROR RNAND RNOR RAND RXOR R
0.999999 0.9999 0.9999 0.9999 0.9999 0.99 0.9999999999
0.999984 0.9996 0.9996 0.9996 0.9996 0.98 0.9999999990
0.999919 0.9991 0.9991 0.9991 0.9991 0.97 0.9999990270
0.999744 0.9984 0.9984 0.9984 0.9984 0.96 0.9999966000
0.999375 0.9975 0.9975 0.9975 0.9975 0.95 0.9999915000
0.998704 0.9964 0.9964 0.9964 0.9964 0.94 0.9999863000
0.997599 0.9951 0.9951 0.9951 0.9951 0.93 0.9999744000
0.995904 0.9936 0.9936 0.9936 0.9936 0.92 0.9999560000
0.993439 0.9919 0.9919 0.9919 0.9919 0.91 0.9999290000
0.991200 0.9900 0.9900 0.9900 0.9900 0.90 0.9998910000
0.988961 0.9879 0.9879 0.9879 0.9879 0.89 0.9996413560
0.987856 0.9856 0.9856 0.9856 0.9856 0.88 0.9994420800
0.986161 0.9831 0.9831 0.9831 0.9831 0.87 0.9991583570
0.984466 0.9804 0.9804 0.9804 0.9804 0.86 0.9987665420
0.982771 0.9775 0.9775 0.9775 0.9775 0.85 0.9982385730
0.981076 0.9744 0.9744 0.9744 0.9744 0.84 0.9975428470
0.979381 0.9711 0.9711 0.9711 0.9711 0.83 0.9966446270
0.977686 0.9676 0.9676 0.9676 0.9676 0.82 0.9955066360
0.975991 0.9639 0.9639 0.9639 0.9639 0.81 0.9940898270

116

Re = RMUX (D.32)

RTalu = (1 − (1 − (RaluRa1)) × (1 − (RaluRa2))) (D.33)

RTbsel = (1 −
134
∏

i=1

(1 − (RbselRbi))) (D.34)

RTbenc = (1 − (1 − (RbencRc1)) × (1 − (RbencRc2))) (D.35)

RTfa = (1 −
119
∏

i=1

(1 − (RfaRdi))) (D.36)

RTha = (1 −
11
∏

i=1

(1 − (RhaRei))) (D.37)

RTcpa = (1 −
4

∏

i=1

(1 − (RcpaRfi))) (D.38)

Rmult = RTbenc × RTbsel × RTfa × RTha × RTcpa (D.39)

Table D.1 shows some numerical reliability calculations. The total reliability

for the 64-bit ALU with our fault-tolerance mechanism is:

R = (1 − (1 − RTalu) × (1 − Rmult)) (D.40)

117

Appendix E

Testing of the ALU with the Reconfiguration

Mechanism

The different parts of the ALU including the multiplier are 2-bit ALU chunks

without the multiplier, the Booth encoder with 1-bit chunks, the Booth selector

with 1-bit chunks, the half adders with 1-bit chunks, the full adders with 1-bit

chunks, the carry propagation adder with 2-bit chunks and the MUXes used for

reconfiguration.

****** SFSIM Summary ******
Circuit alu_0 PI’s: 12 Gates: 113 PO’s: 3
Fault Coverage: 100.0000 %
 210 FSIM Detected Faults
 210 Total Faults
CPU Time (sec.)
 0.0000 PARSING
 0.1400 SFSIM
 0.0000 OVERHEAD
 0.1400 TOTAL
Memory Usage (KBytes):
 9.9 Circuit Memory
 27.2 FSIM Memory
 0.0 Memory Overhead
 37.0 Total Memory

Figure E.1: Fault Coverage for the 2-bit ALU

We decided to check the fault-coverages of all the designs individually. There

are thirty two identical 2-bit ALU chunks without the multiplier in the entire de-

sign. We also have two spare 2-bit ALU chunks without multiplier for reconfigura-

tion purpose. The module being tested is located at /caip/u39/vlsif05/varadan

118

Reconfigtestingappendix/Appendix/alu0.v. At first we ran the circuit with

verilog2rutmod.sun4 simulator to get the rutmod netlist of the verilog circuit.

Then, we ran it through the rfgen.sun4 simulator to get the fault list. We gen-

erated the vectors for the circuit using the spectralatpg.sun4 test generator. In

order to check whether these vectors detect all the faults in the circuit we ran it

through the rsfsim.sun4 simulator. This simulator gives us information about

the number of faults detected, the number of faults undetected, the number of

vectors needed to detect the faults and finally summarizes all of the information.

The fault coverage details are shown in Figure E.1.

We analyzed the Booth encoder circuit, which was split into equal 1-bit

chunks. The Booth encoder circuit is located at /caip/u39/vlsif05/varadan

/Reconfigtestingappendix/Appendix/boothencoder3.v. We analyzed the

Booth selector circuit, which was split into equal 1-bit chunks. The

Booth selector circuit is located at /caip/u39/vlsif05/varadan/Reconfigtes−

tingappendix/Appendix/boothselect18.v. We analyzed the full adder cir-

cuit used by the Dadda tree. The full adder circuit was split into

equal 1-bit chunks. The full adder circuit is located at /caip/u39/vlsi−

f05/varadan/Reconfigtestingappendix/Appendix/FA7.v. We analyzed the

half adder circuit used by the Dadda tree, which was split into equal 1-

bit chunks. The half adder circuit is located at /caip/u39/vlsif05/varadan

/Reconfigtestingappendix/Appendix/HA13.v. We analyzed the carry propa-

gation circuit used at the final stage of the Dadda tree, which was split into

equal 2-bit chunks. The carry propagation circuit is located at /caip/u39/vlsif05

/varadan/Reconfigtestingappendix/Appendix/carrypropogate0.v. We re-

peated the above procedure. The fault coverage details of all circuits are shown

in Table E.1.

So far we have presented the fault coverage results of the individual mod-

ules and the spare modules of the ALU with reconfiguration mechanism. Now,

we are going to discuss the fault coverage of the MUXes used to reconfigure

119

the ALU. We use a 16:1 MUX to reconfigure the inputs of the individual mod-

ules with the spare module and a 2:1 MUX to reconfigure the outputs of the

individual modules and spare module. The 16:1 MUX circuit is located at

/caip/u39/vlsif05/varadan/Reconfigtestingappendix/Appendix/mux16.v and

the 2:1 MUX circuit is located at /caip/u39/vlsif05/varadan/Reconfigtesting

appendix/Appendix/mux16.v. We repeated the above procedure. The fault cov-

erage details for the 16:1 MUX and 2:1 MUX are shown in Table E.1.

Table E.1: Fault Coverage of Different Circuits

Circuit Fault
Coverage (in %)

2-bit ALU 100%
Booth Encoder 100%
Booth Selector 100%

Full Adder 100%
Half Adder 100%

Carry Propagation Adder 100%
16:1 MUX 100%
2:1 MUX 100%

Now, we have discussed the fault coverage of all the individual modules used

in our entire design. The entire design, which uses all these individual modules,

is located at /caip/u39/vlsif05/varadan/Reconfigtestingappendix/Appendix/

topalugtechmodi.v. Once the recomputing with swapped operands detects a fault

in the circuit, we diagnose the entire design to find the location of the fault. In

order to diagnose the design we use the diagnosis vectors. We have to induce

the diagnosis vectors at inputs of the individual modules, namely the 2-bit ALU

without the multiplier, the Booth encoder, the Booth selector, the full adder, the

half adder and the carry propagation adder circuits, to locate the fault. Hence we

can locate the faults in the individual modules. Once the fault is located we will

reconfigure the faulty part with the help of the MUXes explained above. Hence,

we have described how we have performed testing for the entire fault-tolerance

design.

120

We are going to perform the diagnosis for the ALU using the software from

the duplicate microprocessor. In order to perform this we need access to the

PIs and POs of the ALU via a bus. The select signals of the reconfiguration

MUXes are activated by the corresponding results from the diagnosis tree. The

hardware required for the bus and to activate the select signals is not counted in

the hardware overhead calculation of our fault-tolerance mechanism.

