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ABSTRACT OF THE DISSERTATION

Supersymmetry Breaking in Gauge Theories and String

Theory

by Kuver Sinha

Dissertation Director: Professor Duiliu-Emanuel Diaconescu

We study aspects of supersymmetry breaking in gauge theories and string theory. On the gauge

theory side, we explore metastable vacua in a SQCD-like model with an extra sector connected

by a singlet. The model combines dynamical supersymmetry breaking with an O’Raifeartaigh

mechanism in terms of confined variables. On the string theory side, we study the dynamics of

non-supersymmetric magnetized D-brane configurations on Calabi-Yau spaces. We also study

the stabilization of the supersymmetry breaking runaway quiver.
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Chapter 1

Introduction

1.1 Supersymmetry and its Motivations

The Standard Model (see [1] for a recent review) is a very successful description of all known

phenomena in particle physics, and has survived all experimental tests with a high degree

of accuracy. As the energy frontiers push into the TeV range, there have been no direct

clues about additional structure. Certainly, a new framework arises near the Planck scale

= (8πGNewton)−1/2 = 2.4× 1018 GeV, when gravity becomes important. However, even before

that, one can expect new phenomena to occur. One of the most actively studied such extensions

has been supersymmetry.

From a purely phenomenological point of view, supersymmetry gives us a way to address

the notorious hierarchy problem. This problem is manifest in the Higgs sector of the Standard

Model. The Higgs field is a complex scalar H with a classical potential

VHiggs = m2
H |H|2 + λ|H|4 . (1.1.1)

The VEV ofH is non-zero at the minimum of the potential. This will occur if λ > 0 andm2
H < 0,

which implies that 〈H〉 =
√−m2

H/2λ. Experimentally, we know that 〈H〉 is approximately 174

GeV, from measurements of the properties of the weak interactions. Thus, m2
H should roughly

be of order −(100 GeV)2. The problem is that m2
H receives quantum corrections from every

particle that couples, directly or indirectly, to the Higgs field.

For example, consider the Higgs coupling to a Dirac fermion f with mass mf through a

term in the Lagrangian −λfHff . Then, a diagram with external Higgs legs and the fermion
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running around in a loop gives the following contribution to the Higgs mass:

∆m2
H = −|λf |

2

8π2
Λ2

UV + . . . . (1.1.2)

Here ΛUV is an ultraviolet and should be interpreted as the energy scale at which new physics

enters. The ellipses represent terms proportional to m2
f , which grow at most logarithmically

with ΛUV.

Every lepton and quark in the Standard Model can play the role of f . If ΛUV is around ,

then the quantum correction to m2
H is 30 orders of magnitude larger than the required value

of m2
H ∼ −(100 GeV)2. This is a direct disaster for the Higgs mass. Moreover, the quarks,

leptons and gauge bosons Z0, W± of the Standard Model all obtain masses from 〈H〉, so the

entire spectrum of the Standard Model is directly or indirectly sensitive to this issue. This is

the core of the hierarchy problem.

To address the issue, there have been various avenues of research. One could get rid of the

elementary Higgs field and replace it with a bound state of fermions, leading to the much-studied

Technicolor [4] and composite Higgs theories. Other avenues include large extra dimensions [2],

in which the fundamental scale is much lower; TeV scale supersymmetry, which naturally cancels

fermionic corrections with bosonic ones; Little Higgs models [3] in which fermionic and bosonic

loops cancel separately; or split supersymmetry [5], which realizes supersymmetry breaking at

a high scale and opts for the fine-tuning option to solve the Higgs hierarchy.

Of these theories, TeV scale supersymmetry has received the most attention and is particu-

larly interesting. It is part of a larger vision of physics, not just a model-building solution. The

Coleman-Mandula theorem [6] singles out supersymmetry as the unique extension of Poincare

invariance in quantum field theory in more than two spacetime dimensions. Essentially, the

theorem tells us that in more than 1+1 dimensions, the only possible conserved quantities that

transform as tensors under the Lorentz group are the four momenta Pµ and the generators Jµν

of Lorentz transformations, apart from internal symmetries. Thus, any extension of Poincare

invariance must come from generators with spinor charges, that is, supersymmetry.

Supersymmetry is also essential for another unifying structure of physics: Grand Unification
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[7]. The idea behind Grand Unified Theories (GUTs) is that the Standard Model gauge group

structure SU(3) × SU(2) × U(1) is embedded in a larger group, like SU(5) or SO(10). This

organizes a single Standard Model generation into a 5⊕ 10 of SU(5), or a 10 of SO(10). Apart

from this highly non-trivial organization, GUTs are important for a number of reasons. The

neutrino mass scale given by Grand Unification, mν ∼ M2
W /MGUT ∼ 10−2eV has turned out

to be correct. The scale of unified gauge theories, MGUT , is relatively close to the Planck scale,

and high enough to be consistent with proton decay. Fluctuations in the cosmic microwave

background can be naturally explained by an inflationary stage near the GUT scale. GUTs fit

in nicely with string theory.

The reason supersymmetry seems to be inevitable in such a scheme is as follows. The unified

group, say SU(5), is spontaneously broken to the Standard Model group at a high energy scale

we have called MGUT , in analogy with electroweak symmetry breaking to the electromagnetic

U(1) at the (much lower) electroweak scale. Above MGUT , then, there is the single coupling

of SU(5) only, and this must therefore be the unified coupling constant of all the gauge group

factors of the Standard Model. The values of the coupling constants are a function of the

energy scale - this is the basic idea of the renormalization group. The beta-function tells us

how quickly the coupling constants change with respect to the energy scale. The beta function

receives contributions from one-loop and two loop diagrams (higher diagrams may be neglected

at thelevel of accuracy of current experiments). The running of the coupling of each gauge group

is affected by all particles that carry charges under that group. The Standard Model coupling

constants, suitably normalized at low energy, may be extrapolated to high energies using the

beta function. If the running is calculated in a nonsupersymmetric GUT setting, whose particle

spectrum resembles the Standard Model at energies between MGUT and low energies, it is found

that the three lines don’t meet at the same point. Each pair of lines among the three gauge

groups intersects, but not three together. This is a severe setback in the scheme of Grand

Unification. On the other hand, for a supersymmetric GUT, the three lines do indeed meet at

a single point. Given that the chance of three lines intersecting on a plane is low, this points to
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (uL dL) (uL dL) ( 3, 2 , 1
6 )

(×3 families) u u∗R u†R ( 3, 1, − 2
3 )

d d∗R d†R ( 3, 1, 1
3 )

sleptons, leptons L (ν eL) (ν eL) ( 1, 2 , − 1
2 )

(×3 families) e e∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H+
u H0

u) ( 1, 2 , + 1
2 )

Hd (H0
d H−d ) (H0

d H−d ) ( 1, 2 , − 1
2 )

Table 1.1: Chiral supermultiplets in the Minimal Supersymmetric Standard Model. The spin-0
fields are complex scalars, and the spin-1/2 fields are left-handed two-component Weyl fermions.

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g g ( 8, 1 , 0)

winos, W bosons W± W 0 W± W 0 ( 1, 3 , 0)

bino, B boson B0 B0 ( 1, 1 , 0)

Table 1.2: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

a highly non-trivial compatibility between supersymmetry and the unification scheme.

On a more phenomenological but very important note, the proton lifetime and the unification

scale are too low without incorporating supersymmetry.

One of the drawbacks of supersymmetry is that it does not simplify the Standard Model -

superpartners do not occur within the known spectrum. Standard Model bosons and fermions

do not pair up to give supersymmetric multiplets - rather, the spectrum has to be doubled. The

spectrum is depicted in tables 1.1 and 1.2. The Standard Model together with supersymmetry

forms a model that is called the Minimal Supersymmetric Standard Model, or the MSSM.

None of the superpartners in the tables has been observed - thus, supersymmetry must

be broken in our world. One of the major thrusts of research in supersymmetry has been to

understand how it is spontaneously broken.

The basic approach has been to extend the MSSM to include a hidden sector called the

SUSY-breaking sector, which has fields that implement supersymmetry breaking and are un-

charged under the Standard Model. Supersymmetry breaking communication to the MSSM
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has been broadly studied under two mechanisms: gravity mediation and gauge mediation. We

will mainly be interested in gauge mediation. In this case, there is a messanger sector which

has fields that are charged under both the supersymmetry-breaking sector and the MSSM.

The MSSM superpartner masses then come from loop diagrams containing the messengers and

Standard Model gauge bosons.

Various supersymmetry breaking models have been studied in the hidden sector. Below, we

discuss some generic features of such models.

1.2 Supersymmetry Breaking in Gauge Field Theories

One of the most attractive mechanisms of supersymmetry breaking is called Dynamical Su-

persymmetry Breaking (DSB) [60]. The Witten index for a supersymmetric theory, Tr(−1)F ,

counts the number of supersymmetric ground states. The index doesn’t change in perturbation

theory. Therefore, supersymmetry is either broken at tree level or by non-perturbative dynam-

ics. To solve the hierarchy problem, the SUSY-breaking scale is much lower than the Planck

scale. Tree-level breaking would then require very small parameters, which may be contrived.

However, for theories which exhibit dimensional transmutation, for example asymptotically free

non-Abelian gauge theories, the dynamical scale can be hierarchically smaller than the Planck

scale. This occurs naturally, and hence the interest in DSB.

It can be shown that in global supersymmetry, a SUSY-preserving ground state necessarily

has zero energy, while a SUSY-breaking ground state has positive energy. The scalar potential

is given by

V (φ, φ∗) = F ∗iKijFj +
1
2

∑
a

DaDa = W ∗i K
ijWj +

1
2

∑
a

g2
a(φ∗T aφ)2. (1.2.1)

In this equation, the first contribution is called the F-term, while the second is called the D-

term. W is the superpotential of the theory, and it is highly constrained by symmetries and

holomorphy. K is called the Kahler potential. The F and D terms do not interfere - one may

thus set the D-term to zero, and work on the resulting space which is called the D-flat moduli
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space. The reason one does this is that D-term breaking can only proceed through U(1) factors,

and in the case of the Standard Model, the U(1)Y would not work. The squarks and sleptons

do not have superpotential mass terms - they can thus relax away from a zero vev and cancel

the U(1)Y Fayet-Iliopoulos term. So, we work on the D-flat moduli space and look for non-zero

F -terms.

The D-flat moduli space exhibits a number of very interesting properties. The gauge sym-

metry generally exhibits a definite pattern of breaking, G→ H on the moduli space. The fields

of the Lagrangian break up into heavy fields which are eaten by the super-Higgs mechanism,

and light fields which parameterize the moduli space. It can be shown that the classical moduli

space of D-flat directions is in one to one correspondence with gauge invariant combinations of

the original fields. These parametrize the space.

While in the analysis of the F -terms, the superpotential W is fixed by symmetries and

holomorphy, that is not the case with the Kahler potential K. Both are required for a calculable

model of supersymmetry breaking, as is evident from the expression for the potential. In fact,

one only has control over the Kahler potential in two regimes: far out in moduli space, the

gauge group is highly Higgsed, and due to asymptotic freedom one is in a calculable weak-

coupling limit. The Kahler potential is then canonical in the elementary fields. Near the

origin of moduli space, the Kahler potential receives non-calculable contributions. However, the

dominant contribution to the Kahler potential may still be calculable in this strong-coupling

limit. This happens at points of enhanced symmetry, where the gauge group is enhanced and

the classical Kahler potential becomes singular. Quantum mechanically, however, certain non-

perturbative degrees of freedom become massless to saturate global anomalies. In terms of

these degrees of freedom, the Kahler potential is canonical, provided the quantum theory is

infrared-free. Identification of the correct non-perturbative degrees of freedom and the correct

superpotential then gives one control over the theory. Seiberg duality, which is used extensively

in this thesis, occurs in such a context.

Certain general conditions for supersymmetry breaking have emerged over the years. Most
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of them have also been circumvented, but only in non-generic scenarios. These conditions are

that the model: (1) have chiral matter (2) have a non-perturbative superpotential generated

over the moduli space (3) have a tree-level superpotential that lifts the classical moduli space

(4) have an U(1)R symmetry. The reasons one needs these conditions and the exceptions are

discussed below.

For theories with vector-like matter, the massive fields may be integrated out so that one is

left with pure super Yang-Mills at low energy. However, super Yang-Mills has supersymmetric

vacua. That means that the original theory one began with has supersymmetric vacua, since the

Witten index cannot change between the two regimes. Thus, vector theories are ruled out in the

context of supersymmetry breaking. The exception comes in theories where the supersymmetric

vacua reside on the boundary of field space, where some fields may blow up. Then the counting

of the Witten index is more subtle.

Supersymmetry breaking requires a non-zero potential, and typically this is provided by

a non-perturbative contribution coming from instantons or gaugino condensation. By itself,

however, such a term leads to runaways in the moduli space. Thus, a tree level supoerpotential

that lifts flat directions is also needed. Generating a dynamical superpotential puts constraints

on the matter - large matter representations do not work.

Supersymmetry may be broken without a dynamically generated superpotential in a number

of ways, all of which rely on non-perturbative physics. One is confinement - as mentioned

before, at singular points on the moduli space the Kahler potential may be canonical in terms

of certain non-perturbative degrees of freedom. While the original superpotential may not have

had linear terms, the one in terms of the new degrees of freedom may. This leads to a tree-

level breaking in terms of confined degrees of freedom. Another is supersymmetry breaking by

quantum deformation of the moduli space. This proceeds as follows. The original theory has a

supersymmetric vacuum at the origin, but quantum effects deform the moduli space away from

the origin, thus breaking supersymmetry.

The connection between R-symmetry and supersymmetry breaking is as follows [9]. For n
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fields, the equation Fφ = ∂φW = 0, amount to n equations in n unknowns. Generically this

system has a solution, and thus supersymmetry is unbroken. However, if the theory has a U(1)R

symmetry (under which the superpotential has charge 2) and there is a field φi with non-zero

R-charge which has a non-zero expectation value, one can redefine the superpotential by

W = φ
2/Ri
i W (φj/φ

Rj/Ri
i ). (1.2.2)

We then have n equations in only n − 1 unknowns. Generically this system does not have a

solution, and supersymmetry is broken. A non-R-symmetry, on the other hand, would reduce

both the number of equations and unknowns.

1.3 Metastable Vacua and SQCD

One of the main paradigm shifts of recent times in this context has been to focus on metastable

supersymmetry breaking. This method circumvents the stringent conditions mentioned above,

without appealing to subtle and non-calculable models. For example, one often deals with

theories with vector matter and R-symmetry breaking terms. The supersymmetric vacua lie far

away in field space, and come in as R-symmetry is restored or the theory becomes massless.

Metastable breaking is generic, and has been found in the simple theory of Supersymmetric

QCD (SQCD). SQCD is also the setting of Seiberg duality. The main features of SQCD are

given below [15], [14], [13], [12], [11], [10].

SQCD is a theory with gauge group SU(Nc) and global symmetry SU(Nf ). Various inter-

esting scenarios arise as one varies the number of flavors Nf . These have been elucidated in the

last twenty years.

We consider Nf (< Nc) flavors of matter fields in the fundamental Q and antifundamental



9

Q representations:

SU(Nf )L × SU(Nf )R × U(1)B × U(1)R

Q Nf 1 1 Nf−Nc
Nf

Q 1 Nf −1 Nf−Nc
Nf

(1.3.1)

The D-flat directions can be parameterized by the vev’s of the gauge invariant mesons Mij =

QiQj . These degrees of freedom give a weakly coupled description near the origin of moduli

space where the theory confines.

In this model a unique nonperturbative superpotential called the Affleck-Dine-Seiberg su-

perpotential is allowed by the symmetries

Wdyn =
(

Λ3Nc−Nf

det(QQ)

) 1
Nc−Nf

, (1.3.2)

where Λ is the renormalization group invariant scale of the theory. It can be proved that

this superpotential is in fact generated by instanton effects for Nf = Nc − 1, and gaugino

condensation in all other cases. The classical flat directions are lifted by adding a mass term to

the superpotential

Wtree = mijQiQj . (1.3.3)

This superpotential explicitly breaks the U(1)R symmetry, a signal of unbroken supersymmetry,

as argued previously. In terms of the meson fields the supersymmetric vacua are given by

Mij =
(
det(m)Λ3Nc−Nf )1/Nc ( 1

mij

)
. (1.3.4)

For Nf = Nc, the flat directions can be parameterized by fields with the quantum numbers

of baryons B = QN and antibaryons = Q
N

. In these equations, flavor and gauge indices are

understood to have been contracted. Bose statistics of the superfields force the gauge invariant

polynomials to obey the following classical constraint

detM −B = 0 . (1.3.5)
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Seiberg showed that this constraint is modified quantum mechanically to

det(M)−B = Λ2N . (1.3.6)

To enforce this quantum mechanical constraint one may introduce a Lagrange multiplier term

in the superpotential

W = A(det(M)−B − Λ2N ) +mijMij . (1.3.7)

The validity of this superpotential may be verified by holomorphic decoupling - some of the

matter fields may be made heavy and decoupled from the low energy theory, and integrating

them out leads to the Affleck-Dine-Seiberg superpotential.

Classically, the Kahler potential of the Nf = Nc theory is singular at the origin. This

corresponds to the fact that the full gauge group SU(Nc) is restored at the origin and additional

degrees of freedom become massless. The origin is an enhanced symmetry point. The quantum

moduli space, in contrast, is smooth since the singularity is removed by the constraint. The

Kahler potential in terms of confined degrees of freedom is non-singular. In the infrared regime

mesons and baryons give a good description of the theory - a nontrivial check of that is the

’t Hooft anomaly matching conditions, which is frequently used in this context. Far from the

origin the quantum moduli space asymptotes to the classical one and the elementary quarks

give a weakly coupled description of the theory.

In the case of Nf = Nc + 1, there are Nf baryons and antibaryons transforming under the

global SU(Nf )L × SU(Nf )R as (Nf , 1) and (1, N̄f ) respectively. Classically, the baryons and

mesons obey

det(M)−BiMijj = 0 ,

BiMij = Mijj = 0 .

(1.3.8)

In contrast to the previous case, these constraints are not modified quantum mechanically. By

addig a mass term to the superpotential, one can show that the meson and baryon vevs can

take any values on the moduli space.
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In terms of the quarks, the Kahler potential is singular at the origin. In terms of confined

degrees of freedom the Kahler potential is regular, giving a weakly coupled description of the

theory. As before, ’t Hooft anomaly matching conditions are satisfied by this description. The

constraints can be implemented by the superpotential

W =
1

2Nc−1
(BiMijj − detM) . (1.3.9)

Holomorphic decoupling leads to the Nf = Nc superpotential.

We next consider the case Nf > Nc + 1, which is the setting of Seiberg duality. We start

from the case 3
2Nc < Nf < 3Nc. The theory flows to an infrared fixed point. Seiberg provided

a description of the theory near the fixed point in terms of a dual ”magnetic” theory. The

global symmetries, being physical, remain the same between the original ”electric” description

and the dual magnetic one. The gauge group of the dual is different, however. The dual theory

has gauge group SU(Nf − Nc) with Nf flavors of q and q transforming as fundamentals and

antifundamentals respectively, as well as gauge-singlet fields M , corresponding to the mesons of

the original (“electric”) theory. The q and q are called magnetic quarks, while the gauge singlet

M is an entirely new field. The global-symmetry charges are given by

SU(Nf )L × SU(Nf )R × U(1)B × U(1)R

q Nf 1 Nc
Nf−Nc

Nc
Nf

q 1 Nf − Nc
Nf−Nc

Nc
Nf

M Nf Nf 0 2Nf−NcNc

(1.3.10)

The magnetic theory also flows to a fixed point. In the magnetic theory a tree level superpo-

tential is allowed by symmetries

W = Mqq. (1.3.11)
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The dictionary between the electric and magnetic theories is

Mij = QiQj → Mij ,

W = mijMij → W = mijMij +Mijqiqj ,

b, b → B,B .

(1.3.12)

The scales of the electric and the magnetic theories are related by

Λ3Nc−Nf Λ̃3(Nf−Nc)−Nf = (−1)Nf−NcµNf , (1.3.13)

where the scale µ is needed to map the composite electric mesonQQ into an elementary magnetic

meson M by dimensional analysis. The electric meson and the magnetic gauge singlet have the

same dimension at the infrared fixed point, but different dimensions in the ultraviolet.

For Nc + 1 < Nf < 3
2Nc a similar dual description holds. The electric description is

asymptotically free while the magnetic dual is infrared free.

In Chapter 2, we construct a model of metastable supersymmetry breaking in an SQCD-like

theory, with various desirable phenomenological features.

1.4 Supersymmetry in String Theory: A Top-down Approach

We have outlined some of the bottom-up reasons for studying supersymmetry. It may be noted

that while supersymmetry solves sweeping fundamental issues like the hierarchy problem and

gauge coupling unification, it has more localized model-building problems, like reproducing

precision electroweak measurements and the Higgs mass of mH ≥ 113GeV . Thus, models built

just for the hierarchy problem, which are less ambitious and ”fundamental” in character, are

also in the running as of now, as is the original ”desert” scenario. Nevertheless, the bottom-up

approach has motivated research in supersymmetry for over two decades.

It is possible to look at supersymmetry in a different way - the top-down approach, from the

viewpoint of string theory. In this case, it emerges as a simplifying calculational tool. In many
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compactifications, supersymmetry greatly simplifies the computation of the four dimensional

effective Lagrangian, since powerful physical and mathematical tools can be used. Supersym-

metry also makes it far easier to prove whether a given vacuum is a local minimum of the

potential. Essentially, all one has to show is that |MFermi| >> MSUSY , where MSUSY is an

energy scale related to the scale of supersymmetry breaking. The calculational motivations

for supersymmetry in the top-down approach mentioned above do not have the hierarchy issue

built into them. Does string theory then predict low scale supersymmetry?

To address this question, one has to introduce the concept of stringy naturalness, as opposed

to usual naturalness (avoiding fine-tuning) which serves as a phenomenological motivation to

low-scale supersymmetry. Stringy naturalness is based on distributions of vacua with different

properties in the string landscape. Many classes of string vacua have been considered which

break supersymmetry at a high scale. One must thus ask the question whether these classes of

vacua are more natural, that is, entropically favored over ones which break supersymmetry at

low scale. The question has been addressed statistically [164], [166], [162]. The manner in which

one proceeds is as follows. The set of string vacua is taken to consist of elements with label i.

To each vacuum i, a probability P (i) is associated, giving the probability that the vacuum was

produced by an early cosmology theory. The supersymmetry breaking scale associated with i is

given the label Fi, while the electroweak scale for that vacuum is called MEW,i. Then, a joint

probability distribution may be defined over the landscape. For MEW ∼ 100 and TeV scale

supersymmetry, we obtain the probability that supersymmetry be discovered at the LHC to be

Psusy =
∑

Fi≤Fexp,MEW,i=100

P (i). (1.4.1)

A high probability would mean that supersymmetry has been derived from a top-down approach,

in the sense that it is natural from a string point of view. The current status on this, and one

of the most important results about compactifications and supersymmetry, is that TeV scale

supersymmetry is not an inevitable prediction of string theory.



14

1.5 Four Dimensional Supergravity, Flux Vacua, and the Landscape

We now turn to the actual implementation of supersymmetry and its breaking within string

theory. The details are very model-specific, and we consider one such model in Chapter 3.

However, certain general theoretical frameworks form the foundations of all such efforts. We

refer to [19] and references therein.

We consider a compactification which has our four-dimensional world times a six-dimensional

manifold called M . Demanding that our compactification preserve d = 4, N = 1 supersymmetry

implies the existence of covariantly constant spinors on M , which is determined by its holonomy

group Hol(M). The number of supersymmetries in d = 4 is equal to the number of supercharges

in the higher dimensional theory, divided by 16, and multiplied by the number of singlets in

the decomposition of 4 of SO(6) under Hol(M). In general, Hol(M) ∼= SO(6) but then that

gives zero supersymmetries in d = 4. Thus, one needs Hol(M) ⊂ SO(6), that is, the manifold

should have special holonomy.

All possible special holonomy groups have been classified. For dimM = 6, the special holon-

omy groups are U(3) and SU(3), and their subgroups. The only choice of Hol(M) for which

the spinor of SO(6) contains a unique singlet is SU(3). Spaces which admit a metric with this

special holonomy are known as Calabi-Yau manifolds. One is left with N = 2 supersymmetric

theories, called Type II theories. To get to N = 1 from here seemed insurmountable before the

discovery of D-branes.

As illustrated below, compactifications on Calabi-Yau’s are plagued by the so-called moduli

problem. Moduli are four-dimensional scalar fields which correspond to Kahler and complex

structure deformations of the Calabi-Yau. It is necessary to give them a potential to prevent

unobserved long-range forces. One way of doing so is by turning on fluxes, and the framework is

called flux compactification. The resulting theory is a four-dimensional supergravity theory with

moduli stabilization, endowed with a definite Kahler potential and a flux-induced superpotential.

This supergravity theory gives a scalar potential; critical points of this potential are the string

vacua. By changing the parameters of the theory, such as the number of flux quanta, one
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Cohomology group basis

H(1,1) wa a = 1, .., h(1,1)

H(0) ⊕H(1,1) wA = (1, wa) A = 0, .., h(1,1)

H(2,2) w̃a a = 1, .., h(1,1)

H(2,1) χk k = 1, .., h(2,1)

H(3) (αK , βK) K = 0, .., h(2,1)

Table 1.3: Basis of harmonic forms in a Calabi–Yau manifold.

obtains a landscape of such vacua, each with different properties, for example SUSY-breaking

scale. General predictions may then be gleaned from the landscape, as outlined in the previous

section. Below we give some details of the whole procedure.

To obtain the four dimensional effective theory, one performs a Kaluza-Klein (KK)reduction

of the ten-dimensional type II supergravities on an internal manifold, keeping only the massless

modes. The massless modes for each supergravity field (metric g, dilaton φ and B-field B2 in

the NS sector, and RR potentials Cn in the RR sector) correspond to harmonic forms on the

internal manifold.

With no fluxes turned on, the four-dimensional effective corresponds to an = 2 ungauged

supergravity, whose matter content depends on whether we are in type IIA or type IIB.

The Hodge diamond of a Calabi-Yau contains one harmonic 0-form (a constant), one (3,0)-

form Ω, one (0,3)-form Ω̄, and one (3,3)-form, the volume. Additionally, there are h(1,1) har-

monic (1,1) and (2,2)-forms and h(2,1) harmonic (2,1) and (1,2) forms. The total number of

harmonic 3-forms is 2h(2,1) + 2. There are no harmonic 1 and 5-forms. Table 1.3 gives a basis

of harmonic forms.

The following are the expansions for the deformations of the fields in the NS sector. The
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gravity multiplet 1 (gµν , C0
1 )

vector multiplets h(1,1) (Ca1 , v
a, ba)

hypermultiplets h(2,1) (zk, ξk, ξ̃k)

tensor multiplet 1 (B2, φ, ξ
0, ξ̃0)

Table 1.4: Type IIA moduli arranged in N = 2 multiplets.

fields are functions of space-time x and internal manifold coordinates y.

φ(x, y) = φ(x) , (1.5.1)

gi(x, y) = iva(x)(ωa)i(y) , gij(x, y) = iz̄k(x)

(
(χ̄k)ik̄l̄ Ωk̄l̄ j
|Ω|2

)
(y) , (1.5.2)

B2(x, y) = B2(x) + ba(x)ωa(y) . (1.5.3)

All the x-dependent fields are the moduli of the 4D theory. In the NS sector we get a total of

2 (h(1,1) + 1) + h(2,1) moduli.

In the RR sector, we perform the following expansions

C1(x, y) = C0
1 (x) , (1.5.4)

C3(x, y) = Ca1 (x)ωa(y) + ξK(x)αK(y)− ξ̃K(x)βK(y) (1.5.5)

for type IIA, and

C0(x, y) = C0(x) , (1.5.6)

C2(x, y) = C2(x) + ca(x)ωa(y) , (1.5.7)

C4(x, y) = V K1 (x)αK(y) + ρa(x)ω̃a(y) (1.5.8)

for type IIB. These moduli arrange into the = 2 multiplets shown in Tables 1.4 and 1.5.

Inserting the above expansions in the ten-dimensional actions and integrating over the

Calabi-Yau, one obtains a standard four-dimensional N = 2 ungauged supergravity action.

An orientifold projection onto invariant fields gives N = 1. The Kahler potential for type IIA

is given by
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gravity multiplet 1 (gµν , V 0
1 )

vector multiplets h(2,1) (V k1 , z
k)

hypermultiplets h(1,1) (va, ba, ca, ρa)

tensor multiplet 1 (B2, C2, φ, C0)

Table 1.5: Type IIB moduli arranged in N = 2 multiplets.

K= − ln
[4

3

∫
J ∧ J ∧ J

]
= − ln

[
i
6Kabc(t− t̄)a(t− t̄)b(t− t̄)c] = − ln 4

3K , (1.5.9)

where K is six times the volume of the Calabi-Yau manifold, and Kabc are the intersection

numbers defined by

Kabc =
∫
ωa ∧ ωb ∧ ωc , Kab =

∫
ωa ∧ ωb ∧ J = Kabcvc (1.5.10)

Ka =
∫
ωa ∧ J ∧ J = Kabcvbvc , K =

∫
J ∧ J ∧ J = Kabcvavbvc .

Here, t is given by the complexified Kahler deformations

B + iJ = (ba + iva)ωa ≡ ta ωa . (1.5.11)

In type IIB, the Kahler potential is given by

K = − ln
[
i

∫
Ω ∧ Ω̄

]
(1.5.12)

In type IIB, the flux induced superpotential, given by Gukov, Vafa, and Witten, is

WO3/O7 =
∫
G3 ∧ Ω. (1.5.13)

The supergravity potential V is given in terms of the superpotential W , the Kahler potential,

and the D-terms Dα by

V = eK
(
KIJ̄DIWDJ̄W̄ − 3|W |2)+ 1

2 (Re f)−1 αβDαDβ , (1.5.14)

where covariant derivatives are defined as

DIW = ∂IW +W∂IK . (1.5.15)

Critical points of this potential correspond to a landscape of vacua.
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1.6 Outlines of Specific Models

In Chapter 2, we consider supersymmetry breaking in gauge theories. The work is done within

the context of metastable breaking, which, as mentioned in section 1.3, is generic and evades

the ”classic” constraints of supersymmetry breaking. The setting is SQCD and Seiberg duality.

Specifically, we construct a model with long-lived metastable vacua in which all the relevant

parameters, including the supersymmetry breaking scale, are generated dynamically by dimen-

sional transmutation. Our model consists of two sectors coupled by a singlet and combines

dynamical supersymmetry breaking with an O’Raifeartaigh mechanism in terms of confined

variables. The metastable vacua appear along a pseudo-runaway direction near a point of en-

hanced symmetry as a result of a balance between non-perturbative and perturbative quantum

effects. We show that metastable supersymmetry breaking is a rather generic feature near

certain enhanced symmetry points of gauge theory moduli spaces.

In Chapter 3, we consider a scenario of moduli stabilization and non-supersymmetric in a

string theory setting. We explore the dynamics of magnetized nonsupersymmetric D5-brane

configurations on Calabi-Yau orientifolds with fluxes. We show that supergravity D-terms cap-

ture supersymmetry breaking effects predicted by more abstract Pi-stability considerations. We

also examine superpotential interactions in the presence of fluxes, and investigate the vacuum

structure of such configurations. Based on the shape of the potential, we argue that metastable

nonsupersymmetric vacua can be in principle obtained by tuning the values of fluxes.

In Chapter 4, we develop mathematical tools to find the tree-level superpotential for D-brane

configurations on Calabi-Yau orientifolds. Our method is based on a systematic implementation

of the orientifold projection in the geometric approach of Aspinwall and Katz. In the process

we lay down some ground rules for orientifold projections in the derived category.

In Chapter 5, we study the supersymmetry breaking runaway quiver in string embeddings.

Calculations are performed in four dimensional effective supergravity. Constraints on closed

string fields in a type IIA construction are given. The particular case of stabilization by stringy

instanton effects in a type IIB model is considered.
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Chapter 2

Metastable Dynamical Supersymmetry Breaking near

Points of Enhanced Symmetry

2.1 Introduction

The idea that our universe may be in a long-lived metastable state in which supersymmetry is

broken has recently led to an increased interest in developing models of supersymmetry breaking.

This has opened many new possibilities in constructing field theory and string theory models.

On the field theoretic side, the work of Intriligator, Seiberg and Shih (ISS) [20] presented

calculable metastable vacua using Seiberg duality. This motivated related field theory con-

structions, involving gauge mediation [21, 22, 23, 243], generalized O’Raifeartaigh models [25],

retrofitting [26], adjoint matter [27], applications to particle physics [28, 29, 30], etc. Similar

developments have been seen in string theory based on a number of different tools, such as

intersecting or wrapping branes [31, 32, 33, 34], flux compactifications [35, 276, 37, 38, 39],

Calabi-Yau’s with particular geometric properties [275, 41, 42, 261], IIa/M-theory configura-

tions [277, 45, 46] and others. Statistical analyses of the supersymmetry breaking scale on the

landscape of effective field theories were done, for instance, in [164, 165, 49].

The ISS model consists of supersymmetric QCD (SQCD) in the free magnetic range, and

metastable vacua appear after taking into account one-loop corrections that lift the pseudo-

moduli. Their work suggests that nonsupersymmetric vacua are rather generic, if one requires

them to be only local, rather than global, minima of the potential. The construction still

contained relevant couplings in the form of masses for the quarks though, and the search for

models with all the relevant parameters generated dynamically has proven difficult; see [50, 51,
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52, 256] for recent work in this direction.

One lesson from ISS is that certain properties of moduli spaces can hint at the existence of

metastable vacua. In their case, it was the existence of supersymmetric vacua coming in from

infinity that signaled an approximate R-symmetry. Here we will point out that one should also

look for another feature, namely, enhanced symmetry points, which are defined by the appear-

ance of massless particles. We claim that if the moduli space has certain coincident enhanced

symmetry points, metastable vacua with all the relevant couplings arising by dimensional trans-

mutation may be obtained.

Let us motivate this claim. In order to generate relevant couplings dynamically, a gauge

sector is required, which gives nonperturbative contributions to the superpotential. However, in

general this leads to a runaway behavior. We will show that starting with two gauge sectors, the

runaway may now be stabilized by one loop effects from the additional gauge sector, but only

around enhanced symmetry points where quantum corrections are large enough. Such runaways

which are stabilized by perturbative quantum corrections will be called ‘pseudo-runaways’.

Surprisingly, the gauge theories where this occurs turn out to be generic.

The model considered here consists of two SQCD sectors, each with independent rank and

number of flavors, coupled by a singlet. It involves only marginal operators with all scales

generated dynamically. At the origin of moduli space, the singlet vanishes and the quarks of

both sectors become massless simultaneously. There are thus two coincident enhanced symmetry

points at the origin. While one of the SQCD sectors is in the electric range and produces a

runaway, the other has a magnetic dual description as an O’Raifeartaigh-like model. Near

the enhanced symmetry point, the Coleman-Weinberg corrections stabilize the nonperturbative

instability producing a long-lived metastable vacuum. A feature of our model is that it may be

possible to gauge parts of its large global symmetry to obtain renormalizable, natural models

of direct gauge mediated supersymmetry breaking with a singlet. R-symmetry is broken both

spontaneously and explicitly in our model.
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The plan of this chapter is as follows. In Section 2, our model is introduced and its su-

persymmetric vacua are studied. In Section 3, we analyze in detail the non-supersymmetric

vacua and argue that they are parametrically long-lived. In Section 4, we give a detailed anal-

ysis of the particle spectrum and the R-symmetry properties. In Section 5, we argue that such

metastable vacua may be generic near points of enhanced symmetry in the landscape of effective

field theories. In Section 6, we give our conclusions.

2.2 The Model and its Supersymmetric Vacua

We consider models with two supersymmetric QCD (SQCD) sectors characterized by (Nc, Nf ,Λ)

and (N ′c, N
′
f ,Λ

′), respectively, that are coupled to the same singlet field Φ. The field Φ provides

the mass of the quarks in both sectors. In Section 2.1, the general properties of such models

will be discussed and their global symmetries analyzed. In Section 2.2, we analyze the super-

symmetric vacua. Section 2.3 will discuss for which range of the parameters (Nc, Nf ,Λ) and

(N ′c, N
′
f ,Λ

′) metastable vacua will be shown to exist. The upshot will be that one sector has to

be taken in the electric range and the other sector in the free magnetic range.

2.2.1 Description of the Model

The matter content of the models considered here consists of two copies of supersymmetric

QCD, each with independent rank and number of flavors, and a single gauge singlet chiral
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superfield:

SU(Nc) SU(N ′c)

Qi 1 i = 1, . . . , Nf

Qi 1

Pi′ 1 i′ = 1, . . . , N ′f

P i′ 1

Φ 1 1

(2.2.1)

The most general tree-level superpotential with only relevant or marginal terms in four dimen-

sions for the matter content (2.2.1) with Nc, N ′c ≥ 4 is

W = (λijΦ + ξij)QiQj + (λ′i′j′Φ + ξ′i′j′)Pi′P j′ + w(Φ) , (2.2.2)

where w(Φ) is a cubic polynomial in Φ. Remarkably, we shall find metastable vacua even in the

simplest case of w(Φ) = 0, which we assume from now on. The general situation is discussed in

Section 5 (in [52], the case w(Φ) = κΦ3 was used to stabilize Φ supersymmetrically).

At the classical level, the superpotential with w(Φ) = 0 has an U(1)R × U(1)V × U(1)′V
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global symmetry under which the fields transform as

U(1)R U(1)V U(1)′V

Qi +1 +1 0

Qi +1 −1 0

Pi′ +1 0 +1

P i′ +1 0 −1

Φ 0 0 0

Λ3Nc−Nf 2Nc 0 0

Λ′3N
′
c−N ′f 2N ′c 0 0

(2.2.3)

where the normalizations of the U(1)V ×U(1)′V charges are arbitrary. In the quantum theory the

U(1)R symmetry is anomalous with respect to the SU(Nc) and SU(N ′c) gauge dynamics. The

theta angles θ and θ′ transform inhomogenously under U(1)R, and the holomorphic dynamical

scale,

(Λ/µ)3Nc−Nf = e−8π2/g2(µ)+iθ , (2.2.4)

and likewise for Λ′3N
′
c−N ′f , transform with charges given in (2.2.3). The U(1)R symmetry is

broken explictly by the anomalies to the anomaly free discrete subgroups Z2Nc ⊂ U(1)R and

Z2N ′c
⊂ U(1)R, respectively. The largest simultaneous subgroup of both Z2Nc and Z2N ′c

which

is left invariant by the superpotential (2.2.2) which couples the two gauge sectors through Φ

interactions is ZGCD(2Nc,2N ′c)
⊂ U(1)R, where GCD(2Nc, 2N ′c) is the greatest common divisor

of 2Nc and 2N ′c.

In the SU(Nf )V ×SU(N ′f )V global symmetry limit the superpotential (2.2.2) (with w(Φ) =
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0) reduces to

W = (λΦ + ξ)tr(QQ) + (λ′Φ + ξ′)tr(PP ) . (2.2.5)

This superpotential has the same U(1)R × U(1)V × U(1)′V global symmetry as (2.2.2), as well

as a Z2 × Z2 conjugation symmetry under which Qi ↔ Qi and Pi ↔ P i, respectively. The

form of the superpotential (2.2.5) may be enforced for any Nc and N ′c by weakly gauging the

SU(Nf )V × SU(N ′f )V symmetry. One of the masses, ξ or ξ′, may always be absorbed into a

shift of Φ. For ξ = ξ′ both masses may simultaneously be absorbed into a shift of Φ, and the

tree level superpotential in this case reduces to

W = λΦ tr(QQ) + λ′Φ tr(PP ) . (2.2.6)

This form agrees with the naturalness requirement that there be no relevant couplings. Φ = 0

is an enhanced symmetry point for both sectors, where the respective quarks become massless.

The case ξ 6= ξ′ is analyzed in Section 5.

At the classical level this superpotential has an U(1)R × U(1)A × U(1)V × U(1)′V global
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symmetry

U(1)R U(1)A U(1)V U(1)′V

Qi +1 − 1
2 +1 0

Qi +1 − 1
2 −1 0

Pi′ +1 − 1
2 0 +1

P i′ +1 − 1
2 0 −1

Φ 0 +1 0 0

Λ3Nc−Nf 2Nc −Nf 0 0

Λ′3N
′
c−N ′f 2N ′c −N ′f 0 0

(2.2.7)

where the normalizations of the U(1)A × U(1)V × U(1)′V charges are arbitrary. The U(1)R

charges are only defined up to an addition of an arbitrary multiple of the U(1)A charges. In

the quantum theory both the U(1)R and U(1)A symmetries are anomalous. With the classical

charge assignments (2.2.7) the U(1)R symmetry is broken explictly by the SU(Nc) and SU(N ′c)

gauge dynamics to the anomaly free discrete subgroup ZGCD(2Nc,2N ′c)
⊂ U(1)R as described

above. Likewise, the U(1)A symmetry is broken explicitly by SU(Nc) and SU(N ′c) gauge

dynamics to anomaly free discrete subgroups ZNf ⊂ U(1)A and ZN ′f ⊂ U(1)A, respectively. The

largest simultaneous subgroup of both ZNf and ZN ′f which is left invariant by the superpotential

(2.2.6) is ZGCD(Nf ,N ′f ) ⊂ U(1)A. The form of the potential (2.2.6) may be enforced by gauging

the non-anomalous discrete ZGCD(Nf ,N ′f ) symmetry if it is non-trivial, along with weakly gauging

the SU(Nf )V × SU(N ′f )V symmetry. This forbids the presence of a polynomial dependence
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w(Φ).

The marginal tree-level superpotential (2.2.6) is, up to irrelevant terms, of rather generic

form within many UV completions of theories with moduli dependent masses. It requires

only that the masses of the flavors of both gauge groups are moduli dependent functions, and

that all flavors become massless at a single point in moduli space, here defined to be Φ = 0.

Importantly for the discussion of metastable dynamical supersymmetry breaking below, the

superpotential (2.2.6) contains only marginal terms, so that any relevant mass scales must arise

from dimensional transmutation. Generalizations to other gauge groups and matter contents in

vector-like representations with the superpotential (2.2.6) are straightforward.

The classical moduli space for the theory (2.2.1) with superpotential (2.2.6) depends on the

gauge group ranks and number of flavors. For λ = λ′ = 0 the moduli space is parameterized

by Φ, meson invariants Mij = QiQj and M ′i′j′ = Pi′ P̄j′ and for Nf ≥ Nc and/or N ′f ≥ N ′c

baryon and anti-baryon invariants Bi1i2...iNc = Q[i1Qi2 · · ·QiNc ], Bi1i2...iNc = Q[i1Qi2 · · ·QiNc ],

and/or B′i1i2...iN′c
= P[i1Pi2 · · ·PiN′c ], B

′
i1i2...iN′c

= P̄[i1 P̄i2 · · · P̄iN′c ] respectively. For λ, λ′ 6= 0 the

superpotential (2.2.6) lifts all the moduli parameterized by the mesons. The remaining moduli

space has a branch parameterized by Φ. For Φ 6= 0 the flavors are massive and the baryon and

anti-baryon directions are lifted along this branch. For Nf ≥ Nc and/or N ′f ≥ N ′c there is a

second branch of the moduli space parameterized by the baryons and anti-baryons with Φ = 0.

The two branches touch at the point where all the moduli vanish.

2.2.2 Supersymmetric Vacua

The classical moduli space of vacua is lifted by nonperturbative effects in the quantum theory.

Since the metastable supersymmetry breaking vacua discussed below arise for Φ 6= 0, only

this branch of the moduli space will be considered in detail. On this branch, holomorphy,
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symmetries, and limits fix the exact superpotential written in terms of invariants, to be

W = λΦ TrM + (Nc −Nf )
[

Λ3Nc−Nf

det M

]1/(Nc−Nf )

+ λ′Φ TrM ′ + (N ′c −N ′f )

[
Λ′3N

′
c−N ′f

det M ′

]1/(N ′c−N ′f )

(2.2.8)

For gauge sectors in the free magnetic range, the nonperturbative contribution refers to the

Seiberg dual. Since the meson invariants are lifted on this branch, they may be eliminated by

equations of motion, ∂W/∂Mij = 0 and ∂W/∂M ′i′j′ = 0, to give the exact superpotential in

terms of the classical modulus Φ

W = Nc
[
(λΦ)NfΛ3Nc−Nf ]1/Nc +N ′c

[
(λ′Φ)N

′
fΛ′3N

′
c−N ′f

]1/N ′c
. (2.2.9)

The supersymmetric minima are given by stationary points of the superpotential, ∂W/∂Φ =

0, for which

Nf
[
(λΦ)NfΛ3Nc−Nf ]1/Nc +N ′f

[
(λ′Φ)N

′
fΛ′3N

′
c−N ′f

]1/N ′c
= 0 . (2.2.10)

Physically distinct supersymmetric vacua are distinguished by the expectation value of the

superpotential.

2.2.3 Parameter ranges for the gauge sectors

Under mild assumptions we thus end up considering two SQCD sectors, characterized by

(Nc, Nf ,Λ) and (N ′c, N
′
f ,Λ

′), respectively, and superpotential couplings (2.2.6). Different choices

may be considered here; to restrict them, it is important to note that calculable quantum cor-

rections can be generated in two different limits.

For λiΦ � Λi, with Λi = Λ or Λ′, the corresponding gauge group is weakly coupled and

hence generates small calculable corrections to the Kähler potential. Integrating out the mas-

sive quarks, for energies below Φ, leads to gaugino condensation, which gives nonperturbative

contributions as in (2.2.9).

On the other hand, for λiΦ� Λi, the corresponding gauge sector becomes strongly coupled.

The calculable case corresponds to having the gauge theory in the free magnetic range. For
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concreteness, we choose this sector to be SU(Nc) (the unprimed sector), so that Nc+1 ≤ Nf <
3
2Nc.

For the (N ′c, N
′
f ,Λ

′) (primed) sector, the interesting case arises for N ′f < N ′c and λ′Φ �

Λ′. Although the classical superpotential pushes Φ to zero, the primed dynamics generates a

nonperturbative term which makes the potential energy diverge as Φ→ 0, in agreement with the

fact that Φ = 0 corresponds to an enhanced symmetry point where P and P̄ become massless.

Balancing the primed and unprimed contributions leads to a runaway direction in moduli space

which will be lifted by one loop corrections. This stabilizes Φ at a nonzero value. Calculability

demands working in the energy range E � Λ′ and E � Λ so the dynamically generated scales

must satisfy Λ′ � Λ.

The semiclassical limit corresponds to energies E � Λ,Λ′, where both sectors are weakly

coupled. Since Λ′ � Λ, SU(Nc) confines first when flowing to the IR. For Λ′ � E � Λ,

the primed sector is weakly interacting while the unprimed sector has a dual weakly coupled

description [54] in terms of the magnetic gauge group SU(Ñc) with Ñc = Nf −Nc, N2
f singlets

Mij , and Nf magnetic quarks (qi, q̃j). In terms of this description, the full non-perturbative

superpotential reads

W = mΦtrM + htrqMq̃ + λ′ΦtrPP̄ + (N ′c −N ′f )

(
Λ′3N

′
c−N ′f

detPP̄

)1/(N ′c−N ′f )

+(Nf −Nc)
(

detM
Λ̃3Nc−2Nf

)1/(Nf−Nc)
. (2.2.11)

Hereafter, Mij = QiQ̄j/Λ, and m := λΛ. The magnetic sector has a Landau pole at Λ̃ = Λ.

In this description, the meson M and the primed quarks (P, P̄ ) become massless at Φ = 0.

M = 0 is also an enhanced symmetry point since here the magnetic quarks (q, q̃) become

massless.

2.3 Metastability near enhanced symmetry points

In this section, metastable vacua near the origin of moduli space will be shown to exist for the

theory with superpotential (2.2.11). In Section 3.1, we analyze the branches of the moduli space
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and determine where Coleman-Weinberg effects may lift the runaway. Next, in 3.2, we focus

on the region containing metastable vacua. In 3.3, we argue that other quantum corrections

are under control and do not affect the stability of these vacua. Finally, in Section 3.4 the

metastable vacua are shown to be parametrically long-lived.

2.3.1 Exploring the moduli space

Starting from the superpotential (2.2.11), the discussion is simplified by taking the limit Λ̃→∞,

while keeping m fixed. The nonperturbative detM term is only relevant for generating super-

symmetric vacua, as discussed in (2.2.9), and not important for the details of the metastable

vacua that will arise near M = 0. Thus, for M/Λ̃ → 0 and Φ/Λ̃ → 0, it is enough to consider

the superpotential

W = mΦ tr M + h tr qMq̃ + λ′Φ trPP̄ + (N ′c −N ′f )

(
Λ′3N

′
c−N ′f

detPP̄

)1/(N ′c−N ′f )

. (2.3.1)

In this limit all the fields are canonically normalized and the classical potential is

V = VD + V ′D +
∑
a

|Wa|2 (2.3.2)

where Wa = ∂aW , and a runs over all the fields. VD and V ′D are the usual D-term contributions

from SU(Ñc) and SU(N ′c). Since both gauge sectors are weakly coupled, it is enough to consider

the F-terms on the D-flat moduli space, parametrized by the chiral ring. This restriction has

no impact on the analysis of the metastable vacua.

Let us study the regime PP̄ → ∞. Then nonperturbative effects from SU(N ′c) may be

neglected, and the classical superpotential

Wcl = mΦ tr M + h tr qMq̃ + λ′Φ tr PP̄ (2.3.3)

is recovered. Setting

WMij
= mΦδij + hqiq̃j = 0 , (2.3.4)

we obtain Φ = 0 and hqq̃ = 0. This implies WtrPP̄ = Wq = 0. The locus WΦ = 0 then defines

a classical moduli space of supersymmetric vacua.



30

Let us keep PP̄ large, but include the non-perturbative effects from SU(N ′c). Then WtrPP̄ =

0 sets PP̄ → ∞ and WΦ = 0 implies M → ∞. Therefore the model does not have a stable

vacuum in the limit Λ̃ → ∞. As discussed above, for Λ̃ finite and M large enough, the nonper-

turbative detM term introduces supersymmetric vacua as in (2.2.9).

All the F-terms are small in the limit M →∞, Φ→ 0, which thus corresponds to M2
F � |F |.

The one-loop corrections give logarithmic dependences on the fields (Φ,M) and these cannot

stop the power-law runaway behavior.

Thus we are led to consider the region near the enhanced symmetry point M = 0. As we

shall see below, this still has a runaway. Crucially, it turns out that one-loop corrections stop

this runaway (this novel effect is characterized as a “pseudo-runaway”). The reason for this is

that the Coleman-Weinberg formula [55]

VCW =
1

64π2
StrM4 ln M2 (2.3.5)

will have polynomial (instead of logarithmic) dependence. This will be explained next.

A global plot of the potential is provided in Fig. 2.1, where M has been expanded around

zero as below in equation (3.8). In the graphic, the ‘drain’ towards the supersymmetric vacuum

corresponds to the curve WΦ = 0.

2.3.2 Metastability Along the Pseudo-Runaway Direction

In the region Φ 6= 0, (P, P̄ ) may be integrated out by equations of motion provided that

Λ′ � λ′Φ. This is a good description if we are not exactly at the origin but near it, as given by

Φ/Λ̃� 1. Taking, as before, Λ̃→∞ and m fixed, the superpotential reads

W = mΦ trM + h tr qMq̃ +N ′c
[
λ′N

′
f Λ′3N

′
c−N ′f ΦN

′
f
]1/N ′c . (2.3.6)

This description corresponds to an O‘Raifeartaigh-type model in terms of magnetic variables

but with no flat directions.
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Figure 2.1: A plot showing the global shape of the potential. M has been expanded around zero
as in equation (3.8). Note the runaway in the direction X → −∞ and φ → 0. The singularity
at φ = 0 and the “drain” Wφ = 0 are clearly visible. Also visible is the Coleman-Weinberg
channel near X = 0 and φ large, discussed later. This plot was generated with the help of [56].

Given that φ = 〈Φ〉 6= 0, we will expand around the point of maximal symmetry

q =


q0 0

 , q̃ =


q̃0

0

 , M =


0 0

0 0 +X · INc×Nc

 . (2.3.7)

Here q0 and q̃0 are Ñc × Ñc matrices satisfying

hq0iq̃0j = −mφδij , i, j = Ñc + 1, . . . Nf , (2.3.8)

and the nonzero block matrix in M has been taken to be proportional to the identity; indeed,
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only trM appears in the potential. This minimizes WM and sets Wq = Wq̃ = 0. The spectrum

of fluctuations around (2.3.7) is studied in detail in Section 4, where it is shown that the lightest

degrees of freedom correspond to (φ,X) with mass given by m. The effective potential derived

from (2.3.6) is

V (φ,X) = Ncm
2|φ|2 +

∣∣∣∣∣mNcX +N ′fλ
′N ′f/N ′c

(
Λ′3N

′
c−N ′f

φN
′
c−N ′f

)1/N ′c
∣∣∣∣∣
2

+ VCW (φ,X) , (2.3.9)

where the second term comes from Wφ. The Coleman-Weinberg contribution will be discussed

shortly.

As a starting point, set X = 0 and VCW → 0. Minimizing V (φ,X = 0) gives

|φ0|(2N ′c−N ′f )/N ′c =

√
N ′c −N ′f
NcN ′c

N ′f
λ′N

′
f/N

′
c

m
Λ′(3N

′
c−N ′f )/N ′c , (2.3.10)

and since Wφφ ∼ m, V (φ0 + δφ,X = 0) corresponds to a parabola of curvature m. The

nonperturbative term only affects φ0 but not the curvature m; this will be important in the

discussion of subsection 3.4.

Next, allowing X to fluctuate (but still keeping VCW → 0), V (φ0, X) gives a parabola

centered at

XWφ=0 = −
√

N ′c
Nc(N ′c −N ′f )

|φ0| (2.3.11)

and curvature m. In other words, X = 0 is on the side of a hill of curvature m and height

V (φ0, 0) ∼ m2|φ0|2.

To create a minimum near X = 0, VCW should contain a term m2
CW |X|2, with mCW � m;

this would overwhelm the classical curvature. As explained in Section 4, the massive degrees

of freedom giving the dominant contribution to VCW come from integrating out the massive

fluctuations along q0 and q̃0. The result is

VCW = Ncbh
3m|φ||X|2 + . . . (2.3.12)

with b = (log4− 1)/8π2Ñc [20], and ‘. . .’ represent contributions that are unimportant for the

present discussion. In this computation, X and φ are taken as background fields. It is crucial
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to notice that the quadratic X dependence appears because X = 0 is an enhanced symmetry

point.

In order to be able to produce a local minimum, the marginal parameters (λ, λ′) will have

to be tuned to satisfy

ε ≡ m2

m2
CW

=
m

bh3|φ| � 1 . (2.3.13)

In this approximation, the value of φ at the minimum is still given by (2.3.10); also, X is

stabilized at the nonzero value

X0 = −e−i
N′c−N

′
f

N′c
αφ N

′
f

bh3
λ′N

′
f/N

′
c

(
Λ′3N

′
c−N ′f

|φ0|2N ′c−N ′f

)1/N ′c

. (2.3.14)

The phases of φ and X are thus related by

αX +
N ′c −N ′f
N ′c

αφ = π . (2.3.15)

Inserting (2.3.10) into (2.3.14) gives

|X0| =
√

NcN ′c
N ′c −N ′f

m

bh3
. (2.3.16)

At the minimum, (2.3.13) gives

(m/Λ′)3N ′c−N ′f � (bh3)(2N ′c−N ′f )/N ′cλ′N
′
f (2.3.17)

so the Yukawa coupling λ in m = λΛ must be taken small for the analysis to be self-consistent.

The calculability condition Λ′ � λ′Φ follows as a consequence of this. At the minimum,

X0 � φ0. The F-terms are given by

Wφ ≈
√

NcN ′c
N ′c −N ′f

mφ0 ∼WX . (2.3.18)

and from (2.3.10) the scale of supersymmetry breaking is thus controlled by the dynamical

scales of both gauge sectors. In the next subsection, the vacuum will be shown to be long-lived

if (2.3.13) is satisfied.

Thus the model has a metastable vacuum near the origin, created by a combination of

quantum corrections and nonperturbative gauge effects. The pseudo-runaway towards X =
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Figure 2.2: A plot showing the shape of the potential, including the one-loop Coleman-Weinberg
corrections, near the metastable minimum. In the φ-direction the potential is a parabola,
whereas in the X-direction it is a side of a hill with a minimum created due to quantum
corrections. This plot was generated with the help of [56].

XWφ=0 has been lifted by the Coleman-Weinberg contribution, as anticipated. This is the

origin of the 1/b dependence in (2.3.16). The local minimum is depicted in Fig. 2.2.

2.3.3 Stability under other quantum corrections

The metastable vacuum appears from a competing effect between a runaway behavior in the

primed sector and one loop corrections for the meson field X. One is naturally led to ask if,

under these circumstances, other quantum effects are under control. These include higher loop

terms from the massive particles producing VCW as well as perturbative g′ corrections.

Let us first study higher loop contributions from the massive fields in (q, q̃). They can correct

the potential by additive terms of the form Xn, n > 2; these are automatically subleading,
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because |X0|2 � m|φ0|. They can also produce higher φ powers. However, such quantum

corrections can only depend on the combination mφ, and thus will be suppressed by powers of

the UV cutoff Λ0. For instance, a quartic term would appear as (mφ)4/Λ4
0. We conclude that

all these effects are subleading to (2.3.12).

Furthermore, since nonperturbative effects from SU(N ′c) were used, we should make sure

that perturbative g′ effects are not important. First note that the nonperturbative term in

(2.3.9) is of the same order as the classical height of the potential m2|φ|2 (see eq. (2.3.18)). It

thus suffices to show that g′ perturbative corrections to this height are subleading. A simple

argument for this is as follows. Loops generate typical quartic terms in the Kähler potential

δK =
α

Λ2
0

(Φ∗Φ)2 (2.3.19)

which change the scalar potential by

[ α
Λ2

0

|φ|2
]

(m2|φ|2) . (2.3.20)

The prefactor is parametrically small, making these contributions negligible.

2.3.4 Tunneling Out of the Metastable Vacuum

This section will show that the metastable non-supersymmetric vacuum can be made paramet-

rically long-lived by taking the parameter ε ≡ m
bh3|φ0| sufficiently small. The lifetime of the

metastable vacuum may be estimated using semiclassical techniques and is proportional to the

exponential of the bounce action, eB [57].

First, the direction of tunneling in field space needs to be determined. Recall that the

metastable vacuum in the (|φ|, X) space lies at

|φ0|
2N′c−N

′
f

N′c =

√
N ′c −N ′f
NcN ′c

N ′f
λ
′N
′
f

N′c

m
Λ′

3N′c−N
′
f

N′c , X0 = −
√

NcN ′c
N ′c −N ′f

m

bh3
. (2.3.21)

(The phase of φ, not of qualitative importance for the present discussion, has been chosen

to be zero. This fixes X to be real - see equation (2.3.15).) For fixed X the potential has

a minimum at |φ| = |φ0|; while quantum corrections may change this value by an order one
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number, corrections to the curvature of the potential in the |φ| direction are negligible. This

curvature is positive, and thus the potential increases as |φ| moves away from |φ0|. The field

therefore does not tunnel in the |φ| direction (see (2.2)). Along the X direction, however, the

potential without quantum corrections near the enhanced symmetry point is like the side of a

hill. For fixed |φ| = |φ0|, the potential decreases in the negative X direction, and the classical

curvature at X = 0 is m.

Quantum corrections are qualitatively important when |X| is sufficiently small. For |X|2 �

|WX |, their size grows quadratically as a function of X and they are sufficient to change the

slope of the classical potential enough to introduce a minimum. For |X|2 ' |WX |, the growth

of the quantum corrections is only logarithmic, and the slope of the classical potential again

starts to dominate. Hence, the total potential has a peak that parametrically may be estimated

to lie near

Xpeak ' −
√
|WX | = −

√
Ncm|φ0|. (2.3.22)

For |X| > |Xpeak|, the potential decreases as X becomes more negative until X reaches the

‘drain’ Wφ = 0,

XWφ=0 = −
√

N ′c
Nc(N ′c −N ′f )

|φ0|. (2.3.23)

The direction in field space to tunnel out of the false vacuum is towards negative X with fixed

|φ| = |φ0|. It thus suffices to consider the tunneling in the one-dimensional potential, V (X) ≡

V (|φ0|, X). Note that parametrically |X0| � |Xpeak| � |XWφ=0| as ε→ 0.

For negative X, using equations (2.3.9) and (2.3.21), the one-dimensional potential may be

written as

V (X) =

(
2N ′c −N ′f
N ′c −N ′f

)
Ncm

2 |φ0|2 +N2
c bh

3m2 |φ0|2 f
( −|X|
bh3|φ0|

)
. (2.3.24)

In the region |X| � |Xpeak|, the function f(x) is dominated by quantum corrections and may

be approximated by

f(x) ' bh3

Nc ε
x2 , (2.3.25)

where a constant piece coming from the quantum corrections, again not important for the
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calculation of the bounce action, has been neglected. On the other hand, in the region |Xpeak| �

|X| � |XWφ=0|, the constant slope of the classical potential dominates. The potential in

this region may be approximated by the classical potential plus a constant contribution from

the quantum corrections whose size is roughly given by the height of the potential barrier.

The height of the potential barrier is, from (2.3.25), of order f(Xpeak/bh
3|φ0|) = 1, and it is

thus loop-suppressed compared to the overall magnitude of the potential near the metastable

minimum. The potential in this region will be parametrized by a straight line

f(x) ' 1− 2

√
N ′c

Nc(N ′c −N ′f )
(x− xpeak). (2.3.26)

In order to estimate the bounce action it is not appropriate to use the thin-wall approxima-

tion [57]. Instead, the potential may be modeled as a triangular barrier [58]. Using the results

of [58], the value to which the field tunnels to is

X̃ ∼ − b h3|φ0|. (2.3.27)

Note that parametrically |X0| � |Xpeak| � |X̃| as ε → 0, and that |X̃| is loop-suppressed

compared to |XWφ=0|. The bounce action scales as

B ∼ X̃4

V (Xpeak)− V (X0)
∼ b h3 1

ε2
. (2.3.28)

Therefore B →∞ as ε→ 0, and the metastable vacuum is parametrically long-lived.

The total potential V (X), including the full one-loop Coleman-Weinberg potential computed

numerically with the help of [56], is shown in Fig. 2.3. The program of [56] also allowed us to

check numerically the previous tunneling properties.

2.4 Particle Spectrum and R-symmetry

In this section, we discuss in more detail the particle spectrum of the model and comment on

the R-symmetry properties.

The fluctuations of the fields around the metastable minimum may be parametrized following
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ISS,

φ = φ0 + δφ , M =


YÑc×Ñc ZT

Ñc×(Nf−Ñc)

Z̃(Nf−Ñc)×Ñc X0 +X(Nf−Ñc)×(Nf−Ñc)

 (2.4.1)

q =


q0 + χÑc×Ñc

ρ(Nf−Ñc)×Ñc

 , q̃ =


q̃0 + χ̃Ñc×Ñc

ρ̃(Nf−Ñc)×Ñc

 , (2.4.2)

where q0q̃0 := −mφ0/h. All fields are complex; φ0 and X0 are the values at the metastable

minimum.

The relevant mass scales are

M2 = 0, m2, m2
CW = bh3m|φ0|, hm|φ0| . (2.4.3)

The particles may be divided into three ‘sectors’ with small mixing amongst themselves. Up to

quadratic order, the superpotential is

W = Wφφδφδφ+mNcδφ(X0 +X) +mδφ

Ñc∑
α=1

Yαα

+mNcφ0(X0 +X) + h

Nc∑
f=1

[q0(ρ̃ZT )ff + q̃0(ρZ̃T )ff +X0(ρρ̃T )ff ]

+h
Ñc∑
α=1

[q0(χ̃Y )αα + q̃0(χY )αα] . (2.4.4)

The first line is related to the new dynamical field δφ; unlike ISS, now X is not a pseudo-flat

direction. The second and third lines are as in ISS.

Consider the case Nf = Nc + 1; the spectrum of classical masses is shown in Fig. 2.1, and

the spectrum of the masses including one-loop CW corrections is shown in Fig. 2.2. The fields

are grouped in sectors of STrM2 = 0.

The fields (Y, χ, χ̃) form three chiral superfields, with supersymmetric masses, and hence do

not contribute when integrated out at one loop. The Coleman-Weinberg potential is generated

by the fields (Z, Z̃, ρ, ρ̃), which are the heaviest in the spectrum. Including such quantum

corrections, trX acquires a mass m2
CW , while the mass of φ is not modified. Interestingly, at
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the classical level there is no massless goldstino, since the expansion is not around a critical

point of the classical potential. Including quantum corrections, one of the massive fermions in

the (φ, trX)-sector becomes massless, as may be seen in Fig. 2.2. A similar situation, in the

opposite limit of small supersymmetry breaking, has been discussed recently in [59].

The case Ñc = Nf −Nc > 1 can be similarly analyzed, and is shown in Fig. 2.3.

The Standard Model gauge group can be embedded inside the global symmetry group of this

model. In this way, renormalizable models of direct gauge mediated supersymmetry breaking

may be constructed.

2.4.1 Breaking the R-symmetry

To have gaugino masses, any R-symmetry must be broken, explicitly and/or spontaneously [20],

[59]. The low energy superpotential 2.3.6 has the following U(1)R symmetry:

Rφ = 2
N ′c
N ′f

, RX = 2
N ′f −N ′c
N ′f

, Rq = Rq̃ =
N ′c
N ′f

. (2.4.5)

Since the VEV’s of these fields are nonzero in the metastable vacuum, the R-symmetry is

spontaneously broken, and there is an R-axion a. In terms of the phase of the i-th field, the

axion is

φi =
1√
2
fR
Ri

eiRi(a/fR) , (2.4.6)

where the decay constant fR is defined as

fR =
[∑

i

(√
2Ri|〈φi〉|

)2]1/2 (2.4.7)

and Ri is the R-charge of φi. In [25] it was pointed out that if R-symmetry is broken spon-

taneously in an O’ Raifeartaigh model, then the theory should contain a field with R-charge

different than 0 or 2. This is also the case in the present situation, although our model does

not contain the linear O’ Raifeartaigh term.

For finite Λ̃, the det X contributions need to be taken into account, and the U(1)R sym-

metry becomes anomalous. Adding this term induces a tadpole for Y , which now acquires an



40

expectation value of order

Y ∼
[
X0

Λ̃

] 3Nc−2Nf
Nf−Nc

X0 , (2.4.8)

so that |Y | � |X0|. Then the mass of the R-axion follows from

|WX |2 ∼
∣∣∣∣∣mφ+ cX2

0

[
X0

Λ̃

]2
3Nc−2Nf
Nf−Nc

∣∣∣∣∣
2

. (2.4.9)

Deriving twice the cross-term, which is proportional to cos(a/f), yields the axion mass

m2
a ∼ m2

([
λ

bh3

]2
3Nc−2Nf
Nf−Nc ε

bh3

)
� m2 , (2.4.10)

where λ is the Yukawa coupling appearing in m = λΛ. Thus, R-symmetry is both spontaneously

and explicitly broken.

2.5 Meta-Stability Near Generic Points of Enhanced Symmetry

In this section, the existence and genericity of metastable vacua near enhanced symmetry points

is explored. Statistical analyses of the supersymmetry breaking scale up to date have not taken

into account loop quantum effects ([164], [165], [49]) as these corrections are hard to evaluate on

an ensemble of field theories. However, metastable vacua introduced by the Coleman-Weinberg

potential, with all the relevant parameters generated dynamically, may change such results.

Before considering the general case, let us analyze (2.2.5).

2.5.1 Non-coincident enhanced symmetry points

Consider two gauge sectors as in (2.2.5), with enhanced symmetry points at Φ = 0 and Φ = ξ,

respectively. The free magnetic sector is taken to be massless at Φ = 0; integrating over the

other primed sector gives

W = mΦ tr M + h tr qMq̃ +N ′c
[
λ′N

′
f Λ′3N

′
c−N ′f (Φ + ξ)N

′
f
]1/N ′c . (2.5.1)

Since metastable vacua were shown to exist for ξ = 0, here the discussion is restricted to the

limit of ξ much bigger than all the energy scales in the problem. This is consistent with the

fact that naturalness demands any relevant coupling to be of order the UV cutoff.
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Introducing the notation

α = N ′f/N
′
c , K = N ′cλ

′N ′f/N ′c Λ′(3N
′
c−N ′f )/N ′c , (2.5.2)

the equations of motion for φ and X give

Ncm
2φ = α2(1− α)

K2

ξ3−2α
. (2.5.3)

|X| = Nc
α(1− α)

m2ξ2−α

K
. (2.5.4)

Without fine-tuning m or K, X tends to be driven away from the origin as ξ increases. The

fine-tuning may be seen, for instance, from the requirement mCW � m, which implies

m3 � bh3 K2

ξ3−2α
. (2.5.5)

Although this resembles the calculability condition (2.3.17), now there are powers of the large

scale ξ in the denominator. For ξ of order the UV cutoff, this represents a big fine-tuning, either

on the coefficient K or on the small mass parameter m.

The conclusion is that, while metastable vacua can occur for far away enhanced symmetry

points, this situation is not generic and requires fine-tuning. This is to be expected, once

relevant parameters are allowed to appear in the superpotential.

2.5.2 General Analysis

A generic structure in the landscape of effective field theories corresponds to a gauge theory

with vector-like matter and mass given by a singlet, whose dynamics is related to another sector.

The superpotential may be written as

W = f(Φ) + λΦtr(QQ̄) . (2.5.6)

Here, (Q, Q̄) are Nf quarks in SU(Nc) SQCD; f(Φ) may be generated, for instance, from a flux

superpotential, by nonrenormalizable interactions [26], or, as in the case studied in this work,

by another gauge sector. Next, it is required that the SQCD sector be in the free magnetic
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range; this is still a generic situation. The dual magnetic description is weakly coupled near the

enhanced symmetry point Φ = 0, where the superpotential reads

W = f(Φ) +mΦ tr M + h tr qMq̃ . (2.5.7)

The question that will be addressed here is: what restrictions need to be imposed on f(Φ),

so that the one loop potential VCW can create a metastable vacuum near M = 0? Since we are

interested in the novel effect of pseudo-runaway directions we will demand f ′(Φ) 6= 0. The case

f ′(Φ) = 0 is standard in such analyses, see e.g. [52].

As discussed in Section 3, this is possible only if

m2
CW := Ncbh

3m|φ| � m2 (2.5.8)

where φ denotes the expectation value of Φ at the metastable vacuum. Further, one needs to

impose that

h2|X|2 � m|φ| (2.5.9)

in order for the Taylor expansion of VCW around X = 0 to converge. Evaluating the potential

as in (2.3.9),

V = Ncm
2|φ|2 +

∣∣f ′(φ) +mNcX
∣∣2 +m2

CW |X|2 . (2.5.10)

The rank condition, an essential ingredient in the discussion, just follows from having SQCD

in the free magnetic range. This fixes the first term, which comes from WM , and the block

structure of the matrix M ; X was defined in (2.3.7).

Extremizing V (φ,X = 0) leads to

Ncm
2φ = −f ′(φ) f ′′(φ)∗ . (2.5.11)

On the other hand, minimization with respect to X in the approximation m2
CW � m2, gives

the metastable vacuum

m2
CW X = −Ncmf ′(φ) . (2.5.12)

Notice that m2
CW � m2 makes this value parametrically smaller than the position of the ‘drain’

f ′(φ) + mNcX = 0. This ensures the stability of the nonsupersymmetric vacuum. Replacing
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(2.5.11) in (2.5.12) (with m2
CW = Ncbh

3|φ|) yields

|X| = Ncm
2

bh3

1
|f ′′(φ)| . (2.5.13)

It is possible to combine the conditions (2.5.8) and (2.5.9) with the values at the metastable

vacuum (2.5.11), (2.5.13), to derive constraints on f(φ): (2.5.8) now reads

|f ′(φ)f ′′(φ)|
m3

� 1
bh3

, (2.5.14)

while (2.5.9) gives

h2|f ′(φ)|2 � m(bh3)2|φ|3 . (2.5.15)

Summarizing, the necessary conditions to have metastable vacua near X = 0 are (2.5.14) and

(2.5.15). As illustrated in §2.5.1, they require fine-tuning the coefficients of f(φ), except in the

case of coincident enhanced symmetry points, where there are no relevant scales.

2.6 Conclusions

We constructed a model with long-lived metastable vacua in which all the relevant parameters,

including the supersymmetry breaking scale, are generated dynamically by dimensional trans-

mutation. The model consists of two N = 1 supersymmetric QCD sectors with flavors whose

respective masses are controlled by the same singlet field. One of the gauge sectors is in the

free magnetic range while the other is in the electric range. The metastable vacua are produced

near a point of enhanced symmetry by a combination of nonperturbative gauge effects and,

crucially, perturbative effects coming from the one-loop Coleman-Weinberg potential.

The model has the following desirable features: an explicitly and spontaneously broken

R-symmetry, a singlet, a large global symmetry, naturalness and renormalizability.

There are two points that have to be stressed. First, a salient feature of the model is the

existence of pseudo-runaway directions. They correspond to a runaway behavior that is lifted

by one loop quantum corrections. This has not been observed before, the closest analog corre-

sponding for example to the pseudo-moduli of [20]. It is quite plausible that this phenomenon
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appears in other models as well. The criterion is that the height of the potential has to be para-

metrically larger than the curvature, as quantified in Section 3. The strength of the quadratic

Coleman-Weinberg corrections is set by this height, thus introducing a local minimum of high

curvature in the (otherwise) runaway potential.

In dynamical supersymmetry breaking models ([60], [61], [62], [63], [64], [65]), nonsupersym-

metric vacua generally arise due to competing effects between a nonperturbative runaway and

a classical term in the superpotential, as in the (3,2) model [66]. Our analysis shows that it is

possible to stabilize such runaways even without tree-level terms, provided that one is close to

certain enhanced symmetry points.

The second feature worth emphasizing is the connection between enhanced symmetry points

in gauge theory moduli spaces and metastable dynamical supersymmetry breaking. There are

reasons to believe that such vacua are generic. At the field theory level this is associated to the

fact that a nonzero Witten index [67] may still allow an approximate R-symmetry [68]. While

dynamical ISS models are not hard to construct, in general these mechanisms involve discrete

R-symmetries [26]. This is very suppressed in the landscape of string vacua, correponding to a

high codimension locus in the flux lattice [69]. On the other hand, the construction presented

here does not suffer from the previous difficulty. Therefore, it would be interesting to study

how statistical estimates of the scale of supersymmetry breaking change, once the model is

embedded in string theory.
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Figure 2.3: A plot of the classical potential (dashed line) and the total potential including
one-loop corrections (solid line) for fixed |φ| = |φ0|, where |φ0| is the position of the metastable
minimum in the φ-direction, defined in (2.3.21). In the figure, Nf = 3, Nc = 2, N ′f = 1 and
N ′c = 2. The values were scaled so that the position of the “drain”, Wφ = 0, equals 1 on both
axes. In these units, the position of the metastable minimum is on the order of 10−4. This plot
was generated with the help of [56].
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Fermions Bosons
Weyl mass2 U(Nf − 1) Real mass2 U(Nf − 1)
mult. mult.

φ, trX 2 O(m2) 10 1 0 10

3 O(m2) 10

Xij − trX (Nf − 1)2 − 1 0 Adj0 2((Nf − 1)2 − 1) 0 Adj0
Y , χ χ̃ 1 0 10 1 0GB 10

1 0NCGB 10

2 O(hm|φ0|) 10 4 O(hm|φ0|) 10

Z,Z̃, ρ, ρ̃ 2(Nf − 1) O(hm|φ0|) ¤1+¤−1 2(Nf − 1) 0GB ¤1

2(Nf − 1) O(hm|φ0|) ¤−1

2(Nf − 1) O(hm|φ0|) ¤1+¤−1 2(Nf − 1) O(hm|φ0|) (¤1+
2(Nf − 1) O(hm|φ0|) ¤−1)

Table 2.1: Table showing the classical mass spectrum, grouped in sectors of StrM2 = 0 for
Nf = Nc + 1. The O(m2) fields in (φ, trX) are not degenerate. Although supersymmetry is
spontaneoulsy broken, there is no goldstino at the classical level.



47

Fermions Bosons
Weyl mass2 U(Nf − 1) Real mass2 U(Nf − 1)
mult. mult.

φ, trX 1 0 10 1 0 10

1 O(m2) 10 1 O(m2) 10

2 O(m2
CW) 10

Xij − trX (Nf − 1)2 − 1 0 Adj0 2((Nf − 1)2 − 1) O(m2
CW) Adj0

Y , χ χ̃ 1 0 10 1 0GB 10

1 O(m2
CW) 10

2 O(hm|φ0|) 10 4 O(hm|φ0|) 10

Z,Z̃, ρ, ρ̃ 2(Nf − 1) O(hm|φ0|) ¤1+¤−1 2(Nf − 1) 0GB ¤1

2(Nf − 1) O(hm|φ0|) ¤−1

2(Nf − 1) O(hm|φ0|) ¤1+¤−1 2(Nf − 1) O(hm|φ0|) (¤1+
2(Nf − 1) O(hm|φ0|) ¤−1)

Table 2.2: Table showing the mass spectrum, including one-loop corrections, grouped in sectors
of StrM2 = 0 for Nf = Nc + 1. Notice the appearance of the goldstino in the (φ, trX) sector.
The O(m2) fields in (φ, trX) are not degenerate; here m2

CW = bh3m|φ0|.
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Fermions Bosons
Weyl mass2 U(Nf − Ñc) SU(Ñc)D Real mass2 U(Nf − Ñc) SU(Ñc)D

mult. mult.
φ, trX 2 O(m2) 10 1 1 0 10 1

3 O(m2) 10 1
Xij − trX (Nf − Ñc)2 − 1 0 Adj0 1 2((Nf − Ñc)2 − 1) 0 Adj0 1

Y , χ χ̃ Ñ2
c 0 10 Adj Ñ2

c 0GB 10 Adj
Ñ2

c 0NCGB 10 Adj
2Ñ2

c O(hm|φ0|) 10 Adj 4Ñ2
c O(hm|φ0|) 10 Adj

Z,Z̃, ρ, ρ̃ 2Ñc(Nf − Ñc) O(hm|φ0|) ¤1+¤−1 ¤+¤ 2Ñc(Nf − Ñc) 0GB ¤1 ¤
2Ñc(Nf − Ñc) O(hm|φ0|) ¤−1 ¤

2Ñc(Nf − Ñc) O(hm|φ0|) ¤1+¤−1 ¤+¤ 2Ñc(Nf − Ñc) O(hm|φ0|) (¤1+ (¤+
2Ñc(Nf − Ñc) O(hm|φ0|) ¤−1) ¤)

Table 2.3: Table showing the classical mass spectrum, grouped in sectors of Strm2 = 0, for
Nf > Nc + 1. After gauging SU(Ñc), the traceless goldstone bosons from (χ, χ̄) are eaten,
giving a mass m2

W = g2m|φ0|/h to the gauge bosons. Further, from VD = 0, the noncompact
goldstones also acquire a mass m2

W . Including CW corrections, trX acquires mass m2
CW and

one of the fermions becomes massless.
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Chapter 3

A D-brane Landscape on Calabi-Yau Manifolds

3.1 Introduction

Magnetized branes in toroidal IIB orientifolds have been a very useful device in the construction

of semirealistic string vacua [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80]. A very attractive feature

of magnetized brane systems is Kähler moduli stabilization by D-term effects [81, 82, 83, 84, 85,

86, 87]. By turning on background fluxes, one can stabilize the complex structure moduli as well,

obtaining an interesting distribution of isolated vacua in the string theory landscape. These are

typically supersymmetric vacua because magnetized brane configurations are supersymmetric

for special values of the toroidal moduli. Note however, that nonsupersymmetric vacua have

also been found in [83, 85, 86] as a result of the interaction between D-term and nonperturbative

F-term effects.

The purpose of the present work is to explore the landscape of magnetized brane config-

urations on Calabi-Yau manifolds. The starting point of this investigation is the observation

that certain Calabi-Yau orientifolds exhibit a very interesting class of metastable D-brane con-

figurations. As opposed to toroidal models, these brane configurations are not supersymmetric

for any values of the moduli, but the supersymmetry breaking parameter is minimal at the

Landau-Ginzburg point in the underlying N = 2 moduli space. In this chapter we investigate

the dynamics of these brane configurations from the point of view of the low energy effective

supergravity action. We compute the D-term contribution to the potential energy and show

that it agrees with more abstract Π-stability considerations. A similar relation between super-

gravity D-terms and the perturbative part of Π-stability was previously found in [88]. We also
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develop a generalization of the flux superpotential in the presence of magnetized branes. Then

we argue that the interplay between D-term effects and the flux superpotential can in principle

give rise to a landscape of metastable nonsupersymmetric vacua. Note that different aspects of

the open string landscape have been recently studied in [89, 90, 91, 92].

Let us briefly outline of our construction. We will consider IIB orientifolds of Calabi-Yau

manifolds with h1,1 = 1 which have only space-filling O3 planes. Our main example, described

in detail in section two, is an orientifold of the octic hypersurface in weighted projective space

WP 1,1,1,1,4. The D-brane configuration consists of a D5-brane wrapping a holomorphic curve

C and an anti-D5-brane wrapping the image curve C ′ under the orientifold projection. Both

C,C ′ are rigid and do not intersect each other. We also turn on worldvolume U(1) magnetic

fluxes so that each brane has p units of induced D3-brane charge.

Such configurations are obviously nonsupersymmetric, at least for generic values of the

Kähler moduli, since D5-branes and O3 planes do not preserve the same fraction of supersym-

metry. The supersymmetry breaking parameter can be taken to be the phase difference between

the central charges of these objects in the underlying N = 2 theory. This phase can be com-

puted using standard Π-stability techniques, and depends on the complexified Kähler moduli

of the N = 2 theory. We will perform detailed computations for the octic orientifold example

in section three and appendix A. The outcome of these computations is that this system is not

supersymmetric anywhere on the real subspace of the N = 2 Kähler moduli space preserved by

the orientifold projection. However the supersymmetry breaking parameter reaches a minimum

at the Landau-Ginzburg point. This is a new dynamical aspect which has not been encountered

before in toroidal orientifolds.

In flat space we would expect this system to decay to a supersymmetric configuration of

space-filling D3-branes. The dynamics is different on Calabi-Yau manifolds since the curves

C,C ′ are rigid, which means that the branes have no moduli. This can be viewed as a potential

barrier in configuration space opposing brane anti-brane annihilation. If the branes are suffi-

ciently far apart, so that the open string spectrum does not contain tachyons and the attractive
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force is weak, we will obtain a metastable configuration. The system can still decay, but the

decay has to be realized by tunelling effects.

This construction already poses a problem since the N = 1 dynamics is very hard to control

in a nongeometric phase of the Kähler moduli space. Ideally one would like to describe the

theory in terms of a large volume compactification so that the α′ corrections are small. This

can be achieved in the present context using orientifold mirror symmetry [93, 94, 95, 274]. Since

the supersymmetry breaking phase is independent on complex structure moduli, we can take

the IIB Calabi-Yau manifold to be near the large complex structure limit point. In this regime,

the theory has an a alternative description in terms of a large volume IIA compactification,

which will allow us to control the dynamics. Taking this limit, we will be able to compute the

D-term effects in section three. We will also show that the results agree with the Π-stability

analysis.

Moduli stabilization in this system can be achieved by turning on IIA fluxes as in [97, 98,

99, 100, 101, 277, 274, 103, 104] Since we also have branes in the picture, it turns out that

the most convenient description of the flux superpotential involves a combination of IIB and

IIA variables. This is a special case of the bi-period superpotentials introduced in [105], except

that we have to take into account the D-brane superpotential as well. The F-term effects in the

presence of branes and fluxes are described in section four, together with some general aspects

of the D-brane configuration space. Our discussion of the brane-flux superpotential builds on

previous work on this subject [176, 177, 108, 109, 178, 111], emphasizing the relation between

the geometry and the light open-string spectrum.

Finally, in section five we investigate the vacuum structure of the D-brane landscape. We

analyze the shape of the potential energy, and formulate sufficient conditions for the existence of

nonsupersymmetric metastable vacua. Then we argue that these conditions can be in principle

satisfied by tuning the values of background fluxes. In principle this mechanism can give rise to

either de Sitter or anti de Sitter vacua, providing an alternative to the existing constructions of

de Sitter vacua [276, 81, 113, 114, 115, 116, 117, 118] in string theory.
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Note added. When this chapter was ready for submission, two new papers appeared [119, 120]

which have partial overlap with our D-term and F-term computations in sections 3 and 4.

3.2 A Mirror Pair of Calabi-Yau Orientifolds

In this section we review some general aspects of Calabi-Yau orientifolds and present our main

example. We will first describe the model in IIB variables and then use mirror symmetry to

write down the low energy effective action in a specific region in parameter space.

Let us consider a N = 2 IIB compactification on a Calabi-Yau manifold X. Such com-

pactifications have a moduli space Mh ×Mv of exactly flat directions, where Mh denotes the

hypermultiplet moduli space andMv denotes the vector multiplet moduli space. It is a standard

fact that Mh must be quaternionic manifold whereas Mv must be a special Kähler manifold.

The dilaton field is a hypermultiplet component, therefore the geometry of Mh receives both

α′ and gs corrections. By contrast, the geometry of Mv is exact at tree level in both α′ and

gs. The hypermultiplet moduli space Mh contains a subspace M0
h parameterized by vacuum

expectation values of NS-NS fields, the RR moduli being set to zero. At string tree level M0
h

has a special Kähler structure which receives nonperturbative α′ corrections. These corrections

can be exactly summed using mirror symmetry.

Given a N = 2 compactification, we construct a N = 1 theory by gauging a discrete

symmetry of the form (−1)εFLΩσ where Ω denotes world-sheet parity, FL is left-moving fermion

number and ε takes values 0, 1 depending on the model. σ : X → X is a holomorphic involution

of X preserving the holomorphic three-form ΩX up to sign

σ∗ΩX = (−1)εΩX .

We will take ε = 1, which corresponds to theories with O3/O7 planes. In order to keep the

technical complications to a minimum, in this chapter we will focus on models with h1,1 = 1

which exhibit only O3 planes. More general models could be treated in principle along the same

lines, but the details would be more involved.
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According to [219], the massless spectrum of N = 1 orientifold compactifications can be

organized in vector and chiral multiplets. For orientifolds with O3/O7 planes, there are h2,1
−

chiral multiplets corresponding to invariant complex structure deformations of X, h1,1
+ chiral

multiplets corresponding to invariant complexified Kähler deformations of X, and h1,1
− chiral

multiplets parameterizing the expectation values of the two-form fields (B,C(2)). Moreover, we

have a dilaton-axion modulus τ . Note that the real Kähler deformations of X are paired up

with expectation values of the four-form field C(4) giving rise to the h1,1
+ complexified Kähler

moduli. Note also that for one parameter models i.e. h1,1 = 1, we have h1,1
− = 0, hence there

are no theta angles (B,C(2)).

The moduli space of the N = 1 theory must be a Kähler manifold. For small string cou-

pling and large compactification radius the moduli space is a direct product between complex

structure moduli, complexified Kähler moduli and a dilaton-axion factor. The Kähler geome-

try of the moduli space can be determined in this regime by KK reduction of ten dimensional

supergravity [219].

For more general values of parameters, the geometry receives both α′ and gs corrections

which may not preserve the direct product structure. In particular, we expect significant α′

corrections in nongeometric regions of the Kähler moduli space such as the Landau-Ginzburg

phase. There is however a different regime in which the geometry of the moduli space is under

control, although the Kähler parameters take nongeometric values. This follows from mirror

symmetry for orientifolds [93, 94, 95, 274].

Mirror symmetry relates the IIB N = 2 compactification on X to a IIA N = 2 compactifi-

cation on the mirror Calabi-Yau manifold Y . The complex structure moduli space Mv of X is

identified to the Kähler moduli space of Y . In particular, there is a special boundary point of

Mv – the large complex structure limit point (LCS) – which is mapped to the large radius limit

point of Y . Therefore if the complex structure of the IIB threefold X is close to LCS point, we

can find an alternative description of a large radius IIA compactification on Y . This is valid for

any values of the Kähler parameters of X, including the region centered around the LG point,
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which is mapped to the LG point in the complex structure moduli space of Y .

Orientifold models follow the same pattern. Orientifold mirror symmetry relates a Calabi-

Yau threefold (X,σ) with holomorphic involution to a threefold (Y, η) equipped with an anti-

holomorphic involution η. As long as the holomorphic involution preserves the large complex

limit of X, we can map the theory to a large radius IIA orientifold on Y which admits a su-

pergravity description. At the same time, we can take the Kähler parameters of X close to the

LG point, which is mapped to the LG point in the complex structure moduli space of Y . This

is the regime we will be mostly interested in throughout this chapter.

In this limit, the moduli space of the theory has a direct product structure [274]

M×K (3.2.1)

whereM is the complex structure moduli space of the IIB orientifold (X,σ) and K parameterizes

the complex structure moduli space of the IIA orientifold (Y, η) and the dilaton. M can also be

identified with the Kähler moduli space of the IIA orientifold, but the description in terms of

IIB variables will be more convenient for our purposes. We discuss a specific example in more

detail below.

3.2.1 Orientifolds of Octic Hypersurfaces

Our example consists of degree eight hypersurfaces in the weighted projective space WP 1,1,1,1,4.

The defining equation of an octic hypersurface X is

P (x1, . . . , x5) = 0 (3.2.2)

where P is a homogeneous polynomial of degree eight with respect to the C∗ action

(x1, x2, x3, x4, x5)→ (λx1, λx2, λx3, λx4, λ
4x5).

This is a one-parameter model with h1,1(X) = 1 and h2,1(X) = 149.

In order to construct an orientifold model, consider a family of such hypersurfaces of the

form

Q(x1, . . . , x4) + x5(x5 + µx1x2x3x4) = 0 (3.2.3)
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where Q(x1, . . . , x4) is a degree eight homogeneous polynomial, and µ is a complex parameter.

We will denote these hypersurfaces by XQ,µ. Consider also a family of holomorphic involutions

of WP 1,1,1,1,4 of the form

σµ : (x1, x2, x3, x4, x5)→ (−x3,−x4,−x1,−x2,−x5 − µx1x2x3x4) (3.2.4)

Note that a hypersurface XQ,µ is invariant under the holomorphic involution σµ if and only if

Q is invariant under the involution

(x1, x2, x3, x4)→ (−x3,−x4,−x1,−x2). (3.2.5)

We will take the moduli spaceM to be the moduli space of hypersurfaces XQ,µ with Q invariant

under (3.2.5). A similar involution has been considered in a different context in [122].

One can easily check that the restriction of σµ to any invariant hypersurface XQ,µ has finitely

many fixed points on XQ,µ with homogeneous coordinates

(
x1, x2,±x1,±x2,−µ2x1x2x3x4

)
where (x1, x2) satisfy

Q(x1, x2,±x1,±x2)− µ2

4
x4

1x
4
2 = 0.

Moreover the LCS limit point µ → ∞ is obviously a boundary point of M. This will serve as

a concrete example throughout this chapter.

Mirror symmetry identifies the complexified Kähler moduli space M0
h of the underlying

N = 2 theory to the complex structure moduli space of the family of mirror hypersurfaces Y

x8
1 + x8

2 + x8
3 + x8

4 + x2
5 − αx1x2x3x4x5 = 0 (3.2.6)

in WP 1,1,1,1,4/
(
Z2

8 × Z2

)
[123, 124, 125]. At the same time the complex structure moduli

space Mv of octic hypersurfaces is isomorphic to the complexified Kähler moduli space of Y .

Orientifold mirror symmetry relates the IIB orientifold (X,σ) to a IIA orientifold determined

by (Y, η) where η is a antiholomorphic involution of Y .

For future reference, let us provide some details on the Kähler geometry of the moduli space

following [274]. Let zi, i = 1, . . . , h1,2
− (X), be algebraic algebraic coordinates on the complex
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structure moduli spaceM. The Kähler potential forM in a neighborhood of the large complex

structure is given by

KM = −ln
(
i

∫
X

ΩX ∧ ΩX

)
(3.2.7)

where ΩX is the global holomorphic three-form on X. This expression is naturally a function

of algebraic coordinates on the IIB complex structure moduli space. If we express it in terms of

special coordinates adapted to the LCS limit, we will obtain the tree level Kähler potential for

the IIA Kähler moduli space [274] plus α′ corrections which are exponentially small near the

large radius limit.

The second factor K parameterizes complex structure moduli of IIA orientifold and the

dilaton. The corresponding moduli fields are [274] the real complex parameters of Y and the

periods of three-form RR potential C(3) preserved by the antiholomorphic involution plus the

IIA dilaton.

The antiholomorphic involution preserves the real subspace α = α of the N = 2 moduli

space. This follows from the fact that the IIB B-field is projected out using the mirror map

B + iJ =
1

2πi
ln(z) + . . .

where z = α−8 is the natural coordinate on the moduli space of hypersurfaces (3.2.6) near the

LCS point.

According to [274] (section 3.3), the Kähler geometry of K can be described in terms of

periods of the three-form ΩY and the flat RR three-form C3 on cycles in Y on a symplectic basis

of invariant or anti-invariant three-cycles on Y with respect to the antiholomorphic involution.

We will choose a symplectic basis of invariant cycles (α0, α1;β0, β1) adapted to the large complex

limit α → ∞ of the family (3.2.6). Using standard mirror symmetry technology, one can

compute the corresponding period vector (Z0, Z1;F0,F1) near the large complex structure

limit by solving the Picard-Fuchs equation. Our notation is so that the asymptotic behavior of

the periods as α→∞ is

Z0 ∼ 1 Z1 ∼ ln(z) F1 ∼ (ln(z))2 F0 ∼ (ln(z))3.
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Moreover, we also have the following reality conditions on the real axis α ∈ R

Im(Z0) = Im(F1) = 0 Re(Z1) = Re(F0) = 0. (3.2.8)

This reflects the fact that (α0, β
1) are invariant and (α1, β0) are anti-invariant under the holo-

morphic involution. The exact expressions of these periods can be found in appendix A. Note

that the reality conditions (3.2.8) are an incarnation of the orientifold constraints (3.45) of [274]

in our model. In particular, the compensator field C defined in [274] is real in our case, i.e. the

phase e−iθ introduced in [274] equals 1.

The holomorphic coordinates on the moduli space K are

τ =
1
2
ξ0 + iCRe(Z0)

ρ = iξ̃1 − 2CRe(F1)

(3.2.9)

where (ξ0, ξ̃1) are the periods of the three-form field C(3) on the invariant three-cycles (α0, β
1)

C(3) = ξ0α0 − ξ̃1β1. (3.2.10)

Mirror symmetry identifies (τ, ρ) with the IIB dilaton and respectively orientifold complex-

ified Kähler parameter [274], section 6.2.1. A priori, (τ, ρ) are defined in a neighborhood of the

LCS, but they can be analytically continued to other regions of the moduli space. We will be

interested in neighborhood of the Landau-Ginzburg point α = 0, where there is a natural basis

of periods [w2 w1 w0 w7]tr constructed in [124]. The notation and explicit expressions for these

periods are reviewed in appendix A. For future reference, note that the LCS periods (Z0,F1)

in equation (3.2.9) are related to the LG periods by

Z0

Z1

F1

F0



=



0 0 1 0

1
2

1
2 − 1

2 − 1
2

− 1
2 − 3

2 − 3
2 − 1

2

−1 1 0 0





w2

w1

w0

w7



(3.2.11)
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Note that this basis is not identical to the symplectic basis of periods computed in [124]; the

later does not obey the reality conditions (3.2.8) so we had to perform a symplectic change of

basis.

The compensator field C is given by

C = e−ΦeK0(α)/2 (3.2.12)

where eΦ = eφvol(Y )−1/2 is the four dimensional IIA dilaton, and

K0(α) = − ln
(
i

∫
Y

ΩY ∧ ΩY

) ∣∣∣∣
α=α

= − ln
[
2
(
Im(Z1)Re(F1)− Re(Z0)Im(F0)

)] (3.2.13)

is the Kähler potential of the N = 2 complex structure moduli space of Y restricted to the real

subspace α = α. The Kähler potential of the orientifold moduli space is given by [274]

KK = −2 ln
(

2
∫
Y

Re(CΩY ) ∧ ∗Re(CΩY )
)

= −2 ln
[
2C2

(
Im(Z1)Re(F1)− Re(Z0)Im(F0)

)]
.

(3.2.14)

Note that equations (3.2.9), (3.2.12) define KK implicitly as a function of (τ, ρ). The Kähler

potential (3.2.14) can also be written as

KK = − ln(e−4Φ) (3.2.15)

where Φ is the four dimensional dilaton. Let us conclude this section with a discussion of

superpotential interactions.

3.2.2 Superpotential Interactions

There are several types of superpotential interactions in this system, depending on the types

of background fluxes. Since the theory has a large radius IIA description, an obvious option is

turning on even RR fluxes FA = F2 + F4 + F6 as well as NS-NS flux HA on the manifold Y .

In principle one can also turn on the zero-form flux F0 as in [277, 103], but we will set to zero

throughout this chapter.



59

Even RR fluxes give rise to a superpotential for type IIA Kähler moduli of the form [126,

127, 274, 99]

WA
M =

∫
Y

FA ∧ e−JY , (3.2.16)

where JY is the Kähler form of Y . The type IIA NS-NS flux is odd under the orientifold

projection, therefore it will have an expansion

HA = q1α
1 − p0β0. (3.2.17)

According to [274], this yields a superpotential for the IIA complex structure moduli of the

form

WA
K = −2p0τ − iq1ρ. (3.2.18)

The superpotential (3.2.16) can be given a IIB interpretation using mirror symmetry. Recall

that in large volume IIB compactifications, one usually has a flux induced superpotential [126]

WB =
∫
X

ΩX ∧ FB (3.2.19)

where FB is the three-form RR flux on X. For a comprehensive review of IIB flux compact-

ifications with a complete list of references see [128]. Based on the nonrenormalization result

of [129], this superpotential does not receive perturbative α′ or gs corrections. Therefore this

superpotential formula should still be valid for small values of the IIB Kähler modulus, although

we may not have a clear microscopic description of the fluxes. Then the superpotential (3.2.16)

can be regarded as a IIB superpotential of the form (3.2.19), where FB is the IIB RR flux re-

lated by mirror symmetry to FA. Using the mirror map, one can show that the two expressions

agree near the LCS point of the IIB moduli space up to exponentially small corrections. For

us, it will be more convenient to use the IIB expression, keeping in mind that this is just a

reformulation of the large radius IIA superpotential.

In principle, one could also turn the IIB NS-NS flux HB , but the IIA description of the

theory would be more involved. According to [130], the mirror type IIA theory would be

a compactification on a manifold with a half-flat SU(3) structure. We will not review this
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conjecture in detail here. It suffices to note that granting this conjecture one can reformulate

the IIB superpotential

−
∫
X

ΩX ∧ τHB

in IIA variables [130]. More details can be found in [100, 101, 103]. In this chapter we will not

turn on IIB NS-NS flux, but it may be helpful to keep in mind that we also have this option.

In conclusion, in the absence of branes, we will have a total superpotential of the form

W = WB +WA
K . (3.2.20)

This formula has to be modified in the presence of magnetized branes. We will discuss the

necessary modifications in section 4.

We would like to conclude this section with a remark about tadpole cancellation. Since we

have set the IIB NS-NS flux HB and the type IIA zero-form flux F0 to zero, the only sources for

RR tadpoles are the orientifold planes and the background D-branes. Magnetized D5-branes

can also contribute to the tadpole because they carry induced D3-brane charge. Therefore the

tadpole cancellation condition can be written as

ND3 +NO3 + p = 0, (3.2.21)

where p is the induced D3-brane charge of magnetized D5-branes. As explained in the next

section, the best option for us is to saturate this condition by takingND3 = 0, i.e. no background

D3-branes. Let us turn now to magnetized brane configurations.

3.3 Magnetized Branes on Calabi-Yau Orientifolds

In this section we study the dynamics of magnetized D5-branes wrapping holomorphic curves in

Calabi-Yau threefolds. We will analyze their dynamics both from the world-sheet and low energy

supergravity point of view. The world-sheet analysis is based on Π-stability considerations in the

underlying N = 2 theory [131, 202, 133]. Using mirror symmetry, we will show that the world-

sheet aspects are captured by D-term effects in the IIA supergravity effective action. Similar
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computations have been performed for Type I D9-branes in [88], for IIB D3 and D7-branes on

Calabi-Yau orientifolds in [134, 135, 136, 137, 138], and for D6-branes in toroidal models in [81,

82, 83, 84, 85, 86, 87]. In particular, a relation between the perturbative part of Π-stability (µ-

stability) and supergravity D-terms has been found in [88]. D6-brane configurations in toroidal

models have been thoroughly analyzed from the world-sheet point of view in [139, 140]. Earlier

work on the subject in the context of rigid supersymmetric theories includes [141, 142, 143, 144].

Our setup is in fact very similar to the situation analyzed in [142], except that we perform a

systematic supergravity analysis. Finally, a conjectural formula for the D-term potential energy

on D6-branes has been proposed in [145, 146] based on general supersymmetry arguments. We

will explain the relation between their expression and the supergravity computation at the end

of section 3.2. Let us start with the Π-stability analysis.

3.3.1 Π-stability and magnetized D-branes

From the world-sheet point of view, a wrapped D5-brane is described by a boundary conformal

field theory which is a product between an internal CFT factor and a flat space factor. Aspects

related to Π-stability and superpotential deformations depend only on the internal CFT part

and are independent on the rank of the brane in the uncompactified four dimensions. For

example the same considerations apply equally well to a IIB D5-brane wrapping C or to a

IIA D2-brane wrapping the same curve. The difference between these two cases resides in the

manner of describing the dynamics of the lightest modes in terms of an effective action on the

uncompactified directions of the brane. Since the D5-brane is space filling the effective action

has to be written in terms of four dimensional supergravity as opposed to the D2-brane effective

action, which reduces to quantum mechanics. Nevertheless we would like to stress that in both

cases the open string spectrum and the dynamics of the system is determined by identical

internal CFT theories; only the low energy effective description of these effects is different.

Keeping this point in mind, in this section we proceed with the analysis of the internal CFT

factor.
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Although our arguments are fairly general, for concreteness we will focus on the octic hy-

persurface in WP 1,1,1,1,4. Other models can be easily treated along the same lines. Suppose

we have a D5-brane wrapping a degree one rational curve C ⊂ X. Note that curvature effects

induce one unit of spacefilling D3-brane charge as shown in appendix A. In order to obtain a

pure D5-brane state we have to turn on a compensating magnetic flux in the U(1) Chan-Paton

bundle

1
2π

∫
C

F = −1.

However for our purposes we need to consider states with higher D3-charge, therefore we will

turn on (p− 1) units of magnetic flux

1
2π

∫
C

F = p− 1

obtaining a total effective D3 charge equal to p. The orientifold projection will map this brane

to a anti-brane wrapping C ′ = σ(C) with (−p − 1) units of flux, where the shift by 2 units is

again a curvature effect computed in appendix A.

We will first focus on the underlying N = 2 theory. Note that this system breaks tree level

supersymmetry because the brane and the anti-brane preserve different fractions of the bulk

N = 2 supersymmetry. The N = 1 supersymmetry preserved by a brane is determined by its

central charge which is a function of the complexified Kähler moduli. The central charges of

our objects are

Z+ = ZD5 + pZD3 Z− = −ZD5 + pZD3 (3.3.1)

where the label ± refers to the brane and the anti-brane respectively. ZD5 is the central

charge of a pure D5-brane state, and ZD3 is the central charge of a D3-brane on X. The

phases of Z+, Z− are not aligned for generic values of the Kähler parameters, but they will be

aligned along a marginal stability locus where ZD5 = 0. If this locus is nonempty, these two

objects preserve identical fractions of supersymmetry, and their low energy dynamics can be

described by a supersymmetric gauge theory. If we deform the bulk Kähler structure away from

the ZD5 = 0 locus, we expect the brane world-volume supersymmetry to be broken. Ignoring



63

supergravity effects, this supersymmetry breaking can be modeled by Fayet-Iliopoulos couplings

in the low energy gauge theory. We will provide a supergravity description of the dynamics in

the next subsection. This effective description is valid at weak string coupling and in a small

neighborhood of the marginal stability locus in the Kähler moduli space. For large deformations

away from this locus the effective gauge theory description breaks down, and we would have to

employ string field theory for an accurate description of D-brane dynamics.

Returning to the orientifold model, note that the orientifold projection leaves invariant only

a real dimensional subspace of the N = 2 Kähler moduli space, because it projects out the

NS-NS B-field. As explained in section 2.1, the IIB complexified Kähler moduli space can be

identified with the complex structure moduli space of the family of mirror hypersurfaces (3.2.6).

The subspace left invariant by the orientifold projection is α = α.

Therefore it suffices to analyze the D-brane system along this real subspace of the moduli

space. Note that orientifold O3 planes preserve the same fraction of supersymmetry as D3-

branes. Therefore the above D5 − D5 configuration would still be supersymmetric along the

locus ZD5 = 0 because the central charges (3.3.1) are aligned with ZD3. Analogous brane

configurations have been considered in [243] for F-theory compactifications.

A bulk Kähler deformation away from the supersymmetric locus will couple to the world-

volume theory as a D-term because this is a disc effect which does not change in the presence

of the orientifold projection. This will be an accurate description of the system as long as

the string coupling is sufficiently small and we can ignore higher order effects. Note that the

ZD5 = 0 locus will generically intersect the real subspace of the moduli space along a finite

(possibly empty) set.

To summarize the above discussion, the dynamics of the brane anti-brane system in the

N = 1 orientifold model can be captured by D-term effects at weak string coupling and in

a small neighborhood of the marginal stability locus ZD5 = 0 in the Kähler moduli space.

Therefore our first concern should be to find the intersection between the marginal stability

locus and the real subspace α = α of the moduli space. A standard computation performed in
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appendix A shows that the central charges ZD3, ZD5 are given by

ZD3 = Z0 ZD5 = Z1.

in terms of the periods (Z0, Z1;F1,F0) introduced in section 2.1. Then the formulas (3.3.1)

become

Z+ = pZ0 + Z1, Z− = pZ0 − Z1. (3.3.2)

In appendix A we show that the relative phase

θ =
1
π

(Im ln(Z+)− Im ln(ZD3)) (3.3.3)

between Z+ and ZD3 does not vanish anywhere on the real axis α = α and has a minimum at the

Landau-Ginzburg point α = 0. The value of θ at the minimum is approximatively θmin ∼ 1/p.

For illustration, we represent in fig 1. the dependence θ = θ(α) near the Landau-Ginzburg

point for three different values of p, p = 10, 20, 30. Note that the minimum value of theta is

θmin ∼ 0.12, therefore we expect the dynamics to have a low energy supergravity description.

It is clear from this discussion that the best option for us is to take the number p as high

as possible subject to the tadpole cancellation constraints (3.2.21). This implies that there

are no background D3-branes in the system, and we set p = NO3. In fact configurations with

background D3-branes would not be stable since there would be an attractive force between D3-

branes and magnetized D5-branes. Therefore the system will naturally decay to a configuration

in which all D3-branes have been converted into magnetic flux on D5-branes.

In order for the above construction to be valid, one has to check whether the D3-brane and

D5-brane are stable BPS states at the Landau-Ginzburg point. This is clear in a neighborhood

of the large radius limit, but in principle, these BPS states could decay before we reach the

Landau-Ginzburg point. For example it is known that in the C2/Z3 local model the D5-brane

decays before we reach the orbifold point in the Kähler moduli space [148]. The behavior of the

BPS spectrum of compact Calabi-Yau threefolds is less understood at the present stage. At best

one can check stability of a BPS state with respect to a particular decay channel employing Π-

stability techniques [133, 131, 202], but we cannot rigorously prove stability using the formalism
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Figure 3.1: The behavior of the relative phase θ near the LG point for three different values of
p. Red corresponds to p = 10, blue corresponds to p = 20 and green corresponds to p = 30.

developed in [149, 150]. In appendix A we show that magnetized D5-branes on the octic are

stable with respect to the most natural decay channels as we approach the Landau-Ginzburg

point. This is compelling evidence for their stability in this region of the moduli space, but

not a rigorous proof. Based on this amount of evidence, we will assume in the following that

these D-branes are stable in a neighborhood of the Landau-Ginzburg point. Our next task is

the computation of supergravity D-terms in the mirror IIA orientifold described in section 2.1.
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3.3.2 Mirror Symmetry and Supergravity D-terms

The above Π-stability arguments are independent of complex structure deformations of the IIB

threefold X. We can exploit this feature to our advantage by working in a neighborhood of the

LCS point in the complex structure moduli space of X. In this region, the theory admits an

alternative description as a large volume IIA orientifold on the mirror threefold Y . The details

have been discussed in section 2.1. In the following we will use the IIA description in order to

compute the D-term effects on magnetized branes.

Open string mirror symmetry maps the D5-branes wrapping C,C ′ to D6-branes wrapping

special lagrangian cycles M,M ′ in Y . Since C,C ′ are rigid disjoint (−1,−1) curves for generic

moduli of X, M,M ′ must be rigid disjoint three-spheres in Y . The calibration conditions for

M,M ′ are of the form

Im(eiθΩY |M ) = 0 Im(e−iθΩY |M ′) = 0. (3.3.4)

where ΩY is normalized so that the calibration of the IIA orientifold O6-planes has phase 1.

The phase eiθ in (3.3.4) is equal to the relative phase (3.3.3) computed above, and depends only

on the complex structure moduli of Y . The homology classes of these cycles can be read off

from the central charge formula (3.3.2). We have

[M ] = pβ0 + β1, [M ′] = pβ0 − β1 (3.3.5)

where [M ], [M ′] are cohomology classes on Y related to M,M ′ by Poincaré duality.

Taking into account N = 1 supergravity constraints, the D-term contribution is of the form

UD =
D2

2Im(g)
(3.3.6)

where g is the holomorphic coupling constant of the brane U(1) vector multiplet. The holomor-

phic coupling constant can be easily determined by identifying the four dimensional axion field

a which has a coupling of the form ∫
aF ∧ F (3.3.7)
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with the U(1) gauge field on the brane. Such couplings are obtained by dimensional reduction

of Chern-Simons terms of the form action.

∫
C(3) ∧ F ∧ F + C(5) ∧ F

in the D6-brane world-volume action. Taking into account the expression (3.2.10) for C(3),

dimensional reduction of the Chern-Simons term on the cycle M yields the following four-

dimensional couplings

p

∫
ξ0F ∧ F +

∫
D1 ∧ F. (3.3.8)

Here ξ0 is the axion defined in (3.2.10) and D1 is the two-form field obtained by reduction of

C(5)

C(5) = D1 ∧ α1.

Equation (3.3.8) shows that the axion field a in (3.3.7) is ξ0. Then, using holomorphy and

equation (3.2.9), it follows that the tree level holomorphic gauge coupling g must be

g = 2pτ. (3.3.9)

The second coupling in (3.3.8) is also very useful. The two-form field D1 is part of an N = 1

linear multiplet L1 whose lowest component is the real field e2ΦIm(Z1), where Φ is the four

dimensional dilaton [274]. Moreover, one can relate L to the chiral multiplet ρ by a duality

transformation which converts the second term in (3.3.8) into a coupling of the form

∫
Aµ∂

µξ̃1.

The supersymmetric completion of this term determines the supergravity D-term to be [151,

152, 153, 154]

D = ∂ρKK. (3.3.10)

Note that using equation (B.9) in [274], the D-term (3.3.10) can be written as

D = −2e2ΦIm(CZ1) (3.3.11)
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where C is the compensator field defined in equation (3.2.12). Using equations (3.2.9) and

(3.2.15), we can rewrite (3.3.11) as

D = −2eKK/2Im(CZ1)

= − 1
C

Im(Z1)
Im(Z1)Re(F1)− Re(Z0)Im(F0)

= − 1
Im(τ)

Re(Z0)Im(Z1)
Im(Z1)Re(F1)− Re(Z0)Im(F0)

.

(3.3.12)

Then, taking into account (3.3.9), we find the following expression for the D-term potential

energy

UD =
1

4pIm(τ)3

[
Re(Z0)Im(Z1)

Im(Z1)Re(F1)− Re(Z0)Im(F0)

]2

. (3.3.13)

This is our final formula for the D-term potential energy.

In order to conclude this section, we would like to explain the relation between formula

(3.3.13) and the Π-stability analysis performed earlier in this section. Note that the Π-stability

considerations are captured by an effective potential in the mirror type IIA theory which was

found in [145, 146]. According to [145, 146], the D-term potential for a pair of D6-branes as

above should be given by

VD = 2e−Φ

(∣∣∣∣ ∫
M

Ω̂Y

∣∣∣∣− ∫
M

Re(Ω̂Y )
)

(3.3.14)

where Ω̂Y is the holomorphic three-form on Y normalized so that

i

∫
Y

Ω̂Y ∧ Ω̂Y = 1.

Recall that Φ denotes the four dimensional dilaton.

In the following we would like to explain that this expression is in agreement with the

supergravity formula (3.3.13) for a small supersymmetry breaking angle |θ| << 1. For large |θ|

the effective supergravity description of the theory breaks down, and we would have to employ

string field theory in order to obtain reliable results.

Note that one can write

Ω̂Y = eK0/2ΩY (3.3.15)
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where K0 is has been defined in equation (3.2.13), and ΩY has some arbitrary normalization.

The expression in the right hand side of this equation is left invariant under rescaling ΩY by a

nonzero constant.

Formula (3.3.14) is written in the string frame. In order to compare it with the supergravity

expression, we have to rewrite it in the Einstein frame. In the present context, the string metric

has to be rescaled by a factor of e2φ(vol(Y ))−1 = e2Φ [155], hence the potential energy in the

Einstein frame is

V ED = 2e3Φ

(∣∣∣∣ ∫
M

Ω̂Y

∣∣∣∣− ∫
M

Re(Ω̂Y )
)
. (3.3.16)

Taking into account equations (3.3.5) and (3.3.15) we have

∫
M

Ω̂Y = eK0/2(pRe(Z0) + iIm(Z1)) = eK0/2Z+

where Z+ is the central charge defined in equation (3.3.1). For small values of the phase,

|θ| << 1, we can expand (3.3.16) as

V ED ∼ e3ΦeK0/2
Re(Z0)
p

[
Im(Z1)
Re(Z0)

]2

. (3.3.17)

Now, using equations (3.2.9) and (3.3.11) in (3.3.6), we obtain

UD = Ce4Φ Re(Z0)
p

[
Im(Z1)
Re(Z0)

]2

= e3ΦeK0/2
Re(Z0)

p

[
Im(Z1)
Re(Z0)

]2

(3.3.18)

Therefore the supergravity D-term potential agrees indeed with (3.3.14) for very small super-

symmetry breaking angle. This generalizes the familiar connection between Π-stability and

D-term effects to supergravity theories. In order to complete the description of the dynamics,

we will focus next on superpotential interactions.

3.4 Fluxes, Branes and Superpotential Interactions

In this section we study superpotential interactions of magnetized branes in Calabi-Yau orien-

tifolds with background fluxes. Brane-flux superpotentials have been first discussed in [108, 109].

Our treatment is based on the same idea, although our treatment of compact Calabi-Yau situ-

ations will be closer to [178, 111].
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Let us first consider magnetized branes in the absence of fluxes. The fluxes will naturally

enter the picture at a later stage. Our first task is to identify the lowest lying modes which

govern the low energy physics in the presence of D-branes. The massless fields correspond

to marginal deformations of the internal bulk-boundary CFT. Suppose we have a D-brane

wrapping a holomorphic curve C in a Calabi-Yau threefold X. The marginal deformations of

the bulk-boundary CFT are in one-to-one correspondence with deformations of the pair (X,C).

The infinitesimal deformations of X are classified by H1(X,TX). Using a standard spectral

sequence, one can show that the space H of infinitesimal deformations of the pair (X,C) fits in

an exact sequence the form

0 // H0(C,NC/X) // H // H1(X,TX)
f // H1(C,NC/X) (3.4.1)

where NC/X is the normal bundle to C in X. The map f : H1(X,TX) → H1(C,NC/X) is

induced by the natural projection TX → NC/X .

From a physical point of view the first term in (3.4.1), H0(C,NC/X) parameterizes marginal

boundary operators. The third term H1(X,TX) parameterizes marginal deformations of the

bulk CFT in the absence of boundaries. It is important to note that not all these marginal

operators remain marginal in the bulk-boundary CFT. In fact the exact sequence (3.4.1) shows

that only those deformations in H1(X,TX) which map to zero in H1(C,NC/X) are marginal

deformations of the bulk-boundary theory.

In our case the Calabi-Yau threefold X is equipped with a holomorphic involution σ, and

and the magnetized branes are wrapped on two disjoint curves C,C ′ = σ(C) on X. Then the

infinitesimal deformations are captured by the invariant part of (3.4.1) with respect to σ

0 // H0(C,NC/X) // H+
// H1(X,TX)+

f+ // H1(C,NC/X). (3.4.2)

Let us denote by N a connected component of the moduli space of data (X,σ,C,C ′). Note

that there is a natural forgetful map ρ : N → M, where M is a connected component of the

moduli space of Calabi-Yau threefolds (X,σ) with involution. At a generic point in N , C,C ′
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are (−1,−1) curves on X, hence

H0(C,NC/X) = H0(C ′, NC′/X) = 0.

The only low energy light modes near such a point in the moduli space correspond to defor-

mations of X which preserve (σ,C,C ′). The map ρ : N →M is locally finite-to-one near such

a point. However, the curves C,C ′ may have nontrivial normal deformations in X for special

values of the complex structure moduli. These normal deformations yield new light fields which

have to be taken into account in the low energy effective action. This behavior is similar in spirit

with the Seiberg-Witten solution of N = 2 gauge theories. Around each point, the low energy

theory will have an effective superpotential which is a holomorphic function of the lightest fields

in the spectrum near that point.

The local expression of the superpotential on N is given by a three-chain period of the

holomorphic three-form on X [176, 177]. More precisely, the space N can be locally identified

near each point (X,σ,C,C ′) with an open set U in the linear space

H0(C,NC/X)⊕Ker(f+).

Let us pick a three chain Γ0 interpolating between C,C ′ on X i.e.

∂Γ = C ′ − C.

Then we can extend Γ0 to a multivalued family of three-chains Γu, u ∈ U so that

∂Γu = Cu − C ′u

for each u ∈ U [178]. This extension is obtained by transporting the three-chain Γ0 to any point

in U using the Gauss-Manin connection. The superpotential is a holomorphic function on U

given by

W =
∫

Γu

ΩXu (3.4.3)

where ΩXu is the global holomorphic three-form on Xu. Since the overall normalization of ΩXu

is not fixed, (3.4.3) actually defines a local section of the line bundle ρ∗L over U .
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Note that the expression (3.4.3) is ambiguous since the chain Γ0 is only defined up to a shift

Γ0 → Γ0 + γ. (3.4.4)

where γ is a closed three-cycle on X. This is not a problem from a mathematical point of view

since one can show that the critical set of W is independent of the choice of Γ0. Nevertheless

this ambiguity has a very natural physical interpretation because we can interpret a shift of the

form (3.4.4) as a shift in the background RR flux. More precisely, note that the shift (3.4.4)

changes the superpotential (3.4.3) by

∆W =
∫
γu

ΩXu

where γu is again a family of three-cycles obtained by parallel transport with respect to the

Gauss-Manin connection. Therefore, using Poincaré duality, we can identify the ambiguity in

the choice of Γ0 with a shift

F → F + η

in the background RR flux F on X, where η ∈ H3(X,Z) is the Poincaré dual of γ. This

identification is natural since in the presence of D-branes, the RR flux is not well defined as an

element of H3(X,Z); an element of H3(X,Z) only determines a shift in the background flux,

but the overall value of the flux depends on the choice of a trivialization of the D-brane charge

[156]. More formally, the RR fluxes take values in a torsor over H3(X,Z).

We are therefore led to the conclusion that in superstring compactifications, the superpo-

tential (3.4.3) should be interpreted as a combined brane – RR flux superpotential. There is no

natural way of splitting this formula in separate brane and respectively RR flux contributions,

but changes in the background flux are captured by shifts of the form (3.4.4). Although in this

section we have used IIB variables, (3.4.3) can be equally interpreted as a IIA superpotential

using open string mirror symmetry.

We conclude this discussion with a few remarks. In the next section we will investigate the

vacuum structure of magnetized branes in the octic orientifold taking into account both F-term

and D-term effects.
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(i) The superpotential (3.4.3) depends only on the complex structure deformations of X

which preserve the curve C. In general these deformations span a proper closed subspace of the

moduli space M. We argued that the remaining complex moduli of X are generically massive

and do not appear in the low energy effective action. This argument is in principle correct at

generic points in the moduli space, but it may fail at special points in the moduli space where

the fields we have integrated out become light. Such effects can be taken into account extending

the superpotential (3.4.3) to a local function of all complex structure moduli. Let us consider

an open subset V of

H0(C,NC/X)⊕H1(X,TX)

containing U as a closed subset. Then we can use the Gauss-Manin connection to extend the

three-chain Γ0 to a family of three-chains Γv labeled by points in V and define the extension of

W to be

W =
∫

Γv

ΩXv . (3.4.5)

The main difference with respect to the previous case is that the boundary of Γv is no longer a

holomorphic cycle on Xv if v is not in U .

(ii) The low energy theory may contain extra light open string fields at points in the moduli

space N where the two curves C,C ′ coincide. Then we will have additional superpotential

interactions involving these fields as well.

(iii) The expression (3.4.3) is very similar to the flux superpotential (3.2.19). In particular

they have the same tree level dependence on the dilaton multiplet τ and they are subject to

the same axion shift symmetries. Therefore, using the same low energy arguments as [129] one

can show that (3.4.3) is subject to the same nonrenormalization result. This means that this

formula is reliable at small IIB volume.

(iv) In general situations, the superpotential (3.4.3) cannot be canonically split into a brane

contribution and a flux contribution of the form (3.2.19). However, in special cases, this is

possible using specific features of the geometry. For example suppose the threefold X contains

a connected family of holomorphic curves interpolating between C,C ′. Then one can choose
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the three-chain Γ to be swept by a real one-parameter family of holomorphic curves in X. It

is known that the period of ΩX on such three-chains vanishes. Therefore if we make such a

choice, the superpotential (3.4.3) will be identically zero. Then a shift of the form (3.4.4) will

produce a superpotential of the form (3.2.19).

3.5 The D-Brane Landscape

In this section we explore the magnetized D-brane landscape in the octic orientifold model

introduced in section 2. We compute the F-term and D-term contributions in a neighborhood

of the Landau-Ginzburg point in the IIA complex structure moduli space K. For technical

reasons we will not be able to find explicit solutions to the critical point equations. However,

given the shape of the potential, we will argue that metastable vacuum solutions are statistically

possible by tuning the values of fluxes.

Throughout this section we will be working at a generic point in the configuration space

where all open string fields are massive and can be integrated out. Following the reasoning of the

previous section, this is the expected behavior for D-branes wrapping isolated rigid holomorphic

curves in a Calabi-Yau threefold. One should however be aware of several possible loopholes

in this assumption since open string fields may become light along special loci in the moduli

space.

In our situation, one should be especially careful with the open string-fields in the brane anti-

brane sector. According to the Π-stability analysis in section 3, there is a tachyonic contribution

to the mass of the lightest open string modes proportional to the phase difference θ. At the same

time, we have a positive contribution to the mass due to the tension of the string stretching

between the branes. In order to avoid tachyonic instabilities, we should work in a region of

the moduli space where the positive contribution is dominant. Since the curves are isolated,

the positive mass contribution is generically of the order of the string scale, which is much

larger than the tachyonic contribution, since θ is of the order 0.05. Therefore we do not expect

tachyonic instabilities in the system as long as the moduli are sufficiently generic.
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This argument can be made more precise in the mirror IIA picture. As discussed in section

3.2, the IIA description of the system involves two disjoint special lagrangian cycles M,M ′

on the Calabi-Yau manifold Y . The position of M,M ′ in Y is determined by the calibration

conditions (3.3.4), which are invariant under a rescaling of the metric on Y by a constant

λ > 1. Such a rescaling would also increase the minimal geodesic distance between Y, Y ′, which

determines the mass of the open string modes. Therefore, if the volume of Y is sufficiently

large, we expect the brane anti-brane fields to have masses at least of the order of the string

scale.

Even if the open string fields have a positive mass, the system can still be destabilized by

the brane anti-brane attraction force. Generically, we expect this not to be the case as long

as the brane-brane fields are sufficiently massive since the attraction force is proportional to θ

and it is also suppressed by a power of the string coupling. We can understand the qualitative

aspects of the dynamics using a simplified model for the potential energy. Suppose that the

effective dynamics of the branes can be described in terms of a single light chiral superfield Φ.

Typically this happens when we work near a special point X0 in the complex structure moduli

space where the curves C,C ′ belong to a one parameter family C of holomorphic curves. The

field Φ corresponds to normal deformations of the brane wrapping C, which are identified with

normal deformations of the anti-brane wrapping C ′ by the orientifold projection. A sufficiently

generic small complex deformation of X away from X0 induces a mass term for Φ. Therefore

we can model the effective dynamics of the system by a potential of the form

m(r − r0)2 + c ln
(
r

r0

)
where r parameterizes the separation between the branes. The quadratic terms models a mass

term for the open string fields corresponding to normal deformations of the branes in the

ambient manifold. The second term models a typical two dimensional attractive brane anti-

brane potential. The constant c > 0 is proportional to the phase θ and the string coupling gs.

Now one can check that if c << mr0, this potential has a local minimum near r = r0, and the

local shape of the potential near this minimum is approximatively quadratic. In our case, we
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expect m, r0 to be typically of the order of the string scale, whereas c ∼ gsθ ∼ 10−2 therefore

the effect of the attractive force is negligible.

Since it is technically impossible to make these arguments very precise, we will simply assume

that there is a region in configuration space where destabilizing effects are small and do not

change the qualitative behavior of the system. Moreover, all open string fields are massive, and

we can describe the dynamics only in terms of closed string fields. This point of view suffices

for a statistical interpretation of the D-brane landscape. By tuning the values of fluxes, one can

in principle explore all regions of the configuration space. The vacuum solutions which land

outside the region of validity of this approximation will be automatically destabilized by some

of these effects. Therefore there is a natural selection mechanism which keeps only vacuum

solutions located at a sufficiently generic point in the moduli space.

Granting this assumption, we will take the configuration space to be isomorphic to the closed

string moduli spaceM×K described in section 2.1. As discussed in section 2.2, we will turn on

only RR fluxes FA = F2 + F4 + F6 and NS-NS flux HA. In the presence of branes, the NS-NS

flux HA must satisfy the Freed-Witten anomaly cancellation condition [157], which states that

the the restriction of HA to the brane world-volumes M,M ′ must be cohomologically trivial.

Taking into account equations (3.2.17), (3.3.5), it follows that the integer q1 in (3.2.17) must be

set to zero. Therefore the superpotential does not depend on the chiral superfield ρ. This can

also be seen from the analysis of supergravity D-terms in section 3.2. The U(1) gauge group

acts as an axionic shift symmetry on ρ, therefore gauge invariance rules out any ρ-dependent

terms in the superpotential [158]. The connection between the Freed-Witten anomaly condition

and supergravity has been observed before in [100].

The total effective superpotential is then given by

W =
∫

Γ

ΩX − 2p0τ, (3.5.1)

where Γ is a three-chain on X interpolating between the two curves C,C ′. As explained in

remark (i) section 4, this expression makes sense over the entire moduli space M although

some complex structure deformations may not preserve the curves C,C ′. This only means that
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some complex structure moduli fields are actually massive, and their mass terms are encoded in

W . Alternatively, one can take the configuration space to be of the form N ×K by integrating

out the massive fields, but the two points of view are equivalent, at least generically.

The F-term contribution to the potential energy is

UF = eK
(
gi̄(DiW )(D̄W ) + gab̄(DaW )(Db̄W )− 3|W |2

)
. (3.5.2)

where i, j, . . . label complex coordinates on M and and a, b = ρ, τ label complex coordinates

on K. The D-term contribution is given by equation (3.3.13). We reproduce it below for

convenience

UD =
1

4pIm(τ)3

[
Re(Z0)Im(Z1)

Im(Z1)Re(F1)− Re(Z0)Im(F0)

]2

.

Since the moduli space of the theory is a direct product K ×M, the Kähler potential K in

(3.5.2) is

K = KK +KM.

Note that we Kähler potentials KK, KM satisfy the following noscale relations [274]

gij̄∂iKM∂j̄KM = 3 gab̄∂aKK∂b̄KK = 4. (3.5.3)

Using equations (3.2.9) and (3.2.14), we have

eKK =
1

4Im(τ)4

[
Re(Z0)2

Im(Z1)Re(F1)− Re(Z0)Im(F0)

]2

.

Now we have a complete description of the potential energy of the system. Finding explicit

vacuum solutions using these equations seems to be a daunting computational task, given the

complexity of the problem. We can however gain some qualitative understanding of the resulting

landscape by analyzing the potential energy in more detail.

First we have to find a convenient coordinate system on the moduli space K. Note that

the potential energy is an implicit function of the holomorphic coordinates (τ, ρ) via relations

(3.2.9). One could expand it as a power series in (τ, ρ), but this would be an awkward process.

Moreover, the axion ξ̃1 = Im(ρ) is eaten by the U(1) gauge field, and does not enter the

expression for the potential. Therefore it is more natural to work in coordinates (τ, α) where



78

α is the algebraic coordinate on the underlying N = 2 Kähler moduli space. As explained in

section 2.1, α takes real values in the orientifold theory.

There is a more conceptual reason in favor of the coordinate α instead of ρ, namely α is

a coordinate on the Teichmüller space of Y rather than the complex structure moduli space.

Since in the Π-stability framework the phase of the central charge is defined on the Teichmüller

space, α is the natural coordinate when D-branes are present.

Next, we expand the potential energy in terms of (τ, α) using the relations (3.2.9). Dividing

the two equations in (3.2.9), we obtain

ρ+ ρ

τ − τ = 2i
Re(F1)
Re(Z0)

(3.5.4)

Let us denote the ratio of periods in the right hand side of equation (3.2.9) by

R(α) =
Re(F1)
Re(Z0)

. (3.5.5)

Using equations (3.5.4) and (3.5.5), we find the following relations

∂α

∂ρ
=

1
2i

1
τ − τ

(
∂R

∂α

)−1
∂α

∂τ
= − R

τ − τ
(
∂R

∂α

)−1

. (3.5.6)

Now, using the chain differentiation rule, we can compute the derivatives of the Kähler potential

as functions of (τ, α). Let us introduce the notation

V (α) =
Im(Z1)Re(F1)− Re(Z0)Im(F0)

Re(Z0)2
.

Then we have

∂τKK = −∂τ̄KK = − 2
τ − τ

[
2−R∂αV

V
(∂αR)−1

]
∂ρKK = ∂ρ̄KK =

i

τ − τ
∂αV

V
(∂αR)−1

∂ττ̄KK = − 2
(τ − τ)2

[
2−R∂αV

V
(∂αR)−1 −R∂α

(
R
∂αV

V
(∂αR)−1

)
(∂αR)−1

]
∂τρ̄KK = −∂ρτ̄KK = − i

(τ − τ)2

[
∂αV

V
(∂αR)−1 +R∂α

(
∂αV

V
(∂αR)−1

)
(∂αR)−1

]
∂ρρ̄KK =

1
2(τ − τ)2

∂α

(
∂αV

V
(∂αR)−1

)
(∂αR)−1

(3.5.7)

Using equations (3.5.7), and the power series expansions of the periods computed in appendix

A, we can now compute the expansion of the potential energy as in terms of (τ, α). The D-term
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contribution takes the form

UD =
1

pIm(τ)3
(0.03125− 0.00178α2 + 0.00005α4 + . . .). (3.5.8)

We will split the F-term contribution into two parts

UF = UMF + UKF

where

UMF = eKK+KM
(
gi̄(DiW )(D̄W )− 3|W |2)

UKF = eKK+KM
(
gab̄(DaW )(Db̄W )

)
.

We will also write the superpotential (3.5.1) in the form

W = W0(zi) + kτ

where k = −2p0. The factor eKK and the inverse metric coefficients gab̄ can be expanded in

powers of α using the equations (3.5.7) and formulas (3.6.5) in appendix A. Using the noscale

relations (3.5.3), we find the following expressions

UMF =
eKM

4Im(τ)4
(0.0625− 0.00357α2 + 0.00004α4 + . . .)

(
gi̄(∂iW0)(∂̄W 0) + gi̄[(∂iW0)(∂̄KM)(W 0 + kτ) + (∂̄W 0)(∂iKM)(W0 + kτ)]

) (3.5.9)

UKF =
eKM

Im(τ)4

[
Im(τ)2(0.03125− 0.00073α2 + 0.00001α4 + . . .)k2

− Im(τ)(0.03125− 0.00178α2 + 0.00002α4 + . . .)(2k2Im(τ) + 2kIm(W0))

+ (0.0625− 0.00357α2 + 0.00004α4 + . . .)(k2ττ + kτW 0 + kτW0 + |W0|2)
] (3.5.10)

Let us now try to analyze the shape of the landscape determined by the equations (3.5.8) and

(3.5.9), (3.5.10). We rewrite the contribution (3.5.9) to the potential energy in the form

UMF =
eKM

4Im(τ)4
(0.0625− 0.00357α2 + 0.00004α4 + . . .) (P + kMRe(τ) + kN Im(τ))

(3.5.11)

where

P = gi̄(∂iW0)(∂̄W 0) + gi̄[(∂iW0)(∂̄KM)W 0 + (∂̄W 0)(∂iKM)W0]

M = gi̄[(∂iW0)(∂̄KM) + (∂̄W 0)(∂iKM)]

N = (−i)gi̄[(∂iW0)(∂̄KM)− (∂̄W 0)(∂iKM)]

(3.5.12)
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Then the α expansion of the F-term potential energy can be written as

UF = U
(0)
F + α2U

(2)
F + . . .

where

U
(0)
F = 0.0156

eKM

Im(τ)4
[P + k(N + 4Im(W0))Im(τ) + 2k2Im(τ)2

+ 4|W0|2 + k(M + 8Re(W0))Re(τ) + 4k2Re(τ)2]

(3.5.13)

U
(2)
F = −0.00178

eKM

2Im(τ)4
[P + k(N + 4Im(W0))Im(τ) + 0.82k2Im(τ)2

+ 4|W0|2 + k(M + 8Re(W0))Re(τ) + 4k2Re(τ)2]

(3.5.14)

The critical point equations resulting from (3.5.8), (3.5.9) and (3.5.10) are very complicated,

and we will not attempt to find explicit solutions. We will try to gain some qualitative under-

standing of the possible solutions exploiting some peculiar aspects of the potential. Note that

all contributions to the potential energy depend on even powers of α. Then it is obvious that

α = 0 is a solution to the equation

∂αU = 0

where U = UD + UMF + UKF . Moreover we also have

(∂i∂αU)α=0 = (∂τ∂αU)α=0 = 0.

This motivates us to look for critical points with α = 0. Then, the remaining critical point

equations are

(∂iU)α=0 = (∂τU)α=0 = 0 (3.5.15)

plus their complex conjugates.

The second order coefficient of α in the total potential energy is

U
(2)
F − 0.00178

1
pIm(τ)3

. (3.5.16)

Since the mixed partial derivatives are zero at α = 0, in order to obtain a local minimum,

the expression (3.5.16) must be positive. This is a first constraint on the allowed solutions to

(3.5.15).
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Next, let us examine the τ dependence of the potential for α = 0 and fixed values of the

Kähler parameters. Note that U (0)
F given by equation (3.5.13) is a quadratic function of the

axion Re(τ). For any fixed values of Im(τ) and the Kähler parameters, this function has a

minimum at

Re(τ) = −8Re(W0) +M

8k
. (3.5.17)

Therefore we can set Re(τ) to its minimum value in the potential energy, obtaining an effective

potential for the Kähler parameters and the dilaton Im(τ). Then equations (3.5.13), (3.5.14)

become

U
(0)
F = 0.0156

eKM

Im(τ)4

[
P + k(N + 4Im(W0))Im(τ) + 2k2Im(τ)2

+ 4|W0|2 − 1
16

(M + 8Re(W0))2

] (3.5.18)

U
(2)
F = −0.00178

eKM

2Im(τ)4

[
P + k(N + 4Im(W0))Im(τ) + 0.82k2Im(τ)2

+ 4|W0|2 − 1
16

(M + 8Re(W0))2

] (3.5.19)

Now let us analyze the dependence of U (0)
F on Im(τ). It will be more convenient to make the

change of variables

u =
1

Im(τ)

since u is proportional to the string coupling constant. Then U
(0)
F becomes a quartic function

of the form

U
(0)
F = Au2 −Bu3 + Cu4 (3.5.20)

where

A = 2k2

B = −kN − 4kIm(W0)

C = P + 4|W0|2 − 1
16

(M + 8Re(W0))2.

(3.5.21)

The behavior of this function for fixed values of the Kähler parameters is very simple. For

positive A, this function has a local minimum away from the origin if and only if the following

inequalities are satisfied

B > 0 C > 0 and 9B2 > 32AC. (3.5.22)
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The minimum is located at

u0 =
3B +

√
9B2 − 32AC
8C

. (3.5.23)

Therefore, in order to construct metastable vacua, we have to find solutions to the equations

(3.5.15) satisfying the inequalities (3.5.22). Moreover, we would like u0 to be small in order to

obtain a weakly coupled theory. The conditions (3.5.22) translate to

9(N + 4Im(W0))2 > 64
(
P + 4Im(W0)2 −MRe(W0)− M2

16

)
> 0

k (N + Im(W0)) < 0

(3.5.24)

where P,M,N are given by (3.5.12). This shows that we need a certain amount of fine tuning of

the background RR fluxes in order to obtain a metastable vacuum. Note that in our construction

the fluxes are not constrained by tadpole cancellation conditions, therefore we can tune them at

will. Statistically, this improves our chances of finding a solution with the required properties.

Finally, note that we have to impose one more condition, namely the second order coefficient

(3.5.16) in the α expansion of the potential should be positive. Assuming that we have found

a solution of equations (3.5.15) which stabilizes u at the value 0 < u0 < 1, let us compute this

coefficient as a function of (u0, A,B,C). Note that equation (3.5.19) can be rewritten as

U
(2)
F = 0.00178

eKM

2
(Bu3

0 − 0.4Au2
0 − Cu4

0). (3.5.25)

Equation (3.5.23) yields

B =
4
3
Cu0 +

2
3
A

u0
(3.5.26)

Substituting (3.5.26) in (3.5.25), and adding the D-term contribution, the coefficient of α2

becomes

0.00178
[
eKM(

2
15
Au2

0 +
1
6
Cu4

0)− 1
p
u3

0

]
(3.5.27)

Since C > 0, a sufficient condition for (3.5.27) to be positive is

2p
15
AeKM > u0 ⇒ 4pk2

15
> u0vol(Y ). (3.5.28)

Here we have used

eKM =
1

vol(Y )
.
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This condition reflects the fact that the F-term and D-term contributions to the potential energy

must be of the same order of magnitude in order to obtain a metastable vacuum solution. If

the volume of Y is too large, there is a clear hierarchy of scales between the two contributions,

and the D-term is dominant. This would give rise to a runaway behavior along the direction of

α. On the other hand, we have to make sure that the volume of Y is sufficiently large so that

the IIA supergravity approximation is valid. Therefore some additional amount of fine tuning

is required in order to obtain a reliable solution.

In conclusion, metastable nonsupersymmetric vacua at α = 0 can be in principle obtained

by tuning the IIA RR flux F (A) and NS-NS flux HA = kβ0 so that conditions (3.5.24), (3.5.28)

are satisfied at the critical point. A more precise statement would require a detailed numerical

analysis, which we leave for future work.

We would like to conclude this section with a few remarks.

(i) In this chapter we have taken a conservative approach towards fluxes, avoiding half flat

structures in the IIA theory, which correspond to IIB NS-NS flux HB . If one is willing to

consider compactifications of this form, we have additional terms in the superpotential. In IIB

variables, these terms would read

−τ
∫
X

ΩX ∧HB .

One can also turn on additional flux degrees of freedom as advocated in [159, 160]. Such terms

may be helpful in the above fine tuning process.

(ii) We have also restricted ourselves to singly wrapped magnetized D5-branes. One could in

principle consider multiply wrapped D5-branes as long we can maintain the phase difference θ

sufficiently small. If this is possible, we would obtain an additional nonperturbative contribution

to the superpotential of the form

be−aτ .

Such terms may be also helpful in the fine tuning process.

(iii) Finally, note that we could also allow for a nonzero background value of the RR zero-

form F0, which was also set to zero in this chapter. Then, according to [277], there is an
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additional contribution to the RR tadpole cancellation condition, which becomes

p− km0 − |NO3| = 0.

If we choose k,m0 so that km0 > 0, it follows that p can be larger than |NO3|. In fact it

seems that there is no upper bound on p, hence we could make the supersymmetry breaking

D-term very small by choosing a large p. This may have important consequences for the scale

of supersymmetry breaking in string theory.

(iv) Note that the vacuum construction mechanism proposed above can give rise to de Sitter

or anti de Sitter vacua, depending on the values of fluxes. In particular, it is not subject to

the no-go theorem of [161] because the magnetized branes give a positive contribution to the

potential energy. In principle we could try to employ the same strategy in order to construct

nonsupersymmetric metastable vacua of the F-term potential energy (3.5.2) in the absence of

magnetized branes. Then we have several options for RR tadpole cancellation. We can turn on

background F0 flux as in [277] or local tadpole cancellation by adding background D6-branes.

It would be interesting to explore these alternative constructions in more detail.

(v) Since it is quite difficult to find explicit vacuum solutions, it would be very interesting

to attempt a systematic statistical analysis of the distribution of vacua along the lines of [162,

163, 164, 165, 166, 167, 168].

(vi) In our approach the scale of supersymmetry breaking is essentially determined by the

total RR tadpole p = |NO3| of the orientifold model. While this tadpole is typically of the order

of 32 in perturbative models, it can reach much higher values in orientifold limits of F-theory.

It would be very interesting to implement our mechanism in such an F-theory compactification,

perhaps in conjunction with other moduli stabilization mechanism [169, 276, 170, 171, 172, 173,

174]. Provided that the dynamics can still be kept under control, we would then obtain smaller

supersymmetry breaking scales.
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3.6 Appendix: Π-Stability on the Octic and N = 2 Kähler Moduli

Space

In this appendix we analyze the N = 2 Kähler moduli space and stability of magnetized branes

for the octic hypersurface. Recall [124] that the mirror family is described by the equation

x8
1 + x8

2 + x8
3 + x8

4 + x2
5 − αx1x2x3x4x5 = 0. (3.6.1)

in WP 1,1,1,1,4/(Z2
8×Z2). The moduli space of the mirror family can be identified with a sector

in the α plane defined by

0 ≤ arg(α) <
2π
8
.

The entire α plane contains eight such sectors, which are permuted by monodromy transforma-

tions about the LG point α = 0. In this parameterization, the LCS point is at α =∞, and the

conifold point is at α = 4.

A basis of periods for this family has been computed in [124] by solving the Picard-Fuchs

equations. For our purposes it is convenient to write the solutions to the Picard-Fuchs equations

in integral form

Π0 =
1

2πi

∫
ds

Γ(1 + 8s)Γ(−s)
Γ(1 + s)3Γ(1 + 4s)

eiπs(α)−8s

Π1 = − 1
(2πi)2

∫
ds

Γ(1 + 8s)Γ(−s)2

Γ(1 + s)2Γ(1 + 4s)
(α)−8s

Π2 =
2

(2πi)3

∫
ds

Γ(1 + 8s)Γ(−s)3

Γ(1 + s)Γ(1 + 4s)
eiπs(α)−8s

Π3 = − 1
(2πi)4

∫
ds

Γ(1 + 8s)Γ(−s)4

Γ(1 + 4s)
(α)−8s.

(3.6.2)

as in [133]. All integrals in (3.6.2) are contour integrals in the complex s-plane. The contour

runs from s = −ε− i∞ to −ε+ i∞ along the imaginary axis and it can be closed either to the

left or to the right. If we close the contour to the right, we obtain a basis of solutions near the

LCS limit α = ∞, while if we close the contour to the left, we obtain a basis of solutions near

the LG point α = 0. Near the large radius limit it is more convenient to write the solutions in

terms of the coordinate z = α−8.
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Note that there is a different set of solutions at the LG point [124] of the form

wk(α) = Π0(e2πkiα), k = 0, . . . , 7. (3.6.3)

In particular we have an alternative basis [w2 w1 w0 w7]tr near α = 0. The transition matrix

between the two bases is 

Π0

Π1

Π2

Π3



=



0 0 1 0

1
2

1
2 − 1

2 − 1
2

0 −1 −2 −1

−1 − 1
2

1
2 1





w2

w1

w0

w7



(3.6.4)

In section 2 we have used a third basis of periods [Z0 Z1 F1 F0]tr compatible with the orientifold

projection. The relation between the orientifold basis and the LG basis [w2 w1 w0 w7]tr is given

in equation (3.2.11). The power series expansion of the orientifold periods at the LG point is

Re(Z0) = −0.37941α+ 0.00541α3 + 0.00009α5 + . . .

Im(Z1) = −0.53656α+ 0.00766α3 − 0.00012α5 + . . .

Re(F1) = 1.29538α− 0.00317α3 − 0.00005α5 + . . .

Im(F0) = 0.31431α− 0.02615α3 + 0.00043α5 + . . .

(3.6.5)

Now let us discuss some geometric aspects of octic hypersurfaces required for the Π-stability

analysis. For intersection theory computations, it will be more convenient to represent X as

a hypersurface in a smooth toric variety Z obtained by blowing-up the singular point of the

weighted projective space WP 1,1,1,1,4. Z is defined by the following C× × C× action

x1 x2 x3 x4 u v

1 1 1 1 −4 0

0 0 0 0 1 1

(3.6.6)
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with forbidden locus {x1 = x2 = x3 = x4 = 0} ∪ {u = v = 0}. The Picard group of Z is

generated by two divisor classes η1, η2 determined by the equations

η1 : x1 = 0 η2 : v = 0. (3.6.7)

The cohomology ring of Z is determined by the relations

η4
2 = 64 η2(η2 − 4η1) = 0. (3.6.8)

The total Chern class of Z is given by the formula

c(Z) = (1 + η1)4(1− 4η1 + η2)(1 + η2) (3.6.9)

and the hypersurface X belongs to the linear system |2η2|. Using the adjunction formula

c(X) =
c(Z)

(1 + 2η2)
(3.6.10)

one can easily compute

c1(X) = 0 c2(X) = 22η2
1 Td(X) = 1 +

11
6
η2

1 . (3.6.11)

Note that the divisor class η2−4η1 has trivial restriction to X, therefore the Picard group of X

has rank one, as expected. A natural generator is η1, which can be identified with a hyperplane

section of X in the weighted projective space WP 1,1,1,1,4. Then we will write the complexified

Kähler class as B + iJ = tη1. For future reference, note that we will denote by E(p) the tensor

product E ⊗OX(pη1) for any sheaf (or derived object) E on X.

Employing the conventions of [175], we will define the central charge of a D-brane E in the

large radius limit to be

Z∞(E) =
∫
X

eB+iJch(E)
√

Td(X). (3.6.12)

This is a cubic polynomial in t. Using the mirror map

t =
Π1

Π0
(3.6.13)
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and the asymptotic form of the periods

Π1 = t+ . . .

Π2 = t2 + t− 11
6

+ . . .

Π3 =
1
6
t3 − 13

12
t+ . . .

(3.6.14)

we can determine the exact expression of the period ZE as a function of the algebraic coordinate

α. The phase of the central charge is defined as

φ(E) = − 1
π

arg(Z(E)) (3.6.15)

and is normalized so that it takes values −2 < φ(E) ≤ 0 at the large radius limit point.

As objects in the derived category Db(X), the magnetized branes are given by

OC(p− 1) OC′(−p− 1)[1] (3.6.16)

where C,C ′ are smooth rational curves on X conjugated under the holomorphic involution.

Given a coherent sheaf E on X, we have denoted by E the one term complex which contains

E in degree zero, all other terms being trivial. In order to compute their asymptotic central

charges using formula (3.6.12), we have to use the Grothendieck-Riemann-Roch theorem for the

embeddings ι : C → X, ι′ : C ′ → X. Since the computations are very similar, it suffices to

present the details only for one of these objects, for example the first brane in (3.6.16).

Given a line bundle L → C, the Chern character of its pushforward ι∗(L) to X is given by

ch(ι∗(L))Td(X) = ι∗(ch(L)Td(C)). (3.6.17)

In our case (3.6.17) yields

ch0(ι∗(L)) = ch1(ι∗(L)) = 0 ch2(ι∗(L)) = [C] ch3(ι∗(L)) = (deg(L) + 1)[pt] (3.6.18)

where [C] ∈ H2,2(X) denotes the Poincaré dual of C and [pt] ∈ H3,3(X) denotes the Poincaré

dual of a point on X. The shift by 1 in ch3(ι∗(L)) represents the contribution of the Todd class

of C

Td(C) = 1 +
1
2
c1(C)
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to the right hand side of equation (3.6.17). From a physical point of view, this can be thought

of as D3-brane charge induced by a curvature effect. Using formulas (3.6.12), (3.6.18) it is easy

to compute

Z∞
(OC(p− 1)

)
= t+ p Z∞

(OC′(−p− 1)[1]
)

= −t+ p. (3.6.19)

The exact expressions for the central charges are

Z
(OC(p− 1)

)
= Π1 + pΠ0 Z

(OC′(−p− 1)[1]
)

= −Π1 + pΠ0. (3.6.20)

Taking into account the transition matrices (3.2.11), (3.6.4), it is clear that these formulas are

identical with (3.3.2) in the main text. In order to study the behavior of their phases near the

LG point, we have to rewrite the central charges (3.6.20) in terms of the basis [w2 w1 w0 w7]tr

using the transition matrix (3.6.4). We find

Z
(OC(p− 1)

)
=

1
2

(w2 + w1 − w0 − w7) + pw0

Z
(OC′(−p− 1)[1]

)
= −1

2
(w2 + w1 − w0 − w7) + pw0.

(3.6.21)

Note that the central charge of a single D3-brane is

Z(Opt) = w0. (3.6.22)

Then, using the expansions (3.6.5) we can plot the relative phase

θ = φ
(OC(p− 1)

)− φ(Opt) (3.6.23)

near the LG point, obtaining the graph in figure 1.

In the remaining part of this section, we will address the question of stability of magnetized

brane configurations near the LG point. As explained below figure 1, we will analyze stability

with respect to the most natural decay channels from the geometric point of view. We will

show below that the objects (3.6.16) are stable with respect to all such decay processes, which

is strong evidence for their stability at the LG point. Since all these computations are very

similar, it suffices to consider only one case in detail. For the other cases we will just give the

final results.
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Decay channels in the Π-stability framework are classified by triangles in the derived category

[133]. In our case, the most natural decay channels are in fact determined by short exact

sequences of sheaves. For example let us consider the following short exact sequence

0→ JC(p− 1)→ OX(p− 1)→ OC(p− 1)→ 0 (3.6.24)

where JC is the ideal sheaf of C on X. The first two terms represent rank one D6-branes on

X with lower D4 and D2 charges. All three terms are stable BPS states in the large volume

limit. The mass of the lightest open string states stretching between the first two branes in the

sequence (3.6.24) is determined by the relative phase

∆φ = φ
(OX(p− 1)

)− φ (JC(p− 1)
)
. (3.6.25)

If ∆φ < 1, the lightest state in this open string sector is tachyonic, and these two branes will

form a bound state isomorphic to OC(p− 1) by tachyon condensation. In this case OC(p− 1)

is stable. If ∆φ > 1, the lightest open string state has positive mass, and it is energetically

favorable for OC(p−1) to decay into JC(p−1) and OX(p−1). In this case OC(p−1) is unstable.

Therefore we have to compute the phase difference ∆φ as a function of α in order to find out

if this decay takes place anywhere on the real α axis. For the purpose of this computation it is

more convenient to denote q = p− 1, and perform the calculations in terms of q rather than p.

We have

Z∞ (OX(q)) =
∫
X

e(t+q)η1
√

Td(X)

=
1
3

(t+ q)3 +
11
6

(t+ q)

Z∞
(JC(q)

)
=
∫
X

e(t+q)η1
√

Td(X)− Z∞ (OC(q)
)

=
1
3

(t+ q)3 +
5
6

(t+ q)− 1.

(3.6.26)

Using the asymptotic form of the periods (3.6.14) and formulas (3.6.26), we find the following

expressions for the exact central charges

Z (OX(q)) = 2Π3 + qΠ2 + (q2 − q + 4)Π1 +
(

1
3
q3 +

11
3
q

)
Π0

Z
(JC(q)

)
= 2Π3 + qΠ2 + (q2 − q + 3)Π1 +

(
1
3
q3 +

8
3
q − 1

)
Π0

(3.6.27)
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In terms of the LG basis of periods, these expressions read

Z (OX(q)) =
(

1
2
q2 − 1

2
q

)
w2 +

(
1
2
q2 − 3

2
q + 1

)
w1

+
(

1
3
q3 − 1

2
q2 +

13
6
q − 1

)
w0 +

(
−1

2
q2 − 1

2
q

)
w7

Z
(JC(q)

)
=
(

1
2
q2 − 1

2
q − 1

2

)
w2 +

(
1
2
q2 − 3

2
q +

1
2

)
w1

+
(

1
3
q3 − 1

2
q2 +

7
6
q − 3

2

)
w0 +

(
−1

2
q2 − 1

2
q +

1
2

)
w7

(3.6.28)

Substituting the expressions (3.6.2) in (3.6.27), (3.6.28), we can compute the the relative phase

(3.6.25) at any point on the real axis in the α-plane except the conifold point α = 4. The

conifold point can be avoided following a circular contour of very small radius ε centered at

α = 4.

The graph in fig. 2 represents the dependence of ∆φ as a function of z = α−8 in the large radius

phase 0 < z < 4 for p = 10. Note that it decreases monotonically from 0.0075 to 0.0044 as we

approach the conifold point. Using formulas (3.6.28), we find that in the LG phase 0 < α < 4,

∆Φ also decreases monotonically until it reaches the value 0.027 at the LG point. One can also

calculate the values of ∆φ along a small circular contour surrounding the conifold, confirming

that it varies continuously in this region. Since ∆φ < 1, everywhere on the real axis, we conclude

that the magnetized brane OC(q) is stable with respect to the decay channel (3.6.24).

The analysis of other decay channels is very similar. Another decay channel is given by the

following short exact sequence

0→ OD(−C)(q)→ OD(q)→ OC(q)→ 0 (3.6.29)

where D is a divisor on X in the linear system η1 containing C. Then, an analogous com-

putation yields a similar variation of ∆φ on the real axis, except that the maximum value is

approximatively 0.015 and it decreases monotonically to 0.008 at the LG point. Therefore the

magnetized brane is also stable with respect to the decay (3.6.29). In principle there could exit

other decay channels, perhaps described by more exotic triangles in the derived category. A

systematic analysis would take us too far afield, so we will simply assume that the magnetized

branes are stable at the LG point based on the evidence presented so far. A rigorous proof of
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Figure 3.2: The behavior of the relative phase ∆φ in the geometric phase for p = 10.

stability is not within the reach of current Π-stability techniques.
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Chapter 4

D-brane Superpotentials on Calabi-Yau manifolds

4.1 Introduction

D-branes in Type IIB orientifolds are an important ingredient in constructions of string vacua.

A frequent problem arising in this context is the computation of the tree-level superpotential

for holomorphic D-brane configurations. This is an important question for both realistic model

building as well as dynamical supersymmetry breaking.

Various computational methods for the tree-level superpotential have been proposed in the

literature. A geometric approach which identifies the superpotential with a three-chain period of

the holomorphic (3, 0)-form has been investigated in [176, 177, 178, 179, 180]. A related method,

based on two-dimensional holomorphic Chern-Simons theory, has been developed in [181, 182,

183, 184]. The tree-level superpotential for fractional brane configurations at toric Calabi-Yau

singularities has been computed in [185, 186, 187, 188, 189, 190]. Using exceptional collections,

one can also compute the superpotential for non-toric del Pezzo singularities [191, 192, 193, 194].

Perturbative disc computations for superpotential interactions have been performed in [195, 196,

197]. Finally, a mathematical approach based on versal deformations has been developed in [198]

and extended to matrix valued fields in [199].

A systematic approach encompassing all these cases follows from the algebraic structure

of B-branes on Calabi-Yau manifolds. Adopting the point of view that B-branes form a tri-

angulated differential graded category [200, 201, 202, 203, 204, 205] the computation of the

superpotential is equivalent to the computation of a minimal A∞ structure for the D-brane

category [206, 207, 208, 209, 210].
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This approach has been employed in the Landau-Ginzburg D-brane category [211, 212, 213],

and in the derived category of coherent sheaves [214, 215]. These are two of the various phases

that appear in the moduli space of a generic N = 2 Type II compactification. In particular,

Aspinwall and Katz [214] developed a general computational approach for the superpotential, in

which the A∞ products are computed using a Čech cochain model for the off-shell open string

fields.

The purpose of the present chapter is to apply a similar strategy for D-branes wrapping

holomorphic curves in Type II orientifolds. This requires a basic understanding of the orientifold

projection in the derived category, which is the subject of section 4.2. In section 4.3 we propose

a computational scheme for the superpotential in orientifold models. This relies on a systematic

implementation of the orientifold projection in the calculation of the A∞ structure.

We show that the natural algebraic framework for deformation problems in orientifold models

relies on L∞ rather than A∞ structures. This observation leads to a simple prescription for

the D-brane superpotential in the presence of an orientifold projection: one has to evaluate the

superpotential of the underlying unprojected theory on invariant on-shell field configurations.

This is the main conceptual result of the chapter, and its proof necessitates the introduction of

a lengthy abstract machinery.

Applying our prescription in practice requires some extra work. The difficulty stems from

the fact that while the orientifold action is geometric on the Calabi-Yau, it is not naturally

geometric at the level of the derived category. Therefore, knowing the superpotential in the

original theory does not trivially lead to the superpotential of the orientifolded theory. To

illustrate this point we compute the superpotential in two different cases. Both will involve

D-branes wrapping rational curves, the difference will be in the way these curves are obstructed

to move in the ambient space.

The organization of the chapter is as follows. Section 2 reviews the construction of the

categorical framework in which we wish to impose the orientifold projection, as well as how to

do the latter. Section 3 describes the calculation of the D-brane superpotential in the presence
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of the projection. Finally, section 4 offers concrete computations of the D-brane superpotential

for obstructed curves in Calabi-Yau orientifolds.

4.2 D-Brane Categories and Orientifold Projection

This section will be concerned with general aspects of topological B-branes in the presence of

an orientifold projection. Our goal is to find a natural formulation for the orientifold projection

in D-brane categories.

For concreteness, we will restrict ourselves to the category of topological B-branes on a

Calabi-Yau threefold X, but our techniques extend to higher dimensions. In this case, the D-

brane category is the derived category of coherent sheaves on X [200, 202]. In fact, a systematic

off-shell construction of the D-brane category [203, 204] shows that the category in question

is actually larger than the derived category. In addition to complexes, one has to also include

twisted complexes as defined in [216]. We will show below that the off-shell approach is the

most convenient starting point for a systematic understanding of the orientifold projection.

4.2.1 Review of D-Brane Categories

Let us begin with a brief review of the off-shell construction of D-brane categories [216, 203, 204].

It should be noted at the offset that there are several different models for the D-brane category,

depending on the choice of a fine resolution of the structure sheaf OX . In this section we will

work with the Dolbeault resolution, which is closer to the original formulation of the boundary

topological B-model [217]. This model is very convenient for the conceptual understanding of

the orientifold projection, but it is unsuitable for explicit computations. In Section 4 we will

employ a Čech cochain model for computational purposes, following the path pioneered in [214].

Given the threefold X, one first defines a differential graded category C as follows

Ob(C) : holomorphic vector bundles (E, ∂E) on X

MorC
(
(E, ∂E), (F, ∂F )

)
=
(
⊕pA0,p

X (HomX(E,F )), ∂EF
)



96

where we have denoted by ∂EF the induced Dolbeault operator on HomX(E,F )-valued (0, p)

forms.1 The space of morphisms is a Z-graded differential complex. In order to simplify the

notation we will denote the objects of C by E, the data of an integrable Dolbeault operator ∂E

being implicitly understood.

The composition of morphisms in C is defined by exterior multiplication of bundle valued

differential forms. For any object E composition of morphisms determines an associative al-

gebra structure on the endomorphism space MorC(E,E). This product is compatible with the

differential, therefore we obtain a differential graded associative algebra structure (DGA) on

MorC(E,E).

At the next step, we construct the shift completion C̃ of C, which is a category of holomorphic

vector bundles on X equipped with an integral grading.

Ob(C̃) : pairs (E,n),with E an object of C and n ∈ Z

MorC̃((E,n), (F,m)) = MorC(E,F )[n−m].

The integer n is the boundary ghost number introduced in [202]. Note that for a homogeneous

element

f ∈ MorkC̃((E,n), (F,m))

we have

k = p+ (m− n)

where p is the differential form degree of f . The degree k represents the total ghost number of

the field f with respect to the bulk-boundary BRST operator. In the following we will use the

notations

|f | = k, c(f) = p, h(f) = m− n.

The composition of morphisms in C̃ differs from the composition of morphisms in C by a

sign, which will play an important role in our construction. Given two homogeneous elements

f ∈ MorC̃((E,n), (E′, n′)) g ∈ MorC̃((E
′, n′), (E′′, n′′))

1HomX(E, F ) is the sheaf Hom of E and F , viewed as sheaves.
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one defines the composition

(g ◦f)C̃ = (−1)h(g)c(f)(g ◦f)C . (4.2.1)

This choice of sign leads to the graded Leibniz rule

∂EE′′(g ◦f)C̃ =
(
∂E′E′′(g) ◦f

)
C̃ + (−1)h(g)

(
g ◦ ∂EE′(f)

)
C̃ .

Now we construct a pre-triangulated DG category Pre-Tr(C̃) of twisted complexes as follows

Ob
(

Pre-Tr(C̃)
)

:

finite collections of the form{
(Ei, ni, qji)| qji ∈ Mor1

C̃((Ei, ni), (Ej , nj))
}

where the qji satisfy the Maurer-Cartan equation

∂EiEj (qji) +
∑
k(qjk ◦ qki)C̃ = 0.

MorPre-Tr(C̃)((Ei, ni, qji), (Fi,mi, rji)) =

⊕
i,j

MorC̃((Ei, ni), (Fj ,mj)), Q


where the differential Q is defined as

Q(f) = ∂EiFj (f) +
∑
k

(rkj ◦f)C̃ − (−1)|f |(f ◦ qik)C̃ , f ∈ MorC̃((Ei, ni), (Fj ,mj)).

|f | is the degree of f in MorC̃((Ei, ni), (Fj ,mj)) from above. For each object, the index i takes

finitely many values between 0 and some maximal value which depends on the object. Note that

Q2 = 0 because {qji}, {rji} satisfy the Maurer-Cartan equation. Composition of morphisms in

Pre-Tr(C̃) reduces to composition of morphisms in C̃.

Finally, the triangulated D-brane category D has by definition the same objects as Pre-Tr(C̃),

while its morphisms are given by the zeroth cohomology under Q of the morphisms of Pre-Tr(C̃):

Ob (D) = Ob
(

Pre-Tr(C̃)
)

MorD((Ei, ni, qji), (Fi,mi, rji)) = H0
(
Q, MorPre-Tr(C̃)((Ei, ni, qji), (Fi,mi, rji))

)
.

(4.2.2)

The bounded derived category of coherent sheaves Db(X) is a full subcategory of D. To see

this consider the objects of the form (Ei, ni, qji) such that

ni = −i, qji 6= 0 ⇔ j = i− 1. (4.2.3)
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Since qji ∈ Mor1
C̃((Ei, ni), (Ej , nj)), the second condition in (4.2.3) implies that their differential

form degree must be 0. The Maurer-Cartan equation for such objects reduces to

∂EiEi−1qi−1,i = 0, (qi−1,i ◦ qi,i+1)C̃ = 0.

Therefore the twisted complex (Ei, ni, qji) is in fact a complex of holomorphic vector bundles

· · · //Ei+1

qi,i+1 //Ei
qi−1,i //Ei−1

// · · · (4.2.4)

We will use the alternative notation

· · · //Ei+1

di+1 //Ei
di //Ei−1

// · · · (4.2.5)

for complexes of vector bundles, and also denote them by the corresponding Gothic letter, here

E.

One can easily check that the morphism space (4.2.2) between two twisted complexes of the

form (4.2.3) reduces to the hypercohomology group of the local Hom complex Hom(E,F)

MorD((Ei, ni, qji), (Fi,mi, rji)) ' H0(X, Hom(E,F)). (4.2.6)

As explained in [205], this hypercohomology group is isomorphic to the derived morphism space

HomDb(X)(E,F). Assuming that X is smooth and projective, any derived object has a locally

free resolution, hence Db(X) is a full subcategory of D.

4.2.2 Orientifold Projection

Now we consider orientifold projections from the D-brane category point of view. A similar

discussion of orientifold projections in matrix factorization categories has been outlined in [218].

Consider a four dimensional N = 1 IIB orientifold obtained from an N = 2 Calabi-Yau

compactification by gauging a discrete symmetry of the form

(−1)εFLΩσ

with ε = 0, 1. Employing common notation, Ω denotes world-sheet parity, FL is the left-moving

fermion number and σ : X → X is a holomorphic involution of X satisfying

σ∗ΩX = (−1)ε ΩX , (4.2.7)
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where ΩX is the holomorphic (3, 0)-form of the Calabi-Yau. Depending on the value of ε, there

are two classes of models to consider [219]:

1. ε = 0: theories with O5/O9 orientifolds planes, in which the fixed point set of σ is either

one or three complex dimensional;

2. ε = 1: theories with O3/O7 planes, with σ leaving invariant zero or two complex dimen-

sional submanifolds of X.

Following the same logical steps as in the previous subsection, we should first find the action

of the orientifold projection on the category C, which is the starting point of the construction.

The action of parity on the K-theory class of a D-brane has been determined in [220]. The

world-sheet parity Ω maps E to the dual vector bundle E∨. If Ω acts simultaneously with a

holomorphic involution σ : X → X, the bundle E will be mapped to σ∗(E∨). If the projection

also involves a (−1)FL factor, a brane with Chan-Paton bundle E should be mapped to an

anti-brane with Chan-Paton bundle P (E).

Based on this data, we define the action of parity on C to be

P : E 7→ P (E) = σ∗(E∨)

P : f ∈ MorC(E,F ) 7→ σ∗(f∨) ∈ MorC(P (F ), P (E))

(4.2.8)

It is immediate that P satisfies the following compatibility condition with respect to composition

of morphisms in C:

P ((g ◦f)C) = (−1)c(f)c(g) (P (f) ◦P (g))C (4.2.9)

for any homogeneous elements f and g. It is also easy to check that P preserves the differential

graded structure, i.e.,

P (∂EF (f)) = ∂P (F )P (E)(P (f)). (4.2.10)

Equation (4.2.9) shows that P is not a functor in the usual sense. Since it is compatible with

the differential graded structure, it should be interpreted as a functor of A∞ categories [221].

Note however that P is “almost a functor”: it fails to satisfy the compatibility condition with
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composition of morphisms only by a sign. For future reference, we will refer to A∞ functors

satisfying a graded compatibility condition of the form (4.2.9) as graded functors.

The category C does not contain enough information to make a distinction between branes

and anti-branes. In order to make this distinction, we have to assign each bundle a grading,

that is we have to work in the category C̃ rather than C. By convention, the objects (E,n) with

n even are called branes, while those with n odd are called anti-branes.

We will take the action of the orientifold projection on the objects of C̃ to be

P̃ : (E,n) 7→ (P (E),m− n) (4.2.11)

where we have introduced an integer shift m which is correlated with ε from (4.2.7):

m ≡ ε mod 2. (4.2.12)

This allows us to treat both cases ε = 0 and ε = 1 in a unified framework.

We define the action of P on a morphisms f ∈ MorC̃((E,n), (E′, n′)) as the following graded

dual:

P̃ (f) = −(−1)n
′h(f)P (f), (4.2.13)

where P (f) was defined in (4.2.8).2 Note that the graded dual has been used in a similar context

in [218], where the orientifold projection is implemented in matrix factorization categories.

With this definition, we have the following:

Proposition 4.2.1. P̃ is a graded functor on C̃ satisfying

P̃ ((g ◦f)C̃) = −(−1)|f ||g|(P̃ (f) ◦ P̃ (g))C̃ (4.2.14)

for any homogeneous elements

f ∈ MorC̃((E,n), (E′, n′)), g ∈ MorC̃((E
′, n′), (E′′, n′′)).

Proof. It is clear that P̃ is compatible with the differential graded structure of C̃ since the latter

is inherited from C.

2There is no a priori justification for the particular sign we chose, but as we will see shortly, it leads to a
graded functor. A naive generalization of (4.2.8) ignoring this sign would not yield a graded functor.
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Next we prove (4.2.14). First we have:

P̃ ((g ◦f)C̃) = −(−1)n
′′h(g ◦ f)P ((g ◦f)C̃) by (4.2.13)

= −(−1)n
′′h(g ◦ f)+h(g)c(f)P ((g ◦f)C) by (4.2.1)

= −(−1)n
′′h(g ◦ f)+h(g)c(f)+c(f)c(g)(P (f) ◦P (g))C by (4.2.9)

On the other hand

(P̃ (f) ◦ P̃ (g))C̃ = (−1)n
′h(f)+n′′h(g)(P (f) ◦P (g))C̃ by (4.2.13)

= (−1)n
′h(f)+n′′h(g)(−1)h(P (f))c(P (g))(P (f) ◦P (g))C by (4.2.1)

But

h(g ◦f) = h(f) + h(g), h(P (f)) = h(f), c(P (g)) = c(g).

Now (4.2.14) follows from

n′′(h(f) + h(g))− n′h(f)− n′′h(g) = (n′′ − n′)h(f) = h(g)h(f)

and

|f ||g| = (h(f) + c(f))(h(g) + c(g)).

The next step is to determine the action of P on the pre-triangulated category Pre-Tr(C̃).

We denote this action by P̂ . The action of P̂ on objects is defined simply by

(Ei, ni, qji) 7→ (P (Ei),m− ni, P̃ (qji)) (4.2.15)

Using equations (4.2.10) and (4.2.14), it is straightforward to show that the action of P̂ preserves

the Maurer-Cartan equation, that is

∂EiEj (qji) +
∑
k

(qjk ◦ qki)C̃ = 0 ⇒ ∂P (Ej)P (Ei)P̃ (qji) +
∑
k

(P̃ (qki) ◦ P̃ (qjk))C̃ = 0,

since all qji have total degree one. Therefore this transformation is well defined on objects. The

action on morphisms is also straightforward

f ∈ ⊕i,jMorC̃((Ei, ni), (Fj ,mj))

7→ P̂ (f) = P̃ (f) ∈ ⊕i,jMorC̃((P (Fj),m−mj), (P (Ei),m− ni)). (4.2.16)
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Again, equations (4.2.10), (4.2.14) imply that this action preserves the differential

Q(f) = ∂EiFj (f) +
∑
k

(rkj ◦f)C̃ − (−1)|f |(f ◦ qik)C̃

since {qji}, {rji} have degree one. This means we have

P̂ (Q(f)) = ∂P (Fj)P (Ei)P̃ (f) +
∑
k

(P̃ (qik) ◦ P̃ (f))C̃ − (−1)|P̃ (f)|(P̃ (f) ◦ P̃ (rkj))C̃ (4.2.17)

For future reference, let us record some explicit formulas for complexes of vector bundles.

A complex

E : · · · //Ei+1

di+1 //Ei
di //Ei−1

// · · ·

in which Ei has degree −i is mapped to the complex

P̂ (E) : · · · // P (Ei−1)
P̃ (di) // P (Ei)

P̃ (di+1) // P (Ei+1) // · · · (4.2.18)

where P̃ (di) is determined by (4.2.13)

P̃ (di) = (−1)i σ∗(d∨i )

and P (Ei) has degree i−m. Applying P̂ twice yields the complex

P̂ 2(E) : · · · // Ei+1
P̃ 2(di+1) // Ei

P̃ 2(di) // Ei−1
// · · · (4.2.19)

where

P̃ 2(di) = (−1)m+1di .

Therefore P̂ 2 is not equal to the identity functor, but there is an isomorphism of complexes

J : P̂ 2(E)→ E :

· · · // Ei+1

Ji+1

��

P̃ 2(di+1) // Ei
P̃ 2(di) //

Ji

��

Ei−1

Ji−1

��

// · · ·

· · · // Ei+1
di+1 // Ei

di // Ei−1
// · · ·

(4.2.20)

where

Ji = (−1)(m+1)iχ IdEi .

and χ is a constant. Notice that J−1 : E → P̂ 2(E), and that P̂ 4 = IdDb(X) implies that also

J : P̂ 2(P̂ 2(E)) = E→ P̂ 2(E). Requiring both to be equal constrains χ to be (−1)ω with ω = 0, 1.
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This sign cannot be fixed using purely algebraic considerations, and we will show in section 4.4

how it encodes the difference between SO/Sp projections. In functorial language, this means

that there is an isomorphism of functors J : P̂ 2 → IdDb(X).

We conclude this section with a brief summary of the above discussion, and a short remark on

possible generalizations. To simplify notation, in the rest of the chapter we drop the decorations

of the various P ’s. In other words both P̂ and P̃ will be denoted by P . Which P is meant will

always be clear from the context.

1. The orientifold projection in the derived category is a graded contravariant functor P : Db(X)→

Db(X)op which acts on locally free complexes as in equation (4.2.18). Note that this trans-

formation is closely related to the derived functor

Lσ∗ ◦RHom(−,OX)[m].

The difference resides in the alternating signs (−1)i in the action of P on differentials,

according to (4.2.18). From now on we will refer to P as a graded derived functor.

2. There is an obvious generalization of this construction which has potential physical appli-

cations. One can further compose P with an auto-equivalence A of the derived category

so that the resulting graded functor P ◦A has its square isomorphic to the identity. This

would yield a new class of orientifold models, possibly without a direct geometric inter-

pretation. The physical implications of this construction will be explored in a separate

publication.

In the remaining part of this section we will consider the case of D5-branes wrapping holomor-

phic curves in more detail.

4.2.3 O5 models

In this case we consider holomorphic involutions σ : X → X whose fixed point set consists of

a finite collection of holomorphic curves in X. We will be interested in D5-brane configura-

tions supported on a smooth component C ' P1 of the fixed locus, that are preserved by the
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orientifold projection. We describe such a configuration by a one term complex

i∗V (4.2.21)

where V → C is the Chan-Paton vector bundle on C, and i : C ↪→ X is the embedding of C

into X.

Since C ' P1, by Grothendieck’s theorem any holomorphic bundle V decomposes in a direct

sum of line bundles. Therefore, for the time being, we take

V ' OC(a) (4.2.22)

for some a ∈ Z. We will also make the simplifying assumption that V is the restriction of a

bundle V ′ on X to C, i.e.,

V = i∗V ′. (4.2.23)

This is easily satisfied if X is a complete intersection in a toric variety Z, in which case V can

be chosen to be the restriction of bundle on Z.

In order to write down the parity action on this D5-brane configuration, we need a locally

free resolution E for i∗V = i∗OC(a). Let

V : 0 // Vn dn // Vn−1
dn−1 // · · · d2 // V1

d1 // V0
// 0 (4.2.24)

be a locally free resolution of i∗OC .3 The degree of the term Vk to be (−k), for k = 0, . . . , n.

Then the complex E

E : 0 // Vn(a)
dn // Vn−1(a)

dn−1 // · · · d2 // V1(a)
d1 // V0(a) // 0 (4.2.25)

is a locally free resolution of i∗OC(a).

The image of (4.2.25) under the orientifold projection is the complex P(E):

0 // σ∗V∨0 (−a)
−σ∗d∨1 // σ∗V∨1 (−a)

σ∗d∨2 // · · ·

· · ·(−1)n−1σ∗d∨n−1 // σ∗V∨n−1(−a)
(−1)nσ∗d∨n // σ∗V∨n(−a) // 0 (4.2.26)

The term σ∗V∨k (−a) has degree k −m.

3We usually underlined the 0th position in a complex.
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Lemma 4.2.2. 4 The complex (4.2.26) is quasi-isomorphic to

i∗ (V ∨ ⊗KC)[m− 2], (4.2.27)

where KC ' OC(−2) is the canonical bundle of C.

Proof. As noted below (4.2.18), (4.2.26) is isomorphic to σ∗(E∨)[m]. Since C is pointwise fixed

by σ, it suffices to show that the dual of the locally free resolution (4.2.24) is quasi-isomorphic

to i∗KC [−2]. The claim then follows from the adjunction formula:

i∗V = i∗(V ⊗OC) = i∗(i∗V ′ ⊗OC) = V ′ ⊗ i∗OC (4.2.28)

and the simple fact that i∗(V ′∨) = V ∨.

Let us compute (i∗OC)∨ using the locally free resolution (4.2.24). The cohomology in degree

k of the complex

V∨ : 0→ (V0)∨ → (V1)∨ → · · · → (Vn)∨ → 0 (4.2.29)

is isomorphic to the local Ext sheaves Ext kX(i∗OC ,OX). According to [222, Chapter 5.3, pg

690] these are trivial except for k = 2, in which case

Ext 2
X(OC ,OX) ' i∗L,

for some line bundle L on C.

To determine L, it suffices to compute its degree on C, which is an easy application of the

Grothendieck-Riemann-Roch theorem. We have

i!(ch(L)Td(C)) = ch(i∗L)Td(X).

On the other hand, by construction

chm(i∗L) = chm(V∨) = (−1)mchm(V) = (−1)mchm(i∗OC).

Using these two equations, we find

deg(L) = −2 ⇒ L ' KC .

4We give an alternative derivation of this result in Appendix 4.5.1. That proof is very abstract, and hides
all the details behind the powerful machinery of Grothendieck duality. On the other hand, we will be using the
details of this lengthier derivation in our explicit computations in Section 4.4.
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This shows that V∨ has nontrivial cohomology i∗KC only in degree 2.

Now we establish that the complex (4.2.29) is quasi-isomorphic to i∗KC [−2], by constructing

such a map of complexes. Consider the restriction of the complex (4.2.29) to C. Since all

terms are locally free, we obtain a complex of holomorphic bundles on C whose cohomology is

isomorphic to KC in degree 2 and trivial in all other degrees. Note that the kernel K of the

map

V2
∨|C → V3

∨|C

is a torsion free sheaf on C, therefore it must be locally free. Hence K is a sub-bundle of V2
∨|C .

Since C ' P1, by Grothendieck’s theorem both V2
∨|C and K are isomorphic to direct sums of

line bundles. This implies that K is in fact a direct summand of V2
∨|C . In particular there is a

surjective map

ρ : V2
∨|C → K.

Since H2(V∨|C) = KC we also have a surjective map τ : K → KC . By construction then

τ ◦ρ : V∨|C → KC [−2] is a quasi-isomorphism. Extending this quasi-isomorphism by zero out-

side C, we obtain a quasi-isomorphism V∨ → i∗KC [−2], which proves the lemma.

Let us now discuss parity invariant D-brane configurations. Given the parity action (4.2.27)

one can obviously construct such configurations by taking direct sums of the form

i∗V ⊕ i∗(V ∨ ⊗KC)[m− 2] (4.2.30)

with V an arbitrary Chan-Paton bundle. Note that in this case we have two stacks of D5-branes

in the covering space which are interchanged under the orientifold projection.

However, on physical grounds we should also be able to construct a single stack of D5-branes

wrapping C which is preserved by the orientifold action. This is possible only if

m = 2 and V ' V ∨ ⊗KC . (4.2.31)

The first condition in (4.2.31) fixes the value of m for this class of models. The second condition
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constrains the Chan-Paton bundle V to

V = OC(−1).

Let us now consider rank N Chan-Paton bundles V . We will focus on invariant D5-brane

configurations given by

V = OC(−1)⊕N .

In this case the orientifold image P (i∗V ) = i∗(V ∨ ⊗KC) is isomorphic to i∗V , and the choice

of an isomorphism corresponds to the choice of a section

M ∈ HomC(V, V ∨ ⊗KC) 'MN (C). (4.2.32)

where MN (C) is the space of N ×N complex matrices. We have

HomC(V, V ∨ ⊗KC) ' H0(C, S2(V ∨)⊗KC)⊕H0(C,Λ2(V ∨)⊗KC)

'M+
N (C)⊕M−N (C)

whereM±N (C) denotes the space of symmetric and antisymmetric N ×N matrices respectively.

The choice of this isomorphism (up to conjugation) encodes the difference between SO and Sp

projections. For any value of N we can choose the isomorphism to be

M = IN ∈M+
N (C), (4.2.33)

obtaining SO(N) gauge group. If N is even, we also have the option of choosing the antisym-

metric matrix

M = i


0 IN/2

−IN/2 0

 ∈ M
−
N (C) (4.2.34)

obtaining Sp(N/2) gauge group. This is a slightly more abstract reformulation of [223]. We

will explain how the SO/Sp projections are encoded in the derived formalism in sections 4.3

and 4.4.
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4.2.4 O3/O7 Models

In this case we have ε = 1, and the fixed point set of the holomorphic involution can have both

zero and two dimensional components. We will consider the magnetized D5-brane configurations

introduced in [224]. Suppose

i : C ↪→ X i′ : C ′ ↪→ X

is a pair of smooth rational curves mapped isomorphically into each other by the holomorphic

involution. The brane configuration consists of a stack of D5-branes wrapping C, which is

related by the orientifold projection to a stack of anti-D5-branes wrapping C ′. We describe the

stack of D5-branes wrapping C by a one term complex i∗V , with V a bundle on C.

In order to find the action of the orientifold group on the stack of D5-branes wrapping C

we pick a locally free resolution E for i∗V . Once again the orientifold image is obtained by

applying the graded derived functor P to E.

Applying Prop. 4.5.1, we have

Lemma 4.2.3. P (E) is quasi-isomorphic to the one term complex

i′∗(σ
∗(V ∨)⊗KC′)[m− 2]. (4.2.35)

It follows that a D5-brane configuration preserved by the orientifold projection is a direct sum

i∗V ⊕ i′∗(σ∗(V ∨)⊗KC′)[m− 2]. (4.2.36)

The value of m can be determined from physical arguments by analogy with the previous

case. We have to impose the condition that the orientifold projection preserves a D3-brane

supported on a fixed point p ∈ X as well as a D7-brane supported on a pointwise fixed surface

S ⊂ X.

A D3-brane supported at p ∈ X is described by a one-term complex Op,X , where Op,X is

a skyscraper sheaf supported at p. Again, using Prop. 4.5.1 one shows that P (V) is quasi-

isomorphic to Op,X [m− 3]. Therefore, the D3-brane is preserved if and only if m = 3.
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If the model also includes a codimension 1 pointwise-fixed locus S ⊂ X, then we have an

extra condition. Let V be the Chan-Paton bundle on S. We describe the invariant D7-brane

wrapping S by L ' i∗(V )[k] for some integer k, where i : S → X is the embedding.

Since S is codimension 1 in X, Prop. 4.5.1 tells us that

P (L) ' i∗(V ∨ ⊗KS)[m− k − 1]. (4.2.37)

Therefore invariance under P requires

2k = m− 1 V ⊗ V ' KS . (4.2.38)

Since we have found m = 3 above, it follows that k = 1. Furthermore, V has to be a square

root of KS . In particular, this implies that KS must be even, or, in other words that S must

be spin. This is in agreement with the Freed-Witten anomaly cancellation condition [225]. If S

is not spin, one has to turn on a half integral B-field in order to cancel anomalies.

Returning to the magnetized D5-brane configuration, note that an interesting situation from

the physical point of view is the case when the curves C and C ′ coincide. Then C is preserved

by the holomorphic involution, but not pointwise fixed as in the previous subsection. We will

discuss examples of such configurations in section 4.4. In the next section we will focus on

general aspects of the superpotential in orientifold models.

4.3 The Superpotential

The framework of D-brane categories offers a systematic approach to the computation of the

tree-level superpotential. In the absence of the orientifold projection, the tree-level D-brane

superpotential is encoded in the A∞ structure of the D-brane category [206, 207, 208, 210].

Given an object of the D-brane category D, the space of off-shell open string states is its

space of endomorphisms in the pre-triangulated category Pre-Tr(C̃). This carries the structure of

a Z-graded differential cochain complex. In this section we will continue to work with Dolbeault

cochains, and also specialize our discussion to locally free complexes E of the form (4.2.5). Then
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the space of off-shell open string states is given by

MorPre-Tr(C̃)(E,E) = ⊕pA0,p(HomX(E,E))

where

Homq
X(E,E) = ⊕i HomX(Ei, Ei−q).

Composition of morphisms defines a natural superalgebra structure on this endomorphism

space [226], and the differential Q satisfies the graded Leibniz rule. We will denote the resulting

DGA by C(E,E).

The computation of the superpotential is equivalent to the construction of an A∞ minimal

model for the DGA C(E,E). Since this formalism has been explained in detail in the physics

literature [208, 214], we will not provide a comprehensive review here. Rather we will recall

some basic elements needed for our construction.

In order to extend this computational framework to orientifold models, we have to find an

off-shell cochain model equipped with an orientifold projection and a compatible differential

algebraic structure. We made a first step in this direction in the previous section by giving a

categorical formulation of the orientifold projection. In section 4.3.1 we will refine this con-

struction, obtaining the desired cochain model.

Having constructed a suitable cochain model, the computation of the superpotential follows

the same pattern as in the absence of the orientifold projection. A notable distinction resides

in the occurrence of L∞ instead of A∞ structures, since the latter are not compatible with the

involution. The final result obtained in section 4.3.2 is that the orientifold superpotential can

be obtained by evaluating the superpotential of the underlying unprojected theory on invariant

field configurations.

4.3.1 Cochain Model and Orientifold Projection

Suppose E is a locally free complex on X, and that it is left invariant by the parity functor.

This means that E and P (E) are isomorphic in the derived category, and we choose such an
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isomorphism

ψ : E→ P (E). (4.3.1)

Although in general ψ is not a map of complexes, it can be chosen so in most practical situations,

including all cases studied in this chapter. Therefore we will assume from now on that ψ is a

quasi-isomorphism of complexes:

· · · // Em−i+1
dm−i+1 //

ψm−i+1

��

Em−i
dm−i //

ψm−i

��

Em−i−1

ψm−i−1

��

// · · ·

· · · // P (Ei−1)
P (di) // P (Ei)

P (di+1) // P (Ei+1) // · · ·

(4.3.2)

We have written (4.3.2) so that the terms in the same column have the same degree since ψ is a

degree zero morphism. The degrees of the three columns from left to right are i−m−1, i−m and

i−m+1. For future reference, note that the quasi-isomorphism ψ induces a quasi-isomorphism

of cochain complexes

ψ∗ : C(P (E),E)→ C(P (E), P (E)), f 7→ ψ ◦f. (4.3.3)

The problem we are facing in the construction of a viable cochain model resides in the

absence of a natural orientifold projection on the cochain space C(E,E). P maps C(E,E) to

C(P (E), P (E)), which is not identical to C(E,E). How can we find a natural orientifold projection

on a given off-shell cochain model?

Since E and P (E) are quasi-isomorphic, one can equally well adopt the morphism space

C(P (E),E) = MorPre-Tr(C̃)(P (E),E)

as an off-shell cochain model. As opposed to C(E,E), this morphism space has a natural induced

involution defined by the composition

C(P (E),E) P // C(P (E), P 2(E))
J∗ // C(P (E),E) (4.3.4)

where J is the isomorphism in (4.2.20). Therefore we will do our superpotential computation

in the cochain model C(P (E),E), as opposed to C(E,E), which is used in [214].
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This seems to lead us to another puzzle, since a priori there is no natural associative algebra

structure on C(P (E),E). One can however define one using the quasi-isomorphism (4.3.1).

Given

fpq,k ∈ A0,p(HomX(P (Ek), Em−k−q)) grs,l ∈ A0,r(HomX(P (El), Em−l−s))

we define

grs,l ?ψ f
p
q,k =


(−1)spgrs,l · ψm−k−q · fpq,k for l = k + q

0 otherwise.

(4.3.5)

where · denotes exterior multiplication of bundle valued differential forms.

With this definition, the map (4.3.3) becomes a quasi-isomorphism of DGAs. The sign

(−1)sp in (4.3.5) is determined by the sign rule (4.2.1) for composition of morphisms in C̃.

This construction has the virtue that it makes both the algebra structure and the orientifold

projection manifest. Note that the differential Q satisfies the graded Leibniz rule with respect

to the product ?ψ because ψ is a Q-closed element of C(P (E),E) of degree zero.

Next we check two compatibility conditions between the involution (4.3.4) and the DGA

structure.

Lemma 4.3.1. For any cochain f ∈ C(P (E),E)

J∗P (Q(f)) = Q(J∗P (f)). (4.3.6)

Proof. Using equation (4.2.18), the explicit expression for the differential Q acting on a homo-

geneous element fpq,k as above is

Q(fpq,k) = ∂P (Ek)Em−k−q (f
p
q,k) + (dm−k−q ◦f

p
q,k)C̃ − (−1)p+q(fpq,k ◦P (dk))C̃ .

According to equation (4.2.17), we have

P (Q(fpq,k)) =∂P (Em−k−q)P 2(Ek)(P (fpq,k)) + (P 2(dk) ◦P (fpq,k))C̃

− (−1)|P (f)|(P (fpq,k) ◦P (dm−k−q))C̃

(4.3.7)
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The commutative diagram (4.2.20) shows that

J ◦P 2(dk) = dk ◦J.

Then, equation (4.3.7) yields

J∗P (Q(fpq,k)) =∂P (Em−k−q)Ek(J∗P (fpq,k)) + (dk ◦J∗P (fpq,k))C̃

− (−1)|f |(J∗P (fpq,k) ◦P (dm−k−q))C̃

which proves (4.3.6).

Lemma 4.3.2. For any two elements f, g ∈ C(P (E),E)

J∗P (g ?ψ f) = −(−1)|f ||g|J∗P (f) ?ψ J∗P (g). (4.3.8)

Proof. Written in terms of homogeneous elements, (4.3.8) reads

J∗P (grs,l ?ψ f
p
q,k) = −(−1)(r+s)(p+q)J∗P (fpq,k) ?ψ J∗P (grs,l) (4.3.9)

where l = k+q. Using equations (4.2.13), (4.3.5) and the definition of (4.2.20) of J , we compute

J∗P (grs,l ?ψ f
p
q,k) = (−1)(m−s−l)(m+1)+ω(−1)(s+q)(m−s−l)+1(−1)sp σ∗(grs,l · ψm−k−q · fpq,k)∨

= (−1)(m−s−l)(m+1)+ω(−1)(s+q)(m−s−l)+1(−1)sp(−1)rp

σ∗(fpq,k)∨ · σ∗(ψ∨m−k−q) · σ∗(grs,l)∨

= (−1)(m−s−l)(m+1)+ω(−1)(s+q)(m−s−l)+1(−1)sp(−1)rp

(−1)(m−k−q)(m+1)+ω(−1)q(q+k−m)+1(−1)(m−s−l)(m+1)+ω(−1)s(s+l−m)+1

J∗P (fpq,k) · σ∗(ψ∨m−k−q) · J∗P (grs,l)

−(−1)(r+s)(p+q)J∗P (fpq,k) ?ψ J∗P (grs,l) = −(−1)(r+s)(p+q)(−1)qrJ∗P (fpq,k) · ψl · J∗P (grs,l)

These expressions are in agreement with equation (4.3.9) if and only if ψ satisfies a symmetry

condition of the form

J∗P (ψm−l) = −ψl ⇔ σ∗(ψm−l)∨ = (−1)(m+1)l+ωψl (4.3.10)
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We saw in the last proof that compatibility of the orientifold projection with the algebraic

structure imposes the condition (4.3.10) on ψ. From now on we assume this condition to be

satisfied. Although we do not know a general existence result for a quasi-isomorphism satisfying

(4.3.10), we will show that such a choice is possible in all the examples considered in this chapter.

We will also see that symmetry of ψ, which is determined by ω = 0, 1 in (4.3.10), determines

whether the orientifold projection is of type SO or Sp.

Granting such a quasi-isomorphism, it follows that the cochain space C(P (E),E) satisfies all

the conditions required for the computation of the superpotential, which is the subject of the

next subsection.

4.3.2 The Superpotential

In the absence of an orientifold projection, the computation of the superpotential can be sum-

marized as follows [209]. Suppose we are searching for formal deformations of the differential

Q of the form

Qdef = Q+ f1(φ) + f2(φ) + f3(φ) + . . . (4.3.11)

where

f1(φ) = φ

is a cochain of degree one, which represents an infinitesimal deformation of Q. The terms

fk(φ), for k ≥ 2, are homogeneous polynomials of degree k in φ corresponding to higher order

deformations. We want to impose the integrability condition

(Qdef)2 = 0 (4.3.12)

order by order in φ. In doing so one encounters certain obstructions, which are systematically

encoded in a minimal A∞ model of the DGA C(P (E),E). The superpotential is essentially a

primitive function for the obstructions, and exists under certain cyclicity conditions.

In the orientifold model we have to solve a similar deformation problem, except that now

the deformations of Q have to be invariant under the orientifold action. We will explain below
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that this is equivalent to the construction of a minimal L∞ model.

Let us first consider the integrability conditions (4.3.12) in more detail in the absence of

orientifolding. Suppose we are given an associative Z-graded DGA (C, Q, ·), and let H denote

the cohomology of Q. In order to construct an A∞ structure on H we need the following data

(i) A Z-graded linear subspace H ⊂ C isomorphic to the cohomology of Q. In other words,

H is spanned in each degree by representatives of the cohomology classes of Q.

(ii) A linear map η : C → C[−1] mapping H to itself such that

Π = I− [Q, η] (4.3.13)

is a projector Π: C → H, where [ , ] is the graded commutator. Moreover, we assume that

the following conditions are satisfied

η|H = 0 η2 = 0. (4.3.14)

Using the data (i), (ii) one can develop a recursive approach to obstructions in the deformation

theory of Q [209]. The integrability condition (4.3.12) yields

∞∑
n=1

[Q(fn(φ)) +Bn−1(φ)] = 0 (4.3.15)

where

B0 = 0

Bn−1 = φfn−1(φ) + fn−1(φ)φ+
∑
k+l=n
k,l≥2

fk(φ)fl(φ), n ≥ 2

Using equation (4.3.13), we can rewrite equation (4.3.15) as

∞∑
n=1

[Q(fn(φ)) + ([Q, η] + Π)Bn−1(φ)] = 0. (4.3.16)

We claim that the integrability condition (4.3.15) can be solved recursively [209] provided that

∞∑
n=1

Π(Bn−1) = 0. (4.3.17)

To prove this claim, note that if the condition (4.3.17) is satisfied, equation (4.3.16) becomes

∞∑
n=1

(Q(fn(φ)) + [Q, η]Bn−1(φ)) = 0. (4.3.18)
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This equation can be solved by setting recursively

fn(φ) = −η(Bn−1(φ)). (4.3.19)

One can show that this is a solution to (4.3.19) by proving inductively that

Q(Bn(φ)) = 0.

In conclusion, the obstructions to the integrability condition (4.3.15) are encoded in the formal

series
∞∑
n=2

Π
(
φfn−1(φ) + fn−1(φ)φ+

∑
k+l=n
k,l≥2

fk(φ)fl(φ)
)

(4.3.20)

where the fn(φ), n ≥ 1, are determined recursively by (4.3.19).

The algebraic structure emerging from this construction is a minimal A∞ structure for the

DGA (C, Q) [227, 228]. [228] constructs an A∞ structure by defining the linear maps

λn : C⊗n → C[2− n], n ≥ 2

recursively

λn(c1, . . . , cn) =(−1)n−1(ηλn−1(c1, . . . , cn−1)) · cn − (−1)n|c1|c1 · ηλn−1(c2, . . . , cn)

−
∑
k+l=n
k,l≥2

(−1)r[ηλk(c1, . . . , ck)] · [ηλl(ck+1, . . . , cn)]

(4.3.21)

where |c| denotes the degree of an element c ∈ C, and

r = k + 1 + (l − 1)(|c1|+ . . .+ |ck|).

Now define the linear maps

mn : H⊗n → H[2− n], n ≥ 1

by

m1 = η

mn = Πλn.

(4.3.22)
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The products (4.3.22) define an A∞ structure on H ' H. If the conditions (4.3.14) are satisfied,

this A∞ structure is a minimal model for the DGA (C, Q, ·). The products mn, n ≥ 2 agree up

to sign with the obstructions Π(Bn) found above.

The products mn determine the local equations of the D-brane moduli space, which in

physics language are called F-term equations. If

φ =
dim(H)∑
i=1

φiui

is an arbitrary cohomology element written in terms of some generators {ui}, the F-term equa-

tions are
∞∑
n=2

(−1)n(n+1)/2mn(φ⊗n) = 0. (4.3.23)

If the products are cyclic, these equations admit a primitive

W =
∞∑
n=2

(−1)n(n+1)/2

n+ 1
〈φ,mn(φ⊗n)〉 (4.3.24)

where

〈 , 〉 : C → C

is a bilinear form on C compatible with the DGA structure. The cyclicity property reads

〈c1,mn(c2, . . . , cn+1)〉 = (−1)n|c2|+1〈c2,mn(c3, . . . , cn+1, c1)〉.

Let us now examine the above deformation problem in the presence of an orientifold projec-

tion. Suppose we have an involution τ : C → C such that the following conditions are satisfied

τ(Q(f)) = Q(τ(f))

τ(fg) = −(−1)|f ||g|τ(g)τ(f)

(4.3.25)

As explained below equation (4.3.12), in this case we would like to study deformations

Qdef = Q+ f1(φ) + f2(φ) + . . .

of Q such that

τ(fn(φ)) = fn(φ) (4.3.26)
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for all n ≥ 1.

In order to set this problem in the proper algebraic context, note that the DG algebra C

decomposes into a direct sum of τ -invariant and anti-invariant parts

C ' C+ ⊕ C−. (4.3.27)

There is a similar decomposition

H = H+ ⊕H− (4.3.28)

for the Q-cohomology.

Conditions (4.3.25) imply that Q preserves C±, but the associative algebra product is not

compatible with the decomposition (4.3.27). There is however another algebraic structure which

is preserved by τ , namely the graded commutator

[f, g] = fg − (−1)|f ||g| gf. (4.3.29)

This follows immediately from the second equation in (4.3.25). The graded commutator (4.3.29)

defines a differential graded Lie algebra structure on C. By restriction, it also defines a DG

Lie algebra structure on the invariant part C+. In this context our problem reduces to the

deformation theory of the restriction Q+ = Q|C+ as a differential operator on C+.

Fortunately, this problem can be treated by analogy with the previous case, except that we

have to replace A∞ structures by L∞ structures, see for example [229, 208, 209]. In particular,

the obstructions to the deformations of Q+ can be systematically encoded in a minimal L∞

model, and one can similarly define a superpotential if certain cyclicity conditions are satisfied.

Note that any associative DG algebra can be naturally endowed with a DG Lie algebra

structure using the graded commutator (4.3.29). In this case, the A∞ and the L∞ approach to

the deformation of Q are equivalent [208] and they yield the same superpotential. However, the

L∞ approach is compatible with the involution, while the A∞ approach is not.

To summarize this discussion, we have a DG Lie algebra on C which induces a DG Lie

algebra of Q. The construction of a minimal L∞ model for C requires the same data (i), (ii)

as in the case of a minimal A∞ model, and yields the same F-term equations, and the same
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superpotential. In order to determine the F-term equations and superpotential for the invariant

part C+ we need again a set of data (i), (ii) as described above (4.3.13). This data can be

naturally obtained by restriction from C provided that the propagator η in equation (4.3.13)

can be chosen compatible with the involution τ i.e

τ(η(f)) = η(τ(f)).

This condition is easily satisfied in geometric situations, hence we will assume that this is the

case from now on. Then the propagator η+ : C+ → C+[−1] is obtained by restricting η to

the invariant part η+ = η|C+ . Given this data, we construct a minimal L∞ model for the

DGL algebra C+, which yields F-term equations and, if the cyclicity condition is satisfied, a

superpotential W+.

Theorem 4.3.3. The superpotential W+ obtained by constructing the minimal L∞ model for

the DGL C+ is equal to the restriction of the superpotential W corresponding to C evaluated on

τ -invariant field configurations:

W+ = W |H+ . (4.3.30)

In the remaining part of this section we will give a formal argument for this claim. According

to [229], the data (i), (ii) above equation (4.3.13) also determines an L∞ structure on H as

follows. First we construct a series of linear maps

ρn : C⊗n → C[2− n], n ≥ 2

by anti-symmetrizing (in the graded sense) the maps (4.3.21). That is the recursion relation

becomes

ρn(c1, . . . , cn) =
∑

σ∈Sh(n−1,1)

(−1)n−1+|σ|e(σ)[ηρn−1(cσ(1), . . . , cσ(n−1)), cσ(n)]

−
∑

σ∈Sh(1,n)

(−1)n|c1|+|σ|e(σ)[c1, ηρn−1(cσ(2)]

−
∑
k+l=n
k,l≥2

∑
σ∈Sh(k,n)

(−1)r+|σ|e(σ)[ηρk(cσ(1), . . . , cσ(k)), ηρl(cσ(k+1), . . . , cσ(n))]

(4.3.31)
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where Sh(k, n) is the set of all permutations σ ∈ Sn such that

σ(1) < . . . < σ(k) and σ(k + 1) < . . . < σ(n)

and |σ| is the signature of a permutation σ ∈ Sn. The symbol e(σ) denotes the Koszul sign

defined by

cσ(1) ∧ . . . ∧ cσ(n) = (−1)|σ|e(σ)c1 ∧ . . . ∧ cn.

Then we define the L∞ products

ln : H⊗n → H

by

l1 = η, ln = Πρn. (4.3.32)

One can show that these products satisfy a series of higher Jacobi identities analogous to the

defining associativity conditions of A∞ structures. If the conditions (4.3.14) are also satisfied,

the resulting L∞ structure is a minimal model for the DGL algebra C.

Finally, note that the A∞ products (4.3.22) and the L∞ products (4.3.32) are related by

ln(c1, . . . , cn) =
∑
σ∈Sn

(−1)|σ|e(σ)mn(cσ(1), . . . , cσ(n)). (4.3.33)

In particular, one can rewrite the F-term equations (4.3.23) and the superpotential (4.3.24) in

terms of L∞ products [208, 209].

The construction of the minimal L∞ model of the invariant part C+ is analogous. Since we

are working under assumption that the propagator η+ is the restriction of η to C+, it is clear

that the linear maps ρ+
n (c1, . . . , cn) are also equal to the restriction ρn|(C+)n . The same will be

true for the products l+n , i.e.

l+n = ln|(H+)n .

Therefore the F-term equations and the superpotential in the orientifold model can be obtained

indeed by restriction to the invariant part.

Now that we have the general machinery at hand, we can turn to concrete examples of

superpotential computations.
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4.4 Computations for Obstructed Curves

In this section we perform detailed computations of the superpotential for D-branes wrapping

holomorphic curves in Calabi-Yau orientifolds.

So far we have relied on the Dolbeault cochain model, which serves as a good conceptual

framework for our constructions. However, a Čech cochain model is clearly preferred for compu-

tational purposes [214]. The simple prescription found above for the orientifold superpotential

allows us to switch from the Dolbeault to the Čech model with little effort. Using the same

definition for the action of the orientifold projection P on locally free complexes E, we will

adopt a cochain model of the form

C(P (E),E) = Č(U,HomX(P (E),E)) (4.4.1)

where U is a fine open cover of X. The differential Q is given by

Q(f) = δ(f) + (−1)c(f)d(f) (4.4.2)

where δ is the Čech differential, d is the differential of the local Hom complex and c(f) is the

Čech degree of f .

In order to obtain a well-defined involution on the complex (4.4.1), we have to choose

the open cover U so that the holomorphic involution σ : X → X maps any open set U ∈ U

isomorphically to another open set Us(α) ∈ U, where s is an involution on the set of indices

{α}. Moreover, the holomorphic involution should also be compatible with intersections. That

is, if Uα, Uβ ∈ U are mapped to Us(α), Us(β) ∈ U then Uαβ should be mapped isomorphically to

Us(α)s(β). Analogous properties should hold for arbitrary multiple intersections. Granting such

a choice of a fine open cover, we have a natural involution J∗P acting on the cochain complex

(4.4.1), defined as in (4.3.4).

According to the prescription derived in the previous section, the orientifold superpotential

can be obtained by applying the computational scheme of [214] to invariant Q-cohomology repre-

sentatives. Since the computation depends only on the infinitesimal neighborhood of the curve,
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it suffices to consider local Calabi-Yau models as in [214]. We will consider two representative

cases, namely obstructed (0,−2) curves and local conifolds, i.e., (−1,−1) curves.

4.4.1 Obstructed (0,−2) Curves in O5 Models

In this case, the local Calabi-Yau X can be covered by two coordinate patches (x, y1, y2),

(w, z1, z2) with transition functions

w = x−1

z1 = x2y1 + xyn2

z2 = y2.

(4.4.3)

The (0,−2) curve is given by the equations

C : y1 = y2 = 0 resp. z1 = z2 = 0 (4.4.4)

in the two patches. The holomorphic involution acts as

(x, y1, y2) 7→ (x,−y1,−y2)

(w, z1, z2) 7→ (w,−z1,−z2)

(4.4.5)

This is compatible with the transition functions if and only if n is odd. We will assume that

this is the case from now on. Using (4.2.31), the Chan-Paton bundles

VN = OC(−1)⊕N . (4.4.6)

define invariant D-brane configurations under the orientifold projection.

The on-shell open string states are in one-to-one correspondence with elements of the global

Ext group Ext1(i∗VN , i∗VN ). Given two bundles V,W supported on a curve i : C ↪→ X, there

is a spectral sequence [206]

Ep,q2 = Hp(C, V ∨ ⊗W ⊗ ΛqNC/X) ⇒ Extp+qX (i∗V, i∗W ) (4.4.7)

which degenerates at E2. This yields

Ext1(i∗OC(−1), i∗OC(−1)) ' H0(C,NC/X) = C,
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since NC/X ' OC ⊕ OC(−2). Therefore a D5-brane with multiplicity N = 1 has a single

normal deformation. For higher multiplicity, the normal deformations will be parameterized by

an (N ×N) complex matrix.

In order to apply the computational algorithm developed in section 4.3 we have to find a

locally free resolution E of i∗OC(−1) and an explicit generator of

Ext1(i∗OC(−1), i∗OC(−1)) ' Ext1(P (E),E)

in the cochain space Č(U,Hom(P (E),E)). We take E to be the locally free resolution from [214]

multiplied by OC(−1), i.e.,

0 // O(−1)

( y2
−1
x

)
//

O(−1)

⊕

O

⊕

O

 1 y2 0
−x 0 y2
−yn−1

2 −s −y1


//

O

⊕

O

⊕

O(−1)

( s y1 y2 ) // O(−1)

(4.4.8)
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The quasi-isomorphism ψ : E→ P (E) is given by

O(−1)

⊕

O⊕2

 1 y2 0
−x 0 y2
−yn−1

2 −s −y1


//

( 0 x 1 )

��

O⊕2

⊕

O(−1)

( s y1 y2 ) //

 0 yn−1
2 −x

−yn−1
2 0 −1
x 1 0


��

O(−1)

(
0
x
1

)

��

O(1)

( s
y1
y2

)
//

O⊕2

⊕

O(1)

 1 −x −yn−1
2−y2 0 s

0 −y2 y1


//

O(1)

⊕

O⊕2

(4.4.9)

Note that ψ satisfies the symmetry condition (4.3.10) with ω = 0, which in this case reduces to

σ∗(ψ2−l)∨ = (−1)lψl. (4.4.10)

We are searching for a generator c ∈ Č(U,Hom(P (E),E)) of the form c = c1,0 + c0,1 for two

homogenous elements

cp,1−p ∈ Čp(U,Hom1−p(P (E),E)), p = 0, 1.

The cocycle condition Q(c) = 0 is equivalent to

dc0,1 = δc1,0 = 0

Q(c0,1 + c1,0) = δc0,1 − dc1,0 = 0

(4.4.11)
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A solution to these equations is given by

O(1) //

(
x−1

0
0

)
01

��

O⊕2

⊕

O(1)

//

(
0 0 0
0 0 0
0 0 −x−1yn−2

2

)
01

��

O(1)

⊕

O⊕2

( x−1 0 0 )01

��

O(−1)

⊕

O⊕2

//

O⊕2

⊕

O(−1)

// O(−1)

c1,0 :=

(4.4.12)

O(1) //

(
0−1
0

)
0
+

(
1
0
0

)
1

��

O⊕2

⊕

O(1)

( 0 1 0 )0+(−1 0 0 )1

��

O⊕2

⊕

O(−1)

// O(−1)

c0,1 :=

These satisfy the symmetry conditions

J∗P (cp,1−p) = −(−1)ωcp,1−p, p = 0, 1, (4.4.13)
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For multiplicity N > 1, we have the locally free resolution EN = E ⊗ CN . The quasi-

isomorphism ψN : EN → P (EN ) is of the form ψN = ψ ⊗M , where M ∈ MN (C) is an N ×N

complex matrix. Note that ψN induces the isomorphism (4.2.32) in cohomology. Moreover, we

have

σ∗(ψN,m−l)∨ = (−1)l+ωψN,l.

Referring back to (4.4.10), we see that this last equation constrains the matrix M :

ω =


0, if M = M tr

1, if M = −M tr

(4.4.14)

The first case corresponds to an SO(N) gauge group, while the second case corresponds to

Sp(N/2) (N even). This confirms the correlation between the symmetry of ψN and the SO/Sp

projection, as we alluded to after (4.3.10).

The infinitesimal deformations of the D-brane are now parameterized by a matrix valued

field

φ = C(c1,0 + c0,1)

where C ∈ MN (C) is the N ×N Chan-Paton matrix. Taking (4.4.13) into account, invariance

under the orientifold projection yields the following condition on C

C = −(−1)ωCtr. (4.4.15)

For ω = 1, this condition does not look like the usual one defining the Lie algebra of Sp(N/2)

because we are working in a non-usual basis of fields, namely C(P (EN ),EN ). By composing

with the quasi-isomorphism ψN , we find the Chan-Paton matrix in C(P (EN ), P (EN )) to be

MC. By performing a change of basis in the space of Chan-Paton indices, we can choose M to

be

M =


IN , if ω = 0

i
(

IN/2
−IN/2

)
, if ω = 1
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and so the Chan-Paton matrices satisfy the well-known conditions [223]

(MC)tr = −(MC), for ω = 0,

(MC)tr = −M(MC)M, for ω = 1.

The superpotential is determined by the A∞ products (4.3.22) evaluated on φ. According to

Theorem 4.3.3, the final result is obtained by the superpotential of the underlying unprojected

theory evaluated on invariant field configurations. Therefore the computations are identical in

both cases (ω = 0, 1) and the superpotential is essentially determined by the A∞ products of a

single D-brane with multiplicity N = 1.

Proceeding by analogy with [214], let us define the cocycles

ap ∈ Č1(U,Hom0(P (E),E)) bp ∈ Č1(U,Hom1(P (E),E))

as follows

O(1) //

(0)01

��

O⊕2

⊕

O(1)

//

(
0 0 0
0 0 0
0 0 −x−1yp2

)
01

��

O(1)

⊕

O⊕2

(0)01

��

O(−1)

⊕

O⊕2

//

O⊕2

⊕

O(−1)

// O(−1)

ap :=

(4.4.16)
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O(1) //

(
0
0

x−1yp2

)
01

��

O⊕2

⊕

O(1)

( 0 0 −x−1yp2 )01

��

O⊕2

⊕

O(−1)

// O(−1)

bp :=

One shows by direct computation that they satisfy the relations

bp = Q(ap−1)

bp = c ?ψ ap + ap ?ψ c

(4.4.17)

Moreover, we have

c ?ψ c = bn−2

bp ?ψ bp = 0

(4.4.18)

for any p. Therefore the computation of the A∞ products is identical to [214]. We find only

one non-trivial product

mn(c, . . . , c) = −(−1)
n(n−1)

2 b0. (4.4.19)

If we further compose with c we obtain

O(1)

(−x−1)01
��

O(−1)

b0 ?ψ c :=

which is a generator of Ext3(i∗OC(−1), i∗OC(−1)). Therefore we obtain a superpotential of
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the form

W =
(−1)n

n+ 1
Cn+1

where C satisfies the invariance condition (4.4.15).

4.4.2 Local Conifold O3/O7 Models

In this case, the local Calabi-Yau threefold X is isomorphic to the crepant resolution of a

conifold singularity, i.e., the total space of O(−1) ⊕ O(−1) → P1. X can be covered with two

coordinate patches (x, y1, y2), (w, z1, z2) with transition functions

w = x−1

z1 = xy1

z2 = xy2.

(4.4.20)

The (−1,−1) curve C is given by

x = y1 = y2 = 0 w = z1 = z2 = 0 (4.4.21)

and the holomorphic involution takes

(x, y1, y2) 7→ (−x,−y1,−y2)

(w, z1, z2) 7→ (−w, z1, z2).

(4.4.22)

In this case we have an O3 plane at

x = y1 = y2 = 0

and a noncompact O7 plane at w = 0. The invariant D5-brane configurations are of the form

E⊕Nn , where

En = i∗OC(−1 + n)⊕ i∗(σ∗OC(−1− n))[1], n ≥ 1. (4.4.23)

We have a global Koszul resolution of the structure sheaf OC

0 // O(2)

(−y2
y1

)
// O(1)⊕2

( y1 y2 ) // O // 0 (4.4.24)
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Therefore the locally free resolution of En is a complex En of the form

σ∗O(1− n)

(
0
y1
y2

)
//

O(1 + n)

⊕

σ∗O(−n)⊕2

(−y2 0 0
y1 0 0
0 y2 −y1

)
//

O(n)⊕2

⊕

σ∗O(−1− n)

( y1 y2 0 ) // O(−1 + n)

(4.4.25)

in which the last term to the right has degree 0, and the last term to the left has degree −3.

The quasi-isomorphism ψ : En → P (En) is given by

σ∗O(1− n)

(
0
y1
y2

)
//

1

��

O(1 + n)

⊕

σ∗O(−n)⊕2

(−y2 0 0
y1 0 0
0 y2 −y1

)
//

(
1

1
1

)

��

O(n)⊕2

⊕

σ∗O(−1− n)

( y1 y2 0 ) //

(
1

1
1

)

��

O(−1 + n)

1

��
σ∗O(1− n)

( y1
y2
0

)
//

σ∗O(−n)⊕2

⊕

O(1 + n)

(
y2 −y1 0
0 0 −y2
0 0 y1

)
//

σ∗O(−1− n)

⊕

O(n)⊕2

( 0 y1 y2 ) // O(−1 + n)

(4.4.26)

and satisfies σ∗(ψ3−l)∨ = ψl, that is, the symmetry condition (4.3.10) with ω = 0. The on-shell
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open string states Ext1
X(En,En) are computed by the spectral sequence (4.4.7):

Ext1
X(OC(−1 + n),OC(−1 + n)) = 0

Ext1
X(σ∗OC(−1− n)[1], σ∗OC(−1− n)[1]) = 0

Ext1
X(OC(−1 + n), σ∗OC(−1− n)[1]) = C4n

Ext1
X(σ∗OC(−1− n)[1],OC(−1 + n)) = C2n+1,

(4.4.27)

where in the last two lines we have used the condition n ≥ 1.

To compute the superpotential, we work with the cochain model Č(U,Hom(P (En),En)).

The direct sum of the above Ext groups represents the degree 1 cohomology of this complex

with respect to the differential (4.4.2). The first step is to find explicit representatives for all

degree 1 cohomology classes with well defined transformation properties under the orientifold

projection. We list all generators below on a case by case basis.

a) Ext1(σ∗OC(−1− n)[1],OC(−1 + n))

We have 2n+ 1 generators ai ∈ Č0(U,Hom1(P(En),En), i = 0, . . . 2n, given by

ai := xia, (4.4.28)
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where

σ∗O(1− n) //

(
1
0
0

)

��

σ∗O(−n)⊕2

⊕

O(1 + n)

//

(
0 1 0−1 0 0
0 0 0

)

��

σ∗O(−1− n)

⊕

O(n)⊕2

( 1 0 0 )

��

O(1 + n)

⊕

σ∗O(−n)⊕2

//

O(n)⊕2

⊕

σ∗O(−1− n)

// O(−1 + n)

a :=

(4.4.29)

Note that we have written down the expressions of the generators only in the U0 patch.5 The

transformation properties under the orientifold projection are

J∗P (ai) = −(−1)i+ωai, 0 ≤ i ≤ 2n. (4.4.30)

b) Ext1(OC(−1 + n), σ∗OC(−1− n)[1])

We have 4n generators bi, ci ∈ Č1(U,Hom0(P (Fn),Fn), i = 1, . . . , 2n given by

bi := x−ib, ci := x−ic (4.4.31)

5The expressions in the U1 patch can be obtained using the transition functions (4.4.20) since the ai are Čech
closed. They will not be needed in the computation.
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where

σ∗O(−n)⊕2

⊕

O(1 + n)

//

(
0 0 0
0 0 −1
0 0 0

)
01

��

σ∗O(−1− n)

⊕

O(n)⊕2

(
0 0 0
0 0 0
0 1 0

)
01

��

O(1 + n)

⊕

σ∗O(−n)⊕2

//

O(n)⊕2

⊕

σ∗O(−1− n)

b :=

(4.4.32)

σ∗O(−n)⊕2

⊕

O(1 + n)

//

(
0 0 0
0 0 0
0 0 −1

)
01

��

σ∗O(−1− n)

⊕

O(n)⊕2

(
0 0 0
0 0 0
0 0 1

)
01

��

O(1 + n)

⊕

σ∗O(−n)⊕2

//

O(n)⊕2

⊕

σ∗O(−1− n)

c :=

(4.4.33)

The action of the orientifold projection is

J∗P (bi) = (−1)i+ωbi, J∗P (ci) = (−1)i+ωci. (4.4.34)
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For multiplicity N ≥ 1, we work as in the last subsection, taking the locally free resolution

En,N = En ⊗ CN , together with the quasi-isomorphism ψN : En,N → P (En,N ); ψN = ψ ⊗M .

Again, M is a symmetric matrix for ω = 0 and antisymmetric for ω = 1. A general invariant

degree one cocycle φ will be a linear combination

φ =
2n∑
i=0

Aiai +
2n∑
i=1

(Bibi + Cici) (4.4.35)

where Ai, Bi, Ci are N ×N matrices satisfying

(Ai)tr = −(−1)i+ωAi (Bi)tr = (−1)i+ωBi (Ci)tr = (−1)i+ωCi. (4.4.36)

In the following we will let the indices i, j, k, . . . run from 0 to 2n with the convention B0 =

C0 = 0.

The multiplication table of the above generators with respect to the product (4.3.5) is

ai ?ψ aj = bi ?ψ bj = ci ?ψ cj = 0

bi ?ψ cj = ci ?ψ bj = 0.

(4.4.37)

The remaining products are all Q-exact:

ai ?ψ bj = Q(f2(ai, bj))

bi ?ψ aj = Q(f2(bi, aj))
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as required in (4.3.15). Let us show a sample computation.

σ∗O(1− n) //

x−i+j
(

0−1
0

)
01

��

σ∗O(−n)⊕2

⊕

O(1 + n)

x−i+j
(

0 0 0
0 0 0
0 1 0

)
01

��

O(1 + n)

⊕

σ∗O(−n)⊕2

//

O(n)⊕2

⊕

σ∗O(−1− n)

bi ? aj =

(4.4.38)

For j ≥ i,

σ∗O(1− n) //

x−i+j
(

0−1
0

)
0

��

σ∗O(−n)⊕2

⊕

O(1 + n)

x−i+j
(

0 0 0
0 0 0
0 1 0

)
0

��

O(1 + n)

⊕

σ∗O(−n)⊕2

//

O(n)⊕2

⊕

σ∗O(−1− n)

f2(bi, aj) =

(4.4.39)
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For j < i,

σ∗O(1− n) //

(−1)x−i+j+1
(

0
1
0

)
1

��

σ∗O(−n)⊕2

⊕

O(1 + n)

(−1)x−i+j+1
(

0 0 0
0 0 0
0 −1 0

)
1

��

O(1 + n)

⊕

σ∗O(−n)⊕2

//

O(n)⊕2

⊕

σ∗O(−1− n)

f2(bi, aj) =

(4.4.40)

σ∗O(−n)⊕2

⊕

O(1 + n)

//

xi−j
(

0 0 0
0 0 −1
0 0 0

)
01

��

σ∗O(−1− n)

⊕

O(n)⊕2

xi−j( 0 −1 0 )01

��

O(n)⊕2

⊕

σ∗O(−1− n)

// O(−1 + n)

ai ? bj =

(4.4.41)
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For i ≥ j,

σ∗O(−n)⊕2

⊕

O(1 + n)

//

xi−j
(

0 0 0
0 0 −1
0 0 0

)
0

��

σ∗O(−1− n)

⊕

O(n)⊕2

xi−j( 0 −1 0 )0

��

O(n)⊕2

⊕

σ∗O(−1− n)

// O(−1 + n)

f2(ai, bj) =

(4.4.42)

For i < j,

σ∗O(−n)⊕2

⊕

O(1 + n)

//

xi−j+1
(

0 0 0
0 0 1
0 0 0

)
1

��

σ∗O(−1− n)

⊕

O(n)⊕2

xi−j+1( 0 1 0 )1

��

O(n)⊕2

⊕

σ∗O(−1− n)

// O(−1 + n)

f2(ai, bj) =

(4.4.43)

Since all pairwise products of generators are Q-exact, it follows that the obstruction Π(B1(φ)) =
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Π(φ ? φ) vanishes. Moreover, the second order deformation f2(φ) is given by

f2(φ) =
∑
i,j

(
AiBjf2(ai, bj) + BiAjf2(bi, aj) + AiCjf2(ai, cj) + CiAjf2(ci, aj)

)
. (4.4.44)

Following the recursive algorithm discussed in section 4.3 we compute the next obstruction

Π(φ ? f2(φ) + f2(φ) ? φ). For this, we have to compute products of the form

αi ? f2(αj , αk), f2(αj , αk) ? αi.

Again we present a sample computation in detail. For i ≥ j,

σ∗O(1− n) //

xi−j+k
(

0−1
0

)
0

��

σ∗O(−n)⊕2

⊕

O(1 + n)

xi−j+k( 0 −1 0 )0

��

O(n)⊕2

⊕

σ∗O(−1− n)

// O(−1 + n)

−ak ? f2(bj , ai) =

(4.4.45)
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and, for i < j,

σ∗O(1− n) //

(−1)n+1xi−j+k−2n+1
(

0
1
0

)
1

��

σ∗O(−n)⊕2

⊕

O(1 + n)

(−1)n+2xi−j+k−2n+1( 0 1 0 )1

��

O(n)⊕2

⊕

σ∗O(−1− n)

// O(−1 + n)

−ak ? f2(bj , ai) =

(4.4.46)

For k ≥ j,

σ∗O(1− n) //

xi−j+k
(

0
1
0

)
0

��

σ∗O(−n)⊕2

⊕

O(1 + n)

xi−j+k( 0 1 0 )0

��

O(n)⊕2

⊕

σ∗O(−1− n)

// O(−1 + n)

−f2(ak, bj) ? ai =

(4.4.47)
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and, for k < j,

σ∗O(1− n) //

(−1)n−1xi−j+k+1−2n
(

0−1
0

)
1

��

σ∗O(−n)⊕2

⊕

O(1 + n)

(−1)nxi−j+k+1−2n( 0 −1 0 )1

��

O(n)⊕2

⊕

σ∗O(−1− n)

// O(−1 + n)

−f2(ak, bj) ? ai =

(4.4.48)

Then the third order products are the following. For k < j ≤ i,

σ∗O(1− n) //

xi−j+k
(

0−1
0

)

��

σ∗O(−n)⊕2

⊕

O(1 + n)

xi−j+k( 0 −1 0 )

��

O(n)⊕2

⊕

σ∗O(−1− n)

// O(−1 + n)

m3(ak, bj , ai) =

(4.4.49)
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and, for i < j ≤ k,

σ∗O(1− n) //

xi−j+k
(

0
1
0

)

��

σ∗O(−n)⊕2

⊕

O(1 + n)

xi−j+k( 0 1 0 )

��

O(n)⊕2

⊕

σ∗O(−1− n)

// O(−1 + n)

m3(ak, bj , ai) =

(4.4.50)

According to [214], the corresponding terms in the superpotential can be obtained by taking

products of the form m2(m3(αi, αj , αk), αl), which take values in Ext3(En, En). For k < j ≤ i

and i− j + k − l = −1 we have

σ∗O(−n)⊕2

⊕

O(1 + n)

xi−j+k−l( 0 0 1 )01

��
O(−1 + n)

m2(m3(ak, bj , ai), cl) =

(4.4.51)

The expression obtained in the right hand side of equation (4.4.51) is a generator for

Ext3(σ∗OC(−1− n)[1], σ∗OC(−1− n)[1]) = C. (4.4.52)
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For i < j ≤ k and i− j + k − l = −1,

σ∗O(−n)⊕2

⊕

O(1 + n)

xi−j+k−l( 0 0 −1 )01

��
O(−1 + n)

m2(m3(ak, bj , ai), cl) =

(4.4.53)

Note that the expression in the right hand side of (4.4.53) is the same generator of (4.4.52)

multiplied by (−1). The first product (4.4.51) gives rise to superpotential terms of the form

Tr(ClAkBjAi)

with

(i+ k)− (j + l) = −1, k < j ≤ i.

The second product (4.4.53) gives rise to terms in the superpotential of the form

−Tr(ClAkBjAi)

with

(i+ k)− (j + l) = −1, i < j ≤ k.

If we consider the case n = 1 for simplicity, the superpotential interactions resulting from these

two products are

W = Tr(C1A0B1A1 − C1A1B1A0 + C2A0B1A2 − C2A2B1A0

+ C1A0B2A2 − C1A2B2A0 + C2A1B2A2 − C2A2B2A1).

(4.4.54)

4.5 Appendix: An alternative derivation

In this appendix we give an alternative derivation of Lemma 4.2.2. This approach relies on

one of the most powerful results in algebraic geometry, namely Grothendieck duality. Let us
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start out by recalling the latter. Consider f : X → Y to be a proper morphism of smooth

varieties6. Choose F ∈ Db(X) and G ∈ Db(Y ) to be objects in the corresponding bounded

derived categories. Then one has the following isomorphism (see, e.g., III.11.1 of [230]):

Rf∗RHomX(F , f !G) ∼= RHomY (Rf∗F , G). (4.5.1)

Now it is true that f ! in general is a complicated functor, in particular it is not the total

derived functor of a classical functor, i.e., a functor between the category of coherent sheaves,

but in our context it will have a very simple form.

The original problem that lead to Lemma 4.2.2 was to determine the derived dual, a.k.a,

Verdier dual, of a torsion sheaf. Let i : E → X be the embedding of a codimension d subvariety

E into a smooth variety X, and let V be a vector bundle on E. We want to determine

RHomX(i∗V,OX). Using (4.5.1) we have

RHomX(i∗V,OX) ∼= i∗RHomE(V, i!OX), (4.5.2)

where we used the fact that the higher direct images of i vanish. Furthermore, since V is locally

free, we have that

RHomE(V, i!OX) = RHomE(OE , V ∨ ⊗ i!OX) = V ∨ ⊗ i!OX , (4.5.3)

where V ∨ is the dual of V on E, rather than on X. On the other hand, for an embedding

i!OX = KE/X [−d] , (4.5.4)

where KE/X is the relative canonical bundle. Now if we assume that the ambient space X is a

Calabi-Yau variety, then KE/X = KE . We can summarize this

Proposition 4.5.1. For the embedding i : E → X of a codimension d subvariety E in a smooth

Calabi-Yau variety X, and a vector bundle V on E we have that

RHomX(i∗V,OX) ∼= i∗ (V ∨ ⊗KE) [−d]. (4.5.5)

6The Grothendieck duality applies to more general schemes than varieties, but we limit ourselves to the cases
considered in this chapter.
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Chapter 5

Stabilizing the Runaway Quiver in Supergravity

5.1 Introduction

Fractional branes at singularities can give rise to quiver gauge theories with a variety of IR

properties. Broadly, such brane configurations have been classified into three categories - (1)

N = 2 fractional branes: the field theory on these configurations has flat directions along which

the dynamics reduces to an N = 2 theory. (2) Deformation branes: non-perturbative effects

in the gauge theory lead to quantum deformation of the moduli space - in terms of the su-

pergravity dual, the geometry undergoes a complex deformation that smoothes the singular

geometry. The gauge theory in such scenarios goes through a number of duality cycles, and the

IR end of the cascade, probed by D3 branes, reveals a deformed moduli space. Many examples

have been studied in the literature, including F0, dP2 and dP3, the SPP singularity, etc. For

details, we refer to [234] and references therein. (3) Dynamical Supersymmetry Breaking (DSB)

branes: the IR behavior of the gauge theory shows DSB as opposed to quantum deformation.

In terms of the supergravity dual, supersymmetry breaking is due to obstructed complex de-

formations. Although the most studied geometry in this category is dP1 ([231], [235], [242]),

various other scenarios including the SPP singularity, higher del Pezzos, and applications to

string phenomenology have been explored [236], [237], [263], [238], [239], [240], [241], [244],

[243].

In this chapter we will be concerned with DSB branes in the dP1 geometry, which in fact

turns out to have runaway directions in field space, and hence does not break supersymmetry

in the desired way. This was pointed out from a field theory analysis in [245], and subsequently
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studied in [246], [241], [247], [248], [249], [250], [251], [252], [253], [254], [255], [256], [257], [258],

[259], [260]. Most constructions in the literature have relied on open string effects such as the

addition of extra flavors to stabilize the runaway and produce supersymmetry-breaking string

phenomenological models.

As pointed out in [235] and [243], the runaway is essentially due to dynamical FI terms in

the action, which allow otherwise bounded field directions to relax to infinity. Thus, consistent

closed string moduli stabilization in realistic embeddings of the supersymmetry breaking quiver

in string theory is required. Such embeddings have been done in both type IIA [261] and type

IIB [262].

In this chapter, we perform a general supergravity analysis of the quiver, extracting condi-

tions on fluxes and instanton effects such that one obtains stabilization. The general procedure

is to couple string moduli to the quiver fields and perform an extremization of the supergravity

potential. Both IIA and IIB examples are then considered.

In the type IIA case, moduli stabilization is performed by RR and NS flux [277], [264], [265],

[268], [269], [270], [271], [272], [273]. Consistent orientifolding and the Freed Witten anomaly

cancellation condition introduce various constraints on the Calabi Yau and the quiver locus.

We analyze a variety of IIA toy models in supergravity. The conclusion is that under mild

conditions on the Kahler potential and with proper choices of flux or instanton contributions

to the superpotential, the quiver gauge theory is indeed stabilized. Comments on the possible

uplift to dS vacua are made. One expects these basic features to be true in a full-blown IIA

computation, although extremization in such a scenario would be technically difficult.

In the type IIB case, we consider the embedding constructed in [262], where various instanton

effects have been explicitly calculated and a procedure for extremization of the supergravity

potential has been given. We show that the potential in fact does display a stabilized minimum,

albeit in a non-calculable regime of field space.

The plan of the chapter is as follows. In section 2, we summarize the runaway in terms

of the quiver gauge theory, as originally given in [245]. In section 3, we work out the general
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supergravity stabilization conditions, and apply them in IIA scenarios. In section 4, we discuss

stabilization in a type IIB construction, treating the example of [262].

5.2 The Runaway Quiver : Field Theory Description

The gauge theory of M D5 branes on the complex cone over F1 is given by SU(3M)×SU(2M)×

SU(M). For the purpose of this chapter, we consider the case M = 1. The various fields

transform as follows [245]:

SU(3M) SU(2M) SU(M) [SU(2) U(1)F U(1)R]

Q 3M 2M 1 1 1 −1

u 3M 1 M 2 −1 0

L 1 2M M 2 0 3

L3 1 2M M 1 −3 −1

(5.2.1)

The gauge invariant fields are defined as

Z = det
fj
Qfuj , Xia = QuiLa, V a =

1
2
LbLcε

abc. (5.2.2)

The low energy spectrum of the system consists of the fields V i, i = 1, 2 and V 3 ≡ V after

all other fields have satisfied their SUSY equations of motion. The dynamical superpotential is
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W = 3 (V Λ7
3)1/3. (5.2.3)

The Kahler potential far out in V moduli space is given by

Keff ≈ Kcl = 2
√
T = 2

√
V V † + V iV i† (5.2.4)

This leads to a runaway in field space of the form:

Veff ≈ 2|Λ7
3|2/3(V V †)−1/6 (5.2.5)

with Vi = 0.

5.3 Stabilization Conditions and Type IIA examples

In embeddings of the above quiver gauge theory in type IIB string theory, the runaway in field

space is caused by a lack of moduli stabilization mechanism at the string level. Closed string

Kahler moduli are typically stabilized by instanton effects. However, in the present context,

such instantons develop extra zero modes due to their interaction with the fractional branes,

which can lead to cancellations in the effective superpotential. Some progress has been made

recently in that direction, for example in [262], where instanton effects are explicitly calculated.

In the next section, we consider stabilizations in such a scenario.

An alternate embedding begins with the observation that such quiver gauge theories occur

at non-geometric phases in the Kahler moduli space, and hence can be treated in a type IIA

scenario by using mirror symmetry. Supergravity methods can be used in the mirror picture. A

full blown IIA embedding of the runaway quiver consists of generic NS and RR flux stabilizing

complex structure and Kahler moduli of the Calabi Yau Y respectively. The quiver is realized

by D6 branes wrapping special Lagrangian cycles. In compact models, an orientifold projection

is introduced. A number of conditions on the quiver locus and the geometry of the IIB mirror

Calabi YauX have to be imposed - (i)X should contain a pair of disjoint del Pezzos (S, S′) which
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don’t intersect the fixed point locus Xσ of the orientifold projection and (ii) the holomorphic

involution of the orientifold projection should be compatible with the large complex structure

limit in the complex structure moduli space of X, so that computations can be done in the

supergravity limit of the mirror IIA scenario.

In the mirror IIA construction, the superpotential gets the following flux contributions

WK =
∫
Y

F ∧ e−JY , WH(xk, tλ) = −2xkgk − itλhλ (5.3.1)

where WK is the superpotential contribution to the Khaler moduli of Y , JY is the Kahler class

of Y , F is the RR flux and is given by F = F0 + F2 + F4 + F6, WH is the superpotential

contribution to the complex structure moduli of Y , (gk, hλ) are the NS flux, and xk, tλ are

h3
+ = h2,1 + 1 holomorphic coordinates on the N = 1 complex structure moduli space [274],

[275]. The coordinates xk and tλ are given by

xi = 1/2
∫
Y

ΩcY ∧ βi, tλ =
∫
Y

ΩcY ∧ αλ (5.3.2)

where (αλ, βi) form a symplectic basis of three-cycles on Y and ΩcY is a linear combination of

the RR three-form C(3) and the real part of the holomorphic three-form of Y . A specific choice

of symplectic basis for explicit calculations demands more constraints on the construction [261] -

(iii) the natural push-forward maps H2(S)→ H2(X) and H2(S′)→ H2(X) have rank one, and

(iv) under the orientifold projection, the anti-invariant subspace H1,1
− (X) is one-dimensional

and is spanned by the difference S − S′ between the divisor classes of the conjugate del Pezzos

S and S′.

In general, WK is enough to stabilize all Kahler moduli. On the other hand, NS flux is subject

to the Freed-Witten anomaly cancellation condition, which can hinder moduli stabilization

by hindering generic flux. Requiring F-flatness of the superpotential then requires additional

conditions due to the non-appearance of certain complex structure moduli due to the anomaly

cancellation condition. In [261], explicit embeddings of the quiver gauge theory have been

constructed taking into account all the above constraints in the case of certain quintic threefolds.
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In this section, we perform an effective four-dimensional supergravity analysis of the quiver.

We take general closed string contributions to the Kahler potential and superpotential, and

couple them to the open string sector. Our strategy is to begin with a supersymmetric vacuum

on the closed string side, and stabilize the open string field ψ = κ2V3 in that vacuum. A

self-consistent analysis is performed for ψ � 1, which allows independent stabilization of the

closed string sector and removes higher order corrections to the open string sector coming from

U(1) D-terms. Comments on the possible uplift to dS vacua are made.

We work out specific examples for the case of a single complex modulus x in a type IIA

context, without taking into account the complications introduced by the Freed Witten anomaly.

The Kahler potential is taken to be a power series in x, while the superpotential is considered

to be either a flux contribution like (5.3.1), or a typical instanton effect.

Our general result is that in the case of a flux superpotential, tuning the value of flux enables

stabilization in the region of calculability and possible uplift to small positive cosmological

constant. In the case of an instanton superpotential, consistent stabilization without strong

constraints on the Kahler potential or superpotential requires a hierarchy of scales between the

two sectors. Uplift to dS vacuum is correspondingly more difficult to achieve. The stabilization

procedure in both cases puts mild conditions on the Kahler potential, and in the second case,

on the instanton contribution. It is expected that in a full IIA calculation, these basic features

would be maintained.

5.3.1 General Analysis

We take the following Kahler potential and superpotential:

κ2K = (ψψ̄)1/2 (1 + γ
∑

pi) +
∑

fi (5.3.3)

W = Λ3ψ1/3 (1 + σ
∑

qi) + Λ3
1

∑
gi (5.3.4)
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where pi = p(xi, x̄i), fi = f(xi, x̄i), qi = q(xi), gi = g(xi), the xi being an arbitrary number

of closed string moduli. We consider the simple case where different closed string moduli xi

and xj are decoupled. γ and σ parametrize the strength of the coupling between the open and

closed string sectors in the Kahler potential and superpotential respectively. In particular, we

will be working to first order in these parameters. Also, ψ = κ2V3 � 1, so that the field V3 is

stabilized below the Planck scale.

The Kahler metric may be inverted, and to first order in γ one obtains

Kψψ̄ = 4κ2 (1− γ
∑

pi) |ψ|

Kxiψ̄ = (1/2)κ2 γ ∂ipi (∂i∂̄ifi)−1 ψ

Kxix̄i = κ2
[
(∂i∂̄ifi)−1 − γ (∂i∂̄ipi) (∂i∂̄ifi)−2 |ψ|] (5.3.5)

while Kxix̄j , i 6= j starts at order γ2.

All the contributions to the supergravity scalar potential can be computed, and we keep

terms upto order |ψ|1/3. The resulting stabilization places constraints on the functions fi, gi, pi, qi.

Generally, the potential is of the form

V = eκ
2 Σf

[
A|ψ|1/3 +B|ψ|−1/3

]
+ Vclosed (5.3.6)

where A,B can be expressed in terms of fi, gi, pi, qi.

The non-Abelian D-term contributions to the potential are set to zero by working on the

D-flat moduli space defined by (5.2.2). The U(1) D-term contributions in general introduce

new open-closed mixing terms, since the gauge coupling is a holomorphic function of the closed

string moduli. However, these mixings begin at order |ψ|, and we neglect them.

We study some limiting cases of the parameters γ and σ, and work out some examples with

a single complex structure modulus. The functions f and p in the Kahler potential are taken



151

to be power series expansions in the complex structure modulus. The superpotential term is

taken to be a flux contribution or a typical instanton contribution.

We note that similar supergravity calculations have been performed (see [266], [267], for

example) in the context of uplifting the KKLT AdS vacuum by coupling it to a SUSY breaking

sector such as an O’Raifeartaigh or ISS model.

5.3.2 γ = σ = 0

In this case, one obtains

A =
∑
i

κ2Λ3Λ3
1

[
(2/3)Σ ḡ + [∂ifi∂̄iḡi + ∂ifi∂̄ifiΣ ḡ]/∂i∂̄ifi − 3Σ ḡ

]
eiθ/3 + c.c.

B = (4/9)κ2Λ6 (5.3.7)

Here, θ is the phase of ψ. We work out the case of a single complex structure modulus x, with

f = f0 + α1(x+ x̄) + α2(xx̄) + ....

(i) Taking a single complex structure modulus, we have g = g0x. For |ψ| � 1 we can

stabilize the closed string sector independently. A stable supersymmetric solution is located at

xmin = (α1/2α2)
[− 1 +

√
1− (4α2/α2

1)
]
, (5.3.8)

Stabilizing the open string sector, one obtains

|ψ|1/30 = [(4/9)(Λ/Λ1)3]1/2 g−1/2
0 J−1/2 (5.3.9)

where

J = (4/3 − α2
1/α2)(xmin) − α1/α2 − 4α1x

2
min g0 > 0. (5.3.10)

Note that (5.3.10) places constraints on the coefficients appearing in the Kahler potential. The

self-consistency condition |ψ| � 1 can be obtained by tuning the flux g0 to be large, without
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assuming a hierarchy of scales between Λ and Λ1. On the other hand, the value of the potential

at the minimum is

Vmin = 2eκ
2Kκ2Λ9/2Λ3/2

1 g
1/2
0 J1/2 − 3κ2eκ

2Kg2
0x

2
minΛ6

1. (5.3.11)

Tuning the flux such that J ∼ g0x
2
min, one can potentially lift to a dS vacuum.

On the other hand, assuming a hierarchy of scales Λ/Λ1 � 1 without tuning the flux

automatically satisfies |ψ| � 1, but in this case uplift to a dS vacuum is difficult to achieve.

(ii) Taking a typical instanton correction to the superpotential sets g = βe−αx. For |ψ| � 1,

the stabilization of the closed string sector is decoupled from the open string sector. We start

with a stable closed sting vacuum satisfying DxW = 0, located at

xmin = (1/α2)(α− α1) (5.3.12)

Minimizing the open string sector with respect to |ψ| sets

|ψ|1/30 ∼ (4/21)1/2(Λ/Λ1)3/2 β−1/2 exp[(α/2α2)(α− α1)] (5.3.13)

The condition |ψ| � 1 can be achieved by having β � 1 and Λ� Λ1.

At the minimum, we obtain

V ∼ (112/27)1/2κ2 Λ3 (ΛΛ1)3/2 β1/2 exp[f0 − (α− α1)2/α2]×

× exp[(3α/2α2)(α− α1] − 3κ2Λ6
1β

2exp[f0 − (α− α1)2/α2] (5.3.14)

In the regime of calculability |ψ| � 1, the vacuum remains close to the closed string AdS

vacuum, and there isn’t much uplift.

5.3.3 γ = 0, σ 6= 0

In general, apart from flux contributions to the superpotential, instanton corrections coming

from the closed string sector can couple to the open string fields. In that case, σ 6= 0, q = βe−αx.
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Such corrections will also lead to open-closed coupling in the Kahler potential, but as a limiting

case we set γ = 0 here. We take the case of a single IIA complex structure modulus and consider

two cases - where the pure closed string contribution g is a flux effect, and where g is also due

to an instanton effect.

In section 5.4, we study a type IIB embedding scenario where such couplings have been

explicitly calculated.

For γ = 0, σ 6= 0, we obtain

A =
∑
i

κ2Λ3Λ3
1

[
(σ∂̄iḡi∂iqi)/∂i∂̄ifi + (2/3)Σḡ + [∂ifi∂̄iḡi(1 + σΣq) +

+σ∂̄ifi∂iqiΣḡ]/∂i∂̄ifi + (1 + σΣq)∂if∂̄ifΣḡ/∂i∂̄ifi − 3(1 + σΣq)Σḡ
]
eiθ/3 + c.c.

B = (4/9)κ2Λ6 (1 + σΣq) (5.3.15)

(i) We consider a flux contribution to the superpotential as before g = g0x and take q =

βe−αx. For |ψ| � 1 and σ such that |ψ|−1/3σ � 1, the open-closed mixing in the potential

is small, and the closed string sector can be stabilized independently as before. We obtain a

supersymmetric minimum, where the value of x is given by (5.3.8). Stabilization on the open

string side gives ψ as a function of the coefficients α, α1, α2. For small x, this simplifies and we

get

|ψ|1/3 = (2/3)(Λ/Λ1)3/2 g
−1/2
0 [α2(1 + σβ)]1/2[σβα− (1 + σβ)α1]−1/2. (5.3.16)

The calculability condition can be satisfied by taking large values of g0. We also note that

reality of |ψ| sets the condition σβα − (1 + σβ)α1 > 0. The value of the potential at the

minimum is given by

Vmin = 2eκ
2Kκ2Λ9/2Λ3/2

1 g
1/2
0 [α2(1 + σβ)]1/2[σβα− (1 + σβ)α1]1/2−

− 3κ2 Λ6
1 e

κ2K g2
0 x

2
min. (5.3.17)
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In principle, it is possible to uplift the AdS vacuum by controlling the flux g0 such that

(g3/2
0 x2

min)−1 ∼ 1.

(ii) We now consider the case where the pure closed string contribution to the superpotential

is also an instanton effect. In this case, g = βg e
−αx, q = βq e

−αx. The supersymmetric minimum

of the closed string sector is given by (5.3.12). For small x, the open string sector is stabilized

at

|ψ|1/3 = (2/3)(Λ/Λ1)3/2 [1 + σβq]1/2 J−1/2, (5.3.18)

where J = βg[7/3 + (αα1/α2)− α2
1/α2] + βgβq[3σ + 2σαα1/α2 − σα2/α2 − σα2

1/α2] > 0 is a

condition that can be satisfied if α > α1, for example. Also, |ψ| � 1 requires the hierarchy of

scales Λ/Λ1 � 1.

As in (5.3.14), the minimum of the system remains close to the AdS.

5.3.4 γ 6= 0, σ = 0

In the limit where open and closed string contributions may be taken to be decoupled in the

superpotential, the Kahler potential of the system will in general still contains couplings between

the two sectors. Considering γ 6= 0, σ = 0, we get

A =
∑
i

κ2Λ3Λ3
1

[
(2/3)Σ ḡ + [∂ifi∂̄iḡi + ∂ifi∂̄ifiΣ ḡ]/∂i∂īfi − 3Σ ḡ−

− (2/3) γ ∂iḡi∂ipi/∂i∂̄ifi

]
eiθ/3 + c.c

B = (4/9)κ2Λ6(1− γΣp) (5.3.19)

(i) We take g = g0x, f = f0 + α1f (x + x̄) + α2f (xx̄) + ..., and p = p0 + α1p(x + x̄) +

α2p(xx̄) + .... The closed string sector is stabilized at the supersymmetric vacuum given by

(5.3.8). For x→ 0, the open string sector is stabilized at
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|ψ|1/3 = (2/3)(Λ/Λ1)3/2 g
−1/2
0 [1− γp0]1/2 [2/3γα1p/α2f − α1f/α2f ]−1/2. (5.3.20)

This gives the constraint 2/3γα1p > α1f . As before, |ψ| � 1 can be achieved by g0 � 1, while

an uplift of the AdS vacuum can be achieved by tuning g0 such that (g3/2
0 x2

min)−1 ∼ 1.

(ii) For an instanton-like contribution g = βe−αx, the closed string supersymmetric mini-

mum lies at (5.3.8), while for small x, the open string field is stabilized at

|ψ|1/30 = (4/3)(Λ/Λ1)3/2 β−1/2 (1− γp0)1/2 J−1/2 (5.3.21)

where J = (7/3)− (α2
1f/α2f ) + αα1f/α2f − (2/3)γαα1p/α2f . We require J > 0.

5.4 Stabilization with Stringy Instantons in IIB

Following [262], we consider the quiver gauge theory on a singular dP1 geometry, with added

Euclidean D3 brane instantons. The D3’s which intersect the singularity will in general also

give rise to Ganor strings stretching from the occupied nodes of the quiver. Denoting quiver

fields generically by ψi, the superpotential of the system is deformed by effects of the form

∆W ∼ f(ψi) exp(−Vol) (5.4.1)

where Vol is the volume of the D3. The scalar potential can be stabilized to obtain metastable

vacua.

Concretely, the complex cone over dP1 can be described in terms of toric data as follows.

The non-trivial two-cycles in dP1 are denoted by f and C0. A basis of branes is given by

[L1,L2,L3,L4 ] = [OF1 ,OF1(C0 + f),OF1(f),OF1(C0) ]. (5.4.2)

Denoting the P1 fibrations over f and C0 by D2 and D3, and the the dP1 base by D5, one

obtains the nonzero triple intersections
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D3
5 = 8, D5D2D3 = 1, D2

5D2 = D5D
2
3 = −1 . (5.4.3)

Various instanton effects can be calculated in this geometry. This requires knowledge about

the topology of the D3 brane and its spectrum of Ganor strings. The Euclidean D3’s and the

quiver nodes wrap a surface S on the del Pezzo cone, and carry different line bundles LA and

LB over S. The most general bundle for the instanton is Xab = OD5(aC0 + bf). Computing

the number of fermionic zero modes between Xab and L1,2,3 gives

nferm(Xab,L1,2,3) = (a+ 2b, − 3 + a+ 2b, 2− a− 2b) . (5.4.4)

An important instanton effect one can have in this geometry is the Affleck-Dine-Seiberg

(ADS) instanton effect. In this case, a = 0, b = 1; that is, the instanton wraps the bundle L3.

It turns out that the instanton contribution in this case leads to the superpotential

WADS =
Λ7

Z
e−S1 . (5.4.5)

Here, S1 is given by

Re(S1) = (1/2(8r2
5 − r2

3 − 2r3r5 − 4r2r5 + 2r2r3) + r3 − 2r5. (5.4.6)

where r5, r2, r3 parametrize the Kahler form J in terms of the toric data in the following way:

J = r5D5 + r2D2 + r3D3 . (5.4.7)

Volumes are measured in string units α′ = (2π)−1.

One can have stringy deformations of the above field theory superpotential in the case b > 1

or b ≤ −1. The superpotential in this case is

Wstringy =
Λ7

M6
s

V3

∑
b>1&b≤−1

f(b) e−S1+(b−1)S2 . (5.4.8)

where S2 is given by
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Re (S2) = 3r3 − 2r2 (5.4.9)

and Wstringy is valid near the quiver locus |Re(S2)| � 1.

Apart from these contributions to the superpotential, there is the usual term Wflux respon-

sible for fixing complex structure moduli, and Wgaugino ∼ ΛSO(8)e
−S3 arising from gaugino

condensation in pure SO(8) gauge theory on a divisor D6 at infinity. D6 does not intersect D5,

and thus there is no mixture between quiver fields and instanton effects in Wgaugino. Here, α is

a number less than one, and S3 is given by

Re (S3) = r2r3 − (1/2)r2
3 . (5.4.10)

The superpotential is a sum of all these effects. Denoting xa = 2Re(Sa), the regime of validity

of this superpotential is

x3 � x1 � 1, |S2| � 1, or equivalently, r2 ∼ (3/2)r3 � r5 � 1 (5.4.11)

To simplify the analysis of the vacuum structure of this system, we set r2 = (3/2)r3, and

only consider the contribution from instantons with b = 1. The superpotential of the system,

after integrating out the fields Z and Xia, is

Weff = Wflux + 3Λ7/3κ−2/3ψ
1/3
3 e−S1/3 + Λ3

SO(8)e
−αS3 (5.4.12)

where

ψa = κ2Va, κ2 = M−2
pl (5.4.13)

In our regime of validity, we can use the standard large radius expression for the Kahler

potential:

κ2K = −2log
(
f1 + f2

√
ψaψ∗a

)
. (5.4.14)

where f1 is the volume of the threefold, and f2 is the volume of the divisor D5, in string units.
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Under our approximations, we obtain f1 and f2 in terms of the fields x1 and x3 as follows:

f1 = (1/4
√

2)x1/2
3 x

1/2
1 [x1/2

3 − x1/2
1 ] (5.4.15)

and

f2 = (1/2)x1 (5.4.16)

Equipped with W and K, we have the supergravity scalar potential

V = exp(κ2K)

(
Kij̄Weff ;iW

∗
eff ;j̄ − 3κ2W ∗effWeff

)
+

1
2g2
X

3∑
a=1

(Da)2 (5.4.17)

where the U(1) D-terms are given by:

D1 = −D2 = −2
(
ψa∂ψaK + ∂x1K

)
, D3 = 0.

First, we perform an analysis to minimize V with respect to the fields ψ1 and ψ2. Since these

fields do not appear in the superpotential or its derivatives, their contribution to the F-term

comes from the inverse Kahler metric and derivatives of the Kahler potential. We study the

region of field space where α1 = ψ1ψ̄1 � ψ3ψ̄3 and α2 = ψ2ψ̄2 � ψ3ψ̄3. VF as a function of α1

and α2 takes the form:

VF (α1, α2) = κ2

(
J1α1 + J2α2 + J3α1α2 + J4

J5α1 + J6α2 + J7α1α2 + J8

)
− 3κ2WW̄. (5.4.18)

The Ji are functions of ψ3ψ̄3 and S1, S3. In writing the Ji, we have used the approx-

imation ψaψ̄a ∼ ψ3ψ̄3. We see that J1, J2, J3, J4 have mass dimension six, and consist of

products of W and its derivatives. In the limit of Wflux � Wcorrection where Wcorrection =

3Λ7/3κ−2/3ψ
1/3
3 e−S1/3 + Λ3

SO(8)e
−αS3 , we can write

VF (α1, α2) ∼ κ2W 2
flux

(
J1α1 + J2α2 + J3α1α2 + J4

J5α1 + J6α2 + J7α1α2 + J8
− 3

)
. (5.4.19)

where Ji, i = 1 to 4 have been redefined, and are now dimensionless.

On the other hand, the D-term contribution is
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VD = κ−4g−2[J9α1 + J10α2 + J11]2 (5.4.20)

For g2κ6W 2
flux � 1, the D-term dominates over the F-term, and we can argue that the

potential is minimized at α1 = α2 = 0. Since the F-term contribution is essentially monotonic

as a function of α1 and α2, the minimum will again be decided by the D-term in the regime

where the F-term and D-terms are comparable. For g2κ6W 2
flux � 1, the F-term dominates,

and the minimum will be decided by whether it is monotonically rising or falling in the regime

of validity. Since the Ji in the numerator and denominator are comparable, this rise or fall is

essentially flat, and we can set α1 = α2 = 0. This also matches with the result in the case of

global supersymmetry.

The Kahler metric then simplifies into block diagonal form, and in particular the inverse

entries in ψ3, S1, S3 space are unaffected by the ψ1 and ψ2, and a direct analytical treatment

becomes tractable.

We work in the regime where the F-term dominates over the D-term. Then, the scalar

potential becomes (neglecting pure Wcorrection terms)

V ∼ eκ2K

[(
−3κ2 +Kij̄∂i(κ2K)∂j̄(κ

2K)
)
|Wflux|2

+Kij̄
[
∂i(κ2K)Wflux∂j̄(W̄correction) + cc

]]
(5.4.21)

Taking the open string field V3 to be stabilized below MPlanck we get |ψ3| � 1. Also, the

regime of validity of the model is x3 � x1.

Evaluating the inverse Kahler metric and keeping to lowest powers of |ψ3| and x1/x3, one

obtains

eκ
2Kκ4(∂S1K)2KS1S̄1W 2

flux ∼ eκ
2Kκ2(.33)W 2

flux ,
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eκ
2Kκ4(∂S1K)(∂S3K)KS1S̄3W 2

flux + c.c. ∼ eκ
2Kκ2(.5)W 2

flux ,

eκ
2Kκ4(∂S3K)2KS3S̄3W 2

flux ∼ eκ
2Kκ2(.25)W 2

flux ,

while other contributions to eκ
2KKij̄∂i(κ2K)∂j̄(κ2K)W 2

flux contain positive powers of |ψ3| and

x1/x3 and are thus further suppressed.

One thus obtains

eκ
2K
(
−3κ2 +Kij̄∂i(κ2K)∂j̄(κ

2K)
)
< 0 . (5.4.22)

On the other hand, Kij̄
[
∂i(κ2K)Wflux∂j̄(W̄correction) + cc

]
gives

eκ
2K
[
Λ7/3κ4/3|ψ3|1/3e−x1/6(1 + 2(x1/x3) + ...) cos(θ/3− ImS1/3)

+κ2Λ3
SO(8)α e

−αx3x3 cos(αImS3)
]
Wflux (5.4.23)

where θ is the phase of ψ3. Setting θ/3 − ImS1/3 = π and αImS3 = π, we get a negative

contribution from this term also.

One thus obtains a negative scalar potential in the regime of calculability of the theory. As

x3 and x1 grow large, eκ
2K ∼ x−2

3 x−1
1 damps out the scalar potential, and V goes to zero. Since

the potential is also bounded below as long as the model is well-defined, one obtains an AdS

minimum. We note that the metastable minimum of the system may lie outside the regime of

calculability.
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