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ABSTRACT OF THE DISSERTATION

Statistical Modeling and Inference for Multiple Temporal

or Spatial Cluster Detection

by Qiankun Sun

Dissertation Director: Minge Xie

This thesis develops a latent modeling framework and likelihood based inference

tool to detect multiple temporal or spatial clusters.

Cluster detection is important to researchers from various fields. Practical applica-

tions include: biological studies of DNA sequencing, environmental researches, epidemi-

ological studies and surveillance for biological terrorism. The traditional scan statistics

procedures have technical difficulties to detect multiple clusters of varying sizes. Some

Bayesian approaches have to limit the potential clusters in cell divisions. A recently

proposed stepwise regression method tends to be inefficient in some cases. We utilize

some probability distributions to model the latent clusters and mimic the sample data

generation process. With model selection techniques, we can obtain an optimal number

of total potential clusters. Based on a Monte-Carlo EM algorithm and likelihood based

inference, we are able to estimate the associated model parameters, detect significant

clusters and identify their locations and sizes. Compared with other procedures, this

new approach is intuitive and simple. It is also more efficient and flexible for further

extensions.
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Preface

This thesis develops a general latent modeling framework and likelihood based inference

tool to detect clustering events within temporal or spatial samples.

Multiple cluster detection in temporal or spatial data has become more and more

important ever since last century. Practical applications include: in biological studies

of DNA sequencing, the detection of unusual clusters of specific patterns can be used

to allocate lab resources and help find “biologically important origins of diseases”. In

environmental studies, people living near factories that generate pollution may have

an increased chance of certain diseases. It is important to detect and monitor such

clusters. In epidemiological studies, when the “etiology of diseases” has not been well

established, it is often required to obtain evidence of temporal or spatial clusters. In

surveillance for biological terrorism, it is essential to provide early warnings of terrorist

attacks.

A large number of approaches have been proposed for cluster detection. Among

them, the traditional scan statistics procedures, based on a “hypothesis testing frame-

work”, have technical difficulties to detect multiple clusters of varying sizes. Some

Bayesian approaches, based on a “disease mapping framework”, have to limit the po-

tential clusters in cell divisions. A recently proposed stepwise regression method, based

on a “distance measuring framework”, tends to be inefficient in some cases.

We utilize some probability distributions to model the latent clusters and mimic the

data generation processes. This modeling framework is intuitive and allows multiple

cluster detection. With model selection techniques, we can obtain an optimal number

of potential clusters. Based on likelihood inference and a Monte-Carlo EM algorithm,

we are able to estimate the associated model parameters, detect significant clusters and

identify their locations and sizes. Compared with other methods, this new approach has
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several distinct advantages: (i) It does not limit potential choices of clusters in a finite

set. (ii) It is more efficient than those that rely on pseudo-likelihood, weighted least

squares or empirically weighted likelihood ratio tests. (iii) It is flexible for extensions

that include baseline function incorporation, temporal-spatial or higher dimensional

cluster detection. Though it requires some programming efforts, this method is com-

prehensible and can be easily implemented. A new and efficient tool to solve cluster

detection problems is developed.

This thesis is organized as follows. An introduction of “cluster” definition, its appli-

cations and importance, and some existing methods are reviewed in chapter 1. Those

who are familiar with this information can skip this part. Chapter 2 provides detailed

procedures for multiple temporal cluster detection. Some probability distributions are

utilized to model the locations and sizes of the latent cluster intervals. A piecewise

uniform distribution is then introduced to mimic the sample data generation process.

When the number of clusters is assumed to be given, a Monte-Carlo EM algorithm

is developed to estimate the associated model parameters. Wald and LRT tests are

then used to test the significance of the latent clusters. When the results are signif-

icant, robust methods are proposed to estimate the locations and sizes of the latent

cluster intervals. With the number of clusters unknown, AIC or BIC model selection

criterion is used to determine the optimal number of total potential clusters. Lastly,

simulation studies and real data analysis are performed to illustrate the efficiency of

this new method. The whole procedure is extended in chapter 3 for multiple spatial

cluster detection. Chapter 4 discusses our findings and outlines some open questions.

Detailed equations for the spatial case are derived in Appendix A. Appendix B provides

the two real data sets we analyze in the temporal case. Finally, the R and C program

codes for the temporal case are presented in Appendix C.
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Chapter 1

Background and Literature Review

This chapter provides background information about cluster detection and reviews some

existing methods. In section 1.1, two commonly used “cluster” definitions are intro-

duced. In section 1.2, the importance and some applications of cluster detection are

provided. Section 1.3 reviews some existing methods. Our contributions are briefly

presented in section 1.4. Those who are familiar with this information can directly skip

to the next chapter.

1.1 What is “cluster”?

There are two commonly used equivalent definitions of “cluster”. The first one is that

clusters are temporal intervals or spatial regions within which an incidence of interest

is much more/less likely to happen (i.e., with a much greater/smaller probability to

happen per unit time or area) than that outside these temporal intervals or spatial

regions. The second one is that cases inside these temporal intervals or spatial regions

are closer to/farther from each other than cases outside these temporal intervals or

spatial regions [15]. Our approach uses the first definition.

1.2 Applications and importance of cluster detection

In the past 50 years, researchers have been investigating different types of clusters in

time and space. Some applications look for an unusually large number of events within

small clusters, or patterns that suggest clumping over the entire study period or area.

Other applications are concerned with unusually large clusters within a small region

of time, space or location in a sequence. In some cases, focus lies on a specific region,

for example, a region with heavy pollution. In other cases, researchers scan the entire
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study area and seek to locate unusually high likelihood of clustering. Practical examples

cover a wide range of fields over various disciplines. For instance:

In biological studies of DNA sequencing, the detection of clusters of unusual pattern

can be used to allocate lab resources and help find “biologically important origins of

diseases”. For example, Leung et al. uses palindrome clustering in DNA to locate the

origin of replication of viruses [28].

In environmental studies, people living near factories that generate pollution may

have an increased chance of certain diseases. It is of interest to detect and monitor such

clusters. The AEGISS (Ascertainment and Enhancement of Gastrointestinal Infection

Surveillance and Statistics) project is such an example. This project aims to identify

anomalies in the space and time distribution of non-specific gastrointestinal infections

in the Southampton area in England [10].

In epidemiological studies, when the “etiology of diseases” has not been well estab-

lished, it is often required to study the data to obtain evidence of temporal or spatial

clusters [30, 6]. Establishing an etiologic link with exposure both provides clues to the

cause of disease and helps target periods or areas when or where health care needs

improvement for preventive measures [22].

In surveillance for biological terrorism, it is essential to provide early warnings of

terrorist attacks. Syndrome surveillance for biological terrorism requires statistical

methods that detect “relatively abrupt increase in incidence” [53].

Other areas of application are: agriculture, archaeology, botany, criminology, de-

mography, ecology, economics, engineering, entomology, forestry, genetics, geography,

health management, history, neurology, physics, sociology, veterinary medicine, zoology,

cosmology with spatial clustering of galaxies, agronomy and more.

1.3 Existing methods for cluster detection

A large number of statistical methods have been proposed for cluster detection. Some

methods are based on a “hypothesis testing framework”. They usually test a null

hypothesis of a common disease rate against a “clustering” alternative, for example, the
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scan statistics procedures [22, 23]. Some are based on a “disease mapping framework”.

These methods usually use Bayes or empirical Bayes approaches to produce smoothed

estimates of cell-specific disease rates suitable for mapping, for example, the Bayesian

procedure developed by Gangnon and Clayton [13]. Others adopt a “distance measuring

framework”. For these methods, statistics that measure average distance between cases

are usually used, for example, the stepwise regression methods [30, 6]. These three kinds

of methods are respectively reviewed in more detail in the following three subsections.

1.3.1 Scan statistics procedures

A traditional statistical method to detect clustering of events is via Scan Statistics. It

was first studied in 1965 by Naus, who looked at the cluster detection problem in both

one and two dimensions [32, 33]. Afterwards, the same statistician along with others

have published many papers to develop the statistical theory. Exact distributions for

statistical inference are derived [32, 33, 34, 35, 36, 37, 38, 39]. For the one-dimensional

problem, the most commonly used scan statistic is the maximum number of cases in

a fixed size moving-window that scans through the whole study period [32, 33]. The

test based on this scan statistic has been shown to be a generalized likelihood ratio

test for a uniform null against a pulse alternative [35]. A related scan statistic is

the diameter of the smallest window that contains a fixed number of cases. For both

statistics, the exact distributions are only known in special situations. Asymptotic

and approximate expressions are used instead for general statistical inference [37, 18]

and power evaluation [52, 38, 39, 8, 47]. In higher dimensions, theory becomes more

complex. Only distributional bounds are obtained for a two dimensional scan statistic

with a rectangular window of fixed size on a square [33]. More detailed information

about a variety of these statistics and their applications can be obtained in four recent

books [3, 12, 19, 20].

Since the exact distribution of this statistic can not be determined, starting 1995, an

extended scan statistic that uses a range of fixed window sizes or fixed number of cases

is proposed [22, 23, 24, 45]. This statistic uses Monte Carlo simulation [11] to perform

the hypothesis testing. An underlying intensity that generates sample events under
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the null hypothesis is first assumed. The usual probability distribution used is either

Poisson or Bernoulli. A regular or irregular grid of centroids that cover the whole study

region is then created. Around each centroid, an infinite number of circles are produced.

The radii of these circles range from zero up to a maximum so that at most 50 percent

of the population is included inside. For each circle, actual and expected number of

cases inside and outside are obtained and the likelihood function is calculated. The scan

statistic is defined as the maximum likelihood ratio test statistic. The circle with the

highest likelihood function is picked as the most likely cluster. For statistical inference,

random replicas of the data set are generated under the null hypothesis of no clusters

via Monte Carlo sampling. The scan statistics in real and random data sets are then

calculated and ordered. If the scan statistic from the real data set is ranked in the

highest β percent, the null hypothesis is then rejected at β percent significance level.

The scan statistics procedures have been very successful in detecting a single signif-

icant cluster. They also have some success in detecting multiple clusters of fixed sizes.

Therefore, it is not surprising that together with a developed free software, SatScan,

the extended spatial scan statistic methodology has become a popular method for clus-

ter detection. However, they have technical difficulties to detect multiple clusters of

varying sizes and make inference for related problems. Though the SatScan software

is currently being extended to detect elliptical-shaped clusters [25], scan statistics have

low powers to detect irregularly shaped clusters due to the use of rectangular or circular

shaped scan windows. Moreover, these statistics require a set of potential clusters to

be specified in advance.

1.3.2 Bayesian approaches

In addition to classical statistical methods, Bayesian approaches that compute posterior

probabilities of potential clusters have also been proposed for cluster detection problems.

One natural scan statistics extended “Bayesian spatial scan statistic” is proposed for

spatial cluster detection by Neill et. al [40]. This method uses a conjugate Gamma-

Poisson model instead of Poisson model for the model assumption. Compared with

the standard frequentist methods, this Bayesian method can not only incorporate prior
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information about the size and shape of a cluster, but also the impact of the cluster on

the monitored data stream. Moreover, since closed form for likelihood functions can be

obtained, randomization testing becomes unnecessary. Both make this method a faster

algorithm. However, just as with the standard frequentist scan statistics methods, the

potential spatial clusters are limited to a finite set of specific choices.

Gangnon and Clayton develop a “weighted average likelihood ratio statistic (WALR)”

with a Bayesian interpretation. This statistic approximates posterior probabilities of a

cell being part of the cluster, and in turn helps locate the cluster [14]. The set of cells

is usually pre-fixed and finite, which leads to a finite choice of potential clusters. They

note in a later paper [16] that the posterior probabilities may not specify a region of

clustering. This is a disadvantage of the WALR statistic. To both achieve the advan-

tage of the specificity of scan statistics and correct for the cluster size bias, they further

develop two other scan type statistics: a “weighted average likelihood ratio scan statis-

tic (WALRS)” and a “penalized scan statistic” [16]. These approaches can be viewed

as generalized scan statistics approaches.

Some Bayesian methods are based on the “disease mapping framework” [9, 13, 15,

17, 21, 26, 27, 54]. Among them, the Bayesian approach proposed in Gangnon [13]

incorporates ideas from image analysis, Bayesian model averaging and model selection.

It analyzes a study region that is first divided into N subregions, or cells. For each cell

i, the events number Oi and the population at risk ni are observed. The interest lies on

the underlying event rates ri, i = 1, · · · , N . A cluster model with k clusters is identified

by a vector of cluster memberships c = (c1, · · · , cN ), where ci = 0 if cell i belongs to

the background and ci = j if it belongs to cluster j, j = 1, · · · , k. With the assumption

that Oi is Poisson(rini) distributed and ri is hierarchical gamma prior distributed and

assuming c is known, the conditional posterior distribution of (rj | c, O) is found to be

gamma distributed. Starting with a saturated model with N-1 clusters, a randomized

model search algorithm similar to the backwards elimination is proposed by repeatedly

merging adjacent components to produce models with high posterior densities.

Even though the above methods can both allow for multiple cluster detection and

produce estimates for disease rates, the potential spatial clusters are limited to the
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cell divisions. In addition, disease rates are estimated conditional on the estimated

clusters. Such conditional estimation may not accurately reflect the uncertainty about

the composition of the cluster. Meanwhile, the choice of priors is always challenging.

1.3.3 Distance measuring approaches

One distance measuring approach is by Molinari et. al [30]. This method uses a step-

wise regression and model selection procedures to locate and determine the number of

unusually high clustering regions in temporal data. For a given number of clusters, the

location of the clusters are determined by a weighted least square method where the

observed response values are the inter-arrival times (gaps) between events. To make

inference, they rely on bootstrap methodology and the weighted least square formula-

tion. Since the responses used in their model are usually non-normally distributed, the

weighted least square method, however, may not be efficient. Meanwhile, the bootstrap

simulation could be computationally expensive. To overcome the difficulty of using

bootstrap simulation, based on Beinstein’s inequality, Demattei et. al propose a new

method for testing Molinari et. al’s stepwise regression approach [4, 5]. This method

is conservative in terms of declaring significant clusters (thus loss of power), which is

inherited from the inequality.

Recently, Demattei et. al extend the Molinari et. al’s method to detect arbi-

trarily shaped multiple spatial clusters [6, 7]. This new approach deals with precise

events within R2, such as spatial coordinates for the occurrence of disease cases or the

geographical positions of individuals. Once pre-selected points have been taken into

account, a selection order and the distance from the nearest neighbor are attributed

to each point. These distances are weighted by the expected distance under the uni-

form distribution hypothesis. For a given number of clusters, these ordered weighted

distances are then used to structure a stepwise regression model. The cluster bounds

(“breaks”) are determined by a constrained least square method. The disc-based wrap

method is then used to visualize the cluster zone. The best model containing one or

several portions (potential clusters) is selected using the double maximum test. The

final potential clusters are determined after a final union of the portions (two or more)
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that have a non-empty wrap intersection. Finally, a p-value is obtained for each po-

tential cluster. This method is shown not to be influenced by the choice of the first

ordered point via a simulation study. With this method, multiple clusters of any shape

can be detected. One limiting point of this method is that the trajectory may leave the

cluster before going through all the cluster points. The remaining cluster points will

then be detected as a second cluster. The union of the two clusters could thus build a

new larger cluster. Moreover, since the disc-based wrap method depends on the ratio

of N( total number of background population )

n( total number of disease cases )
, the final sizes of the estimated cluster

zones may not be precise. Another issue is that this method can only adjust for an

underlying population inhomogeneity. The adjustment for other covariates such as age

or gender is not possible yet.

1.4 Our method

Our approach is different from the above methods. We first mimic the processes and

mechanisms that generate the clusters and develop a latent structure model. This

model allows us to use the standard or constrained likelihood inference to detect multiple

clusters in a given window or region. Unlike the scan statistics procedures, we emphasize

detecting multiple clusters of varying sizes simultaneously. Therefore, it can not only

detect multiple clusters all together but also identify the most significant single cluster.

In our approach, the likelihood functions can be fully specified and computed. We

can answer a variety of inference questions related to our goal. The likelihood based

approach is more efficient than the stepwise regression method (SR) [30], which is

illustrated via simulation studies. Furthermore, the latent model approach is flexible

and can incorporate various extensions.

The rest of this thesis is organized as follows. Chapter 2 provides detailed proce-

dures to detect multiple temporal clusters. A model structure for the latent clusters is

proposed in Section 2.1 followed by a piecewise uniform distribution to mimic the sam-

ple data generation process. In Section 2.2, the detailed model inference is developed

with given number of clusters. Likelihood functions of observed data are first derived

in Subsection 2.2.1. An EM/MCMC algorithm is then developed in Subsection 2.2.2
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to estimate the associated parameters. Wald and LRT statistics are used in Subsection

2.2.3 for the significant testings of the latent clusters. Robust methods to estimate

the cluster intervals are proposed in Subsection 2.2.4 when the tests show significance.

With the number of clusters unknown, model selection criteria are presented in Section

2.3 to determine the optimal number of total potential clusters. Simulation studies

and real data analysis are performed in Section 2.4 and 2.5 to illustrate and evaluate

the proposed method. Chapter 3 extends the approach for spatial cluster detection.

Chapter 4 discusses our findings and outlines some open questions. Equations for the

spatial case are derived in more detail in Appendix A. Appendix B provides the two

real data sets we analyze in the temporal case. Finally, the R and C program codes for

the temporal case are presented in Appendix C.
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Chapter 2

Multiple Temporal Cluster Detection

This chapter presents detailed procedures to detect multiple temporal clusters of varying

sizes within a given time period. It is organized as follows. Section 2.1 proposes a

general latent model for multiple temporal clusters. Some probability distributions are

assumed for the locations and lengths of the latent cluster intervals. A piecewise uniform

distribution is then used to mimic the typical sample data generation process. With

a more generalized model, we are able to include a known background function that

can adjust for available inhomogeneous background information. Section 2.2 develops

detailed model inference procedures assuming the number of clusters is known. The

likelihood functions for observed data are derived in section 2.2.1. A Monte-Carlo EM

algorithm procedure to estimate the associated model parameters is described in section

2.2.2. Section 2.2.3 introduces Wald and LRT tests for the significant testings of the

latent clusters. Robust methods to estimate cluster intervals are proposed in section

2.2.4 when the tests show significance. Since in reality, the number of clusters is rarely

known, in section 2.3, AIC and BIC model selection criteria are used to determine

the optimal number of total potential clusters. A comprehensive simulation study

is provided in section 2.4 to illustrate and evaluate the proposed methodology. The

comparison results with the stepwise regression method developed by Molinari et al.

[30] are also presented. Section 2.5 contains two real data analysis examples. We

reanalyze the Hospital Hemoptysis Admission data studied by Molinari et. al [30]. We

also implement our method to monitor potential abrupt increase in brucellosis incidence

using data collected by CDC (Centers for Disease Control and Prevention). Further

comments and discussions can be found in section 2.6.
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2.1 A latent multiple temporal cluster model

Suppose in a given time window (0, T ), there are k clusters. Here, k is a known or

unknown fixed integer. A temporal latent cluster model is specified in Figure 2.1.

Starting from time 0, we wait b1 units of time for the first cluster which lasts c1 units

of time. After the first cluster, we wait b2 units of time for the second cluster which

lasts c2 units of time, and so on until the kth cluster appears which lasts ck units of

time. After the kth cluster, bk+1 is the waiting period until the next cluster, which

occurs after the endpoint T . For simplicity, we assume in Figure 2.1 that the first

cluster appears after the starting point 0 and the kth cluster ends before the endpoint

T . It is possible that there are clusters before the starting time of the study, and the

waiting time between the last cluster before time 0, and the first cluster after time 0 is

longer than b1. In the exponential case (with the memoryless property), the existence of

clusters before time 0 does not change the results. In other cases, we may need to model

b1 separately by a truncated ψb(t) distribution. It is also possible that either time 0 or

T falls within a cluster interval. These changes only affect some formula calculations

and the general developments remain the same. We illustrate our methodology with

the model in Figure 2.1 to simplify the presentation.

Figure 2.1: An illustrative example of a latent multiple temporal cluster model

We assume that the waiting time periods b1, b2, . . . , bk+1 are i.i.d. random samples

from a distribution with density function ψb(t) = ψb(t;λb) and the cluster interval

lengths c1, c2, . . . , ck are i.i.d. random samples from a distribution with density function

ψc(t) = ψc(t;λc). Here, λb and λc are unknown parameters. ψb and ψc may or may not

be from the same distribution family. One simple example that we use later is both

ψb(t) and ψc(t) are exponential density functions with means equal to 1/λb and 1/λc

respectively. Denote b = (b1, b2, . . . , bk+1)′ and c = (c1, c2, . . . , ck)′. For convenience,

we introduce a random number δ so that {δ = k} is the event that exactly k clusters
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occur in the time window (0, T ). Clearly, {δ = k} is equivalent to event {
∑k

j=1(bj +

cj) + bk+1 ≥ T and
∑k

j=1(bj + cj) ≤ T}. Meanwhile, from Figure 2.1, it is easy to see

that Ij = [
∑j

l=1(bl + cl)− cj ,
∑j

l=1(bl + cl)] is the jth cluster interval, j = 1, · · · , k.

The latent variables b and c are not observed. What we can observe in this model

setting are only the time points y1, y2, . . . , yn when incidences of interest occur. We as-

sume that the observations y1, y2, . . . , yn are i.i.d. samples from the following piecewise

uniform function,

fθ(y|b, c, k) =



α1

T+
Pk

j=1(αj−1)cj
, if y ∈ I1

. . . . . .

αk

T+
Pk

j=1(αj−1)cj
, if y ∈ Ik

1
T+
Pk

j=1(αj−1)cj
, if y 6∈ ∪kj=1Ij

(2.1)

where θ = (α, λ) is the collection of all unknown parameters, including the parameters

α = (α1, . . . , αk)′ and λ = (λb, λc)′ that are associated with random variables bi’s and

ci’s. When k = 1, the piecewise uniform density function (2.1) becomes the single

piecewise uniform density function used for the single cluster case; See, e.g., Chapter

14 of Glaz, et al. [20]. The parameters αj ≥ 0 for each j = 1, 2, ..., k, and may or may

not be the same across the k clusters. Under the density assumption (2.1), the incidence

is αj times more likely to happen inside the jth cluster than that outside the clusters.

The case with αj > 1 corresponds to a denser cluster of more incidences. The case

with αj < 1 corresponds to a sparser cluster of less incidences and the case with αj = 1

corresponds to non cluster. When k = 1, the piecewise uniform density function (2.1)

becomes the single piecewise uniform density function used for a single cluster case in

Naus [32], Nargarwalla [31] and many others. If we want to see whether there are any

significant clusters in the data, we can test a hypothesis H0: α1 = α2 = ... = αk = 1

versus H1: at least one αj 6= 1.

The proposed model can be alternatively expressed in terms of Poisson models,
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similar to those used in Gangnon and Clayton [16] and others. We use the current

formulation of a piecewise uniform function in order to highlight the interpretation of

the parameters αi’s. The proposed model is also closely related to a Bayesian model.

In particular, if we further assume that the parameters αi’s are random variables with a

proper assumed prior distribution, the proposed model would correspond to a Bayesian

hierarchical model. Here, we use the frequentist formulation, since it can utilize the

fully developed likelihood inference and avoid choosing priors. Although we illustrate

our latent model for temporal data, the model also covers other types of data, for

example, patterns or events in a sequence such as the DNA data studied by Leung et.

al [28].

Sometimes, we want to analyze the observed data with the adjustment of the inho-

mogeneous background information. As mentioned in Molinari et. al [30] and Wallen-

stein and Naus [53], the background value, such as seasonal patterns or population sizes,

may not be the same across the time window (0,T). We realize this via a more gener-

alized piecewise uniform function, which includes a known background function W (t).

The known background function W (t) is usually assessed from separated sources. It can

be easily incorporated into model (2.1). In this case, we replace the density function

(2.1) by

fθ(y|b, c, k) =



α1W (y)

T̃+
Pk

j=1(αj−1)c̃j
, if y ∈ I1

. . . . . .

αkW (y)

T̃+
Pk

j=1(αj−1)c̃j
, if y ∈ Ik

W (y)

T̃+
Pk

j=1(αj−1)c̃j
, if y 6∈ ∪kj=1Ij

(2.2)

where T̃ =
∫ T
0 W (t)dt and c̃j =

∫
Ij
W (t)dt, for j = 1, 2, . . . , k. This generalized model

is equivalent to model (2.1) when W (t) ∝ 1. Fitting model (2.2) is exactly the same as

fitting model (2.1), except that T and cj need to be replaced by T̃ and c̃j . To simplify

our presentation, in the next few sections, we develop a Monte-Carlo EM algorithm

and likelihood inference for data generated from model (2.1).
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2.2 Model inference for given number of clusters

In order to avoid an over fitting problem of too many parameters, the number of clusters

k needs to be bounded away from n. We will apply model selection techniques to

determine this number later in section 2.3. Currently, we assume k is known. Our

concern in this section is to make model inference for given number of clusters.

2.2.1 Likelihood function of observed data

In the latent model illustrated in Figure 2.1, the probability of the event that k clusters

exist in the time window [0, T ] can be computed by

Pλ(δ = k) = Pλ{
k∑
j=1

(bj + cj) + bk+1 ≥ T and
k∑
j=1

(bj + cj) ≤ T}

=
∫ T

0

∫ ∞

T−s
ψb(t)ψ

[k]
bc (s)dtds. (2.3)

where ψ
[k]
bc (s) is the density function of

∑k
j=1(bj + cj). We have ψ

[k]
bc = ψ

[k]
b ∗ ψ[k]

c ,

ψ
[k]
b = ψb ∗ . . . ∗ ψb and ψ

[k]
c = ψc ∗ . . . ∗ ψc, where ∗ means convolution, and both ψ

[k]
b

and ψ
[k]
c involve a total of k functions. Conditional on δ = k, the joint conditional

likelihood function of (b, c) is

fθ(b, c|k) =

∏k
j=1{ψb(bj)ψc(cj)}ψb(bk+1)1{δ=k}

Pλ(δ = k)
. (2.4)

Here, 1{C} equals 1 if set C is true and 0 otherwise.

In the special case of ψb and ψc being density functions of exponential distributions

Exp(λb) and Exp(λc), we have ψ[k]
b (t) = λkb t

k−1e−λbt/Γ(k) and

ψ
[k]
bc (t) =

(λbλc)ke−λct
∫ t
0{z(t− z)}k−1e−(λb−λc)zdz

{Γ(k)}2
.

Therefore, in this case,

Pλ(δ = k) =
∫ T

0
e−λb(T−s)ψ

[k]
bc (s)ds =

(λbλc)ke−λbT

k{Γ(k)}2
Gk(λb − λc) (2.5)

and

fθ(b, c|k) =
k{Γ(k)}2λbe

−λb(
Pk+1

j=1 bj−T )−λc
Pk

j=1 cj1{δ=k}
Gk(λb − λc)

, (2.6)
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where the function Gk(u) = T 2kG̃k(Tu) with G̃k(u) =
∫ 1
0 (1− t)ktk−1eutdt.

From model (2.1), the conditional joint density function of the data observations

y = (y1, y2, . . . , yn), conditional on b, c and δ = k, is

fθ(y|b, c, k) =
n∏
i=1

f(yi|b, c, k) = e
Pk

j=1(logαj)Zj−n log{T+
Pk

j=1(αj−1)cj}, (2.7)

where Zj = Zj(y,b, c) =
∑n

i=1 1{yi∈Ij} is the number of incidences that occur within

the jth cluster interval. Thus, the joint density function of y and δ = k, is

fθ(y, k) =
∫ ∫

fθ(y,b, c|k)Pλ(δ = k)dbdc

=
∫ ∫

fθ(y|b, c, k)fθ(b, c|k)Pλ(δ = k)dbdc (2.8)

and the log-likelihood function of observing y and δ = k is

`k(θ|y) = log{fθ(y, k)}. (2.9)

Since form (2.9) involves multiple integrations, it is complicated to directly compute

the log-likelihood function `k(θ|y), its first and second derivatives. As a result, it is

hard to obtain the maximum likelihood estimates by directly maximizing the likelihood

function. We instead develop a Monte-Carlo EM algorithm to estimate the model

parameters in the next subsection.

2.2.2 Monte-Carlo EM algorithm for model estimation

We note that the joint density function of (y,b, c, δ = k) is explicit,

fθ(y,b, c, k) = fθ(y|b, c, k)fθ(b, c|k)Pλ(δ = k)

= e
Pk

j=1(logαj)Zj−n log[T+
Pk

j=1(αj−1)cj ]
k∏
j=1

{ψb(bj)ψc(cj)}ψb(bk+1)1{δ=k} (2.10)

Instead of directly maximizing the log-likelihood function `k(θ|y), we propose an EM

algorithm to solve the estimation problem, in which we treat (y,b, c, δ = k) as the

complete responses and (y, δ = k) as the observed responses.

From the standard procedure of deriving EM algorithm, we have the following EM

algorithm to obtain parameter estimates.
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Step 1. Select a starting point θ(0) = (α(0), λ(0)) of θ = (α, λ).

Step 2. (E-step) For a given θ(s) at the sth iteration, s = 0, 1, 2, . . ., calculate

Q(θ|θ(s)) = Q1(α|θ(s)) +Q2(λ|θ(s)), (2.11)

where

Q1(α|θ(s)) =
k∑
j=1

E(Zj |y, k, θ(s)) logαj − nE{log[T +
k∑
j=1

(αj − 1)cj ]|y, k, θ(s)},

(2.12)

Q2(λ|θ(s)) =
k+1∑
j=1

E{logψb(bj)|y, k, θ(s)}+
k∑
j=1

E{logψc(cj)|y, k, θ(s)}. (2.13)

Step 3. (M -step) For each s = 0, 1, 2, . . ., update the parameter estimates,

θ(s+1) = (α(s+1), λ(s+1)), by maximizing the following functions,

α(s+1) = argmaxQ1(α|θ(s)), and λ(s+1) = argmaxQ2(λ|θ(s)). (2.14)

In the case with ψb and ψc being density functions of exponential distributions Exp(λb)

and Exp(λc), the updating formula of λ(s+1) is simply λ(s+1)
b = (k+1)/

∑k+1
j=1 E(bj |y, k, θ(s))

and λ(s+1)
c = k/

∑k
j=1 E(cj |y, k, θ(s)).

Step 4. Repeat steps 2 and 3 until ‖θ(s+1) − θ(s)‖ is very small; that is, until the

algorithm numerically converges.

The conditional expectations in the E-step do not usually have explicit form. We

show below how to simulate from the (fully) conditional distributions of bj or cj given

the rest of b’s and c’s. The conditional expectations in the E-step can then be computed

by a Gibbs sampling approach.

Suppose b∗ = (b∗1, . . . , b
∗
k+1)

′ and c∗ = (c∗1, . . . , c
∗
k)
′ are a set of Gibbs samples from

f(b, c|y, k, θ(s)). They are generated many times by cycling through simulations from

the fully conditional distributions of bj or cj given all the other b’s and c’s until the

Gibbs sampling chain is “burn-in”. Repeat the Gibbs sampling chain a large number of

times to get M sets of Gibbs samples. The four conditional expectations in the E-step

of the EM -algorithm can be evaluated by 1
M

∑
∗ Z

∗
j ,

1
M

∑
∗ log{T +

∑k
j=1(αj − 1)c∗j},

1
M

∑
∗ log{ψ(b∗j )}, and 1

M

∑
∗ log{ψ(c∗j )}, respectively, where,

∑
∗ is the summation over

the M sets of Gibbs samples b∗ and c∗. Z∗
j is the total number of incidences computed
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with b∗j and c∗j in each of the Gibbs sample sets. In the exponential case, the last two

expectations are just 1
M

∑
∗ b

∗
j , and 1

M

∑
∗ c

∗
j .

To carry out the EM computation, the only remaining question is how to simulate

a bj or cj from the fully conditional distributions given the rest of bj ’s and cj ’s. By

ignoring unwanted terms, it is easy to see that, for j = 1, 2, . . . , k,

f(bj |bl, l = 1, 2, . . . , k + 1, l 6= j, c,y, k) ∝ f(b, c,y|k) ∝ e
Pk

s=j Zs(logαs)ψb(bj)1(δ=k),

(2.15)

and f(bk+1) ∝ ψb(bk+1)1(δ=k). Similarly, we have

f(cj |cl, l = 1, 2, . . . , k, l 6= j,b,y, k) ∝ e
Pk

s=j Zs(logαs)

[T +
∑k

s=1(αs − 1)cs]n
ψc(cj)1(δ=k). (2.16)

Thus, given a set of parameters θ = (α, λ), we can use the following importance sampling

method to simulate a bj :

Step A. Simulate a large number of random deviates e1, e2, . . . , eN from a candi-

date distribution ψ̃b(bj). Then, compute weight wl = e
Pk

s=j Z
[l]
s (logαs) ψb(el)

ψ̃b(el)
1(δ[l]=k), for

l = 1, 2, . . . , N , where Z [l]
s is the total number of incidence in sth cluster and {δ[l] = k}

is the constraint of having k clusters with bj replaced by el and the rest of b’s and c’s

the same. In the case of simulating bk+1 given the rest b’s and c’s, the weight can be

simplified to wl = {ψb(el)/ψ̃b(el)}1(δ[l]=k).

Step B. Simulate bj from one of the N values {e1, e2, . . . , eN} with respective

probabilities (p1, p2, . . . , pN ), where pl = wl/
∑N

s=1ws.

Similarly, we can simulate a cj from the fully conditional probability f(cj |cl, l =

1, 2, . . . , k, l 6= j,b,y, δ = k). In this case, with simulating random derivates e1, e2, . . . , eN

from a candidate distribution ψ̃c(cj), the weight

wl =
e
Pk

s=j Z
[l]
s (logαs)

[T +
∑

s 6=j(αs − 1)cs + (αj − 1)el]n
ψc(el)
ψ̃c(el)

1(δ[l]=k).

Here, again, Z [l]
s and {δ[l] = k} are computed with given b and c values and the cj is

replaced by el.

In the special exponential case, ψb(bj) ∼ Exp(λb) and ψc(cj) ∼ Exp(λc). Since it is

easy to directly simulate from a truncated exponential distribution, we suggest to pick

ψ̃b(bj) ∝ Exp(λb)1(δ = k) and ψ̃c(cj) ∝ Exp(λc)1(δ = k).



17

The above EM algorithm does not provide the variance-covariance matrix calcula-

tion for the parameter estimators. To obtain an estimator of the variance-covariance

matrix, we use the missing information principle and Louis’s method [48]. In particular,

the information matrix is,

Hn
d
= −

{
∂2

∂θ2
`k(θ|y)

}
= −E

{
∂2

∂θ2
`k(θ|b, c,y)|y, δ = k

}
−Var

{
∂

∂θ
`k(θ|b, c,y)|y, δ = k

}
(2.17)

where `k(θ|b, c,y) = log{fθ(y,b, c, k)}. The formula for the observed information

matrix does not have an explicit form. However, it can be numerically estimated by

[48]

Ĥn = − 1
M

∑ ∂2

∂θ2
`k(θ|b∗, c∗,y)

−
[

1
M

∑ {
∂

∂θ
`k(θ|b∗, c∗,y)

}{
∂

∂θ
`k(θ|b∗, c∗,y)

}′

−
{

1
M

∑ ∂

∂θ
`k(θ|b∗, c∗,y)

}{
1
M

∑ ∂

∂θ
`k(θ|b∗, c∗,y)

}′]
(2.18)

where the summations are over the M sets of Gibbs samples b∗ and c∗ obtained in the

final round of the EM algorithm.

2.2.3 Likelihood inference for significance testings

In this subsection, we illustrate inference for two sided tests related to α’s. Detailed

comments on extensions to one sided tests, sometimes straightforward and sometimes

more complex, can be found in Chapter 4.

Let us first consider to test a single (jth) cluster and see whether it is significant

or not, i.e., H0 : αj = 1 versus H1 : αj 6= 1. Let α̂j be the estimator of the parameter

αj . From the observed information matrix, we can get an estimator of the standard

deviation of α̂j , se(α̂j). We can construct a Wald-type t statistic t = (α̂j − 1)/se(α̂j)

for this test. When n is large, t is asymptotically normally distributed and we can use

a two-sided z test to justify whether α1 = 1 or not.

Another interesting problem is to check whether at least one significant cluster exists

or not among the k potential clusters, i.e., we are interested in the test H0 : α1 = α2 =
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... = αk = 1 versus H1 : at least one αj 6= 1. We propose to use a likelihood ratio

test for this problem. According to likelihood inference, twice log likelihood ratio test

statistic is

R = 2 log{maxH1fθ(y, k)
maxH0fθ(y, k)

} = 2`k(θ̂|y)|θ=θ̂ + 2n log(T )− 2 max
λ

logPλ(δ = k) (2.19)

= 2{log
∫ ∫

fθ̂(y|b, c, k)fθ̂(b, c|k)dbdc + logPλ̂(δ = k) + n log(T )−max
λ

logPλ(δ = k)}

where θ̂ = (α̂, λ̂) are the estimates of the parameters obtained from the aforemen-

tioned EM algorithm under H1. Suppose for a moment, we know how to simulate

b∗∗ = (b∗∗1 , . . . , b
∗∗
k+1) and c∗∗ = (c∗∗1 , . . . , c

∗∗
k ) from f(b, c|k) when θ = θ̂ and we have M

sets of such simulated b∗∗ and c∗∗ samples. By Monte-Carlo approximation, the test

statistic R can be approximated by

R∗∗ = 2
[

log{ 1
M

∑
∗∗
f(y|b∗∗, c∗∗, k)}+ logPλ̂(δ = k) + n log(T )−max

λ
logPλ(δ = k)

]
,

(2.20)

where
∑

∗∗ is the summation over theM sets of b∗∗ and c∗∗ samples. Based on likelihood

inference, we know that R is asymptotically χ2 distributed with k degrees of freedom.

Comparing R∗∗ with χ2
k distribution, we can perform a formal test for H0 : α1 = α2 =

... = αk = 1 versus H1 : at least one αj 6= 1.

The question that remains is how to simulate b∗∗ = (b∗∗1 , . . . , b
∗∗
k+1) and c∗∗ =

(c∗∗1 , . . . , c
∗∗
k ) from f(b, c|k) with any set of given parameter values θ. Again, we turn

to the Gibbs sampling approach method. The Gibbs sampling procedure suggests that

when we cycle through simulating bj or cj from fθ(bj |bl, l = 1, 2, . . . , k+1, l 6= j, c, δ = k)

or fθ(cj |cl, l = 1, 2, . . . , k, l 6= j,b, δ = k) many times, we can get a set of b∗∗ and c∗∗

from f(b, c|k). Repeat the procedure M -times to get M sets of simulated b∗∗ and c∗∗

samples. Note that,

fθ(bj |bl, l = 1, 2, . . . , k + 1, l 6= j, c, δ = k) ∝ ψb(bj)1(δ=k) (2.21)

and

fθ(cj |cl, l = 1, 2, . . . , k, l 6= j,b, δ = k) ∝ ψc(cj)1(δ=k). (2.22)

They are truncated distributions. In most cases, for example ψb(bj) and ψc(cj) being
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exponential distributions, the truncated distribution can be directly simulated. Oth-

erwise, we can use an importance sampling algorithm to obtain b∗∗ and c∗∗ samples,

assuming we know how to simulate from ψb(bj) and ψc(cj).

2.2.4 Identification of cluster intervals

If a cluster is significant (i.e. αj 6= 1), we usually want to determine the location and

size of the cluster. Note that the lower and upper bounds of the jth cluster interval

Ij are respectively Lj =
∑j

l=1(bl + cl) − cj and Uj =
∑j

l=1(bl + cl). Their conditional

expectations given y and k (“posterior mean”) are E{Lj |y, k} =
∑j

l=1 E(bl|y, k) +∑j
l=1 E(cl|y, k) − E(cj |y, k) and E{Uj |y, k} =

∑j
l=1 E(bl|y, k) +

∑j
l=1 E(cl|y, k). The

bounds Lj and Uj can be simply estimated by 1
M

∑j
l=1

∑
∗ b

∗
l +

1
M

∑j
l=1

∑
∗ c

∗
l −

1
M

∑
∗ c

∗
j

and 1
M

∑j
l=1

∑
∗ b

∗
l + 1

M

∑j
l=1

∑
∗ c

∗
l respectively, where

∑
∗ is the summation over the

M sets of Gibbs samples in the last iteration of the EM algorithm.

An alternative approach is to compute L∗j =
∑j

l=1(b
∗
l +c∗l )−c∗j and U∗

j =
∑j

l=1(b
∗
l +

c∗l ) for each set of Gibbs sample set. The medians of the M values of L∗j and U∗
j can

be used to estimate Lj and Uj , respectively. Note that since the distribution may not

be symmetric, this median method may provide more accurate estimators.

We can also obtain confidence intervals for the bounds Lj and Uj . We increasingly

sort these M values. For 0 < β < 1, the Mβ/2th and M(1 − β/2)th values forms a

(1− β)% confidence interval for Lj . The same method applies for the upper bound Uj .

We are able to assess the performance of these cluster interval estimators only in

simulation studies. In the simulation studies presented in Section 2.4, we employ four

empirical statistics to access the accuracy of the estimated cluster intervals. They are

sensitivity, specificity, positive predictive value (PPV) and negative predictive value

(NPV). Here, sensitivity is the proportion of the event points (y’s) inside the true

clusters, are inside the estimated clusters. Specificity is the proportion of the event

points (y’s) outside the true clusters, are outside the estimated clusters. PPV is the

proportion of the event points (y’s) inside the estimated clusters, are inside the true

clusters. NPV is the proportion of the event points (y’s) outside the estimated clusters,

are outside the true clusters. Table 2.1 shows the relations of these four measures. The



20

closer they are to one, the more accurate the estimated cluster intervals are.

Table 2.1: Definitions of Sensitivity, Specificity, PPV and NPV

True Condition
In(True) Out(False)

Estimate In(Positive) True Positive(TP) False Positive(FP) PPV= TP
Positive

Outcome Out(Negative) False Negative(FN) True Negative(TN) NPV= TN
Negative

Sensitivity= TP
True Specificity= TN

False

2.3 Determination of the unknown number of clusters

In the previous section, we assume that the number of clusters is known. It is rarely

true in reality. We now describe a model selection approach to determine the number

of clusters from the observed data. We propose to use both AIC and BIC criteria.

The AIC criterion [2] is a commonly used model selection method developed based on

the Kullback-Leibler information between the candidate models and the true model.

Schwarz [46] obtains the BIC procedure by using Bayes estimators and a fixed penalty

for choosing the wrong dimension. Both criteria minimize an expression that consists

of a term that measures model fit plus a term that penalizes model complexity. In our

context, a direct application of the AIC and BIC rules yields

AIC(k) = −2 log fθ(y, k) + 2k

= −2 log{
∫ ∫

fθ(y|b, c, k)fθ(b, c|k)dbdc} − 2 logPλ(δ = k) + 2k (2.23)

and

BIC(k) = −2 log fθ(y, k) + k log(n)

= −2 log{
∫ ∫

fθ(y|b, c, k)fθ(b, c|k)dbdc} − 2 logPλ(δ = k) + k log(n) (2.24)

Often n > e2 = 7.389, the BIC method places more penalty against a large number of

clusters than the AIC method.

The parameters θ are unknown. To compute the criteria, these parameters should

be replaced by their estimators θ̂ = θ̂(k) that can be obtained by the Monte-Carlo
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EM algorithm proposed in the previous section. Furthermore, the formula involves

integrations that do not have an explicit form. We numerically evaluate their values.

From the previous section, we know how to simulate b∗∗ = (b∗∗1 , . . . , b
∗∗
k+1) and c∗∗ =

(c∗∗1 , . . . , c
∗∗
k ) from f(b, c|k) when θ = θ̂. By Monte-Carlo approximation, the AIC(k)

criterion can be approximated by

ÂIC(k) = −2 log
{ 1
M

∑
∗∗
f(y|b∗∗, c∗∗, k)

}
− 2 logPλ̂(δ = k) + 2k, (2.25)

and BIC(k) criterion can be approximated by

B̂IC(k) = −2 log
{ 1
M

∑
∗∗
f(y|b∗∗, c∗∗, k)

}
− 2 logPλ̂(δ = k) + k log(n), (2.26)

where
∑

∗∗ is the summation over M sets of repeatedly simulated b∗∗’s and c∗∗’s from

fθ̂(b, c|k). The k selected is the one with the smallest corresponding ÂIC(k) or B̂IC(k)

value.

Denote K as a pre-selected set of k’s. We want this set small for computing purpose

but large enough to cover all potential choices of the correct number of clusters. Based

on Subsections 2.2.1-2.2.4, a practical approach to detect clusters emerges:

• For each fixed k ∈ K, apply the Monte-Carlo EM algorithm in Subsection 2.2.2

to obtain the parameter estimates. Then use either AIC or BIC rule to determine the

optimal number of clusters k.

• For the chosen k, use the results in Subsections 2.2.3-2.2.4 to detect and deter-

mine the cluster intervals.

2.4 Simulation studies

In this section, we perform simulation studies in two designed settings. In the first

setting, the cluster intervals are fixed. Only the observations (the time records of in-

cidences y’s) are randomly generated. In the second setting, the cluster intervals are

randomly simulated from latent exponential distribution models. Both cluster intervals

and the observations are randomly generated. We demonstrate through the simulation

results the performance of the proposed method under these two settings. We also com-

pare the results obtained by our method with those obtained by the stepwise regression
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method [30]. Without loss of generality, all the simulation studies are done within the

time window (0, 1).

2.4.1 Setting I

Let us first consider the single cluster case (k = 1) in the setting of fixed cluster interval.

In particular, we fix b = (b1, b2)′ = (.258, 1.209)′, c = c1 = .236 and thus the single

cluster at [.258, .494]. With an α = 3, we simulate n = 100 independently identically

distributed time points y1, y2, . . . , y100 according to model (2.1). Assume we only know

these 100 y values and apply the model inference procedures developed in Section 2.2

with k = 1. We can get a set of parameter estimates, test whether this potential

cluster is significant or not, and identify its location and size. This simulation exercise

is repeated 300 times.

Figure 2.2: Box Plots for αs estimates in setting I

We also consider the two clusters case (k = 2) in the setting of fixed cluster in-

tervals. In particular, with b = (b1, b2, b3)′ = (0.244, 0.159, 1.119)′, c = (c1, c2)′ =

(0.075, 0.272)′, we fix the cluster intervals at [0.244, 0.319] and [0.478, 0.750]. We then
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choose α1 = 3.5, α2 = 3, and simulate n = 150 independently identically distributed

time points y1, y2, . . . , y150 according to model (2.1). Assuming we only know these

150 y values and given k = 2, we can get a set of parameter estimates, test whether

a significant cluster exists or not, and identify the locations and sizes of the potential

clusters. Again, this simulation exercise is repeated 300 times.

Figure 2.2 provides the box plots of the estimates of the main parameters α’s in

the two simulation cases. The first one is for the single cluster (k = 1) case and

the other two are for α1 and α2 in the two clusters (k = 2) case. Clearly, the centers

(medians) of the 300 parameter estimates are all near the respective targets α = 3.0, and

(α1, α2) = (3.5, 3.0), respectively. This indicates that the Monte-Carlo EM algorithm

can provide reasonable estimates for the parameters α.

To assess the performance of the likelihood based tests, including both the Wald and

likelihood ratio tests, on cluster detection, we examine the powers and type I errors of

their level 0.05 tests. For power evaluation, we use the above results. We list in Table

2.2, for 300 repeated simulations, the percentage of times our method succeeds (rejects

H0) and fails (accepts H0) to detect clusters. To evaluate the type I errors, we simulate

another 300 data sets of 100 time points from Uniform(0,1) distribution (in the k = 1

case) and 300 data sets of 150 time points from the Uniform(0,1) distribution (in the

k = 2 case). We apply the same estimation and testing procedures to these two groups

of 300 data sets with k = 1 and k = 2 respectively. Then, we record in Table 2.2 the

percentage of times the method claims to find significant clusters. In the single cluster

case, both the Wald and LRT tests have over 99% powers to detect the cluster. The

type I error of the Wald test is inflated at .093 and the LRT test is conservative at .03.

Table 2.2: Power and Type I Error evaluation in setting I

k = 1 k = 2
Power Type I Error Power Type I Error

Wald LRT SR Wald LRT SR Wald LRT SR Wald LRT SR
1 2 1 2

99.7% 99.3% 91.0% .093 .03 .167 86% 99% 99% 64.3% .03 .053 .01 .26
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In the two clusters case, the powers for Wald test are 86% and 99% with controlled

type I errors .03 and .053. The LRT test for whether there exists at least one significant

cluster has a high power 99% with conservative type I error .01.

Also included in Table 2.2 are the the powers and type I errors of the stepwise

regression method [4, 30]. The same 2 × 2 × 300 = 1, 200 simulated data sets are

analyzed via the R codes released to us by Dr. Molinari. In the single cluster case,

the stepwise regression method has a power 91.0% with an inflated type I error .167.

In the two clusters case, the power to detect one or more clusters is about 64.3% with

an inflated type I error .26. It appears that for the particular type of data from model

(2.1), the model based likelihood test approach has higher powers and lower type I

errors to detect significant clusters.

Table 2.3: Cluster interval estimates evaluation in setting I (%)

Method Statistics Min 1st Median 3rd Max Mean
QT QT

k = 1 Mean based Sensitivity 58.33 92.94 98.11 100 100 95.60
Specificity 43.40 94.12 98.00 100 100 95.35
PVP 61.04 94.12 98.00 100 100 95.49
NPV 79.10 94.06 98.08 100 100 96.44

Median based Sensitivity 69.77 94.12 98.15 100 100 96.19
Specificity 43.40 94.06 98.04 100 100 95.21
PPV 61.04 94.29 98.11 100 100 95.44
NPV 79.69 95.06 98.15 100 100 96.93

SR Sensitivity 62.22 85.10 96.08 98.20 100 91.62
Specificity 39.66 82.07 96.08 100.00 100 90.18
PPV 48.15 81.59 96.08 100.00 100 90.24
NPV 67.24 87.61 96.30 98.23 100 92.44

k = 2 Mean based Sensitivity 39.77 93.62 97.14 99.02 100 95.13
Specificity 39.06 85.00 93.10 98.02 100 89.57
PPV 62.16 91.11 95.79 98.87 100 93.83
NPV 49.52 89.47 95.00 98.33 100 93.11

Median based Sensitivity 34.09 94.38 97.78 100.00 100 95.18
Specificity 35.94 86.00 92.73 98.25 100 89.33
PPV 67.46 91.37 95.83 98.96 100 93.71
NPV 48.67 90.65 95.83 100.00 100 93.36

SR Sensitivity 0.00 59.89 97.78 100.00 100 74.71
Specificity 9.23 55.65 75.00 90.81 100 70.79
PPV 0.00 70.37 84.00 94.15 100 73.06
NPV 6.82 59.22 96.00 100.00 100 76.38
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We can also examine the accuracy of our method to determine the cluster loca-

tions and sizes. Table 2.3 lists the summary statistics of the four measures “sensitivity,

specificity, PPV and NPV” obtained by our method described in section 2.2.4 as well

as by the stepwise regression method [30, 4]. In their approach, the cluster intervals are

estimated by the outputting “break points” obtained from their codes. The majority of

these measurements by the mean based and median based cluster estimation methods

are over 90%. These indicate both methods can identify cluster intervals accurately.

Based on the above simulated 2× 300 data sets, the least square based stepwise regres-

sion method also appears reasonable. However, it has a higher chance to misidentify

the significant clusters than our methods (compare the values listed in the columns of

“Min” and “1st QT”).

In reality, we rarely know the true number of clusters. In order to determine the

optimal number of clusters from a data set that only consists of the event time records,

Section 2.3 has proposed to use the AIC or BIC criteria. To study the performance of

the proposed model selection criteria, we define K = 1, 2, 3, 4 as the pre-selected set of

ks. For each fixed k ∈ K, we estimate the values of ÂIC(k) and B̂IC(k). We then pick

the k̂s which maximize ÂIC(k) and B̂IC(k) respectively to estimate the true number of

clusters. Table 2.4 summarizes the model selection results via AIC and BIC criteria. In

the single cluster case, 94% times the AIC criterion and 99.7% times the BIC criterion

choose the true cluster number k = 1. In the two clusters case, 67.7% times the AIC

method and 61.3% times the BIC method choose the true cluster number k = 2. These

numbers are consistent with the percentages reported in the model selection literature

[42]. Among those misidentified by the BIC criterion in the two clusters case, most of

Table 2.4: Model selection evaluation in setting I (%)

AIC BIC
Estimated Estimated
k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

True k = 1 94 3 1.3 1.7 99.7 .3 0 0
k = 2 15.3 67.7 12.7 4.3 36.7 61.3 1.7 .3
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them have misidentified k = 1. Since the BIC penalty term is larger, the BIC criterion

is more conservative and tends to select a smaller number of clusters than the AIC

criterion.

2.4.2 Setting II

Figure 2.3: Box Plots for αs estimates in setting II

We also perform simulation studies with the same analysis plan under the setting

that the clusters are randomly simulated in each exercise. The parameters used are θ =

(α1, λb, λc) = (3.0, 1.2, 5.2) for single cluster case and α1 = 3.5, α2 = 3.0, λb = 4, λc = 3

for k = 2 case. As in subsection 2.4.1, for k = 1 case, we generate 300 data sets of

n = 100 time points (y’s), and for k = 2 case, we generate 300 data sets of n = 150 time

points (y’s). In particular, a set of cluster intervals within the time interval (0, 1) is first

simulated with the given λb, λc and k. Then, given αs, one data set with n event points

is simulated according to model (2.1). Repeat 300 times each for k = 1 and k = 2 cases

and obtain 2 × 300 = 600 simulated data sets of y’s. The underlying cluster intervals

are different in these 600 data sets. Sometimes by random chance, the simulated cluster
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or clusters are too small to be detected by analyzing a data set of size only 100 or 150.

It is not surprising that the simulation results will not be as good as those in the first

simulation setting. This simulation study demonstrates the performance of our method

to deal with general clusters generated from the latent cluster model described in this

thesis.

Table 2.5: Power and Type I Error evaluation in setting II

k = 1 k = 2
Power Size Power Size

Method Wald LRT Wald LRT Wald LRT Wald LRT
1 2 1 2

Reject H0 74.3% 67.7% .100 .017 86.0% 89.7% 95.7% .063 .100 .017

Figure 2.3 shows the box plots for α estimates when we analyze the data sets with

k = 1 and k = 2. For both cases, we can see the αs estimates are also quite good with

most of them around their respective true values at α = 3.0 and (α1, α2) = (3.5, 3.0).

Table 2.5 shows the powers and type I errors for Wald and LRT tests. In the single

cluster case, the Wald test has 74.3% power with inflated type I error .100 and the

LRT test has 67.7% power with conservative type I error .017. In the two clusters

case, the powers for the Wald test are 86.0% and 89.7% with type I errors .063 and

.100 separately. The LRT test has a high power 95.7% with conservative type I error

.017. Compared with the first simulation study using fixed clusters, both tests have

similar type I errors and slightly lower but still reasonable powers. The results of

cluster interval estimation are summarized in Table 2.6. The measurements are good

with most medians around 95% or higher, although they are not as good as those in

the first simulation setting.

We again examine the performance of the proposed AIC and BIC criteria in this

simulation setting. Table 2.7 lists the model selection results. In the single cluster

case, the AIC criterion gives 90.7% correct selection and the BIC gives 98.0% correct

selection. However, in the two clusters case, the selection accuracy is only in the

thirties with the AIC method performing a little better than the BIC method. Most of
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Table 2.6: Cluster interval estimates evaluation in setting II (%)

Method Statistics Min 1st Median 3rd Max Mean
QT QT

k = 1 Mean Sensitivity 0 59.41 94.87 100 100 73.21
Specificity 0 88.71 95.96 100 100 88.14
PPV 0 21.62 94.00 100 100 67.17
NPV 0 90.53 96.24 100 100 90.16

Median Sensitivity 0 80.00 96.15 100 100 78.25
Specificity 0 88.88 96.94 100 100 87.95
PPV 0 42.71 94.12 100 100 70.85
NPV 0 92.51 98.04 100 100 91.12

k = 2 Mean Sensitivity 0.00 88.21 95.16 98.76 100 90.65
Specificity 14.29 73.75 87.10 96.49 100 82.35
PPV 0.00 89.69 95.50 98.37 100 91.33
NPV 8.33 69.39 88.00 96.95 100 80.82

Median Sensitivity 0.00 89.66 96.19 99.08 100 91.53
Specificity 29.27 73.53 90.11 98.15 100 84.10
PPV 0.00 90.30 95.83 99.12 100 91.12
NPV 8.60 76.00 89.29 97.50 100 84.28

the misses are in the estimated k = 1 category. Although the percentages are low, they

are not surprising. We have traced down quite a few misidentified cases. Close to two

thirds of them have at least one small cluster, within which only a few and sometimes

no events (y’s) occur. Without increasing the sample size n, few methods can detect

such small clusters. The theory behind is shown as follows. In single cluster case, the

probability of having at least s(s 6= 0) events inside the cluster I1, given n and α1, is

P (Z1 ≥ s) =
n∑
j=s

(
n

j

)
pj1(1− p1)n−j , where p1 =

α1c1
1− c1 + α1c1

.

When c1 is very small, p1 is close to 0 and this probability becomes small. In this situa-

tion, the small cluster is unlikely to be declared as one. In the case of multiple clusters,

Table 2.7: Model selection evaluation in setting II (%)

AIC BIC
Estimated Estimated
k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

True k = 1 90.7 7.0 1.7 .6 98.0 2.0 0 0
k = 2 45.3 37.7 12.7 4.3 64.7 31.7 2 1.6
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the principle is similar with more complicated calculation, which is not presented in

this thesis since it is out of the interest.

2.4.3 Results

Summarized from the above simulation results, our method can provide both consistent

αs and accurate cluster intervals estimators. It has high powers to detect significant

clusters at least in the cases of clusters within which an event is about three times as

likely to happen per time unit than that outside. The Wald test has slightly inflated

type I errors and the LRT test is a little conservative. However, they are not too far

from the targets. In addition, the AIC criterion performs well for fixed cluster location

structure and the BIC criterion tends to favor models with smaller number of clusters.

In general, our proposed methodology performs well.

2.5 Real data analysis

We implement our modeling procedure to analyze two real data sets both with and

without background adjustment in this section. The first one is the hospital hemoptysis

admission data studied by Molinari et.al [30]. The investigation can not only adapt

admission conditions and predisposed patients treatment during a favorable period but

also point out potential climatic factors that influence the disease occurrence. The

second one is the brucellosis data collected by the CDC during 1997-2004. The study

is useful in detecting surges in illness [29], particularly when these increases are abrupt,

as might occur during a biologic attack. Both data sets can be found in Appendix B.

2.5.1 Hospital hemoptysis admission data

This data set consists of 62 spontaneous hemoptysis admissions (pulmonary disease) at

Nice (a southern French city) hospital from January 1 to December 31, 1995. Previously,

it was analyzed by the stepwise regression method [30] to detect clusters of minimum

size 6 events (the number was chosen according to the Nice hospital pneumologic team).

By applying the bootstrap model selection procedure, both single-cluster model with a
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winter cluster [58, 87] (February 27-March 28) and two-cluster model with a cluster [58,

126] & a summer cluster [187, 201] (July 6-20) could be selected against the non-cluster

model. Nevertheless, since Nice is a tourist city located on the Mediterranean coast,

each summer, lots of tourists (∼ 15%) increase the population at risk. After adjusting

an estimated

R(t) = 1 +
72t

10, 000× 365
+

55, 000
355, 000

× 1[182,244](t), t ∈ [1, 365] (2.27)

function (2.27) for the population at risk, the two-cluster model was no longer selected.

The fact that more events occurred between day 187 and 201 was explained due to the

presence of tourists. Therefore, only the winter cluster [58, 87] was detected significant

in the end. However, in a recent paper [4], the bootstrap based testing method is found

not reliable. This data set is reanalyzed and the same potential cluster [58, 87] is no

longer detected significant with an associated p-value .13.

Here, we analyze this data set using our method with a set of k’s κ = {1, 2, 3, 4}.

First, the data is analyzed without background function adjustment (i.e. with model

(2.1)). With k = 1, an estimated α̂ = 1.961 is provided via our Monte-Carlo EM algo-

rithm in Subsection 2.2.2. This α is not detected significant different from 1 with either

Wald (P-value=.141) or LRT test (P-value=.262) presented in Subsection 2.2.3. The

estimated cluster is [58, 108] (February 27-April 18) with our median method in Sub-

section 2.2.4. When analyzed with k = 2, an estimated α̂ = (α̂1, α̂2)′ = (1.935, 1.117)′

is provided. Neither α is tested significant with either test method (the P-values for

Wald test are .107 and .837, for LRT test is .330). The estimated clusters are [58, 108]

and [198, 235] (July 17-August 23). Both AIC and BIC criteria described in Section

2.3 select the single-cluster model.

When analyzing using model (2.2) with background function W (y) ≡ R(t), the

estimates of αs increase a little with α̂ = 2.082 when k = 1 and α̂ = (α̂1, α̂2)′ =

(2.067, 1.128)′ when k = 2. The corresponding P-values become .083 for Wald and

.205 for LRT when k = 1, .065 and .813 for Wald and .282 for LRT when k = 2.

The estimated cluster intervals remain the same. The single-cluster model is selected

a second time with both model selection criteria.



31

Therefore, we conclude, for this data set, that we have one potential non-significant

cluster [58, 108]. Compared with Molinari et. al’s and Demattei and Molinari’s [30, 4]

results, our cluster estimator covers a longer period. Both our conclusion and that of

Demattei and Molinari point out one potential non-significant cluster. Moreover, the

scan statistic also leads to the same conclusion with p-value=.29.

2.5.2 Brucellosis data

Brucellosis (Malta fever) is a infectious disease transmitted from animals to humans. It

is caused by bacteria of the genus Brucella and is one “critical biologic agent reported

to NNDSS (National Notifiable Disease Surveillance System)” [1]. The data considered

here is weekly incidences across the US, collected every year by CDC. Here, we analyze

the 2004 data with the weekly number of brucellosis averaged over year 1997 to 2003

as the background function.

Since the data is provided as weekly counts, to avoid ties, we uniformly display the

cases in each week and then analyze the transformed data. The background function

in the discrete form remains the same. The same procedure used for the hospital data

is performed. When analyzed without background function, with k = 1, the estimated

α̂ = 5.337; this is significantly different from 1 with both Wald and LRT test (both

P-values� .001). The estimated cluster is between week 44 and 46. When analyzed

with k = 2, the estimates α̂ = (α̂1, α̂2)′ = (1.540, 5.938)′. The LRT test gives significant

result (P-value� .001) and α2 is detected significant with Wald test (P-value� .001)

while α1 just misses significance (P-value=.051). The estimated clusters are week [22,

30] and [44, 46]. The AIC criterion selects the two-cluster model and BIC selects the

one-cluster model.

When analyzed with the background function, the estimates of α change to α̂ =

6.574 when k = 1 and α̂ = (α̂1, α̂2)′ = (1.088, 6.715)′ when k = 2. The testing results

remain the same. The p-value corresponding to the test H0 : α1 = 1 vs H1 : α1 6= 1 in

k = 2 case is .078, and the p-values � .001 for the rest tests. The estimated cluster for

single-cluster model remains to be weeks [44, 46], while the estimated clusters for the

two-cluster model become weeks [20, 24] and [44, 46]. Both AIC and BIC criteria select
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the single-cluster model this time. For this data set, we conclude that there exists one

significant cluster between week 44 and 46.

2.6 Conclusion

We develop in this chapter a new approach to detect multiple temporal clusters of

varying sizes. With the latent model proposed in section 2.1, we are able to detect

multiple clusters simultaneously without limiting potential choices of clusters in a finite

set. With the model selection techniques presented in section 2.3, we can obtain an

optimal number of potential clusters within the given time window. Based on the

likelihood inference and Monte-Carlo EM algorithm developed in section 2.2, we are able

to estimate the associated model parameters, detect the significance of the estimated

clusters and identify their locations and sizes. Via the simulation studies performed in

section 2.4, this new procedure is more efficient than the stepwise regression method

that relies on weighted least squares method. In addition, the real data analysis results

in section 2.5 show its flexibility for extensions that include regression inclusion etc.

We will also extend the whole approach for spatial cluster detection in next chapter.
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Chapter 3

Multiple Spatial Cluster Detection

In this chapter, we extend the modeling and inference framework presented in Chapter 2

to detect multiple clusters in spatial data. A different latent model for spatial clusters

is proposed in Section 3.1. Some probability distributions are utilized to model the

locations and sizes of the latent clusters. A similar piecewise uniform distribution is

used to mimic the spatial sample data generation process. The generalized piecewise

uniform distribution can be used to adjust for available inhomogeneous background

information. Section 3.2 develops similar model inference procedures assuming the

number of clusters is known. Section 3.3 demonstrates the AIC and BIC model selection

criteria to determine the optimal number of total potential clusters. A simulation study

is provided in section 3.4.1 to illustrate and evaluate the proposed methodology for

spatial cluster detection. The comparison results with the stepwise regression method

developed by Demattei et al. [6] are also presented. Section 3.4.2 contains one real

data analysis example. We reanalyze the Pharmacy data studied by Demattei et. al

[6]. Further comments and discussions can be found in section 3.5.

3.1 A latent multiple spatial cluster model

Suppose in a given spatial region, for example, I = (0, T1)×(0, T2), there are k clusters.

The region does not need to be a rectangle. We assume that these clusters do not

overlap with each other and some of them can cross over the boundary of the spatial

region as shown in Figure 3.1. For our approach, we assume the clusters are elliptically

shaped with centers located at o1 = (o(1)1 , o
(2)
1 )′,o2 = (o(1)

2 , o
(2)
2 )′, . . . ,ok = (o(1)k , o

(2)
k )′,

orientations rotated by angles φ1, φ2, . . . , φk, semi-major axes equal to a1, a2, . . . , ak

and semi-minor axes equal to b1, b2, . . . , bk respectively. The center oj and the angle φj
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determine the location of the cluster. The axes aj and bj determine the shape and size

of the cluster. Different from the temporal case where we can order these k clusters

according to their temporal occurrences, the spatial clusters can not be ordered in the

two-dimensional space. Because of this orderless property, spatial cluster detection is

always more complex than the temporal case. In order to make the model structure

simpler, we order these k clusters by the first coordinates of their centers, i.e, we assume

o
(1)
1 ≤ o

(1)
2 ≤ . . . ≤ o

(1)
k .

Figure 3.1: An illustrative example of a latent multiple spatial cluster model

To complete the model specification, we assume that the cluster centers o1,o2, . . . ,ok

are latent random vectors (ordered by the first coordinates) that are distributed accord-

ing to a two dimensional distribution with a density function ψo(x) = ψo(x;λo). The

angles are nonnegative random variables with a density function ψφ(x) = ψφ(x;λφ).

Note the constraint that the semi-major axis aj ≥ bj (the semi-minor axis) should

hold for every cluster. To simplify the model structure, we assume that the cluster axes

aj and bj are positive ordered random variables on R+ from the same density function
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ψr(x) = ψr(x;λr) for all j = 1, 2, . . . , k. Here, λo, λφ and λr are unknown parameters.

If the cluster centers o1,o2, . . . ,ok are inside the region I, one simple example we use

later is that ψo(x;λo) is the two-dimensional Uniform distribution on I. In other cases,

we may also assume ψo(x;λo) to have some mass outside the region I. The simple

example for ψφ(x;λφ) we use later is Uniform[0, π]. The common choice of ψr(x) is

among (truncated) exponential, inverse Gamma, or log-normal distributions.

Write O = (o1,o2, . . . ,ok), φ = (φ1, φ2, . . . , φk)′, a = (a1, a2, . . . , ak)′, b = (b1, b2, . . . , bk)′,

and denote Aj as the jth cluster. We use the same expression {δ = k} to denote the

event that k non overlapping clusters occur in spatial region I. Because of the natural

orderless property of the clusters in the spatial case, the event {δ = k} is defined dif-

ferently from the temporal case. When the true cluster number is one, i.e. only one

cluster exists in I, we assume the cluster center o1 falls inside the study region and

the cluster is no bigger than that able to cover the whole region I. In other words,

{δ = 1} is equivalent to {o1 ∈ I and A1 ∩ I ⊂ I}. When k > 1, {δ = k} means k

cluster centers fall inside I and the clusters are not overlapping with each other, i.e.

{oi ∈ I and Ai ∩Aj = ∅, i, j = 1, · · · , k, j > i}.

Many methodologies have defined their clusters through circles with centers inside

the region under consideration [13, 14, 15, 16, 22, 40]. Extension to elliptical-shaped

clusters has not been that successful. A straightforward extended elliptic spatial scan

statistic is described in Kulldorff et. al [25]. This statistic has similar properties as

the circular-shaped scan statistics. For all these methods, the potential choices of

the clusters are limited to a finite set. We have a more general assumption. In our

latent model, circular shaped clusters are only a special case of the elliptical-shaped

clusters by fixing the k angles as 0 and forcing the k semi-major axes equal to the

corresponding semi-minor axes. The latent clusters are then determined by the centers

O = (o1,o2, . . . ,ok) and radii r = (r1, r2, . . . , rk)′. The circular shaped cluster model

assumption is simpler than the elliptical-shaped cluster model.

The latent variables O, φ,a and b are not observed. What we can observe in this

model setting are only the spatial data points y1, y2, . . . , yn where incidences of inter-

est occur. We assume that the observations y1, y2, . . . , yn are i.i.d. samples from the



36

piecewise uniform density function,

fθ(y|O, φ,a,b, k) =



α1

E+
Pk

j=1(αj−1)Dj
, if y ∈ A1

. . . . . .

αk

E+
Pk

j=1(αj−1)Dj
, if y ∈ Ak

1
E+
Pk

j=1(αj−1)Dj
, if y 6∈ ∪kj=1Aj

(3.1)

where E = Area(I) is the total area of the study region I, Dj = Area(Aj
⋂
I) is the

area of the jth cluster inside the study region. θ = (α, λ) is the collection of all unknown

parameters, including the parameters α = (α1, . . . , αk)′ and λ = (λo, λφ, λr)′ that are

associated with random vectors oi’s, random variables φi’s, ai’s and bi’s separately. The

parameters α have the same meanings as in the temporal case.

Similar to model (2.1), we can also incorporate a baseline function B(x(1), x(2)) in

model (3.1) and have the following generalized model (3.2)

fθ(y|O, φ,a,b, k) =



α1B(y(1),y(2))

Ẽ+
Pk

j=1(αj−1)D̃j
, if y ∈ A1

. . . . . .

αkB(y(1),y(2))

Ẽ+
Pk

j=1(αj−1)D̃j
, if y ∈ Ak

B(y(1),y(2))

Ẽ+
Pk

j=1(αj−1)D̃j
, if y 6∈ ∪kj=1Aj

(3.2)

where Ẽ =
∫ ∫

I B(x(1), x(2))dx(1)dx(2) and D̃j =
∫ ∫

Aj
T
I B(x(1), x(2))dx(1)dx(2), for

j = 1, 2, . . . , k. This model is equivalent to model (3.1) when B(x(1), x(2)) ∝ 1. Similarly

as in the last chapter, we develop methodology for data from the less complicated model

(3.1). Appendix A derives all the formulas for the generalized model (3.2).
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3.2 Model inference for given number of clusters

The model inference for given number of clusters is slightly different from the temporal

case. We state the whole procedures in this section. In section 3.3, we discuss the

model selection procedure.

3.2.1 Likelihood function of observed data

The definition of event {δ = k} makes the calculation of the explicit formula Pλ(δ = k)

difficult for the spatial case. We instead propose a general computational method to

approximate this probability as the following: when k = 1,

Step a. Simulate one set of o1 ∼ ψo(x;λo), φ1 ∼ ψφ(x;λφ), and ordered samples

a1 & b1 ∼ ψr(x;λr). Locate the left and right foci of the elliptical cluster.

Step b. Calculate the maximum sum of the distances between all the points on

the border of I and the left and right foci of the elliptical cluster. Denote it as d1 and

check if d1 > 2a1.

Step c. Repeat Step a and b for a large number of times (M).

Step d. The probability of event {δ = 1} can be approximated by∑M
m=1 1{d(m)

1 >2a
(m)
1 }

M

when k > 1,

Step a. Simulate one set of ordered vectors o1,o2, . . . ,ok,∼ ψo(x;λo), φ1, φ2, . . . , φk,∼

ψφ(x;λφ), and ordered (a1, b1), (a2, b2), . . . , (ak, bk),∼ ψr(x;λr)

Step b. Check whether Ai ∩Aj = ∅ for all i, j = 1, · · · , k, j > i

Step c. Repeat Step a and b for M times

Step d. The probability of event {δ = k} can be approximated by∑M
m=1 1{A(m)

i ∩A(m)
j =∅,i,j=1,2,··· ,k,j>i}

M

Given two arbitrary ellipses in two-dimensional space, it is not straightforward to

detect their non-overlapping condition. In the paper published by Zheng and Palffy-

Muhoray [55], an analytic expression for the distance between two ellipses’ centers
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when they are tangent (“distance of closest approach”) is derived as a function of

their orientation relative to the line joining their centers. Initially, if the two ellipses

A1 and A2 are not tangent, one ellipse is then translated toward (if they are non-

overlapping), or away from (if they are overlapping) the other along the line joining

their centers until they are tangent. An anisotropic scaling matrix is then introduced

to transform them into a unit circle A′
1 and an ellipsis A′

2, that remain tangent to

each other. The distance of closest approach of the transformed A′
1 and A′

2 can be

determined analytically. Finally, the distance of closest approach of the original two

ellipses A1 and A2 is determined by the inverse scaling transformation.

Denote dij as the distance of closest approach of ith and jth clusters, i, j = 1, · · · k, j >

i. By comparing dij with the true distance between the two centers ‖oi − oj‖, we are

able to check the non-overlapping status of these two ellipses. If ‖oi−oj‖ > dij , ith and

jth clusters are non-overlapping with each other. If ‖oi − oj‖ = dij , they are tangent

to each other. Otherwise, they are overlapping. For circular shaped clusters, the non-

overlapping condition can be checked easily by comparing the sum of the two radius

ri + rj with ‖oi − oj‖.

Conditional on {δ = k}, the joint conditional likelihood function of (O, φ,a,b),

similar as 2.4, becomes

fθ(O, φ,a,b|k) =
k!

∏k
j=1{ψo(oj)ψφ(φj)2!ψr(aj)ψr(bj)}1{δ=k}

Pλ(δ = k)
. (3.3)

In the special case with ψo being density function of uniform distribution on I, ψφ being

Uniform[0, π] and ψr being exponential distribution Exp(λr), we have

fθ(O, φ,a,b|k) =
k!( 1

Eπ )k
∏k
j=1[1{oj∈I}1{φj∈[0,π]}](2!)kλ2k

r e
−λr

Pk
j=1(aj+bj)1{δ=k}

Pλ(δ = k)
,

(3.4)

From model (3.1), the conditional joint density function of y = (y1, y2, . . . , yn),

conditional on O, φ,a,b, and δ = k, is

fθ(y|O, φ,a,b, k) =
n∏
i=1

f(yi|O, φ,a,b, k) =

∏k
j=1 α

Zj

j

{E +
∑k

j=1(αj − 1)Dj}n
, (3.5)

where Zj = Zj(y,O, φ,a,b) =
∑n

i=1 1{yi∈Aj} is the number of incidences that occur
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inside the jth cluster. Thus, the joint density function of y and δ = k, is

fθ(y, k) =
∫
· · ·

∫
fθ(y,O, φ,a,b|k)Pλ(δ = k)dOdφdadb

=
∫
· · ·

∫
fθ(y|O, φ,a,b, k)fθ(O, φ,a,b|k)Pλ(δ = k)dOdφdadb (3.6)

and the log-likelihood function of observing y and δ = k is

`k(θ|y) = log{fθ(y, k)}. (3.7)

All of the above formulas are more complicated than the temporal case. We develop

similar Monte-Carlo EM algorithm procedures in the next subsection to estimate the

spatial model parameters.

3.2.2 Monte-Carlo EM algorithm for model estimation

Similarly to Chapter 2, (y,O, φ,a,b, δ = k) are treated as the complete responses and

(y, δ = k) as the observed responses. The joint density function of (y,O, φ,a,b, δ = k)

becomes,

fθ(y,O, φ,a,b, k) = fθ(y|O, φ,a,b, k)fθ(O, φ,a,b|k)Pλ(δ = k)

=

∏k
j=1 α

Zj

j

{E +
∑k

j=1(αj − 1)Dj}n
k!

k∏
j=1

{ψo(oj)ψφ(φj)2!ψr(aj)ψr(bj)}1{δ=k} (3.8)

The same EM procedures proposed in chapter 2 can be used here for spatial data.

Note, equations (2.12) and (2.13) become

Q1(α|θ(s)) =
k∑
j=1

E(Zj |y, k, θ(s)) logαj − nE[log{E +
k∑
j=1

(αj − 1)Dj}|y, k, θ(s)],(3.9)

Q2(λ|θ(s)) =
k∑
j=1

E[logψo(oj) + logψφ(φj) + logψr(aj) + logψr(bj)|y, k, θ(s)].(3.10)

For each s = 0, 1, . . . the parameter estimates θ(s+1) = (α(s+1), λ(s+1)) are updated by

α(s+1) = argmaxQ1(α|θ(s)), and λ(s+1) = argmaxQ2(λ|θ(s)). (3.11)

In the case with ψo, ψφ and ψr being density functions of uniform distribution on I,

Uniform[0, π] and exponential distribution Exp(λr), the updating formula of λ(s+1) is

simply λ(s+1)
r = 2k/

∑k
j=1[E(aj |y, k, θ(s)) + E(bj |y, k, θ(s))].
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Similarly to Chapter 2, the equations (3.9) and (3.10) do not have explicit form. We

need to use Monto-Carlo simulation to estimate them. The Gibbs sampling approach

including the importance sampling method as in chapter 2 can be used to simulate O∗,

φ∗, a∗ and b∗ from f(O, φ,a,b|y, k, θ(s)). Once we have M sets of Gibbs samples O∗,

φ∗, a∗ and b∗, the six conditional expectations in the two equations can be evaluated

by 1
M

∑
∗ Z

∗
j ,

1
M

∑
∗ log{E +

∑k
j=1(αj − 1)D∗

j}, 1
M

∑
∗ log{ψ(o∗j )}, 1

M

∑
∗ log{ψ(φ∗j )},

1
M

∑
∗ log{ψ(a∗j )}, and 1

M

∑
∗ log{ψ(b∗j )}, respectively. In the special case, the last four

expectations just become 1
M

∑
∗(a

∗
j + b∗j ).

To carry out the EM computation, the only remaining question is how to simulate

a set of oj, φj , aj and bj , i.e, a jth cluster Aj , from the fully conditional distributions

given the rest of other oj, φj , aj and bj ’s, i.e, all the other clusters Aj ’s. By ignoring

the unwanted terms, it is easy to see that, for j = 1, 2, . . . , k,

f(Aj |Al, l = 1, 2, . . . , k, l 6= j,y, k) ∝ f(O, φ,a,b,y|k) (3.12)

∝
α
Zj

j

{E +
∑

l 6=j(αl − 1)Dl + (αj − 1)Dj}n
ψo(oj)ψφ(φj)ψr(aj)ψr(bj)1(δ=k),

Thus, given a set of parameters θ = (α, λ), we can use the following importance sampling

method to simulate a Aj :

Step A. Simulate a large number of random deviates A[1]
j , A

[2]
j , . . . , A

[S]
j from a

candidate distribution ˜ψAj (Aj). Then, compute weight

wl =
α
Z

[s]
j

j

{E +
∑

l 6=j(αl − 1)Dl + (αj − 1)D[s]
j }n

ψAj (A
(s)
j )

˜
ψAj (A

(s)
j )

1(δ[s]=k)

for s = 1, 2, . . . , S. Note, here, ψAj (Aj) = ψo(oj)ψφ(φj)ψr(aj)ψr(bj), Z
[s]
j is the total

number of incidences in jth cluster and {δ[s] = k} is the constraint of having k non-

overlapping clusters with Aj replaced by A[s]
j and the rest of Al’s the same.

Step B. Simulate one Aj from the S values A[1]
j , A

[2]
j , . . . , A

[S]
j with respective

probabilities (p1, p2, . . . , pS); Here, ps = ws/
∑S

s=1ws.

Different from the temporal case, even in the special case that ψo ∼ Uniform(I), ψφ ∼

Uniform[0, π] and ψr ∼ Exp(λr), it is not easy to simulate a A
[s]
j from a candidate
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distribution ˜ψAj (Aj). The following is a suggested way: let

˜ψAj (Aj) = ψo(oj)ψφ(φj)ψr(aj)ψr(bj)1(δ=k)

when k = 1,

Step a. Simulate a o[s]
1 ∼ Uniform(I)

Step b. Simulate a φ[s]
1 ∼ Uniform[0, π].

Step c. Use importance sampling algorithm to obtain a set of ordered a[s]
1 and b[s]1 ∼

Exp(λr) so that A[s]
1 is not big enough to cover the whole study region I.

when k > 1,

Step a. Use importance sampling algorithm to obtain a o[s]
j ∼ Uniform(I) outside

of all the other clusters A′
ls, l 6= j. With the constraint that o(1)

1 ≤ o(1)
2 ≤ . . . ≤ o(1)

k ,

we simulate o[s](1)
j ∼ Uniform[o[s](1)

(j−1),o
[s](1)
(j+1)]. Here, o[s](1)

0 is defined as the smallest x

coordinate of all the points inside the region I and o[s](1)
(k+1) is the largest x coordinate.

Step b. Simulate a φ[s]
j ∼ Uniform[0, π].

Step c. Use importance sampling algorithm to obtain a set of ordered a[s]
j and b[s]j ∼

Exp(λr) so that A[s]
j is non overlapping with all the other clusters A′

ls, l 6= j.

In other more complicated cases, assuming we know how to simulate from ψo(oj), ψφ(φj) and ψr(rj),

we can use importance sampling method to simulate from the truncated distributions.

After the Monte-Carlo EM procedure, similar estimator of the variance-covariance

matrix as in Chapter 2 can be obtained. In particular, equation (2.17) becomes,

Hn
d
= −

{
∂2

∂θ2
`k(θ|y)

}
= −E

{
∂2

∂θ2
`(θ)|y, δ = k

}
−Var

{
∂

∂θ
`(θ)|y, δ = k

}
(3.13)

where `(θ) = log{fθ(y,O, r, k)} is the complete log-likelihood function. The informa-

tion matrix is numerically estimated by

Hn = − 1
M

∑
∗

∂2

∂θ2
`(θ) (3.14)

−
{

1
M

∑
∗

[
∂

∂θ
`(θ)

][
∂

∂θ
`(θ)

]′
−

[
1
M

∑
∗

∂

∂θ
`(θ)

][
1
M

∑
∗

∂

∂θ
`(θ)

]′}
(3.15)
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where the summations are over the M sets of Gibbs samples O∗, φ∗, a∗ and b∗ in the

final round of the EM algorithm. One can also derive these two formulas by making

the baseline function equal to 1 in the formulas (A.9) and (A.10) in Appendix A.

3.2.3 Likelihood inference for tests related to α’s

In this subsection, We illustrate likelihood inference for two sided tests related to α’s.

For the significant test of a single (jth) cluster, i.e., H0 : αj = 1 versus H1 : αj 6= 1,

the Wald test procedure proposed in Section 2.2.3 can be performed here exactly the

same way. For the testing problem whether there exists at least one significant cluster

among the k clusters, i.e., H0 : α1 = α2 = ... = αk = 1 versus H1 : at least one αj 6= 1,

the LRT statistic is slightly different because of different definition of the event δ = k.

Now, the probability Pλ(δ = k) → 1 with λr → inf. Therefore, the twice log likelihood

ratio test statistic from formula (2.19) becomes

R = 2 log{maxH1fθ(y, k)
maxH0fθ(y, k)

}

= 2{log
∫ ∫

fθ̂(y|O, φ,a,b, k)fθ̂(O, φ,a,b|k)dOdφdadb + logPλ̂(δ = k) + n log(E)},

where θ̂ = (α̂′, λ̂′)′ are the estimates of the parameters obtained from the aforementioned

EM algorithm under H1. This statistic is numerically estimated by,

R∗∗ = 2
[

log{ 1
M

∑
∗∗
f(y|O∗∗, φ∗∗,a∗∗,b∗∗, k)}+ logPλ̂(δ = k) + n log(E)

]
, (3.16)

where the summation is over the M sets of samples O∗∗ = (o∗∗1 , . . . ,o
∗∗
k ), φ∗∗ =

(φ∗∗1 , . . . , φ
∗∗
k ),a∗∗ = (a∗∗1 , . . . , a

∗∗
k ) and b∗∗ = (b∗∗1 , . . . , b

∗∗
k ) simulated from fθ̂(O, φ,a,b|k)

using the similar Gibbs sampling approach method in Section 2.2.3. The test for

H0 : α1 = α2 = ... = αk = 1 versus H1 : at least one αj 6= 1 is performed by

comparing R∗∗ with the χ2
k distribution since R is also asymptotically χ2 distributed

with k degrees of freedom.

Note that, the previous truncated distributions given in formula (2.21) and (2.22)

become

fθ(Aj |Al, l = 1, 2, . . . , k, l 6= j, φ,a,b, δ = k) ∝ ψo(oj)ψφ(φj)ψr(aj)ψr(bj)1(δ=k) (3.17)
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In the special case, one computation method has been suggested in the last subsection

3.2.2 to simulate a A[s]
j from the above truncated distribution.

3.2.4 Identification of cluster regions

If a cluster is significant (i.e. αj 6= 1), we often want to determine the cluster region.

Note that the jth cluster Aj is determined by the center oj , the rotated angle φj ,

the semi-major axis aj and the semi-minor axis bj . Their conditional expectations

given y and k (“posterior means”) are E{oj |y, k}|θ=θ̂, E{φj |y, k}|θ=θ̂, E{aj |y, k}|θ=θ̂
and E{bj |y, k}|θ=θ̂. The cluster center oj , the rotated angle φj , the semi-major axis aj

and the semi-minor axis bj can be simply estimated by 1
M

∑
∗ o∗j ,

1
M

∑
∗ φ

∗
j ,

1
M

∑
∗ a

∗
j

and 1
M

∑
∗ b

∗
j respectively. Here

∑
∗ is the summation over the M sets of Gibbs samples

in the last iteration of the EM algorithm.

An alternative approach is to use the medians of the M sets of o∗j , φ
∗
j , a∗j and b∗j to

estimate oj , φj , aj and bj , respectively. Since the distribution may not be symmetric,

this median method may provide more accurate estimators.

We can also use the same four empirical statistics sensitivity, specificity, PPV and

NPV introduced in Subsection 2.2.4 to assess the performance of these cluster region

estimators for simulation studies. The closer they are to one, the more accurate the

estimated cluster regions are.

3.3 Determination of the unknown number of clusters

Since the number of clusters is rarely known in practice, we use the same AIC and BIC

criteria as in Section 2.3 to determine the number of clusters from the observed data.

Note, the AIC and BIC criteria statistics given in equations (2.23) and (2.24) become,

AIC(k) = −2 log fθ(y, k) + 2k (3.18)

= −2 log[
∫ ∫

fθ(y|O, φ,a,b, k)fθ(O, φ,a,b|k)dOdφdadb]− 2 logPλ(δ = k) + 2k
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and

BIC(k) = −2 log fθ(y, k) + k log(n) (3.19)

= −2 log[
∫ ∫

fθ(y|O, r, k)fθ(O, φ,a,b|k)dOdφdadb]− 2 logPλ(δ = k) + k log(n)

They are approximated by (3.20) and (3.21) respectively using the M sets of O∗∗ and

r∗∗ simulated in Subsection 3.2.3.

ÂIC(k) = −2 log
[ 1
M

∑
∗∗
f(y|O∗∗, φ∗∗,a∗∗,b∗∗, k)

]
− 2 logPλ̂(δ = k) + 2k, (3.20)

and BIC(k) criterion can be approximated by

B̂IC(k) = −2 log
[ 1
M

∑
∗∗
f(y|O∗∗, φ∗∗,a∗∗,b∗∗, k)

]
− 2 logPλ̂(δ = k) + k log(n), (3.21)

Finally we select the number k with the smallest corresponding ÂIC(k) or B̂IC(k) value.

Therefore, the same approach summarized in Section 2.3 can also be used here for

spatial cluster detection.

• Denote K a pre-selected set of k’s, for each fixed k ∈ K, apply the Monte-Carlo

EM algorithm in Section 3.2.2 to get the parameter estimates and use either the AIC

or BIC rule to determine the number of clusters k.

• For the chosen k, use the results in Sections 3.2.3-3.2.4 to detect and determine

the cluster regions.

3.4 Simulation studies and real data analysis

In Chapter 2, we have shown that our method performs well for the temporal case. In

this section, we test our method performance for the spatial case by simulation studies

and real data analysis.

3.4.1 Simulation studies

In this section, we perform simulation studies with fixed cluster regions similar to

Subsection 2.4.1. We apply our method for single cluster and two clusters detection

separately. We also compare our cluster detection performance with that by the stepwise
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regression method [6]. For simplicity, the simulation studies are all done within the

spatial region I = (0, 2)× (0, 1) with circular shaped clusters.

For the case of single-cluster detection, we fix the single cluster centered at O =

o1 = (.424, .426)′ and with radius r = r1 = .427. Choosing α = 3.5, we simulate

n = 100 independently identically distributed spatial points y1, y2, . . . , y100 according

to model (3.1). With these 100 y values and k = 1, applying the procedures developed

in Section 3.2, we can get a set of parameter estimates, perform the hypotheses testing,

and identify the potential cluster region. This simulation exercise is repeated 600 times.

For the case of two clusters (k = 2), we fix the first cluster centered at o1 =

(.099, .601)′, the second cluster centered at o2 = (1.379, .355)′ and r = (r1, r2)′ =

(0.248, 0.194)′. We then choose α1 = 3.5 and α2 = 4.0, and simulate n = 150 inde-

pendently identically distributed time points y1, y2, . . . , y150 according to model (3.1).

With these 150 y values and k = 2, we can get a set of parameter estimates, perform the

hypotheses testing, and identify the potential cluster regions. Again, this simulation

exercise is repeated 600 times.

Figure 3.2: Box Plots for αs estimates
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Figure 3.2 shows the box plots of the estimates of α’s in the two simulation studies.

The first one is for the single cluster (k = 1) case and the other two are for α1 and

α2 in the two clusters (k = 2) case. It seems the estimates underestimate the true

parameters a little especially for the second smaller cluster in the two clusters case.

The main reason may be because of the relatively smaller sample size (n = 100 for

k = 1, n = 150 for k = 2) for spatial cluster detection. Another thing to mention is

that we have compromised the convergence criterion a little to save the analysis time.

This may affect the results’ accuracy. Meanwhile, the estimates are not far from the

true values.

To assess the performance of the likelihood based tests, including both Wald and

likelihood ratio tests, we examine the powers and sizes of their level .05 tests. For power

computation, we use the same 2× 600 = 1200 simulated data sets described above and

list the results in Table 3.1. To compute the size, we simulate another 600 data sets of

100 time points from the Uniform distribution on spatial region I (in the k = 1 case)

and 600 data sets of 150 time points from the Uniform distribution on spatial region

I (in the k = 2 case). We apply the same estimation and testing procedures to these

two groups of 600 data sets with fixed k = 1 and k = 2 respectively. Then, we record

the results in Table 3.1. In the single cluster case, both the Wald and LRT tests have

over 99.5% power to detect the cluster. The Type I error of the Wald test is controlled

at .05 and the LRT test is conservative at .012. In the two cluster case, the powers for

Wald test are 85.5% and 66.7% with Type I errors .026 and .017 respectively. The LRT

test has a 74% power with conservative Type I error .002.

Table 3.1: Power and Type I Error evaluation

k = 1 k = 2
Power Size Power Size

Wald LRT SR Wald LRT SR Wald LRT SR Wald LRT SR
1 2 1 2

99.7% 99.5% 90.5% .05 .012 .26 85.5% 66.7% 74% 95% .026 .017 .002 .235

Also included in Table 3.1 are the powers and type I errors of the stepwise regression
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method [6]. They are calculated with the R package SPATCLUS [7] and on the same

2×2×600 = 2400 simulated data sets. In order to apply this method, 3000 underlying

population data points are simulated uniformly in the region I. This 3000 number is

selected similarly as for the real data we will analyze in Section 3.4.2. In the single

cluster case, the stepwise regression method has a power 90.5% with an inflated type

I error .26. In the two cluster case, the power to detect one or more clusters is 95%

with an inflated Type I error .235. For the particular type of data from model (3.1),

it appears that our tests are a little conservative while the stepwise regression method

has inflated type I errors.

Table 3.2: Cluster region estimates evaluation (%)

Method Statistics Min 1st Median 3rd Max Mean sd
QT QT

k = 1 Mean based Sensitivity 7.50 96.83 100.00 100.00 100.00 97.19 7.814
Specificity 52.08 79.11 87.50 92.31 100.00 85.24 10.064
PPV 37.50 86.94 91.18 95.16 100.00 90.27 7.366
NPV 59.78 94.97 100.00 100.00 100.00 96.80 5.867

Median based Sensitivity 5.00 95.29 100.00 100.00 100.00 96.58 8.302
Specificity 52.08 81.08 88.60 94.29 100.00 86.57 10.010
PPV 40.00 88.03 92.36 95.80 100.00 91.06 7.344
NPV 60.00 93.68 100.00 100.00 100.00 96.11 6.265

SR Sensitivity 0.00 3.33 9.43 11.38 15.38 7.88 4.309
Specificity 89.58 95.12 97.37 97.87 100.00 96.81 2.352
PPV 0.00 62.50 75.00 87.50 100.00 73.01 24.446
NPV 28.57 38.95 42.39 46.74 60.87 42.84 5.309

k = 2 Mean based Sensitivity 0.00 80.91 92.81 98.21 100.00 85.63 18.123
Specificity 0.00 88.17 93.88 97.00 100.00 90.71 10.508
PPV 0.00 80.00 88.14 93.94 100.00 85.25 12.234
NPV 0.00 89.88 95.65 98.81 100.00 93.25 7.723

Median based Sensitivity 0.00 85.71 93.33 98.25 100.00 89.26 13.695
Specificity 0.00 89.90 95.63 97.96 100.00 92.01 10.352
PPV 38.33 83.33 91.53 96.49 100.00 88.23 11.238
NPV 0.00 92.47 96.02 98.85 100.00 94.75 6.390

SR Sensitivity 0.00 3.54 6.12 8.11 13.33 5.93 3.107
Specificity 93.27 95.96 97.09 98.91 100.00 97.32 1.651
PPV 0.00 50.00 50.00 75.00 100.00 57.01 22.220
NPV 54.23 61.97 64.79 67.61 74.65 64.75 4.067

We also use the simulation to examine how accurately our proposed method can
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identify the cluster regions. Table 3.2 lists the summary statistics of sensitivity, speci-

ficity, PPV and NPV values in the 600 repeated simulations for the two cluster re-

gion detection methods described in Subsection 3.2.4 as well as the stepwise regression

method [7, 6]. Note, with the disc-based wrap method and a possible final union of

the interacted proportions, it is not quite straightforward for the SR method to nu-

merically identify the case points inside the final potential clusters. Therefore, only

the case points between the selected cluster bounds (“breaks”) are identified inside

the clusters. This may underestimate the number of estimated inside case points and

thus decrease sensitivity and increase specificity a little. The majority of these mea-

surements by the mean and median based cluster region detection methods are around

90%. These indicate both methods can identify cluster regions accurately. The stepwise

regression cluster detection method, however, gives poor sensitivity and NPV. It seems

even though our estimates cover a little bigger area than the true clusters, and thus

have lower Specificity and PPV, they are better than the stepwise regression method

estimates for the particular type of data from model (3.1).

Table 3.3: Model selection evaluation (%)

AIC BIC
Estimated Estimated
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

True k = 1 76.0 21.0 3.0 93.5 6.0 .5
k = 2 56.0 29.5 14.5 77.0 19.5 3.5

To study the performance of the proposed AIC and BIC criteria in determining

the number of clusters, we use the procedures in Section 3.3 and define K = 1, 2, 3 as

the pre-selected set of ks. For each fixed k ∈ K, we estimate the values of ÂIC(k)

and B̂IC(k). We then pick the k̂s which minimize ÂIC(k) and B̂IC(k) respectively to

estimate the true number of clusters. Table 3.3 summarizes the model selection results

using AIC and BIC criteria. In the single cluster case, 76% of the time AIC criterion,

and 93.5% of the time BIC criterion choose the true cluster number k = 1. However, in

the two cluster case, the selection percentage accuracy is only in the thirties with the

AIC method, and in the twenties with the BIC method. Most of the misses are in the
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estimated k = 1 category. This may be mainly because of the small size of the second

cluster for the two clusters case.

Even though the simulation results here seem not as good as in Section 2.4, the

method still works well. The αs estimators are reasonable. Most of the time, the

cluster region estimators are accurate. The Wald and LRT tests have high power to

detect clusters at least in the cases of clusters within which an event is about 3.5 times

likely to happen per unit area than that outside. Even though the tests are conservative,

they are better than having inflated type I errors. The AIC and BIC criteria for two

clusters detection do not perform well.

3.4.2 Pharmacy clusters in Montpellier

We implement our modeling procedure both with and without underlying population

adjustment to analyze the Pharmacy clusters in Montpellier (a Frence city) data set

previously analyzed by Demattei et. al [6]. This data set consists of 99 pharmacies

in Montpellier located by the global positioning system (GPS). Previously, this data

set was analyzed with the underlying inhomogeneous population taken into account.

The population is defined by 30 IRIS Montpellier divisional system and obtained from

the French 1999 population census. Since the population data is not at the same

aggregation level as the case data (pharmacies), a new underlying population was built

by simulating a uniform point process in each IRIS with size proportional to the IRIS

population. Refer to Figure 3.3 for this simulated data. The stepwise regression method

detected a significant cluster of pharmacies in the town centre with a p-value .0002. The

cluster is shown in Figure 3.5 in dark grey. Also in this figure, the red circle represents

the cluster located by the circular based spatial scan with Poisson model assumption.

This cluster was also detected as significant with a p-value .002.

Here, we reanalyze this data set using our method both with circular and elliptical

shaped clusters. We select the set of k’s κ = {1, 2, 3}. First, the data is analyzed without

underlying background population adjustment (i.e. with model (3.1)). Both AIC and
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Figure 3.3: Simulated underlying population distribution of Montpellier in 1999

BIC criteria select the single cluster model. When analyzed with circular shaped clus-

ters, the estimated α = 12.512 via our Monte-Carlo EM algorithm in Subsection 3.2.2.

This α is significantly different from 1 with both Wald and LRT test (P-value�.001)

presented in Subsection 3.2.3. The estimated cluster is denoted in Figure 3.4 as the

blue circle. Since it covers 25 events, we constrain the size of our elliptical cluster to be

no bigger than that able to cover more than 25% of the total events when analyzed with

elliptical-shaped cluster. The estimated α becomes 12.531, which is also significantly

different from 1 with both Wald and LRT test (P-value�.001). The estimated cluster

is denoted in Figure 3.4 as the red ellipsis. In order to compare our method with the SR

and Scan methods, we build a second underlying population by simulating a uniform

point process in the whole region and use it to reanalyze the case data with these two

methods. The cluster detected with the stepwise regression method is shown in Figure

3.4 in dark grey and the spatial scan cluster is shown as the green circle. Both methods

detect their clusters to be significant with a .001 p-value for the spatial scan test (the

p-value for the SR method can not be directly achieved from the SPATCLUS package).
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Figure 3.4: Cluster regions located using spatial scan statistic(green circle), stepwise
regression(dark grey) and our method(blue circle & red ellipsis) without population
adjustment

We can see that our estimates matches with the SR method result while the spatial

scan greatly inflates the cluster region.

In order to adjust for the underlying population inhomogeneity, the underlying pop-

ulation density function can be naturally chosen as the baseline function B(x(1), x(2)) in

model (3.2), which together with the derived formulas in Appendix A, can then be used

to analyze the data with population adjustment. When analyzed with circular shaped

clusters, the single cluster model is selected again, with decreased estimated α̂ = 4.479.

This estimate is tested significantly different from 1 with both Wald (P-value= .02)

and LRT tests (P-value�.001). The estimated cluster is shown also as the blue circle

in Figure 3.5. Since it covers 16 events, we constrain the size of our elliptical cluster

to be no bigger than that able to cover more than 20% of the events when analyzed

with elliptical-shaped clusters. The single cluster model is selected a second time, with

decreased estimated α̂ = 4.506. This estimate is significantly different from 1 with both
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Figure 3.5: Cluster regions located using spatial scan statistic(green circle), stepwise
regression(dark grey) and our method(blue circle & red ellipsis) with population ad-
justment

Wald (P-value= .02) and LRT tests (P-value�.001). The estimated cluster is shown

as the red ellipse in Figure 3.5. Compared with the cluster detected with the stepwise

regression method (the dark grey area in Figure 3.4) and the spatial scan cluster (the

green circle in Figure 3.4), our estimates match with them with a little bigger sizes.

3.5 Discussion

We extend in this chapter the modeling and inference framework in Chapter 2 for

spatial cluster detection. Because of the natural orderless property of the clusters

in two-dimensional space, spatial cluster detection is always more difficult than for

the temporal case. Therefore, it is not surprising that our method in this chapter

does not work as well as in the previous chapter. In the temporal case, the waiting

times b = (b1, b2, . . . , bk+1)′ and the cluster lengths c = (c1, c2, . . . , ck)′ can be well
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modeled with the help of each other because of the ordering property along the time

axis. However, the spatial clusters have to be modeled differently. Taking this complex

situation into consideration, our methodology performs well for the spatial case.

Here, we are able to use our approach to detect the elliptical clusters. Possible

extensions can be to detect other shaped clusters. For example, a potential remedy is

to have a collection of candidate shapes of various types, where each of the shapes has a

certain probability to be selected as a candidate choice for a cluster shape. With enough

computation, we can use training samples to obtain these candidate shapes as well as

a probability model from which the shapes are selected. We can have latent modeling

assumptions on these clusters and similar piecewise uniform distribution to model the

observations (yi’s). We can then use a similar approach to detect the clusters. Another

method for the irregular cluster detection can be realized in the following manner:

after obtaining the estimated cluster regions by our approach, we can use the same

disc-wrap method as the stepwise regression method to get irregular shaped clusters.

Now we draw discs around all the points inside the estimated elliptical cluster regions.
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Chapter 4

Conclusions and Discussions

Statistical modeling is one of the most widely used tools in modern applied statistics.

A model that mimics the sample data generation process retrieves more information

and provides greater insight into the problem. We present in this thesis latent models

for temporal or spatial clusters and sample data generation processes. Based on this

intuitive modeling framework, we develop likelihood inference based detection proce-

dures and Monte-Carlo EM algorithms to identify individual clusters, estimate cluster

locations and sizes in either temporal or spatial data. Simulation studies and real data

analysis illustrate the efficiency of our proposed methodology.

The scan statistics procedures focus on the detection of the most unusual cluster

instead of multiple ones. Our method can detect multiple clusters simultaneously.

Unlike many existing approaches, our approach need not limit the potential clusters

to finite sets. We can detect clusters of varying sizes. Compared with the stepwise

regression method, our method has increased efficiency under the simulation study

settings. Moreover, this latent modeling approach can flexibly adjust for non-uniform

background variation. It can also be easily extended to three or higher dimensional

cluster detection.

The likelihood inference presented in Subsections 2.2.3 and 3.2.3 are for two sided

tests, which are appropriate to test either unusually dense (αj > 1) or sparse (αj < 1)

clusters. In some applications, we may be interested in detecting only one type of cluster

and one-sided tests are more suitable. Note that, if we limit the parameter space to

{αj ≥ 1, for j = 1, 2, . . . , k} or {αj ≤ 1, for j = 1, 2, . . . , k}, the point with αj = 1 is on

the boundary of the parameter space. In this case, the constrained likelihood inference

[43, 44] applies. If the one sided tests are for each single αj or in the case of k=1, the
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Wald type tests and the likelihood ratio tests described in Subsections 2.2.3 and 3.2.3

can be directly extended to one sided tests by dividing the p-values in half. For multiple

αj ’s, there are complications when using the likelihood ratio tests. This is inherited

from the well known fact that the likelihood ratio tests (similar to the F test for equality

of multiple population means or regression parameters) are not well suited for multiple

parameter one sided tests. In this case, the likelihood ratio test statistic R∗∗ is no longer

asymptotically chi-square distributed. It instead follows a chi-bar-square distribution.

This is the distribution of the weighted sum of several independent chi-squared variants,

where the weights depend on the eigenvalues of the information matrices [44]. A useful

algorithm to compute p-values for these types of testing problems has been provided

in [44]. We can incorporate this algorithm to our problem, with few alterations to

the Monte-Carlo EM parameter estimation and cluster location and size identification

procedures. The theory for constrained likelihood inference is much more complex

than for regular likelihood. The p-values from the constrained likelihood approach are

usually smaller than those from the regular likelihood inference [44]. With some power

loss, one can conservatively use the two-sided p-values for one-sided testing problems.

One limiting point of our method is the computation time. Mainly because of the

model selection part, the analysis procedure costs more time as k increases, which

makes the whole procedure less efficient. However, with the rapid development of

current computational methods, the computation time may not be a problem in the

near future.
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Appendix A

Formulas with Baseline Function Incorporation for

Chapter 3

With B(x1, x2) the baseline function, from the generalized model (3.2),

fθ(y|O, φ,a,b, k) =



α1B(y(1),y(2))

Ẽ+
Pk

j=1(αj−1)D̃j
, if y ∈ A1

. . . . . .

αkB(y(1),y(2))

Ẽ+
Pk

j=1(αj−1)D̃j
, if y ∈ Ak

B(y(1),y(2))

Ẽ+
Pk

j=1(αj−1)D̃j
, if y 6∈ ∪kj=1Aj

(A.1)

(3.5) becomes,

fθ(y|O, r, k) =
n∏
i=1

f(yi|O, φ,a,b, k)

=

∏k
j=1{

∏
yi∈Aj

[αjB(y(1)
i , y

(2)
i )]}{

∏
yi 6∈∪k

j=1Aj
[B(y(1)

i , y
(2)
i )]}

[Ẽ +
∑k

j=1(αj − 1)D̃j ]
n =

∏k
j=1 α

Zj

j

∏n
i=1B(y(1)

i , y
(2)
i )

[Ẽ +
∑k

j=1(αj − 1)D̃j ]
n

= e
Pk

j=1[(logαj)Zj ]−n log[Ẽ+
Pk

j=1(αj−1)D̃j ]+
Pn

i=1 log[B(y
(1)
i ,y

(2)
i )], (A.2)

where Zj = Zj(y,O, φ,a,b) =
∑n

i=1 1{yi∈Aj}, number of incidences inside jth cluster

Detailed formula of 3.4 is,

fθ(O, φ,a,b|δ = k) =
fθ(O, φ,a,b, δ = k)

Pλ(δ = k)
=
fθ(O, φ,a,b)fθ(δ = k|O, φ,a,b)

Pλ(δ = k)

=
k
∏k
j=1[ψo(oj)ψφ(φj)2ψr(aj)ψr(bj)]1{δ=k}

Pλ(δ = k)
. (A.3)
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Equation (3.8) becomes,

fθ(y,O, φ,a,b, k) = fθ(y|O, φ,a,b, k)fθ(O, φ,a,b|k)Pλ(δ = k)

=

∏k
j=1 α

Zj

j

∏n
i=1B(y(1)

i , y
(2)
i )

[Ẽ +
∑k

j=1(αj − 1)D̃j ]
n k

k∏
j=1

[ψo(oj)ψφ(φj)2ψr(aj)ψr(bj)]1(δ=k) (A.4)

From (A.4), the complete log-likelihood function

`(θ) = `(θ|O, φ,a,b,y, δ = k) = log fθ(y,O, φ,a,b, k)

=
k∑
j=1

[(logαj)Zj ] +
n∑
i=1

log[B(y(1)
i , y

(2)
i )]− n log[Ẽ +

k∑
j=1

(αj − 1)D̃j ]

+
k∑
j=1

[logψo(oj) + logψφ(φj) + logψr(aj) + logψr(bj)] + log[1(δ=k)] (A.5)

Thus,

Q(θ|θ(s)) = E[`(θ)|y, k, θ(s)] = Q1(α|θ(s)) +Q2(λ|θ(s)) +Q3 (A.6)

where

Q1(α|θ(s)) =
k∑
j=1

E(Zj |y, k, θ(s)) logαj − nE{log[Ẽ +
k∑
j=1

(αj − 1)D̃j ]|y, k, θ(s)},

Q2(λ|θ(s)) =
k∑
j=1

E[logψo(oj) + logψφ(φj) + logψr(aj) + logψr(bj)|y, k, θ(s)]

Q3 =
n∑
i=1

log[B(y(1)
i , y

(2)
i )]. (A.7)

Equation (3.12) becomes

f(Aj |Al, l = 1, 2, . . . , k, l 6= j,y, k) =
f(O, φ,a,b,y, k)∫

f(O, φ,a,b,y, k)dojdφjdajdbj

=
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α
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j

[Ẽ +
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ψo(oj)ψφ(φj)ψr(aj)ψr(bj)1(δ=k), (A.8)

From (A.5), detailed procedure of the information matrix,

∂

∂θ
`(θ) = (

∂

∂α1
`(θ), · · · , ∂

∂αk
`(θ),

∂

∂λo
`(θ),

∂

∂λφ
`(θ),

∂

∂λr
`(θ))T (A.9)
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where,

∂

∂αl
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where,
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Equation (3.16) becomes,

R = 2 log{maxH1fθ(y, k)
maxH0fθ(y, k)

}

= 2 log
{∫ ∫
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i )] + n log(Ẽ)−maxλ[logPλ(δ = k)]

}
(A.11)

When B(x1, x2) is population density function, Ẽ =
∫ ∫

I B(x1, x2)dx1dx2 = N ,
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the total population inside region I, D̃j =
∫ ∫

Aj
T
I B(x1, x2)dx1dx2 = Nj , number of

population inside jth cluster

WhenB(x1, x2) ≡ 1, Ẽ =
∫ ∫

I B(x1, x2)dx1dx2 = E, D̃j =
∫ ∫

Aj
T
I B(x1, x2)dx1dx2 =

Dj , it becomes no background situation.
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Appendix B

Real Data Sets Analyzed in Chapter 2

Hospital Hemoptysis Admission Data Set

Days of hemoptysis admission at Nice University Hospital from January 1to Decem-

ber 31, 1995, are as follows:

2 8 23 29 43 48 58 60 61 63 69 71 74 74 78 80 85 86 86 87 93 105 106 108 115 117

121 126 135 140 141 156 159 179 187 188 188 191 191 198 201 214 225 225 235 235 239

249 262 271 279 279 282 292 296 302 317 323 337 342 352 354.

Revised brucellosis counts per week and predicted values

1997-2003 Data Average:

0.86 1.00 1.29 0.72 1.15 1.43 0.86 1.29 1.86 1.29 2.00 1.58 1.29 1.29 1.15 2.00 0.72

1.29 2.43 2.15 3.58 1.86 1.00 2.00 3.00 2.58 3.29 2.15 2.29 3.29 3.43 2.72 2.43 1.58 2.58

2.86 3.29 3.00 2.72 1.86 1.72 2.43 3.58 2.00 1.29 2.00 1.29 2.43 3.15 2.15 3.43 7.15

2004 Data: 0 0 0 0 2 3 1 1 0 5 4 1 1 0 3 2 0 1 1 4 3 2 4 6 0 9 3 2 5 4 0 10 0 0 3 1 8

5 5 4 4 5 0 27 7 12 0 5 6 6 4 2
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Appendix C

R and C Codes for Chapter 2

C.1 Main R codes stored in “RunAnalyzeBack.txt”

source(“AnalyzeBack.txt”) # Call R subroutines stored in “AnalyzeBack.txt”

library(MASS) # Upload needed R package

# Population at risk function (2.27) in Section 2.5.1

Wy.back<- function(x) ifelse((x>182/365)&(x<=244/365), 1+72*x/10000+55/355, 1+72*x/10000)

min.NlPdk <- scan(“minimum.txt”) #

# Main function to analyze the data

ABIC.fun(

kk.vec=1:3, # Pre-specified set of ks κ

hospital.data, # Observed data: vector of length nn

min.NlPdk, tt=1, tt.scale=365, # Re-scale the observed data

n.gib1=100, m.gib1=50, iter1=5, tol1=.1, # Parameters for model estimation

n.gib=1000, m.gib=501, iter=50, tol=0.001, # Parameters for model estimation

sig=0.05, Ln.gib=50000, Lm.gib=30001 # Parameters for likelihood inference

)

C.2 R subroutines stored in “AnalyzeBack.txt”

C.2.1 Model estimation in Section 2.2.2

# EM Iteration and Information Matrix

EM.gib.k <- function(

kk=1, # Given number of clusters: integer ∈ κ

ys=hospital.data, # Transformed observed data: vector of length nn

nn=length(ys), # # of observed data

tt=1, # Given time window [0,T]
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betas.0=rep(log(kk+1),kk), # Initial values of log(αs)

lam1.0=2*kk, # Initial value of λb

lam2.0=2*kk, # Initial value of λc

bs.0, # Initial waiting times: vector of length kk+1

cs.0, # Initial clusters lengths: vector of length kk

iterUp=100, # Maximum EM iteration steps

tol=.005, # Convergence criterion

nn.gibbs=10000, # Gibbs sampling

mm.gibbs=5000, # Gibbs sampling “Burn-in”

tt.tu # Integration of background function over [0,T]: T̃

)

{

# EM Parameter estimate

betas=betas.0; lam1=lam1.0; lam2=lam2.0; MM=nn.gibbs-mm.gibbs

converge <- F

for (iter in 1:iterUp) {

bc.gibbs <- rep(0, nn.gibbs*(2*kk+1))

# call EM Gibbs sampling subroutine NN.gibbs

bc.gibbs <- NN.gibbs(bc.gibbs,nn.gibbs,bs.0,cs.0,betas,lam1,lam2,ys,nn,kk,tt,tt.tu)[[1]]

bc.gibbs <- matrix(bc.gibbs, nrow=nn.gibbs, ncol=2*kk+1, byrow=T)

bc.use <- bc.gibbs[(mm.gibbs+1):nn.gibbs,]

bs.use <- bc.use[,1:(kk+1)]; cs.use <- as.matrix( bc.use[,(kk+2):(2*kk+1)] )

# call subroutine ZL.fun to calculate zj and c̃j

tmpout <- apply(bc.use, 1, ZL.fun, kk, ys )

Zs <- as.matrix(tmpout[1:kk,]); LL.tu <- as.matrix(tmpout[(kk+1):(2*kk),])

# call subroutine Nll.betas to update parameter estimate logα

betas.new<-optim(betas,Nll.betas,d1Nll.betas,Zs=Zs,LL=LL.tu, tt=tt.tu,nn=nn,kk=kk)§par

# update parameter estimate λb and λc

lam1.new <- (kk+1)*MM/sum(bs.use); lam2.new <- kk*MM/sum(cs.use)

# update waiting times and cluster lengths

bs.0 <- apply( bs.use, 2 ,median ); cs.0 <- apply( cs.use, 2, median )
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if ( (sum(abs(betas-betas.new)<tol*abs(betas)+tol)==kk)*(abs(lam1-lam1.new)<tol*abs(lam1)+tol)

*(abs(lam2-lam2.new)<tol*abs(lam2)+tol)==1 ) { converge <- T; break }

# update parameter estimates

betas <- betas.new; lam1 <- lam1.new; lam2 <- lam2.new

}

# Final parameter estimates θ̂

betas <- betas.new; lam1 <- lam1.new; lam2 <- lam2.new

# cluster intervals identification in Section 2.2.4

Ijs.med <- cumsum(c(rbind(bs.0[1:kk],cs.0))) # Median method

bs.mean <- colMeans( bs.use ); cs.mean <- colMeans( cs.use )

Ijs.mean<- cumsum(c(rbind(bs.mean[1:kk],cs.mean))) # Mean method

# variance-covariance matrix estimate

const1 <- (kk+1)/lam1; const2 <- kk/lam2

abb.3 <- rowSums( bs.use ); abb.4 <- rowSums( cs.use )

if (kk==1) { abb <- nn*LL.tu*exp(betas)/(tt.tu+(exp(betas)-1)*LL.tu)

} else { abb<-t(nn*LL.tu*exp(betas))/(tt.tu+colSums((exp(betas)-1)*LL.tu)) }

abb <- t(abb)

InfMa.comp <- InfMa.miss.1 <- matrix( 0, kk+2, kk+2 )

InfMa.comp[1:kk, 1:kk] <- abb % ∗% t(abb)/nn/MM

diag(InfMa.comp)[1:kk] <- - rowMeans( as.matrix(abb) ) + diag(InfMa.comp)[1:kk]

diag(InfMa.comp)[kk+1] <- - const1/lam1; diag(InfMa.comp)[kk+2] <- - const2/lam2

InfMa.comp <- - InfMa.comp

InfMa.miss.vecMa <- rbind( Zs-abb, const1-abb.3, const2-abb.4 )

InfMa.miss.1 <- InfMa.miss.vecMa% ∗%t(InfMa.miss.vecMa)/MM

InfMa.miss.2.vec <- rowMeans(InfMa.miss.vecMa)

InfMa.miss.2 <- InfMa.miss.2.vec % ∗% t( InfMa.miss.2.vec )

InfMa.miss <- InfMa.miss.1 - InfMa.miss.2

InfMa.obs <- InfMa.comp - InfMa.miss; VarMa <- solve( InfMa.obs )

return( betas, lam1, lam2, iter, converge, Ijs.med, bs.0, cs.0, Ijs.mean, VarMa )
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}

# Negative Q1 function 2.12

Nll.betas <- function(betas, Zs, LL, tt, nn, kk)

{

if (kk==1) { -( betas*mean(Zs) - nn*mean(log(tt+(exp(betas)-1)*LL)) )

} else { -(sum(betas*rowMeans(Zs))-nn*mean(log(tt+colSums((exp(betas)-1)*LL)))) }

}

# 1st derivative of negative Q1 function

d1Nll.betas <- function(betas, Zs, LL, tt, nn, kk)

{

if (kk==1) { - mean(Zs) + nn*mean( exp(betas)*LL / ( tt+(exp(betas)-1)*LL ) )

} else {-rowMeans(Zs)+nn*rowMeans(exp(betas)*LL/(tt+colSums((exp(betas)-1)*LL)))}

}

# Subroutine to calculate zj and c̃j

ZL.fun <- function(bs.gibbs.vector, kk, ys )

{

bs <- bs.gibbs.vector[1:kk]; cs <- bs.gibbs.vector[(kk+2):(2*kk+1)]

Ijs<-cumsum( c(rbind(bs,cs)) ); Zs <- rep(0,kk); LL.tu <- cs

for(j in 1:kk){

Zs[j] <- sum( (ys>Ijs[2*j-1])&(ys<Ijs[2*j]) ) # # of events within jth cluster

LL.tu[j] <- integrate(Wy.back, lower=Ijs[2*j-1], upper=Ijs[2*j])§value }

return( cbind(Zs,LL.tu) )

}

# R and C interface to call C subroutine for EM Gibbs Sampling: (b,c|y,k,θ̂)

NN.gibbs <- function( bc.gibbs,nn.gibbs,bs.0,cs.0,betas,lam1,lam2,ys,nn,kk,tt,tt.tu )

{

if ( !is.loaded(symbol.C(“NNgibbsBack”)) ) dyn.load(“NgibbsBack.so”)

.C( “NNgibbsBack”,
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as.double(bc.gibbs), as.integer(nn.gibbs), as.double(bs.0), as.double(cs.0),

as.double(betas), as.double(lam1), as.double(lam2),

as.double(ys), as.integer(nn), as.integer(kk), as.double(tt), as.double(tt.tu) )

}

C.2.2 Likelihood inference in Section 2.2.3

# Wald test for H0 : αj = 1 vs H1 : αj 6= 1

TestWald <- function( sig, VarMa, betas, kk )

{

betas.var <- diag(VarMa)[1:kk]; Z.stat <- betas/betas.var∧0.5

Pvalue <- pnorm( abs(Z.stat), lower.tail=F )*2; Walds <- (Pvalue<sig)

return(Walds, Z.stat, Pvalue)

}

# Likelihood ratio test for H0 : α1 = α2 = ... = αk = 1 vs H1 : at least one αj 6= 1

TestLRT<-function(sig,betas,lam1,lam2,tt,kk,ys,min.NlPdk,nn.gibbs,mm.gibbs,tt.tu)

{

bs.0 <- rep( tt/(kk/lam1+kk/lam2)/lam1, times=kk+1 )

cs.0 <- rep( tt/(kk/lam1+kk/lam2)/lam2, times=kk )

bc.gibbs <- rep( 0, nn.gibbs*(2*kk+1) )

# call testing Gibbs sampling subroutine LRT.gibbs

bc.gibbs <- LRT.gibbs( bc.gibbs, nn.gibbs, bs.0, cs.0, lam1, lam2, kk, tt )[[1]]

bc.gibbs <- matrix( bc.gibbs, nrow=nn.gibbs, ncol=2*kk+1, byrow=T )

bc.use <- bc.gibbs[(mm.gibbs+1):nn.gibbs,]

bs.use <- bc.use[,1:(kk+1)]; cs.use <- as.matrix( bc.use[,(kk+2):(2*kk+1)] )

tmpout <- apply( bc.use, 1, ZL.fun, kk, ys )

Zs <- as.matrix( tmpout[1:kk,] ); LL.tu <- as.matrix( tmpout[(kk+1):(2*kk),] )

if ( kk==1 ) { fy.bck <- exp(betas*Zs)/(tt.tu+(exp(betas)-1)*LL.tu)∧nn

} else {fy.bck<-exp(colSums(betas*Zs)-nn*log(tt.tu+colSums((exp(betas)-1)*LL.tu)))}

lams <- c(lam1, lam2); logfyk <- log(mean(fy.bck))-NlPdk(lams,tt,kk)

LRT.stat <- 2*( logfyk + nn*log(tt.tu) + min.NlPdk )

Pvalue <- pchisq( LRT.stat, df=kk, lower.tail=F ); LRT <- (Pvalue<sig)
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return(LRT, logfyk, LRT.stat, Pvalue)

}

# Negative log-likelihood function of Pλ(δ = k) (2.5)

NlPdk <- function( lams, tt, kk )

{

- ( kk*(log(lams[1]*lams[2]))-lams[1]*tt+2*kk*log(tt)+log(tG.fun(tt*(lams[1]-lams[2]),kk))-

log(kk)-2*log(gamma(kk)) )

}

tG.fun<-function( u, kk )

{

if ( (kk<=0) ‖ (kk!=as.integer(kk)) ) { cat(“Wrong: k should be a positive integer”)

} else { ff <- function(ss) (1-ss)∧kk*ss∧(kk-1)*exp(u*ss)

integrate(ff, lower=0, upper=1)§value }

}

# R and C interface to call C subroutine for testing Gibbs Sampling: (b,c|k,θ̂)

LRT.gibbs <- function( bc.gibbs, nn.gibbs, bs.0, cs.0, lam1, lam2, kk, tt )

{

if ( !is.loaded(symbol.C(“LRTgibbs”)) ) dyn.load(“LRTgibbs.so”)

.C( “LRTgibbs”,

as.double(bc.gibbs), as.integer(nn.gibbs),

as.double(bs.0), as.double(cs.0), as.double(lam1), as.double(lam2),

as.integer(kk), as.double(tt) )

}

C.2.3 Model selection in Section 2.3

ABIC.fun <- function( kk.vec, ys, min.NlPdk, tt, tt.scale, n.gib1, m.gib1, iter1, tol1, n.gib,

m.gib, iter, tol, sig, Ln.gib, Lm.gib, nn=length(ys) )

{

mm <- length(kk.vec); kk.max <- max(kk.vec)
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iter.vec = converge.vec = logfyk.vec = lam1.vec = lam2.vec = LRT.vec = StatLRT.vec

= PvalueLRT.vec = rep( NA, mm )

betas.Ma = Wald.Ma = PvalueWald.Ma = StatWald.Ma = matrix( , mm, kk.max )

IjsMean.Ma = IjsMed.Ma = MeanCov.Ma = MedCov.Ma = matrix( , mm, 2*kk.max )

VarMa.Ma <- matrix( , sum(kk.vec+2), kk.max+2 )

indi <- 0; Data.rank <- 1:nn; tt.tu <- integrate( Vectorize(Wy.back), 0, tt )§value

for (kk in kk.vec) {

indi <- indi+1; betas.0 = rep(log(kk+1),kk); lam1.0 = lam2.0 = 2*kk/tt

bs.0 <- rep( tt/(kk/lam1.0+kk/lam2.0)/lam1.0, times=kk+1 )

cs.0 <- rep( tt/(kk/lam1.0+kk/lam2.0)/lam2.0, times=kk )

res1<- EM.gib.k(kk,ys,nn,tt,betas.0,lam1.0,lam2.0,bs.0,cs.0, iter1,tol1,n.gib1,m.gib1,tt.tu)

res<- EM.gib.k(kk,ys,nn,tt,res1§betas,res1§lam1,res1§lam2,res1§bs.0,res1§cs.0, iter,tol,n.gib,m.gib,tt.tu)

iter.vec[indi] <- res§iter; converge.vec[indi] = res§converge

betas.Ma[indi,1:kk]<- res§betas; lam1.vec[indi]<- res§lam1; lam2.vec[indi]<- res§lam2

IjsMean.Ma[indi,1:(2*kk)] <- res§Ijs.mean; IjsMed.Ma[indi,1:(2*kk)] <- res§Ijs.med

VarMa.Ma[( sum(kk.vec[1:indi]+2)-kk-1 ):( sum(kk.vec[1:indi]+2) ), 1:(kk+2)]<- res§VarMa

for ( ii in 1:kk ){

Data.logi <- (ys>=IjsMean.Ma[indi,2*ii-1])&(ys<=IjsMean.Ma[indi,2*ii])

Data.dica <- Data.rank[Data.logi]

MeanCov.Ma[indi,(2*ii-1):(2*ii)]<- tt.scale*c(ys[Data.dica[1]],ys[Data.dica[length(Data.dica)]])

Data.logi <- (ys>=IjsMed.Ma[indi,2*ii-1])&(ys<=IjsMed.Ma[indi,ii*2])

Data.dica <- Data.rank[Data.logi]

MedCov.Ma[indi,(2*ii-1):(2*ii)]<- tt.scale*c(ys[Data.dica[1]],ys[Data.dica[length(Data.dica)]])

}

betasWaldtest <- TestWald(sig, res§VarMa, res§betas, kk)

Wald.Ma[indi,1:kk] = betasWaldtest§Walds; StatWald.Ma[indi,1:kk] = betasWaldtest§Z.stat

PvalueWald.Ma[indi,1:kk] = betasWaldtest§Pvalue

betasLRTest <- TestLRT(sig, res§betas, res§lam1, res§lam2, tt, kk, ys, min.NlPdk[kk],

Ln.gib, Lm.gib, tt.tu)

LRT.vec[indi] = betasLRTest§LRT; StatLRT.vec[indi] = betasLRTest§LRT.stat

PvalueLRT.vec[indi] = betasLRTest§Pvalue; logfyk.vec[indi] = betasLRTest§logfyk

}
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AIC.vec <- 2*(logfyk.vec - kk.vec); BIC.vec <- 2*logfyk.vec - log(nn)*kk.vec

pdf(“result/AIC-BIC.pdf”)

matplot( cbind(1:indi,1:indi), cbind(AIC.vec,BIC.vec), type=“b”, lty=1:2 )

text( 1:indi, AIC.vec, kk.vec )

dev.off()

indi.AIC <- which.max(AIC.vec); kkopt.AIC <- kk.vec[indi.AIC]

indi.BIC <- which.max(BIC.vec); kkopt.BIC <- kk.vec[indi.BIC]

file <- paste(“kk-AIC=”, kkopt.AIC, “.pdf”, sep=“”)

pdf(file)

plot( c(0,tt), c(0,.4), type=“n” )

for (ii in 1:kk) {

lines( IjsMean.Ma[indi.AIC, (2*ii-1):(2*ii)], c(.1, .1), lty=1 )

lines( IjsMed.Ma[indi.AIC, (2*ii-1):(2*ii)], c(.2, .2), lty=2 ) }

points( ys, rep(0, nn) )

dev.off()

if ( kkopt.BIC!=kkopt.AIC ) {

file <- paste( “result/kk-BIC=”, kkopt.BIC, “.pdf”, sep=“” )

pdf(file)

plot( c(0,tt), c(0,.4), type=“n” )

for (ii in 1:kk) {

lines( IjsMean.Ma[indi.BIC, (2*ii-1):(2*ii)], c(.1, .1), lty=2 )

lines( IjsMed.Ma[indi.BIC, (2*ii-1):(2*ii)], c(.2, .2), lty=3 ) }

points( ys, rep(0, nn) )

dev.off()

}

sink( “result/result.txt” )

cat(“\n iter, converge: \n\n”); print( cbind(iter.vec, converge.vec) )

cat(“\n kk, Alphas, lam1, lam2:\n\n”);

print( cbind(kk.vec, exp(betas.Ma), lam1.vec, lam2.vec) )

cat(“\n Mean Intervals, Data Coverage:\n\n”);

print( cbind(IjsMean.Ma*tt.scale, MeanCov.Ma) )

cat(“\n Median Intervals, Data Coverage:\n\n”)
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print( cbind(IjsMed.Ma*tt.scale, MedCov.Ma) )

cat(“\n Wald Test, LRT Test:\n\n”); print( cbind(Wald.Ma, LRT.vec) )

cat(“\n Wald.Stat, Wald Pvalue, LRT.Stat, LRT Pvalue:\n\n”)

print( cbind(StatWald.Ma, PvalueWald.Ma, StatLRT.vec, PvalueLRT.vec) )

cat(“\n VarMa:\n\n”); print( VarMa.Ma )

cat(“\n AIC, BIC :\n\n”); print( cbind(AIC.vec, BIC.vec) )

cat(“\n\n The Final Optimal Cluster # by AIC =”, kkopt.AIC, “\n\n”)

cat(“\n\n The Final Optimal Cluster # by BIC =”, kkopt.BIC, “\n\n”)

sink()

}

C.3 C Subroutines stored in “NgibbsBack.c”

# include <stdlib.h>

# include <stdio.h>

# include <math.h>

# include <time.h>

// Driver for subroutine qsimp

# define EPS 5.0e-6

# define JMAX 20

# define FUNC(x) ((*func)(x))

static double SimuB( double,int,double*,double*,double*,double*,int,int,double,double );

static double SimuC( double,int,double*,double*,double*,double*,int,int,double,double );

static void ZLFun( double*, double*, int, double*, int, double* );

static double sum( double*, int );

static void cumsum( double*, int );

static double sample( double*, double*, int );

static double trapzd( double (*func)(double), double , double, int );

static double qsimp( double (*func)(double), double, double );

static double WyBack( double );

/* MCMC EM Gibbs sampling */
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void NNgibbsBack( double *bcGibbs, int *nnGibbs, double *bs0, double *cs0, double *be-

tas, double *lam1, double *lam2, double *ys, int *nn, int *kk, double *tt, double *ttTu )

{

int ss, k=*kk, ii;

srand( (unsigned)time( NULL ) ); // get random seed according to system time

// (Main Loop) Generate nnGibbs gibbs samples

for( ss=0; ss<*nnGibbs; ss++ ) {

for( ii=0; ii<k; ii++ ) {

SimuB( *lam1, ii, betas, bs0, cs0, ys, *nn, k, *tt, *ttTu );

bcGibbs[ss*(2*k+1)+ii] = bs0[ii];

SimuC( *lam2, ii, betas, bs0, cs0, ys, *nn, k, *tt, *ttTu );

bcGibbs[ss*(2*k+1)+(k+1)+ii] = cs0[ii]; }

SimuB( *lam1, k, betas, bs0, cs0, ys, *nn, k, *tt, *ttTu );

bcGibbs[ss*(2*k+1)+k] = bs0[k]; }

}

/* Importance sampling: simulate a (bj |bl, l 6= j, c,y, k) */

static double SimuB( double lam1, int ii, double *betasCur, double *bsCur, double *csCur,

double *ys, int nn, int kk, double tt, double ttTu )

{

int kImp=500, i, j; double rrVec[kImp], ws[kImp], tmpout[2*kk], tmp, nom, upBs, lowBs;

lowBs = tt-sum(bsCur,kk)-sum(csCur,kk)-bsCur[kk]+bsCur[ii]; if ( lowBs<0 ) lowBs=0;

if ( ii==kk ) { tmp = (double) rand()/RAND MAX; // random # ∼ Uniform(0,1)

bsCur[ii] = lowBs-log(tmp)/lam1; // random number from truncated Exp(λb)

} else { upBs = tt-sum(bsCur,kk)-sum(csCur,kk)+bsCur[ii];

for( i=0; i<kImp; i++ ) {

tmp = (double) rand()/RAND MAX;

rrVec[i] = lowBs-log(1-(1-exp(-lam1*(upBs-lowBs)))*tmp)/lam1;

bsCur[ii] = rrVec[i]; ZLFun(bsCur, csCur, kk, ys, nn, tmpout);

ws[i] = 0; for( j=0; j<kk; j++) ws[i] = ws[i]+betasCur[j]*tmpout[j];

nom = 0; for( j=0; j<kk; j++) nom = nom+(exp(betasCur[j])-1)*tmpout[j+kk];

ws[i] = exp(ws[i]-nn*log(ttTu+nom)); }
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bsCur[ii] = sample( rrVec, ws, kImp ); }

}

/* Importance sampling: simulate a (cj |cl, l 6= j,b,y, k) */

static double SimuC( double lam2, int ii, double *betasCur, double *bsCur, double *csCur,

double *ys, int nn, int kk, double tt, double ttTu )

{

int kImp=500, i, j; double rrVec[kImp], ws[kImp], tmpout[2*kk], tmp, nom, upCs, lowCs;

upCs = tt-sum(bsCur,kk)-sum(csCur,kk)+csCur[ii];

lowCs = upCs-bsCur[kk]; if ( lowCs<0 ) lowCs = 0;

for ( i=0; i<kImp; i++ ) { tmp = (double) rand()/RAND MAX;

rrVec[i] = lowCs-log(1-(1-exp(-lam2*(upCs-lowCs)))*tmp)/lam2;

csCur[ii] = rrVec[i]; ZLFun( bsCur, csCur, kk, ys, nn, tmpout );

ws[i] = 0; for( j=0; j<kk; j++ ) ws[i] = ws[i]+betasCur[j]*tmpout[j];

nom = 0; for( j=0; j<kk; j++ ) nom = nom+(exp(betasCur[j])-1)*tmpout[j+kk];

ws[i] = exp(ws[i]-nn*log(ttTu+nom)); }

csCur[ii] = sample(rrVec, ws, kImp);

}

/* C Subroutine to calculate zj and c̃j */

static void ZLFun( double *bsk, double *csk, int kk, double *ys, int nn, double *zl )

{

double low, up; int ii, jj; low = 0.0; up = 0.0;

for ( jj=0; jj<kk; jj++ ) { zl[jj] = 0.0; low = up+bsk[jj]; up = low+csk[jj];

for ( ii=0; ii<nn; ii++ ) { if ( (ys[ii]>low)&(ys[ii]<up) ) zl[jj] = zl[jj]+1; }

zl[jj+kk] = qsimp(WyBack,low,up); }

}

/* Sum of first n elements of an array */

static double sum( double *data, int n )

{

int j; double sum=0.0; for (j=0; j<n; j++) sum=sum+data[j]; return(sum);
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}

/* Cumulative sum of first n elements of an array */

static void cumsum( double *data, int n )

{

int j; for ( j=1; j<n; j++ ) data[j] = data[j-1]+data[j];

}

/* Get a random sample from a size n array “data” with a size n weight array “prob” */

static double sample( double *data, double *prob, int n )

{

int index = 0; double uni;

cumsum( prob, n ); uni = (double) rand()/RAND MAX;

while ( (prob[index]<uni*prob[n-1])&(index<n-1) ) index = index+1;

return data[index];

}

/* Integration Functions! Obtained from Numerical Recipes! */

static double trapzd( double (*func)(double), double a, double b, int n )

{

double x, tnm, sum, del; static double s; int it, j;

if ( n==1 ) { return ( s=0.5*(b-a)*(FUNC(a)+FUNC(b)) );

} else { for ( it=1,j=1; j<n-1; j++ ) it <<= 1;

tnm = it; del = (b-a)/tnm; x = a+0.5*del;

for ( sum=0.0,j=1; j<=it; j++,x+=del ) sum += FUNC(x);

s = 0.5*(s+(b-a)*sum/tnm);

return s; }

}

static double qsimp( double (*func)(double), double a, double b )

{

int j; double s, st, ost=0.0, os=0.0;
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for ( j=1; j<=JMAX; j++ ) { st = trapzd(func,a,b,j); s = (4.0*st-ost)/3.0;

if ( j>5 )

if ( fabs(s-os)<EPS*fabs(os) ‖ (s==0.0 & os==0.0) ) return s;

os = s; ost = st; }

printf( “Too many steps in routine qsimp” ); return 0.0;

}

/* Background function */

static double WyBack( double x )

{

if ( (x>=182.0/365.0)&(x<=244.0/365.0) ) { return ( 1+72.0*x/10000.0+55.0/355.0 );

} else { return ( 1+72.0*x/10000.0 ); }

}

# undef EPS

# undef JMAX

# undef FUNC

C.4 C Subroutines stored in “LRTgibbs.c”

# include <stdlib.h>

# include <stdio.h>

# include <math.h>

# include <time.h>

static double SimuB ( double, int, double*, double*, int, double );

static double SimuC ( double, int, double*, double*, int, double );

static double sum ( double*, int );

/* MCMC LRT Gibbs sampling */

void LRTgibbs( double *bcGibbs, int *nnGibbs, double *bs0, double *cs0, double *lam1,

double *lam2, int *kk, double *tt )

{

int ss, k = *kk, ii; srand( (unsigned)time( NULL ) );

for ( ss=0; ss<*nnGibbs; ss++ ) {
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for ( ii=0; ii<k; ii++ ) {

SimuB( *lam1, ii, bs0, cs0, k, *tt ); bcGibbs[ss*(2*k+1)+ii] = bs0[ii];

SimuC( *lam2, ii, bs0, cs0, k, *tt ); bcGibbs[ss*(2*k+1)+(k+1)+ii] = cs0[ii]; }

SimuB( *lam1, k, bs0, cs0, k, *tt ); bcGibbs[ss*(2*k+1)+k] = bs0[k]; }

}

/* Importance sampling: simulate a (bj |bl, l 6= j, c, k) */

static double SimuB( double lam1, int ii, double *bsCur, double *csCur, int kk, double tt )

{

double upBs, lowBs, tmp;

lowBs = tt-sum(bsCur,kk)-sum(csCur,kk)-bsCur[kk]+bsCur[ii]; if ( lowBs<0 ) lowBs=0;

if ( ii==kk ) { tmp = (double) rand()/RAND MAX;

bsCur[ii] = lowBs-log(tmp)/lam1;

} else { upBs = tt-sum(bsCur,kk)-sum(csCur,kk)+bsCur[ii];

tmp = (double) rand()/RAND MAX;

bsCur[ii] = lowBs-log(1-(1-exp(-lam1*(upBs-lowBs)))*tmp)/lam1; }

}

/* Importance sampling: simulate a (cj |cl, l 6= j,b, k) */

static double SimuC( double lam2, int ii, double *bsCur, double *csCur, int kk, double tt )

{

double upCs, lowCs, tmp;

upCs = tt-sum(bsCur,kk)-sum(csCur,kk)+csCur[ii];

lowCs = upCs-bsCur[kk]; if ( lowCs<0 ) lowCs = 0;

tmp = (double) rand()/RAND MAX;

csCur[ii] = lowCs-log(1-(1-exp(-lam2*(upCs-lowCs)))*tmp)/lam2;

}
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