
TRUSTED APPLICATION CENTRIC AD HOC

NETWORK

BY GANG XU

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Liviu Iftode

and approved by

New Brunswick, New Jersey

October, 2008

ABSTRACT OF THE DISSERTATION

Trusted Application Centric Ad hoc Network

by Gang Xu

Dissertation Director: Liviu Iftode

Mobile Ad hoc Networks (MANETs) have been evolving from a closed system, where all

mobile nodes are configured and controlled by a central authority (e.g., disaster scene

networks and sensor systems), to an open system, where the nodes are anonymous and

heterogeneous (e.g., vehicular ad hoc networks). This transition makes trust estab-

lishment a challenging problem for MANETs because in the new open environment it

is difficult (1) to guarantee trustworthiness of the MANET applications executed on

remote nodes, i.e., the lack of trusted behavior, (2) to ensure fair and secure communi-

cation between multiple network nodes, i.e., the lack of trusted communication, and (3)

to authenticate network nodes, i.e., the lack of trusted identity.

In this dissertation, we exploit low-cost trusted hardware and the application-centric

nature of MANETs to address the lack of trust problems in MANETs. We present the

design, implementation, and evaluation of four systems: (i) a service-aware trusted

execution monitor (Satem), which guarantees trusted code execution across application

transactions; (ii) a distributed method to create a protected MANET, which shields all

network member nodes from being attacked; (iii) a distributed network communication

policy enforcement mechanism, which ensures secure and cooperative communication

between network participants; and (iv) a locality driven key management architecture,

which authenticates network node identities.

ii

The main conclusion of this dissertation is that the emerging low cost trusted hard-

ware combined with the application centric nature of MANETs can be exploited to

provide solutions to the problem of lack of trust in MANETs, which would otherwise

be impossible.

iii

Acknowledgements

In my pursuit of the PH.D, I have received lots of help from many people. Without

them, the thesis would not have been possible.

It is difficult to overstate my gratitude to my Ph.D. supervisor, Dr. Liviu Iftode.

His enthusiasm, inspiration and encouragement have always been my first resource to

rely on when my research was at a stalemate. But the help I have obtained from him is

not just this. Through the years, I missed many group discussions due to my full-time

job. Liviu generously offered maximum flexibility to me. He not only tolerated my

absences, but spent countless hours to help me catch up. I have been so luck to study

under his guidance.

I would like to thank Dr. Naftaly Minsky. Dr. Minsky has served both my qualifying

and defense committees. Although we have not got other cooperation opportunities,

Dr. Minsky has treated me like one of his own students. He has been always available

to explain problems regarding security policies. The discussions with him, though not

many, have turned out to be very constructive and inspirational. I also thank Dr. Vinod

Ganapathy and Dr. Anand Tripathi, the other two member of my defense committee,

for reviewing my thesis.

I am grateful for Dr. Eric Allender. As the former graduate advisor, he gave me

valuable advice that helped me determine the correct direction to my research and

study at Rutgers.

Special thanks to Cristian Borcea, for the long and very productive collaboration.

With his dedicated help and creative thinking, many of our dirty and rough ideas have

been finally refined and published. I am gratitude to many of Discolab members: Steve

Smaldone, Pravin Shankar, Nishkam Ravi, Vivek Pathak, Tzvika Chumash, Porlin

Kang, Arati Baliga, and Lu Han, who have always been ready to help me with debugging

iv

code, discussing research issues and reviewing my papers and talks.

As a full-time employee of AT&T, I also want to acknowledge my company for

supporting my PH.D study. I am deeply indebted to my supervisors and colleagues at

AT&T: Sanjay Macwan, Gustavo de los Reyes, Cristina Serban and Gideon Lidor. They

have showed great understandings of my study and provided all sorts of assistance.

Lastly, I wish to thank my parents, from whom I inherited everything I need to

complete the thesis. I owe everything to my family, my wife Xiaoling and my 5-year

old son Bradley. They have been supporting me with their confidence and their love.

To them, I dedicate this thesis.

v

Dedication

To my wife, Xiaoling and my son, Bradley

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

List of Tables . xi

List of Figures . xii

1. Introduction . 1

1.1. The Thesis . 1

1.2. Development of Mobile Ad hoc Networks 1

1.3. Trusted Computing: The State of The Art 3

1.3.1. Ensuring Trusted Application . 4

1.3.2. Ensuring Trusted Communication 7

1.3.3. Ensuring Trusted Identity . 8

1.4. Lack of Trust in MANETs . 10

1.4.1. Trusted Application in MANETs 12

1.4.2. Trusted Communication in MANETs 13

1.4.3. Trusted Identity in MANETs . 13

1.5. Dissertation Contributions . 15

1.6. Contributors to Dissertation . 18

1.7. Dissertation Roadmap . 19

2. Satem: Service-aware Trusted Execution Monitor 20

2.1. The Problem Statement . 20

2.2. The Satem Architecture . 25

vii

2.2.1. TPM: The Root of Trust . 26

2.2.2. Bootstrap Trust using TPM . 27

2.2.3. Commitments . 28

2.2.4. Trusted Execution Monitor . 29

2.2.5. Evaluator and Trust Policy . 30

2.3. The Service Commitment Protocol . 32

2.4. Prototype Implementation . 34

2.4.1. Satem Monitor and Commitment Enforcement 34

2.4.2. Lazy Attestation . 38

2.4.3. TPM Functions and Satem Trust Evaluator 39

2.5. Evaluation . 39

2.5.1. Methodology . 39

2.5.2. Scope of Monitoring . 40

2.5.3. Commitment Delivery Latency 40

2.5.4. Transaction Processing Delay . 40

2.5.5. Cost of Application Execution 41

2.5.6. Overhead in Kernel Calls . 42

2.6. Case Studies . 43

2.7. Limitations . 44

2.8. Summary . 45

3. Protected MANET . 47

3.1. The Problem Statement . 47

3.2. Security Architecture . 48

3.3. Protocols for Joining Protected Networks 50

3.3.1. Enforcement Initial Activation Protocol (EIAP) 51

3.3.2. Enforcement Re-Activation Protocol (ERAP) 54

3.4. Prototype Implementation and Evaluation 56

3.5. Case Study . 58

viii

3.6. Limitations . 60

3.7. Summary . 61

4. Trusted Policy Enforcement . 62

4.1. The Problem Statement . 62

4.1.1. Example 1: Secure Routing . 62

4.1.2. Example 2: Unselfish Sharing . 63

4.1.3. Example 3: Fair Game . 64

4.2. Overview of Trusted Multi-tier Networks 65

4.2.1. Definition and Policy Enforcement 65

4.2.2. Creating a Trusted Multi-tier Network 67

4.3. Node Architecture and Protocols . 69

4.3.1. Trusted Agent . 69

4.3.2. Tier Manager and Enforcer . 70

4.3.3. Joining a Tier . 70

4.3.4. Merging Tiers . 72

4.3.5. Protocols Analysis . 74

4.4. Prototype and Evaluation . 75

4.4.1. Policies and Enforcers . 75

4.4.2. Tier Manager . 77

4.4.3. Experimental Evaluation . 77

4.4.4. Evaluation Through Simulations 81

4.5. Limitations . 85

4.6. Summary . 85

5. Locality Driven Key Management Architecture 87

5.1. The Problem Statement . 87

5.2. Key Management Architecture . 89

5.2.1. Certificate Authority . 90

5.2.2. Trust Chain . 92

ix

5.3. Protocols for Trust Management . 96

5.3.1. CA Table Update Protocol . 97

5.3.2. CA Head Election Protocol . 99

5.3.3. Message Delivery Fault Tolerance 100

5.4. Evaluation . 101

5.4.1. Prototype Implementation . 102

5.4.2. Simulation . 103

5.5. Limitations . 106

5.6. Summary . 107

6. Conclusion and Future Direction . 109

6.1. Future Direction . 111

References . 113

Vita . 122

x

List of Tables

1.1. Infrastructure based Networks vs MANETs 11

2.1. A Satem Commitment Example . 28

2.2. Scope of Satem Monitoring . 40

2.3. Satem Commitment Delivery Latency 40

2.4. Satem Application Transaction Processing Delay 41

3.1. 802.11 Link Establishment Latency in Protected Ad hoc Network 57

3.2. Performance of Data Communication over Protected Ad hoc Network . 57

4.1. Tier Joining and Merging Delay . 79

5.1. Costs of Certificate Generation on Dell Latitude CPi Laptop(Pentium II

366M Hz, 256M SDRAM) . 102

5.2. Costs of Certificate Generation on HP/Compaq iPAQ H3700 (Intel Stron-

gARM 206M Hz, 64M SDRAM) . 102

xi

List of Figures

1.1. The Three Pillars of Trust . 4

2.1. The Satem Architecture . 25

2.2. TPM Overview . 26

2.3. Satem Trust Evaluation . 30

2.4. The Steps of the Satem Service Commitment Protocol 32

2.5. Satem Commitment Enforcement Work Flow 35

2.6. Satem Cost of Service Execution . 41

2.7. Satem Overhead in Kernel Calls . 42

3.1. The Common Security Architecture of Protected Ad hoc Networks . . . 48

3.2. 802.11 Dual Port Access Control . 50

3.3. The Enforcement Initial Activation Protocol (EIAP) 52

3.4. The Enforcement Re-Activation Protocol (ERAP) 55

3.5. The Policy for Protected File Sharing Network 59

4.1. Policy Enforcement in Multi-tier Networks 66

4.2. Creation of Trusted Multi-Tier Network 68

4.3. Node Architecture of the Trusted Multi-tier Network 69

4.4. JOIN Protocol of Trusted Multi-tier Network 71

4.5. Merge Protocol of Trusted Multi-tier Network 73

4.6. The Example Policies of the File Sharing+AODV Two-tier Network . . 76

4.7. Overhead of Satem Commitments Enforcement in Kernel Calls 78

4.8. Probability Distribution of Ping Latency with and without Policy En-

forcement for Routing (AODV) . 80

4.9. Policy Enforcement Overhead in Mute and Mute+AODV 80

4.10. JOIN and MERGE completion ratio in Trusted Multi-tier Network . . 82

xii

4.11. JOIN Latency per Hop in Trusted Multi-tier Network 82

4.12. MERGE Latency per Hop in Trusted Multi-tier Network 83

4.13. AODV Policy Enforcement Overhead in Ping RTT 83

5.1. Conceptual Key Management Architecture 89

5.2. Trust Chain Update between Certificate Authorities 94

5.3. Certificate Authority Vulnerable Window(V) vs Node Speed 104

5.4. Certificate Authority Vulnerable Window(V) vs Number of Servers(N)

of CA . 104

5.5. Certificate Authority Vulnerable Window(V) vs Network Density 105

5.6. Message Cost(M) of Trust Chain Management vs Number of Servers(N)

of CA . 105

5.7. Message Cost(M) of Trust Chain Management vs Node Speed 106

xiii

1

Chapter 1

Introduction

1.1 The Thesis

The thesis of the dissertation is that trusted computing for Mobile Ad hoc Networks

(MANETs) can be achieved by exploiting the application centric nature of MANETs

and augmenting network nodes with low cost hardware based trusted computing system.

1.2 Development of Mobile Ad hoc Networks

A mobile ad hoc network (MANET) is a self-configuring wireless network in which the

routers can move and organize themselves arbitrarily [11]. Although ad hoc networking

was first defined by IEEE in 802.11 protocol set, the concept can be traced back to

the Packet Radio Network (PRNet) projects in 1972 [65]. Because a MANET does

not rely on the infrastructure and central management like the traditional Internet-like

networks, it is deemed as a promising solution to support highly decentralized or mobile

applications.

The earlier research efforts on MANETs were mainly concentrated on the wireless

technologies and ad hoc routing. The wireless technologies, such as multihop cellular

systems [123], HiperLAN [18], Bluetooth [58] and IEEE 802.11 (WiFi) [22], enable

connectivity at physical and link layers. The ad hoc routing mechanisms accomplish

network layer multi-hop connectivity. A large family of protocols have been developed,

such as AODV [39], DSR [66], DSDV [92], and Directed Diffusion [63].

Despite the tremendous achievements in wireless and ad hoc routing technologies,

the long waited MANET era has not arrived because of the far lagged development

of applications that can exploit MANETs. MANETs were traditionally envisioned to

2

only support special applications in military battlefield [98, 76] or disaster scene [27].

This situation was improved to some extent with appearance of low cost sensors and

sensor networks, which enabled civilian applications. However, the sparse resource of

the sensors, in particular, low performance processors and the lack of lasting power

supply, imposes a stringent restriction on development of new applications. As a result,

sensor based MANETs are only suitable for a very narrow spectrum of simple and

dedicated applications, such as object monitoring [51, 43, 116] and tracking [111, 106,

110]. The incapability of fostering and supporting novel and significant applications

made researchers doubt the use of MANET and divert attention away from it.

Recent years, with the explosive spread of mobile computing devices ranging from

laptops, smart phones to vehicular systems, enthusiasm for MANETs is coming back.

What causes the renaissance of MANETs is the greatly enhanced end devices: most of

them are equipped with powerful processors and wireless communication devices. For

example, the first generation Apple iPhone is equipped with a 700Mhz ARM proces-

sor, and can connect to both WiFi and cellular data networks. Therefore, they can

run function-rich applications rather than just simple data sensing and collection. To

harness the computing power embedded in these devices, the focus of MANET research

has shifted to programming models and system architectures suitable for MANETs.

Numerous programming models, such as [36, 99, 97], were presented, which laid a

foundation for the emergence of new generation MANET applications, such as vehicu-

lar ad hoc networks (VANETs) and mobile social networks (MSN).

A VANET is formed by hundreds or even thousands VANET-enabled cars on the

road to provide safety and comfort for passengers. Prototypes from both industry and

academia have been developed, such as FleetNet [53], CarNet [86] and TrafficView [46].

Mobile social networking allows the users to form a virtual community and to connect

with one another using their mobile devices. It resembles the Internet social networking,

such as MySpace [13] and Facebook [8], but is more than its mobile version. In addition

to the traditional service provider mediated communication, the users may communicate

directly with one another through so-called Pocket Switch Networks (PSN) [41, 62] and

run a variety of applications, such as chatting [85], imaging [57] and file sharing [47],

3

without any infrastructure.

The development of the new MANET applications, such as VANET and MSN, in-

dicates the transition of MANETs from a closed environment, where all mobile nodes

are controlled or owned by a central authority, to an open environment, where mobile

nodes are owned and controlled by anonymous and unrelated principals. This transi-

tion makes the security of MANET an issue more crucial than ever. A key problem is

how to ensure trust to the users of MANET applications in the new open environment.

The fear of becoming victims and getting their own computers compromised by un-

trusted network peers has driven people away from MANET applications despite their

unprecedented convenience and functions. As a consequence, how to establish trust in

MANETs will likely determine whether MANET applications will be well accepted in

the future.

1.3 Trusted Computing: The State of The Art

Trust is defined as “assured reliance on the character, ability, strength, or truth of

someone or something” [5]. In a broad sense, trusted computing addresses a large spec-

trum of security problems including encryption, data and code integrity, authentication,

software copy protection and digital rights etc. In this dissertation, we discuss trust in

distributed systems from three perspectives:

1. Trusted application: how to ensure an application user on one network node that

the application running on another node can be trusted?

2. Trusted communication: how to ensure fair and secure communication between

multiple network nodes?

3. Trusted identity: how to authenticate a network node?

The trusted application, communication and identity constitute the three pillars of

trust as shown in Figure 1.1. First, trusted identity ensures that the node the user

intends to communicate with is owned by some trusted principal. Second, trusted ap-

plication ensures that the code base of application the user likes to call is not tampered

4

Trusted
Application

Trusted
Communication

Trusted
Identity

Figure 1.1: The Three Pillars of Trust

with. Finally, trusted communication ensures that all nodes in the network will com-

municate with each other in a secure and cooperative manner. All the three issues

have been studied in traditional Internet based distributed systems. In this section, we

provide a brief survey of them.

1.3.1 Ensuring Trusted Application

To ensure trusted application, we need a mechanism to guarantee that the application

will only execute trusted code base. The existing methods can be classified into three

categories: (1) hardware based, (2) pure software based, and (3) a combination of

low-end trusted hardware and software.

In the hardware based solutions, the target application is run in trusted processors or

coprocessors. Methods following this direction include trusted processor based systems,

such as uABYSS [115] and Citadel [117], and trusted coprocessor based systems like

Dyad [124]. uABYSS and Citadel include a powerful processor, e.g. Intel 80386 in

Citadel, and special sensing circuitry to detect physical intrusion into the board. The

main goal of these systems is to provide board level tamper-proof protection. Dyad

is a physically secure hardware module consisting of a processor, bootstrap ROM and

5

non-volatile RAM. This hardware module becomes a secure coprocessor in addition to

the system main processor and is controlled by the operating system. It is dedicated

to execute the trusted code and preserve the confidentiality and integrity of the data.

In distributed systems, establishing trust on applications executed on remote nodes

requires verifying the integrity of the application code base. A common way to achieve

this is software attestation, in which a oneway hash (e.g., SHA1) is computed over

the code in question and verified by the code user [55]. An important application of

software attestation is the AEGIS system [25], which secures PC booting by having

each component in the boot process, such as the BIOS and OS loader, attest the next

component before transferring control to it until OS kernel is loaded.

Cerium [42] and XOM [72] combine trusted processors with software attestation.

Both Cerium and XOM use a tamper-resistant CPU to attest software execution stacks

and protect trusted software with strong process partition. Both Cerium and XOM do

not trust OS or main memory and protect code from being tampered with in the main

memory.

The hardware based methods provide strong protection to the code. However, due

to the high cost of the trusted processors, they are unlikely to be installed on the relative

low-end portable computing devices. Therefore, they are only suitable for enterprise

computing but not for MANETs.

Opposite to this trusted processor approaches is the software approach, such as [68],

SWATT [104] and Pioneer [103]. In these methods, the target system is challenged to

compute a checksum of its system image using a user-defined procedure. The correct-

ness of these methods depends on two assumptions. First, the users must have sufficient

knowledge about target system’s hardware, such as its clock speed etc. Second, forging

the same checksum of the trusted system by the actually compromised system causes

noticeable delay to users. Therefore, they are more suitable for users who are famil-

iar with and also have direct connection to the target systems. For general MANET

applications, the users usually know little about the hardware of the other nodes that

run the application of interest. Moreover, given the dynamic nature of MANETs, the

response time becomes completely unreliable and invalid for judging the attestation

6

accuracy.

An emerging trend is to balance between the hardware based and software based

approaches using low-end secure coprocessors. This is driven by the appearance of the

Trusted Platform Module (TPM) specified by Trusted Computing Group [108]. TPM

is a coprocessor embedded on the main board of the computers, which provides the

capability of securely generating and storing keys and verifying the integrity of the

software environment. Due to its low cost and broad support by computer makers, the

TCG TPM has been already integrated in many laptops. In the near future, it will also

be installed on smaller mobile devices, such as PDAs and mobile phones [109], which

makes the TPM-based approach usable for many types of ad hoc networks.

Methods exploring TPM include Terra [54], Microsoft NGSCB [77], and IBM TCGLinux [102].

These methods use TPM to bootstrap trust on a set of software components, which

further ensure trustworthiness of the execution of target programs.

Both NGSCB and Terra explore virtual machine monitor (VMM) [56, 113, 54, 50] to

partition a tamper-resistant hardware platform into multiple isolated virtual machines.

In NGSCB, a system is partitioned into two parts: trusted and untrusted, and only

the trusted part is attested. Therefore, to ensure trustworthiness of an application, the

provider has to treat the application and all its dependencies as trusted, which may not

be true all the time.

Terra aims at allowing closed-box and open systems to co-exist. It also partitions the

system into virtual machines, each of which may be dedicated to a single application,

e.g., a service. As such, the trustworthiness of a service can be evaluated by attesting

its VM. Moreover, it achieves higher assurance of the attestation because of the strong

process isolation. A weakness of Terra is that it only guarantees trust at the time of

attestation but does not prevent the service from being tampered with afterwards. In

addition, it measures the VM at the partition block level, which is not verifiable to the

user.

TCGLinux is the first secure integrity measurement system that explores TCG

TPM. It is useful for the users of a remote system to obtain an overall assessment

of its trustworthiness. TCGLinux provides an overall assessment of the entire remote

7

system by attesting a broad range of files. This makes it difficult for a user who is only

interested in calling a specific application in the system, e.g., the game application she

wants to play, to verify the trustworthiness of that application. Moreover, TCGLinux

provides no assurance about trust after it is granted.

Two common problems of all above methods are the difficulty of verifying the at-

testation results and the lack of persistent trustworthiness. The former is due to their

coarse-grained attestation methods in which either all files or the entire memory image

are attested. The latter is because of the gap between time-of-test and time-of-use.

Bind [105] addresses both problems. It achieves fine-grained attestation by tying the

attestation of the code with the data it produces. Moreover, it ensures that the code

being attested is the code being executed by protecting the code in a sandbox. BIND

guarantees that the result is really produced by the application. However, this only

serves as a posteriori proof. Besides, it assumes that the code being attested has to

be a contiguous memory region. But ensuring trusted execution for a complex service,

which typically spreads over a large number of discrete memory regions, will incur high

performance overhead because each region must authenticate its precedent one.

1.3.2 Ensuring Trusted Communication

In a narrow sense, trusted communication demands protecting network nodes from

being attacked by others. The de facto solution to this issue is to enforce access control

policies on the “choke points”, where all traffic must flow through. Enforcement of

access control policies can be implemented by use of reference monitors. In the Internet

based networks, the reference monitors are managed by a trusted entity in a centralized

way, such as in [67, 118], which is suitable for enterprise computing rather than ad hoc

environments. Recent research efforts have been seen to distribute the monitors [64, 96].

However, these methods are in essence still server centric and rely on trusted servers to

host the monitors.

Sailer et al. proposed a client side firewall in [101], which enables network access

policies to be enforced on each VPN client. The method targets clients owned by

legitimate users but improperly configured. As an attestation-only approach, it is

8

insufficient to ensure trusted enforcement of the policy in face of malicious host owners.

In a broad sense, trusted communication ensures secure and proper collaboration

between network nodes through the application. Research in this area focuses on ei-

ther improving the expressiveness and management of the security policies [35, 34] or

ensuring correct enforcement of specific policies for security mechanisms [48]. [75] im-

plemented a general purpose policy enforcement framework. But it is mainly concerned

with providing API’s to integrate various policy enforcing software components.

Minsky et al. developed a model of Interaction Control(IC) [80] for the regulation

of heterogeneous distributed systems. The model is based on Law-Governed Interac-

tion [83, 82], which governs the communication between a group of nodes by a unified

group policy. IC and LGI relay on a distributed TCB (DTCB) consisting of a set of

controllers each of which is a trusted application, in our sense. The current imple-

mentation of this DTCB of LGI is via trusted software, meant to be deployed within

corporate intranets [87, 96], to serve enterprise systems, or over the Internet, to support

peer-to-peer communities [78]. But by itself, this implementation is not safe enough to

be deployed in MANETs.

1.3.3 Ensuring Trusted Identity

In practice, trusted identity problem is reduced to key authentication. [126] is one of

the first efforts addressing the key management issue in MANET. The authors proposed

a conceptual model of distributed public key infrastructure, where a group of servers

collectively act as a certificate authority. To achieve this, the service private(signing)

key is broken into pieces, each of which is kept by one server. Threshold cryptog-

raphy [107] is used to ensure that the certificate service will not be subverted unless

over a quorum of servers are not available or incorrect. The solution improves both

availability and security of the certificate authority, in that the system can continue

to function as long as at least a threshold number of servers are still available and

functional. On the other hand, when the network consists of a large number of nodes,

it may incur significant communication and computation overheads since every request

9

needs to be distributed to and handled by all participating servers. The idea was fol-

lowed up and implemented in COCA [127], whereas the implementation was targeted

for infrastructure-based networks, such as the Internet.

MOCA [125] follows the same direction by building a distributed certificate ser-

vice with the help of threshold cryptography. It improves security by discriminatively

picking more secure nodes as CA candidates. MOCA also reduces communication over-

head by caching routes to the CA servers and by using unicast instead of flooding

when sufficient cached routes exist. As with COCA, MOCA inherits high communica-

tion costs from threshold cryptography. Caching alleviates the problem to some extent

when the network stays static such that the cached routes are valid for a relatively long

period. However, in more volatile MANET topologies, which are changing rapidly, this

optimization will be insufficient.

[70] takes a step further by letting every node hold a share of the certificate authority

secret key. Hence, any quorum number(K) of nodes are able to recover the key. The

security depends on the system-wide parameter K. Since each node is a certificate

server and compromising any K of them will disclose the private signing key, it actually

endangers security to have a small K relative to the total number of nodes. However,

if K is too big, it degrades to the basic form of threshold CA as [126].

Pathak et al proposed in [91] a voting based scheme for both public key authen-

tication and group membership control. In this method, the decision of trust is made

collectively by a group of n principals via voting. The system achieves high fault tol-

erance when it satisfies Byzantine condition. Compared to the above threshold based

CA solutions, the method does not require a shared trusted principal (the dealer) and

therefore, does not have any single point of failure. However, the group does not own a

single signing key. Consequently each individual principal has to know the public keys

of all the n voters and perform n signature verifications to authenticate one public key.

[40] addresses the key management in MANET differently. It extends the “web of

trust” concept of PGP [128]. The basic idea is to let each node be its own certificate

authority. As a self-organized key management system, this approach eliminates the

need to have central certificate directories in PGP for certificate distribution. Instead,

10

each node picks and maintains a set of certificates according to a special selection

algorithm. To authenticate a public key, the node u merges its own directory with the

directory of the key owner v and tries to find a path from u to v. However, because the

selection algorithm does not guarantee to find a path between two nodes, this method

can only provide a probability result.

[29] proposed a group based method, where nodes are organized into groups identi-

fied by the group public key. Each group has a leader who owns the group private key

and is responsible for certifying memberships by creating certificates to member nodes.

At group level, key authentication is in a way similar to other PGP-like protocols but

not fault-tolerant, in that a single compromised team leader can subvert the member-

ship authentication. Since the method is targeted for scalable authorization, it does

not support individual node authentication.

In general, authentication implies non-repudiation, which makes it desirable to use

asymmetric keys, such as public and private keys. However, public key computation

demands high performance processors and high power consumption. TESLA [94] ad-

dresses this problem by exploiting symmetric MAC functions to accomplish asymmetric

properties. Due to its low cost, it has been used to secure group broadcasting [95] and

routing [59] in sensor networks. However, TESLA requires all nodes to be loosely

synchronized, which may not be practical for general MANETs.

[28] and [31] solve the problem of key authentication in certain special cases. In

[28], a strong key can be derived from some prior context, a shared weak secret among

all nodes. In [31], a secure side channel is assumed to exist to help initial key exchange

between two nodes. However, it is questionable whether the prior context or the side

channel is available for general MANETs.

1.4 Lack of Trust in MANETs

As discussed in the previous section, trust establishment has been well understood

in the traditional Internet based distributed systems and mature solutions have been

11

Term of Comparison Infrastructure based Networks MANETs

Rely on Infrastructure Yes No

Availability of Central Authority Yes No

Topology Static Dynamic

Physical Protection of Computers Yes No

Application Specific No Yes

Table 1.1: Infrastructure based Networks vs MANETs

developed and applied in real-life practice. However, these existing solutions offer lit-

tle help to MANETs due to the unique properties of MANETs. Table 1.1 compares

MANETs with traditional infrastructure based networks (e.g., the Internet).

The key difference between MANETs and infrastructure based networks is that

MANETs do not have a fixed infrastructure and may not have constant access to the

Internet central authorities. As a result, the existing security services embedded in the

Internet may not be available to MANET applications. To make the problem more

challenging, the security services must be able to cope with dynamic network topology.

Furthermore, different from the servers that are well protected in corporate data centers,

the portable devices in MANETs have much weaker physical protection and are subject

to being taken over by dedicated attackers.

Another important distinction between MANETs and the Internet is that a MANET

is usually created to perform a specific task or run a specific application. In contrast to

the above characteristics, which exacerbate the problem of lack of trust, we believe that

the application centric nature of MANETs mitigates the problem. This is because trust

does not have to be general to all potential applications running on top of the network.

Instead, it is specific to the application that drives the creation of the network.

In the rest of the section, we will discuss in details the problem of lack of trust in

MANETs from the three aspects of trust: trusted application, trusted communication

and trusted identity.

12

1.4.1 Trusted Application in MANETs

For a client in client-server applications running in infrastructure based networks, the

trustworthiness of the server application itself is usually of little concern. More atten-

tion is paid to ensure the trustworthiness of the server’s owner. The rationale is that

the servers are usually owned by well-reputed businesses and companies and are well

protected in commercial data centers. As long as there is a way to authenticate the

ownership of the server, the trustworthiness of the server and the applications running

on it can be assured.

The above reasoning is not always valid in MANETs. A MANET is often con-

structed by anonymous nodes. For instance, cars on the highway can use their em-

bedded computing and car-to-car communicating devices to form a MANET like the

FleetNet [53] and run TrafficView application [46, 88]. In such cases, knowing that the

application running on a specific node does not directly render trust on the application.

Even if there are some “trusted” nodes, due to the lack of physical protection, the

chance of having these trusted nodes captured and compromised by malicious attackers

is much higher and can not be neglected. Therefore, to ensure trusted application, the

user must be guaranteed that the application will only execute trusted code. However,

as discussed earlier, the existing methods developed for Internet computing are not suit-

able for MANET applications because they incur high deployment cost, e.g., hardware

based methods, are based on impractical assumptions, e.g., software based methods, or

fail to ensure persistent and fine-grained trust, e.g., attestation based methods.

On the other hand, the problem may also be mitigated by the application centric

nature of MANETs. The network only exists for the short time when a certain appli-

cation is run. Hence, the period when trust on the application must be guaranteed is

limited and typically, much shorter than in the Internet, where servers usually need to

run permanently.

13

1.4.2 Trusted Communication in MANETs

For a group of nodes forming a MANET to run an application, protecting these nodes

from unauthorized access or even network attacks is crucial. This requirement can be

trivially accomplished in an infrastructure based network by enforcing network access

control policies on the the “choke points”, such as routers, proxies and firewalls, where

all data traffic must flow. These choke points are deployed and maintained by the

network owner and thereby, are fully trusted to enforce the policies. However, the

choke points do not exist in MANETs. Due to the lack of infrastructure, a node can

potentially establish a direct connection with another node by roaming into its wireless

signal range, which bypasses any pre-deployed choke points. Even if such choke points

can be created, as discussed earlier, they can not be fully trusted. As a result, it is

difficult to protect MANETs from being reached by unauthorized traffic.

A more general issue than protecting nodes from being attacked by their network

peers is how to assure secure communication and proper collaboration among all partic-

ipant entities. This is important especially for spontaneously formed MANETs, since

the services offered by these networks are collectively provisioned by all nodes. To ad-

dress this problem, communication policies that govern the interactions between entities

must be defined and enforced. Similar to enforcing network access control policy, this is

difficult in MANETs due to the lack of trusted choke points. Moreover, in client server

applications, the goal of application communication policy is usually server-centric,

meaning that it aims at protecting the server from unauthorized access from the client.

However, since MANET applications are more likely to be peer-to-peer, every node can

be a server and a client at the same time, and no entity can be trusted more than an-

other. Therefore, the communication policy must be application centric and all nodes

must be subject to the communication policy to the same extent.

1.4.3 Trusted Identity in MANETs

Generally, authenticating a node can be further reduced to the problem of authenticat-

ing the node’s public key. In the infrastructure based networks, the public key can be

14

sealed in a digital certificate signed by a third-party, centrally trusted, certificate au-

thority (CA). By verifying the certificate with the CA, the public key is authenticated.

In practice, CA’s and certificates are organized in layers and managed by public key

infrastructure (PKI) [33].

It is challenging to implement the PKI-like method in MANETs. The main obstacle

is the availability of the CA. In addition to the lack of trusted central authority, the

dynamic nature of MANETs makes it difficult to guarantee ubiquitous accessibility of

the CA. For instance, the CA node can run out of power or temporarily roam out

of the wireless signal range of other nodes, which may cause disruption of the key

authentication service.

Another challenge is to ensure trustworthiness of certificates. Different than the

Internet, the CAs in MANETs lack the methods of conducting investigation on every

certificate requester, many of which involve manual or social background checks. The

MANET CAs may have to evaluate the trustworthiness of the certificate requester by

interacting with it. Therefore, the CAs should have close interaction with the certificate

requesters. Moreover, different MANETs may need to talk to each other to get help

for another task. For instance, in a highway, a few cars going to a common destination

may establish a MANET to share directions. They may talk to other cars (in other

MANETs) to get information about traffic situation [45]. This demands a mechanism

for the CA in one MANET to authenticate a certificate issued by a CA in another

MANET.

The conclusion of the above arguments is that the unique characteristics exhibited

by MANETs have made the traditional methods to establish trust in distributed systems

unsuitable for MANETs. With the emergence of more MANET applications, there will

be increasing demand for mechanisms to ensure trusted application, communication and

identity in MANETs. In details, we need (i) a method that builds trust on applications

running on remote nodes purely based on the applications code base rather than their

owners; (ii) a method that ensures nodes to communicate with each other in a secure

and fair manner without relying on any pre-existing trusted central authorities; and

(iii) a method that provides highly available authenticity service to the network even if

15

some of the service providing nodes lose connectivity or are compromised.

1.5 Dissertation Contributions

This dissertation has four main contributions to ensure trust in MANETs by employing

low cost trusted hardware and the application centric nature of MANETs. In details,

we developed

• a service-aware trusted execution monitor (Satem) to ensure trusted code execu-

tion [119];

• a distributed method to create a protected MANET that shields all network

member nodes from being attacked [120];

• a distributed network communication policy enforcement mechanism to ensure

secure and cooperative communication between network participants [121];

• a locality driven key management architecture to ensure trusted identity authen-

tication [122];

The results of the above work were published in the Proceedings of the 1st IEEE In-

ternational Conference on Mobile Ad hoc and Sensor Systems (MASS04) [122], the Pro-

ceedings of the 25th IEEE Symposium on Reliable Distributed Systems (SRDS06) [119],

the Proceedings of the 4th IEEE International Conference on Mobile Ad hoc and Sensor

Systems(MASS07) [120], and Rutgers University Computer Science Technical Report

DCS-tr-635, 2008 [121] (also submitted to a journal).

Service-aware Trusted Execution Monitor (Satem) [119] is a trusted com-

puting system that achieves trusted code execution of services. The Satem architecture

consists of a service commitment protocol, a trusted execution monitor in the operating

system kernel of the service provider platform, and a trust evaluator on the service

requester platform. For peer-to-peer systems, each network node is both the service

provider and requester and thereby, has all components. The service commitment pro-

tocol is the key to providing a priori guarantees on trusted service code execution across

transactions. During this protocol, before starting a transaction, the trusted execution

16

monitor on the service provider sends a commitment to the service requester, which

describes all the code files the service may execute in all circumstances, such as exe-

cutables, libraries, etc. We define a procedure for the service provider to generate the

commitment through cooperation with the service software vendors and a third-party

trusted authority. The service requester uses the trust evaluator to verify the commit-

ment against its local policy and then starts the transaction. On the service provider

side, the monitor enforces the commitment after the service was started to ensure that

the trusted code execution promised by the commitment will not be compromised (i.e.,

it forbids the service to load any code files that are either undefined in the commitment

or tampered with).

To initialize trust on the execution monitor, the operating system kernel (including

the trusted execution monitor) of the service provider is attested through a trusted

boot process using the Trusted Platform Module (TPM) [108] specified by the Trusted

Computing Group (TCG). The attestation results along with the commitment are pre-

sented to and verified by the service requester during the service commitment protocol.

Therefore, the successful verification of the OS kernel, the monitor, and the commit-

ment convinces the service requester that (1) the service has executed only trusted code

up to the time of commitment; and (2) the service will continue to do so during the

transaction due to the enforcement of the service commitment.

By leveraging Satem, we developed a distributed mechanism to build protected ad

hoc networks [120] to shield network members from being attacked. In this method,

a common network access control policy specific to the application that triggered the

formation of the network is defined and agreed upon by all participants who want

to benefit from the application and foil attacks. All member nodes have to enforce

the policy. A node’s trustworthiness in enforcing the policy is verified before it can

establish link layer connectivity with the protected network. Attacks at the network or

above layers from untrusted external nodes are impossible because these nodes cannot

establish wireless links with any member nodes. Attacks from trusted member nodes

are suppressed at the originators by the common network policy.

17

The trusted enforcement of the network access control policy is guaranteed by

Satem [119], which ensures that a node can communicate with other nodes in the

network only if the execution of all programs involved in policy enforcement is not tam-

pered with; otherwise,the agent tears down the links of its node. Stopping attacks such

as Distributed Denial-of-Services (DDoS) by enforcing network access policies was also

discussed by Minsky et al in [79, 81, 80]. Our method differs from them in that the

policies enforcement is built into the link establishment and performed on each network

member node.

The policy enforcing mechanism for trusted ad hoc networks [121] further

extends the idea of enforcing application centric network policy for MANETs from link

layer to application layers. Under this mechanism, each application or protocol has its

own policy. All nodes supporting a certain application and enforcing its policy form

a trusted application centric network. Since an application may depend on other ap-

plications, our policy enforcing framework creates a trusted multi-tier network. The

member nodes in such a network must enforce the policies associated with these appli-

cations as well. For instance, a peer-to-peer file sharing application may depend on an

on-demand routing protocol. In this case, the mechanism creates a two-tier trusted file

sharing network. It first establishes a trusted routing tier, and hence a trusted network

for routing, comprising of all nodes that enforce the routing policy. On top of this tier,

it then creates a file sharing tier, enforcing the file sharing policy. Two nodes may

communicate through an application if and only if they enforce the same application

tier policy and all the underlying tier policies.

Our trusted policy enforcement mechanism [121] is similar to LGI [83, 80] in the

idea of enforcing network policies using distributed trusted computing base (DTCB).

The main difference is the implementation of this DTCB. In LGI, the DTCB is im-

plemented via trusted software and deployed within corporate intranets or over the

Internet, which is not safe enough for MANETs. Our method is based on Satem to

ensure trusted policy enforcement on each network member node without requiring

preexistent trust relationship. Both LGI and our method are hierarchical. From pol-

icy enforcement perspective, the tiers in our method are similar to the communities in

18

LGI. The difference is the semantics of the hierarchy. In LGI, the hierarchical struc-

ture reflects the hierarchical structure of the enterprise itself, e.g., each policy in the

hierarchy should circumscribe the authority and the structure of policies subordinate

to it. The hierarchy in our method is network driven and each tier corresponds to

a network protocol layer. An upper tier is dependent of its lower tiers only because

the lower tier provides communication functions to the upper tier, but there is no

super-subordinate relationship between them. This makes our method applicable for

spontaneous MANETs.

To address trusted identity problem for Mobile Ad hoc Networks, we developed a

locality driven key management architecture [122]. The method exploits locality

of trust in MANETs implied in the application centric MANETs. In this method, a

certificate authority is established only within a neighborhood in which all nodes are

performing a common task or executing a common application. The certificate authority

is composed of a group of nodes, which collectively perform key authentication using

threshold cryptography. Different certificate authorities maintain trust relationships,

called trust chains for cross-CA authentication.

The solution is suitable for MANETs for several reasons. First, locality makes

certificates more trustworthy in that in a local community a CA has better chance to

interact with other principals. Moreover, it reduces communication overhead between

principals with their CA because of shorter local distance of message delivery. Thirdly,

threshold cryptography greatly improves fault tolerance and provides high availability.

1.6 Contributors to Dissertation

In this dissertation, I used material from three papers that Cristian Borcea (Assistant

Professor of New Jersey Institute of Technology) co-authored. Cristian Borcea con-

tributed to the design of the protected ad hoc network, the policy enforcement mecha-

nism and the case study that was used to illustrate the application of the protected ad

hoc networks. Josiane Nzouonta (PH.D student of New Jersey Institute of Technology)

implemented the NS2 [20] tool to generate the vehicular scenarios used for evaluation

19

of the policy enforcement mechanism. Jiejun Kong (PH.D student of University of Cal-

ifornia, Los Angeles) provided source code of threshold cryptography algorithm, based

on which the locality driven key management architecture was implemented.

1.7 Dissertation Roadmap

The dissertation is organized as follows. Chapter 2 describes Satem, a TPM based

trusted computing system. In Chapter 3 and 4, we present the distributed mechanism

to build protected ad hoc networks and the policy enforcing mechanism. The locality

driven key management architecture is discussed in Chapter 5. Finally, we conclude

the dissertation in Chapter 6.

20

Chapter 2

Satem: Service-aware Trusted Execution Monitor

This chapter presents the design of Satem, a trusted service-aware execution monitor

that guarantees the trustworthiness of the MANET service or application code execu-

tion across the entire transaction. We start with the problem statement of ensuring

trusted application code execution in MANETs in Section 2.1. Then, the Satem archi-

tecture is presented in Section 2.2 followed by the commitment protocol that facilitates

establishment of trust on the application in Section 2.3. Next, we discuss the prototype

implementation of Satem in Section 2.4 and the performance evaluation in Section 2.5.

We demonstrate how Satem solves the security threats in Section 2.6. Finally, we

discuss its limitations in Section 2.7 and summarize the chapter in Section 2.8.

2.1 The Problem Statement

In distributed computing, an application A on a machine X calls an application B on

another machine Y to conduct a series of transactions. The applications A and B can

be different, e.g. A being the client and B being the server program, or the same, e.g.

both being a peer-to-peer application. In either case, B provides a computing service to

A. Hence, we refer to machine Y on which B is run as the service provider and machine

X on which A is run as the service requester. 1

Because the service is remote (i.e., the application is computed on the remote service

provider), the service requester is concerned about whether it is truly the claimed

service. Traditionally, this problem is solved by authenticating the service provider. For

example, in the Internet, a user of a web application can authenticate the web server

1In the reminder of the chapter, we use application and service interchangeably.

21

through its digital certificate. However, with frequent incidents of security breaches,

knowing what machine runs the application is no longer sufficient to convince the user

that she is interacting with the right application, because the application software

may be tampered with. This problem is more severe in MANETs. For one thing, a

MANET is often constructed by anonymous network nodes, which makes identity based

authentication helpless. For another thing, even if some of the nodes are ”trusted”, due

to the lack of physical protection, the chance of having these trusted nodes captured

and compromised by malicious attackers is much higher and can not be neglected.

Recently, several methods [77, 108, 42, 6, 72, 102] based on software attestation [55,

25] have been proposed to ensure code genuineness and integrity on untrusted hosts.

However, they are insufficient to achieve trusted application code execution for the

entire lifetime of an application transaction for two reasons. First, although these

methods can ensure the trustworthiness of code at the time of attestation, they ei-

ther do not guarantee that the trustworthiness will persist afterwards(i.e., during the

transaction) [102, 54], or fail to provide such a guarantee prior to invoking the applica-

tion [105]. Second, the existing methods lack the capability of precisely measuring and

protecting the integrity of the application code base, which consists of all the programs

loaded by the application at runtime. This makes it difficult for trust evaluation since

a change detected by the attestation may be irrelevant of the application code base and

thereby has no impact on its trustworthiness.

To motivate the need for a new approach, we present three security threats faced

by users of MANET applications, which are difficult or even impossible to address by

the existing attestation based methods. To illustrate the security threats, we consider

a vehicular ad hoc network application run by a number of cars with mobile computing

devices on a highway, which queries and disseminates traffic and safety information.

To ensure correctness of the information, such an application usually requires bind-

ing messages a car sends to its unique identity [71, 90]. This raises the concern of

privacy [61, 90] since the combination of the positions and the identity of the car may

turn the application into a tracking system. Therefore, it is desired that the application

running on each car should only use the identity and position information in a legitimate

22

way and not disclose them to other unauthorized entities. Since the computer is owned

by each user, we assume that the attacker can have physical access to and superuser

privilege on at least one computer in the network (e.g. her own computer) and is free

to install untrusted code on it. Her goal is to trick other cars into communicating with

the untrusted application on her car in order to acquire their positions and identities.

Attack 1: Service Spoofing

The attacker does the following:

1. Runs her own evil application, e.g., /tmp/evanet, on a UDP port 222.

2. Runs the legitimate application, e.g., /bin/vanet.

After step 1, if /tmp/evanet is not in the scope of attestation, no record is taken. After

step 2, the /bin/vanet is attested if it is in the scope of attestation. At this moment,

however, the evil application runs on port 222 rather than the legitimate vanet service

because vanet failed to bind to the port.

The attestation cannot reveal the problem if it does not cover /tmp/evanet. To

solve the problem by including /tmp/evanet in the attestation scope implies including

all files in the system, because there is no way to predict which file will be used to attack

the service. Attesting the entire file system is impractical. Not only does it increase

the cost, but also makes it difficult for the requester to assess the attestation result.

For example, knowing that both /tmp/evanet and /bin/vanet were executed does not

help the requester to understand which is the application she intends to connect to.

An alternative to counter this attack is to also attest the runtime process status.

This solution, nevertheless, further complicates the attestation because the process sta-

tus constantly changes. Furthermore, the process status is not standard, which makes

it difficult for the requesters to verify its integrity.

Attack 2: Service Tampering

The attacker can also modify the code base of the application by changing its binary. For

23

instance, modern applications usually rely on some shared libraries. Therefore, a deter-

mined hacker can force vanet to link to an evil shared library (e.g., /lib/libc.so.6)

without being detected by the attestation. She does the following:

1. Runs another program /bin/vanet2 that also uses libc.so.6.

2. Installs an evil shared library with the same name in /tmp, /tmp/libc.so.6.

3. Sets LD LIBRARY PATH=/tmp:/lib/.

4. Runs /bin/vanet.

The attack is based on the assumption that /tmp is not watched by the attester.

Also, as explained in Attack 1, it is impractical to attest all files. After step 1, the

libc.so.6 as well as /bin/vanet2 are attested correctly. Since libc.so.6 is a com-

mon library, it is easy to find another program like /bin/vanet2 that also uses it. After

step 4, vanet is attested, but linked to the evil library, though the attestation results

contain the correct vanet, vanet2, and libc.so.6. The attack may be detected by

attesting and publishing the environment variables. However, similar to attesting the

process status, this is not acceptable in general.

Attack 3: Post-Request Attack

Compared with the difficulty of assessing trustworthiness of the application as shown

in attacks 1 and 2, an even more complicated problem comes from the impossibility to

guarantee a priori that the application will run only trusted code after the initial trust

is established. In other words, the trustworthiness of the application is valid, at best,

at the time of attestation, not even the time of verification. From then on until the

next attestation, the application is completely vulnerable to tampering.

Assume that after verifying the attestation result, some car decides to trust the

attacker’s car and send its position and identity in a message. We also assume that

every time the application vanet receives a message, it invokes another application

/bin/aggregator for data aggregation. The attack takes place as follows:

24

1. The car sends its identity and position along with the message to the application

run on the attacker’s car.

2. Before receiving the message, the attacker replaces /bin/aggregator with a ma-

licious software,/bin/eaggregator, which in addition to desired data aggregation

saves the car’s identity and position to a plain text file.

Since the malicious eaggregator has not been called by the time of the pre-request

attestation, it is not revealed by the attestation report. It is invoked after the identity

and position is sent. Although the attestation can be done immediately upon execution,

the victim will not know this until it requests the next report.

In summary, although existing attestation based approaches, such as [102], address

attacks 1 and 2, they are subject to high false positive rates due to lack of service-

awareness. The attack 3 cannot be handled by any existing approaches because they

are unable to guarantee trust across application transactions before the transactions

start.

To tackle the above problems, we proposed Satem, a service-aware trusted execution

monitor, to achieve trusted service code execution across service transactions. Satem

exploits the Trusted Platform Module (TPM) [108] to bootstrap trust on the execution

monitor, the kernel agent on the service provider. The trusted execution monitor

then provides a priori guarantee on trusted service code execution across transactions

through service commitment protocol. During this protocol, executed before every

transaction, the service requester requests and verifies a commitment from the service

provider that promises trusted code execution. Subsequently, the execution monitor

enforces this commitment for the duration of the subsequent transactions.

The primary benefit of Satem is that it provides a priori guarantee to a service

requester that only trusted service code will be executed across the upcoming service

transactions. Due to its service-awareness, Satem only protects code executed by the

service and reduces both the attestation overhead and false positives. Another ben-

efit that makes Satem suitable for MANET applications is its certificate-based trust

25

� � � � � � � �� � � � � 	 �
� � �
 � � � �� � � �� �
 � � � � � � � �� � �
 �� 	 �
� � � � � � � � � � � � ! � � � � "� � � � � � � �� � � � � 	 �
 " � 	 �� � �

� � � � � � � � �� � � � �� �# 	 $ � � � � � � � �� � � � �� �
� � � � � � � % � & � � ' � �

� � ((�� (� 	 �� � � � � � �) & * * � ! * � + ! % � & ! & � & ,
Figure 2.1: The Satem Architecture

evaluation method. In this method, the service requester evaluates the service trust-

worthiness through one certificate check without managing a huge database of authentic

code hashes. We introduced a short-life certificate based authentication scheme, which

allows nodes to authenticate certificates without constant connectivity to the Internet

certificate authorities.

2.2 The Satem Architecture

In this section, we present the architecture of Satem, which comprises of components

on both the service provider and the requester sides. As Figure. 2.1 shows, the service

provider components include a TPM (Trusted Platform Module), a trusted execution

monitor, and a commitment for each protected service. On the service requester side,

Satem includes a trust evaluator and a trust policy. In our model, we assume that the

attacker is unable to perform direct hardware attacks. For example, she cannot write

to or read from the TPM, network card, CPU registers or physical memory without

going through the OS kernel. In particular, we assume that the attacker cannot perform

Direct Memory Access (DMA) based attacks. Other than that, we consider that the

attackers can get super-user privileges and modify any software, including the OS kernel,

at any time.

26

 RNG

SHA1

HMAC

RSA Key Generator

RSA Encrypt/Decrypt

Endorsement Key

Storage Root Key

Owner Auth Secret

 RSA Key Slot 0-9

 PCR 0- 15

 Key Handles

 Auth Session
Handles

TPM Driver

Function Units Non-Volatile Memory Volatile Memory

Figure 2.2: TPM Overview

2.2.1 TPM: The Root of Trust

The Trusted Platform Module (TPM) specified by Trusted Computing Group (TCG)

is the root of trust of Satem. We briefly introduce the IBM implementation with a

focus on the features used by Satem. More details can be found in [108, 100].

The IBM TPM integrates cryptographic function units and private volatile and non-

volatile memory on a single chip, which is resistant to tamper and probe. The function

units include a random number generator (RNG), a SHA-1 and an associated HMAC

calculator, a key generator, which is capable of generating up to 2048 bit RSA key on

the chip, and a RSA engine for hardware signing, encrypting and decrypting.

The non-volatile memory is used to store root secrets including the unique manu-

facturer endorsement key, an owner supplied authentication secret and a root key for

security storage. The implementation of TPM guarantees that these secrets can never

leave the chip. A user may use them, e.g., to decrypt a message using the endorsement

key, only through a restricted APIs provided by the TPM.

The volatile memory provides a secure storage for run-time secrets and software

integrity measurements. User keys can be loaded into the key slots on demand and

referenced via key handles. Each key is associated with an authorization secret and

can be protected by another key, which is called parent key. To load a key, a user must

pass authorization, which means providing the right authorization secret of the key and

27

its parent keys. Successful authorization returns a session handle, saved in the Auth

Session Handles table, to the user. When a key is not in use, it can be wrapped with user

specified authorization secret and purged out of the chip. One of the most important

functions of TPM is to capture system states and report them in a tamper-evident

manner. This is achieved by using the 16 platform configuration registers (PCRs).

2.2.2 Bootstrap Trust using TPM

Satem uses trusted boot and secure attestation functions of TPM to bootstrap trust

on the underlying platform and the Satem trusted execution monitor.

At the boot time, the service provider runs through a trusted boot procedure, in

which each component in the boot sequence attests the next one before handing over

the control. The TPM helps establish trust on the OS kernel and the Satem execution

monitor, which is the root of trust in all service transactions. The attestation result is

saved in a PCR register (PCR0), which is an internal configuration register of TPM.

The only way to change the content of a PCR is through the function TPM Extend,

which computes a SHA1 hash over the PCR’s current content and the new object to

attest. This prevents the PCR content from being reset (i.e., the attacker can change

the attestation value, but it cannot set it to an arbitrary predetermined one). In our

case, the TPM invokes this function to attest the BIOS image and transfers control

to the BIOS after that. Consequently, the BIOS calls TPM Extend over the OS loader

(e.g., LILO), and the latter does the same over the OS kernel image, denoted as OSK.

As a result, after the OS kernel is loaded,

PCR0 = SHA1(SHA1(SHA1(0|BIOS)|

LILO)|

OSK)

assuming PCR0 = 0 initially.

The content of selected PCRs is reported via the TPM Quote API, which signs the

content with a TPM internal key. To counter replay attacks,this API also includes a 20

byte random nonce as a parameter in the signed report. We assume that the TPM is

unbreakable and, therefore, we consider that the attestation it conducts and the report

28

it produces cannot be tampered with 2.

2.2.3 Commitments

Satem defines one system commitment for the service provider platform and one ser-

vice commitment for each service that wants to use Satem (referred to as protected

service). The system commitment describes all the kernel code (e.g. modules) the ser-

vice provider may load before next reboot. Each protected service has an associated

commitment that describes all the code the service may execute in its entire lifetime.

Both system and service commitments are composed of the integrity descriptions of

all the software code files in the format of a tuple <file name, SHA1 hash value>. A

snippet of a possible Apache web service commitment is presented in Table 2.1.

software name = Apache

version number = 2.0.50

file name = httpd

SHA1 value = 7e7923bb0b7a0e74d2e...

file name = libaprutil-0.so.0

SHA1 value = d888e5f9916761cca24...

...

Table 2.1: A Satem Commitment Example

It is the service provider’s responsibility to prepare the commitments of its protected

services. There are two ways to determine it. One is via testing (i.e., tracing the service

for every possible request to find out what code it executes). In theory, this method

may be incomplete since it is hard to ensure that the test exhausts all branches of

executions. A better way is to trust the service software code producers to provide this

information [54]. Satem adopts and extends this approach. In Satem, a commitment

of service S (denoted as C(S)) is a certificate signed by a certificate authority (CA)

trusted by service requesters of service S. This commitment is generated as follows:

1. Request code certificates. The service provider requests each vendor to generate

2The current TPM specifications use SHA1, which has been found breakable [114]. We expect future
releases of TPM to be upgraded with a stronger one-way hash function such as SHA256.

29

a self-signed code certificate in the same format as the commitment for its code.

2. Sign the commitment. The requester forwards all the code certificates and the

commitment to the CA. The CA needs to verify the signatures of all code certifi-

cates and compare the code hashes in the commitment against the certificates.

The CA signs the commitment if and only if it verifies all code certificates and

code hashes in the commitment.

C(S) only guarantees to the requester that the code described in C(S) is what its

vendors released. The requester has to verify against its local trust policy that the

vendors and their code are trusted. To the service requester, decoupling code trustwor-

thiness from genuineness not only simplifies trust management, but also provides the

flexibility to use any trust policy.

The CA plays a central role in trust establishment. Its job is simplified, however, by

decoupling code genuineness from code trustworthiness. All a Satem CA has to do is

to verify authenticity of software code certificates. Unlike issuing identity certificates,

no manual and time consuming background investigation is necessary. Furthermore,

the need for certificate revocation is minimal because the certificate only vouches for

the fact that the vendor certifies the code’s unique digest. The only possible scenario

for revocation is when the attacker compromises the signing key of the software vendor

and generates bogus integrity description for the vendor’s software. Although such

certificate authority service does not exist today, any reputed security organization

(e.g., CMU CERT [4] or SANS [21]) can take on this role.

2.2.4 Trusted Execution Monitor

The monitor resides in the OS kernel of the service provider and has two main goals:

(1) provide a guarantee to the service requester that only trusted code will be executed

by the application during the transaction, and (2) enforce fail-stop protection of the

application during transactions.

The monitor is loaded and attested along with the OS kernel. Once being loaded,

it immediately enforces the system commitment. It enforces the service commitment

30

Evaluator

Verify TPM
certificates

Verify attestation
report

Verify the
commitments

Check local
trust policy

Trust service

Yes

Yes

Yes

Yes

Distrust service

No

No

No

No

Figure 2.3: Satem Trust Evaluation

of each protected service only when the service is started. The monitor enforces these

commitments in the same way. First, the protected service and the system will not

be allowed to load any code that is not defined in the commitments. Second, the

monitor forbids the service and the system to load any code that is defined in the

commitments but tampered with. An extensive description of the methods used to

enforce the commitments is presented in Section 2.4.

2.2.5 Evaluator and Trust Policy

In order to establish a trusted transaction with a service, the requester asks the service

provider to deliver an attestation report of the service platform OS and the service

and system commitments. The evaluator determines if the service execution described

by the report and the commitments can be trusted. Figure. 2.3 illustrates the trust

evaluation process. The evaluator first checks the authenticity and the integrity of the

report and the commitments. For the report, this requires the authentication of the

TPM public key (TPM’s private key is used to sign the report). TCG defines a series

31

of certificates (signed by the TPM CA) for users to authenticate TPM and its public

keys. After verifying the genuineness of the TPM and TPM keys, the evaluator checks

the attestation report. For the commitments, the evaluator needs to authenticate the

public key certificate of the CA that signs the commitment.

In general, authenticating the public key is non-trivial in ad hoc networks due to

the lack of constant connection to the Internet and PKI. A node may still be able

to authenticate a certificate if it locally holds the public key of the signing certificate

authority or a valid certificate chain to it. However, it is unable to validate in real-time

the certificate since it has no access to the CA’s certificate revocation list. The issue can

be significantly alleviated given the special nature of the problem we aim to solve. As

discussed in [30], although nodes do not have persistent Internet connectivity, they can

still get online from time to time. For example, a user may be off-line on an inter-city

train most of the time, but get online when the train enters a train station. Furthermore,

a Satem commitment only states that a code file has a certain corresponding SHA1

digest. This fact is invariant under any circumstance. Lastly, since the ad hoc network

is formed for a specific task and only lasts for a relatively short period of time, the

likelihood of revoking a certificate is negligible.

Based on the above observations, we introduce a short-life certificate to authenticate

the commitment. When being connected to the Internet, each node obtains a regular

long-life commitment certificate CL, a short-life commitment certificate CS , and the

authority’s certificate CA. When losing Internet connectivity, it can still use the CA to

authenticate CS of other nodes. Since this certificate is only good for a short period of

time, there is no need to be concerned about revocation. After CS expires, the node

needs to regain Internet access to renew it using its CL. The CA verifies the CL using

PKI and grants the renewal request without re-authenticating it from scratch.

Verifying the report and the commitments proves the genuineness of the code that

can be executed by the service platform OS kernel and the service. The requester has

to verify the commitments against its local trust policy to make the trust decision.

Although creating an appropriate trust policy is an interesting research topic, it is

beyond the scope of this work. A promising approach is to have the service software

32

certified using methodologies proposed by Voas [112]. Here, we simply assume that

the policy exists on each service requester that wants to use Satem. If the evaluator

verifies the report successfully, the user will trust the execution monitor to enforce

the commitment. Consequently, if the evaluator verifies the commitment, the user is

convinced that the service will only execute trusted code.

2.3 The Service Commitment Protocol

� � � � � � � � � � � � 	
 � �� � � � � � � � � � �� � � � � � � � � � �� � �
� � � � � � � � � � � � � �� �
� � � � � � � � � � � � � ��

! � " " �� " � � �� # $ � � % � & � � �' $ (�) � � � �* $ % � + , � - � � . , � � � � � � �/ $ 0 � � �� � � � 1 � ! � " " �� " � � � -2 $ � � � � � � � � � � - � � � �� �3 $ % � � , � � � 1 � � � - & � � - �456789:8;<=>
Figure 2.4: The Steps of the Satem Service Commitment Protocol

The requester R establishes trust on the service S on the service provider P through

the protocol illustrated in Fig. 2.4. This protocol assumes that the attestation results

obtained at the boot and OS kernel loading time have been saved in the TPM (as

described in the previous section).

1. R sends a request (TST) demanding P to provide a guarantee of trusted execution

of S,

TST =< SID,nonce, PKR >

where SID is the service identity (in a TCP/IP network, this is the ip address

and port number), nonce a random number, and PKR its public key.

2. Upon receiving TST , P generates a key k, which is saved in the kernel memory

controlled by the monitor. Then, it calls the TPM to generate a report Rep of

33

the content of PCR0,

Rep =< PCR0, p >

where PCR0 is the content of PCR0 of the TPM. p is a parameter fed into the

TPM for report generation. It is defined as

p = SHA1(nonce|SHA1(C(S))|SHA1(C(T))

|SHA1(PKR)|SHA1(k))

where C(S) is the service commitment and C(T) is the system commitment.

3. P sends Rep to R for evaluation. In addition, it encrypts k with R’s public key

PKR (denoted as (k)R) and sends it together with the commitments C(S) and

C(T) to R.

4. R must verify Rep, C(T) and C(S) against the local trust policy before starting

the transaction. R first verifies the authenticity and integrity of Rep, C(T) and

C(S). In addition to verifying the TPM signature, it decrypts (k)R with the

private key SKR, and computes p′ using C(S) and C(T) received at step 3, its

own copy of nonce, and PKR. Rep is verified if and only if p = p′.

5. When everything has been verified, R sends S the request Req(S) to start the

transaction. R and S use k to encrypt the transaction.

6. The monitor enforces C(T) and C(S), which guarantees that S will only execute

trusted code to process Req.

7. Finally, S may generate and send back a corresponding response Res.

The trust decision on the service S is made at step 4. From Rep, the user learns

that the service platform has been booted into a trusted Satem kernel. Knowing C(T)

ensures the user that the kernel including the monitor has been protected and thereby

can be trusted. Knowing C(S) convinces the user that the monitor is trusted to enforce

C(S). The enforcement begins from the beginning of the service S since the monitor

loads C(S) when S starts. The p of Rep also proves to the user that k, PKR, C(T), and

34

C(S) received with Rep are the same with those used by the monitor, which defeats

spoofing attacks.

From step 5 on, both R and P use k to encrypt the transaction traffic. This prevents

the attacker from hijacking the transaction by launching a man-in-the-middle attack.

The attacker may try to steal k by intercepting TST at step 1 and replacing PKR

with its own PKA. Then, it intercepts the returned k at step 4 (encrypted with PKA),

decrypts it and re-encrypts it with PKR. This attack will be detected by R at step

4 due to the inclusion of SHA1(PKR) in the parameter p. On the other hand, the

attacker can impersonate P . For this attack to succeed, the attacker’s machine must

be Satem-enabled. Otherwise, the requester will refuse to trust it at step 5. However,

when Satem is enabled, it guarantees that the service will only execute trusted code no

matter who owns the service provider platform.

2.4 Prototype Implementation

In order to verify the design concepts and understand the performance of Satem, we

have implemented a prototype under the Linux 2.6.12 kernel. The most important part

of the prototype is the trusted execution monitor. The prototype includes also TPM

control functions as well as the evaluator on the client side. We have not implemented

the attestation functions in BIOS and LILO, which have already been implemented in

the Enforcer project [6].

2.4.1 Satem Monitor and Commitment Enforcement

The focus of the Satem monitor is to provide a fail-stop protection mechanisms to

enforce service commitments. Our implementation has less than 1000 lines of C code.

The complexity, however, comes from the fact that the monitor code is integrated

into the OS kernel almost everywhere by inserting checkpoints to kernel calls, such as

do execve and sys open, to intercept new code execution invoked by protected service

processes. These modifications are added by patching the original Linux kernel of the

service provider platform. When a service needs protection, the monitor associates a

35

run d

User Space

Kernel Space
verify d

against C(S)

System Calls

map d
into memory

region r

attest r

bind to
socket s

associate
C(S) with s

page-fault into r

verifies r against
saved attestation

results

fork
a new process

p

mark p as
protected and
trace into p

reload
an executable

f

re-verify f
against C(S)

1 2 3 4 5 6

Figure 2.5: Satem Commitment Enforcement Work Flow

protection flag with all processes executed by this service, memory regions mapped

by these processes, and code files opened by them. By having this flag, we achieve

service-awareness by limiting the scope of Satem within the protected service instead of

performing attestation and other Satem actions on irrelevant programs. More details

about our protection mechanism will be presented throughout this section.

The commitment of a protected service is loaded into the kernel memory. It is

implemented as a table, and Satem uses the name of the service code file as the key

to look up the corresponding hash value. We use the Linux kernel crypto API to

implement SHA1 functions. Figure. 2.5 shows, from left to right, how the monitor

enforces the service commitment when a service is launched and executed. The up-

down arrows represent the interception of kernel calls, in which the monitor has the

checkpoints. We assume that the services are based on TCP/IP.

Loading

When a service S is started, its daemon program d is executed; this results in an

invocation of do execve() that traps into the kernel. The monitor intercepts the call

in the kernel (arrow 1 in the figure) and does the following:

1. Compares d with a preset list of protected services, PS, to see if d ∈ PS. Service

providers that want to use Satem must provide such a list. In brief, it defines

the mapping between d and C(S). For instance, the following PS defines two

36

protected services: a peer-to-peer file sharing application associated with a com-

mitment cf and a routing application associated with a commitment cr.

</usr/mute/bin/textMute cf>

</usr/bin/aodvd cr>

The monitor does not verify whether PS tells the truth about what commitment

is associated with the service. In this way, an attacker may try to associate a

bogus commitment with the service in order to run untrusted code. From a re-

quester’s perspective, however, this is not a problem because the evaluator on the

requester side will refuse to trust the commitment during the service commitment

protocol. If the commitment is trusted, the monitor will detect immediately any

attempt to execute untrusted code either by d or by the service.

2. If d ∈ PS, the monitor marks the current process as protected. Then, it reads

the commitment, C(S), attests d, and verifies whether d is defined and has the

same SHA1 value as in C(S).

3. When an interpreter, i, is loaded (e.g., ld.so for binaries, perl for perl scripts),

the monitor recognizes that it is loaded with a protected service and thereby

attests i in the same way as d.

4. The kernel maps memory for d and i using do mmap (arrow 2 in the figure). Since

the mapping is called by a protected service, the monitor marks the memory region

r as protected and partitions the entire region into a list of small segments such

that r =< sg0, sg1, sg2, ...sgn−1 >. Each sgi corresponds to a page. The monitor

then reads each page to fill the segments sgi one after another and computes

SHA1(sgi). The attestation results are saved in kernel internal memory. After

attesting each sgi, the kernel does not attempt to keep the content of the page in

memory.

The monitor saves the attestation results of protected memory regions, commit-

ments, and the secret key k (defined in Section 2.3) in system memory rather than in

the tamper-resistant TPM. This is caused by the fact that TPM does not have sufficient

37

space for the variable-sized results. Our prototype addresses this problem by letting

the monitor define the area and forbidding access to it from any non-Satem user-space

applications. We assume that the OS kernel correctly protects kernel memory such that

the only channel to access this area from user space is through direct memory mapping

mechanism, such as /dev/kmem and /dev/mem.

Linking

When d is fully loaded, the kernel transfers the control to its interpreter to load the

shared libraries. Similar to d, a library l is mapped, not read, into memory and attested.

Binding

Once loaded, the service program needs to bind a network socket. The sys bind system

call traps into the kernel (arrow 3 in the figure). The monitor first checks whether the

current process is protected. If so, it links the socket to C(S); in this way, the service

platform can deliver the right commitment to requesters.

Cloning

The current process may create new child processes. In this case, the monitor intercepts

the fork system call (arrow 4 in the figure) and checks if the current process is protected.

If so, it marks the new child process as protected and links it to C(S). Then, the monitor

will track the child process in the same way with its parent.

Code Changing

The user may modify the kernel by loading new kernel modules. When a kernel module

is loaded, the trusted agent intercepts sys init module and verifies its integrity against

the system commitment without checking the calling process’s protection flag. Another

way to modify the kernel is to reboot into a different one. In this case, the change

is captured by the TPM in the trusted boot procedure and revealed to the requester

when the attestation report is verified. We assume that the OS kernel isolates processes

correctly (i.e., it forbids one user process from accessing memory of another process

38

without authorization). Therefore, once the code is loaded into memory, the attacker

cannot modify it without compromising the kernel.

The attacker, however, can modify arbitrary code files. The monitor does not at-

tempt to catch changes in code files. Instead, it detects and blocks any attempt of a

protected user space process to invoke the compromised code. For instance, reloading

a modified d (arrow 5 in the figure) will be blocked in do execve call.

A less obvious attack is to directly modify mapped binary code chunks on the disk.

Consequently, the tampered code chunk is loaded into memory by filemap nopage

when a page fault occurs. Attestation at the granularity of files cannot detect this

problem. A mapping can exist even without keeping the underlying file open, which

makes it impossible to catch changes just by watching system calls, such as sys open(),

sys read() and sys write() as in [102]. Satem can defeat such attacks by using the

previously saved hash values for the protected memory regions. Each time a memory

fault causes a real read of a missing page, the monitor recomputes the SHA1 value of

the page to be read and compares it with the saved value (arrow 6 in the figure). If the

values are different, the monitor concludes that the page was tampered with, on the

disk, after being mapped.

Monitoring Interpreted Programs

Interpretation of scripts or virtual machine based executables (e.g., perl scripts or java

servlets) are more difficult to monitor because their execution takes place in a black

box from the monitor point of view. To solve this problem, we monitor all the files

opened and read by protected processes (e.g., in sys read call) and verify each of them

against the commitment.

2.4.2 Lazy Attestation

Attestation of large code files and mapped memory regions is costly. This can cause

significant overhead to the service provider system since the service may repeatedly

invoke the same code. Since not all code segments in a binary will be loaded for

execution, Satem uses lazy attestation to minimize the overhead by avoiding attesting

39

code segments which are not used. When the binary is executed for the first time (via

do execve()), Satem attests the file as a whole. In addition, it partitions the binary

file into page-sized chunks and also attests the loaded chunks, such as those containing

the ELF headers. The results are cached, and when the file is executed subsequently,

Satem does not attest again the file if the commitment has not been changed. Instead,

it verifies each of the loaded chunks against the cached attestation results. Satem will

attest the entire file only if the execution loads a chunk which has not been loaded

before. Similarly, when a code segment is mapped, Satem uses the previously saved

attestation results rather than re-attesting it.

2.4.3 TPM Functions and Satem Trust Evaluator

Our implementation of TPM Functions is based on the IBM TPM driver. Satem uses

TPM in a very light way. It only uses TPM for attestation and result reporting (i.e.,

the TPM Extend and TPM Quote functions). The Satem trust evaluator is a simple user

space application. It performs RSA signature verification. The trust policy was set to

“allow any” in the prototype. We have not implemented the commitment certificate

yet, but this is trivial if the certificate authority is known to the evaluator.

2.5 Evaluation

To evaluate the performance of Satem, we measured the overhead in terms of monitor-

ing scope, transaction processing delay, commitment delivery, as well as the overhead

imposed by Satem on application execution and kernel calls.

2.5.1 Methodology

We created an 802.11g ad hoc network consisting of three laptops (IBM T43 with a

1.7Ghz Pentium M CPU, 512M RAM, and Atheros wireless card). In order to test multi-

hop communication, the network was configured with a line-like logic topology (i.e., the

direct link between laptop 1 and 3 was disabled, but they could still communicate with

each other through laptop 2 as a router). This was achieved by enabling MAC filtering

40

Application Satem Monitoring Scope (number of files)

File Sharing 47

Routing 41

Table 2.2: Scope of Satem Monitoring

Commitment Latency 1.3(seconds)

Table 2.3: Satem Commitment Delivery Latency

using iptables [19] on each laptop. Two applications were used for experiments:

a peer-to-peer file sharing service and an ad hoc routing service. The former was

implemented using Mute [12] and the later using AODV-UU [2].

2.5.2 Scope of Monitoring

Satem does not have to monitor all files on the service provider due to its service-

awareness. In this way, it can significantly reduce the monitoring overhead. For our

experiments, Table 2.2 shows the size of the monitoring scope in terms of number of

files. For instance, to protect the file sharing application, about 50 files are monitored

at runtime: 36 kernel files, 10 library files and 1 executable. Compared with IBM TCG

Linux [102], for instance, which attests more than 250 files at run time, the scope of

Satem attestation is significantly reduced.

2.5.3 Commitment Delivery Latency

We measured the service provider’s cost for commitment delivery as the latency of

getting the commitment ready for delivery. As shown in Table 2.3, it is costly to

deliver the commitment. This also demonstrates the efficiency of Satem compared

to other attestation-based methods because this is just one-time cost. After trust is

established, Satem protects the service from being tampered with.

2.5.4 Transaction Processing Delay

To users of protected services, the performance is measured by the time to finish a

service transaction. To test the file sharing service, we ran Mute on both laptops and

41

Application Performance Overhead (%)

File Sharing 5.71

Routing 1.06

Table 2.4: Satem Application Transaction Processing Delay

0

0.5

1

1.5

2

E
ve

n
ts

 (
K

)

servicekernel

Original Satem protected

servicekernelservicekernel servicekernel

a. AODV daemon
 Loading Latency

b. Mute application
 Loading Latency

d. Mute Execution
 Latency

c. AODV Execution
 Latency

0

0.5

1

1.5

2

2.5

3

E
ve

n
ts

 (
K

)

0

0.1

0.2

0.3

E
ve

n
ts

 (
K

)

0

0.5

1

1.5

2

E
ve

n
ts

 (
K

)

Figure 2.6: Satem Cost of Service Execution

used one laptop to download files from the other. We measured the performance impact

in terms of decreased download speed. To minimize the impact of network transmission

latency, we used small randomly generated files of 1k bytes. We indirectly tested the

performance of the AODV routing service by having laptop 1 constantly ping laptop

3. In the meantime, we periodically deleted the established routes on laptop 1 to

force AODV routing to take action. We measured the performance impact in terms of

increased ping round trip latency.

As Table. 2.4 shows, the overhead in transactions with a Satem-protected service

is small. The reasons are two folded. First, the performance impact on the services

imposed by Satem is mainly due to the attestation of the service code, which only takes

place once at the time the code is loaded. Once the service is up, it may have already

loaded all the code needed to service the requests. Second, in case of code reloading,

our lazy attestation mechanism greatly reduces the attestation cost.

2.5.5 Cost of Application Execution

To measure the CPU cost, we turned on oprofile [17], which uses the Pentium M CPU

hardware performance counter to count CPU CLK UNHALTED events. For file sharing

42

0
0.5

1
1.5

2
2.5

3
3.5

4

cp
u

 c
yc

le
s

(K
)

0

5

10

15

20

25
cp

u
 c

yc
le

s
(M

)

1

40

1

200

Original Satem protected

do_execve() do_mmap() file_nopage() sys_open()

1
10

1
10

0

5

10

15

20

25

cp
u

 c
yc

le
s

(K
)

1
400

1
 5

0

0.1

0.2

0.3

0.4

cp
u

 c
yc

le
s

(K
)

Satem unprotected

Figure 2.7: Satem Overhead in Kernel Calls

application, we measured the cost that laptop 1 took to download three mp3 songs

(roughly 4M each) from laptop 2. For routing application, we ran a simple profiler

program, which periodically invalidated the established routes for ten times on laptop

1. The results are shown in Figure. 2.6. In these graphs, the left columns represent the

application cost in kernel, and the right columns represent its total cost (kernel and

user-level).

Clearly, Satem incurs significant overhead in initial loading of both AODV and

Mute to the kernel and to the applications as a whole (Figure. 2.6.a and b). This is

because Satem attests each code file being loaded and each mapped memory region of

the application. However, since this is a one-time initialization cost, it does not affect

the performance of ongoing application transactions. As Figure. 2.6.c and d show,

Satem does not incur significant overhead to the applications due to its lazy attestation

mechanism.

2.5.6 Overhead in Kernel Calls

To evaluate Satem-enabled kernel calls, we directly read the timestamp counter (TSC).

Figure. 2.7 shows the overhead in four kernel calls: do execve, do mmap, sys open, and

filemap nopage in terms of extra CPU cycles needed to complete these calls 3. We

measured the cost of these functions in Mute file sharing transactions. All functions are

3The cost of the calls vary dramatically. In order to compare them in one figure, we used a reduced
scale to plot the following figures: first call to do execve at 1/10, first call to do mmap in Satem protected

at 1/100, first call to filemap nopage in original and Satem unprotected at 1/400, and first call to
filemap nopage in Satem protected at 1/40.

43

measured in three cases: in the original Linux 2.6.12 kernel, in the Satem-augmented

kernel in which the Mute application is not protected (called Satem unprotected), and

in the Satem-augmented kernel in which the Mute service is protected (called Satem

protected). For each function, we measured its overhead for the first call (the left three

columns in the figures) and the overhead for subsequent calls (the right three columns

in the figures).

The graphs show that the impact of Satem on the first time function call is signif-

icant. For do execve and do mmap, the cost is dramatically increased because of the

per-page attestation for mapped code files. For filemap nopage, by contrast, the cost

is significantly reduced. This is because Satem needs to load every mapped page into

the page cache when it attests a protected memory region. As a result, when a page

fault occurs, it is very likely that the page is still in the cache. Furthermore, the cost

of the subsequent calls in Satem protected is greatly reduced. This is also because of

the lazy attestation mechanism. Finally, if a function in the Satem-augmented kernel is

called from an unprotected service, its performance is comparable to that in the original

kernel. This means that Satem does not impact other unprotected programs.

2.6 Case Studies

In this section, we use the three case studies from Section 2.1 to briefly exemplify how

our proposed Satem addresses attacks.

Attack 1: Service Spoofing

Satem does not interfere through the attack. At the end of the attack, /tmp/evanet

is loaded up and listens on UDP port 222. However, when a user requests the com-

mitment on the service, Satem fails to retrieve the commitment since it understands

that /tmp/evanet is bound to the service port, but this program is not in the PS list.

Consequently, the user will cancel the connection because she is unable to evaluate the

trustworthiness of the service.

Attack 2: Service Tampering

44

Satem loads the service commitment immediately after the service is loaded (e.g.,

in this case after /bin/vanet is executed). Due to the service-awareness, Satem

tracks the execution of the protected service and attests everything it loads, includ-

ing /tmp/libc.so.6, while ignoring /lib/tls/libc.so.6 because this library is not

loaded by the protected service. If /tmp/libc.so.6 is defined in the commitment,

Satem allows it to be loaded, but the user will be aware of it when evaluating the

commitment. Otherwise, if /tmp/libc.so.6 is not defined in the commitment, Satem

prevents it from being loaded.

Attack 3: Post-request Attack

Once the commitment has been evaluated and trust has been granted by the user, Satem

will block any code from being loaded by the service, which includes /bin/eaggregator.

2.7 Limitations

A challenging task faced by Satem is to ensure trusted handling of user’s data. In

addition to guarantee trusted service code execution, other mechanisms are needed

to achieve this goal. First, the protected service may cooperate with other processes

via inter-process communication (IPC). Satem can be extended to cover the code base

of the IPC processes by including it in the service commitment. Moreover, the service

provider may further call another service on a remote platform. Addressing this problem

requires extending Satem to a multi-tiered architecture, in which Satem is enabled

on each platform on the connection chain starting from the service provider. Lastly,

the protected service may cache user’s data in memory or even save it to disk. The

problem is further complicated by the fact that the data can be transformed in service

transactions. The transformed data may carry the same information as the original one

and thereby must also be protected. A possible solution is to track data transformation

by use of data lifetime [44] and integrate it into execution monitoring.

Satem is designed to ensure that a protected service can not load untrusted code

from the disk. An attacker can exploit, however, buffer overflow attacks to cause the

protected service to run arbitrary code without changing its disk image. Satem is

45

unable to tackle this type of attack. It only mitigates the problem in two aspects.

First, Satem may reveal the code which has known buffer overflow vulnerabilities by

attesting it to the user. Hence, the user can avoid trusting the vulnerable code. Second,

in the case of a successful buffer overflow attack, the attacker runs her own code on the

service stack without being caught by Satem. But due to the limited size of the stack,

the attacker’s code typically has to call other local programs on the service provider

to make the attack meaningful. Satem restricts the attacker’s capability of launching

arbitrary local code (i.e., any code launched by the protected service must be defined

in the commitment).

Satem kernel code is not modularized. The main hurdle in face of modulariza-

tion is the mapping protection mechanism, which involves deep kernel internal calls.

This problem can be avoided by building Satem on top of a virtual machine monitor

(VMM) [56, 113, 54, 50]. In such a case, the VMM (instead of OS kernel) can control

the memory access and perform integrity checks on memory regions. Another advan-

tage of using VMM is to better protect Satem by governing the access to the memory

area holding Satem data without limiting use of /dev/mem and /dev/kmem.

Transactions are not encrypted in the current implementation of the service com-

mitment protocol. This can be solved straightforwardly using netfilter and the kernel

crypto API.

2.8 Summary

This chapter presented Satem, a novel service-aware trusted execution monitor that

guarantees trusted application code execution. Users establish trust with the applica-

tions through a service commitment protocol executed before starting any new trans-

action. Satem exploits the TCG-specified TPM as the root of trust to build trusted

components in the OS kernel, which consequently enforce the service commitment.

Satem achieves service-awareness by limiting the scope of monitoring to protected ap-

plications instead of performing attestation and protection on all programs. We have

46

implemented a prototype under Linux and evaluated it using two MANET applica-

tions. The experimental results demonstrate that Satem incurs low overhead to both

the applications and the underlying platform. Furthermore, Satem does not impact the

performance of unprotected applications.

Satem tackles the problem of trusted applications. In another words, it ensures a

user that the application she calls on another node does not and will not run malicious

code to attack her. But this does not completely eliminate the user’s concern because

once she joins the network to run the application she will be exposed to network attacks,

such as probes, flood and denial-of-service. As a result, she demands a mechanism to

create a protected network that can shield network attacks from reaching her node and

other trusted nodes. We will present a solution based on Satem in the next chapter.

47

Chapter 3

Protected MANET

This chapter presents a Satem-based mechanism to create protected MANETs, in which

common network access control policies can be enforced in a distributed manner. We

start with the problem description of protecting MANETs in Section 3.1. Then, the ar-

chitecture is described in Section 3.2 followed by the detailed discussion on the protocols

for nodes to join the protected network in Section 3.3. We discuss the implementation of

method, evaluate its performance in Section 3.4 and demonstrate the use of our method

through a case study in Section 3.5. Finally, we discuss its limitations in Section 3.6

and summarize the chapter in Section 3.7.

3.1 The Problem Statement

A protected network is one that is shielded from unauthorized traffic. A practical

method to create a protected infrastructure based network is to enforce network access

control policy on a firewall or router. However, this is not possible in MANETs since

malicious nodes can simply roam into the wireless transmission range of another node,

establish a direct wireless link, and start launching attacks.

As an example, let us consider a group of users who run a peer-to-peer file sharing

application across a MANET composed of their smart phones. Through a direct wireless

link or ad hoc routing, a malicious user can attempt to exploit a vulnerability in this

application to compromise other nodes. Since there are no prior trust relationships

between the nodes, it is impossible to identify the untrusted nodes and protect against

them. Furthermore, even if these nodes are known and the attacks launched from

them are detected, these attacks can still reach the trusted nodes causing depletion

of resources on smart phones (e.g., battery). To make things even worse, given the

48

Link Layer ConnectionTrusted
Agent

Policy
Enforcer

user space

kernel space

EIAP/ERAP

hardware

Connection Manager

Link
Driver

Wireless NICTPM

Trusted
Agent

Policy
Enforcer

Connection Manager

Link
Driver

Wireless NIC TPM

Figure 3.1: The Common Security Architecture of Protected Ad hoc Net-
works

relatively low network capacity, a single attacker can flood the entire network and

make it unusable.

We developed a distributed mechanism that allows trusted nodes to create protected

networks in MANETs. A protected network is created to run a specific application and

enforce a common network access control policy associated with that application. To

become a member in the protected network, a node has to demonstrate its trustwor-

thiness by proving its ability to enforce the network policy. Attacks from untrusted

nodes are impossible because these nodes are not allowed to establish wireless links

with member nodes. Attacks from member nodes are stopped at the originators by the

network policy. The trusted execution of all programs involved in policy enforcement

is guaranteed by a kernel agent implemented on top of Satem.

3.2 Security Architecture

The essential idea of our mechanism is to allow only nodes that can be trusted to enforce

a common network access control policy to be part of the protected ad hoc network,

regardless of whether the node is owned by a trusted entity or not. To accomplish this

goal, each node supports a modified version of Satem (i.e., the trusted agent is modified

for policy enforcement) augmented with a connection manager and a policy enforcer as

illustrated in Figure 3.1. The connection manager establishes the link layer connection

and shares the policy with other nodes. The policy is a set of access control rules, and

the enforcer is a packet filter, such as Linux netfilter, that can enforce the rules.

We adapted Satem to ensure trusted execution of all code involved in the policy

49

enforcement. First, according to Satem, the OS kernel (including the trusted agent,

the policy enforcer, and the link layer driver) is attested by the system commitment.

Second, we define a link commitment, which includes the connection manager in its

protection scope. Third, we modify Satem’s service-oriented commitment protocol and

integrate it into the link layer access control protocols. This part of the design will be

detailed in Section 3.3.

If a MANET is deployed by an authority, this authority is responsible for defining

and updating the policy. To ensure its authenticity, the authority signs the policy and

preloads its public key on each node. If the MANET is created spontaneously by a set

of nodes (referred to as the creators of the network hereafter), the creators negotiate

the policy using existing links. A typical scenario is that the node that initiates the

network, drafts the policy and proposes it to the others. The policy can be signed using

threshold based methods, such as [126, 28, 70, 40, 122]. When the policy is defined, all

creators drop the existing wireless links with each other. These peers then rejoin the

network by running the secure protocols described in Section 3.3.

In spontaneously-created MANET, there is no assumption about the correctness

or trustworthiness of the policy. All the creators may be malicious, and they form

the network just to attract innocent nodes. Therefore, a node may need to evaluate

the policy independently based on its own need and capability of enforcing the policy.

Since all nodes intending to join the network have the goal of executing a common

application, they are motivated to accept a reasonable common access control policy to

benefit from the application and protect themselves from attacks.

Each node may already have a local policy to protect itself from malicious nodes.

There may be a conflict between the local policy and the network policy. Policy rule

conflict discovery and resolution has been extensively studied and many methods are

available [24, 74]. In this work, we assume the enforcer is able to use one of these

methods.

50

Wireless
Link Layer

Link Driver

Connection
Manager

UP CP

Network
Services

Network
Layer

Link Driver

Connection
Manager

Authentication Only

Any traffic

UP: Uncontrolled Port
CP: Controlled Port

Figure 3.2: 802.11 Dual Port Access Control

3.3 Protocols for Joining Protected Networks

Our approach requires that the link layer have the following properties:

P1: dual port access control;

P2: secure link association;

The concept of dual port access control is defined in IEEE 802.1x [10], which is sup-

ported by IEEE 802.11 (e.g., Windows XP and Linux provide such support). The link

layer of a network node has two access ports, uncontrolled and controlled, as shown in

Figure 3.2. The controlled port has full access to the link layer, while the uncontrolled

port is used only for authentication. Any node in the transmission range can connect

to the uncontrolled port in order to authenticate itself. Only after a successful authen-

tication and authorization by the peer node, the initiator can connect to the controlled

port.

Once a connection is established, the link layer must ensure that it cannot be hi-

jacked. This is addressed by secure link association. In practice, P2 is accomplished

using link layer encryption (i.e., all frames transmitted over the link are encrypted).

Consequently, a node with a single wireless card can be part of only one protected

MANET at a time.

We define two protocols that allow a node to join a protected network: Enforcement

Initial Activation Protocol (EIAP) and Enforcement Re-Activation Protocol (ERAP).

51

Both protocols perform three tasks: (1) verifying the mutual trustworthiness of nodes,

(2) sharing the link layer key, and (3) distributing the network policy. EIAP is used for

a node to join a network for the first time, while ERAP is used to re-join a network;

their main difference is the verification method.

Assuming that a new node Ne wants to join a protected ad hoc network AN by

initiating a link layer connection request to a member node of AN , Nm, the high-level

view of our security protocols is as follows:

1. Ne calls its connection manager to establish a link layer connection to Nm. The

connection manager of Nm grants the connection only to its uncontrolled port.

2. The connection manager of Ne calls the trusted agent to attest the capability and

trustworthiness of enforcing AN ’s policy.

3. The connection manager of Nm verifies the attestation, attests itself and pushes

AN ’s policy P and the link layer key k to Ne. It then grants Ne full access to its

controlled port.

4. After verifying Nm’s attestation, the connection manager of Ne invokes the policy

enforcer to enforce P and finalizes the connection with the link layer key k. Note

that the enforcer must be already loaded in the OS kernel.

In the rest of the section, we present the two protocols in detail.

3.3.1 Enforcement Initial Activation Protocol (EIAP)

When a node Ne that has never connected to any node of AN attempts to connect to a

member of AN , Nm (we say Ne connects to AN via Nm), Nm activates the enforcement

of AN ’s policy P on Ne through the EIAP protocol. The protocol is illustrated in

Figure 3.3.

1. The connection manager of Ne initiates a wireless connection request CREQ to

Nm.

2. The connection manager of Nm grants access to its uncontrolled port and replies

with a random number, noncem.

52

Ne

1. CREQ

2. noncem

4. Rm((SHA1(noncee |Cm | k | P)), Cm, ENC(PKe, k), P

k

k

3. Re((SHA1(noncem | Ce | PKe)), Ce, PKe, noncee

5. CONNECT

Nm

Figure 3.3: The Enforcement Initial Activation Protocol (EIAP)

3. The connection manager of Ne attests itself and delivers the commitments to Nm.

To attest itself, the connection manager of Ne calls the trusted agent to generate

a TPM report (Re) of the kernel attestation results with SHA1(noncem|Ce|PKe)

as the parameter (| means concatenation). Ce represents the link commitment

and the system commitment. PKe is the public key generated by the connection

manager. The TPM signs both the parameter and the attestation results. Ne

then generates another random number noncee and sends Re, Ce, noncee and

PKe to Nm

4. The connection manager of Nm activates the enforcement of P on Ne. The con-

nection manager of Nm validates Re to make sure it is generated by a valid TPM.

Then, it validates the parameter by recomputing the hash using its stored noncem

and the newly received Ce and PKe. Next, it generates a TPM report in the same

way as Ne with a parameter SHA1(noncee|Cm|k|P), where Cm represents the link

and system commitments of Nm, k is the link layer session key, and P is the net-

work access control policy. Finally, the connection manager encrypts the link

layer session key k with PKe, ENC(PKe, k) and sends it with Rm, Cm, and P

to Ne. Then, Nm grants Ne full access to its controlled port.

5. Ne establishes a full connection with Nm. Ne validates Rm the same way as Nm

did. Then, it evaluates P before accepting it. Once P is accepted, it is pushed to

the policy enforcer, which starts enforcing it immediately. Finally, Ne decrypts

k using the corresponding private key SKe, enables link layer encryption, and

53

obtains full connectivity to Nm’s controlled port.

The EIAP protocol enables the two nodes to mutually verify trustworthiness in

enforcing the policy. This is necessary because the link to be established is bi-directional

and both nodes need to protect themselves from each other.

Security Analysis. Let us consider a local attacker on Ne (the analysis holds if

the attacker is on Nm). We assume that the attacker cannot break the TPM or launch

hardware based attacks, and in particular, cannot use direct memory access (DMA). We

further assume that the attacker is unable to bypass the node operating system to gain

access to system resources, such as memory, CPU, network card, and disk. Other than

these restrictions, the attacker can have full control of the software system, including

superuser privileges.

Disable enforcement of P . The most direct attack is to disable the enforcement

of P after obtaining the connectivity. The attacker can do so by disabling the policy

enforcer. This requires removing the policy enforcer’s kernel module. The trusted

agent intercepts the removal request, clears k, and tears down the link before removing

the module. Thus, the attacker has to first disable the trusted agent, which requires

rebooting the system.

Modify P . The attacker may attempt to modify the current policy P at runtime.

The trusted agent secures the memory space holding P such that only the connection

manager have write permissions to it. Additionally, the connection manager is protected

by the trusted agent. The attacker may try to run a malicious connection manager.

This is allowed only if it is described in the link commitment, which means the link

commitment is also untrusted. Nm will receive the commitment at step 3 and refuse to

trust the malicious connection manager.

Steal k. The attacker may attempt to steal the session key k on the node. The

key is secured by the trusted agent in memory and accessible only to the connection

manager and the link driver 1. The protocol ensures secure distribution of the key. On

one hand, the key owner will not distribute the key to any untrusted node (step 4). On

1Some drivers provide simple user space utilities for users to read the link layer session key. In our
method, these utilities will fail.

54

the other hand, a node that joins the network will not accept the key from a member

node unless the member node has been verified to be trusted (step 5). Consequently,

an untrusted node cannot create a key and fool others to accept it.

Hijack k. The attacker may try to steal k in distribution. The public-private key pair

is dynamically generated, and the private key SKe is saved in the connection manager’s

memory and never disclosed to any other processes. The trusted agent protects the key

from being disclosed to any process other than the connection manager. Hence, the

attacker is unable to acquire SKe to decrypt k intercepted at step 4.

Play man-in-the-middle. The attacker may attempt to play a man-in-the-middle

attack by replacing PKe with her own PKa in order to decrypt k with the private key

SKa she owns. Although PKe is not authenticated in the protocol, it is attested in the

report Re. The TPM report certifies that the public key PKe belongs to the system

attested by the TPM. Therefore, unless the attacker’s system is fully trusted, which

makes it impossible to launch attacks, Nm will detect this and refuse to distribute k.

The attacker may want to replay a valid TPM report and exploit it to gain trust from

Nm. The protocol foils the attacker by including noncee and noncem in the attestation

reports.

3.3.2 Enforcement Re-Activation Protocol (ERAP)

EIAP addresses the scenario where an external node Ne connects to AN via Nm ∈ AN

for the first time. In MANETs, the network topology and the connectivity between

nodes may change constantly. For instance, Ne may roam out of the wireless trans-

mission range of Nm, and thereby, it will lose the previously established connection.

Subsequently, it may approach another node Nh ∈ AN and re-establish connection to

AN via Nh. This brings up two issues, which make the use of EIAP unsuitable for

connection re-establishment.

First, the network policy may be updated to accommodate certain changes in the

network, which causes the local copies on Nh and Ne to be inconsistent. We need to

ensure that only the most recent version of P is enforced. This problem can be solved

by assigning a version number v to P , which is incremented every time P is updated.

55

Ne Nh

1. CREQ(ve, noncee)

2. nonceh, Ph

Pe, ke Ph, kh, ke

3. HMAC(ke, nonceh | Ph)

4. ENC(ke , kh), HMAC(ke, noncee | kh | Ph) Ph, kh, ke
 5. CONNECT

Figure 3.4: The Enforcement Re-Activation Protocol (ERAP)

Second, the nodes enforcing old policies should be disconnected from the network. This

can be done by having the nodes enforcing the new policy update their link layer session

key. As a result, when the node rejoins the network, it has to request the new key to

re-establish the connectivity.

EIAP can solve the above problems, but it is too costly due to the need to generate

the TPM report and transmit large data via a partial link. Therefore, it is desirable

to optimize the protocol for the link re-establishment scenario. We observe that both

Ne and Nh must have been verified before they were allowed to connect to AN for the

first time. Owning an old key implies that it has been protected by the trusted agent.

Otherwise, if any program defined in the commitments had been compromised since

last connection, the trusted agent would wipe out the key. Therefore, we can let each

node hold the past V keys and use them to compute a keyed message authentication

code (HMAC) to prove its trustworthiness. Figure 3.4 illustrates the Enforcement Re-

Activation Protocol (ERAP) assuming Nh has the latest policy.

1. Ne sends a request to Nh to establish a full link. Ne includes its policy version ve

and a random number noncee in the request. Ne cannot lie about its ve since it

will be verified later by Nh.

2. Nh grants access to its uncontrolled port. Nh replies with another random number

nonceh. It also compares its policy version vh with ve and includes the latest policy

Ph in the reply if vh > ve.

3. Ne authenticates to Nh. If Ne authenticates Ph, it learns that its policy needs to

56

be updated. It computes HMAC(ke, nonceh|Ph) and sends it back to Nh.

4. Nh verifies Ne and distributes kh to Ne. Verifying HMAC(ke, nonceh|Ph) proves

that Ne holds ke and Ph. Nh then encrypts kh with ke (ENC(ke, kh)) and sends

the encrypted key with HMAC(ke, noncee|kh|Ph).

5. Ne verifies Nh and establishes a full link with Nh. Verifying HMAC(ke, noncee|kh|Ph)

convinces Ne that Nh holds ke and enforces Ph. Ne overwrites Pe with Ph received

at step 2. Ne then decrypts ENC(ke, kh) and obtains kh. It can now enable link

layer encryption and establish full connectivity with Nh.

In case of vh < ve, the roles of Ne and Nh are just swapped. Nh sends vh instead of

Ph at step 2. Ne sends Pe at step 3 with HMAC(kh, nonceh|Pe). The rest is similar.

Security Analysis. As discussed in EIAP, the attacker is unable to break the

connection manager, the policy enforcer, or the trusted agent. As a result, she cannot

obtain the link layer session key without enforcing the policy. Additionally, she cannot

modify the policy or steal the link layer session keys on the machine either. So, the

new key distributed at step 4 is safe.

The number of old keys kept on each node, V , is a design parameter. If a node has

missed too many policy updates, it cannot re-connect to the network through ERAP

since none of the nodes enforcing the latest policy holds the old keys any more. In this

case, it has to join as a new node through EIAP.

3.4 Prototype Implementation and Evaluation

To show the feasibility of our mechanism, we implemented and evaluated a prototype

that works over IEEE 802.11-based networks. The EIAP and ERAP protocols were

implemented in the connection manager as extensions of IEEE 802.1x. To implement

the connection manager, we modified xsupplicant [15], an open source 802.1x client

and hostapd [9], an open source 802.1x server. The two connection managers conduct

the protocol negotiation via the EAPOL protocol [23]. We used the built-in netfilter as

the enforcer.

57

Scenario Latency (in seconds)

802.11 WEP 1.2

EIAP 3.1

ERAP 1.9

Table 3.1: 802.11 Link Establishment Latency in Protected Ad hoc Network

Scenario Download Speed (KB/second)

Open 235.23

WEP 230.57

Our Solution 229.42

Table 3.2: Performance of Data Communication over Protected Ad hoc Network

To simplify the implementation, we used 802.11 WEP [1] to encrypt the link. Ex-

tensive research studies showed that WEP is insufficient to guarantee secure associa-

tion [52, 84, 26]. Other types of stronger encryption, such as WPA [1], can be used to

replace WEP. For instance, integration with WPA is straightforward, but more config-

uration work in xsupplicant and hostapd is needed.

Our method incurs a certain latency for link layer connection establishment and data

communication. To measure them, we used two nodes that create an IEEE 802.11b

ad hoc network for the application described in Section 3.5. The source node NS is

an IBM R40 laptop with a 1.3Ghz Pentium M CPU, 512M RAM, an Intel IPW2100

wireless card, and an Atmel TPM. The destination node ND is an IBM T43 laptop

with a 1.7Ghz Pentium M CPU, 512M RAM, and an Atheros wireless card.

The link establishment latency is shown in Table 3.1. Compared to the link layer

connection establishment in the standard 802.11b with 104 bit WEP authentication,

EIAP incurs a high overhead in the initial link establishment. This is mainly due to the

cost of collecting attestation reports and the negotiations over EAPOL. As expected, the

overhead of ERAP is significantly reduced because it does not perform the costly trust

verification. We believe that these results are acceptable, especially because the high

overhead imposed by EIAP is just a one-time cost. After that, the typical overhead is

reduced through the use of ERAP for reconnections.

58

The overhead of joining is insignificant for the overall wireless communication per-

formance because connection establishment happens only once in a while even in a

volatile network. The cost that dominates the overall network performance is the la-

tency of data communication. To quantify this cost, we measured the download speed

of Mute in three networks: standard open 802.11b, standard 802.11b with WEP, and a

protected network that enforces the policy presented in Figure 3.5. Since we measured

the cost when the link was fully established, this cost is relatively fixed per packet

(i.e., policy enforcement). Therefore, using large files increases the accuracy of the cost

estimation. In the test, we let node NS download 256M files from ND.

As Table 3.2 shows, our method incurs small performance degradation compared to

both the open 802.11b (2.47%) and WEP-based 802.11b (0.5%). This result is due to

the fact that our method does not incur any costs besides WEP encryption and packet

filtering, which are very light-weighted. Another reason is the simplicity of the policy

being enforced.

3.5 Case Study

To illustrate our mechanism, we consider a simple ad hoc network created for a peer-

to-peer file sharing application, namely Mute [12]. For instance, a group of students

on-campus can use their 802.11-enabled smart phones to create such a network. The

students do not know each other and want to protect themselves from being attacked

by malicious peers. Since the network is formed for a specific application (i.e., Mute),

the network access control policy must deny any other connection request from different

applications. Additionally, even though Mute connections are accepted, the policy must

protect the nodes against attacks that target Mute, such as flooding.

Figure 3.5 shows an example of a policy for this application expressed in pseudo

netfilter rules. We assumed that Mute runs on TCP port 5000. Furthermore, to allow

multi-hop communication, the network runs the AODV [93] routing protocol on UDP

port 654. Each computer uses interface wifi0 to join the ad hoc network.

The rules R2 − 6 allow only Mute and AODV traffic to be sent from each node.

59

IN
R 1 Mark=1 TCP from any to wifi0 !Local_IP:5000

OUT
R 2 Allow TCP SESSION from wifi0 to any:5000
R 3 Allow TCP SYN from wifi0 to any:5000 limit 3/s
R 4 Allow UDP from wifi0 to any:654 limit 10/s
R 5 Allow TCP from wifi0 to any:5000 Mark==1
R 6 Drop TCP or UDP from wifi0 to any

FORWARD

R 7 Drop from any to wifi0

Figure 3.5: The Policy for Protected File Sharing Network

Hence, attacks to other services (e.g., default services like netbios) are impossible. The

attacker could try to exploit one of the allowed services: Mute and AODV. A direct

attack is to flood Mute, but this is significantly limited by R3, which allows a node to

initiate at most three TCP connections per second. Once a session has been established,

R2 allows packets to be sent at any rate. Similar to R3, R4 protects AODV from being

flooded. All these attacks are stopped at their originators without having any impact

on the target node or the network. This is impossible through receiver side protection.

R1 and R5 enforce hop-by-hop packet forwarding for Mute traffic. Per R1, the node

marks an incoming (pre-routing) Mute packet of which it is not the destination. This

means that another node uses it as a router. Per R5, the marked packets are allowed to

be forwarded. In a more complicated scenario, some protected nodes may have multiple

wireless network cards and be in multiple networks. The attacker may leverage this

fact to launch attacks from an unprotected network to nodes in the protected network.

R7 stops this attack by forbidding packet forwarding across different networks.

Policies, such as the one described in this section, can be enforced by built-in kernel

filters (e.g., netfilter). These filters can easily be extended by adding modules and

thereby can support more complicated policies. For example, if the application is

vulnerable to a buffer overflow attack and the attack signature is known, one can

implement an extended module to check the specific signature in the packet and stop

the attack at the originator. Consequently, our method is flexible and extensible.

60

3.6 Limitations

Runtime intrusion. The security of our method largely depends on the security of the

underlying trusted system, which only prevents untrusted code from being loaded from

the disk. Therefore, our approach is unable to tackle runtime intrusion exploiting code

vulnerabilities, such as buffer overflows. As we mentioned in Section 2.7, the method

only mitigates the problem by revealing the vulnerable code in the Satem report and

by restricting the attackers from running arbitrary local code.

Attacking the uncontrolled port. Neither EIAP nor ERAP prevents the at-

tacker from sending link layer frames to the uncontrolled port of its one-hop away

neighbor. The attacker can leverage this weakness to flood its neighbor nodes. We

address this weakness from two perspectives. First, flooding the uncontrolled link layer

port is by far less effective than flooding the network layer. This is because in the

former case, the attacker can only target a small number of nodes in her one-hop vicin-

ity. In the latter case, she can target any node in the network and exploit widely

distributed denial-of-service slaves to dramatically amplify the damage. Hence, our

method addresses the main and most severe threat. Second, this weakness can be ef-

fectively addressed by host based countermeasures [32]. For instance, limiting the rate

of accepting connection requests can foil resource depletion attacks.

Attacking the connection manager. The attacker may flood the connection

manager of the protected node with overwhelming connection requests. To mitigate

the problem, the protected node can limit the rate of handling the connection requests

to bound the resources spent on EIAP and ERAP processing. In addition, EIAP

and ERAP require the connection requester to do the attestation first at step 3. Since

attestation is much more costly than verification, the difficulty of the attack is increased.

The attacker has to either use a high-end computer or control a large number of low-end

computers.

Kernel update. During the time the node maintains a link with the network,

loading new kernel modules is limited by the system commitment. For instance, if the

node obtains a new driver that is not defined in the system commitment, it cannot load

61

the driver until it reboots the system.

3.7 Summary

This chapter presented a mechanism for creating protected ad hoc networks. The

creation of such networks is triggered by users who want to run a common application.

Our mechanism does not allow untrusted nodes to establish wireless links with nodes

in the protected networks. Furthermore, it enforces a common network access control

policy in the networks; this policy is associated with the application running in the

networks. Attacks from member nodes are suppressed locally by the common network

policy. To ensure trusted enforcement of the policy, we augmented every node with a

trusted kernel agent based on the TPM. We evaluated the method through a prototype

based on an IEEE 802.11 ad hoc network. The results demonstrate that our method

imposes little impact on network communication.

The protected network ensures trusted communication at low level since it only

prevents each network member from being attacked at network layer. It lacks knowledge

about the application protocols and is unable to handle the complex interdependence

between them. Therefore, this method is not sufficient to ensure secure and proper

collaboration between network nodes through the application. In the next chapter, we

will present a policy enforcement mechanism to address that problem.

62

Chapter 4

Trusted Policy Enforcement

In this chapter, we further extend the idea of enforcing application centric network

policy for MANETs to all application layers by designing and implementing a trusted

policy enforcement framework on top of Satem. To begin with, we motivate the research

with the need of the method of enforcing application specific policies in MANETs in

Section 4.1. Then, we introduce the trusted multi-tier network followed by the methods

to create it in Section 4.2 and 4.3. Next, we discuss the prototype implementation of

the policy enforcement mechanism and evaluate its performance in Section 4.4. Finally,

we discuss the limitations in Section 4.5 and summarize the chapter in Section 4.6.

4.1 The Problem Statement

In addition to protecting network nodes from being attacked, a key to the success

of MANET applications is a mechanism assuring secure communication and proper

collaboration among all participant entities at the application level. To achieve this

goal, communication policies that govern the interactions between entities must be

defined and enforced. Although significant research work and breakthroughs have been

done in the area of security policies, they mainly focus on providing sufficient expressive

power to represent policies [35, 34]. The challenge that remains unsolved for MANET

applications is how to enforce such policies. We illustrate the problem through three

MANET applications and show the difficulty of applying existing solutions to them.

4.1.1 Example 1: Secure Routing

Consider a group of nodes supporting AODV routing protocol. AODV is known to

be vulnerable to wormhole attacks [60], in which an attacker exploits a fast tunnel to

63

attract all network traffic through it. One way to defeat this attack is to implement

Packet Leashes [60]. For example, a geographical leash can ensure that the destination

node is within a certain distance from the source node. It is implemented as follows:

The source node r checks for each AODV reply from the destination node s,

dmax > ||p(s) − p(r)|| + 2(tr − ts) × v + e, where dmax is the max distance that

the destination node s is allowed from the source node r, p(s) is the position of

s at ts, the time of sending the AODV packet, p(r) is the position of r at tr, the

time of receiving the AODV packet, v is the maximum relative moving speed of

the two nodes, and e is the acceptable error. Replies that do not pass the check

are deemed as from wormholes and rejected.

We can directly translate the above leash into a routing policy PR. However, the

implementation of the above leash or enforcement of the policy PR requires that node

r and s be loosely synchronized and r can authenticate s. In general, this is non-trivial

in MANET due to the lack of a central time server. In case of anonymous environment,

this becomes more difficult since the two nodes cannot trust each other. The node has

to rely on round-trip delay to estimate the time needed for an AODV message to reach

the other. However, this method will accumulate large errors with number of hops

and distance between the two nodes increasing. Therefore, the best place to detect the

wormhole is on the node that is close to either end of the tunnel. The further away

the node is, the less precise the estimate becomes, and the higher false positives and

negatives the method incurs. But this is infeasible since we do not know which node is

close to the tunnel and whether this node can be trusted to check the leash.

4.1.2 Example 2: Unselfish Sharing

Consider cars on a highway forming a vehicular network to obtain traffic information

ahead of them [46]. Each node simultaneously posts queries, answer queries, receives

responses, and forwards queries for others. To benefit all cars in the network, it is vital

to ensure that enough cars respond to and relay the queries posted by others. Similar

concerns exist in other applications, such as a P2P file sharing network where sufficient

64

file providers are desired. To achieve these goals, each node must abide by a policy PF ,

like the following, before joining the network:

Every mobile node has to serve or relay at least 1 request from others after posting

3 queries to the network.

Clearly, the only way to enforce the policy is to do it on every node in the network.

Due to the anonymous nature, any identity based policy enforcement method, such as

Peace [69], does not apply.

4.1.3 Example 3: Fair Game

Consider a group of smart phones using a MANET to play a game. They are separated

into n teams and each of them chooses to join one of the teams at the beginning of the

game. To ensure that each node can only take one role in the game, the following game

policy PG is defined:

Each gaming node is free to join any of the n teams. But once it joins one, it can

not join another team without first withdrawing from the current team.

The above policy is similar to Chinese Wall Policy [37]. Enforcing such a policy for

Internet based applications has been addressed in literatures, such as [83]. The existing

methods rely on the capability of differentiating one node from another. However, due

to Sybil attack [49], this is difficult in MANET.

It is difficult for existing methods to enforce any individual policy aforementioned.

To make it more challenging, these policies can be related. For example, secure routing

may be prerequisite to secure the file sharing and gaming applications. So, enforcing the

file sharing or gaming policy requires that the underlying routing policy have already

been enforced. On the other hand, a node may run the file sharing application side by

side with the gaming application. Enforcing the policy for one should not interfere with

the other. Since nodes can run these applications in any combinations, it is critical to

enforce their associated policies flexibly and organically.

65

4.2 Overview of Trusted Multi-tier Networks

In this section, we first formally define the trusted multi-tier networks. Then, we

illustrate the idea by a two-tier network example. Finally, we describe how to create

such a network.

4.2.1 Definition and Policy Enforcement

For some application S, we define the trusted policy enforcing tier T0, as follows:

T0 =< N,S, P >

where N are the set of nodes communicating through S, and P is the policy defined

for S. To facilitate description, we use “.” to represent “member of” relation, i.e., T0.N

means the set of nodes in the tier T0.

Assume S calls a set of h independent protocols and each protocol is associated with

a policy, the nodes running these applications and enforcing their associated policies

form T0’s underlying tiers T1, T2, ... Th. Similarly, each of these protocols may also

depend on other protocols and therefore, may have its own underlying tiers. Assume

that there are totally m direct and indirect underlying tiers of T0, these m + 1 tiers

form the trusted multi-tier network of S defined as follows:

N =<

m⋂

i=0

Ti.N,

m⋃

i=0

Ti.S,

m⋃

i=0

Ti.P >

Each policy is enforced at its associated trusted tier independently. Each trusted

tier Ti ensures both compliance and authenticity of the messages in Ti.S as follows:

1. Compliance. For each member node of Ti to send a message in Ti.S, it must be

permitted by Ti.P .

2. Authenticity. For a message of Ti.S to be accepted by a member node of Ti, it

must be sent by another member node.

Compliance ensures that all member nodes abide by Ti.P in communicating with

each other through Ti.S. This is accomplished because only nodes that are trusted to

66

Trusted
Agent

AODV

FS

1
6

Trusted
Agent

AODV

3 5

AODV

P2P FS

Trusted
Agent

2

FS

Trusted
Agent

AODV

FS

4

Trusted
Agent

AODV

FS, Game

Trusted
Agent

AODV

7

8

Trusted
Agent

AODV

Game

9

Trusted
Agent

AODV

Game

AODV Routing Traffic File Sharing Traffic Game Traffic

Nodes 1, 3, 4, 6, 7, 8 and 9 establish an AODV routing tier. On top of it, nodes 1, 4 and 6 establish a file sharing tier and nodes 6, 8 and 9
establish a game tier. Hence, nodes 1, 4 and 6 form a trusted two-tier file sharing network enforcing both the file sharing and routing policies.
Nodes 6, 8 and 9 form a trusted two-tier game network enforcing both the game and routing policies.

Figure 4.1: Policy Enforcement in Multi-tier Networks

enforce P can join the trusted tier. Once the trust is established, the node’s underlying

trusted computing system ensures that it will not be compromised. Otherwise, the node

will lose its membership of the trusted tier. We will discuss how these are accomplished

in the next section. Authenticity prevents a non-member node from creating and in-

jecting messages to the trusted tier. To achieve this, the enforcer on the node attaches

a Message Authentication Code (MAC) to each message X of S it sends out. The

trusted tier key kT is used to compute the MAC code e.g., MT (X) = HMAC(kT ,X).

kT is created when T is established and shared by all member nodes in T . We will

discuss more on the trusted tier key in the following sections.

Example: Two trusted two-tier networks

In order to understand the main idea of our solution, let us first consider the example

presented in Fig. 4.1. This example shows a group of nodes using a MANET to run a file

sharing and a game application, denoted by F and G. Both applications rely on AODV

routing denoted by R. To address the issues described in the previous section, the

nodes can build two trusted two-tier networks: (1) a file sharing network NF consisting

of a file sharing tier TF and a routing tier TR; and (2) a game network NG consisting of

a game tier TG and the same routing tier TR. A node can join more than one multi-tier

networks at the same time (e.g., node 6 in this example). Nodes in each tier must

67

enforce the tier policy, PR for TR, PF for TF , and PG for TG. Formally, NF and NG are

defined as follows:

TR =< {1, 3, 4, 6, 7, 8, 9}, R, PR >

TF =< {1, 4, 6}, F, PF >

TG =< {6, 8, 9}, F, PG >

NF =< {1, 4, 6}, {R,F}, {PR , PF } >

NG =< {6, 8, 9}, {R,G}, {PR , PG} >

Enforcing PR, PF , and PG is no longer a problem in NF and NG because they are

enforced on every member node of them. For PR, if there is a wormhole in the networks,

the node closest to the wormhole will check the leash and detect the existence of the

wormhole. Enforcing PF and PG is also straightforward, since the history of the node

posting queries, serving requests and registering its identity is available on this node.

For two nodes to communicate, they have to be in the same multi-tier network. For

example, in Fig. 4.1, node 1 cannot share files with 3 because node 3 does not enforce

PF and is not a member of the trusted two-tier file sharing network. Neither can files

be shared between node 1 and 2 as node 2 does not join the underlying trusted routing

tier. On the other hand, the two nodes do not have to be neighbors, as the higher

tier application traffic can be routed by the trusted lower tier in a multi-hop fashion.

For example, node 1 and 4 can share files securely by routing through node 3. Node

3 is trusted to enforce PR even though it is not trusted to enforce PF . Nodes in any

trusted multi-tier network must have the trusted agent. Otherwise, they cannot join

any trusted tier, such as node 5.

4.2.2 Creating a Trusted Multi-tier Network

Building a trusted multi-tier network involves establishing all the trusted tiers it is

composed of in a bottom-up fashion. For example, to build the file sharing multi-tier

network NF in Figure 4.1, the trusted AODV tier TR is first established followed by

the trusted file sharing tier TF . Fig. 4.2 illustrates this procedure.

68

TA

AODV

FS

1

TA

AODV

3

TA

AODV

FS

4

AODV

FS

5

TA

AODV

FS

6

1

2

3

a. Building TTTTR

TA

AODV

FS

1

1

2

b. Building TTTTF

TA

AODV

3

TA

AODV

FS

4

TA

AODV

FS

6

TA

FS

2

TA

FS

2

AODV

FS

5

Failed to Join

Successful in Joining the AODV Tier

Routing traffic

Successful in Joining the File sharing Tier

Building the trusted 2-tier file sharing network demands creating the AODV tier TTTTR followed by the file sharing tier TTTTF. To create the AODV routing tier
TTTTR, node 1 initiates TTTTR and invites its neighbor nodes (2 and 3) to join the tier. At step 2, node 2 joins TTTTR and further invites its neighbors (node 4 and
5). Finally node 6 joins the tier at step 3. The file sharing TTTTF is then built similarly on top of the AODV tier.

Figure 4.2: Creation of Trusted Multi-Tier Network

A tier is created step-by-step. First, a node begins to enforce the tier policy. It

creates the tier key, which is used to authenticate in-tier communications as discussed

earlier. By doing so, it becomes the first member of the tier, called originator of the tier,

e.g. node 1 in Fig. 4.2. The originator then broadcasts an invitation to its neighbors,

e.g. node 2 and 3, to join the newly created tier. Assume node 2 and 3 choose to

join this tier. Since node 3 enforces PR, it succeeds in joining the tier and receives the

tier key from node 1, but node 2 fails because it does not enforce PR. Next, node 3

extends the tier one step further by inviting nodes 4 and 5. Similarly, node 4 joins

and continues the process to include node 6 in the tier. The tier originator controls

the size of the tier by setting a TTL parameter in the invitation message. Each node

decrements the TTL after joining the tier and stops forwarding the invitation message

once the TTL becomes zero. The joining procedure is defined in JOIN protocol, which

will be discussed in details in next section.

Once the routing tier is built, the upper-layer file sharing tier can be built in a

similar way. The difference is that the broadcast is in a multi-hop manner. That said,

a member node of the file sharing tier broadcasts the invitation to its neighbors. If a

neighbor node decides to join the tier, it re-broadcasts the invitation in the same way as

69

� � � � � � � � � � 	 �
 � � � � �� � �� 	 � � � � � � � � � � � � � 	 � � � �� � � � � � � � �� 	 � � 	 � � � � � � �� � � � � � � � � � 	 �
Figure 4.3: Node Architecture of the Trusted Multi-tier Network

in the routing tier creation. Even if the neighbor node does not join the tier, it forwards

the invitation message to its neighbors and acts as a router for further communication

between the sender and other potential members of the new tier.

The policies are enforced by each node in the multi-tier trusted network rather than

by a trusted central authority. Therefore, it is critical to verify a node’s trustworthiness

of enforcing every tier policy. This is accomplished when the node joins the network

through two protocols: JOIN or MERGE, which will be discussed in details in the next

section.

4.3 Node Architecture and Protocols

In this section, we introduce the node architecture of our method. As shown in Fig. 4.3,

it consists of a trusted agent (Satem), a tier manager and a number of enforcers, each

of which enforces a tier policy. We then discuss in details the two protocols: JOIN and

MERGE, followed by the analysis of their correctness.

4.3.1 Trusted Agent

We leveraged Satem [119] to build the trust agent, which guarantees trusted policy

enforcement. Similar to the Protected Ad hoc Networks discussed in Chapter 3, Satem

ensures that the underlying platform and the policy enforcing software components,

including the tier manager and all the enforcers, will only execute trusted code. This

is fulfilled by defining a system commitment, which describes all the code files the

kernel and the tier manager may load in runtime, and an enforcer commitment for each

70

enforcer the system runs, which describes all the code files the enforcer executes.

The trusted agent enforces the system commitment at boot time and the enforcer

commitment upon being started, such that the kernel and the enforcer are forbidden

to load any code files that are either undefined in the commitment or tampered with.

Therefore, if the requester verifies that the kernel, the agent, and the commitments are

trusted, it is convinced that (1) the enforcer has executed only trusted code up to the

time of attestation; and (2) the enforcer will continue to do so in the following phases

due to the protection provided by the trusted agent.

4.3.2 Tier Manager and Enforcer

The tier manager is an application that allows the node to create, join and merge into a

tier. When the user decides to create a new tier, she calls the tier manager to create the

tier key and start the tier creation procedure. Then, the tier manager communicates

with the tier managers on other nodes through the JOIN or MERGE protocol. The

node may join multiple tiers and thereby run multiple enforcers. An enforcer is any

software that can enforce the tier policy. In the simplest form, the tier application itself

has built-in capabilities of enforcing certain policies and can be the enforcer. Both the

tier manager and the enforcer must be trusted. They are defined in the system and

enforcer commitments, respectively, and protected by Satem.

Before creating or joining a tier, the user first registers the tier enforcer with the tier

manager. As explained later in JOIN protocol, this enables the tier manage to deliver

the correct enforcer commitment. Moreover, at the end of the JOIN and MERGE

protocol, the tier manager receives the tier key. Then, the tier manager can deliver the

key to the right enforcer that has been attested by the trusted agent.

4.3.3 Joining a Tier

The JOIN protocol is for a node to join a trusted tier. For a node to join a trusted tier for

the first time, it has to be verified by an existing tier member for its trustworthiness of

enforcing the tier policy. At the same time, the node must also verify the trustworthiness

of the member node because a policy enforcing node only communicates with other

71

� � � � � �� � � � � 	
� � � � � � � � � � 	 � �
 � � � � �
 �� � � � 	� � � � � � � � 	� �
 � �� � � � �
 � � � 	
 � � � � � �
 �� � 	� � � � � � 	� �
 �� �� !" #!$%&'"()* + � , - . � � � � �/ � 0
 � � � � 12345675898:7;8<=:8>?@9;;
A B C D E

, � � � � � � F
 �, - .
- � � 	 � � 0
 � � � � �

� G � , 	 � � � � � �
 	� � � 	�

A B C D H

IJ �� !" #!$%$K#L$M
'K$N(O%LL P � � � 	� �
 � �, 	 � . �
 � F �� � � � 	 � � � 	�
 , 	 � - � � 	 � �0
 � � � � Node 1 joins the tier by conducting the JOIN protocol with node 2 that is already in the tier.

Figure 4.4: JOIN Protocol of Trusted Multi-tier Network

policy enforcing nodes. Figure 4.4 illustrates the JOIN protocol. In the figure, we

assume that Node 2 is already a member of a trusted tier and Node 1 wants to join this

trusted tier. The JOIN protocol works as follows:

1. Node 1 sends a join request to Node 2 by specifying the application identity (e.g.,

the IP address and port number).

2. Upon receiving the join request, Node 2 replies with a request for a guarantee of

trusted enforcement of the tier policy.

3. Node 1 evaluates the policy and decides whether it can be enforced.

4. If Node 1 accepts the policy, it calls the trusted agent to generate a Satem re-

port, including (1) its system commitment, (2) the enforcer commitment (i.e. the

service commitment defined for the enforcer), and (3) the attestation of booting.

5. Node 1 enforces both the system commitment and enforcer commitment, which

guarantees that Node 1 can only load trusted code to enforce policy P .

6. Node 1 sends the Satem report to Node 2 for evaluation.

7. Node 2 first authenticates and verifies the integrity of the commitments and the

attestation report. Then, it verifies the system commitment, the enforcer com-

mitment, and the boot attestation in the Satem report against the local trust

72

policy before accepting Node 1 to the tier.

8. When everything has been verified, Node 2 sends the trusted tier key along with

its own Satem report to Node 1.

9. Node 1 verifies the report the same as Node 2 did at step 7. When it is verified,

Node 1 sets the tier key and enforces the tier policy. As discussed in Section 4.2.1,

the node uses the tier key to ensure authenticity of messages exchanged with other

nodes in the same tier.

4.3.4 Merging Tiers

The MERGE protocol is for two separate tiers that enforce the same policy to merge

into one unified tier. Every node has an equal opportunity to establish a trusted tier.

To prevent multiple nodes from establishing the same trusted tier at the same time, the

originator may first query its neighborhood for the existing tier. However, this method

does not work if two nodes are not reachable from each other. As a result, they will

create two trusted tiers running the same application and enforcing the same policy, but

holding different trusted tier keys. When later connectivity becomes available between

them, they will not be able to communicate with each other. In this case, the two

trusted tiers can be merged by unifying the two tier keys into one common key. This

procedure starts when a node (Node 1) in a tier (tier A) learns the existence of another

tier (tier B) nearby. For instance, it may receive a message from Node 2 that it cannot

authenticate. This may indicate that Node 2 is running the same application but having

a different key. To verify whether tier B is enforcing the same policy, Node 1 exchanges

its policy with Node 2. If the policies are the same, Node 1 starts the MERGE protocol

to unify the key. Fig.4.5 shows the overview of the MERGE protocol.

1. Node 1 negotiates with Node 2 the new key to be used by the merged trusted

tier. They compute a hash of their own keys and select the key with greater hash

value as the new trusted tier key.

73

3. MERGE Invitation

4. Authenticate old tier membership

Node 1 Node3

New Tier

Node 2

kold 1. Negotiation

2. JOIN

knew,kold

Old Tier Old Tier

knew kold

5. Deliver the new key and authenticate old tier membership
knew,kold

The old tier and the new tier enforce the same policy but were created separately and have different tier
keys. Node 1 in the old tier joins the new tier by conducting the JOIN protocol with Node 2. Then Node 1
calls for other nodes (e.g. Node 3) in the old tier to merge into the new tier through the MERGE protocol.

Figure 4.5: Merge Protocol of Trusted Multi-tier Network

2. Assume the key of Node 2, knew is chosen, then Node 1 initiatives a JOIN process

with Node 2. Similar to establishing a new tier, both nodes mutually verify that

they are enforcing the same policy. Furthermore, after receiving the key, Node 1

must verify it against the hash received in the previous step. Then, Node 1 will

still keep the old key, kold, for a certain period of time.

3. After joining the new tier, Node 1 broadcasts a MERGE message to its neighbor

nodes in its old tier, which includes a random nonce. Similar to the tier creation

procedure, the broadcast is in a multi-hop manner. For instance, the MERGE

message of the file sharing tier can be delivered to other nodes in the old tier

through a series of AODV router nodes that are not in either of the new and old

file sharing tier.

4. Upon receiving a MERGE message, a Node 3 in the old tier responds with a

message authentication code (MAC) over the nonce using its tier key, kold, to

Node 1. Along with the MAC, Node 3 also sends another nonce. This answer

serves as a request to merge into the new tier.

5. Node 1 checks the MAC using the saved old key, kold, which verifies Node 3’s

membership of the old tier. It then computes a new MAC over the nonce sent by

Node 3, encrypts its new tier key, knew with the old key, and sends them back to

74

Node 3.

6. Node 3 checks the MAC code, which verifies that Node 1 was in the same old tier.

It then decrypts the new key and merges into the new tier.

4.3.5 Protocols Analysis

Trusted tier key distribution. A key task of the trusted tier establishment is to

generate the trusted tier key, which will be shared by all tier members. In the JOIN

protocol, the member node delivers the tier key to the requesting node after verifying

its trustworthiness at step 8. It must be protected from being stolen in transmission

by another unauthorized node or on the member node by unauthorized processes. The

method to achieve this is similar to that used in the Protected Ad hoc Network as dis-

cussed in Chapter 3.3. In details, the tier manager on the requesting node dynamically

generates a public-private key pair when being started. The private key is protected by

Satem in memory and is only accessible to the tier manager. Satem binds the public

key with the Satem report. Thus, the member node is assured that the public key

is owned by a Satem protected node. The member node can securely deliver the tier

key by encrypting it using this public key, because only the requesting node has the

corresponding the private key.

Once the tier key is decrypted, it is passed to the enforcer. The enforcer is not

allowed to disclose it to any other program or save it to disk. Violating enforcers will

either be attested in the enforcer commitment or forbidden to run. In either case, the

member node will refuse to deliver the tier key. Satem protects the key: if any part of

policy enforcement software stack is compromised, it wipes out the key.

Due to the protection of the tier key, owning the key implies that the node has been

verified for trusted policy enforcement and is still protected by Satem. This property

helps simplify the trust verification process in the MERGE protocol. At steps 3-6,

two nodes leverage a common old key to verify the trustworthiness without the need

of Satem reports. Since computing the MAC code is much cheaper than the Satem

report, the performance is greatly improved.

75

It is of little importance who generated the key. What really matters is that the

key must be produced by a node that is trusted to enforce the policy. As we have

discussed, the JOIN and MERGE protocols ensure that (1) a policy enforcing node will

only accept a key from another policy enforcing node, and (2) a policy enforcing node

will share the key only with other policy enforcing nodes.

On-demand merging. The MERGE protocol does not guarantee two trusted

tiers to be merged completely in one run. In fact, merging is driven by the need of

facilitating communication. As a result, it only aims to merge the nodes that interact

with each other. In practice, a TTL can be used in MERGE messages to limit the scope

of merging in the same way as trusted tier establishment. Nodes beyond the coverage

of the TTL may later merge into the trusted tier when they need to interact with nodes

in the trusted tier. In this way, merging is carried out on-demand step by step.

4.4 Prototype and Evaluation

We implemented the policy enforcing mechanism prototype under the Linux 2.6.12

kernel. It consists of the Satem based trusted agent and the tier manager. To evaluate

the performance, we also implemented enforcers for two MANET applications: AODV

(user-level daemon) [2] for ad hoc routing, and Mute [12] for P2P file sharing. Since

the implementation of Satem was fully discussed in Section 2, in this section, we will

focus on the policy enforcer and tier manager.

4.4.1 Policies and Enforcers

We defined the policy for Mute, PF , and the policy for AODV, PR, as illustrated in

Fig. 4.6. These policies address the security issues for the routing and file sharing

described in Section 4.1 respectively. In PR, when node i receives an AODV reply

message RREP(o,d) to a previous query originating at o for destination d, it must

compute and check the geographical leash. The route is accepted if and only if the

leash is valid. In the evaluation, the max distance dmax and runtime distance between

the two nodes d(i, d) are constant and pre-defined. td and ti are the local time on node

76

AODV Policy (RP) on Node i implements the
secure routing policy for AODV tier, which
requires that each node check the packet
leash.

Incoming:

R1. RREP(o,d):
if (dmax > d(i,d) + 2*(ti-td)*v + e)
 ACCEPT
else
 DROP

Mute Policy (FP)is the unselfish sharing
policy for Mute tier, which ensures that nodes
in the file sharing network serve at least one
file download request from other nodes after
posting 3 requests.

Initial: Credit=3,
Incoming:

R2. Request(f);
if(Own(f))
 Credit--;

Outgoing:

R3. if(Serve(f))
 Credit += 3;

R4. if(Request(f)){
 if(Credit > 0){
 Credit--;
 ACCEPT;

 } else
 DROP;
}

Figure 4.6: The Example Policies of the File Sharing+AODV Two-tier Net-
work

d and i respectively. In PF , each node is given 3 credits in the beginning. The credits

are deducted by 1 every time the node rejects a request for a file it owns or requests a

file from other nodes, and added by 3 every times the node serves a request. The node

must maintain positive credits to be able to request new files from others.

The enforcers can be any software that understands and enforces the policies. In

general, users need to provide the right enforcers for the applications. For evaluation

purpose, we implemented simplified enforcers for the above Mute and AODV policies

by modifying the applications’ source code and hard coding enforcement of the policies.

Hence, the applications are also the enforcers of themselves and must be trusted. This is

77

done by including them in the enforcer commitments and protecting them using Satem.

4.4.2 Tier Manager

The tier manager is a service application. It implements the tier creation, JOIN and

MERGE protocols. In addition, it provides the registration service for the user to

register tier enforcers. During registration, the user provides the server port that the

enforcer listens on. Satem maintains the mapping between the application port and

its commitment. Hence, the tier manager can use the port number to retrieve the

commitment of the enforcer during JOIN protocol. Moreover, when the tier manager

receives the tier key at the end of JOIN or MERGE protocol, it delivers the key to the

registered enforcer that has been verified.

4.4.3 Experimental Evaluation

To evaluate the performance of our mechanism, we ran prototype experiments. In the

experimental evaluation, we created a 2-tier trusted ad hoc network over 3 laptops

and measured the overhead incurred by our policy enforcing mechanism in application

execution and communication.

Our method impacts system performance by adding latency to (1) the kernel call

execution due to enforcing the Satem commitment, (2) joining the trusted network due

to verifying trustworthiness during JOIN and MERGE protocols, and (3) the network

communication due to enforcing the policy and computing and verifying the MAC for

application messages.

Methodology

We created an 802.11g ad hoc network consisting of three laptops (IBM T43 with a

1.7Ghz Pentium M CPU, 512M RAM, and Atheros wireless card). In order to test multi-

hop communication, the network was configured with a line-like logic topology (i.e., the

direct link between laptop 1 and 3 was disabled, but they could still communicate with

78

0

5

10

15

20

25
cp

u
 c

yc
le

s
(M

)

0

0.5

1

1.5

2

2.5

3

3.5

cp
u

 c
yc

le
s

(K
)

0.1

0.2

0.3

0.4

 c
p

u
 c

yc
le

s
(K

)

0

5

10

15

20

25

cp
u

 c
yc

le
s

(K
)

1

40

1

200

Original Satem protected

do_execve() do_mmap() file_nopage() sys_open()

1
10

1

400

1
10

Figure 4.7: Overhead of Satem Commitments Enforcement in Kernel Calls

each other through laptop 2 as a router). This was achieved by enabling MAC filtering

using iptables [19] on each laptop.

Each laptop ran two applications: AODV (user-level daemon) [2] for ad hoc routing

and Mute [12] for P2P file sharing. We used PR and PF defined in Fig. 4.6 and

created a two-tier trusted network consisting of a file sharing tier enforcing PF and

an underlying routing tier enforcing PR. We used a simplified method to implement

the Mute and AODV enforcers by directly modifying the applications’ source code

and adding the policy enforcement functionality. As a result, the two applications

themselves are trusted and attested by the enforcer commitments.

Results

Kernel call cost. The overhead in kernel calls is incurred by the Satem trusted agent,

which enforces the system and enforcer commitments. We measured it in terms of extra

CPU cycles needed to complete these calls. Fig. 4.7 shows the overhead in four kernel

calls: do execve, do mmap, sys open, and filemap nopage. We measured the cost of

these functions in enforcement of PF in Mute enforcer. All functions were measured in

two cases: in the original Linux 2.6.12 kernel and in the Satem kernel. For each function,

we measured its overhead for the first call (the left two columns in the figures) and the

overhead for subsequent calls (the right two columns in the figures).

79

Scenario Latency (in seconds)

Join 2.54

Merge 0.38

Table 4.1: Tier Joining and Merging Delay

The graphs 1 show that Satem impacts the first time call of the kernel functions

differently. For do execve and do mmap, the by-page attestation for mapped code files

dramatically increases the overhead, since Satem preloads every mapped page into the

page cache. However, the preloaded pages benefit filemap nopage because the pages

are very likely to be in the cache when a page fault occurs. Furthermore, the lazy

attestation mechanism significantly reduces the costs of the subsequent calls in the

Satem kernel. Cost of the subsequent do execve calls is still large compared with the

original kernel, but the impact on the system is limited since it is only one-time cost.

Joining latency.

We measured the joining latency as the delay between the time a node starts joining

or merging into a tier and the time it is accepted. As shown in Table 4.1, both JOIN

and MERGE protocols incur significant latency. The high overhead is mitigated from

two perspectives. First, JOIN is only used for nodes to join a new tier for the first

time. Second, if a node loses wireless connectivity to others just for a short period

of time, it is unlikely that the trust tier to which the node belongs will merge with

other tiers. Therefore, once the node regains the wireless connectivity, it can simply

reconnect to the tier without running either JOIN or MERGE protocols. With that

said, even MERGE protocol is rarely needed.

The latency of JOIN protocol is largely due to the time the TPM takes to generate

signatures, which varies dramatically by the TPM models and vendors. The TPM we

used in the test were manufactured by National Semiconductors. TPMs with higher

performance are already available [3]. JOIN latency between machines equipped with

1The cost of the functions of the first and subsequent invocations may be dramatically different. In
order to compare them in one figure, we use a reduced scale to plot the following figures: first call to
do execve at 1/10, first call to do mmap in the Satem kernel at 1/200, first call to filemap nopage in
original kernel at 1/400, and first call to filemap nopage in the Satem kernel at 1/40.

80

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Latency (ms)

P
ro

b
ab

il
it

y

Out Network In Network

Figure 4.8: Probability Distribution of
Ping Latency with and without Policy
Enforcement for Routing (AODV)

0%

2%

4%

6%

8%

10%

12%

14%

128K 512K 1M 4M 16M 64M

File Size

O
ve

rh
ea

d
 (

%
)

PF Enforcement PF & PR Enforcement

Figure 4.9: Policy Enforcement Over-
head in Mute and Mute+AODV

these TPMs is expected to be much lower.

Network communication delay.

We measured the routing latency indirectly. We ran the AODV daemons on all three

laptops and pinged laptop 3 from laptop 1. Then, we measured the round trip time

(RTT), which includes both packet transmission latency and the routing cost. Since all

ICMP packets are at the same size and enforcement of PR has no impact on the ICMP

protocol, the cost of transmitting each packet is the same. The routing cost varies with

the change of the network state. In one extreme, the routing cost is high when laptop

1 has to build a full route from scratch since all 3 laptops have no routes to the others.

The overhead of enforcing PR is also high in this case because enforcement is performed

on all nodes on the route. In the other extreme, the routing cost is zero once the

route is established and remains valid; laptop 1 can keep sending packets via the route.

Therefore, the enforcer is not invoked and the enforcement overhead also becomes zero.

To test the different cases, we randomly invalidated the existing routes on each laptop

by blocking and unblocking the wireless network interfaces. The enforcement overhead

is determined by the probability distribution of these scenarios.

Fig. 4.8 compares the probability distributions of ping latency in the trusted network

with PR being enforced (called in-network) and in the original network with PR not

being enforced (called out-network). Clearly, the latency in the two cases are nearly

identical, indicating little impact of enforcing PR on the routing latency. In both

scenarios, the majority (over 85%) of routing efforts incurred low delay (less than 1ms).

81

This was because our route invalidation was infrequent and most of the time, laptop

1 had a valid route to laptop 3 and the enforcer was not invoked. Hence, the mean

overhead is low (less than 5%).

To measure the overhead of enforcing PF , we compared the downloading speed of

Mute application in three cases (1) ran Mute in the original network with no policy

enforcement, (2) ran Mute in the 1-tier network with only TF tier enforcing PF , (3) ran

Mute in the 2-tier network with TF and TR tiers enforcing PF and PR respectively. We

measured the download latency in case (1) as the baseline and measured the percentage

of increased delay in case (2) and (3). The results are summarized in Fig. 4.9.

Compared with no enforcement, the enforcement overhead in both cases decreases

with the size of the file being transferred increasing. This is because the overall costs

consist of the initial cost of enforcing the policy in handling file download requests,

plus the ongoing cost of computing or verifying the MAC code for each Mute message

being sent out or received. With the file size increasing, network transmission and

routing costs become more significant, making the policy enforcement cost relatively

small. However, the policy enforcement overhead does not vanish. Instead, it levels

off at around 6%. The overhead is mainly due to the commitment enforcement by the

trusted agent and the MAC generation and verification by the tier enforcers. The cost

of enforcing the policy set {PR, PF } demonstrates similar pattern with high level of

overhead due to the extra cost of enforcing PR. One important difference is that the

cost of enforcing PR increases with the length of the route between the two nodes, while

the cost of enforcing PF does not. This is due to the fact that PR is enforced by all

nodes on the route, while PF is only enforced by the two endpoints. We will show in the

simulation that this difference causes the overhead of routing to increase dramatically

in complex dynamic networks.

4.4.4 Evaluation Through Simulations

To understand the performance overhead of network creation and policy enforcement in

large MANETs, we also ran simulations in various mobility scenarios using NS-2 [20].

82

0.5

0.6

0.7

0.8

0.9

1

City
(< 18m/s)

Highw ay
(20 - 32m/s)

Random Walk
(1.5m/s)

Random Walk
(4.5m/s)

C
o

m
p

le
te

 R
at

io

Join Merge

Figure 4.10: JOIN and MERGE com-
pletion ratio in Trusted Multi-tier Net-
work

2.2

2.3

2.4

2.5

2.6

2.7

City
(< 18m/s)

Highw ay
(20 - 32m/s)

Random Walk
(1.5m/s)

Random Walk
(4.5m/s)

L
at

en
cy

 p
er

 H
o

p

Join

Figure 4.11: JOIN Latency per Hop in
Trusted Multi-tier Network

Methodology

The simulation includes three types of mobility models: highway vehicular network, city

vehicular network and a network with nodes moving randomly at walking speeds. We

leveraged our vehicular simulation tool [89] to generate the highway and city networks.

The highway scenarios simulated is a 10 mile segment of New Jersey Turnpike with 200

nodes (cars) moving at a speed from 45 miles per hour (20 m/s) to 72 miles per hour (32

m/s). The city scenarios is a 1.2x1 square miles region of Los Angeles with 100 nodes

moving up to 40 miles per hour (18 m/s). We also modified Carnegie Mellon University

setdest [38] utility to generate random waypoint mobility models with 100 nodes in a

1x1 square miles region, moving at walking speeds. In our simulations, we set the node

density to be around 6-8 neighbors per node to avoid connectivity failure due to sparse

networks or too much contention in over-crowded networks. In all scenarios, we ran the

simulations for 300 seconds.

Since the cost of cryptographic operations associated with JOIN, MERGE, and

enforcement cannot be ignored but NS-2 does not account for execution time, we added

latencies for these operations. Specifically, these additional latencies were modeled as

normal random variables with standard deviation equal to 10% of its mean. We set

the mean latencies as follows: 1150ms for JOIN, 180ms for MERGE, and 0.15ms for

enforcement. These numbers were obtained from the previous experimental results.

83

0

0.1

0.2

0.3

0.4

0.5

City
(< 18m/s)

Highw ay
(20 - 32m/s)

Random Walk
(1.5m/s)

Random Walk
(4.5m/s)

L
at

en
cy

 p
er

 H
o

p

Merge

Figure 4.12: MERGE Latency per Hop
in Trusted Multi-tier Network

0%

10
%

20
%

30
%

City
(< 18m/s)

Highw ay
(20 - 32m/s)

Random Walk
(1.5m/s)

Random Walk
(4.5m/s)

O
ve

rh
ea

d
 (

%
)

Figure 4.13: AODV Policy Enforcement
Overhead in Ping RTT

Results

Cost of network creation. We measured the cost of network creation in terms of

both successful ratio of JOIN and MERGE operations and the latency it takes for a

node to join the network. The completion ratio of JOIN (or MERGE) is defined as

the total number of nodes that successfully join (or merge into) the network against

the number of nodes that apply to join (or merge into) the network. To test MERGE,

we first set all nodes in the network to be the members of the old tier. We randomly

selected one node and updated its membership to become the first node of the new tier.

Then, this node automatically started the MERGE process with other nodes.

As illustrated in Fig. 4.10, in most cases we achieved a completion of over 80%

for both JOIN and MERGE. The ratio is lowest for the city scenario. This is mainly

because nodes exit the region when they reach the boundary of the map. This problem

does not exist in the random walking scenarios and is less of a problem in the highway

scenario since most cars stay in lanes without exiting the highway.

The latency for a node to join the network is defined as follows:

joining latency =
ti − t0

disti
(4.1)

where we denote ti as the time node i joins the network, t0 as the time the originator

initiates the network, and disti as the number of steps the join invitation message has

traversed before reaching node i. In another words, we measured the latency per hop.

The reason to do so is because obviously the more number of hops a node is away from

the network originator, the longer it takes for it to join the tier. We did not count

84

nodes that failed to join the network since the latency for these nodes was infinite.

Fig. 4.11 and 4.12 show that both vehicular networks incurred less latency in joining

and merging into the trusted network. This result can be explained by the broadcast

storm problem in tier creation. In the random waypoint scenarios, the number of

broadcast messages increases exponentially with the network expanding neighborhood

by neighborhood, which leads to many packet losses due to contention. By contrast,

in the vehicular network scenarios, messages have to propagate along the roads unless

the sending cars are at the road intersections. This means that most of the time the

number of broadcast messages does not grow as they propagate through the networks.

Therefore, latency is low in this case.

Enforcement overhead in AODV. We measured the enforcement overhead in

AODV in the same way as we did in the previous subsection. We randomly selected

the source and destination nodes and let the sources repetitively ping the destinations.

We measured the per-hop RTT by dividing the round-trip time by the number of hops

traversed. We denote BRTT as the basic per-hop RTT measured when PR was not

enforced and ERTT when PR was enforced. We computed the overhead as

overhead =
ERTT − BRTT

BRTT
× 100% (4.2)

As Fig. 4.13 reveals, the overhead is higher than in the simple prototype experiments

(Fig. 4.8), but they still remain under 20% in all cases. The main reason for the overall

increase is that the network is highly dynamic and the established routes do not last

long. Frequent broken routes trigger route repairs, which involve policy enforcement.

In the prototype experiments, the route re-establishment was far less frequent.

The worst case is the city scenario because it is the most dynamic network. The

overhead is small in the highway scenario. This is because the relative positions between

most nodes do not change compared to other networks though each node itself moves

at highest speed.

85

4.5 Limitations

In the current prototype, we implemented the enforcer by hard coding the policy en-

forcing function in the application source code. This is inflexible since changing the

policy may require modifying the application. A better solution is to implement a

standalone enforcer as the transparent application proxy. In this way, the application

request is redirected to its local enforcer, which communicates with the application on

the remote node. One way to achieve this is to establish the mapping between the

application and its enforcer when the enforcer registers with the tier manager. To do

so, the user provides the tier manager with the TCP or UDP port number on which

the application S listens, pS , and the port number on which the enforcer listens, pE.

The manager then maintains the mapping between the application port, pS , and the

enforcer port, pE , in the kernel by using Linux built-in kernel hooks NF IP LOCAL OUT

and NF IP PRE ROUTING [19] as follows:

1. NF IP LOCAL OUT

When the local node nl sends a message to S on a remote node nr, the kernel

maps destination port nr : pS to nl : pE . This causes the message to be redirected

to the local enforcer. E computes and attaches the MAC code for the application

message.

2. NF IP PRE ROUTING

When the local node nl receives a message for S from a remote node nr, the

kernel maps destination port pS to pE, which causes the message to be redirected

to the local enforcer. The local enforcer first verifies that the attached MAC code

is correct. Otherwise, it drops the message. Next, it strips off the MAC code and

forwards the message to the application.

4.6 Summary

This chapter presented a mechanism for MANETs to enforce application communica-

tion policies. Under this mechanism, nodes supporting the same set of applications and

86

enforcing the same policies construct a trusted multi-tier application centric network.

Each tier of the network runs one application and enforces its associated policy. The

application of the upper tier depends on the applications of the lower tiers to commu-

nicate. Only trusted nodes are allowed to join the network. Moreover, communication

between them is regulated by the policies at every tier. To ensure trusted policy en-

forcement, we augment each node with a trusted kernel agent based on the TCG TPM.

We evaluated the method through a prototype based on an IEEE 802.11 ad hoc net-

work and through network simulations. The results demonstrate the feasibility of the

proposed method as well as its low overhead.

In the past three chapters, we have presented the methods to ensure trusted appli-

cations and trusted communication between them for MANETs. Orthogonal to them is

the problem of ensuring trusted identity. In the next chapter, we will present a locality

driven key management architecture to solve this problem.

87

Chapter 5

Locality Driven Key Management Architecture

In this chapter, we present a locality driven key management architecture that achieves

robust key authentication. We start with the problem of authenticating public keys in

MANETs in Section 5.1. Then, we present the architecture in Section 5.2 and discuss

the protocols to manage trust in Section 5.3. Next, we evaluate the correctness and

costs of the our solution in Section 5.4. Finally, we discuss the limitations in Section 5.5

and summarize the chapter in Section 5.6.

5.1 The Problem Statement

In distributed systems, the dominant strong method of authenticating a node is to

authenticate the node’s public key, which requires ubiquitous capability of verifying the

binding between a public key and the owner principal. In the Internet, the mainstream

solution is to have a third-party centrally trusted entity, called Certificate Authority

(CA), vouch for the authenticity of the binding by issuing digital certificates, which in

essence is a statement of the binding digitally signed by the CA. In practice, CAs and

digital certificates are organized and maintained by Public Key Infrastructure (PKI)

[33, 7].

It is still questionable if PKI can be implemented in MANET because PKI requires

well-protected CAs and constant connectivity between users and CAs. However, in

MANETs, all nodes are exposed to hacking to the same extent and no one can be

assumed to be significantly more secure than the others. Moreover, devices may roam

around, run out of power or just stop functioning, which lead to volatile connectivity

among them and CAs.

Research proposals have been seen in [126, 125, 70] etc to address the two issues by

88

distributing the CA’s functionality across a set of network nodes and by using threshold

signature [107] to achieve tolerance up to the threshold number of faulty nodes. These

methods are only suitable for small MANET with a single CA, partially due to the

inherent high communication cost. A more fundamental reason is that it is difficult if

not infeasible for a CA to get familiar with all the other principals in a large MANET,

whereas the trustworthiness of certificates a CA signs mainly depends on how much it

knows about the principals.

Another approach is based on the concept of “web of trust”, first appearing in

PGP [128]. In these methods, each principal is its own CA [40, 29] and keeps a certificate

directory. To authenticate a certificate signed by another principal, a principal has to

find a certificate path between them. Although these methods avoid the problem of

maintaining a key infrastructure at high cost, they are faced with difficulty of finding

such a path without incurring a lot of broadcasting costs or forcing each principal to

save a large number of certificates in its local directory.

We believe that the solution to the key management issue in MANET demands

an application view of MANET. Opposite to the traditional routing-driven view of

MANET as a monolithic network, we envision a MANET from the application angle

as a group of interacting networks, each of which is formed to fulfill a specific task.

Different MANETs may communicate with each other to get help for another task.

The application view discloses the locality of MANET. We argue that locality helps

build key management because each MANET is composed of principals for the same

task, which have close interaction with each other and are likely to be in the same

neighborhood. The concept of locality has already been exploited explicitly or implicitly

to help build security. For instance, in [31] two network nodes set up a secure channel

via location-limited channels. [70] also enhances the trustworthiness of a certificate

using locality in that a certificate is generated by one-hop neighbors in most cases.

We developed a new key management architecture driven by the application centric

nature of MANET and the concept of locality of trust. In this architecture, certifi-

cate authorities are established only within a neighborhood using threshold cryptog-

raphy. Different certificate authorities maintain trust relationships, called trust chains

89

 CA2

CA1
CA3

CA Server Network Node

Figure 5.1: Conceptual Key Management Architecture

for cross-CA authentication. The architecture has a number of benefits. First, locality

makes certificates more trustworthy, in that in a local community a CA has better

chance to interact with other principals. Moreover, it reduces the communication over-

head between principals with their CA because of shorter local distance of message

delivery. Secondly, the architecture inherits fault-tolerance and high availability from

threshold cryptography. Thirdly, the trust chain enables the architecture to authenti-

cate foreign certificates in a low-cost and timely fashion without forcing each individual

principal to keep a huge certificate directory like in other PGP-like approaches [128].

Compared to other systems, like [40], our solution provides an answer with full certainty

(not just a probability one) but at lower communication cost by eliminating the need

of broadcasting trust changes to irrelevant principals.

5.2 Key Management Architecture

Our key management architecture is composed of a group of certificate authorities

(CAs), each of which provides public key authentication service to its own community.

Among them, there may exist trust relationships. CAs rely on the trust relationships

with others to authenticate “foreign” certificates issued by other CAs. The architecture

is illustrated in Figure 5.1. We will explain in details how CAs and the trust relation-

ships among them are established and maintained at conceptual level in this section

90

and discuss the protocols for trust management in details in the next section.

5.2.1 Certificate Authority

Adjacent nodes jointly establish and maintain a certificate authority for key authentica-

tion. We say that two nodes are adjacent if they have short routes to each other. We call

these nodes CA servers to differentiate them from the other nodes in the neighborhood.

The CA is constructed using standard threshold cryptography. To be self-contained,

we include the high level description of the threshold mechanism. More information

about threshold digital signature can be found in [107, 73].

1. CA Bootstrap. We assume each node has the capability of generating pub-

lic/private key pairs, producing and verifying digital signatures. We further as-

sume there exists a special node d in each neighborhood that is trusted by all

nodes. In threshold cryptography, d is also called dealer and its own public key

PKd is well-known to all nodes. The CA is initialized by the dealer d generating a

CA key public private key pair denoted as (PK, SK) and polling the community

for N nodes who like to serve as the servers constituting the CA. The criteria

that d picks up the N nodes are system dependent and are beyond the scope of

our discussion, e.g., d may select servers with most computing resources or better

network connectivities etc.

When N servers are chosen, the d sets the threshold (denoted as K) and generates

the partial shares of SK: SK1, SK2...SKN for each server. All these partial shares

are signed with d’s private key SKd. That is, any set of K servers can generate

a valid CA signature by combining partial signature from each server but any

fewer than K servers cannot. We require K > S
2

such that honest servers form a

majority. Due to the locality of CA, the CA servers should have good connectivity

to each other. We assume that at any time at least K honest servers are available

and for any message delivered at least K honest servers will receive it. Then d

distributes the partial shares to the other servers, destroys the CA private key

SK and broadcasts the composition of the CA to the community.

91

2. CA Certificate Generation. The CA provides both certificate generation and

verification services to the nodes in the community. Any node x in the community

can request a certificate from the CA, which put in the simplest way, is the public

key of the node denoted as PKx signed with SK of the CA. The procedure starts

with x submitting its PKx to one of the N servers, for instance, Sp. Since Sp

acts as the proxy of x, we call it proxy server in this work. Then, Sp calls other

servers to sign PKx using their partial keys. Each server independently decides

if PKx should be trusted as the public key of x. If not, it signs a predefined

denial message instead of PKx. The partial signatures are gathered by Sp for full

signature generation. As long as K servers concur to trust the PKx, the valid

certificate is generated. On the other hand, the certificate can be directly verified

using CA’s public key PK, since the signature is literally the same as that signed

with SK.

Our approach does not impose any restriction on how a CA server evaluates

the trustworthiness of a principal’s public key. Instead, the trustworthiness of a

public key is fully determined by policies and rules, which can vary from CA to

CA or even server to server within the same CA. CA servers are free to choose

any policies at their own discretion. For instance, a CA server may be convinced

of the authenticity of a node’s public key just because the network address in

the certificate request matches the source address of the request sender. A more

prudent server may do more by checking if there are any conflicting requests for

the same address. However, whatever policy CA servers choose, our architecture

guarantees that no single or even up to K − 1 malicious servers can subvert the

authentication.

3. CA Certificate Revocation. Basically, the revocation process is similar to standard

PKI with an exception that signature is generated in a threshold manner. The

CA keeps a copy of all the revocations it has signed in its certificate revocation

list (CRL). When a node y later wants to verify the validity of a certificate, it may

send the request to the CA. Similar to processing certificate generation request,

92

each CA server checks its local CRL. If y is found in its CRL, it will partially

sign a predefined denial message. Finally, combining the partial signatures the

CA can generate an signed reply in line with the decisions of at least K servers.

When the CA revokes a certificate, it may optionally notify new revocations to

the community. Since the community is local and the revocation is relatively rare,

the communication cost is not prohibitive.

5.2.2 Trust Chain

So far, CAs manage key authentication for nodes in their local neighborhoods. When

two nodes from different neighborhoods need to authenticate each other, they need a

trust chain. In this section, we discuss the details of how a trust chain is established

and maintained and how certificates can be authenticated using it.

Trust Chain Definition

In the context of key management, we have a narrow definition of trust between two

principals: a principal A trusts another principal B if and only if (1) A can authen-

ticate B and (2) A believes in the authenticity of any valid certificates signed by B.

In addition to trust relation, a principal may distrust or be unfamiliar with another

principal. We say that A distrusts B if only if A can authenticate B BUT does not

believe in the authenticity of any valid certificate signed by B. Unfamiliar covers all

the rest, which means A has no idea about B, neither its identity nor its behavior.

We assume that trust is transitive while both distrust and unfamiliar are not. If A

trusts B on its own, i.e. based on direct interactions with B, we call this direct trust,

denoted as → to differentiate it from the trust gained by transitivity. Opposite to direct

trust is indirect or recommendation trust. We say A indirectly trusts B if there exists

a trust chain from principal P0 to Pn, denoted as P0 ⇒ Pn, defined recursively as follows:

(1) Pn−1 → Pn and

(2) P0 ⇒ Pn−1

93

Neither → nor ⇒ is symmetric, i.e A → B does not imply B → A. Formally, the

trust chain can be represented as a directed graph G = (V,E) where V is the set of

vertices representing all CAs and E the set of edges representing the relations between

two CAs. Based on the type of the relation, we call it trust, distrust or unfamiliar edge.

Let C1 and C2 be two CAs, and V1 and V2 be the vertices representing them in the

graph. The trust chain from C1 to C2 can be represented as a directed path from V1

to V2 that is composed of only trust edges. If we take a CA as a root, all the chains it

has compose a trust tree.

Dynamic Trust Chain Maintenance

When the system is bootstrapped, only direct trust exists. A CA need to build trust

chains by exchanging trust information with other CAs that it directly trusts. Further-

more, when changes of trust take place somewhere, a CA must be able to update its

chains to reflect the new trust relationships on-the-fly. We define a protocol enabling

each CA to build the trust tree locally. The idea is inspired by routing protocols such

as OSPF [14] in which each router only keeps local information but computes global

routing table by exchanging information only with its neighbors. Similarly, each CA

keeps a record of its directly trusted CAs, and establishes indirect trust with other CAs

by exchanging records with them. The details are below:

Data Structures Each vertex Vi maintains two tables: Ii and relation table Ri

where

Ii = {Vj |Vj → Vi} and

Ri = {(Vj , Vg, c)|Vj , Vg ∈ V and c is an integer}

In Ii table, the CA Ci keeps track of the truster CAs that trust itself. When Ci

becomes trusted by another CA, i.e. receiving a certificate from the CA, it updates its

Ii table to include the certificate issuer. The table Ri describes the trust relations that

Ci has with other CAs. Conceptually,Vg serves the role similar to gateways in routing:

94

A

B

C

D

E

F

G

1

2

2

3
4

3

Existing Trust Edge

Update Propagation

New Trust Edge

Figure 5.2: Trust Chain Update between Certificate Authorities

it means that the reason the relation between Vi and Vj exists is due to the fact that

Vg has the relation with Vj , i.e., Vg ⇒ Vj, and Vi → Vg. c is the weight of the relation

and −MAX ≤ c ≤ MAX, where MAX is a positive integer. By assigning c to different

values, R table can capture all kinds of relations the CA has with others, for instance,

positive for trust, negative for distrust and 0 for unfamiliar. The bigger |c|, the more

trustworthy the relation.

Trust Propagation. Whenever there is a change of inter-CA trust relations in-

cluding both establishment of new direct trust and revocation of existing trust, all

related CAs need to be notified.

1. Relation Establishment and Revocation

When a CA server Ci (represented by Vi in the graph) decides to trust Cj, Vi

assigns an initial weight c(c > 0) to the relation and adds the entry (Vj , Vi, c)

to Ri. Then, it sends an notification message [ESTABLISH:(Vj, Vi, c)] to Vj and

waits for replies. When Vj receives the message, it replies with its own current

trust table Rj signed with the CA key. When Vi receives the reply, it checks its Ri

to find out if it needs to be updated because of Rj. The Ri table will be updated

if and only if there exist l,m and n such that for (Vl, Vm, ci) in Ri and (Vl, Vn, cj)

in Rj , and the following inequality holds:

95

|ci| < (|cj | − w), where w(w ≥ 0) is the loss of trust transitivity.

Here we assume that the trustworthiness of a relation decreases as it becomes

more and more indirect. When ci = 0, the inequality represents changes of

relation from unfamiliar to familiar(trust or distrust). When ci 6= 0, the inequality

indicates that the trustworthiness of the existing relation is enhanced. In both

cases, (Vl, Vm, ci) will be replaced with (Vl, Vj ,−(|cj |−w)) if cj < 0 or (Vl, Vj , cj −

w) otherwise, which results in a new table R′

i. Then, the CA sends an update

message [UPDATE:R′

i] to each Vi ∈ Ii. Similarly, when Ci decides to distrust Cj,

it adds an entry (Vj , Vi, c) to Ri and directly sends an update to each Vi ∈ Ii.

Sending notification to Vj is an option but not required, since distrusting Vj

implies no expectation on Vj to follow the protocol any more.

2. Relation Update

The scenario is triggered by the message [UPDATE:Rl] from Vl. Upon receiving

the message, a CA Ck will first check if this message is an out-dated one. This

is done via assigning version number to table R and we will explain in details in

next section. If this is a new update message, Ck repeats the same procedure as

the above to update its own Rk. Finally, if a change is made and a new table R′

k

is generated, Ck passes [UPDATE:R′

k] to each Vk in its Ik set.

An example is shown in Figure 5.2 depicting how a trust chain is maintained by updating

each CA’s local trust table in a lockstep manner. In this example, A, B, C, D, E, F

and G are CAs. When F begins to trust G, it triggers chain update along the reverse

path of the trust chain step by step. For instance, D gets the update message first and

then propagates to both B and E, which further notify A and C.

A CA verifies if the message comes from a directly trusted CA before taking further

actions at each step by running public key authentication. The only exception is when

a CA receives ESTABLISH message. This is because the receiver does not need to trust

the sender (recall that trust is asymmetric) or may not have the sender’s public key.

96

Cross CA Authentication

Trust chains enable cross CA authentication. When x wants to verify if PKy belongs

to another node y, it verifies the validity of y’s certificate. If y is signed by a CA x

trusts, e.g. CAi, the key authentication is successful. However, if y just roams into

x’s neighborhood from another neighborhood and only has one certificate signed by

CAj, x may still be able to authenticate y if there is a trust chain from CAi to CAj.

When CAi finds an entry like (j, l, w)w > 0 in its Ri, it can either reply with a message

of “successful authentication” or continue sending verification request to Cl, which

recursively repeats the same procedure until a response signed by Cj is returned. The

former case trades off assurance for low cost, in that the result is based on previous

records and does not take into account most recent revocation. By contrast, in the

latter case, the result is directly based on the certificate issuer’s latest decision but

incurs more communication and computing costs. Another way to enhance assurance

is to let each CA also notify all CAs in its I table when a CA revokes a certificate. Each

CA receiving the revocation simply saves it to its local CRL and continues to forward

the message in the same way. As a result, each CA has the CRL of all other CAs it

trusts and can answer the verification request on behalf of them.

On the other hand, if y comes into a new community and wants to authenticate

node z, it may choose to either phone home or trust the new local CA to provide

certificate services. The former option stops working when y loses network connectivity

to its original community, which is not unusual in MANET. The latter solution does

not have this problem but requires new trust to be established, which entirely relies on

y’s own judgment.

5.3 Protocols for Trust Management

It is straightforward to implement the trust chain protocol defined in Section 5.2 when

each vertex is a single network node. However, in our trust chain a vertex represents a

local CA, which actually consists of a group of CA servers. Communication protocols

are needed to ensure that a group of servers can behave like a single server. The typical

97

solution to this problem in fixed wired networks is to pick up a server as a master

and let it represent the team. However, this approach will not work in our system

because no one can be trusted absolutely. Furthermore, the improvement of security

in CA lies in its threshold scheme, in which no single server (or more generally, less

than quorum servers) can compromise the whole system. But having a master server

introduces a single point of failure. To solve this problem, we define two protocols: CA

Table Update protocol (CTU) and CA Head Election protocol (CHE), both of which

work in an autonomous fashion. That is, each of the servers keeps a copy of all the

data, including R and I tables, and makes trust decisions independently based on its

local data. Combining these decisions together, the CA servers can make a uniform

decision, which bears the CA signature.

In the rest of the section, we will explain in details how the two protocols work.

Assume we have a CA Ci = {Ci1, Ci2, ...CiN} with N servers, K as the threshold, and

the local copies of Ri, and Ii of each CA server Cik(1 ≤ k ≤ N) are denoted as Rik,

and Iik, respectively. Furthermore, a server Cik will not update its local copy of Rik

unless it receives a new table Ri
′ signed by Ci. This guarantees that all updates to Ri

table are certified by at least K CA servers.

5.3.1 CA Table Update Protocol

Based on the conceptual protocol above, a CA updates its table when it establishes

a new trust relation with another CA or receives an UPDATE message from a CA it

directly trusts. We will discuss them one by one. To deal with replay attack or out-

dated data, we let each Cik of Ci keep a version number of its local copy of Rik denoted

as vik.

1. Establish a new trust relation

(a) When the proxy CA server, denoted as Cip, generates a new signed trust

decision, it makes a copy of its Rip and works on the copy to generate a new

table R′

ip according to the new trust. Then, it multicasts to all other CA

98

servers a table update request [UPDATE:R′

ip] with version v′ip = vip + 1, and

waits for replies.

(b) Upon receiving the new trust decision, a server Cik verifies if it is signed with

the CA key and should be trusted. Then, it does the same as Cip to create

a new table R′

ik and compares R′

ik including the version with R′

ip. If they

are matched, Cik signs the new table with its partial key and returns it to Cip.

(c) When Cip has at least K correct and unanimous responses, R′

i with the ver-

sion = v′i, it generates the full signature for it. Then, it overwrites its own

copy of the table Rip with R′

i and multicasts the signed new table to other

CA servers. If its Iip is not empty, it also sends the newly signed table R′

i

to all CAs in Iip.

(d) When Cik receives the new table R′

i, it verifies the signature and overwrites

its own Rik with the new one.

2. Respond to UPDATE message

The protocol works in the same way as the previous one except the first two steps:

(a) When a proxy Cip receives an update message [UPDATE:Rl] from another

directly trusted CA l, it multicasts the message to other CA servers followed

by a table update request [UPDATE:R′

ip] as well as [UPDATE:Rl].

(b) When a server Cik receives the update message, it verifies if the CA, Ci,

trusts the CA, Cl, directly. If Ci trusts Cl, Cik checks Rl against its local

Rik in the same way as described in the conceptual protocol above. If Cik

needs to update its Rik, it generates a new table R′

ik and compares it with

R′

ip. Cik signs R′

ip if R′

ik with R′

ip are matched in the same way as Cip.

99

In both cases, the message signed with the CA key also serves as a confirmation: a

server will not generate more partial signatures if it is waiting for another confirmation.

Since in MANET there is no guarantee of message delivery, the server will time out if

no confirmation is received. The protocol works even if there are faulty or compromised

servers as long as they are less than N − K. To get a valid signature, a proxy server,

no matter it is honest or dishonest, needs to collect K correctly partially signed and

unanimous R. Since we assume that at least there are K > N
2

honest servers that

cache the correct R table locally, the protocol guarantees that new tables are generated

correctly. On the other hand, because there are at most (N −K) < N
2

servers that can

have incorrect R or be compromised, it is impossible for malicious users to generate a

wrong signed table R.

5.3.2 CA Head Election Protocol

When dealing with multiple update requests at the same time, the CA Table Update

(CTU) protocol may generate a different table Ri with the same version even though

the protocol requests each server to generate one partial signature at a time. This

happens only when compromised CA servers cooperate to violate the protocol. For

instance, if Cip1 receives [UPDATE:Rl] and Cip2 receives [UPDATE:Rm] at the same

time and both send the table update request to other CA servers, there is no way to

control the sequence these requests are received. It is possible that K
2

honest servers

get [UPDATE:Rl] and the other half get [UPDATE:Rm]. In general, the two different

UPDATEs result in different R′

i but if all servers only sign one table at a time, the

two different tables will be signed in sequence and thus, with different version number.

However, compromised servers can simply sign both requests such that both Cip1 and

Cip2 may have enough partial signatures to construct their R′

i with the same version

number. This will cause confusion to other CA’s when they need to update their trust

table since the version number is used to guarantee that only the latest table from the

trusted CA’s will be considered.

To solve the above problem, we have to restrict that only one request is allowed to

be sent at a time. To simplify the protocol, we require that only one server in one CA,

100

called Head, is permitted to send request. To avoid trusting any single server naively,

the server is elected by the group and rotated periodically and/or on demand. There

are no means of preventing a Head from violating the protocol. However, this can be

easily detected by honest servers, which receive multiple requests at the same time.

The protocol is simple and works as follows:

1. Each server is assigned an ID known to all other servers. Everyone in the CA

keeps track of the current head ID, called HeadID and uses the same algorithm,

called GetNextHead to get the ID of the new Head. It is easy to find such an algo-

rithm, i.e, if all ID’s are within [0..N − 1], (HeadID + 1) mod N works. When

some server Cip calls an election, it multicasts the request to all other servers.

2. When a server Cik receives the request, it calls GetNextHead to generate the ID

and compares it with the request. If the generated ID matches the request, the

server Cik signs the request with its partial key and sends it back to Cip.

3. Similar to table update, Cip generates the fully signed notice for the new head,

multicasts it to all other CA servers, which will update their head accordingly.

In this protocol, there is no need to restrict a CA to only generate one partial

signature for the new head at a time. The reason is that even if multiple requests arrive

at the same time, a CA server will only sign the one that matches the result given by

GetNextHead.

5.3.3 Message Delivery Fault Tolerance

Messages can get lost at network layer (routing failure) and application layer (a CA

server dropping requests). The former problem has been extensively studied in MANET

routing algorithms [93, 92] and is beyond the scope of this work. We simply assume

that for each message sent, at least K honest servers in a CA will receive it. We tackle

101

the latter case. As we know, a single compromised server can not forge a valid signature

and the only harm it may do is Denial-of-Service(DoS) attack by dropping it silently.

However, this is detectable if it takes place inside a CA, because for each request, a

reply is expected by the requester and dropping a request will finally result in discovery

of the deviation from the protocol. The only threat is to inter-CA messages including

ESTABLISH and UPDATE. In this case, both sender and receiver can be compromised.

There are two options to address the lost of ESTABLISH and UPDATE messages.

First, since lost of these messages only results in other CA’s having out-of-date trust

relations, we let each CA run a mandatory periodic update notifications to everyone in

its I table by picking up both sender and the receiver randomly. In this solution, the

risk is bounded and finally an update notification can be received by an honest server in

other CA’s. Second, since out of N−K+1 servers there is at least one honest server, we

can guarantee successful message delivery if there are N −K +1 senders and N −K +1

receivers. To do this, each CA picks up N −K +1 servers as senders. Every time when

a CA sends message to another, each server in the sender CA determines if it is one

of the N − K + 1 servers. If it is one of these servers, the CA server randomly selects

N −K + 1 servers of the receiver CA and sends the message to them. To make it more

efficient, each server is assigned a priority and sends the message after a different delay.

If the server receives a confirmation before the timer expires, it simply cancels the timer.

For instance, when sending an ESTABLISH message to another CA, a server sets up

the timer. When the server receives an UPDATE message from the CA, it cancels the

timer. We take both approaches in our solution without implementing the timer.

5.4 Evaluation

We evaluated our locality driven key management architecture in a hybrid method

of both prototype implementation and simulation. First we implemented a prototype

based on openssl [16] libcrypto library on Linux platform in C to evaluate the real

computation cost of the threshold scheme. Second, we used NS2 [20] to simulate the

protocols to evaluate its effectiveness and communication overhead in various MANET

scenarios.

102

N K Proxy generating CA server generating
full signature (ms) partial signature (ms)

3 2 13.95 25.81

5 3 13.96 28.25

5 4 15.89 13.85

Table 5.1: Costs of Certificate Generation on Dell Latitude CPi Laptop(Pentium II
366M Hz, 256M SDRAM)

N K Proxy generating CA server generating Total delay
full signature (ms) partial signature (ms) (ms)

3 2 396.70 333.98 717.87

5 3 421.85 203.29 959.88

5 4 427.60 212.93 996.25

Table 5.2: Costs of Certificate Generation on HP/Compaq iPAQ H3700 (Intel Stron-
gARM 206M Hz, 64M SDRAM)

5.4.1 Prototype Implementation

The prototype implemented the basic signature generation function of CAs. It con-

sists of 3000 lines of C code and is compiled on Linux 2.4 for both Pentium (Dell

Latitude CPi Laptop with Pentium II 366 MHz processor and 256M SDRAM) and

ARM(HP/Compaq iPAQ H3700 series with 206 MHz Intel StrongARM SA-1110 32-bit

RISC processor and 64M SDRAM) architectures. Computation costs in terms of CPU

time in different scenarios were evaluated on both architectures. Communication delay

was calculated in the 802.11b network composed of several iPAQs. The results are

shown in Table 5.1 and 5.2. The calculation was based on RSA 1024 bit public/private

key.

From table 5.1 and 5.2, the overall cost is higher on the low-end PDAs than on more

powerful and resourceful full-fledged computers. The computation cost from the CA

server’s perspective is independent of how the CA is composed because the computation

load remains the same. Furthermore, the impact of increasing K on the proxy is nearly

indiscernible. As observed by J. Kong et al. in [70], this is because the overhead of

combining more partial signatures can be ignored when compared to the cost of key

103

generation. However, the total delay becomes bigger with the number of servers in

the CA and the threshold increasing. This is actually due to the increased network

communication costs and the waiting time to collect all partial signatures.

5.4.2 Simulation

We measured communication cost and tested effectiveness of our architecture in different

MANET scenarios through NS-2 simulation. It consists of 1500 lines of C++ code and

a few hundred lines of TCL code.

Measurements

We evaluated the locality driven key management architecture from effectiveness and

communication cost aspects. A certificate service is effective if it can react to changes

of trust in the system in time. In our inter-CA trust chain, a change of trust will

be propagated along each trust chain and CA’s on the chain will update their trust

tables according to the new change. We define the vulnerable window of a CA (denoted

by V) as the time between an event of trust change happens and the time when the

CA finishes updating its R table for the event. In a vulnerable window, a CA makes

decision on trusting or distrusting other CAs based on its previous records, rather than

the most recent events. The smaller V , the more effective the system is. It is especially

significant for a CA to deal with certificate revocation, because small V ensures low false

positive rate resulting from granting trust to the CAs that should have been distrusted

if the trust updates had been received.

Another important perspective of the system performance is communication cost.

The threshold cryptography enhances the security at the cost of the messages since

generation of a signature gets at least the threshold K number of nodes involved.

This is even aggravated by the fact that no single node can be absolutely trusted.

Therefore, to ensure correct message delivery, redundancy is brought in. We calculated

the communication cost by the number of messages triggered by a single event. However,

this number varies based on different logic topology of the trust relationships. To avoid

being further complicated by these runtime variants, we only calculated the message

104

0

10

20

30

40

50

1 2 3 4 5 6
Chain Length

D
el

ay

Node moving speed=5m/s
Node moving speed=10m/s
Node moving speed=15m/s
Node moving speed=20m/s
Node moving speed=25m/s

Figure 5.3: Certificate Authority Vulnerable Window(V) vs Node Speed

0

5

10

15

20

1 2 3 4 5 6

Chain Length

D
el

ay

Number of servers in a CA=3
Number of servers in a CA=5
Number of servers in a CA=7
Number of servers in a CA=9

Figure 5.4: Certificate Authority Vulnerable Window(V) vs Number of
Servers(N) of CA

cost for a single trust chain, denoted by M . The message cost of multiple chains is

upper-bounded by (number of the chains) ×M .

Scenarios, Parameters and Results

We modified Carnegie Mellon University setdest [38] utility to generate random way-

point mobility models with different node moving speed. The speed varied from 5, 10,

15, 20, 25m/s etc. The simulations were run with 150-300 nodes spread in areas ranging

from 300x300, 500x500 and 800x800 m2. The results are shown in Figure 5.3, 5.4, 5.5,

5.6 and 5.7. In the current simulation implementation, we simply used multiple unicasts

to simulate a multicast. Therefore, from the aspect of underlying communication cost,

105

0

5

10

15

20

25

1 2 3 4 5 6

Chain Length
D

el
ay

Number of Node/10000(m*m)=16.7

Number of Node/10000(m*m)=8

Number of Node/10000(m*m)=4.69

Figure 5.5: Certificate Authority Vulnerable Window(V) vs Network Den-
sity

0

50

100

150

200

250

300

1 2 3 4 5 6

Chain Length

M
es

sa
g

es

Number of servers in a CA=3
Number of servers in a CA=5
Number of servers in a CA=7
Number of servers in a CA=9

Figure 5.6: Message Cost(M) of Trust Chain Management vs Number of
Servers(N) of CA

the simulation results can be considered as an upper bound.

As shown in Figure 5.3, the vulnerable window V of the system varies with the

nodes’ moving speed but there is no evidence of a clear relation between them. The

same observation holds for V vs CA composition relation as demonstrated in Fig 5.4.

After analyzing the trace logs of the simulations, we found that routing between CA’s

dominated the trust propagation delay along the chain, which was relatively random

compared to CA internal routing where usually routes were shorter. Fig 5.5 further

supports this by showing V increases as density of the network (represented by the

number of nodes per 10000 square meters(m2)) decreases. This is because there are

106

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6

Chain Length
M

es
sa

g
es

Node moving speed=5m/s
Node moving speed=10m/s
Node moving speed=15m/s
Node moving speed=20m/s
Node moving speed=25m/s

Figure 5.7: Message Cost(M) of Trust Chain Management vs Node Speed

less routes available between nodes in sparse networks.

Unlike the vulnerable window size V , the message cost is in direct proportion to

the number of servers(N) and threshold K of CA as expected as shown in Figure 5.6.

Figure 5.7 shows that network density and volatility do not impact the message cost

significantly. This is because we did not rely on retransmission to fail over routing

problem or network partition, due to the high cost. Instead, we used routine and

event based updates to repair broken chains, in which, if an update notification fails to

reach other CA’s, it is simply dropped and the system waits for either next routine or

event-triggered update.

5.5 Limitations

The main weakness of our architecture is the commonly trusted dealer in each commu-

nity. This can be risky in general since it introduces a single point of failure. Bootstrap

can also be accomplished without the help of the dealer as discussed in [73]. Our key

architecture did not implement this method in order to favor performance and simplic-

ity. We mitigated this problem from two aspects. First, it is not unusual that such a

dealer does exist, e.g., the chair of a workshop or the provider of some MANET services.

Second, the trust is only needed at the bootstrap phase and can be revoked after CAs

are fully setup.

107

A more secure solution to the dealer problem is to leverage Satem in the CA boot-

strap process. To implement this method, we first need to develop a trusted CA dealer

service that securely generates the CA private key and destroys it immediately after

distributing the partial shares. The service is defined in a Satem commitment. Before

a CA server accepts the partial share from the dealer, it establishes trust on the dealer

through the Satem service commitment protocol. As we discussed in Chapter 2, this

ensures the CA server that the dealer will dispose the private key properly.

CA servers of a community may fail or leave the community. Due to the threshold

scheme, losing less than N − K servers will not cause the CA to stop functioning.

However, if more than N −K servers leave the community, the CA is broken. We have

not addressed this problem in the current approach. A possible method to tackle this

problem is to require each CA server to find a successor before leaving and securely

transfer its partial secret to the successor. Then the successor notifies other CA servers

and generates a new CA certificate describing the new composition.

Certain optimizations can also be incorporated into the current implementation.

The most important one is to implement the delay timer as mentioned in Section

4. Besides, one can use real multicast to send ESTABLISH and UPDATE messages

instead of using multiple unicasts. With these optimizations in place, the overhead of

our architecture can be further reduced.

Trust chains are only used for key authentication in this work due to our narrow

definition of trust, i.e., the authenticity of nodes’ public keys. Their use can be expanded

by adding more semantics to the trust definition. For instance, when trust is based on

nodes’ behavior, the CAs actually become trust monitors and any node can verify if

another node is decent by use of the trust chains.

5.6 Summary

In this chapter, we presented a locality driven key management architecture for MANET.

The design is motivated by the application centric nature of MANET and based on

threshold cryptography to achieve high fault tolerance against network partition and

108

malicious nodes. On top of it, we designed distributed trust protocols to help set up

trust relations on-the-fly. We implemented a prototype for both Intel based laptops and

ARM based iPAQ PDAs. We also ran NS-2 simulations for different scenarios. The

results support our design goals of high fault tolerance, in-time services and efficiency.

109

Chapter 6

Conclusion and Future Direction

In this dissertation, we investigated how to ensure trust in mobile ad hoc networks by

exploiting the application centric nature of MANETs and augmenting network nodes

with low cost hardware based trusted computing system. The main questions that this

dissertation has tried to answer are:

1. How to ensure a MANET application user on one node that the application run-

ning on another node can be trusted?

2. How to ensure fair and secure communication between multiple network nodes?

3. How to ensure that a network node is what it claims to be?

We presented the design, implementation, and evaluation of Satem, a service-aware

trusted execution monitor, for ensuring trusted code execution. Users establish trust

with the applications running on other nodes through a service commitment protocol

executed before starting any new application transaction. During this protocol, Satem

provides the users a service commitment, which describes all the code files that the

service may execute in all circumstances, such as executables, libraries, etc. Satem

exploits the TCG-specified TPM as the root of trust to build trusted components in-

cluding the execution monitor in the OS kernel, which consequently enforces the service

commitment. Satem achieves service awareness by limiting the scope of monitoring to

protected applications instead of performing attestation and protection on all programs.

We have implemented a prototype under Linux and evaluated it using two MANET

applications. The experimental results demonstrate that Satem incurs low overhead to

both the applications and the underlying platform without impacting the performance

of unprotected applications.

110

On top of Satem, we developed two methods to ensure trusted communication be-

tween network nodes: one is a method that creates protected MANETs to shield net-

work member nodes from network attacks, and the other is an application layer network

communication policy enforcement mechanism to ensure secure and cooperative com-

munication between network participants. Both methods are driven by the application

centric nature of MANETs, i.e., the creation of MANETs is triggered by users who

want to run some common applications, but differs in the layer and the granularity of

control. The former method does not allow untrusted nodes to establish wireless links

with nodes in the protected networks. Furthermore, it enforces a common network

access control policy at the network layer; this policy is associated with the application

running in the network. Attacks from member nodes are suppressed locally by the

common network access control policy. To ensure trusted enforcement of the policy, we

augmented every node with a Satem-based trusted agent. We evaluated the method

through a prototype based on an IEEE 802.11 ad hoc network. The results demonstrate

that our method imposes little impact on network communication.

The latter method moves the trust to the application layer and is capable of con-

trolling the behavior of individual applications by enforcing application context aware

policies. Under the latter method, nodes supporting the same set of applications and

enforcing the same policies construct a trusted multi-tier application centric network.

Each tier of the network runs one application and enforces its associated policy. The ap-

plication of the upper tier depends on the applications of the lower tiers to communicate.

Only trusted nodes are allowed to join the network. Moreover, communication between

them is regulated by the policies at every tier. Similar to the method of creating pro-

tected ad hoc networks, trusted policy enforcement is guaranteed by our Satem-based

trusted kernel agent. We evaluated the method through a prototype based on an IEEE

802.11 ad hoc network and through network simulations. The results demonstrate the

feasibility of the proposed method as well as its low overhead.

Orthogonal to the behavior based trust, such as trusted application and trusted

communication, we presented a locality driven key management architecture to ensure

trusted identity. The design leveraged the application centric nature of MANET to

111

enhance trustworthiness and performance of authentication. Moreover, the method

is based on threshold cryptography to achieve high fault tolerance against network

partition and malicious nodes. Trust relationships are managed dynamically by use of

our distributed trust protocols. We evaluated the method through prototyping on both

Intel based laptops and ARM based iPAQ PDAs and NS-2 simulations. The results

support our design goals of high fault tolerance, in-time services and efficiency.

The main conclusion of this dissertation is that the emerging low cost trusted hard-

ware combined with the application centric nature of MANETs can be exploited to

provide solutions to the problems of lack of trust in MANETs, which would otherwise

be impossible.

6.1 Future Direction

Looking forward, we believe that application centric view with assistance of low cost

trusted hardware is conducive to improve trust in MANETs. One potential application

is to implement a distributed credit system, which maintains the credit record of a

specific node for an application like TrafficView [46] while preserving the node’s privacy.

The existing trust system can be leveraged to assign a credit score to each network

member. However, these methods suffer two problems. First, it takes long time to

accumulate credit history while MANET applications are usually transitory. As a result,

the history of the node executing the same applications must be carried over. Second,

due to the lack of central credit authority, there is nowhere to save the credit history

except on the node itself. A potential solution to this problem is to implement a trusted

system on each node. Similar to the Satem, this trusted system must guarantee that

the credit updating system (that is also running on the node) is trusted. Moreover, it

must perverse integrity and privacy of the credit records it receive. We are investigating

an approach based on the configuration verification feature of TPM.

Another potential topic is a Digital Right Management (DRM) system. With the

popularity of high-definition media and the accelerating deployment of IPTV and peer-

to-peer video sharing, we expect DRM to become a much more severe problem due to

112

the high economic interest. The existing solutions are based on dedicated client devices,

such as IPTV residential gateways. This approach has two drawbacks. First, the client

devices are closed-box. Therefore, the solution developed on top of it is not applicable

to open-box devices like laptops and palm computers. Second, these client devices are

far from tamper-proof. We are investigating a TPM based solution, which guarantees

that the media would only be played by authorized trusted media players and can not

be saved illegally.

113

References

[1] 802.11 protocols. http://www.ieee802.org/11/.

[2] AODV Implementation. http://core.it.uu.se/core/index.php/AODV-UU.

[3] Atmel tpm. http://www.atmel.com/.

[4] Carnegie mellon cert coordination center. http://www.cert.org.

[5] Dictionary Definition of Trust. Merriam-Webster Online Dictionary.
http://www.merriam-webster.com/dictionary/trust.

[6] Enforcer project. http://enforcer.sourceforge.net.

[7] Entrust Certificate Service. http://www.entrust.com.

[8] Facebook. http://www.facebook.com.

[9] Hostapd Project. http://hostap.epitest.fi/.

[10] IEEE 802.1X Port-based Network Access Control. In IEEE Standard 802.1X,
2001 Edition.

[11] Mobile Ad hoc Networks. http://en.wikipedia.org/wiki/Mobile ad-hoc network.

[12] Mute p2p file sharing application. http://mute-net.sourceforge.net/.

[13] MySpace - a place for friends. http://www.myspace.com.

[14] Open Shortest Path First (OSPF). http://www.ietf.org/rfc/rfc1247.txt.

[15] Open1x project. http://open1x.sourceforge.net.

[16] OpenSSL Project. http://www.openssl.org.

[17] Oprofile project. http://oprofile.sourceforge.net.

[18] The HiperLan project. http://en.wikipedia.org/wiki/HIPERLAN.

[19] The netfilter/iptables Project. http://www.netfilter.org.

[20] The Network Simulator - NS2. http://www.isi.edu/nsnam/ns.

[21] The SANS Institute. http://www.sans.org.

[22] WiFi Project. http://www.wi-fi.org/.

[23] Extensible Authentication Protocol Over Lan. In IEEE Standard EAPOL, 2000.

114

[24] Ehab Al-Shaer and Hazem Hamed. Discovery of policy anomalies in distributed
firewalls. In Proceedings of Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM’04), 2004.

[25] W Arbaugh, D Farber, and J Smith. A secure and reliable bootstrap architecture.
In Proceedings of IEEE Symposium on Security and Privacy, 1997.

[26] William A. Arbaugh, Narendar Shankar, and Y.C. Justin Wan. Your 802.11
wireless network has no clothes. Wireless Communications, IEEE, 9(1):44–51,
2002.

[27] N Aschenbruck, M Frank, P Martini, and J Tolle. Human mobility in manet disas-
ter area simulation - a realistic approach. In Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, pages 668–675, 2004.

[28] N. Asokan and Philip Ginzboorg. Key agreement in ad-hoc networks. In Nord-
sec’99 Workshop, 1999.

[29] T. Aura and S. Mäki. Towards a survivable security architecture for ad-hoc
networks. In Security Protocols, 9th International Workshop, Cambridge, UK,
April 2001, volume 2467 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin. Springer-Verlag Berlin Heidelberg 2002.

[30] Walid Bagga, Stefano Crosta, Pietro Michiardi, and Refik Molva. Establishment
of ad-hoc communities through policy-based cryptography. In the Proceedings of
2nd Workshop on Cryptography for Ad hoc Networks (WCAN), July 2006.

[31] D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to strangers: Authen-
tication in adhoc wireless networks. In the Symposium on Network and Distributed
Systems Security (NDSS ’02), San Diego, California, 2002.

[32] John Bellardo and Stefan Savage. 802.11 denial-of-service attacks: Real vul-
nerabilities and practical solutions. In Proceedings of the 8th USENIX Security
Syposium (Security’03), 2003.

[33] S. Berkovits, S. Chokhani, J. Furlong, J. Geiter, and J. Guild. Public key infras-
tructure study final report. MITRE report, 1994.

[34] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The
keynote trust-management system, version 2. In RFC 2704, September 1999.

[35] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.
In the Proceedings of IEEE Conference on Privacy and Security, 1996.

[36] Cristian Borcea, Chalermek Intanagonwiwat, Porlin Kang, Ulrich Kremer, and
Liviu Iftode. Spatial programming using smart messages: Design and imple-
mentation. In Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS’04), pages 690–699, 2004.

[37] David F.C. Brewer and Micheal J. Nash. The chinese wall security policy. In the
Proceedings of IEEE Conference on Privacy and Security, 1989.

115

[38] J. Broch, D. A. Maltz, D. Johnson, Y. Hu, and J. Jetcheva. A performance
comparison of multi-hop wireless ad hoc network routing protocols. In Mobile
Computing and Networking, 1998.

[39] E.ROYER C. PERKINS and S. DAS. Ad-hoc on-demand distance vector - ad
hoc on-demand distance vector (aodv) routing. In RFC 3561, Jul 2003.

[40] S. Capkun, L. Buttyan, and J. P. Hubaux. Self-organized public-key management
for mobile ad hoc networks. IEEE Transactions on Mobile Computing, Jan-Mar
2003.

[41] Augustin Chaintreau, Pan Hui, Jon Crowcroft, Christophe Diot, Richard Gass,
and James Scottr. Pocket Switched Networks: Real-world mobility and its con-
sequences for opportunistic forwarding. Technical Report UCAM-CL-TR-617,
Computer Laboratory of University of Cambridge, 2005.

[42] Benjie Chen and Robert Morris. Certifying program execution with secure pro-
cessors. In the Proceedings of 9th Workshop on Hot Topics in Operating Systems,
2003.

[43] Krishna Chintalapudi, Tat Fu, Jeongyeup Paek, Nupur Kothari, Sumit Rangwala,
John Caffrey, Ramesh Govindan, Erik Johnson, and Sami Masri. Monitoring civil
structures with a wireless sensor network. IEEE Internet Computing, 10(2):26–
34, 2006.

[44] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum.
Understanding data lifetime via whole system simulation. In Proceedings of the
13th Usenix Security Symposium, 2004.

[45] S. Dashtinezhad, T. Nadeem, C.Liao, and L. Iftode. Trafficview: A scalable
traffic monitoring system. In the proceedings of IEEE International Conference
on Mobile Data Management, 2004.

[46] S. Dashtinezhad, T. Nadeem, B. Dorohonceanu, C. Borcea, P. Kang, and
L. Iftode. Trafficview: A driver assistant device for traffic monitoring based
on car-tocar communication. In In Proceedings of IEEE Semiannual Vehicular
Technology Conference (VTC’04-Spring), 2004.

[47] Gang Ding and Bharat Bhargava. Peer-to-peer file-sharing over mobile ad hoc
networks. In Proceedings of the Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops, page 104, 2004.

[48] P Dinsmore, D Balenson, M Heyman, P Kruus, C Scace, and A Sherman. Policy-
based security management for large dynamic groups: An overview of the dccm
project. In the Proceedings of DARPA Information Survivability Conference and
Exposition (DISCEX0́0), January 2000.

[49] John R. Douceur. The sybil attack. In IPTPS ’01: Revised Papers from the First
International Workshop on Peer-to-Peer Systems, pages 251–260, 2002.

[50] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer. Xen and the art of virtualization. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles, 2003.

116

[51] Keith I. Farkas, John Heidemann, and Liviu Iftode. Intelligent transportation
and pervasive computing. In IEEE Pervasive Computing Magazine, number 4,
pages 18–19, 2006.

[52] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key scheduling
algorithm of RC4. Lecture Notes in Computer Science, 2259, 2001.

[53] W Franz, R Eberhardt, and T Luckenbach. Fleetnet - internet on the road. In
Proceedings of 8th World Congress on Intelligent Transportation Systems (ITS
2001), 2001.

[54] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra:
A virtual machine-based platform for trusted computing. In Proceedings of the
19th ACM Symposium on Operating Systems Principles, 2003.

[55] M Gasser, A Goldstein, C Kaufman, and B Lampson. The digital distributed sys-
tem security architecture. In Proceedings of 12th NIST-NCSC National Computer
Security Conference, 1989.

[56] R Goldberg. Survey of virtual machine research. In IEEE Computer Magazine,
June 1974.

[57] M Guarnera, M Villari, A Zaia, and A Puliafito. Manet: possible applications
with pda in wireless imaging environment. In the Proceedings of the 13th IEEE In-
ternational Symposium on Personal, Indoor and Mobile Radio Communications,
pages 2394–2398, 2002.

[58] J Haartsen. Bluetooth - the universal radio interface for ad hoc, wireless connec-
tivity. In Ericsson Review, number 3, pages 110–117, 1998.

[59] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: a secure on-
demand routing protocol for ad hoc networks. In Proceedings of the 8th an-
nual ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom), pages 12–23, September 2002.

[60] Yih-Chun Hu, Adrian Perrig, and David B Johnson. Packet leashes: A defense
against wormhole attacks in wireless ad hoc networks. In the Proceedings of
Twenty-Second Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, April 2003.

[61] Jean-Pierre Hubaux, Srdjan Čapkun, and Jun Luo. The security and privacy of
smart vehicles. IEEE Security and Privacy, 2(3), 2004.

[62] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and
Christophe Diot. Pocket switched networks and human mobility in conference
environments. In Proceedings of the 2005 ACM SIGCOMM workshop on Delay-
tolerant networking (WDTN05), pages 244–251, 2005.

[63] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heide-
mann, and Fabio Silva. Directed diffusion for wireless sensor networking.
IEEE/ACM Transactions on Networking, 11(1):2–16, 2003.

117

[64] S Ioannidis, A Keromytis, S Bellovin, and J Smith. Implementing a distributed
firewall. In Proceedings of the ACM Conference on Computer and Communica-
tions Security (CCS’00), 2000.

[65] J.Jubin and J.D.Tornow. Darpa packet radio network protocol. In Proceedings
of the IEEE, volume 75, pages 21–32, Jan 1987.

[66] D. Johnson, D. Maltz, and J. Broch. DSR The Dynamic Source Routing Protocol
for Multihop Wireless Ad Hoc Networks, chapter 5, pages 139–172. Addison-
Wesley, 2001.

[67] G Karjoth. The authorization service of tivoli policy director. In the Proceed-
ings of the 17th Computer Security Applications Conference (ACSAC), December
2001.

[68] Rick Kennell and Leah H. Jamieson. Establishing the genuinity of remote com-
puter systems. In Proceedings of 12th USENIX Security Symposium, 2003.

[69] Sye Loong Keoh, Emil Lupu, and Morris Sloman. Peace: A policy-based estab-
lishment of ad-hoc communities. In the Proceedings of the 20th Annual Computer
Security Applications Conference (ACSAC), September 2004.

[70] Jie. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Providing robust and ubiqui-
tous security support for mobile ad-hoc networks. In the Proceedings of the 9th
IEEE International Conference on Network Protocols (ICNP’01), 2001.

[71] T Leinmuller, E Schoch, F Kargl, and C Maihofer. Influence of falsified posi-
tion data on geographic ad-hoc routing. In Proceedings of the second European
Workshop on Security and Privacy in Ad hoc and Sensor Networks (ESAS 2005),
2005.

[72] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. Architectural support for copy and tamper
resistant software. In Architectural Support for Programming Languages and Op-
erating Systems, 2000.

[73] M. Malkin, T. Wu, and D. Boneh. Experimenting with shared generation of rsa
keys. In Proceedings of the Internet Society’s 1999 Symposium on Network and
Distributed System Security (SNDSS), 1999.

[74] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In Proceed-
ings of IEEE Symposium on Security and Privacy (S&P’00), 2000.

[75] Patrick McDaniel and Atul Prakash. Enforcing provisioning and authorization
policy in the antigone system. In Journal of Computers (JCP), November 2006.

[76] MeshDynamics Inc. MD4455/MD4325 Mobile Node with Mobility Scanner.
http://www.meshdynamics.com/FAQ 4455.html.

[77] Microsoft Corp. Next generation secure computing base.
http://www.microsoft.com/resources/ngscb.

118

[78] Naftaly Minsky Mihail Ionescu and Thu Nguyen. Enforcement of communal poli-
cies for peer-to-peer systems. In the Proceedings of 6th International Conference
on Coordination Models and Languages, February 2004.

[79] Naftaly Minsky. The imposition of protocols over open distributed systems. (2),
February 1991.

[80] Naftaly Minsky. Decentralized regulation of distributed systems: Beyond access
control, April 2008. http://www.cs.rutgers.edu/ minsky/papers/IC.pdf.

[81] Naftaly Minsky and Victoria Ungureanu. Regulated coordination in open dis-
tributed systems. In the Proceedings of 2nd International Conference on Coordi-
nation Models and Languages(Coordination’97), LNCS 1282, September 1997.

[82] Naftaly Minsky and Victoria Ungureanu. Unified support for heterogeneous secu-
rity policies in distributed systems. In the Proceedings of 117th USENIX Security
Symposium, January 1998.

[83] Naftaly Minsky and Victoria Ungureanu. Law-governed interaction: A coordi-
nation & control mechanism for heterogeneous distributed systems. In ACM
Transactions on Software Engineering and Methodology (TOSEM), July 2000.

[84] Arunesh Mishra, Jr. Nick L. Petroni, William A. Arbaugh, and Timothy Fraser.
Security issues in ieee 802.11 wireless local area networks: A survey. Wireless
Communication & Mobile Computing, 4(8):821–833, 2004.

[85] MOBIDIS Project. ManetChat Application on the MOBIDIS Middleware.
http://www.dis.uniroma1.it/pub/mecella/projects/MobiDIS/mobidis user.htm.

[86] Robert Morris, John Jannotti, Frans Kaashoek, Jinyang Li, and Douglas Decouto.
Carnet: a scalable ad hoc wireless network system. In Proceedings of the 9th
workshop on ACM SIGOPS European workshop, pages 61–65, 2000.

[87] T Murata and N Minsky. Regulating work in digital enterprises: A flexible man-
agerial framework. In the Proceedings of the Cooperative Information Systems
Conference (CoopIS), October 2002.

[88] Tamer Nadeem, Sasan Dashtinezhad, Chunyuan Liao, and Liviu Iftode. Traf-
ficview: traffic data dissemination using car-to-car communication. SIGMOBILE
Mob. Comput. Commun. Rev., 8(3), 2004.

[89] J Nzouonta, N Rajgure, G Wang, and C Borcea. Vanet routing on city roads
using real-time vehicular traffic information. 2007. Under submission.

[90] Bryan Parno and Adrian Perrig. Challenges in securing vehicular networks. In
Proceedings of Workshop on Hot Topics in Networks (HotNets-IV), 2005.

[91] V. Pathak and L. Iftode. Byzantine fault tolerant authentication. Technical
Report, Dept of Computer Science, Rutgers University, 2003.

[92] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers. SIGCOMM Computer Com-
munication Review, 24(4):234–244, 1994.

119

[93] Charles E. Perkins, Elizabeth Royer, and Samir R. Das. Ad hoc on demand
Distance Vector(AODV) routing. In 2nd IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA’99), 1999.

[94] Adrian Perrig, R. Canetti, D.Tygar, and Dawn Song. The TESLA Broadcast
Authentication Protocol. In RSA Cryptobytes, 2002.

[95] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Tygar.
SPINS: Security Protocols for Sensor Netowrks. In Proceedings of the 7th an-
nual ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom), pages 189–199, July 2001.

[96] Tuan Phan, Zhijun He, and Thu D. Nguyen. Using firewalls to enforce enterprise-
wide policies over standard client-server interactions. In Journal of Computers
(JCP), April 2006.

[97] Shankar Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry Wino-
grad. Icrafter: A service framework for ubiquitous computing environments. In
Proceedings of the 3rd international conference on Ubiquitous Computing, pages
56–75, 2001.

[98] David Rising. Battlefield internet helps forces in iraq. Globe Technology, 2003.

[99] Manuel Roman and Roy H. Campbell. Gaia: Enabling active spaces. In Proceed-
ings of the 9th workshop on ACM SIGOPS European workshop, pages 229–234,
2000.

[100] David Safford, Jeff Kravitz, and Leendert van Doorm. Take control of TCPA.
Linux Journal, August, 2003. http://www.linuxjournal.com/article/6633.

[101] R Sailer, T Jaeger, X Zhang, and L van Doorn. Attestation-based policy enforce-
ment for remote access. In Proceedings of 11th ACM Conference on Computer
and Communications Security, 2004.

[102] R Sailer, X Zhang, T Jaeger, and L van Doorn. Design and implementation of a
TCG-based integrity measurement architecture. In Proceedings of 13th USENIX
Security Symposium, 2004.

[103] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert Van Doorn, and
Pradeep Khosla. Pioneer: Verifying integrity and guaranteeing execution of code
on legacy platforms. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles, 2005.

[104] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla.
SWATT:Software-based attestation for embedded devices. In Proceedings of 2004
IEEE Symposium on Security and Privacy, 2004.

[105] Elaine Shi, Adrian Perrig, and Leendert van Doorn. Bind: A time-of-use attes-
tation service for secure distributed system. In Proceedings of IEEE Symposium
on Security and Privacy, 2005.

[106] Jaewon Shin. Multi-object Tracking and Identity Management in Wireless Sensor
Networks. PhD thesis, 2005. Adviser-Leonidas J. Guibas.

120

[107] V. Shoup. Practical threshold signatures. Theory and Application of Crypto-
graphic Techniques, 2000.

[108] Trusted Computing Group. TCG 1.2 Specifications.
https://www.trustedcomputinggroup.org/.

[109] Trusted Computing Group - Mobile Phone Working Group. Use Case Scenarios
- v 2.7.

[110] Hua-Wen Tsai, Chih-Ping Chu, and Tzung-Shi Chen. Mobile object tracking in
wireless sensor networks. Computer Communications, 30(8):1811–1825, 2007.

[111] Vincent S. Tseng and Kawuu W. Lin. Energy efficient strategies for object track-
ing in sensor networks: A data mining approach. Journal of Systems and Soft-
ware, 80(10):1678–1698, 2007.

[112] Jeffrey Voas. A Recipe for Certifying High Assurance Software. In IEEE Soft-
ware, 1999.

[113] Carl A. Waldspurger. Memory resource management in VMware ESX server. In
Proceedings of the 5th Symposium on Operating Systems Design and Implemen-
tation, 2002.

[114] X Wang, Y Yin, and H Yu. Finding collisions in the full SHA1. In Proceedings
of Crypto, 2005.

[115] Steve H. Weingart. Physical security for the uABYSS system. In Proceedings of
IEEE Computer Society Conference on Security and Privacy, pages 52–58, 1987.

[116] Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh, Omar Marcillo, Jeff John-
son, Mario Ruiz, and Jonathan Lees. Deploying a wireless sensor network on an
active volcano. IEEE Internet Computing, 10(2):18–25, 2006.

[117] S White, S Weingart, W Arnold, and E Palmer. Introduction to the Citadel
architecture: Security in physically exposed environments. Technical Report TR
RC16672, IBM Thomas J. Watson Research Center, 1991.

[118] T Woo and S Lam. A framework for distributed authorization. In the Proceed-
ings of the 1st ACM Conference on Computer and Communications Security,
November 1993.

[119] Gang Xu, Cristian Borcea, and Liviu Iftode. Satem: A Service-aware Attesta-
tion Method Toward Trusted Service Transaction. In the Proceedings of IEEE
Symposium on Reliable Distributed Systems (SRDS), October 2006.

[120] Gang Xu, Cristian Borcea, and Liviu Iftode. Trusted application-centric ad-hoc
networks. In the Proceedings of the 4th IEEE International Conference on Mobile
Ad-hoc Networks and Sensor Systems (MASS 2007), 2007.

[121] Gang Xu, Cristian Borcea, and Liviu Iftode. A Policy Enforcing Mechanism
for Trusted Ad hoc Networks. Technical Report DCS-tr-635, Computer Science
Department of Rutgers University, New Brunswick, 2008.

121

[122] Gang Xu and Liviu Iftode. Locality driven key management architecture. In the
Proceedings of the 1st IEEE International Conference on Mobile Ad-hoc Networks
and Sensor Systems (MASS 2004), 2004.

[123] Y.D.Lin and Y.C.Hsu. Multihop cellular: A new architecture for wireless com-
munications. In Proceedings of IEEE INFOCOM, pages 1273–1282, 2000.

[124] B Yee. Using secure co-processors. Technical report, Carnegie Mellon University,
1994. PH.D Thesis.

[125] S. Yi and R. Kravets. Moca: Mobile certificate authority for wireless ad hoc net-
works. In the Proceedings of the 10th IEEE International Conference on Network
Protocols (ICNP’02), 2002.

[126] L. Zhou and Z. J. Haas. Securing ad hoc networks. In IEEE Networks, volume
13(6). 1999.

[127] L. Zhou, F. Schneider, and R. van Renesse. Coca: A secure distributed on-line
certification authority. In Technical Report of Cornell University. 2002.

[128] P. Zimmermann. The Official PGP User’s Guide. MIT Press, 1995.

122

Vita

Gang Xu

Education

Ph.D. Computer Science, Rutgers University, New Jersey (2008)

M.S. Computer Science, Florida International University, Florida (1999)

B.S. Computer Science, Nanjing Univ of Aero & Astro, China (1995)

Professional Experience

Member of Technical Staff, AT&T Labs, 1999 - 2001

Senior Member of Technical Staff, AT&T Labs, 2001 - 2006

Principal Member of Technical Staff, AT&T Chief Security Office, 2006 - present

Publications

• Gang Xu, Cristian Borcea, and Liviu Iftode “A Policy Enforcing Mechanism for
Trusted Ad hoc Networks”. In Technical Report DCS-tr-635, Computer Science
Department of Rutgers University, New Brunswick, 2008.

• Gang Xu, Cristian Borcea, and Liviu Iftode “Trusted Application-centric Ad-
hoc Networks”. In the Proceedings of the 4th IEEE International Conference on
Mobile Ad-hoc Networks and Sensor Systems (MASS 2007), 2007.

• Gang Xu, Cristian Borcea, and Liviu Iftode “Satem: A Service-aware Attesta-
tion Method Toward Trusted Service Transaction”. In the Proceedings of IEEE
Symposium on Reliable Distributed Systems (SRDS 2006), October 2006.

• Gang Xu and Liviu Iftode “Locality driven key management architecture”. In the
Proceedings of the 1st IEEE International Conference on Mobile Ad-hoc Networks
and Sensor Systems (MASS 2004), 2004.

• Porlin Kang, Cristian Borcea, Gang Xu, Akhilesh Saxena, Ulrich Kremer, and
Liviu Iftode “Smart Messages: A Distributed Computing Platform for Networks
of Embedded System”. The Computer Journal, Special Focus on Mobile and
Pervasive Computing, Volume 47, British Computer Society, Oxford University
Press, July 2004.

123

• Gang Xu, Cristian Borcea, and Liviu Iftode “Toward a Security Architecture for
Smart Messages: Challenges, Solutions, and Open Issues”. In the Proceedings of
the 1st International Workshop on Mobile Distributed Computing (MDC 2003),
May 2003.

• Avigdor Gal, Vijayalakshmi Atluri, and Gang Xu “An Authorization System for
Temporal Data”, In the Proceedings of the 18th International conference on Data
Engineering Description (ICDE 2002), February 2002.

