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ABSTRACT OF THE DISSERTATION 
A Systems Biology Approach for Assessing Corticosteroid Activity 

By Eric H. Yang 

Dissertation Director: Dr Ioannis P. Androulakis 

 

 

Glucocorticosteroids are endogenous hormones that are produced in the adrenal gland and are 

responsible for the regulation of glucose metabolism. However, corticosteroids are also utilized 

therapeutically for the suppression of the immune system as well as the treatment of 

inflammation. Despite their immunosuppressive and anti-inflammatory role, long term use of 

corticosteroids is problematic due to severe side effects. Deciphering  a comprehensive 

mechanism of corticosteroid activity might offer valuable clues for mitigating the adverse side 

effects. 

 

To accomplish this task we have leveraged high throughput experimental methods such as mRNA 

microarrays as well as a new technique for measuring transcription factor activity based on a 

novel technology, namely the Living Cell Array. However, due to the large amount of information 

which is generated by these methods, it is imperative that automated methods be developed to 

identify the critical pieces of information present in the large amount of data generated. Our 

primary focus was on characterizing the dynamics of transcriptional response and to further 

isolate relevant regulatory structures. 
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Our analysis is based on in vivo (liver) measurements of a rat model as well as hepatocyte 

cultures in the living cell array. Major findings of this work suggest that the anti-inflammatory 

effect of corticosteroids appear to be a transient phenomenon under a sustained infusion of 

corticosteroids, whereas the metabolic effects of corticosteroids appear to be ongoing in 

concordance with sustained stimuli via the drug. Furthermore, it is suggested that the 

monomeric form or the glucocorticosteroid receptor was active. Specifically, given the consensus 

sequence associated with the dimeric form of the corticosteroid receptor, there is evidence that 

a monomeric form of the glucocorticosteroid will bind, and more importantly cause the 

transcription of said gene. Finally, evidence is obtained that the anti-inflammatory effects of 

corticosteroids aside from being transient are regulated by a feedback loop. 

 

A model of corticosteroid activity is finally proposed which utilizes two separate and active forms 

of the glucocorticosteroid receptor. The advantage of this model over the currently accepted one 

is that it is able to replicate the response of the system to corticosteroids with a very simple 

mechanistic explanation. The model recreates both the response of the host to an injection as 

well as infusion of corticosteroid, as well as the circadian variation of gene expression due to the 

circadian oscillations of endogenous corticosteroid levels.   
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Introduction 

Corticosteroids are a class of steroid derived hormones used to control processes such as 

glucose utilization and ion balance[1]. They are normally separated into two classes, 

mineralcorticosteroids and glucocorticosteroids with mineralcorticosteroids responsible for 

mediating ion balance and glucocorticosteroids responsible for mediating glucose metabolism. 

In this dissertation, we will use the term corticosteroids to refer solely to glucocorticosteroids. 

While corticosteroids were discovered to regulate the levels of glucose utilization, synthetic 

corticosteroids such as methylprednisolone are used therapeutically for the treatment of chronic 

inflammation as well as the suppression of the immune system[2].  For these two roles, 

corticosteroids are very effective. However, their therapeutic index is quite low due to the 

presence of a large number of serious side effects such as muscle wasting, metabolic shift, and 

steroid induced diabetes[3, 4]. Because of these severe side effects, the long term use of 

corticosteroids must be carefully weighed against the negative side effects associated with 

them[5]. However, if one were to be able to reduce the side effects associated with 

corticosteroids, it would open up a new avenue for the prolonged treatment of inflammation 

and allow for more effective therapies such as suppressing the immune system after organ 

transplantation. However, before it is possible to establish possible methods for mitigating the 

side effects of corticosteroids, one must first determine the underlying mechanism by which 

corticosteroids exert their influence upon biological system. The importance of deriving a 

mechanism is that a mechanism represents a set of hypotheses from which rational strategies 

for intervention can be obtained. 
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The fact that prolonged exposure to corticosteroids results in significant and severe side effects 

is not all that surprising given that their primary biological role is the mediation of an important 

metabolic process[6]. However, given their effectiveness at controlling inflammation and 

suppressing the immune system, the question is whether inflammation and the immune 

response is intrinsically linked to metabolism, and as such whether it is possible to suppress the 

immune response and inflammation without having some impact upon metabolism. The ability 

of non-steroid anti-inflammatory drugs (NSAIDS) to target inflammation without the severe side 

effects of corticosteroids suggests that this may be possible[7]. However, the lack of severe 

metabolic side effects of NSAIDS may be a dose dependent phenomenon because of the 

increased effectiveness of corticosteroids at treating inflammation as compared to NSAIDS at 

lower doses. Therefore, it may be possible that if a dose of NSAIDS were high enough to have the 

same anti-inflammatory effect as corticosteroids that similar metabolic effects may be seen.  

Corticosteroids are thought to function via transcriptional regulation, with the immuno-

suppressive effects arising due to the inhibition of cytokines such as IL-1, IL-6, and IFN-γ[8] and 

the anti-inflammatory effect arises from the regulation of lipocortin which decreases the levels 

of the inflammatory agent phospholipase A2[9]. The common thread between these two 

mechanisms is the fact that corticosteroids act transcriptionally, and not directly. The current 

fifth generation model of corticosteroids which has been proposed by our collaborators Almon 

et al.[10], hypothesize that corticosteroids will bind to a Glucocorticosteroid Receptor (GR), 

which then dimerizes, and translocates into the nucleus. After the translocation event, the 

activated receptor binds to a GRE element up-stream of a given gene and either up or down-

regulates the expression of that gene. 
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This drug effect was described as an indirect effect model[11], in which the primary effect is 

mediated through the production of secondary proteins. The critical aspect of this model is the 

fact that the drug activity no longer directly correlates with the amount of the drug that is 

currently within the system. Therefore, the drug could be having its maximal effect long after the 

drug has been cleared from the circulation. Therefore, the pharmacokinetics of a given drug no 

longer has a one to one correlation with the pharmacodynamics of the drug. Furthermore, the 

responses of a given drug are more complex because by triggering a transcriptional cascade, it is 

not clear as to when the effect of the drug end, and where the compensatory mechanisms 

associated with the response are beginning. 

Because the drug acts indirectly and regulates the production of proteins, rather than measuring 

how the levels of various metabolites change, we can instead focus primarily upon changes in 

mRNA gene expression levels. The levels of mRNA will be used as a surrogate for the levels of 

proteins which are the final effectors of drug activity. The fact that the mRNA expression levels 

can be measured in parallel easily through the use of mRNA microarrays allows us to utilize a 

systems biology approach by allowing us to first identify a set of relevant systems, draw 

connections between a large number of systems, and finally test hypotheses in silico without 

requiring one to necessarily run different experiments.  

Current work into the activity of corticosteroid activity has yielded some tentative ideas as to 

what systems are affected along with a preliminary mechanism for corticosteroid activity. In the 

current state of the art, genes which were selected as up or down-regulated had their 

functionality identified. Secondly, the expression profiles for selected marker genes were used to 

create PK/PD models that described corticosteroid activity. The fifth generation model of 

corticosteroid activity consists of 6 sets of differential equations which describe the activity of six 
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groups of genes Figure 1. The primary aspect of the mechanism that these mathematical models 

simulate is receptor mediated signaling, all of which work through the corticosteroid receptor.  
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Figure 1: A schematic which shows the primary components which underlie the fifth-generation model 

of corticosteroid activity. This model was developed to replicate the activities of Tyrosine Amino 

Transferase (TAT), a marker gene that was selected from the mRNA microarray. Figure was obtained 

from [10].  
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However, while such work has provided a great deal of insight into the underlying systems, 

specific limitations still exist in the current model. The fifth generation PK/PD model was 

developed to describe the response of an organism to a one-time injection of corticosteroids. 

Predictions of this model were then validated through the use of a double-dosing of 

corticosteroid[3], and the initial tolerance hypothesis seemed to be supported by the 

experiment. However, the model failed to predict the response of the organism in response to a 

continuous infusion of corticosteroid. The contradiction that existed between the model 

predictions and the observed responses lay in prediction that the effect of corticosteroids upon 

the system should be non-existent after 24 hours, whereas physiological indicators such as 

muscle wasting suggested that corticosteroids were having a prolonged effect upon the 

system[12]. This is because the fifth generation model is predicated upon the hypothesis that 

the corticosteroid receptor should show no activity after a short time period due to a tolerance 

mechanism[10] due to degradation of the receptor. Such mechanisms are not able to explain the 

sustained metabolic effects of corticosteroids such as a constant loss in muscle mass when 

corticosteroids are infused at a constant rate rather than introduced via a bolus injection. Finding 

a model which can explain these observations would go a long way in enabling us to determine 

how to target the inflammatory pathways independently of the metabolic pathways, thus 

increasing the therapeutic effectiveness of corticosteroids. Furthermore, in addition to the direct 

question involving corticosteroids, we are also interested in creating a generalizable framework 

which can be used to tackle a wide variety systems, not just those associated with the 

corticosteroid response.  

Taking the previous model into account, our starting point will be the assumption that the 

primary response of corticosteroids occur through transcriptional regulation. Thus, it is our 

hypothesis that whatever changes are wrought by an administration of corticosteroids, their 
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activity can be seen via changes in gene expression. However, because we do not know a priori 

which genes are affected by an administration of corticosteroids, we have elected to utilize a 

high throughput dataset in which the temporal gene expression profile of thousands of genes 

have been captured. Because the arrays themselves do not represent a comprehensive set of 

genes which are expressed, of primal concern to us is the extraction of patterns indicative of 

corticosteroid activity rather than the identification of every gene which response to 

corticosteroids. These patterns can then be used as a feature for future selection if the need 

arises. After a set of candidate genes have been identified, the next step is to determine the 

underlying mechanism which governs the responses of these genes. To perform the 

identification of this underlying mechanism, we will approach the problem in three different 

ways to determine whether it is possible to obtain mechanistic insights: 

1. The identification of hypothetical regulatory elements 

2. Linking the  activity of the regulators of mRNA 

3. Linking the activity of the effectors of corticosteroid activity to drug administration 

Finally, after these mechanistic insights have been linked, we will propose a model of 

corticosteroid activity, and determine whether it is able to reflect the observed response to 

corticosteroid administration.  

The microarray data which forms the foundation of this dissertation will be based upon the 

mRNA isolated from the rat liver. While corticosteroids have been shown to have a significant 

effect upon multiple tissue systems such as, but not limited to the liver, kidney, bone, muscle, 

and fat[13], we hypothesize that because the liver plays an important role in the detoxification 

and elimination of drugs[14], as well as its central role in both metabolism and inflammation, it 
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offers the simplest way for us to determine the possible mechanisms of how a tissue responds to 

an administration of corticosteroids. Though we focus primarily upon the analysis of the liver, we 

do not discount the fact that there may be significant interactions between the different tissue 

systems through the alteration of metabolites such as glucose and glutamine. However, before 

increasing the complexity of the system and analyzing the systemic effect of corticosteroids, it is 

important to first establish a mechanism by which one individual tissue has been affected. 

The two primary gene expression datasets which we will be utilizing involve two methods for 

delivering corticosteroids into a rat. The first method is a bolus injection of 50 mg/kg of 

corticosteroids into a rat animal model. In this animal model, the rat has been adrenalectomized 

so that the only source of corticosteroids is the injection of corticosteroids. In the second 

dataset, adrenalectomized rats were infused with corticosteroids at a rate of .1 mg/kg/hr. The 

removal of the adrenal gland allows the levels of corticosteroid in circulation to be accurately 

controlled as an experimental parameter without having to compensate for the adjustments 

made by the adrenal gland in response to high levels of administered corticosteroids[15]. 

The structure of these inputs mimics the inputs normally used for system identification such as 

the impulse function and a step function[16-18]. The impulse function corresponds to the bolus 

injection of corticosteroids, and can be used to obtain the transfer function from linear systems. 

Step functions can be used to obtain a rough estimate of various system factors such as time lag, 

gain, and delays.  Therefore, the experimental datasets which have a solid foundation to be used 

for model building. 

In these experiments, a population of rats is first temporally synchronized through fasting and in 

the synchronization of the rat’s light/dark cycle through environmental condition. After the 

synchronization steps, the rats are administered corticosteroids, and at predetermined time 
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points, a small subsets of rats are killed to provide technical replicates. This destructive sampling 

essentially treats the different animal replicates as coming from a single “giant” rat[19]. After the 

animals are sacrificed, the liver is excised, the mRNA isolated, and then quantified via Affymetrix 

microarrays. Thus, for each experiment, we have a set of microarrays which will span the 

experimental time interval with 3-4 replicates per time point. These time points can then be 

treated as samples obtained from a dynamic response. It is then our task to first determine the 

underlying patterns within the data, and then derive a model which explains these underlying 

patterns.  All of these datasets can be obtained from the Gene Expression Omnibus (GEO) 

database. The dataset corresponding to the bolus injection of corticosteroids is present under 

the accession number GDS253. In this dissertation, it shall be referred to as the acute dataset. 

The infusion of corticosteroids, which will be referred to as the chronic dataset is present under 

the accession number GDS972.   
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Equation Chapter (Next) Section 1Data Validation 

While not specifically part of the two steps outlined through our investigation of emergence, 

data validation is still an important part of our evaluation. While the use of high throughput 

methods such as microarrays attempt to let the data infer the underlying mechanism rather than 

validate the underlying mechanism, it is still important to determine whether the data itself 

represents a coherent response[20]. However, unlike most methods which attempt to validate 

the accuracy of mRNA microarrays with respect to other measurement techniques such as RT-

PCR[21], we seek to validate that the experiment as designed will show significant coherent 

changes in the system in response to an administration of corticosteroids.   In our specific case, it 

is still undetermined whether corticosteroids themselves will affect every tissue system in the 

body, or whether the sampling strategies which have been utilized are sufficient in capturing the 

underlying response of the system. Therefore, before any more involved work is undertaken, it is 

imperative that that one determines whether the data itself has captured meaningful dynamics. 

Because the primary goal of this dissertation is the study of how corticosteroids impact the 

biological system, the focus is upon transient dynamics rather than permanent alterations in a 

cell’s state as in the case in comparing the difference between wild-type and mutant strains[22], 

or between cancerous vs. non cancerous cells. Because of the need to capture these transient 

dynamics, the issue of sampling becomes an important one[23]. If the system is incorrectly 

sampled, fast dynamics may not be accurately captured Figure 2.  
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Figure 2: In the simulated dynamic with a rapid early response, and a slow decay back to baseline, 

insufficient sampling may lead to a sub-optimal reconstruction of the signal which may lead to incorrect 

assumptions about the dynamics of the system 
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Basic sampling theory indicates that to accurately capture any dynamic response it requires that 

the sampling occur at twice the natural frequency. This is known as the Nyquist sampling 

theorem[24]. Essentially, the Nyquist sampling theorem states that a periodic sine wave can be 

reproduced so long as more than 2 points per cycle has been recorded. Furthermore, most 

signals can be represented as the summation of sine and cosine curves via a Fourier transfer[16]. 

Thus, in the general case, a signal should be signaled at twice the rate of its highest frequency 

component. However, in the context of biological systems, such sampling requirements are often 

not met. One of the most obvious reasons for not sampling at the Nyquist frequency is the 

simple fact that the fastest dynamic needs to be known before the experiment can be carried 

out. Because this information is not always present, researchers can only make an estimate as to 

how fast the quickest dynamics are. Furthermore, given the fact that the temporal scales of the 

dynamics are unknown, it is very possible that the dynamics which we wish to capture have 

been missed in their entirety. 

From the perspective of electrical engineering, the simple answer to this dilemma is to 

oversample the system such that a comfortable margin is obtained. However, unlike in electrical 

engineering, the penalties for overestimating the frequency of the most rapid dynamics within a 

given system are quite significant. In our experimental context, each time sample comprises of 

multiple animal replicates. Each animal represents a significant investment in time and money. 

Therefore, with the fastest gene expression dynamic is on the order of minutes[25], it would be 

impractical to sample at such a rate[23]. Rather, researchers have divided the dynamics into a 

rapid early response and a slow late response[26]. However, because this information relies 

specifically upon researcher intuition, it is still imperative that the data still be validated, i.e. 

determine whether the dynamics which have been captured can be used to rationally assess a 

given system[27]. 
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The evaluation of our dataset is two-fold, first to evaluate whether the dynamics can be used in 

a model building exercise, and secondly whether the dynamics can be used to identify 

significantly activated system in the biological organism. To tackle the first question, we need to 

validate whether the dynamics captured by the array show significant non-random behavior. The 

challenge associated with this task is to determine whether the array itself represents some non-

random dynamic behavior rather than whether a given gene shows significant non-random 

behavior. Assessing the entire array is important because of the initial hypothesis that genes 

which respond to some external perturbation show significant coordination of activity. Thus, we 

seek to validate whether this is true in a given array set before conducting further evaluation. 

Determining the Validity of the Dataset 

Before, this can be accomplished; we must first define the null hypothesis, i.e. the characteristic 

of data which shows no significant activity or coordination. Because of the interest in obtaining 

models which can describe the underlying dynamics associated with the drug administration, we 

are concerned whether a set of gene expression profiles can be represented via some 

mathematical model. One possible generalization of these signals is the Auto-regressive Model 

(AR)[28], in which the signal is defined as in (1.1) where xn represents the signal at time point n 

whose value is a linear combination of previous time points, with the scalar α. In this model, one 

assumes that the value of the function at time point N, is defined by a linear combination of the 

values at p previous time points. This model is attractive because it represents an analogue to a 

set of set of linear differential equations. 

1

1

*
n

n i i

i

x x




           

 (1.1) 
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Thus if one were to take a set of differential equations as the basic mathematical model 

describing gene expression, a reasonable question is whether the recorded gene expression 

profiles reflect such behavior. By taking the auto-regressive model, one essentially assumes that 

the value for a gene expression profile at time t is dependent upon previous time points. To 

determine whether a gene expression profile shows this relationship, an autocorrelation 

function defined in (1.2) will be used. In this formulation Rff defines the autocorrelation for a 

specific offset denoted τ. This function consists of the integral between a signal, and an offset 

version of itself. Because of this offset, it is able to determine to a limited degree the relationship 

a given time point has with previous time points. 

) ( )( * ( )ff f tR f t dt 



          

 (1.2) 

The auto-correlation function shifts the signal in relationship to itself. If the signal at time t has 

no relationship to previous time points, then the magnitude of the auto-correlation function 

should be close to zero. If there is a relationship, then it should show some intermediate value. 

This is illustrated in Figure 3, where the auto-correlation of a long random signal is taken.   

The results of running the auto-correlation function upon the synthetic dataset shows that at lag 

= 0, the correlation is perfect. The lag in this case is τ or the offset applied to the signal when it is 

being compared to itself. This is not surprising because a signal will correlate perfectly with itself. 

However, when the lags are increased, the random dataset goes immediately to a value close to 

zero and fluctuate around this value. Therefore, the region of interest to us in our auto-

correlation evaluation is the tail region i.e. lags ≠ 0. To account for the different number of genes, 

and the time length of the individual signals, we will be focusing primarily upon the region 
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corresponding to lag = 1 to lag = T, where T is the number of time points which have been 

recorded.  
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Figure 3: The autocorrelation function for randomly generated data. Note that at τ = 0, that the signals 

are perfectly correlated, but the correlation falls to a very low level, at τ≠ 0, due to the lack of 

relationship between adjacent time points. 
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The notable property of using the auto-correlation upon microarray data is that it is sensitive to 

any sort of order imposed upon the dataset. In this algorithm, the goal is to detect the presence 

of order within each gene expression profile hinting at the fact that coherent changes in gene 

expression have been captured by the experimental design.  However, if order was imposed 

upon this system through by ordering the genes in some way, such as by ordering the genes by 

the value of their expression at the first time point, then the second time point, etc. it is possible 

to obtain a significantly different behavior in the auto-correlation function as shown in Figure 4. 

Therefore, any order within the system whether present due to the relationship between 

adjacent time points, or order imposed artificially can be detected by the auto-correlation 

function. 
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Figure 4: Imposing order upon the dataset through a simple sort, greatly changes the dynamics of the 

auto-correlation function. This is because there is a loss of randomness from the sorting operation 
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The dynamics of this correlation coefficient can vary either through a difference in the mean, or 

a difference in the standard deviation or both. As seen in Figure 4 the dataset which corresponds 

to the random data and the result that corresponds to the sorted data appear to have 

significantly different trends. Therefore, if it were possible to quantify these trends, it may be 

possible to obtain a metric that quantifies how dissimilar a given dataset is to the reference null 

dataset, with the expectation that the closer a dataset is to the null hypothesis the less 

meaningful such a data set is. 

To quantify the difference between the null dataset and our dataset of interest we have selected 

the f-test. This is because given the auto-correlation of random data at lag ≠ 0; there should be 

very little fluctuation about zero, whereas in informative data, we expect to see greater 

fluctuations because of the slower loss of correlation due to   relationships between the time 

points. The f-test is defined in (1.3) where sxx represents the covariance in X, and syy represents 

the covariance in Y. Again as in the f-test, X represents the auto-correlation of the randomly 

generated dataset and Y represents the autocorrelation  of the microarray dataset.  

2

2

xx

yy

f
s

s
           (1.3) 

Previously it has been shown that the auto-correlation is sensitive to any order imposed upon 

the system. Given that the microarray itself is an artificial construct, there is the possibility that 

there would exist significant structure within the data as presented, and thus alter the response 

of the auto-correlation function. Therefore, to eliminate this possibility, we will first randomly 

permute the rows in a given dataset before concatenating the gene expression profiles into a 

single NTx1 vector. This eliminates all possible prior structures within the data expect for the 
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relationship between the gene expression level of a given gene at time T vs. the gene expression 

at T-1. 

Thus the steps of the algorithm are as follows. 

1. Concatenate the response of the separate genes from an NxT dataset into an NTx1 

dataset  

2. Calculate the auto-correlation function 

3. Compare the auto-correlation function of the real dataset vs. a randomly generated 

dataset at |lag| < 100 with the same number of genes and time points via the f-test, 

and obtain a p-value describing the statistical significance of the data. 

Assessing the Consequence Validated Data 

To assess whether temporal gene expression datasets which corresponding to a high p-value are 

more meaningful than temporal gene expression data with a low p-value, we will exploit an 

unsupervised classification techniques known as clustering. The hypothesis behind using 

clustering is that since they work primarily off of the temporal evolution of expression values, 

the more reliable a set of gene expression profiles, the more reliable a set of genes would have 

been assigned to their respective functions[29]. This hypothesis is termed “guilt-by-association.” 

These biological functions are known as gene ontologies and are present in databases such as 

gene-ontology.org[30, 31], but also as annotations on most commercial microarray platforms 

such as the Affymetrix arrays which most of our data is presented in.  

A brief review of various clustering techniques is given in[32]. The primary hypothesis behind 

utilizing clustering algorithms is that system with similar responses ought to have some intrinsic 

similarity. In the field of biology, it is hypothesized that genes which similar responses to a given 
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input stimuli do so because they are part of a coherent mechanism that responses to 

perturbations away from homeostasis. Thus, while there exist multiple ways of assess the 

success of a given clustering operation, such as calculating the information content of a given 

clustering or the inter/intra cluster distances[33], we have elected to utilize the biological 

hypothesis because of the relationship it will have with later analyses. Therefore, if the individual 

gene expression profiles were not properly captured and the dynamics are essentially random, 

clustering algorithms will lump the gene expression profiles in an essentially random manner. 

Thus, any functional patterns within the data should not exist. However, if the temporal gene 

expression profiles have been accurately captured, then similar functionalities should be 

evident. Thus, in an informative dataset, a given clustering result should yield many genes which 

have similar functionality. This concept can be used to evaluate the quality of a given clustering 

algorithm if the dataset remains constant[34], and likewise be used to evaluate the quality of a 

given dataset if the algorithm remains constant.  

To assess the statistical over-representation of a given biological functionality in a given dataset 

is termed the enrichment, and is measured via the hypergeometric distribution(1.4). The 

hypergeometric distribution essentially calculates the probability a given subset of functions will 

be chosen at random from a larger population of possible functions[34].  

1

1 ;

n = number of times the ontology appears in a given cluster

i = number of genes in a given cluster

N = total number of genes

m = number of times the ontology appears
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One of the issues which we need to address with clustering is the identification of a concrete 

number of clusters. Given a single dataset, the methods by which to determine the optimal 

parameters associated with a given clustering algorithm is still an active area of research. 

Therefore, rather than determine the optimal number of clusters, the quality of the dataset will 

be judged by how enriched it is over a continuum of different cluster numbers. Thus, if the 

proposed metric is successful, then what should be evident is that if a dataset is more 

informative, then it should be more enriched for a given number of clusters. To perform this 

operation, we will be taking the continuum of clusters numbers from 2 clusters to 19 clusters. 

The clustering operation will utilize cluto[35], a widely used clustering package for clustering 

time series data. 

Given the existence of a second method for identifying the informativeness of a given dataset, 

one may question the need to formulate another method as was done here. The key difference 

between the methods is that the use of gene enrichment to assess the quality of a given dataset 

requires a significant amount of external information in the form of gene ontologies. Thus, for 

one to quantify datasets through ontology enrichment, it requires the use of well studied 

systems in which the roles of many genes have already been elucidated. Furthermore, because 

the use of ontologies requires external information, such methods are not applicable to all 

temporal data such metabolic fluxes, in which there isn’t necessarily a link between co-

expression and co-functionality. Thus, we are proposing a method which is generalizable to all 

temporal data, and comparing it to a technique that is limited to well studied systems which can 

be captured via mRNA gene expression. Thus, the proposed method essentially functions as a 

simple standalone method to quantify a set of temporal signals. 
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Test Data 

Along with our two corticosteroid datasets, we will utilize a randomly dataset to establish the 

performance of the algorithm upon a null dataset. This null dataset will be used to show that if 

the algorithm does not return any significant difference between the two datasets there will also 

be very little improvement in the gene ontology enrichment after the clustering step, thus 

negating the ability for clustering type approaches to identify co-regulation or co-functionality. 

Secondly, we will utilize an additional dataset present under the GEO omnibus ID GDS802[36] to 

establish whether any significant trends appear within the method. The third dataset to be used 

for this evaluation is a short term burn dataset which of mRNA gene expression data obtained 

from the liver after a rat animal model had been exposed to a full skin thickness burn consisting 

of 30% of the animal’s skin area.  
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Dataset p-value 

Random Dataset 0.99 

Acute Administration of 
Corticosteroids 

0 

Chronic Infusion of 
Corticosteroids 

2.7x10-4 

Burn Dataset 0.96 

 

  

Table 1: The F-test values for the four different datasets. The prediction is that the Acute corticosteroid 

dataset will be the most informative whereas the Burn Dataset will be the least informative 
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Benchmark Run 

The data quality metric which corresponded to the four datasets are given in Table 1. Looking at 

the first 100 offsets or lags, we can see that there appears to be an inherent structure present 

within the auto-correlation tail in two of the datasets Figure 5. These datasets are the two 

corticosteroid datasets. In these datasets, we see two features. The first feature appears to be 

the periodic spike of the auto-correlation function, and the second feature appears to be a 

highly non-random structure interspersed within the spike train. The first feature suggests that 

significant portions of the data are well correlated i.e. there appears to be a dominant pattern 

within the data. The second feature suggests that the individual dataset can be modeled by an 

auto-regressive function, because there is some relationship between a gene expression at time 

N and previous time points. The dataset that corresponds to the burn dataset on the other hand 

does not appear to have any significant structure and appears to respond similarly as the 

theoretical dataset which corresponds to the null hypothesis.  

From this analysis we hypothesize the fact that the corticosteroid datasets appear to be more 

informative than the burn dataset. Both of these datasets show a significant amount of internal 

structure as well as a significant amount of highly correlated gene expression profiles. To validate 

this we had elected to run clustering and gene ontology enrichment. The results of gene 

ontology enrichment are presented in Figure 6. What is evident in this figure is the fact that the 

datasets which were indicated as informative were more enriched for a given number of clusters 

than the datasets which were indicated as less informative. The conclusion which is drawn from 

this is that the gene expression profiles can be more accurately grouped if the data has been 

well measured.  
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Having established that the proposed algorithm agrees with the results of a more traditional 

approach, we can then utilize this algorithm to assess all of the high throughput datasets that 

will be used for the rest of this dissertation. Thus we have established the fact that our datasets 

are indeed informative. Thus having established the fact that our datasets are good, we can 

begin to conduct our examination of the system from previously obtained data. 

  



27 
 

27 

 

A
u

to
co

rr
el

at
io

n
 V

al
u

e
 

  

 

 

Lags 

Figure 5: The autocorrelation function of the three real datasets. The green line represents the null 

response, whereas the blue line represents the response of the dataset. The features of interest for us 

are the presence of the periodic spike trains in the chronic and acute corticosteroid data, and the slow 

oscillations around zero. The periodic spike train denotes a large number of the genes show significant 

co-expression, whereas the slow oscillations around zero suggest that there are significant relationships 

between adjacent time points. This would indicate that sufficient sampling has occurred. 
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Figure 6: The number of enriched ontologies as a function of cluster number. The specific feature of interest is the 

fact that the datasets which show low p-value (high significance) under our metric appear to have significantly 

larger faction of ontologies which are enriched as compared to either a randomly generated dataset, or one with a 

low p-value (burn dataset) 
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Discussion 

One of the primary motivations behind our Systems Biology analysis is that all of the algorithms 

should be unsupervised. This means that there will be no gold standard by which we can 

calibrate the results of the algorithm. This leads to a confounding problem in that so long as the 

data is in the proper format, an unsupervised algorithm will return a result. For instance a 

clustering algorithm such as k-means clustering will be able to cluster any kind of data, but not in 

all cases will the clustering result be meaningful. This presents some difficulty because the 

researcher cannot be guaranteed that the results are a consequence of the biological function 

which has manifested itself as a coherent pattern within the data, or if the results are an artifact 

of the algorithm itself. Therefore, it is important for us to be able to establish a priori that the 

data is indeed good. 

In the results we see that the gene enrichment analysis corresponds closely with the p-values 

associated with the f-test, and therefore we can establish a general trend, linking the two data 

metric qualities. One of the results seems to suggest that one of the datasets is meaningless. 

Specifically, it was found that the dataset corresponding to the burn dataset did not significantly 

differ from that of a randomized dataset. However, we must qualify our classification of 

meaningless. While our algorithm has suggested that the burn dataset was not informative, it is 

only non-informative when one tries to process the data under the hypothesis that co-

expression implies co-regulation or co-functionality. On the other hand, it may be possible that 

the burn dataset may be able to identify the importance of specific genes through differential 

expression. But, by focusing only upon differential expression over time, we are unable to exploit 

the temporal nature of the data, specifically the identification of coordination between the 

disparate systems, or the construction of dynamic models which describe its activity. However, 

unlike the dataset which corresponded to a burn, the corticosteroid datasets all exhibit 
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significant amounts of information. Thus, it appears to us that a clustering approach may be a 

viable method for analyzing the data rather than simply looking for whether a gene is up/down 

regulated.  

While it is arguable whether our algorithm is in fact needed due to an alternative technique 

which is able to yield similar results, our algorithm has two primary benefits. The first obvious 

benefit of our algorithm is speed. Establishing the suitability of a given dataset for analysis 

required running a clustering algorithm multiple times, and then mining a database for a given 

ontology. Depending on the size of the datasets, the two operations can be prohibitive. In our 

speed tests, we have found that our algorithm ran in less time than it took to generate all of the 

clusters for ontological evaluations. Secondly, our algorithm was able to establish the presence 

of relationships between adjacent time points in the data. This allows us to determine whether 

automated model building operations are a viable alternative because sufficient time samples 

have been taken, something that the standard approaches cannot accomplish. 

Conclusion 

It was important for us to establish that our datasets were meaningful. In light of the automated 

analysis which will be presented later in this dissertation, it is important to establish the primary 

components of our analysis will return meaningful information, without requiring us to qualify 

our results with various caveats due to ambiguities within our data. Thus, the analysis which we 

have performed upon our datasets has established that we can run clustering algorithms to 

identify the presence of important functionality within our data. Secondly, it also suggests that 

we ought to be able to utilize the data to build dynamic models which describe the response of 

the system.  
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Because the method was developed in response to the question as to whether the dataset was 

meaningful in the context of whether sufficient temporal sampling had occurred such that 

relevant information could be extracted, one extension which we are interested in is whether it 

is possible to obtain a metric that would inform how many additional sampling points are 

needed to convert a non-informative dataset into an informative dataset. If this could be 

accomplished, then it would give researchers a systematic method for sampling dynamic systems 

without the risk of over or under sampling. If this metric existed, then we envision a researcher 

running a specific experiment, evaluating this metric, and then from the metric determine how 

many additional time points are necessary. 
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Equation Chapter (Next) Section 1Analysis of Gene Expression 

After having established the validity of the datasets which will form the basis of our analysis, it is 

then possible to begin the analysis. There currently exist numerous methods which are used for 

the analysis of microarray data. They usually fall into two separate categories, selection 

algorithms[37] and clustering algorithms[38]. Given the fact that microarrays measure a large 

and standardized set of genes, the logical first step is to identify those genes which respond to 

the underlying treatment. This hypothesis forms the basis of the utilization of selection 

algorithms. If in addition, the data is a time series as in our case, the clustering step will be 

carried out to mine for significant patterns within the data.  These significant patterns can later 

be used to identify major processes which are related to the phenomenon being studied, 

creation of dynamic models, and finally the identification of common regulatory processes. 

Rather than relying upon pre-existing methods, we have elected to formulate a new method to 

perform both the selection as well as the clustering of the data. The primary motivation for the 

creation of a new algorithm is our hypotheses that by focusing primarily upon differential 

expression, the temporal aspect of our datasets are not fully exploited[39]. Most gene selection 

algorithms are focused upon the selection of genes which have been shown to be differentially 

expressed above a certain statistical threshold. For instance, one common method for selecting 

temporal gene expression profiles is the use of the ANOVA[40]. This test is a generalization of 

the t-test[41] over multiple time points or conditions. Genes that are selected via ANOVA are 

those which have shown statistically significant differential expression over the experimental 

time course given a certain number of replicates, and essentially work to identify whether the 

organism can be shown to reach a new state over the duration of the experiment.  Other gene 

selection methods such as SAM[42] and PDNN[43] essentially perform the same task. A more 
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thorough review over the different methods is presented in [44, 45].  The primary difference 

between these different methods lies in alternative ways of assessing the level of differential 

expression, or calculating the significance level associated with the differential expression. 

The primary assumption behind the use of differential expression is that if there are no 

significant perturbations to a system, then the underlying gene expression ought to be static. 

However, this contradicts the fact that homeostasis is a dynamic process as seen in the inherent 

dynamics associated with an organism at rest[46]. Because the organism itself is responding to 

intrinsic changes, it should not be surprising that genes will change their expression level. 

Because of the underlying variance associated with the dynamic nature of homeostasis, it would 

be possible that given a large enough number of replicates that even in an unperturbed system 

there could still be genes that are differentially expressed. Thus the use of differential expression 

metrics such as ANOVA or SAM is essentially assessing how accurately a given gene expression 

profile has been measured, and thus more dependent upon the number of replicates than the 

underlying biological significance of a gene[47]. 

We instead propose an alternative hypothesis for the selection of informative genes. Rather than 

utilize a selection criteria that is designed to compensate for the limitations associated with the 

measurement processes, our alternative selection criteria is based upon a hypothesis as to what 

biologically significant genes ought to show. Our hypothesis is that genes do not respond to 

external perturbations in isolation, but are rather in coherent groups. Thus, if a gene is related to 

a given biological response, it ought to be correlated with a large set of other genes.  

Because our selection criterion hypothesizes that genes that are important will be correlated to 

a large number of other genes, it requires the use of a clustering algorithm, preferably one which 

is able to divide genes up into a large number of different clusters. While there exist a large 
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number of clustering algorithms that could be used we have elected to adapt the HOT SAX 

formulism for the purposes of clustering[48]. The HOT SAX formulation is attractive for various 

reasons. 

1. The HOT SAX algorithm is fast and scales linearly 

2. The HOT SAX algorithm is deterministic 

3. The intermediate results of the HOT SAX algorithm provides important 

intermediate results that provide insights into the dataset 

After the clustering step, we then have a large number of clusters. At this point, the task is to 

determine which of these clusters are actually relevant to the underlying response of the 

system. In a related method by Bar Joseph et al.[49], they have elected to look only at the 

population of a given cluster after running a similar fine grained clustering algorithm. Their 

hypothesis was that given a randomly generated dataset, the population of a specific cluster can 

be modeled via an underlying distribution, and thus the clusters which had more genes than 

expected were selected as being significant. 

We have elected to utilize a different metric instead of relying upon the population of a cluster. 

Our selection criterion instead assumes that given a base state, a population of genes will 

conform to some underlying distribution of expression values, and as the organism responds in a 

coordinated manner, this distribution will change. By looking at the population distribution, we 

can minimize the effect of the dynamic fluctuations of individual genes. Only when there is a 

large coordinated change among all of the selected genes will the underlying distribution 

change. However, rather than select clusters that deviate past a certain threshold, we will be 

selecting clustering which maximize the observable change in the distribution of expression 
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values. This selection thereby allows us to select a set of candidate genes which characterize the 

system. Because of the integrative selection step and the utilization of HOT SAX, we have termed 

this algorithm SLINGSHOTS for the (SeLection of Informative Genes via Symbolic Hashing of Time 

Series)[50]. 

Hash Based Clustering 

HOT SAX was initially developed to find short recurrent patterns within a long time series[48]. It 

does this by taking a sliding window and converting the signal within the window into an integer. 

This allows one to efficiently scan through a given signal looking for over-represented motifs 

rather than having to conduct a One Against All (OAA) Comparison for each window. We have 

taken this formulism and adapted to the clustering of relatively short time series. Thus, rather 

than finding patterns within a single time signal, we are looking for patterns over multiple sets of 

time signals.  

The HOT SAX clustering method is a four step process. 

1. Normalize the Gene Expression Profiles via the z-score 

2. Piecewise Average the Gene Expression profiles if necessary 

3. Quantize the expression profile with equi-probable breakpoints 

4. Convert the quantized form of the signal into a single integer 

The first step which comprises up of normalizing the gene expression profile is performed so 

that genes with similar shapes, though differences in magnitude will be grouped together. The 

Equation for z-score normalization is defined via (2.1) where Y represents the underlying signal, 

<Y> represents the mean of the signal and σ(Y) represents the standard deviation of the signal. 
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This essentially converts all of the signals such that they have a mean of zero and a standard 

deviation of one. Performing this z-score normalization allows us to define a consistent set of 

breakpoints with which to quantize each temporal gene expression profile.  


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(2.1) 

The second step is optional, and is dependent upon the length of the data. As a general rule of 

thumb, signals with greater than 11 time points will be piecewise averaged to convert the signal 

to a shorter time series. This accomplishes two things, the first consequence is that signals will 

have been low pass filtered and the second is that the shorter signal becomes more numerically 

tractable for the third step. The consequence of the low pass filtering is that many fast responses 

may be diminished or lost. Because of the low pass filtering effect of the piecewise averaging; 

any piecewise averaging should be conducted such that the reduction in the signal length should 

be kept to a minimum. Therefore, if one were given a signal of length 12, the piecewise 

averaging should average two adjacent points leading to a new signal with a length of six, rather 

than averaging 3 adjacent points leading to a signal of length four. Shortening the signal any 

more would lead to a greater loss of information. The number of adjacent points to be used in 

piecewise averaging is one of the two parameters that need to be selected by the researcher for 

this algorithm. 
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Figure 7: A schematic denoting the process of converting a temporal signal into a string of symbols   
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The third step involves first identifying the number of partitions used to represent a symbol. 

Therefore, if three partitions are used to represent the signal, the normalized analog signal will 

be converted into a string of letter “a”, “b” and “c”. Given four partitions, the signal will be 

converted into a string of “a”, “b”, “c” and “d”. With more partition, the alphabet size that 

describes the signal will increase accordingly. However, unlike the standard partitioning with 

equi-distant partitions, we will instead be using equiprobable partitions. The use of the 

equiprobable partition means that if a signal has been drawn from an N(0,1) distribution  i.e. 

random, the appearance of a given symbol, “a”, “b”, “c” will occur with equal probability. 

Because of this equiprobable distribution of symbols, we can use this fact to evaluate certain 

properties of our dataset.  

In order to identify where the breakpoints should be placed, we assume that a random (null) 

signal conforms to a Gaussian distribution. We therefore need to select breakpoints such that 

the area under the Gaussian curve is equal. These breakpoints can be obtained via the use of 

tables found in standard statistics book, or through the use of (2.2). In (2.2), the breakpoints are 

obtained by solving for x where n is the number of breakpoints z is an index variable that goes 

from 2 to n, and erf is the error function. Theses breakpoints are used to quantize the signal into 

a string of symbols as shown in Figure 7. After the gene expression profiles have been converted 

into a string of symbols, we then convert this string into a single integer. The hypothesis is that 

genes that hash to the same integer will have the same symbolic representation, and thus have 

similar gene expression profile. The conversion from a set of symbols into an integer is 

accomplished by (2.3) and is analogous to converting a base n number into base 10. In (2.3) AB is 

the size of the alphabet, w is the length of the signal, C is the character representation of a given 

signal at time point j, and H is the hash value for gene i. 
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   
 

(2.3) 

Parameter Selection 

In order to utilize HOT SAX, two parameters must be chosen. W denotes the number of adjacent 

time points to piecewise average and alpha denotes the number of breakpoints to use. While 

the selection of w can be made by looking at the number of time points in a given dataset, the 

selection of alpha is less obvious. 

Because the HOT SAX algorithm utilizes equiprobable breakpoints, a randomly generated signal 

will be assigned hash values from 1 to ABt with equal probability. Given a population of randomly 

generated signals, the probability that N signals will hash to the same value can be modeled by 

the Poisson distribution[51]. In the case where ABt is greater or equal to the number of genes 

being clustered, this can be approximated by the exponential distribution. However, in a real 

biological experiment, one expects that the temporal gene response will not be randomly 

generated, and manifest significant coordination between the different genes as the organism 

responds to challenges to homeostasis. Thus, if there is some inherent underlying structure 

within the data, the probability that N genes will be assigned the same hash value should not 

correspond to the exponential distribution. Therefore, AB should be selected such that there is 

an observed deviation from this hypothetical exponential distribution. The correlation between 

our distribution of population values and the best fit exponential distribution will be quantified 

by the R2 correlation coefficient. 
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To illustrate the response of the HOT SAX algorithm to a randomly generated population of gene 

expression profiles, we have constructed a synthetic null dataset where each data point is drawn 

from the N(0,1) distribution. Looking at the distribution of cluster populations it is apparent that 

this dataset appears to correspond to the hypothetical exponential distribution. Furthermore, 

utilizing different parameters does not change the response of the random dataset. Our 

experimental datasets on the other hand show a different response. Running the hashing 

operation upon one of our experimental datasets, we see the following response. Due to the fact 

that there is some coordination which occurs in this dataset, there exists at least one AB which 

shows a significant deviation from the hypothetical exponential distribution.  

For the current implementation of the algorithm, we have calculated breakpoints for 3-5 

breakpoints. Thus to obtain the most optimal number of breakpoints, the hashing operation will 

be run parametrically for these three breakpoints, and the one which yields the slowest R2
 

correlation will be selected as the optimal value for AB. 
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Figure 8: The population response of corresponding to different datasets. The dataset on the left represents the 

result corresponding to our null dataset. The dataset on the right represents an informative dataset because of its 

deviation from an exponential distribution which would be characteristic of a synthetic null dataset. For a given 

dataset, the correlation will be evaluated for the different alphabet sizes (3,4,5), and the alphabet associated with 

the lowest R
2

 correlation will be chosen as the optimal parameter. 
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To quantify how far the population distribution of hash values for a given data set is from the 

hypothetical exponential response, we take the R2 correlation between the population 

distribution and the best fitted exponential distribution. This is then compared to the R2 

correlation of a large set of random trials from a null synthetic dataset that has the same 

number of time points and the same number of signals. These random trials than allow us to 

report a confidence level that a given dataset is not synthetic and therefore informative. The 

results of this analysis should correspond to the results which the assessment of data quality 

present in the previous chapter. However, it is important to note that the two metrics are not 

identical. This is because the metric proposed in the previous chapter is not only able to discern 

the relationship between the different gene expression profiles, but also whether there exists an 

auto-regressive relationship between adjacent time points. Running the following analysis for 

our datasets, we have ascertained that an alphabet size of three is sufficient for us to extract 

relevant information from all of our datasets. 

Selection of Patterns 

After the initial clustering step, the second step is to select a subset of patterns or clusters that 

can be used to represent the system. The underlying hypothesis associated with this method is 

that while all of the genes have been clustered, only a small subset of them are required to 

characterize the response of the system. Therefore, the primary question that must be answered 

is how one characterizes the systemic response. To characterize the response, we propose the 

creation of a metric called the transcriptional state. Conceptually, the transcriptional state is 

defined simply as the deviation of the system from its homeostatic baseline. Thus, the 

motivation behind the selection is to maximize the presence of this deviation. 
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Given the nature that homeostasis consists of genes with differing expression levels, rather than 

looking at how the expression level of a given gene or cluster changes over time, we are instead 

looking at how the distribution of expression levels change over time. Therefore, the difference 

in the transcriptional state requires a method that quantifies the differences in distribution. For 

these purposes of this work, the Kolmogorov-Smirnov statistic was used[52]. The Kolmogorov-

Smirnov statistic is a simple approach that allows us to quantify the difference between 

statistical distributions without requiring the use of named distribution. This is an important 

component because given a population of genes, there are no guarantees that as the system 

evolves that it will conform to a named distribution[53]. 

The Kolmogorov-Smirnov statistic however is sensitive to parameter changes between different 

distributions. Therefore, it is able to distinguish between two Gaussians that have different 

means or standard deviations. However, for our work, we are more concerned about the how 

the overall type of distribution changes. Therefore, we have implemented a double 

normalization operation which z-scores a population of selected genes, first across time, then for 

each time point. The effect of this operation is shown in Figure 9, and allows us to determine for 

instance how the distribution between high and low expression levels change as a function of 

time, rather than changes in the underlying parameters of a distribution. 
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Figure 9:The effect and the justification for the double normalization. What we wish to determine is determine 

whether two distributions are different in their underlying distributions rather than due to changes in parameters, 

i.e. Gaussian vs. Exponential rather than two Gaussians with different means or standard deviations 
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Because the focus of this algorithm is specifically to process time series data, the Kolmogorov-

Smirnov statistic has been extended to deal with time series. Therefore, the transcriptional state 

over time is defined as (2.4).  

b b
B1 b

D(t) max CDF (t) CDF (0) t
 
  

      (2.4) 

Where D(t) is the Kolmogorov-Smirnov statistic is calculated for every time point with respect to 

the zeroth time point CDFb(0) which functions as a control. Therefore, there interest is to obtain 

the subset which gives the greatest deviation, leading to a change in the equation to:  

 
t

max D(t) 
         (2.5) 

Where Δ is the maximal difference over the time points. 

The selection process attempts to maximize this difference in the KS Statistic. Currently, the 

selection is conducted in a greedy manner. This algorithm is termed a greedy selection because 

it does not handle the selection in a globally optimal manner, but instead pre-ranks the different 

motifs prior to selection. This greatly cuts down upon the number of motif combinations which 

need to be accounted for, greatly simplifying the overall selection. Thus to obtain a the set of 

motifs that are representative of the underlying system dynamic, the most highly populated 

cluster is selected first, and evaluated for its deviation away from the baseline, then the second 

most highly populated cluster is selected, and the set of both are evaluated for their ability to 

exhibit a deviation from the baseline. This process is performed until all of the separate motifs 

have been added. After the transcriptional state has been evaluated for all of the clusters, the 

subset of clusters which yielded the maximum deviation is selected as the informative subset. 
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The overall pseudo-code of the algorithm is given below, where S(k) represents the set of motifs 

being evaluated, k represents the number of clusters added, D(k) represents value of the 

transcriptional state at a given number of clusters, and Σ represents the informative set. 

(i) 0, ( ) , ( )   k S k D k , max = - 

(ii) 1 k k  

(iii) * argmax ( )h N h , N(h) = number of genes with corresponding hash value h 

(iv) ( ) { : ( ) } i iG k g hash g h , the subset of genes that hash to h 

(v) Evaluate  ( ( )); 0, , ; K
ig iF Y t t T g  

(vi) 
Evaluate b

b B
b

1
D(k) max max CDF (t) CDF (0) t

 

 
    

 

(vii) If D(k) > max 

(viii) Max = D(k); F = k; 

(ix) Go to (ii) until all peaks have been added 

(x) For a = 1 to F  

(xi) Select ( 1) ( )S a G a     

Results 

 Plotting the performance of the HOT SAX algorithm upon the chronic and acute datasets, we 

can establish the optimal parameter for AB. The AB which corresponds to the minimum 

correlation with the exponential distribution and therefore the furthest from the null 

distribution is 3 as shown in Figure 10. Therefore, the clustering result corresponding to an AB of 

3 is used to process the two different datasets. From the observation of the population 

distribution of the individual clusters for the different datasets, it appears that a significant 

perturbation has occurred in both dataset. This is encouraging because we see evidence of 
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significant coordination between the different genes as indicative of the effect of the external 

drug administration.  
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Figure 10: The correlation with the exponential fit of our two datasets compared to a randomly 

generated dataset. Because an AB of 3 corresponds to the lowest correlation for our two datasets, the 

value 3 was utilized.  
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Figure 11: The population distribution associated with the two different datasets after HOT SAX. What is 

evident is the deviation away from the exponential distribution in both of the datasets showing 

significant amounts of coordination between the two datasets. 
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The result of utilizing HOT SAX for clustering can be represented as a histogram. This histogram 

was generated with a bin-size of one such that each individual hash value is treated separately. 

This allows for a quick visual inspection to determine which clusters happen to be over-

represented. Furthermore, this clustering result is quickly and efficiently generated in O(n) time, 

and allows us to generate the quickly map over-represented clusters to a set of genes for use in 

the selection process later on. As we add each cluster into the set of informative genes, we can 

see that as more clusters are added, the maximum value of the transcriptional state D(t), 

increases until it reaches a maximum at some intermediate number of clusters. After this point, 

as more clusters are added, we are essentially adding noise to the system by either adding 

clusters which show strong similarities to previously added clusters, or through the addition of 

clusters with only a few genes. Thus, by taking the motifs associated with the maximum value of 

the transcriptional state, our selection is made Figure 12. 

  



51 
 

51 

 

 

 

 
 

 

 

Figure 12: The result of the hash based clustering on the right for both datasets, and the maximum of the 

transcriptional state over time for various numbers of clusters. By looking at this figure, it is possible to identify the 

optimal number of clusters with which to represent the system 
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Rather than looking at the maximum of D(t) as was done in the selection process, there is also 

some value in looking at the dynamics of D(t) associated with the informative subset. This 

represents the deviation away from the baseline, and we term this the systemic response. 

Analyzing the systemic response of the acute corticosteroid case, the dynamics appear to mimic 

the response of a 2nd order system with respect to an impulse function. Rather than being 

directly affected by the drug concentration in the system which was modeled as a bi-exponential 

decay function by Almon et al.[14], what we see is a time lag before the systemic response 

reaches a maximum, and decay back to baseline after the drug has been cleared from the 

system. Finally the systemic response of the system to an infusion of corticosteroids appears to 

follow a two wave response. The primary response appears to mimic the same response 

observed under the acute case, with a delay before the effect of the drug is maximal and a 

return to baseline. However, before the system can return to baseline, a second sustained 

response occurs. One of the questions which arise from this analysis is how precisely the 

underlying mechanism can give rise to these dissimilar responses. These responses are shown in 

Figure 13.  
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Figure 13: The progression of the transcriptional state of our two datasets. The acute corticosteroid 

dataset shows a response similar to that of a 2
nd

 order system in response to an impulse stimulus (Right) 

. The chronic corticosteroid dataset shows a response whose early phase seems similar to that of the 

acute administration of corticosteroid, but shows a secondary response which is sustained. 
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As for the specific genes that were selected, the results of the acute selection consisted of 3 

clusters which corresponded to 211 genes divided up into three clusters. The responses of these 

clusters appear to mimic the systemic response as quantified via the transcriptional state. All of 

them show a 2nd order response in which there is a deviation from the baseline and a return. 

However, while the two up-regulated clusters appear to have very similar dynamics, they differ 

in one critical aspect which is time constants associated with each event, with the genes in 

cluster one appearing to deviate and return at a faster rate than cluster two. 

 The results of the SLINGSHOTS algorithm upon the dataset corresponding to the chronic 

infusion of corticosteroids yielded 136 genes divided up into 10 clusters. However, the response 

of the genes under the chronic administration of corticosteroids appears to comprise up of two 

different responses. The first response appears to be very similar to the response obtained via 

the acute dosing in that there is a deviation from baseline, and then a return. However, there 

exists a secondary response which appears to contain a time lag, before ramping up to a new 

steady state. The genes which were selected under the two runs are shown in Figure 14, and 

those with known biological functions are tabulated in Appendix A. The probe sets which were 

selected which did not correspond to any known gene or functionality was not included because 

they are uninformative in deciphering the processes associated with each drug administration. 
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Figure 14: The profiles of all the extracted Genes. Under the case of acute corticosteroid activity (left), 

we see a deviation away from the baseline followed by a return. In the case of the chronic, 

administration of corticosteroids (right), we see two distinct profiles, one which returns to baseline and 

the other one which does not 
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Discussion 

While the response of the curves appear to show the informative nature of the selection, we 

must definitively establish the fact that the resultant curves are due to our selection strategy, 

rather than due to chance. To evaluate this, we conducted a random selection of motifs such 

that the same number of genes were selected as was in the non-random selection. After the 

selection of these genes in a random manner, we plotted the associated transcriptional state 

over time. In Figure 15, we can see that first there does not appear to be any coherent signal. 

Secondly, it also appears that the max of the transcriptional state is nowhere as high as when 

our selection strategy was carried out. Because of this result, we are reasonably sure that the 

effect which we are observing is not due to the reduction of the number of genes which are 

being analyzed, but due to some inherently informative gene selection procedure.  
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Figure 15: When a random selection of motifs occur, we do not see a large change in the transcriptional state as 

quantified by the KS Statistic over time, nor a profile which is particularity informative 
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One of the issues that must be tackled is the question whether the selected genes are actually 

representative of the intrinsic dynamics which are associated with corticosteroids. In the acute 

case, the systemic response of the system appears to correspond to the activity of TAT[10], a 

marker gene that was selected in the preliminary analysis by Almon et al. Furthermore, there 

does not appear to be the selection of any gene expression profiles which are significantly 

different from those of the initial selection. Therefore, at least for the results of the acute 

administration of corticosteroids, it appears that there is good agreement in the dynamics of the 

system. In the initial analysis of the chronic dataset, Almon et al., focused upon the genes that 

were selected under the acute case and found that genes which were correlated under the acute 

dosing did not necessarily have to be co-expressed under the chronic condition[19]. However, 

from this analysis, it was not clear whether all of the different temporal dynamics have been 

isolated. 

The lack of a gold standard with which to compare our results to is encouraging, because it 

means that the algorithm will be involved in the synthesis of new information, rather than the 

validation of previously obtained information. However, in light of this, the validation of the 

results is more involved. Rather than focusing specifically upon the dynamics associated with the 

selected genes, or the transcriptional state, we will instead utilize an evaluation of the genes and 

their associated biological function. By utilizing the ontologies of these respective genes, we are 

able to link the dynamics of the genes, and various clinical observations associated with these 

specific genes. A list of all the genes isolated by the SLINGSHOTS algorithm under the acute case 

and their associated functions are given in Appendix A. 

Under the acute case of corticosteroid administration, Cluster 1 which exhibited a faster rise and 

fall, were primarily associated with signaling, whereas the metabolic responses were primarily 
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found in clusters 2-3 which exhibited a slower dynamic. While the segregation isn’t perfect, this 

result suggests that the metabolic effects associated with corticosteroids lie downstream of the 

initial activation. What is notable about the results of chronic administration of corticosteroids in 

Appendix A is that a majority of the genes which were related to metabolism where associated 

with the profiles which showed sustained up-regulation in response to a chronic administration 

of corticosteroid, whereas the genes normally associated with inflammation were much more 

likely to be associated with the gene expression profiles which showed an initial up-regulation 

and then a return to baseline, as predicted via a receptor mediated indirect effect mechanism 

that showed tolerance. However, the metabolic effects do not appear to show significant 

tolerance and reach a new steady state with the infusion of corticosteroid administration. This is 

in agreement with the clinical observations that chronic dosing of corticosteroids appears to 

have significant prolonged metabolic side effects[54] whereas the overall anti-inflammatory or 

immuno-suppressive effects appear to be transient[19] such that the prolonged infusion of 

corticosteroids does little to blunt systemic inflammation and sepsis[55]. Utilizing this 

information we hypothesize that an infusion of corticosteroids will lose its effectiveness in 

mediating the inflammatory response, while having a sustained effect upon various metabolic 

systems. Therefore, the utilization of an infusion of corticosteroids may not be a viable 

therapeutic strategy if one were attempting to minimize the metabolic side effects. 

Coupling the two pieces of information, it appears that the metabolic effects appear to have a 

significant lag, after the initial immune related responses. From these results we make two 

primary hypotheses, the first is that many metabolic responses occur as a secondary event, i.e. 

occurs after some initial response to corticosteroid dosing. Furthermore, this suggests that the 

previously hypothesized tolerance mechanism associated with corticosteroids may not play a 

role in limiting the metabolic response. Thus, we hypothesize that rather than a global tolerance 
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mechanism, there may exist some mechanism which reduces the activity of corticosteroids upon 

a subset of genes. This piece of information is quite significant, because it suggests that it may 

be possible to isolate the anti-inflammatory effect of corticosteroids from the metabolic effects 

of corticosteroids. While at this point, we have not identified a mechanism for doing so, the 

segregation of the responses hints at the possibility that separate mechanisms may be in play. 

Initial Model of Corticosteroid Activity 

While different models of corticosteroid activity have been proposed, none of them have been 

able to replicate the dynamics observed in the results of the SLINGSHOTS gene selection under 

the chronic case, nor are they able to replicate the observed clinical response to 

corticosteroids[54]. Though this may point to an issue with the SLINGSHOTS algorithm in 

general, the fact that these dynamics correlate well with clinical observations suggests that the 

dynamics which have been selected, are not artifacts of the algorithm and are actually 

underlying responses of the system which one need to take into account. However, rather than 

taking a previous model as the starting point for our initial model building, we have elected to 

start from a simple compartment model of drug activity. This model allows us to explore the 

question as to whether the response of the system is mediated primarily by the local nuclear 

concentration of drugs within the system, or whether there exists some significant nonlinearities 

which must be accounted for.  

Previous work in pharmacokinetic and pharmacodynamic (PK/PD) modeling has suggested the 

applicability of a compartment model with which to model the dynamics of gene expression 

[56]. The compartment model assumes that the transcriptional activity of a given gene is directly 

related to the amount of “signal” visible in the nucleus. In this work we will assume that the 

observed transcriptional dynamics, expressed as D(t), is the manifestation of the activity of an 
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ensemble of gene responding to an internal mechanism of an external perturbation. The end 

point of this cascade is the response of the effect which we are interested in. In our specific case, 

this effector represents the changes in mRNA expression level. The systemic dynamic is 

expressed as follows:  

1

1,1 1 2,1 1

1, j 1 2, j

j

j 1 j

dX
I(t) k X k X

dt

dX
k X k X

d
j 2 ,M

t
, 





 

 

      

 (2.6) 

 

The advantage of utilizing this model is that even though it represents a general class of systems, 

it has specific mechanistic consequences. Our general intuition about the order of the model 

(number of elements) is drawn from Ockham’s razor, and we therefore hypothesize that the 

model with the smallest number of compartments which can successfully fit the dynamics of the 

data should be used. For the determination of what should be modeled, in the specific case of 

our algorithm, it is possible to model either the global dynamic of the system or the dynamics of 

individual motifs (clusters) that make up the overall response. We can elect to model the global 

dynamics if we seek to determine how the overall system is responding to the input stimulus or 

the expression motifs if we wish to determine whether specific differences are present in the 

different clusters. 

We have selected to model the global dynamics of the system, rather than the individual 

clusters. This was done because of the desire to identify how the system responds to a drug 

administration, rather than the response of only a single system. Thus, rather than utilizing a 

single gene as the marker for a drug’s activity, we will utilize the transcriptional state as a more 
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comprehensive marker, one which quantifies in a single vector, the contribution of all the 

different systems. Thus we will be attempting to minimize the difference in the predicted curves 

and the transcriptional state obtained from Figure 13. Therefore, the objective function which 

we would attempt to minimize is given in (2.7), where D*(t) represents the prediction from the 

model, and is represented as the inner most compartment CS’ corresponding to the place where 

the production of mRNA occurs, and I(t) represents the input driving the system. Normally, this 

term can be thought of as a mathematical surrogate describing how the drug has been 

administered into the system.   

*min : ( ) - ( )D t D t           

 (2.7)   

Thus in the case of the acute administration of corticosteroid, I(t) can be represented via the 

dirac delta function δ(t), in an infusion of corticosteroids, I(t)  is represented as a step function 

µ(t).  

In the case of the acute administration of corticosteroids, the input stimulus is treated as an 

impulse or the dirac delta function. Fitting the overall dynamic to the global response the results 

in Figure 16 are obtained. As seen in Figure 16, the fit denoted via the dotted lines corresponds 

qualitatively to the KS statistic vs. time. This corresponds to a generative equation given by (2.8). 

dCS
I(t) .1975*

dt

dCS

CS

*CS-.3631*CS.1975
d

'
t

 




 

(2.8) 

Where CS is the amount of corticosteroid in the first compartment and CS’ is the amount of 

activated corticosteroid receptor which is directly affecting mRNA production. The assumption 
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therefore in this model is that the response of the system is directly related to the local 

concentration of the drug that is visible to the cytosolic glucocorticosteroid receptor. In this 

equation, we see again that there exist two compartments within the system which buffer the 

amount of activated corticosteroid receptor in the cytosol. Because of this buffering effect, the 

injection of corticosteroid does not have an immediate effect that decays over time, but rather 

than effect which has lag period before the effect of the drug administration is maximal, and a 

slow decay as the effects of the drug decay in the system. This was verified in the original 

experiment, where it was found that the drug was cleared from the circulation after 6 hours. 

However, in spite of the lack of drug within the circulatory system of the animal, it was found 

that there was still a significant amount of mRNA activity associated with the system[14].  
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Figure 16: Utilizing a simple two compartment model of drug activity, we are able to replicate the 

response of the animal model to an acute injection of corticosteroids (left), but not of a chronic 

infusion. This indicates, that under the chronic administration of corticosteroids, there may be a process 

other than simple transport which plays a role. 
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Biologically, this would correspond to the fact that the administration of corticosteroids needs to 

be transported through two compartments. The first compartment which buffers the activity of 

corticosteroids is the circulatory system, and the second compartment which buffers the activity 

of corticosteroid is the cell itself. Therefore, while we have hypothesized that there are two 

primary compartments which are the circulation and the cell and the activation of the 

glucocorticosteroid receptor, the transport of this activated transcription factor into the nucleus 

probably occurs relatively quickly with respect to the transport processes in the other 

compartments, and therefore has a small effect upon the rest of the system. Thus at this point, it 

appears that this simple model of corticosteroids with two parameters is able to replicate the 

dynamics associated with the much more complex fifth-generation model. 

A logical progression from the modeling of acute corticosteroid is the determination as to 

whether the response of the chronic administration of corticosteroids could be predicted from 

the same type of model used for the acute corticosteroid administration, except that the input 

has been changed from the Dirac Delta to the step function. What we find is that the model is 

unable to predict the response associated with the chronic stimulation of corticosteroids Figure 

16. Furthermore, refitting of the model is also unable to replicate the two-wave effect, with the 

first set of events begin to subside before a secondary long term response takes over. This 

suggests that the structure of the model is insufficient in explaining the system’s overall 

response to a dosing of corticosteroids. 

This D(t) response corresponds well with what is observed clinically, with the anti-inflammatory 

effects of corticosteroids mediated by a clear tolerance mechanism[54], as well as the sustained 

metabolic effects to the organism such as sustained elevated glutamine level and loss of muscle 

mass[57]. Thus, in a single marker, D(t), we have captured the two disparate temporal effects of 
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corticosteroids, something which cannot be explained by modeling the response of a single 

gene. Furthermore, while this curve does an adequate job in describe the clinical observations 

associated with long term administration of corticosteroids, it cannot be described via the 

compartment model proposed in (2.6). Thus, the systemic response of an organism to 

corticosteroids does not appear to be solely mediated by the presence of the drug within the 

cytosol. However, the inability of the model to either predict or fit the chronic response is not a 

negative result, because it indicates two important aspects about corticosteroid administration, 

specifically that due to the nonlinear response of the system, the response of the acute 

corticosteroid administration cannot be used to predict the chronic response unless a priori 

information such as previously discovered nonlinear mechanisms such as tolerance were 

implemented[19]. Secondly, the lack of a fit also indicates that the response of the system is 

mediated by more than the amount of the drug present in the system or in a specific 

compartment. This may be indicative of more complex secondary signals present in the system 

which we have not taken into account. From this modeling exercise utilizing the global dynamics 

for both the chronic and the acute data, we can show that from the gene expression dynamics 

alone, there is insufficient information to predict the response of the chronic administration of 

corticosteroid from the acute administration. It is hypothesized that factors such as receptor 

saturation, as well as secondary signaling factors are not evident during the acute administration 

of corticosteroids whereas they are clearly affecting the system under chronic administration. 

One may be quick to dismiss the model because of its general simplicity. However, what we are 

able to establish is that there is at least one set of responses within the system that are driven by 

the concentration of drug in the cell nucleus, i.e. mediated primarily by the transport of the 

drug. Secondly, the modeling exercise has indicated the fact that despite the fact that one of the 

responses appear to be consistent between the chronic administration of corticosteroids and the 
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acute administration of corticosteroids, specifically the responses which deviate and return to 

baseline, these actually represent two separate types of responses. 

Conclusion 

The SLINGSHOTS algorithm, when applied to the two different corticosteroid datasets was able 

to extract temporal gene expression profiles which correspond to the response of the organism 

to corticosteroids. Therefore, on a superficial level, one may only be interested in the set of 

genes that has been returned by the algorithm for further exploration. Thus, the large set of 

genes in the microarray has been significantly reduced to a more manageable number of genes. 

However, even this set of genes may be too large. However, by examining the profiles associated 

with these genes as well as the functionality in an aggregate sense, more useful information can 

be extracted. For instance, the extracted profiles correspond well with the expected 

physiological response associated with drug administration. In the case of the acute response, 

we see a clear trend corresponding to a second order model which corresponds to the indirect 

effect model originally proposed by Jusko et al. In this model, the local drug concentration within 

the nucleus is the primary driving force that governs mRNA synthesis/repression. Because of the 

effect of multiple compartments, when the drug has been fully cleared from the circulation, the 

drug is still present within the cytosol exerting its regulatory influence. This response agrees well 

with the previously proposed model of corticosteroid activity. 

The chronic administration of corticosteroids however does not conform to the previously 

proposed model of corticosteroid activity. However, while it does not agree with the prior 

model, it does agree with clinical observations in which there are sustained metabolic effects 

associated with corticosteroids even though the initial anti-inflammatory/immuno-suppressive 

effects of corticosteroids are no longer present. Therefore, because of the agreement between 
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the dynamics of the extracted genes and the underlying clinical observations, we believe that 

these profiles represent a good starting point from which to create a new model for 

corticosteroid activity. Utilizing a very simplified compartment model of corticosteroid activity, 

we concluded that in the case of the chronic infusion of corticosteroids, there is one profile 

which is directly related to the drug concentration within the cytosol, whereas the secondary 

profile which was initially attributed to tolerance has another factor involved. At this point, we 

have identified a starting point for the creation of predictive models because we have identified 

a basis set from which a proposed model must be able to replicate. Thus, any models which are 

proposed to model corticosteroid activity must be able to replicate these dynamics. One may be 

tempted to argue that the results of the gene selection have merely confirmed the clinical 

observations which have been previously made. However, to create a predictive model of 

corticosteroid activity, it is important for us to quantify the response of the system in a precise 

manner, thus necessitating the identification of temporal patterns within our data. 

Given the failure of the both the current model of corticosteroid activity as well as our simplified 

model, the next task is to identify possible mechanisms that can be used to explain such as 

phenomenon. Given the presence of two divergent families of signals, we propose two possible 

hypotheses for further exploration. The first question is whether the divergence in responses is 

caused by the effect of other transcription factors aside from the glucocorticosteroid receptor, 

and secondly whether a better understanding of the dynamics of the glucocorticosteroid 

receptor may shed insight as to what the underlying mechanism ought to be. 

However, while SLINGSHOTS has shown itself to be successful in the analysis of the two datasets, 

we feel that improvements can still be made to the algorithm. The most obvious improvement 

which should be made is in the process of motif selection. Rather than conduct a simple greedy 
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selection algorithm as was done, one improvement which could be made could be the use of 

more robust optimization techniques such as simulated annealing or genetic algorithms to 

conduct the selection. The use of a better selection technique may minimize the presence of 

multiple motifs which similar profiles, thus allowing us to more systematically assess the number 

of different patterns within the data. Secondly, because the goal of the algorithm was the 

selection of significant patterns, it may be useful to also use the selected patterns as template 

for a more complete and robust selection of overall genes such that a comprehensive set of 

genes which are responsive in a given biological phenomena are selected. 
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Equation Chapter (Next) Section 1Selection of Marker Genes 

Though the analysis of the microarray dataset yielded a set of genes which response to an 

administration of corticosteroids, we recognize the fact that many researchers are interested in 

utilizing high throughput techniques such as microarrays for the selection of biological markers 

for more targeted experiments later on. Thus, utilizing the entire microarray and the associated 

transcriptional state may not be a viable option as a biomarker. Because even though the results 

of the SLINGSHOTS algorithm has reduced the number of possible genes to measure by a large 

amount, the fact remains that many genes are still in the list. Further complicating the manner is 

the fact that many of these genes are highly correlated. Therefore, it may be important for 

experimentalists to identify one specific gene that can be measured through techniques such as 

RT-PCR[20]. Because one of the goals of our work is the creation of a smaller set of hypotheses 

which can be tested with further experimentation, it is important that our work be translated 

into a form that makes further experimentation easier. In any experiment, the most important 

question is what the assay will be i.e. what to measure and why to measure it. For most 

traditional works, researchers have hypothesized the existence of a biologically important 

system and have devised different methods of measuring the activity of such a system.   Such 

markers would then be used either for diagnostic purposes or for the creation of models as was 

done previously in the case of corticosteroids. However, if one were to select a specific gene for 

model building, one possible question that arises is, “Given all of the selected genes, why that 

particular gene?” and specifically whether the gene has been accurately measured such that 

model building can be performed.  Additional complications to the question involve the fact that 

many of the selected genes appear to have very similar gene expression profiles, so much so 

that after normalization, it is difficult to tell two genes apart via their dynamics. 
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Researchers have selected genes which were known a priori to play an important role, and the 

fact that alternative genes exist is immaterial. For instance, tyrosine amino transferase was 

initially selected as the marker for corticosteroid activity due to its known effect upon protein 

degradation, one of the effects of corticosteroid treatment[10]. In this approach the high 

throughput analysis technique reduces the initial set of genes, from which a researcher will 

apply a priori knowledge to select a candidate gene. While all results whether experimental or 

computational need to be validated by comparing the results with previously obtained results, 

our overall goal is the creation of computational and experimental techniques that can be used 

for preliminary examination of a system and thus should not be reliant upon a priori information. 

Thus, because we have already proposed a method for assessing the importance of a given 

genes, we propose that to distill this larger set into a smaller set of genes amenable to low 

throughput methods, that we simply select genes that have shown themselves to have been 

accurately measured.  

Our primary hypothesis is that the measurement accuracy of a given gene is dependent upon 

the following factors: the technical limitations of the microarray platform and the underlying 

biological variability associated with the process of interest[58]. However, given the fact that 

most microarray experiments are validated via RT-PCR experiments, we can utilize the converse. 

Thus, if we were to select a probe based upon how accurately it was measured by the 

microarray, it has a good chance of being accurately measured under RT-PCR as well provided 

that the same probe sets are chosen. Furthermore, these probe sets have already been 

predetermined due to the design of the microarray thus making the selection of probes 

relatively simple. 
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We had asserted previously the fact that there is a difference between genes which have been 

accurately measured and genes that show biological significance. As in the case of the t-test[41], 

fold change[59], SAM[42], or the ANOVA[40], the question is whether the gene has changed at a 

statistically significant level. However, in the case of temporal gene expression profiles what is of 

concern to us is whether the overall dynamic of the system has been accurately measured. 

Guiding our analysis is the hypothesis that the given quality of a signal increases as the 

coefficient of variance decreases. In addition, as the number of replicates increases, the 

confidence is also improved. Thus we propose the creation of new method for quantifying the 

quality of a given signal which will take both the number of replicates as well as the inter-

replicate variance into account. 

Method 

To satisfy these constraints we propose utilizing a variation of the Leave One Out Cross 

Validation (LOOCV)[60] technique in which at every time point, either the maximum or the 

minimum point is removed, and a new ensemble average is calculated. Normally, LOOCV, a 

specific case of k-fold cross validation is utilized to minimize the degree of over-training or over-

fitting of a given classifier or an underlying mathematical model. However, rather than 

determining whether a given model properly explains the data, we seek to measure the inverse; 

whether the data reflects the dynamics of some underlying though unknown model. Thus, given 

the amount of noise present in biological experiments, we seek to verify that sufficient number 

of replicates were obtained to properly capture the underlying signal rather than noise. 

Though there are classes of mathematical models such as b-splines[61] or auto-regressive 

moving average (ARMA)[62] models which can be used to fit the data, and therefore be used as 

a basis for the LOOCV analysis, each of them requires some a priori knowledge about the 
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dynamics themselves. For instance when utilizing b-splines, one needs to specify the number of 

knots or control points to be used by the spline. In the case of ARMA models, the order of the 

model must be specified a priori. In both of these methods, the specification of these 

parameters will have a significant effect upon how the data is fitted by the model, and therefore 

a significant effect upon the estimation of how accurate the measured data reflects the 

underling dynamic. Therefore, we seek a method which is independent of model parameters, 

and is dependent only upon the confidence interval selected by the researcher. 

Leave One Out Cross Validation (LOOCV) 

Ideally, we would like to predict whether utilizing an additional replicate for each time point 

would be change the gene expression profile obtained. While we cannot predict the effect of 

having an additional replicate, we can simulate the effect by measuring the stability of the signal 

given n-1 replicates. Thus, treating the ensemble average of a temporal signal as the model, we 

essentially are evaluating whether taking a subset of the measured data, reflects a similar 

underlying model. Because the algorithm evaluates a sub-sampled signal utilizing n-1 replicates, 

this is similar to LOOCV in which one attempts to determine whether a given model can predict 

the occurrence of a data point which was not utilized in the original training. 

Rather than performing the standard LOOCV in which a point is randomly removed from the 

dataset, we will remove either the minimum or maximum at each time point. Given the small 

number of replicates normally associated with temporal gene expression datasets, we elected to 

leave out either the minimum or the maximum point associated with each time point Figure 17, 

to maximize the difference between the different sub-sampled signals. This then allows us to 

establish a lower bound on the quality of a given signal. Because of this, a signal with length 4 

will have 24 or 16 possible sub-sampled signals, a signal with length N will have 2N possible sub-
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sampled signals. The primary hypothesis underlying this algorithm is that any arbitrary pair of 

these sub-sampled signals with n-1 replicates ought to be more similar to each other than 

randomly generated signals. Thus, for a specific p-value such as p < .05, each of the sub-sampled 

signals need to be more similar to each other than 95% of the pairs of randomly generated 

signal. 
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Figure 17: The result of the LOOCV effect upon the average profile of a given signal. Given this random 

signal, we can see that the removal of one replicate changes the dynamics greatly 
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Similarity Measure 

Given the ability to generate hypothetical gene expression profiles utilizing n-1 replicates, it is 

then necessary to quantify the difference between these hypothetical signals. To do so, we have 

utilized Pearson’s correlation (3.1) as a method for assessing similarity. Pearson’s correlation was 

selected over other similarity measures because it is scale invariant allowing the comparison of 

signals of different magnitude. Furthermore, the use of Pearson’s correlation is attractive 

because the R2 correlation coefficient associated with it can easily be converted into an s-value 

via (3.2), which can later be converted into a p-value by utilizing the t-distribution[53]. This 

negates our need to generate a population of random signals to evaluate its quality vs. the null 

hypothesis. 
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Because of the hypothesis that an arbitrary set of sub-sampled signals ought to be more similar 

than random genes, this p-value can be used to determine how non-random any fluctuations 

within the data are. For a given statistical significance threshold, all of the sub-sampled signals 

will be required to have a correlation coefficient which is more statistically significant than this 

threshold. Therefore, if the p-value is set at p < .05, then all of the sub-sampled signals need to 

correlate with each other at a level which is more statistically significant than this cutoff. 
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Assessing the Impact of High Quality Signals 

While the motivation behind utilizing this filtering technique was to identify a specific biomarker 

that was accurately measured, it is difficult to quantify this without performing additional 

experiments. Due to the computational nature of this dissertation, this was not possible. 

However, because the data used in the evaluation consists of high throughput gene expression 

profiles, a surrogate metric can be used. For temporal gene expression profiles, one of the 

primary hypotheses is that groups of genes with similar temporal progressions of their gene 

expression profiles will have similar functionalities. Therefore, while the end goal is the selection 

of a specific gene that can function as a candidate for techniques such as RT-PCR, we will first 

observe what occurs to a population of gene after they have been filtered under this quality 

assessment metric. This will allow us to establish the fact that the selection of accurately 

measured genes can significantly upgrade the confidence in our results.  

In our case, we have elected to use the clustering package cluto[35], with the default parameters 

as a representative clustering approach. This is identical to the analysis approach that was 

utilized when we were assessing the inherent qualities of the dataset themselves. However, 

rather than showing the effects of having a good dataset, we will show that it is possible to 

upgrade the informative nature of each dataset through a filtering technique. Therefore, with an 

increase in quality of clustering due to better signals, it should be possible to see an associated 

improvement in the enrichment[29, 63]. Gene Ontology enrichment is conducted by utilizing the 

hypergeometric distribution as given in (3.3). The ontologies themselves are obtained from the 

Affymetrix Annotations provided with each individual microarray. This hypergeometric 

distribution essentially calculates the probability that a subset of genes has been selected from 

an overall population. To evaluate the overall quality of a given enrichment, the metric will be 

the percentage of identified ontologies which have been selected as enriched. It is hypothesized 
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that if the clustering is more reliable, then there should be a lower number of ontologies which 

had been spuriously included due to ambiguities within the signals. 

1
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(3.3) 

Given that the initial claim of the manuscript is that it is important to select for genes which 

show not only significant differential expression, but also genes which show accurately 

measured expression profiles, thus we have elected to compare the performance of the 

proposed LOOCV algorithm vs. a standard method for selecting genes based upon differential 

expression ANOVA[40]. 

One of the difficulties with this assessment is that the evaluation of gene enrichment is 

dependent upon the number of clusters with the data is partitioned into. Determining the 

number of clusters itself is an open area of research, and thus it is difficult to determine the 

proper number of clusters present within the data. Therefore, instead of focusing upon the 

number of clusters present in the data, the evaluation will be conducted over a continuum of 

different cluster numbers. It is hypothesized that if the filtering has been successful, then the 

percentage of significant ontologies will be greater for any given cluster number. 

Results 

For all of the datasets, the p-value cutoff was selected at p < .05 for both the ANOVA as well as 

the LOOCV Quality Assessment. While it is arguable as to whether such a threshold is 
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appropriate given the number of genes present within the dataset[64], what we seek to show is 

that for a given threshold that filtering genes based upon the accuracy in which their dynamics 

has been captured has a greater impact upon clustering than just selecting the genes based 

upon their activity.  

For all of the datasets, the selection of genes based upon the quality of their dynamic expression 

profiles showed a consistent trend in that genes which had been filtered based upon the 

accuracy of their dynamic response show a greater percentage of enriched ontologies as 

compared to the genes which passed the ANOVA filter. This increase in the percentage of 

significant ontologies is due to a decrease in the total number of ontologies associated with the 

selected genes, and not due to an increase in the number of significant ontologies.  
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Figure 18: Fraction of identified ontologies which were enriched at a statistically significant 

level. In both our datasets, there is an improvement in the percentage of significant ontologies 

when utilizing selection for high quality signals. 
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For the GDS972 chronic corticosteroid dataset, we see the smallest amount of improvement 

between filtering the dataset utilizing an ANOVA vs. the proposed LOOCV filtering algorithm. 

This was predicted a priori because of this dataset consists of more replicates as well as the fact 

that the RAE230A microarray itself has a higher signal to noise ratio than the older RG-U34A 

arrays[65]. Therefore, because of the higher inherent quality of this dataset, many of the genes 

which show significant changes in gene expression profiles were also accurately measured. This 

is borne out by the fact that the intersection between the two sets is quite high with 3038 of the 

4361 genes selected via ANOVA also being present in the filtered set. Thus, for all of the genes in 

which a statistically significant change did happen, it was also quite likely that the gene had also 

been accurately measured. 

The GDS253 dataset was hypothesized to show the greatest improvement from the selection of 

accurately measured genes. However, aside from the initial prediction as to the ontology 

improvement, this dataset was surprising because of the fact that 317 out of the 438 genes 

selected via ANOVA were also found in the LOOCV filtered set. Thus, the removal of a similar 

percentage of genes had a much larger effect upon the ontology enrichment of the GDS253 

dataset. We hypothesize that the effect may be due to the fact that the genes selected by 

ANOVA which were not presented in the set obtained via LOOCV quality assessment introduced 

many genes that could not be accurately grouped in any of the clusters, and therefore 

introduced a large set of ontologies which were not similar to the ontologies of the other genes 

within a given cluster. 

The selected genes for each identified cluster form the SLINGSHOTS algorithm has been 

provided in Appendix C, as well as the average profiles and each of the replicates. As seen in the 

table, the replicates of all the genes appear to be tightly clustered, specifically that the intra-
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replicate variance is much lower than the inter-replicate variation. Thus, the temporal variation 

of the signal as measured by the mean of the replicates represents an accurate reconstruction of 

the signal and the response of the underlying cluster. 

One of the encouraging results of the SLINGSHOTS algorithm as quantified by this metric is the 

fact that most of the genes selected by the SLINGSHOTS algorithm appear to be well measured 

with a significance level of p < .001. Therefore, at least we can be reasonably sure that the genes 

which we have selected as being biologically significant also show significant measureable 

changes in expression. 

Discussion 

Ideally, one would have liked to validate that the genes that were selected as being accurately 

measured could be accurately measured through other techniques such as RT-PCR. However, 

because the focus of this work has been computational rather than experimental, this validation 

was not performed. In light of this, we had proposed an alternative method for assessing 

whether these signals were indeed of high quality, specifically that they increase the overall 

confidence one has after performing a clustering operation. We have definitively shown that this 

is the case by showing that genes selected with the quality of their temporal expression profiles 

in mind show greater gene enrichment than only those that show significant differential 

expression. In light of this result, it is possible to utilize this signal quality filter to be used for the 

initial gene selection step rather than the SLINGSHOTS algorithm. This is further reinforced by 

the fact that the SLINGSHOTS algorithm appears to select for genes that have been accurately 

measured as well. Therefore, there is some interaction between the two selection operations. 

However, the use of the SLINGSHOTS algorithm is still encouraged because of its distinct lack of 

ambiguity when it comes to the selection of parameters, as well as the fact that multiple pieces 
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of information can be isolated such as the informative nature of the system and the systemic 

response of the system.  

It is important to note that while the set of informative genes selected via the SLINGSHOTS 

algorithm has been reduced further to a handful of genes, the purpose of these genes is to 

provide markers for further experimentation. Therefore, if one were to run an experiment at 

different dosing levels for model validation, one can use low throughput methods to measure 

the response of the system rather than having to run microarray data. However, while these 

genes can serve as adequate markers for activity, at this point we do not ascribe particular 

biological significance to them. It is our hypothesis that in complex phenomenon such as the 

response of the system to corticosteroids, the ability to measure such a gene accurately is not a 

good determinant of biological activity, because each gene may play a small role in a much 

bigger mechanism or due to the fact that we cannot ascribe cause or effect at this level of 

analysis.  

One of the more notable observations which we were able to make was the marked 

improvement of the newer arrays with respect to the older arrays. Utilizing the newer arrays, we 

were able to obtain a significantly greater fraction of genes whose temporal responses have 

been accurately measured. Secondly, we observe a smaller improvement in the gene ontology 

enrichment after filtering for these accurately measured genes. While this result may not be 

significant, it does however show that the results of our algorithm do agree with our general 

intuition that with newer generation of microarrays, the results do in fact improve due to 

increased signal fidelity. Due to this, we hypothesize that as technology improves, the number of 

genes that will show differential expression for a given p-value will increase as the SNR increases 

due to lower spread between the replicates. Thus, while it is necessary to show that a 
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biologically important gene has been accurately measured, not all accurately measured genes 

may be biologically significant. 

However, while the results of our observation conform to our intuition that newer arrays have 

better signal to noise qualities, there are complications which we have not been able to fully 

address. Due to uneven temporal sampling, one significant issue has arisen, specifically how to 

deal with the samples which encompass a shorter time duration vs. samples that represent the 

response over a longer duration of time. For instance in the case of the GDS253 dataset, the 

sampling rate ranges from 15 minutes to 24 hours. Thus while, the majority of the signal in terms 

of duration of time may have been well captured, the overall correlation coefficient may be low 

given the high variability in the early time points. 

The primary reason for this problem is the fact that the algorithm essentially treats the data as a 

vector of values without time dependence. Essentially the data points themselves are all given 

equal weight whether they take place during a short period of time, or whether the data point 

encompasses a greater period of time. Thus the correlation coefficient or clustering analysis may 

not also agree with one’s judgment utilizing visual inspection of the data. However, while the 

results of the algorithm may not agree with one’s intuition when visually assessing the data, the 

fact that researchers have selected such an uneven sampling strategy means that the dynamics 

early may play just as important role as the later dynamics despite their transient effect. 

Therefore, while there exists algorithms that will normalize the data based upon the time 

duration via techniques such as interpolation or curve fitting[66], they may miss or minimize the 

fact that earlier time points may in fact be more important biologically.  
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Conclusions/Future Work 

At this point we have obtained the identity of various genes which can be used to quantify the 

response of the system for future experimental work, as well as establish the fact that the results 

of the SLINGSHOTS algorithm as well as being biologically relevant, also show high quality 

temporal expression profiles. Thus, we can be confident that such results can be replicated 

under future work. The genes selected are surrogates for the dynamic activity of our system. 

However, it must be noted that at this point, we make to claims as to the specific biological 

importance of a specific selected gene. Because the genes were selected based upon technical 

issues relating to the accuracy of measure, the selection step is not one that determines the 

biological significance of a given gene. This limitation is one which we think carries over to other 

selection methods which rely upon differential expression as stated in the previous chapter. 

However, one limitation of the work as presented is that experimental validation has not been 

conducted. At this point, we have not isolated the primer probes associated with the identified 

genes and run RT-PCR to verify that these selected genes can be measured accurately with 

alternative methods. Thus future work, should involve utilizing RNA samples obtained from the 

previously run experiments and validate that the dynamics associated with the microarrays are 

reflected in the RT-PCR. If it can be shown that genes selected under a certain condition will 

illustrate similar dynamics under mRNA microarrays vs. RT-PCR arrays, it would obviate the need 

to conduct a separate wet experiment to validate the results of an mRNA experiment, provided 

that they satisfy this underlying metric.  This would greatly increase the confidence in the results 

reported via mRNA experiments and their corresponding analysis. 
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Equation Chapter (Next) Section 1Identification of Possible 

Alternative Regulatory Transcription Factors 

After having obtained a set of genes, and their associated gene expression profiles, we would 

like to determine just how these genes are regulated. While it has already been established that 

the glucocorticosteroid receptor plays a key role in triggering the response of the organism to an 

administration of a corticosteroid, it is unclear whether the action of the glucocorticosteroid 

receptor may trigger the activation of a secondary transcription factor, which then go on to 

regulate other genes within the system or whether an alternative transcription factor has a role 

in regulation. Our inability to model the response of the liver to different methods of 

administering corticosteroids may be due to the existence of an alternative transcription factor 

which we have not accounted for. Thus, of interest to us is whether there exists another 

transcription factor which can be hypothesized to act as an alternative regulator of the genes 

which we have identified as sensitive to corticosteroid activity. 

The binding of these transcription factors has been determined to be sequence specific through 

various binding experiments[67]. Previous work by Wasserman et al., have shown that this fact 

can be used to predict the existence of regulatory motifs within the DNA sequence. However, 

given the relatively short lengths of these recognition sites raging from 6-14 bases[68, 69] as well 

as the degeneracy possible with each given transcription factor binding site, the probability of a 

random hit is quite high. More problematic in this evaluation is that the transcription factors can 

be shown to bind in vitro even if they show no in vivo activity. This suggests that there exist 

other conformational factors that regulate whether a given sequence in the DNA is available for 

binding. 
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Most researchers have tackled the problem of false positives via the method of phylogenetic 

footprinting[70-79]. The core assumption in phylogenetic footprinting is that significant control 

mechanisms in an organism are evolutionarily conserved. Therefore, by utilizing the genomes of 

multiple related organisms, one should be able to identify conserved regulatory regions within 

the DNA. The primary benefit of this technique is that it limits the search space for which 

possible transcription factors binding sites can be found. This technique is exemplified by tools 

such as CONSITE[80], and FOOTER[73], which look for sequence homologies between two 

different species. CONSITE represents the basic phylogenetic analysis technique presented by 

Wasserman et al.,[68] in which only sequences which show high homology between two species 

such as Rat and Human would be analyzed via Position Weight Matrices (PWM) in order to 

determine which transcription factors binding sites are present. The primary difference between 

these and other tools concerns the different ways in which homologous sequences are 

identified. 

In predicting transcription factor binding we explore the notion that “Co-expression implies co-

regulation”[81]. With multiple genes requiring similar transcription factor binding interactions, 

there exists a basis for eliminating false positives. This method allows for the selection of 

transcription factors binding sites that are active under a given experimental paradigm, thereby 

allowing us to indirectly incorporate the effects of chromosome and recognition site 

presentation upon transcription factor binding prediction. Rather than having to rationalize that 

a few transcription factors binding sites are over-represented in a cluster of genes, one can show 

that a few transcription factors are active in the cluster of genes that have been grouped 

together. Although the method focuses on predicting experiment-specific transcription factor 

binding sites, it is possible that if such a methodology were used in an iterative process where 

different experiments were analyzed, one could obtain a comprehensive set of transcription 
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factors binding sites which regulate the various dynamic responses shown by biological systems 

under a variety of conditions hence building a more comprehensive model of transcriptional 

regulation. Thus, the general hypothesis is that in a set of co-expressed genes, one can identify 

factors which co-regulate the genes by identifying the prevalence of a given transcription factor. 

Methods 

The identification of possible transcription factor binding sites is broken down into two steps: (i) 

the identification of the promoter region, (ii) the identification of putative transcription factor 

binding sites. CORG[82] was used for the identification of promoter regions as well the 

identification of relevant transcription factor binding sites. CORG was selected primarily for its 

ability to extract the 5’ upstream region up to the next gene rather than to a set number of 

upstream base pairs. This was important to us due to the nebulous concept of how far upstream 

a promoter region lies. It has been shown that the GRE (Glucocorticosteroid Response Element) 

could be found thousands of base pairs upstream of the start codon[79]. Other such as TRED[83] 

on the other hand require as a parameter the number of upstream base pairs to consider. 

Additionally by using CORG, one is able to utilize its built in facilities to both extract homologous 

sequences as well as transcription factor binding sites.  

One complication which needed to be addressed was the fact that CORG returned homologous 

sequences between two species and is unable to return just the entire promoter region for a 

single species. In order to compensate for this drawback, the evaluation was conducted in the 

following manner. To evaluate the difference between phylogenetic footprinting and our 

proposed approach of looking at the promoter regions of a set of clustered genes in aggregate, a 

CORG search was conducted upon human/rat and mouse/rat. The human/rat case is the 

baseline example of phylogenetic footprinting in which ideally there will be a small set of 
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regulators which give rise to the similar responses to corticosteroids in humans and rats. The 

mouse/rat case was used to give a proxy for the context specific case in which the analysis is 

performed only on the rat promoter region and to determine the transcription factors which are 

present in all of the genes in the cluster. The rationale for running this case is that the rat/mouse 

promoter regions have about an 85% conservation rate among homologous sequences[84]. 

Given this high level of conservation between the two different species as well as the fact that 

CORG keeps sequences that show a homology of greater than 70% over 100 base pairs[85], it 

provides a reasonable facsimile for the rat promoter region.  

Data Analysis 

The primary metric which to be analyzed is the number of times a transcription factor binding 

site is found in the 5’ region of genes that comprise up of a highly correlated cluster. This is 

necessary in order to determine whether or not there are any transcription factor binding sites 

which were present in a sufficient percentage of genes where it would be a reasonable 

candidate for the co-regulation of the genes within the cluster. Secondly, once the metric is 

quantified, it may be possible to ascertain the overall distribution of transcription factors 

throughout the cluster of genes, allowing one to determine whether or not the highly conserved 

transcription factor was present due to a statistically significant event, or whether it was highly 

conserved due to chance. 

The process of finding a hit for a specific sequence in the promoter region can be modeled by an 

exponential distribution whose PDF is given in Figure 19. In Figure 19, a random set of genes was 

selected and the prevalence of a given transcription factor in the upstream promoter region was 

determined. From this distribution, it appears that the initial assumption that one can model 

transcription factor occurrence rate on a cluster of gene as an exponential distribution.  
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Figure 19: The distribution of transcription factors among randomly selected genes should have an 

exponential distribution, which is shown above 
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To obtain the parameters for the PDF, the mean number of times a transcription factor binding 

site is present amongst the genes in a cluster as well as the standard deviation this distribution is 

calculated. Given the slight discrepancy between the two values, the average of the mean and 

the standard deviation is used as the parameter with which to model the distributions. The 

exponential distribution will then allow us to obtain the probability that a single transcription 

factor will be conserved over x% of the time. This probability will be used below to calculate the 

expected number of highly conserved transcription factors.  

Results 

The previous analysis of the temporal gene expression profiles for the acute corticosteroid 

dataset yielded 3 clusters with 211 genes. This will function as the starting point for our analysis 

to determine the ability of this algorithm to extract a meaningful set of transcription factors. 

Previous data that has been presented suggests that for genes to have a greater than baseline 

chance of having transcription factors in common, the correlation coefficient should be greater 

than 0.75[81]. Our clusters show an average correlation coefficient of 0.85, comfortably over the 

limit. This average correlation coefficient allows us to establish a reasonable expectation that 

one ought to find a set of transcription factors which co-regulate the genes in each cluster. 

However, when running the analysis upon our three most populated clusters, we obtain the 

results shown in Figure 20. This is a relatively disappointing result to say the least because what is 

seen is the fact that there does not appear to be significant over-representation of a set of 

transcription factors associated with each cluster. While some of the transcription factors have 

shown themselves to be prevalent in many of the genes which make up a specific cluster, their 
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occurrence is something which can be explained by chance, rather than due to some underlying 

mechanism.  

While it is understandable that this behavior is observed when taking a random set of genes, in 

which one does not expect co-regulation, we had not expected this behavior in a set of co-

expressed genes. Given the hypothesis that co-expression implies co-regulation, we had 

hypothesized that a much larger fraction of transcription factors ought to have appeared in a set 

of co-expressed genes. However, what we see is that this is not the case, but rather performance 

which is qualitatively similar to that of the random grouping of genes. 
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Figure 20: The distribution which shows the prevalence of a transcription factors in a population of co-

expressed genes 
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One possible reason for this may be due to the fact that at this point phylogenetic footprinting 

has not been applied. It could be possible that the promoter sequences contained too much 

non-regulatory regions, and that the true response of the system is buried under a lot of 

extraneous hits. Therefore, we are examining transcription factor hits over what are essentially 

large stretches of random sequences. Therefore, the exponential distribution would be evidence 

of this phenomenon. Therefore, the next step in our evaluation is to determine whether the 

observed dynamic significantly changes if we focus our analysis only upon the set of sequences 

that are hypothesized to be regulatory sequences. However, after conducting phylogenetic 

footprinting between humans and rats, we see that the probability of a transcription factor 

binding to a set of genes can still be accurately modeled by the exponential distribution Figure 

21. Again, while there may be some transcription factors which are present over most of the 

genes in a given sequence, their occurrence can be predicted due to random chance. However, 

one interesting observation is the decrease in the number of hits of a given transcription factor 

after phylogenetic footprinting. Over all, the number of genes which are regulated by a given 

transcription factor appears to decrease proportionally to the length of the sequence being 

analyzed. Therefore, if phylogenetic footprinting reduces the number of bases by an order of 

two, there is a corresponding two-fold loss in the probability that a given transcription factor will 

be found to bind to that gene. This suggests that looking at a set of genes which are co-

expressed, the use of transcription factor prediction as well as phylogenetic footprinting does 

very little to bias the system towards a specific set of transcription factors that co-regulate a 

given population of genes.  
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Figure 21: The distribution which shows the prevalence of a transcription factors in a population of co-

expressed genes. Even though phylogenetic footprinting has been carried out, we see the same 

exponential distribution 
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Discussion 

The goal of this analysis was to determine whether by looking at a cluster of co-expressed genes, 

it would be possible to find a set of co-regulators which would be sufficient in determining 

possible candidates that would justify the difference in the expression profiles. However, while 

there are some differences in terms of the over-representation of a given transcription factor in 

each of our clusters, it is difficult to justify qualitatively their overall importance.  

The main point of phylogenetic analysis has been the reduction of false positives in transcription 

factor binding predictions. We believe that by performing phylogenetic analysis between human 

and rat as well as utilizing mouse and rat to extract a homologue for the rat promoter region, a 

bias for true regulatory regions would be introduced, and thus the hypothesis that co-regulation 

implied co-expression could be verified. However, it has been shown that phylogenetic 

footprinting does not introduce any sort of bias into the system.   We had expected that while 

there were numerous false positives generated via standard transcription factor binding site 

prediction that transcription factor binding sites were more prevalent in “true” regulatory 

regions that were conserved through evolution than over the baseline rate. However, we did not 

find a greater affinity for transcription factor binding sites to be localized to regions of 

evolutionary conservation than over that of non-evolutionary conserved segments of the 5’ 

region. This leads to the hypothesis that the primary driving force in the number of times a given 

transcription factor occurs within a gene cluster is driven by the length of the promoter region 

analyzed and the specificity of a given position weight matrix.  

However, this disappointing result may be related to the field of transcriptional network analysis. 

It has been widely noted that maps of transcriptional interactions appear to have a scale-free 

topography in which the distribution of links between different genes follows an exponential 
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distribution[86-88]. Additionally, it has also been observed that despite the apparent scale free 

nature of the network, biological transcription networks illustrate a higher degree of robustness 

than could be normally explained via a scale free network[89]. Specifically that the removal of a 

large number of hubs are not lethal to an organism. It has been shown that in yeast, the removal 

of 28 out of 33 highly connected hubs did not lead to the death of the given yeast cells[89] with 

little correlation between the connectivity of a node and its importance to viability. Thus, 

perhaps the complex interplay of different factors may be confounding this relatively simple 

analysis.  

One of the more interesting and notable results was the fact that the glucocorticosteroid 

responsive element was not found to be over-represented within this set of genes that were 

hypothesized to be responsive to corticosteroids. This observation has three specific possibilities. 

The first possibility suggests that perhaps, the genes that are well correlated with corticosteroid 

responsive genes that were previously identified are responding to a second currently 

unidentified transcription factor that is sensitive to corticosteroid administration. Secondly, it is 

possible that these genes are responsive to other regulatory factors which were in turn are 

directly regulated by corticosteroids. Finally, it possible that the consensus sequence associated 

with corticosteroids has been inaccurately determined. At this point, with the level of analysis 

which we have performed, we cannot rule out any of the cases. Thus, further analysis is needed 

in order to determine which possibility is most likely. 

Conclusion 

While the results which were obtained were disappointing, we have established a possible link 

between the specificity of a given transcription factor and the scale free nature of biological 

networks. Specifically, the promiscuity of a given transcription factor directly relates to its degree 
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of connectivity within a network. Thus, we hypothesize that highly connected transcription 

factors will show the greatest degree of ambiguity within its position weight matrix.  

Secondly, the result of this evaluation suggests that the sequences which are conserved via 

phylogenetic footprinting do not show a significant bias for the binding of transcription factors. 

Thus, the probability of a transcription factor being a match for a given sequence does not 

change depending upon whether a genomic sequence is phylogenetically conserved or not. 

Thus, these regions are not biased towards the binding of regulatory proteins if one looks only at 

sequence data. Thus, if transcription factors are more likely to bind to these sequences, there 

needs to be other factors at play that govern transcription factor binding aside from the 

underlying base pair sequence. 

The failure of this relatively simple analysis suggests that more outside information needs to be 

incorporated. Thus rather than focus upon a cluster assignment and sequence analysis may be 

too simplistic. However, in light of this limitation, it is still important to note that we still have a 

wealth of other information which has not been incorporated such as the expression profiles of 

the genes themselves. Therefore, while this method has not been successful in obtaining desired 

results, it at least points to future avenues which can be explored.  
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Equation Chapter (Next) Section 1 miSARN for the Identification of 

Regulatory Networks 

One of the results of the previous promoter sequence analysis involved the fact that in many of 

our extracted genes, there did not appear to be an over-abundance of the glucocorticosteroid 

responsive element. This led to three different possibilities which needed to be resolved. These 

included alternative corticosteroid responsive transcription factors, multiple signaling levels, or 

improper identification of the consensus sequence. Aside from the ambiguities associated with 

transcription factor prediction we also have the issue of how to properly exploit the information 

that is obtained. Even if it were possible to isolate without any degree of ambiguity as to which 

transcription factors regulated the genes in question, we still do not have any idea as to how 

these transcription factors are able to dynamically affect the levels of mRNA gene expression. 

Recently, methods combining TF-gene connectivity data and gene expression measurements 

have emerged in order to quantify these regulatory interactions. Prominent examples are the 

decomposition-based methods which combine ChiP and microarray data and inversion of 

regression techniques to estimate TFAs [90-93]. Singular Value Decomposition  and regression 

methods were combined [94] in order to reverse engineer regulatory networks, whereas in [95] 

promoter elements were linearly combined to quantify the contribution of the promoter 

architecture on a gene’s expression. Network Component Analysis (NCA) [96-100] was 

introduced as an alternative for quantifying the strength of the regulatory interactions and for 

elucidating true TFAs, [101] explore a similar linear superposition of expression profiles and TFA 

combined appropriately using binding affinities in lieu of stoichiometric coefficients and a 

Bayesian error analysis of an, effectively, linear method was presented in [101]. We will be 

extending the concepts proposed by NCA in order to identify both the most likely regulators of a 

given gene, as well as the dynamic interactions of these interactions. 
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However, while our experimental system is based upon corticosteroids, we will first be 

evaluating our system upon E Coli. This was done to reduce the amount of complexity in our 

evaluation. We first wanted to determine whether it is possible to obtain the transcriptional 

dynamics of the system before evaluating how the system is able to deal with ambiguous 

transcription factor predictions as was done in the previous step. In a nutshell, modeling 

transcriptional networks will enable us to gain an important insight into the principles that 

govern the regulation of cellular behavior and gene expression. In this study we model a 

regulatory network as a mixed integer linear programming (MILP) in which we can incorporate 

biological knowledge in terms of equality/inequality constraints. Subsequently, our mixed – 

integer based formulation (MILP) is so flexible that also allows us to generate alternative 

network structures that account for the same root mean square error (RMSE) or reconstruction 

elucidating the underlying regulatory rules that govern transcriptional regulation.   

In the following section we present our optimization-based formulation followed by its 

validation with real experimental data for the well-studied organism E coli. We chose E coli due 

to the available information from RegulonDB database [102] which characterizes the role of a 

transcription factor as an activator or repressor. Thus, in the section of implementation we 

present alternative ways of generating multiple solutions with biological impact. Our algorithm 

was formulated in GAMS modeling language (General Algebraic Modeling System) [103]. In the 

section of discussion it is interestingly annotated how such mathematical formulations can shed 

light on complex biological phenomena such as gene regulation.  
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Modeling 

Network model  

Modeling gene regulation as a linear model we assume a quasi steady-state for mRNA synthesis 

and degradation [101] where transcription initiation can be described by a set of reversible 

reactions that all reach equilibrium. Such reactions involve the specific binding of TFs to DNA 

sequences as well as the recruitment of RNA polymerase I complex.  The dynamics of gene 

expression can be described by: 

ij ij

s d
j j

dmRNA(i, t)
k TFA(j, t) k TFA(j, t) mRNA(i, t)

dt

 
        (5.1) 

This power-law rate expression assumes a rate of synthesis depending on the activities of TFs 

whereas the degradation term is also considered proportional to the actual mRNA levels [97]. 

Making the quasi-steady state approximation for mRNA(t) and solving the corresponding 

algebraic equation leads to the following expression, accounting for an appropriate 

normalization with respect to the initial conditions: 

ij

ijs

j j
d

k mRNA(i, t) TFA(j, t)
mRNA(i, t) TFA(j, t)

k mRNA(i,0) TFA(j,0)



  
    

 
   (5.2) 

A log-transformation results in the following generalized linear expression that relates the log-

normalized     

 ij

mRNA(i, t) TFA(j, t)
E P, E log ,P log ,

mRNA(i,0) TFA(j,0)


   
         

   
    (5.3) 
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where E matrix is the log-ratio of the gene expression level of gene i at time point t relative to 

the initial condition at t=0 (
(i, t)

(i, 0)

E
log

E
) and its dimensions are Ng (number of genes) x NT 

(number of time points),  is the connectivity matrix whose entries are constant and 

characterize the strength of interaction (binding affinities) between any regulatory pair (i,j) with j 

to refer to the regulator and its dimensionality is  Ng x NTF (number of transcription factors) and P 

matrix contains the inferred effective dynamic activities for each regulator, expressed also as log-

ratios, during time course of the experiment. Thus, its dimensionality is NTF x NT. The interaction 

strengths are either determined as an output of the decomposition [96] or assumed to be 

known and are proportional to the experimentally determined binding affinities of the 

transcription factor to the promoter region [93]. 

In our formulation we opted to treat the strength coefficients as surrogates for the binding 

affinity of the transcription factor to the promoter region in the sense that they should not be 

treated as condition dependent parameters but rather as a fundamental property of the system, 

since our primary motivation is to use as much of the available biological information as possible 

and minimize the amount of fitted parameters. The reconstructed activities will absorb any 

condition specific alterations to the transcriptional response. Therefore, the interaction 

coefficients will be considered to be either known from experimental studies [104, 105] or 

determined computationally by associating binding affinities to position weight matrices [106].  

In addition to the strength of the interactions the directionality of the activation is also critical 

given that transcription factors are known to exhibit multifunction characteristics [107]. As a 

result, TFs are known to act as activators, repressors or exhibit both characteristics depending on 

conditions. Therefore, given the effective activity of a transcription factor we need to be able to 

simulate its corresponding effect, whether it is activating or repressing the expression of the 
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target genes. Assuming for simplicity that one TF regulates a single gene, then depending on the 

nature of the interaction the effect of changes in the TFA will have distinct effects on the changes 

in gene expression. If the activity of the factor increases and if the factor activates the expression 

of the gene, then the corresponding expression should increase. However, if the factor represses 

the expression of the gene, then the increase in activity should result in decrease in the 

expression of the gene. Equivalent arguments can be made for the case where the activity of the 

factor decreases. 

We propose to model this by introducing a new variable, Peff(i,j,t) which represents the effective 

TFA for a given gene given that the type of interaction, either repressor or activator, has been 

identified. The definition is done through the introduction of a binary variable 

1 TF(j) activates gene(i)
r(i, j)

0 otherwise                  


 


. Using r(i,j) and given the intrinsic activity of factor “j” we can 

now defined the effective activity which is a function of the pair (j,j) for each time “t”: 

2r(i, j)-1
eff

P (i, j, t) = P(j, t)     
(5.4) 

The existence of an interaction element r(i,j) depends on the existence of a known regulatory 

interaction between factor “j” and gene “i” and the strength of the corresponding interaction 

will be assumed to proportional/equivalent to the binding strength. 

Given, therefore, the architecture describing the superstructure of all possible regulatory 

interactions defined through the interaction matrix 

1 TF(j) regulates gene(i), i.e. (i,j) 0
D(i, j)

0 otherwise, i.e. (i,j) = 0                    

 
 


we approximate the log-ratio of the 

expression data as: 
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error

2r(i, j)-1

eff
E(i, t)= (i, j) P (i, j, t)

j

eff
P (i, j, t) = P(j, t)



  

 



 (5.5) 

The “error” term is incorporated to simulate error-in-measurement as well as other potential 

sources of uncertainty. 

Analysis of regulatory networks 

Deciphering the structure of regulatory networks should be considered as the prelude to further 

analyses that aim at elucidating putative roles of the regulators rather than a rigorous and 

restrictive reconstruction of experimental data. After all, it is widely accepted that multiple, 

alternative,  regulatory networks can reproduce experimental data [97, 108]. As such, a number 

of questions emerge once a particular reconstruction has been determined, namely:  

1. Can these networks be identified in a systematic and unbiased manner? 

2. Are there any persistent interactions that emerge from multiple architectures? 

3. Are there specific transcription factors whose activity profiles remain robust across 

multiple realizations? 

4. Can the specific function of the undetermined factors, i.e., factors can act either as 

activators or repressors, be systematically determined? 

5. Do preferential patterns emerge in terms of the nature, i.e., activator or repressor, of 

these factors be identified? 

 

We are proposing a mixed-integer formulation able to effectively address all the aforementioned 

questions in a unified framework. The complexity of the regulatory network is controlled 

through the introduction of a binary variable z(j) which denotes the existence, z(j)=1, or non-



107 
 

107 

 

existence of a particular regulator z(j) = 0. The underlying assumption behind this modeling 

exercise is to identify what types of alternative structures can be constructed that reproduce 

optimally the experimental expression data. The complexity of the network is controlled by 

setting the required number of non-zero elements in this variable. Furthermore, alternative 

structures for the same number of transcription factors can be generating by introducing 

appropriate cuts that exclude previous integer solutions, i.e., combinations of non-zero z(j)’s 

[109].  

It should be noted that the definition of Peff introduces a non-convex bilinearity in the 

formulation due to the produce of the continuous variable P(j,t) and the binary variable z(j). 

However, this produce is exactly linearized through the introduction of the following set of 

constraints  

eff
- r(i, j) M- P(j, t) P (i, j, t) r(i, j) M- P(j, t)

eff
(r(i, j) -1) M+ P(j, t) P (i, j, t) (1- r(i, j)) M+ P(j, t)

 

 
 (5.6) 

This set functions as follows: when r(i,j)=0 (“j” is a repressor of “i’) the system reduces to: 

 

eff
- P(j, t) P (i, j, t) - P(j, t)

eff
M+ P(j, t) P (i, j, t) M+ P(j, t)

 

  
 (5.7) 

 

Therefore, the second constraint is inactive (M is a big number) whereas the first constraint 

forces Peff(i,j,t)=-P(j,t). The implication is that because “j” acts a repressor of “i” if the activity of 

P(j,t) increases, i.e., P(j,t)>0, the effect of E(i,j,t) should be of the opposite sign and therefore 

result in reduction of E(i,j,t), i.e, E(i,j,t)<0. Similarly, if the activity of P(j,t) < 0, because “j” is a 
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repressor, then reduction in its activity should enhance the expression of E(i,j,t), i.e., E(i,j,t)>0. 

When r(i,j)=1(“j” is an activator of “i’) the system reduces to: 

eff
- M- P(j, t) P (i, j, t) M- P(j, t)

eff
P(j, t) P (i, j, t) P(j, t)

 

 
 (5.8) 

 

This makes the first constraint redundant, whereas the second constraint forces Peff(i,j,t)=P(j,t) 

and therefore it acts as an activator. 

The complete optimization formulation (miSARN) is as follows: 

, j 1, ..., N
TF

min e (i, t) + e (i, t)
ti

subject to

eff
E(i, t) - (i, j) P (i, j, t) = e (i, t) - e (i, t) i = 1, ..., N , t = 1, ..., Ng Tj

z(j) = m N j = 1, ..., NTF TFj

D(i, j) z(j) 1 i = 1, ..., N                                            g
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NTF is the number of transcription factors, Ng  is the number of genes, and NT  is the number of 

time points.  

In order to identify structurally robust elements of the regulatory architecture we introduce a 

robustness metric which quantifies the number of times a particular TF appears in each of the 

alternative structures in conjunction with the robustness of the reconstructed activity profile. 

The metric is therefore:  

f(j)
R(j) = C(j)

Maxf
  (5.9) 

 

Where R(j)  is the robustness of TF “j” when we generate multiple network modules,  f(j) 

describes the frequency of TF j across the multiple solutions (simply it shows how many times TF 

j appears in different network architectures), C(j) corresponds to the average Pearson’s 

Correlation coefficient for the multiple inferred activities (P(j,t)) of TF j and finally is the total 

number of alternative structures under consideration.  
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Results 

Experimental data 

Temporal expression profiles of E coli during transition from glucose to acetate as the sole 

carbon source were detected by using DNA microarrays. The importance of such experiment lies 

on the premise that glucose and acetate are utilized by distinct metabolic pathways and thereby 

understanding such profiles in different carbon sources gives us a more thorough insight about 

the dynamic behavior of E coli [110]. The temporal E coli expression data as well as the 

connectivity matrix for this system are publicly available at http://ww.seas.ucla.edu/~liaoj/. The 

data included the log transformed expression levels (relative to initial time point) of 100 genes 

[99] recorded at 10 time points. Such expression data have been part of studies [93, 99, 111] . 

Taking these genes into account we identified the corresponding connectivity matrix given the 

available information of RegulonDB [102] database. The available connectivity information 

concerns 828 genes and 120 TFs coupled with the information whether a TF is known to inhibit 

or activate a specific gene or whether its regulatory role is unknown (activator or repressor. 

Removing genes that are not regulated by any TF as well as TFs that do not regulate a gene our 

dataset consists of 88 genes and 30 TFs. In a nutshell, our experimental data refer to 88 genes, 

30 transcription factors (TFs) and 10 time points whilst the entries of (i, j)  are s. Then, based 

on RegulonDB information we fix the binary variables r(i,j) to be either 0 or 1 if j is known to 

repress or activate gene I, respectively.  

Systematic generation of alternative regulatory structures 

The complete regulatory structure is composed of 30 transcription factors. Given the hard 

constraint that each gene must be regulated by at least on TF, the formulation miSARN becomes 

infeasible at m=18 since this many factors are need to guarantee that all genes are properly 

http://ww.seas.ucla.edu/~liaoj/
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regulated. Varying the control parameter m in the range of 18-30 TF generates an equivalent non 

inferior set as shown in Figure 22. Interestingly we observe that there are 5 different network 

architectures (for m=26 TFs up to m=30) that generate architectures resulting in the same 

reconstruction error, despite the fact that each utilizes a different number of TFs.  

Given the availability of these alternative structures, we proceed to evaluate the robustness of 

each factor across the multiple solutions. The results are summarized in Table 2. It is clear that a 

critical subset emerges that not only persist as a selection of active TF, but also the 

corresponding reconstructed profiles are very robust across multiple solutions. The 

reconstructed profiles for all factors across all the 13 solutions (m=18,…, 30) are depicted in 

Figure 23. Associated with these multiple solutions is the fact that these solutions are able to 

reconstruct the observed mRNA gene expression level with a very high level of fidelity, and thus 

we have been able to establish at least the fact that our model is able to replicate the 

experimental results Figure 24.  
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Table 2: The conservation associated with the 

different transcription factors used in our 

example. 

TF name relative connectivity f(j) C(j) R(j)

Ada 1 13 1.0 1.0

CysB 4 13 1.0 1.0

FadR 3 13 1.0 1.0

GatR 4 13 1.0 1.0

LeuO 3 13 1.0 1.0

Lrp 6 13 1.0 1.0

PurR 3 13 1.0 1.0

TrpR 3 13 1.0 1.0

TyrR 6 13 1.0 1.0

ArcA 18 13 0.9 0.9

PhoB 5 13 0.9 0.9

FIS 7 11 1.0 0.9

NarL 9 13 0.9 0.9

CRP 21 13 0.9 0.9

RpoE 8 13 0.9 0.9

RpoS 5 13 0.7 0.7

FruR 7 13 0.7 0.7

OmpR 3 13 0.6 0.6

IHF 12 13 0.6 0.6

IclR 4 12 0.9 0.6

GlpR 1 8 1.0 0.5

LexA 1 5 1.0 0.4

PspF 1 5 0.6 0.4

FNR 16 10 0.4 0.2

CsgD 3 2 1.0 0.2

Rob 3 1 1.0 0.2

SdiA 1 5 0.2 0.1

RpoN 1 8 0.2 0.1

GalR 3 7 0.0 0.0

RcsAB 1 4 0.0 0.0
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Figure 22: Objective value vs. size of regulatory network 
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Figure 23: The dynamics associated with the transcription factors over multiple solutions 
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Figure 24: The dynamics associated with the reconstruction. As a sanity check, it is important 

to determine that our method is able to reconstruct the observed changes in gene expression 
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Discussion 

One of the strengths of utilizing a MILP formulation is the fact that we are able to incorporate 

cuts into the solution. Thus, in addition to generating networks of different complexities, we are 

also able to generate related networks of the same complexity. This leads to the identification of 

multiple regulatory structures, of which interesting patterns emerge. The multiple architectures 

for m=29 effectively define networks in which one TF is eliminated from the network. The eight 

solutions are depicted in Figure 25. There are four distinct modules that give rise to these 

solutions and in all cases in effectively amounts to the elimination of factor provided that its 

contribution can be represented by another factor. The pairs that are exchanged in these eight 

solutions are: (PspF, RpoN), (SdiA, RcsAB), (CsgD, OmpR), and (Rob, GalR). These findings even 

though are merely computationally can be characterized as both challenging and promising on 

the premise that there is on-going research about identifying clinically intervention points whose 

effective combinatorial inhibition would improve the process of therapeutic drugs. There are 

several studies [91, 112] that are interested in unraveling the underlying principles that govern 

gene regulation by either combining  sequence data with binding data such as Chip-chip data 

and expression data or by knocking out (deleting) transcription factors and binding sites with the 

aim to reveal more about functional regulatory interactions and pathways.  

Based on the aforementioned results we can provide with a list of alternative network structures 

that will help us to understand the complex process of transcription regulation. Furthermore, 

when we solve for m<29 e.g. m=28 TFs, this means that we are deleting at each solution two TFs 

out of 30. The multiple solutions, which are 24, are subset of the four modules presented in 

Figure 25 with the “rule” that two co-regulators that do not regulate any other gene at a 

neighbor module cannot be removed. All the other combinations are feasible (optimal) such as 

removing CsgD along with Rob or with GalR or with RcsAB and so on. Such “predictable” 
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solutions arouse to occur for m =27 and m =26. Thus, the four modules in Figure 25 are the basis 

that accounts for all the solutions taken by the combinatorial removal of transcription factors 

given a predefined number of existing nodes (TFs) in the network. Overall, all these alternative 

structures may serve as a very useful tool in identifying combinations of regulators that can be 

knocked –out of the network. It is of major issue the biological validation of such results but in 

this study we are proposing the efficiency of our formulation to generate such multiple solutions 

with meaningful biological impact in modeling transcriptional regulatory networks and it is our 

future work to integrate such an algorithm with real biological examples.  
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Figure 25: In these network motifs, it was found that the factors of similar connectivity can be 

eliminated without loss in the error function. For instance in the first figure (top right) PspF 

and RpoN represent interchangeable factors. The presence of such modules may signal the 

importance of a specific metabolic process in an organism due to the high level of redundancy 

in its regulation. 
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In addition to predicting the activity of a given transcription factor, the other goal of this work 

was to lower the ambiguity associated with transcription factor prediction. It was hoped that 

through the reconstruction of mRNA gene expression profiles, we can isolate the most probable 

connectivity structure required. Even though E coli, with well characterized transcriptional 

interactions were used, there was still significant ambiguity within the multiple regulatory 

structures. On one hand, the presence of this ambiguity is interesting because it provides a 

mechanism for silent mutations [113] i.e. deletions in the genome that appear to have very little 

effect upon the system. The results of our analysis suggest that there are some critical 

transcription factors which are necessary amongst all solutions, and these are exemplified by 

having very consistent profiles as shown in Figure 23. The transcription factors which are part of 

multiple alternative regulatory structures on the other hand have highly variable dynamics 

depending upon the network architecture. 

These alternative regulatory structures however are determined via their binding interactions π, 

as well as the initial network which was fed into the problem. Thus, because the result of our 

transcription factor prediction, our network is not known with confidence, this bias is carried 

over to this formulation. Because of the impact of this original regulatory structure upon our 

solution, we do not hypothesize that this method can be used to further refine the results of our 

transcription factor prediction, unlike other methods such as Module Networks[114]. 

Most importantly is the fact that we are essentially solving a linear problem. Thus, the dynamics 

of our mRNA gene expression profiles represent linear combinations of transcription factor 

activity. Thus, whatever dynamics which were undertaken by our set of candidate genes will be a 

linear combination of the activity of transcription factors. This is problematic because of our 

previous result in which we isolated a small set of different dynamic motifs, whereas from the 
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results of the transcription factor prediction, we have obtained a much larger set of transcription 

factors. The lack of different patterns within our data as well as the ambiguity within our data 

prevents miSARN from being applied to our dataset. 

Finally, given the linear nature of this problem, we have essentially shifted our question of how a 

dosing of corticosteroid affects a given mRNA gene expression level to the question of how a 

dosing of corticosteroid affects transcription factor activity. At this point, we have no way of 

linking our specific input into the problem.  Thus, while the method may provide useful insight 

into the most probable regulatory path taken in a given phenomenon, it does not answer the 

primary questions which we had when we began the analysis.  

Conclusion 

One of the interesting phenomena which we were able to observe in our evaluation with E coli, 

was the presence of alternative networks in which the reconstruction error remained essentially 

constant. What was more interesting in these results was the fact that these alternative 

regulatory structures appear to correspond to experiments in which gene knockout strains do 

not show significant change in the viability of the organism.  Despite the initially promising 

results which we have obtained utilizing E coli., we were unable to further extend the method to 

our system due to ambiguities within the original network which is an input into this 

formulation. Secondly, because we had no method for incorporating specific inputs into the 

system, we were unable to link our specific inputs to transcription factor activity. The primary 

confounding factor in this formulation is the fact that we are trying to determine too many 

unknowns in the problem, specifically the transcription factor activity as well as the connectivity 

structure. This is problematic because of the interdependence one factor has upon the other. As 
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seen in the cases when we look at multiple solutions, there exist many cases where alternative 

regulatory structure yield significant differences within transcription factor activity.  

However, while this analysis may not be useful for identifying specifically the regulatory 

elements within our system, it was useful in framing our problem better. In order to determine 

the underlying regulatory interactions that form the basis of our mechanism, it is necessary to 

either know the specific active transcription factor network, or the activity or relevant 

transcription factors. Secondly along with the need to obtain transcription factor activities, it is 

also necessary to be able to incorporate the dynamic input of our system into the model. By 

doing so, we ought to be able to obtain better insights as to how a stimulus in the form of drug 

administration is able to affect either mRNA gene expression level or the activity of the 

transcription factors.  Therefore, rather than basing the rest of our analysis upon only mRNA 

gene expression data and trying to solve for the connectivity structure as well as transcription 

factor activity, we will instead by focusing upon an experimental system that allows us to directly 

measure a surrogate for transcription factor activity.   
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Equation Chapter (Next) Section 1Obtaining Dynamics of the 

Glucocorticosteroid Receptor via the Living Cell Array 

From the prior analysis of the temporal gene expression data, we have obtained the various 

pieces of information. The primary driving force behind the response to a bolus injection of 

corticosteroids is the endogenous concentration of the drug. However, under the chronic 

administration of corticosteroids, we see a significantly different result. In the chronic case, we 

see that the genes related to metabolism appear to follow the same drug concentration 

mediated response, but the genes related to inflammation and the immune response do not. 

Rather than being directly related to the concentration of the drug, the response decreases back 

to baseline despite continued drug administration. Because of this difference in the dynamic 

response, it is difficult to rationalize that this response comes from the same underlying 

mechanism. While intuitively, the understanding is that because we are merely administering a 

drug in a different manner, there should be one mechanism which is active over the different 

dosing strategies that give rise to these disparate responses. 

However, this mechanism could take several different forms. For instance, one possible 

hypothesis is that the chronic administration of corticosteroids may lead to a build-up of 

intermediate metabolites, which triggers a secondary mechanism that differentiates the 

response of the organism under the chronic administration of corticosteroid as compared to the 

acute administration of corticosteroids. Other hypotheses as to the underlying response may be 

the existence of an orphan receptor which is sensitive to corticosteroid administration, or that 

corticosteroids may have significant non-transcriptional activity. At this point, there are a large 

number of possible hypotheses that can be used to explain the observed transcriptional 

dynamics aside from the ones that have been enumerated here. Therefore, testing all of the 
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possible hypotheses experimentally in a reasonable amount of time is not feasible. The question 

is however, whether we can use the concepts behind systems biology to eliminate most of these 

hypotheses and generate a smaller set which can then be tackled experimentally. 

Central to these hypotheses is the activity of the corticosteroid receptor, and its relation to the 

activity of genes related to metabolism or inflammation. The common thread that ties these 

disparate hypotheses together is the fact that how the activated corticosteroid receptor 

responds is unknown. Therefore, if it were possible to first identify the dynamics of the 

corticosteroid receptor as well as the transcription factors related to inflammation or 

metabolism, it would go a long way to allowing us to eliminate the set of initial hypotheses.  

Aside from the failure to determine the presence of common regulators in our extracted genes, 

it is also important to note that the activity of a transcription factor is not determined entirely by 

the amount of transcription factor in the system. Therefore, we cannot use the gene expression 

of the corticosteroid receptor as a surrogate for activity[115]. This is because while the amount 

of the receptor in the system plays a key role in the activity level, we must account for factors 

such as activation via a ligand, dimerization, or phosphorylation[116]. Therefore, even though a 

given transcription factor may be over-expressed, its activity may be negligible if the activating 

factor is not present.  

There exist numerous methods for assessing transcription factor activity. Experimental 

techniques such as ELISA[117] attempt to quantify the binding between the activated 

transcription factor with their consensus sequence, and computational methods such as 

NCA[96], PLS[93], NIR[118], and Module Networks[114] attempt to de-convolve transcription 

factor activity based upon either known or hypothesized binding interactions as well as mRNA 
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gene expression data. These computational techniques are generally categorized as network 

reconstruction techniques. 

However, in the context of our work, all of these techniques have significant limitations. For 

instance ELISA, as an offline experimental technique does not offer the time resolution we need 

for model building. Furthermore, because this technique measures the activity level of only a 

single transcription factor, we are unable to apply the concepts of systems biology, specifically 

the analysis of how the different systems interact i.e. how the activation of corticosteroid plays a 

role in the regulation of other transcription factors. 

The computational methods such as NCA, PLS, and Module Networks are limited because they 

rely upon transcription factor binding data, which we do not have a comprehensive and 

validated set, the same factor which confounded our analysis utilizing miSARN. Therefore, while 

it should be possible for us to utilize transcription factor prediction algorithms to compensate for 

the lack of experimental data, the ambiguities associated with the binding site predictions 

creates another level of ambiguity as to the results. Additionally, these algorithms are required 

to make a large set of assumptions as to the underlying structure of their networks because the 

problems are ill-posed1. These constraints upon the network architecture may not necessarily be 

reflected in the underlying biology and therefore may add an additional level of uncertainty to 

our conclusions. Finally, as we have seen before in our evaluation of the miSARN methodology, 

these methods do not translate the input in the form of the drug stimuli into the output which is 

the mRNA expression levels. What these methods have done is moved the question of how does 

the drug impact mRNA levels, to the question how does the drug impact transcription factor 

                                                           
1
 Ill posed is defined as having more unknown variables than equations, and is not a criticism of the 

underlying method, formulation, or hypothesis 
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activity. Therefore, what is truly needed is a method that allows us to measure the dynamic 

activity of a transcription under stimulation. 

Ideally, we need a method for first measuring the levels of multiple transcription factors, 

preferably related to inflammation, the immune response, or metabolism under high temporal 

resolution. Furthermore, these need to be measured in such a way that the model we define will 

not be ill-posed1 without making any assumptions as to the architecture of the network. 

Fortunately, such a system does exist in the form of the Living Cell Array. The experimental 

design of the Living Cell Array allows us to assess the dynamics of the corticosteroid receptor as 

well as its effect upon the transcription factors related to inflammation. While it would have 

been beneficial to also assess the response of other factors related to metabolism, our current 

hypothesis is that the current indirect effect model is sufficient to replicate the dynamics under 

both dosing strategies. 

The Living Cell Array (LCA) [119, 120] presents a unique experimental platform that allows for 

the direct estimation of the activity of a transcription factor. Rather than focusing upon the 

binding of transcription factors, or mRNA expression changes, it utilizes fluorescent reporters 

that respond to the levels of active transcription factor activities through monitoring the 

expression of a reporter GFP. Given the novel nature of its experimental design, the LCA offers 

the opportunity to decipher mechanisms driving the cross-activation of assemblies of 

transcription factors. Furthermore, owing to the design of the microfludics device, one can 

simultaneously obtain the levels of transcription factor activity under multiple stimuli with high 

temporal resolution.  This greatly improves our ability to decipher the interactions between the 

different transcription factors because we are no longer constrained by limitations in the data, 
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where the number of genes measured is much greater than the number of conditions or time 

points in which they are measured [121].  

We propose the creation of two methodologies for the analysis of the Living Cell Array. The first 

method of analyzing the Living Cell Array involves the use of a bi-clustering formulation[122]. 

This approach utilizes the co-expression of the various reporters to create a network which 

hypothesizes the direct interactions between two different transcription factors. The second 

method for identifying the network is referred to as Reverse Euler Decomposition (RED) which 

functions as a computational framework enabling us to quantify the dynamics associated with 

the connections. Combining this computational framework along with the experimental system 

of the Living Cell Array, it is possible to not only isolate TF interactions but also to quantify 

numerically evidence of nonlinear phenomena that are present in biological systems [123].   

Superficially, the difference between the bi-clustering formulism and the RED formulism lies in 

the fact that the RED formulism allows for both the identification of regulatory dynamics in 

addition to the network architecture along, whereas the bi-clustering formulation is only able to 

identify the network architecture. However, these two alternative strategies represent a trade-

off between accuracy and analysis time, with the RED formulism allowing for a more accurate 

determination of network architecture and dynamical reconstruction and the bi-clustering 

analysis taking much less time. However, in addition to the superficial difference in the 

algorithms, we hypothesize that because the networks obtained via the two different techniques 

should be closely related, the small differences in the networks may provide additional insight as 

to the underlying architecture of the system specifically those relating to “silent mutations.” 
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Transcription Factor Stimulus 

NFkB TNF-α 

AP1 IL-1 

STAT3 IL6 

ISRE IFN-

GRE Dexamethasone 

HSE No Direct stimulation 

  
Table 3: The measured transcription factors and their 

associated stimulus 
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The Living Cell Array 

The Living Cell Array is a microfluidics device which utilizes cells transfected with reporter 

plasmids. These reporter plasmids comprise of an unstable green fluorescent protein (GFP), a 

minimal promoter, and 4 repeats of a transcription factor’s consensus sequence [124]. 

Therefore, when a transcription factor is in its active state, it binds to the plasmid thereby 

causing the synthesis of an unstable GFP [125]. In this system, the fluorescence levels act as a 

surrogate for the amount of activated transcription factor present within the system, because 

due to the artificial construction of these plasmids, fluorescence level of a given reporter should 

be determined only through the activated level of its associated transcription factor. However, it 

was found that under multiple stimulation profiles, there was a significant level of cross talk. We 

hypothesize that such cross-talk is due to interactions between the different transcription factors 

i.e. the activation of transcription factor A can cause the up/down regulation in the activity of 

transcription factor B. 

Guided by the interest in hepatic inflammation the reporter cell lines were designed to probe 

the dynamics of transcription factors associated with inflammation [126]. Appropriate soluble 

stimuli were designed hat stimulate the dynamic cellular microenvironment and would enable 

the systematic characterization of the cellular responses. Specifically, the NF transcription 

factor was induced by TNF-, AP-1 induced by IL-1, STAT3 induced by IL-6, ISRE induced by INF-, 

GRE induced by Dexamethasone, and HSE which was not directly simulated Table 3. 

Reconstructing Network Interactions from co-expressed Reporters 

Bi-clustering or condition specific clustering attempts to isolate genes that are co-expressed 

under a specific set of conditions[127]. The hypothesis behind the utilization of this method is 
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that transcription factors which show very similar responses under multiple conditions are likely 

to be closely coupled, and thus related. Bi-clustering is nominally performed over a set of genes 

vs. conditions with only a single value per condition. However, in the given dataset, each 

gene/condition combination is described as a time series. In bi-clustering, genes that have 

similar expression values under a given condition are considered as possible candidates to be 

clustered together for that specific condition. Given the temporal expression data, the temporal 

expression can be simplified into an integer, so that gene expression profiles with the same 

integer would have similar expression profiles. This could have been accomplished in a variety of 

ways from Hashing Based methods[128], to standard clustering algorithms in which the cluster 

memberships are used to assign an integer denoting similarities in the expression profiles of 

different genes under a given condition. Thus as in the case of hash based clustering, genes 

denoted by a similar integer will have similar responses.  

For this problem k-means clustering with a cosine similarity metric[129] was selected. K-means 

was run with 4 clusters, the minimum number of clusters needed for consistent clusters over 

multiple runs. Therefore, the temporal expression profiles were converted into integers that 

indicate the similarity under a given condition of 2 or more genes. K-means was chosen over a 

more sophisticated method such as HOT SAX because the small size of this problem did not 

necessitate the increase in speed, or the evaluation as to whether the system underwent 

significant perturbations. 

Bi-clustering itself is NP-Hard[130], and therefore most of the algorithms which have been used 

for bi-clustering are heuristics[127]. The most obvious problem with most of the techniques 

which are based upon heuristics is the fact that they do not solve the problem to optimality. 

However, the more glaring problem is the inability for most of the heuristic based methods to 
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identify an arbitrary number of over-lapping bi-clusters. In most of the bi-clustering algorithms, 

finding multiple solutions involves removing a previously found bi-cluster from the dataset 

through techniques such as setting all of the values in a previous found bi-cluster to random 

numbers therefore breaking up any relationships within that cluster. There has been some work 

to find overlapping clusters[131]. However, such techniques are limited in the fact that one must 

determine before the structure of the overlap such as overlapping percentage as well as the 

number of possible overlapping structures within the data, something which is not known a 

priori. 

The issue of overlapping bi-clusters is important because with non-overlapping bi-clusters, the 

networks which can be reconstructed from expression data will be a set of disjoint and 

independent networks. This contradicts with the general notion that transcriptional networks 

form highly interconnected networks [88]. Therefore, networks generated from the current 

algorithms cannot fully capture the level of interconnectedness. The advantage of utilizing a 

math programming approach is that it is very easy to exclude previous solutions and re-solve the 

problem to find other bi-clusters which may overlap with a previous solution. Without 

overlapping bi-clusters, the overall network is then reduced to a set of independent cliques of 

which the most complex network which can be created is a feed forward network.  

The biggest issue that complicates the search of overlapping clusters is illustrated in  

 

Figure 26. The primary problem is that after an optimal solution is found and that solution is 

rejected, there exists an overlapping cluster which is wholly a subset of the original solution. A 

mixed integer optimizations framework was selected due its ability to explicitly model 

constraints as well as solve the problem to global optimality, something which cannot be 
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guaranteed with the standard heuristic based method. In this mixed-integer framework, it is 

possible to eliminate a solution as well as all subsets of its solution through a modified system of 

integer cuts. 
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Figure 26: The problem of overlapping bi-clusters: Given two bi-clusters, A and B, the intersection of the 

two bi-clusters, C should be eliminated 
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One of the issues with using a formal mixed integer formulation is that it requires solving the full 

problem and not conducting an approximation. Therefore, the issue with the problem being NP-

hard still remains. The mixed integer formulation mitigates the problem efficiently through 

intelligent pruning of infeasible and sub-optimal solutions, but does not change the overall 

algorithmic complexity. In the current iteration of the LCA, there are 6 specific transcription 

factors being utilized under 6 different conditions, and therefore the computational complexity is 

not an issue. However, in the most comprehensive case for transcriptional regulation, the 

problem set is still relatively small, on the order of 200 transcription factor binding sites having 

been quantified[104], and therefore still within the limits of solvability. 

The mixed integer formulation is divided up into two portions, the bi-clustering formulation (6.1)

, and the subset removal cuts (6.2). The problem is solved parametrically for the number of 

genes starting from N genes and decreasing until the number of genes equals 2. The 

optimization criterion maximizes the number of conditions. With this formulation, it is not 

necessary to define constraints of what a good bi-cluster entails though such constraints could 

be formulated. We find this to be an artificial constraint, for there could very well exist two 

genes which are well correlated over a large number of different conditions, of which the 

implications would be just as important as a bi-cluster of 10 genes that were well correlated over 

fewer conditions.  

i j k i k j k

i j k i k j k

[( ) 3]* M ( ) * D(i,k) ( ) * D(j,k)

[3 ( )]* M ( ) * D(i,k) ( ) * D(j,k)

             

             
   (6.1) 
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The bi-clustering portion described in (6.1) requires the discretization of the signal. This works 

well for the time series data which is provided by the LCA. It essentially checks to see if two 

genes under a given condition have the same value with binary variables to indicate whether a 

given gene is included for the assessment. In  (6.1), D represents the integer transformed data, λ 

represents the genes selected within the bi-clusters where μ represents the conditions under 

which the genes are co-expressed. The indices i,j,k represent the index in the array for which the 

gene or condition exists. M represents a large number that functions to essentially eliminate the 

constraint either of the two genes or conditions are not part of a given bi-cluster. In other words, 

genes i and j belong to bicluster k, i.e., i = j = k = 1, if and only if the symbolic representation 

of both genes are the same under condition k, i.e., D(i,k) = D(j,k). This is the only situation that 

would make (6.1) feasible. If i = j = k = 1 whereas D(i,k)   D(j,k) (6.1) would be infeasible since 

the left hand side of both inequalities will be zero, whereas the right hand side is not. A 

schematic of how this assessment finds bi-clusters is shown in Figure 27. In Figure 27 there are 

two λ variables which denote the two genes which are being checked for co-expression whilst 

the μ represents the condition in which they are checked from. If two genes are part of a bi-

cluster, then the value under the two different conditions ought to be identical.  
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Figure 27: A schematic of how the formulation in Equation 1 works. Rows indicate genes, columns 

indicate conditions. Two genes (λ2  = 1 and λ6 = 1) are similarly expressed under four condition (µk = 1, 

k=1, 3, 6, and 7). 
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The problem with excluding subsets is simplified by the fact that the problem will be solved to 

optimality at every iteration and parametrically solving for different number of genes. The 

primary idea behind (6.2) is that a new solution requires a condition to be included that was not 

in a previous solution. (6.2) guarantees that each solution will not be a subset of a previously 

identified set of conditions. In (6.2), μk
iter represents the previous solution and μk

citer represents 

the current solution which may or may not be excluded. Therefore, the biclusters are generated 

sequentially and the exclusion constraints of (6.2) guarantee that the bicluster at iteration “citer” 

is not a subset or the previous clusters “iter”.  

 

Figure 28 illustrates how the subset removal cuts works. Equation (6.2) essentially forces the next 

possible solution to include a condition that was not included in a previous solution. If the 

current solution is a subset of any previous solution, then the following holds. 

 

 

citer citer
k k

P(iter) k

iter
k

iter citer

P(iter) {i | 1}

    

  

 
       (6.2) 
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0 1 1 0 1 0 1 1 Optimal Solution (N-1) 
0 1 1 0 1 0 1 0 Possible Optimal (N) Utilizing Standard Cuts 
1 1 1 0 1 0 0 0 Possible Optimal (N) Subset Excluding Cuts 

Conditions 

 

 

 

Figure 28: The solution for iterate (N-1) has 5 conditions, the next optimal solution has 4. However, the 

solution which is wholly a subset of a previous solution should be excluded. 

 

 

 

  

 

 



138 
 

138 

 

Given that the formulation solves for the maximum number of condition under which N genes is 

co-expressed, the exclusion only occurs for the set of conditions. The set of cuts can be limited 

to only the conditions rather than the genes because the problem is solved parametrically with 

the maximum number of genes which should give the smallest number of conditions which 

these genes are co-expressed under. Once the number of genes has been decreased, the set of 

conditions in which the genes are co-expressed ought to have at least one condition which was 

not present in the previous solution. Therefore, by solving it parametrically, in N it is possible it 

removes the complexity of requiring a subset excluding cut from requiring both the conditions as 

well as the set of genes greatly simplifying the formulation. 

After the bi-clusters were generated, they were evaluated as to whether or not one of the 

condition/reporter interactions in that bi-cluster had a 2-fold change in the overall activity. The 

data was reported in fold-change, and it was found that in the negative control case, the 

variability in the overall intensity differed by less than 2 fold. We opted to select bi-clusters 

which had at least one of the condition/reporters show a twofold change instead of filtering out 

the gene/condition combinations and then conduct the bi-clustering because it represented a 

compromise between focusing solely upon co-expression or the intensity values. The overall 

formulation is given in (6.3). 
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citer
k

k

citer
i

i

citer citer citer citer citer citer citer
i j k i k j k

citer citer citer citer citer citer citer
i j k i k j k

citer
k

P(ite

max

s.t N

[( ) 3]* M ( ) * D(i,k) ( ) * D( j,k)

[3 ( )]* M ( ) * D(i,k) ( ) * D( j,k)



 

             

             







citer
k

r) k

iter
k

citer
i

iter citer

P(iter) {i | 1}

D(i,k)= symbolic representaion of gene "i" in condition "k"

1, if gene i belongs to bicluster "citer"
=

0, otherwise                                    

   

  



 

   

P(iter), Q(iter) = denote the set of conditions that comprised previous biclusters





   (6.3) 

Network Reconstruction of the Bi-clustering Results 

The result of running the bi-clustering formulation upon the data is a bi-partite network, in 

which there is an input layer which consists of the different stimuli into the system, and an 

output layer which consists of the measured transcription factor. However, it is possible to 

convert this bi-partite representation into that of a directed graph, thus making the result 

amenable for use in RED. 

The primary purpose behind bi-clustering was to construct a network which gives insight as to 

the underlying mechanism which gave rise to the observed responses. Without any a priori 

information, a bi-partite network could be obtained in which links can be created from a 

regulator to a set of genes, if those regulators and genes are found in the same bi-cluster. 

However by incorporating additional information which is available due to the artificial 

construction of the reporter genes, one can generalize the bi-partite graph into a directed graph 

which gives insight as to the signaling cascade, specifically in this case, the induction of 

inflammatory/anti-inflammatory signals via external stimulus. 
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The specific piece of information which is utilized is the fact that the reporter genes can only be 

activated by their specific transcription factor, and therefore the only direct links that can be 

present in the graph is from a transcription factor and its specific reporter. These direct links are 

given in Table 3 of the original LCA manuscript. [119]. Thus, if a bi-clustered determined that 

STAT3 and NFkB were co-expressed under a stimulation of TNF-α, then could utilize Table 3 to 

hypothesize that the activation of STAT3 by TNF-α occurs via an NFkB intermediate. 

Deconvolution of Network Interactions 

The primary hypothesis behind the Deconvolution of Network Interactions that a given network 

architecture is defined not only by the links between the nodes, but also the dynamical response 

of these interactions. Thus, we propose the creation of a method which evaluates the dynamics 

of network architectures. By combining the network architecture, and these dynamical 

responses, it should be possible to reconstruct the experimental data in an accurate manner. 

Furthermore, because the reconstruction can be compared to the experimental data, it is also 

possible that such a method can also to assess the accuracy of a given architecture, and thereby 

search for an optimal network structure. 

This is possible because the construction of the LCA experiment allows us to monitor the 

temporal dynamics of a system of TFs as they respond to a continuous infusion of soluble signals 

designed to activate specific TFs. In a hypothetical scenario only one factor should be activated 

for a given infusion of its corresponding activation signal. However, due to the cross-talk 

between TFs indirect interactions emerge which manifest themselves through the coordinated 

activation of an ensemble of factors. In order to decipher the emerging dynamic of the network 

of interacting TFs we need to first define an appropriate model for the dynamics of the system.    

In its most general form, the dynamics of the system can be described as: 
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F TT F

dTFA(i, t)
F(TFA(j, t), j 1 ) s(i), ,N

dt
t;i 1, ,N   

    (6.4) 

where  NTF denotes the total number of TFs in the network and TFA(i,t) represents  the activity of 

transcription factor i, F represents an arbitrary function which incorporates and convolutes the 

underlying dynamics of the interacting TFs . The component s(i) expresses the effect of the 

activation event of a transcription factor. In the context of the LCA design it corresponds to a 

constant infusion of a soluble factor activating the TF and it is considered to be the known 

external stimulus that activates the transcriptional machinery. Essentially, in this model, we 

suggest that the dynamics of transcription factor activity can be described through an 

appropriate, yet to be determined, function (F) which is dependent upon the activity itself, and a 

forcing function, s, which may or may not be a function of time indicating a specific and direct 

activation of a transcription factor. In the context of LCA the forcing function is assumed to be 

independent of time since it is presumed that the soluble factors continuously activate the TFs 

through infusion. The activity of the TFs is quantified through the monitoring of the expression 

of the corresponding reporter genes. 

A widely used simplification [132] approximates (6.4) as:   

TFN

j 1

TF

dTFA(i, t)
f (i, j, t) TFA t;i, j 1,( j, t) N

d
,s(i)

t 

 
   





 
 

(6.5) 

 

This transformation effectively makes use of the assumption that the effect of the network of 

interacting TFs is additive and therefore the driving dynamics, as defined by the function F(TFA), 

can be decomposed in to

 

TFN

j 1

f (i, j, t) TFA(j, t)


 Underlying the transformation is the hypothesis 
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that the transcription factors do not form significant interacting complexes, and that 

transcription factors interact with each other independently [133]. Furthermore, the model 

assumes a connection weight that maps the influence of one transcription factor to another [93, 

99]. Thus, the, yet to be determined, function  f(i,j,t) describes the influence of TF i to the activity 

of TF j at time t. 

Several methods have been proposed that solve for the functions f(i,j,t) . A commonly invoked 

assumption is that the interaction strength, quantified through f(i,j,t), is not a function of time 

[118, 134, 135]. This treats the interactions as scalars representing effectively the network 

connectivity strength. For instance the Network Identification by Multiple Regression, NIR, [118] 

assumes that the transcriptional dynamics are measured at steady state, and therefore eliminate 

the contribution of time upon f(i,j,t) whereas other methods, such as Dasika et al. [135] and 

Schmitt et al. [136], use time delays as a method of identifying when in time there exists a 

significant interaction, thus removing the explicit temporal modeling as well.  

Given the lack of sufficient conditions in the experimental data, most algorithms must also 

account for the fact that using the available experimental data, the problem is ill defined i.e. 

there are more variables than equations in the formulation. As a result, numerous ingenuous 

approaches have been proposed that make use of innovative ideas to overcome such limitations. 

In that respect NIR constrains the number of allowed connections for to the number of 

conditions measured [118], whereas Guthke  et al. use Singular Value Decomposition (SVD) to 

reduce the number of genes whose profiles need to be reconstructed.  Network Component 

Analysis (NCA) [96] rigorously defines the number of active interactions which can be present. By 

gauging the effect of unmeasured transcription factors have upon gene expression profiles, NCA 

establishes a set of related connectivity structures such that the solutions differ by a diagonal 
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scaling matrix. However, it should be noted that NCA does account for the temporal evolution of 

the interaction strengths. 

However, when TFA(i,t) is known at a relatively high temporal resolution one could in principle 

argue that a numerical estimate of the interaction dynamics, as expressed by f(i,j,t) can be 

obtained. In the case of a single variable – single equation, the system is fully determined at 

each time point. Therefore, if the dynamics of x f (x)  and represented via the decomposition 

dx/dt = (t) x(t), it is possible to determine α(t) in a numerical sense provided that both dx/dt 

and x are known. This is done simply by  assuming that the dynamics expressed as can be 

resolved at each time point by simply evaluating (t) as: 

 
estimated

measured

dx
dt

(t)
x(t)

 

 

(6.6) 

This process is essentially the reverse of Euler integration in which a(t) and x(0) are initially 

known and we wish to reconstruct the dynamics of x(t) in a numerical sense. The 

aforementioned calculation assumes an accurate estimate of the rate of change of x(t) based on 

the measured values of x(t).  Because we assume that at each time point a single parameter 

needs to be determined, (t), then the system is fully determined and assuming that the 

operation in (6.6) is possible the instantaneous dynamics can be resolved for. However, with NTF 

transcription factors measured under a single stimulus, at each time point there are effectively 

NTF
2  unknowns, f(i,j,t), t, since each transcription factor may be interacting with every other 

transcription factor. To fully account for these unknowns, it is necessary to evaluate the set of 

differential equations under at least NTF different starting points or different conditions for the 

problem to be fully defined.  The LCA framework allows for the concurrent definition of such 

multiple experimental perturbations by the introduction of either independent soluble signals, 
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or combinations of such signals in an effort to activate groups of TFs simultaneously. What 

makes this possible is the unique data generated from the LCA. The key advantage of utilizing the 

LCA is that for each transcription factor measured, it is reasonably straightforward to add one or 

more conditions such that the system is fully defined. This is because each condition represents 

the stimulation of the system with a stimulatory soluble factor, denoted earlier by s(i). It is 

important to note that in both our formulation as well as the experimental system, multiple 

combinations of soluble factors can be utilized as separate conditions. Therefore, no simplifying 

assumptions need to be made regarding the complexity of the network.  

We refer to the process of generating an approximation to f(i,j,t) as Reverse Euler 

Decomposition, (RED). In a similar fashion to Euler Integration, we seek a numerical solution to 

the problem. However instead of defining the problem as finding a numerical representation of 

the response, TFA(i,t),as in the case of Euler Integration, we shall be looking for a numerical 

representation for  f(i,j,t), which is normally known analytically in Euler integration but unknown 

in our case, and hence the moniker Reverse Euler Decomposition.  

Thus the purpose of RED is to evaluate numerically the interactions dynamics, f(i,j,t) at each time 

point. Given the available experimental data, we are effectively performing a least squares 

estimation at each time point through the minimization of an appropriate norm: 

TFN

measured
j 1estimated

TF

dTFA(i, t)
f (i, j, t) TFA(j, t t;i, j) s(i)

dt
1, , N



  
     


 

 
   (6.7) 

Furthermore, given the time resolution, the derivative of each transcription factor’s activity level 

can be accurately estimated via smoothing splines [137]. Thus, the rate of change of TFA(i,t) is 

numerically estimated given the measurements of TFA(i,t). The minimization of the norm 

essentially minimizes the error between the rate of change of TFA as measured from the data 
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and the rate of change in TFA as predicted by the model. In this formulation f(i,j,t), represents 

the contribution of one transcription factor upon the activity of another TF at any given time 

point.  

However, from an analysis point of view a critical question which emerges is whether the 

network of interacting TFs possesses any special structural characteristics. In other words, 

whether the network is composed of fully interacting elements, or whether direct links between 

specific TFs do not exist. These would effectively be translated to: 

(i, j) : f (i, j, t) 0 t     (6.8) 

In order to address this question, we will couple the deconvolution of the dynamics, based on 

the minimization of [4], with mathematical programming formulations that allow for the optimal 

identification of the network architecture, i.e., direct links between TFs, as well as the 

deconvolution of the network dynamics. In fact we present two modeling approaches, one 

which optimally determines interactions, and a second formulation which utilizes an a priori 

network architecture. This a priori network architecture may be the result of other analysis such 

as prediction algorithms for transcription factor binding [138], chip-chip experiments[105], or 

other algorithms such as Boolean networks which link the activity of a given gene with its 

particular activator [139]. 

Global Network Reconstruction via Reverse Euler Deconvolution 

The LCA provides the opportunity to generate multiple realizations of the TFA dynamics based 

on the multiple systemic perturbations through the infusion of soluble factors activating the 

target TFs. In order to explore the wealth of the data and to extract what would appear to be the 

underlying interaction dynamics representative of the systemic response across a number of 



146 
 

146 

 

conditions, we deconvolute simultaneously, at each time point, all the experimentally generated 

profiles. Therefore, at each time point a number of conditions, equal to the number of TFs in the 

system, are used for the estimation of the dynamics. In order to render the problem 

computationally tractable and maintain a linear nature, we opt to utilize the L-1 norm as 

opposed to the more widely used L-2 norm:  

TFN

measured
j 1estimate

TF

d

dTFA(i, t)
f (i, j, t) TFA(j, t) s(i) (i, t t;) i

t
1

d
, , N



  
      









   (6.9) 

The global network reconstruction formulation simultaneously attempts to identify the most 

probable network architecture i.e. a network architecture which yields the lowest error as well 

as the numerical solution for f(i,j,t). Therefore, the network reconstruction optimization problem 

reconciling the dynamics over a number of external disturbances, k, is defined as follows: 
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cTF

TF

NN T

i 1 k 1 t 1

N

measured
j 1estimated

min : (i,k, t) (i,k, t)

subject to:

dTFA(i,k, t)
f (i, j, t) TFA( j,k, t) (i, j) s( j,k) (i,k, t) (i,k, t) i,k,

N(

t
dt

i, j) M N(if (i, j, t , j)) i, j,M

0
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(i,



 











 
          

 
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 





 

 
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N

N

j 1

i 1
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i

j

(i,k, t), (i,k,

 if 

t) i,k, t

f (i, j, t), (i,k) i, j,k, t

i 1, , N ,k 1, , Nc, t 1, ,T

1 if TF i regulates TF j

i = j

M otherwise

0 if i = j
(i, j)

-M otherwise

N(i, j) 1,

N(i, j)

N(i,

1,

j)
0




















  









  

  











  

 

 otherwise               

1 if soluble factor k activates TF k
s(i,k)

otherwise                                   






 


 

 

The variables (i,k) indicate the level of activation of TF i in the presence of soluble signal j, Nc 

denotes the total number of simultaneous stimulation experiments. The introduction of this 

term was necessary because in the experimental design, there is no guarantee that each 

reporter plasmid will respond in the same way to an identical level of its stimulatory factor. For a 

single time point, there is a total of n + n^2 variables which need to be addressed.. The LCA 

allows us to compensate for this through the use of composite inputs in which multiple 

stimulatory factors are used at once thus allowing for the relatively easy introduction of another 

condition thus eliminating this problem.  However, since β remains a constant, over the 

experimental time course, we actually have t * n2 + n variables with t * n*(n + 1) equations thus 

making the system over-defined after the introduction of an additional condition. Formulation 
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Error! Reference source not found. concurrently reconciles the measurements based on k 

perturbation experiments. The L-1 norm is simulated through the use of appropriate positive 

slack variables. The prior information is hard-coded in the parameters N(i,j). The only provision 

at this point is that we assume that each TF has at least one regulator and that each factor 

regulates at least one member of the network.  

This formulation requires the use of an a priori network architecture. While it is possible to 

obtain the information through the use of alternative experiment such as Chip-Chip experiment, 

or transcription factor prediction algorithm, it is also possible to derive the network architecture 

from our proposed bi-clustering algorithm which was presented previously. After the network 

architecture has been obtained via bi-clustering, it is reasonably easy specific the matrix N(i,j) to 

determine the underlying network architecture and solve for the dynamical response associated 

with the bi-clustering solution. 

This is possible by converting the formulation given in Error! Reference source not found., such 

that rather than utilize a priori information in N, N can be allowed to vary as a binary variable. 

Thus, rather than evaluating the equation for a given network architecture, we can instead allow 

the formulation to determine what the optimal network architecture ought to be. Therefore, 

rather than utilizing a set network as in the case of the previous formulation, we can have the 

formulation determine which network parameter is optimal. Furthermore, this formulation can 

be converted into a hybrid formulation allowing for both the incorporation of a priori 

information in the form of additional constraints, such that known connections are fixed, and 

unknown connections are allowed to vary in the formulation. 

While the formulation can incorporate external information, we have not elected to do so. At 

this point, the focus is primarily upon the interaction of corticosteroids under direct stimulation 
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as well as dynamics of how corticosteroids impact the activity of other transcription factors. 

Secondly, our primary hypothesis is that through the reconstruction of the observed dynamics, it 

should be possible to hypothesize the existence of a given interaction with a high level of 

accuracy. Therefore, we wish to compare our unbiased results with what is currently known 

about the system. 

Mathematical Programming 

Again as in the case of our gene selection algorithm, the overall task is to solve an optimization 

problem. There exists multiple ways for obtaining a solution to the two sets of variables in which 

we need to find an optimal solution. For instance, it would be possible to use a modified least-

squares approach to solve for the temporal dynamics for f(i,j,t), and either simulated annealing 

or genetic algorithms to solve for the binary variables. However, the drawback with all of these 

methods is that they are not guaranteed to converge to a global optimal. More problematic, the 

local solutions cannot be guaranteed to differ from the global solution by a set amount ε. But 

because the problem can be formulated with a closed form, it is possible for us to utilize a linear 

programming approach for solving the problem.  The benefit of utilizing a linear programming 

approach is that a globally optimal solution can be found in a relatively efficient manner. Thus, 

the network which will be derived from the formulation is guaranteed to be optimal in terms of 

network architecture.  

The disadvantage of utilizing a mathematical programming technique is that the computational 

complexity of the problem is not reduced. One of the difficulties with solving for the network 

architecture is that the problem is NP complete due to the combinatorial nature of the 

alternative network structures. What this optimizations approach does however is prune sub-

optimal and infeasible solutions efficient. However, while it is able to reduce the number of 
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solutions that need to be evaluated fully, the problem still remains NP Complete. However, given 

our hypothesis that the emergent properties of biological systems are due to the NP 

Completeness, this computational complexity issue may not be one which should be ignored, or 

eliminated.  

Evaluation of Dynamics  

The overall hypothesis behind utilizing the RED is that the numerical response f(i,j,t) may provide 

insight as to the underlying processes which drive the observed changes in the activity of 

transcription factors. F(i,j,t) essentially represents how the various mechanisms  transform the 

amount of active transcription factors into a signal which is then used to activate a secondary 

transcription factor. Treating the transcriptional network as a circuit analog, we can exploit the 

fact that many of the simple network architectures which we have obtained have well 

characterized step responses. Because the LCA utilizes a step input as the stimulatory profile for 

its soluble factors, we ought to be able to draw direct comparisons between the responses we 

see and the characteristic inputs. Previous work in electrical engineering has gone so far as to 

design automatic classifiers which categorize the step response based upon their circuit 

architecture[18, 140], we have elected to determine significant network architectures through 

visual inspection due to the significantly different responses of the network architectures. 

We have elected to look for evidence of four types of dynamic interactions. The two which 

correspond to different network architectures [141] are feed forward [142] and feedback [143], 

whereas time lag, and tolerance mechanisms correspond to dynamic responses of the individual 

transcription factors. Identifying interaction motifs that eventually constitute the overall 

structure of a regulatory network is a very active research area and numerous methodologies 

have been developed to assess the emergence of local structures [144]. While there are other 
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methods for evaluating the statistical significance of each of the fits [145] we will be evaluating 

the possibility of developing specific network sub-structures by evaluating the dynamics of the 

interactions, f(i,j,t). The feed forward response represents the simplest response. In the feed 

forward interaction between transcription factors A B, strength of the up/down-regulation of 

B is dependent upon the activation of A and hence the activity of A’s reporter, within a 

multiplicative factor. Time lagged dynamics can represent either intermediate transcription 

factors such as AXB in which X is an unknown factor, or events that that have a relatively 

slower rate limiting step such as the interaction between multiple sub-units. Feedback 

interactions emerge when the activation of transcription factor B, goes back and affects the 

activation of transcription factor A in addition to the standard feed forward response. The 

tolerance mechanism is a response which involves the loss of activation despite continued 

activation.  In the LCA, there is a continuous infusion of the soluble signal, and therefore, this 

response should be quite evident. One of the possible mechanisms for this response is the loss 

of various receptors in the cytosol under continuous stimulation. Figure 29 shows these basic 

interactions and the expected responses of the system. In addition to these simple models, the 

motifs can be combined for composite responses such as profiles that have both a time delay 

and tolerance effect.  
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Figure 29: Expected network motifs and their expected responses. These interactions have a set 

response to a step input which is part of the experimental design. In these hypothetical interactions the 

x-axis represents time and the y-axis represents the interaction strengths 
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Trial Runs 

The RED method was evaluated upon four different network architectures. It is hypothesized 

that by looking at several related network architectures, the ability of different network 

architectures may provide insights as to the importance of various network interactions. 

Specifically, we are looking for response which are similar over multiple network solutions to 

indicate the importance of a specific interaction, as well as coherent manners by which the 

network architecture can change. Central to this evaluation is the hypothesis that if the network 

architecture cannot be used to reconstruct the experimental data, we ought to see the loss of 

the motifs presented in the previous section. This essentially signals the loss of a possible 

mechanistic explanation for the experimental dynamics indicating that the network architecture 

is unable to replicate the experimental results. However, in the cases where the network 

architectures are different, and yet the dynamic motifs still exist it points to the possibility of 

“silent mutations” indicating the possibility of compensatory mechanisms that could be at play 

to compensate for the loss of the network architecture.  

The four trials which we will run involve a fully connected network, in which all of the 

transcription factors are hypothesized to interact with every other transcription factor, the 

network generated via the bi-clustering formulism, a network which is optimal with respect to a 

given number of connections (6-36), and finally a hybrid network which consists of a freely 

optimized portion, and a portion of the network where the network architecture has been 

predefined. IN the case of the hybrid network architecture, the connections associated with AP-

1 are fixed to 0, signaling that it will not be considered. This hybrid network represents a trial run 

that mixes the results of the bi-clustered network and freely optimized network. This was done 

so we could evaluate the effect of the bi-clustered network with respect to the other network 

architectures.  
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Results 

Fully Connected Network 

In Figure 30 the profiles of the time varying weights are given. In this figure, there is evidence as 

to how each of the transcription factors interacts with others as well as themselves. Each row 

corresponds to the individual transcription factors whose activity we seek to reconstruct, and 

each column corresponds to the effect a specific transcription factor has upon the other factors 

within the system. For instance, the first row corresponds to the factors that affect the activity of 

NFkB. Likewise the first column corresponds to the effect NFkB has upon the other reporters.  
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Figure 30: The dynamics of the interaction strengths calculated with a fully connected 

network. It is possible to see effects similar to those predicted via the motif patterns in Figure 

29 
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In these figures, the weights that are negative represent a down-regulation effect whereas 

positive weights represent an up-regulation event i.e. an increase in the activity of one 

transcription factor decreases the activity of another and vice versa.  From the profiles, we 

believe that evidence points to the fact that many of the dynamic processes are regulated by 

feedback control loops and therefore the simple notion that genes are only up or down-

regulated may be too simplistic. For instance the stimulation of NFkB via GRE appears to be 

initially down-regulated, but also have a time period in which it is up-regulated after which it 

remains constant. 

From the results, it may seem obvious which of the connections can be removed, i.e. those 

which show very low levels of activity. However, this may not always be the case. For instance, 

the STAT3STAT3 interaction which corresponds to the stimulation of STAT3 by IL6 seems to be 

at a rather low level and can be removed. However, this connection needs to be included due to 

the design of the system. In which STAT3 is stimulated via its soluble factor.  Therefore, it is not 

immediately obvious as to which connection should be removed. Such ambiguities therefore 

lead up to the next formulation in which the network is solved. 

Freely Optimized Network 

The freely optimized network solves the problem parametrically from 6 connections to 36 

connections. The lower bound for the number of connections corresponds to the fact that each 

transcription factor needs to have some form of regulation, either via its soluble factor, or due to 

the effects of another transcription. The upper bound for the number of connections is the 

number of connections for a fully connected network. One of the problems with solving for the 

network in this manner is that it is difficult to tell a priori how many connections are needed. 

This then requires one to solve exhaustively for all possible number of connections. The trade-off 
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between complexity and the quality of fit is expressed as the pareto frontier. The pareto frontier 

indicated that  
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Figure 31: The pareto frontier. This plot is created in order to determine whether there existed 

a clear break in the objective function signaling the presence of redundant connections. 

However, we were unable to find this break. 
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one cannot obtain a better solution unless one increases the complexity of the problem being 

solved is given in Figure 31. 

The pareto frontier for this system does not exhibit a “knee” feature which allows us to 

determine whether a sufficient number of connections have been obtained. It does however 

show an exponentially decaying response (R2=.997), thus signifying that it obtains the relatively 

more important connections early rather than later. We hypothesize that the reason for this 

response is due to the small scale of the experimental data. Due to the fact that these 

transcription factors all related to inflammation, it is not surprisingly that all of the transcription 

factors may be part of a larger interconnected network. The small scale of the data means that 

many intermediate transcription factors are not present and therefore none of the links are truly 

redundant.  

Though RED is unable to determine outright the number of connections present in the system, 

we hypothesized that it may still be able to give the relative importance of a given connection 

between two transcription factors. By solving the formulation from 6-36 connections, we expect 

the more important interactions to appear early and then to be conserved in solutions 

containing more connections. Therefore, is a set of interactions were present in a solution of size 

N, we would expect the great majority of the interactions would be present in solutions with 

more than N connection. Therefore, the most important interaction would be found first, and 

conserved throughout all the other solutions, the second most important interaction found 

second, etc. Plotting the number of times an interaction is present amongst the different 

solutions Figure 32  exhibits this behavior. There is a smooth linear progression of importance, 
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whereas had the interactions been included at random, a connection would have been 

conserved an intermediate number of times (15) with a small amount of variability. 

Given the structure of the pareto frontier, it is relatively difficult to determine the optimal 

number of connections. Therefore, the system was evaluated for 18 connections which 

correspond to the number of connections which have been identified via the bi-clustering 

technique. In Figure 33, the dynamics are shown. What is remarkable about the reconstructed 

dynamics is that for the links that are common between the networks most of the profiles seem 

similar in quality as in the fully connected network. This suggests that the reconstruction is 

reasonably robust not only in the way the individual links are incorporated, but also in the way 

the dynamics are obtained. 
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Figure 32:  The number of times a link is conserved over the different solutions. Under RED 

there is a clear trend in the importance of links where as randomly assigned connects appear 

at a relatively consistent rate 
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Figure 33: The dynamics associated with the freely optimized network utilizing 18 connections. 

The notable feature which we wanted to validate was the fact that the dynamics for A(i,i',t), 

are consistent over multiple solutions. The consistency of the dynamics suggests to us that our 

formulation is able to solve for some consistent underlying structure and response. 
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Bi-clustered Network 

Rather than utilizing a fully connected network, it is possible to utilize bi-clustering to obtain the 

underlying network architecture, and observe how this predicted network architecture is able to 

replicate the experimental dynamics.  From the bi-clustering result and the associated bipartite 

network Figure 34, it was found that while HSE did not have a specific activator under the 

experimental conditions, it showed significant co-expression and activation  from a variety of 

different. The activation of the Heat Shock Element normally occurs in temperature above 35 

degrees, and yet it was activated under the administrations of Dexamethasone, IL-6, and 

Interferon Gamma. The possible transduction of the HSE by Interferon Gamma has identified 

[146]. The activation by Dexamethasone has been previously identified but is weak and like the 

other results involving Dexamethasone, this may be more of an artifact off the poor data 

obtained via the administration of Dexamethasone. However perhaps as a reason for the poor 

results, the administration of Dexamethasone has been shown to either act as an antagonist for 

the binding of the heat shock element as well as increasing the production of the heat shock 

protein. Therefore, the poor results obtained from the LCA may be indicative of more complex 

behavior, for which all of the variables have not been adequately controlled. 

Incorporating the a priori information which comes from the construction of the LCA, the 

directed graph given in Figure 35 was obtained. In this figure, HSE does not have any direct 

stimulus because it was not stimulated by a given soluble factor. Secondly, IL1 was not found to 

stimulate any of the other factors in a manner coherent with the response of AP1, and therefore 

was not included in any of the bi-clusters. This is reflected in the fact that IL1-> AP1 appear to be 

disjoint from the rest of the network.  
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Figure 34: The bi-partite network associated with the bi-clustering solution 
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Figure 35: The directed graph that is equivalent to the bi-partite graph obtained via the bi-

clustering result. HSE does not have a soluble factor associated with it due to the experimental 

design where it was not directly stimulated. IL1->AP1 was not included because it was not 

found to be present in any bi-cluster. 

  



166 
 

166 

 

One of the concerns which we have with the results of both the bi-clustering as well as the 

network reconstruction is the effect of noisy data. One of the drawbacks of most clustering 

methods is that they oftentimes cluster all of the data without regard to data quality. Given the 

fact that our biclustering is highly dependent upon the initial clustering, any shortcomings due to 

noisy data would thereby be carried over to the generated network. 

After the network had been generated, the resultant network was fed into the RED formulation 

to determine how well the network architecture can be used to replicate the underlying data. 

The primary reason as stated previously was that the use of a priori information could greatly 

reduce the computational complexity of the problem by reducing either the number of free 

binary variables or eliminating them outright. While the bi-clustering formulation is also an MILP 

formulation, the bi-clustering formulation scales better in terms of the number of binary 

variables needed for a given problem size having 2N binary variables as opposed to N2+ N binary 

variables as in the case of the fully optimized network. Therefore, one of the questions is what 

the trade-off between runtime and reconstruction error is. Since the bi-clustered network itself 

consists of 18 connections, this result was compared with the fully optimized network with 18 

connections.  

Normally the simplest method for assessing the “correctness” of a network is to assess the error 

associated with the reconstruction. In the presented formulation this is indicated by the L1 

norm, which is the sum of the positive and negative slacks. The overall range of possible errors 

ranges from above fifty to a minimum of 9.9. Since in the fully optimized network, we attempt to 

select network architectures with the lowest error, we have to determine whether the bi-

clustered network represents a good trade-off between the ability to reconstruct the dynamics 
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and its decrease in run time. To evaluate this, we wanted to see whether on average randomly 

generated networks have a higher error associated with them than a bi-clustered network.  

Generating 1000 random networks, we found that the mean error for the networks was 36.8632 

with a standard deviation of 4.2, whereas the bi-clustered network corresponded to an error of 

30.31. Therefore, while the bi-clustered network does not reconstruct the profiles as accurately 

as either the freely optimized network or the fully constructed network, we hypothesize that it 

does capture many salient features of these networks due to a reconstruction error which is 

significantly lower than that of a randomly generated network. Therefore, while the bi-clustered 

network does not yield an optimal reconstruction, it may function as an adequate approximation 

of the structures present within a given biological network. One of the advantages of utilizing bi-

clustering to first determine the underlying structure is rather than the freely optimizing the 

network structure is the fact that bi-clustering coupled with the formulation in 

Error! Reference source not found.  yields an operation that requires less binary variables which 

at a first approximation yields far lower runtimes. Therefore, the use of bi-clustering may be 

considered as a trade-off between accuracy and run time. 

Because there are differences between the network architecture generated via RED and bi-

clustering, we wish to determine whether these differences lead to changes in the dynamics of 

A(i,i’,t) Figure 36, and whether the changes in dynamics can be explained due to mechanistic 

differences between the two solutions. For instance the NFkB/GRE interaction appears to have 

moved from a feedback dynamic to a standard feed forward interaction. The most glaring 

differences between the networks generated via RED and the ones generated via bi-clustering is 

fact that AP-1 no longer affects or is affected by the rest the network, and HSE does not have any 

outgoing connections. Given the qualitative differences between the network, the question 
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which arises is whether the change in dynamics is due to the loss of AP-1’s affect upon the 

system or HSE’s effect upon the system. 

  



169 
 

169 

 

 

 

Figure 36: The reconstructed dynamics of the network obtained via bi-clustering. What is 

notable is the change of the response of NFkB to Dexamethasone stimulation (GRE) which 

turned from more of a direct interaction from a feedback interaction 
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Constrained Optimized Network 

One of the things which we observed with the bi-clustered network was the fact that AP-1 was 

not incorporated into the network, and there were no outgoing links for HSE. Therefore, we 

manually remove the connections associated with AP-1 and then allow the optimizations 

framework to evaluate the presence of the rest of the network. This allows us to assess the role 

of HSE independently of  AP-1. Doing so, we can see that the feedback dynamics associated with 

NFkB in response to GRE stimulation has returned as well as the response to ISRE. From this 

result it appears that the response of NFkB to both IFN-γ and Dexamethasone are in part 

affected by HSE. Moreover, without AP-1 affecting the dynamics of HSE, we see a large change in 

the dynamics of other transcription factors, thereby suggesting that AP-1 plays an important role 

in HSE activation. 
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Figure 37: The response of the system when outgoing nodes from HSE were enabled, but the 

outgoing connections from AP1 were not. With the elimination of AP1, but the inclusion of 

HSE, we can observe many of the dynamics of NFkB’s response to the other factors returning 
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Response to an administration of Corticosteroids 

Of primary interest to us is the response of the corticosteroid receptor in response to activation 

by Dexamethasone. This dynamic is illustrated by the entry indicated as GRE-GRE in all of the 

Figures 30,33,36,37, i.e. the stimulation of GRE by itself which denotes the effect of 

corticosteroid activation due to its stimulatory factor Dexamethasone. What is evident is the 

monotonically decaying dynamic of the system in response an infusion of corticosteroids. What 

is not evident however is the presence of a time lagged effect, or a sigmoidal response which 

would be indicative of some time-lagged interaction, or the presence of cooperative binding. 

With respect to the response motifs that have been presented in the previous section, the only 

nonlinear response which is evident under this dosing strategy is one of tolerance, in which the 

strength of the systemic response decreases over time. 

Of secondary concern to us, is the response of NFkB to the administration of corticosteroid. 

Again the dynamics are present in Figure 5 and Figure 8 under the row labeled NFkB and the 

column labeled GRE. In this response, we can see evidence of an oscillatory behavior which may 

indicate the presence of a feedback mechanism. Specifically, the strength of Dexamethasone’s 

activity upon NFkB is not mediated solely by the concentration of corticosteroids within the 

system, nor the loss of activity of the GRE receptor. One of the important observations which we 

make from this experiment and analysis is that the rapid loss of activity seen with inflammation 

related genes appears to occur faster than the decline and GRE activity and results 

independently of other tissues.  More importantly, this deactivation of the inflammatory 

response occurs in an oscillatory manner suggesting the presence of a feedback mechanism 

mediating the response. 
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One interesting observation which was obtained from evaluating the different network 

architectures is that while the bi-clustered network exhibits a different response to 

corticosteroid than the other three networks, it switches from one dynamic motif to another. 

Thus, rather than having the classic feedback response that was exhibited in the other three 

solutions, it exhibited a standard tolerance response which was not unlike the response which 

was seen in the response of the GRE to a step input of corticosteroids. Thus, unlike the response 

of IFN-γ, it appears that this network architecture is still able to reconstruct the observed 

dynamics provided that a shift in the underlying mechanism occurs. 

Discussion 

One of the limitations associated with this implementation of the LCA, was our inability to 

determine the proper number of connections within the system. Given the plot of the pareto-

frontier, an obvious cutoff does not appear to exist, where we can say that by increasing the 

complexity of the system, there is a negligible improvement in the reconstruction of the 

experimental data. Therefore, utilizing RED to solve for the network architecture as well as the 

network dynamics appears to suggest that a fully connected network is the most optimal 

network structure. While this result was disappointing, given the small scale of the experiment 

as well as the fact that all of the transcription factors were related to inflammation, this was not 

surprising. This indicates to us that there are a significant number of inflammatory transcription 

factors which have not been measured by our system. 

However, in spite of our inability to determine the underlying network architecture, the use of 

RED to obtain the underlying network architecture shows an interesting result. It appears that as 

we increase the complexity of the solution in a parametric manner that the connections are 

conserved over multiple solutions. Thus, the majority of the connections associated with a 
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solution of complexity N, will be present in a solution of complexity N+1. This is important 

because it means that the formulation adds the connections in some sort of rational order. 

Because of the fact that these connections have been added in some rational order, we 

hypothesize that the resultant order may indicate some measure of biological significance. For 

instance, it was found that the response of NFkB to the other factors was more highly conserved 

than the activation of the other factors by NFkB. This is coupled with the fact that NFkB’s 

activation of the other factors seem to take place at a low level. Thus, a reasonable hypothesis is 

that NFkB plays an important terminal role in the response of the system to the other 

inflammatory factors tested in the system. 

By utilizing the different network architectures as well as the solve dynamics, we hypothesize 

that it may be possible to extract significant information as to the workings of the 

glucocorticosteroid upon the rest of the system.  One of the important aspects of corticosteroid 

stimulation is the fact that under direct stimulation of corticosteroids, the signals obtained for 

processing were very noisy Figure 12 as evidenced by the lack of repeatability in the 

measurements. The reason for this lack of signal fidelity is due to the fact that the   majority of 

the inflammatory cytokines are down-regulated by corticosteroids. Working off a baseline 

fluorescence of the reporters being zero, the down-regulation of this signal means that the 

measurements are dominated by noise. To compensate for this, the experimental system also 

included composite stimulus represented by an infusion of all the inflammatory cytokines with 

the addition of Dexamethasone. This allows for a baseline fluorescence to be obtained and the 

effect of Dexamethasone to be de-convolved from the system. The ability for these interactions 

to be de-convolved is an important one because it shows that composite stimuli can be used 

successfully in the optimization framework and presents less of a problem in the network 

generation than the bi-clustering formulation. 
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The response of the system to Dexamethasone provides similar insights into the mechanism of 

corticosteroid activity. Unlike the response of NFkB to a step input of TNF-α, the response of the 

Dexamethasone upon its reporter GRE is a decreasing function indicative of a tolerance 

mechanism Figures 29,32,35,36. Therefore, the maximum effect of corticosteroids occurs early 

and there is no delay before a maximum is reached. This suggests that unlike NFkB, there is no 

rate limiting step between the binding of the corticosteroid to the glucocorticosteroid receptor 

(GR) and the activation of the transcription factor. This suggests that if there is a dimerization 

event is not rate-limited i.e. there is a sufficiently high concentration of endogenous GR present 

in the system which the rate of dimerization occurs fast enough where it is not detectable given 

the time resolution of our system.  

Another interesting aspect of Dexamethasone stimulation is the response of the NFkB reporter 

in response to activated GRE. The currently accepted notion is that the activation of GRE down-

regulated NFkB, thus damping the inflammatory response. However, one of the interesting 

aspects of this response is evident when the response over different solutions is compared. In 

the bi-clustering solution where the contributions from STAT3 and HSE were not included in the 

dynamics of NFkB, we see a clear shift from a feedback mechanism to that of a standard feed-

forward response in which the strength of GRE’s effect upon NFkB is directly related to the 

amount that GRE is stimulated. This suggests that unlike AP1, STAT3 and HSE play an important 

role in mediating the feedback mechanism that regulates the response of NFkB to 

corticosteroids. The presence of a feedback mechanism associated with the activation of the 

glucocorticosteroid receptor and the activation of the inflammatory cytokines is an important 

aspect that we will need to incorporate into our modeling. 
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However, in addition to the evaluations based upon the stimulation of the system by 

corticosteroids, a great deal more information may be extracted from this system. Of further 

interest to us may be the dynamics of how the other transcription factors interact with each 

other. Thus, we have included analysis of the other dynamics present in the system.  

Predicted Result of NFkB Activation 

The transcription factor interaction with the clearest activity profile is the activation of NFkB in 

response to TNF-α stimulation. This profile was present in all four solutions Figure 29,32,35,36. It 

is possible to see a clear lag in the activity of the transcription factor to the step response, in 

which it takes a non-trivial amount of time to reach a maximum, after which there is a return to 

baseline. This is indicative of a time lagged response coupled with a tolerance mechanism. This 

dynamic provides evidence of a rate limiting event in NFkB thus accounting for time lag before a 

maximum value is reached. This rate limiting step could be due to the time it takes for the 

subunits to be released from IkB[147] or via a rate limiting dimerization step. The return to 

baseline despite continuous infusion of the TNF-α signal illustrates that the NFkB shows a 

tolerance like response under prolonged administration of inflammatory cytokines[148]. 

One result which is unexpected is the fact that NFkB activation seems to have a low level of 

effect upon the other inflammatory cytokines, but seems to be significantly affected by the 

activity of the other inflammatory cytokines. This suggest that while TNF-α is an important 

mediator of inflammation, its reporter NFkB lies downstream in comparison to the other 

inflammatory transcription factors which were measured in this experiment. This result was 

consistent over the different solutions which leads us to the belief that this response is both 

highly robust, as well as the fact that the experiment yielded data of high quality for this 

particular transcription factor.  
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Predicted Result of AP1 Activation 

The perturbation of the system through an administration of IL1 did not seem to have a large 

impact upon the AP-1 reporter in any of the solutions. This suggests that the reporter gene for 

AP-1 activation may need to be optimized.  The level of up/down regulation of the AP-1 reporter 

in response to IL1 activation is low in contrast to the dynamics seen via the HSE, and NFkB 

reporters. This was evident in the fully connected and freely optimized networks Figures 29,32, 

and as such the effect of the soluble factor IL1 is evident within the system, though not through 

its individual reporter. 

In the solutions of the fully connected and freely optimized networks given in Figure 29,32 there 

appears to be a feedback mechanism associated with AP1 and HSE, with an oscillatory behavior 

in the weights.  We see that in the freely optimized network, there is still a great deal of 

commonality in the response of A(i,i’,t) between the two cases despite the removal of the effects 

of GRE and NFkB upon the system. With the removal of AP1 however, we see that there exists a 

major change in the dynamics of the rest of the system Figure 35,36. Computationally, this 

means that the loss of AP1 as a connection, requires significant alterations to the dynamics of 

other transcription factors in order to fit the data. We hypothesize that this effect is due to HSE 

repressing the synthesis of IL1 which is the activator of AP-1[149], and that IL1 affects the 

phosphorylation of various heat shock proteins[150]. The combination of these two factors 

suggests the existence of a cycle and therefore the need for a feedback interaction between the 

two elements. 

It may be tempting to suggest that the effect of AP1 upon the rest of the system can predicted 

merely the magnitude of its interaction. However, this is not necessarily the case as seen in the 

interactions of the other transcription factors with NFkB. What we see is that even with the 
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removal of AP1 Figure 36 from the solution, the interaction dynamics of the other transcription 

factors with NFkB are still reasonably consistent and that it requires the removal of both HSE and 

AP1 before there exists a significant change. 

Predicted Result of STAT3 Activation 

Similar to the results obtained with the IL1 stimulation, the IL6 stimulation did not appear to 

have a large effect upon the induction of its reporter. This dynamic was again present in all of the 

solutions that were obtained. This evidence suggests that the sequence of the reporter could 

perhaps be better designed. Specifically, while these reporters are able to show qualitative 

changes, they may be optimized to show greater fold change when activated. In spite of the low 

fold change in STAT3 reporter activation, there was a significant alteration in the activity of the 

NFkB reporter by IL6. This was present in three of the four solutions Figures 29,32,36 being 

present in the solutions where the network was determined via the MILP formulation and 

absent when utilizing the bi-clustered network. This activation appears to have a feedback-type 

dynamic for NFkB. In the literature, it has been reported that IL6 is induced by TNF-α, an 

activator of NFkB[151] as well evidence that IL6 down-regulates the activity of NFkB[152]. This 

combination of effects points to the existence of the feedback mechanism as suggested via the 

reconstructed dynamics. The other reporters in response to IL6 stimulation have inconsistent 

results and connectivity. Given that the connection strengths of STAT3 to the other transcription 

factors is low, this suggests that perhaps the connections may not actually exist, or that IL6 

represents a relatively non-specific inducer of inflammation and that while it affects many 

system, its individual contribution to the dynamics of the measured reporters is reasonably low.  
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Predicted Result of ISRE Activation 

While many of the transcription factor interactions seem to have dynamics which are similar to 

those predicted via the network motifs in Figure 29, the responses for IFN-γ stimulation do not. 

This may be due to the highly connected nature of IFN-γ due to its central role in the JAK-STAT 

pathway[153]. Aside from the interconnectedness of the IFN-γ, the networks generated via the 

full optimization, and the bi-clustering both appear to reflect the fact that ISRE is consistently 

more connected than any of the other elements. Due to small scale of the system, the effect of 

IFN-γ on the other factors may be in reality mediated through several intermediates. Without 

these intermediates, the effect of IFN-γ upon the system represents the combination of the 

effects of these different intermediates, thereby obscuring the direct effect that IFN-γ has upon 

the system. However, the pseudo-oscillatory behavior may be indicative of a significant amount 

of feedback that underlies an organism’s response to IFN-γ, and may be due to factors which 

have not been previously identified.  

Conclusion 

The primary pieces of information which we wished to extract from the Living Cell Array were 

the hypotheses that the tolerance effect of corticosteroids appeared to have been mediated by 

receptor saturation, and not through the degradation of the receptor itself. Thus, the tolerance 

mechanism associated with its anti-inflammatory effects is independent of the concentration of 

activated receptor within the system. Secondly, it appears that the loss of the anti-inflammatory 

effects of corticosteroids are mediated specifically by a feedback mechanism which attenuates 

the anti-inflammatory effect of corticosteroids, as evidenced by the oscillations present in the 

response of NFkB to an activated corticosteroid receptor. 
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Furthermore, we hypothesize that such a feedback mechanism may be mediated by either a 

secondary transcription factor, or a protein which is regulated by this transcription factor. With 

the loss of AP-1 and HSE, we see the loss of the oscillations in the response. Thus, a secondary 

hypothesis is that the feedback mechanism may be affected by one or both of these 

transcription factors. With the removal of these transcription factors, the effect of 

corticosteroids on NFkB appears to follow the same saturation kinetics as response of the GRE 

reporter. These pieces of information then many allow us to create a more comprehensive 

model of corticosteroid activity. 

Aside from the specific information about the dynamics of the corticosteroid receptor, the 

formulation appears to be able to distinguish the dynamics associated with various mechanistic 

of transcription factor activity such as receptor dimerization. Thus, this system exemplifies the 

goal of systems biology. With this system, we can run a relatively standard experiment, combine 

the experimental data with an analysis technique which is implicitly takes the interactions of the 

different systems into account, and finally obtain a hypothesis as to either the mechanism 

behind the activation of a specific transcription factor as well as the possible architecture which 

governs the entire response of an organism. This hypothesis can later be tested more thoroughly 

in more precise and targeted experiments. 

One of the logical progressions of this method is the expansion of the Living Cell Array to 

incorporate more transcription factors. However, in addition to the experimental scale up of the 

device, further work also needs to be done in optimizing the formulation such that larger 

systems can be tackled. While the number of binary variables in the bi-clustering algorithm 

scales linearly with the number of factors added into the system, the RED method scales in 

polynomially, which quickly makes the problem intractable. This may be solvable through a more 

intelligent use of constraints in the formulation, or through the incorporation of a priori 
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information. The incorporation of a priori information is attractive to us, because it suggests the 

ability to link the experimental work and the analysis in an iterative loop which allows for 

constant refinement of the predicted architecture and dynamics. 
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A Hypothetical Model for CEquation Chapter (Next) Section 1

orticosteroid activity 

Because this dissertation represents a Systems Biology Approach for assessing corticosteroid 

activity, the final step is the proposal of a new hypothesis that can be used to guide further 

experiments. Thus, the final step of this dissertation is the proposal of a new model of 

corticosteroid activity which one can then test utilizing either different input stimulus, or by 

testing for certain important features within the data. Therefore, we will not only be proposing a 

model in the final chapter of this dissertation, but also suggesting different experiments which 

can be run to validate such a model. 

One of the issues with the current model for corticosteroid activity was that it was developed 

under an acute administration of corticosteroid administration. Utilizing the results from the 

SLINGSHOTS algorithm as well as a basic mass transfer model, the acute response can be 

explained via a simple mass-action model which suggests that the primary effect of the drug is 

established through the local dug concentration in different compartments. Therefore, while 

there does exist significant nonlinear effects hypothesized by Almon et al, such as tolerance, this 

dataset does not exhibit the necessary features to resolve them. Under the chronic 

administration of corticosteroids, we see two characteristic responses, the first response which 

is similar to the profiles obtained via the acute administration, and a second response which 

showed an initial lag, and then a sustained up-regulation of the gene expression profile. 

Paradoxically, the gene expression profiles which appear to be common between the acute and 

chronic administrations of corticosteroids are dissimilar mechanistically. Under a chronic infusion 

of corticosteroids, the expected response of a mass transfer model was given in Figure 16, which 

is a sustained up-regulation of activity due to the continued presence of the activated 
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transcription factor within the system, with the inclusion of a discrete lag term which we do not 

model in our simple mass transfer system. Utilizing the more complex fifth generation model, 

does not yield qualitatively better results. Because in both models, the primary driving force is 

the amount of activated corticosteroid within the system, and in both models, this is directly 

related to the amount of drug within the system.  

In an updated mechanism by Almon et al., they proposed the fact that corticosteroids destabilize 

mRNA, and thus, a constant infusion of corticosteroids will degrade the mRNA associated with 

inflammation, and not those associated with metabolism, thus explaining the two responses. 

While this mechanism is a reasonable hypothesis, it does not explain the salient time lag feature 

in the gene expression profiles from the extracted chronic dosing of corticosteroids such as 

those seen in Cluster 1 of Figure 14. Furthermore, in the acute case, it was found that the 

different gene expression profiles had two sets of time constants, one of which had a relatively 

fast activation, and a second profile which had a similar activation profile, but one which took 

place at a later time. Because of these two observations, we believe that the effect of 

corticosteroids upon the liver is a two step sequential process, rather than the updated model 

proposed by Almon et al, which treated the responses as two separate profiles, with the 

sustained response being similar to our simple mass transfer model, and the profiles exhibiting a 

loss of activity after prolonged infusion being due to a secondary factor which affects mRNA 

degradation rates.[154] 

Our hypothesis for a two step process opens three possibilities: 

1. One of the initial fast response genes code for another corticosteroid sensitive 

transcription factor which shows a different characteristics than the GR receptor 
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2. The corticosteroid receptor itself is modified via the fast response into a second active 

form. 

3. There exists a significant interplay between different tissue types which leads to a 

secondary activation of metabolic genes. 

Hypothesis 1 is based upon the existence of a second corticosteroid responsive protein which 

has different characteristics than the known corticosteroid receptor. This possibility has been 

touched upon in our transcription factor evaluation suggesting that AP2-α may be such a factor 

and the work by  which showed that the anti-inflammatory effects of corticosteroids could be 

obtained even when the corticosteroid receptor has been re-engineered such that the sub-units 

could not dimerize and therefore activate[155]. In addition to the identity of a secondary 

corticosteroid sensitive protein, it also requires a relatively rapid degradation of the original 

corticosteroid receptor under a chronic infusion of corticosteroids. 

Hypothesis 2 suggests that the corticosteroid receptor itself has two distinct active forms. The 

first active form is a drug bound monomer, and the second active form is a drug bound dimer, 

each of which recognizes different upstream cis-binding sites. Thus, under chronic stimulation 

the initial “fast” response is activated by one form of the corticosteroid receptor, codes for a 

protein that converts this corticosteroid receptor into a second form, which then goes on to 

activate the secondary sustained response. 

Hypothesis 3 suggests that as corticosteroids act upon the different tissues in an organism, 

changes in the levels of circulating metabolites activate a second set of genes. Thus, the 

responses seen under the chronic case are not necessarily sensitive to corticosteroids, but are 

sensitive to the level of metabolites found within circulation such as the increase in circulation 

glucose. Thus would suggest a second regulatory site involved in the response to corticosteroids. 
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Utilizing the LCA, we hypothesize that one may be able to identify the most probable scenario 

based upon the process of elimination. For instance, if one were unable to see the rapid 

degradation of the corticosteroid receptor in the LCA, then hypothesis 1 would be discounted. 

Hypothesis 2 would be discounted if the corticosteroid receptor showed dynamics which were 

more complex than simple degradation of the receptor, or saturation. Hypothesis 3 could be 

discounted if the observed responses of the system could be replicated within the confines of 

the LCA, which does not incorporate different cell types and focuses only upon the hepatic cells. 

From the results of the LCA, it appears that Hypothesis 1 may not be the most likely explanation. 

Specifically looking at the activation of the glucocorticosteroid receptor by Dexamethasone, we 

see a slow decline in the effect of Dexamethasone. This loss of effect can be attributed either to 

the decreasing effectiveness of additional amounts of corticosteroids due to receptor saturation, 

or due to the loss of the corticosteroid receptor itself due to the degradation. However, in either 

case, the decline in the effect of corticosteroids occurs relatively slowly, and thus cannot explain 

the rapid inactivation present under the chronic administration of corticosteroids. Secondly, the 

oscillatory feedback behavior of the NFkB transcription factor seems to occur in a manner that is 

not completely dependent upon the level of corticosteroids within the system. What the results 

of the LCA analysis shows is that the while NFkB is originally down-regulated by the 

corticosteroid receptor, there exists some feedback mechanism which controls the down-

regulation of NFkB, and that this feedback mechanism acts faster than the decline in the 

glucocorticosteroid receptor activity. Thus, if a gene related to inflammation were related to 

both the concentration of corticosteroid receptor, and the presence of some other transcription 

factor, we would expect to see a response which was sustained longer due to the time duration 

of the glucocorticosteroid receptor. 
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The second hypothesis appears to be a variation of the first hypothesis. Rather than the 

transcription of a new protein, we have instead the conversion of the receptor from one active 

state to another. However, the primary difference between these two hypotheses is that given 

the structure of the regulatory regions built into the reporter plasmid that both forms are able to 

activate and bind to the promoter region, thus preventing the dynamics of the 

glucocorticosteroid receptor in the LCA from changing much. Furthermore, the existence of a 

dimeric active form, also allows us to rationalize the “time lag” response obtained from the gene 

expression data under chronic stimulation where there exists a small lag before the response 

increases to a new steady state. Furthermore, it incorporates an explicit model for the 

deactivation of the glucocorticosteroid receptor as a transcription factor, something which could 

not have been accounted for in the first hypothesis unless we hypothesize the existence of a 

third protein. 

The final hypothesis was discounted because the sustained effect of dexamethasone on the 

activation of the glucocorticosteroid receptor as well as the shorter term loss of anti-

inflammatory ability was seen in the LCA without requiring the use of other cell types. Therefore, 

while there may be an important role of other cells in the form of paracrine or endocrine 

signaling, the primary features which we are attempting to reconstruct are present when looking 

only at a single cell type.  

Hypothesis: The glucocorticosteroid receptor has 2 active states 

Given the results of our analysis of both the temporal gene expression data and that of the 

Living Cell Array, we have proposed the hypothesis that the corticosteroids act primarily through 

the corticosteroid receptor, and that this receptor has 2 active forms, the first form is a 

monomeric form and the second form is a dimeric form. More specifically, we hypothesize that 
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the monomeric form is the one which primarily mediates the anti-inflammatory and immuno-

suppressive effects of corticosteroids whereas the dimeric form is the one which primarily 

regulates the metabolic response of corticosteroids. 

The response of the Living Cell Array, particularly response of the glucocorticosteroid receptor to 

a sustained input of dexamethasone showed a monotonically decreasing function, where the 

maximum effect of corticosteroids was present during the initiation of the drug stimuli. This is in 

contrast to the response of NFkB, where the point of maximal drug activity occurs at an 

intermediate time point. From the motifs which we had previously indicated in Figure 30, NfkB 

showed evidence of a time-lagged effect which could have been explained via the dimerization 

event of the NfkB subunits. However, such an event was not seen under the response of the 

glucocorticosteroid receptor under the administration of dexamethasone, which showed a 

smooth monotonically reduction in activity. 

This suggests to us that there exists a state of the corticosteroid receptor which is active in lieu 

of dimerization. While it is possible that the time-lagged effect was not seen under the LCA data 

analysis due to the insufficient sampling rate, having an active monomeric form of 

corticosteroids allows us to resolve several paradoxical observations about corticosteroids in 

general.  

For instance, it has been suggested that the anti-inflammatory effects of corticosteroids may not 

be mediated via transcriptional regulation. In a paper by Reichardt et al.[155], a mutant strain of 

mice was created such that the corticosteroid receptor could not dimerize. It was found that 

there was no loss in corticosteroid activity in these mutant rats. The conclusion drawn by 

Reichardt et al., was that corticosteroids do not inhibit inflammation transcriptionally. This 

interpretation of the results however does not take into account the natural metabolic effects 
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associated with corticosteroids. Had the corticosteroid receptor been truly non-active in these 

organisms, there ought to have been significant alterations to the metabolic response of the 

organism which should have manifested itself as phenomena such as hypoglycemia, loss of body 

fat percentage, and hypersensitivty to insulin. However, these phenomena had not been 

observed in the mutant rats. Therefore, an alternative hypothesis is that corticosteroids may be 

active in their monomeric form. 

Furthermore, it was found that the corticosteroid receptor, even without dimerization, is able to 

bind to a corticosteroid half-site[156]. This was leveraged in the creation of ELISA assays for the 

corticosteroid receptor. In these assay, only the canonical half-site binding domain was used to 

bind corticosteroids. This at the very least suggests that whether the corticosteroid receptor 

itself dimerizes or not, it is at least able to bind to sequences expressing only one half-site.  

The final paradoxical information arises from the documented position weight matrix associated 

with the glucocorticosteroid receptor.  Given the current hypothesis that the corticosteroid 

receptor forms a homodimer, it would be expected that the canonical corticosteroid half-site of 

TGTTCT be consistent between both of the half sites, either directly or palindromic as shown in 

Table 4.  
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TCTTGTnnnTCTTGT 

TCTTGTnnnTGTTCT 

TCTTGTnnnAGAACA 

TCTTGTnnnACAAGA 

Table 4: Possible 

expected motifs if 

only the dimeric form 

were active 
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However, the currently accepted position weight matrix does not illustrate this dynamic, but is 

instead listed on TRANSFAC[69] as GGTACAANNTGTYCT, with  which is not palindromic. 

Furthermore, one of the half sites is highly specific, whereas point mutations in the other half 

site is appears to have little effect upon binding[157]. Various possibilities exist such as the 

hypothesis that the second binding site changes based upon whether the corticosteroid receptor 

itself activates or represses the gene in question. However, while this would point to a loss in 

specificity, it does not explain the complete lack of specificity in this region. We do not see two 

specific possibilities manifest in the inconsistent region, but rather a random distribution of 

bases. Again, one method for rationalizing these observations is that there exist two forms of the 

active corticosteroid receptor.  

Utilizing this hypothesis, one can rationalize the inconsistencies in the position weight matrix. 

Because one of the forms of the corticosteroid receptor represents the binding site of a 

monomer, taking a window size associated with the dimeric form will essentially yield a highly 

conserved region as well as a highly variable region which is similar to the properties observed in 

the position weight matrix of the glucocorticosteroid receptor. 

Model Building 

Having established our hypothesis that corticosteroids may exist in two different active forms, 

we can create a new model of corticosteroid activity. The primary feature of this model is the 

sequential activation of the different forms of the corticosteroid receptor. Therefore, the first 

form of corticosteroid receptor is activated, and will go on and either up/down-regulate the 

responses associated with inflammation and the immune system. The conversion of this first 
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active form into its second active form, will deactivate the receptor with respect to the first set 

of genes. 

This leads to the following model schematic given in Figure 38. In this model, we hypothesize 

that the monomeric form represents the first activated state of the corticosteroid receptor, 

whereas the dimeric form represents the second activated state. This is because from the LCA 

data, the response of the system appeared to be driven primarily by the monomeric form. 

Therefore, the initial fast response appears to be primarily due to the monomeric form. At a later 

point in time, the dimeric form dominates, and should show smooth degradation/saturation 

kinetics. Given the hypothesis from the Living Cell Array, this initial response is mediated by a 

feedback mechanism. Therefore, one of the genes which are activated by the initial form of 

corticosteroids, will be part of the feedback mechanism which deactivates the receptor with 

respect to the initial set of activated gene. This thus, allows us to rationalize the dynamics 

observed with the NFkB transcription factor. The model consists of two linked receptor mediated 

dynamics. The initial response produces a protein which will convert the initial monomeric form 

of the receptor into a dimeric form. Because the genes which are sensitive to the monomeric 

form do not have the additional binding site associated with the dimeric form, transcriptional 

regulation of these genes decreases due to the inability to bind. This dimeric form then regulates 

the second wave response. 

  



192 
 

192 

 

 

 

 

 

 

 

Figure 38: Our proposed model of corticosteroid activity. The primary features of this model 

are the feedback look which takes the protein produced via mRNA1 which provides a feedback 

interaction, and the two active states of the glucocorticosteroid receptor D, and NR* 
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The set of differential equations associated with this model is given in (7.1). One aspect of the 

model which we will not be explicitly modeling is the production and degradation of the 

corticosteroid receptor. While this was an important feature in the previous fifth generation 

model, we feel that there is not sufficient data to accurately model the temporal dynamics of 

corticosteroid receptor production and degradation. In the current dataset presented by Almon 

et al., the only piece of data that is available is the amount of free receptor. This is problematic 

because the amount of free receptor is dependent first upon the total amount of receptor 

present in the system, but is also dependent upon the amount of drug within the system.  

Because of the limited dataset, we cannot de-convolve these two processes. While undoubtedly 

the receptor dynamics will play a role in the overall response of the system, we hypothesize that 

the primary determinant of the response will be mediated via drug/receptor trafficking. We are 

not saying that the receptor production/degradation is not an important aspect of the system, 

but that under these two datasets, evidence of their impact may not be visible.  This argument is 

similar to the argument presented in Chapter 4, in which models derived from the acute 

administration of corticosteroids could not be used to predict the response to chronic 

administration of corticosteroids, because not all of the nonlinear elements were evident in the 

response.  
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(7.1) 

In this model, D represents the concentration of the drug, R, represents the initial form of the 

receptor, DR, represents the drug receptor complex, DRN represents the drug receptor complex 

translocated into the nucleus, R*, represents the second active form, and likewise DR* 

represents the second active form complexed with the drug. 

Model Fitting 

Having established a hypothetical model, the question is whether, such a model can be used to 

replicate the dynamics found in both the acute and chronic administrations of corticosteroid. 

Working off of the elementary responses rather than the responses of individual genes, it is 

important to determine whether the qualitative responses can be fitted. From the results of the 

SLINGSHOTS selection, we have separated the motifs into two primary groups. In the acute case 

the clusters correspond to an early and late response Fig. The first cluster corresponds to the 

early response and the second cluster corresponds to the late response. In the chronic case, the 

two groups are divided into the responses which return to baseline, and those that do not. For 
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the sake of fitting, we select the groups that have the most genes as the representatives of all 

the other clusters. 
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Figure 39: The profiles which were selected for fitting by our new 
model.  The acute case consisted of the two up-regulated profiles. 
These profiles differ in the time constants associated with their time to 
maximum and return. The chronic case consisted of a profile which 
exhibited tolerance (loss of activity), and one which did not 
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One of the critical aspects of this model which we would like to stress is the fact that the 

underlying model is the same, and the only difference between the two models is the input into 

the system and the coefficients which are used to fit the model. The inputs of the system are 

defined by the drug concentration. In the acute case, we will be utilizing the bi-exponential 

function which was fitted to the drug concentrations. This function was explicitly defined as in 

Eqn. In the case of the step function, the drug concentration was assumed to be constant step 

function with a value of .1. The functional form of the drug concentration in circulation was 

defined with a dosing of 50 mg/kg whereas in the infusion experiment the drug concentration 

was defined with a dosing of .1 mg/kg, and therefore the amount of drug in circulation was 

scaled accordingly. 

The data which we will be fitting is the elementary responses which we have selected via the 

SLINGSHOTS algorithm. Due to the fact that the SLINGHOSTS algorithm yielded many similar 

responses, we have selected two representative responses to conduct the fitting. In the acute 

cases, we have chosen clusters one and two, due to their different time constants. Of primary 

concern in this model is whether receptor trafficking can be used to explain most of the 

dynamics. Because Cluster 3 has a similar time constant to Cluster 2, it is treated as representing 

the same response except that it represents a repression event due to the binding of the 

glucocorticosteroid receptor rather than an activation event. In the chronic case, we have chosen 

as representative profiles Clusters 1 and 6. Cluster 1 represents the response which reaches a 

sustained maximum in response to continued drug administration whereas Cluster 6 represents 

the profiles that show tolerance i.e. loss of effect despite continued drug administration. In both 

these cases, the elementary responses were reduced to yield two classes of responses that were 

qualitatively similar. Thus after, we have validated the ability of the model to fit these curves, the 

model can be expanded to fit the response of all extracted clusters. 
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As a prelude to the fitting operation, the extracted motifs have been interpolated to have 1 hour 

intervals. Due to the uneven sampling of the experimental dataset, if no interpolation was done, 

then the early time points would contribute more towards the objective function. In this 

manner, the objective function weighted equally over the time course of the experiment. Due to 

this interpolation operation, the acute dataset has 72 time points which must be fitted and the 

chronic dataset has 168 time points which must be fitted. 

In this model there are 12 parameters that must be fitted. The model fitting operation was 

carried out via the matlab command fminsearch. At this point, we wish to determine whether 

there exists a set of coefficients which will allow both of the observed responses to be fitted. At 

this point we are not concerned so much about the value of the different model coefficient, but 

only that the model can be used to reconstruct the observed dynamics.  

In Figures X and Y, it is evident that the model fitting exercise was a success.  In both cases, the 

proposed model is able to generate profiles which accurately fit the responses selected by the 

SLINGSHOTS algorithm. Utilizing a relatively simple model with constant coefficients, it is 

possible to reconstruct the data with a reasonable level of accuracy. The parameters associated 

with each model fitting are given in Appendix B. While it would have been ideal if the 

coefficients in both fits to correspond exactly, this was not an expected result. Because of the 

normalization that had occurred, we could not assess whether the scale change between the 

two cases were consistent, and therefore the scale factors associated with the parameters 

cannot be directly compared. The specific features which we are looking for are the combination 

of the sigmoidal response, and the response that shows tolerance with respect to a chronic 

infusion of corticosteroids, and two similar responses under the acute that differ by their time 
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constants. Because, the model was able to replicate both responses, it appears that with a single 

model the paradoxical responses appear to have been replicated. 

Discussio 

The first task is to determine whether the response of the system is a consequence of the model 

structure, or whether the model is sufficiently flexible to fit any kind of data. Because we are 

running a model fitting exercise in which we try to minimize the error between the model 

prediction and the data, it is important to validate that the model is specific to a given response, 

and is not a generalized model that can fit any type of response. To run this model validation, we 

essentially change the input into the system. Therefore, we seek to determine whether it is 

possible to obtain the acute response, if we utilize a step input, or the chronic response if we 

utilize a bolus injection of corticosteroid. 

Thus the overall operation consists of running the same fitting operation except with “incorrect” 

input. The result of this operation is given in Figure. What is evident is that these models can 

only replicate the observed dynamics only when the correct input is utilized. From this result it 

appears that the hypothetical model at least shows a degree of specificity with respect to the 

input. Therefore, at this point we have validated the fact that our model has some characteristic 

response based upon the input into the system, rather than functioning as simply a curve fitting 

exercise. 
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The second piece of validation which we need to accomplish is to determine whether the model 

as constructed is able to replicate the dynamics of the system in response to an input which was 

not used previously. Because our model was designed to handle the differences between the 

acute and the chronic case, by design it needs to replicate those dynamics. However, it is less 

clear as to whether the response of the system will be replicated if an additional input is used. 

Since we have already determined that the qualitative response of the model is dependent upon 

the architecture, the question is whether this system can replicate dynamics from a dataset 

which we have not previously utilized. 
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Figure 40: An attempted fit(solid) of the acute data (dotted), when then input is changed to an infusion. It appears 

that the dynamics of the system are determined primarily via the architecture of the model and the stimulatory 

input associated with an administration of corticosteroids 
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The specific dataset which we will use as a testing set corresponds to the response of the liver 

with response to the circadian rhythm of the endogenous level of corticosteroids. In the two 

datasets which we have based the bulk of our analysis, the adrenal glands of the animals have 

been removed to eliminate the effect of endogenous cortisol. This is because the adrenal glands 

themselves produce cortisol in a circadian manner, which would have affected the levels of 

corticosteroids in the system after an infusion or injection of corticosteroids. However, in the 

dataset which we will use for validation, the stimulus will be only that of the endogenous 

corticosteroid levels. Therefore, this dataset attempts to determine the effect that the circadian 

variations of endogenous corticosteroid levels have upon gene expression. Thus, the primary 

hypothesis is that genes which show circadian variations in the liver may be regulated by 

corticosteroids. This dataset consisted of 3 replicates over 18 different time points over 24 hours, 

for a total of 54 individual samples. This dataset can be found in the GEO database under 

accession number GDS8988. Initial analysis of this dataset suggested that the levels of 

corticosteroid responsive genes under the control of endogenous corticosteroids appear to 

follow a sinusoidal pattern[158]. Thus, the expected result of our model is that if a sinusoidal 

input is utilized to stimulate the liver, then the expected output will be that corticosteroid 

responsive genes will follow a similar pattern albeit with different magnitudes and phase shifts. 

To account for this new input, we use the parameters that were obtained from the two previous 

fitting operations in the model, and change the input from an infusion or a bolus injection into 

that of a sinusoid. What we see is that if we change the levels of the endogenous level of 

corticosteroids to a sinusoid that the given output corresponds is also a sinusoid, which 

corresponds to the output which was obtained in the prior analysis of the dataset corresponding 

to the endogenous response to corticosteroids Figure 41. Thus, the response of the system to 

endogenous levels of corticosteroids also appears to be well handled by the proposed model. 
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Without having to refit the data, it appears that the architecture of the model is able to replicate 

the dynamics of the dataset which was not previously used. Thus, because the validation 

appears to be successful, this network architecture presents a reasonable hypothesis to explain 

the dynamics associated with transcription factor prediction.  
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Figure 41: The response of the model to the circadian variation of endogenous corticosteroids. 
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It is important to note that this model was obtained without fitting the data, but only by 

changing the input. Furthermore, the dose was an uncalibrated sinusoid, with the initial 

activation of the genes set at 0. This is significant because it shows that the qualitative response 

of the system is dependent again only on the architecture as well as the input which we have 

stimulated the system with, but also that the system is stable. Making no assumptions as to the 

concentration of endogenous corticosteroids, nor robustly identifying the initial state, we were 

able to obtain a response which would stabilize over time. One of our hypotheses associated 

with this result pertains to the stability of our architecture. Given the fact that there exists a 

mass balance in the amount of receptor present in the system, we hypothesize that the system 

will always return to baseline once the input stimuli has been removed from the system. Thus, 

the occurrence of the sustained metabolic side effects may be mediated by carefully controlling 

a set of bolus injections of corticosteroids, such that there is sufficient time for the secondary 

form of the receptor to be converted back into its initial active state.  

However, while the model itself appears to replicate the observed dynamics, there are a few 

issues which we have not accounted for, which may be important. The first issue is that of scale. 

At this point, we were more interested in replicating the dynamics of the signal, specifically in 

terms of the time constants associated with the activation/deactivation of various gene 

products, we have rescaled the dynamics via the z-score. However, in real biological system 

there are issues relating to scale, such that if the activation is under a certain threshold, 

downstream pathways will not be activated. In our model, we cannot directly account for this. 

Part of the reason for this is that we do not have sufficient experimental data to determine 

whether there exists an all or nothing behavior in response to corticosteroids as in the case of 

neuronal firing. We hypothesize that this is not the case, due to the oscillatory nature of the liver 

in response to the circadian rhythm of endogenous corticosteroids. However this fact cannot be 
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directly accounted for. Secondly, we have not taken into account issues such as time delays in the 

system nor the effects of stochastic processes, both of which may play an important in mediating 

the overall response to corticosteroids. In spite of this, we hypothesize that our initial modeling 

approach, presents a good initial starting point to verifying various mechanistic properties of 

how the corticosteroid receptor is activated, and how it in turn regulates other genes. This 

starting point, can then be used as the foundation for these more sophisticated models. 

Concluding Remarks 

The result of the model building exercise brings the Systems Biology method around in a full 

cycle. Starting with the initial high throughput gene expression experiments, and the 

incorporation of extra information in the form of the Living Cell Array, we have first managed to 

generate a small set of hypotheses concerning how the system should respond. Then via the 

creation of the model, we are essentially codifying the hypothesis in a mathematical form. This 

mathematical form then has certain mechanistic features which can then be tested with further 

experimentation. Thus, the concluding remark of this dissertation involves the codification of a 

hypothesis and the beginning of a proposal for future work.  

The specific mechanistic consequence which we hypothesize to play an important role in the 

transcriptional regulation of corticosteroids involves the need for a feedback interaction 

involving the conversion of a monomeric form of corticosteroids into a dimeric form. These two 

forms then regulate two separate categories of genes, one which are involved in the regulation 

of inflammatory genes, and the second category which are involved in the regulation of 

metabolic processes. Therefore, from the results of this analysis, we can begin to propose 

additional experiments which can be run. The most obvious experiment which we propose is 

finding out whether corticosteroids themselves are active in their monomeric form. We 
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hypothesize that the Living Cell Array with its reporter plasmids may be well adapted to this role. 

Rather than utilizing the full transcription factor binding site for the glucocorticosteroid receptor 

as reported by TRANSFAC, we can utilize the conserved half site. If the reporter gene were 

constructed in this fashion, and still the anti-inflammatory response of corticosteroids are still 

active, then it will have provided evidence suggesting that a monomeric form of the 

glucocorticosteroid receptor is indeed active in the regulation of genes related to inflammation. 

If this mechanism could be validated, then it suggests to us the possibility of targeting the anti-

inflammatory mechanisms associated with corticosteroid activity without the attendant side 

effects associated with prolonged corticosteroid treatment, in which the primary mode of action 

would be the prevention of the dimerization of the glucocorticosteroid receptor.  

Thus, the application of Systems Biology to the underlying stem of study has allows us to take an 

experiment with a standard hypothesis, “An organism responds to external stimuli through 

changes in gene expression,” quantify possible dynamics, and finally formulate new hypotheses 

for further exploration.  

Moreover, since the primary goal of Systems Biology is to create and utilize a standard set of 

experiments and data processing techniques, many of the methods presented in this 

dissertation have applications to other questions. Thus, the overall value of this dissertation is 

more than our elucidation of a possible mechanism behind corticosteroid activity, but also in the 

discrete steps that it required for us to get there. Each of these discrete steps can be applied to 

other problems in order to obtain initial insights for further experimentation. These problems 

need not be related problems such as examining the response of an organism to other drugs, 

but may be used to study the temporal effects of any stimulus into a biological organism 

provided that a suitable high throughput measurement technique can be obtained. For instance, 
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our proposed method for evaluating the informative nature of a dataset can be applied to any 

type of dataset that consists of large amount of parallel temporal data, and not just those of 

mRNA microarray data. The desire for generality over multiple experimental protocols was the 

underlying motivation for the creation of a new metric, rather than the use of the more 

traditional evaluation through gene ontology enrichment. We wanted a method which required 

only the data that was present without the incorporation of outside information. 

The second algorithm presented which was a method for extracting informative motifs from the 

data can be applicable to any high throughput dataset in which the intrinsic relationship 

between different signals is important as is the underlying driving force behind the signals. 

Therefore, this algorithm may be of some use for the analysis of other data types such that of 

the stock market, in which there exists a large number of features stocks all with temporal 

dynamics. Likewise the result of this analysis could be used to extract underlying patterns and 

market movement, which may be obscured by the large number of features present.  

The third algorithm can be applied to any temporal signal to evaluate how reliable a given 

dynamic response is. Thus, it is possible to utilize this method whenever one is interested in the 

temporal dynamics, but are constrained by the number of replicates within the data. While it 

was not done here, one possible extension would be to use the algorithm to determine the 

number of replicates one would need for a givens signal once the variance between replicates is 

known or estimated. Thus, this could be applied to other experimental system such as ELISA. 

While the final algorithm is less general than the other algorithms used in this dissertation, we 

believe that this algorithm coupled with an expanded LCA may provide significant amounts of 

insight into how transcriptional signaling occurs. This method addresses many of the caveats 

associated with network identification, and has allowed us to establish a minimum criteria for 
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network identification as well as a method for assessing the response of hidden states within a 

system.  

What these disparate steps have allowed us to do is fulfill requirements for us to examine a 

previously unknown system with a minimum of underlying assumption. Thus, we have been able 

to first assess the significance of a given dataset, isolate the portions of the data which are 

meaningful, and finally obtain some insight as to how these different systems are tied together. 

Thus by doing so, it is possible to formulate a model which serves as a hypothesis for further 

testing. 
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Appendix A 

Acute Corticosteroid Ontologies 

Gene Cluster Ontology Ontology Category 

Id1 1 Signaling Signaling 

Atp1b1 1 Response to Hypoxia Response to Hypoxia 

Fnta 1 Amino Acid Prenylation Signaling 

Ptbp1 1 mRNA Splicing Signaling 

Nolc1 1 Regulation of Protein Transport Transport 

Mpi 1 Carbohydrate Metabolism Metabolism 

Hyal2 1 Carbohydrate Metabolism Metabolism 

Slc3a2 1 Carbohydrate Metabolism Metabolism 

Slc3a2 1 Carbohydrate Metabolism Metabolism 

Aldoa 1 Glycolysis Metabolism 

Txnl1 1 Electron Transport Metabolism 

Prps1 1 Purine Base Metabolism Metabolism 

Apex1 1 DNA Repair DNA Rpair 

RGD:619726 1 Regulation of Transcription Signaling 

Hnrpab 1 Regulation of Transcription Signaling 

Hnrpk 1 RNA Processing Signaling 

Nxf1 1 mRNA Processing Signaling 

Eif2b3 1 Protein Biosynthesis Protein Synthesis 

Eif2b3 1 Protein Biosynthesis Protein Synthesis 

Tcp1 1 Protein Folding Protein Synthesis 
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Hspa5 1 Protein Folding Protein Synthesis 

Hspb2 1 Protein Folding Protein Synthesis 

Ube2d2 1 Protein Modification Protein Synthesis 

Mapk6 1 Animo Acid Phosporylation Signaling 

Mapk6 1 Animo Acid Phosporylation Signaling 

Ywhah 1 Negative Regulation of Protein Kinase Activity Signaling 

Metap2 1 Proteolysis Metabolism 

Metap2 1 Proteolysis Metabolism 

RGD:621595 1 Ubiquitin Cycle Metabolism 

Tomm20 1 Protein Targeting Signaling 

Ywhag 1 Protein Targeting Signaling 

Ssr3 1 Protein Membrane Targeting Signaling 

Slc29a2 1 Transport Transport 

Slc5a3 1 Transport Transport 

Atp2a2 1 Cation Transport Transport 

Atp2a2 1 Cation Transport Transport 

Cltb 1 Neurotransmitter Transport Transport 

Npm1 1 Intracellular Protein Transport Transport 

RGD:620645 1 Apoptosis Immune Response 

Zp2 1 Cytoskeletal Organization 

Cytoskeletal 

Organization 

Dncic2 1 Microtuble based processes 

Cytoskeletal 

Organization 
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Cntf 1 Neurogenesis Neurogenesis 

Pafah1b1 1 Neurogenesis Neurogenesis 

Ifrd1 1 Neurogenesis Neurogenesis 

Slc12a4 1 Regulation of Cell Cycle Cell Cycle 

Ccnd3 1 Regulation of Cell Cycle Cell Cycle 

Ccnd3 1 Regulation of Cell Cycle Cell Cycle 

Avp 1 Regulation of Blood Pressure 

Regulation of Blood 

Pressure 

Hif1a 2 Angiogenesis Angiogenesis 

Psen1 2 Angiogenesis Angiogenesis 

Prkar1a 2 Mesoderm Formation Mesoderm Formation 

Prkaa1 2 Actiavation of MAPK Signaling 

Asl 2 Urea cycle Metabolism 

Asl /// Hnrpab 2 Urea cycle Metabolism 

Hyal2 2 Carbohydrate Metabolism Metabolism 

Tat 2 gluconeogenesis Metabolism 

Mybbp1a 2 Electron Transport Metabolism 

RGD:708345 2 DNA Repair Response to Hypoxia 

Bteb1 2 Regulation of Transcription Signaling 

Bteb1 2 Regulation of Transcription Signaling 

Hsf1 2 Regulation of Transcription Signaling 

Dkc1 2 Regulation of Transcription Signaling 

SMN1 2 mRNA Processing Signaling 
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Eif4e 2 Protein Biosynthesis Metabolism 

Stch 2 Protein Folding Metabolism 

Ap2b1 2 Protein Assembly Metabolism 

Ap2b1 2 Protein Assembly Metabolism 

Ywhah 2 Regulation of Protein Kinase Activity Metabolism 

Ece1 2 Proteolysis Metabolism 

Pcsk7 2 Proteolysis Metabolism 

Pcsk5 2 Proteolysis Metabolism 

Cpt1b 2 Fatty Acid Metabolism Metabolism 

Grik1 2 Transport Transport 

Atp2a2 2 Cation Transport Transport 

Arf4 2 Protein Transport Transport 

Ptma 2 Anti-apoptosis Immune Response 

Tpm4 2 Muscle Contraction Muscle Contraction 

Itgam 2 Cell Adhesion Cell Adheion 

RGD:619777 2 Cell Adhesion Cell Adheion 

Rala 2 Signal Transduction Signaling 

Slc12a4 2 Regulation of Cell Cycle 

Regulation of the Cell 

Cycle 

Bcat1 2 Metabolism Metabolism 

Kdr 3 Angiogenesis Angiogenesis 

Gchfr 3 Nitric Oxide Biosynthesis Metabolism 

Dio1 3 Metabolism Metabolism 
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Dia1 3 Electron Transport Metabolism 

Dia1 3 Electron Transport Metabolism 

Dia1 3 Electron Transport Metabolism 

Cyp4f2 3 Electron Transport Metabolism 

Dia1 3 Electron Transport Metabolism 

Dia1 3 Electron Transport Metabolism 

Cyp2d9 /// Cyp2d10 3 Electron Transport Metabolism 

Maob 3 Electron Transport Metabolism 

Dao1 3 Electron Transport Metabolism 

Cat 3 Electron Transport Metabolism 

Haao 3 Regulation of Transcription Signaling 

Haao 3 Regulation of Transcription Signaling 

Thrb 3 Regulation of Transcription Signaling 

Mapk9 3 Protein Amino Acid Phosphorylation Signaling 

Kynu 3 Amino Acid Metabolism Metabolism 

Pcbd 3 L-phenylalanine metabolism Metabolism 

Gamt 3 Creatine Biosynthesis Metabolism 

Lipa 3 Lipid Metabolism Metabolism 

Gpam 3 Fatty Acid Metabolism Metabolism 

Slc40a1 3 Transport Transport 

Slc40a1 3 Transport Transport 

RGD:621430 3 Transport Transport 

Ttpa 3 Transport Transport 
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Slc2a2 3 Transport Transport 

Mbl2 3 Phosphate Transport Transport 

Baat 3 Acute-Phase Response Immune Response 

Jup 3 Cell Adheion Cell Adhesion 

Ceacam1 3 Signal Transduction Signaling 

Ndrg2 3 Signal Transduction Signaling 

Adra1b 3 

G-protein coupled receptor protein signaling 

pathway Signaling 

Rab8a 3 GTPase Signal Transduction Signaling 

Fgf1 3 Cell Cycle Cell Cycle 

Serpind1 3 Coagulation Coagulation 

Nat1 3 Metabolism Metabolism 

Enpp2 3 Nuclotide Metabolism Metabolism 

Abat 3 Gamma-aminobutyric Metabolism Metabolism 

 

Chronic Corticosteroid Ontologies 

Gene Cluster Ontology Ontology Category 

Ftcd 1 amino acid metabolic process Metabolism 

Slc27a5 1 bile acid metabolic process Metabolism 

Aldob 1 fructose metabolic process Metabolism 

Slc37a4 1 glucose-6-phosphate transport Metabolism 

Gcsh 1 glycine decarboxylation via glycine cleavage system Metabolism 

Hpd 1 L-phenylalanine catabolic process Metabolism 
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Gchfr 1 Metabolism Metabolism 

Fah 1 Metabolism Metabolism 

Adhfe1 1 Metabolism Metabolism 

Kif15 1 microtubule-based movement Movement 

Adrbk2 1 
desensitization of G-protein coupled receptor 

protein 
Signal Transduction 

Mrpl16 1 translation Translation 

Sept2 2 Cell Cycle Cell Cycle 

Ncl 2 Cellular Growth Cellular Growth 

Hrmt1l2 2 Defense Response Immune Response 

Afp 2 Immune Response Immune Response 

Adsl_predicted 2 aerobic respiration Metabolism 

Nsun2_predicted 2 Oxidoreductase Activity 
Oxidoreductase 

Activity 

Eif2s2 2 Protein Production Protein Production 

Eif3s4 2 Protein Production Protein Production 

Eif3s9 2 translational initiation Protein Production 

Prkar1a 2 cell proliferation Signal Transduction 

Syncrip 2 RNA splicing Signal Transduction 

Slc3a2 2 amino acid transport Transport 

Sugt1 3 mitosis Cellular Growth 

Ddb1 3 DNA Repair DNA Repair 

Vezf1_predicted 3 cellular defense response Immune Response 
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Ube4b_predicted 3 apoptosis Immune Response 

Bcap29 3 apoptosis Immune Response 

Zfr 3 NK T cell proliferation Immune Response 

Stch 3 Stress Immune Response 

Rabggtb 3 Protein Modification 
Protein 

Modification 

Eif5 3 regulation of translational initiation Protein Production 

Ica1 3 neurotransmitter transport Signal Transduction 

Slc33a1 3 transport Transport 

Ccpg1_predicted 4 Cell Cycle Cell Cycle 

Pold4 4 DNA replication Cellular Growth 

Brinp3 4 negative regulation of cell cycle Cellular Growth 

Sdc2 4 Cellular Signaling Cellular Signaling 

Abhd1 4 abhydrolase Metabolism 

Mccc1 4 biotin metabolic process Metabolism 

Apoa1 4 cholesterol metabolic process Metabolism 

Abo 4 carbohydrate metabolic process Metabolism 

Dpyd 4 'de novo' pyrimidine base biosynthetic process Metabolism 

Ndufa6_predicted 4 Metabolism Metabolism 

Ndrg2 4 cell differentiation Signal Transduction 

Lynx1_predicted 4 synaptic transmission, cholinergic Signal Transduction 

Hspa9a_predicted 5 anti-apoptosis Immune Response 

Psmc4 5 blastocyst development Metabolism 
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Oxnad1_predicted 5 Metabolism Metabolism 

Ratsg2 5 Response to Glucose Stimulation Metabolism 

Cct3 5 chaperonin-mediated tubulin folding Protein Production 

Eif5 5 regulation of translational initiation Protein Production 

Eif3s6ip 5 Protien Production Protein Production 

Arf6 5 actin cytoskeleton organization and biogenesis Signal Transduction 

Mkks 5 sensory cilium biogenesis Signal Transduction 

Psmd4 5 fluid transport Transport 

Nfia 6 DNA replication Cellular Growth 

Serpina1 6 acute-phase response Immune Response 

Cox7b 6 electron transport Metabolism 

Ugt2b 6 metabolic process Metabolism 

Svs1 6 Metabolism Metabolism 

Sulf2 6 Metabolism Metabolism 

Ctsh 6 proteolysis Metabolism 

Hp 6 ion transport Transport 

Rbp4 6 transport transport 

Arsb 7 autophagy Metabolism 

Metap2 7 N-terminal protein amino acid modification Protein Production 

Eif4a1 7 Protein Production Protein Production 

Sfpq 7 RNA splicing Protein Production 

RGD1308469_predicte

d 
7 translation Protein Production 
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Eif2s1 7 regulation of translation 
regulation of 

translation 

Mybbp1a 7 electron transport Signal Transduction 

Abce1 7 electron transport Transport 

Masp2 8 complement activation Immune Response 

Atp5e 8 ATP biosynthetic process Metabolism 

Gpt1 8 gluconeogenesis Metabolism 

Ugt2a1 8 detection of chemical stimulus Metabolism 

Them2_predicted 8 Fatty Acid Metabolism Metabolism 

Dao1 8 metabolic process Metabolism 

Ceacam1 8 angiogenesis Signal Transduction 

Sybl1 8 intracellular protein transport Transport 

Abat 9 response to hypoxia 
response to 

hypoxia 

Cyp2d22 9 arachidonic acid metabolic process Metabolism 

As3mt 9 arsonoacetate metabolic process Metabolism 

LOC298250 9 carbohydrate metabolic process Metabolism 

Khk 9 carbohydrate metabolic process Metabolism 

Osbpl9_predicted 9 Cholesterol Metabolism Metabolism 

Cox7a2 9 electron transport Metabolism 

Ndufa2_predicted 9 generation of precursor metabolites and energy Metabolism 

Hsd17b13 9 metabolic process Metabolism 

Apoc4 10 lipid metabolic process Metabolism 
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Slc2a5 10 carbohydrate metabolic process Metabolism 

Ppp1r3c 10 carbohydrate metabolic process Metabolism 

Atox1 10 Oxidative Stress Metabolism 

LOC300963 10 Protein Binding Protein Binding 

Amph1 10 Regulation of GTPase Signal Transduction 

Rpp21 10 ribonuclease P 21 subunit Signal Transduction 

Omp 10 sensory perception of smell Signal Transduction 

Gfra4 10 Receptor fortyrosine kinase signaling pathway Signal Transduction 
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Appendix B 

Parameters Acute Dosing Chronic Dosing 

K1 (D + R -> DR) 1.94x10-1 2.67x10-4 

K1 (DR -> D + R) 2.08x10-5 8.80x10-6 

K3 (DR-> DRN) 5.71 2.4x10-1 

K4 (DRN + mRNA1->R*)  3.13 1.57 

K5(mRNA1 Synthesis) 2.26x10-1 1.3x10-1 

K6 (mRNA Degradation) 6.42x10-1 3.4x10-1 

K7 (R*->D2R*2) 3.60x10-1 3.9x10-2 

K8(D2R*2-> R*) 14.6 2.4 

K9 (mRNA2Synthesis) 1.8x10-2 2.14 

K10 (mRNA2 Degradation) 3.84x10-1 8x10-3 

K11(R*->R) 4.02x10-1 1.5x10-1 

The coefficients associated with the proposed model (7.1). The coefficients are reported without 

units because of the qualitative nature of the model, as well as our inability to calibrate the 

magnitude of the responses due to ambiguities in translating the fluoresce levels between array 

platforms and probe sets. 
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Appendix C 
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The selected marker genes for the three clusters obtained under the acute case. Note the 

relatively small spread associated with the replicates   
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 Selected Chronic Profiles 
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The profiles of selected marker genes under a chronic infusion of corticosteroids. Note the lack of 

variability within each of the replicates. Thus, it appears that these profiles have been accurately 

determined 
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