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ABSTRACT OF THE DISSERTATION

Higher order conditional inference using

parallels with approximate Bayesian techniques

by JUAN ZHANG

Dissertation Director: John E. Kolassa

I consider parametric models with a scalar parameter of interest and multiple

nuisance parameters. The likelihood ratio statistic is frequently used in statistical

inference. The standard normal approximation to the likelihood ratio statistic

generally has error of order O(n−1/2), where n denotes the sample size. When n

is small, the normal approximation may not be adequate to do accurate inference.

In practice, the true error is more important than asymptotic order. The intention

of this study is to find an approximation which is relatively easy to apply, but

which is accurate under small sample size settings. Saddlepoint approximations

are well-known for higher order accuracy properties and remarkably good relative

error properties. There are several saddlepoint approximations. I look for one

that is flexible in application while keeping a satisfactory convergence rate.

I evaluate, via Monte Carlo, the accuracies of several saddlepoint approxi-

mations, and of some classical methods, when these approximations are used to

approximate p-values for hypotheses about a scalar parameter. Based on the

results, I find that DiCiccio and Martin’s (1993) approximations are interesting
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and deserve more research. Approximations of DiCiccio and Martin (1993) involve

exploiting the parallels between Bayesian and frequentist inference, and can be

constructed from general log-likelihood functions with relatively easy calculation,

while keep the accuracy property.

Two difficulties arise in the application of these approximations. One is the

instability around a singularity. The other and far more significant is the con-

struction of the prior density functions utilized in these approximations. These

prior density functions are also called matching priors.

To make DiCiccio and Martin’s (1993) approximations applicable in practice,

I successfully resolve the above two problems. I remove the instability and fix

the numerical difficulties in applying these approximations. The matching prior

is the solution to a first order partial differential equation. The solution of this

equation is non-trivial under the general parametrization. I use a procedure to

solve the equation numerically given any initial conditions.

As a conclusion, I suggest the use of DiCiccio and Martin’s (1993) approxi-

mations with the construction procedure and the correction that I provide in this

thesis.
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Chapter 1

Introduction

1.1 Background

Tests of a simple null hypothesis, using the likelihood ratio statistic, are frequently

employed to analyze data arising from a model with a single unknown parameter.

The signed square root of the likelihood ratio statistic often has a distribution that

is well-approximated by a standard normal distribution under the null hypothesis.

In the presence of nuisance parameters, one can also construct a signed square

root of the likelihood ratio statistic. Consider continuous random variables X =

(X1, . . . , Xn) having joint density function that depends on unknown parameters

ω = (ω1, . . . , ωd). Suppose that ω = (ψ,λ), where ψ = ω1 is the scalar parameter

of interest and λ = (ω2, . . . , ωd) is the vector of nuisance parameters. Let ω̂ =

(ψ̂, λ̂) be the maximum likelihood estimator of ω. For fixed ψ, let λ̂ψ be the

constrained maximum likelihood estimator of λ satisfying

lj(ψ, λ̂ψ) = 0 for all j ≥ 2,

where l(ω) is the log-likelihood function for ω and lj(ω) =
∂

∂ωj
l(ω). The likeli-

hood ratio statistic for testing ψ = ψ0 isW = 2{l(ω̂)−l(ψ0, λ̂0)}, where λ̂0 = λ̂ψ0 .

The signed root of the likelihood ratio statistic is

R = sgn(ψ̂ − ψ0)W
1/2. (1.1)

Denote by n the sample size. The standard normal approximation to the dis-

tribution of R typically has error of order O(n−1/2), and R can be employed
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to construct approximate confidence limits for the parameter of interest having

coverage error of O(n−1/2). In large sample settings, this approximation works

well. However, in small sample situations, with 10 or 15 observations, the stan-

dard normal approximation may not be adequate for statistical inference. Hence,

various authors developed modifications for R using saddlepoint approximation

techniques. These modifications reduce the order of error in the standard normal

approximation to the distribution of R.

The intention of this study is, with the parameter of interest as a scalar in

the presence of nuisance parameters, to find an approximation that is relatively

easy to apply, but which is more accurate when the sample size is small. The

saddlepoint approximation is known for its better error properties. Consequently,

it may lead to more accurate approximation to the distribution of R. There are

several kinds of saddlepoint approximations and I would like to find the one that

is flexible in application while keeping satisfactory convergence rate.

1.2 The contribution of this dissertation

The thesis is constituted by three parts. Each of them is innovative and can be re-

viewed separately. Meanwhile, they are closely related to each other. Integration

of them can provide a satisfactory answer that achieves the goal of this study.

1.2.1 A comparison of various approximations

In the first part of the thesis, for p–values of hypothesis about a scalar para-

meter, I evaluate via Monte Carlo behaviors the accuracies of classical methods

and several saddlepoint approximations, such as likelihood ratio test, the Wald

test, Barndorff-Nielsen’s approximations (1986), Sevirini’s empirical adjustment

(1999) and DiCiccio and Martin’s approximations (1993). The likelihood ratio

test and the Wald test are large sample methods, while the other methods under
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comparison are saddlepoint approximations, which are well known for being ac-

curate and relatively straightforward to implement (Butler, 2007; Kolassa, 2006;

Reid, 2003).

Barndorff-Nielsen’s approximation (1986) can have a relative error rate of

order O(n−3/2). Barndorff-Nielsen (1988, 1990, 1991) also considered using a

variation on this approximation, of the same form as the univariate expansion

of Lugannani and Rice (1980). Though these approximations are delicate and

accurate, their application is restricted by the requirement of the calculation of an

exact or approximate ancillary. For some situations it is hard or even impossible

to construct this ancillary.

Severini (1999) proposed an approximation based on empirical covariances.

Under some assumptions and model regularity properties, his approximation has

the relative error rate of O(n−1). Though the derivation of this approximation

involves the same ancillary statistic as in Barndorff-Nielsen’s approximation, its

construction does not require the specification of the ancillary. A similar Lugan-

nani and Rice (1980) format is also available for Sevirini’s adjustment.

DiCiccio and Martin (1993) introduced approximations, which are also avail-

able without the specification of the ancillary. The derivation involves the Bayesian

approach to constructing confidence limits considered by Welch and Peers (1963)

and Peers (1965). The related prior density functions are called matching priors.

The matching prior can be obtained by solving a corresponding first order partial

differential equation. With this prior, the approximations of DiCiccio and Martin

(1993) have relative error of order O(n−1). Cox and Reid (1980) introduce the

idea of parameter orthogonality. If the parameter of interest and the nuisance

parameters are orthogonal, solving the first order partial differential equation is

relatively easy. In some cases, where the parameters are not orthogonal, it may

be more difficult to find a numerical solution.
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The above mentioned approximations have never been systematically com-

pared to each other as a group. I examine, as an example, the ratio of means

of independent exponential distributed variables. I calculate via simulation the

size of tests constructed as above, and then compare the results among different

approximations. Approximations of DiCiccio and Martin (1993) were developed

that reduce the order of error in the standard normal approximation to the dis-

tribution of the signed root of the likelihood ratio statistic. However, in our pre-

liminary comparison, DiCiccio and Martin’s (1993) approximations do not show

their superiority. Furthermore, there are two difficulties in applying their approx-

imations. One is the instability of the tail probability approximations around the

conditional mean of the distribution approximated. The other is the numerical

construction of the prior density function in the approximations. I find that Di-

Ciccio and Martin’s approximations are interesting and deserve more research.

I will discuss them in detail and provide successful solutions to overcome those

difficulties in the balance of the thesis.

1.2.2 Correcting instabilities near the mean

The second part of the thesis concerns the instability of DiCiccio and Martin’s

(1993) approximations observed from the accuracy comparison study. I provide

a correction and remove the instability of the tail probability approximations

around the conditional mean of the distribution approximated.

Saddlepoint approximations are useful for complicated survival and hazard

functions for progressive diseases, mentioned by Huzurbazar and Huzurbazar

(1999). Among examples presented by Huzurbazar and Huzurbazar (1999), some

of the approximations that behave very well in the tail of the distribution show

instability for ordinates near the conditional mean of the distribution approxi-

mated. Such instabilities can force the tail probability approximation out of the

range [0, 1], yielding an invalid approximation. This phenomenon also exists for
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DiCiccio and Martin’s (1993) approximations, as we can observe in the accuracy

comparison study.

The approximations of DiCiccio and Martin (1993) can be expressed in Lu-

gannani and Rice format

Φ(R) + φ(R)(R−1 − T−1), (1.2)

or in the Barndorff-Nielson format

Φ{R +R−1 log(T/R)}, (1.3)

where Φ is the standard normal distribution function, R is the signed root of

the likelihood ratio statistic as defined in (1.1), and T is the quantity defined by

DiCiccio and Martin (1993), and is given in (2.8).

Instability of the tail probability approximations may occur for ordinates near

the conditional mean of the approximated distribution, where both R and T are

approaching 0. The instability is not caused simply by computational imprecision.

When both R = 0, and hence T = 0, the quantities 1/R−1/T and R−1 log(T/R)

are undefined. Symbolic computation packages, such as Mathematica and Maple,

can not overcome the instability difficulties without additional analytical work.

For all but the most trivial cases, R and T are calculated using iterative numerical

solutions to nonlinear equations. For R near zero, then, the variation in 1/R−1/T

is driven primarily by error in the solution to the saddlepoint equation, and not

by the arithmetic errors in floating point calculations.

I modify the techniques proposed by Yang and Kolassa (2002), to present a

correction to repair numerical difficulties in applying DiCiccio and Martin’s (1993)

approximations around the conditional mean of the approximated distribution.

This correction is necessary in order to calculate p-values. Statisticians routinely

approximate probabilities for tails of size roughly .05 or .025. The endpoints of

the intervals associated with these probabilities occasionally occur at or near the
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conditional mean of the approximated distribution. This situation arises most

often when constructing confidence intervals, and a search algorithm is employed

to examine various candidates for the confidence interval endpoint. In these

situations, formulae like those I present in chapter 3 are useful. The techniques

of Yang and Kolassa (2002) and in chapter 3 can be applied similarly to general

saddlepoint approximations with both Barndorff-Nielsen format and Lugannani

and Rice format to remove the instability.

1.2.3 Numerical construction of matching priors

An open question in the application of matching prior approximations is to the

provision of a procedure to find the matching priors. The derivation of DiCiccio

and Martin’s (1993) approximations uses Bayesian techniques, where a matching

prior density function needs to be specified. The derivation of a matching prior

relates to a first order partial differential equation. The solution of this first order

partial differential equation is non-trivial when the parameters are not orthogonal.

I use a procedure to solve the equation numerically given any initial conditions.

Cox and Reid (1987) introduced parameter orthogonality. It is defined with

respect to the expected Fisher information matrix. The most direct statistical in-

terpretation of orthogonality is that the relevant components of the score statistic

are uncorrelated (Cox and Reid, 1987). In most cases one can parameterize the

model so that parameters are orthogonal. However, finding such a transformation

may be as difficult as constructing the matching prior without orthogonality. So

it is of interest to consider the situation with general parametrization.

Matching priors were first proposed by Welch and Peers (1965) and Peers

(1963). These priors have an important role in connecting the frequentist and the

Bayesian approach. Under the frequentist paradigm, conditional inference can

be complicated, while Bayesian techniques can simplify frequentist elimination

of nuisance parameters. Determining a matching prior requires solving a first
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order partial differential equation. Only in simple circumstances, such as when

parameters are orthogonal, can the first order partial differential equation be

solved analytically.

Levine and Casella (2003) proposed a procedure to solve the first order par-

tial differential equation numerically under general parametrization, in models

with a single nuisance parameter. They transformed the parameters into another

parameter space and solved the first order partial differential equation in this

transformed space. Then the procedure requires a transformation back to the

original parameter space. Typically, the transformation between the two parame-

ter spaces is nontrivial. Hence this procedure may be difficult to apply in practice.

Also, no instructions on initial condition specification were given. Though the so-

lution to the first order partial differential equation is not unique, it is unique

when the initial conditions are given. Changes in the initial conditions lead to

different choices of the matching prior, which can affect data analysis. Finding

an appropriate prior may improve the inference results significantly, as we should

indicate below in section 4.5.

I present a more practical way to solve for the matching priors, without the

involvement of the back transformation described in Levine and Casella (2003).

Levine and Casella (2003) did not give instructions on initial conditions. The

procedure presented in this thesis can be suitable to all kinds of initial condi-

tions. I apply this technique to a logistic regression model with a binary response

and one explanatory variable. In this case, the two parameters are generally not

orthogonal. I solve matching priors using the procedure presented and the ap-

proximations of DiCiccio and Martin (1993) to calculate p-values and confidence

intervals for the unknown effect of the explanatory variable. The methods intro-

duced in section 1.2.2 and addressed more thoroughly in chapter 3 are used to

remove the singularity, so it is no longer an obstacle in the numerical computa-

tion. Then by choosing differential initial conditions one is able to improve the
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performances of DiCiccio and Martin’s approximations.

It should be pointed out that, the matching prior solving procedure presented

in chapter 4 has many applications in addition to being used in DiCiccio and

Martin’s approximation.

Numerical examples have been examined throughout my work. I use R soft-

ware in performing all related analyses. R is a system for statistical computation

and graphics. It is free software distributed under a GNU-style copyleft, and an

official part of the GNU project.

1.3 Outline

In chapter 2, I present an accuracy comparison through a numerical example.

In chapter 3, I develop a way to remove the effect of the singularity around the

mean of the distribution approximated. The concept of matching priors and

a procedure of finding the matching prior are reviewed in chapter 4. Finally,

conclusion is drawn in chapter 5. Some related proofs and derivations of formulas

are given in the appendix.
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Chapter 2

A Comparison of the Accuracy of Saddlepoint

Conditional Cumulative Distribution Function

Approximations

2.1 Introduction

For a model with a single unknown parameter, the signed square root of the

likelihood ratio statistic R defined in (1.1) often has a distribution that is well-

approximated by a standard normal distribution under the null hypothesis. In the

presence of nuisance parameters, the distribution of the statistic R depends on the

nuisance parameters. In large sample settings, the standard normal approxima-

tion works well. However, in small sample situations, with 10 or 15 observations,

the standard normal approximation of R may not be adequate. Hence, vari-

ous authors have developed modifications for R using saddlepoint approximation

techniques. These modifications reduce the order of error in the standard normal

approximation to the conditional distribution of R.

Barndorff-Nielsen (1986) proposed the modified directed signed root of the

likelihood ratio statistic R∗. This statistic will be reviewed in the next section.

The relative error in the standard normal approximation to the conditional distri-

bution of R∗ is of order O(n−3/2). Barndorff-Nielsen (1988, 1990, 1991) also con-

sidered using a variation of this approximation, of the same form as the univariate

expansion of Lugannani and Rice (1980). The drawback of these approximations

is that they require the calculation of an exact or approximate ancillary, which in

some situations is hard or impossible to construct. For the other approximations
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studied in the following, no such ancillary needs to be specified, and hence the

approximations are easier to apply in practice.

Severini (1999) proposed an approximation R̂∗ to Barndorff-Nielsen’s R∗ based

on empirical covariances. Under some assumptions and model regularity proper-

ties, R̂∗ is distributed according to a standard normal distribution, with relative

error Op(n
−1), conditionally on the observed value of an ancillary statistic A.

However, the construction of this R̂∗ does not require the specification of A.

DiCiccio and Martin (1993) proposed an alternative quantity to R∗, denoted

by R+, that is also available without specification of A. The derivation of R+

involves the Bayesian approach to constructing confidence limits considered by

Welch and Peers (1963) and Peers (1965). In the presence of nuisance parameters,

Peers (1965) chose a prior density for the parameters to satisfy a partial differential

equation. With this prior, the standard normal approximation to the conditional

distribution of R+ has relative error of order O(n−1). If the parameter of interest

and the nuisance parameter vector are orthogonal, solving the partial differential

equation is easier and explicit solutions can be obtained. In the case that the

parameters are not orthogonal, solving that equation numerically is problematic.

Parameter orthogonality will be reviewed in the following section.

For a parameter of interest that is orthogonal to the nuisance parameter vec-

tor, Cox and Reid (1987) defined the signed root of the conditional likelihood

ratio statistic R. The standard normal approximation to the distribution of R

has error of order O(n−1/2). DiCiccio and Martin (1993) defined R
+

similarly to

the R+ described above. The quantity R
+

is available without specification of

A. The standard normal approximation to the distribution of R
+

has relative

error of order O(n−1), both conditionally (on A) and unconditionally. The use of

R and its modifications is often effective in situations where there are many nui-

sance parameters. However, in such cases, the use of R and its modified versions

can produce unsatisfactory results. DiCiccio, Field and Fraser (1990) present
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examples.

The above variants on R have never been systematically compared to each

other as a group. This chapter provides an accuracy comparison among the

modifications stated above. Each of these approximations are used to generate

an approximate one-sided p-value by approximating P[R ≥ r], for r the observed

value of R. Approximate two-sided p-values are calculated by approximating

2 min(P[R ≥ r],P[R < r]). One and two-sided hypotheses tests of size α may

be constructed by rejecting the null hypothesis when the p-value is less than α.

Both the Barndorff-Nielson format approximation

Φ{R +R−1 log(U/R)} (2.1)

and the Lugannani and Rice format approximation

Φ(R) + φ(R)(R−1 − U−1) (2.2)

are considered, where the variable U may vary for different modifications. I

will examine, as an example, the ratio of means of independent exponentials. I

calculate via simulation, the size of tests constructed as above, and compare the

results among different approximations.

2.2 Methods compared

We first review several statistics whose marginal distributions are very close to

standard normal.

Suppose X1, . . . , Xn are independently identically distributed continuous ran-

dom variables having joint density function that depends on unknown parameters

ω = (ω1, . . . , ωd). Suppose that ω = (ψ,λ), where ψ = ω1 is a scalar parameter of

interest and λ = (ω2, . . . , ωd) is a nuisance parameter vector. Let ω̂ = (ψ̂, λ̂) be

the maximum likelihood estimator of ω, and for fixed ψ, let λ̂ψ be the constrained

maximum likelihood estimator of λ. The signed root likelihood ratio statistic R
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is defined in (1.1). The standard normal approximation to the distribution of R

typically has error of order O(n−1/2), and R can be used to construct approximate

confidence limits for ψ having coverage error of that order.

A form of conditional saddlepoint tail probability approximation was provided

by Skovgaard (1987), who applied double saddlepoint techniques to the problem

of approximating tail probabilities for conditional distributions when the data

arise from a full exponential family. In this case the double saddlepoint distrib-

ution function approximation can be expressed in terms of the quantities in the

joint density function. Skovgaard’s double saddlepoint approximation to the con-

ditional distribution function is of form (2.2), with U a Wald statistic. Here, we

consider only models more complicated than canonical exponential families, and

so will not apply this approximation.

2.2.1 Barndorff-Nielsen’s modification

Barndorff-Nielsen (1986) proposed the modified signed root of the likelihood ratio

statistic R∗, given by

R∗ = R +R−1 log(U/R), (2.3)

where

U =
|lλ;ω̂(ω̂ψ) l;ω̂(ω̂)− l;ω̂(ω̂ψ)|

|jλλ(ω̂ψ)| 12 |j(ω̂)| 12
, (2.4)

ω̂ψ = (ψ0, λ̂0),

and

jλλ(ω̂ψ) = −lλλ(ψ0, λ̂0), j(ω̂) = −lωω(ω̂)

with lωω(ω) the matrix of second-order partial derivatives of l(ω; ω̂,A) taken with

respect to ω, and lλλ(ω) the submatrix of lωω(ω) corresponding to λ. Here U

represents an approximate conditional score statistic, which, in the multivariate

normal case would exactly coincide with R. Outside the multivariate normal

case, the correction to R in (2.3) measures the difference between R and U , and
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hence is a measure of departure from normality. The quantity l;ω̂(ω) is the d× 1

vector of partial derivatives of l(ω; ω̂,A) taken with respect to ω̂, and lλ;ω̂(ω)

is a d × (d − 1) matrix of mixed second-order partial derivatives of l(ψ,λ; ω̂,A)

taken with respect to λ and ω̂. The sign of U is the same as that of R and the

resulting U is of the form

U = R +Op(n
−1/2).

The relative error in the standard normal approximation to the conditional distri-

bution of R∗ is of order O(n−3/2). The conditioning is on an exact or approximate

ancillary statistic A. The variable U is parametrization invariant and does not

depend on λ.

The value of ψ0 satisfying Φ(R∗) = α is an approximate upper 1−α confidence

limit which has relative coverage error of order O(n−3/2) both conditionally and

unconditionally. Barndorff-Nielsen (1988, 1990, 1991) also considered using the

alternative to Φ(R∗) provided by the Lugannani and Rice format approximation

(2.2).

Consider the exponential family model for a random vector T whose density

evaluated at t is

fT(t; θ) = exp(θ>t−HT(θ)− G(t)).

The random vector T is the sufficient statistic. Set τ(θ) = Eθ[T]. In the presence

of nuisance parameters, the calculation of U requires the specification of the ancil-

lary A. Barndorff-Nielsen (1980) suggested an approximate ancillary statistic for

use in conditional inference. Kolassa (2006), in §8.4, presented this approximate

ancillary A as

B(ψ̂)(T− τ (ψ̂,λ))>,

with λ held fixed, and

B(ψ) =

[(
∂τ

∂ψ

)⊥
Σ

(
∂τ

∂ψ

)⊥>]− 1
2 (

∂τ

∂ψ

)⊥
,
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where the superscript ⊥ represents the corresponding orthogonal vector. Suppose

that θ is scalar. Let

l̃(θ; θ̂, a) =
l(θ; θ̂, a)

n
.

Then

FΘ̂|A(θ̂|a; θ) =

{
Φ(
√
nŵ) +

φ(
√
nŵ)√
n

[
1

ŵ
− 1

ž

]}
[1 +Op(n

−1)], (2.5)

with

ŵ =
R√
n
, ž =

l̃;1(θ̂; θ̂, a)− l̃;1(θ; θ̂, a)√
j(θ̂)

,

and the superscripts ; 1 on l̃;1 represent differentiation of the likelihood with re-

spect to θ̂, after reexpressing t in terms of θ̂ and a. Here a is the observed value

of A, FΘ̂|A(θ̂|a; θ) is the conditional cumulative distribution function, and Φ(·) is

the standard normal cumulative distribution function.

In the computation of Barndorff-Nielsen’s R∗, the calculation of U requires the

ancillary A to be specified, which may present difficulties in practice. In the fol-

lowing, several modifications will be reviewed that do not require the specification

of A.

2.2.2 An empirical adjustment

Severini (1999) proposed an approximation R̂∗ to Barndorff-Nielsen’s R∗ based

on empirical covariances. Recalling the formula of U (2.4), the key step is to

approximate lλ;ω̂(ω̂ψ) and l;ω̂(ω̂)− l;ω̂(ω̂ψ)

Let l(j)(ω) denote the log-likelihood function based on observation j alone.

Denote

Q̂(ω; ω0) =
∑

l(j)(ω)l(j)ω (ω0)
>,

Î(ω; ω0) =
∑

l(j)ω (ω)l(j)ω (ω0)
>,

and

î = Î(ω̂; ω̂).



15

The quantity ω0 is any point in the parameter space. Then l;ω̂(ω̂) − l;ω̂(ω) and

lω;ω̂(ω) may be approximated by

l̂;ω̂(ω̂)− l̂;ω̂(ω) = {Q̂(ω̂; ω̂)− Q̂(ω; ω̂)}̂i(ω̂)−1ĵ

and l̂ω;ω̂(ω) = Î(ω; ω̂)̂i(ω̂)−1ĵ, where ĵ = j(ω̂) = −lωω(ω̂).

Denote by Û the approximation to the statistic U based on the above quan-

tities, and then denote

R̂∗ = R +R−1 log(Û/R).

The quantity R̂∗ can be used in approximation (2.1). This represents a correction

similar to that of (2.4), with expectations of quantities replaced by sample means.

Under some assumptions plus model regularity properties, R̂∗ is distributed ac-

cording to a standard normal distribution, with error Op(n
−1), conditionally on

a, the observed value of the ancillary A. However, the construction of R̂∗ does

not require the specification of A. Again, the alternative approximation (2.2) is

also available as Φ(R) + φ(R)(R−1 − Û−1).

2.2.3 DiCiccio and Martin’s modification

DiCiccio and Martin (1993) proposed an alternative variable to U , denoted by T ,

which is available without specification of the ancillary A. The modification for

approximation (2.1) is

R+ = R +R−1 log(T/R), (2.6)

where T is defined in (2.8). As with (2.4), the final term in R+ represents the

departure from normality; unlike (2.4), this measure represents the departure of

the posterior of ψ from normality, and involves the prior distribution. Once again,

one might use the alternative probability approximation (2.2) with T substituting

the place of U . The replacement of T avoids the necessity of specifying A in

calculating U and hence simplifies the calculations. The derivation of T involves
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the Bayesian approach to constructing confidence limits considered by Welch and

Peers (1963) and Peers (1965). When ω = ψ, that is, when the entire parameter

is scalar and there are no nuisance parameters, Welch and Peers (1963) showed

that the appropriate choice is

π(ω) ∝ {i(ω)}1/2,

the Jeffrey’s prior, where

i(ω) = E{− d2 l(ω)/ dω2}.

In the presence of nuisance parameters, Peers (1965) showed that π(ω) must be

chosen to satisfy the partial differential equation

d∑
j=1

i1j(i11)−1/2 ∂

∂ωj
(log π) +

d∑
j=1

∂

∂ωj
{i1j(i11)−1/2} = 0, (2.7)

where

ijk(ω) = E{−∂2l(ω)/∂ωj∂ωk}

and (ijk) is the d× d matrix inverse of (ijk). The variable T is defined as

T = lψ(ψ0, λ̂0)
| − lλλ(ψ0, λ̂0)|1/2π(ω̂)

| − lωω(ω̂)|1/2π(ψ0, λ̂0)
. (2.8)

Here lψ(ω) = ∂l(ω)/∂ψ, and π(ω) is a proper prior density for ω = (ψ,λ) which

satisfies the equation (2.7). Then the resulting approximation (2.2) is

P(ψ ≥ ψ0|X) = Φ(R) + (R−1 − T−1)φ(R) +O(n−3/2),

where T = U +Op(n
−1), and thus the approximation (2.1) to the conditional dis-

tribution of R given A based on R+R−1 log(T/R) has error of order O(n−1). That

is to say, DiCiccio and Martin’s approximation (1993) approximates Barndorff-

Nielsen’s approximation (1980) of the distribution of R, conditionally given A

as well as unconditionally. To error of the order Op(n
−1), T is parametrization

invariant under transformations ω 7→ {ψ, τ(ω)}.
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Parameter orthogonality makes solving the partial differential equation (2.7)

easier. Orthogonality was introduced by Cox and Reid (1980). It is defined with

respect to the expected Fisher information matrix. Define θ1 to be orthogonal to

θ2 if the elements of the information matrix satisfy

iθsθt =
1

n
E

(
∂l

∂θs

∂l

∂θt
; θ

)
=

1

n
E

(
− ∂2l

∂θs∂θt
; θ

)
= 0 (2.9)

for s = 1, . . . , p1, t = p1 + 1, . . . , p1 + p2, where θ = (θ1,θ2); θ1 and θ2 are of

length p1 and p2 respectively. If equation (2.9) is to hold for all θ in the parameter

space, then the parametrization is sometimes called globally orthogonal. If (2.9)

holds at only one parameter value θ0, then the vectors θ1 and θ2 are said to be

locally orthogonal at θ0. The most direct statistical interpretation of (2.9) is that

the relevant components of the score statistic are uncorrelated.

The definition of orthogonality can be extended to more than two sets of

parameters, and in particular θ is totally orthogonal if the information matrix is

diagonal. In general, it is not possible to have total parameter orthogonality at all

parameter values, but it is possible to obtain orthogonality of a scalar parameter

of interest ψ to a set of nuisance parameters. If the parameter of interest and the

nuisance parameter vector are orthogonal, solving the partial differential equation

(2.7) is easier. The equation (2.7) reduces to

(iψψ)−1/2 ∂

∂ψ
(log π) +

∂

∂ψ
(iψψ)−1/2 = 0, (2.10)

whose solutions are of the form (Tibshirani, 1989)

π(ψ,λ) ∝ {iψψ(ψ,λ)}1/2g(λ), (2.11)

where g(λ) is arbitrary and the suggestive notation iψψ(ψ,λ) is used in place

of i11(ψ,λ). In some cases in which the parameters are not orthogonal, solving

equation (2.7) numerically is problematic.
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2.2.4 Conditional likelihood ratio statistic and its modifi-

cation

For ψ and λ orthogonal, Cox and Reid (1987) defined the conditional likelihood

ratio statistic for testing ψ = ψ0 as

W = 2{l̄(ψ̄)− l̄(ψ0)},

where l̄(ψ0) is the conditional profile likelihood for ψ using λ̂ψ as the conditioning

statistic and is defined as following.

l̄(ψ) = l(ψ,λψ)− 1

2
log | − lλλ(ψ, λ̂ψ)|

and ψ̄ is the point at which the function l̄(ψ) is maximized. The signed root of

the conditional likelihood ratio statistic is

R = sgn(ψ̄ − ψ0)W
1/2
,

and the standard normal approximation to the distribution of R has error of order

O(n−1/2). Let

R
+

= R +R
−1

log(T/R).

One may use approximations (2.1) and (2.2), say, Φ(R
+
) or Φ(R) + φ(R)(R

−1 −

T
−1

), where

T = l̄(1)(ψ0){−l̄(2)(ψ̄)}−1/2 π(ψ̄, λψ̄)

π(ψ0, λ0)
,

and

l̄(j) =
dj l̄(ψ)

dψj
, j = 1, 2.

Those approximations have errors of order O(n−1).

The use of R and its modifications is often effective in situations where there

are many nuisance parameters. However, in such cases, the use of R and its mod-

ified versions can produce unsatisfactory results; see DiCiccio, Field and Fraser

(1990) for examples.
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2.3 Example: exponential samples with orthogonal inter-

est and nuisance parameters

2.3.1 Settings

Let X and Y be exponential random variables with means µ and ν respectively;

the ratio of the means ν/µ is the parameter of interest. The parameter transfor-

mation {
µ→ λ√

ψ
, ν → λ

√
ψ

}
makes the two new parameters ψ and λ orthogonal. Then X and Y have expec-

tations λψ−
1
2 and λψ

1
2 , respectively.

Suppose there are n independent replications of (X,Y ). Denote ω = (ψ, λ).

one can obtain the log-likelihood function as

l(ω) = −n
[
ψx̄+ ȳ

λ
√
ψ

+ 2 log λ

]
.

Each of the approximations in section 2 may be used to generate an ap-

proximate one-sided p-value by approximating P[R ≥ r], for r the observed

value of R. Approximate two-sided p-values may be calculated by approximat-

ing 2 min(P[R ≥ r],P[R < r]). One and two-sided hypotheses tests of size α

may be constructed by rejecting the null hypothesis when the p-value is less than

α. Both the Barndorff-Nielson format approximation (2.1) and the Lugannani

and Rice format approximation (2.2) were considered. I calculate via simulation

the size of tests constructed as above, and compare the results among different

approximations.

Some of the approximations in section 2 require specific algebraic calculations.

I present the related calculations in appendix A. Other applications are generic,

and no specific algebraic calculations are needed.
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2.3.2 Simulation results

Simulation procedure

For sample size n = 10,

(1) Generate 10 draws from the pair of {X, Y }, where X and Y both follow stan-

dard exponential distribution;

(2) Calculate one and two-sided p-values for each approximation;

(3) Compare the p-values to the α level, say 0.05; denote by q the number of miss

coverages; if the p-value is less than 0.05, then q = q + 1;

(4) Repeat step (1) - (3) for s times and report the final value of q; let q∗ =

(q/s) ∗ 100, the Type I error probability in percentage.

Approximations (2.1) and (2.2) have a removable singularity at R = 0. Con-

sequently, these and similar formulae require care when evaluating near R = 0.

Specifically, I find that (2.1) and (2.2) exhibit adequate numerical stability as

long as |R| > 10−4. Out of 1,000,000 simulated data sets, 60 presented R (or a

modification of R) closer to zero. In these cases, for all but the most extreme con-

ditioning events, the resulting conditional p-value is large enough as to not imply

rejection of the null hypothesis, and so these simulated data sets were treated

as not implying rejection of the null hypothesis. For more dedicated considera-

tion, please refer to the paper of Yang and Kolassa (2002) and chapter 3 of this

dissertation, where I give a linear approximation to DiCiccio and Martin’s ap-

proximations to overcome the difficulties of the instability of the tail probability

when the coordinates near the conditional mean of the approximated distribution.

Results

Table 2.1 and table 2.2 below report the Type I error probabilities (in percent-

age) of s = 1, 000, 000 rounds simulation. The quantities Tu and T u are assumed

with uniform prior densities.
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Table 2.1: Type I error probability in percentage (BN)
Approximation 1-sided 2-sided
Φ(R) 5.241 5.168

Φ(R) 4.807 4.575
Φ(R +R−1 log(U/R)) 5.046 4.760

Φ(R +R−1 log(Û/R)) 5.018 4.882
Φ(R +R−1 log(T/R)) 4.615 4.312
Φ(R +R−1 log(Tu/R)) 11.017 6.828

Φ(R +R
−1

log(T/R)) 4.883 4.411

Φ(R +R
−1

log(T u/R)) 11.723 7.249

From the simulation results in table 2.1 and table 2.2, one can see that for

both the Barndorff-Nielsen format approximation (BN) and the Lugannani and

Rice format approximation (LR), the empirical adjustment has best performance.

Barndorff-Nielsen’s modification has the best asymptotic error rate (Op(n
−3/2)

rather than Op(n
−1)), and hence one might expect that the best performance

from this approximation. Instead one can observe the best performance from

other modifications with worse asymptotic error.

Table 2.2: Type I error probability in percentage (LR)
Approximation 1-sided 2-sided
Φ(R) 5.241 5.168

Φ(R) 4.807 4.575
Φ(R) + φ(R)(R−1 − U−1) 5.046 4.760

Φ(R) + φ(R)(R−1 − Û−1) 5.017 4.881
Φ(R) + φ(R)(R−1 − T−1) 4.613 4.308
Φ(R) + φ(R)(R−1 − T−1

u ) 11.274 6.943

Φ(R) + φ(R)(R
−1 − T

−1
) 4.878 4.403

Φ(R) + φ(R)(R
−1 − T

−1

u ) 12.190 7.510

One may also notice that the performance of DiCiccio and Martin’s modifi-

cation is not as good as expected. The importance of the choice of prior can be

demonstrated by the poor performance of the approximations with the incorrect

uniform priors. In appendix B, for the calculation of T , the prior is chosen as

π(ψ,λ) =

√
n√
2ψ
.
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Recall that ψ and λ are orthogonal. The simplified partial differential equation

(2.10) can be used with solution (2.11). In chapter 4, we will revisit the choice of

prior and extend the case of orthogonal parametrization to general parametriza-

tion.

2.4 Research problems in the application of DiCiccio and

Martin’s approximations

The unexpected relatively worse performance, and some observed challenges in

the application of DiCiccio and Martin’s approximations, invoke our interest to

do more research about them. From a theoretical point of view, DiCiccio and

Martin’s approximations can be superior to classical large sample methods and

some saddlepoint approximations, since they have relatively higher convergence

rate and avoid conditioning on an exact or approximate ancillary. However, when

applying DiCiccio and Martin’s approximations, two problems may restrict their

use, as we observe from the comparison simulation process.

The first problem is the instability of the approximations for ordinates near

the conditional mean of the distribution approximated. Such instabilities can

force the tail probability approximation out of the range [0, 1], yielding an in-

valid approximation. In chapter 3, I remove the instability and fix the numerical

difficulties in applying DiCiccio and Martin’s approximations.

The second problem is construction of the prior π(ω) and the choice of π(ω).

In the example of the ratio of two exponential means, I transform the parameters

to be orthogonal. In this case, the situation is relatively easy to handle. However,

in general parametrization, finding solution to the partial differential equation

that defines π(ω) is nontrivial. Also, based on our experience, different choices of

π(ω) can give various performances. Then the choice of π(ω) is worth of study.

However, before determine which prior to choose, one has to be able to obtain
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these priors. In chapter 4, I successfully solve the problem of solving for π(ω) in

general parametrization and give some suggestions in how to choose a good π(ω).

Among all the saddlepoint approximations considered in the accuracy compar-

ison, we will put our interest on DiCiccio and Martin’s approximations. Chapter

3 and chapter 4 provide ways in how to work with the above two problems. One

can see that once the above two problems solved, DiCiccio and Martin’s approxi-

mation can perform much better. It deserves to point out that, as first introduced

in Yang and Kolassa (2002), the techniques used in chapter 3 can be applied ana-

logically to saddlepoint approximations with Barndorff-Nielsen format and Lu-

gannani and Rice format. Also, the matching prior solving procedure introduced

in chapter 4 can be applied to many situations that require the specification of a

matching prior, while the application in DiCiccio and Martin’s approximations is

only one of them.
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Chapter 3

DiCiccio and Martin’s Approximations for the

Distribution of the Signed Root of Likelihood

Ratio Statistic Near the Mean

3.1 Introduction

In this chapter, I remove the instability and fix numerical difficulties in applying

DiCiccio and Martin’s approximations (1993), for ordinates near the mean of the

distribution approximated, both conditionally and unconditionally.

As a recall, DiCiccio and Martin (1993) proposed two approximations, which

are

Φ(R) + φ(R)(R−1 − T−1), (3.1)

and

Φ{R +R−1 log(T/R)}, (3.2)

where R is as above and T is defined in (2.8).

Instability of the tail probability may occur for the ordinates near the mean

of the approximated distribution (conditionally or unconditionally), where both

R and T are approaching 0. The instability is not caused simply by computa-

tional imprecision. When both R = 0, and hence T = 0, then 1/R − 1/T and

R−1 log(T/R) are undefined. Therefore, symbolic computation packages such as

Mathematica and Maple, where user can carry hundreds of digits floating point

computation, can not overcome the instability difficulties without additional an-

alytical work. For all but the most trivial cases, R and T are calculated using



25

interactive numerical solutions to nonlinear equations. For R near zero, then, the

variation in 1/R− 1/T is driven primarily by error in the solutions to the saddle-

point equations, and not by the arithmetic errors in floating point calculations.

I will not attempt to address this instability through interpolation, since results

would then depend heavily on points and methods used in interpolation.

In this chapter, one will see that the singularity for 1/R−1/T or R−1 log(T/R)

is removable. I present a linear approximation to repair numerical difficulties

in applying (3.1) and (3.2). For (3.2), it always takes values within the range

[0, 1]. Although even in the presence of instabilities (3.2) remains within [0, 1],

approximation (3.2) still has problems near the mean (both conditionally and

unconditionally), since log(T/R) has a removable singularity at 0. Therefore,

our correction is necessary in order to calculate significance tests. Statisticians

routinely approximate probabilities for tails of size roughly .05 or .025. The

endpoints of the intervals associated with these probabilities periodically occur

at or near the mean of the approximated distribution. This situation arises most

often when constructing confidence intervals, and a search algorithm is employed

to examine various candidates for the confidence interval endpoint. In these

situations, formulae like those I present are very useful. Some such situations are

described in detail in section 3.3.

In section 3.2, I present a correction for the values of DiCiccio and Martin’s

approximation around the singularity. In section 3.3, examples are discussed.

3.2 Linear approximation near the mean

With X and λ fixed, R is a smooth invertible function of ψ. Hence 1/R − 1/T

is a function of T . When applying equation (3.1) for certain values of ψ near

the mean, R and T both take on the value 0, and hence 1/R − 1/T can not be

evaluated naively. Since T = 0 if and only if R = 0, and
dT

dR
6= 0, 1/R − 1/T
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may be approximated as a linear function in R, with error of size O(R).

In order to determine this approximation, derivatives of ω as a function of

ψ0 are required. In the following, the superscripts of l and ω denote partial

derivatives with respect to the corresponding components of the arguments. The

subscript of ω denotes the coordinate whose derivative is taken.

For fixed ψ, let λ̂ψ be the constrained maximum likelihood estimator of λ,

satisfying

lj(ψ, λ̂ψ) = 0 for all j ≥ 2. (3.3)

Let ω̃ = (ψ0, λ̂0) satisfy (3.3). Express R(ψ0) =
√

2h(ψ0) for h(ψ0) = l(ω̂)−l(ω̃).

Express T (ψ0) = b(ψ0)[g(ψ0)]
1/2, where

b(ψ0) = lψ(ω̃),

and

g(ψ0) =
|−lλλ(ω̃)|π(ω̂)2

| − lωω(ω̂)|π(ω̃)2
.

Expand 1/R(ψ0)− 1/T (ψ0) in ψ0 about ψ̂. Later one will see that

b(ψ̂) = −h1(ψ̂) = 0, b1(ψ̂) = −h11(ψ̂), b11 = −h111(ψ̂), b111 = −h1111(ψ̂).

Also, noticing that R(ψ0) can be approximated by

−(ψ0 − ψ̂)

√
h11(ψ̂),

Replace (ψ0 − ψ̂) by

−[h11(ψ̂)]−1/2R(ψ0).

Then we obtain the expansion of 1/R(ψ0)− 1/T (ψ0) in R(ψ0) about 0 as

1

R(ψ0)
− 1

T (ψ0)
=− 1

2
g1(ψ̂)[h11(ψ̂)]1/2 − 1

3
h111(ψ̂)[h11(ψ̂)]−3/2

− {5[h11(ψ̂)]−3[h111(ψ̂)]2 + 6g1(ψ̂)[h11(ψ̂)]−1h111(ψ̂)

+ 9h11(ψ̂)[g1(ψ̂)]2 − 3[h11(ψ̂)]−2h1111(ψ̂)

− 6g11(ψ̂)}R(ψ0)/24 +O([R(ψ0)]
2). (3.4)
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One needs to evaluate (3.4) by calculating each term in the right hand side of

the equation. Calculation details can be found in appendix B.

When no nuisance parameters are present, all the above can be simplified.

Take a constant prior density, for example. In this case,

T (ψ0) =
lψ(ψ0)

[lψψ(ψ̂)]1/2
.

Then

g(ψ0) = [lψψ(ψ̂)]−1, g′(ψ̂) = 0, g′′(ψ̂) = 0.

Also, one can easily get

h′(ψ̂) = 0, h′′(ψ̂) = −l′′(ψ̂), h(3)(ψ̂) = −l(3)(ψ̂), h(4)(ψ̂) = −l(4)(ψ̂).

Equation (3.4) reduces to

1

R(ψ0)
− 1

T (ψ0)
=− 1

3
h(3)(ψ̂)[h′′(ψ̂)]−3/2 − {5[h′′(ψ̂)]−3[h(3)(ψ̂)]2

− 3[h′′(ψ̂)]−2h(4)(ψ̂)}R(ψ0)/24 +O([R(ψ0)]
2). (3.5)

The foregoing corrections apply to (3.1). As we mentioned above, for (3.2),

R−1 log (T/R) may not be evaluated when R and T both go to 0. We will not

need another set of computation to remove the singularity in (3.2). Instead, I

claim that the correction for (3.1) is also valid for (3.2). Noticing that R → 0

implies T → 0, and limR→0
T
R

= 1, we have

lim
R→0

1
R

log(T
R
)

1
R
− 1

T

= lim
R→0

log T − logR

T −R
T = lim

R→0

T

R
= 1.

Therefore, the correction for (3.2) is the same as what we have done for (3.1).
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3.3 Examples

3.3.1 AIDS/HIV infection – convolution of exponential

and gamma distributions

AIDS is a kind of progressive disease. It can be classified as five states of disease

progression.

State 1: HIV-infected antibody negative.

State 2: HIV-infected antibody positive.

State 3: Pre-AIDS symptoms.

State 4: Full blown AIDS.

State 5: Death.

Waiting time in each state until transition to the next state can be modeled with

a separate parametric distribution. A common assumption is that the waiting

times are independent. The total waiting time from state 1 to state 3, which

measures the waiting time to pre-AIDS symptoms, is always of great interest.

I present calculations specific to the example provided by Huzurbazar and

Huzurbarzar (1999), who model the waiting time to pre-AIDS symptoms. The

model was originally considered by Longini et al. (1989). Huzurbazar and Huzur-

bazar assumed that the first transition time has a distribution well-approximated

by an exponential, and the second has a distribution well-approximated by a

gamma. Denote the variable X1 ∼ exp(λ) with mean 1/λ, and the variable

X2 ∼ Γ(α, β) with mean α/β. Scale parameter, and the shape parameter, are

the fitted values as reported by Huzurbazar and Huzurbazar (1999). To be more

specific, λ = 0.0348, α = 3.490 and β = 0.214. This example was also discussed

by Yang and Kolassa (2002). Exact calculations of this nature with a non-integer

shape parameter are quite difficult. Of interest is the calculation of percentage

points of this distribution, including points near the center of the distribution.
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The cumulant generating function for X is

KX(ψ) = log(λ)− log(λ− ψ) + α log(β)− α log(β − ψ).

Then the log-likelihood function for X is

l(ψ; X) = ψX − [log(λ)− log(λ− ψ) + α log(β)− α log(β − ψ)].
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Figure 1.  Comparison of modified and unmodified approximation, X=45.044.
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Figure 3.1: Figure 1

Let us take X = 45.044, which is close to the mean, and then the maximum

likelihood estimator of ψ is very close to 0. This example features no nuisance

parameters, and the equation (3.5) for the no nuisance parameter case discussed

in section 3.2 can be used. For the uniform prior and the prior of the form π(ψ) ∝

{i(ψ)}1/2, approximation (3.2) and the one with correction (3.5) are presented in

figure 3.1 and figure 3.2, respectively. Apparently in both cases, approximation

(3.5) fixes the instability of the approximation (3.2) in a neighborhood of ψ0 = 0,
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Figure 3.2: Figure 2

at which both T and R go to zero. Figure 3.3 shows the quantile function for

the distribution in figure 3.1; a circle indicates the region in which instabilities

in the unmodified approximation make inversion of the tail probability to obtain

the quantile function impossible.

3.3.2 AIDS/HIV infection – confidence interval

With definitions as in example 3.3.1, let’s take α = 0.04471, β = 1 and λ = 10. At

the place where X = 0.14471, the maximum likelihood estimator of ψ is almost

0. Under these settings, the tail probabilities without adjustment are obviously

incorrect, which are negative infinity by (3.1) and 0 by (3.2). However, using

the method specified in this paper, the corrected tail probability is 0.975, which

corresponds to one of the endpoints of a 95% confidence interval. This simple

example shows clearly the usefulness of our method in constructing confidence
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intervals.

3.3.3 Ratio of two exponential means

Let Y1 and Y2 be two exponential random variables with means λψ−1/2 and λψ1/2,

respectively; the parameter of interest is the ratio of the means ψ, and λ is a

nuisance parameter. Suppose one has n independent replications of (Y1, Y2), i.e.

( Y11, . . . , Y1n; Y21, . . . , Y2n). Then the log-likelihood function is

l = −2n log λ− λ−1ψ1/2

n∑
i=1

Y1i − λ−1ψ−1/2

n∑
i=1

Y2i.

The maximum likelihood estimator of ψ is

ψ̂ =

∑n
i=1 Y2i∑n
i=1 Y1i

,

where both T and R are close to 0. For a simulated data set from the model

described above with n = 10,
∑n

i=1 Y1i = 8.2773, and
∑n

i=1 Y1i = 6.7485, then
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ψ̂ = 0.8153. The approximation (3.1) is unstable around that value. Taking a

uniform prior, one can generate figure 3.4. Again, in the case in the presence of

nuisance parameter, modification (3.4) fixes the instability of (3.1) around the

singularity.



33

Chapter 4

A Practical Procedure to Find Matching Priors

for Frequentist Inference

4.1 Introduction

The prior density function π(·), satisfying (2.7) and used in (2.8) is known as

a matching prior. We consider inference on a single scalar parameter in the

presence of nuisance parameters. Under the frequentist paradigm, conditional

inference can be complicated. Bayesian method can simplify frequentist elim-

ination of nuisance parameters. Matching priors, first proposed by Welch and

Peers (1963) and Peers (1965), can connect frequentist and Bayesian approaches.

Determining a matching prior is equivalent to finding a solution of a first order

partial differential equation. Only in simple circumstances, such as when para-

meters are orthogonal, can the partial differential equation be solved analytically.

Levine and Casella (2003) note that “Unfortunately, except for these cases, the

solution of the resulting partial differential equations becomes quite a hurdle; our

only hope is to find numerical solutions to these partial differential equation.”

In this chapter, we will see a practical way to solve for the matching priors,

without the involvement of the back transformation described by Levine and

Casella (2003). This procedure is easy to understand, can be implemented in R

(R Development Core Team, 2007) and is suitable to all kinds of initial conditions.

The implementation of matching priors for the approximations proposed by

DiCiccio and Martin (1993) is less complicated than other frequentist methods.

DiCiccio and Martin’s approximations are saddlepoint approximations that make
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use of Bayesian–frequentist parallels. Our proposed implementation requires less

computational effort compared to the iterative Metropolis-Hasting algorithm de-

scribed by Levine and Casella (2003).

I end the introduction with a brief outline of this chapter. In section 4.2, I

review the concepts of matching priors and discuss the circumstance when or-

thogonal parameters are presence. Existing analytical and numerical solutions

are reviewed. In section 4.3, I present the procedure for solving matching priors,

both analytically and numerically. Specification of initial condition is discussed.

I also provide information of R software implementation of the solving procedure.

The application of using matching priors conjuncted with DiCiccio and Martin’s

approximations is illustrated through examples in section 4.5. Different initial

conditions are specified for obtaining various matching priors.

4.2 Matching priors

I consider parametric models with random variables X1, . . . , Xn having joint den-

sity function that depends on the unknown parameter vector ω. Suppose ω is

of length d and ω = (ω1, ω2, . . . , ωd) = (ψ,λ) with ψ = ω1, the parameter of

interest, and the nuisance parameter λ = (ω2, . . . , ωd).

Matching priors were introduced by Welch and Peers (1963) and Peers (1965).

In the following, denote the matching prior by π(·). Let Pπ(·|X) be the posterior

probability measure for ψ under prior π(·). The upper (1− α) posterior quantile

constructed on the basis of a prior density function π(ψ) has the property that it

is also the frequentist limit, such that

Pπ{ψ ≤ ψ(1−α)(π,X)|X} = Pψ{ψ ≤ ψ(1−α)(π,X)} = 1− α+O(n−1).

When there are no nuisance parameters, Welch and Peers (1963) showed that

the appropriate choice of π(ω) is π(ω) ∝ {i(ω)}1/2, where i(ω) = E{− d2 l(ω)/ dω2},
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and l(·) is the log-likelihood function. In this case, matching priors can be easily

obtained.

In the presence of nuisance parameters, Peers (1965) showed that π(ω) must

be chosen to satisfy the partial differential equation

d∑
j=1

i1j(i11)−1/2 ∂

∂ωj
(log π) +

d∑
j=1

∂

∂ωj
{i1j(i11)−1/2} = 0, (4.1)

where

ijk(ω) = E{−∂2l(ω)/∂ωj∂ωk}

and (ijk) is the d× d inverse matrix of (ijk).

If the parameter of interest and the nuisance parameter vector are orthogonal,

solving the partial differential equation (4.1) is relatively easy. Parameter orthog-

onality was introduced by Cox and Reid (1987) as we have reviewed in section

2.2.3. Orthogonality is defined with respect to the expected Fisher information

matrix. The most direct statistical interpretation of parameter orthogonality is

that the relevant components of the score statistic are uncorrelated. In general,

it is possible to obtain orthogonality of a scalar parameter of interest to a set of

nuisance parameters.

When the parameter of interest ψ is orthogonal to a set of nuisance parameters,

equation (4.1) reduces to

(iψψ)−1/2 ∂

∂ψ
(log π) +

∂

∂ψ
(iψψ)−1/2 = 0. (4.2)

Tibshirani (1989) showed that solutions were of the form

π(ψ,λ) ∝ {iψψ(ψ,λ)}1/2g(λ),

where g(λ) is arbitrary, and the suggestive notation iψψ(ψ,λ) is used in place of

i11(ψ,λ).

However, choosing a parametrization to achieve parameter orthogonality is

not always easy, and it can be hard in some cases. It is equivalently hard to ob-

tain orthogonalization and to solve the partial differential equation (4.1) directly,



36

since the orthogonalization procedure also requires solutions to partial differen-

tial equations of form similar to (4.1). Staicu and Reid (2007) studied the use

of matching priors with the approximations of DiCiccio and Martin (1993) under

orthogonal parametrization, and showed that the Peers-Tibshirani class of match-

ing priors is essentially unique. One can modify the arguments in this chapter

to solve the partial differential equation that defines the orthogonality transfor-

mation, and attempt, using orthogonality, to narrow down the class of matching

priors.

Levine and Casella (2003) propose a general procedure to solve the partial dif-

ferential equation (4.1) numerically, in models with a single nuisance parameter.

Firstly, they transform the parameters into another parameter space, solve the

equation, and then transform back to the original parameter space. The numerical

application of this procedure is not necessarily easy, and usually the transforma-

tion between the two parameter spaces is nontrivial. Levine and Casella (2003)

implemented their procedure using Mathematica. They did not give instructions

on initial condition specification, which is a necessary component to give specific

solution in solving the partial differential equation. Sweeting (2005) introduced

data-dependent priors that locally approximate the matching priors, and his pro-

cedure can deal with vector nuisance parameters.

4.3 Solving for matching priors with one nuisance para-

meter

In this section, a procedure to solve the partial differential equation (4.1) is given

in general parametrization with one nuisance parameter. First, analytical form

of the solutions is given, and then practical notes will be presented later in this

section.



37

In the case that d = 2, equation (4.1) is reduced to

a(ψ, λ)zψ + b(ψ, λ)zλ = d(ψ, λ), (4.3)

where

z(ψ, λ) = log{π(ψ, λ)},

a(ψ, λ) = {i11(ψ, λ)}1/2,

b(ψ, λ) = i12(ψ, λ){i11(ψ, λ)}−1/2,

and

d(ψ, λ) = −
[
∂

∂ψ
{i11(ψ, λ)}1/2 +

∂

∂λ
{i12(ψ, λ)}{i11(ψ, λ)}−1/2

]
.

The coefficient a(ψ, λ) is a diagonal element of the inverse matrix of (ijk), so

a(ψ, λ) can not be zero. Dividing both sides of (4.3) by a(ψ, λ), one has

zψ +
b(ψ, λ)

a(ψ, λ)
zλ =

d(ψ, λ)

a(ψ, λ)
.

This forces the coefficient of zψ to be 1, which simplifies the procedure of finding

a solution.

To solve the equation (4.1), it suffices to solve the following ordinary differen-

tial equations system

dψ

d s
= 1,

dλ

d s
=
b(ψ, λ)

a(ψ, λ)
,
d z

d s
=
d(ψ, λ)

a(ψ, λ)
. (4.4)

To be more specific with the solution, let us consider the initial conditions

prescribed along an initial curve I. Suppose that I is given parametrically, in

terms of a parameter ξ, as

ψ = Ψ(ξ), λ = Λ(ξ).

Then evaluating z(ψ, λ) at a point on I is equivalent to expressing z as a function

of ξ,

z = Z(ξ) = z{Ψ(ξ),Λ(ξ)}. (4.5)
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Here, it is obvious to see that I can not be tangent to the direction

[
1,
b{Ψ(ξ),Λ(ξ)}
a{Ψ(ξ),Λ(ξ)}

]
.

One then obtains

ψ = ψ(s, ξ), λ = λ(s, ξ)

by simultaneously integrating the two equations defined by

dψ

d s
=1, ψ(s0, ξ) = Ψ(ξ), (4.6)

dλ

d s
=
b(ψ, λ)

a(ψ, λ)
, λ(s0, ξ) = Λ(ξ). (4.7)

From the third equation in (4.4), the initial condition is given by (4.5). Then one

has,

d z

d s
=
d(ψ, λ)

a(ψ, λ)
, z(s0, ξ) = Z(ξ). (4.8)

Equation (4.8) can be integrated by quadrature, once equations (4.6) and (4.7)

have been solved,

z(s, ξ) = Z(ξ) +

∫ s

s0

d{ψ(s′, ξ), λ(s′, ξ)}
a{ψ(s′, ξ), λ(s′, ξ)}

d s′. (4.9)

These generate a surface in three dimensions, Z(ψ, λ), that satisfies both the

equation (4.3) and the initial condition. When there are no close form solutions

for equations (4.6),(4.7) and (4.8), numerical solutions can be achieved. Rhee et

al. (1986) presents more mathematical details.

In obtaining the solution formula (4.9) of z(s, ξ), I avoid doing back trans-

formation as described by Levine and Casella (2003). Noticing that if one wants

to specify the value of a matching prior at a certain point, say (ψ∗, λ∗), one can

directly specify s as ψ∗ and ξ as λ∗ in formula (4.9), and then the matching prior

evaluated at (ψ∗, λ∗) can be achieved.

Without loss of generality, set the initial condition

{Ψ(ξ),Λ(ξ), Z(ξ)} = (0, ξ,−1).

With Ψ(ξ) = 0, one has ψ = s. The equations (4.7) and (4.8) can be simplified
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as

dλ

d s
=
b(s, λ)

a(s, λ)
, λ(s0, ξ) = Λ(ξ), (4.10)

d z

d s
=
d(s, λ)

a(s, λ)
, z(s0, ξ) = Z(ξ).

We will use R package odesolve by Setzer (2007) to solve equation (4.10) and

get a numerical expression of λ(·) in s. The command lsoda() in odesolve pack-

age is designed to solve initial value problems for stiff or non-stiff systems of first

order ordinary differential equations. It provides an interface to the Fortran ordi-

nary differential equation solver of the same name, written by Hindmarsh (1983)

and Petzold (1983). For (4.9), I do numerical integration using Simpson’s Rule

and employed the R function sintegral() in the Bolstad package by Curran

(2005). Suppose z will be evaluated at (ψ∗, λ∗). Noticing that Λ(ξ) = ξ, choose

the starting value as λ∗ in solving (4.10), and then choose the upper integration

limit as ψ∗ in (4.9). The procedure is easy to perform if one has an ordinary

differential equation solver, even if not using the solver provided by R package

odesolve.

Based on the ordinary differential equation (4.6),

ψ = s+ Ψ(ξ),

i.e. s = ψ−Ψ(ξ). So s0 must be chosen considering the range of ψ. If one chooses

Ψ(ξ) = 0, then ψ = s. For the example in section 4.5.1, the parameter ψ is the

ratio of two exponential means, and hence ψ > 0. Therefore, s0 should be chosen

as any positive value.

In the above the initial values is chosen as {Ψ(ξ),Λ(ξ), Z(ξ)} = (0, ξ,−1).

Now I will show that the numerical solving procedure is suitable to any initial

values.

• Suppose the initial condition for the ordinary differential equation (4.7) is

λ(s0, ξ) = Λ(ξ), for Λ(ξ) an arbitrary known function rather than Λ(ξ) = ξ
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as above. The solution formula of z is the same as stated in (4.9). When solving

(4.7), the initial value should be chosen as Λ(λ∗), no longer λ∗, if z is evaluated

at (ψ∗, λ∗).

• If the initial condition of (4.6) is ψ(s0, ξ) = Ψ(ξ), then the solution from the

equation (4.6) is ψ = s+ Ψ(ξ). Therefore, the equation (4.7) becomes,

dλ

d s
=
b{s+ Ψ(ξ), λ}
a{s+ Ψ(ξ), λ}

.

Let s̃ = s+ Ψ(ξ). By simple change of variables, (4.7) becomes

dλ

d s̃
=
b(s̃, λ)

a(s̃, λ)
.

Equation (4.8) is

d z

d s̃
=
d[ψ{s̃−Ψ(ξ), ξ}, λ{s̃−Ψ(ξ), ξ}]
a[ψ{s̃−Ψ(ξ), ξ}, λ{s̃−Ψ(ξ), ξ}]

with z{s̃0 − Ψ(ξ), ξ} = Z(ξ), noticing that s̃0 = s0 + Ψ(ξ). Then the solution of

z is simply given by the following formula,

z(s̃, ξ) = Z(ξ) +

∫ s̃−Ψ(ξ)

s0−Ψ(ξ)

d{ψ(s′, ξ), λ(s′, ξ)}
a{ψ(s′, ξ), λ(s′, ξ)}

d s′. (4.11)

That is to say, the value of the prior on a certain point with the initial condition

ψ(s0, ξ) = Ψ(ξ), is obtained by translating the interval of integration when Ψ(ξ) =

0 by Ψ(ξ).

• Suppose the initial condition for (4.8) is z(s0, ξ) = Z(ξ) and Z(·) is a known

function. This case is even simpler to deal with. One only needs to plug the value

of Z(ξ) into (4.9).

Therefore, the suggested numerical solving procedure is suitable to any initial

values.
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4.4 Solving for matching priors with multiple nuisance pa-

rameters

In section 4.3, the case of 2 model parameters is considered, i.e., both the para-

meter of interest and the nuisance parameter are scalars. With dimension 2, it

is relatively easy to understand the first order partial differential equation solv-

ing procedure from the geometric point of view, since one can draw the initial

conditions and the solution surface in a 3-dimensional space.

In this section, the solving procedure will be extended to higher dimension,

while keeping the parameter of interest as a scalar. The procedure of the higher

dimension is similar as the one of 2-dimensional model parameters. Once again,

for more mathematical details about the solving procedure of a first order partial

differential equation, please refer to Rhee et al. (1986).

Assume the dimension of the model parameters is d and write vectors as row

vectors. Suppose the model parameter vector is ω = (ψ, λ1, · · · , λd−1), where ψ

is the parameter of interest and λ1, · · · , λd−1 are the nuisance parameters. For

the convenience of future description, denote λ = (λ1, · · · , λd−1). The first order

partial differential equation (4.1), which determines the matching prior density

function, can be restated as

a(ψ,λ)zψ +
d∑
j=2

bj−1(ψ,λ)zλj−1
= d(ψ,λ), (4.12)

where

z(ψ,λ) = log{π(ψ,λ)},

a(ψ,λ) = {i11(ψ,λ)}1/2,

bj−1(ψ,λ) = i1j(ψ,λ){i11(ψ,λ)}−1/2, where j = 2, · · · , d,

and

d(ψ,λ) = −

[
∂

∂ψ
{i11(ψ,λ)}1/2 +

d∑
j=2

∂

∂λj−1

{i1j(ψ,λ)}{i11(ψ,λ)}−1/2

]
.
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The coefficient a(ψ,λ) is a diagonal element of the inverse matrix of (ijk), so

a(ψ,λ) can not be zero. Dividing both sides of (4.12) by a(ψ,λ), one has

zψ +
d∑
j=2

bj−1(ψ,λ)

a(ψ,λ)
zλj−1

=
d(ψ,λ)

a(ψ,λ)
.

The same as for the case of d = 2, this forces the coefficient of zψ to be 1, which

simplifies the procedure of finding a solution.

The solution z(ψ,λ) is a hypersurface (dimension d) in a (d+ 1)-dimensional

space. When d = 2, the solution z(ψ,λ) is a 2-dimensional surface in a 3-

dimensional space. Therefore, the solving procedure and the solution surface can

be visualized with a single nuisance parameter.

To solve the equation (4.12), it suffices to solve the following ordinary differ-

ential equations system

dψ

d s
= 1,

dλ1

d s
=
b1(ψ,λ)

a(ψ,λ)
, · · · , dλd−1

d s
=
bd−1(ψ,λ)

a(ψ,λ)
,
d z

d s
=
d(ψ,λ)

a(ψ,λ)
. (4.13)

To be more specific with the solution, express the initial conditions paramet-

rically, in terms of ξ = (ξ1, · · · , ξd−1), as

ψ = Ψ(ξ), λ = Λ(ξ) = {Λ1(ξ), · · · ,Λd−1(ξ)}, (4.14)

and

z = Z(ξ) = z{Ψ(ξ),Λ(ξ)}. (4.15)

Choose the initial conditions (4.14), {Ψ(ξ),Λ1(ξ), · · · ,Λd−1(ξ)}, such that the

vector [
1,
b1{Ψ(ξ),Λ(ξ)}
a{Ψ(ξ),Λ(ξ)}

, · · · , bd−1{Ψ(ξ),Λ(ξ)}
a{Ψ(ξ),Λ(ξ)}

]
can not lie in the space spanned by{

∂Ψ

∂ξi
,
∂Λ1

∂ξi
, · · · , ∂Λd−1

∂ξi

}
, where i = 1, · · · , d− 1.

One then obtains

ψ = ψ(s, ξ), λ = λ(s, ξ) = {λ1(s, ξ), · · · , λd−1(s, ξ)}
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by simultaneously integrating a system of ordinary differential equations defined

by

dψ

d s
= 1, ψ(s0, ξ) = Ψ(ξ),

dλ1

d s
=
b1(ψ,λ)

a(ψ,λ)
, λ1(s0, ξ) = Λ1(ξ),

... (4.16)

dλd−1

d s
=
bd−1(ψ,λ)

a(ψ,λ)
, λd−1(s0, ξ) = Λd−1(ξ).

For the last equation of (4.13), the initial condition is given by (4.15). Then we

have

d z

d s
=
d(ψ,λ)

a(ψ,λ)
, z(s0, ξ) = Z(ξ). (4.17)

Once the equations system (4.16) has been solved, equation (4.17) has the solution

z(s, ξ) = Z(ξ) +

∫ s

s0

d{ψ(s′, ξ), λ1(s
′, ξ), · · · , λd−1(s

′, ξ)}
a{ψ(s′, ξ), λ1(s′, ξ), · · · , λd−1(s′, ξ)}

d s′. (4.18)

These generate a hypersurface in a (d + 1)−dimensional space, Z(ψ,λ), that

satisfies both the equation (4.12) and the initial condition. When there are no

close form solutions for equations (4.16) and (4.17), numerical solutions can be

achieved.

Again, no back transformation involved in obtaining the solution (4.18). If

one wants to specify the value of a matching prior at a certain point, say ω∗ =

(ψ∗, λ∗1, · · · , λ∗d−1), then one can directly specify s as ψ∗ and ξ = (ξ1, · · · , ξd−1) as

(λ∗1, · · · , λ∗d−1) in the formula (4.18). The matching prior evaluated at ω∗ can be

achieved.

The key step in the implement of this procedure is simultaneously solving

the system of ordinary differential equations (4.16). Fortunately, many mathe-

matical/statistical software packages have these kinds of solvers for a system of

ordinary differential equation. For example, the lsoda function in R software

package odesolve has the ability to solve a system of ordinary differential equa-

tions. However, when d > 2, it can be computational intensive to implement the
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procedure. Also, if the right hand sides of (4.16) do not have explicit expressions,

numerical implementation may be more difficult.

As a conclusion, it is straight forward to extend the analytic formulae of the

solving procedure of the partial differential equation from a single nuisance pa-

rameter to multiple nuisance parameters. It may not be easy for the numerical

implementation of the procedure with d > 2, when there are no explicit expres-

sions for the coefficients in the original first order partial differential equation

(4.1).

4.5 Examples

4.5.1 Ratio of two exponential means

Let X and Y be exponential random variables with means µ and ν respectively;

the ratio of the means, ν/µ, is the parameter of interest. The parameter trans-

formation (
µ→ λψ−

1
2 , ν → λψ

1
2

)
makes the two new parameters ψ and λ orthogonal. Then X and Y have expec-

tations λψ−
1
2 and λψ

1
2 , respectively.

Suppose there are n independent replications of (X,Y ). Denote ω = (ψ, λ).

One can obtain the log-likelihood function as

l(ω) = −n
{
ψx̄+ ȳ

λ
√
ψ

+ 2 log λ

}
.

Both approximations of the Barndorff-Nielson format (1.3) and the Lugannani

and Rice format (1.2) are considered. Based on these approximations, p-values

can be calculated. Approximations based on different prior density functions

mentioned previously may be used to generate an approximate one-sided p-value

by approximating P(R ≥ r), for r the observed value of R. Approximate two-

sided p-values may be calculated by approximating 2 min{P(R ≥ r),P(R < r)}.
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One and two-sided hypotheses tests of size α may be constructed by rejecting the

null hypothesis when the p-value is less than α. Table 4.1 reports type I error

probabilities of the 1,000,000 rounds of simulation with n = 10.

In this example, the parameters ψ and λ are orthogonal. Using the simplified

partial differential equation (4.2), π(ψ, λ) = 1/ψ and π(ψ, λ) = 1/(ψλ) are both

explicit solutions. Numerical solutions were also calculated. One of the initial

condition is

{Ψ(ξ),Λ(ξ), Z(ξ)} = (0, ξ,−1).

The resulting matching prior corresponds to the the analytic solution 1/ψ. An-

other numerically solved matching prior is based on the initial condition

{Ψ(ξ),Λ(ξ), Z(ξ)} = (0, ξ,− log ξ),

which corresponds to the the analytic solution 1/(ψλ). From Table 4.1, one can

see that the numerical and analytic solutions give almost the same simulation

results, which confirmed the validity of our numerical solution process.

Table 4.1: Ratio of two exponential means: type I error probability
BN Format LR Format

Tests 1-sided 2-sided 1-sided 2-sided
Likelihood ratio test 0.0520 0.0526 0.0520 0.0526
I.C. (0, ξ,−1) 0.0456 0.0441 0.0456 0.0441
Analytic solution: 1/ψ 0.0456 0.0441 0.0456 0.0441
I.C. (0, ξ,− log ξ) 0.0499 0.0498 0.0499 0.0498
Analytic solution: 1/(ψλ) 0.0499 0.0498 0.0499 0.0498
∗I.C. stands for initial condition.
†Results are based on 1,000,000 rounds of simulation with n = 10.
‡Tests are of nominal type I error 0.05.

Approximations (1.3) and (1.2) have a removable singularity at R = 0. Con-

sequently, these and similar formulae require care when evaluating near R = 0.

In these cases, for all but the most extreme conditioning events, the resulting con-

ditional p-value is large enough as to not imply rejection of the null hypothesis,
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and so these simulated data sets are treated as not implying rejection of the null

hypothesis.

4.5.2 Logistic regression

In this example, I consider a logistic regression model with a binary response

Y and only one explanatory variable X. Let ω1 denote the unknown intercept

and ω2 denote the unknown effect of the explanatory variable. Suppose ω2 is the

parameter of interest and ω1 is the nuisance parameter. I will solve matching

priors and apply DiCiccio and Martin’s approximations to do inference about ω2.

Levine and Casella (2003) considered a similar example.

Let Yi be the response variable taking binary values with success probability

as pi, and Xi be the explanatory variable following uniform distribution U(0, 1).

Suppose there are n independent replications of (Xi, Yi). Fit the model

log

(
pi

1− pi

)
= v′iω = ω1 + ω2xi,

where vi = (1, xi)
′ and ω2 is the parameter of interest. Inverting the equation, we

have pi = (1 + e−v
′
iω)−1. One can obtain the log-likelihood function as

l(ω;x) =
n∑
i=1

yi log

(
pi

1− pi

)
+

n∑
i=1

log(1− pi).

The first derivative of the log-likelihood function is V ′(y − p), where V is the

design matrix with v′i in row i. The second derivative of log-likelihood function

is −V ′WV, where W is a diagonal matrix with diagonal elements pi(1 − pi), i =

1, · · · , n.

Using sample size n = 30, generate data satisfying the logistic regression

model with ω1 = −1, ω2 = 0.5, and the explanatory variable X following uniform

distribution U(0, 1). For the logistic regression model, generally the parameters

ω1 and ω2 are not orthogonal. I use the numerical procedure described in §4.3

and study performances of different initial conditions. Table 4.2 contains type I
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error probabilities for both one-sided and two-sided tests for approximations of

both Barndorff-Nielson format and Lugannani and Rice format, based on 10,000

rounds of simulation.

As we mentioned previously, approximations (1.3) and (1.2) have a removable

singularity when both R and T approaching 0. I deal with this singularity the

same way as in §3.3.1.

In the following, I give some instructions on how to change the initial con-

dition and how to choose favorable initial conditions. Initial condition (0, ξ,−1)

gives type I error probabilities larger than the nominal level 0.05; that is to say,

it has the tendency to underestimate tail probabilities and reject the null hy-

pothesis. I want to choose initial conditions to obtain a test whose type I error

rate is closer to the nominal level. I adjust the initial condition when solving

the partial differential equation (4.1), and use the Barndorff-Nielson format of

the approximation. The quantity T in (2.8) is the only part in the approxima-

tion that relates to matching priors. For a one-sided test, when the probability

is small and close to 0, R and T are negative. Making Φ{R + R−1 log(T/R)}

larger is equivalent to making T bigger. Also one may notice that Z(ξ) is used

only in equation (4.9). Suppose the initial condition is {Ψ(ξ),Λ(ξ), Z(ξ)}. Keep

the first two components of the initial condition, Ψ(ξ) and Λ(ξ), unchanged, and

only modify the third term, Z(ξ). By doing so, the integral part in equation

(4.9) is kept unchanged and z varies only with Z(ξ). By changing Z(ξ), I want

to adjust T to be bigger. Because T is negative when reject a hypothesis, and

matching priors appear in T as a ratio, one can construct a Z(·) such that the

ratio, exp{Z(ψ̂, λ̂)}/ exp{Z(ψ0, λ̂0)}, will be smaller than 1; recall that 1 is the

value of the ratio when Z(ξ) = −1. Based on the above arguments, Z(·) function

is constructed as Z(ξ) = − log{(ξ + 1)q + 1}, where q is a tuning parameter and

leads Z(·) to an even function. As an even function, Z(ξ) achieves its maximum

value at −1, where −1 is the true value for the nuisance parameter when data



48

were simulated. We have constructed priors using knowledge of the true value

of the nuisance parameter. Of course, in practice this knowledge is unavailable.

One might instead use an estimator of the nuisance parameter in place of the true

value.

When Z(ξ) increases quickly, such as q = 2 in table 4.2, the type I error

probability deviates far away from the nominal level in the other direction. If a

more slowly increasing functions is used, the performance of type I error may be

better.

Table 4.2: Logistic regression: type I error probability
BN Format LR Format

Test 1-sided 2-sided 1-sided 2-sided
Likelihood ratio test 0.054 0.060 0.054 0.060
I.C. (0, ξ,−1) 0.052 0.057 0.052 0.057
I.C. [0, ξ,− log{(ξ + 1)2 + 1}] 0.028 0.019 0.031 0.020

I.C. [0, ξ,− log{(ξ + 1)2/5 + 1}] 0.041 0.041 0.044 0.046

I.C. [0, ξ,− log{(ξ + 1)2/11 + 1}] 0.045 0.048 0.046 0.050
∗I.C. stands for initial condition.
†Results are based on 10,000 rounds of simulation with n = 30.
‡Tests are of nominal type I error 0.05.

Unfortunately, with some choices of initial conditions, such as the last three

listed in table 4.2, the Lugannani and Rice format approximation may fall out-

side the range of 0 and 1 in some cases. For example, the initial condition of

[0, ξ,− log{(ξ + 1)2 + 1}] yielded 5 such probabilities out of 10,000 data sets.

Those values are converted to 0 or 1 by min{max(p, 0), 1}, where p is the p-value

that is outside 0 and 1.

For the parameter of interest ω2, I calculate credible intervals using DiCiccio

and Martin’s approximation in Barndorff-Nielson format. With initial condition

(0, ξ,−1), out of 1,000 generated data sets, there are 938 credible intervals covered

the true value 0.5. With initial condition [0, ξ,− log{(ξ + 1)2/5 + 1}], for the

parameter of interest ω2, there are 954 credible intervals covered the true value

0.5.
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The above procedure was applied to a real data set from Hosmer and Lemeshow

(2000, Table 1.1). The response variable is coronary heart disease indicator, y,

and the explanatory variable is age, x. One hundred subjects were included in the

study; i.e. n = 100. Fit the logistic regression model following the same definition

as above, with ω1 defined for the unknown intercept and ω2 for the effect of age

on heart disease status. Using initial condition (0, ξ,−1) and Barndorff-Nielson

format approximation, a two-sided testing p-values is 5.532326 × 10−8, and five

and ninety-five posterior percentiles are of 0.07 and 0.15 respectively.

4.6 Discussion

Matching priors are very interesting by themselves, when considered indepen-

dently of DiCiccio and Martin’s approximations. These priors have shown their

usefulness as well as their well-known computational difficulty. In this section,

I want to discuss the matching priors as solutions from a system of first order

partial differential equation.

• Solution from a system of first order partial differential equations

As one may notice that the solution to (4.1) is not unique. Peers (1965) has

proposed a way to narrow down the class of solutions, which is to use the same

weight function for any component of ω. This is motivated by the fact that in

the Bayesian framework it is the same prior density for all components of ω.

Also, as noted in Peers (1965), if the confidence points for each component are

all to be formally identical with the corresponding Bayesian probability points,

it is essential that this be achieved by taking the same weight function for all

components. To find a common prior density function is equivalent to find a

common solution to the following system of d partial differential equations

d∑
j=1

iij(iii)−1/2 ∂

∂ωj
(log π) +

d∑
j=1

∂

∂ωj
{iij(iii)−1/2} = 0 i = 1, 2, · · · , d. (4.19)
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As a reminder, here d is the number of components in model parameter ω. Equa-

tion (4.1) is the first equation (i = 1) in (4.19). A necessary and sufficient

condition for the existence of a solution of (4.19) is that the equation

d π(ω) = πi(ω) dωi

be completely integrable, where

πi(ω) =
∂π(ω)

∂ωi
, i = 1, 2, · · · , d.

The above will be so if and only if the integrability conditions

∂πi
∂ωj

=
∂πj
∂ωi

, i 6= j

are satisfied.

Only in relatively special cases will the integrability conditions be satisfied.

Peers (1965) comments on them. I studied the ratio of the means of two expo-

nential distributed variables as an example, where a solution to (4.19) can be

found as 1/(ψχ). The approximations based on the prior 1/(ψχ) yields the best

performance among all DiCiccio and Martin–type approximations under consid-

eration. However, for more complicated model, such as the Cox model, it is nearly

impossible to find such a solution from a system of first order partial differential

equations.
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Chapter 5

Conclusion

Generally speaking, saddlepoint methods provide accurate approximations of tail

probabilities, and consequently can be converted to confidence limits of the cor-

responding order. For some of those approximations, such as Barndorff-Nielsen’s

approximation (1986), it is necessary to conditional on an ancillary statistic to

proceed with calculation. DiCiccio and Martin’s approximations (1993) do not

have such a difficulty. They can be constructed based on general form of log-

likelihood functions, have more applications outside the canonical exponential

family, and the calculation is relatively easy.

Similar to other saddlepoint approximations, DiCiccio and Martin’s approxi-

mation may take two formats, which are the Barndorff-Nielson format

Φ{R +R−1 log(T/R)}

and the Lugannani and Rice format

Φ(R) + φ(R)(R−1 − T−1),

where the variable T is defined in (2.8).

It is directly observed from the above two formats that they have a singularity

when both R and T approach 0. This causes the unstable approximations to the

tail probability around the conditional mean of the distribution approximated.

Fortunately, this singularity for 1/R − 1/T or R−1 log(T/R) is removable. I

propose a correction to overcome the instability difficulties. The correction around

the singularity is necessary in order to calculate both the significance tests and
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confidence intervals. In these situations, formulae like those I present in chapter

3 will be very useful.

The approximations of DiCiccio and Martin (1993) involve Bayesian tech-

niques and there is always a prior density function needs to be specified. In the

general parametrization, if the parameter of interest and the nuisance parame-

ters are not orthogonal, solving the prior from a first order partial differential

equation is nontrivial. Though one may try to obtain orthogonal parameters via

parameter transformation as introduced in Cox and Reid (1980), sometimes it

is hard to achieve such transformation. The prior density function here is also

called as matching prior, which is first proposed by Welch and Peers (1963) and

Peers (1965). I present a practical way to solve for the matching priors and the

procedure can be suitable to all kinds of initial conditions. By choosing differ-

ential initial conditions one is able to improve the performances of DiCiccio and

Martin’s approximations.

Therefore, I suggest the use of DiCiccio and Martin’s approximations with the

construction procedure and correction that I provide in this dissertation.
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Appendix A

Some algebraic calculations

A.1 Barndorff-Nielsen’s modification

The expectations of the sufficient statistics T = (X, Y ) in the new parameteriza-

tion are

τ (ψ, λ) =

{
λ√
ψ
, λ
√
ψ

}
,

and

d τ (ψ, λ)

dψ
=

{
− λ

2ψ
3
2

,
λ

2ψ
1
2

}
.

A vector perpendicular to this is(
d τ (ψ, λ)

dψ

)⊥
= {ψ, 1} .

The variance of the sample mean vector is

Σ(ψ, λ) =
1

n

 λ2

ψ
0

0 λ2ψ

 .

In our case,

B(ψ) =
√
n

{ √
ψ√
2λ
,

1

λ
√

2ψ

}
,

and

A =
√

2n

(√
X Y

λ
− 1

)
.

Using Barndorff-Nielsen’s formula (1990),

l̃(ψ; ψ̂, a) = −|a+
√

2n|(ψ + ψ̂)√
2nψψ̂

− 2 log λ,



57

and

ω̂ = sign(ψ̂ − ψ)ψ1/4
∣∣∣(a+

√
2n)(ψ

1
2 − ψ̂

1
2 )
∣∣∣ ψ̂−1/4n−1/2.

The negative of the second derivative of the log likelihood is

j(ψ) =
∣∣∣a+

√
2n
∣∣∣ (3ψ − ψ̂)

(
4

√
2nψψ̂5

)−1

,

and the derivative of l̃(ψ; ψ̂, a) with respect to ψ̂ is∣∣∣a+
√

2n
∣∣∣ (ψ − ψ̂)

(
2

√
2nψψ̂3

)−1

.

Then the quantity ž contributing to the tail probability approximation (2.5) is

ž = −
√
|a+

√
2n| (ψ − ψ̂)

(
2

√
2nψψ̂

)−1

.

A.2 DiCiccio and Martin’s modification

Based on the above, the information matrix is

i(ω) = E[−l′′(ω)] = n

 1
2ψ2 0

0 2/λ2

 .

The maximum likelihood estimators are

ψ̂ =
Y

X
and λ̂ =

ψ̂X + Y

2ψ̂1/2
=
√
X Y .

For fixed ψ, let λ̂ψ be the constrained maximum likelihood of λ. Here,

λ̂ψ =
ψX + Y

2ψ1/2
.

If ψ = ψ0 = 1, then

λ̂ψ0 = λ̂0 =
X + Y

2
.

In this case, the parameters are orthogonal. Using the simplified partial dif-

ferential equation (4.2), choose g(λ) = 1, and hence

π(ψ, λ) =

√
n√

2 ψ
.

In addition to use the prior solved from equation (4.2), I also studied the

outcome from a uniform prior, that is to say, the prior with a constant density,

which is obviously not a solution to equation (4.2).
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Appendix B

Evaluation of expansion (3.4)

One needs to evaluate (3.4). The functions g and h are expanded in ψ0. Here

the Einstein summation notation is employed, whereby an index repeated as a

subscript and as a superscript implies summation over that index. First, one has

h(ψ0) = l(ω̂)− l(ω̃),

hu(ψ) = −lk(ω̃)ω̃uk ,

huv(ψ0) = −ljk(ω̃)ω̃uk ω̃
v
j − lk(ω̃)ω̃uvk ,

huvw(ψ0) = −ljkm(ω̃)ω̃uk ω̃
v
j ω̃

w
m − ljk(ω̃)ω̃uwk ω̃vj [3]− lk(ω̃)ω̃uvwk ;

huvwt(ψ0) = −ljkmn(ω̃)ω̃uk ω̃
v
j ω̃

w
mω̃

t
n − ljkm(ω̃)ω̃utk ω̃

v
j ω̃

w
m[6]

− ljk(ω̃)ω̃uwtk ω̃vj [4]− ljk(ω̃)ω̃uwk ω̃vtj [3]− lk(ω̃)ω̃uvwtk .

Here integers in brackets denote permutations of the indices; for example,

ljk(ω̃)ω̃uwk ω̃vj [3] = ljk(ω̃)ω̃uwk ω̃vj + ljk(ω̃)ω̃vwk ω̃uj + ljk(ω̃)ω̃uvk ω̃
w
j

is the sum over the three terms of three indices. The bracket notation is simply

a convenience to avoid listing explicitly all the terms with respect to the indices.

Similarly, one obtains

b(ψ0) = l1(ω̃),

bv(ψ0) = l1j(ω̃)ω̃vj ,

bvw(ψ0) = l1jk(ω̃)ω̃wk ω̃
v
j + l1j(ω̃)ω̃vwj ,

bvwt(ψ0) = l1jkm(ω̃)ω̃tmω̃
w
k ω̃

v
j + l1jk(ω̃)ω̃wtk ω̃

v
j + l1jk(ω̃)ω̃wk ω̃

vt
j

+ l1jk(ω̃)ω̃tkω̃
vw
j + l1j(ω̃)ω̃vwt.
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Evaluating all the derivatives at ω̂ = (ψ̂, λ̂), one obtains

h(ψ̂) = −l(ω̂),

hu(ψ̂) = 0,

huv(ψ̂) = −ljk(ω̂)ω̂uk ω̂
v
j ,

huvw(ψ̂) = −ljkm(ω̂)ω̂uk ω̂
v
j ω̂

w
m − ljk(ω̂)ω̂uwk ω̂vj [3],

huvwt(ψ̂) = −ljkmn(ω̂)ω̂uk ω̂
v
j ω̂

w
mω̂

t
n − ljkm(ω̂)ω̂utk ω̂

v
j ω̂

w
m[6]

− ljk(ω̂)ω̂uwtk ω̂vj [4]− ljk(ω̂)ω̂uwk ω̂vtj [3], (B.1)

and

b(ψ̂) = 0,

bv(ψ̂) = l1j(ω̂)ω̂vj ,

bvw(ψ̂) = l1jk(ω̂)ω̂wk ω̂
v
j + l1j(ω̂)ω̂vwj ,

bvwt(ψ̂) = l1jkm(ω̂)ω̂tmω̂
w
k ω̂

v
j + l1jk(ω̂)ω̂wtk ω̂

v
j + l1jk(ω̂)ω̂wk ω̂

vt
j

+ l1jk(ω̂)ω̂tkω̂
vw
j + l1j(ω̂)ω̂vwt.

Denote G(ω̃) = log(det[−aj;p(ω̃)])− 2 log(π(ω̃)). One obtains

Gq(ψ0) = aj;k(ω̃)ak;jq(ω̃)− 2π−1(ω̃)πq(ω̃),

Gqr(ψ0) = aj;k(ω̃)ak;jqr(ω̃)− aj;m(ω̃)am;pr(ω̃)ap;k(ω̃)ak;jq(ω̃)

− 2π−1(ω̃)πqr(ω̃) + 2π−2(ω̃)πq(ω̃)πr(ω̃).

Converting G(ω̃) back to g(ψ0) and evaluating at ω̂, one achieves

g(ψ̂) = exp(G(ω̂)),

gu(ψ̂) = g(ψ̂)Gk(ω̂)ω̂uk ,

guv(ψ̂) = g(ψ̂){[Gjk(ω̂) +Gk(ω̂)Gj(ω̂)]ω̂uk ω̂
v
j +Gj(ω̂)ω̂uvj }. (B.2)

The derivatives of ω̃ are also needed. Recall that ω̃ satisfies lj(ω̃) = 0 for all

j > 1, and ω̃j = ψ0 for j = 1. Then ljk(ω̃)ω̃1
k = 0 for all j > 1, and δjkω̃1

k = j for
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j = 1. Here δjk is defined as 1 if j = k, and 0 if j 6= k. Let

aj(ω) =


lj(ω) if j > 1

ωjif j = 1.

(B.3)

For m indices p, . . . , s, let

aj;p,...,s(ω) =
∂m

∂ωp . . . ωs
aj(ω).

Let aj;k(ω) be such that

aj;m(ω)am;k(ω) = δjk

for all j and k. Then evaluating (B.3) with ω = ω̃(ψ0, ω2, . . . , ωd), and differen-

tiating, one finds that aj;p(ω̃)ω̃kp = δjk, for k = 1. Hence

ω̃kj = aj;m(ω̃)δmk,

ω̃uvj = −aj;p(ω̃)ap;qr(ω̃)aq;k(ω̃)ω̃ur δ
kv = −aj;p(ω̃)ap;qr(ω̃)ω̃ur ω̃

v
q ,

ω̃uvwj = aj;s(ω̃)as;tkat;pa
p;qr(ω̃)ω̃ur ω̃

v
q ω̃

w
k − aj;p(ω̃)ap;qrs(ω̃)ω̃ur ω̃

v
q ω̃

w
s

− aj;p(ω̃)ap;qr(ω̃)ω̃uwr ω̃vq − aj;p(ω̃)ap;qr(ω̃)ω̃ur ω̃
vw
q

= −aj;p(ω̃)ap;qrk(ω̃)ω̃ur ω̃
v
q ω̃

w
k − aj;p(ω̃)ap;qr(ω̃)ω̃uwr ω̃vq [3]. (B.4)

Then (3.4) may be calculated using (B.1), (B.2) and (B.4).



61

Vita

Juan Zhang

• EDUCATION

2000 B. S. in Mathematics, Fudan University, Shanghai, China.

2003 M. S. in Statistics, Fudan University, Shanghai, China.

2007 M. S. in Statistics, Rutgers University.

2008 Ph. D. in Statistics, Rutgers University.

• PROFESSIONAL EXPERIENCE

2003-2004 Fellowship, Department of Statistics and Biostatistics,
Rutgers University.

2004-2007 Teaching assistant/Graduate assistant, Department of Sta-
tistics and Biostatistics, Rutgers University.

2005-2006 Assistant consultant, Office of Statistical Consulting, De-
partment of Statistics and Biostatistics, Rutgers Univer-
sity.

2005-2007 Statistical associate. College of Nursing, Rutgers Univer-
sity.

Spring 2006 Instructor, Department of Statistics and Biostatistics, Rut-
gers University.

Spring 2007 Instructor, Department of Statistics and Biostatistics, Rut-
gers University.

Summer 2007 Intern, Department of Discovery and Preclinical, Sanofi-
Aventis.

2007-2008 Contractor statistician, New York University, College of
Nursing.

Spring 2008 Instructor, Department of Statistics and Biostatistics, Rut-
gers University.



62

• PUBLICATIONS

2002 The Error-Density Estimator of Nonparametric Regression in Con-
tinuous Time Processes, Mathematica Applicata, 2002, Vol. 15, No.
4, 62-66, Jia Shen and Juan Zhang.

2003 Uniform Convergence Rate of an Error-density Estimator of Non-
parametric Regression in Continuous Time Processes, Mathematica
Applicata, 2003, Vol. 16, suppl. 35-39, Juan Zhang, Jia Shen and
Guodong Hui.

2007 Using Crash Scene Variables to Predict the Need for Trauma Center
Care in Older Persons, Research in Nursing & Health, 2007, Vol. 30,
399-412, Linda J. Scheetz, Juan Zhang and John E. Kolassa.

2007 A Comparison of the Accuracy of Saddlepoint Conditional Cumula-
tive Distribution Function Approximations, IMS-LNMS, 2007, Vol.
54, 250-259, Juan Zhang and John E. Kolassa.

2008 Saddlepoint Approximation for the Distribution of the Modified Signed
Root of Likelihood Ratio Statistics near the Mean, Communications
in Statistics – Theory and Methods, 2008, Vol. 37,issue 2, 194-203,
Juan Zhang and John E. Kolassa.

2008 Evaluation of Injury Databases as a Preliminary Step to Developing
a Triage Decision Rule, Journal of Nursing Scholarship, 2008; 40:2,
144C150, Linda J. Scheetz, Jane Zhang, John E. Kolassa, Patricia
Allen, Michael Allen.


