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ABSTRACT OF THE THESIS

A Hierarchical Spectral Clustering and Non-linear Dimensionality

Reduction Scheme for Detection of Prostate Cancer from Magnetic

Resonance Spectroscopy

By Pallavi Tiwari

Thesis Director:

Dr. Anant Madabhushi

Magnetic Resonance Spectroscopy (MRS) is a unique non-invasive method which has re-

cently been shown to have great potential in screening of prostate cancer (CaP). MRS pro-

vides functional information regarding the concentrations of different biochemicals present

in the prostate at single or multiple locations within a rectangular grid of spectra super-

posed on the structural T2-weighted Magnetic Resonance Imaging (MRI). Changes in rel-

ative concentration of specific metabolites including choline, creatine and citrate compared

to “normal” levels is highly indicative of the presence of CaP. Most previous attempts at

developing computerized schemes for automated prostate cancer detection using MRS have

been centered on developing peak area quantification algorithms. These methods seek to

obtain area under peaks corresponding to choline, creatine and citrate which is then used

to compute relative concentrations of these metabolites. However, manual identification of

metabolite peaks on the MR spectra, let alone via automated algorithms, is a challenging
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problem on account of low SNR, baseline irregularity, peak-overlap, and peak distortion. In

this thesis work a novel computer aided detection (CAD) scheme for prostate MRS is pre-

sented that integrates non-linear dimensionality reduction (NLDR) with an unsupervised

hierarchical clustering algorithm to automatically identify cancerous spectra. The method-

ology comprises of two specific aims. Aim 1 is to first automatically localize the prostate

region followed in Aim 2 by automated cancer detection on the prostate obtained in Aim

1. In Aim 1, a hierarchical spectral clustering algorithm is used to distinguish between

informative and non-informative spectra in order to localize the region of interest (ROI)

corresponding to the prostate. Once the prostate ROI is localized, in Aim 2, a non-linear

dimensionality reduction (NLDR) scheme in conjunction with a replicated k-means cluster-

ing algorithm is used to automatically discriminate between 3 classes of spectra (normal,

CaP, and intermediate tissue classes). Results of qualitative and quantitative evaluation of

the methodology over 18 1.5 Tesla (T) in-vivo prostate T2-w and MRS studies obtained

from the multi-site, multi-institutional ACRIN trial, for which corresponding histological

ground truth of spatial extent of CaP is available, reveal that the CAD scheme has a high

detection sensitivity (89.60) and specificity (78.98). Results further suggest that the CAD

scheme has a higher detection accuracy compared to such commonly used MRS analysis

schemes as z-score and PCA.
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Chapter 1

Introduction

1.1 Background

Prostatic adenocarcinoma (CaP) is the most commonly occurring malignancy amongst men

with 186,320 new cases and 28,660 deaths estimated to occur in the United States in 2008

(American Cancer Society, 2008 ). Early detection of CaP offers the best hope of curing

it; however early prostate cancer is usually asymptomatic [1]. Screening of CaP is based

on digital rectal examination (DRE) and monitoring elevated levels of the blood serum

prostate specific antigen (PSA). Definitive diagnosis of CaP involves histological examina-

tion of biopsy specimens obtained via a blinded sextant trans-rectal ultrasound (TRUS)

directed biopsy for patients with elevated PSA levels. Since prostate ultrasound is limited

in its ability to identify CaP, biopsy locations are chosen at random within the prostate sex-

tants. Consequently the CaP detection accuracy associated with TRUS is only 20-25% in

patients with elevated PSA levels between 4-10 µg/ml [2]. Recently, in-vivo endorectal T2-

weighted structural Magnetic Resonance (MR) Imaging (MRI) of the prostate has allowed

for greater discrimination between benign and cancerous prostatic structures as compared

to TRUS [3]. However, structural T2-weighted MR imaging by itself has been shown to

be limited in its ability to detect small foci of carcinoma contributing to a relatively low

detection specificity [3].
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1.2 Magnetic Resonance Spectroscopy

Over the past few years, Magnetic Resonance Spectroscopic (MRS) Imaging (MRSI) has

emerged as a useful complement to structural MR imaging for potential screening of CaP [4,

5]. MRSI is a non-invasive technique used to obtain the metabolic concentrations of specific

molecular markers and biochemicals in the prostate including citrate, creatine and choline,

changes in concentration of which have been shown to be linked to presence of CaP [6, 7].

Spectra are obtained at either single or multiple locations from a rectangular spectral grid

placed on a corresponding T2-weighted MR image. It has been demonstrated previously

that the relative concentrations of choline, citrate and creatine are significantly different in

CaP and normal regions within the prostate [6].

The relative concentrations of choline, creatine, and citrate are obtained by calculating

the area under the peak for these metabolites to assess presence of CaP at a specific prostate

location. Identification of precise location of characteristic metabolites on the MR spectra is

a difficult task for radiologists due to (a) a low signal to noise (SNR) ratio and (b) presence

of biomedical signal artifacts associated with MR spectra. Figure 1.1 (a) shows a MRS grid

superimposed on the corresponding T2-w MRI slice, Figure 1.1 (b) shows a sample MRS

grid with spectra acquired from the spectral metavoxels in the grid shown in 1 (a), while

1.1 (c) shows an idealized CaP spectrum (Note that the spectra in 1.1 (c) is not associated

with the spectra in (b)). Figure 1.1 (d) shows a typical noisy spectra obtained from one

of the locations in the MRS grid in 1 (b) and subsequently magnified. Note the amount of

noise in the MR spectrum in Figure 1.1 (d) which severely limits the ability of radiologists

to visually identify metabolite peaks. The limitation of peak detection based approaches

has meant that MRS as a potential CaP screening modality (in conjunction with MRI) is

yet to gain acceptance and its role remains controversial [8].
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CholineCholine

CreatineCreatine

(a) (b) (c) (d)

Figure 1.1: (a) 2D section of representative T2 weighted MRI scene with spectral grid
overlaid, (b) Individual MR spectra acquired from different locations on the spectral grid,
(c) an idealized CaP spectra showing the locations of choline, creatine and, (d) a typical
noisy spectra magnified from (b) where the spectral noise in (d) makes visual identification
of pertinent metabolic peaks difficult. Note that the prostate is normally contained in a
3 × 6 or a 3 × 7 spectral grid in the X-Y plane. Note also that the idealized, noise free
spectra shown in (c) does not actually correspond to any of the spectra in the grid in (b).

1.3 Computer aided diagnosis (CAD)

Computer-aided detection (CAD) refers to the use of computers to assist a physician in

rendering a diagnostic decision through the quantitative analysis of biomedical data [9].

The low detection accuracy associated with current TRUS prostate biopsies points to a

need for developing an image guided decision support system to direct needle placement

in the prostate to increase CaP detection accuracy. While some researchers [10], [11] [12]

have begun to develop CAD systems for CaP detection from structural and functional MR

imaging, corresponding developments in MRS have not been as forthcoming. This is in spite

of evidence to suggest that integration of structural and metabolic imaging [7] could boost

diagnostic yield over that which could be obtained from any individual modality. Previous

CAD methods for CaP detection from MRS [13, 14, 15, 16, 17], focused on automated

metabolite peak detection have been hindered by presence of noise in the spectral data

(Figure 1.1 (d)).

Dimensionality reduction (DR) refers to the projection of high dimensional data into
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a reduced dimensional feature space without a significant loss in class discriminatory in-

formation. The low dimensional representation of the data is easier to visualize and DR

algorithms aim to preserve object relationships, so that objects that are close to one another

in the high dimensional ambient space are mapped to adjacent locations in the resulting low

dimensional embedding space. However, linear DR schemes such as principal component

analysis (PCA) assume the original high dimensional data to be inherently linear and hence

employ linear projection methods to reduce data dimensionality. It has been demonstrated

previously that linear DR schemes are inherently limited for purposes of reducing and clas-

sifying high dimensional biomedical data [18] owing to the non-linear manifold on which the

data resides. Recently several non-linear dimensionality reduction (NLDR) algorithms have

been proposed for analysis and visualization of non-linear data [19, 20, 21]. The objective

behind NLDR methods is to non-linearly map objects, c, d belonging to the same object

class and characterized by M dimensional feature vectors F (c),F (d) to adjacent locations

S(c),S(d) in the low dimensional embedding, where S(c),S(d) represent the m-dimensional

dominant Eigen vectors corresponding to c, d (m << M). Unlike linear DR schemes that

typically employ the Euclidean distance measure to estimate object distances, most NLDR

schemes employ some method for estimating geodesic distances between objects in the high

dimensional (M) space.

1.4 Brief outline of the work

In this work, a fully automated CAD system for detecting prostate cancer from 1.5 T

endorectal in vivo MRS studies is presented. Figure 1.3 shows how the proposed CAD

scheme works. The methodology comprises of two specific aims;

• Aim 1: To automatically identify the prostate region of interest (ROI) from out of
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the large MRS grid

• Aim 2: To automatically identify suspicious regions on the prostate ROI obtained

from Aim 1.

In Aim 1, a novel hierarchical classification scheme is employed to recursively distin-

guish informative from non-informative spectra via Graph Embedding (GE) [22, 31], a well

known NLDR scheme, in order to hone in on the region of interest (ROI) corresponding to

the prostate. As may be seen in Figure 1.1 (a) the prostate occupies approximately 10%

of the total volume within a 3D in-vivo endorectal prostate MRI scene. An iterative algo-

rithm is employed to automatically identify each of the MR spectra as belonging to either

inside (informative) or outside (non-informative) the prostate. Since the non-informative

spectra (outside the prostate) are most populous, the largest cluster is identified at each

iteration and eliminated. Figure 1.2 shows the difference in prostate (Figure 1.2 (b)) and

non-prostate (Figure 1.2 (c), (d))) MR spectra. This process is repeated until the number

of MR spectra remaining is approximately equal to the number (Θ) usually contained in

the prostate (Figure 1.1 (a)). The removal of non-informative spectra in Aim 1 makes it

easier to discriminate between cancerous and normal spectra within the prostate. Follow-

ing automated localization of the prostate spectra in Aim 1, in Aim 2, a NLDR scheme

is applied to non-linearly embed the informative spectra into a reduced dimensional space.

The individual prostate spectra now characterized by their low dimensional embedding co-

ordinates are clustered into distinct classes via a “replicated clustering scheme”. Replicated

clustering overcomes the limitation of traditional k means clustering algorithm which is

known to be dependent on randomly initialized centroids. A different clustering result,
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based on the local minimum, is usually obtained each time k means is performed. In repli-

cated clustering, multiple weak clusterings are generated by repeatedly clustering the data.

The optimal clustering solution is then chosen among the various weak clusterings as the

one with the least intra-cluster variance. All spectra are aggreagated into 3 classes based

on the assumption that they correspond to normal, CaP, and intermediate tissue classes,

where the intermediate tissue cluster may correspond to spectra from tissue classes such as

Benign Hyperplexia (BPH), high-grade prostatic inter-epithelial neoplasia (HGPIN) with

characteristics between normal and malignant.

Figure 1.2: (a) 2D section of T2-weighted MR image intensity scene with a spectral grid

of metavoxels overlaid. MRS spectra for a metavoxel (b) within the prostate, (c) outside

the prostate, and (d) a MRS spectra for a zero-padded metavoxel near the periphery of the

MRI scene.
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Input MRS 
spectra

Graph Embedding 
to embed spectra

Spectral clustering 
in embedding

spaceIdentify and 
eliminate dominant 

non-informative 
cluster
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prostate ROI

Replicated clustering 
of MR spectra
into 3 classes. 

Quantitative evaluation of clusters with 
respect to CaP ground truth.

Stage 1 Stage 2

Feature Extraction 
using NLDR

While spectral 
grid size > Θ

Y N

Figure 1.3: Flowchart showing various system components and methodological overview of

the CAD scheme. Hierarchical spectral clustering is performed in Aim 1 to automatically

obtain the prostate grid, followed in Aim 2 by identification of different tissue classes via

NLDR and replicated clustering.

1.5 Organization of the Thesis

The rest of this thesis work is organized as follows. In Chapter 2 previous related work in

MRS CAD is discussed. A detailed description of the dimensionality reduction methods

employed in this work are described in Chapter 3, while the details of the methodology are

explained in Chapter 4. In Chapter 5 results of qualitative and quantitative evaluation of

the scheme on a total of 18 prostate MRI-MRS studies are presented. Two specific appli-

cations of the proposed scheme are explained briefly in Section 6. Concluding remarks and

direction of future research are presented in Chapter 7.
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Chapter 2

Related work

Previous attempts at computerized analysis of MRS can be classified into two broad cate-

gories, (a) signal quantification and (b) model independent techniques.

2.1 Signal quantification techniques

As mentioned previously some researchers [8] have suggested using the ratio of (choline +

creatine)/citrate, as an index to help predict tumor aggressiveness. This ratio is considered

sensitive and peak detection algorithms used currently are based on automated calculation

of this ratio to identify suspicious regions. The approach is called peak quantification where

the aim is to obtain the peak areas or relative concentrations of different metabolites like

choline, creatine and citrate as accurately as possible. Figure 2.1 shows the characteristic

metabolites (choline, creatine and citrate) in a typical benign MR spectrum.

Signal quantification methods can be further subdivided into two categories: time do-

main fitting (TDF) and frequency domain analysis (FDA) methods. Commonly used TDF

methods include VARPRO [13], AMARES [14] and QUEST [15] which are software utili-

ties where the objective is to minimize the squared distance between the acquired data and

a model basis function built on prior knowledge about the metabolic profiles of a typical

MR spectrum. TDF techniques are considered flexible with respect to the choice of model

function as signal quantification is performed in the same domain as the acquired signals.
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Citrate ([C])

Choline + 
Creatine ([CC])

Figure 2.1: A typical artifact free benign spectrum in which choline, creatine and citrate
peaks could be clearly identified. Note that in case of a cancer spectrum (choline+ creatine)
peak is elevated while the citrate peak is depressed.

However, choosing the number of components and the best fit model are critical issues to be

considered for accurate quantification. With FDA methods, the aim is to automatically and

accurately calculate the ratio, (choline + creatine)/citrate; an index to help predict tumor

aggressiveness in the frequency domain [16]. In [17], a FDA method based on peak integra-

tion was compared with a TDF method, AMARES, in terms of the ability to estimate the

(choline + creatine + polyamines) to citrate ratio (CCP:C) for CaP detection. Both TDF

and FDA methods were found to be successfully able to identify CaP voxels on MRS for an

artifact free study using CCP:C ratio. However, performance of both the TDF and FDA

models are drastically affected by (i) optimal choice of prior knowledge (model function),

(ii) presence of noise and contributions from non-prostate spectra, (iii) peak overlap owing

to contributions from multiple metabolites, and (iv) baseline distortion and line broaden-

ing [23]. In order to avoid the limitations of model based and peak detection approaches

for MRS, recently some researchers have begun to explore domain independent techniques
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such as z-score and Principal Component Analysis (PCA). An excellent comprehensive com-

parison of quantification and pattern recognition schemes used for MRS quantification is

provided in [23].

2.2 Model Independent Techniques

Devos et al. [26] presented an automated CAD system for classification of brain MRS using

Linear Discriminant Analysis (LDA) and a least squares support vector machine (LS-SVM)

classifier to discriminate between different tumor classes. Ma et al. [27] and Simonetti et

al. [28] have explored other linear dimensionality reduction methods such as Independent

Component Analysis (ICA) and Principal Component Analysis (PCA) in conjunction with

SVM, to differentiate between tissue classes via brain MRS.

However, Recent work in classification [18], has suggested that biomedical data is inher-

ently non-linear. Consequently, methods such as PCA and LDA that are predicated on the

fact that the underlying structure of the data is inherently linear and are limited in their

ability to embed data in a space where object classes are discriminable.

2.3 Novel Contributions of this work

In this work, a computer aided diagnostic (CAD) system for detection of prostate cancer

from 1.5 T MRS based on NLDR and unsupervised replicated clustering is presented. A

comprehensive quantitative evaluation is performed based on 3 fold and 5 fold cross val-

idation via partial CaP ground truth extent obtained from accompanying histology. The

proposed NLDR, replicated clustering based scheme for CaP detection is also quantitatively

compared against z-score and PCA in terms of detection sensitivity, and specificity. The

major novel contributions of this work are,
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1. A fully automated scheme for elimination of non-informative prostate spectra and

localization of the prostate ROI,

2. An accurate NLDR based clustering scheme that distinguishes cancerous from normal

MR spectra by exploiting the totality of the spectral data in a reduced dimensional

representation, avoiding the limitations associated with model, peak based, and linear

DR analysis schemes.
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Chapter 3

Overview of Linear and non-linear DR methods

3.1 Notation

The 3D prostate T2 weighted scene is represented by G = (G, f), where G is a 3D grid

of voxels g ∈ G and f(g) is a function that assigns an intensity value to every g ∈ G.

A spectral scene is defined as C = (C,F ) where C is a 3D grid of metavoxels, c ∈ C.

Each metavoxel c is associated with a corresponding M -dimensional spectral vector F (c) =

[f u(c) | u ∈ {1, ..., M}] where f u(c) represents the concentration of different biochemicals

(such as creatine, citrate, and choline). Figure 3.1 shows the spatial relationship between

the MR spectral metavoxel c ∈ C and MR image voxel g ∈ G. Note that the distance

between any two adjacent metavoxels ci, cj ∈ C, ||ci − cj ||2, where || · ||2 denotes the L2

norm, i, j ∈ {1, ..., |C|}, and |C| is the cardinality of C, is roughly 16 times the distance

between any two adjacent spatial voxels ga, gb ∈ G, where a, b ∈ {1, ..., |G|}. A list of

commonly used symbols and notations is given in Table 3.1.

3.2 Principal Component Analysis (PCA)

PCA is a linear DR method widely used to visualize high-dimensional data and discern

object relationships in the data by finding orthogonal axes that contain the greatest amount

of variance in the data [29]. These orthogonal eigenvectors corresponding to the largest

eigenvalues are called ‘principal components’. To obtain these principal components each
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...
MRS 
metavoxel MRI voxels 

Cc ∈ Gg ∈

Figure 3.1: Figure showing the relationship between MRS metavoxels c ∈ C and MRI voxels
g ∈ G. The spectral grid C comprising 28 metavoxels has been overlaid on a T2-weighted
MRI prostate slice and is shown in white. Note the region outlined in red on C corresponds
to the area occupied by a metavoxel, but will contain multiple MRI voxels (highlighted in
red).

data point c ∈ C is first centered by subtracting the mean of all the features for each

observation c from its original M dimensional feature value f (c) as shown in Equation 3.1.

f̄ u(c) = f u(ci) −
1

|C|

∑

c∈C

f u(ci), u ∈ {1, .., M}. (3.1)

From feature values f̄ (c) for each c ∈ C, a new |C| × M matrix Y is constructed. The

matrix Y is then decomposed into corresponding singular values as shown in Equation 3.2.

Y = UWPCAV T , (3.2)

where via singular value decomposition a |C| × |C| diagonal matrix WPCA containing the

eigenvalues of the principal components, a m × |C| left singular matrix U , and a M × |C|

matrix V are obtained. The Eigenvalues in WPCA represent the amount of variance for each

Eigenvector SPCA
v , v ∈ {1, 2, ..., m}, in matrix V T and are used to rank the corresponding

eigenvectors in the order of greatest variance. Thus the first m Eigenvectors are extracted

that represent a pre-specified percentage of the variance in the data while the remaining
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Symbol Description

G 3D MRI scene

C 3D MR spectral scene

G 3D grid of MRI voxels

C 3D grid of metavoxels

g Voxel location in G, g ∈ G

c A metavoxel in C, c ∈ C

f(g) Intensity value at g

F (c) Vector of spectral content at c

φ DR method, φ ∈ {PCA, LLE, ISO, GE}

Sφ(c) Output vector obtained at metavoxel c

M Number of original high dimensions

m Reduced dimensions, m << M

R Maximum CaP diameter

Ks Contiguous slices with CaP presence

CP Potential cancer space, CP ⊂ C

Ng Number of CaP voxels in CP , Ng ∈ CP

V̂ φ,q Stable clusters obtained after clustering for q ∈ {1, 2, 3}

VT Prostate grid

Θ Actual number of voxels contained in prostate

θz z-score threshold

κ Nearest neighborhood parameter for φ ∈ {LLE, ISO}

v Reduced dimensions for φ ∈ {LLE, ISO, GE, PCA}

Table 3.1: List of commonly used notation and symbols in this thesis work.

Eigen vectors are discarded. Thus each data sample c ∈ C is now described by an m-

dimensional embedding vector SPCA(c). In spite it being a linear DR scheme, an advantage

of PCA is that it allows for specification of the number of Eigen vectors required to explain

a pre-specified percentage of the variance in the data.

3.3 Non-Linear Dimensionality Reduction Methods

In this work, 3 popularly used NLDR schemes are considered, Isometric mapping (Isomaps),

Locally Linear Embedding (LLE), and Graph Embedding (GE) for MRS analysis. The

reason for considering Isomaps, LLE and graph embedding is to motivate the use of NLDR

for spectral analysis over linear DR schemes such as PCA.
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3.3.1 Isometric Mapping (Isomap):

The Isomap algorithm [19] handles nonlinearities in the data through the use of a neigh-

borhood mapping. By creating linear connections from each point c ∈ C to its κ closest

neighbors in Euclidean space, a manifold representation of the data is constructed, κ be-

ing a user-defined neighborhood parameter. Non-linear connections between points outside

of the κ neighborhood are approximated by calculating the shortest distance between ci,

cj ∈ C, i, j ∈ {1, ..., |C|}, along the paths in the neighborhood map. Thus new geodesic dis-

tances (distances measured along the surface of the manifold) are calculated and arranged

in a pairwise distance matrix WISO, where WISO(i, j) contains the nonlinear geodesic dis-

tances between ci, cj ∈ C. The matrix WISO is then given as an input to the classical Multi

Dimensional Scaling (MDS) algorithm [30] which projects each F (ci),∀ci ∈ C, to a non-

linear lower dimensional space, S ISO(ci), i ∈ {1, . . . , |C|}. MDS is implemented as a linear

method that preserves the Euclidean geometry between each pair of metavoxels ci, cj ∈ C

by finding optimal positions for the data points ci, cj in lower-dimensional space through

minimization of the least squares error in the input pairwise distances in WISO matrix.

3.3.2 Graph Embedding (GE):

The aim of Graph Embedding [31] is to find an embedding vector SGE(ci), ∀ci ∈ C,

i ∈ {1, . . . , |C|}, such that the relative ordering of the distances between objects in high

dimensional space is maximally preserved in the lower dimensional space. Thus, if locations

ci, cj ∈ C, i, j ∈ {1, . . . , |C|}, are adjacent in the high dimensional feature space, then

||SGE(ci) − SGE(cj)||2 should be small, where ||.||2 represents the Euclidean norm. This

will only be true if the distances between all ci, cj ∈ C are preserved in the low dimensional

mapping of the data. To compute the optimal embedding, an adjacency matrix WGE ∈
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ℜ|C|×|C| is first defined as

WGE(i, j) = e−||F (ci)−F (cj)||2 ,∀ci, cj ∈ C, i, j ∈ {1, . . . , |C|} . (3.3)

SGE(ci) then obtained from the maximization of the function:

E(XGE) = 2γ × trace

[

XGE(D − WGE)XT
GE

XGEDXT
GE

]

, (3.4)

where XGE =
[

SGE(c1);S
GE(c2); . . . ;S

GE(cn)
]

, n = |C|, and γ = |C| − 1. Additionally,

D is a diagonal matrix where ∀ci ∈ C, i ∈ {1, ..., |C|}, the diagonal element is defined as

D(i, i) =
∑

j WGE(i, j). The embedding space is defined by the Eigen vectors corresponding

to the smallest m Eigen values of (D − WGE) XGE = λDWGE. The matrix XGE ∈ ℜ|C|×m

of the first m Eigen vectors is constructed, and ∀ci ∈ C,SGE(ci) is defined as row i of XGE.

3.3.3 Locally Linear Embedding (LLE):

LLE [20] operates by assuming that objects within a local neighborhood in a high dimen-

sional feature space are linearly related. Consider the set of spectral vectors F ={F (c1) ,F (c2), . . . ,F (c

∀ci ∈ C, i ∈ {1, ..., n}. LLE aims to map the set F to the corresponding set XLLE =

{SLLE (c1) ,SLLE (c2) , . . . ,SLLE (cn)} of embedding co-ordinates. Let d(1), ..., d(k) be the k

nearest neighbors of ci and let ηk(ci) is the index of the location of its k-nearest neighbor (k-

NN) of ci ∈ C. The feature vector F (ci) and its k-NN’s {F
(

d(1)
)

,F
(

d(2)
)

, . . . ,F
(

d(k)
)

}

are assumed to lie on a patch of the manifold that is local linearly, allowing us to use the

Euclidean metric to determine distance between neighbors. Each F (ci) can then be ap-

proximated by a weighted sum of its kNN. The optimal reconstruction weights are given by

the sparse matrix WLLE (subject to the constraint
∑

j WLLE(i, j) = 1) that minimizes

E1 (WLLE) =
n

∑

i=1

∥

∥

∥

∥

∥

F (ci) −
k

∑

r=1

WLLE (i, ηr(ci))F
(

d(r)
)

∥

∥

∥

∥

∥

2

. (3.5)



17

Having determined the weighting matrix WLLE, the next step is to find a low-dimensional

representation of the points in F that preserves this weighting. Thus, for each F (ci)

approximated as the weighted combination of its kNN, its projection SLLE (ci) will be the

weighted combination of the projections of these same kNN. The optimal XLLE in the least

squares sense minimizes

E2 (XLLE) =
n

∑

i=1

∥

∥

∥

∥

∥

∥

SLLE (ci) −
n

∑

j=1

WLLE (i, j)SLLE (cj)

∥

∥

∥

∥

∥

∥

2

= trace
(

XLLELXT

LLE

)

, (3.6)

where XLLE =
[

SLLE (c1) ,SLLE (c2) , . . . ,SLLE (cn)
]

, L = (I − WLLE)
(

I − WT
LLE

)

, and

I is the identity matrix. The minimization of Equation 3.6 subject to the constraint

XLLEX
T
LLE =I (a normalization constraint that prevents the solution XLLE ≡0) is an Eigen-

value problem whose solutions are the Eigenvectors of the Laplacian matrix L. Since the

rank of L is n−1, the first Eigenvector is ignored and the second smallest Eigenvector rep-

resents the best one-dimensional projection of all the samples. The best two-dimensional

projection is given by the Eigenvectors with the second and third smallest eigenvalues, and

so forth.
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Chapter 4

Methodology

In Section 4.1, a brief description of the data sets considered in this work is presented.

Details concerning determination of ground truth for spatial extent of CaP on MRI are

given in Section 4.2. Replicated unsupervised clustering employed in the CAD system is

explained in Section 4.3. Experimental details of the two specific aims of the CAD system

for CaP detection on MRS are explained in Sections 4.4 and 4.5 respectively.

4.1 Data Description

A total of 18 in-vivo endorectal MRI and MRS studies were obtained from the American

College of Radiology Imaging Network (ACRIN) multi-site prostate trial1. These studies

were acquired with 1.5 Tesla GE Medical Systems through the PROSE (PROstate Spec-

troscopy and imaging Examination)2 package (voxel width 0.4 x 0.4 x 3 mm). For each

patient, MR (T2 imaging protocol) and MRS data were acquired prior to radical prostatec-

tomy. Following resection, the gland was sectioned and stained for CaP. In most cases, only

partial histological tissue sections were obtained due to issues with gland sectioning. In

some cases, some tissue sections and individual tissue pieces were discarded. The individual

1http : //www.acrin.org/6659 protocol.html

2www.gehealthcare.com/usen/mr/applications/products/prose.html
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tissue pieces were then manually examined ans CaP extent delineated on the histopathol-

ogy. Following CaP annotation on the histological tissue sections, CaP size (diameter) and

sextant locations were recorded for each study. The MRS spectral grid was contained in

DICOM images from which the 16× 16 grid containing N=256 spectra was obtained using

IDL 6.4 (ITT Visual Information Systems).

4.2 Determining approximate ground truth for spatial extent of CaP on

prostate

As mentioned above only partial ground truth for spatial extent for CaP on the 1.5 T MR

studies in the ACRIN database is available in the form of sextant location and diameter

size of CaP. Due to the limitations associated with having only partial tissue sections, an

approximate ground truth is defined for spatial extent of CaP on MRI in the following

manner. The prostate is visually divided into two symmetrical regions: Left (L) and Right

(R), and further divided into 3 regions during imaging: Base (B), Midgland (M), and Apex

(A). Approximate space within which the CaP extent is contained is then determined by

identifying within which of six regions (Left Base (LB), Left Midgland (LM), Left Apex

(LA), Right Base (RB), Right Midgland (RM) and Right Apex (RA)) CaP was identified

during needle biopsies. The maximum diameter of CaP is also recorded in each of the 6

candidate locations and is denoted as R.

In order to quantitatively evaluate CAD performance in terms of quantitative metrics such

as sensitivity and specificity, the precise spatial location of the target class within C is

required and unfortunately not available for these studies. Hence, a probabilistic ground

truth is defined for CaP that involves first defining a “ potential cancer space, (CP )”. To

appreciate the need for CP , let us assume the ideal case scenario (Figure 4.1) where the
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precise spatial location of CaP is known a priori and is denoted by the set Cs. If Ca denotes

the set of spatial locations corresponding to CaP identified by the CAD system, the true

positive (TP) area could be calculated as |Cs ∩ Ca|. Similarly, the false positive (FP) area

for the CAD system is |Ca − (Cs ∩ Ca)| and false negative (FN) area is |Cs − (Cs ∩ Ca)|.

For the problem considered in this work, Cs is unavailable and hence the need for CP which

is defined as the set of spatial locations within which a total number of Ng CaP locations

are contained. The true number of metavoxels c within CP that represent CaP can be

calculated as,

Ng = Ks ×

⌈

(R2)

∆X∆Y

⌉

, (4.1)

where Ks represents the number of contiguous MR sections containing CaP, ⌈⌉ refers to

the ceiling operation and ∆X, ∆Y refer to the size of the metavoxel c in the X and Y

dimensions. Thus for a MRS scene C, with known cancer in left midgland (LM), the prostate

being contained in a 3×6 grid and the prostate midgland region extending over 2 contiguous

slices, the total number of CaP metavoxels |CP | is 18 (3× 3× 2). The 3× 6 prostate grid is

divided into two equal right and left halves. Given that the tumor has a maximum diameter

of 13.75 mm in LM, with ∆X, ∆Y = 6.875, Ng =8 metavoxels corresponding to CaP within

CP . Both CP and Ng are integral to defining probabilistic estimates of CAD sensitivity,

specificity and positive predictive value, details of which are provided in Section 5.1.
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Figure 4.1: An illustration of the precise ground truth location (Cs) on the prostate and

spatial location of the class (Ca) identified as CaP by a CAD system. Note that in such a

case sensitivity, specificity of CaP detection via CAD can be determined precisely since Cs

is known exactly. CP represents the potential cancer space that needs to be defined when

Cs is not available and contains within it Ng CaP metavoxels.

4.3 Replicated k-means clustering in the reduced feature space

For the DR schemes, φ ∈ {PCA, LLE, GE, ISO}, unsupervised replicated clustering is

used to stratify all metavoxels c ∈ C into one of the 3 classes (cancer, benign, intermediate)

based on Sφ(c), the low dimensional representation of F(c). Replicated clustering is a

variant of the popular k-means [37] clustering scheme. k-means however is known to be

sensitive to the choice of initial cluster centers randomly chosen by the algorithm which has

a significant bearing on the final clustering of the data. The k-means algorithm is initialized

by randomly partitioning the data into k clusters and computing the cluster center for each

partition. The distance of each point from each of the k centroids is computed and each

object is reassigned to the closest centroid to minimize the intra-class variance. This random

initialization may lead to local minima leading in turn to different clustering results. The
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motivation behind replicated clustering is to make the final aggregation results from k-

means more deterministic. Below the various steps involved in this algorithm are briefly

described.

Step 1: At each of T iterations, k-means is applied to cluster all objects c ∈ C into one of

the three classes V 1
t , V 2

t , V 3
t , t ∈ {1, ..., T}. For each c ∈ V q

t , q ∈ {1, 2, 3}, t ∈ {1, 2, ..., T}

the centroid of each cluster is determined as,

cq
t =

1

|V q
t |

∑

c∈V
q
t

c (4.2)

Step 2: At each iteration t ∈ {1, ..., T}, the average Euclidean distance between each c ∈ V q
t

and corresponding cluster center cq
t , t ∈ {1, ..., T}, q ∈ {1, 2, 3}, is then determined as,

dq
t =

1

|V q
t |

∑

c∈V
q
t

||c − cq
t ||. (4.3)

The average intra-cluster distance over all 3 clusters is then obtained as,

µd
t =

1

3

∑

q

dq
t (4.4)

Step 3: Finally, the clusterings V̂ q, q ∈ {1, 2, 3} within a specific iteration t ∈ {1, ..., T} are

identified as the stable clustering result for which µd
t is minimum over all t.

Note that replicated clustering identifies stable clusterings as those that minimize intra-class

variance. Note further, that while the aim is not to explicitly seek to increase inter-cluster

distance, the empirical results suggest that replicated k-means clustering tends to also push

the cluster centers farther apart.

4.4 Aim 1: Localization of Prostate using Hierarchical clustering

Initially, most of the locations c ∈ C correspond to zero padded or non informative spectra

that lie outside the prostate (Figure 1.4). Hence, in Aim 1 the algorithm aims to eliminate
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the dominant cluster which comprises non-prostate spectra. The non-linear DR scheme

Graph Embedding [31] is employed to project all spectra into a reduced dimensional em-

bedding SGE(c) followed by replicated k-means clustering to aggregate all c ∈ C into two

clusters V̂ 1, V̂ 2 corresponding to informative and non-informative spectral classes. At each

iteration t ∈ {1, ..., T}, a subset of voxels C̃t in C is obtained by eliminating the non-

informative spectra identified as the dominant cluster (V̂ dom). The approximate number of

prostate spectra (Θ) of a MRS grid is learnt during the offline training phase. The auto-

matic cascaded scheme stops when the number of remaining spectra in the MRS spectra is

approximately equal to Θ. The result of the HierarclustMRS algorithm is a spectral grid

(C̃T ) containing all the prostate spectra.

Algorithm HierarclustMRS

Input: F (c) for all c ∈ C, Θ, C.

Output: C̃T .

begin

0. Initialize C̃0 = C, t = 0;

1. while |C̃t| > Θ do

2. Apply Graph Embedding [31], to F (c), for all c ∈ C̃t to obtain SGE
t (c);

3. Apply replicated k-means clustering on SGE
t (c) to obtain two stable clusters V̂ 1

t , V̂ 2
t ;

4. Identify larger cluster V̂ dom
t = arg{maxw[V w

t ]}, where w ∈ {1, 2};

5. Create set C̃t+1 ⊂ C̃t by eliminating all c ∈ V̂ dom
t from C̃t;

6. t = t + 1;

7. endwhile;

8. C̃T = C̃t;

end



24

Note that in general the algorithm is terminated when the total number of spectra is

marginally greater than (or equal to) Θ, which usually occurs within 2 to 3 iterations.

4.5 Aim 2: CaP identification via MRS

Having obtained C̃T , the next aim is to apply more sophisticated analysis to the spectra

in C̃T to be able to discriminate between different tissue classes in the prostate. Apart

from NLDR schemes (Isomaps, LLE, Graph Embedding) that were considered, two other

feature extraction schemes (z-score and PCA) were also evaluated for discrimination of the

prostate spectra. Following feature extraction, replicated k-means clustering for the DR

schemes (LLE, Isomaps, Graph Embedding, PCA) and thresholding for z-score was applied

to obtain hard classification of the spectra into CaP and non CaP categories.

4.5.1 Feature Extraction

(a) z-score:

For a set of objects, φtr ⊂ C, the mean spectral vector Fµ = [f µ
u|u ∈ {1, ..256}] and the cor-

responding standard deviation vector Fσ = [f σ
u|u ∈ {1, ...256}], where f µ

u = 1
|φtr|

∑

c∈φtr f u(c)

and f σ
u =

√

1
|φtr|

∑

c∈φtr [f u(c) − f µ(c)]2, are obtained. z-score at each c ∈ C is then defined

as,

Sz(c) =
||F (c) − Fµ||2

||Fσ||2
, (4.5)

z-score model gives the degree to which the value of an object deviates from the normal

based on a statistical linear model. A predefined threshold θz is used to classify each c ∈ C̃T
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as cancer or benign based on whether Sz(c) > θz or Sz(c) < θz.

(b) Dimensionality Reduction:

4 commonly employed DR methods (explained previously in Chapter 3) are applied to

the MR spectra in C̃T so that for any c ∈ C̃T , the high dimensional ambient feature

vector F (c) is mapped to Sφ(c), where φ ∈ {PCA, LLE, ISO, GE}. Replicated clustering

is then employed to cluster each Sφ(c),∀c ∈ C̃T , into one of the three possible classes,

V̂ φ,1, V̂ φ,2, V̂ φ,3 corresponding to cancer, benign, or an intermediate tissue class (benign

prostatic hyperplasia (BPH), high grade prostatic intraepithelial neoplasia (HGPIN)) with

characteristics between that of the cancer and benign classes.
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Chapter 5

Results

In Section 5.1, the probabilistic metrics employed for evaluation of the CAD scheme based

on the partial knowledge of ground truth extent of CaP are briefly described. In Section

5.2 the qualitative results of Aim 1 (hierarchical clustering) and Aim 2 (CaP detection) of

the MRS CAD scheme are presented. Quantitative results for both Aims are explained in

Section 5.C.

5.1 Probabilistic Quantitative metrics used for assessing CAD perfor-

mance in absence of precise CaP ground truth

Figure 5.1: Illustrations of the potential ground truth CP space containing Ng metavoxels

corresponding to CaP. Ca represents the CaP segmentation obtained by the MRS CAD

analysis scheme and Ca,o and Ca,i represent those regions of Ca that lie outside and within

CP respectively.
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As mentioned previously in Section 4.2, a potential CaP space CP is defined within which the

number of CaP locations Ng is determined. Following replicated clustering of Sφ(c),c ∈ C̃T ,

which of the 3 clusters V̂ 1, V̂ 2, V̂ 3 ∈ C̃T corresponds to the CaP class needs to be identified.

The corresponding sets of spatial locations for clusters V̂ 1, V̂ 2, V̂ 3 are represented as C1
a , C2

a

and C3
a respectively. With respect to CP (as illustrated in Figure 5.1), some part of C1

a , C2
a

or C3
a may be within (Cq

a,i, q ∈ {1, 2, 3}) or outside (Cq
a,o, q ∈ {1, 2, 3}) CP . Thus Cq

a =

Cq
a,o ∪ Cq

a,o, q ∈ {1, 2, 3}. The true positive (TP), false positive (FP), true negative (TN)

and false negative (FN) ratios associated with each class Cq
a, q ∈ {1, 2, 3} with respect to

CP and Ng are then obtained. The following heuristic algorithm is then used to identify

which of Cq
a, q ∈ {1, 2, 3} represents the CaP class (CCaP

a ).

Algorithm IdentifyCaPCluster

Input: Cq
a, q ∈ {1, 2, 3}, CP , Ng, C.

Output: CCaP
a .

begin

0. for q = 1 to 3 do;

1. Cq
a,i = Cq

a ∩ CP ;

2. Cq
a,o = Cq

a − Cq
a,i;

3. If |Cq
a,i| ≥ Nq then

TP q = Ng, FP q = |Cq
a| − Ng, FN q = 0, TN = |C − Cq

a|;

4. else TP q = |Cq
a,i|, FP = |Cq

a,o|, FN = Ng − |Cq
a,i|, TN = |C − Cq

a,o| − Ng;

5. endif;

6. endfor;

7. CCaP
a = arg maxq{[

TP q

FP q ]};

end
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As Algorithm IdentifyCaPCluster indicates, the CaP cluster is determined as the one that

maximizes true positive fraction while simultaneously minimizing the false positive fraction.

Having identified Ca, corresponding sensitivity and specificity values are determined as,

SN(CCaP
a ) =

TPa

TPa + FNa
× 100, (5.1)

SP (CCaP
a ) =

TNa

TNa + FPa
× 100, (5.2)

Note that the confidence estimate (η) associated with SN(CCaP
a ) and SP (CCaP

a ) is a func-

tion of |CP | and Ng and is determined as,

η =
Ng

|CP |
× 100. (5.3)

5.2 Qualitative Results

5.2.1 Aim 1: Qualitative evaluation of the hierarchical clustering scheme

Figure 5.2 shows the qualitative results of the hierarchical cascade scheme for distinguishing

informative from non-informative spectra. Figures 5.2 (a), (g) represent spatial maps of the

spectral grid C̃0 (16 × 16 spectral voxels) superimposed on the corresponding T2-weighted

MRI scene for two different patient studies. Every c ∈ C̃0 in Figures 5.2 (a), (g) is assigned

one of two colors (blue and red), in turn corresponding to informative and non-informative

(background) class and determined via replicated clustering on the embedding SGE(c).

Note that the dominant cluster (spatial locations in red in Figures 5.2 (a), (g)) has been

eliminated in the second iteration (C̃1 (16 × 8 spectral voxels)) (Figures 5.2 (b), (h)) in

both studies. The final spectral grid (C̃2 in Figures 5.2 (c), (i)) is obtained after elimination

of non-informative peripheral spectra (red locations) during the third iteration, third level

of the cascade. Figures 5.2 (d)-(f) and Figures 5.2 (j)-(l) represent the embedding plots
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(where each location is plotted in 3D eigen vector space using the 3 dominant embedding

values as co-ordinates) from C̃0 (16 × 16 spectral voxels) to C̃2 (7 × 4 spectral voxels) in

(c) and 6 × 4 spectral voxels in (i)) for two different studies at the 3 different levels of the

cascade. Note that for both studies at the end of the third iteration, the spectral grid has

been accurately overlaid on the prostate. Further note in Figures 5.2 (a)-(c), and 5.2 (g)-(i)

that the spectral grid with the pronounced boundary indicates the region of interest during

the current iteration.
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Figure 5.2: Spectral grids for a single slice T2-w MRI scenes for 2 patients at (a), (g) the

first cascade level C̃0, (b), (h) second cascade level C̃1, and (c), (i) third cascade level C̃2.

Note that the size of the grid reduces from 16× 16 metavoxels in (a), (g) to 7× 4 in (c) and

to 6× 4 metavoxels in (i) by elimination of non-informative spectra in the dominant cluster

(red). The corresponding clustered embedding plots at each of the cascaded levels are also

shown in (d) - (f) and (j) - (l), which correspond to the metavoxel grids shown in (a) - (c)

and (g) - (i).
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5.2.2 Aim 2: Evaluation of feature extraction schemes for CaP detection

The identification of the prostate grid in Aim 1 allows for the resolvability of the 3 tissue

classes (one of which is cancer). The differences between these 3 spectral classes within the

informative cluster at the higher levels in the cascade (C̃1, C̃2, C̃3) become discriminable only

after removal of non-informative spectra. Figure 5.3 shows the qualitative results of the 5

feature extraction schemes employed in this work for CaP detection in for 3 different patient

studies, each row in Figure 5.3 corresponding to a different study. The three colors assigned

to the spectral voxels in Figure 5.3 correspond to the three clusters obtained via replicated

clustering on the reduced dimensional spectra Sφ(c), φ ∈ {PCA, LLE, GE, ISO}. For the

z-score scheme, each metavoxel was classified as belonging to one of 2 classes (red and blue

in Figures 5.3 (a), (d), (g)). The white box superposed on Figure 5.3 (a)-(i) shows the

potential cancer space for corresponding slices. In each of Figures 5.3 (a)-(i) the red cluster

was identified as CaP using the IdentifyCaPCluster algorithm (Section 5.A) and following

feature extraction and replicated clustering. Figures 5.3(a), (d), (g) show results obtained

via z-score; while Figures 5.3 (b), (e), (h) show the corresponding results for PCA. Figures

5.3(c), (f), (l) show similar results when employing Graph Embedding, LLE and Isomaps

respectively. For the first study (first row in Figure 5.3), Graph Embedding (Figure 5.3(c))

yields a near perfect CaP detection in terms of sensitivity and specificity as only CaP voxels

are identified within the white cancer grid (CP ). The corresponding results for z-score 5.3

(a) and PCA 5.3 (b) both yield poor detection sensitivity and specificity. Similarly for the

2 other studies shown in Figure 5.3, Isomaps (5.3(f)) and LLE (5.3(i)) yield higher CaP

detection sensitivity and specificity compared to z-score (5.3(d), (g)) and PCA (5.3(e), (h)).

Figure 5.4 shows an example of the MR spectral grid with classification labels obtained from

Graph Embedding replicated clustering plotted back on the individual spectra.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: CaP detection results via feature extraction schemes employed for three different

studies; different rows corresponding to different studies. Figures 5.3 (a), (d), (g) represent

the CaP (red voxels) and benign clusters (blue voxels) obtained via z-score, and (b), (e), (h)

demonstrate the corresponding results obtained via PCA (red, blue, green (intermediate)).

Results for the NLDR schemes (c) GE, (f) LLE and (i) Isomaps are also shown. The white

box superposed on Figures 5.3 (a)-(i) shows the locations of the potential cancer space (CP ).

In each of Figures 5.3 (a)-(i) the cluster with the red metavoxels was the one identified as

the CaP class based on the IdentifyCaPCluster algorithm (Section 5.1).
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Figure 5.4: MRS spectral grid plotted with the classification labels (three colors correspond
to three different clusters) obtained from Graph Embedding and replicated clustering. The
red spectra correspond to those identified as CaP, the blue correspond to benign spectra
and the green correspond to intermediate spectra.

5.3 Quantitative Results

5.3.1 Quantitative evaluation of Aim 1- Hierarchical clustering

Sensitivity Specificity PPV

97.66% 98.87% 89.29%

Table 5.1: Average sensitivity, specificity, PPV values for automated identification of

prostate grid using hierarchical spectral clustering averaged over 18 studies.

Following identification of prostate spectra, the largest box CT that contains all the prostate

spectra is then overlaid on the T2-w image. Note that in qualitative evaluation of Aim 1, the

precise spatial extent of the prostate is all that is needed. This ground truth is ascertained

by manual placement of a spectral grid (C̃T
g ) on the prostate by an expert radiologist.

Table 5.1 shows the average sensitivity, specificity and positive predictive value (PPV) in
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automated identification of the prostate grid, C̃T with respect to C̃T
g and averaged over 18

studies.

5.3.2 Quantitative evaluation of Aim 2- CaP detection

(a) z-score analysis:

In order to define the optimal threshold θz for performing a z-score based classification of

each c ∈ C as normal or cancerous, a set of cancerous voxels CM ⊂ C is defined during

an offline training phase. For each c ∈ CM , corresponding Sz(c) was obtained which was

then used to define the average µM
sz and standard deviation σM

sz
of z score values for CaP.

The threshold θz was then defined as µM
sz ± ασM

sz , where α ∈ [0, 1]. The value of α was

uniformly varied between [0,1] and a corresponding values for θz obtained. At each value of

θz, each metavoxel c ∈ C̃T is identified as belonging to CaP if Sz(c) > θz, normal otherwise.

Thus at each θz, the corresponding sensitivity and specificity of CaP detection via z-score

is computed (Equations 5.1, 5.2). A curve is then fit to the sensitivity, specificity values to

obtain the Receiver Operating Characteristic (ROC) curve. The optimal threshold θz was

determined as the operating point on the ROC curve; the location on the ROC curve closest

to 100% sensitivity, specificity. Figure 5.5 shows the ROC curve obtained by averaging

sensitivity and specificity values for CaP detection as a function of α, over 18 studies.
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Figure 5.5: ROC curve of the z-score analysis scheme obtained by varying the threshold

(θz, α ∈ [0, 1]) averaged over 18 studies.

(b) Evaluation of DR methods:

The ability of a classifier to distinguish between object classes in embedding spaces obtained

via DR methods is known to be sensitive to the choice of number of dimensions (v) of

the embedding space in which the data is represented. For the NLDR methods, the low

dimensional data representations obtained via LLE [20] and Isomaps [19] are also a function

of κ, the parameter controlling the size of the local neighborhood within which linearity

is assumed. In order to evaluate the parameter sensitivity of different DR methods, the

robustness of the DR methods over different values of κ and v was quantitatively evaluated.

LLE and Isomaps were evaluated by varying κ ∈ {6, 7, ...15} and v ∈ {3, 4, ...10}, a total of

80 different combinations of parameter values. PCA and Graph Embedding were evaluated

for 8 different values of v ∈ {3, 4, ..., 10}.

3 fold and 5 fold cross validation averaged over 20 iterations was also performed for φ, φ ∈

{LLE, ISO, GE} to obtain average sensitivity and specificity for all 18 studies. 3 fold cross

validation was performed by randomly choosing 3 datasets and calculating average CaP

detection sensitivity and specificity across 3 studies on the 80-dimensional parameter space.
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The parameter set (vmax, κmax) with maximum sensitivity and specificity in this space

were then identified as optimal values and used for the CAD scheme on the remaining 15

studies. The average CaP detection sensitivity and specificity on these 15 studies was then

recorded. On the next trial, 3 random training studies from 18 were again selected and used

to optimize the parameters and evaluation again done on the remaining 15 studies. This

entire process was repeated a total of 20 times. The mean and standard deviation in CaP

detection sensitivity and specificity across these 20 iterations is reported in Table 5.2 (a) for

the 4 DR methods. Note that for PCA and GE only vmax was optimized. A similar routine

was employed when performing 5 fold cross validation. Corresponding results are reported

in Table 5.2 (b). All NLDR schemes employed in this work were found to have higher

sensitivity of CaP detection compared to PCA, Graph Embedding performing the best with

a sensitivity of almost 90%. PCA, however was found to have marginally higher specificity

compared to the NLDR schemes. In Figures 5.6 and 5.7 are shown barplots representing

CaP detection sensitivity, specificity for each of the 18 studies considered in this work via

3-fold and 5-fold cross validation respectively over 20 iterations for GE and ISO schemes.

Note that both average and standard deviation values over 20 iterations are shown. The

confidence estimates (η) associated with the sensitivity, specificity measurements of each

study are also reported in Figures 5.6 and 5.7. Note that while η is low for a majority of

the studies, for studies 11 and 18, the confidence associated with CaP detection sensitivity,

specificity was almost 90% and 80% respectively.
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Figure 5.6: Barplot showing average and standard deviation in CaP detection sensitivity and

specificity for the individual 18 studies averaged over 20 iterations of 3 fold cross validation

via Graph Embedding. Confident coefficient (η) is also shown in green.
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Figure 5.7: Barplot showing average and standard deviation in CaP detection sensitivity
and specificity for the individual 18 studies averaged over 20 iterations for 5 fold cross
validation via Isomaps. Confident coefficient (η) is also shown in green for each study.
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Method Sensitivity Specificity

GE 89.33± 1.87 79.79± 2.24

ISO 87.94± 3.16 79.04± 1.73

LLE 83.70± 4.50 81.04± 4.60

PCA 78.53± 3.20 83.97 ± 2.81

(a)

Method Sensitivity Specificity

GE 89.09± 2.10 79.22± 2.10

ISO 87.96± 2.88 78.75± 1.97

LLE 84.93± 4.42 81.32± 4.05

PCA 78.78± 4.31 84.11 ± 2.46

(b)

Table 5.2: Table showing the average and standard deviation in CaP detection sensitivity

and specificity for different DR methods over κ ∈ {5, ..., 15} and v ∈ {3, ..., 10} for 18

different studies via (a) 3 fold cross validation, and (b) 5 fold cross validation.
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Chapter 6

Applications of this work

The work presented in this thesis is further extended to two very specific applications,

(a) segmentation of the prostate and, (b) integration of metabolic and structural content

present in MRI and MRS for automated CaP detection. A brief overview of the applications

of the hierarchical unsupervised clustering presented in this work used for segmentation of

prostate and CaP detection using integration of MRI-MRS are presented in following two

sections.

6.1 Application to automated segmentation of prostate

Segmentation of the prostate boundary on clinical images is useful in a large number of

applications including calculation of prostate volume during biopsy, estimating spatial loca-

tion of cancer in the prostate, and treatment planning. Manual segmentation of the prostate

boundary is, however, time consuming and subject to inter- and intra-reader variability. A

semi-automated scheme for accurate prostate segmentation on in-vivo multi-modal MRI

studies is performed using the popular Active Shape Model (ASM). However, ASMs require

careful initialization and are extremely sensitive to model initialization. The spatial loca-

tions of the prostate spectra identified in Aim 1 are thus used as the initial ROI for the ASM

for automated initialization. A bounding box is first constructed to inscribe the prostate

spectra obtained from Aim 1. During the training stage of the ASM, a set of prostate
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training images are manually landmarked, from which the shape and intensity information

is obtained. This training stage is done off-line, and only needs to be done once to construct

the trained ASM model comprising both shape and intensity information.The mean shape

is transformed to fit in the bounding box previously obtained in Aim 1 from the spectral

clustering of the MRS data, which serves to provide the landmark points of the model for

the first iteration. The shape is updated to fit the landmark points on the border. Several

qualitative results for the initialization of the prostate ASM via spectral clustering of the

MRS data are shown in Figure 6.1 [34]. In each of these images, ground truth segmentation

by Expert 1 is shown in green, ground truth segmentation by Expert 2 is shown in blue, and

the prostate boundary segmentation using the ROI initialization resulting from the spectral

clustering of MRS data is shown in red.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.1: Figure (a) - (l) show the initialization results from the spectral clustering of MRS

data for 12 different studies. In each image, the green line indicates Expert 1’s segmentation,

the blue line indicates Expert 2’s segmentation, and the red line indicates the initialization

from the spectral clustering.

6.2 Integration of MRI-MRS for automated CaP detection

Recently, in vivo Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spec-

troscopy (MRS) have emerged as promising new modalities to aid in prostate cancer (CaP)

detection. MRI provides anatomic and structural information of the prostate while MRS

provides functional metabolic data pertaining to biochemical concentrations of metabolites

such as creatine, choline and citrate. Similar to the CaP detection scheme presented in
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this work, a meta-classifier is developed to detect CaP in vivo via quantitative integration

of multimodal prostate MRS and MRI using non-linear dimensionality reduction (NLDR)

methods including spectral clustering and locally linear embedding (LLE). Quantitative

integration of multimodal image data (MRI and PET) involves the concatenation of image

intensities following image registration. However data integration is non-trivial when the in-

dividual modalities include spectral and image intensity data. A data combination solution

of MRI-MRS is proposed wherein the feature spaces (image intensities and spectral data)

associated with each of the modalities are projected into a lower dimensional embedding

space via NLDR. These methods preserve the relationships between the objects from the

original high dimensional into the reduced low dimensional space. Since the original spectral

and image intensity data are divorced from their original physical meaning in the reduced

dimensional space, data at the same spatial location can be integrated by concatenating

the respective embedding vectors. Unsupervised clustering is then used to partition objects

into different classes in the combined MRS and MRI embedding space. Quantitative results

of this multimodal computer-aided diagnosis scheme on 16 sets of patient data obtained

from the ACRIN trial, for which corresponding histological ground truth for spatial extent

of CaP is known, show a marginally higher sensitivity, specificity, and positive predictive

value compared to corresponding CAD results with the individual modalities [35]. Fig-

ure 6.2 shows the qualitative results for 2 studies comparing the CAD results for the two

modalities individually with the combined structural and spectral information.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2: (a) and (e) show the location of potential cancer space (at metavoxel resolution)

shaded in a translucent red on a 2D MRI slice. This is followed by the results of shading

the section with different colors (red, blue and green) based on the labels of the objects in

clusters: (b) and (f) based on the MRI embedding space (c) and (g) based on the MRS

embedding space (d) and (h) based on the integrated embedding space. In each case, the

NLDR method used was GE and the labels were obtained via unsupervised clustering.

For each of the result images the red region was found to correspond most closely to the

potential cancer space in (a) and (e) respectively.
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Chapter 7

Concluding Remarks and Future work

In this work a novel application of non linear dimensionality reduction and hierarchical

clustering is presented for automated identification of (a) the prostate ROI based on clas-

sification of MR spectral data alone, and (b) cancerous spectra within the prostate ROI.

Current state of the art peak detection methods for CaP detection on MRS are generally

limited in their ability to accurately identify metabolite peaks on account of the low signal

to noise ratio of MRS data. The inherent non-linearity associated with the spectral data also

limits the applicability of linear DR schemes such as PCA and statistical methods such as

z-score. In previous work [18] the efficacy of non-linear DR schemes over linear DR schemes

for classification of high dimensional non-linear biomedical data has been demonstrated.

The empirical comparisons of 3 non-linear DR schemes (LLE, Isomaps, Graph Embedding)

with PCA and z-score via 3 fold and 5 fold cross validation over 18 studies revealed that

the non-linear DR schemes consistently had a higher classification sensitivity in terms of

CaP detection. In addition, the non-linear DR schemes were found to be relatively robust

to changes in the value of the system parameters (v, κ). An improved variant of the popular

k-means clustering algorithm called replicated clustering was also employed which yielded

consistently stable clusters. Aim 1 of the presented scheme took an average of 11.24 seconds

to analyze a 256 × 256 × 8 MRI/ MRS 3D 1.5 T scene on a Pentium IV, 2 GB RAM Intel

processor machine, while Aim 2 took an average of 5.23 seconds for automated identification
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of CaP.

Owing to the fact that only limited knowledge regarding precise spatial extent of CaP was

available for the studies considered in this work a confidence coefficient was defined to

assess the degree of certainty associated with the CAD sensitivity, specificity measurement

reported. The high confidence estimates associated with 2 of the studies seem to suggest

that the consistently high CaP detection sensitivity and specificity measurements for the

other studies are not erroneous.

To summarize, the primary contributions of this work are,

1. Novel integration of non-linear dimensionality reduction methods with replicated clus-

tering for analysis of prostate Magnetic Resonance Spectroscopy. Methods employed

in this work make no assumption about the data and can be applied (without any

modifications) to higher resolution (3 Tesla) MRS or other spectral data. The scheme

also has an execution time of under 20 seconds.

2. A fully automated scheme for identifying the prostate region of interest based on

spectral classification of the MRS data alone, and

3. An automated CaP detection scheme based on MRS data that appears to be robust to

system parameters and more accurate compared to such state of the art MRS analysis

schemes as PCA and z-score.

Future work will involve performing more rigorous analysis of the scheme on a larger

cohort of datasets and performing similar CAD analysis using 3T MRS/ MRI studies. Aim

would also be to develop more robust unsupervised and supervised classification tools to be

able to classify spectral information as accurately as possible. Recently we have also pro-

posed a new algorithm, Consensus-Locally Linear Embedding (C-LLE), as an improvement
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to a commonly used NLDR scheme, Locally Linear Embedding (LLE) [36] which is known

to be highly dependent on the user defined parameter, κ. Further detailed evaluation of

the C-LLE algorithm as an improvement over the proposed NLDR based clustering scheme

would also be a subject of future research. The aim would also be to explore different unsu-

pervised clustering schemes such as mean shift and EM based clustering as an improvement

to the currently employed k-means clustering. Refining the replicated clustering algorithm

as a robust clustering scheme would also be considered in future. In order to expand the

automated analysis via the hierarchical CAD system one of the aims would be to propose a

scheme to be able to automatically classify different grades of CaP from MR spectroscopy

based on spectral information, once CaP has been identified using the automated cluster-

ing scheme. Future work would also include applying the proposed scheme for the two

mentioned applications in a more comprehensive fashion and aim to propose new schemes

both for segmentation and classification of prostate based on MR spectral and structural

information. Multimodal classification involving spectroscopy would also be an interesting

area yet to be explored.
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