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ABSTRACT OF THE DISSERTATION

Learning on Riemannian Manifolds for Interpretation of

Visual Environments

by Cuneyt Oncel Tuzel

Dissertation Director: Peter Meer

Classical machine learning techniques provide effective methods for analyzing data

when the parameters of the underlying process lie in a Euclidean space. However,

various parameter spaces commonly occurring in computer vision problems violate this

assumption. We derive novel learning methods for parameter spaces having Riemannian

manifold structure and present several practical applications for scene analysis.

The mean shift algorithm on Lie groups is a generalization of the mean shift proce-

dure which is also an unsupervised learning technique for vector spaces. The derived

procedure can be used to cluster data points which form a matrix Lie group. We present

an application of the new algorithm for multiple 3D rigid motion estimation problem

from noisy point correspondences in the presence of outliers. The approach performs

simultaneous estimation of all the motions and does not require prior specification of

the number of motion groups.

We present a novel geometric framework to learn a supervised classification model for

data points lying on a connected Riemannian manifold. The structure of the classifier

is an additive model, where the weak learners are trained on the tangent spaces of the

manifold. The derived algorithm is applied to pedestrian detection problem which is

known to be among the hardest examples of the detection tasks.

We describe a regression model where the response parameters form a Lie group.

The model is utilized for affine tracking problem where the motion is estimated as a
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parameter of the image observations. We present generalization of the learning model

to build an invariant object detector from an existing pose dependent detector. The

proposed model can accurately detect objects in various poses, where the size of the

search space is only a fraction compared to the existing detection methods.

The other contributions of the thesis include a novel region descriptor and an online

learning algorithm for estimating background statistics of a scene which are utilized for

several challenging problems such as matching, tracking, texture classification and low

frame rate tracking.
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Chapter 1

Introduction

The goal of the computer vision research is to build systems which can interpret the

properties of the 3D world from the visual data. Since the problem is too large to

conquer within a single framework, the task is divided into several conceptually mean-

ingful subproblems. Each of the subproblems might require different interpretation of

the measurements and the reliability of the approach depends on the robustness of the

individual modules and ability to operate on noisy measurements.

The main challenge is that even the most primitive cognitive tasks are difficult to

imitate using computers. For instance, understanding the 3D geometry of a scene from

a video or recognizing a face given an exemplar image are fairly simple tasks for a

human. However, manually specifying each step of the algorithms for the same tasks is

far from realistic. Expert knowledge of the problem domain is not enough to come up

with heuristic methods which can work in wide range of conditions and hand tuning

the parameters of the system. A more promising approach is to present a data driven

solution such that the machine learns and refines the algorithm using the available data.

With the improved computational power of the computers, the advances in ma-

chine learning techniques, and the availability of the labeled datasets, learning based

methods become increasingly popular in computer vision research. Machine learning

techniques have been successfully used in variety of computer vision problems from low

level tasks such as interest point detection and feature extraction, to mid level tasks

such as matching and motion estimation, to high level tasks such as tracking, object

detection and event recognition.

A limitation of the classical machine learning techniques is the assumption that the

data points form a vector space. However, several parameter spaces commonly occurring
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in computer vision problems are non-Euclidean in nature. These spaces include smooth,

curved surfaces embedded in higher dimensional Euclidean spaces called manifolds.

Consequently, the learning methods should be revised to handle the intrinsic geometry

of the underlying space. For instance, it’s well known that the Euclidean distance is

not the most appropriate metric or the mean of the points in the Euclidean sense is

not necessarily contained in the space. These and similar operators should be replaced

with the equivalent forms defined on the manifolds.

In this thesis we present novel learning methods for a class of smooth manifolds

which are equipped with a well defined notion of distance between the points, named

Riemannian manifolds. The derived learning algorithms are utilized for several practical

computer vision applications where the domains of the problems possess Riemannian

manifold structure.

This thesis is organized as follows. In Chapter 2, we describe an unsupervised learn-

ing method for data points which form a Lie group, a special case of a smooth manifold

which also has group structure. The original mean shift algorithm over Euclidean space

is a well studied nonparametric clustering procedure which does not require prior knowl-

edge of the number of clusters, and does not constrain the shape of the clusters. We

derive an extension of the mean shift procedure where the parameter spaces form a Lie

group. The algorithm is utilized to estimate multiple 3D rigid motions from noisy point

correspondences in the presence of outliers. Unlike the existing techniques, the method

does not require prior specification of the number of motion groups and estimates all

the motion parameters simultaneously.

In Chapter 3, we describe a new descriptor based on the covariance matrix of image

statistics computed inside a region of interest. Using a tensor of integral images, we

derive a fast method to compute the covariance descriptor of an arbitrary rectangu-

lar region invariant of its size. The covariance descriptors do not form a vector space.

However, the space of d-dimensional nonsingular covariance matrices (space of symmet-

ric positive definite matrices) can be represented as a connected Riemannian manifold.

We present three applications of the descriptors for region matching, texture classifica-

tion and tracking utilizing nearest neighbor search based on an affine invariant metric
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defined for the space of symmetric positive definite matrices.

In Chapter 4, we describe a supervised learning algorithm for classifying data points

lying on a Riemannian manifold. The structure of the classifier is an additive model

where the weak learners are trained on the tangent spaces of the manifold. We show

that the proposed logarithm charts minimize the approximation errors to the distances

computed on the manifold. We present an application of the derived algorithm for

the pedestrian detection problem in still images where the covariance descriptors are

utilized as object features.

In Chapter 5, we present a novel learning based tracking model combined with object

detection. The existing techniques proceed by linearizing the motion, which makes an

implicit Euclidean space assumption. We describe a regression model learned on the

Lie algebra of the transformation group and show that the formulation minimizes a first

order approximation to the geodesic error. The learning model is extended to train a

class specific tracking function, which is then integrated to an existing pose dependent

object detector to build a pose invariant object detection algorithm. The proposed

model can accurately detect objects in various poses, where the size of the search space

is only a fraction compared to the existing object detection methods.

In Chapter 6, we describe an online learning approach to estimate the background

statistics of a dynamic scene. The color distribution of the scene background is modeled

with layers of normal distribution, and posterior density of mean and covariance are

estimated via recursive Bayesian learning. The learned background statistics are then

integrated to mean shift tracker and a robust low frame rate object tracker is presented.

In Chapter 7, we describe a decision support system to distinguish among hema-

tology cases directly from microscopic specimens. The system uses an image database

containing digitized specimens from normal and four different hematologic malignan-

cies. Initially, the nuclei and cytoplasmic components of the specimens are segmented

using a robust color gradient vector flow active contour model. Using a few cell images

from each class, the basic texture elements (textons) for the nuclei and cytoplasm are

learned, and the cells are represented through texton histograms. We propose to use

support vector machines on the texton histogram based cell representation and achieve
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major improvement over the commonly used classification methods in texture research.

Conclusions and directions for future research are presented in Chapter 8. In Ap-

pendix A, we present a brief introduction to Riemannian geometry.

Contributions of the Thesis

Several main contributions of the theses are listed below.

• Generalization of mean shift algorithm to Lie groups. The new algorithm is valid

over any matrix Lie group.

• Application of the derived mean shift algorithm for multiple 3D rigid motion

estimation problem.

• A novel region descriptor referred to as region covariance descriptor. An O(d2)

algorithm is described to compute the covariance descriptor of an arbitrary rec-

tangular region invariant of its size, where d is the dimension of the covariance

matrix.

• Several applications of the region covariance descriptors utilizing nearest neighbor

search based on an affine invariant metric defined for the space of symmetric

positive definite matrices for

– region matching

– texture classification

– tracking.

• A novel learning algorithm for classifying data points lying on a Riemannian

manifold. The new algorithm is valid over any connected Riemannian manifold.

• Application of the derived learning algorithm for pedestrian detection problem in

still images.

• A novel formulation for motion estimation by learning a regression model on the

Lie algebra of the transformation group. The regression model is valid for any

transformation group having matrix Lie group structure.
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• Applications of the derived regression model for

– affine tracking

– invariant object detection.

• An online learning approach to estimate the background statistics of a dynamic

scene.

• Low frame rate tracking application via integrating background statistics to mean

shift tracker.

• A decision support system to distinguish among hematology cases directly from

microscopic specimens based on a novel texton histogram representation and sup-

port vector machine classification.



6

Chapter 2

Clustering on Lie Groups

2.1 Introduction

Mean shift is an iterative procedure for locating the stationary points of a density

function represented by a set of samples. Although the procedure was initially described

decades ago [56], it’s not been popular in vision community until its potential uses for

feature space analysis and optimization were understood [23, 29]. Recently, the mean

shift procedure is used for a wide range of computer vision applications such as visual

tracking [11, 25, 43, 61, 65], image smoothing and segmentation [27, 175, 168], and

information fusion [22, 26]. In addition, the theoretical properties of the procedure

such as order and guarantee of convergence are discussed in several studies [18, 27, 45].

Mean shift clustering is a nonparametric clustering technique which does not require

prior knowledge of the number of clusters, and does not constrain the shape of the

clusters. The data points are assumed to be originated from an unknown distribution

which is approximated via kernel density estimation. The cluster centers are located by

the mean shift procedure and the data points associated with the same modes produce

a partitioning of the feature space.

A limitation of the original mean shift procedure is that the data points are restricted

to lie on a vector space. However, several important parameter spaces which commonly

occur in computer vision problems do not form a vector space. Here, we derive an

extension of the mean shift procedure where the parameter space forms a Lie group,

a special case of a smooth manifold which also has group structure. We present an

application of the derived procedure for the rigid motion estimation problem where the

space of 3D rigid transformations form a matrix Lie group.
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Figure 2.1: 3D rigid motion estimation. The two sets of matched points U = {uj}j=1...N

and V = {vj}j=1...N are related through rotation R and translation t.

Rigid motion estimation is a fundamental problem in computer vision. Given two

sets of 3D points in correspondence, the aim is to find the rotation R and transla-

tion t parameters (Figure 2.1). The most popular techniques treat the problem as two

sequential subproblems, estimation of rotation followed by estimation of translation.

In [4, 160] two data sets are centered and rotation is estimated by singular value de-

composition (SVD). Using the estimated rotation, translation is estimated with least

squares solution. In a similar approach [75], quaternions are used to recover the ro-

tation parameters. Experiments with synthetic data show that the two methods yield

the same solution [42].

The methods mentioned assume that the data is corrupted with homogenous and

isotropic noise. This assumption is not correct in general. Usually, 3D points come

either from stereo pairs or range images. It is well known that noise along the depth

direction is greater than along other directions [13]. Moreover if 3D measurements

are recovered through triangulation process in a calibrated stereo configuration, points

will have heteroscedastic errors. In the absence of translation, unbiased rotation can

be recovered using the renormalization technique discussed in [118]. More recently,

in [104], the authors proposed a solution in existence of both translation and rotation.

The motion parameters are estimated by solving a heteroscedastic, multivariate errors

in variables regression problem (HEIV).

Multiple motion estimation (Figure 2.2) is a much harder problem and none of
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Figure 2.2: Multiple 3D rigid motion estimation. The points are either related through
one of the p rigid motions Mi or they are outliers. The black and red points are the
inlier and outlier points respectively.

the above methods can be used directly. The problem can be considered as estimat-

ing motion parameters in the presence of structured outliers. Although there is not

much previous work done for estimating multiple 3D rigid motions, several studies are

performed for estimating motion groups on 2D images [6, 170, 177].

The two most common approaches to 2D motion estimation are based on expecta-

tion maximization (EM) and iterative estimation of motions. In EM-based methods,

point-motion association is followed with parameter estimation recursively until satis-

factory results achieved. In iterative estimation of motions, the most dominant motion

is detected considering points from other motions to be outliers. The outliers are

usually found with random sample consensus (RANSAC) algorithm. Points from the

detected motion are removed and the process is iterated. Both EM-based and itera-

tive approaches require prior specification of number of motions. Moreover RANSAC

algorithm requires an auxiliary scale parameter and in the original implementation the

number of inliers should be more than the number of outliers. More recent approaches

focus on motion clustering. In [89], tensor voting is used to cluster motion groups and

estimate 2D motion parameters. In [164], 3D motions are detected in a noise free envi-

ronment via clustering 2D point matches according to fundamental matrix constraints.

We present a novel approach to estimate multiple rigid motions from noisy 3D

point correspondences in the presence of large amount of outliers [158]. Initially we

do not reason about the point-motion associations. We find all the motion parameters

simultaneously based on sampling and mode finding on the sampled distribution. The
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proposed method is robust and does not require prior specification of number of motions.

Our approach has two major steps. The first step is to sample elemental subsets from

the existing point matches and estimate the motion parameters. Motion estimation

can be performed via any of the 3D rigid motion estimation methods discussed above.

Finally, we find the modes of the generated rigid motion distribution using the derived

mean shift procedure on Lie groups. Point-motion associations can be found with a

simple post processing step.

2.2 Mean Shift on Vector Spaces

Here we present the derivation of mean shift procedure on vector spaces. Given n data

points xi, i = 1, ..., n on an m-dimensional space Rm, the multivariate kernel density

estimate obtained with kernel K(x) and window radius h is given by

f(x) =
1

nhm

n∑
i=1

K

(
x− xi

h

)
. (2.1)

For radially symmetric kernels, it suffices to define the profile of the kernel, k(x), sat-

isfying

K(x) = ck,mk(‖x‖2) (2.2)

where ck,m is a normalization constant which assures f(x) integrates to one. Taking the

gradient of (2.1), we observe that the stationary points of the density function satisfy

2ck,m

nhm+2

n∑
i=1

(x− xi)g

(∥∥∥∥x− xi

h

∥∥∥∥2
)

= 0 (2.3)

where g(x) = −k′(x). The solution can be found iteratively via the fixed point algorithm

x̄ =

∑n
i=1 xig

(∥∥x−xi
h

∥∥2
)

∑n
i=1 g

(∥∥x−xi
h

∥∥2
) . (2.4)

At each step of the procedure a local weighted mean is computed. In the next iteration

the computation is repeated centered on the previous estimate. The difference between

the current and the previous location estimates is called the mean shift vector

mh(x) = x̄− x. (2.5)
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Comaniciu and Meer [27] show that the convergence to a local mode of the distrib-

ution is guaranteed when the mean shift iterations are started at a data point. See [27]

for more details.

2.3 Mean Shift on Lie Groups

The mean shift algorithm presented in the previous section is not directly applicable

to parameter spaces which do not form a vector space. For example, the mean shift

procedure requires computation of the weighted mean of the points (2.4). Since the

parameter space is not a vector space, the computed arithmetic mean is not necessarily

contained in the space. Secondly, the Euclidean distance is not a proper metric to

measure the similarity between the points.

Here we present a generalization of the mean shift procedure for parameter spaces

having matrix Lie group structure. A Lie group is a group G which also has smooth

manifold structure such that the group operations are analytic maps. For any smooth

manifold, the local neighborhood of a point X can be described by its tangent space

TX which is a vector space. The tangent space to the identity element of the group TIG

forms a Lie algebra which is denoted by g. Matrix Lie groups are all the subgroups of

the general linear group GL(d,R) which is the group of nonsingular square matrices.

Please see Section A.7.1 for more details. To derive mean shift procedure on matrix

Lie groups, we define the equivalent of concepts such as distances and averages based

on the geometry of the underlying space.

The most important property of the mean shift algorithm that helps us on Lie groups

is locality. Iterations start on the data points and we can define the kernel function

over the local neighborhoods of the points. We can run the mean shift algorithm on a

Lie group by iteratively transforming points between the Lie group and Lie algebra.

Let Xi, i = 1, ..., n, be the data points where Xi ∈ G and G is a matrix Lie group.

Using the intrinsic distance (A.20), the multivariate kernel density estimate at X is

given by

f̂(X) =
ck,m

nhm

n∑
i=1

k

(∥∥∥∥ log(X−1Xi)
h

∥∥∥∥2
)
. (2.6)
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A similar kernel was also defined in [110] for nonparametric density estimation.

The mean shift vector is equal to the mean of the points weighted by the gradient

of the density estimator centered on the previous estimate. In several applications the

Lie algebra is used for computing intrinsic means on Lie groups [48, 63]. Here we follow

a similar approach.

Let X be the current location estimation. The group operation (A.15) maps the

neighborhood of X to the neighborhood of I and the tangent space at X, TXG, to the

Lie algebra g. Using (A.15) and the logarithm map (A.19) a first order approximation

to the mean shift vector is given on the Lie algebra

mh(X) =

∑n
i=1 xig

(∥∥xi
h

∥∥2
)

∑n
i=1 g

(∥∥xi
h

∥∥2
) . (2.7)

where

xi = log(X−1Xi). (2.8)

The approximation error can be expressed in terms of the higher order terms in BCH

formula (A.16). The error is minimal around I and the mapping (A.15) assures that

the error is minimized. Moreover the point X is mapped to 0 via (2.8), therefore we

do not have the second term of (2.5). The mean shift vector is on the Lie algebra. We

transform this vector to the Lie group and update the location of X as

X̄ = Xexp(mh(X)). (2.9)

Starting at a data point and iteratively updating the location with the mean shift vector,

the procedure reaches a local mode of the distribution. The mean shift algorithm on

Lie groups is given in Figure 2.3.

The described mean shift algorithm is applicable to any matrix Lie group. However

it is important to know the convergence of the logarithm series (A.19). The exponential

mapping is a homeomorphism around I. It can be shown from the series (A.19) that

the logarithm operator is convergent for X, if

‖X− I‖ < 1. (2.10)
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Input: Data points Xi, i = 1 . . . n, Xi ∈ G, Initial location X

• Repeat

– Repeat for i = 1...n

∗ xi = log(X−1Xi)

– mh(X) =
Pn

i=1 xig
�
‖xi

h ‖
2
�

Pn
i=1 g

�
‖xi

h ‖
2
�

– X = Xexp(mh(X))

• Until mh(X) < ε

• Store X as a local mode

Figure 2.3: Mean shift on matrix Lie groups.

Under mapping (A.15), X is transformed to I and the logarithm is well defined for

points in a neighborhood of X. This is good enough for us, because distant points from

the current location have almost zero weights in kernel density estimation. We can

simply ignore the points for which the logarithm operator does not converge. A more

detailed discussion about computation of exponential and logarithm operators can be

found in [3].

For 3D rigid motion estimation problem we are interested in the special orthogonal

SO(3) and the special Euclidean SO(3) groups. For these parameter spaces the loga-

rithm and exponential maps are always well defined and can be computed analytically.

See Section A.7.1 for the geometry of the spaces.

2.4 Multiple Rigid Motion Estimation

We propose a very general approach to multiple rigid motion estimation. We do not

make any assumption on the number of motion groups and the data might be corrupted

with outliers. We estimate all the motion parameters simultaneously and do not require

prior specification of the number of motion groups.

Let the two set of matched 3D measurements be U = {uj}j=1...N and V = {vj}j=1...N .

Let {Ri, ti}i=1...p be the p rigid motions. The motion parameters Ri is a 3× 3 rotation
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matrix and the translation vector ti is in R3. If the points v and u are in correspon-

dence, the motion equation can be written as

v = Ru + t + η (2.11)

where {R, t} is one of the p motions and η is the measurement noise, otherwise the

point correspondence is an outlier.

Our motion estimation algorithm is based on sampling and mode finding on the

sampled distribution. We start sampling elemental subsets from the point correspon-

dences and estimate the motion parameters Ri, ti. This process is repeated n times and

at the end of the sampling step we have a distribution of rigid motions {Ri, ti}i=1...n

or equivalently in SE(3) {Mi}i=1...n. For rigid motions, three points are enough to es-

timate the motion parameters. Although we use SVD [4] algorithm to estimate motion

parameters from elemental subsets, this is not a necessity and can be replaced with

any rigid motion estimation method mentioned in Section 2.1. For instance, if data is

corrupted with heteroscedastic noise, it would be better to use HEIV method [104].

Assume that there exist p motions and no outliers. If the same number of point

correspondences belong to each motion, the probability of sampling three points from

the same motion group is p−3. We increase the chance of selecting points from the same

motion group by adding a validation step to sampling mechanism. After sampling three

points and estimating the motion Ri and ti, we select a few random points from the

data set and check whether the selected points agree with the estimated motion. If any

of the points agree ‖vj − Riuj − ti‖ < val where val is the validation threshold, we

keep the estimated motion, otherwise we ignore it and continue sampling. Although

this step is not a necessity for our method, it reduces the computational cost of the

algorithm. Sampling more elemental subsets is also a solution to sampling correct

points, but during mode finding this increases the running time of the algorithm.

The next step is to find the modes of the sampled distribution. Our argument

is, there should be p significant modes on the sampled distribution and these modes

correspond to the motion parameters. For illustration purposes, we generated N = 160

3D point correspondences from four rigid motions. The points are corrupted with
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Figure 2.4: Sampled rotations mapped to Lie algebra.

zero mean unit standard deviation noise. We estimated n = 500 rotation matrices by

sampling with validation threshold val = 5. Figure 2.4 shows the generated rotation

distribution mapped to the Lie algebra. In this space, we clearly see the four significant

modes. The outliers in the motion distribution are a direct consequence of sampling

process. If all of the sampled points are not from the same motion group, the generated

motion estimation is an outlier. The validation step decreases the chance of generating

outliers.

In the previous section, we explained how the mean shift algorithm can be used for

mode finding on Lie groups. Let {Mi}i=1...n be the generated motion distribution by

sampling where

Mi =

 Ri ti

0T 1

 i = 1...n. (2.12)

The scale of the translations ti is usually much larger than the rotations Ri. If

we scale the real world coordinates and perform rigid motion estimation, we end up

with the same rotations but scaled versions of translations. Using this fact, we can

scale the translations. We perform zero mean, unit standard deviation normalization

on the estimated translations. Finally, using mean shift we find the modes of the

distribution. The number of estimated modes becomes the number of motions and

the modes correspond to the motion parameters. Note that, at the end of mean shift

iterations each point converges to a local mode of the distribution. In the sparse regions

of the space a few points converge to a local mode. Looking at the probability densities
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Input: Two sets of matched 3D points U = {uj}j=1...N and V = {vj}j=1...N

• Repeat for i = 1...n

– Sample 3 corresponding points from data sets and estimate motion para-
meters Mi

• Normalize translation estimations to zero mean, unit standard deviation

• Find modes of rigid motion distribution {Mi}i=1...n via mean shift. Let
{M̂k}k=1...r be the detected modes

• Report number of motions r

• Renormalize translations to original scale

• Report motion parameters {M̂k}k=1...r

Figure 2.5: Multiple rigid motion estimation.

and number of points in the basins of attraction at the local modes we eliminate the

small modes. It is observed that there is a big gap in the probability densities and

number of converged points between the modes generated by real motions and modes

generated by random combinations of points. Therefore we easily remove the small

modes. The details are explained in Section 2.5. The multiple rigid motion estimation

algorithm is given in Figure 2.5.

2.5 Experimental Results

We present the results for three very challenging experiments conducted on synthetic

and image data. Throughout the experiments we keep the parameters of the motion

estimation algorithm fixed. For kernel density estimation (2.6), we use normal kernel

profile

kN (x) = e−
1
2
x. (2.13)

The bandwidth of the mean shift algorithm is selected as h = 0.1, and for each ex-

periment we sampled n = 500 motions via elemental subsets. The sampling valida-

tion threshold, val, is selected as 1
20 of the average motion of the points between two

frames. In all our experiments mean shift algorithm correctly detected number of mo-

tions (r = p) and estimated motion parameters were very accurate.
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2.5.1 Error Metrics

To evaluate our results we start with defining some error metrics on the rigid motion

group. The first metric is the expected error εE which is derived on R3 [24, p.174]. Let

{RT , tT } be the true motion and {RE , tE} be the estimated motion. The expected

error can be measured by

εE =
∫

R3

‖RTx + tT −REx− tE‖ρ(x)dx (2.14)

where ρ(x) is ideally the mass density of the object effected by the motion. Instead, we

assume ρ(x) is uniformly distributed and replace the integral with a finite summation

εE =
1
c

c∑
i=1

‖RTxi + tT −RExi − tE‖ (2.15)

where we generate c random points {xi}i=1..c. The metric is equivalent to expectation

of error for a point on the rigid body. Although it might overestimate the error, during

our test we generate c = 100 random points in the maximum range of the points in the

original set and compute the expected error (2.15) for each motion on this set.

The other error metrics are computed independently on rotation and translation

estimation. The second error metric is the rotation error. We measure the rotation

error based on matrix norms [24, p.143]

εR = ‖R−1
T RE − I‖F (2.16)

where ‖.‖F denotes the Frobenius norm of a matrix.

The last error metric is the translation error which can be directly measured with

the Euclidean distance

εT = ‖tT − tE‖2. (2.17)

2.5.2 Synthetic Data

In the first experiment, we generated 3D points in [0, 100] range and transformed these

points according to four different rigid motions. Each motion acts on 25 points. We

add zero mean, unit standard deviation Gaussian noise to each coordinate of the points

in the original and the transformed set. Moreover, we add 100 outlier points to the
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Multiple Motion SVD
εE εR εT εE εR εT

M1 0.5166 0.0095 0.9330 0.7885 0.0163 1.0393
M2 0.5559 0.0110 0.6185 0.6350 0.0202 0.6198
M3 0.7875 0.0138 0.8344 0.6759 0.0123 0.4823
M4 0.6785 0.0248 0.5490 0.6557 0.0216 0.3327

Table 2.1: Estimation errors on synthetic data. The SVD algorithm is performed
separately for each motion by manually removing all points from other motions and
outliers.

original and transformed set by generating random points. As a result, we have 100

3D point correspondences from four motions and 100 mismatched points. As can be

imagined this is a very challenging situation. According to each motion group only 1/8

of the points are inliers and the noise is high. The mean shift algorithm found four

motions and the errors associated with each motion are shown in Table 2.1.

We compare our results with the SVD algorithm performed on each motion sepa-

rately and outliers removed. Note that, the SVD algorithm can not estimate multiple

motions or if there exists outliers. The results show that, although we estimate multi-

ple motions in the presence of significant amount of outliers, our algorithm performs as

good as or better than the SVD algorithm performed separately on each motion with

the outliers removed.

2.5.3 3D Computer Generated Image Data

The second experiment is performed on computer generated 3D image data. To evaluate

the performance of our algorithm we need to know the exact transformations applied

on the bodies, therefore we created a 3D scene. We found the point correspondences by

finding salient features on the original image and tracking these features in the trans-

formed image. Corners on the original image are found by a Harris corner detector [68]

and corresponding points in the transformed image are found via the point matching

algorithm described in [61]. Using depth buffer and camera matrices the 3D coordinates

of each pixel are recovered.

A total of N = 112 points are detected by the corner detection algorithm. The

detected corner points are shown in Figure 2.6a and corresponding points are shown in



18

(a) (b)

(c)

Figure 2.6: 3D image data. (a) Original scene. 112 points are detected via corner
detection algorithm. (b) Transformed scene. Corresponding points are found via point
matching algorithm. (c) Reconstructed scene from (a) with the estimated motion pa-
rameters. It is very hard to see the difference from (b).

Figure 2.6b by white dots. As seen in the figures, the point matching algorithm failed

for several points and only around half of the points were correctly matched. Moreover,

for two bodies there exist only around 10 point matches. The mean shift algorithm

reported four motions. We compared our results with the true motions and errors

are given in Table 2.2. Correspondences are generated via point matching algorithm

and we do not know the true points. Therefore, SVD algorithm could not be used for

comparison. The errors indicate that results are close to perfect. Figure 2.6c shows

the reconstructed scene form the original scene (Figure 2.6a) with the estimated motion

parameters. It is very hard to detect the difference from the original transformed image

(Figure 2.6b).
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εE εR εT
M1 0.4653 0.0425 0.2454
M2 0.1385 0.0071 0.1293
M3 0.3350 0.0180 0.2992
M4 0.5188 0.0391 0.3508

Table 2.2: Estimation errors on 3D image data.

Experiment-1 Experiment-2 Experiment-3
Points Pdf Points Pdf Points Pdf

M1 77 0.1051 79 0.0901 196 0.3394
M2 72 0.0950 23 0.0401 184 0.2951
M3 74 0.0844 34 0.0360 55 0.0921
M4 50 0.0620 22 0.0336 4 0.0087
M5 2 0.0040 4 0.0161 6 0.0081
...

...

Table 2.3: Number of points in the basins of attraction and the probability densities at
the detected modes in the three experiments. The local modes are sorted according to
pdfs. The modes corresponding to random motions are detected using the number of
points and pdfs. The first random modes are shown in bold. In all of the experiments
the number of motions is very clear.

2.5.4 2D Real Image Data

The third experiment is conducted on 2D images in a real scene. In this experiment

we estimate multiple 2D rigid motions in the presence of occlusions. There are three

rigid bodies in the original scene and in the transformed image two of the bodies are

occluded by some other objects. The corner detection algorithm found N = 83 points

(Figure 2.7a) and matching points are again found via [61] (Figure 2.7b). Due to

occlusions and errors in the point matching process most of the point correspondences

are outliers. The mean shift algorithm reported three motions. We manually segmented

the boundaries of the bodies in the original image by marking the four corners of

the bodies and transformed the boundaries according to the estimated motions. The

result is presented in Figure 2.7d. Note that in this simple 2D case, the Lie algebra

parametrization is equivalent to angle-translation parametrization of 2D rigid motion.

In Table 2.3, we show the number of points in the basins of attraction and probability

densities for each of the local modes detected by mean shift algorithm. The density at

the mode is estimated via (2.6). Looking at the results it is very clear which clusters
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(a) (b)

(c) (d)

Figure 2.7: 2D image data. (a) Original scene. 83 points are detected via corner
detection algorithm. (b) Transformed scene. Corresponding points are found via point
matching algorithm. (c) The boundaries of the bodies. (d) Transformed boundaries
with the estimated motion parameters. The estimation is almost perfect.

are due to random combinations of the points and which clusters are generated due

to actual motions. We remove the modes having less than 10 points in the basins of

attraction or having less than 1
10 probability of the most significant mode.

2.5.5 Computational Requirement

The total processing time of sampling 500 motions and running mean shift on SE(3) is

less than one minute on a Pentium IV 3.2Ghz processor with a C++ implementation.

The exponential and logarithm operators are implemented using the matrix series [3].

The computational time can be significantly reduced using the analytic forms described

in Section A.7.1. The 2D and 3D image data used in the experiments can be downloaded

from www.caip.rutgers.edu/riul/robust.html.
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Chapter 3

Region Covariance Descriptors

3.1 Introduction

Feature selection is one of the most important steps for computer vision problems. Good

features should be discriminative, robust, easy to compute and efficient algorithms are

needed for a variety of tasks such as recognition and tracking.

The raw pixel values of several image statistics such as color, gradient and filter

responses are the simplest choice for image features, and were used for many years

in computer vision, e.g., [17, 103, 132]. However, these features are not robust in the

presence of illumination changes and nonrigid motion, and efficient matching algorithms

are limited by the high dimensional representation. Lower dimensional projections were

also used for classification [152] and tracking [12].

A natural extension of raw pixel values are via histograms where a region is rep-

resented with its nonparametric estimation of joint distribution. Following [29], his-

tograms were widely used for nonrigid object tracking. In a recent study [123], fast

histogram construction methods were explored to find a global match. Besides track-

ing, histograms were also used for texture representation [98, 162], matching [61] and

other problems in the field of computer vision. However, the joint representation of

several different features through histograms is exponential with the number features.

Haar wavelet based descriptors [121] are a set of basis functions which encode the

intensity differences between two regions. Combined with cascaded AdaBoost classifier,

superior performances were reported for face detection problem, but the algorithm

requires long training time to learn an object class. In [100] scale space extremas

are detected for keypoint localization and arrays of orientation histograms were used as
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keypoint descriptors. The descriptors are very effective in matching local neighborhoods

but do not have global context information.

We describe a novel region descriptor and apply it to three challenging problems,

matching, texture classification and tracking [154]. The covariance of d-features, e.g.,

the three-dimensional color vector, the norm of first and second derivatives of intensity

with respect to x and y, etc., characterizes a region of interest. We describe a fast

method for computation of covariances based on integral images. The idea presented

here is more general than the image sum or histogram, which were already described

in the literature, and with a series of integral images the covariances are obtained by a

few arithmetic operations.

Covariance matrices do not form a vector space but lie on a smooth manifold,

therefore the Euclidean distance is not an appropriate metric for the space. We use

a distance involving generalized eigenvalues of matrices which also follows from an

affine invariant metric on the space of symmetric positive definite matrices (nonsingular

covariance matrices). Feature matching is a simple nearest neighbor search under the

distance metric and performed extremely rapidly using the integral representation.

3.2 Covariance as a Region Descriptor

3.2.1 Covariance Descriptors

Let I be a one dimensional intensity or three dimensional color image. The method also

generalizes to other type of images, e.g., infrared. Let F be the W ×H×d dimensional

feature image extracted from I

F (x, y) = φ(I, x, y) (3.1)

where the function φ can be any mapping such as intensity, color, gradients, filter re-

sponses, etc. For a given rectangular region R ⊂ F , let {zk}k=1..S be the d-dimensional

feature points inside R. We represent the region R with the d× d covariance matrix of

the feature points

CR =
1

S − 1

n∑
k=1

(zk − µ)(zk − µ)T (3.2)
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Figure 3.1: Covariance descriptor. The d-dimensional feature image F is constructed
from input image I through mapping Φ. The region R is represented with the covariance
matrix, CR, of the features {zk}k=1..S .

where µ is the mean of the points. In Figure 3.1, we delineate the construction of

covariance descriptors.

There are several advantages of using covariance matrices as region descriptors. A

single covariance matrix extracted from a region is usually enough to match the region

in different views and poses. In fact we assume that the covariance of a distribution is

enough to discriminate it from other distributions. If two distributions only vary with

their mean, our matching result produces perfect match but in real examples these

cases almost never occur.

The covariance matrix proposes a natural way of fusing multiple features which

might be correlated. The diagonal entries of the covariance matrix represent the vari-

ance of each feature and the nondiagonal entries represent the correlations. The noise

corrupting individual samples are largely filtered out with an average filter during co-

variance computation.

The covariance matrices are low-dimensional compared to other region descriptors

and due to symmetry CR has only (d2 + d)/2 different values. Whereas if we represent

the same region with raw values we need n× d dimensions, and if we use joint feature

histograms we need bd dimensions, where b is the number of histogram bins used for

each feature.

Given a region R, its covariance CR does not have any information regarding the

ordering and the number of points. This implies a certain scale and rotation invariance

over the regions in different images. Nevertheless, if information regarding the orienta-

tion of the points are represented, such as the norm of gradient with respect to x and
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y, the covariance descriptor is no longer rotationally invariant. The same argument is

also correct for scale and illumination. Rotation and illumination dependent statistics

are important for recognition/classification purposes and we use them in Sections 3.3

and 3.4.

3.2.2 Distance Calculation on Covariance Matrices

The covariance matrices do not form a vector space. For example, the space is not closed

under multiplication with negative scalers. Most of the common machine learning

algorithms assume that the data points form a vector space therefore they are not

suitable for our descriptors. The nearest neighbor algorithm which will be used in

the following sections, only requires a way of computing distances between feature

points. We use the distance measure proposed in [52] to measure the dissimilarity of

two covariance matrices

ρ(C1,C2) =

√√√√ d∑
i=1

ln2λi(C1,C2) (3.3)

where {λi(C1,C2)}i=1...d are the generalized eigenvalues of C1 and C2, computed from

λiC1xi −C2xi = 0 i = 1...d (3.4)

and xi 6= 0 are the generalized eigenvectors. The distance measure ρ satisfies the metric

axioms for positive definite symmetric matrices C1 and C2

1. ρ(C1,C2) ≥ 0 and ρ(C1,C2) = 0 only if C1 = C2,

2. ρ(C1,C2) = ρ(C2,C1),

3. ρ(C1,C2) + ρ(C1,C3) ≥ ρ(C2,C3).

The generalized eigenvalues can be computed with O(d3) arithmetic operations us-

ing numerical methods and an additional d logarithm operations are required for dis-

tance computation, which is usually faster than comparing two histograms that grow

exponentially with d.
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The distance metric is equivalent to (A.34) which can be derived using the affine

invariant metric (A.29) defined on the tangent space of symmetric positive definite

matrices. See Section A.7.2 for more details.

3.2.3 Integral Images for Fast Covariance Computation

Integral images are intermediate image representations used for fast calculation of region

sums [144, 165]. Each pixel of the integral image is the sum of all the pixels inside the

rectangle bounded by the upper left corner of the image and the pixel of interest. For

an intensity image I its integral image is defined as

Integral Image (x′, y′) =
∑

x≤x′,y≤y′

I(x, y). (3.5)

Using this representation, any rectangular region sum can be computed in constant

time. In [123], the integral images were extended to higher dimensions for fast calcu-

lation of region histograms. Here we follow a similar idea for fast calculation of region

covariances [126].

We can write the (i, j)-th element of the covariance matrix defined in (3.2) as

CR(i, j) =
1

S − 1

S∑
k=1

(zk(i)− µ(i))(zk(j)− µ(j)). (3.6)

Expanding the mean and rearranging the terms we can write

CR(i, j) =
1

S − 1

[
S∑

k=1

zk(i)zk(j)−
1
S

S∑
k=1

zk(i)
S∑

k=1

zk(j)

]
. (3.7)

To find the covariance in a given rectangular region R, we have to compute the sum

of each feature dimension, z(i)i=1...d, as well as the sum of the multiplication of any

two feature dimensions, z(i)z(j)i,j=1...d. We construct d + d2 integral images for each

feature dimension z(i) and multiplication of any two feature dimensions z(i)z(j).

Let P be the W ×H × d tensor of the integral images

P (x′, y′, i) =
∑

x≤x′,y≤y′

F (x, y, i) i = 1...d (3.8)

and Q be the W ×H × d× d tensor of the second order integral images

Q(x′, y′, i, j) =
∑

x≤x′,y≤y′

F (x, y, i)F (x, y, j) i, j = 1...d. (3.9)
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Figure 3.2: Integral Image. The rectangle R(x′, y′;x′′, y′′) is defined by its upper left
(x′, y′) and lower right (x′′, y′′) corners in the image, and each point is a d dimensional
vector.

In [165], it is shown that integral image can be computed in one pass over the image. In

our notation, px,y is the d dimensional vector and Qx,y is the d× d dimensional matrix

px,y = [P (x, y, 1) . . . P (x, y, d)]T

Qx,y =


Q(x, y, 1, 1) . . . Q(x, y, 1, d)

...

Q(x, y, d, 1) . . . Q(x, y, d, d)

 . (3.10)

Note that Qx,y is a symmetric matrix and d + (d2 + d)/2 passes over the image are

enough to compute both P and Q. The computational complexity of constructing the

integral images is O(d2WH).

Let R(x′, y′;x′′, y′′) be the rectangular region, where (x′, y′) is the upper left coordi-

nate and (x′′, y′′) is the lower right coordinate, as shown in Figure 3.2. The covariance

of the region bounded by (1, 1) and (x′, y′) is

CR(1,1;x′,y′) =
1

S − 1

[
Qx′,y′ −

1
S

px′,y′pT
x′,y′

]
(3.11)

where S = x′ · y′. Similarly, after a few rearrangements, the covariance of the region

R(x′, y′;x′′, y′′) can be computed as

CR(x′,y′;x′′,y′′) =
1

S − 1

[
Qx′′,y′′ + Qx′−1,y′−1 −Qx′′,y′−1 −Qx′−1,y′′ (3.12)

− 1
S

(
px′′,y′′ + px′−1,y′−1 − px′−1,y′′ − px′′,y′−1

)
(
px′′,y′′ + px′−1,y′−1 − px′−1,y′′ − px′′,y′−1

)T]
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where S = (x′′ − x′ + 1) · (y′′ − y′ + 1). Therefore, after constructing integral images

the covariance of any rectangular region can be computed in O(d2) time.

3.3 Region Matching

The aim of region matching is to locate a given object of interest in an arbitrary image

and pose, after a possible nonrigid transformation. We use pixel locations (x,y), color

(RGB) values and the norm of the first and second order derivatives of the intensities

with respect to x and y. Each pixel of the image is converted to a nine-dimensional

feature vector

F (x, y) =
[
x y R(x, y) G(x, y) B(x, y) |Ix(x, y)| |Iy(x, y)| |Ixx(x, y)| |Iyy(x, y)|

]T

(3.13)

where R, G, B are the RGB color values, and Ix, Ixx, .. are intensity derivatives. The

image derivatives are calculated through the filters [−1 0 1]T and [−1 2 − 1]T , for first

and second order respectively. The covariance of a region is a 9×9 matrix. Although the

variance of pixel locations (x,y) is same for all the regions of the same size, they are still

important since their correlation with the other features are used at the nondiagonal

entries of the covariance matrix.

We represent an object with five covariance matrices of the image features computed

inside the object region, as shown in Figure 3.3. Initially we compute only the covariance

of the whole region, C1, from the source image. We search the target image for a region

having similar covariance matrix and the dissimilarity is measured through (3.3). At all

the locations in the target image we analyze at nine different scales (four smaller, four

larger) to find matching regions. We perform a brute force search, since we can compute

the covariance of an arbitrary region very quickly. Instead of scaling the target image,

we just change the size of our search window. There is a 15% scaling factor between

two consecutive scales. The variance of the x and y components are not the same for

regions with different sizes and we normalize the rows and columns corresponding to

these features. At the smallest size of the window we jump three pixels horizontally

or vertically between two search locations. For larger windows we jump 15% more and
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Figure 3.3: Object representation. We construct five covariance matrices from over-
lapping regions of an object feature image. The covariances are used as the object
descriptors.

round to the next integer at each scale.

We keep the best matching 1000 locations and scales. At the second phase we

repeat the search for 1000 detected locations, using the covariance matrices Ci=1...5.

The dissimilarity of the object model and a target region is computed

ρ(O,M) = min
j

[
5∑

i=1

ρ(CO
i ,C

T
i )− ρ(CO

j ,C
M
j )

]
(3.14)

where CO
i and CM

i are the object and target covariances respectively, and we ignore the

least matching region covariance of the five. This increases robustness towards possible

occlusions and large illumination changes. The region with the smallest dissimilarity is

selected as the matching region.

We present the matching results for a variety of examples in Figure 3.4 and compare

our results with histogram features. We tested histogram features both with the RGB

and HSV color spaces. With the RGB color space the results were much worse in all

of the cases, therefore we did not present these results. We construct three separate

64 bin histograms for hue, saturation and value since it is not practical to construct

a joint histogram. We search the target image for the same locations and sizes, and

fast construction of histograms are performed through integral histograms [123]. We

measure the distance between two histograms through Bhattacharyya distance [29] and

sum over three color channels.

Covariance features can match all the target regions accurately whereas most of

the regions found by histogram are erroneous. Even among the correctly detected

regions with both methods we see that covariance features better localize the target.
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(a) (b) (c)

Figure 3.4: Object detection. (a) Input regions. (b) Regions found via covariance
features. (c) Regions found via histogram features.
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The examples are challenging since there are large scale, orientation and illumination

changes, and some of the targets are occluded and have nonrigid motion. Almost

perfect results indicate the robustness of the proposed approach. We also conclude

that the covariances are very discriminative since they can match the correct target in

the presence of similar objects, as seen in the face matching examples.

Covariance features are faster than the integral histograms since the dimensionality

of the space is smaller. The search time of an object in a color image with size 320×240

is 6.5 seconds with a MATLAB 7 implementation. The performance can be improved

by a factor of 20-30 with a C++ implementation which would yield to near real time

performance.

3.4 Texture Classification

Currently, the most successful methods for texture classification are through textons

which are cluster centers in a feature space derived from the input. The feature space

is built from the output of a filter bank applied at every pixel and the methods differ

only in the employed filter bank.

• LM: A combination of 48 anisotropic and isotropic filters were used by Leung

and Malik [98]. The feature space is 48 dimensional.

• S: A set of 13 circular symmetric filters was used by Schmid [138]. The feature

space is 13 dimensional.

• M4, M8: Both representations were proposed by Varma and Zissermann [162].

Original filters include both rotationally symmetric and oriented filters but only

maximum response oriented filters are included to feature vector. The feature

space is 4 and 8 dimensional respectively.

To find the textons, usually the k-means clustering algorithm is used, although it

was shown that it might not be the best choice [62]. The most significant textons are

aggregated into the texton library and the texton histograms are used as texture repre-

sentation. The χ2 distance [98] is used to measure the similarity of two histograms and
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Figure 3.5: Texture representation. There are u images for each texture class and we
sample s regions from each image and compute covariance matrices C.

the training image with the smallest distance from the test image determines the class

of the latter. The process is computationally expensive since the images are convolved

with large filter banks and in most cases requires clustering in high dimensional space.

3.4.1 Random Covariances for Texture Classification

We present a new approach to texture classification problem without using textons. We

start with extracting several features from each pixel. For texture classification problem

we use image intensities and norms of first and second order derivatives of intensities

in both x and y direction. Each pixel is mapped to a d = 5 dimensional feature space

F (x, y) =
[
I(x, y) |Ix(x, y)| |Iy(x, y)| |Ixx(x, y)| |Iyy(x, y)|

]T

. (3.15)

We sample s random square regions from each image with random sizes between 16×16

and 128× 128. Using integral images we compute the covariance matrix of each region.

Each texture image is then represented with s covariance matrices and we have u

training texture images from each texture class, a total of s · u covariance matrices.

Texture representation process is illustrated in Figure 3.5. We repeat the process for

the c texture classes and construct the representation for each texture class in the same

way.

Given a test image, we again extract s covariance matrices from randomly selected

regions. For each covariance matrix we measure the distance (3.3) from all the matrices

of the training set and the label is predicted according to the majority voting among
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M4 M8 S LM Random Covariance
Performance 85.71 94.64 93.30 97.32 97.77

Table 3.1: Classification results for the Brodatz database.

the k nearest ones (kNN algorithm). This classifier performs as a weak classifier and

the class of the texture is determined according to the maximum votes among the s

weak classifiers.

3.4.2 Texture Classification Experiments

We perform our tests on the Brodatz texture database which consists of 112 textures.

Because of the nonhomogeneous textures inside the database, classification is a chal-

lenging task. We duplicate the test environment of [62]. Each 640× 640 texture image

is divided into four 320 × 320 subimages and half of the images are used for training

and half for testing.

We compare our results with the results reported in [62] in Table 3.1. Here we

present the results for k-means based clustering algorithm. The texture representation

through texton histograms has 560 bins. The results vary from 85.71% to 97.32%

depending on the filter bank used.

In our tests we sample s = 100 random covariances from each image, both for testing

and training, and we used k = 5 for the kNN algorithm. For d = 5 dimensional features,

the covariance matrix is 5 × 5 and has only 15 different values compared to 560 bins

before. Our result, 97.77%, is better than all of the previous results and faster. Only

5 images out of 224 is misclassified which is close to the upper limit of the problem.

We show the misclassified images in Figure 3.6 and the misclassifications are usually in

nonhomogeneous textures.

To make the method rotationally invariant, we used only three rotationally invariant

features: intensity and the magnitude of the gradient and Laplacian. The covariance

matrices are 3 × 3 and have only 6 different values. Even with this very simple fea-

tures the classification performance is 94.20%, which is as good as or even better than

other rotationally invariant methods (M4, M8, S) listed in Table 3.1. Due to random
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Figure 3.6: Misclassified textures. (First Row) Test examples. The misclassifications
are usually in nonhomogeneous textures. (Second Row) Samples from the same class.
(Third Row) Samples from the predicted texture class.

sized window selection our method is scale invariant. Although the approach is not

completely illumination invariant, it is more robust than using features (intensity and

gradients) directly. The variances of intensity and gradients inside regions change less

than intensity and gradients themselves in illumination variations.

In the second experiment we compare the covariance features with other possible

choices. We run the proposed texture classification algorithm with the raw intensity

values and histograms extracted from random regions.

For raw intensities we normalize each random region to 16 × 16 square region and

use Euclidean distance to compute distances for kNN classification, which is similar

to [103]. The feature space is 256 dimensional. The raw intensity values are very noisy

therefore only in this case we sample s = 500 regions from each image.

We perform two tests using histogram features: intensity only, and intensity and

norms of first and second order derivatives together. In both cases the dissimilarity

is measured with Bhattacharyya distance [29]. We use 256 bins for intensity only and

5 · 64 = 320 bins for intensity and norm of derivatives together. It is not practical to

construct the joint intensity and norm of derivatives histograms, due to computational
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Raw Int. Int. Hist. Int./Der. Hist. Covariance
Performance 26.79 83.35 96.88 97.77

Table 3.2: Classification results for different features.

and memory requirement.

We sample s = 100 regions from each texture image. The results are shown in

Table 3.2. The only result close to covariance is the 320 dimensional intensity and

derivative histograms together. This is not surprising because our covariance features

are the covariances of the joint distribution of the intensity and derivatives. But with

covariance features we achieve a better performance in a much faster way.

3.5 Tracking

Finding the correspondences of the previously detected objects in the current frame,

tracking, is an essential component of several vision applications. Still, robust and

accurate tracking of a deforming, non-rigid and fast moving object without getting

restricted to particular model assumptions presents a major challenge.

Here we briefly describe the conventional tracking methods and their latent short-

comings. Mean shift tracker [29] is a nonparametric density gradient estimator to find

the image window that is most similar to the object’s color histogram in the current

frame. It iteratively carries out a kernel based search starting at the previous location

of the object. Even though there are variants [125] to improve its localization by using

additional modalities, the original method requires the object kernels in the consecutive

frames to have a certain overlap. The success of the mean-shift highly depends on the

discriminating power of the histograms that are considered as the objects’ probability

density function.

Tracking can be considered as estimation of the state given all the measurements up

to that moment, or equivalently constructing the probability density function of object

location. A common approach is to employ predictive filtering and use the statistics of

object’s color and location in the distance computation while updating the object model

by constant weights [172]. When the measurement noise are assumed to be Gaussian,
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the optimal solution is provided by the Kalman filter [16]. When the state space is

discrete and consists of a finite number of states, Markovian filters can be applied for

tracking. The most general class of filters is represented by particle filters, which are

based on Monte Carlo integration methods. The current density of the state (which can

be location, size, speed, boundary [80], etc.) is represented by a set of random samples

with associated weights and the new density is computed based on these samples and

weights. Particle filtering is a popular tracking method [15, 20, 179]. However, it is

based on random sampling that becomes a problematic issue due to sample degeneracy

and impoverishment, especially for higher dimensional representations.

Tracking can also be considered as a classification problem and a classifier can be

trained to distinguish the object from the background [5]. This is done by constructing

a feature vector for every pixel in the reference image and training a classifier to separate

pixels that belong to the object from pixels that belong to the background. As in the

mean-shift, an object can be tracked only if its motion is small. One obvious drawback

of the local search methods is that they tend to stuck into the local optimum.

3.5.1 Covariance Tracker

Covariance tracker [127, 124] is a generalization of the region matching framework

presented in Section 3.3 for tracking problem. The target object is initialized manually.

At each frame, we construct a feature image using mapping (3.1). The object model

is given by the covariance descriptor of the object region which is computed at the

initial frame. The covariance descriptor allows us to fuse multiple modalities such as

color and infrared measurements, and captures both statistical and spatial properties.

The location of the target in the current frame is given by the region having minimum

covariance distance from the object model. Unlike the local approaches, we find a global

minimum of the distance function and the search is performed extremely rapidly using

the integral representation (Section 3.2.3).

Since non-rigid and moving objects undergo shape, size, and appearance transforma-

tions in time, it is necessary to adapt to these variations. Let {Rt}t=1...T and {St}t=1...T
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be the estimated locations and their sizes during tracking. In case all the correspond-

ing feature measurements {zt,k}k=1...St , zt,k ∈ Rt are stored, an aggregated covariance

matrix at time T can be obtained by

C̄ =
1∑T

t=1 St − 1

T∑
t=1

St∑
k=1

(zt,k − µ̄T )(zt,k − µ̄T )T (3.16)

where µ̄ is the aggregated mean computed over all regions {Rt}t=1...T

µ̄ =
1∑T

t=1 St

T∑
t=1

St∑
k=1

zt,k. (3.17)

Although this formulation is arguably straightforward, it assumes that the larger

windows are more influential and there is no temporal weighting for more recent ob-

servations. Besides, it is computationally expensive, O(S̄Td2) where S̄ is the average

region size, and requires a large amount of memory to store all the previous observa-

tions.

Instead, we derive a mean covariance matrix computation which does not require

keeping all the previous measurements and solves the described problems. We construct

and update a temporal kernel of covariance matrices. Let {Ct}t=1...T be the set of T

previous covariance matrices corresponding to the previously estimated object regions

{Rt}t=1...T . From this set, we compute a sample mean covariance matrix that blends

all the previous matrices.

As discussed in Section 3.2.2, the Euclidean distance is not an appropriate metric

for covariance matrices. For example, it is shown in [122] that the Euclidean mean of

covariance matrices have larger determinant than the original matrix determinants.

The d× d dimensional symmetric positive definite matrices (nonsingular covariance

matrices), Symd
+, can be formulated as a connected Riemannian manifold and an equiv-

alent form of distance metric (3.3) is given in (A.34). See Section A.7.2 for more details.

The mean of the points on Sym+
d is the point on the manifold which minimizes the

sum of squared Riemannian distances (A.34),
∑T

t=1 d
2(C,Ct). The mean can be found

by minimizing the error via a gradient descent algorithm [122]

C̄i+1 = expC̄i

[
1
N

T∑
t=1

logC̄i(Ct)

]
(3.18)
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miss/total detection trials
Pool Player 1 8/92 91.4 0.0356
Running Dog 1 9/125 92.8 0.0284
Subway 1 4/173 97.6 0.0091
Jogging 1 20/824 97.7 0.0096
Street-color 1 16/180 91.1 0.0351
Street-infrared 1 61/180 66.2 0.1337
Street-joint 1 8/180 95.6 0.0175
Race 2 2/692 99.7 0.0015
Crowd 3 7/522 99.1 0.0034

Table 3.3: Tracking performance scores. Detection is the percentage of correct estima-
tion rate. Trials is the percentage of the number of trials to get a correct estimate to
the total number of locations. Video sizes are 352×2881, 352×2402, 440×3603

.

where exp and log operators are defined in (A.30) and (A.31) respectively. The method

iterates by computing first order approximations to the mean on the tangent space.

In the above formulation, all the previous matrices {Ct}t=1...T in the set are consid-

ered as equally influential on the result regardless of whether they are accurate or not.

To prevent the model from contamination, it is possible to weight the data points pro-

portional to its similarity to the current model. Then, the algorithm is simply modified

as

C̄i+1 = expC̄i

(
1
ρ∗

T∑
t=1

ρ−1(Ct, C̄∗)logC̄i(Ct)

)
. (3.19)

where ρ is defined in (3.3), ρ∗ =
∑T

t=1 ρ
−1(Ct, C̄∗) and C̄∗ is the model computed

at the previous frame. Please see Section 4.3.2 for more details on sample means on

Riemannian manifolds.

3.5.2 Tracking Experiments

We assessed the performance using 15 sequences totaling more than 3000 frames. These

include moving and stationary camera recordings, infrared sequences, etc., and some

of the results are listed in Table 3.3. We computed two performance metrics. The

detection rate is the ratio of the number of frames the object location is accurately

estimated to the total number of frames in the sequence. We consider the estimated

location accurate if the best match is within the 9×9 neighborhood of the ground truth
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frame 1 frame 10 frame 34 frame 73

frame 1 frame 32 frame 52 frame 96

frame 1 frame 50 frame 100 frame 172

frame 1 frame 50 frame 150 frame 250

Figure 3.7: Tracking results for four different sequences. In Pool Player and Running
Dog sequences, the camera and objects are moving, and the appearances are changing.
In Subway and Crowd, the objects have indistinctive color and insignificant texture
information.

object center location. For example, there are 101376 possible regions for a 352 × 288

image and the probability of correctly estimating the object location is 1 : 1251, if we

draw it randomly.

We also analyzed the number of trials to find the correct estimation. This is based

on ordering the search regions according to the match scores until we find the correct

estimation. We defined the metric as the percentage of the number of trials to the total

number of locations.

Sample tracking results are given in Figures 3.7 and 3.8. For color sequences, we used

all 3 RGB channels as separate features. For sequences recorded in stationary camera
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frame 1 frame 75 frame 120 frame 196 frame 242

frame 400 frame 480 frame 640 frame 784 frame 811

frame 1 frame 46 frame 53 frame 64 frame 102

frame 400 frame 409 frame 413 frame 429 frame 483

Figure 3.8: Tracking results using for moving camera sequences. Size changes (frames
75, 196, 242, 881) in Race sequence and severe occlusions (frames 53, 64, 409, 413) in
Jogging sequence are accurately detected.

setups, we included a frame difference score. The frame difference feature improved

the performance in infrared sequences since infrared imagery lack of sufficient spatial

information to compute reliable features for small objects.

Objects are manually initialized and we applied the covariance tracking with the

weighted mean based update mechanism. We computed the covariance matrices in full

resolution feature image and performed the exhaustive search in half resolution grid to

find the best match.

We observed that the covariance modeling and update mechanism successfully detect

and adapt models to the undergoing changes as several examples are given in Figures 3.7

and 3.8. Note that, in approximately 1% of the frames the objects were fully occluded,

therefore the overall detection rate was bounded at 99%. Still, the covariance tracker

was able to find objects at 97.4% of the frames as given in the first column of Table 3.4.

In comparison, optimal histogram matching could detect only 72.8% of objects in our
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(a) (b)

Figure 3.9: Montages of the detected results from 88 consecutive frames of Pool Player
sequence. Some frames can be seen in Figure 3.7. (a) With no model update; detection
rate is 47.7%. (b) With weighted mean based update mechanism; detection rate is
100%.

datasets. The original mean shift [29], on the other hand, was able to keep track of

objects only for a couple of initial frames in case the objects move fast and erratically

(Jogging) or the color variation is low and object color resembles to the background

(Pool Player). The average tracking performance of the original mean shift was less

than 40%.

Figure 3.9 shows sample results with and without model update. We observed that

the model update becomes more critical especially for the objects having non-rigid

deformations and pose changes. The model adaptation speed relies on the number of

previous frames T . For example, T = 5 provides flexible models while T = 40 gives

more robust estimates.

Fusion of Infrared and Color

The covariance matrix provides an effective solution to combine different modalities.

By extending the feature vector to include the temperature values for pixel-wise aligned

infrared and color sequences, we were able to take the advantage of both modalities.

In Figure 3.10, detected objects are given for three cases; tracking using color only,

infrared only, and joint as described. Detection rate has significantly improved from
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(a) (b) (c)

Figure 3.10: Detection rates of (a) color: 92%, (b) infrared: 60%, (c) joint: 96%. Note
that, localization also improves. Red boxes in the montage images indicate the misses.
Green indicates the frames where the object is fully occluded.

92%-color and 60%-infrared to 96%-joint, and the best matches became closer to the

ground truth.

Noise and Illumination Changes

To test sensitivity against noise, we contaminated the color values with additive zero

mean Gaussian noise with variance σ2
η, where sample results are shown in Figure 3.11.

We observed that while the performance of the histogram matching performance signif-

icantly degrades (down to 18.9%), the covariance tracking consistently achieves higher

detection rates (94.3% to 70.6%), as given in Table 3.4. Although a common feature

for tracking, histograms are easily contaminated by the noise and loose their saliency.

To analyze robustness against the illumination changes, we randomly scaled the

color values of each frame as I(x, y) = rtI(x, y) where rt is a random number between

0.2 and 1.0. The random numbers rt, rt+1 were independent, thus sudden severe vari-

ations were allowed. The detection rates are given in Table 3.5. To be more robust

toward illumination changes for histogram matching, we also tested hue-saturation val-

ues only. Still, the covariance tracking outperformed histogram matching. The last
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σ2
η 0 0.01 0.1 0.3

Covariance tr. 97.4 94.3 89.0 70.6
Histogram mat. 72.8 65.2 42.6 18.9

Table 3.4: Detection Rates - Gaussian Noise Contamination. Infrared sequences are
not included.

RGB HS-only
Covariance tracking 95.6 93.3
Histogram matching 48.7 64.0

Table 3.5: Detection Rates - Severe Illumination Change.

row of Figure 3.11 shows sample illumination transformed images and the montage

images of the tracked object. The covariance tracker is very robust against the sudden

illumination changes.
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(a) (b)

Figure 3.11: Tracking under noise and illumination change. (a) Frames 8 and 84 from
Running Dog. (b) Montages of 90 detected locations. From top to bottom: noisy data
with σ2

η = 0.01 (detection rate for this sequence is 96.6%), noisy data with σ2
η = 0.3

(detection rate of 68.9%), sudden light changes (detection rate of 95.6%). Red boxes
in the montage images indicate the misses.
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Chapter 4

Classification on Riemannian Manifolds

4.1 Introduction

Supervised learning or commonly referred as statistical classification is the problem of

learning a method which can associate an unseen observation to an existing class based

on a set of previously labeled items. With the advances in learning techniques and

availability of labeled datasets, learning based methods become increasingly popular

in the field of computer vision. Several important computer vision problems can be

formulated as a supervised learning problem. Object detection, recognition, retrieval,

tracking and image segmentation are only a few of the relevant examples.

A major shortcoming of most of the existing supervised learning techniques is that

the methods assume that the domain of the classifiers form a vector space. As already

discussed before, when the assumption is violated the methods either become inap-

plicable or significant performance degradation is observed. Here we present a novel

approach for classifying points lying on a connected Riemannian manifold using the

geometry of the space [155, 157]. Without loss of generality we describe the approach

on the space of symmetric positive definite matrices, however the method generalizes

to any connected Riemannian manifold. Although there have been previous approaches

for clustering data points lying on differentiable manifolds [8, 148, 158], to our knowl-

edge, this study is one of the earliest works aiming on the classification problem. We

present an application of the derived algorithm for the pedestrian detection problem in

still images where the region covariance features are utilized as object descriptors.

Detecting different categories of objects in image and video content is one of the

fundamental tasks in computer vision research. The success of many applications such

as visual surveillance, image retrieval, robotics, autonomous vehicles and smart cameras
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are conditioned on the accuracy of the detection process.

Two main processing steps can be distinguished in a typical object detection algo-

rithm. The first task is the feature extraction, in which the most informative object

descriptors regarding the detection process are obtained from the visual content. The

second task is the detection, in which the obtained object descriptors are utilized in a

classification framework to detect the objects of interest.

The feature extraction methods can be further categorized into two groups based

on the representation. The first group of methods is the sparse representations, where

a set of representative local regions are obtained as the result of an interest point

detection algorithm. Reliable interest points should encapsulate valuable information

about the local image content, and remain stable under changes such as viewpoint

and/or illumination. There exists an extensive literature on interest point detectors,

and [51, 68, 87, 100, 108] are only a few of the most commonly used methods which

satisfy consistency over a large range of operating conditions.

Earlier approaches for part descriptors utilized intensity based features. However,

histogram based representation of image gradients and edges in spatial context, such

as scale invariant feature transform (SIFT) descriptors [100] or shape contexts [9],

were shown to yield more robust and distinctive descriptors. Several object detection

algorithms were proposed by assembling the detected parts according to spatial rela-

tionships in probabilistic frameworks [47, 169], by discriminative approaches [1, 119] or

via matching shapes [10, 99].

The second group of feature extraction methods is the dense representations, where

object descriptors are obtained inside a detection window. The entire image is scanned

densely (possibly each pixel), and a learned classifier of the object model is evaluated.

Earlier studies utilized image intensities such as intensity templates [134, 149], or prin-

cipal component analysis (PCA) coefficients [145, 152] to represent the object model.

More recently, Haar wavelet based descriptors which are a set of basis functions en-

coding intensity differences between two regions, became increasingly popular due to

efficient computation and superiority to encode visual patterns. In [121], an overcom-

plete dictionary of basis functions were computed from overlapping regions utilizing
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horizontal, vertical and diagonal features inside the detection window. Instead of sam-

pling among an overcompete dictionary of features, in [165], a small set of important

features were selected via a greedy selection method using AdaBoost.

Most of the leading approaches in object detection are discriminative methods such

as neural networks (NNs) [72], support vector machines (SVMs) [31] or boosting [137].

These methods became increasingly popular since they can cope with high dimensional

state spaces and/or are able to select relevant descriptors among a large set. In [134, 149]

NNs, and in [121] SVMs were utilized as a single strong classifier for detection of various

categories of objects. The NNs and SVMs were also utilized for intermediate represen-

tations [38, 115] for final object detectors. In [165], multiple weak classifiers trained

using AdaBoost were combined to form a rejection cascade, such that if any classifier

rejects a hypothesis, then it is considered a negative example. The approach provides

an efficient algorithm due to sparse feature selection, besides only a few classifiers are

evaluated at most of the regions due to the cascade structure. Variants of the algo-

rithm were also proposed to share features among different object categories, thereby

providing a more efficient solution for multiple class object detection [150]. The other

approaches include the probabilistic methods [47, 169], where the conditional densities

of object and non-object classes are modeled explicitly.

Pedestrian detection in still images is considered among the hardest examples of

object detection problems. The articulated structure and variable appearance of the

human body, combined with illumination and pose variations, contribute to the com-

plexity of the problem.

Sparse representations for pedestrian detection include models for detecting body

parts [79, 131] or common shapes [107], where these local features were assembled ac-

cording to geometric constraints to form the final pedestrian model. In [109], parts were

represented by co-occurrences of local orientation features, and separate detectors were

trained for each part using AdaBoost. Target location was determined by maximizing

the joint likelihood of part occurrences combined according to the geometric relations.

A pedestrian detection system for crowded scenes was described in [96]. The approach

combined local appearance features and their geometric relations with global cues by
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top-down segmentation based on per pixel likelihoods. Other approaches include using

silhouette information either in matching [59] or in classification framework [120].

Dense representations for pedestrian detection include [46], where a cost function

is defined based on the part likelihoods and their joint configuration. The minimizer

of the function with respect to all the possible part locations in the image plane is

efficiently found using dynamic programming. In [121], a polynomial SVM was learned

using Haar wavelets as pedestrian descriptors. Later, the work was extended to mul-

tiple classifiers trained to detect human parts, and the responses inside the detection

window were combined to give the final decision [113]. Similar to still images, in [166], a

real time moving pedestrian detection algorithm was described also using Haar wavelet

descriptors, but extracted from space-time differences in video. Using AdaBoost, the

most discriminative features were selected, and multiple classifiers were combined to

form a rejection cascade. In [36], an excellent pedestrian detector was described by

training an SVM classifier using densely sampled histogram of oriented gradients (simi-

lar to SIFT descriptors) inside the detection window. The performance of the proposed

descriptors was shown on INRIA human dataset. In a similar approach [181], near real

time detection performances were achieved by training a cascade model using histogram

of oriented gradients (HOG) features. Recently in [136], a two stage AdaBoost classifier

is learned using shapelet features and comparable performances are reported on INRIA

human dataset. The initial stage learns a set of classifiers which are a combination of

oriented gradient responses, whereas the second stage combines the classifier responses

to form the final detector. We refer to [35] for a detailed survey on object and pedestrian

detection methods.

Here we present a dense model where covariance features are utilized as pedestrian

descriptors inside a detection window. We represent a pedestrian with several covariance

descriptors of overlapping regions where the best descriptors are determined with a

greedy feature selection algorithm combined with boosting. The classifiers are then

learned on the tangent spaces of Sym+
d .
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Figure 4.1: The detection window is R and r1, r2 are two possible descriptor subwin-
dows.

4.2 Covariance Descriptors for Pedestrian Detection

The covariance descriptors were described in Chapter 3. Here we describe the cus-

tomization of the descriptors for pedestrian detection problem.

We define the feature mapping (3.1), Φ(I, x, y), as

F (x, y) =
[
x y |Ix| |Iy|

√
I2
x + I2

y |Ixx| |Iyy| arctan
|Ix|
|Iy|

]T

(4.1)

where x and y are pixel location, Ix, Ixx, .. are intensity derivatives and the last term

is the edge orientation. With the defined mapping, the input image is mapped to a

d = 8 dimensional feature image. The covariance descriptor of a region is an 8 × 8

matrix, and due to symmetry only upper triangular part is stored, which has only 36

different values. The descriptor encodes information of the variances of the defined

features inside the region, their correlations with each other and spatial layout.

Given an arbitrary sized detection window R, there are a very large number of covari-

ance descriptors that can be computed from subwindows r1,2,..., as shown in Figure 4.1.

We perform sampling and consider all the subwindows r starting with minimum size of

1/10 of the width and height of the detection window R, at all possible locations. The

size of r is incremented in steps of 1/10 along the horizontal or vertical, or both, until

r = R. Although the approach might be considered redundant due to overlaps, there is

significant evidence that the overlapping regions are an important factor in detection

performances [36, 181]. The greedy feature selection mechanism, that will be described
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later, allows us to search for the best regions during learning classifiers.

Although it has been mentioned that the covariance descriptors are robust towards

illumination changes, we would like to enhance the robustness to also include local

illumination variations in an image. Let r be a possible feature subwindow inside the

detection window R. We compute the covariance of the detection window CR and

subwindow Cr using integral representation. The normalized covariance descriptor of

region r, Ĉr, is computed by dividing the columns and rows of Cr with the square root

of the respective diagonal entries of CR,

Ĉr = diag(CR)−
1
2 Crdiag(CR)−

1
2 (4.2)

where diag(CR) is equal to CR at the diagonal entries and the rest is truncated to

zero. The method described is equivalent to first normalizing the feature vectors inside

the region R to have zero mean and unit standard deviation, and after that computing

the covariance descriptor of subwindow r. Notice that under the transformation, ĈR

is equal to the correlation matrix of the features inside the region R. The process only

requires d2 extra division operations.

4.3 Riemannian Geometry

A brief introduction to Riemannian geometry is given in Appendix A. The d × d

dimensional symmetric positive definite matrices (nonsingular covariance matrices),

Symd
+, can be formulated as a connected Riemannian manifold. Please see Section A.7.2

for details. Here we define the necessary operators on the manifold for the classification

algorithm.

4.3.1 Orthonormal Coordinates for the Tangent Space

For classification, we need a minimal representation of the points on the tangent space.

In general, the standard coordinate system induced by the chart maps is not orthonor-

mal with respect to the Riemannian metric at all the points on the manifold. Even

though the basis can be orthonormal for some points on the manifold, it should be ad-

justed for the Riemannian metric for the other locations. The orthonormal coordinate
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system for the tangent space is defined by the vector operator, vecX, which gives the

orthonormal coordinates of a tangent vector at TX.

For Sym+
d , the tangent space is the space of symmetric matrices and there are only

m = d(d + 1)/2 independent coefficients which are the upper triangular or the lower

triangular part of the matrix. First we define the orthonormal basis for the tangent

space at identity. Let y be a vector on the tangent space at identity. The norm of

the vector is given by < y,y >I, where the inner product is defined in (A.29). The

off-diagonal entries are counted twice during the norm computation. Therefore, the

orthonormal coordinates of a tangent y ∈ TI is given by

vecI(y) = [y1,1

√
2y1,2

√
2y1,3 . . . y2,2

√
2y2,3 . . . yd,d]T . (4.3)

The vector operator, vecI, relates the Riemannian metric (A.29) at TI to the canonical

metric defined in Rm

< y,y >I= ‖vecI(y)‖22. (4.4)

Let y ∈ TX. The orthonormal coordinates of a tangent vector y at TX is then given

by

vecX(y) = vecI(X− 1
2 yX− 1

2 ). (4.5)

It can be easily verified that the vector operator, vecX, satisfies

< y,y >X= ‖vecX(y)‖22. (4.6)

Notice that, the tangent vector y is a symmetric matrix, and with the vector oper-

ator, vecX(y), we get the orthonormal coordinates of y which is in Rm.

4.3.2 Mean of the Points on Riemannian Manifolds

Let {Xi}i=1...N be the set of points on a Riemannian manifoldM. Similar to Euclidean

spaces, the Karcher mean [90] of points on Riemannian manifold, is the point on M

which minimizes the sum of squared Riemannian distances (A.11),

µ = arg min
X∈M

N∑
i=1

d2(Xi,X) (4.7)
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where in our case, Sym+
d , d2 is the distance metric (A.34). In general, the Riemannian

mean for a set of points is not necessarily unique. This can be easily verified by consid-

ering two points at antipodal positions on a sphere, where the error function is minimal

for any point lying on the equator. However, it is shown in several studies that the mean

is unique and the gradient descent algorithm is convergent for Sym+
d [49][112][122].

Differentiating the error function with respect to X, we see that mean is the solution

to the nonlinear matrix equation

N∑
i=1

logX(Xi) = 0 (4.8)

which can be solved iteratively with the following gradient descent procedure [122]

µt+1 = expµt

[
1
N

N∑
i=1

logµt(Xi)

]
. (4.9)

The method iterates by computing first order approximations to the mean on the

tangent space. The weighted mean computation is similar to (4.9). We replace in-

side of the exponential, the mean of the tangent vectors, with the weighted mean

1PN
i=1 wi

∑N
i=1wilogµt(Xi).

4.4 Classification on Riemannian Manifolds

Let {(Xi, yi)}i=1...N be the training set with respect to class labels, where Xi ∈ M,

yi ∈ {0, 1} andM is a Riemannian manifold. We want to find a function F (X) :M 7→

{0, 1}, which divides the manifold into two based on the training set of labeled items.

A function which divides the manifold is rather a complicated notion compared

with the Euclidean space. For example, consider the simplest form a linear classifier

in R2. A point and a direction vector in R2 define a line which separates R2 into two.

Equivalently, on a two-dimensional differentiable manifold, we can consider a point on

the manifold and a tangent vector in the tangent space of the point, which together

define a curve on the manifold via exponential map. For example, if we consider the

image of the lines on the 2-torus, the curves never divide the manifold into two.

A straightforward approach for classification would be to map the manifold to a

higher dimensional Euclidean space, which can be considered as flattening the manifold.
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However in a general case, there is no such mapping that globally preserves the distances

between the points on the manifold. Therefore a classifier trained on the flattened space

does not reflect the global structure of the points.

4.4.1 Local Maps and Boosting

We propose an incremental approach by training several weak classifiers on the tangent

spaces, and combining them through boosting. We start by defining mappings from

neighborhoods on the manifold to the Euclidean space, similar to coordinate charts. Our

maps are the logarithm maps, logX, that map the neighborhood of points X ∈M to the

tangent spaces TX. Since this mapping is a homeomorphism around the neighborhood

of the point, the structure of the manifold is locally preserved. The tangent space is a

vector space, and we use standard machine learning techniques to learn the classifiers

on this space.

For classification task, the approximations to the Riemannian distances computed

on the ambient space should be as close to the true distances as possible. Let Y,Z ∈M.

Since we approximate the distances (A.11) on the tangent space, TX,

d2(Y,Z) ≈ ‖vecX(logX(Z))− vecX(logX(Y))‖22 (4.10)

is a first order approximation. The approximation error can be expressed in terms of

the pairwise distances computed on the manifold and the tangent space

ε2 =
N∑

i=1

N∑
j=1

(
d(Xi,Xj)− ‖vecX(logX(Xi))− vecX(logX(Xj))‖2

)2 (4.11)

which is equal to

ε2
Sym+

d

=
N∑

i=1

N∑
j=1

(∥∥∥∥log
(
X
− 1

2
i XjX

− 1
2

i

)∥∥∥∥
F

− (4.12)

∥∥∥log
(
X− 1

2 XiX− 1
2

)
− log

(
X− 1

2 XjX− 1
2

)∥∥∥
F

)2

for the space of symmetric positive definite matrices using (A.31) and (4.6).

The classifiers can be learned on the tangent space at any point X on the manifold.

Best approximation, which preserves the pairwise distances is achieved at the minimum
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of ε2
Sym+

d

. The error can be minimized with respect to X which gives the best tangent

space to learn the classifier.

Since the mean of the points (4.7) is the minimizer of the sum of squared distances

from the points in the set and the mapping preserves the structure of the manifold

locally, it is also a good candidate for the minimizer of the error function (4.12). How-

ever, to our knowledge a theoretical proof does not exist. For some special cases it can

be easily verified that the mean is the minimizer. Such a case arises when all the points

lie on a geodesic curve, where the approximation error is zero for any point lying on

the curve. Since mean also lies on the geodesic curve, the approximation is perfect.

Nevertheless, for a general set of points, we only have empirical validation based on

simulations. We generated random points on Sym+
d . The approximation errors were

measured on the tangent spaces at any of the points {TXi}i=1...N and at the mean

Tµ. In our simulations, the errors computed on the tangent spaces at the means were

significantly lower than any other choice and counter examples were not observed. The

simulations were also repeated for weighted sets of points, where the minimizers of the

weighted approximation errors were achieved at the weighted means of the points.

Therefore, the weak learners are learned on the tangent space at the mean of the

points. At each iteration, we compute the weighted mean of the points through (4.9),

where the weights are adjusted through boosting. Then we map the points to the

tangent space at the weighted mean and learn a weak classifier on this vector space.

Since the weights of the samples which are misclassified during the earlier stages of

boosting increase, the weighted mean moves towards these points and more accurate

classifiers are learned for these points. The process is illustrated in Figure 4.2. To

evaluate a test example, the sample is projected to the tangent spaces at the computed

weighted means, and the weak learners are evaluated (Figure 4.3). The approximation

error is minimized by averaging over several weak learners.

4.4.2 LogitBoost on Riemannian Manifolds

The LogitBoost algorithm [54] is the instance of the boosting algorithm that we utilize

for our detector. We start with a brief description of LogitBoost algorithm on vector
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(a) (b)

Figure 4.2: Two iterations of boosting on a Riemannian manifold. The manifold is
depicted with the surface of the sphere and the plane is the tangent space at the mean.
The samples are projected to tangent spaces at means via logµl

. The weak learners
gl are learned on the tangent spaces Tµl

. In (a), sample X3 is misclassified therefore
its weight increases. In the second iteration of boosting (b), the weighted mean moves
towards X3.

spaces. We consider the binary classification problem, yi ∈ {0, 1}. The probability of

x being in class 1 is represented by

p(x) =
eF (x)

eF (x) + e−F (x)
F (x) =

1
2

L∑
l=1

fl(x). (4.13)

The LogitBoost algorithm learns the set of regression functions {fl(x)}l=1...L (weak

learners) by minimizing the negative binomial log-likelihood of the data l(y, p(x))

−
N∑

i=1

[yilog(p(xi)) + (1− yi)log(1− p(xi))] (4.14)

through Newton iterations. At the core of the algorithm, LogitBoost fits a weighted

least square regression, fl(x) of training points xi ∈ Rm to response values zi ∈ R with

weights wi where

zi =
yi − p(xi)

p(xi)(1− p(xi))
wi = p(xi)(1− p(xi)). (4.15)

The LogitBoost algorithm on Riemannian manifolds is similar to the original Logit-

Boost, except a few differences at the level of weak learners. In our case, the domain of
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Figure 4.3: Classification on a Riemannian manifold. The sample X is projected to the
tangent spaces Tµl

and the weak learners are evaluated.

the weak learners are in M such that fl(X) :M 7→ R. Following the discussion of the

previous section, we learn the regression functions on the tangent space at the weighted

mean of the points. We define the weak learners as

fl(X) = gl(vecµl
(logµl

(X))) (4.16)

and learn the functions gl(x) : Rm 7→ R and the weighted mean of the points µl ∈ M.

Notice that the mapping vecµl
(4.5), gives the orthonormal coordinates of the tangent

vectors in Tµl
.

The algorithm is presented in Figure 4.4. The steps marked with (∗) are the dif-

ferences from original LogitBoost algorithm. For functions {gl}l=1...L, it is possible to

use any form of weighted least squares regression such as linear functions, regression

stumps, etc., since the domain of the functions are in Rm.

4.5 Pedestrian Detection

In this section, we describe the utilization of the LogitBoost algorithm on Riemannian

manifolds for pedestrian detection problem. The domain of the classifier is the space

of eight dimensional symmetric positive definite matrices, Sym+
8 . We combine K = 30
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Input: Training set {(Xi, yi)}i=1...N , Xi ∈M, yi ∈ {0, 1}

• Start with weights wi = 1/N , i = 1...N , F (X) = 0 and p(Xi) = 1
2

• Repeat for l = 1...L

– Compute the response values and weights
zi = yi−p(Xi)

p(Xi)(1−p(Xi))
, wi = p(Xi)(1− p(Xi))

– Compute weighted mean of the points through (4.9)
µl = arg minX∈M

∑N
i=1wid

2(Xi,X) (∗)

– Map the data points to the tangent space at µl

xi = vecµl
(logµl

(Xi)) (∗)

– Fit the function gl(x) by weighted least-square regression of zi to xi using
weights wi

– Update F (X)← F (X) + 1
2fl(X) where fl is defined in (4.16) and

p(X)← eF (X)

eF (X)+e−F (X)

• Store F = {µl, gl)}l=1...L

• Output the classifier
sign[F (X)] = sign[

∑L
l=1 fl(X)]

Figure 4.4: LogitBoost on Riemannian manifolds.

LogitBoost classifiers on Sym+
8 with rejection cascade, as shown in Figure 4.5. Weak

learners gk,l are linear regression functions learned on the tangent space of Sym+
8 . The

tangent space is m = 36 dimensional vector space.

To avoid confusion with Section 4.4.2, we refer to the training set by {(Ri, yi)}i=1...N ,

where Ri are the image windows containing background and pedestrians, and yi ∈ {0, 1}

are the labels. A very large number of covariance descriptors can be computed from

a single detection window R. Therefore, we do not have a single set of positive and

negative features, but several sets corresponding to each of the possible subwindows.

Each weak learner is associated with a single subwindow of the detection window.

Let rk,l be the subwindow associated with l-th weak learner of cascade level k. The

normalized covariance descriptor of the i-th training sample associated with region rk,l

is referred by Xi,k,l = Ĉi,rk,l
. For simplicity, we use the shorthand notation

fk,l(Ri) = fk,l(Xi,k,l) (4.17)

for weak learners.
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Figure 4.5: Cascade of LogitBoost classifiers. The kth LogitBoost classifier selects
normalized covariance descriptors of subwindows rk,i.

Let R+
i and R−i refer to the Np positive and Nn negative samples in the training

set, where N = Np + Nn. While training the k-th cascade level, we classify all the

negative examples {R−i }i=1...Nn with the cascade of the previous (k − 1) LogitBoost

classifiers. The samples which are correctly classified (samples classified as negative)

are removed from the training set. Any window sampled from a negative image is a

negative example, therefore the cardinality of the negative set, Nn, is very large. During

training of each cascade level, we sample 10000 negative examples.

The learning algorithm is slightly customized for pedestrian detection task. We

do not have a fixed number of weak learners L for each LogitBoost classifier k, but a

variable number Lk. Each cascade level is optimized to correctly detect at least 99.8% of

the positive examples, while rejecting at least 35% of the negative examples. In addition,

we enforce a margin constraint between the positive samples and the decision boundary.

Let pk(R) be the learned probability function of a sample being positive at cascade level

k, evaluated through (4.13). Let Rp be the positive example that has the (0.998Np)-th

largest probability among all the positive examples. Let Rn be the negative example

that has the (0.35Nn)-th smallest probability among all the negative examples. We

continue to add weak classifiers to cascade level k until pk(Rp) − pk(Rn) > margin,

where we set margin = 0.2. When the constraint is satisfied, the threshold (decision

boundary) for cascade level k is stored as thrdk = Fk(Rn).
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A test sample is classified as positive by cascade level k if Fk(R) > thrdk or equiva-

lently pk(R) > pk(Rn). With the proposed method, any of the positive training samples

in the top 99.8 percentile have at least margin more probability than the points on the

decision boundary. The process continues with the training of (k+ 1)-th cascade level,

until k = K.

We incorporate a greedy feature selection method to produce a sparse set of clas-

sifiers focusing on important subwindows. At each boosting iteration l of the k-th

LogitBoost level, we sample 200 subwindows among all the possible subwindows, and

construct normalized covariance descriptors. We learn the weak classifiers representing

each subwindow, and add the best classifier which minimizes the negative binomial

log-likelihood (4.14) to the cascade level k. The procedure iterates with the training

the (l + 1)-th weak learner until the specified detection rates are satisfied.

The negative sample set is not well characterized for detection tasks. Therefore,

while projecting the points to the tangent space, we compute the weighted mean of

only the positive samples. Although rarely happens, if some of the features are fully

correlated, there will be singularities in the covariance descriptor. We ignore those cases

by adding very small identity matrix to the covariance. The pedestrian detection with

cascade of LogitBoost classifiers on Sym+
8 is given in Figure 4.6.

The learning algorithm produces a set of K LogitBoost classifiers which are com-

posed of Lk triplets

Fk =
{
(rk,l,µk,l, gk,l)

}
l=1...Lk

and thrdk (4.18)

where rk,l is the selected subwindow, µk,l is the mean and gk,l is the learned regression

function of the l-th weak learner of the k-th cascade. To evaluate a test region R with

k-th classifier, the normalized covariance descriptors constructed from regions rk,l are

projected to tangent spaces Tµk,l
and the features are evaluated with gk,l

sign [Fk(R)− thrdk] = sign

[
Lk∑
l=1

gk,l

(
vecµk,l

(
logµk,l

(
Ĉrk,l

)))
− thrdk

]
. (4.19)

The initial levels of the cascade are learned on relatively easy examples, thus there

are very few weak classifiers in these levels. Due to the cascade structure, only a few
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Input: Training set {(Ri, yi)}i=1...N , yi ∈ {0, 1}

• Repeat for k = 1...K

– Classify negative examples {R−i }i=1...Nn with the cascade of (k− 1) clas-
sifiers and remove samples which are correctly (negative) classified

– Initial weights wi = 1/N , i = 1...N , Fk(R) = 0 and pk(Ri) = 1
2 , let l = 1

– Repeat while pk(Rp)− pk(Rn) < margin

∗ Compute the response values and weights
zi = yi−pk(Ri)

pk(Ri)(1−pk(Ri))
, wi = pk(Ri)(1− pk(Ri))

∗ Sample {rk,t}t=1...200 subwindows and construct normalized covari-
ance descriptors Xi,k,t = Ĉi,rk,t

∗ Repeat for t = 1...200
· Compute the weighted mean of the positive samples
{X+

i,k,t}i=1...Np through (4.9)

µk,t = arg minX∈Sym+
8

∑Np

i=1wid
2(X+

i,k,t,X)

· Map the data points to the tangent space at µk,t

xi,k,t = vecµt
(logµt

(Xi,k,t))
· Fit function gk,t(x) by weighted least-squares regression of zi to

xi,k,t using weights wi

∗ Update Fk(R) ← Fk(R) + 1
2fk,l(R), where fk,l is the best classi-

fier among {fk,t}t=1...200 which minimizes the negative binomial log-
likelihood (4.14) and pk(R)← eFk(R)

eFk(R)+e−Fk(R)

∗ Sort positive and negative samples according to descending probabil-
ities and find samples at the decision boundaries
Rp = (0.998Np)-th R+, Rn = (0.35Nn)-th R−

∗ l = l + 1

– Store Fk =
{
(rk,l,µk,l, gk,l)

}
l=1...Lk

and thrdk = Fk(Rn)

Figure 4.6: Pedestrian detection with cascade of LogitBoost classifiers on Sym+
8 .

are evaluated for most of the test samples, which produce a very efficient solution.

4.6 Experiments

We conduct experiments on two challenging datasets, INRIA and DaimlerChrysler. We

compare the performance of our method with the best results published on the given

datasets. In addition, we present several detection examples for crowded scenes.
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Figure 4.7: Comparison with methods of Dalal & Triggs [36] and Zhu et.al. [181] on
INRIA dataset. The curves for other approaches are generated from the original papers.

4.6.1 Experiments on INRIA Dataset

INRIA pedestrian dataset [36] contains 1774 pedestrian annotations (3548 with reflec-

tions) and 1671 person free images. The pedestrian annotations were scaled into a fixed

size of 64 × 128 windows which include a margin of 16 pixels around the pedestrians.

The dataset was divided into two, where 2416 pedestrian annotations and 1218 person

free images were selected as the training set, and 1132 pedestrian annotations and 453

person free images were selected as the test set. Detection on INRIA pedestrian dataset

is challenging since it includes subjects with a wide range of variations in pose, clothing,

illumination, background and partial occlusions.

In the first experiment, we compare our results with [36] and [181]. Although it has

been noted that kernel SVM is computationally expensive, we consider both the linear

and kernel SVM method of [36]. In [181], a cascade of AdaBoost classifiers was trained

using HOG features, and two different results were reported based on the normalization

of the descriptors. Here, we consider only the best performing result, the L2-norm.

In Figure 4.7, we plot the detection error tradeoff curves on a log-log scale. The

y-axis corresponds to the miss rate FalseNeg
FalseNeg+TruePos , and the x-axis corresponds to false

positives per window (FPPW) FalsePos
TrueNeg+FalsePos . The curve for our method is generated

by adding one cascade level at a time. For example, in our case the rightmost marker

at 7.5 ∗ 10−3 FPPW corresponds to detection using only the first 11 levels of cascade,
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Figure 4.8: Detection rates of different approaches for our method on INRIA dataset.
The charts at the weighted means significantly improve the results.

whereas the marker positioned at 4∗10−5 FPPW corresponds to cascade of all 30 levels.

The markers between the two extremes correspond to a cascade of between 11 to 30

levels.

To generate the result at 10−5 FPPW (leftmost marker), we shifted the decision

boundaries of all the cascade levels, thrdk, to produce less false positives at the cost of

higher miss rates. We see that at almost all the false positive rates, our miss rates are

significantly lower than the other approaches. The closest result to our method is the

kernel SVM classifier of [36], which requires kernel evaluation at 1024 dimensional space

to classify a single detection window. If we consider 10−4 as an acceptable FPPW, our

miss rate is 6.8%, where the second best result is 9.3%.

Since the method removes samples which were rejected by the previous levels of

cascade, during the training of last levels, only very small amount of negative samples,

order of 102, remained. At these levels, the training error did not generalize well, such

that the same detection rates are not achieved on the test set. This can be seen by the

dense markers around FPPW < 7 ∗ 10−5. We believe that better detection rates can

be achieved at low false positive rates with introduction of more negative images. In

our method, 25% of false positives are originated from a single image which contains a

flower texture, where the training set does not include a similar example.
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(a) (b)

Figure 4.9: Translation sensitivity. (a) Covariance and (b) HOG descriptors. Covari-
ance descriptors have a larger region of support.

In the second experiment, we consider an empirical validation of the presented clas-

sification algorithm on Riemannian manifolds. In Figure 4.8, we present the detection

error tradeoff curves for four different approaches.

• The original method, which maps the points to the tangent spaces at the weighted

means.

• The mean computation step is removed from the original algorithm and points

are always mapped to the tangent space at the identity.

• We ignore the geometry of Sym+
8 , and stack the upper triangular part of the

covariance matrix into a vector, such that learning is performed on the vector

space.

• We replace the covariance descriptors with HOG descriptors, and perform original

(vector space) LogitBoost classification.

The original method outperforms all the other approaches significantly. The second

best result is achieved by mapping points to the tangent space at the identity matrix

followed by the vector space approaches. Notice that, our LogitBoost implementation

utilizing HOG descriptors has 3% more miss rate at 10−4 FPPW than [181] which trains

an AdaBoost classifier. The performance is significantly degraded beyond this point.
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Figure 4.10: Scale sensitivity. The x-axis is plotted at log scale. Covariance descriptors
are less sensitive to small scale changes.

In the third experiment, we examine the sensitivity of the covariance and HOG

descriptors to translation and scaling of the target windows relative to the original

position. The performance of the HOG descriptors is tested with our implementation.

The false positive rates of both classifiers are fixed at 10−4 FPPW. The translation

sensitivity is presented in Figure 4.9, where we observe that the covariance descriptors

are less sensitive to small translations of the target windows. The detection rate is

almost constant for ±6 pixels translation which approximately corresponds to 10%

translation in x-axis and 5% translation in y-axis of the target window (64× 128).

The scale sensitivity of both methods are presented in Figure 4.10, where we again

observe that the covariance descriptors are less sensitive to small scalings of the target

windows. For covariance descriptor, the detection rates are almost constant for ±20%

scalings, and gradually decrease beyond.

For detection applications, there is a tradeoff between low and high sensitivity of

the detector with respect to small transformations. While detecting objects in novel

scenes, objects are searched through the transformation space. A detector with invari-

ance to small transformations have the advantage of reducing the size of the search

space, whereas the space should be searched more densely with a high sensitivity de-

tector. Besides, a less sensitive detector is more desirable when the target objects have

high variability and training data is not perfectly aligned. On the other hand, a highly

sensitive detector can better localize the targets. In Figures 4.9 and 4.10, we see that
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Figure 4.11: The number of weak classifiers at each cascade level and the accumulated
rejection rate over the cascade levels. On average our method requires evaluation of
8.45 covariance descriptors per negative detection window.

the detection rates for our approach are smooth and symmetric functions with respec-

tive to both translation and scale having peak at the original location of the target.

Therefore, with a simple maxima search we can accurately localize the targets. Please

see Section 4.6.3 for more details.

In Figure 4.11, we plot the number of weak classifiers at each cascade level and

the accumulated rejection rate over the cascade levels. There are very few classifiers

on early levels of cascade and the first five levels reject 90% of the negative examples.

On average our method requires evaluation of 8.45 covariance descriptors per negative

detection window, whereas on average 15.62 HOG evaluations were required in [181].

4.6.2 Experiments on DaimlerChrysler Dataset

DaimlerChrysler dataset [115] contains 4000 pedestrian (24000 with reflections and

small shifts) and 25000 non-pedestrian annotations. As opposed to INRIA dataset,

non-pedestrian annotations were selected by a preprocessing step from the negative

samples, which match a pedestrian shape template based on average Chamfer distance

score. Both annotations were scaled into a fixed size of 18 × 36 windows, and pedes-

trian annotations include a margin of 2 pixels around. The dataset was organized into

three training and two test sets, each of them having 4800 positive and 5000 negative

examples. The small size of the windows combined with a carefully arranged negative

set makes detection on DaimlerChrysler dataset extremely challenging. In addition,
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Figure 4.12: Comparison with [115] on DaimlerChrysler dataset. The curves for other
approaches are generated from the original papers.

3600 person free images with varying sizes between 360× 288 and 640× 480 were also

supplied.

In [115], an experimental study was described comparing three different feature

descriptors and various classification techniques. The compared feature descriptors

were the PCA coefficients, Haar Wavelets and local receptive fields (LRFs) which are

the output of the hidden layer of a specially designed feed forward NN. The connections

of the neurons in the hidden layer of the NN were restricted to local regions of the image,

and the hidden layers were divided into branches with all the neurons sharing the same

set of weights. Although several other classification methods were also considered, the

best detection performances among all the different features were achieved utilizing

SVMs.

In the first experiment, we compare our method with the best results for each

descriptor in [115]. The same training configuration is prepared by selecting two out of

three training sets. Since the number of non-pedestrian annotations was very limited

for training of our method, we adapted the training parameters. A cascade of K = 15

LogitBoost classifiers on Sym+
8 is learned, where each level is optimized to detect at

least 99.75% of the positive examples, while rejecting at least 25% negative samples.

In Figure 4.12, we plot the detection error tradeoff curves. The cascade of 15 Logit-

Boost classifiers produced a FPPW rate of 0.05. The detection rates with lower FPPW
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Figure 4.13: Comparison of covariance and HOG descriptors on DaimlerChrysler
dataset.

are generated by shifting the decision boundaries of all the cascade levels gradually,

until FPPW = 0.01. We see that our approach has significantly lower miss rates at all

the false positive rates. This experiment should not be confused with the experiments

on INRIA dataset, where much lower FPPW rates were observed. Here, the negative

set consists of hard examples selected by a preprocessing step.

In the second experiment, we set up a different test configuration on DaimlerChrysler

dataset. The 3600 person free images are divided into two, where 2400 images are

selected as the negative training set, and 1200 images are selected for the negative test

set. For both the covariance descriptors and the HOG descriptors, we trained cascade

of K = 25 classifiers. We observed that the object sizes were too small for HOG

descriptors to separate among positive and negative examples at the later levels of

cascade. The classifiers trained utilizing HOG descriptors failed to achieve the specified

detection (99.8%) and the rejection rates (35.0%). We stopped adding weak learners to

a cascade level after reaching Lk = 100. The detection error tradeoff curves are given in

Figure 4.13 where we see that the covariance descriptors significantly outperform HOG

descriptors.
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4.6.3 Detection Examples

Since the sizes of the pedestrians in novel scenes are not known apriori, the images are

searched at multiple scales. There are two searching strategies. The first strategy is

to scale the detection window and apply the classifier at multiple scales. The second

strategy is to scale the image and apply the classifier at the original scale. In covariance

representation we utilized gradient based features which are scale dependent. Therefore

evaluating classifier at the original scale (second strategy) produces the optimal result.

However, in practice up to scales of 2x we observed that the detection rates were almost

the same, whereas in more extreme scale changes the performance of the first strategy

degraded. The drawback of the second strategy is slightly increased search time, since

the method requires computation of the filters and the integral representation at mul-

tiple scales.

Utilizing the classifier trained on the INRIA dataset, we generated several detection

examples for crowded scenes with pedestrians having variable illumination, appearance,

pose and partial occlusion. The results are shown in Figure 4.14. The images are

searched at five scales using the first strategy, starting with the original window size

64× 128 and two smaller and two larger scales of ratio 1.2. The white dots are all the

detection results and we filtered them with adaptive bandwidth mean shift filtering [27]

with bandwidth 1/10 of the window width and height. Black dots show the modes, and

ellipses are generated by averaging the detection window sizes converging to the modes.

4.6.4 Computational Complexity

The training of the classifiers took two days on a Pentium D 2.80Ghz processor with

2.00GB of RAM with a C++ implementation, which is a reasonable time to train a

cascade model. Computation of tensor of integral images requires O(d2WH) arithmetic

operations, which approximately takes 0.1 seconds for a 320 × 240 image. The com-

putation of the normalized covariance descriptor of an arbitrary region requires O(d2)

operations using the integral structures and is invariant of the region size.
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The most computationally expensive operation during the classification is the eigen-

value decomposition to compute the logarithm of a symmetric matrix, which requires

O(d3) arithmetic operations. Given a test image, on average the method can search

around 3000 detection windows per second, which approximately corresponds to 3 sec-

onds for a dense scan of a 320× 240 image, 3 pixel jumps vertically and horizontally.

The proposed learning algorithm is not specific to Sym+
d , and can be used to train

classifiers for points lying on any connected Riemannian manifold. In addition, the

approach can be combined with any boosting method. During our experiments, we im-

plemented LogitBoost, GentleBoost and AdaBoost classifiers on Riemannian manifolds

using LDA, decision stumps and linear SVMs as weak learners. The results of the meth-

ods were comparative. Due to simplicity (training time and ease of implementation)

and slightly better performance, we presented the LogitBoost algorithm.
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Figure 4.14: Detection examples. The classifier is trained on the INRIA dataset. White
dots show all the detection results. Black dots are the modes generated by mean shift
smoothing and the ellipses are average detection window sizes. There are extremely
few false positives and negatives.
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Chapter 5

Regression on Lie Group Transformations

5.1 Introduction

Regression analysis is a statistical technique to recover the relationship between one

or more predictor (independent) variables and a response (dependent) variable based

on the observed data. The analysis can be extended to multiple response setting by

assessing the dependence of multi dimensional response variables to predictor variables.

Several important computer vision problems can be formulated as a multiple response

regression problem. For instance, tracking or motion estimation can be considered as

learning the dependence of motion parameters to the image measurements.

The classical regression techniques can be generalized to multiple response setting

by learning the relationships between the predictor variables and each of the response

variables independently. However, these methods fail to model the dependence among

the response variables. A more difficult situation appears if the response variables do not

form a vector space. For instance, assume that we want to learn a regression function

which predicts affine motions based on image observations. If each of the response

parameters is estimated independently, the regressor can output a singular matrix which

is not contained in the space. To solve the problem an additional parametrization of

the response space is required. Secondly, the geometry of the underlying space should

be considered while learning the regressors, such as the minimized error function.

Here we present a novel approach for learning a regression function where the range

of the regressors form a matrix Lie group. Without loss of generality we describe the

approach on the space of affine matrices, however the method generalizes to any matrix

Lie group. We present an application of the derived learning algorithm for the affine

tracking problem and its extension to invariant object detection [156].
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An overview of the existing tracking techniques was presented in Section 3.5. Here

we reference only the template alignment methods which are most relevant to our ap-

plication. Template alignment methods define a cost function based on the difference

between the object template and the image measurements, and solve an optimiza-

tion problem on the motion parameters. The most famous example is the optical

flow estimation [101], where the sum of squared difference between the template and

the image intensities was minimized as an iterative least squares problem. Since the

method requires computation of the image gradient, the Jacobian and the Hessian for

each iteration, it is computationally intensive. Several variants of the method were

proposed [64, 143] to overcome the difficulty and a comprehensive overview of these

models can be found in [105].

In [30, 86], the motion was estimated using a linear function of the image gradient,

which was learned in an off-line process. Later [171], the idea was extended to learn a

nonlinear model using relevance vector machine. Notice that, these methods estimate

the additive updates to the motion parameters via linearization.

There are only a few references which explicitly consider the geometry of the re-

sponse variables for learning based approaches. In [39], an addition operation was

defined on the Lie algebra for tracking an affine snake. In [7], the additive updates

were performed on the Lie algebra for template tracking. However, the approach in [7]

fails to account for the noncommutativity of the matrix multiplications and the esti-

mations become valid only around the initial transformation of the target. In a recent

study [37], a kernel regression model for manifold valued data is described for analyzing

shape changes of the brain on MR images. The approach is computationally expensive

and is not well suited for real time applications such as tracking.

Since the existing techniques for template alignment proceed by linearizing the mo-

tion, an implicit Euclidean space assumption is made. Several transformations used in

computer vision have matrix Lie group structure. We present a novel formulation for

motion estimation by learning a regression model on the Lie algebra and show that the

formulation minimizes a first order approximation to the geodesic error. The appear-

ance of an object template is described with several orientation histograms computed



72

Figure 5.1: The mapping and its inverse, between the object and image coordinates.

on a regular grid. Using a regression function, we learn the dependence of the motion

to the observed descriptors.

Majority of the current state of art object detection algorithms are based on sequen-

tially applying a learned classifier of the object model at all the possible subwindows.

However, a brute force approach on a high dimensional search space is computationally

intractable. The proposed learning model is extended to train a class specific track-

ing function which can localize the targets with a sparse scan on the motion space.

The motion estimator is then integrated to an existing pose dependent object detector

and a pose invariant object detection algorithm with respect to the motion model is

developed.

5.2 Tracking as a Learning Problem

Without loss of generality, the method is demonstrated on affine motions, however, it

generalizes to any matrix Lie group transformations.

A two-dimensional affine transformation is given by a 3× 3 matrix M

M =

 A b

0 1

 (5.1)

where A is a nonsingular 2× 2 matrix and b ∈ R2. Let M transforms a unit square at

the origin to the affine region enclosing the target object

[ximg yimg 1]T = M[xobj yobj 1]T (5.2)
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where, the subscripts indicate the object coordinates and image coordinates respec-

tively. The inverse M−1 is also an affine motion matrix and transforms the image

coordinates to the object coordinates (Figure 5.1).

Let I denote the observed images and t be the time index. The aim of tracking is

to estimate the transformation matrix Mt, given the observations up to time t, I0...t,

and the initial transformation M0. We model the transformations incrementally

Mt = Mt−1.∆Mt (5.3)

and estimate the increments ∆Mt at each time frame. The transformation ∆Mt cor-

responds to motion of target from time t− 1 to t in the object coordinates.

The image in the object coordinates is written as I(M−1). We consider the pixel

values inside the unit rectangle and represent the region with a descriptor, such as,

orientation histograms. It is denoted by o(M−1) ∈ Rn where n is the dimension of the

descriptor.

We interpret tracking as a matrix valued regression problem. Given the previous

location of the object Mt−1 and the current observation It, we estimate the new trans-

formation ∆Mt by the regression function

∆Mt = f(ot(M−1
t−1)). (5.4)

The problem reduces to learning and updating the regression function f , where the

details are explained in Section 5.4.

During initialization, t = 0, the observation I0 and the initial location of the ob-

ject M0 are given. We generate a training set of N random affine transformation

matrices {∆M}i=1...N around the identity matrix. The object coordinates are trans-

formed by multiplying on the left with ∆M−1
i and the new descriptor is computed by

oi
0 = o0

(
∆M−1

i .M−1
0

)
. The transformation ∆Mi moves the object back to the unit

square. The training set consists of samples
{
oi

0,∆Mi

}
i=1...N

. The process is illus-

trated in Figure 5.2. Notice that we use the notation ∆M both for the elements of the

training set with the subscript i, and the estimated motions during tracking with the

subscript t.
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Figure 5.2: Training samples are generated by applying N affine motions ∆M−1
i=1...N at

the object coordinates. Using (5.3), the new observations in the object coordinates are
I0

(
(M0.∆Mi)

−1
)
, where an equivalent form is used in the image.

The regression function f : Rn 7→ A(2) is an affine matrix valued function. The

standard approach for motion estimation is through introducing a parametrization of

the motion and linearization [30, 86, 171], which in this case is around the identity

matrix

∆M(p0 + ∆p) ≈ ∆M(p0) +
∂∆M
∂p

∆p. (5.5)

where ∆M(p0) = I. The approach proceeds by estimating the increments ∆p. There

are two major drawbacks of the approach. Firstly, the approximation makes a Euclidean

space assumption on the parameters. Secondly, the parametrization is arbitrary and

do not consider the structure of the motion. We use the Lie group theory to estimate

the tracking function.

5.3 Affine Group

The structure of affine matrices was given in (5.1). The set of all two-dimensional affine

transformations form a matrix Lie group denoted by A(2). The associated Lie algebra

is the set of matrices

m =

 U v

0 0

 (5.6)



75

Figure 5.3: The gradient weighted orientation histograms are utilized as region descrip-
tors.

where, U is a 2 × 2 matrix and v ∈ R2. The matrix m is sometimes referred to as a

m = 6 dimensional vector by selecting each of the entries of U and v as an orthonormal

basis. Please see Section A.7.1 for more details on Lie groups.

5.4 Tracking via Regression on Lie Groups

In this section, we present the learning and the update of the tracking function.

5.4.1 Region Descriptor

The target region is represented with several orientation histograms [53] computed at a

regular grid inside the unit square in object coordinates (Figure 5.3). Similar to SIFT

descriptors [100], the contribution of each pixel to the histogram is proportional to its

gradient magnitude. The unit square is divided into 6×6 = 36 regions and a histogram

is computed in each of them. Each histogram is quantized at π/4 degrees between 0 and

2π. The size of each histogram is eight dimensional and the descriptors, o, are n = 288

dimensional. During tracking the peripheral pixels are frequently contaminated by the

background, hence we leave a 10% boundary at the outerside of the unit square and

construct the descriptor inside the inner rectangle.
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5.4.2 Model Learning

During the model learning, the parameters of the regression function, f : Rn 7→ A(2),

are estimated. The training set consists of samples
{
oi

0,∆Mi

}
i=1...N

. The affine motion

matrices do not form a vector space therefore the Euclidean distance between two

motions is not an appropriate metric. Based on the geometry of the space a meaningful

error function is the sum of the squared geodesic distances between the estimations

f(oi
0), and the true transformations ∆Mi

Jg =
N∑

i=1

d2
[
f(oi

0),∆Mi

]
(5.7)

where the distance, d, is given in (A.20).

Let M1 and M2 be two motion matrices, and let m1 = log(M1) and m2 = log(M2).

Using Baker-Campbell-Hausdorff formula (A.16) which gives the exponential identity

for non-commutative Lie groups, a first order approximation to the geodesic distance

between the two motion matrices is given by

d(M1,M2) =
∥∥log

[
M−1

1 M2

]∥∥
= ‖log [exp(−m1)exp(m2)]‖

=
∥∥log

[
exp(m2 −m1 +O(|(m1,m2)|2)

]∥∥
≈ ‖m2 −m1‖ . (5.8)

Selecting m orthonormal bases on the Lie algebra, we can compute the matrix

norm as the Euclidean distance between two vectors. Using (5.8), the function (5.7) is

equivalent to minimizing

Ja =
N∑

i=1

∥∥log
(
f(oi

0)
)
− log (∆Mi)

∥∥2 (5.9)

up to first order terms. The approximation is good enough since the transformations

are in a small neighborhood of the identity.

We define the regression function as

f(o) = exp (g(o)) (5.10)
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and learn the function g : Rn 7→ Rm which estimates the tangent vectors, log (∆M), on

the Lie algebra. We model the function g as a linear function of the observations o

g (o) = oTΩ (5.11)

where Ω is the n×m matrix of regression coefficients.

Let X be the N × n matrix of initial observations and Y be the N ×m matrix of

mappings of motions to the Lie algebra

X =


[
o1

0

]T
...[

oN
0

]T

 Y =


[log (∆M1)]

T

...

[log (∆MN )]T

 . (5.12)

Notice that, log (∆M) is referred here in m-dimensional vector form. Substituting

(5.10) and (5.11) into (5.9), we obtain

Ja = tr[(XΩ−Y)T (XΩ−Y)] (5.13)

where the trace replaces the summation in (5.9).

For real time tracking we keep the size of the training set relatively small, N = 200.

Since number of samples is smaller than the dimension of the feature space, N < n,

the system is underdetermined and the least squares estimate becomes inaccurate. To

avoid overfitting, we introduce an additional constraint on the size of the regression

coefficients

Jr = tr[(XΩ−Y)T (XΩ−Y)] + λ‖Ω‖2 (5.14)

which is called the ridge regression [71, p.59-64]. The minimum of the error function

Jr is given by

Ω = (XTX + λI)−1XTY (5.15)

where I is n×n identity matrix. The regularization coefficient λ determines the degree

of shrinkage on the regression coefficients. The details of the parameter λ is explained

in Section 5.6.
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Input: Location of target at time t− 1 is Mt−1 and the current obser-
vation is It, maximum iteration number is K.

• k = 1 and Mt = Mt−1

• Repeat

– ∆Mt = f(ot(M−1
t ))

– Mt = Mt.∆Mt

– k = k + 1

• Until ∆Mt = I or k = K

Figure 5.4: Tracking algorithm.

5.4.3 Interframe Correspondence

After learning the regression function f , the tracking problem reduces to estimating the

motion via (5.4) using current observation It and updating the target location via (5.3).

To better localize the target, in each frame we repeat the motion estimation using f a

maximum of ten times or ∆Mt becomes equal to identity (Figure 5.4).

5.4.4 Model Update

Since objects can undergo appearance changes in time, it is necessary to adapt to

these variations. In our case, the model update reestimates the tracking function f .

During tracking the target object, we generate s = 2 random observations at each

frame with the same method described in Section 5.2. The observations stored for last

p = 100 frames constitute the update training set. Let Xu and Yu be the update

training set stored in the matrix form as described in (5.12), and Ω′ be the previous

model parameters. After each p frames of tracking, we update the coefficients of the

regression function by minimizing the error function

Ju = tr[(XuΩ−Yu)T (XuΩ−Yu)] +

λ‖Ω‖2 + γ‖Ω−Ω′‖2. (5.16)

The error function is similar to (5.14), but another constraint is introduced on the

difference of regression coefficients. Differentiating the error function Ju with respect
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to Ω, the minimum is achieved at

Ω = (XT
uXu + (λ+ γ)I)−1(XT

uYu + γΩ′). (5.17)

The parameter γ controls how much change on the regression parameters are allowed

from the last estimation. More details of the parameter γ is explained in Section 5.6.

To take into account the bias terms all the function estimations are performed using

centered data.

5.5 Invariant Object Detection

In [180], it was argued that scanning of the whole image for detecting anatomic struc-

tures in medical images is unnecessary since the problem domain offers strong contextual

information for localizing the targets. Utilizing a similar idea, we present a method to

build an invariant detection algorithm by integrating a class specific tracking function to

an existing pose dependent detector. We demonstrate the approach for affine invariant

detection of faces.

We perform a sparse scan of the image, and determine all the possible object lo-

cations with a pre-learned class specific tracking function (e.g. tracker for faces). The

tracker finds all the locations in the motion space (e.g. affine) which resemble the object

model. The object detector is then evaluated only at these locations.

The benefits of the approach is two-fold. Firstly, the size of the search space dras-

tically reduces. For example, we only consider a tracker which can correctly estimate

translational motions upto 1/4 of the object size. Then it is possible to scan the im-

age with jumps equal to 1/2. The ratio of number of search locations compared to

the brute force approach decreases exponentially with the dimensionality of the motion

model. Secondly, the proposed method performs continuous estimation of the target

pose, whereas the existing techniques perform search on a quantized space, e.g. rota-

tions of π/6. Utilizing a pose dependent object detection algorithm (e.g., frontal faces

in upright position), the method enables to detect objects in arbitrary poses.
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Figure 5.5: Training samples are generated by applying n affine motions ∆M−1
i=1...N to

L face images in the dataset.

5.5.1 Learning Class Model

Instead of learning a tracking function of the specific target object (5.4), we train a

regression function of the object class. For instance, we consider a face tracker. The

learning is performed on the training set generated by applying a total of N random

affine transformations to L face images (Figure 5.5).

The training is an offline process and a more complicated model can be learned

compared to tracking applications. However, the learned function should be evaluated

fast at runtime, since the tracker is initiated at several locations for each test image.

We consider two models for learning. First model is the ridge regression which was

explained in Section 5.4.

As the second model, we consider the regression forest which is a bagged model

of tree regressors [71, p.266-270]. Given a training set, we learn a binary tree model

where each leaf node is a motion vector on the Lie algebra. The inner nodes make

binary comparisons of two feature dimensions of the descriptor (out of 288), and based

on the result split the space into two. During learning, 100 randomly selected features

are evaluated at each node and the best pair which minimizes the sum of squared

approximation error (5.9) on the divided spaces is selected. The growing of the tree at

a node ends if there is a single sample inside or the depth of the tree reaches 15. The
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Figure 5.6: Regression forest.

value of the leaf nodes with multiple samples (the nodes with depth 15) are assigned

to the mean. In general, a single tree model performs poorly since the variance of the

model is very high. To reduce the variance, a bagged model is learned which consists

of 100 binary tree regressors. Each of them is trained on a different training set of

randomly generated motions. The estimation of the random forest is the average of

the 100 motions estimated by the regression trees. The tree model is evaluated fast

in real time since each tree performs an estimation by at most 15 binary comparisons.

Regression forrest model is shown in Figure 5.6.

5.5.2 Detection

To detect faces in a given test image the trackers are initialized at sparse set of locations,

on a regular grid with 1/2 jumps of the window size (minimum 24× 24) and scales of

factor 2, until image size. Each tracker is iterated K = 20 times and the final locations

are evaluated with Viola and Jones face detector [165] (Figure 5.7).

5.6 Experiments

We present several experiments both on affine tracking and object detection.

5.6.1 Affine Tracking

In the first experiment, we compare the Lie algebra based parametrization with the

linearization (5.5) around the identity matrix [30, 86, 171] by measuring the estimation

errors. We also compare orientation histograms with the intensity difference features

used in optical flow estimation and tracking [7, 30, 86].



82

Figure 5.7: The trackers are initialized at sparse regular grid (dashed boxes). Final
locations (solid boxes) are evaluated with face detector and the nonface regions are
rejected.

We generated a training set of Ntr = 200 samples by random affine transformations

of a single object. The motions are generated on the Lie algebra, by giving random

values between −0.2 and 0.2 to each of the six parameters, and mapped to affine

matrices via exponentiation. The function f is estimated by ridge regression with

λ = 2.10−3 for orientation histograms and λ = 5.0 for intensity features, determined by

cross validation.

Each test set consists of Nte = 1000 samples. The samples inside a set have fixed

norm. The norms ‖log(∆M)‖ vary from 0.025 to 0.35. We perform a single tracking

iteration by each method, and measure the mean squared geodesic error (MSGE)

1
Nte

Nte∑
j=1

d2
[
f(oj

0),∆Mj

]
(5.18)

between the estimations and the true values (Figure 5.8). The estimation based on

the Lie algebra is better than the linearization for transformation of all norms. The

ratio is almost constant and on the average the linearization have 12% larger error.

The estimations with orientation histograms are significantly better than the intensity

based features.

In the second experiment, we show tracking examples for several challenging se-

quences. In all the experiments, the parameters of the ridge regression were λ = γ =

2.10−3, which were learned offline via cross validation. The training dataset is gen-

erated on the Lie algebra, by giving random values between −0.1 and 0.1 to each of
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Figure 5.8: Estimation errors of the Lie algebra and the linearization methods using
orientation histograms and intensity features.

Figure 5.9: Comparison of the Lie algebra (first row) and the linearization (second row)
based estimations. The target has large motions and the linearization based estimation
loses the target after a few seconds. The sequence contains 318 frames.

the six parameters. Notice that, although we track the targets with an affine model,

almost none of the targets are planar. Therefore, an affine model can not perfectly fit

the target but produces the best affine approximation.

In Figure 5.9, a ball having large motions is tracked. The Lie algebra (first row)

based estimation accurately tracks the target, whereas using linearization (second row)

the target is lost after a few seconds. In the following sequences, only Lie algebra based

estimations are shown.

Since nonplanar objects undergo significant appearance variations due to pose changes,

the model update becomes important. In Figure 5.10, we show the effect of the update
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Figure 5.10: The effect of model update. The first row is with update. The second row
is without update. The target has severe appearance variations due to illumination and
pose change throughout the sequence. The sequence contains 324 frames.

method on the estimations. The sequence has large appearance variations, but the

update method adapts to these changes (first row), whereas without update (second

row) the target is lost.

In Figures 5.11 and 5.12 we show tracking examples for two challenging sequences.

The targets have large on-plane and off-plane rotations, translations, scale changes,

appearance changes and occlusions. The estimations are accurate, which shows the

robustness of the proposed approach.

5.6.2 Invariant Object Detection

We perform detection experiments on a face dataset which consists of 803 face images

from CMU, MIT and MERL datasets. The dataset is divided into 503 images for

training and 300 for testing. The training set consists of 25150 samples which are

generated by applying 50 transformations having a random norm between 0 to 1.0 to

each face image. In contrast to the previous section, each of the six generators on the Lie

algebra are weighted. For example, on average a norm 1.0 transformation corresponds

to a combined translation of 25% of object size, rotation of π/4 degrees, and scaling

and sheer ratio of 1.7.

In the first experiment, we compare the ridge and regression forest models either

parameterized on the Lie algebra or based on the linearization. For each test image,
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Figure 5.11: Affine tracking of a book. The target has large on-plane and off-plane
rotations, translations, scale changes and occlusions. The sequence contains 739 frames.

we initialize five times the tracking window with a fixed norm random transformation

(between 0.0 to 1.2) from the original location. For each initialization we perform 20

iterations of tracking. At the final location, we measure the squared geodesic error (5.18)

from the original location. The mean squared geodesic errors are given in Figure 5.13.

The Lie algebra based parametrization is significantly better for both regression models,

especially for large transformations. The best result is given by the regression forest

model.

In the second experiment, we compare the detection performances of the models.

Using the setting of the first experiment, at the final locations we evaluate the face

detector (Figure 5.14). The Viola and Jones (VJ) face detector [165] evaluated at

the original location of the target could detect 96.7% of the faces, and the detection

rate suddenly falls to 5% at locations which are norm 0.5 distant. The Lie algebra

based estimations and the regression forest model are significantly superior. For norms

between 0.0 to 1.0, the average miss rate for regression forest using Lie algebra is

4.24% which is almost as good as detector applied at the original location. For small

transformations, the results are even better than the detector evaluated at the original
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Figure 5.12: Affine tracking of a face. The target has large on-plane and off-plane
rotations, translations, scale, illumination and appearance changes and occlusions. The
sequence contains 425 frames.

location, where the small misalignments in the test set are corrected. On average, Lie

algebra based parametrization have 50% less miss rate for regression forest and 24%

less for ridge regression, compared to linearization. In Figure 5.15, several examples of

initial and final locations found by the tracker are shown for various face images using

regression forest model for transformations of norm 1.2.

In Figure 5.16 we show face detection examples for several challenging images uti-

lizing both the original VJ detector and the proposed method. For an image of size

320 × 240, the VJ detector evaluates 58367 locations for translation and scale search,

whereas the proposed method evaluates face detector at only 642 locations searched on

the affine space.

5.6.3 Computational Requirement

The model is implemented on a Pentium D 2.80Ghz processor with 2.00GB of RAM

using C++. The proposed tracking algorithm including model learning and update can

process 60 frames per second.

The training of detection models requires 2 minutes for the ridge regression model
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Figure 5.13: Estimation errors of ridge and regression forest models parameterized on
the Lie algebra and the linearization.

Figure 5.14: Miss rates of ridge and regression forest models parameterized on the Lie
algebra and the linearization.

and around 3 hours for the random forest model. At runtime the most expensive

operation is the affine warping of the regions to the object coordinates and computing

the object descriptors. For a 320× 240 image, the tracker is initialized at 642 locations

and 20 tracker iterations are performed which requires 12840 warping operations. Since

the warps at each iteration can be performed in parallel we implemented the warping in

GPU using NVIDIA GeForce 8800 GTX graphics card and CUDA SDK. The search for

an image of size 320×240 takes 0.85 and 2.4 seconds with the linear and the regression

forest models respectively.
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Figure 5.15: Face tracking. Columns 1, 3 and 5 are the initial windows and 2, 4 and 6
are the recovered locations.
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Figure 5.16: Face detection examples using the proposed method (first column) and
the original VJ detector with a dense scan (second column). The original VJ detector
is very sensitive to pose changes.
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Chapter 6

Bayesian Background Modeling and Low Frame Rate

Tracking

6.1 Introduction

Segmentation of foreground and background regions in video is a fundamental task in

computer vision. The provided information is important for higher level operations

such as object tracking.

The trivial approach to detect moving regions in image sequences is to select a

reference frame while scene is stationary and to subtract the observed frames from this

image. The resulting difference image is thresholded to extract the moving regions.

Although this task looks fairly simple, in real world applications the approach rarely

works. Usually the scene background is never static and varies by time due to several

reasons. The most important factors are illumination changes, moving regions and the

camera noise. Moreover in many applications, it is desirable to model the variable

appearances of the background such as shadows.

To overcome these problems adaptive background models were proposed. The adap-

tive models can be categorized into two groups. The first group of methods use sequen-

tial filters to predict the background intensities. In [91, 92] Kalman filter is used to

model background dynamics. Similarly in [151], Wiener filter is used to make a linear

prediction of the intensity, given the pixel histories.

The second group of methods estimate the probability distributions of the pixel

intensities. In [172], a parametric background model is presented by modeling the

intensities of each pixel by a univariate normal distribution. The densities are updated

online with the new measurements by a simple average filter.
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In general the the scene background is not unimodal. Sudden illumination changes,

moving and shadowed regions are some of the sources of multimodalities. The idea of

using per pixel Gaussian distribution is extended by Gaussian mixture model (GMM)

to represent the different appearances of the scene. In [55], the color distribution of

each pixel is modeled with a mixture of three Gaussians corresponding to road, vehicle

and shadow, for a traffic surveillance application. Likewise, Stauffer and Grimson [146]

used mixture of k normal distributions and the model parameters are updated using an

online expectation maximization (EM) algorithm. In [69], Harville et. al. extends the

color model with the depth information coming from stereo cameras. In [81] and [83]

gradient information is utilized to achieve a more accurate background subtraction.

Although any distribution can be represented with a GMM provided enough number

of components, this is not computationally feasible for real time applications. In prac-

tice, it is only possible to represent each pixel with three to five components. In [44],

a nonparametric background model is presented. The model keeps a history window

of recent observations and the intensity distribution is approximated via kernel density

estimation. Background subtraction is performed by thresholding the probability of

the observed samples. In a more recent nonparametric approach [111], motion informa-

tion is utilized to model dynamic scenes in addition to the intensity information. The

drawback of the nonparametric approaches is the increased computational and memory

requirements which is linear in the size of the temporal window. The other approaches

include sequence classification using hidden Markov models (HMMs). In [130], three

states corresponding to foreground, background and shadow is defined, whereas in [147]

topology is learned from the observations.

Here we describe a new method for modeling background statistics of a dynamic

scene [153]. Each pixel is represented with layers of Gaussian distributions. Using re-

cursive Bayesian learning, we estimate the posterior distribution of mean and covariance

of each layer. The proposed algorithm preserves the multimodality of the background

and estimates the number of necessary layers for representing each pixel.

Tracking objects in low frame rate video is a challenging problem. In static camera

configurations, background information is an important source to improve the tracking
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performance. Integrating the background information to mean shift tracker we present

a robust low frame rate tracker [125].

6.2 Background Model

Our background model is most similar to adaptive mixture models [146], but instead

of mixture of Gaussian distributions we define each pixel as layers of 3D multivariate

Gaussians. Each layer corresponds to a different appearance of the pixel. We perform

our operations on (r,g,b) color space.

Using Bayesian approach, we estimate the posterior distributions of mean and vari-

ance of each layer. We can extract necessary statistical information, regarding to these

parameters from the density functions. For now, we are using expectations of mean

and covariance for change detection and the covariance of the mean for confidence.

Prior knowledge can be integrated to the system easily with prior parameters. Due

to computation of full covariance matrix, feature space can be modified to include other

information sources, such as motion information, as discussed in [111].

Our update algorithm maintains the multimodailty of the background model. At

each update, at most one layer is updated with the current observation. This assures

the minimum overlap over layers. We also determine how many layers are necessary

for each pixel and use only those layers during foreground segmentation phase. This is

performed with an embedded confidence score. Details are explained in the following

sections.

6.2.1 Layer Model

Data is assumed to be normally distributed with mean µ and covariance Σ. Mean and

covariance are assumed unknown and modeled as random variables [60, p.87-88]. Using

Bayes theorem joint posterior density can be written as

p(µ,Σ|x) ∝ p(x|µ,Σ)p(µ,Σ). (6.1)
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To perform recursive Bayesian estimation with the new observations, joint prior density

p(µ,Σ) should have the same form with the joint posterior density p(µ,Σ|x). Condi-

tioning on the variance, joint prior density is written as

p(µ,Σ) = p(µ|Σ)p(Σ). (6.2)

Above condition is realized if we assume inverse Wishart distribution for the covari-

ance, and conditioned on the covariance, multivariate normal distribution for the mean.

Inverse Wishart distribution is a multivariate generalization of scaled inverse-χ2 distri-

bution. The parametrization is given by

Σ ∼ Inv-Wishartυt−1(Λ
−1
t−1) (6.3)

µ|Σ ∼ N(θt−1,Σ/κt−1). (6.4)

where υt−1 and Λt−1 are the degrees of freedom and scale matrix for inverse Wishart

distribution, θt−1 is the prior mean, κt−1 is the number of prior measurements. With

these assumptions joint prior density becomes

p(µ,Σ) ∝ |Σ|−((υt−1+3)/2+1) × (6.5)

e

�
− 1

2
tr(Λt−1Σ−1

)−κt−1
2

(µ−θt−1)TΣ−1
(µ−θt−1)

�

for three dimensional space. Let this density be labeled as normal-inverse-Wishart with

parameters (θt−1,Λt−1/κt−1; υt−1,Λt−1). Multiplying prior density with the normal

likelihood and arranging the terms, joint posterior density becomes normal-inverse-

Wishart(θt,Λt/κt; υt,Λt) with the parameters updated as

υt = υt−1 + n κn = κt−1 + n (6.6)

θt = θt−1
κt−1

κt−1 + n
+ x

n

κt−1 + n
(6.7)

Λt = Λt−1 +
n∑

i=1

(xi − x)(xi − x)T +

n
κt−1

κt
(x− θt−1)(x− θt−1)T (6.8)

where x is the mean of new samples and n is the number of samples used to update

the model. If update is performed at each time frame, n becomes one. To speed up
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the system, update can be performed at regular time intervals by storing the observed

samples. During our tests, we update one quarter of the background at each time frame,

therefore n becomes four. The new parameters combine the prior information with the

observed samples. Posterior mean θt is a weighted average of the prior mean and the

sample mean. The posterior degrees of freedom is equal to prior degrees of freedom

plus the sample size. System is started with the following initial parameters

κ0 = 10, υ0 = 10, θ0 = x0, Λ0 = (υ0 − 4)162I (6.9)

where I is the three dimensional identity matrix.

Integrating joint posterior density with respect to Σ we get the marginal posterior

density for the mean

p(µ|x) ∝ tυt−2(µ|θt,Λt/(κt(υt − 2))) (6.10)

where tυt−2 is a multivariate t-distribution with υt − 2 degrees of freedom.

We use the expectations of marginal posterior distributions for mean and covari-

ance as our model parameters at time t. Expectation for marginal posterior mean

(expectation of multivariate t-distribution) is given by

µt = E(µ|x) = θt (6.11)

whereas expectation of marginal posterior covariance (expectation of inverse Wishart

distribution) becomes

Σt = E(Σ|x) = (υt − 4)−1Λt. (6.12)

Our confidence measure for the layer is equal to one over determinant of covariance

of µ|x

C =
1

|Σµ|x|
=
κ3

t (υt − 2)4

(υt − 4)|Λt|
. (6.13)

If our marginal posterior mean has larger variance, our model becomes less confident.

Note that variance of multivariate t-distribution with scale matrix Σ and degrees of

freedom υ is equal to υ
υ−2Σ for υ > 2.

System can be further speed up by making independence assumption on color chan-

nels. Update of full covariance matrix requires computation of nine parameters. More-

over, during distance computation we need to invert the full covariance matrix. To
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speed up the system, we separate (r, g, b) color channels. Instead of multivariate

Gaussian for a single layer, we use three univariate Gaussians corresponding to each

color channel. After updating each color channel independently we join the variances

and create a diagonal covariance matrix:

Σt =


σ2

t,r 0 0

0 σ2
t,g 0

0 0 σ2
t,b

 . (6.14)

In this case, for each univariate Gaussian we assume scaled inverse-χ2 distribution for

the variance and conditioned on the variance univariate normal distribution for the

mean. The Bayesian update equations for the parameters can be found in [60, p.78-80].

6.2.2 Background Update

We initialize our system with k layers for each pixel. Usually we select three to five

layers. In more dynamic scenes more layers are required. As we observe new samples

for each pixel, we update the parameters for our background model. We start our

update mechanism from the most confident layer in our model. If the observed sample

is inside the 99% confidence interval of the current model, parameters of the model are

updated as explained in equations (6.6), (6.7) and (6.8). Lower confidence models are

not updated.

For background modeling, it is useful to have a forgetting mechanism so that the ear-

lier observations have less effect on the model. Forgetting is performed by reducing the

number of prior observations parameter of unmatched model. If current sample is not

inside the confidence interval we update the number of prior measurements parameter

via

κt = κt−1 − n (6.15)

and proceed to the update of next confident layer. We do not let κt become less than

the initial value 10. If none of the models are updated, we delete the least confident

layer and initialize a new model having current sample as the mean and an initial

variance (6.9). The update algorithm for a single pixel is given in Figure 6.1.
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Input: New sample x, current background layers
{(θt−1,i,Λt−1,i, κt−1,i, υt−1,i)}i=1..k

• Sort layers according to confidence measure defined in (6.13)

• i=1

• While i < k

– Measure Mahalanobis distance from layer i
(x− µt−1,i)TΣ−1

t−1,i(x− µt−1,i)

– If sample x is in 99% confidence interval

∗ update model parameters according to equa-
tions (6.6), (6.7), (6.8) and STOP

– Else

∗ Update model parameters according to equation (6.15)

– i=1+1

• Delete layer k, initialize a new layer having parameters defined in
equation (6.9)

Figure 6.1: Background update algorithm.

With this mechanism, we do not deform our models with noise or foreground pixels,

but easily adapt to smooth intensity changes like illumination. Embedded confidence

score determines the number of layers to be used and prevents unnecessary layers. Dur-

ing our tests usually secondary layers corresponds to shadowed form of the background

pixel or different colors of the moving regions of the scene. If the scene is unimodal,

confidence scores of layers other than first layer becomes very low.

6.2.3 Comparison with Online EM

In [146], each pixel is represented with a mixture of Gaussian distribution. The para-

meters of the Gaussians and the mixing coefficients are updated with an online k-means

approximation to expectation maximization (EM). The approach is very sensitive to

initial observations. If the components are improperly initialized, every component

eventually converges to the most significant mode of the distribution. In general the

smaller modes nearby larger modes are never detected.

To demonstrate the performance of the algorithm, we generated 1D data from mix-

ture of Gaussian distribution corrupted with uniform noise. First data set consists of
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(a) (b)

Figure 6.2: 1D Mixture of Gaussian data corrupted with uniform noise. Lines show one
standard deviation interval around the mean. Parameters are estimated with recursive
Bayesian learning and online EM [146] with five Gaussians. White line is the real
parameters. Red line shows estimation with recursive Bayesian learning. Green line
shows estimation with online EM. (a) Mixture of two Gaussians. Most confident two
layers estimated by two methods are shown. (b) Mixture of four Gaussians. Most
confident four layers estimated by two methods are shown. There are multiple Gaussians
at the same place in online EM and some modes are not detected.

12000 points corrupted with 3000 noise samples and second data set consists of 23000

points corrupted with 10000 noise samples. We assume that we observe the data in

random order. We treat the samples as observations coming from a single pixel and

estimate the model parameters with our approach and online EM algorithm. One stan-

dard deviation interval around the mean for actual and estimated parameters are plot

on the histogram, in Figure 6.2. Results show that, with online EM estimation the

multimodality is lost and the models converge to the most significant modes. With our

method, multimodality of the distribution is maintained. Another important observa-

tion is, estimated variance with online EM algorithm is always much smaller than the

actual variance. This is not surprising since the update is proportional to the likelihood

of the sample, so samples closer to the mean become more important.

Numerical estimations for mean and variance, and the normalized confidence scores

are shown in Tables 6.1 and 6.2. Our confidence score is very effective in determining the

number of necessary layers for each pixel. Although we estimate the model parameters

with five layers, it is clear from our confidence scores that how many layers are effective.

There is a large gap between significant and insignificant layers.
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Mode1 Mode2 Mode3 Mode4 Mode5
Num. 10000 2000
Mean 0.4000 0.6000

Real Std. 0.0700 0.0500
Mean 0.3923 0.3919 0.3919 0.3919 0.4545
Std. 0.0093 0.0093 0.0093 0.0093 0.0631

EM Conf. 0.2538 0.2482 0.2481 0.2481 0.0016
Mean 0.4021 0.5906 0.8488 0.2561 0.1133
Std. 0.0572 0.0440 0.0820 0.0268 0.0670

Bayes Conf. 0.7047 0.2519 0.0214 0.0208 0.0009

Table 6.1: Mixture of two Gaussians.

Mode1 Mode2 Mode3 Mode4 Mode5
Num. 10000 8000 3000 2000
Mean 0.2000 0.6000 0.3000 0.8000

Real Std. 0.0150 0.0300 0.0500 0.0500
Mean 0.2033 0.2033 0.5993 0.5993 0.9382
Std. 0.0085 0.0085 0.0113 0.0113 0.0633

EM Conf. 0.3772 0.3772 0.1221 0.1221 0.0111
Mean 0.2002 0.5998 0.3026 0.8004 0.9387
Std. 0.0146 0.0277 0.0451 0.0620 0.0632

Bayes Conf. 0.3996 0.3820 0.1088 0.1087 0.0007

Table 6.2: Mixture of four Gaussians.

Real data results are presented in Figures 6.3 and 6.4 where the first sequence is

a traffic sequence with heavy shadows and the second sequence is a dynamic outdoor

scene. In the first sequence, first and second layers of our background corresponds to

the original and shadowed versions of the background. The locations where most of the

cars move have higher variances, so usually they are less confident. Those pixels are

shown in red. In online EM algorithm, the first and the second layers converged to the

most significant mode.

In the second sequence, most significant three layers estimated by two algorithms

are shown. As seen in original images, the sky and the trees are changing appearance

by time. Our background model successfully modeled the different appearances of

these regions. The appearance of grass does not change much with time. As expected,

confidence score of second and third layers of our background are very low for this

region.
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(a)

(b) (c)

Figure 6.3: Traffic video with heavy shadows. (a) A sample from the original sequence.
(b) Most confident two layers with recursive Bayesian learning. (c) Most confident
two layers with online EM. With recursive Bayesian learning, we are able to model
the shadows as the second layer of the scene, whereas in EM first and second layers
converge to the most significant mode.

6.2.4 Foreground Segmentation

Learned background statistics are used to detect the changed regions of the scene.

Number of layers required to represent a pixel is not known beforehand so background is

initialized with more layers than needed. Using the confidence scores we determine how

many layers are significant for each pixel. We order the layers according to confidence

score (6.13) and select the layers having confidence value greater than the layer threshold

Tc. We refer to these layers as confident layers. In our experiments we use Tc = 1.0.
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(a)

(b)

(c)

Figure 6.4: Outdoor video. (a) Samples from the original sequence. (b) First three
layers of recursive Bayesian learning. Different appearances of the background is cap-
tured with first three layers. Red pixels are nonconfident layers. (c) First three layers
of online EM. Second and third layers are almost same with first layer.

We measure the Mahalanobis distance of observed color from the confident lay-

ers. Pixels that are outside of 99% confidence interval of all confident layers of the

background are considered as foreground pixels.

In Figure 6.5, we present foreground segmentation results of a dynamic scene. As

seen in Figure 6.5a, appearance of background is changing with time. After several

frames, our background algorithm learns the different appearances of the background.

Although the method is very sensitive to foreground objects, it does not produce false

alarms in sudden background changes (Figure 6.5b).
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(a)

(b)

Figure 6.5: Foreground segmentation of a dynamic scene. (a) Original sequence. (b)
Detected foreground pixels.

6.3 Low Frame Rate Tracking

We use a modified version of the mean shift tracker [29] to estimate the location of the

target. The original mean shift tracker requires significant overlap on the target kernels

in consequent frames. In low frame rate data, target movements are usually large and

unpredictable, so single mean shift window centered at the previous location of the

target is not enough. To overcome this problem, we initialize the mean shift tracker

both on the previous location of the target and the high motion areas of the scene

detected through foreground segmentation. Final location of the target is determined

by the maximum of the object likelihood scores computed at the converged locations.

6.3.1 Object Model

Object model is a nonparametric color template. The template is a (W × H) × D

tensor whose elements are 3D color samples from the object, where W and H are the

width and height of the template respectively and D is the size of the history window.

We refer to the pixels inside the estimated target box as {(xi,ui)}i=1...N , where xi

is the 2D coordinate in the image coordinate system and ui is the 3D color vector.

Corresponding sample points in the template are referred as {(yj ,vjk)}j=1...M , where
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yj is the 2D coordinates in the template coordinate system and {vjk}k=1..D are the

3D color values. Recall that index i inside the estimated target box maps to index j

in the template. This mapping is not one-to-one. Usually, size of the target box is

much larger than the size of the template, so one pixel in the template maps to several

pixels inside the target box. During tracking, we replace the oldest sample of each

pixel of the template with one corresponding pixel from the image. Using foreground

segmentation (Section 6.2.4), template pixels which correspond to the background pixels

in the current frame are not updated.

6.3.2 Mean shift with Background Information

Although color histogram based mean shift algorithm is efficient and robust for nonrigid

object tracking, if the tracked object’s color is similar to the background, tracking

performance reduces. We integrate the background information to improve the tracking

performance.

Let {qs}s=1..m be the kernel weighted color histogram of the reference model. Ref-

erence model histogram is constructed using the nonparametric object template (Sec-

tion 6.3.1)

qs = Q1

M∑
j=1

D∑
k=1

kN

(∥∥∥∥yj

ht

∥∥∥∥2
)
δ(m̂(vjk)− s) (6.16)

where template bandwidth ht is equal to half size of the template size (both horizontal

an vertical) and kN is the profile of the univariate normal kernel

kN (x) = e−
1
2
x (6.17)

Constant term Q1 satisfies that
∑m

s=1 qs = 1 and the function m̂ maps a color value

to the corresponding histogram bin in the quantized color space. Object template has

a history information which makes the histogram more accurate in occlusions. The

kernel function assigns smaller weights to the pixels farther away from the center which

are usually contaminated by noise. Let p(z) and b(z) be the kernel weighted color

histogram of the image and the background centered at location z. We construct back-

ground color histogram using only the confident layers of the background as explained

in Section 6.2.4.
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Bhattacharya coefficient [26], ρ(p(z),q) =
∑m

s=1

√
qsps(z), measures the similarity

between the target histogram and histogram of the proposed location z in the current

frame. We integrate the background information and define the new similarity function

as

ψ(z) = αfρ(p(z),q)− αbρ(p(z),b(z)) (6.18)

where αf and αb are the mixing coefficients for foreground and background. Besides

maximizing the target similarity, we penalize the similarity between the target and the

background image histograms. The location where the target is, should have a different

appearance than the background. We use αf = 1 and αb = 1/2. The similarity function

can be rewritten as

ψ(z) =
m∑

s=1

√
ps(z)

(
αf
√
qs − αb

√
bs(z)

)
(6.19)

Let z0 be the initial location where we start search for the target location. Using Taylor

expansion around the values of ps(z0) and bs(z0)

ψ(z) ≈
m∑

s=1

√
ps(z0)

(
αf
√
qs − αb

√
bs(z0)

)
+

m∑
s=1

αf
√
qs − αb

√
bs(z0)

2
√
ps(z0)

(p(z)− p(z0))−

m∑
s=1

αb

√
ps(z0)

2
√
bs(z0)

(b(z)− b(z0)). (6.20)

Putting constant terms inside Q2 we obtain

ψ(z) ≈ Q2 +
m∑

s=1

αf
√
qs − αb

√
bs(z0)

2
√
ps(z0)

p(z)−

m∑
s=1

αb

√
ps(z0)

2
√
bs(z0)

b(z). (6.21)

Using the definition of p(z) and b(z), the similarity function is rewritten as

ψ(z) ≈ Q2 +Q3

N∑
i=1

wikN

(∥∥∥∥z− xi

h

∥∥∥∥2
)
, (6.22)

wi =
m∑

s=1

αf
√
qs − αb

√
bs(z0)

2
√
ps(z0)

δ[m̂f (xi)− s]−

m∑
s=1

αb

√
ps(z0)

2
√
bs(z0)

δ[m̂b(xi)− s]. (6.23)
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where m̂f () and m̂b() maps a pixel in observed and background images, to the corre-

sponding color bin in quantized color space. The spatial bandwidth h is equal to the

half size of the candidate box along each dimension. The second term in (6.22) is equal

to the kernel density estimation with data weighted by wi. Mode of this distribution

(maximum of similarity function (6.18)) can be found by mean shift algorithm. Recall

that the weights wi might be negative. Unlike [25] and [178], we use zero instead of the

negative weights. Mean shift vector at location z0 becomes

m(z0) =
∑n

i=1(xi − z0)wigN (‖z0−xi
h ‖2)∑n

i=1wigN (‖z0−xi
h ‖2)

. (6.24)

where gN (x) = −k′N (x).

6.3.3 Template Likelihood

The probability of a pixel (xi,ui) inside the candidate target box centered at z belongs

to the object can be estimated with the Parzen window estimator

lj(ui) =
1

Dh3
c

D∑
k=1

kN

(∥∥∥∥ui − vjk

hc

∥∥∥∥2
)
. (6.25)

Bandwidth of the color kernel is selected as hc = 16 for each color channel. The

likelihood of an object being at location z is then measured by

L(z) =
1
N

N∑
i=1

lj(ui)kN

(∥∥∥∥xi − z
h

∥∥∥∥2
)
. (6.26)

The spatial kernel assigns smaller weights to samples farther from the center making

the estimation more robust.

6.3.4 Scale Adaptation

Scale adaptation of the objects are performed using the foreground pixels. Let B be the

box of the object centered at estimated location z. We define a second box B̂ around

the object center which has twice area of B. We are trying to maximize

∑
x∈B

fg(x) +
∑

x∈B̂/B

(1− fg(x)) (6.27)
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Input: Target at location zt−1 at previous frame and the high motion
areas detected through foreground segmentation {ci}i=1..L

• Lmax = 0

• For z = zt−1 and z = ci, i = 1...L

– Compute mean shift vector m(z) using (6.24)

– While ψ(z) < ψ(z + m(z))

∗ z = z + m(z)
∗ Compute mean shift vector m(z) using (6.24)

– Compute likelihood L(z) using (6.26)

– If L(z) > Lmax

∗ zt = z, Lmax = L(z)

• Update scale via maximum of (6.27)

Figure 6.6: Low frame rate tracking algorithm.

where fg(x) is one if x is a foreground pixel and zero otherwise. At each frame, leaving

B̂ fixed we modify B ±5% in all dimensions and chose the scale which gives the best

score.

6.3.5 Tracking Algorithm

The mean shift tracker is initialized both on the previous location of the target zt−1

and the high motion areas of the scene {ci}i=1..L, detected through foreground seg-

mentation. The algorithm iterates by moving along the mean shift vector (6.24) which

also includes the background information. When the iterations end we evaluate the

likelihood score (6.26) at the converged location. The target location is given by the

maximum of the likelihood function. Finally we update the size of the object via max-

imum of (6.27). The tracking algorithm is given in Figure 6.6.

Figure 6.7 shows a low frame rate tracking example (2 frames per second). Usually,

there is no overlap on target kernels in two consecutive frames, therefore the original

mean shift algorithm loses the targets after a few frames. The results show that, our

template likelihood score is effective in resolving ambiguities caused by the multiple

objects in the scene. The appearance of the targets are similar to the background.

Fusion of background information improves the histogram based mean shift tracker

significantly, which results in good target localization.
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Figure 6.7: Low frame rate tracking example. The sampling rate is 2 frames per second.
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Chapter 7

Classification of Hematologic Malignancies for Clinical

Diagnosis

7.1 Introduction

Over the past few years there has been increased interest and efforts applied to utilizing

content-based image retrieval in medical applications [70, 78, 82, 94, 95, 140]. Individual

strategies and approaches differ according to the degree of generality (general purpose

versus domain specific), the level of feature abstraction (primitive features versus logical

features), overall dissimilarity measure used in retrieval ranking, database indexing

procedure, level of user intervention (with or without relevance feedback), and by the

methods used to evaluate their performance. Here we present a decision system utilizing

texture based representation and support vector machine (SVM) optimization to classify

hematologic malignancies [159].

The use of texture analysis for performing automated classification of disease based

on features extracted from radiological imaging studies has been reported in the medical

literature repeatedly. It has been successfully applied in breast cancer [106, 114, 142],

liver cancer [77] and obstructive lung disease [19].

Recently there have been a number of investigators who have begun to explore the

feasibility of utilizing texture features in the classification of pathology at the micro-

scopic level. The success of the methods vary with the domain of the problem, and

the choice of representation and optimization techniques. We also note that the testing

methodology that is applied during the experiments and the size of the datasets have

very important role in the observed results, and some test methodologies and small

datasets can trigger biased results.
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In [129], frequency domain features are used to classify among subclasses of normal

and abnormal cervical cell images using a database containing 110 cells from both

normal and abnormal groups. Using the spectra of cell images, 27 texture features are

extracted with gray level difference method and together with 22 frequency components,

resulted in 92% correct classification among subclasses. In [167], statistical geometric

features, which are computed from several binary thresholded versions of texture images

are used to classify among normal and abnormal cervical cells. The method gave

93% correct classification rate on a database containing 117 cervical cells using only 9

statistical features.

A diagnosis scheme among the main subsets of lung carcinomas was reported in [139]

by chromatin texture feature analysis using a test set comprised of 195 specimens. Tex-

ture features describing the granularity and the compactness of the nuclear chromatin

were extracted for calculation of classification rules, which allowed the discrimination

of different tumor groups. Although the classification failed to distinguish among some

subtypes of tumor groups, around 90% classification accuracy was achieved for small-cell

and non-small-cell lung carcinoma using the four dimensional texture features combined

with simple decision rules.

In [116], adaptive texture features were described utilizing the class distances and

differences of gray level cooccurrence matrices of texture images. In [117], the adaptive

texture features were used for classifying the nuclei of cells in ovarian cancer. In this

study a clear relation between nuclear DNA content, area, first-order statistics, and

texture is observed. The approach discriminated the two classes of cancer with a correct

classification rate of 70% on a test set of 134 cases.

A decision support system to discriminate among three types of lymphoproliferatie

disorders and normal blood cells was presented in [28]. Cells were represented with

their nuclear shape, texture and area, where shape was characterized through similar-

ity invariant Fourier descriptors and multiresolution simultaneous autoregressive model

was utilized for texture description. The experiments conducted on a database con-

sisting of 261 specimens using ten-fold cross validation were resulted with 80% correct

classification rate. Notice that in all the methods described, the results were acquired
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using small datasets and without obeying the separation of cells among training-testing

sets based on patient. We present a detailed discussion about the testing methodologies

and their effects on the results in Section 7.5.

As new treatments emerge, each targeting specific clinical profiles, it becomes in-

creasingly important to distinguish among subclasses of pathologies. In modern di-

agnostic pathology, sophisticated analyses are often needed to support a differential

diagnosis, but these supporting tests are not typically employed unless morphological

assessment of a specimen first leads one to classify the case as suspicious. In many

cases, the differential diagnosis can only be rendered after immunophenotyping and/or

molecular or cytogenetic study of the cells involved. Immunophenotyping is the process

commonly used to analyze and sort lymphocytes into subsets based on their antigens

using flow cytometry. For the purposes of our experiments the immunophenotype pro-

vide independent confirmation of the diagnosis for all cases. The additional studies are

expensive, time consuming, and usually require fresh tissue which may not be readily

available. Since it is impractical to immunophenotype every sample that is flagged by

a complete blood count (CBC) device, passing the specimen through a reliable image-

based screening system could potentially reduce cost and patient morbidity.

We designed a texture based solution which distinguishes between normal cells and

four different hematologic malignancies. We discriminate among lymphoproliferatie

disorders, Chronic Lymphocytic Leukemia (CLL), Mantle Cell Lymphoma, (MCL),

Follicular Center Cell Lymphoma (FCC), which can be confused with one another dur-

ing routine microscopic evaluation. Two acute leukemias, Acute Myelocytic Leukemia

(AML) and Acute Lymphocytic Leukemia (ALL), could only be classified in relation

to the lymphoproliferatie disorders and normal cells as a single unit labeled as Acute

Leukemia. It is shown in [128] that there is no statistical significance in morphometric

variables for some subtypes of Acute Leukemia which coincides with our observations.

Although each of the disorders under study can exhibit a range of morphological char-

acteristics, Figure 7.1 shows representative morphologies for each.

Chronic Lymphocytic Leukemia (CLL) is the most frequent leukemia in the United

States. It is typically a long-term but incurable disease with potential for a more
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(a) (b) (c)

(d) (e) (f)

Figure 7.1: Representative morphologies for normal and disorders under study. (a)
Normal; (b) Chronic Lymphocytic Leukemia - CLL; (c) Mantle Cell Lymphoma - MCL;
(d) Follicular Center Cell Lymphoma - FCC; (e) Acute Myeloblastic Leukemia - AML;
(f) Acute Lymphoblastic Leukemia - ALL.

aggressive treatment, e.g. [135]. Mantle Cell Lymphoma (MCL) is a recently described

entity (1992) which was not part of the initial working formulation classification system

for non-Hodgkin’s lymphoma [21]. Timely and accurate diagnosis of MCL is of extreme

importance since it has a more aggressive clinical course than CLL or FCC [58, 161].

The third lymphoproliferative disorder under study is Follicular Center Cell Lymphoma

(FCC), which is a low-grade lymphoma [2].

Chronic leukemias are associated, at least initially, with well-differentiated, or differ-

entiating leukocytes and a relatively slow course. On the other hand, Acute Leukemias

are characterized by the presence of very immature cells (blasts) and by the rapidly

fatal course in untreated patients. Acute Leukemia primarily affect adults, with the

incidence increasing with age. Despite differences in their cell origin, subtypes of Acute

Leukemias share important morphological and clinical features [32]. Our database in-

cludes two subtypes of Acute Leukemia, Acute Lymphoblastic Leukemia (ALL) and

Acute Myeloblastic Leukemia (AML), but in this study we consider them as a single

unit.
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The proposed system proceeds in three steps.

1. Segmentation: Our observations indicate that both the nucleus and the cytoplasm

of a cell contain valuable information regarding the underlying pathology, there-

fore we analyze them separately. Given a microscopic specimen, initially the

system locates the region which contains the cell and then using a robust color

gradient vector flow (GVF) active contour model [176] segments the region into

nuclear and cytoplasmic components.

2. Cell representation: Texture information is used to characterize the morpholog-

ical structure of normal and diseased cells. A few example images from each

disorder are used to create the texton library which captures the structure of tex-

ture inside each cells nucleus and cytoplasm. The cells are then represented with

two texton histograms corresponding to nuclear and cytoplasmic distribution.

3. Classification: We utilize SVMs over the texton histogram based representation

to classify the cell images and observe major improvements over the classical his-

togram based classification methods in the literature such as k-nearest neighbors

(kNN).

We conduct four different experiments. In the first experiment, we compare texture

features constructed using different methods that were used traditionally in the liter-

ature. In the second experiment, we compare the performance of several classification

algorithms applied to texture based diagnosis problem. In the third experiment, we

show the discriminative power of the proposed cell representation by comparing with

several other commonly used features (shape, area) for hematopathological diagnosis.

Finally we compare our method with the method of [28] which aims the same problem

but has one less disorder class.
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7.2 Image Segmentation

In order to extract features from the cell images, we start with the image segmentation.

In our application, the region of interest (ROI) containing the object cell, is automat-

ically selected for each image [50]. Both the nuclei and the cytoplasm of cells contain

valuable distinguishable information for classification. Therefore, the robust color GVF

snake [176], which combines L2E robust estimation and color gradient, is applied for

segmenting both the nuclei and the cytoplasm.

A 2D parametric snake [174] is a curve x(s) = (x(s), y(s)) defined via the parameter

s ∈ [0, 1] to minimize an energy function

Esnake =
∫ 1

0

(
1
2

(
τ
∣∣x′(s)∣∣2 + ρ

∣∣x′′(s)∣∣2)+ Eext (x(s))
)
ds (7.1)

where x′(s) and x′′(s) are the first and second derivatives of the curve with respect to

parameter s, and τ and ρ are constants.

According to Helmholtz theorem, the external energy can be replaced with −Θ(x, y)

in (7.1), where Θ is the GVF in image coordinates. The GVF is computed as a diffusion

of the gradient vectors of a gray-level edge map derived from the image. The diffusion

version of the gradient vector can enlarge the capture region of tradition snake and

also lead the snake into concave regions. It is defined as Θ(x, y) = [u(x, y), v(x, y)] and

minimizes the energy function

Ψ =
∫ ∫ [

η(u2
x + u2

y + v2
x + v2

y) + (7.2)( ∣∣∇{Gσ(x,y) ∗ I(x, y)
}∣∣2 · ∣∣Θ(x, y)−∇

{
Gσ(x,y) ∗ I(x, y)

}∣∣2 )]dxdy
where ∇

{
Gσ(x,y) ∗ I(x, y)

}
is the gradient of the input image I(x, y) after Gaussian

smoothing with covariance σ2I2 and mean 0; ux...vy are the partial derivatives w.r.t.

x and y; η is a constant. In our approach, the original GVF vector field Θ is replaced

by Θ∗, which is the diffusion field in the L∗u∗v∗ color space that is more closer to the

human perception of color. The color differences in this space can be approximated by

Euclidean distances [173, Sect. 3.3.9]. Applying the principle of calculus of variations,

the problem is solved by the following Euler-Lagrange differential equation:

Esnake = τx′′(s)− ρx′′′′(s) + Θ∗(x, y) (7.3)
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(a) (b)

(c) (d)

(e)

Figure 7.2: Image segmentation results applying robust color GVF snake: (a) Nor-
mal; (b) CLL; (c) MCL; (d) FCC; (e) Acute Leukemia. The outer and inner curves
correspond to cytoplasm and nucleus segmentations respectively.

where x′′(s) and x′′′′(s) are the second and fourth derivatives of the curve with respect

to the parameter s. Furthermore, instead of randomly choosing initial curves, we apply

L2E based robust estimation to locate the initial positions, which improves both the

convergence speed and the robustness. Figure 7.2 shows some segmentation results

using the approach. The performance of segmentation algorithm slightly varies for

different classes of disorders and on average 93% of nuclear and 91% of cytoplasmic

components are correctly identified. For more details about the color gradient and

robust estimation guided active contour segmentation algorithm, we refer to [176].
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7.3 Feature Construction

In this section we describe texture based cell representation. A detailed comparison

of texture based representation with other common features used in hematapathologic

diagnosis is given in Section 7.5.5.

7.3.1 Texture Features

The earlier texture research characterizes a texture according to statistical measures of

gray level occurrence relation inside the texture image. The most popular methods are

gray level difference [66], gray level cooccurrence matrices [67], gray level run length

matrices [57] and autoregressive models [102].

In more recent studies, a texture is characterized through textons which are basic

repetitive elements of textures. The form of the textons are not known and they are

learned through responses to a set of linear filters, and the resulting responses are clus-

tered. The cluster centers are then selected as the textons. The approach has been

successfully used in several fields of texture research including classification, segmenta-

tion and synthesis [34, 73, 97, 162].

Recently, it has been proposed that the raw pixel values could replace filter responses

to characterize a texture. Local intensity information in spatial domain was used for

texture synthesis in [41, 74] and texture classification in [163]. In this approach, the

neighboring pixels around the pixel of interest are stacked into an array and used as

the feature vector.

After filtering the images, each pixel is mapped to d-dimensional space, where d

is the number of filters. Similarly, if local neighborhoods are used, d is equal to size

of the local neighborhood. A few sample images are selected from each texture class

and the filter responses/local neighborhoods are clustered using k-means clustering

algorithm [40]. The cluster centers are selected as textons, therefore the km parameter

of the clustering algorithm determines the number of textons. This process is repeated

for all the c texture classes, and the cluster centers are concatenated to each other to

form the texton library. There are c · km = p textons in the texton library.
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Figure 7.3: M8 filter bank. There are total of 38 filters from which two filters are
rotationally symmetric (Gaussian and Laplacian of Gaussian) and the remaining 36
filters are edge and bar filters at three different scales.

The histograms are created by assigning the filter response of each pixel to the closest

texton in the texton library (vector quantization) and then finding the occurrence fre-

quencies of each texton throughout the image. The k-means clustering algorithm used

during texton library generation finds a suboptimal solution for determining quanti-

zation levels in a d-dimensional space, which is enough in many practical situations.

Finally, each texture image is modeled via a p-bin texton histogram, representing all

classes.

7.3.2 Cell Representation

The nucleus and cytoplasm of the cells were segmented, as described in Section 7.2.

Following segmentation, the cell images are converted to gray level and normalized

such that the mean is zero and standard deviation is one. Since the cell images are

acquired in different imaging conditions, the normalization is an important operation

to minimize the effect of different imaging conditions. The normalization significantly

improves the final classification results and supporting claims using similar normaliza-

tion techniques were also reported in [116]. Notice that, the segmentation algorithm

described in previous section uses color information, where as texture representation is

computed on normalized gray level images.

We compared the performance of classifiers based on different filter banks and local
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neighborhood in Section 7.5.3. Although there were not significant differences among

some of the filter banks, we found that the M8 filter bank [162] is the most suitable

for our cell representation. The filter bank consists of 38 filters, from which two filters

are rotationally symmetric (Gaussian and Laplacian of Gaussian) and 36 of them are

edge and bar filters at three scales. We use σ = 10 for Gaussian and Laplacian of

Gaussian functions. The edge and bar filters are selected with σx = 1 and σy = 3 at the

finest scale, and are doubled at each of the three scales. The filters are computed at six

orientations. Among the oriented filters, only the maximum filter response is retained

at each scale, therefore the feature space is d = 8 dimensional. The filters in M8 filter

bank are shown in Figure 7.3. The detailed comparison of different filter banks are

explained in Section 7.5.3.

We analyze the texture of cytoplasm and nucleus independently. A few random

cell images (ns = 30) are selected from each class and filter responses inside the seg-

mentation mask are clustered using k-means clustering algorithm with km = 30. The

clustering is performed separately for pixels inside the nucleus and cytoplasm, and re-

peated for each disease class. Since the size and the variability of cytoplasm texture

is less than the nucleus texture, we generate half the number of clusters from the cy-

toplasm than from the nucleus. We concatenate the cluster centers from each class

and construct the texton libraries separately for cytoplasmic and nuclear texture. The

algorithm for texton library generation is given in Figure 7.4.

Using the constructed texton library, the cells are represented with their texton

histograms. Given an arbitrary cell image, the pixels inside the cytoplasm and nucleus

are filtered and the responses are quantized to the nearest textons in the library. As

a result each cell image is represented with two texton histograms of sizes c · km and

c·km
2 , corresponding to nuclear and cytoplasmic texture. The texton library generation

and cell representation process is illustrated in Figure 7.5.
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Input: Cell image samples {Ij,i}, i = 1...ns from disease classes j = 1...c;
cytoplasm and nucleus mask for each cell; number of textons per class km.

• Initialize nucleus texton library TN = ∅ and cytoplasm texton library
TC = ∅

• for j = 1 to c (for each class)

– Initialize total filter responses for nucleus FN = ∅ and cytoplasm
FC = ∅

– for i = 1 to ns (for each sample in the class)

∗ Filter image with M8 filter bank, Fj,i = fM8 ∗ Ij,i

∗ Concatenate filter responses inside nucleus mask and cytoplasm
mask to total responses, FN = [FN ; FN

j,i], FC = [FC ; FC
j,i]

– Cluster filter responses for nucleus and cytoplasm
TN

j = k-means(FN , km), TC
j = k-means(FC , km/2)

– Add cluster centers to texton library
TN = [TN ; TN

j ], TC = [TC ; TC
j ]

Figure 7.4: Texton library generation

7.4 Classification

We utilize support vector machines (SVMs) to classify among four types of malignancies

and normal cells. SVMs were first introduced in [31] for binary classification problems.

The technique is a generalization of linear decision boundaries where decision surface

is constructed in a large transformed version of the original feature space.

We first focus on the binary classification problem (c = 2). Let {(xi, yi)}i=1..n be

the training set with the respective class labels, where xi ∈ Rp and yi ∈ {±1}. The

SVM solves the following optimization problem

min
β,β0,ξi

[
1
2
βT β + γ

n∑
i=1

ξi

]
(7.4)

subject to yi(h(xi)T β + β0) ≥ 1− ξi ξi > 0 i = 1, .., n

where the training samples are mapped to an enlarged space with the function h(x).

Minimizing βT β is equivalent to maximizing the margin between the positive and nega-

tive samples and γ is the tradeoff between the training errors {ξi}i=1...n and the margin.
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Figure 7.5: Texton library generation and cell representation. Black and gray vectors
correspond to nuclear and cytoplasmic features respectively.

We maximize the dual problem of (7.5) since it is a simpler convex quadratic program-

ming problem. The dual problem and the decision function involve mapping h(x)

through an inner product, therefore it suffices to define the inner product through a

kernel function without defining the mapping. In our implementation we use the linear

kernel function, i.e., K(x,x′) = x · x′. A more detailed discussion on SVMs can be

found in [33].

Next we focus on the multi-class classification problem. The first group of methods

construct several binary classifiers and combines them to solve multiclass classification
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problem. The most popular two methods are one-against-one and one-against-all clas-

sifiers. In one-against-one classifier, a binary classifier is trained for all combinations of

classes. Then, the label of a test example is predicted by the majority voting among

the classifiers. In one-against-all classifier, for each class a binary classifier is trained

by labeling the samples from the class as positive examples and samples from the other

classes as negative examples. A query point is assigned to the class having maximum

decision function among all the classes.

The second group of methods considers all the classes together and solves the multi-

class problem in one step. Due to a large scale optimization problem, these methods

are computationally more expensive which makes them unsuitable for large size appli-

cations. A detailed comparison of multi-class SVMs can be found in [76].

Here we utilize one-against-one SVM classifier. Besides we present results for one-

against-all SVM classifier, kNN classifier which is widely used for texture classification

problems and LogitBoost classifier which allows us to describe the uncertainty of the

classification, in Section 7.5.

7.5 Experiments

7.5.1 Cell Database

Immunophenotyping was used to confirm the diagnosis for a mixed set of 86 hematopathol-

ogy cases: 18 Mantle Cell Lymphoma (MCL), 20 Chronic Lymphocytic Leukemia

(CLL), 9 Follicular Center Cell lymphoma (FCC), and 39 Acute Leukemia. In ad-

dition there were 19 normal cases. For each case, we have varying number of cell

images ranging from 10 to 90. In total we have 3691 cell images from 105 cases. All

cases originated from the archives of either City of Hope National Medical Center in

California, University of Pennsylvania of School of Medicine, Spectrum Health System,

Grand Rapids, MI or Robert Wood Johnson University Hospital at the University of

Medicine & Density of New Jersey.

There were obvious variations in the staining characteristics of specimens among

the institutions, which were introduced because of differences in manufacturers of the
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(a) RWJ (b) PEN (c) CAL (d) SHS

Figure 7.6: Mantle Cell Lymphoma (MCL) samples from four different institutions. (a)
Robert Wood Johnson University Hospital. (b) University of Pennsylvania of School
of Medicine. (c) City of Hope National Medical Center in California. (d) Spectrum
Health System, Grand Rapids, MI. The images reflect the obvious variations in imaging
conditions among different institutions.

dyes, choices in automated stainers and due to the overall intensity variations. All

of these variables led to variations in shadowing, shading, contrasts and highlighting

cues providing an added challenge for the classification algorithms. Four MCL samples

from different institutions are shown in Figure 7.6, which demonstrates the imaging

variations among different institutions.

Stained specimens were examined by a certified hematopathologist using an Olym-

pus AX70 microscope equipped with a Prior 6-way robotic stage and motorized turret

to locate, digitize and store specimens. The system utilizes interactive software devel-

oped in Java and C++. The imaging components of the system consist of an Intel-based

workstation interfaced to an Olympus DP70 color camera featuring 12-bit color depth

for each color channel and 1.45 million pixel effective resolution. Figure 7.7 shows sam-

ples from normal and each disorder category originated from Robert Wood Johnson

hospital. As seen in the images our cell database covers a wide range of characteristics

for each disease category.

7.5.2 Test Methodology

The texture statistics of the cell images from a single case are similar to each other. As

a result, the division of test and training sets without obeying the separation of cells

based on per case (patient), produce biased results towards better classification rates.

We perform leave one out tests in our experiments. We select all the cell images

from a single case as the test set and the remaining cell images in the database as the
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(a) Benign

(b) CLL

(c) MCL

(d) FCC

(e) Acute Leukemia

Figure 7.7: Samples from normal and each disorder category from Robert Wood John-
son (RWJ) University Hospital. Even from a single institution, the samples show great
variability.

training set. The cells from the selected case are classified using the trained classifier.

Training is repeated for each case (patient). In Section 7.5.6, we also present results

for 10-fold cross validation, where a model can be trained using some cells of a case

and used to classify some other cells of the same case. We refer to this scheme as not

obeying the separation.

We present the results for two different tests: cell classification and case classifica-

tion. In cell classification, we predict the label of each cell with the trained classifier. In

the case classification, we assign the label of the case according to the majority voting
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among its cells. Notice that there are variable number of cell images per case, ranging

from 10 to 90.

7.5.3 Filter Banks

In the first experiment, we compare the texture features generated by using M8 fil-

ter bank with LM [97], S [138], M4 [162] filter banks and the local neighborhood

method [163]. The LM filter bank consists of 48 anisotropic and isotropic filter: first and

second derivative of Gaussians at 6 orientations and 3 scales; 8 Laplacian of Gaussian

filters and 4 Gaussian filters. The S filter bank consists of 13 rotationally symmetric

filters and M4 filter bank is similar to M8 filter bank except, edge and bar filters

appear only at single scale.

Initially, ns = 30 random cell images are selected from each of the five classes, and

the images are convolved with the filter banks. Also, the local neighborhood based

features are constructed by stacking 7 × 7 neighborhood of each pixel. We do not

normalize the images while constructing local neighborhood based features since the

method uses local intensity information.

For nuclear texture we use km = 30 cluster centers, and for the cytoplasm texture

km = 15 cluster centers, from each class. Therefore, the texton library has 150 textons

for nuclei and 75 textons for the cytoplasms, total of 225 bin histogram for each cell.

The classification performance of different features are given in Table 7.1. The

results indicate that M8, S and LM outperforms the M4 filter bank and local neigh-

borhood method. There are not obvious differences among the M8, S and LM filter

banks. The case classification performance of LM and S filter banks are slightly better

than M8 whereas cell classification performances support the inverse argument. We

consider cell classification performance as more important, since cases are classified ac-

cording the majority voting of the cells and a few classified/misclassified samples among

a case can drastically change the result. Moreover, M8 filter bank is the most compact

space which has 8 features whereas LM and S filter banks have 48 and 13 features,

respectively. The clustering and quantization steps take much longer time using the

later methods, e.g., one hour for M8 vs. eight hours for LM.
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M8 S LM M4 Local Neigh.
Cell classification 84.45 84.04 82.64 78.98 75.62
Case classification 89.52 90.48 90.48 84.76 82.86

Table 7.1: Comparison of M8 filter bank with features constructed by different fil-
ter banks and local neighborhood method. The results are ordered according to cell
classification rates.

7.5.4 Classification Methods

In the second experiment we compare the one-against-one SVMs with three classification

algorithms: LogitBoost, one-against-all SVMs, kNN.

Nearest neighbor classifier with the χ2 distance metric is the widely applied classi-

fication algorithm used with histogram based texture representation. In kNN classifi-

cation [71, p.415], the closest kn training samples to the query point are detected and

the query point is labeled with the class having the majority votes among the detected

points. It is shown with the experiments that among the other possible choices for

the distance function (KL-divergence, Bhattacharya distance, Euclidean distance), χ2

distance performs best for the texture similarity measure. The χ2 distance between two

one-dimensional histograms h1 and h2 is measured as

χ2(h1, h2) =
1
2

p∑
t=1

(h1(t)− h2(t))2

h1(t) + h2(t)
. (7.5)

We select the optimum value of the number of neighbors parameter as kn = 15,

via cross-validation. Since χ2 distance measures dissimilarity between two distribu-

tions we do not normalize each feature to have zero mean standard deviation for kNN

classification, where as we perform normalization for other methods.

The second method, for comparison is multiclass LogitBoost classifier [54]. Log-

itBoost algorithm learns an additive multiple logistic regression model by minimizing

negative log likelihood with quasi-Newton iterations. The probability of a sample x

being in class l is given by

pl(x) =
eFl(x)∑c

j=1 e
Fj(x)

c∑
j=1

Fj(x) = 0 (7.6)

where Fl(x) is an additive function

Fl(x) =
M∑

m=1

fml(x). (7.7)
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At each boosting iterationm, the algorithm learns the weak classifiers fmj(x), j = 1...c

by fitting weighted least squares regressions of training points xi, i = 1...n to response

values zij with weights wij where

zij =
y∗ij − pj(xi)

pj(xi)(1− pj(xi))
wij = pj(xi)(1− pj(xi)) (7.8)

and y∗ij is the binary class indicator such that y∗ij = 1 if class of i − th sample yi = j,

and 0 otherwise.

We utilize regression stumps as weak learners, which are regression trees with a

single split

f(x) =

 a if xt < θ

b else.
(7.9)

We learn the regression coefficients a, b, the threshold θ while xt denotes the t − th

dimension among the 225 dimensions of the feature vector x. In our implementation

we performed M = 300 boosting iterations. We refer readers to [54] for more technical

details.

For SVM classifiers we use linear kernel and a soft penalty (γ = 0.01) for training

errors [84, Chapter 11]. The classification rates are given in Table 7.2. Results indicate

that we achieve major improvements over the widely used kNN based texture classifier

with the introduction of SVMs or LogitBoost. The one-against-one SVM and Logit-

Boost classifiers produced comparable results, while outperforming the other methods

significantly. The performance of one-against-one SVM classifier is better than Logit-

Boost classifier in cell classification. However, LogitBoost has certain advantages over

SVM. In medical applications, it is also important to report the uncertainty about an

estimation. Since LogitBoost classifier estimates the posterior distribution of class la-

bels through (7.6), with this method we can describe the uncertainty of the estimation

for each individual cell. In our application, we utilize one-against-one SVM classifier

since it produces most accurate results.

Our results are comparable to the diagnoses of human experts. In a similar setup,

but including fewer cases from normal and three lymphoproliferatie disorders (four class

problem), three different human experts could only classify less than 70% of the cells

correctly [28], which illustrates the good performance of our approach.
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One-Ag.-One SVM LogitBoost One-Ag.-All SVM kNN
Cell classification 84.45 83.14 81.60 81.17
Case classification 89.52 89.52 87.62 84.76

Table 7.2: Cell and case classification rates of different classification algorithms.

Normal CLL MCL FCC Acute Leukemia
Normal 734 64 11 1 0
CLL 35 504 49 63 0
MCL 11 78 375 27 67
FCC 14 62 31 132 2

Acute Leukemia 0 0 59 0 1372

Table 7.3: Confusion matrix of cell classification for one-against-one SVM.

In Table 7.3 and Table 7.4 we present the confusion matrices for cell and case

classification using one-against-one SVM. The rows of the table show the actual cell

classes and the columns show the predicted cell classes. The normal and acute cells are

classified accurately, whereas there is some confusion among CLL, MCL and FCC cells.

In the case classification almost all of the classes are predicted correctly, and only FCC

cases have several misclassifications. This is mainly because we have limited number of

training examples from the FCC cases.

Besides five class classification problem, we diagnosed the cells and the cases as

normal vs. disorder. Since the problem is binary classification, one-against-one and

one-against-all SVMs reduced to binary SVM classifier. The classification rates both

for cells and cases are given in Table 7.5. The results indicate that we can diagnose a

case as being normal or disorder almost perfectly, and only a single case is misclassified

among the whole database.

7.5.5 Other Features

In the third experiment we compared the texture based representation with several

other features that are commonly used for hematopathology diagnoses. The first set

of features are related to area of the cell. We use nucleus and cytoplasm area and

nucleus/cytoplasm area ratio.

The second set of features are related to the shape of the nucleus. We analyze the
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Normal CLL MCL FCC Acute Leukemia
Normal 19 0 0 0 0
CLL 0 18 1 1 0
MCL 0 2 14 0 2
FCC 2 1 1 5 0

Acute Leukemia 0 0 1 0 38

Table 7.4: Confusion matrix of case classification for one-against-one SVM.

SVM LogitBoost kNN
Cell classification 98.09 97.13 96.29
Case classification 99.05 99.05 99.05

Table 7.5: Normal vs. disorder classification rates.

shape of the nucleus based on elliptic Fourier descriptors [93] which are made invariant

to changes in location, orientation and scale [28]. We achieve rotation invariance by

compensating for the arbitrary position of the starting point on the contour and for the

arbitrary orientation of the contour. Scale invariance is achieved by normalizing each

Fourier coefficient. The following conditions are considered.

• If the first harmonic locus is an ellipse, the rotation is defined relative to the

semi-major axis of the locus and we normalize the coefficients by the magnitude

of the semi-major axis.

• If the first harmonic locus is circular, the rotation is made with respect to the line

defined by the centroid of the contour and the most distant point on the contour

and we normalize the coefficients by magnitude of the radius.

We obtain translational invariance by removing the DC coefficient from the Fourier

series. We retrieve 16 harmonics (64 coefficients) for the shape of each nucleus.

We present the one-against-one SVM classification results for each of the features

and the combination of all the features in Table 7.6. For the combined features we

stack all the features into an array. We see that neither area based nor shape based

features are alone enough to perform classification. The texture based features out-

perform both of the other features significantly. Notice that, although indirectly, the

area information is presented inside the texture features, since each bin of the texton

histogram is equal to the number of occurrence of the texton in the image. There are
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Shape Area Texture Combined
Cell classification 47.43 66.96 84.45 84.62
Case classification 50.47 70.48 89.52 91.42

Table 7.6: Classification rates, based on area, shape, texture and combined features
utilizing one-against-one SVMs.

Normal CLL MCL FCC Acute Leukemia
Normal 19 0 0 0 0
CLL 0 18 1 1 0
MCL 0 2 14 0 2
FCC 1 0 1 7 0

Acute Leukemia 0 0 1 0 38

Table 7.7: Confusion matrix of case classification using combined features utilizing
one-against-one SVMs.

minor improvements from texture based representation, 84.45%, to combined features,

84.62%, in cell classification and 89.52% to 91.42% in case classification.

The distribution of the classification performances according to different disorders

show variation from texture based features to combined features. The confusion matrix

of case classification using combined features are given in Table 7.7. Usually in the

advanced stages of FCC, the nuclei show variability from the other diseases. We see

that two more FCC cases are correctly classified with combined features relative to

Table 7.4. The results almost did not affect the other classes which supports the claim.

We achieve only minor improvements over the texture features with the introduction

of morphological features such as area and shape.

7.5.6 Comparison with Previous Method

In this section we compare our approach with the method of [28]. The problem consid-

ered in [28] is a subset of our problem, where only four classes are considered (Benign,

MCL, FCC, CLL). The cell database of [28] contains only 261 specimens and the testing

is performed by adopting 10-fold cross validations which do not obey separation based

on patient.

The results of [28] is given in Table 7.8. To directly compare our results with [28]

and illustrate the effect of test methodology, we also performed 10-fold cross validations
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Normal CLL MCL FCC No Decision
Normal 73.0 13.4 0.0 12.0 1.6
CLL 7.0 83.9 7.1 2.0 0
MCL 0 13.6 83.3 1.4 1.7
FCC 5.0 2.5 0.0 90.0 2.5

Table 7.8: Confusion matrix of cell classification rates of [28].

Normal CLL MCL FCC AML
Normal 96.2 3.4 0.4 0.0 0.0
CLL 2.9 90.4 3.9 2.8 0
MCL 1.5 6.0 83.6 1.5 7.4
FCC 1.9 9.7 6.2 81.4 0.8
AML 0.0 0.0 1.4 0.0 98.9

Table 7.9: Confusion matrix of cell classification rates using 10-fold cross validation
utilizing one-against-one SVMs.

and presented the cell classification results in Table 7.9. Even though the problem that

we solve is more difficult (one more class), we see that our results are significantly better

than [28] except for FCC class. Only the classification of FCC cells were slightly better

in [28], but we note that there were only 20 FCC cells in their experiments.

The classification rates of our method with 10-fold cross validation tests are signifi-

cantly higher than the leave-one-out tests performed previously. The cell classification

rate changed from 84.45% to 93.18%. We see that the separation of training and test

sets without obeying case separation, produces biased results towards better perfor-

mances. The specimens from a single case may have similarities to each other, which

are uncorrelated to the class of the disorder.
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Chapter 8

Conclusions

This thesis proposed and investigated novel learning methods which account for the

manifold structure of the visual data. Three learning algorithms are presented based on

the problem setting: Unsupervised classification (clustering), supervised classification

and regression.

We presented an unsupervised learning algorithm by extending the application do-

main of the mean shift algorithm from vector spaces to Lie groups. The derived cluster-

ing algorithm on Lie groups is used for multiple motion estimation problem from noisy

point correspondences. The problem is considered in its most general form such that

the number of motions in the scene is not known priory and there exist large amount

of outliers.

In a supervised setting, we described an additive classification model for data points

lying on a Riemannian manifold. The derived algorithm is applied to pedestrian de-

tection problem which is known to be among the hardest examples of the detection

tasks. Extensive experiments on two challenging human datasets show that the algo-

rithm is superior to the current state of the art detection approaches and the vector

space methods.

Next, we presented a regression model where the response parameters form a Lie

group. A novel formulation for affine tracking is derived by learning the regression model

on the Lie algebra of the affine group, given the image observations. The approach is

shown to yield significantly lower estimation errors compared with the vector space

methods. The learning model is generalized to build an invariant object detector from

a pose dependent detector. Compared to the existing detection methods, the size of

the search space is reduced drastically.
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Our main observation is that accounting for the non-Euclidean nature of the visual

data provides major improvements over the vector space approaches. Several other con-

tributions of the thesis include a novel region descriptor and an online learning algorithm

for modeling background statistics of a scene. The proposed methods are utilized for

for several challenging problems such as matching, tracking, texture classification and

low frame rate tracking.

8.1 Directions for Future Research

The following are a few research directions that can be pursued based on the techniques

proposed in this thesis.

8.1.1 Incremental Subspace Estimation

The bottleneck of the presented mean shift procedure is the sampling step required

to generate hypothesis from the available point set. The number of elemental subsets

required to correctly estimate the parameters is an exponential function of the fraction

of inlier points and the cardinality of the elemental subsets. The probability of getting

a single good estimate from elemental subsets can be formulated as
(

ni
ni+no

)d
, where ni

and no are the number of inlier and outlier points respectively and d is the cardinality

of the elemental subsets. The probability can be quite small if the cardinality is large or

fraction of the inliers is small. For example, in fundamental matrix estimation problem

the cardinality of the elemental subsets is eight and the fraction of inliers can be quite

small since they are acquired from the output of a point matching procedure.

The proposed mean shift algorithm can be modified to perform incremental subspace

estimation where a solution can be found in polynomial time as a parameter of the

number of total points and the cardinality. The idea is to enforce lower rank constraints

and increment the constraint by one at each iteration. The sketch of the approach is

as follows. Assuming the points lie on a k-dimensional subspace of an m-dimensional

space, the algorithm initially searches for a one-dimensional subspace which is contained

in the the k-dimensional subspace and does not have any component in the null space.
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At each iteration one more basis vector is added to the estimated subspace until the k-

dimensional subspace is recovered. The operation briefly outlined here can be performed

by clustering lower dimensional subspaces on Grassmann manifold and adding basis

vectors which are orthogonal to the current estimates.

8.1.2 Multiclass Classification and Applications to Other Manifolds

in Vision

The classification algorithm presented in this thesis is designed for binary classification

problems. The approach can be trivially generalized to multiclass setting by solving for

multi-logit parametrization [54].

There exist many different manifolds which are well known outside vision and have

been studied in fields such as physics and robotics. These spaces can be further analyzed

for practical applications in computer vision problems based on the learning techniques

presented in this thesis. For example, the presented supervised learning algorithm can

be utilized for classification on Grassmann manifold for shape space analysis [8] or

Special Euclidean Group for motion estimation.

8.1.3 Clustering Point Sets

Many vision problems involve estimation on variable length spaces where the data points

are unordered. For instance, the bag of features model is a commonly used representa-

tion model where typically an image or an object of interest is represented with several

local features extracted from the source. Since many of the classical machine learning

techniques require the features to be ordered and fixed length, they are not well suited

for these spaces. The common approach is to present an auxiliary representation where

the induced space is fixed length and the points are ordered, such as the occurrence

frequencies of the local features in the form of an histogram.

The mean shift procedure can be generalized for direct analysis of such feature

spaces without requiring an auxiliary representation. The problem can be formulated

as clustering of point sets, where the cardinality of the sets are not constant and the

points are unordered. Initially, the method requires solving an assignment problem
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among two sets based on weighted bipartite graph matching, where the weights are

adjusted through the matching scores among the unordered point pairs. Then the

mean shift vector can be defined on a lower dimensional space using only the matched

points. It can be shown that the procedure is convergent to a local maxima of an

appropriately defined kernel density on the space of point sets.

8.1.4 Joint motion and image segmentation

It is possible to extend the multiple motion estimation framework for detecting multiple

structures from uncalibrated image sequences. The approach initially detects the optical

flow field between image sequences. In small neighborhoods of the image, it is possible to

assume a simple motion model such as translational motion which can be acquired from

the optical flow field. In larger neighborhoods a more complex motion model is needed.

Starting from simple translational motion, the model can be generalized to hold for

larger regions such as two-dimensional rigid motion to affine to planer homography. The

segmentation of the scene and the motion parameters can be acquired simultaneously

by incremental clustering.
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Appendix A

Riemannian Geometry Overview

Here we present a brief introduction to Riemannian geometry. For further information,

we refer readers to textbooks on the subject [14, 85].

A.1 Topological Spaces

A topological space is a set S together with a class of open subsets T of S. The (S, T )

pair satisfies following four axioms:

• The empty set is in T .

• The set S is in T .

• The union of any collection of sets in T is in T .

• The intersection of any finite number of sets in T is in T .

The elements of set S are called the points and the open subsets T is called the topology

of S. Any open set U ∈ T which contains point X ∈ S is called the neighborhood of

the point. A topological space is called Hausdorff if any two points can be separated

by neighborhoods, such that, X,Y ∈ S and there exists U ,V ∈ T , X ∈ U , Y ∈ V and

U ∩V = ∅. A mapping between two topological spaces is called continuous if the inverse

image of any open set with respect to the mapping is again an open set. A bijective

(one-to-one and onto) mapping which is also continuous in both directions is called a

homeomorphism.
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A.2 Smooth Manifolds

An m-dimensional manifold M is a topological space which is locally similar to Rm.

More formally, for any point X ∈ M, there exist an open neighborhood U ⊂ M

containing the point and a homeomorphism φ mapping the neighborhood to an open

set V ⊂ Rm, such that, φ : U 7→ V. The mapping can be written as φ(X) =

[φ1(X) φ2(X) . . . φm(X)] where φi, i = 1 . . .m are called the coordinate functions.

We call the pair (U , φ) a coordinate chart. An atlas is a collection of charts {Uα, φα}

for which the Uα form an open covering ofM, such that,
⋃

α Uα =M.

Let (Uα, φα) and (Uβ, φβ) be two coordinate charts, such that, Uα∩Uβ is non empty.

The chart transition φα ◦ φ−1
β is a mapping between two open sets in Rm, such that,

φα ◦ φ−1
β : φβ(Uα ∩ Uβ) 7→ φα(Uα ∩ Uβ). (A.1)

If all the chart transitions are smooth functions the atlas is called a smooth structure.

An m-dimensional smooth manifold is a manifold of dimensional m with a smooth

structure.

Let f :M 7→ R be a real valued function on a manifold. Given a coordinate chart

(U , φ), f ◦ φ−1 is a mapping from Rm to R. The function f is called smooth if for all

coordinate charts the mapping is a smooth map from Rm to R. Similarly a mapping

f : M 7→ M′ between smooth manifolds with charts (Uα, φα) and (U ′α, φ′α) is called

smooth if for all charts φ′α ◦ f ◦ φ−1
α is a smooth map.

A.3 Tangent Spaces

LetM be anm-dimensional smooth manifold, I an open interval in R and γ(t) : I 7→ M

be a curve. We say that γ is a smooth curve if for each chart (Uα, φα), φα ◦γ : R 7→ Rm

is a smooth map where γ(I) ∩ Uα 6= ∅.

Suppose two smooth curves γ1 : (−ε, ε) 7→ M and γ2 : (−ε, ε) 7→ M with γ1(0) =

γ2(0) = X. The curves are called equivalent if the ordinary derivatives of φα ◦ γ1 and

φα ◦ γ2 at 0 coincide for all charts (Uα, φα) where X ∈ Uα. A tangent vector at X is

defined by the equivalence class of the smooth curves γ : (−ε, ε) 7→ M, γ(0) = X. The
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tangent space at X, TXM , is the set of all tangent vectors at X.

The definition provides a simple geometric interpretation of the tangent space. Tan-

gent vectors are the tangents to the smooth curves lying on the manifold. However,

there is no single representative curve for a given tangent vector.

The tangent space is a vector space, thereby it is closed under addition and scalar

multiplication. Suppose γ1 and γ2 are two smooth curves onM where γ1(0) = γ2(0) =

X. We can not directly generate new tangent vectors by simply adding or multiplying

the curves since the resulting curve is not necessarily contained inM. However, we can

always choose a chart (Uα, φα), X ∈ Uα, such that φα(X) = 0. The mappings φα(γ1(t))

and φα(γ2(t)) define two curves through the origin in the coordinate chart. Now we

can define new curves on the coordinate space and pull back the results via φ−1
α

γs(t) = φ−1
α (φα(γ1(t)) + φα(γ2(t))) (A.2)

and

γm(t) = φ−1
α (λφα(γ1(t))) . (A.3)

It can be easily verified that the pull back curves are contained in M for t ∈ (−ε, ε)

and γs(0) = γm(0) = X. By chain rule, their derivatives at t = 0 generate the sum and

the scalar multiples of the corresponding tangent vectors.

A natural basis for the tangent space TXM can be inherited through coordinate

charts. Let (Uα, φα) be a coordinate chart containing point X. Now we can consider

the curves

γj(t) =

 t+ const, i = j;

const, i 6= j.
(A.4)

in terms of the local coordinates ui, i = 1 . . .m. The image of the curves on M

can be computed through φ−1
α (γj) and we can always select the constants such that

φ−1
α (γj(0)) = X. The associated tangent vector at t = 0 is called ∂

∂xi and has the local

coordinates

vj =
duj

dt

∣∣∣
t=0

=

 1, i = j;

0, i 6= j.
(A.5)
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The global coordinates can be recovered by the chain rule

wi =
m∑

j=1

∂
(
(φ−1

α )i
)

∂uj
vj . (A.6)

A.4 Riemannian Manifolds

A symmetric positive definite bilinear form on a vector space T is a map < ., . >:

T × T 7→ R which is linear in both parameters, symmetric and positive definite. Let

v,w, z ∈ T and α, β ∈ R, then < ., . > satisfies

• Bilinearity: < αv + βw, z >= α < v, z > +β < w, z >

< z, αv + βw >= α < z,v > +β < z,w >

• Symmetry: < v,w >=< w,v >

• Positive Definiteness: < v,v >≥ 0 with equality occurring if and only if v = 0.

A smooth Riemannian metric on a manifold M is an association to every point

X ∈M a symmetric positive definite bilinear form < ., . >X: TXM ×TXM 7→ R which

depends smoothly on the base point. The metric induces a norm for tangent vectors in

the tangent space, such that, v ∈ TXM , ‖v‖2X =< v,v >X. A Riemannian manifold

is a smooth manifold equipped with a smooth Riemannian metric (M, < ., . >X).

Note that, it is possible to define different metrics on the same manifold and different

Riemannian manifolds can be obtained.

Given a coordinate chart (Uα, φα), we can take the bases of the tangent space to be

the coordinate bases ∂
∂xi as defined before. The metric can be expressed by an m×m

positive definite symmetric matrix where the ij-th entry is given by

g(X)i,j =<
∂

∂xi
,
∂

∂xj
>, i, j = 1 . . .m. (A.7)

The inner product of two tangent vectors v =
∑m

i=1 v
i ∂
∂xi ,w =

∑m
i=1w

i ∂
∂xi is then

given by

< v,w >X=
m∑

i,j=1

g(X)i,jv
iwj . (A.8)
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A.5 Geodesics

Let γ(t) : [t0, t1] 7→ M be a smooth curve on M. The length of the curve L(γ) is

defined as

L(γ) =
∫ t1

t0

‖γ′(t)‖γ(t)dt. (A.9)

A smooth curve is called geodesic if and only if its velocity vector is constant along the

curve, such that, ‖γ′(t)‖γ(t) = const for t ∈ [t0, t1].

Let X and Y be two points on M. The distance between the points, d(X,Y), is

the infimum of the length of the curves, such that, γ(t0) = X and γ(t1) = Y. All the

shortest length curves between the points are geodesics but not vice-versa. However,

for nearby points the definition of geodesic and the shortest length curve coincide.

Throughout the thesis we use geodesics and the shortest length curves interchangeably.

A.6 Exponential Maps

Let X be a point on M. For each tangent vector v ∈ TXM , there exists a unique

geodesic γ starting at γ(0) = X having initial velocity γ′(0) = v. The exponential map,

expX : TXM 7→ M, maps the tangent v to the point on the manifold reached by the

geodesic after unit time

expX(v) = γ(1). (A.10)

Since the velocity along the geodesic is constant, the length of the geodesic is given by

the norm of the initial velocity d(X, expX(v)) = ‖v‖X. Under the exponential map,

the image of the zero tangent vector is the point itself, expX(0) = X.

For each point on the manifold X ∈M, the exponential map, expX, is a diffeomor-

phism (one-to-one, onto and continuously differentiable mapping in both directions)

from a neighborhood of the origin of the tangent space TXM onto a neighborhood of

the point X. Within this neighborhood, the inverse mapping, logX : M 7→ TXM ,

is uniquely defined. For certain manifolds the neighborhoods can be extended to the

whole tangent space and manifold hence the exponential map is a global diffeomor-

phism. Let X,Y ∈ M. From the definition of geodesic and the exponential map, the
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distance between the points can be computed by

d(X,Y) =< logX(Y), logX(Y) >X= ‖logX(Y)‖X. (A.11)

A.7 Types of Riemannian Manifolds

Here we briefly describe the geometry of a few examples of Riemannian manifolds on

which we derive our applications.

A.7.1 Lie Groups

A group G is a set of elements with an associated group operation (multiplication) that

satisfy four axioms:

• Closure: The group is closed under group operation. X ∈ G and Y ∈ G implies

XY ∈ G

• Associativity: The group operation is associative. X(YZ) = (XY)Z

• Identity: There is an identity element I in the group. IX = XI = X

• Inverse: There is an inverse for each element in the group. XX−1 = X−1X = I.

In addition, a group is called commutative if the group operation is commutative, such

that XY = YX.

A Lie group is a group G with the structure of a smooth manifold such that the

group operations are analytic, i.e. the maps

G×G → G, (X,Y)→ XY and (A.12)

G → G, X→ X−1 (A.13)

are analytic [133].

The tangent space to the identity element of the group TIG forms a Lie algebra

which is denoted by g. A Lie algebra g is a vector space that is closed under the Lie

bracket operation:

x,y ∈ g implies [x,y] ∈ g. (A.14)

A Lie bracket is a bilinear operation that satisfies the following identities:
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• Anti-symmetry: [x,y] = −[y,x]

• Jacobi identity: [x, [y, z]] + [y, [z,x]] + [z, [x,y]] = 0

The group operation provides Lie groups with additional algebraic structure. Let

X ∈ G. Left multiplication by the inverse of the group element

X−1 : G → G (A.15)

maps the neighborhood of X to neighborhood of I and carries the inner product at

TXG, to the Lie algebra g. The inverse mapping is defined by left multiplication by

X. Using this mapping we can work on the Lie algebra instead of TXG. For instance

we only need to define the exponential map at the identity element, exp : g → G

which is a diffeomorphism from a neighborhood of the origin of the Lie algebra g onto

a neighborhood of the identity I.

For noncommutative Lie groups the identity exp(x)exp(y) = exp(x + y) does not

hold. The identity is expressed by Baker-Campbell-Hausdorff formula [133, p.22-23]

exp(x)exp(y) = exp(BCH(x,y)) where

BCH(x,y) = x + y +
1
2
[x,y] +O(|(x,y)|3). (A.16)

Matrix Lie groups are all the subgroups of the general linear group GL(d,R) which

is the group of d × d dimensional real nonsingular matrices. The group operation,

matrix multiplication, is associative and every nonsingular matrix has an inverse. The

Lie bracket operator is defined as

[x,y] = xy − yx. (A.17)

Matrix groups are probably the most well known examples of Lie groups. The expo-

nential map of a matrix is given by the ordinary matrix exponential

exp(x) =
∞∑

k=0

1
k!

xk. (A.18)

The inverse map

log(X) =
∞∑

k=1

(−1)k−1

k
(X− I)k (A.19)
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can only be defined on a neighborhood of I. When X is distant from the identity

element of the group, the series fails to converge.

Let X,Y ∈ G where G is a matrix Lie group. Using the definition of geodesics and

the mapping (A.15), the distance function is given by

d(X,Y) = ‖log(X−1Y)‖F (A.20)

where ‖.‖F denotes the Frobenius norm of a matrix.

Special Orthogonal Group

The special orthogonal group SO(3) is the group of rotations R in 3D. The rotation

group satisfies RRT = I and det(R) = 1.

Its associated Lie algebra so(3) is the set of 3× 3 skew-symmetric matrices

Ω =


0 −ωx ωy

ωx 0 −ωz

−ωy ωz 0

 . (A.21)

We can write skew-symmetric matrices in vector form ω = [ωx, ωy, ωz]T and the identity

Ωx = ω × x always holds. From a geometrical point of view, Ω can be considered

as rotation around axis ω/‖ω‖ by an angle ‖ω‖. The structure of SO(3) allows us

to compute exponential map so(3) → SO(3) analytically via the Rodrigue’s rotation

formula [88, p.204]

exp(Ω) = I +
sin ‖ω‖
‖ω‖

Ω +
1− cos ‖ω‖
‖ω‖2

Ω2. (A.22)

The inverse map log(R) can be found in two steps [141, p.51]

cos θ =
1− tr(R)

2
(A.23)

and

log(R) =
θ

2 sin θ
(R−RT ). (A.24)

The method fails if θ = π, since sinπ = 0.
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Special Euclidean Group

The special Euclidean group SE(3) is the group of rigid motions in 3D

M =

 R t

0T 1

 (A.25)

where rotation matrix R is in SO(3) and translation vector t is in R3.

The Lie algebra of the rigid motions se(3) are the set of matrices

m =

 Ω u

0T 0

 (A.26)

where u is in R3 and Ω is defined in (A.21). The analytical computation of exponential

and logarithm maps are very similar to SO(3) and can be found in [141, p.52].

Affine Group

A two-dimensional affine transformation is given by a 3× 3 matrix M

M =

 A b

0 1

 (A.27)

where A is a nonsingular 2×2 matrix and b ∈ R2. The set of all two-dimensional affine

transformations forms a matrix Lie group denoted by A(2).

The associated Lie algebra is the set of matrices

m =

 U v

0 0

 (A.28)

where, U is a 2× 2 matrix and v ∈ R2.

A.7.2 Space of Symmetric Positive Definite Matrices

The d × d dimensional symmetric positive definite matrices (nonsingular covariance

matrices), Sym+
d , can be formulated as a connected Riemannian manifold and an affine

invariant Riemannian metric on the tangent space of Sym+
d is given by [122]

< y, z >X= trace
(
X− 1

2 yX−1zX− 1
2

)
. (A.29)
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The exponential map associated to the Riemannian metric

expX(y) = X
1
2 exp

(
X− 1

2 yX− 1
2

)
X

1
2 (A.30)

is a global diffeomorphism. Therefore, the logarithm is uniquely defined at all the points

on the manifold

logX(Y) = X
1
2 log

(
X− 1

2 YX− 1
2

)
X

1
2 . (A.31)

The exp and log are the ordinary matrix exponential and logarithm operators. Not

to be confused, expX and logX are manifold specific operators which are also point

dependent, X ∈ Sym+
d . The tangent space of Sym+

d is the space of d × d symmetric

matrices, and both the manifold and the tangent spaces are m = d(d+1)/2 dimensional.

For symmetric matrices, the ordinary matrix exponential and logarithm operators

can be computed easily. Let Σ = UDUT be the eigenvalue decomposition of a sym-

metric matrix. The exponential series is

exp(Σ) =
∞∑

k=0

Σk

k!
= Uexp(D)UT (A.32)

where exp(D) is the diagonal matrix of the eigenvalue exponentials. Similarly, the

logarithm is given by

log(Σ) =
∞∑

k=1

(−1)k−1

k
(Σ− I)k = Ulog(D)UT . (A.33)

The exponential operator is always defined, whereas the logarithms only exist for sym-

metric matrices with positive eigenvalues, Sym+
d .

The distance between two points X,Y ∈ Sym+
d is measured by substituting (A.31)

into (A.29)

d(X,Y) = [< logX(Y), logX(Y) >X]
1
2

=
[
trace

(
log2(X− 1

2 YX− 1
2 )
)] 1

2
. (A.34)

We note that an equivalent form of the affine invariant distance metric was first given

in [52], in terms of joint eigenvalues of X and Y.



143

References

[1] S. Agarwal and D. Roth, “Learning a sparse representation for object detection,”
in Proc. European Conf. on Computer Vision, Copehagen, Denmark, 2003, pp.
113–127.

[2] A. Aisenberg, “Coherent view of non-Hodgkin’s lymphoma.,” J. Clin. Oncol.,
vol. 13, pp. 2656–2675, 1995.

[3] M. Alexa, “Linear combination of transformations,” in SIGGRAPH ’02: Pro-
ceedings of the 29th Annual Conference on Computer Graphics and Interactive
Techniques, ACM Press, 2002, pp. 380–387.

[4] K. Arun, T. Huang, and S. Blostein, “Least-squares fitting of two 3D point sets,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 9, pp. 698–700, 1987.

[5] S. Avidan, “Ensemble tracking,” in Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, San Diego, CA, volume 2, 2005, pp. 494–501.

[6] S. Baker, R. Szeliski, and P. Anandan, “A layered approach to stereo reconstruc-
tion,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Santa
Barbara, CA, 1998, pp. 434 – 441.

[7] E. Bayro-Corrochano and J. Ortegon-Aguilar, “Lie algebra template tracking,”
Proceedings of the 17th International Conference on Pattern Recognition, vol. 2,
pp. 56–59, 2004.

[8] E. Begelfor and M. Werman, “Affine invariance revisited,” in Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, New York, NY, volume 2, 2006,
pp. 2087–2094.

[9] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition
using shape contexts,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, no. 4,
pp. 509–522, 2002.

[10] A. Berg, T. Berg, and J. Malik, “Shape matching and object recognition using
low distortion correspondence,” in Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, San Diego, CA, 2005, pp. 26–33.

[11] S. Birchfield and S. Rangarajan, “Spatiograms vs histograms for region-based
tracking,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
San Diego, CA, volume 2, 2005, pp. 1158–1163.

[12] M. Black and A. Jepson, “Eigentracking: Robust matching and tracking of artic-
ulated objects using a view-based representation,” Intl. J. of Computer Vision,
vol. 26, no. 1, pp. 63–84, 1998.

[13] S. Blostein and T. Huang, “Error analysis in stereo determination of 3D point
position,” IEEE Trans. Pattern Anal. Machine Intell., vol. 9, pp. 752–765, 1987.



144

[14] W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian
Geometry. Academic Press, second edition, 1986.

[15] N. Bouaynaya, W. Qu, and D. Schonfeld, “An online motion-based particle filter
for head tracking applications,” in Proc. of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, Philadelphia, volume 2, 2005, pp.
225–228.

[16] Y. Boykov and D. Huttenlocher, “Adaptive Bayesian recognition in tracking rigid
objects,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
Hilton Head, SC, volume 2, 2000, pp. 697–704.

[17] R. Brunelli and T. Poggio, “Face recognition: Features versus templates,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 15, no. 10, pp. 1042 – 1052, 1993.

[18] M. A. Carreira-Perpinan, “Gaussian mean-shift is an EM algorithm,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 29, no. 5, pp. 767–776, 2007.

[19] F. Chabat, G. Yang, and D. Hansell, “Obstructive lung diseases: texture classi-
fication for differentiation at ct,” Radiology, vol. 228, pp. 871–877, 2003.

[20] T.-J. Cham and J. M. Rehg, “A multiple hypothesis approach to figure tracking,”
in In Proc. Perceptual User Interfaces, 1998, pp. 19–24.

[21] J. Chan, P. Banks, M. Cleary, G. Delsol, C. De Wolf-Peeters, B. Falini, K. Gatter,
T. Grogan, N. Harris, and P. Isaacson, “A revised European-American classifi-
cation of lymphoid neoplasms proposed by the International Lymphoma study
group - A summary version.,” Am. J. Clin. Pathol., vol. 103, pp. 543–560, 1995.

[22] H. Chen and P. Meer, “Robust fusion of uncertain information,” IEEE Trans.
Systems, Man, Cybernetics-Part B, vol. 35, pp. 578–586, 2005.

[23] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 17, pp. 790–799, 1995.

[24] S. Chirikjian and A. Kyatkin, Engineering Applications of Noncommutative Har-
monic Analysis: With Emphasis on Rotation and Motion Groups. CRC Press,
2001.

[25] R. Collins, “Mean shift blob tracking through scale space,” in Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, Madison, WI, volume 2, 2003, pp.
234–240.

[26] D. Comaniciu, “Variable bandwidth density-based fusion,” in Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, Madison, WI, volume 1, 2003, pp.
56–66.

[27] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space
analysis,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, pp. 603–619, 2002.

[28] D. Comaniciu, P. Meer, and D. Foran, “Image-guided decision support system for
pathology,” Machine Vision and Applications, vol. 11, pp. 213–224, 1999.

[29] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid ob-
jects using mean shift,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, Hilton Head, SC, volume 1, 2000, pp. 142–149.



145

[30] T. Cootes, G. Edwards, and C. Taylor, “Active appearance models,” in Proc.
European Conf. on Computer Vision, Freiburg, Germany, 1998, pp. 484–498.

[31] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol. 20,
pp. 273–297, 1995.

[32] R. Cotran, V. Kumar, T. Collins, and S. Robbins, Pathologic Basis of Disease.
W.B. Saunders Company, fifth edition, 1994.

[33] N. Cristianini and J. Shawe-Taylor, Support Vector Machines and Other Kernel-
Based Learning Methods. Cambridge University Press, 2000.

[34] O. Cula and K. Dana, “3D texture recognition using bidirectional feature his-
tograms,” Intl. J. of Computer Vision, vol. 59, no. 1, 2004.

[35] N. Dalal, Finding people in images and videos. PhD thesis, Institut National
Polytechnique de Grenoble, July 2006.

[36] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Diego,
CA, volume 1, 2005, pp. 886–893.

[37] B. C. Davis, P. T. Fletcher, E. Bullitt, and S. Joshi, “Population shape regression
from random design data,” in Proc. 11th Intl. Conf. on Computer Vision, Rio de
Janeiro, Brazil, 2007, pp. 1–7.
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