
An Adaptive NARX Neural Network Approach for

Financial Time Series Prediction

BY

PARASHAR CHANDRASHEKHAR SOMAN

A thesis submitted to the

Graduate school – New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

written under the direction of

Dr. Ivan Marsic

and approved by

New Brunswick, New Jersey

 October 2008

ii

ABSTRACT OF THE THESIS

An Adaptive NARX Neural Network Approach for

Financial Time Series Prediction

By Parashar Chandrashekhar Soman

Thesis Director: Dr. Ivan Marsic

There has been increasing interest in the application of neural networks to the

field of finance. Several experiments have been carried out stating the success of

neural networks for time series prediction.

Most of the existing systems recommend single neural network architecture to be

used for a particular time series. Our experiments have shown that a fixed

architecture may not be the best approach across different time horizons. The

thesis proposes a new methodology where multiple NARX (nonlinear

autoregressive network with exogenous inputs) networks with different

architectures are generated and evaluated before the beginning of a new time

horizon. A network is selected from this set and employed to make predictions.

This selection is based on past datasets only – making the system completely

applicable to real world scenarios.

A framework of functions was built in MATLAB® to customize the Neural Network

Toolbox ® for financial applications. This framework provides for all the basic

iii

functions required by a financial neural network system. An adaptive system that

uses technical indicators and some external time series as inputs was built.

Different rules were developed and tested for selecting the best performing

neural networks.

The new approach was tested on 5 currencies and the gold series. Our results

show that high realized values of returns in the past, along with generalization is

the best parameter to select a network for the future. A system with adaptive

approach performs better than one with a fixed architecture. Our adaptive system

out performed not only the fixed architectures but also other benchmarks like

technical indicators, linear regression and baseline buy or sell strategies.

iv

Acknowledgements:

I would like to thank my advisor Dr. Ivan Marsic for his constant help, guidance

and encouragement throughout my thesis. I would like to thank him for motivating

me to look into real life applications of various concepts that I learnt in his

courses. I would like to thank Dr. Manish Parashar and Dr. Zoran Gajic for their

valuable time and suggestions regarding my thesis. I am also thankful to Dr. Simi

Kedia whose coursework and guidance helped me to obtain the necessary

domain knowledge required for this thesis. I would also like to thank the staff of

Center for Advanced Information Processing (CAIP) and the Electrical and

Computer Engineering (ECE) department at Rutgers for providing the facilities

and support required for this research.

v

Table of contents:

Abstract ...ii
Acknowledgements ..iv
List of tables ...vi
List of figures ...vii
Chapter 1: Introduction ... 1
Chapter 2: Related work... 6
Chapter 3: Usage scenario... 9
Chapter 4: Technical approach... 11

4.1 Neural network basics... 11
4.2 Selection of neural network type ... 15
4.3 Training and data preprocessing... 18

4.3.1 Function approximation: ... 19
4.3.2 Pattern recognition: .. 20

4.4 Network architectures to be considered.. 23
4.4.1 Number of layers: ... 24
4.4.2 Number of Taps and Hidden Neurons: ... 25

4.5 Policies for network selection.. 27
Chapter 5: Implementation ... 28

5.1 Comparison and selection of platforms... 28
5.2 Data for simulations: ... 31

5.2.1 Source: ... 31
5.2.2 Time series:.. 32
5.2.3 Data for training, evaluation and testing: .. 33
5.2.4 Targets for training: stationary or returns series? 35
5.2.5 Inputs for training:... 35

5.3 Data format and organization:... 36
5.4 Data handling:... 37
5.5 The technical indicator generators: ... 41
5.6 Evaluation function:... 44
5.7 Performance optimization: .. 46
5.8 Function interaction, integration and execution... 49

Chapter 6: Results.. 54
6.1 Comparison of network selection policies ... 54
6.2 Benchmarks: ... 61

6.2.1 Performance criteria: .. 61
6.2.2 Benchmarks systems: .. 61

6.3 Performance analysis:... 65
6.4 A word of caution: ... 76

Chapter 7: Conclusion and future work .. 77
7.1 Conclusion .. 77
7.2 Future work: .. 78

References: .. 80
Glossary of terms: .. 83
Appendix A: .. 84
Appendix B: .. 97

vi

List of Tables:

Table 1: Generation of “Buy”, “Short” or “Out of market” signals by the system .19
Table 2: Comparison of realized values by using various predictive systems65

vii

List of Figures:

Figure 1: A general neuron structure of a neural network. [4] pg: 5-8................. 11
Figure 2: Log sigmoid transfer function. [4] pg: 5-8 .. 12
Figure 3: Tan sigmoid transfer function. [4] pg: 5-9 ... 13
Figure 4: Tapped delay line. [4] pg: 4-10 .. 14
Figure 5: parallel and series parallel architectures of NARX networks. [4] pg: 6-18
... 15
Figure 6: Comparison of training and simulation times of a batch of 40 neurons
on 175 Opteron processor 16 Gb RAM (Shared) Recurrent Vs NARX............... 17
Figure 7: Comparison of two equivalent NARX systems using the function
approximation and pattern recognition approach for massaging data and training
... 22
Figure 8: Realized returns on Gold Series: 3:2:1 NARX Vs 3:1:1 NARX system34
Figure 9: Data Usage for adaptive architecture .. 34
Figure 10 : The data cutting scheme of the data Cutter function 39
Figure 11: Comparison of times required by normal and parallel (4 labs)
execution .. 48
Figure 12: Integration and Integration diagram for the batchEl3 – The master
function that generates, trains, simulates and evaluates neural network............ 49
Figure 13: comparison of realized values on the six assets by using Policy 1, 2
and 3 .. 56
Figure 14: comparison of profits on the six assets by using Policy 1, 2 and 3.... 56
Figure 15: A sample representation to demonstrate a possible non-generalized
output that makes large profits ... 58
Figure 16: Comparison of realized value the six assets by using Policy 4, 5 and 6
... 60
Figure 17: comparison of profits on the six assets by using Policy 4, 5 and 6.... 60
Figure 18: Period wise realized value for the investment in gold. 66
Figure 19: Period wise realized value for the investment in UK currency. 67
Figure 20: Period wise realized value for the investment in UK currency. 68
Figure 21: Period wise realized value for the investment in Canada currency ... 68
Figure 22: Period wise realized value for the investment in France currency. 69
Figure 23: Period wise realized value for the investment in India currency. 70
Figure 24: Final realized values in Gold investment, across various systems 71
Figure 25: Final realized values in currency of UK, across various systems 71
Figure 26: Final realized values in currency of Japan, across various systems . 72
Figure 27: Final realized values in currency of Canada, across various systems
... 72
Figure 28: Final realized values in currency of France, across various systems 73
Figure 29: Final realized values in currency of India, across various systems ... 73
Figure 30: Final realized values by investing an all 6 assets, across various
systems. ... 74
Figure 31: Comparison of 80 day equalized values of NARX system with financial
baselines .. 75

1

Chapter 1: Introduction

With the ever increasing acceptance or rather dependence of the financial world

on modern technology, several neural network models have been proposed and

tested in various fields of finance. Networks were shown to be effective in areas

like forecasting, classification of bonds, bankruptcy prediction, risk assessment,

financial evaluation etc.

The outputs of such systems are used to take decisions about various

investments in the financial world. Different statistical and technical tools have

been historically used to predict trends in time series and aid investment

decisions. Due to the criticality of these decisions and the volume of investments

involved there is considerable interest in modification and advancement of

prediction methodologies.

Different types of neural network based systems have been employed in the past

to predict different time series. Such research has usually been limited to few

datasets in a time series. Our experiments have shown that an excellent

performing neural network may not be able to continue that performance over

different time horizons. The selection of architecture of these networks has been

done usually by using some thumb rules (heuristics). The thumb rules may

provide a good guideline, however cannot be followed in entirety [18].

2

Researchers have performed sensitivity analysis to determine the optimum

architecture. Such analysis uses heuristics based on parameters like error [6]

which our experiments show are not a very true indicator of network behavior.

Additionally they may use behavior on the test set [5] to determine the best

architectures. Using information about the test set may give very good idea about

the best network for that data range; however in real life situations it is not

possible to implement these heuristics. However if decisions were to be made for

a real time training methodology we will have to depend only on the available

past data and not the future data.

The challenge in our work is that we first need to identify a network that will make

good predictions – to add to it we have to use only the past data. To begin with

we need to determine our range of architectures to be tried out. We will have to

determine what kinds of networks are to be employed, what kind of data is to be

provided and how to preprocess it. We need to decide which networks are to be

employed and how they are to be evaluated.

Once these networks are available we will have to set up rules on how to

evaluate the performance results that will help us determine the network that is

likely to demonstrate a good behavior in the coming time frame.

We will be following guidelines from several papers [9] [16] and perform our own

tests to determine the selection of each parameter. We will be conducting

3

simulations on various time series across different time frames and evaluate the

methodology.

In order to evaluate the overall performance of the methodology we need to

compare it with certain benchmarks. We will compare the system performance

with the performance of an “all buy”, “all short” an “all out of market” strategies.

The best of these shall serve as the baseline. We will also test it against the

performance of some market technical indicators. Since we are using a non

linear regression technique we need to show that it performs better than similar

linear regression. To advocate the need of changing architectures at different

time horizons we will also benchmark the system against those static

architectures that performed best.

We will use a framework of functions to generate the training, evaluation and test

sets. We massage the available data to encode targets for supervised learning.

We generate several NARX (nonlinear autoregressive network with exogenous

inputs) networks and train them on the training data. We evaluate these networks

on an evaluation dataset for determining the networks with generalized behavior.

We will then evaluate the behavior of the selected network on the test set. We

will perform this procedure on various datasets across a financial time series. We

will also try out various different time series to evaluate the performance with the

system. Standard predictive systems like linear, RSI system, linear stochastic

system etc. will also be implemented in MATLAB ®. We will finally benchmark

4

the system of our performance with that of several neural network systems and

Technical analysis tools.

The effectiveness of our system can be claimed only if it is able to perform better

than other aforesaid methodologies. It is expected that our new approach will

provide better returns than other systems.

In the following sections we discuss the related work in this field. We will discuss

about the guidelines and findings of several researchers, which helped in

deciding various parameters of the system. It will be followed by our technical

approach and implementation of the system.

Finally we present our experimental findings which state that NARX networks are

quick to train and simulate, making them appropriate for our problem rather than

recurrent networks. We also noted that better results are obtained by following a

pattern recognition approach rather than a function approximation problem. Our

final simulations show that using the value of realized returns in the past is the

best parameter to select a network for the future. We find out that an adaptive

system with this approach outperforms the specified benchmarks.

Some specific contributions of our work can be stated as below:

 Introducing NARX neural networks to financial time series applications.

5

 Comparing the function approximation and pattern recognition approach in

financial time series applications.

 Comparing various criteria for identifying a network that will perform well in

future.

 Generating an adaptive system that outperforms technical indicators,

static systems and financial baselines.

6

Chapter 2: Related work

With the advent of neural network research in early fifties, it has been put to use

in various applications. They have been employed as decision making systems

and filters in control systems, they have aided classification and prediction in

wide fields ranging from psychology to environmental sciences.

There has been an increasing interest in the application of neural networks to

finance [8]. They have been employed to solve problems like financial forecasting

[18] [25], classification of bonds [6] [29], Bankruptcy prediction [22] [23] [24], Risk

assessment [2], financial evaluation [1] [17] etc.

Forecasting time series, especially those in financial markets like stock markets

has recently caught interest of several researchers [18] [25]. These applications

include predicting the prices/movements of stock prices [6] [30], currencies [5]

etc.

At a higher level of abstraction most of the systems seem similar in their

approach. All of them use related input parameters, provide target to predict and

train to make predictions

However a deeper analysis of these systems reveals that the systems can be

very sensitive to selection of individual parameters. In course of our research we

have compared performance of similar systems that use different proportions of

7

data (section 5.2), different data preprocessor (section 4.3). We notice that

changing a single parameter causes a large change in the overall performance.

Selection of different parameters, different methods of weight initialization,

training algorithms, training conditions, network architectures etc change the

behavior of the network greatly and effectively lead to a new system.

Apart from the academic and published research, there has been an increasing

interest in financial prediction applications by users of various neural network

environments like JOONE ® and MATLAB®. The JOONE® wiki [14] financial

forecast tutorial earlier hosted an example about stock market predictions using

feed forward networks. This example used a dynamic approach similar to our

system to find the ideal number of neurons. The official JOONE® documentation

[20] also provides an additional example for financial forecasting of stock trends

using neural networks. Various crucial parameters of these examples have been

implemented quite arbitrarily and lack sufficient verification. Analysis from our

implementation section (Chapter 5) will show how the inputs, learning algorithms,

preprocessing schemes etc. of these examples are not poised for optimum

performance. Our experiments show that true benefits of dynamism can be

realized only when the system has the option to select entire architecture

including choices about inputs. Nevertheless they serve as good examples and

contribute novel ideas on several fronts.

8

Individual systems usually reflect an individual designer’s opinions and analysis.

These systems might use parameters specific to the application that the system

deals with. Researchers have published survey papers that provide an overall

picture of the research in this field. Notably Fadalla [8] tried to analyze the

applications in finance and outlined the similarities and differences of different

networks on various parameters. Authors like Klimasauskas [16] and Gallo [9]

have tried to provide a basic framework or methodology to create a neural

network based system for financial applications. These survey and methodology

papers serve as a good indicator of the standard practices and guidelines for

building a new system.

Many current papers which implement neural networks for financial forecasting

recommend a single architecture that is determined by sensitivity analysis based

on factors like final value [5] or error [6]. Our findings in Chapter 6 show that fixed

architectures may not be efficient across various time horizons. Moreover such

systems use data from test set [5] which hinders their real life implementation as

test set (future data) is not available in real life scenarios. These reasons point

out the need to have an adaptive system that uses only past data for identifying

networks likely to make profits in future.

9

Chapter 3: Usage scenario

The objective of this research was to come up with an adaptive architecture

system to make financial predictions. Before we proceed with discussion of

design constraints and implementation we will discuss the usage scenario of the

system.

The data available for this research from our data vendor Global financial

database (GFD) https://www.globalfinancialdata.com/ was of daily

frequency. Hence all the analysis or simulations possible in the research would

have a constraint of using frequency no higher than once a day. The target user

of this system is envisioned to be a person with the willingness and the ability to

trade once a day as the system will generate a decision once every day.

The person wanting to use this system in the future will be required to have

access to a data vendor like the one mentioned above. Else the user can use

data from free sources like Yahoo finance and Google finance and follow the

format specified in section 5.3 to train and simulate the networks.

The system does not make any presumptions about the financial knowledge of

the system user. However as mentioned in section 5.2 and section 6.3, basic

financial knowledge would be very helpful to avoid certain special cases that may

lead to losses.

10

The simulations here used a selected system for a period of 4 months. If the user

is to follow this duration, computing resources required by the user would be very

low. If however the user prefers training after shorter durations, the requirements

will increase accordingly.

A daily predictive system implemented using our methodology when provided

with today’s and past data will give advice for the next day – “Buy”, “short” or “out

of market”. If the user buys the asset and the price goes up, the user earns profit.

If it goes down the user makes a loss. The effects are vice versa for short.

We implement a system incorporating buy as well as short in order to utilize the

potential of the network to predict positive as well as negative trends.

To analyze the performance of this system we will simulate the decisions on the

test set and evaluate the returns if the advice of the system were to be followed.

The returns of this system will then be benchmarked against the returns of

various other system and financial baselines like all-buy, all-sell, all-out of

market.

11

Chapter 4: Technical approach

4.1 Neural network basics

We are going to discuss the basic terminologies and concepts of neural networks

that will help us in understanding the forthcoming sections easily.

H. Demuth [4] states that

“Neural networks are composed of simple elements operating in parallel.
These elements are inspired by biological nervous systems. As in nature,
the network function is determined largely by the connections between
elements. You can train a neural network to perform a particular function
by adjusting the values of the connections (weights) between elements.”

Each such ‘single element’ is termed as a neuron.

Figure 1: A general neuron structure of a neural network. [4] pg: 5-8

In figure 1:

f: transfer function of the neuron

R: number of inputs

W: weight

b: bias

12

The output of the neuron is compared with the ideal output and changes are

made to the weight and in such a way that the ideal output would be achieved.

The neuron receives inputs from one or more inputs. The output of this neuron

depends upon the ‘activation function’ or ‘transfer function’ of the neuron.

The basic transfer functions that we will be talking about in the coming chapters

are the sigmoid (or the log-sigmoid transfer function) and the tan based (tan-

sigmoid) transfer function. They are described as follows:

Log sigmoid transfer function:

Figure 2: Log sigmoid transfer function. [4] pg: 5-8

This network can receive inputs from negative infinity to positive infinity and

always generates an output between 0 and 1

Tan sigmoid transfer function:

13

Figure 3: Tan sigmoid transfer function. [4] pg: 5-9

This transfer function receives inputs from negative infinity to positive infinity and

gives an output between -1 and 1.

The arrangement of these neurons leads to different types of neural networks.

Broadly they can be classified as static and dynamic. Static networks do not have

any feedback loops (outputs of a neuron fed back to some previous neuron) or

taps (delay lines that feed the network with past values of inputs). Dynamic

networks may have one of these two. Dynamic networks are preferable for time

series as they have memory in the form of loops or delay lines [4].

The tapped delay line (TDL):

The taps or the delay line is used to feed the network with the past values of

inputs. In figure 4 we see that input enters from the left and goes through N-1

delay elements to generate a vector of N outputs

14

Figure 4: Tapped delay line. [4] pg: 4-10

We will now discuss in brief about the NARX network that we propose to use in

this research. The NARX network uses the past values of the actual time series

to be predicted and past values of other inputs (like currencies of other nations

and technical indicators in our case) to make predictions about the future value of

the target series. These networks are again classified as series and parallel

architecture

15

Figure 5: parallel and series parallel architectures of NARX networks. [4] pg: 6-18

In figure 5 u(t) represents the past exogenous values (currencies of other nations

and technical indicators in our case) y(t) represents the past values of the actual

series to be predicted. ŷ(t) indicates the predicted values. If past values of actual

series are not being recorded, they will not be available to the system. In such

situations the networks uses its past predicted values. In our case we will have

the actual past values; hence we prefer to use them instead of our predictions.

Thus we are able to base the model on actual values which are more reliable

than our predictions

4.2 Selection of neural network type

Neural networks can in general be divided into two categories – static and

dynamic. Static networks have no feedback elements and no delays. The output

is calculated directly from the current inputs. Such networks assume that the data

is concurrent and no sense of time can be encoded. These networks can thus

lead to instantaneous behavior.

16

Dynamic networks may be difficult to train but are more powerful than static

networks. As they have memory in form of delays or recurrent loops, they can be

trained to learn sequential or time varying patterns. This makes them networks of

choice for various applications like financial predictions, channel equalization,

sorting, speech recognition, fault detection etc.

Since we are dealing with a time series it is necessary to use dynamic networks.

Dynamic networks can be of two types ones with feed forward connections and

taps and those with feedback or recurrent networks.

At this stage two breeds of networks were considered the NARX (Nonlinear

Autoregressive Neural Network) and recurrent networks. NARX networks use

taps to set up delays across the inputs and also incorporates the past values of

the output. Recurrent networks have loops within intermediate layers and

incorporate memory via these loops.

Both the networks have been employed in dynamic applications .The difficulties

and the time required in training the recurrent networks is a known problem. To

evaluate the resources requires by each of these networks, a batch of 40

Networks (1 neuron to 40 neurons) was trained under the same conditions for

same datasets and training parameters (MATLAB® Neural Network Toolbox). It

was observed that recurrent networks took almost 17 times more time to

complete training and simulations as compared to the NARX batch.

17

0

10000

20000

30000

40000

50000

60000

70000

80000

Time in seconds for training and simulating a
batch of 40 networks

Recurrent Networks

NARX Networks

Figure 6: Comparison of training and simulation times of a batch of 40 neurons
on 175 Opteron processor 16 Gb RAM (Shared) Recurrent Vs NARX

Our approach is that of simulating several networks, we will have to simulate

several networks ranging up to a few hundred neurons for each time frame. This

ratio of required time would further be aggravated when we would train networks

with hundreds of neurons.

Dunis and Williams [5] who have evaluated neural network application to

financial predictions have stated the problems in using recurrent networks. They

state that there is no theoretical proof or reason why outputs of layers should

looped back to the layers additionally the difference in the performance of

recurrent and simpler models is marginal. The neuron structure of the NARX is

similar to simple feed forward network making it a simple model.

18

Our limited computational resources do not allow us to train and simulate such

networks. However for applications where these gains outweigh the cost of

computation, recurrent networks should be tried out.

Due to the above mentioned finding and the limited computing resources

available for this research it was decided that NARX networks will be used for our

prediction system.

The basic NARX network is used for multi step predictions. It is assumed that

actual past values of target are not available and the predictions themselves are

fed back to the network. Since we will have access to the actual past values we

will provide those values instead of our past predictions. This helps the system

train on actual values rather than predictions. This is achieved by using the

series-parallel version of the NARX network which is described in section 4.1.

Thus a series parallel NARX dynamic network will be used as a basis of our

system.

4.3 Training and data preprocessing

Different researchers have different take about the method of preprocessing the

data and training a neural network for such applications. Roughly speaking, they

can be called as the pattern recognition approach and function approximation

approach. We will evaluate both the approaches; our implementation of each of

them has been discussed below.

19

4.3.1 Function approximation:

Here we will assume that we can feed the returns series value at each instance

and we can then try to predict the return value at each day.

We just map the targets within the neuron range and train the network using an

algorithm that is suited for such an application. The MATLAB® Neural Network

Toolbox [4] provides a detailed survey of algorithms appropriate for various

applications. The results therein state that Levenberg-Marquardt (LM) is a good

algorithm for small function approximation problems. Scaled conjugate gradient

algorithm (SCG) shows good performance for problems of all sizes, and is

especially good for large networks. Hence we decide to use scaled conjugate

gradient algorithm for training in this approach.

We will train the NARX network over all scaled values and SCG algorithm. If the

value of this predicted signal is positive and above a threshold, we anticipate a

positive return and buy, if it is negative and below a threshold we short. Else we

stay out of the market. These thresholds are set to remove some small values

from the decision making process as they are deemed to be unreliable.

Table 1 below summarizes how “buy”,” short” or “out of market” decisions are

generated:

Output of the neural network Decision of system
greater than (+ threshold) Buy
Less than (- threshold) Short
Between (threshold) and (- threshold) Out of market

Table 1: Generation of “Buy”, “Short” or “Out of market” signals by the system

20

4.3.2 Pattern recognition:

In the function approximation approach we provided the network with the actual

returns and expected the network to predict the actual returns. In the function

approximation approach we do not provide actual returns but we provide the

network with a pattern of movements on returns. We encode highly upward price

movements as 1 and highly downward movements as -1. We then ask the

network to predict occurrences of such patterns.

We encode the information about training targets as follows.

 When the value goes more than the average positive movement by a

threshold the system encodes +1

 When the value goes more than the average negative movement by a

threshold the system encodes -1

 otherwise it is zero

The range is selected to comply with the ranges of tansig neurons which are

going to be used

The network is trained using this data and predictions are made about the trend

each day. If the value of this predicted signal is positive and above a threshold,

we anticipate a positive return and buy, if it is negative and below a threshold we

short. Else we stay out of the market. These thresholds are set to remove some

small values from the decision making process as they are deemed to be

21

unreliable. Values of movements that are greater than roughly about 1.5 times

the average were used to encode the 1 and -1. Predicted values less than

roughly about +/- 0.2 were ignored in the decision making. These thresholds

were set/fine tuned manually by observing the behavior of individual time series.

It was not possible to perform complete sensitivity analysis with respect to these

thresholds. A complete analysis would require training and simulation of several

combinations of these thresholds and analyzing them. This was not possible to

the limited computing resources. Hence like in most of the neural network

systems we make manual designing decisions with logical reasoning.

Analysis of equivalent adaptive systems trained as function approximation and

pattern recognition approaches reveals that the performance of pattern

recognition systems is much better as compared to function approximation

system. This can be seen in figure 6. This is understandable because the

assumption made by a function approximation system is that there is an

underlying function by which exact values can be predicted. Pattern recognition

does not try to find exact predicted value but tries to find a trend. Marrone [20]

expresses problems with function approximation approach and suggests pattern

recognition instead.

Comparison of the realized returns using Function approximation and pattern

recognition systems is outlined in table 6:

22

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Gold UK Jap

Function approximation

Pattern recognition

Figure 7: Comparison of two equivalent NARX systems using the function
approximation and pattern recognition approach for massaging data and training

The following can be inferred about the two proposed approaches:

 Function approximation has performed poorly as compared to the other

approach.

 This network has values available at all the points, it is not possible to take

extreme stands and the network prefers to display an averaged behavior.

 The algorithm also encourages an averaged behavior

Hence we conclude that this approach is not fit for predictive systems. More

importantly we can infer that it is difficult to predict actual movements daily. We

are better off trying to predict the trends by using the second approach – pattern

recognition.

These findings lead us to using the pattern recognition approach of massaging

and training towards our problem. Henceforth whenever we talk about our

23

system, we are referring to systems with the pattern recognition approach for

massaging and training

4.4 Network architectures to be considered

On the basis of our earlier findings we have decided to use NARX networks for

our application. Now we determine the other parameters of the network

architecture.

The NARX networks will have a linear input layer of neurons (default by

MATLAB®) for the hidden and the output layers we will use the Tansig neurons.

Tansig neurons and sigmoid neurons have been extensively used in most of the

neural network applications. Both of them are similar in behavior and have a

similar looking transfer function except for the range of outputs that they can

generate. A sigmoid layer has a range form 0 to 1 whereas the range for Tansig

transfer function ranges from -1 to 1. Klimasauskas [16] suggests that sigmoid

neurons be preferred to determine average behavior and Tan based layers to

find deviations from normal. The application at hand also prompts us to use the

Tansig layer. Additionally our development environment the MATLAB® Neural

Network Toolbox also recommends Tansig layers for pattern recognition

problems and provides it as the default layer. The Tansig activation function has

been described in the section 4.1

24

4.4.1 Number of layers:

We have a linear layer of linear neurons at the input; the number of neurons in

this layer will be equal to the number of inputs that we have provided to the

networks. Using linear neurons at the input is a standard practice and is used

merely as an interface between the inputs and the hidden layers. In fact

MATLAB® Neural Network Toolbox does not count it as an independent layer.

There is no certain figure for the number of hidden layers to be used. Cybenko

[3] Hornik et al. [11] [12] show how a single layer of hidden neurons is capable of

adapting to complex functions. Survey papers on this field [8] [30] also reveal

how a single hidden layer of neurons is the most preferred option. Using

additional layers adds up complexities to the model and increases the time

required for training and simulation.

The framework described earlier has capabilities to generate, simulate networks

with multiple hidden layers. It can be seen from the code that the framework can

generate the number of layers specified by the user, and use user specified

number of layers for each layer. However the limited processing resources

available did not permit us to perform tests with several layers, hence we too

decided to use single layer of hidden neurons for this research.

The inputs were mapped in the input range of -1 to 1 by our massager. The

outputs were also to be mapped within this range. Naturally Tansig was the

25

output neuron of choice since it maps the inputs to this range. A single output

neuron was thus used at the output.

4.4.2 Number of Taps and Hidden Neurons:

The tapped delay line of the NARX network allows passing of past values to the

network. They make the data sequential unlike the original concurrent dataset.

Thus these taps set up a sense of time and correlation of past values.

The numbers of neurons are supposed to be related to the complexity of the

application at hand as each neuron in the hidden layer contributes weights and

flexibility to the network. There is no standard method to determine the number of

neurons to be used and several thumb rules are used. Mehta [21] has stated how

the architecture depends on these thumb rules and it is not necessary that they

work well.

Regarding the numerosity of neurons to be used in a network different thumb

rules have different opinion. Klimasauskas [16] suggests that there at least be 5

examples per weight. For our application of using 10 inputs and upto 4 taps with

240 training points – we have 240 examples hence we will be allowed upto 48

total weights and biases. The number of weights and biases in our structure can

be calculated as

Number of weights and biases = (I + 1) * H + (H + 1)* O

Where,

I = number of inputs (10 to 40)

26

H = Number of hidden neurons (to be determined)

O= outputs (1 i.e. daily prediction)

This would limit us to a range of 1 to 4 neurons.

The rule mentioned by Gallo [9] would suggest using twice the number as inputs

i.e. upto 80 neurons.

Bayesian regularization is a method that uses the LM algorithm and tries to

optimize the error and number of neurons both. This method id not optimized to

minimize error alone, also is more suited to function approximation applications.

However we ran jobs over it to get a rough number of neurons that it would

suggest. It used around a single neuron.

Different researchers have used 5 [5] or 20 [4] neurons in their applications.

Some have used extremely large number of neurons in their application [6]

Some researchers have used some kind of sensitivity analysis to determine the

number of neurons. These researchers use errors [6] or analyze behavior on the

test set to settle for a fixed architecture [5]. We are going to follow an adaptive

approach in determining the number of taps and neurons in this research.

Various policies for selecting a network in the adaptive system have been

discussed in the following section.

27

4.5 Policies for network selection

As discussed in the introduction section (Chapter 1) we propose an adaptive

system where the system will first train a set of networks on the training set, then

evaluate performance on the evaluation set. Then we use the results obtained on

the evaluation set to identify networks that are likely to make profits on the test

set.

We believe that a network that behaves satisfactorily on this evaluation data will

be a good candidate to make predictions for the test set (future). Now we need to

decide which performance parameter of the evaluation set will we actually use to

select a network. Popular performance parameters like mean square error, hit

rate or realized value can be used. Hence at this stage we decide to frame three

policies for selection of a network for the future. The policies are as follows:

policy 1: We will select a network that has minimum error on the evaluation set to

make predictions on the test set (future)

Policy 2: We will select a network that has maximum realized value on the

evaluation set to make predictions on the test set (future)

Policy 3: We will select a network that has maximum hit rate on the evaluation

set to make predictions on the test set (future)

We will simulate the system behavior for different time series and different time

horizons. We will analyze the behavior of each of these policies and determine

the best policy for identifying a network that would make profit in the future.

28

Chapter 5: Implementation

5.1 Comparison and selection of platforms

The research to be conducted will require an environment where different kinds

of neural networks can be generated, trained and evaluated. This environment

should provide for all the basic network architectures, training algorithms and

other features required by neural networks. It was preferable if this platform could

provide for several options for each of these features. This would allow us to test

the performance of the network across various settings and analyze the

improvement/degradation in the network behavior. Having these functionalities in

built would help us channel our resources on our problem at hand rather than

implementing existing standard algorithms and architectures.

Since we are also required to benchmark our network performance with other

standard methods like linear regression, technical indicators etc. it would be

helpful if he selected environment would allow us to easily encode the above

mentioned methods too.

The two environments that were considered for the task were the Java Object

Oriented Neural Network Environment - JOONE® [19] and MATLAB® Neural

Network Toolbox®

29

JOONE® is an open source Java framework to generate and run neural network

based applications. It consists of functions written in Java which are modularized

to provide flexibility and hence can be used across wide range of applications. It

also provides for elementary distributed support for training networks in parallel.

JOONE® also provides a GUI for generating, training and running neural

networks. However it does not allow customization to the degree required by our

research.

However JOONE® has a very limited set of architectures, algorithms and other

functionalities as compared to MATLAB® Neural Network Toolbox®. It was

observed that JOONE® based system takes longer training times as compared

to MATLAB® Neural Network Toolbox® systems. JOONE® does not have an

inbuilt NARX network unlike MATLAB®, which meant that additional network

structure would have to be constructed using the basic feed forward network.

Additionally there has been no update to JOONE® since January 2007. Several

bugs and errors pointed by users have not been fixed and many such issues

remain pending. There is no official support for JOONE® and the Wiki and FAQ

pages have been unavailable for quite some time. The documentation [20] lacks

detailed information on several fronts.

MATLAB® Neural Network Toolbox® on the other hand is a commercial,

professionally built framework. It has a large set of available architectures,

algorithms and related features. These have been implemented in an optimized

30

fashion and help in reducing training times as compared to JOONE®. MATLAB®

also has a dedicated Distributed Computing Toolbox® which can be used to train

and evaluate networks in parallel. MATLAB® also provides an elaborate users

manual explaining various function implementations and specifications. The code

of each of these functions is well commented and helps in improving the

understanding of their implementation. MATLAB® has excellent support for their

products in the form of helpdesk and user community.

Considering the factors mentioned above it was decided to use MATLAB®

Neural Network Toolbox® for our research.

Within MATLAB® we are going to write an additional framework of functions

which will help us customize the neural networks to our financial applications.

This framework of functions will provide abstraction from the internal

implementation and allow the user to set vital parameters while calling these

functions (as arguments). We will implement and evaluate our proposed

methodology via these functions. A detailed description of these functions and

their utility has been discussed in chapter 5 - Implementation.

31

5.2 Data for simulations:

5.2.1 Source:

Global Financial Database was chosen as the provider for data. Rutgers

University has an institutional subscription with the data vendor this would allow

us unlimited downloads of various time series. The vendor has a tool by which

we can organize various time series into a single worksheet and then download it

as csv or excel. Since Rutgers University has a subscription with the vendor it

was easy to get good customer and technical support – something that would not

have been difficult with free data vendors.

However the functions that have been written use the data from the .mat

extension files. Hence the user may choose to select data from any source

including free sources like Yahoo finance and arrange it in a format specified in

section 4.2. This data can now be used with the functions coded for this

research.

As a part of this research, when data was first simulated for the currency of

France, the NARX system along with the other systems made heavy losses. On

analyzing, we realized that the data provided for the exchange rate which

corresponded to that test set was faulty. Our data vendor promptly fixed the data

and the new sets for France were simulated and the results have been

incorporated in this research. This however brings to light a rare probability that

the data might be faulty and if not looked at carefully might lead to losses.

32

5.2.2 Time series:

Currency prices were used as target prices of inputs. Currency prices were used

as they are considered to be stable and not easily fluctuated by rumors like the

stock prices. This however does not mean that currency movements are easy to

predict. Dunis and Williams [5] have demonstrated how a returns series for

currency shows similarities to white noise and is not easy to predict. Our

research involves comparison of our system with several systems, hence we

select currency series as the value is highly dependent on the parameters that

we provide and not affected randomly by parameters like rumors that have not

been provided to these systems. This provides a fair competition ground for all

the systems involved.

We used the time series of exchange rates of the following countries United

Kingdom, France, India, and Canada. We used technical indicators and 2 other

currencies as inputs for each time series. Exchange rates of Japan and Australia

were used as exogenous inputs for all the series.

To add variation 2 new sets were created which would use relationships between

Gold series. A gold series was also tested. This series used gold price as target

and used the technical indicators, exchange rates of United Kingdom and Japan

as inputs. A series was also tested for Japanese exchange rate and used the

technical indicators, Gold price and Exchange rates of Japan as exogenous

inputs.

33

5.2.3 Data for training, evaluation and testing:

The performance of the system was tested over 6 datasets of 4 months each,

thus encompassing each series for 2 years. We used the most recent 2 years for

all the testing (May 2006 – April 2008)

Thus we tested the system over 6 time series of 6 data sets each (total of 36

datasets)

For predicting each of these test sets, we would reserve some amount of past

data for evaluation and some amount of data prior to that as the training data.

Thus as we move into consecutive test sets we would have to maintain a sliding

window approach to extract the training and evaluation data.

Regarding the ideal ratios for training, evaluation and testing data, the MATLAB®

Users guide [4] suggests a ratio of (60%:20%:20%). Gallo [9] Suggests that

(60%:20%:20%) and (60%:30%:10%) are the most popular ratios. We used the

(60%:20%:20%) proportion for our system. It was observed that adding more

training data did not improve results. Adding more data to the evaluation data too

deprived the training set of vital recent data and showed acute fall in

performance. Following is a chart representing the fall in the realized value of the

system when the same NARX system used 2:1 ratio between evaluation and test

data volume as compared to the standard 1:1

34

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Realized returns on Gold Series

Evaluation Vol=1

Evaluation Vol=2

Figure 8: Realized returns on Gold Series: 3:2:1 NARX Vs 3:1:1 NARX system

Figure 9: Data Usage for adaptive architecture

35

5.2.4 Targets for training: stationary or returns series?

Regression and prediction systems always use stationary data. The time series

that we have chosen for our research – like most of the time series are not

stationary but have some upward or downward trend. Such targets are not ideal

for training and predictions. Hence we use the returns series where each entry is

(current value-previous value)/previous value. A set of Gold datasets was

simulated using the stationary data seta and it was observed that it shows

degraded performance as compared to a system trained on returns series. Even

Dunis and Williams [5] have documented similar problems related to stationary in

exchange rates.

5.2.5 Inputs for training:

We use a mix of auto regression (past inputs), technical indicators and other

currencies as inputs for our system. They are listed as follows:

 Past returns of 2 exogenous values:

 Exchange rates of 2 other nations used as inputs. Many

neural network systems use associated series as additional

inputs

 Past values of Tech Indicators

o Standard RSI

o Standard Fast Stochastic

 Both of them are well known technical indicators

 Past values of actual asset and preprocessing data

36

 Past values provide a sense of autocorrelation. Past values

believed to have effect on current values.

The details of the individual inputs for each series can be found in appendix.

5.3 Data format and organization:

The data obtained from the data vendor Global financial data

(https://www.globalfinancialdata.com/) was in the form of excel/csv (comma

separated values) this data was converted into the MATLAB® compatible data

format namely .mat format. All the excel/csv (comma separated values) data was

converted to the MATLAB® format by using the xlsread command of the

MATLAB® environment.

Since the system was to be used over different assets like gold series and

currencies and the framework was to be made compatible for future research, it

was decided that the data should follow a fixed organization. The first two

columns allow the user to provide any two related time series that are to be used

as exogenous inputs to our network. We have used closing prices of other

exchange rates or gold price in our examples. The last 4 columns should

represent the open, high, low and close price of the asset to be predicted. Having

this predetermined data format and organization made rapid development and

compatibility of all framework functions possible. Users who want to

simulate/modify the work in the future can stay abstracted with the function

implementations and just alter the statistical/network parameters.

37

The sequence of columns in the data to be provided is as follows:

1. Related time series 1

2. Related time series 2

3. Opening price of time series to be predicted

4. High price of time series to be predicted

5. Low price of time series to be predicted

6. Close price of time series to be predicted

The functions coded for this research are extendible for experiments involving

more than 2 external time series. As long as the last 4 columns stay as specified,

the user can add as many series as his or her computational resources are able

to handle.

5.4 Data handling:

In this section we describe the functions that have been coded using MATLAB®

to implement our system.

dataCutter:

The NARX networks require training, validation and testing data for their

functioning, this data again needs to be provided as inputs and targets. Initial

data to be filled in the tapped delay lines needs to be provided separately as tap

data. The tap data also has to be split into inputs and targets.

As per our findings in section 5.2.3 we are going to use the 3:1:1 ratio for these

datasets. However we do not limit the future user of these functions to these

38

ratios alone. The user may prefer to use other ratios subject to the constraints

mentioned in 5.2.3

This function gives the user the freedom to cut the datasets from the available

dataset on the basis of these ratios. It cuts the test data forward from the test

point and the other 2 sets backwards. The data are output as sequential data

hence can be used in static as well as dynamic networks.

The function receives the following arguments. diffSet is a two dimentional

array as specified in the section 5.2. other arguments are integers.

 diffSet = The original data provided by user as described in section 5.2

 testPoint = The starting point for the test set (used to delimit the train,

evaluation and test data)

 testDur = The number of elements in test set (duration of testing)

 tap = Number of taps in the delay line

 trainVol = ratio of number of training data points to test data points

 valVol = ratio of number of evaluation data points to number of test data

points

The entire block below represents the input data. As specified in 5.2 the input

data is in the form of a two dimensional matrix. Different columns are different

time series, the last column is the time series to be predicted. Different rows

represent different instances in time.

39

Figure 10 : The data cutting scheme of the data Cutter function

The function will generate all the datasets according to the specifications of the

user and return them back to the calling function.

A standard naming scheme has been followed for the datasets to provide

abstraction from the actual generation process. The naming scheme is as

follows:

 name consists of 4 segments (e.g. 'train''Tap''In''S')

 segment 1 :

o train - refers to training set

o val - refers to validation set

40

o test - refers to validation set

 segment 2:

o Tap - implies it is data for tapped delay line

o Set - implies it is data for actual set

 segment 3:

o In - implies it is network input

o Out - implies it is network output

 segment 4:

o empty - Implies it is matrix data

o S - implies it is sequential data

Thus the function returns 12 datasets in sequential format that can be used

conveniently with the dynamic networks in MATLAB®.

mainSetCleaner:

This is a simple function used to eliminate not a number (NaNs) values from the

targets. This function is optional and may not be used by some network

implementations. Complete implementation and code available in the appendix.

diffGenerator:

This is a simple function used to create a difference or returns series of the

provided datasets. The outputs of this function are used by the preprocessor and

other functions. Complete implementation and code available in the appendix.

41

massage1/massageP (data preprocessors):

These functions are used for data preprocessing. They are named after the

colloquial term ‘massaging’ which is used for data preprocessing. The

massage1 function implements the pattern recognition approach described in the

methodology section, while the massageP function is used to implement the

function approximation approach. Complete implementation and MATLAB® code

of the function can be found in the appendix.

5.5 The technical indicator generators:

These functions generate Relative strength index (RSI), fast stochastic and

exponential moving averages (EMA) required by our research. To calculate these

values it is necessary to know the frequency or periodicity of data. This can be

provided by using the integer argument known as statP. If the data contains 5

values in a week (weekdays only) we provide the value 5. For assets where data

for all the 7 days is available, the user may provide 7. Thus instead of hard

coding these generators to our application or data, these functions receive the

statistical period (statP) of the data where the user can provide information

regarding the nature/periodicity of the data passed to it.

rsiGenerator:

RSI or the Relative strength index is a famous technical indicator used for

financial predictions [27]. We write this function to provide the RSI signal to our

42

neural network system, later this function shall also be used to analyze the

performance of RSI based predictive systems. The detailed description of RSI

and the associated formulas are provided under the Benchmarks section (6.2) of

this document.

This function receives the mainSet data as an argument. As described earlier,

the first two columns of mainSet provide two associated time series that serve as

the exogenous inputs to the NARX networks. It also receives the statP namely

the statistic period for the calculation. This is used to customize the RSI

generator for the frequency and nature of the data provided. Here we are going

to use the value 5 as our data has 5 entries per week for 5 working days. If 7

days data is available for an asset, it can be customized to it by using the value

of 7. Different frequencies like weekly, monthly data etc can also be taken care of

by using this parameter.

The detailed formulas for implementation can be found in the benchmarks

section (6.2) and the complete implementation of the function can be found in the

appendix

fstGenerator:

This function is used to generate the fast stochastic [28] of a given time series.

The concept of stochastic oscillator and fast stochastic is described in section 6.2

43

It receives the mainSet, and statP. Last 4 columns of mainSet which are the

open, high, low and close price of the asset to be predicted. These are used to

generate the intermediate values like %K, %D etc [28]. These parameters are

also discussed in section 6.2. The formulas and description for the

implementations is available in the benchmark section. This function provides the

following outputs

 KfstSet: Set of %K values for the time series

 DfstSet: Set of %D values for the time series (K smothered for 3 values)

 NfstSet: Set of %D values for the time series (K smothered for statP

values - Not used)

 fstSet: Set of calculated fast stochastic

We use only first, second and the last values in our system. The third value was

generated just as an add-on and is not a part of the standard definition of fast

stochastic. Complete implementation and MATLAB® code of the function can be

found in the appendix

macdGenerator:

This function was coded in order to generate the exponential moving averages

(EMA) for 1 and 2 statistical periods (1 week and 2 week) of the provided data.

Regarding EMA stockcharts.com [26] states that

“In order to reduce the lag in simple moving averages, technicians often
use exponential moving averages (also called exponentially weighted
moving averages). EMA's reduce the lag by applying more weight to

44

recent prices relative to older prices. The weighting applied to the most
recent price depends on the specified period of the moving average”.

The formula for moving average from the same source [26] is:

EMA (current) = ((Price (current) - EMA(prev)) x Multiplier) + EMA(prev)

Where "Multiplier" is equal to 2 / (1 + N) where N is the specified number of

periods.

We generate and use EMA for 1 and 2 statistical periods – in our case 5 and 10

days. Complete implementation and MATLAB® code of the function can be

found in the appendix.

5.6 Evaluation function:

nseval:

We will evaluate the signal of the network on the basis of several statistical

measures in order to implement the strategies mentioned in section 4.5. It was

decided to generate a dedicated function for this purpose – nseval. This

function receives the Network Signals as inputs and performs statistical

EVALuation of the quality of signal.

In this research we have decided to use the pattern recognition approach where

the user shall invest according to “buy”, “short” or “out of market” signals given by

the network. If however a user never wishes to come out of the market he may

continue to assume his previous “buy” or “short” signal whenever he gets out of

45

market signal. This policy however is not very safe and has not been tested.

However we have provided the user of the function to use this strategy by setting

the stratG input argument. We call such a strategy “never out of market” strategy

as the user is always either in “buy” or “short” mode.

The function receives the following input arguments:

 predSig = the predicted signal of a network (e.g. ny)

 masSig = the massaged signal (e.g. testSetOut) (used only to calculate

mse and mae)

 actSig = the actual signal values (e.g. testSetOutAct) (used to calculate

rest of statistics)

 tmargin = defines the thresholds described in section 4.3

 stratg = defines the satrategy (0=quick trading-used in this research and

explained in chapter 3 (Usage scenario) 1=never out of market -

explained above)

The function performs various operations and returns the following results:

 npu = number of predicted ups (total buy signals generated)

 hu = upward hit rate (hit rate of buy signals)

 npd = number of predicted downs (total sell signals generated)

 hu = downward hit rate (hit rate of sell signals)

 npd = number of total predictions (total of buy and sell signals)

 ht = total hit rate

46

 netVal =net value at end of trade (realized value of $1 investment at end

of test period)

 rmset = total rmse between predicted and actual preprocessed value

 maet = total mae between predicted and actual preprocessed value

MATLAB® uses a matrix based framework hence it is recommended to use

matrix operations and avoid loops. In order to optimize performance we have

used matrix operations instead of loops wherever possible. Complete

implementation and MATLAB® code of the function can be found in the appendix

5.7 Performance optimization:

As discussed in the introduction section our approach in this research is that of

generating several networks and selecting one network to make predictions in

the test set.

Since several networks were to be evaluated, keeping the networks in memory

would have occupied a lot of RAM space. To eliminate this problem each

network was generated the results on evaluation set are stored and then killed.

These results are stored in a two dimensional matrix. This two dimensional

matrix is analyzed based on policies described in section 4.5 and 6.1 and a

network is selected. The selected network is retrained using the same training

data and architecture. (In this research we do not retrain the network again – we

already have the result on the test set recorded. However if the system is to be

deployed the actual network can be retrained easily)

47

In order to generate and evaluate all the specified approach we use batch files as

specifies in the appendix. These batch files provide all the specified parameters

to the batchEl3 function. The batchEl3 function uses the various supporting

functions including the ones mentioned earlier and returns the ‘report’ on the

validation and test data. It additionally returns the validation and test signals to

allow the user to develop newer policies other than those mentioned in 4.5 and

6.1 if required in the future.

The batch file will call batchEl3 in parallel loops thus allocating the task to

different processors. Great speed ups can be obtained by using this approach.

This was achievable because we store only the results and do not hold the

networks in the memory and also because we are concerned with the final ‘report

card’ and sequence of generation is not important – thus we need not wait for a

particular architecture to complete its simulations before initiating the process for

the next one. (All our files were not run on parallel mode due to server privilege

issues). The chart below compares the times required by a batch of 40 networks

under normal and parallel (4 processing modules) executions on a 175 Opteron

processor 16 Gb RAM (Shared). The Opteron processor mentioned here has 4

cores and MATLAB® starts 4 processing modules which can simultaneously run

processes that are not interdependent. Thus the tests for parallel execution were

run on a quad core server and used the distributed computing toolbox of

MATLAB®. The time required is reduced to about one third (not one fourth

48

because of the processing overheads). Additional speedups can be obtained by

using more than 4 labs (MATLAB® processing modules – see glossary).

Time required by normal Vs parallel execution

0

50

100

150

200

250

300

350

400

450

500

Configuration

T
im

e
re

q
u

ir
ed

 (
S

ec
o

n
d

s)

Normal Execution

Parallel Execution

Figure 11: Comparison of times required by normal and parallel (4 labs)
execution

This is followed by execution of evaluation files which analyze the evaluation set

results as per the policies mentioned in 4.5 and 6.1 and return us a report stating

what results would have been received if those policies were adopted.

49

5.8 Function interaction, integration and execution

Figure 12: Integration and Integration diagram for the batchEl3 – The master
function that generates, trains, simulates and evaluates neural network.

50

The functions mentioned in the previous chapters are integrated first into the

function batchEl3. The diagram below represents this function and all the sub

functions that are called during its execution. Each of the blocks represents a

function (Except building a dataset and combiner – they are single line

MATLAB® commands). Arrows pointing to a block are the arguments that it

receives. Arrows that come out of it represent the outputs. The

functionality/algorithm of these individual functions and that of batchEl3 has

been explained in the implementation chapter. The sub functions in the diagram

are called from the top to the bottom. The arrows additionally help in interpreting

the sequence. Codes of each of these functions are available in the appendix.

The function batchEl3 as the name suggests is an element of a batch. This

function can be passed arguments including the number of taps and neurons and

receive a report of the behavior of that network. We can then use files like

batch2_06.m to set up for loops that can help us try out all the permutation and

combinations of number of taps and the number of neurons. The actual code can

be found in the appendix. Such a batch file helps us define a range for number of

taps and number of neurons. Running the batchEl3 within the loops as shown

in the code allows us to generate a report matrix which we save as .mat files.

Such a report matrix is then processed by functions that select a network based

on our policies and displays its behavior on test set. B2res is one such function

that implements the policy 4 that is described in section 6.1 in the results section

(Chapter 6). This is the policy which we finally select for our application.

51

The files can be executed in any standard MATLAB® installation that has the

Neural Network Toolbox®. The execution procedures for executing the files used

for this research are as follows:

The sequence of events explained above can be summarized as follows:

1. The batch file like batchCombined is executed.

2. batchCombined calls batchEl3 for all combinations in the predefined

range

3. Each batchEl3 performs the following actions

a. batchEl3 calls mainSetCleaner to clean the data

b. diffGenerator is called to generate the returns series

c. rsiGenerator is called to generate RSI, %D and %K

d. fstGenerator s called to generate fast stochastic

e. macdGenerator is called to generate moving averages

f. Data is organized

g. The data is preprocessed using the function masage1

h. dataCutter is called to generate the required datasets for

training, evaluation and testing

i. Neural network for the specified configuration is generated using

the function newnarxsp2

j. The network is trained using the train function

k. Network behavior is simulated on the evaluation and test sets using

the sim function

l. The simulated behavior is evaluated using the nseval function

52

m. All the outputs are combined returned to batchCombined

4. Values returned from several such batchEl3 executions are stored in a

two dimensional matrix.

5. This matrix is analyzed by function like B2res. This function returns us

results that would have been obtained on the test set by following policy 4

(Se section 4.5 and 6.1)

Windows/Linux GUI:

Type in BatchAll in the command window of MATLAB®. This will execute the

batch2_06, batch2_07 and B2res sequentially. As the networks are being

generated and simulated, the screen will display their number of taps, neurons

etc to serve as progress indicators. Finally the results of the simulation will be

available on the screen.

UNIX MATLAB® command prompt:

Typing in matlab at the command prompt of UNIX brings up the MATLAB®

command prompt. The same procedure discussed above for windows GUI can

be followed here.

UNIX Server:

On Unix server you cannot use the BatchAll as it points to three different files.

They can be combined into a file like batchCombined which is simply the

53

concatenation of the code contained in three files. The other option is to use a

bash script. The combined file can be executed as follows:

Type matlab <BatchCombined.m> batchComb.out and on the command

prompt

matlab indicates that this process is to be executed by the MATLAB® engine.

<BatchCombined.m > specifies the source file which is to be executed in this

process. batchComb.out is the name of the output file where the output is to be

redirected and indicates that this process is to be put in the background thus

returning the prompt to allow the user to do other activities.

Codes for all the files and functioned in this chapter are available in the appendix.

54

Chapter 6: Results

6.1 Comparison of network selection policies

Instead of adhering to a single architecture we are going to define a range of taps

and neurons and going to train and test networks all permutation and

combinations of taps and neurons within this range.

Taking into consideration the need for adaptability and the resources available

we decide to use taps up to 4 (4 taps would mean last 4 days behavior directly

related with the 5th day – we have a 5 day week) and up to 80 neurons. This

would give us 320 possible networks for each dataset.

A decision needs to be made how frequently the system is going to update its

architecture. High frequency will ensure that all the latest data has been

accounted for in the model however will require large computational capabilities.

Not changing a model for a long time period will cause the system to utilize less

recourses however will not be very efficient as it has been trained and evaluated

on data that is very old.

Looking at our computing constraints, we decided to train a network on the

training set (16 months in past to 4 months in past of test set) evaluate it over an

evaluation set (past 4 months from test set) and finally present results on the test

set (4 months).

55

Networks were generated and trained over the specified range. Now it was

necessary to set up rules that would help us determine networks that perform

well on our future (test) sets.

We tried out three policies mentioned in section 4.5 – Policies for network

selection. They are as follows:

 Policy 1: We will select a network that has minimum error on the

evaluation set to make predictions on the test set (future)

 Policy 2: We will select a network that has maximum realized value on the

evaluation set to make predictions on the test set (future)

 Policy 3: We will select a network that has maximum hit rate on the

evaluation set to make predictions on the test set (future)

If each of the following policies were to be followed, we would get the following

performance on various datasets.

56

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Gold UKP JAP CAD FRA INR

R
ea

li
ze

d
 v

al
u

es

Policy 1

Policy 2

Policy 3

Figure 13: comparison of realized values on the six assets by using Policy 1, 2
and 3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Gold UKP JAP CAD FRA INR

P
ro

fi
ta

b
li

ty Policy 1

Policy 2

Policy 3

Figure 14: comparison of profits on the six assets by using Policy 1, 2 and 3

Looking at the realized returns and the profitability we see that only the past

realized returns are a fair indicator of the expected behavior on the test set.

Behavior of hit rate is better than error, but still lagging to realize value.

57

Thus traditional statistical measures like error and Hit rate are not a very good

measure for comparison or indicator for future behavior of a network .Kaastra

and Boyd [15] have also stated that low error and profits are not synonymous in

trading.

Results show that realized value on the evaluation data is the best indicators of

behavior on the test data. However there are still some problems with this

approach. Since we are selecting the network with the maximum returns on the

evaluation data, we at times get networks which have made huge profits on the

evaluation sets – but are not generalized well. This means that they may make

huge profits on a certain section of the evaluation data and not fit well on one

part at all. Such networks if selected plainly considering their profit would not

guarantee good behavior on the next set.

58

Figure 15: A sample representation to demonstrate a possible non-generalized
output that makes large profits

In this diagram, blue dots represent the actual market movement, Green lines

and dots represent the predicted signal. Wherever we observe both the dots on

the same side, the network makes a profit and vice versa.

This output is very good on the later half of the evaluation set; however the

predictions on the first half are random. Thus this network would make large

profits, yet not be a good network to select for future predictions.

The following sketch is a sample representation of a network output that would

make high profits in one section and not much on the other. Such a network

would be selected to make predictions for the future, but would not give great

results on the test set.

59

In order to eliminate such behavior we decided to split the evaluation set into two

halves. Each of the networks in the set of 320 would receive a rank between 0.99

and 0 depending on its performance. The best performing network would receive

0.99 and the worst performing would receive 0 for each of the halves. We call the

ranking policies based on these ranks as ‘Percentile Ranking Policy’.

 Policy 4: Rank the networks on the basis of realized value on both the

halves of evaluation set and add up these ranks. Select the network with

maximum total to make predictions on the testing set.

 Policy 5: Rank the networks on the basis of realized value and hit rates on

both the halves of evaluation set and add up these ranks. Select the

network with maximum total to make predictions on the testing set.

 Policy 6: Rank the networks on the basis of realized value, upward hit

rates and downward hit rates on both the halves of evaluation set and add

up these ranks. Select the network with maximum total to make

predictions on the testing set.

The realized values and profits earned by following each of the generalization

rules are:

60

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Gold UK Japan Canada France India

R
ea

li
ze

d
 V

al
e

Policy 4

Policy 5

Policy 6

Figure 16: Comparison of realized value the six assets by using Policy 4, 5 and 6

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Gold UK Japan Canada France India

P
ro

fi
ta

b
li

ty Policy 4

Policy 5

Policy 6

Figure 17: comparison of profits on the six assets by using Policy 4, 5 and 6

Thus we observe that using the percentile ranks of realized values alone was

sufficient. Adding hit rates does not improve the results and makes them

unstable. Sufficient generalization was achieved by splitting the evaluation set

into two. Hence jobs with higher number of sets for generalization were not run..

61

The individual tables displaying the performance at intermediate stages are

available in the appendix.

6.2 Benchmarks:

6.2.1 Performance criteria:

As observed earlier, Thus traditional statistical measures like error and Hit rate

are not a very good measure for comparison or indicator for future behavior of a

network .Kaastra and Boyd [15] have also stated that low error and profits are not

synonymous in trading. Since we are developing a neural network based system

for trading its true performance needs to be observed in the form of financial

terms and not statistical error etc. It is finally the money making ability of the

network that is going to serve as its final test. Hence we are going to compare

the realized value - The total value of investment (1$) at the end of all test

periods or profitability – The total profit earned at the end of all the periods at the

end of all test sets (on an investment of 1$)

6.2.2 Benchmarks systems:

6.2.2.1 Linear regression:

Since we use neural networks (which are non-linear regression models), we

need to compare their performance with standard linear models to justify the

need for non linear models. We will use the same data as used by the neural

62

network for this linear model. This linear model will be used to make predictions

just like our network. The targets for the linear system for training will be the

return series. The inputs will be the same inputs like our network we use the

standard function ‘regress’ to predict the values. Our very same train set is used

to set the regression weights, and this regression function is used to generate

predicted values. We use these values to generate buy and short decisions.

The code and implementation details can be found in the appendix.

6.2.2.2 Technical Indicator – Relative strength Index:

Relative strength index (RSI) is a famous technical indicator for time series

analysis

According to investopedia.com [13] RSI is defined as

“A technical momentum indicator that compares the magnitude of recent
gains to recent losses in an attempt to determine overbought and oversold
conditions of an asset”

It is calculated by the formula

RSI = 100 – (100/ (1+Rs))

The formulas are also available on stockcharts.com [27]. Stockcharts.com states

“Developed by J. Welles Wilder and introduced in his 1978 book, New
Concepts in Technical Trading Systems, the Relative Strength Index (RSI)
is an extremely useful and popular momentum oscillator. The RSI
compares the magnitude of a stock's recent gains to the magnitude of its
recent losses and turns that information into a number that ranges from 0
to 100. It takes a single parameter, the number of time periods to use in
the calculation.”

Stockcharts.com provides the formulas for calculation for Rs and related terms.

We have used those formulas to calculate the RSI indicators, these formulas

63

have been customized to our 5 day week data instead of 7 day week. The neural

network uses these RSI values as inputs; hence we should compare the

performance of plain RSI system and the neural network approach.

The code and implementation details can be found in the appendix.

6.2.2.3 Technical Indicator – Fast Stochastic:

Fast stochastic is also a very famous technical indicator. Stockcharts.com [28]

states

“Developed by George C. Lane in the late 1950s, the Stochastic Oscillator
is a momentum indicator that shows the location of the current close
relative to the high/low range over a set number of periods. Closing levels
that are consistently near the top of the range indicate accumulation
(buying pressure) and those near the bottom of the range indicate
distribution (selling pressure).”

The website also provides formulas for calculating the individual parameters like

%D, %K etc. Explanations for these factors can be found in section 5.5 and

glossary.

% K is calculated as

100 * ((Recent close - Lowest low) / (Highest high – Lowest low))

%D is calculated as 3 period moving average of %K

We have implemented the basic oscillator that uses the difference between these

parameters to generate signals. We feed our network with this signal. We will

also benchmark our system against this stochastic oscillator.

64

6.2.2.4 Neural Networks systems:

Best case fixed architecture hypothetical NARX systems:

We compare the performance of our system with the performance of fixed

architecture neural networks that adhere to the specified thumb rules. As per the

discussion above, we will compare our dynamic system with NARX systems

which have 1, 5, 20, 80 neurons. The taps of these systems will be the taps that

have given best performance in the test sets with that number of neurons. Please

note that these numbers of taps have been determined by analyzing the test sets

and were not known before simulation on the test set. Hence we consider these

systems as best case fixed architecture hypothetical systems.

Fixed architecture static systems:

To evaluate the performance against fixed architecture static systems (no delay

lines) we simulate the behavior of 1, 5, 20, 80 neuron networks which have only

single past value (no time series delay line). Comparison with these systems will

show us if it is beneficial to use our system as compared to static systems.

6.2.2.5 Financial Baselines:

To examine the financial validity of our model w e will compare the performance

with financial baselines like all buy (If a buyer had bought that asset for the entire

duration what would the realized value be) and all short (If a buyer had short that

65

asset for the entire duration what would the realized value be). We will compare

our performance with the outcomes of these financial policies.

6.3 Performance analysis:

We hereby present the results of our experiments executed by using the

methodology and framework mentioned above.

In table 2 we compare the performance of our system with the various

benchmarks mentioned in the benchmarks section over all the test sets spanning

duration of two years.

NARX All Buy All Short fst RSI Lin N1 N5 N20 N80 F1 F5 F20 F80

Gold 1.61 1.53 0.47 1.55 1.06 0.57 0.85 1.32 1.25 1.23 0.82 1.28 1.21 0.61

UK 1.26 1.13 0.87 0.92 1.06 0.90 0.98 1.08 1.20 1.00 0.99 0.89 1.20 0.97

JAP 1.46 1.16 0.84 1.02 0.95 1.08 1.26 1.28 1.21 1.15 1.33 1.19 1.07 0.92

CAD 1.15 1.13 0.87 1.06 0.92 0.82 0.94 0.97 1.09 1.09 1.07 0.93 1.04 0.99

FRA 1.25 0.78 1.22 0.82 0.81 0.92 0.83 0.99 1.01 1.09 1.02 0.88 0.98 1.07

IND 1.14 0.89 1.11 0.91 0.92 1.05 1.03 1.02 1.06 0.97 1.04 0.98 1.06 0.97

Table 2: Comparison of realized values by using various predictive systems

The table on the previous page (Table 2) gives that realized value at the end of

two years by the use of various strategies. The tables showing period wise

progressions and returns of individual periods are available in the appendix.

66

We have plotted the period wise progression of realized value in the form of 3D

charts just to compare the performance with different systems. Different charts

have been generated for each of the asset.

M
20

06

S
20

06

J
20

07

M
 2

00
7

S
 2

00
7

J
20

08

M
 2

00
8

N
A

R
X fs

t R
S

I

L
in

2 N
1 N

5

N
2

0

N
8

0 F
1 F

5

F
2

0
F

8
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
e

a
liz

e
d

 r
e

tu
rn

Time

System

Gold

NARX

fst

RSI

Lin2

N1

N5

N20

N80

F1

F5

F20

F80

Figure 18: Period wise realized value for the investment in gold.

67

M
20

06

S
20

06

J
20

07

M
 2

00
7

S
 2

00
7

J
20

08

M
 2

00
8

N
A

R
X fs

t

R
S

I

Li
n2 N

1 N
5

N
20 N

80 F
1 F
5

F
20 F
80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
ea

liz
ed

 r
et

u
rn

s

Time

System

UK currency

NARX

fst

RSI

Lin2

N1

N5

N20

N80

F1

F5

F20

F80

Figure 19: Period wise realized value for the investment in UK currency.

68

M
20

06

S
20

06

J
20

07

M
 2

00
7

S
 2

00
7

J
20

08

M
 2

00
8

N
A

R
X fs

t

R
S

I

Li
n2 N

1 N
5

N
20 N

80 F
1 F

5
F

20 F
80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
ea

li
ze

d
 r

et
u

rn
s

Time

System

Japan Currency

NARX

fst

RSI

Lin2

N1

N5

N20

N80

F1

F5

F20

F80

Figure 20: Period wise realized value for the investment in UK currency.

M
20

06

S
20

06

J
20

07

M
 2

00
7

S
 2

00
7

J
20

08

M
 2

00
8

N
A

R
X fs

t

R
S

I

Li
n2

N
1 N

5 N
20 N

80
F

1 F
5 F
20 F

80

0

0.2

0.4

0.6

0.8

1

1.2

R
ea

li
ze

d
 R

et
u

rn

Time

System

Canada Currency

NARX

fst

RSI

Lin2

N1

N5

N20

N80

F1

F5

F20

F80

Figure 21: Period wise realized value for the investment in Canada currency

69

M
20

06

S
20

06

J
20

07

M
 2

00
7

S
 2

00
7

J
20

08

M
 2

00
8

N
A

R
X fs

t

R
S

I

Li
n2 N

1 N
5

N
20 N

80 F
1 F
5

F
20 F
80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
ea

li
ze

d
 v

al
u

e

Time

System

France Currency

NARX

fst

RSI

Lin2

N1

N5

N20

N80

F1

F5

F20

F80

Figure 22: Period wise realized value for the investment in France currency.

70

M
20

06

S
20

06

J
20

07

M
 2

00
7

S
 2

00
7

J
20

08

M
 2

00
8

NARX
fst

RSI
Lin2

N1
N5

N20
N80

F1
F5

F20
F80

0

0.2

0.4

0.6

0.8

1

1.2

R
ea

li
ze

d
 V

al
u

e

Time

System

India Currency

NARX

fst

RSI

Lin2

N1

N5

N20

N80

F1

F5

F20

F80

Figure 23: Period wise realized value for the investment in India currency.

The final realized investment of each of the systems is presented asset wise in

the graphs below

71

Gold

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

N
A

R
X

A
ll

B
uy

A
ll

S
ho

rt fs
t

R
S

I

Li
n

N
1

N
5

N
20

N
80 F
1

F
5

F
20

F
80

Predictive Systems

F
in

al
 r

ea
li

ze
d

 v
al

u
es

Gold

Figure 24: Final realized values in Gold investment, across various systems

UK

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

N
A

R
X

A
ll

B
uy

A
ll

S
ho

rt fs
t

R
S

I

Li
n

N
1

N
5

N
20

N
80 F
1

F
5

F
20

F
80

Predictive Systems

F
in

al
 r

ea
li

ze
d

 v
al

u
es

UK

Figure 25: Final realized values in currency of UK, across various systems

72

JAPAN

0

0.2
0.4

0.6

0.8

1
1.2

1.4

1.6

N
A

R
X

A
ll

B
uy

A
ll

S
ho

rt

F
st

R
S

I

LI
N

N
1

N
5

N
20

N
80 F
1

F
5

F
20

F
80

Predictive Systems

F
in

al
 r

ea
li

ze
d

 v
al

u
es

JAP

Figure 26: Final realized values in currency of Japan, across various systems

CANADA

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

N
A

R
X

A
ll

B
uy

A
ll

S
ho

rt fs
t

R
S

I

Li
n

N
1

N
5

N
20

N
80 F
1

F
5

F
20

F
80

Predictive Systems

F
in

al
 r

ea
li

ze
d

 v
al

u
es

CAD

Figure 27: Final realized values in currency of Canada, across various systems

73

FRANCE

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

N
A

R
X

A
ll

B
uy

A
ll

S
ho

rt fs
t

R
S

I

Li
n

N
1

N
5

N
20

N
80 F
1

F
5

F
20

F
80

Predictive System

F
in

al
 R

ea
li

ze
d

 V
al

u
es

FRA

Figure 28: Final realized values in currency of France, across various systems

INDIA

0.00

0.20

0.40

0.60

0.80

1.00

1.20

N
A

R
X

A
ll

B
uy

A
ll

S
ho

rt fs
t

R
S

I

Li
n

N
1

N
5

N
20

N
80 F
1

F
5

F
20

F
80

Predictive Systems

R
ea

li
ze

d
 v

al
u

es

IND

Figure 29: Final realized values in currency of India, across various systems

In order to give an overview of performance, we consider an investment whereby

one sixth of the initial investment (1$/6) was invested in each of the systems. The

74

final total realized value by following each of the following systems would be as

follows:

One Sixth Approach

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40
N

A
R

X

A
ll

B
uy

A
ll

S
ho

rt fs
t

R
S

I

Li
n

N
1

N
5

N
20

N
80 F
1

F
5

F
20

F
80

Predictive Systems

F
in

al
 r

ea
li

ze
d

 v
al

u
es

One Sixth
approach

Figure 30: Final realized values by investing an all 6 assets, across various
systems.

By looking at the above charts it is clear that the NARX based adaptive system

that we presented performs better than the other benchmark systems that we

defined earlier.

While comparing with financial baselines like the All Buy and All Short it should

be noted that these systems invest your money in the market for all 80 days in

each of our test set. Whereas our NARX based system roughly gives out of

market signal for 10 days in each test set. The individual figures can be found in

the table in the appendix.

75

I we were to equate the returns of our system for 80 days of investment, the

comparison of the NARX system and financial baselines would look as follows:

Equalized values of Narx System

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Gold UK JAP CAD FRA IND One Sixth
approach

Asset

R
ea

li
ze

d
 v

al
u

es

NARX (80)

All Buy

All Short

Figure 31: Comparison of 80 day equalized values of NARX system with financial
baselines

This supports and validates our claim that NARX systems hold financial viability

and perform better than the baselines.

The individual period wise tables in the appendix demonstrate that the NARX

system selected networks with different number of taps and neurons whenever

possible. Thus the system found different combinations to be best suited for the

data at different time frames. Lower numbers of neurons are required when less

computation is required to establish a pattern and more neurons are required

when more computation is required. Thus it is believed that large numbers of

neurons refer to a time frame where the underlying data is very complex. Future

76

work will involve associating the number of neurons selected with parameters like

volatility.

6.4 A word of caution:

As mentioned in section 5.2 faulty time series or a time series with random

behavior might lead to losses. Though in our simulation set there has never been

sudden random behavior, in case of extreme conditions like war etc. it is possible

that the time series behaves randomly. It is hence advisable that the user of the

system has some basic knowledge in the field of finance. This system is to be

preferably used as an advisory tool and the results should not be followed blindly.

77

Chapter 7: Conclusion and future work

7.1 Conclusion

We had focused our research on developing neural network based methodology

which could earn profits via trading on different assets. As opposed to the

standard static approach we decided to follow a strategy where the system could

select a network from amongst multiple trained networks and use them in the

predictions of the future sets.

The results that we have presented in the section above allow us to draw the

following inferences.

The NARX based adaptive strategy is financially viable and outperforms the

financial baselines.

The NARX based adaptive strategy outperforms standard implementations of

technical indicators like fast stochastic, relative strength index, and linear

regression

The NARX based adaptive strategy that we proposed performs better that the

usage of a fixed architecture NARX system and non dynamic feed forward

networks

Using NARX was beneficial as it allowed us to alter input taps as well as

neurons. Simulations have revealed that an adaptive feed forward network that

varies the number of neurons alone [14] would not have performed as well as

78

NARX system that we proposed. This can be inferred from last three tables in the

appendix.

The results of this system should be monitored and not be followed blindly. Our

experience on the corrupted data series mentioned earlier demonstrates possible

faults. Hence they should be decision making tools and not final decision makers.

7.2 Future work:

Portfolio optimization: Rules can be derived to identify which of the generated

signals is more reliable and invest on that asset in portfolio of multiple assets.

Also the system is out of market about 1/8 th period – adding opportunities for

portfolio optimization.

Generating multiple networks and Generalization rules for networks with different

thresholds, Multilayer architectures, large number of taps, multiple exogenous

inputs – this effectively implies pushing the boundaries of current research.

Using second set of networks for network selection – investigation into various

complex statistical systems or neural network based systems to select a neural

network from the set of pre-trained networks.

Improving performance of current system if possible by fusing various input

selection methodologies.

79

80

References:

1) D. Barker. “Analysing financial health: Integrating neural networks and
expert systems”, PC AI, 1990

2) E. Collins, S. Ghosh, C. Scofield, “An application of a multiple neural
network learning system to emulation of mortgage underwriting
judgments”, 1988., IEEE International Conference on Neural Networks,
1988

3) G. Cybenko, “Approximation by superpositions of a sigmoidal function”.
Mathematics of Control, Signals, and Systems (MCSS) – Springer, 1989

4) H. Demuth, M. Beale, M. Hagan,”MATLAB Neural Network Toolbox 5,
Users Guide”, 2007

5) C. Dunis, M. Williams, “Modeling and Trading the EUR/USD Exchange
Rate: Do Neural Network Models Perform Better?”, Liverpool Business
School and CIBEF, 2002

6) G. Dutta, P. Jha, A. Laha, N. Mohan, “Artificial Neural Network Models for
Forecasting Stock Price Index in the Bombay Stock Exchange”, Journal of
Emerging Market Finance, 2006.

7) S. Dutta, S. Shekhar, “Bond rating: a nonconservative application of
neural networks Neural Networks, 1988.” IEEE International Conference
on neural networks, 1988

8) Fadalla, L. Chen-Hua, “An Analysis of the Applications of Neural Networks
in Finance”, Interfaces - Volume 31 , Issue 4 (July 2001) ISSN:0092-
2102

9) C. Gallo, “Artificial Neural Networks in Finance Modelling”,
ideas.repec.org, 2005

10)S. Ghosh and C. Scotfield, “An application of a multiple neural-network
learning system to emulation of mortgage underwriting judgments,” in
Proc. IEEE Conf. Neural Networks, 1988.

11)K. Hornik, “Approximation capabilities of multilayer feedforward networks”,
Neural Networks - portal.acm.org, 1991

12)K. Hornik, Stinchcombe et al., “Multilayer feedforward networks are
universal approximators”, ACM, 1989

81

13)investopedia.com, “Relative strength index (RSI)”, at:
http://www.investopedia.com/terms/r/rsi.asp

14)Java Object Oriented Neural Engine, “The JOONE financial forecast
tutorial on Joone wiki”, at: http://www.jooneworld.com/ (exact author/link
cannot be provided as the Wiki is now unavailable)

15)Kaastra, M. Boyd, “Designing a Neural Network for Forecasting Financial
and Economic Time Series”, Neurocomputing, 1996.

16)CC Klimasauskas, “Applying neural networks. Neural Networks in Finance
and Investing”, 1993

17)RA. Marose, “A financial neural-network application”, AI Expert, 1990

18)L. Marquez, T. Hill, R. Worthley, W. Remus, “Neural network models as an
alternative to regression”, Proceedings of the 24th Annual Hawaii
International Conference on System Sciences, IEE Comput. Soc. Press,
Kauai, Hawaii, Vol. 4 pp.129-35.1991

19)P. Marrone, Java Object Oriented Neural Engine, at:
http://www.jooneworld.com/

20)P. Marrone, “JOONE complete guide”, at: http://www.jooneworld.com/

21)M. Mehta, “Foreign Exchange Markets”, 176-198, Neural Networks in the
Capital Markets, John Wiley, Chichester, 1995.

22)MD. Odom, R. Sharda, “A neural network model for bankruptcy
prediction”, 1990 IJCNN International Joint Conference on neural
networks, 1990.

23)W. Raghupathi, L. Schkade, BS. Raju, “A neural network approach to
bankruptcy prediction”, Neural Networks in Finance and Investing, 1991

24)E. Rahimian, S. Singh, T Thammachote, R Virmani. “Bankruptcy
prediction by neural network”, Neural Networks in Finance and Investing,
1993

25)R. Sharda, RB. Patil, “Connectionist approach to time series prediction: an
empirical test Journal of Intelligent Manufacturing”, Springer, 1992

26)stockcharts.com, “Moving averages”, at:
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicat
ors:moving_averages

82

27)stockcharts.com, “Relative strength index”, at:
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicat
ors:relative_strength_index_rsi

28)stockcharts.com, “Stochastic oscillators (Fast, Slow and Full)”, at:
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicat
ors:stochastic_oscillator

29)AJ. Surkan, JC. Singleton, “Neural networks for bond rating improved by
multiple hidden layers. Neural Networks”, 1990 IJCNN International Joint
Conference, 1990

30)M. Zekic. “Neural Network Applications in Stock Market Predictions”,
University of Josip Juraj Strossmayer in Osijek, Croatia, 1998

83

Glossary of terms:

 %D: It is the 3 day simple moving average of %K. Explained in section 6.2
 %K: It is the statistical parameter used to calculate the fast stochastic.

Explained in section 6.2
 EMA: Exponential moving average. Explained in section 5.5
 Fast stochastic: A technical indicator used to forecast financial time

series. Explained in section 5.5
 Labs (MATLAB®): refers to the processing modules started by

MATLAB®. The parallel and distributed toolbox can start multiple
MATLAB® processing modules (labs) that can process non-dependent
processes simultaneously

 MAE: mean absolute error
 MSE: Mean square error
 NARX: nonlinear autoregressive network with exogenous inputs.

Explained in section 4.1
 Policy: The rule that we set up for selection of a network for the future.

Policies have been discussed in section 4.5 and 6.1
 RSI: Relative strength index. Explained in section 5.5
 Sigmoid transfer function: A type of neural network transfer function or

activation function. Explained in section 4.1
 Statistical period (statP): an integer input received by some functions in

this research which helps the network to determine the periodicity of the
input data. If the input data has values for 5 working days only use 5. If
data is available for all 7 days use 7

 Tansig transfer function: A type of neural network transfer function or
activation function. Explained in section 4.1

 Taps: delayed inputs to a neural network. Explained in section 4.1
 Technical indicators: Statistical parameters that are calculated to

analyze a financial time series. They can be plotted on the time series
charts for trend analysis. (www.stockcharts.com)

84

Appendix A:

Function: dataCutter

function
[trainTapInS,trainTapOutS,trainSetInS,trainSetOutS,valTapInS,valTapOutS
,valSetInS,valSetOutS,testTapInS,testTapOutS,testSetInS,testSetOutS]=da
taCutter(diffSet,testPoint,testDur,tap,trainVol,valVol)

% RATIONALE:
% - This function is used to cut data into the data sets required for
neural network training, validation and testing.
% - Different papers suggest different ratio of
training:validation:testing data.
% - This function gives the user the freedom to cut the datasets from
input data on the basis of these ratios. It cuts the test data forward
from the test point and the
% other 2 sets backwards.
% - The data are output as sequential data hence can be used in static
as well as dynamic networks

% Cuts the data into the sets required for the network

%INPUTS
%diffSet = The original set to cut
%testPoint = The starting point for the test set
%testDur = The number of elements in test set (duration of testing)
%tap = Number of taps in the delay line
%trainVol = Volume of training data (training elements :test elements)
%valVol = Volume of validation set (validation elements:test elements)

%OUTPUTS
% name consists of 4 segments
% (e.g. 'train''Tap''In''S')
% segment 1 :
% train - refers to training set
% val - refers to validation set
% test - refers to validation set
% segment 2:
% Tap - implies it is data for tapped delay line
% Set - implies it is data for actual set
% segment 3:
% In - implies it is network input
% Out - implies it is network output
% segment 4:
% empty - Implies it is matrix data
% S - implies it is sequential data

testPoint;
valPoint=testPoint-(valVol*testDur);
trainPoint=valPoint-(trainVol*testDur);

85

trainTapIn=diffSet(trainPoint-tap:trainPoint-1,1:end-1);
trainTapOut=diffSet(trainPoint-tap:trainPoint-1,end:end);

trainSetIn=diffSet(trainPoint:valPoint-1,1:end-1);
trainSetOut=diffSet(trainPoint:valPoint-1,end:end);

valTapIn=diffSet(valPoint-tap:valPoint-1,1:end-1);
valTapOut=diffSet(valPoint-tap:valPoint-1,end:end);

valSetIn=diffSet(valPoint:testPoint-1,1:end-1);
valSetOut=diffSet(valPoint:testPoint-1,end:end);

testTapIn=diffSet(testPoint-tap:testPoint-1,1:end-1);
testTapOut=diffSet(testPoint-tap:testPoint-1,end:end);

testSetIn=diffSet(testPoint:testPoint+testDur-1,1:end-1);
testSetOut=diffSet(testPoint:testPoint+testDur-1,end:end);

% Transpose data and convert to sequential
trainTapInS = con2seq(trainTapIn');
trainTapOutS = con2seq(trainTapOut');

valTapInS = con2seq(valTapIn');
valTapOutS = con2seq(valTapOut');

testTapInS = con2seq(testTapIn');
testTapOutS = con2seq(testTapOut');

trainSetInS = con2seq(trainSetIn');
trainSetOutS = con2seq(trainSetOut');

valSetInS = con2seq(valSetIn');
valSetOutS = con2seq(valSetOut');

testSetInS = con2seq(testSetIn');
testSetOutS = con2seq(testSetOut');

end

Function: mainSetCleaner

function mainSet = mainSetCleaner(mainSet)
% RATIONALE: Data cleaner to remove NAN's from the targets.

% INPUT: mainSet (raw)
% OUTPUT: mainSet (clean)

outSet=mainSet(:,end);
mainSet=mainSet';
mainSet(:,isnan(outSet'))=[];

86

mainSet=mainSet';

end

Function:diffGenerator

function diffSet=diffGenerator(mainSet)
% RATIONALE: Generates the returns series for the mainSet
% INPUT: mainSet
% OUTPUT: Corresponding diffSet

diffSet=diff(mainSet)./mainSet(2:end,:);
end

Functions massage1/massageP

function diffSet=massage1(diffSet,valSetOutAct)

% RATIONALE: This function is used to encode the Targets (Pattern
recognition)

% INPUTS:
% diffSet: The returns series;
% valSetOutAct: The actual targets of evaluation set.

% OUTPUTS:
% diffSet: Returnes the massaged diffSet

% Setting thresholds
Set=diffSet(:,end);
ucutavg=mean(valSetOutAct(valSetOutAct>0))*1.5;
dcutavg=mean(valSetOutAct(valSetOutAct<0))*1.5;

% information encoding - generating the targets
Set=zeros(size(diffSet(:,end)));
a=find(diffSet(:,end)>ucutavg);
Set(a)=1;
b=find(diffSet(:,end)< (dcutavg));
Set(b)=(-1);
Set=(mapminmax(Set'))';
diffSet(:,end)=Set;

% Removing constants and fixing unknowns
diffSet=diffSet';
diffSet=fixunknowns(diffSet);
diffSet=removeconstantrows(diffSet);
diffSet=diffSet';

end

87

function diffSet=massageP(diffSet,valSetOutAct)
% RATIONALE: This function is used to encode the Targets (Function
approximation)

% INPUTS:
% diffSet: The returns series;
% valSetOutAct: The actual targets of evaluation set.

% OUTPUTS:
% diffSet: Returnes the massaged diffSet

% Removing outliers
Set=diffSet(:,end);
trainVal=[valSetOutAct'];
ucutavg=mean(trainVal(trainVal>0))*20;
dcutavg=mean(trainVal(trainVal<0))*20;

% Encoding information
a=find(diffSet(:,end)>ucutavg);
Set(a)=1;
b=find(diffSet(:,end)< (dcutavg));
Set(b)=(-1);
Set=(mapminmax(Set'))';
diffSet(:,end)=Set;

% Removing constants and fixing unknowns
diffSet=diffSet';
diffSet=fixunknowns(diffSet);
diffSet=removeconstantrows(diffSet);
diffSet=diffSet';

end

function: rsiGenerator

function rsiSet= rsiGenerator(mainSet,statP)

% RATIONALE: provides the RSI for the provided set

% INPUTS:
% mainSet - the input dataset. OHLC are the last 4 columns
% statP - statisical period e.g. 5 for 5 day week, 7 for 7 day week, 4
for 4 week month etc.

% OUTPUTS:
% rsiSet - the RSI values

Set=diff(mainSet(:,end));
rsiSet=zeros(length(Set),1);
ADrsiSet=Set.*(Set>0);

88

DErsiSet=abs(Set.*(Set<0));
GrsiSet=zeros(length(Set),1);
LrsiSet=zeros(length(Set),1);
GrsiSet(statP)= mean(ADrsiSet(1:statP));
LrsiSet(statP)= mean(DErsiSet(1:statP));
rsiSet(statP)=100-(100/(1+(GrsiSet(statP)/LrsiSet(statP))));

for c=(statP+1):length(Set)
 GrsiSet(c)= ((GrsiSet(c-1)*(statP-1))+ADrsiSet(c))/statP;
 LrsiSet(c)= ((LrsiSet(c-1)*(statP-1))+DErsiSet(c))/statP;
 RS=GrsiSet(c)/LrsiSet(c);
 rsiSet(c)=100-(100/(1+RS));
end

rsiSet=(mapminmax(rsiSet'))';
end

Function: fstGenerator

function [fstSet KfstSet NfstSet DfstSet]=fstGenerator(mainSet,statP)
% RATIONALE: provides the Fast Stochastic values for the provided set

% INPUTS:
% mainSet - the input dataset. OHLC are the last 4 columns
% statP - statisical period e.g. 5 for 5 day week, 7 for 7 day week, 4
for 4 week month etc.

% OUTPUTS:
% KfstSet - K values of Fst
% DfstSet - D values of Fst (k smoothed for 3 values)
% NfstSet - Highly smoothed K (over statP values)
% DfstSet - The fast stochastic

Set=diff(mainSet(:,end));
cl=mainSet(2:end,end);
lo=mainSet(2:end,end-1);
hi=mainSet(2:end,end-2);
KfstSet=zeros(length(Set),1);
DfstSet=zeros(length(Set),1);
NfstSet=zeros(length(Set),1);

for c=(statP):length(Set)
 KfstSet(c)=100*((cl(c)-min(lo(c-statP+1:c)))/(max(hi(c-statP+1:c))-
min(lo(c-statP+1:c))));
 DfstSet(c)=mean(KfstSet(c-2:c));
 NfstSet(c)=mean(KfstSet(c-statP+1:c));
end

fstSet=KfstSet-DfstSet;
fstSet=(mapminmax(fstSet'))';

end

89

Function: macdGenerator

function [ema1Set ema2Set macdSet] = macdGenerator(mainSet,statP)
% RATIONALE: provides the exponential moving average values for the
provided set

% INPUTS:
% mainSet - the input dataset. OHLC are the last 4 columns
% statP - statisical period e.g. 5 for 5 day week, 7 for 7 day week, 4
for 4 week month etc.

% OUTPUTS:
% ema1set - ema over 1 statistical period
% ema2set - ema over 2 statistical period
% macdSet - Difference between ema1 and ema2 . Not used by the neural
network

Set=diff(mainSet(:,end));
cl=mainSet(2:end,end);
ema1Set=zeros(length(Set),1);
ema2Set=zeros(length(Set),1);

ema1Set(statP)= mean(cl(1:statP));
ema2Set(statP*2)=mean(cl(1:statP*2));

for c=(statP+1):length(Set)
 ema1Set(c)=ema1Set(c-1)+((2/(statP+1))*(mainSet(c)-ema1Set(c-1)));
end

for c=(2*statP+1):length(Set)
 ema2Set(c)=ema2Set(c-1)+((2/(2*statP+1))*(mainSet(c)-ema2Set(c-
1)));
end

macdSet=ema2Set-ema1Set;
macdSet=(mapminmax(macdSet'))';

end

Function: nseval

function [ema1Set ema2Set macdSet] = macdGenerator(mainSet,statP)
% RATIONALE: provides the exponential moving average values for the
provided set

% INPUTS:
% mainSet - the input dataset. OHLC are the last 4 columns

90

% statP - statisical period e.g. 5 for 5 day week, 7 for 7 day week, 4
for 4 week month etc.

% OUTPUTS:
% ema1set - ema over 1 statistical period
% ema2set - ema over 2 statistical period
% macdSet - Difference between ema1 and ema2 . Not used by the neural
network

Set=diff(mainSet(:,end));
cl=mainSet(2:end,end);
ema1Set=zeros(length(Set),1);
ema2Set=zeros(length(Set),1);

ema1Set(statP)= mean(cl(1:statP));
ema2Set(statP*2)=mean(cl(1:statP*2));

for c=(statP+1):length(Set)
 ema1Set(c)=ema1Set(c-1)+((2/(statP+1))*(mainSet(c)-ema1Set(c-1)));
end

for c=(2*statP+1):length(Set)
 ema2Set(c)=ema2Set(c-1)+((2/(2*statP+1))*(mainSet(c)-ema2Set(c-
1)));
end

macdSet=ema2Set-ema1Set;
macdSet=(mapminmax(macdSet'))';

end

Function: batchEl3

%% || SHREE ||

function [rowmat valSetOutAct testSetOutAct]=
batchEl3(mainSet,testPoint,L1,tap,statP,trainDataVol,valDataVol,tmargin
,testDur,netTrainFucn,maxEpoch,lock,stratg)

% RATIONALE:
% - This function helps in building a customized NARX network for time
series prediction
% - The function internally calls in function to perform the following
% clean the data provided by the user
% generate the diffSet
% generate indicators like RSI, Fast Stochastic, MACD
% Cut the dataset as per the user specifications

% INPUTS:
% mainSet : The entire time series provided by the user
% test point : Specifies the row on the mainSet from where
predictions are to be made

91

% L1 : Number of neurons in the first layer of the neural
network
% tap : Number of taps that the Narx network should have in
the input as well as the output delay line
% statP : the statistical period for calculating the tech
indicators (e.g. 5 for a week)
% trainDataVol : Ratio of training to testing data
% valDataVol : Ratio of validation to testing data
% tmargin : Trading margin
% testDur : No of instances to predict
% netTrainFucn : Training function for the neural net
% maxEpoch : Max epoch for net training
% lock : Specifies if the weights are to be initialized on
random seed or a fixed seed
% stratg : Specifies the trading strategy 0: quick strategy 1:
never out of market

% OUTPUT:
% rowmat : A row report of the behavior of the desired network
[Vnseval(9) Tnseval(9) NaN(2) Vnarxy(valDataVol*testDur) NaN(2)
narxy(testDur)]
% valSetOutAct : The vector of the actual market values during the
validation period
% testSetOutAct : The vector of the actual market values during the
test period

% originally rowmat= batchEl1(1200,15,5,5,3,1,0.7,30,'trainrp',2000,0)

%% ||Shree||

neuronsByLayer=L1; % Layer matrix

%% Selecting parameters
%mainSet=mainSet(:,[4 6 10 12 15 17 22 26 28 33 20]); % Selecting
parameters of mainSet (optional - all selected if commented)

%% Cleaning The main Set
mainSet = mainSetCleaner(mainSet);

%% generate diff set
diffSet=diffGenerator(mainSet);

%% Calculating RSI
rsiSet= rsiGenerator(mainSet,statP);

%% Calculating Fast Stochastic
[fstSet KfstSet NfstSet DfstSet]=fstGenerator(mainSet,statP);

%% calculating MACD
[ema1Set ema2Set macdSet] = macdGenerator(mainSet,statP);

%% Add tech indicators to data set
outSet=diffSet(:,end);
diffSet=[mainSet(2:end,[1 2 end]) rsiSet KfstSet DfstSet fstSet ema1Set
ema2Set outSet];

92

diffSet=diffSet(2*statP+1:end,:); % Cut
undetermined values

%% preserve actual values for later calculations
[trainTapInS,trainTapOutS,trainSetInS,trainSetOutS,valTapInS,valTapOutS
,valSetInS,valSetOutS,testTapInS,testTapOutS,testSetInS,testSetOutS]=da
taCutter(diffSet,testPoint,testDur,tap,trainDataVol,valDataVol);
trainSetOutAct=cell2mat(trainSetOutS)';
valSetOutAct=cell2mat(valSetOutS)';
testSetOutAct=cell2mat(testSetOutS)';

%% Data Massaging
diffSet=massage1(diffSet,valSetOutAct);

%% Plot of original signal and signal presented to NW
%Set=diffSet(:,end);
%plot(1:length(Set),diffSet(:,end),1:length(Set),Set(:));

%% Create Train/Val/Test Sets and Delays
[trainTapInS,trainTapOutS,trainSetInS,trainSetOutS,valTapInS,valTapOutS
,valSetInS,valSetOutS,testTapInS,testTapOutS,testSetInS,testSetOutS]=da
taCutter(diffSet,testPoint,testDur,tap,trainDataVol,valDataVol);

%% Lock the random number generation (optional)
if(lock)
 randn('state',0);
 rand('state',0);
end

%% Create NARX Network
narxspNet =
newnarxsp2(trainSetInS,trainSetOutS,[1:tap],[1:tap],neuronsByLayer,{'ta
nsig','tansig'});
narxspNet = init(narxspNet);

%% Set training parameters
narxspNet.divideFcn ='';
narxspNet.performFcn='mse';
narxspNet.trainParam.goal=0;
narxspNet.trainFcn = netTrainFucn;
narxspNet.trainParam.show = Inf;
narxspNet.trainParam.epochs = maxEpoch;

%% Create Validation and Test structures
VV.P = [valSetInS;valSetOutS];
VV.T = valSetOutS;
VV.Pi = [valTapInS;valTapOutS];

TV.P = [testSetInS;testSetOutS];
TV.T = testSetOutS;
TV.Pi = [testTapInS;testTapOutS];

%% Train the network
narxspNet.inputs{1}.processFcns = {'mapstd','mapminmax','processpca'};

93

narxspNet.inputs{1}.processFcns;
narxspNet.outputs{(narxspNet.numLayers)}.processFcns =
{'mapstd','mapminmax'};
narxspNet.outputs{(narxspNet.numLayers)}.processFcns;
[narxspNet,narxTr,Y,E,Pf,Af] =
train(narxspNet,[trainSetInS;trainSetOutS],trainSetOutS,[trainTapInS;tr
ainTapOutS],[],[],TV);
narxspNet.trainParam; % outputs training parameters if
required

%% Simulate the network

[narxy,nPf,nAf,nE,nPerf] =
sim(narxspNet,[testSetInS;testSetOutS],[testTapInS;testTapOutS],[],test
SetOutS);
[vnarxy,vnPf,vnAf,vnE,vnPerf] =
sim(narxspNet,[valSetInS;valSetOutS],[valTapInS;valTapOutS],[],valSetOu
tS);

%% Analyse results

ny = cell2mat(narxy');
vny = cell2mat(vnarxy');

testSetOut=cell2mat(testSetOutS);
valSetOut=cell2mat(valSetOutS);

[vnpu,vhu,vnpd,vhd,vnpt,vht,vnetVal,vrmset,vmaet]=nseval(vny,(valSetOut
)',valSetOutAct,tmargin,stratg);
[npu,hu,npd,hd,npt,ht,netVal,rmset,maet]=nseval(ny,(testSetOut)',testSe
tOutAct,tmargin,stratg);

rowmat
=[vnpu,vhu,vnpd,vhd,vnpt,vht,vnetVal,vrmset,vmaet,npu,hu,npd,hd,npt,ht,
netVal,rmset,maet,NaN NaN vny' NaN NaN ny'];

end

Function: B2res

function avgro=B1res(lim,stratg,gen)

load repBatch1_06
outmat06m=Mcalc2(repBatch1_06_M,lim,80,1,stratg,gen);
outmat06s=Mcalc2(repBatch1_06_S,lim,80,1,stratg,gen);

load repBatch1_07
outmat07j=Mcalc2(repBatch1_07_J,lim,80,1,stratg,gen);
outmat07m=Mcalc2(repBatch1_07_M,lim,80,1,stratg,gen);
outmat07s=Mcalc2(repBatch1_07_S,lim,80,1,stratg,gen);
outmat08j=Mcalc2(repBatch1_08_J,lim,80,1,stratg,gen);

94

avgro=(outmat06m(1,:)+outmat06s(1,:)+outmat07j(1,:)+outmat07m(1,:)+outm
at07s(1,:)+outmat08j(1,:))./6;

end

Function: batchCombined

%% || SHREE ||
%%
tic
load cad1.mat

% uses EL3 - 10 elems
testDur=80; % No of instances to predict
NurMax=80; % Max no of neurons to be tried in each
matrix
TapMax=4; % Max no of taps to be tried in the
experiment
netTrainFucn='trainrp'; % Training function for the neural net
maxEpoch=800; % Max epoch for net training

tmargin=0.0; % Trading margin
trainDataVol=3; % ratio of training to testing data
valDataVol=1; % ratio of validation to testing data
statP=5; % statistical periods

lock=1; % 1=the random function is locked 0=not
locked
stratg=0; % 0 = quick trade 1 = buy n hold

pointMat=[4415 4500 4589]; % 2006 points
TN=combvec(1:TapMax,1:NurMax)'; % vector of no of taps and neurons

matRows=(TapMax*NurMax); % rows of report matrix
matCols=(18+2+valDataVol*testDur+2+testDur); % cols of report
matrix [Vnseval Tnseval NaN NaN Vnarxy NaN NaN Tnarxy]
repMat= zeros(3*matRows,matCols);
actMat= zeros(3,matCols);
rno=matRows+1;
for i=2:3
 testPoint=pointMat(i);
 for j=1:(TapMax*NurMax)
 tap = TN(j,1);
 L1=TN(j,2);
 [rowmat valSetOutAct testSetOutAct]=
batchEl3(mainSet,testPoint,L1,tap,statP,trainDataVol,valDataVol,tmargin
,testDur,netTrainFucn,maxEpoch,lock,stratg);
 repMat(rno,:)=rowmat;
 [rno testPoint tap L1]
 rno=rno+1;

95

 end
 actMat(i,:)= [zeros(1,18) NaN NaN valSetOutAct' NaN NaN
testSetOutAct'];
end
repBatch1_06_J =[repMat(1:matRows,:)' actMat(1,:)']';
repBatch1_06_M=[repMat(matRows+1:2*matRows,:)' actMat(2,:)']';
repBatch1_06_S=[repMat(2*matRows+1:3*matRows,:)' actMat(3,:)']';

save repBatch1_06.mat repBatch1_06_J repBatch1_06_M repBatch1_06_S
toc

%% || SHREE ||
%%
tic
load cad1.mat

% uses EL3 - 10 elems
testDur=80; % No of instances to predict
NurMax=80; % Max no of nurons to be tried in each
matrix
TapMax=4; % Max no of taps to be tried in the
experiment
netTrainFucn='trainrp'; % Training function for the neural net
maxEpoch=800; % Max epoch for net training

tmargin=0.0; % Trading margin
trainDataVol=3; % ratio of training to testing data
valDataVol=1; % ratio of validation to testing data
statP=5; % statistical periods

lock=1; % 1=the random function is locked 0=not
locked
stratg=0; % 0 = quick trade 1 = buy n hold

pointMat=[4675 4761 4850 4936]; % 2007 points
TN=combvec(1:TapMax,1:NurMax)'; % vector of no of taps and neurons

matRows=(TapMax*NurMax); % rows of report matrix
matCols=(18+2+valDataVol*testDur+2+testDur); % cols of report
matrix [Vnseval Tnseval NaN NaN Vnarxy NaN NaN Tnarxy]
repMat= zeros(4*matRows,matCols);
actMat= zeros(4,matCols);
rno=1;
for i=1:4
 testPoint=pointMat(i);
 for j=1:(TapMax*NurMax)
 tap = TN(j,1);
 L1=TN(j,2);
 [rowmat valSetOutAct testSetOutAct]=
batchEl3(mainSet,testPoint,L1,tap,statP,trainDataVol,valDataVol,tmargin
,testDur,netTrainFucn,maxEpoch,lock,stratg);
 repMat(rno,:)=rowmat;
 [rno testPoint tap L1]

96

 rno=rno+1;
 end
 actMat(i,:)= [zeros(1,18) NaN NaN valSetOutAct' NaN NaN
testSetOutAct'];
end
repBatch1_07_J =[repMat(1:matRows,:)' actMat(1,:)']';
repBatch1_07_M=[repMat(matRows+1:2*matRows,:)' actMat(2,:)']';
repBatch1_07_S=[repMat(2*matRows+1:3*matRows,:)' actMat(3,:)']';
repBatch1_08_J =[repMat(3*matRows+1:4*matRows,:)' actMat(4,:)']';

save repBatch1_07.mat repBatch1_07_J repBatch1_07_M repBatch1_07_S
repBatch1_08_J
toc

%%
B2res(tmargin,0,0) % Execute the policy number 4 explained in section
6.1

Function: batchAll

Batch2_06.m % generate report matrix for periods in 06
Batch2_07.m % generate report matrix for periods in 07
B2res(tmargin,0,0) % execute the policy number 4 explained in section
6.1

97

Appendix B:

Performance of adaptive NARX on using twice the evaluation data:
Period Val
M06 - S06 1.0567
S06 - J07 0.8316
J07 - M07 1.1172
M07 -S07 0.8812
S07- J08 0.8347
J08 - M08 1.0918

Average 0.968867

Realized Value 0.788397

List of Exogenous time series by asset

Asset Exogenous Input Exogenous Input
Gold Japan Currency UK currency
Japan Currency Gold Price UK currency

Canada Currency Japan Currency Australia currency
UK currency Japan Currency Australia currency
France Currency Japan Currency Australia currency
India Currency Japan Currency Australia currency

Comparison of decision policies 1, 2 and 3 – period wise results:
Gold:
Period Policy 1 Policy 2 Policy 3
M06 - S06 1 0.8017 0.91
S06 - J07 0.9983 1.1519 1.0448
J07 - M07 1 1.0419 1.0222
M07 -S07 1.0017 0.9224 0.8256
S07- J08 1 1.2069 1.1511
J08 - M08 0.9549 1.2672 1.2278

Average 0.992483 1.065333 1.03025

Realized
Value 0.954897 1.357339 1.13402

98

UK:
Period Policy 1 Policy 2 Policy 3
M06 - S06 0.9476 1.0409 1.01
S06 - J07 1 1.0413 1.0722
J07 - M07 0.9783 1.0133 1.0604
M07 -S07 0.9934 0.993 0.9956
S07- J08 1 1.0115 1.0115
J08 - M08 1.0021 1.0649 0.9899

Average 0.9869 1.027483 1.023267

Realized
Value 0.922853 1.174754 1.144746

Japan:
Period Policy 1 Policy 2 Policy 3
M06 - S06 1 1.0053 1.0575
S06 - J07 0.9919 0.9721 0.9936
J07 - M07 1.0079 1.0417 0.9924
M07 -S07 1 1.061 1.0899
S07- J08 1.0028 0.9864 0.9978
J08 - M08 1.0479 1.2195 1.1549

Average 1.008417 1.047667 1.047683

Realized
Value 1.050557 1.29927 1.309644

Canada:
Period Policy 1 Policy 2 Policy 3
M06 - S06 1.0478 1.0591 1.0013
S06 - J07 1.0039 1.0064 0.9908
J07 - M07 1 1.0024 1.0158
M07 -S07 0.9506 1.0619 0.9378
S07- J08 0.9983 0.8923 0.8923
J08 - M08 1 1.0021 1.0092

Average 1.0001 1.004033 0.974533

Realized
Value 0.998223 1.014505 0.851053

99

France:
Period Policy 1 Policy 2 Policy 3
M06 - S06 0.9973 0.9918 0.9574
S06 - J07 0.9907 0.9652 0.9758
J07 - M07 1 1.0179 1.0314
M07 -S07 1 1.0138 1.0138
S07- J08 1 1.0444 0.9624
J08 - M08 1 1.0556 1.0808

Average 0.998 1.014783 1.0036

Realized
Value 0.988025 1.089093 1.016096

India:
Period Policy 1 Policy 2 Policy 3
M06 - S06 1.0237 1.0115 0.9612
S06 - J07 1.0042 1.0266 1.0306
J07 - M07 1 1.0197 1.0416
M07 -S07 1 1.003 1.003
S07- J08 1.0243 1.0192 1.0009
J08 - M08 0.9882 1.0234 1.0125

Average 1.006733 1.017233 1.0083

Realized
Value 1.040555 1.107759 1.048797

Comparison of decision policies 4, 5 and 6 – period wise results:

Gold:
Period Policy 4 Policy 5 Policy 6
M06 - S06 1.0413 1.1519 0.8941
S06 - J07 1.1519 1.0296 1.0296
J07 - M07 1.0419 0.9224 0.9224
M07 -S07 0.9224 1.1511 1.2069
S07- J08 1.2069 1.155 1.155
J08 - M08 1.155 1.0631 1.0226

Average 1.086567 1.07885 1.038433

Realized
Value 1.606901 1.546222 1.210411

100

UK:
Period Policy 4 Policy 5 Policy 6
M06 - S06 1.0409 0.9874 0.9874
S06 - J07 1.0413 1.0413 1.0722
J07 - M07 1.0133 1.0365 1.0365
M07 -S07 1.0183 1.0025 1.03
S07- J08 1.0062 1.0002 1.0002
J08 - M08 1.1218 0.9883 0.9883

Average 1.0403 1.009367 1.0191

Realized
Value 1.262404 1.056084 1.117252

Japan:
Period Policy 4 Policy 5 Policy 6
M06 - S06 0.9684 1.0877 1.0546
S06 - J07 0.9758 0.9758 0.9758
J07 - M07 1.0598 1.0598 1.0598
M07 -S07 1.061 1.061 1.061
S07- J08 1.1246 0.9282 1.0023
J08 - M08 1.2195 1.2195 1.2195

Average 1.068183 1.055333 1.062167

Realized
Value 1.457252 1.350929 1.414384

Canada:
Period Policy 4 Policy 5 Policy 6
M06 - S06 1.0591 1.0591 1.0591
S06 - J07 1.0002 1.0002 0.9908
J07 - M07 1.0024 1.0024 1.0024
M07 -S07 1.0619 1.0619 1.0135
S07- J08 1.0078 0.8923 0.9106
J08 - M08 1.0113 1.0086 1.0086

Average 1.023783 1.004083 0.9975

Realized
Value 1.149219 1.014795 0.979117

101

France:
Period Policy 4 Policy 5 Policy 6
M06 - S06 1.0779 0.9982 1.0349
S06 - J07 1.0141 1.0133 1.0133
J07 - M07 1.0179 1.0179 1.0685
M07 -S07 1.0191 0.9949 0.9949
S07- J08 1.0444 0.9572 1.0444
J08 - M08 1.0556 1.0556 0.9086

Average 1.038167 1.006183 1.010767

Realized
Value 1.250108 1.035004 1.057864

India:
Period Policy 4 Policy 5 Policy 6
M06 - S06 1.0115 1.0115 1.0115
S06 - J07 1.0266 1.0161 1.035
J07 - M07 1.0197 1.0197 0.9533
M07 -S07 1.0308 1.0308 1.0308
S07- J08 1.0192 1.0215 1.0009
J08 - M08 1.0234 1.0125 1.0125

Average 1.021867 1.018683 1.007333

Realized
Value 1.138463 1.117333 1.042548

Individual period wise behavior of adaptive NARX
Gold:
Period up Dn tot hit val Net no taps Neurons
M06 - S06 0.00 70.00 70.00 0.47 1.04 42.00 2.00 11.00
S06 - J07 39.00 16.00 55.00 0.60 1.15 272.00 4.00 68.00
J07 - M07 34.00 28.00 62.00 0.55 1.04 173.00 1.00 44.00
M07 -S07 14.00 44.00 58.00 0.47 0.92 159.00 3.00 40.00
S07- J08 68.00 0.00 68.00 0.56 1.21 138.00 2.00 35.00
J08 - M08 51.00 12.00 63.00 0.52 1.16 186.00 2.00 47.00

Average 34.33 28.33 62.67 0.53 1.09

Realized
Value 1.61
80 day Equ 1.88

102

UK:
Period up Dn tot hit val Net no taps Neurons
M06 - S06 42.00 33.00 75.00 0.51 1.04 15.00 3.00 4.00
S06 - J07 71.00 3.00 74.00 0.51 1.04 197.00 1.00 50.00
J07 - M07 51.00 26.00 77.00 0.48 1.01 262.00 2.00 66.00
M07 -S07 63.00 14.00 77.00 0.55 1.02 271.00 3.00 68.00
S07- J08 71.00 6.00 77.00 0.56 1.01 96.00 4.00 24.00
J08 - M08 44.00 27.00 71.00 0.69 1.12 150.00 2.00 38.00

Average 57.00 18.17 75.17 0.55 1.04

Realized
Value 1.26
80 day Equ 1.28

Japan:
Period up Dn tot hit val Net no taps Neurons
M06 - S06 57.00 16.00 73.00 0.51 0.97 65.00 1.00 17.00
S06 - J07 48.00 24.00 72.00 0.44 0.98 165.00 1.00 42.00
J07 - M07 69.00 5.00 74.00 0.50 1.06 294.00 2.00 74.00
M07 -S07 71.00 6.00 77.00 0.52 1.06 229.00 1.00 58.00
S07- J08 11.00 51.00 62.00 0.61 1.12 296.00 4.00 74.00
J08 - M08 63.00 5.00 68.00 0.60 1.22 134.00 2.00 34.00

Average 53.17 17.83 71.00 0.53 1.07

Realized
Value 1.46
80 day Equ 1.54

Canada:
Period up dn tot hit val Net no taps Neurons
M06 - S06 29.00 40.00 69.00 0.48 1.06 88.00 4.00 22.00
S06 - J07 51.00 19.00 70.00 0.47 1.00 86.00 2.00 22.00
J07 - M07 20.00 53.00 73.00 0.55 1.00 191.00 3.00 48.00
M07 -S07 25.00 53.00 78.00 0.59 1.06 75.00 3.00 19.00
S07- J08 61.00 17.00 78.00 0.49 1.01 129.00 1.00 33.00
J08 - M08 5.00 48.00 53.00 0.49 1.01 29.00 1.00 8.00

Average 31.83 38.33 70.17 0.51 1.02

Realized
Value 1.15
80 day Equ 1.17

103

France:
Period up dn tot hit val Net no taps Neurons
M06 - S06 34.00 35.00 69.00 0.64 1.08 242.00 2.00 61.00
S06 - J07 19.00 49.00 68.00 0.53 1.01 104.00 4.00 26.00
J07 - M07 55.00 17.00 72.00 0.53 1.02 226.00 2.00 57.00
M07 -S07 18.00 55.00 73.00 0.52 1.02 57.00 1.00 15.00
S07- J08 3.00 71.00 74.00 0.64 1.04 103.00 3.00 26.00
J08 - M08 12.00 50.00 62.00 0.53 1.06 258.00 2.00 65.00

Average 23.50 46.17 69.67 0.56 1.04

Realized
Value 1.25
80 day Equ 1.30

India:
Period up dn tot hit val Net no taps Neurons
M06 - S06 9.00 66.00 75.00 0.39 1.01 171.00 3.00 43.00
S06 - J07 8.00 61.00 69.00 0.58 1.03 180.00 4.00 45.00
J07 - M07 16.00 56.00 72.00 0.44 1.02 303.00 3.00 76.00
M07 -S07 18.00 44.00 62.00 0.56 1.03 23.00 3.00 6.00
S07- J08 25.00 45.00 70.00 0.49 1.02 99.00 3.00 25.00
J08 - M08 40.00 36.00 76.00 0.50 1.02 55.00 3.00 14.00

Average 19.33 51.33 70.67 0.49 1.02

Realized
Value 1.14
80 day Equ 1.16

The last two columns indicate the architecture of the neural network selected by
the system for making predictions on the test set. The tables show that the
system changed the number of neurons and taps very frequently. Section 6.3
describes the possible inference of these architectures & associated future work

Performance of fixed taps adaptive feed forward networks

Gold:
Period tap =1 taps = 2 taps = 3 taps =4
M06 - S06 0.9712 1.1555 1.07 1.07
S06 - J07 1.005 0.9666 0.99 0.84
J07 - M07 1.03 1.0243 0.96 0.8566
M07 -S07 0.9 1.0554 0.85 1.0583
S07- J08 0.94 1.1649 1 0.9405
J08 - M08 1.24 0.91 1.021 0.8413

104

Average 1.014367 1.046117 0.981833 0.93445

Realized
Value 1.054639 1.279944 0.882541 0.644703

UK:
Period tap =1 taps = 2 taps = 3 taps =4
M06 - S06 0.9507 0.9798 0.9744 0.9654
S06 - J07 0.9942 0.9532 1.0002 1.008
J07 - M07 1.0144 1.0378 0.988 1.056
M07 -S07 0.9734 1.0129 1.0065 0.9965
S07- J08 1.041 1.0267 1.0909 1.0074
J08 - M08 1.0102 0.9709 0.9785 1.0047

Average 0.997317 0.996883 1.006417 1.006333

Realized
Value 0.981468 0.978633 1.034524 1.036448

Japan:
Period tap =1 taps = 2 taps = 3 taps =4
M06 - S06 0.9645 0.9732 0.9732 1.005
S06 - J07 1.0013 0.9873 0.99 1.012
J07 - M07 1.0036 1.0394 1.003 1.021
M07 -S07 1.0481 0.9767 0.959 1.029
S07- J08 1.0023 1.0442 0.997 1.164
J08 - M08 1.0348 1.0128 1.0838 1.075

Average 1.0091 1.0056 1.001 1.051

Realized
Value 1.05362 1.031579 1.001385 1.337055

