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ABSTRACT OF THE DISSERTATION

Computer Aided Diagnosis of Lung Ground Glass Opacity

Nodules and Large Lung Cancers in CT

by Jinghao Zhou

Dissertation Director: Dimitris Metaxas

Diagnosis of lung nodules and cancers is a critical and urgent problem in clinical diag-

nosis. This thesis is to design and build a computer aided lung ground glass opacity

(GGO) nodules and large lung cancers diagnosis system which aims to quantify the

volumetric change of the lung GGO nodules and large lung cancers between the pre-

treatment and post-treatment. In order to quantify the volumetric change of the lung

nodules and cancers over time, segmentation and registration methods are used to de-

termine the same lung nodule or cancer between the pre-treatment and post-treatment.

We first perform a pre-selection method and extract the centerlines of tubular objects

by applying intensity ridge tracing method. While tracing tubular objects, bifurcation

points are automatically detected from the cross-sectional planes by applying scan-

conversion method or Adaboost algorithm. For the registration method, we develop a

3D-3D model based rigid registration method based on bifurcation points. This rigid

registration method minimizes the least square error of the corresponding bifurcation

points between the planning CT images and the respiration-correlated CT images. For

the lung GGO nodules and large lung cancers detection and segmentation, we propose

a novel method to automatically detect and segment lung GGO nodules and large lung

ii



cancers from chest CT images. For lung GGO nodules detection, we develop a classi-

fier by boosting k-Nearest Neighbor. We then apply a clustering method to detect the

regions of the lung GGO nodules. The detected regions of lung GGO nodules are then

automatically segmented. We also present the statistical validation of the proposed

classifier for lung GGO (10 datasets contains 10 GGO nodules) detection as well as the

promising results of automatic lung GGO nodules segmentation. The improvement of

the method of large lung cancers is that we propose a robust active shape model method

for automatic segmentation of lung areas which can be distorted by large lung cancers.

We present the statistical validation of the proposed classifier for large lung cancers (10

datasets contains 16 large lung cancers) detection as well as the very promising results

of automatic large lung cancers segmentation.
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Chapter 1

Introduction

Lung cancer is responsible for more than 25% of all cancer-related deaths every year

and lung cancer kills more people than breast, colon and prostate cancers combined [1].

Only 16% of lung cancer patients are diagnosed before their diseases have spread to

other parts of their bodies (e.g., regional lymph nodes and beyond), compared to more

than 50% of breast cancer patients and 90% of prostate cancer patients [2]. Also,

the results of the Early Lung Cancer Action Project suggested that nodules with pure

or mixed Ground Glass Opacity at the thin-section CT are likely to be malignant or

cancerous [3].

The facts above show that the diagnosis of lung nodules and lung cancers is a very

difficult and urgent problem in clinical diagnosis. This thesis is to design and build a

computer aided lung ground glass opacity (GGO) nodules and large lung cancers diag-

nosis system which aims to quantify the volumetric change of the lung GGO nodules

and large lung cancers between the pre-treatment and post-treatment. The difficulties

of such system are how to segment the tubular objects (as landmarks), how to regis-

ter the tubular objects with topology changes and how to quantitatively analyze the

corresponding lung GGO nodules and large lung cancers.

This introduction chapter is to familiarize the reader with the problem and solving

approaches. The lungs on computed tomography (CT) are explained in section 1.1.

Then, a brief overview of image analysis and machine learning tools employed in this

thesis is in section 1.2. Organization of this thesis is in section 1.3.
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1.1 The lungs on CT

1.1.1 Computed tomography

The concepts of the basis of CT can be traced back to the beginning of 20th cen-

tury. However, it was until 1972 the first commercially CT scanner was invented by

Sir Godfrey Newbold Hounsfield in Hayes, United Kingdom at EMI Central Research

Laboratories based on X-rays. Within 10 years, more than 10,000 devices were used

in clinical and medical centers around the world. CT is not only the breakthrough

from the discovery of X-ray, but also a milestone of diagnostic radiology and radiation

therapy. An overview of CT technology and applications is presented in [4].

CT scanner includes a radiation source and a set of detectors. The radiation source

circles around the patient body and the detectors measure the attenuation of the radi-

ation at different angle. From these measurements, computers are used to reconstruct

a slice of the section of the patient body. A stack of such slices is obtained by moving

source and detectors to capture slices at close positions. Multiple slices which constitute

a three dimensional volume of the patient are obtained using two methods: conventional

CT scans take pictures of slices of the body, while helical CT scans take pictures as

the X-ray tube helically circles the patient. A detailed description of the equations of

reconstruction and the practical methods of solving them is presented in [5] and [6].

Values in a CT image are called Hounsfield unit (HU). They are the measurements of

a physical property of the tissue displayed, i.e., the radiation attenuation coefficient μ of

the tissue. The value of μ varies with the wavelength and the strength of the radiation,

but the ratio of μ between different materials does not. The Hounsfield unit (HU)

is a linear transformation of the original linear attenuation coefficient measurement,

where the radiodensity of distilled water at standard pressure and temperature (STP)

is defined as zero Hounsfield units (HU), while the radiodensity of air at STP is defined

as -1000 HU. For a material X with linear attenuation coefficient μ , the corresponding

HU value is therefore given by:

CTvalue =
μX − μH2O

μH2O − μair
× 1000
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where μH2O and μair are the linear attenuation coefficients of water and air, respectively,

at STP. Thus, a change of one Hounsfield unit (HU) represents a change of 0.1% of

the attenuation coefficient difference between water and air, or approximately 0.1%

of the attenuation coefficient of water since the attenuation coefficient of air is nearly

zero. Using this scale, images from different and properly calibrated scanners can be

quantitatively compared.

CT has had tremendous improvements [4, 7] after it was created. New CT scanners

use a continuously rotating gantry that contains the radiation source. The detectors

are set out in a stationary array and form a complete circle. The gantry performs a

complete rotation within a second and during that time, more than 64 slices can be

acquired simultaneously since rows of circular detector arrays are mounted close to

each other. The images are commonly composed of a matrix of 512×512 pixels in each

direction and the image resolution can be as high as 0.3 mm per pixel. Isotropic 3D

volume can be obtained based on setting the slice thickness to the same range as image

resolution. It takes less than a minute to scan a complete patient body now.

1.1.2 Computed tomography of the lungs

CT scanner had fast speed and high resolution to make it an important instrument in

the imaging of the lungs in 1980 [8]. The high-resolution CT (HRCT) scanners were

developed, in which the thickness of slices was approximately 1 mm thick. However,

the acquisition speed became a hamper to the amount of slices that could be acquired

during a breathing period. As the aim of HRCT is to assess a generalized lung disease,

the test is conventionally performed by taking thin sections 10-40 mm apart. This type

of noncontiguous scans are used today since the added diagnostic value of the slices in

between does not exceed the increase in radiation dose received by the patient [9].

There are three most commonly separated axial planes (the coronal plane, the trans-

verse plane and the sagittal plane) to represent a 3D volume. Three CT image slices

of separated axial planes from a 3D HRCT volume of the lung are demonstrated in

Fig. 1.1.

Pixels in an image obtained by CT scanning are displayed in terms of relative
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(a) (b) (c)

Figure 1.1: 1.6 CT slices of the lung, taken from a 3D data volume in three main
orientations. (a) The image in the coronal plane. (b) The image in the transverse
plane. (c) The image in the sagittal plane.

radiodensity. The pixel itself is displayed according to the mean attenuation of the

tissue(s) that it corresponds to on a scale from -1024 to +3071 on the Hounsfield scale.

Pixel is a two dimensional unit based on the matrix size and the field of view. When

the CT slice thickness is also factored in, the unit is known as a voxel, which is a three

dimensional unit.

The phenomenon that one part of the detector cannot differ between different tissues

is called the “Partial Volume Effect”. That means that a big amount of cartilage and

a thin layer of compact bone can cause the same attenuation in a voxel as hyperdense

cartilage alone. Water has an attenuation of 0 Hounsfield units (HU) while air is -1000

HU, cancellous bone is typically +400 HU, cranial bone can reach 2000 HU or more.

The attenuation of metallic implants depends on atomic number of the element used:

Titanium usually has an amount of +1000 HU, iron steel can completely extinguish the

X-ray and is therefore responsible for well-known line-artifacts in computed tomograms.

Artifacts are caused by abrupt transitions between low- and high-density materials,

which results in data values that exceed the dynamic range of the processing electronics.

The images are displayed using a windowing technology since human eyes cannot

identify so many grey levels. Windowing is the process of using the calculated Hounsfield

units to make an image. The display device can only resolve 256 shades of gray. These

shades of gray can be distributed over a wide range of HU values to get an overview

of structures that attenuate the beam to widely varying degrees. Alternatively, these
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shades of gray can be distributed over a narrow range of HU values (called a “narrow

window”) centered over the average HU value of a particular structure to be evaluated.

In this way, subtle variations in the internal makeup of the structure can be discerned.

This is a commonly used image processing technique known as contrast compression.

For example, to evaluate the abdomen in order to find subtle masses in the liver, one

might use liver windows. Choosing 70 HU as an average HU value for liver, the shades

of gray can be distributed over a narrow window or range. One could use 170 HU as the

narrow window, with 85 HU above the 70 HU average value; 85 HU below it. Therefore

the liver window would extend from -15 HU to +155 HU. All the shades of gray for

the image would be distributed in this range of Hounsfield values. Any HU value below

-15 would be pure black, and any HU value above 155 HU would be pure white in this

example. Using this same logic, bone windows would use a “wide window” (to evaluate

everything from fat-containing medullary bone that contains the marrow, to the dense

cortical bone), and the center or level would be a value in the hundreds of Hounsfield

units. To an untrained person, these window controls would correspond to the more

familiar “Brightness” (Window Level) and “Contrast” (Window Width).

1.1.3 Lung anatomy on CT

We talk about the human anatomy in order to understand what is visible in an HRCT

slice of the lung (Fig. 1.2). The lungs are contained within the thoracic cavity. The

diaphragm encloses it at the bottom and the rib cage and intercostal muscles form the

top and sides of the thoracic cavity. The lungs are contained in two pleural membranes

or pleurae. The pleura visceralis encloses the lungs, the pleura parietalis adheres closely

to the chest walls and the diaphragm. The pleurae are isolated by a thin film of fluid.

This lets them to glide across each other without friction during breathing. The lung

essentially exists free in the thoracic cavity. It holds its form and size due to the

vacuum between the pleura and the chest wall. If the chest wall is punctured, the

lungs collapse. The lung consists of airways, vessels, and connective tissue called the

interstitium which is a framework of thin membranes that supports the structure of

the lung. The lung airways and lung vessels are laid out in a tree-like network which is
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Figure 1.2: The illustration of the anatomy of human lung. The upper image shows the
view in the coronal plane and the lower image shows the view in the transverse plane.
Picture Source: Medical-dictionary.thefreedictionary.com

dividing into increasingly smaller branches starting at the hilum which is the location

where they enter the lungs. The arterial vessel tree lies along side the bronchial tree

and each vessel is attached by a bronchus of approximately equal size. In perpendicular

cross-sections, such a bronchovascular pair seems as one hole closed and one hole open

which is often called a “signet ring” sign (Fig. 1.3). There are also veins which do not

accompany a bronchus.

Human lungs are located in two cavities on either side of the heart. Though similar

in appearance, the two are not identical. Both are separated into lobes, with three

lobes on the right and two on the left. The lobes are further divided into lobules,

hexagonal divisions of the lungs that are the smallest subdivision visible to the naked

eye by membranes called the fissures, which can be seen as lines on a high-resolution

CT slice (Figure 1.3).

The airways have around 23 branching generations until they achieve in alveolar

sacs. The alveolar sacs are grapelike clusters and exist of many alveoli which are the

gas exchange sites of the lung (Fig. 1.4). The smallest anatomical unit that can be
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Figure 1.3: An HRCT slice of lung in the transverse plane with arrows indicating a
perpendicular cross-section of a bronchus (B), a vessel (V) and a fissure (F).

viewed on HRCT is the secondary lobule, at the 16th branching generations [10]. The

secondary lobule is the smallest discrete portion of the lung that is surrounded by

connective tissue. It is 2 to 3 cm in diameter and contains up to 12 of the acini. It

can show up on HRCT as a polygon with a blood vessel in the middle. The terminal

bronchiole, the airway that accompanies the vessel, has such a thin wall that it cannot

be seen.

1.1.4 Lung cancer on CT

HRCT scans of the lung are made to establish the presence or progression of disease in

clinical field. They will therefore seldom show a set of normal healthy lungs. The work

in chapters 3 through 5 of this thesis is centered specifically on automated computer

aided diagnosis system of the lung cancers.

Lung cancer is a disease of uncontrolled cell growth in tissues of the lung. This

growth may lead to metastasis, invasion of adjacent tissue and infiltration beyond the

lungs. The vast majority of primary lung cancers are carcinomas of the lung, derived

from epithelial cells. Lung cancer, the most common cause of cancer-related death

in men and the second most common in women, is responsible for 1.6 million deaths
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Figure 1.4: The branching structure of the airway tree. The number in the middle
column shows the number of the branching generation.

Table 1.1: Treatment methods of different types of lung cancers
Type Treatment method

Small cell lung carcer Chemotherapy, Radiation
Non-small cell lung carcer Surgery

worldwide annually [1]. The most common symptoms are shortness of breath, coughing

(including coughing up blood), and weight loss [11].

The main types of lung cancer are small cell lung carcinoma and non-small cell

lung carcinoma. Different types of lung cancer need different treatment methods (see

Table 1.1); non-small cell lung carcinoma (NSCLC) is sometimes treated with surgery,

while small cell lung carcinoma (SCLC) usually responds better to chemotherapy and

radiation [12]. The most common cause of lung cancer is long term exposure to tobacco

smoke. The occurrence of lung cancer in non-smokers, who account for fewer than 10%

of cases, appears to be due to a combination of genetic factors, radon gas, asbestos,

and air pollution, including second-hand smoke [13, 14, 15, 16, 17, 18, 19].

Lung cancer may be seen on chest x-ray and computed tomography (CT) scan.

Performing a chest x-ray is the first step if a patient reports symptoms that may be

suggestive of lung cancer. If there are no x-ray findings but the suspicion is high (such
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Table 1.2: Nomenclature of related work
ANN Artificial neural network.
AUC Area under the ROC curve.
CAD Computer-aided detection/diagnosis.
CT Computed tomography.
CTA CT angiography.
EC Explosion controlled region growing.
FN False negative.
FP False positive.

HRCT High-resolution computed tomography.
PVE Partial volume effect.
ROC Receiver Operating Characteristic.
ROI Region of interest.
TN True negative.
TP True positive.
VOI Volume of interest.

as a heavy smoker with blood-stained sputum), bronchoscopy and/or a CT scan may

provide the necessary information.

The diagnosis is confirmed with a biopsy. This is usually performed via bron-

choscopy or CT-guided biopsy. Treatment and prognosis depend upon the histological

type of cancer, the stage (degree of spread), and the patient’s performance status. Pos-

sible treatments include surgery, chemotherapy, and radiotherapy. With treatment, the

five-year survival rate is 14% [12].

1.2 Brief overview of image analysis and machine learning tools em-

ployed in this thesis

In this section, we introduce the terminology and the general methods which are im-

portant in the medical image analysis field. The key concepts are image segmentation,

image registration, machine learning and image visualization. The nomenclature used

in this thesis is shown in Table 1.2.

Image segmentation refers techniques to detect and delineate the anatomical objects

of interest in the image, discriminating each object from other objects and from its

background. Image registration is a fundamental task in medical image processing



10

used to match multiple images taken, for example, at different times, with different

sensors, or from different subjects. This technique provides basis for image comparison

and information integration in many clinical applications.

Machine learning, a broad subfield of artificial intelligence, is concerned with the

design and development of algorithms and techniques that allow computers to “learn”.

At a general level, there are two types of learning: inductive and deductive. Inductive

machine learning methods extract rules and patterns out of massive data sets. The ma-

jor focus of machine learning research is to extract information from data automatically,

by computational and statistical methods. Hence, machine learning is closely related

not only to data mining and statistics, but also theoretical computer science. Machine

learning algorithms are organized into a taxonomy, based on the desired outcome of the

algorithm. Common algorithm types include Supervised learning, Unsupervised learn-

ing, Semi-Supervised learning, Reinforcement learning, Transduction and Learning to

learn. We will focus on Supervised learning.

Supervised learning is a machine learning technique for learning a function from

training data. The training data consist of pairs of input objects (typically vectors),

and desired outputs. The output of the function can be a continuous value (called

regression), or can predict a class label of the input object (called classification). The

task of the supervised learner is to predict the value of the function for any valid input

object after having seen a number of training examples (i.e. pairs of input and target

output). To achieve this, the learner has to generalize from the presented data to unseen

situations in a “reasonable” way. The parallel task in human and animal psychology is

often referred to as concept learning.

Image visualization is a technique to provide visual feedback for image interpretation

and for display of analysis results in 3-D. In conventional 2-D imaging, an experienced

diagnostician views a sequence of 2-D images, mentally transforms them into an im-

pression of the 3-D anatomy and pathology, then makes the diagnosis or performs an

interventional procedure. This process is not only time consuming and inefficient, but

more importantly, variable and subjective, which may lead to incorrect decisions in

diagnosis, planning and delivering the therapy. Image visualization is to overcome the
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Figure 1.5: The flow chart of a typical CAD system which has five steps.

limitations of conventional 2-D imaging and provide the diagnostician or therapist a

more complete view of the anatomy in 3-D. For example, it can place the 2-D image

plane at any location within an organ; orient the 2-D image to the optimal image plane,

and give more accurate estimation of organ. With the advance of computer hardware,

it is desirable to develop image visualization system for real-time image manipulation

and rendering and provides intuitive tools for controlling the multi-dimensional image

to allow extraction of the needed information.

The goal of the work in this thesis is to design and build a computer aided diagnosis

(CAD) system for lung cancers. The stages of a typical CAD system are shown in the

flow chart (Fig. 1.5).

Steps 1 through 4 involve image processing of the image data. Prior knowledge on

the Techniques such as filtering, thresholding, region growing, connected component

analysis and mathematical morphology is assumed. They can be found in the standard

textbooks on image processing [20].

Step 5 is performed in the feature space; the space spanned by the feature vectors

calculated to represent the image segments. “Classification” in this space involves the

process of finding the decision boundaries that separate the different classes. Popular

techniques such as artificial neural networks (ANN) or linear discriminant classifiers
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(LDC) can be found in textbooks on pattern recognition [21, 22].

For the evaluation of the classification results, different measures are used depending

on the number of classes, N, involved in the classification.

A two-class classification problem is for example the discrimination between normal

and abnormal (or diseased) tissue. Diseased samples are called “positive” samples,

normal samples are called “negative” samples. For such a problem, three measures

of performance should be given: accuracy, sensitivity and specificity. Accuracy is the

total fraction of correctly classified samples. Sensitivity and specificity are the fractions

of correctly classified positive and negative samples, respectively. For a classifier that

makes no classification errors at all, all three measures have the value 1. There is a

trade-off between sensitivity and specificity. A classifier that marks all samples as being

positive will achieve a sensitivity of one, but will have zero specificity. This trade-off can

be measured using ROC curves, which measure sensitivity as a function of specificity.

For multiple classes classification, the evaluation of the performance is through the

single measures of accuracy, or by giving a confusion matrix. Accuracy is the total

fraction of correctly classified samples. In the presence of a dominant class to which

the majority of the samples belong, accuracy is not a reliable measure of performance.

A confusion matrix is a matrix with on one axis the true classes to which the samples

belong, and on the other axis the classes to which the samples were assigned in the

classification procedure. Correctly classified samples end up on the diagonal. The

confusion matrix gives insight into which pairs of classes are confused most, that is,

which pairs of classes are responsible for the most classification errors.

1.3 Organization of this thesis

The first chapter is the introduction. Second chapter is the review of previous literature.

Third chapter present the novel contributions of this thesis work. Forth chapter is on

the methods. Chapter five to chapter eight show the clinical applications. The last

chapter is the conclusion and future work (Fig. 1.6).
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Figure 1.6: The flow chart of the organization of this thesis.
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Chapter 2

Previous Literature

2.1 Segmentation of lung structures

2.1.1 Lung segmentation on CT

Any computer aided diagnosis system that analyzes the lungs needs an automatic lung

segmentation. Armato and Sensakovic presented that the accurate segmentation of

lung is a pre-processing step in a CAD scheme [23]. In a lung nodule detection system,

they showed that 5 to 17% of the lung nodules in their test data was missed due to

the pre-processing segmentation. This depended on whether or not the segmentation

algorithm was adapted to the nodule detection procedure.

As the main part of the lung is full of air, it appears as a dark region in CT. This

contrast between lung and surrounding tissues helps setup most of the segmentation

methods. Most of the methods are region-based [24, 25, 26, 27] or contour-based [28,

29]. The main lung volume is found in two ways in region-based approach. One way

is the thresholding based on the intensity values, followed by the connected component

labeling (alternatively connected component analysis). After the method is applied,

the lungs are identified by imposing rules on size and location. The other way is the

region growing. The volume is found by region growing from the trachea. The trachea

itself is found by searching for 2D circular air-filled regions in the first slices of the scan,

or by searching for a 3D tubular air-filled object located centrally in the top half of

the scan. After obtained the combined lung and airway volume, the separation of left

and right lungs and removal of the trachea and the main stem bronchi are performed.

This approach uses the mathematical morphology technique to obtain the smooth lung

volumes without holes. Zhou et al. [29] proposed a robust active shape model to segment
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lung areas that are distorted and occluded by large lung lesions. These large lung lesions

are hard to segment due to the similarity of the intensities between the cancers and the

surrounding structures in CT images. Li and Reinhardt proposed a 3D active shape

model that provided an approximate segmentation of a single lung and was combined

with multiple 2D refinements to capture details and shape variance not present in the

statistics of the training data [28].

One difficulty is at what points the segmentations are supposed to cut through

the major airways and vessels in the hilar area where they enter the lung. Manual

segmentation also show much variance around the hilum, depending on smoothness we

want. Ukil and Reinhardt used a segmentation of the bronchial tree to improve their

lung segmentation in hilar area [30].

Other difficulties of the segmentation requiring special attention are the posterior

and anterior junctions between left and right lung. These junctions can be very thin

and consequently of low contrast due to the partial volume effects (PVE). The solution

to this problem is to heuristically search a given region in each affected axial slice and

find a separating junction line inside it. The line is either defined as a shortest distance

in anterior-posterior direction [27, 31, 26].

Another challenge is the lungs affected by high density pathologies that are con-

nected to the lung border. Due to a lack of contrast between lung and surrounding

tissues, thresholding methods will fail to segment these pathological parts of the lung.

Zhou et al. proposed a robust active shape model to segment lung areas that are dis-

torted and occluded by large lung lesions [29]. Sluimer et al., proposed registration

with a presegmented reference scan [32].

2.1.2 Segmentation of pulmonary airways on CT

The pulmonary airways have a tree structure (the tracheobronchial tree) of cylindri-

cal branches of decreasing radius and divide into the left and right main bronchus.

These bronchi repeatedly divide into smaller bronchi, up to the 23th branching gener-

ation [10]. The bronchi are filled with air and surrounded by the bronchial wall which

has a relatively high CT value.
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On a normal dose CT scan, a radiologist might trace bronchi up to branching

generation 7. Lumen and bronchus wall combine into an indistinguishable mass after

exceeding the generation 7. In the last decade, a number of methods have been proposed

to automatically or semiautomatically segment the tracheobronchial tree [33, 34, 35,

36, 37]. Computerized schemes have been developed to label the different bronchi such

that the branches with problems can be pinpointed anatomically [36, 38]. There are also

a number of methods proposed to measure the geometrical properties of the bronchi at

user given locations [39, 40, 41]. These methods can be used to diagnose a number of

respiratory disease.

The existing methods for airways segmentation can be divided into four main cat-

egories: region growing [33, 34, 42], knowledge-based segmentation [33, 34], centreline

extraction [37, 43, 44, 45] and mathematical morphology [46, 47]. Some methods com-

bine two or more of these methods. For example, the region growing method called

the explosion controlled (EC) region growing [48, 36, 46] is an iterative region growing

process with increasing threshold value until the total number of voxels grown increases

too much in one iteration step. In Table 2.1, the various studies on pulmonary airways

(tracheobronchial tree) segmentation are presented. The variables in the table include

the number of scans, slice thickness, the algorithm, whether the method is automatic

or not, 2D or 3D, and the result.

Many challenges of the segmentation of pulmonary airways lie in the segmentation in

the pathological and low-dose scans. The main problems are leakage and obstructions.

The source of these problems might come from noise, tissue movement, high-density

implants, PVE, mucus, atelectases and pathology.

2.1.3 Segmentation of vessels

Each lung includes an arterial and a venous vessel tree. When the pulmonary arteries

and veins enter the lungs, their diameter can be up to 30 mm. As they divide, vessel

diameters decrease. In a normal CT scan vessels can be measured up to 5-10 mm from

the pleura. The arterial vessel tree lies along side the bronchial tree and each vessel

is attached by a bronchus of approximately equal size. In perpendicular cross-sections,
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Table 2.1: Papers on airways segmentation. The variables in the table include number
of scans (#), slice thickness (mm), the algorithm, whether the method is automatic or
not (Auto), 2D or 3D (Dim), and the result.

Paper # mm Method Dim Auto Result
Sonka 5 3 lung segmentation, 2/3 - count branches;

et al. [33] region grow, rule-based TP=68.5%,
candidate detection FP=11.5%

Park 5 3 lung segmentation, 2/3 - count branches;
et al. [34] region grow, fuzzy-logic TP=69.1%,

candidate detection FP=8.8%
Sato 1 1 cropping, threshold, 3 - count centreline

et al. [35] multi-scale line filtering, points;
connected components ROC-curve

Mori 14 2/5 EC, thinning 3 Y count branches;
et al. [36] rule-based 67% detected,

FP removal 85% of ≤ 4th

Deschamps 1 - calculate minimal 3 N path found
and Cohen path between

[37] 2 points
Aylward 1 - dynamic ridge 3 N qualitative

and traveral analysis
Bullitt [43]

Zhou 10 2.5 eigenanalysis, 3 N qualitative
et al. [45] bifurcation detection, analysis,

bifurcations
Tschirren 33 - VOI, multi-seeded 3 - compare to
et al. [49] fuzzy connectivity, region grow

minitor leaks,

such a bronchovascular pair seems as one hole closed and one hole open which is often

called a “signet ring”. There are also veins which do not accompany a bronchus. The

segmentation of the vessel trees can be of interest for matching follow-up scans as

landmarks to remove false positive (FP) of CAD schemes, for example in the case of

lung nodule detection.

The number of studies on pulmonary vessel segmentation is limited. I will present

the general vessel segmentation methods are discussed here, since these methods can be

directly applied to pulmonary vessel segmentation [50]. The vessel segmentation meth-

ods can be divided into different categories, such as pattern recognition techniques,

model based approaches, neural network based approaches, and tube-like object detec-

tion approaches. Multiple techniques are usually used together to solve the particular

segmentation tasks.
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Table 2.2: Papers on pattern recognition techniques. The variables in the table include
the author name of the paper (Paper), the algorithm (Method), input type, whether the
method is multi-scale (Multiscale), the result such as centerlines (Cen.), edges (Ed.),
Junctions (Junc.). Whether the method segment the whole tree, whether the method
has bifurcation detection (Bi).

Paper Method Input Mul. Result Whole Bi
type Cen. Ed. Junc. tree

MULTI-SCALE APPROACHES
Sarwal MSA XRA Y Y N Y Y N

et al. [51]
SKELETON-BASED APPROACHES

TOZAKI SBA CT N Y N Y Y N
et al. [52]
KAWATA SBA CBCT N Y N Y Y N
et al. [53] DGBA

SORANTIN SBA CT N Y N N/A N/A N
et al. [54] MMBA

RIDGE-BASED APPROACHES
BULLITT RBA MRA Y Y Y Y Y N
et al. [55] SBA CT
Aylward RBA MRA Y Y Y Y Y N
et al. [43] CT

Zhou RBA CT N Y Y Y N Y
et al. [56]

A. Pattern recognition techniques

Pattern recognition (PR) aims to classify data (patterns) based either on a priori knowl-

edge or on the statistical information extracted from the patterns. The patterns to be

classified are usually the groups of measurements or observations, defining points in

an appropriate multidimensional space. Humans are very well adapted to carry out

PR tasks. In the vessel extraction domain, PR techniques are concerned with the

automatic detection of vessel structures and the vessel features. We divide PR tech-

niques into several categories: (1) multi-scale approaches, (2) skeleton-based (centerline

detection) approaches, (3) ridge-based approaches.

In Table 2.2, the various studies on the vessel tree segmentation are presented. The

variables in the table include the author name of the paper (Paper), the algorithm

(Method), input type, whether the method is multi-scale (Multiscale), the result such

as centerline, edges, and junction, whether the method segments the whole tree, and
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Table 2.3: Nomenclature of pattern recognition techniques.
DGBA Differential Geometry-based Approaches.
MSA Multi-Scale Approaches.
RBA Ridge-Based Approaches.
SBA Skeleton Based Approaches.

CBCT Cone-beam CT
MRI Magnetic Resonance Imaging.
XRA X-Ray Angiography.
MRA Magnetic Resonance Angiogra

whether the method has bifurcation detection (Bi). The nomenclature table of pattern

recognition techniques is in Table 2.3.

Multi-scale approaches deal with the segmentation at different image resolutions.

This technique has high processing speed. Large structures (large vessels in our ap-

plication domain) are extracted from low resolution images while fine structures are

extracted at high resolution. Second advantage is high robustness. After segmenting

the strong structures at the low resolution, the weak structures in the neighborhood of

the strong structures can be segmented at higher resolution.

Skeleton-based methods perform the extraction of the centerlines of blood vessel.

The vessel tree is developed by connecting these centerlines. Different approaches are

used to extract the centerline structure. These methods are: (i) threshold and object

connectivity, (ii) threshold followed by a thinning procedure, and (iii) extraction based

on graph description. The resulting centerline structure is used for the 3D reconstruc-

tion.

Ridge-based methods deal with grayscale images. It generates 3D elevation intensity

maps in which intensity ridges approximate the skeleton of the tubular objects from the

grayscale images [57]. After generating the intensity map, ridge points are identified

as local peaks in the direction of the maximal surface gradient. The ridge points can

be obtained by tracing the intensity map from an arbitrary point, along the steepest

ascent direction. Ridges are invariant features to affine transformations and can be

detected in different image modalities. These properties are exploited in medical image

registration [57, 43]. Ridge-based approaches detect skeleton of tubular objects so it



20

Table 2.4: Papers on model based approaches. The variables in the table include the
author name of the paper (Paper), the algorithm (Method), input type, whether the
method is multi-scale (Multiscale), the result such as centerlines (Cen.), edges (Ed.),
Junctions (Junc.). Whether the method segment the whole tree, whether the method
has bifurcation detection (Bi).

Paper Method Input Multi Result Whole Bi
type scale Cen. Ed. Junc. tree

PARAMETRIC DEFORMABLE MODELS
MOLINA PDM XRA N N Y N/A N/A N
et al. [58]

RUECKERT PDM MRI Y N/A Y N/A N/A N
et al. [59]
Kozerke PDM MRI N N Y N/A N/A N
et al. [60]
Geiger PDM Medical Y Y Y N/A N/A N

et al. [61] Images
PARAMETRIC MODELS

CHAN PM XRA N N Y N/A N/A N
et al. [62]

KRISSIAN PM MRA Y Y N/A Y Y N
et al. [63]

BORS PM 3D N Y Y N/A N/A N
et al. [64] vol.

TEMPLATE MATCHING
SUMMERS TM MRA Y Y Y Y Y N
et al. [65] MSA

PETROCELLI TM XRA N Y N/A Y N N
et al. [66]

can be thought of as a specialized skeleton-based approaches.

B. Model based approaches

Model-based approaches apply explicit vessel models to extract the vasculature. We

divide model-based approaches into four categories: (1) Deformable models, (2)Para-

metric models, (3) Template matching.

In Table 2.4, the various studies on vessel tree segmentation are presented. The

variables in the table include the author name of the paper (Paper), the algorithm

(Method), input type, whether the method is multi-scale (Multiscale), the result such
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Table 2.5: Nomenclature of model based approaches.
MSA Multi-Scale Approaches.
PM Parametric Models.

PDM Parametric Deformable Models.
TM Template Matching.
MRI Magnetic Resonance Imaging.
MRA Magnetic Resonance Angiography.
XRA X-Ray Angiography.

as centerline, edges, and junction, whether the method segments the whole tree, and

whether the method has bifurcation detection (Bi). The nomenclature table of model

based approaches is in Table 2.5.

Deformable models are divided into two categories: parametric deformable mod-

els and geometric deformable models. Parametric deformable models are model-based

techniques to find object contours using parametric curves that deform under the influ-

ence of internal and external forces. First introduced in [67], active contour models or

snakes are a special case of a more general technique of matching a deformable model

by means of energy minimization. Physically, a snake is a set of control points, called

snaxels, in an image that are connected to each other. Each snaxel has an associ-

ated energy that either rises or falls depending upon the forces that act on it. Two

forces involved are known as snake’s internal and external forces. Internal forces serve

to impose the smoothness constraints on the contour, while external forces pull the

snake towards the desired image features such as lines and edges. On the other hand,

geometric deformable models use the propagating interfaces under a curvature depen-

dent speed function to model anatomical shapes [68] and [69]. They use the Level Set

Method (LSM) approach and adapt it to the shape recognition. The main idea behind

the Level Set Method is to represent propagating curves as the zero level set of a higher

dimensional function which is given in the Eulerian coordinate system. Hence, a moving

front is captured implicitly by the level set function.

Parametric models (PM) approach models the objects of interest parametrically.

Tubular objects are modeled as a set of overlapping ellipsoids. Some papers use a
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circular vessel model [62]. The parameters of the model used are estimated from the

image. Although the elliptic PM can approximate healthy vessels and stenoses, it has

difficulties to approximate pathological irregular shapes and vessel bifurcations. [70]

employs deformable elliptic model to model irregular vessels and bifurcations.

Template matching plans to identify a structural model (template) in an image.

The method uses the template as a context. Thus, it is a contextual method and a top-

down approach. In arterial extraction applications, the arterial tree template is usually

shown as a series of nodes connected in segments. This template will be deformed to fit

the structures in the scene optimally. Stochastic deformation process represented by a

Hidden Markov Model (HMM) is a method to achieve the template deformation [71, 66].

C. Neural network based approaches

Artificial neural networks are made up of interconnecting artificial neurons (program-

ming constructs that mimic the properties of biological neurons). Artificial neural net-

works may be used to gain an understanding of biological neural networks, or to solve

artificial intelligence problems without necessarily creating a model of a real biological

system. It is widely used in pattern recognition as a classification method. The net-

work is a collection of elementary processor called nodes. Each node takes a number of

inputs, performs elementary computations, and generates a single output. The output

is a linear function which is the weighted sum of the inputs. These weights are learned

through training process and then used in the recognition. A commonly used neural

network learning algorithm is called the back-propagation algorithm. Neural networks

have been used in many applications. In medical imaging, neural networks are mainly

used as a classification method. The neural network system is trained with a set of

medical images and the target image is segmented using the trained system. One of

the advantages that makes neural networks attractive in medical image segmentation is

their ability to use the nonlinear classification boundaries obtained during the training

of the network. Another attractive feature is the ability to learn.

In Table 2.6, the various studies on vessel tree segmentation are presented. The

variables in the table include the author name of the paper (Paper), the algorithm
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Table 2.6: Papers on neural network based approaches. The variables in the table
include the author name of the paper (Paper), the algorithm (Method), input type,
whether the method is multi-scale (Multiscale), the result such as centerlines (Cen.),
edges (Ed.), Junctions (Junc.). Whether the method segment the whole tree, whether
the method has bifurcation detection (Bi).

Paper Meth Input Multi Result Whole Bi
od type scale Cen. Ed. Junc. tree

line
PARAMETRIC MODELS

Cronemeyer NNBA XRA N Y Y Y Y N
et al. [72]
Nekovei NNBA XRA N N N Y N/A N

et al. [73]
Hunter NNBA ECG Y N/A Y N/A N/A N

et al. [74] PDM
Kottke NNBA XRA N N N Y Y N

et al. [75]
Shiffman NNBA CTA N N N Y N/A N
et al. [76]

Table 2.7: Nomenclature of neural network based approaches.
NNBA Neural net based approach.
PDM Parametric deformable model.
CTA CT angiography.
XRA X-Ray angiography.
ECG Echocardiography

(Method), input type, whether the method is multi-scale (Multiscale), the result such

as centerline, edges, and junction, Whether the method segments the whole tree, and

whether the method has bifurcation detection (Bi). The nomenclature table of model

based approaches is in Table 2.7.

2.1.4 Lobar segmentation

Lungs are composed of the distinct anatomical compartments called lobes. Humans

have two lungs, with the left being divided into two lobes and the right into three

lobes. Together, the lungs contain approximately 1500 miles of airways and 300 to

500 million alveoli, having a total surface area of about 75 m2 in adults, roughly the
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same area as a tennis court [77]. Furthermore, if all of the capillaries that surround the

alveoli were unwound and laid end to end, they would extend for about 620 miles. The

lobes are separated by fissures. The fissures are thin sheets of tissue and are visible on

thin-slice CT. Lobar segmentation and fissure detection are, however, not equivalent:

the major and minor fissures can be incomplete but the fissures can be visible [78, 79].

It is important to determine whether a disease affects one or more lobes when lobar

resection is considered. Lobe segmentation is also useful in intrapatient registration.

There are several strategies to segment the lobes. First, the fissures can be detected

directly, by locating sheet-like bright structures in 3D or curve-like structures in 2D

slices. Second, the regions containing the lobe borders are almost devoid of larger

blood vessels. So, the lobar boundaries can be inferred by vessel segmentation. [80, 81]

represented fissure detection. First, a rough estimation of the fissure positions was

provided by atlas registration. Subsequently, fissures were shown with ridge detection in

2-D slices. The method can manually provid anchor points. The method was evaluated

by comparing computer results with manual results. In a recent paper [82], the vessels

were first segmented using a line filter [35]. A set of filters were applied to enhance

sheet-like structures in the volumes of interest. Second, the fissures were found by

morphological processing. A qualitative evaluation on 20 low-dose scans was given.

The previous work shows encouraging results but automatic lobe segmentation is still

challenging unsolved problem, especially in the presence of incomplete fissures and

pathology, an issue not specifically addressed in any paper.

2.2 Registration

In computer aided diagnosis system, the data sets acquired by sampling the same scene

or object at different times, or from different perspectives, will be in different coordinate

systems. Image registration transforms the different data sets to one coordinate system.

Registration is necessary in order to be able to compare or integrate the data obtained

from different measurements.

Medical image registration (e.g. for data of the same patient taken at different points
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in time) often additionally involves nonrigid registration to deal with deformation of

the subject due to breathing, etc. Nonrigid registration of medical images can also be

used to register a patient’s data to an anatomical atlas, such as the Talairach atlas

for neuroimaging. Medical image registration is one of the most active research areas

in medical image analysis [83, 84, 85]. Many algorithms have been proposed, some

of which could be applied to chest CT. Publications on chest CT most often develop

nonrigid registration and typically include some dedicated modifications to standard

approaches.

There are four kinds of registration of lung scans in CT: (1) registration of CT scan

to another scan of the same patient from a different modality, (2) registration of CT scan

to a follow-up CT scan of the same patient for effective visual or automatic comparison

to detect the interval change and monitor the response to therapy, (3) intrapatient

registration of scans acquired at a different inspiration level to study ventilation or to

extract functional information, and (4) interpatient registration of scans to an atlas to

guide segmentations or detect deviations from normal appearance.

[86] is an example of the intermodality registration. PET and CT chest scans were

registered with a rigid deformation followed by an nonrigid deformation based on cubic

B-splines. Mutual information was applied as a similarity criterion in a hierarchical

multiresolution framework with a quasi-Newton optimization algorithm. This method,

similar to the system described in [87], is typical of contemporary volume-based nonrigid

registration algorithms. Other papers of the intermodality registration used threshold-

ing method to identify the lung contours and chamfer-matching [88], preprocessing to

make both images similar in appearance followed by multi-resolution elastic matching

based on minimization of the squared difference image [89].

Registration of follow-up scans has the purposes of pairing and comparing nod-

ules [90, 91] or, more generally, displaying similar slices to a radiologist [92]. Some pa-

pers apply rigid deformations. [91] determined a rigid alignment based on a small num-

ber of automatically identified anatomical landmarks. [93] used an optical flow method.

[94] represented hybrid registration scheme that combined feature- and intensity-based

approaches which was applied to chest CT scans.
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Some papers demonstrated the registration of the scans acquired at different mo-

ments of the respiratory cycle. Matching inspiration and expiration scans is challenging

because of the substantial, locally varying deformations that take place during breath-

ing. [95] described a system to assess several functional parameters from regional lung

volume changes, local changes in air content. Other papers represented radiotherapy

applications: correcting for tumor motion is a major challenge in radiotherapy treat-

ment planning. [96] used the popular demons algorithm to validate the use of the

active breath control during radiotherapy treatment.

Registration across individuals can use similar methods, but many anatomical land-

marks that can be used for intrapatient registration are not always available in two

scans of different patients. [97] have constructed a human lung atlas as a general tool

that can be used for many purposes. [98] showed that atlas registration could be used

to pinpoint the approximate location of lobar fissures which was used later for fissure

segmentation.

In any application, the registration method is a compromise between computation

time and demands for accuracy and robustness. Providing the fast and fully automatic

registration with an accuracy comparable to manual indication of corresponding points

is still a major challenge, especially in the presence of large deformations, pathology

and noise.

2.3 Computerized detection, quantification and classification

Segmentation and registration serve as precursors to the specific image analysis appli-

cations. In this section, the compound systems on automated detection, quantification

and classification of lung cancers are presented.

2.3.1 Lung cancer: detection of lung nodules

The number of articles about automated nodule detection has roughly doubled each

year in recent years. Many of these articles develop methods with a small extension

to a previously published method, or a different database is used for testing. If the
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Table 2.8: Papers on approaches of detection of lung nodules and false positive reduc-
tion. The variables in the table include the author name of the paper (Paper), the false
positive reduction algorithm (FP reduction), Data description, the performance.

Paper FP reduction Data Performance
Kanazawa el
al. [99]

rule-based 450 screenings, 10
mm, low dose

90% expert find-
ings

Suzuki el al. [100] massive training
ANN

101 scans from 71
patients, 10 mm,
low dose

80.3% of expert
findings with 4.8
FPs/scan

Brown el al. [101] - 31 scans, 5-10
mm,normal dose

86% of expert
findings with 11
FPs/scan

Lee el al. [102] new 5 gray-scale
features, tuned
parameters

20 scans, 10mm,
low dose

72.4% of expert
findings with 5.5
FPs/scan

Tanino el al. [103] principal compo-
nent analysis clus-
tering

39 scans, 10mm 100% with 33
FPs/scan

Saita el al. [104] new features: rel-
ative positions to
anatomical struc-
tures

12 scans, 2mm,
low dose

100% of expert
findings with 2.6
FPs/scan

performances in the follow-up paper are not significantly improved from the earlier

results, we only present the latest version.

The lung nodule detection systems generally consist of some common steps: (a)

image preprocessing; (b) nodule candidate detection; (c) false positive reduction; (d)

nodule classification. The image preprocessing step is used to restrict the search space

to the lung area and to reduce vessels, airways, noise and image artifacts. There are

many methods developed to generate nodule candidates, but there are always many

false positives among these candidates. Thus, the next step tries to reduce the number

of these false positive (FP) candidates before the more computationally expensive clas-

sification step. Even after the classification step, many false positives exist, and much

of current research on nodule detection is in fact not focused on the detection part,

but on FP reduction instead. Steps (b)-(d) of nodule detection systems will be covered

below.

Table 2.8 gives some publications of the different CAD models. If the paper mentions
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the false positive reduction scheme in the study description, we put it in the table.

The following techniques have been reported in order to find nodule candidates:

multiple gray-level thresholding [105, 106, 107], mathematical morphology [108, 109,

103, 110], genetic algorithm template matching of Gaussian spheres [111, 112], cluster-

ing [99, 113, 114, 115], connected component analysis [116, 104], thresholding [117, 118,

119], detection of circles [120], gray-level distance transform [115], and filters enhancing

structures [121, 122, 123].

The multiple gray-level thresholding technique are used to find connected com-

ponents of similar intensity values, and to remove attached vessels. Mathematical

morphology contains many image filters: variable N-Quoit filter [108, 103, 124, 125],

selective marking and depth constrained cost map [109], top-hat and sieve filter [110].

The used clustering methods differed in clustering technique and in the features used for

clustering: [99, 114, 115] presented fuzzy clustering and [113] used k-means clustering

on intensities in the original and filtered images.

The following techniques have been reported in order to reduce false positives:

the rule-based false positives reduction [126, 127], the Linear Discriminant Analysis

(LDA) scheme [127, 128], and the massive training Artificial Neural Network (ANN)

scheme [127, 100].

The following techniques have been reported in order to classify the lung nod-

ules: the rule-based or linear classifier [106, 111, 99, 117, 118, 121, 122], template

matching [101], nearest cluster [108, 103], Markov random field [124], neural net-

work [110, 129], and Bayesian classifier [112, 130]. The commonly used features for

classification were gray-level features, shape descriptions, and spatial and size informa-

tion.

One recently interested area is nodule matching, a kind of nodule detection. This

specific problem pertains to the localization of previously detected nodules in a follow-

up scan [101, 106].

With the FDA approval of some commercial CAD systems for nodule detection, it

seems that CAD in this field has come to an acceptable performance.
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2.3.2 Lung cancer: characterization of lung nodules

The characterization of lung nodules is a dilemma for the radiologist. Most large nodules

(diameter ≥ 1 cm) in patients are at high risk for cancer or malignant, however, current

CT scanners allow for the detection of small nodules (diameter < 1 cm). Such small

nodules are extremely common and the vast majority of them are benign [131]. Follow-

up procedures to determine the malignancy are often invasive, and induce risks for the

patient [132]. It is very important for patient management to determine as soon as

possible whether nodules are malignant.

Several papers have been made to design computer systems that can help esti-

mate the probability of cancer. For the design of such systems, it is obviously of

crucial importance to know which characteristics point toward malignancy. This is

also important for radiologists, and the subject of clinical research. It is becoming

clear that rules of thumb that apply to larger nodules do not always hold for smaller

nodules [131, 133, 134, 135, 136].

Clinical variables such as old age, male sex, a history of smoking, a history of cancer,

and exposure to certain chemical compounds increases the probability of cancer, while

other factors decrease this probability. Bayesian analysis to include this information

in the diagnostic process was proposed [137], but applied to nodule characterization in

chest radiographs only.

Table 2.9 provides an overview of published studies on nodule characterization.

All studies used a combination of features to characterize the size, shape and internal

structure of the nodules. In that way, they indirectly encoded radiologists’ knowledge

about the indicators of malignancy [131, 143, 144]. The presence of fat in a nodule

points toward benign hamartoma [133]. The boundary of nodules can be smooth or

spiculated. The former points toward benignity, and the latter to malignancy [145, 146].

It is a trend to switch from 2D analysis on thick slices to 3D analysis on thin-slice

data and the performance depends heavily on the data. It is interesting to note that in

some studies [147], stand-alone CAD systems outperformed radiologists.

Some systems for content-based image retrieval (CBIR) that retrieve similar cases
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Table 2.9: Papers on approaches of characterization of lung nodules. The variables
in the table include the author name of the paper (Paper), Data description,Features
used, Dimension (Dim), Classifier and the result.

Paper Data Features Dim Classifier Result
Henschke el
al. [138]

14 benign/14
malignant,
thick slices

pixel data used
directly as fea-
tures

2,3 ANN classification
system, 89%
accurary, no
comparison
with radiolo-
gist

McNitt-
Gray el
al. [139,
140]

14 benign/17
malignant, 3
mm slices

semi-
automatic
segmentation,
size, shape,
attenuation
and a large
number of tex-
ture features
derived from
coocuurrence
matrices

2 LDC classification
system, 90.3%
accurary, no
comparison
with radiolo-
gist

Kawata
al. [141,
142]

100-200 nod-
ules, thin-slice
data

automatic
segmentation,
histogram
analysis, cur-
vature shape
measurement

3 the separating
power of var-
ious combina-
tions of fea-
tures is inves-
tigated; nod-
ules are clus-
tered in five
classes

from a database for a given nodule at hand have also been proposed. Display of sim-

ilar cases with known classification may help radiologists make a diagnosis. Modest

improvements in observer performance, when such similar cases were reported in [148].

2.3.3 Lung cancer: nodule size measurements

The size of a nodule correlates with the chance of malignancy. Growth rate is another

important indicator. Benign nodules typically have either a very small (1 month, e.g.,

for inflammation or pneumonia) or a very large doubling time (16 months). The volume

doubling time for cancers is typically between 40 and 360 days [133].
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For these reasons, nodule segmentation has received considerable attention. Older

studies use 2-D outlines, but recent algorithms segment in 3-D. The major industrial

vendors currently all provide automatic nodule segmentation in their chest workstations,

although they typically require a manually indicated seed point.

It is difficult or impossible to obtain a ground truth for nodule segmentations in

real clinical data. Manual outlines, provided by experts, have been used often, but it

has been shown that there can be interobserver and intraobserver differences in such

outlines [149].

Algorithms can also be evaluated in terms of their reproducibility when a ground

truth is absence. Most published algorithms require a manually indicated seed point,

and a slightly different seed point should not lead to substantially different segmenta-

tion. This has been investigated in several studies [150, 131, 151].

Note also that algorithms that make errors in volume measurements. For example

when compared to manual segmentation, it can still be reliable to determine growth

rates, if the errors are systematic. The excellent contrast between tissue and air on CT

makes segmentation of an isolated solid nodule of a reasonable size a simple task. But

difficulties arise when a) the nodule is small; b) the nodule is connected to vasculature

or other structures such as the pleura, fissures or abnormalities; c) the nodule is part-

solid or nonsolid, in which case it can be difficult to define the boundary; d) the data

is noisy (typical for low-dose scans).

Typically, the segmentation of solid nodules is performed by a dedicated algorithm

that performs thresholding or region growing while constraining the shape of the grown

nodule, or by template matching or in the case of 2-D processing, dynamic program-

ming [152, 153, 154]. In the case of part-solid or nonsolid nodules, these approaches

typically fail. Several alternative approaches have been proposed to deal particularly

with such nodules [155, 156].

An advanced system for nodule segmentation will likely consist of multiple algo-

rithms, each tailored for a particular type of nodule and attachments and a recipe for

choosing the best algorithm for a nodule at hand. Systems that allow more user in-

teraction to correct segmentation errors made by automatic algorithms with a simple
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and intuitive user interface could be very valuable in clinical practice and deserve more

research. Other future challenges are the automatic correction for inspiration level and

the suppression of inaccuracies caused by acquisition noise.
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Chapter 3

Novel Contribution of This Thesis Work

3.1 Segmentation of tubular organs

We propose the improved segmentation method of vascular structures and the same

method can be applied to segment pulmonary tracheobronchial tree (also called lung

airways).

The segmentation of tubular organs (pulmonary tracheobronchial tree or vascula-

ture) of 3D medical images is critical in various clinical applications such as the diagnosis

of the vessel stenosis, surgical planning, therapy planning and treatment, and medical

image registration. For example, the pulmonary vascular structures can be used as the

land marks in tumor resection planning. The detection of vessel bifurcations plays a

critical role in clinical practices as well. First, the usual way of handling solid nod-

ules attached to vessels is to use morphological operations, such as opening, to detach

nodules from vessels [117]. Vessel bifurcations, however, when repeatedly opened, may

exhibit similar shapes as nodules, and thus cause false detection of solid nodule. Bi-

furcations detection can thus be used to reduce the false positive in detection of solid

nodules. Second, atherosclerotic disease at the bifurcation has been widely known as a

risk factor for cerebral ischemic episodes and infarction [157].

Although many researchers have developed various methods for vessel extraction

from medical images [50], automatic detection of bifurcation points remains a major

difficulty. In [158], centerlines are extracted by applying a 3D line-tracing method

and the vessel hull is determined by 2D active contours. However, this approach does

not handle bifurcation points. In [159, 160], 3D centerlines of tubular structures are

extracted based on local extrema of multiscale medialness responses. This method

cannot ensure the continuity of the junction detection, which may lead to an incorrect
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estimation of vessels. In [161], a vessel enhancement filter based on eigenanalysis is

developed and a geodesic path on the isosurface is calculated. Then, a B-spline surface

model is used to reconstruct vessels. However, bifurcations are not incorporated in

their B-spline surface model. In [43], the effects of initialization, noise, singularities and

scale on intensity ridge traversal are evaluated when vessel centerlines are extracted.

The advantages of his method are that (1) it results in the most information, such as

centerlines, edges and junctions, among other vessel extraction methods; (2) ridges are

invariant to affine transformations; (3) ridges can be detected in different modalities;

(4) ridges-based method is less sensitive to noise. However, this method only uses

recovery heuristics to continue ridge traversal past discontinuities. It uses the optimal-

scale selection to coarsely estimate the vessel radii and does not include bifurcation

information.

We propose improved ridge-based methods for vessel segmentation by adding radii

estimation by spherical deformable model and fully automatic detection of bifurcation

points. The detection of bifurcation points ensures the continuity of vessel centerlines.

Our first method is based on scan-conversion method [162, 163] and our second method

is based on pattern recognition technique called Adaboost [164, 165]. Since medical

images contain anatomical structures of various shapes, we first perform a preselection

method to identify the region containing the structures of our interest (i.e., vessels)

and extract the centerlines of vessels by applying intensity ridge tracing method. These

steps are based on the eigenanalysis of the Hessian matrix, which provides an estimation

of the elongated direction of vessels as well as cross-sectional planes orthogonal to

vessels. While tracing vessels, bifurcation points are automatically detected from the

cross-sectional planes by applying scan-conversion method or Adaboost algorithm with

specially designed filters. We show that scan-conversion method can used to detect

bifurcation points, but we find that this method has low sensitivity. Then we develop

a robust pattern recognition method: Adaboost with steerable filters has a very high

success rate and high sensitivity for automatic detection of bifurcation points from cross-

sectional planes orthogonal to vessels. We present very promising results of applying

our robust method to clinical chest CT image datasets (10 datasets contains 10 GGO
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nodules).

3.2 Registration of tubular organs

The registration of tubular organs (pulmonary tracheobronchial tree or vasculature)

of 3D medical images is critical in various clinical applications such as surgical plan-

ning and radiotherapy. For example, the pulmonary tracheobronchial tree or vascu-

lar structures can be used as the landmarks in lung tumor resection planning; the

quantifying treatment effectiveness of the radiotherapy on lung nodules is based on

the registration of the pulmonary tracheobronchial tree or vessels; the planning inter-

patients partial liver transplants use registered contrast injection angiography to create

digital-subtraction contrast injection angiography of liver vessels. The bifurcations of

the tubular organs play a critical role in clinical practices as well. Inflammation caused

by bronchitis alters the airway branching configuration which causes various breath-

ing problems [166]. Atherosclerotic disease at the bifurcation has been widely known

as a risk factor for cerebral ischemic episodes and infarction [157]. The bifurcation

points (or the branching points) have been chosen to build the validation protocol of

the registration methods [167].

Many researchers have developed various methods for registration of tubular organs

from medical images. There are three categories of methods for registering images:

image to image methods, feature to feature methods, and model to image methods.

Image to image registration methods are volumetric registration methods. They op-

timize a similarity measure that directly compares voxel intensities between two images.

One of the most well known registration methods is to optimize mutual-information sim-

ilarity measures which are favored for registering tissue images. These voxel matching

methods may not be well suited for registering vascular images in which the tissues

in the image are poorly differentiated, the predominant features are sparse and the

vascular networks may minimally correspond.

Feature to feature registration methods are heavily investigated for tissue images

and many methods have been developed for vascular images. The speed and accuracy
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of feature to feature registration methods may be limited by the speed and accuracy

of the similar features extracted from both images. There is always a strong inverse

correlation between feature extraction speed and feature localization accuracy.

Model to image registration methods register models of the tubes in the source image

directly with the target images. Centerline traversal is the basis of vessel modeling. In

[168], the method extracted an accurate model of the tubes in the source image and

multiple target images without extractions could be registered with that model. The

registration method registers vascular images with sub-voxel consistency with fast speed

and is insensitive to non-rigid deformations. However, this method does not utilize the

information in the bifurcation points of the tubular organs. Further, the optimization

strategy presents that the number of centerline samples used is further reduced, and

the quality of the registration metric is actually improved.

We present a 3D-3D model based rigid registration method of the tubular organs

based on the automatically detected bifurcation points of the tubular organs. The im-

provements of our method are that the information in the bifurcation is added and the

minimal centerline samples are used to increase the quality of the registration metric.

There are two steps in our approach. We first perform a 3D tubular organ segmentation

method to extract the centerlines of tubular organs and radius estimation in both plan-

ning and respiration-correlated CT images. This segmentation method automatically

detects the bifurcation points by applying Adaboost algorithm with specially designed

filters. We then apply a rigid registration method which minimizes the least square

error of the corresponding bifurcation points between the planning CT images and the

respiration-correlated CT (RCCT) images. Our method has over 96% success rate for

detecting bifurcation points. We present very promising results of our method applied

to the registration of the planning and respiration-correlated CT images. On average,

the mean distance and the root-mean-square error (RMSE) of the corresponding bi-

furcation points between the respiration-correlated images and the registered planning

images are less than 2.7 mm.
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3.3 Detection and segmentation of lung GGO nodules

Ground Glass Opacity is defined as hazy increased attenuation within a lung that is

not associated with obscured underlying vessels, but with preservation of bronchial

and vascular margins [169]. It can reflect minimal thickening of the septal or alveolar

interstitium, thickening of alveolar walls, or the presence of cells or fluid filling the

alveolar spaces. It can represent active disease such as pulmonary edema, pneumonia,

or diffuse alveolar damage. The results of the Early Lung Cancer Action Project,

or ELCAP, suggested that nodules with pure (non-solid) or mixed (partially solid)

GGO at the thin-section CT are more likely to be malignant than are those with solid

opacity [3]. A focal area of pure GGO on the thin-section CT seems to be an early

sign of bronchoalveolar carcinoma (BAC) [170]. Pure GGO is useful for differentiating

small localized BAC from small adenocarcinomas not having a replacement growth

pattern [171]. Early detection and treatment of pure GGO can also improve a prognosis

of lung cancer [172].

The appearances of GGO on CT images such as its shape, pattern, and boundary

are very different from solid nodules. Thus, algorithms developed for segmentation

of solid nodules are most likely to produce inaccurate results when applied to GGO.

In [173], a hybrid neural network of three single nets and an expert rule are applied

to detect GGO. This method underestimates GGO area due to its improper cut-off

of the edges of GGO. Hence, this method may be used only for large GGO and may

not be able to obtain accurate segmentation for small GGO. [103] detected GGO

using automatic clustering techniques and focused only on GGO detection. The GGO

segmentation was not discussed in their work. On the other hand, [156] proposed a

GGO segmentation method based on Markov random field and vessel removal method

based on shape analysis. However, they only focused on GGO segmentation. The GGO

detection was not discussed in their work.

We propose a novel method for automatic detection and segmentation of GGO from

CT images. For GGO detection, we develop a classifier by boosting k-Nearest Neighbor

(k-NN), whose distance measure is the Euclidean distance between the nonparametric
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density estimates of two regions. The detected GGO region is then automatically

segmented by analyzing the 3D texture likelihood map of the region. We also present

the statistical validation of the proposed classifier for automatic GGO detection as

well as the very promising results of automatic GGO segmentation. The proposed

method provides a new powerful tool for automatic detection as well as accurate and

reproducible segmentation of GGO.

3.4 Detection and segmentation of large lung cancers

The evaluation of therapy response is critical for determining whether a particular

treatment is effective on a specific cancer type in a patient. Traditionally, the ways

to assess the response are based on measuring size changes of cancer in a transverse

image using computed tomography (CT) before and after a treatment [174, 175]. How-

ever, the traditional uni-dimensional (maximal diameter of tumor) and bi-dimensional

(product of maximal diameter and its perpendicular maximal diameter) measurements

can be biased especially when a tumor is not spherical in shape and does not change

its shape in a spherical fashion. The preliminary result in a lung cancer study [176]

showed that the changes in tumor volume could be determined as early as 3 weeks after

a novel chemotherapy, whereas the changes of tumor volume measured in the tradi-

tional methods were significantly less sensitive in the same time period. In addition,

manual delineation of tumor contours is time-consuming and lacks the reproducibility.

Therefore, there is an urgent need for automatic detection and accurate segmentation

methods for the volumetric assessment of therapy response.

Unlike small lung nodules, lung cancers to be treated are often large in size, present

spiculate edges, and grow against surrounding structures such as the chest wall, the

mediastinum, and blood vessels, which make automatic detection and segmentation

difficult [176]. Thus, the algorithms developed for automatic detection and segmen-

tation of small solid lung nodules are most likely to fail when applied to large lung

cancers [126, 101, 111, 124, 177, 178, 179, 180, 153]. In those studies, larger lung

lesions that were attached to the chest wall and mediastinum could be easily and mis-

takenly excluded from the segmented lungs in which the subsequent lesion detection
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would be performed [126, 101, 111, 124]. Also, the existing segmentation algorithms

often assumed that small lung nodules would possess spherical shape, which is not ad-

equate for describing large lung cancers. Furthermore, inability to separate a larger

lesion from its surrounding structures of similar intensities was another shortcoming of

the existing segmentation algorithms.

We propose novel methods for automatic segmentation of lung areas as well as

automatic detection and segmentation of large lung cancers from CT images for the

purpose of therapy response assessment. The difference between the large lung cancers

method and the GGO method is the method used to segment the lung area. In the large

lung cancers method, we apply a robust active shape model instead of the thresholding

method used in GGO method, to segment the lung area.

First, we propose a robust active shape model for the accurate segmentation of

lung areas that are distorted and occluded by large lung cancers. Next, we develop a

classifier for the detection of cancers in the segmented lung areas by boosting a k-Nearest

Neighbor (k-NN) classifier, whose distance measure is the Euclidean distance between

the nonparametric density estimates of two regions. The statistical validation of the

proposed classifier is also provided. Finally, the classified cancers are automatically

segmented by analyzing 3D texture likelihood maps of the surrounding areas. We

present the promising experimental results of our method applied to various clinical

data. The proposed methods would provide a new powerful tool for automatic detection

as well as accurate and reproducible segmentation of lung cancers for therapy response

assessment in lung cancers.
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Chapter 4

Methods

4.1 Segmentation

4.1.1 Eigenanalysis of the Hessian matrix

This method is used to segment the tubular organs and remove the vessels overlapped

with lung GGO nodules and large lung cancers. Without loss of generality, we assume

that vessels appear brighter than the background and their centerlines coincide with

the ridges in the intensity profile.

The eigenanalysis of the Hessian matrix is a widely used method for vessel detec-

tion [158, 181]. The signs and ratios of the eigenvalues provide the indications of various

shapes of interest, as summarized in Table 4.1. Also, the eigenvector corresponding to

the largest eigenvalue can be used as an indicator of the elongated direction of vessels.

Given an image I(x), the local intensity variations in the neighborhood of a point

x0 can be expressed with its Taylor expansion:

I(x0 + h) ≈ I(x0) + hT∇I(x0) + hT H(x0)h

where, ∇I(x0) and H(x0) denote the gradient and the Hessian matrix of I at x0,

respectively. Let λ1, λ2, λ3 and e1,e2,e3 be the eigenvalues and eigenvectors of H such

Table 4.1: Criteria for eigenvalues and corresponding shapes.
Eigenvalues Shape

λ1 ≤ 0, λ2 ≤ 0, λ3 ≤ 0 blob
λ1 ≤ 0, λ2 ≤ 0, λ3 ≈ 0 tube
λ1 ≤ 0, λ2 ≈ 0, λ3 ≈ 0 plane
λ1 ≤ 0, λ2 ≤ 0, λ3 ≥ 0 double cone
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Figure 4.1: Tracing along the direction of the vessel. Figure shows e3 and the normal
plane defined by e1 and e2.

that λ1 ≤ λ2 ≤ λ3 and |ei| = 1.

Vessel centerline tracing by integrating along the elongated direction of vessels may

be less sensitive to image noise [43]. Our vessel tracing starts from a preselected point

(and, thereafter, from the point selected in the previous step) and follows the estimated

direction of vessels to extract intensity ridges. The intensity ridges in 3D must meet

the following constraints:

λ1 � 0, λ2 � 0

e1 · ∇I(x) ≈ 0 and e2 · ∇I(x) ≈ 0

Note that the intensity reduces away from the ridge: λ1/λ2 ≈ 0. Also note that the

ridge point must be a local maximum of the plane defined by e1 and e2, while e3 is

normal to the plane. Thus, e1 and e2 define the cross-sectional plane orthogonal to the

vessel, while e3 provides the estimate of the vessel direction. Therefore, to trace vessel

centerlines, the cross-sectional plane defined by e1 and e2 is shifting a small step along

the direction of the vessel given by e3 (Fig. 4.1).

4.1.2 3D texture likelihood map method

This method is used to segment the lung GGO nodules and large lung cancers.

We first extract the ROI (Region Of Interest) surrounding a classified lung GGO

nodule. For each voxel in the ROI, we evaluate the likelihood of the voxel belonging

to the lung GGO nodule by measuring 3D texture consistency between the lung GGO

nodule and a small spherical region (called 3D texon) centered at the voxel.
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Let ΦM be the region of a volumetric sample of a classified lung GGO nodule

bounded by a sphere. Using Eq.4.1, we estimate the pdf of the intensity values of

the interior of ΦM , that is, pM = P (i|ΦM ). Similarly, let ΦT be the region of the 3D

texon centered at the given voxel in the ROI. Using Eq.4.1, we also estimate the pdf

of the intensity values of the interior of ΦT , that is, p
T

= P (i|ΦT ). To measure the

dissimilarity between the two pdfs, we use an information theoretic distance measure

called Kullback-Leibler Divergence (KLD) [182]. The Bhattacharya distance (Eq.4.2),

which is a symmetrized variation of KLD, between pM and pT is:

P (i|ΨM ) = (4.1)

1
V (ΨM )

∫∫∫
ΨM
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T
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We now evaluate the 3D texture likelihood of the 3D texon at every voxel in ROI. We

define this likelihood using ρ, since it increases as the Bhattacharya distance between

two distributions decreases. The radius of 3D texons used in our paper is 3 pixels and

the model interior texture is mostly homogeneous with some level noise. Thus, it is not

necessary to consider the spatial correlation between pixels.

4.1.3 Robust active shape models (RASM)

This method is used to segment the lung area of large lung cancers.

Large lung cancers often grow against surrounding structures, such as the chest

wall and mediastinum. Lung areas that are distorted and occluded by such tumors

are hard to segment due to the similarity of the intensities between the cancers and

the surrounding structures in CT images. We develop a robust method to accurately

segment lung areas occluded by large lung cancers by improving the active shape model

framework.
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An active shape model (ASM) represents the shapes of interest as a Point Distribu-

tion Model (PDM) [183]. Then, it constructs a shape space as a set of orthogonal basis

P by applying the Principal Component Analysis (PCA) and finds an optimal shape for

a new example of the shapes with PCA reconstruction. Given the shape space P , the

projection C of a new example shape X is given as C = P T dX , where dX = X − S̄

and S̄ is the mean shape from the aligned shapes of the training set. Based on the pro-

jection C, we can easily find a corresponding shape in the shape space as X̃ = P C+S̄.

For simplicity, we denoted dX̃ = PC. Since S̄ is constant, the accuracy of X̃ depends

on C which is related to dX. In many applications, dX is often optimized with some

low-level image features such as the gradient along normal directions to the boundary

of an initial shape toward the strongest edge in the image [183].

The ASM method as described above, however, is not suitable for the accurate

segmentation of lung areas with large cancers attached on their walls, since the cancers

occlude the real boundary of the lung and appear as the strongest edge. To overcome

this difficulty, we develop a robust ASM (RASM) based on the robust M-estimator [184].

The goal is to recover the projection C with the majority of the correct dX and to

restrain the outlier points of dX. Mathematically, it computes C by minimizing the

following robust energy function:

Erpca(C) = min
C

G (‖dX − PC‖, σ) (4.2)

where, G(x, σ) = x2/(x2 + σ2) is the Geman-McClure error function and σ is a scale

parameter that controls the convexity of the robust function. The solution for C can

be obtained by an iterative gradient descent search on Erpca:

C(n+1) = C(n) + λΔC (4.3)

where, λ is a small constant that determines the step size and

ΔC =
∂Erpca

∂C
= −2P (dX − PC)

σ2

(‖dX − PC‖2 + σ2)2

The iterative process is performed until ‖E(t+1)
rpca −E(t)

rpca‖ < ε, where ε is a pre-selected

tolerance. Using the robust projection C∗, we obtain a robust shape in the shape space
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as:

X̃ = PC∗ + S̄

4.2 Reconstruction

4.2.1 Vessel radii estimation by spherical deformable model

This vessel radii estimation is an improvement of the ridge-based method. We use a

deformable sphere model to estimate the radii of the vessels for 3D vessel reconstruction.

At each of the detected center points as well as the detected bifurcation points (also

called branching points), a deformable sphere is initialized. The position of points on

the model are given by a vector-valued, time varying function of the model’s intrinsic

coordinates u:

x(u, t) = (x1(u, t), x2(u, t), x3(u, t))T = c(t) + R(t)s(u, t)

where, c(t) is the origin of a noninertial, model-centered reference frame Φ, R(t) is the

rotation matrix for the orientation of Φ, and s(u, t) denotes the positions of points on

the reference shape relative to the model frame [185]. The reference shape of a sphere

is generated in spherical coordinate system with fixed intervals along longitude and

latitude directions in the parametric (u, v) domain:

e(u, v) =

⎛
⎜⎜⎜⎜⎜⎝

x

y

z

⎞
⎟⎟⎟⎟⎟⎠ = a0 ·

⎛
⎜⎜⎜⎜⎜⎝

a1 · cos u · cos v

a2 · cos u · sin v

a3 · sin u

⎞
⎟⎟⎟⎟⎟⎠

where, a0 ≥ 0 is a scale parameter and 0 ≤ a1, a2, a3 ≤ 1 are deformation parame-

ters that control the aspect ratio of the cross section of the sphere. We collected the

parameters in e(u, v) into the parameter vector

qs = (a0, a1, a2, a3)
T

The velocity of a point on the model is

ẋ = ċ + Ṙs + Rṡ = ċ + Bθ̇ + Rṡ = [I B RJ ] q̇ = Lq̇
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where, θ is the vector of rotational coordinates of the model, B = [∂(Rs)/∂θ], J =

[∂s/∂qs], q =
(
qT

c ,qT
θ ,qT

s

)T
, qc = c, qθ = θ, and L is the model’s Jacobian matrix

that maps generalized coordinates q into 3D vectors. When initialized near a vessel,

the model deforms to fit to the vessel due to the overall forces exerted from the edge of

the vessel and comes to rest when q is found that minimizes the simplified Lagrangian

equation of motion:

q = fq =
∫

LT fdu

where, fq is the generalized external forces associated with the degrees of freedom q

of the model and f is the external force exerted from the images. In this method,

we use Gradient Vector Flow (GVF) field computed from the images as the external

force [186].

4.3 Registration

4.3.1 3D-3D modeal based rigid registration

The registration is formulated as a 3D-3D model based rigid global deformation. We

denote the bifurcation points in the planning CT images as the source points and the

corresponding bifurcation points in the respiration-correlated CT images as the target

points. Since our tubular organs tracing starts from preselected points, the correspon-

dence between the source points and the target points can be easily determined. The

global deformation is a transformation of a point x in the planning CT image coordi-

nate system into a point x′ in the respiration-correlated CT image coordinate system,

that is, x′ = M · x, where M is the transformation matrix. Let XP and XB be

the bifurcation points for the planning CT images and respiration-correlated CT im-

ages, respectively. The global deformation of XP onto XB is achieved by finding the

parameters of a 3D transformation that minimizes the least square error:

ε =
n∑

i=0

∥∥∥xB
i − M · xP

i

∥∥∥2

where, xi is the i-th point of a deformable model in the homogeneous coordinate system.

We use Levenberg-Marquardt optimization method with the following Jacobian of the
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transformation as the metric to provide transformation parameter gradients:

∂ε

∂M
= −

n∑
i=0

2(xB
i − M · xP

i )(xP
i )T

4.4 CAD methods

4.4.1 Vessel and noise suppression with 3D cylinder filters

This method is used to suppress the vessels and noise in the detection of the lung GGO

nodules and large lung cancers.

The accuracy of lung GGO nodule detection may be hindered by various structures

within a lung. To avoid this difficulty, we first develop a 3D cylinder filter to suppress

intensity values of vessels and other elongated structures as well as noise inside a lung,

while maintaining lung GGO nodule intensity values intact [121]. The cylinder filter

Fcyl is defined as:

Fcyl(x) = min
θ

(
min
y∈Ωx

θ

I(y)

)

where, Ωx
θ is the domain of the cylinder centered at x with orientation θ. Fcyl is a hybrid

neighborhood proximity filter that produces strong responses to blob-like objects (i.e.

GGO or large lesions). We have selected the parameters of Fcyl empirically and used

a cylinder with the radii of 1, 2 and 3 voxels and the length of 7 voxels at 7 different

orientations.

4.4.2 Scan-conversion method

This method is used in the detection of the bifurcations of tubular organs.

Scan-conversion method is a gradient-based ridge point detection method [162].

The gradient of a point generally points toward the ridge and reverses its direction

as it crosses the ridge. Consider a line with the orientation passing through only one

ridge point (Fig. 4.2(a)). If we consider three continuous points on the line, p(x −
1), p(x), p(x + 1), and p(x) is on the ridge, the gradients at p(x− 1) and p(x + 1) must

point toward p(x), forming a sign barrier between them. That is, two gradient vectors

point head-to-head, forming HH barrier.
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Figure 4.2: HH barriers and TT barriers. (a) in one ridge. (b) in two ridges.

Next, consider a line passing through two ridges located closely (Fig. 4.2(b)). If

we consider six continuous points on the line, p(x − 2), p(x − 1), p(x), p(x + 1), p(x +

2), p(x + 3), and p(x − 1) is on the one ridge, while p(x + 2) is on the other, then the

gradients at p(x − 2) and p(x) must point toward p(x − 1), forming an HH barrier

between them. The gradients at p(x + 1) and p(x + 3) must point toward p(x + 2),

also forming an HH barrier. What is more important is the sign variation at p(x) and

p(x + 1). Since the two ridges are closely located, the gradient at p(x) points toward

p(x − 1) and the gradient at p(x + 1) points toward p(x + 2). This forms another type

of the sign barrier, called TT barrier, where two gradient vectors point away from each

other.

The shape of a vessel without bifurcation in the cross-sectional plane is approxi-

mately ellipsoidal. On the other hand, the shape of a vessel with bifurcation appears

as two intersecting ellipses (Fig. 4.3).

Note that only one crest exists in the cross-section of a vessel without bifurcation

(forming HH barrier), while two crests exist in the cross-section of the vessel with

bifurcation (forming both TT and HH barriers) (see Fig. 4.3). We apply a simple

scan-conversion algorithm for bifurcation detection using these properties. Given a

gradient vector field ∇I(x, y) = 〈vx, vy〉 around the center of the vessel in the cross-

sectional plane, the algorithm scans horizontally (θ = 0◦) from left to right and vertically

(θ = 90◦) from top to bottom. For each scan, we search for TT barriers. Since only

the vessel cross-sectional plane with two crests will have TT barriers, they can be used

as indicators for bifurcation. We eliminate false positive by set the size of the vessel

cross-sectional plane below α and the size of vector field around the mass center of the
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(a) (b)

(c) (d)

Figure 4.3: The vessel cross-sectional planes without bifurcation (a) and with bifurca-
tion (c). The gradient field only has HH barriers (c), and the gradient field has HH and
TT barriers (d). The red point is the mass center. The squares in (d) denote the TT
barriers.

vessel-sectional plane below β . The algorithm is in Algorithm 1. Here, we set α = 32

voxels and β = 9 voxels.

4.4.3 Adaboost learning method

This method is used in the detection of the bifurcations of tubular organs.

Boosting is a method for improving the performance of any weak learning algo-

rithm which, in theory, only needs to perform slightly better than random guessing. A

boosting algorithm called Adaboost improves the performance of a given weak learning

algorithm by repeatedly running the algorithm on the training data with various dis-

tributions and then combining the classifiers generated by the weak learning algorithm

into a single strong classifier [164, 165]. The proposed method uses Adaboost with

specially designed steerable filters for fully automatic detection of bifurcation points.
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Algorithm 1 Scan-conversion algorithm

Input: The cross sectional plane A (m × n), Number of TT = 0, position array.
Calculate the gradient vector field of plane A.
for i = 1 to m do

for j = 1 to n do
if Find TT barriers then

Save (i,j) in the position array.
Number of TT ++.

end if
end for

end for
Output: Number of TT and the position array

A. Feature design

We design three types of linear filters to capture the local appearance characteris-

tics: 2D Gaussian filters to capture low frequency information; the first order deriva-

tives of 2D Gaussian filters to capture high frequency information, i.e., edges; the second

order derivatives of 2D Gaussian filters to capture local maxima, i.e., ridges [187]. These

filters function as weak classifiers for Adaboost.

Let G = G(μx, μy, σx, σy, θ) be an asymmetric 2D Gaussian, where
⎛
⎜⎝ μx

μy

⎞
⎟⎠ = R ×

⎛
⎜⎝ x − x0

y − y0

⎞
⎟⎠ , R =

⎛
⎜⎝ cos θ − sin θ

sin θ cos θ

⎞
⎟⎠

and, (σx, σy), (x0, y0), and θ are the standard deviation, translation, and rotational

parameters of G, respectively. We set the derivatives of G to have the same orientation

as G:
G′ = Gx cos(θ) + Gy sin(θ)

G′′ = Gxx cos2(θ) + 2 cos(θ) sin(θ)Gxy + Gyy sin2(θ)

From the above equations, we tune x0, y0, σx, σy, and θ to generate the desired filters.

For a 15×15 sized window, we designed the total of 16, 200 filters—x0×y0×(σx, σy)×θ =

10× 10× 3× 18 = 5, 400 filters for each of G, G′, and G′′. Some of the filter are shown

in Fig. 4.4.

B. Adaboost learning
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(a) (b)

(c) (d)

Figure 4.4: (a) The vessel cross-sectional planes with bifurcation (top row) and without
bifurcation (bottom row), (b) 2D Gaussian used for low frequency information detec-
tion, (c) the first derivatives of Gaussian used for edge detection, and (d) the second
derivatives of Gaussian used for ridge detection.

The algorithm is in Algorithm 2. We first normalized the cross-sectional planes

obtained from the previous step to the size of the filters and collected an example

set containing both positive (i.e., samples with bifurcation) and negative (i.e., samples

without bifurcation) examples from the normalized planes. The Adaboost method is

used to classify positive training examples from negative examples by selecting a small

number of critical features from a huge feature set previously designed and creating a

weighted combination of them to use as a strong classifier. Even when the strong clas-

sifier consists of a large number of individual features, Adaboost encounters relatively

few overfitting problems [188].

During the boosting process, every iteration selects one feature from the entire

feature set and combines it with the existing classifier obtained from previous iterations.

After a sufficient number of iterations, the weighted combination of the selected features

become a strong classifier with high accuracy. That is, the output of the strong classifier

is the weighted sum of the outputs of the selected features (i.e., weak classifiers): S(x) =
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Algorithm 2 Adaboost algorithm

Given training cross-sectional planes (x1, y1), ..., (xn, yn) where yi ∈ {0, 1} for sam-
ples without bifurcation (negative samples) and samples with bifurcation (positive
samples) respectively.
Initialize weights wi = 1

2m , 1
2l for yi ∈ {0, 1} respectively, where m and l are the

number of negatives and positives respectively.
for t = 1 to T do

1. Normalize the weights, wi = wi∑n

j=1
wj

2. Select the best weak classifier with respect to the weighted error
ε = min

∑
i

wi |h(xi) − yi|
3. Update the weights:
wi = wiβ

1−ei

where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and β = ε
1−ε

end for

The final strong classifier is: S(x) =

⎧⎨
⎩ 1

T∑
t=1

αtht(x) ≥ threshold

0 otherwise

where αt = log 1
βt

∑
t αtht(x), where αt and ht are weights and outputs of weak classifiers, respectively.

We call S the bifurcation criterion. Adaboost classifies an example plane as a sample

with bifurcation when S > threshold and as a sample without bifurcation when S <

threshold.

4.4.4 Boost k-NN

This method is used in the detection of the lung GGO nodules and large lung cancers.

To apply supervised learning framework, we first collected volumetric samples of

positive and negative instances. Let ΨM be the region of a volumetric sample bounded

by a cube. We estimate the probability density function (pdf) of the intensity values

of the interior of ΨM . We use a nonparametric kernel based method to approximate

the pdf. Let i, i = 0, . . . , 255, denote the random variable for intensity values. The

intensity pdf of ΨM is defined by Eq.4.1, where, V (ΨM ) denotes the volume of ΨM , y

are the interior voxels of ΨM , and σ is the standard deviation of a Gaussian kernel.

For the candidate lung GGO nodules areas isolated, the learning for their classi-

fication has a discrete target function of the form f : Rn �→ V, where V = {⊕,�},
with the label ⊕ for lung GGO nodules and � for non lung GGO areas. For k-NN,
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an instance x is represented as a point in n-dimensional space Rn by a feature vector

〈a1(x), a2(x), . . . , an(x)〉, where ai(x) = P (i|ΨM ). The standard Euclidean distance is

used as the distance measure between two instance vectors. Given a query instance xq

to be classified, k-NN returns f̂(xq), as its estimate of f(xq), which is the most common

value of f among the k training instances nearest to xq:

f̂(xq) = argmax
v∈V

k∑
i=1

δ(v, f(xi))

where, x1, . . . , xk denote the k instances from the training samples that are nearest

to xq, and δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise. To obtain an accurate

classification, k-NN requires a large training set, which results in slow classification due

to the large number of distance calculations. We overcome this difficulty by boosting

k-NN [164].

Boosting k-NNcombines Adaboost and a variant of the nearest-neighbor classifier.

As in [164], boosting k-NN improves the speed of k-NN by reducing the number of

prototype instances and thus reducing the required number of distance calculation

without affecting the error rate. The weak learner is to use a random set of examples

as prototypes chosen according to the distribution provided by the Adaboost algorithm.

The details of boosting k-NN is given in [164].

4.5 Evaluation techniques

4.5.1 Receiver Operating Characteristic Curves (ROC) Curve

A ROC curve is a graphical plot of the sensitivity vs. (1 - specificity) for a binary clas-

sifier system as its discrimination threshold is varied. This is represented equivalently

by plotting the true positives (TP) rate vs. the false positives (FP) rate [22]. Many

statistical software can be used to generate ROC curve, such as, Weka and R-stat.

The area under the ROC curve (AUC) is the probability that a classifier will rank

a randomly chosen positive instance higher than a randomly chosen negative one. In

machine learning field, ROC AUC statistic are often used which can be interpreted as

the probability that when we randomly pick one positive and one negative example,

the classifier will assign a higher score to the positive example than to the negative.
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4.5.2 Overlap rate

Overlap rate is an under merging error measure that describes the difference between

the reference image and the segmented image [189]. The discrepancy measure proposed

is proportional to the amount by which the regions in the segmented image overlap the

regions in the reference image.

4.5.3 Bhattacharya distance

The Bhattacharyya distance measures the similarity of two probability distributions.

It is normally used to measure the separability of classes in classification.

For discrete probability distributions p and q over the same domain X, it is defined

as:

BD(p, q) = − ln(
∑
x∈X

√
p(x)q(x))

4.5.4 Mean distance

The mean distance is a quantity measure how close forecasts or predictions are to the

eventual outcomes. The mean distance is given by:

MeanD =
1
N

∑N

i=1
di

where di is the distance of the ith sample point, N is the number of sample points.

4.5.5 Root mean square error

The root mean square error (RMSE)) is a measure of the differences between values

predicted by a model or an estimator and the values actually observed from the thing

being modeled or estimated. These individual differences are also called residuals, and

the RMSD serves to aggregate them into a single measure of predictive power.

The RMSD of an estimator θ̂ with respect to the estimated parameter θ is defined

as the square root of the mean squared error:

RMSE(θ̂) =
√

E((θ̂ − θ)2)
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Chapter 5

Tubular Objects Segmentation with Bifurcation Detection

in Lung

The flow charts of vessel segmentation method are show in Fig. 5.1 and Fig. 5.2. The

difference between these two flow charts is the bifurcation detection method used. The

segmentation method of airways which is same as the segmentation method of blood

vessels is presented in the Chapter 6.

5.1 Vessel direction estimation

Eigenanalysis of the Hessian matrix method is used to estimate the vessel direction.

5.2 Vessel normal plane extraction

Eigenanalysis of the Hessian matrix method is used to extract the vessel normal planes.

5.3 Vessel bifurcation detection using scan-conversion method

Scan-conversion method is used to detect vessel bifurcations.

5.4 Vessel bifurcation detection using Adaboost learning method

Adaboost learning method is used to detect vessel bifurcations.

5.5 3D reconstruction

Spherical deformable model is used to estimate vessel radii for 3D reconstruction.
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Figure 5.1: The flow chart of vessel segmentation method using scan-conversion method
to detect bifurcation points.

5.6 Results

We evaluate the method using 10 CT volumes of lungs. The CT volumes were acquired

by multi-slice HRCT scanners with 1 mm slice collimation. The number of slices in

each CT scan ranges from 23 to 29 (interpolated to 92 to 116), each of which consists

of a 512 × 512 pixels, with in-plane resolution ranging from 0.57mm to 0.71mm. The

CT images are digitally resliced to make cubic voxels and three volumes of interest

(VOI). The voxel dimensions are 0.49× 0.49× 0.49mm3. Two VOIs are 100× 100× 90

voxels and one VOI is 50 × 50 × 30 voxels. All experiments are performed on a Dell

computer with 1.8GHz processor and 1.5GB of memory. We reconstruct the vessel into

the third branching generation which is required by the radiologists. The evaluation of

the methods are based on the expert-defined ground truth provided by the radiologists.
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Figure 5.2: The flow chart of vessel segmentation method using Adaboost method to
detect bifurcation points.

5.6.1 Qualitative Results

Fig. 5.3 shows further visual validation of our method. We superpose the cross-sectional

planes of the detected vessels (Fig. 5.3(a)) and the extracted centerlines (Fig. 5.3(b))

onto the isosurface of the initial images. Fig. 5.4 shows the results of our method

applied to complex vascular structures. In Fig. 5.4(a), the extracted centerlines are

superimposed on the isosurface of the initial images along with the detected bifurcation

points by our Adaboost learning method (shown in blue). Fig. 5.4(b) shows the 3D

reconstruction of vessels from the centerlines and bifurcation points in (a). These

promising results demonstrate the potential of our method for complex vascular system

reconstruction as well as fully automatic bifurcation detection.
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(a) (b)

Figure 5.3: Visual validation. (a) cross-sectional planes, (b) centerlines superimposed
on an isosurface of the initial image. The blue point in (b) shows the bifurcation point
detected.

5.6.2 Quantitative Results

A. Scan-conversion method

The size of the vessel cross-sectional plane is 32 × 32 pixels and the size of the vector

field around the mass center is 9 × 9 pixels. Totally, 176 cross-sectional planes are

derived using cross-sectional planes extraction method. The smallest diameter of vessel

in our samples is 6 pixels (approximately 3 mm). There are 40 correct predictions

of bifurcation (out of 46) and 130 correct predictions of non-bifurcation (out of 130).

So, there is a 3.41% error rate for detecting bifurcation correctly. The results are

summarized in Table 5.1. The accuracy is 96.59% for detecting bifurcation. However,

the false nagative rate is 13.04% which means this method has low sensitivity.

Table 5.1: Results of bifurcation detection using scan-conversion algorithm.
No bifurcation Bifurcation
detected by SC detected by SC

Bifurcation detected by expert 6 40
No bifurcation detected by expert 130 0
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(a) (b)

Figure 5.4: Vessel segmentation and bifurcation detection. (a) centerlines superimposed
on an isosurface of the initial image, (b) 3D reconstruction of vessels from the graph
representation of vessels in (a). Blue points in (a) shows the bifurcation points detected
by our method.

B. Adaboost learning method

We first extract 303 cross-sectional planes from the VOIs using cross-sectional plane

extraction method. The extracted planes are originally of size 30 × 30 pixels and are

normalized to be the same size as the filter, i.e., 15 × 15 pixels. The smallest diameter

of vessels in our samples is 6 pixels (approximately 3 mm). These example planes

contain 150 positive (i.e., with bifurcation) and 153 negative (i.e., without bifurcation)

examples. Our method is trained with 100 positive and 100 negative examples and

tested on 50 positive and 53 negative examples. We preform bootstrapping to estimate

the generalization error of our method, obtaining the mean error rate of 3.16% to 3.63%,

which is 95% confidence interval. Fig 5.5(a)shows the result. The accuracy is 96.37%

to 96.84% , which is 95% confidence interval, for detecting bifurcation and the ROC

curve is presented in Fig. 5.6. The ROC curve is drawn by a free data mining software

called Weka and the area under the ROC curve is 0.98.

We also compare Adaboost (20 boosting steps) to other classifiers, i.e., k-Nearest

Neighbor classifier with Euclidean distance measure between input images (k = 3),
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(a)

(b)

Figure 5.5: Error rate. (a) Mean training and test error curves of Adaboost (training
error: lower curve, test error: upper curve), (b) Comparison of the mean error rates of
Adaboost and various classifiers

naive Bayes classifier, neural network (1 hidden layer, learning rate of 0.3), and support

vector machine (Radial Basis Function (RBF)). Fig. 5.5(b) shows the result. The

multiple comparison test (p = 0.05) shows that Adaboost is significantly superior to

other methods, while k-NN (k = 3), neural network (1 hidden layer, learning rate of

0.3), and SVM (RBF) are not significantly different from each other and naive Bayes

is significantly inferior to other methods.

For the task of bifurcation detection, the features selected by Adaboost are meaning-

ful and easily interpreted. The first weak feature selected is a second order derivatives

of 2D Gaussian filter which is used to capture the ridge. The second weak feature se-

lected is a first order derivatives of 2D Gaussian filter which is used to capture the edge.

A normal plane of a vessel bifurcation and two selected weak features are presented in
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Figure 5.6: ROC curve measures the performance of the Adaboost learning method.

(a) (b) (c)

Figure 5.7: A normal plane of a vessel bifurcation and two selected weak features are
presented. (a) a normal plane of a vessel bifurcation. (b) the first selected weak feature.
(c) the second selected weak feature.

Fig. 5.7.

C. Comparison of two bifurcation detection method

From the result above, the accuracy of the scan-conversion bifurcation detection method

is 96.59% in one specific data set and the false negative rate of the scan-conversion

method is 13.04% which means this method has low sensitivity.

The accuracy of the Adaboost learning bifurcation detection method is from 96.37%

to 96.84%, which is 95% confidence interval (CI) under bootstraping evaluation method

and the Adaboost method can get higher sensitivity by adjusting the threshold.
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Chapter 6

Tubular Objects Registration in Lung

The flow chart is in Fig. 6.1.

6.1 Tubular organ direction estimation and normal plane extraction

Eigenanalysis of the Hessian matrix method is used to estimate the vessel direction and

extract the normal planes.

6.2 Bifurcation detection using Adaboost

Adaboost learning method is used to detect vessel bifurcations.

6.3 Tubular organs radius estimation for 3D reconstruction

Spherical deformable model is used to estimate vessel radii for 3D reconstruction.

6.4 Tubular organs registration

3D-3D model based rigid registration method is used to register airways.

6.5 Results

We apply our method on clinical lung CT data from 6 different patients. Each patient

has one planning CT data set and ten respiration-correlated CT (RCCT) data sets taken

in one complete respiratory cycle. They represent CT images at ten different points in

the patient’s breathing cycle. However, in this chapter, we only use the planning CT

data set and the first RCCT data set from each patient. The number of slices in each
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Figure 6.1: The flow chart of airways registration method.

CT scan ranges from 83 to 103 with 2.5mm slice thickness (and also digitally resliced to

obtain cubic voxels, resulting in 206 to 256 slices), with size 512× 512 pixels, and with

in-plane resolution of 0.9mm. All experiments are performed on a PC with 2.0GHz

processor and 2.0GB of memory. We reconstruct the airways into the third branching

generation which is required by the radiologists. The evaluation of the methods is based

on the expert-defined ground truth provided by the radiologists.

6.5.1 Qualitative Results

Fig. 6.2 illustrates further visual validation of our segmentation method applied to

the pulmonary tracheobronchial structures. In Fig. 6.2(a), the extracted centerlines

are superimposed on the isosurface of the original CT images along with the detected

bifurcation points by the Adaboost learning method (shown in blue). Fig. 6.2(b) shows

the 3D reconstruction of the pulmonary tracheobronchial tree from the centerlines and

bifurcation points in Fig. 6.2(a). Fig. 6.3 shows the registration results between the
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(a) (b)

Figure 6.2: Pulmonary tracheobronchial tree segmentation and bifurcation detection.
(a) centerlines superimposed on an isosurface of the initial image, (b) 3D reconstruction
of pulmonary tracheobronchial tree from the graph representation in (a). Blue points
in (a) shows the bifurcation points detected by our method.

planning CT images and the respiration- correlated CT (RCCT) images.

6.5.2 Quantitative Results

We first extract 507 cross-sectional planes from the VOIs using cross-sectional plane

extraction method. The extracted planes are originally of size 30*30 pixels and are

normalized to be the same size as the filter, i.e., 15*15 pixels. The smallest diameter

of bronchi in our samples is 3 pixels. These example planes contain 250 positive (i.e.,

with bifurcation) and 257 negative (i.e., without bifurcation) examples. Our method

is trained with 150 positive and 150 negative examples and tested on 100 positive and

107 negative examples. We perform bootstrapping to estimate the generalization error

of our method, obtaining the mean error rate of 3.1% to 4.6%, which is 95% confidence

interval, as described in previous section. The accuracy is 95.4% to 96.9% , which is

95% confidence interval, for detecting bifurcation and the ROC curve is presented in

Fig. 6.4. The ROC curve is drawn by a free data mining software called Weka and the

area under the ROC curve is 0.90.

The results are also summarized in Table 6.1. It shows that, on average, the

mean distance and the root-mean-square error (RMSE) of the corresponding bifurcation

points between the respiration-correlated images and the registered planning images are
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(a) (b)

Figure 6.3: Registration results. Blue shows the 3D reconstruction of pulmonary tra-
cheobronchial tree in the registered planning images and red shows 3D reconstruction
of pulmonary tracheobronchial tree in the respiration-correlated images.

Table 6.1: Results of the registration method on clinical datasets.
Dataset Mean distance (mm) Root mean square error (mm)

Best 1.51 1.63
Worst 3.08 3.38

Average 2.17 2.63

less than 2.7 mm. It shows in the manual registration (ground truth provided by radi-

ologists) that, on average, the mean distance and the root-mean-square error (RMSE)

of the corresponding bifurcation points between the respiration-correlated images and

the registered planning images are less than 3.0 mm. There are breathing-induced de-

formations in the tracheobronchial tree, owing to the different amount of lung inflation

in the different RCCT data sets. These may partly explain the mean distance and the

root-mean-square error (RMSE) in Table 6.1.
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Figure 6.4: ROC curve measures the performance of the Adaboost learning method.
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Chapter 7

Lung GGO Nodules Detection and Segmentation

In this chapter, we propose a novel method for automatic detection and segmentation

of GGO from chest CT images. The flow chart of our method is show in Fig. 7.1.

7.1 Threshold for lung area segmentation

Grey level thresholding methods are used to segment the lung area from the background

in CT images [105, 121].

7.2 Vessel and noise suppression with 3D cylinder filters

3D cylinder filters are used to suppress the vessels and noise. This is because the

accuracy of lung abnormalities detection may be hindered by various structures within

a lung. To avoid this difficulty, we first develop a 3D cylinder filter to suppress intensity

values of vessels and other elongated structures as well as noise inside a lung, while

maintaining lung abnormalities intensity values intact [121].

The effect of Fcyl is shown in Fig.7.2. In the figure, (b) shows the filter-response

volume of Fcyl applied to (a). We can see from (b) that vessels and noise are effec-

tively suppressed while GGO remains intact. To isolate candidate GGO regions, i.e.,

regions of high response values, we apply a simple thresholding to the filter-response

volume (Fig.7.2(c)). The threshold value is automatically determined by analyzing the

histogram of the filter-response image, as illustrated in Fig.7.3.
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Figure 7.1: The flow chart of GGO detection and segmentation method.

7.3 Detection of GGO

To apply supervised learning framework, we first collected volumetric samples of posi-

tive (lung abnormalities) and negative (non lung abnormalities) instances, as shown in

Fig.7.4. Boosting k-NN is used to detect GGO. Fig.7.5 shows the typical intensity pdf

of positive and negative instances. We can see from the figure that positive and nega-

tive instances are well separable using the pdf. For this reason, we use as an instance

the intensity pdf of the volumetric samples.

7.4 Segmentation of GGO using nonparametric density estimation

3D texture likelihood map method is used to segment GGO. Fig.7.6(b) shows the 3D

texture likelihood map of the volume in (a). The radius of 3D texons used in our paper

is 3 pixels and the model interior texture is mostly homogeneous with some level noise.

Thus, it is not necessary to consider the spatial correlation between pixels.
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7.5 Removal vessels overlapped with lung abnormalities

The eigenanalysis of the Hessian matrix is used to remove vessels overlapped with lung

abnormalities. Fig.7.6(c) shows the texture likelihood map after the removal of vessels

in (b).

7.6 Results and Discussion

The data sets we used are the same data sets used in vessel segmentation.

7.6.1 Qualitative Results

Fig.7.9 shows the GGO segmentation results overlaid on the original CT images and

3D reconstruction for four GGOs as examples. From the figure, we can see that the

surrounding vessels are accurately removed from the GGO segmentation.

7.6.2 Quantitative Results

To test the GGO detection method, we collect 600 volumetric samples, containing 400

training samples and 200 testing samples. The samples are of size 9 × 9 × 3 vox-

els extracted from the CT volumes. Each sample is converted to an instance vector

in R256, representing its nonparametric density estimate. For the boosted k-NN, we

use the standard Euclidean distance as the distance measure between two instances.

(a) (b) (c)

Figure 7.2: Effect of Fcyl. (a) Original volume, (b) Volume filtered with Fcyl, (c) After
thresholding.



69

Figure 7.3: Histogram of a cylinder filtered volume.

We perform bootstrapping to estimate the generalization error of our GGO detection

method [190]. We train and test the proposed method on bootstrap samples. After

20 steps of boosting, the test error rate converges to 3.70%. The accuracy is 96.3%

for classification GGO and the ROC curve is presented in Fig.7.7. The ROC curve is

drawn by a free data mining software called Weka and the area under the ROC curve

is 0.98.

We also compare the boosted k-NN (20 boosting steps with k = 3) to other classi-

fiers, i.e., k-NN classifier (k = 3), decision tree, support vector machine (RBF), neural

network (1 hidden layer, learning rate of 0.3), and Bayes network. Fig.7.8 summarizes

the results. The multiple comparison test (p = 0.05) shows that the boosted k-NN and

k-NN are significantly superior to other classifiers. Note that, although our purpose

for boosting k-NN is not to improve the classification accuracy but rather to speed

up the classification process, the results show that boosting k-NN also improves the

classification accuracy over k-NN.

We apply the trained GGO classifier to 10 CT volumes containing 10 nodules. The

CT volumes were acquired by multi-slice HRCT scanners with 1 mm slice collimation.

The number of slices in each CT scan ranges from 23 to 29 (interpolated to 92 to

116), each of which consists of a 512×512 pixels, with in-plane resolution ranging from

0.57mm to 0.71mm. The classifier detects the total of 11 nodules, containing all of the

10 nodules and one false positive nodule.
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(a)

(b)

Figure 7.4: Volumetric samples for learning. (a) Positive (GGO) samples, (b) Negative
(non GGO) samples.

Table 7.1 compares the greatest diameters, their greatest perpendicular diameters

and tumor volumes of the 10 lung GGOs from the results of the manual segmentation by

experts and the automatic segmentation by the proposed method. The table shows that

the mean relative error of the greatest diameter and its greatest perpendicular diameter

are 2.4% and 3.2% and shows that the mean relative error of the tumor volume is 3.2%.

We also compare the overlapping ratios of the GGO regions segmented manually and

automatically, which range from 87.5% to 95.7%. The mean overlapping ratio is 92.3%.

7.6.3 Discussion

Many texture features that have been described and used [191, 192, 193], including

kurtosis, surface curvature, inertia, maximum probability, momentum and gaussian

curve fitting. Kurtosis is the extent to which a histogram is peaked. Surface curvature

is defined as the rate of change of the slope of the tangent to the surface. Inertia,

maximum probability, and momentum are defined as features that present the spatial

dependence of gray-scale distributions. Gaussian curve fitting is computed according
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Figure 7.5: Typical probability density functions of positive (solid line, GGO), negative
(dash-dot line, typical background), and negative (dotted line, typical vessels) examples.

(a) (b) (c)

Figure 7.6: GGO segmentation. (a) ROI containing a classified GGO, (b) 3D likelihood
map in ROI, (c) 3D likelihood map in ROI after vessel removal.

to the attenuation histogram of pixels within each ROI. Because of the characteristic

pixel attenuation distribution of GGO, the use of gaussian curve fitting features enables

the differentiation of GGO from background pulmonary parenchyma. In this section,

the feature we used is the probability density function (pdf) of the intensity values

of the interior of GGO volume. The nonparametric kernel based method is used to

approximate the pdf.
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Figure 7.7: ROC curve measures the performance of the Boosted k-NN method for
GGO detection.

Figure 7.8: Comparison of the mean error rates of various classifiers by bootstrapping.



73

(a) (b) (c) (d)

Figure 7.9: GGO segmentation—four segmented GGO nodules are shown. (a) original
CT images containing GGO nodules, (b) enlarged GGO areas, (c) segmented GGO, (d)
3D reconstruction of segmented GGO overlaid with original CT images in (a), and (e)
3D reconstruction of segmented GGO with other nearby structures.



74

Table 7.1: Comparisons. d1 and d2 are the greatest diameter and its greatest perpen-
dicular distance of each GGO. Vol is the volume of each GGO. Overlap ratio is the
volume overlap ratio of the manual segmentation results and automatic segmentation
results. Manual and Auto are the measurements on the manual segmentation results
and the automatic segmentation results, respectively.

Dataset d1 d2 Vol Overlap
(mm) (mm) (mm3) Ratio

Manual Auto Manual Auto Manual Auto (%)
1 17.0 17.6 15.8 16.4 717.6 763.4 91.6
2 15.1 15.8 12.0 12.6 655.4 699.9 94.5
3 15.8 16.4 11.3 11.9 436.1 466.1 91.5
4 13.9 13.8 8.2 7.6 542.6 487.3 94.3
5 10.1 9.5 8.2 7.6 440.8 404.1 90.7
6 34.0 35.3 20.8 21.4 2610.0 2766.52 95.0
7 6.3 5.7 4.4 3.8 85.3 78.8 95.7
8 7.6 6.9 6.3 5.7 218.0 192.0 92.5
9 10.1 9.5 5.7 5.6 201.8 187.3 90.1
10 6.93 6.3 6.3 5.7 167.3 145.5 87.5

mean error (%) 2.4 3.2 3.2 92.3
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Chapter 8

Large lung cancers detection and segmentation

In this section, we propose novel methods for automatic segmentation of lung areas as

well as automatic detection and segmentation of large lung cancers from CT images for

the purpose of therapy response assessment. The flow chart of our method is show in

Fig. 8.1. The difference between the large lung cancers method and the GGO method is

the method used to segment the lung area. In the large lung cancers method, we apply

robust active shape model instead of the thresholding method used in GGO method,

to segment the lung area.

8.1 Robust active shape models (RASM) for lung area segmentation

The ASM method is not suitable for the accurate segmentation of lung areas with large

cancers attached on their walls, since the cancers occlude the real boundary of the lung

and appear as the strongest edge, as illustrated in Fig. 8.2(a) and (b).

Robust active shape models are used to accurately segment lung areas occluded by

large cancers. The result of this process is illustrated in Fig. 8.2(c), where the lung area

occluded by a large lesion is accurately segmented.

8.2 Detection of large lung cancers

In this section, we present a novel method for automatic detection of large lung cancers

from the segmented lung areas. The method is based on 3D texture analysis using a

machine learning framework, i.e., boosting the k-NN classifier. However, the accuracy

of the detection may be hindered by various structures within a lung. Thus, we first

apply a 3D cylinder filter to suppress the intensity values of vessels and other elongated
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Figure 8.1: The flow chart of large lung cancers detection and segmentation method.

structures as well as noise inside a lung, while maintaining the intensity values of large

lung cancers intact [121, 194].

In Fig. 8.3(a) and (b), we can see that vessels and noise are effectively suppressed

while the large lung cancers remains intact. After the filtering, we isolate the candidate

regions for large lung lesions by simple thresholding (Fig. 8.3(c)). The threshold value is

automatically determined by analyzing the histogram of the filter response image [121].

Each candidate region is then classified with a learning framework described below.

8.3 Segmentation of large lung cancers

We now segment the classified large lung cancers. Because of the hazy appearance

and irregular shape of large lung cancers and the large overlap of intensity values be-

tween large lung cancers and surrounding vessels, simple thresholding and contour based

segmentation method do not provide accurate segmentation. The proposed method

involves the analysis of a 3D texture likelihood map using a nonparametric density

estimation.
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(a) (b) (c)

Figure 8.2: The segmented lung area using RASM. Red points are active shape model
and green lines are the connected contour. (a) Large cancers attached to the chest wall
and mediastinum (large red circle) and the initialization of the ASM, (b) ASM finding
the false boundary of lung, and (c) RASM finding the correct boundary of lung and
the large white area in the left lung is a large lung cancer.

8.4 Removal vessels overlapped with large lung cancers

The eigenanalysis of the Hessian matrix is used to remove vessels overlapped with large

lung cancers.

8.5 Results

We evaluate the method using 10 chest CT images containing 16 large lung cancers. The

CT volumes were acquired by multi-slice HRCT scanners with 1 mm slice collimation.

The number of slices in each CT scan range from 44 to 69 (interpolated to 130 to 205),

each of which consists of a 512 × 512 pixels, with in-plane resolution 0.82mm. The CT

images are digitally resliced to make cubic voxels and three volumes of interest (VOI).

All experiments are performed on a Dell computer with 1.8GHz processor and 1.5GB of

memory. The evaluation of the methods are based on the expert-defined ground truth

provided by the radiologists.

8.5.1 Qualitative Results

Fig. 8.4 illustrates four representative cases of the segmented large lung cancers. In

the figure, the 3D reconstruction of the segmented 3D large lung cancers (middle and

bottom row) as well as their 2D projections on one of the slices (top row) are shown.
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(a)

(b)

(c)

Figure 8.3: Effects of Fcyl (only one slice from the whole volume is shown). (a) Original
volume, (b) Volume filtered with Fcyl, and (c) Volume after thresholding.

From the figure, we can also see that the surrounding vessels are accurately removed

from the large lung lesions segmented.

8.5.2 Quantitative Results

To test the proposed machine learning method, we collect 500 volumetric samples, con-

taining 300 training samples and 200 testing samples, from 4 training clinical chest

CT images. The samples are of size 15 × 15 × 3 voxels from the CT volumes. Each

sample is converted to an instance vector in R256, representing its nonparametric den-

sity estimate. For the boosted k-NN, we use the standard Euclidean distance as the
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Table 8.1: Comparisons. d1 and d2 are the greatest diameter and its greatest perpen-
dicular distance of each tumor. Vol is the volume of each tumor. Overlap ratio is the
volume overlap ratio of the manual segmentation results and automatic segmentation
results. Manual and Auto are the measurements on the manual segmentation results
and the automatic segmentation results, respectively.

Dataset d1 d2 Vol Overlap
(mm) (mm) (mm3) Ratio

Manual Auto Manual Auto Manual Auto (%)
1 95 94 37 36 9676 9043 92.5
2 74 73 35 33 13357 12237 90.2
3 84 83 25 24 12704 11753 91.2
4 34 35 32 33 1643 1819 93.6
5 21 20 16 16 278 254 92.1
6 13 13 11 11 305 291 92.5
7 15 16 13 13 462 503 90.0
8 51 52 18 18 2152 2228 91.6
9 21 20 12 12 258 235 82.2
10 21 20 19 18 1402 1226 97.3
11 7 7 7 6 61 57 80.9
12 68 67 59 58 5988 5583 94.3
13 36 37 27 28 6268 6783 91.4
14 22 23 13 13 291 320 88.3
15 27 26 17 16 657 591 95.6
16 39 38 33 32 4583 4212 91.6

mean error (%) 2.8 2.2 8.4 90.9

distance measure between two instances. We perform bootstrapping to estimate the

generalization error of our large lesion detection method [190]. We train and test the

proposed method on bootstrap samples. After 20 steps of boosting, the mean error

rate converges to 3.50%. The accuracy is 96.5% for classifying large lung cancer and

the ROC curve is presented in Fig.8.5. The ROC curve is drawn by a free data mining

software called Weka and the area under the ROC curve is 0.99.

We apply the trained classifier to all 10 CT volumes containing 16 large lung cancers.

The CT volumes are acquired by multi-slice HRCT scanners with 5mm slice collimation.

The number of slices in each CT scan ranges from 44 to 69 (and digitally resliced to

obtain cubic voxels, resulting in 130 to 205 slices), each of which are of size 512 ×
512 pixels, with in-plane resolution of 0.82mm. The classifier detects all 16 lesions

successfully with no false negatives (Fig. 8.4). However, it also detects 2 false positive
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lesions, which the trained radiologists classify as atelectases.

Table 8.1 compares the greatest diameters, their greatest perpendicular diameters

and tumor volumes of the 16 lung cancers from the results of the manual segmentation

by experts and the automatic segmentation by the proposed method. The table shows

that the mean relative error of the greatest diameter and its greatest perpendicular

diameter are 2.8% and 2.2% and shows that the mean relative error of the tumor

volume is 8.4%. We also compare the overlapping ratios of the tumor regions segmented

manually and automatically, which range from 80.9% to 97.3%. The low overlapping

ratios are resulted from the cases in which the cancers are heavily occluded by blood

vessels, where the expert radiologists also find difficulty. The mean overlapping ratio

is 90.9%. These results demonstrate the potential of our method to correctly segment

occluded lung areas as well as the accuracy of the classification and segmentation of

the large lung cancers. These results demonstrate the potential of our method to

correctly segment occluded lung areas as well as the accuracy of the classification and

segmentation of the large lung cancers.



81

Figure 8.4: Results. Segmented large lung lesions projected onto a slice (left) and
corresponding 3D lesions (middle and right).
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Figure 8.5: ROC curve measures the performance of the Boosted k-NN method for
large lung cancer detection.
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Chapter 9

Concluding Remarks and Future Work

In this chapter, the main conclusions and results that have been derived during the

thesis work are summarized, as well as future tasks in the image analysis of non-rigid

registration and tumor motion on CT are proposed.

• We have described an improved ridge-based methodology for segmentation of

tubular organs. The novel contributions of the methodology are that the radii of tubular

organs are estimated by spherical deformable model and the bifurcations of tubular

organs are fully automatic detected by scan-conversion method or Adaboost learning

method. We also present very promising results of applying our method to clinical chest

CT image datasets (10 datasets contains 10 GGO nodules).

• We have presented a 3D-3D model based rigid registration methodology for the

tubular organs registration based on the automatically detected bifurcation points of

the tubular organs. The contributions of our method are that the information of the

bifurcations is added and the minimal centerline samples are used to increase the quality

of the registration metric. We present very promising results of our method applied to

the registration of the planning and respiration-correlated CT images.

• We have proposed novel methodologies for the automatic detection and segmen-

tation of lung GGO nodules and large lung cancers from chest CT images. We develop

classifiers by boosting k-Nearest Neighbor in the detection and the detected ROI region

is then automatically segmented by analyzing the 3D texture likelihood map of the re-

gion. We also present the statistical validation of the proposed classifier for automatic

detection as well as the very promising results of automatic segmentation.

− The proposed rigid registration method is considered to be a preliminary stage

which minimizes the least square error of the corresponding bifurcation points between
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the planning CT images and the respiration-correlated CT (RCCT) images. The in-

tensity information of the images are not considered in this process. We have some

preliminary ideas to develop a deformable registration method on CT. This method

will combine both rigid and non-rigid transformations and the physical structure and

properties of the vessels will be taken into account to drive the registration process.

− Novel methods will be developed for diagnosis of lung diseases on 4D RCCT.

Information on the extent of tumor motion, such as appropriate margins assignment

in radiotherapy, is often difficult to obtain with standard fluoroscopy. However, 4D

RCCT can be used to produce three-dimensional image sets at multiple phases. We

will investigate the characteristics of lung tumor motion as measured with 4D RCCT.
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