
AUTOMATED DETECTION AND CONTAINMENT OF STEALTH
ATTACKS ON THE OPERATING SYSTEM KERNEL

by

ARATI BALIGA

A Dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Professor Liviu Iftode

and approved by

New Brunswick, New Jersey

January, 2009

c© 2009

ARATI BALIGA

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Automated Detection and Containment of Stealth

Attacks on the Operating System Kernel

By ARATI BALIGA

Dissertation Director:

Professor Liviu Iftode

The operating system kernel serves as the root of trust for all applications running on the computer

system. A compromised system can be exploited by remote attackers stealthily, such as exfiltration

of sensitive information, wasteful usage of the system’s resources, or involving the system in mali-

cious activities without the user’s knowledge or permission. The lack of appropriate detection tools

allows such systems to stealthily lie within the attackers realm for indefinite periods of time.

Stealth attacks on the kernel are carried out by malware commonly known as rootkits. The

goal of the rootkit is to conceal the presence of the attacker on the victim system. Conventionally,

kernel rootkits modified the kernel to achieve stealth, while most functionality was provided by

accompanying user space programs. The newer kernel rootkits achieve the malice and stealth solely

by modifying kernel data. This dissertation explores the threat posed by both types of kernel rootkits

and proposes novel automated techniques for their detection and containment.

Our first contribution is an automated containment technique built using the virtualization archi-

tecture. This technique counters the ongoing damage done to the system by the conventional kernel

ii

rootkits. It is well suited for attacks that employ kernel or user mode stealth but provide most of the

malicious functionality as user space programs.

Our second contribution is to identify a new class of stealth attacks on the kernel, which do not

exhibit explicit hiding behavior but are stealthy by design. They achieve their malicious objectives

by solely modifying data within the kernel. These attacks demonstrate that the threat posed to kernel

data is systemic requiring comprehensive protection.

Our final contribution is a novel automated technique that can be used for detection of such

stealth data-centric attacks. The key idea behind this technique is to automatically identify and

extract invariants exhibited by kernel data structures during a training phase. These invariants are

used as specifications of data structure integrity and are enforced during runtime. Our technique

could successfully detect all rootkits that were publicly available. It could also detect more recent

stealth attacks developed by us or proposed by other recent research literature.

iii

Acknowledgements

This dissertation is a major milestone in my academic career. I want to take this opportunity to

thank all the people that have made it possible.

First and foremost, I would like to thank my research advisor Dr. Liviu Iftode, who believed in

my abilities and potential to succeed and guided me along the way. He has always held me to high

standards. I thank him profoundly for all the times that he pushed me to work harder, think better

and most importantly, aim higher.

I would also like to thank Dr. Joe Kilian for his constant inspiration and support. He has

patiently humored several of my half baked ideas, providing me with insightful feedback.

Dr. Vinod Ganapathy has given me a lot of motivation and help while working on my final

research problem. Vinod has spent hours brainstorming with me and scrutinizing my work and

writing. He has been a friend and a guide since the time I met him.

My encounter with several other faculty members at Rutgers was very memorable. I would

like to thank Prof. Martin Farach-Colton for teaching such an amazingly unconventional course in

Algorithms. That was the most fun course that I attended at Rutgers. I would also like to thank

other faculty members Prof. Barbara Ryder, Prof. Rich Martin, Prof. Wade Trappe, Prof. Thu

Nguyen, Prof. Gerard Richter, Prof. Joe Kilian and Prof. Liviu Iftode for all the great courses that

they taught me. They have contributed a lot to my development as a computer scientist.

I would also like to thank my colleagues Stephen Smaldone, Aniruddha Bohra, Florin Sultan,

iv

Tzvika Chumash, Gang Xu, Lu Han and Pravin Shankar who were a part of all the practice talks,

course presentations and brainstorming sessions as members of the DISCO lab.

I wish to express my deep gratitude to my parents Anjani and Prakash Baliga, who have made

me who I am today. I will always cherish the values that they have instilled in me. I also would like

to thank my sisters Dr. Akshata Pandey and Dr. Pooja Baliga for supporting me in my endeavors. I

am also deeply grateful to my in-laws for being supportive and encouraging.

Finally, I wish to express my sincere thanks to my husband Dr. Pandurang Kamat. He has been

by my side throughout graduate school, providing me undying support and constant motivation. I

want to thank him for his patience and the time that he spent acting as a sounding board for my

ideas, while balancing his own busy schedule.

v

Dedication

To my parents

Anjani and Prakash Baliga

and

my husband

Pandurang

and

my son

Aman

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

List of Tables . x

List of Figures . xi

1. Introduction . 1

1.1. Thesis . 1

1.2. What is a Rootkit? . 1

1.3. Attack Injection Vectors . 3

1.4. Evolutionary Trends . 3

1.5. Rootkit Attack Techniques . 7

1.6. Commercial Rootkit Detectors . 10

1.7. Rootkits Research . 13

1.8. Monitoring Kernel Data Integrity . 19

1.9. Contributions of this Dissertation . 21

1.10. Contributors to this Dissertation . 22

1.11. Organization of this Dissertation . 22

vii

2. Attack Containment . 23

2.1. Virtual Machine Technology . 24

2.2. Security Model . 25

2.3. Approach . 26

2.4. Design and Implementation . 31

2.5. Evaluation . 35

2.6. Discussion . 42

2.7. Summary . 45

3. Stealth Attacks on Kernel Data . 46

3.1. Problem Statement . 46

3.2. Disable Firewall . 48

3.3. Resource Wastage Attack . 50

3.4. Entropy Pool Contamination . 53

3.5. Disable Pseudo-Random Number Generator (PRNG) 55

3.6. Intrinsic Denial of Service . 57

3.7. Altering Real Time Clock Behavior . 58

3.8. Routing Cache Pollution . 60

3.9. Defeating In Memory Signature Scans . 61

3.10. Attack Categorization . 62

3.11. Summary . 64

4. Attack Detection via Invariant Inference . 66

4.1. Problem Statement . 66

viii

4.2. Approach . 67

4.3. Invariants and Stealth Attacks . 68

4.4. Design and Implementation . 76

4.5. Experimental Results . 86

4.6. Summary . 93

5. Conclusions and Future Work . 94

5.1. Concluding Remarks . 94

5.2. Future Work . 96

References . 99

Curriculum Vita . 104

ix

List of Tables

2.1. Per system call performance . 41

2.2. Performance overhead . 41

3.1. Watermark values and free page count before and after the resource wastage attack 52

3.2. Performance degradation in applications after the resource wastage attack 52

3.3. Results of running the Diehard battery of tests after contamination of the entropy pool 55

4.1. Rootkits that modify control data . 87

4.2. Rootkits from research literature. 89

4.3. Number of invariants inferred by Gibraltar. 90

4.4. Gibraltar false positive rate . 90

4.5. Results from the Stream microbenchmark averaged over 100 iterations. 92

x

List of Figures

1.1. Evolution of rootkit attack techniques . 4

1.2. Timeline showing evolution of rootkit research 13

1.3. Comparison of kernel data integrity monitors . 20

2.1. Types of virtual machines . 25

2.2. Protected zones in the file system and system memory 27

2.3. Sample Paladin policies . 28

2.4. Automated containment in Paladin . 30

2.5. The containment algorithm . 31

2.6. The Paladin architecture . 32

2.7. Linux rootkits publicly available, categorized by hiding techniques 37

2.8. Dependency tree shows the Lion worm attack . 40

2.9. Multiple control processes . 43

3.1. Kernel data structure affecting user level views 47

3.2. Hooks provided by the Linux netfilter framework 48

3.3. Firewall rules deny admission to the web server port 49

3.4. Zone balancing logic and the use of zone watermarks 51

3.5. The Linux random number generator . 54

3.6. File and device hooks in the Linux virtual file system layer 56

xi

3.7. Attack categorization . 65

4.1. Invariants violated by the entropy pool contamination attack 70

4.2. Invariant violated by the hidden process attack . 71

4.3. Invariant violated by the adding binary formats attack 72

4.4. Invariants violated by the resource wastage attack 73

4.5. Invariant violated by the disable firewalls attack 74

4.6. Invariant violated by the disable PRNG attack. 75

4.7. The Gibraltar Architecture . 77

4.8. Algorithm used by the data structure extractor. 79

4.9. An example showing the CONTAINER annotation 80

4.10. Example of a transient invariant. 85

xii

1

Chapter 1

Introduction

1.1 Thesis

This dissertation investigates the threat posed by malware (commonly known as rootkits) to the op-

erating system kernel. Conventionally, kernel rootkits modify the kernel to achieve stealth, while

most of the malicious functionality is provided by accompanying user space programs. This disser-

tation proposes an automated containment technique for such rootkits to stop the ongoing malicious

activity and thereby minimizing the damage to the system. It further identifies a new class of stealth

attacks on the kernel that achieve the malice and stealth solely by altering data structures in the

kernel. Finally, it proposes a novel automated technique, based on invariants inferred over kernel

data structures, for the detection of both types of kernel rootkit attacks.

1.2 What is a Rootkit?

The term ”rootkit” was originally used to refer to a toolkit developed by the attacker, which would

help conceal his presence on the compromised system. The rootkit is typically installed after the

attacker has obtained root level privileges on the compromised system.

Despite efforts for decades, software continues to be buggy and vulnerabilities are frequently

2

found in applications as well as in operating system code. Exploiting a vulnerability gives the at-

tacker access to the system. A root-level exploit provides the attacker with virtually a free reign

over the compromised system. The proliferation of the internet and the ubiquity of computers with

always-on internet connections running software with vulnerabilities have provided attackers with

easy access to vulnerable systems on the internet. Attack motives have therefore shifted from crim-

inal mischief to criminal profiteering. Attackers are interested in retaining access to a compromised

system, which allows them to reuse the resources of the system for committing fraudulent or illegal

activities. Rootkits facilitate such stealthy existence of the attacker on the victim system.

A compromised system can be exploited by remote attackers in several ways, such as exfiltration

of sensitive information, wasteful usage of the system’s resources, adverse effect on the system

performance, or system involvement in possibly fraudulent of malicious activities. Further, these

compromised systems are often made part of botnets, where the attacker might use the system as

part of a larger collection of victim systems (the botnet). These collectively participate in illegal

group activities, such as spam relays and distributed denial of service attacks. Because the rootkit

conceals the fact that the system is compromised, a rootkit infested system can stay undetected for

indefinite periods of time in the absence of appropriate detection tools.

Rootkits pose a serious and growing threat to computer systems today. Recent studies have

shown a phenomenal increase in the number of malware that use stealth techniques commonly

employed by rootkits. For example, a report by MacAfee Avert Labs [1] observes a 600% increase

in the number of rootkits in the three year period from 2004-2006. Indeed, this trend continues even

today; over 200 rootkits were discovered in the first quarter of 2008 alone (according to the forum

antirootkit.com [2]).

3

1.3 Attack Injection Vectors

Rootkits are installed on a system that has already been compromised via some other method. The

most popular method of gaining entry into the system is by exploiting software vulnerabilities,

which usually happens without the user’s knowledge or interaction. Most commonly exploited

software vulnerabilities exist in the operating system and browser software. Users often lag in

updating their systems with released security patches, which plays out to the attacker’s advantage.

Rootkits might also be injected when the user intentionally downloads software from untrusted

web sites. Such software is often bundled with unwanted components, several of which might be

malicious. Rootkits can also be externally delivered through spam mail, peer to peer file sharing

applications, or through other attacks, such as worms or bots. They might also be installed as part

of an insider attack.

While rootkit code can be injected into the system via the methods discussed above, it requires

root level control to tamper with the kernel or inject software that runs below the kernel [3–5]. Root

level access might be obtained by exploiting bugs in the operating system, such as buffer overflows,

race conditions, or privilege escalation attacks. Code can also be injected in the kernel by exploiting

bugs within device drivers. Alternatively, the attacker might gain root privileges directly as a virtue

of the user being logged on with root permissions.

1.4 Evolutionary Trends

Rootkits attack techniques have matured over the past few years, posing a realistic threat to com-

modity operating systems. Comprehensive detection of such advanced rootkits is still an open

research problem. The new attack techniques used by rootkits have in turn triggered the develop-

ment of novel techniques to detect their presence. The evolution of rootkits and techniques to detect

4

KERNEL SPACE

System call

table
Virtual File

System (VFS)

Handlers

p1 p5

Process Lists

/usr/lib/libc.so

Shared Libraries

/usr/bin/ls

/usr/bin/ps

/usr/bin/netstat

/usr/bin/login

User binaries

USER SPACE

Other

HandlersEntropy Pools

LAYER BELOW

Virtual machine based Rootkits (VMBRs) Other independent rootkits

1

23

5

4

NON-CONTROL DATA CONTROL DATA

KERNEL SPACE

System call

table
Virtual File

System (VFS)

Handlers

p1 p5

Process Lists

/usr/lib/libc.so

Shared Libraries

/usr/bin/ls

/usr/bin/ps

/usr/bin/netstat

/usr/bin/login

User binaries

/usr/bin/ls

/usr/bin/ps

/usr/bin/netstat

/usr/bin/login

User binaries

USER SPACE

Other

HandlersEntropy Pools

LAYER BELOW

Virtual machine based Rootkits (VMBRs) Other independent rootkits

1

23

5

4

NON-CONTROL DATA CONTROL DATA

Figure 1.1: Evolution of rootkit attack techniques

them continues to be an arms race between attackers and defenders. Figure 1.1 shows the evolu-

tion in rootkit attack techniques. Rootkits have evolved from manipulating user space binaries and

shared libraries to modifying control and non-control data in the kernel. The latest rootkits install

themselves below the operating system.

Early rootkits operate by modifying system binaries and shared libraries replacing them with

trojaned versions. The goal of these trojaned binaries is to hide malicious objects or grant privileged

access to malicious processes. For example, a trojaned ps binary will not list the malicious processes

running on the system. A trojaned login process can give root privileges to a malicious user. To

detect trojaned system binaries and shared libraries, tools such as Tripwire [6] and AIDE [7] were

developed. These tools generate checksums of authentic binaries when run on a clean system and

store them in a database. A user can examine the system at later points in time, using these tools, and

compare the checksums of system binaries with those previously stored in the database. A mismatch

in checksum indicates the presence of the trojaned binary. Other detection tools used an anti-virus

like approach, where the presence of a rootkit is detected using a database of known signatures, such

5

as a specific sequence of bytes in memory, or by the presence of certain files on disk. This approach

does not protect the system against newer unknown rootkits. Rootkits could thwart such detectors by

using polymorphic and metamorphic techniques for code obfuscation, traditionally used by viruses

to escape detection from anti-virus programs.

To escape detection from disk based integrity checkers, rootkits have evolved to make modi-

fications to kernel code and certain well known immutable data structures in the kernel, such as

the system call table, to achieve the same goals. These rootkits are known as kernel-level rootkits

because they modify the kernel. Modifications to the kernel make the rootkit powerful enough to

control all application level views. For example, intercepting the file related system calls, allows

the rootkit to control all files accesses by all applications on the system. The rootkit can intercept

these accesses and perform the necessary filtering to hide its malicious objects. Since the rootkit

manipulates the kernel, which is the trusted computing base of the system, it can also manipulate

any user level applications on the system. Such applications include the rootkit detection tools that

run in user space. Therefore, researchers proposed isolating the rootkit detectors from the operat-

ing system by either moving them onto a secure co-processor that does not rely on the operating

system [8, 9] or isolating them using the virtualization architecture where the detector is run in a

separate virtual machine [10,11]. The rootkit detectors, built to detect the kernel level rootkits, use

a checksum/secure hash based method to detect corruption of the kernel code or other well known

immutable data structures in the kernel, such as the system call table. The hashes are pre-computed

over the memory locations of a clean system, where the code and data structures are stored. They

are periodically recomputed and compared with the stored hashes to detect code or data structure

corruption [9, 10].

To further thwart detection tools, rootkit authors have adopted stealthier techniques. Since de-

tection tools solely checked the integrity of the kernel code and some well known data structures,

6

such as the system call table, rootkits delved deeper into the kernel and altered data structures that

were less known. For example, instead of modifying file related system calls in the system call

table, rootkits modified hooks in the virtual file system layer instead. For a while, the arms race

continued where the rootkit explored a new data structure that it could exploit, while the detector

had to incorporate the newly discovered data structure in its verification list. Most of the data that

the rootkits modified was immutable control data i.e. function pointers used by various layers in

the kernel. An automated approach was later developed to uniformly check for manipulation of

all control data in the kernel, by validating every function pointer against a valid kernel function

address [12].

Since the integrity of mostly immutable control data can be verified, rootkit authors have ad-

vanced another step and have built innovative attacks that work by solely manipulating data struc-

tures that are mutable [13]. This defeats the existing integrity checking mechanism of storing

checksums and performing periodic comparisons because these data structures are also modified

by authentic kernel code. We demonstrated some attacks that worked by modifying relatively im-

mutable non-control data [14]. These attacks modify variable values to alter the behavior of kernel

algorithms. They escape detection because they manipulate non-control data within data structures

not typically monitored by rootkit detectors. Detection approach was built to detect these advanced

attacks using manual specifications, as long as the attack obeys some constraint [15]. This approach

is effective as long as a manual security expert is capable of analyzing, anticipating and specifying

the constraints on data structures that might become the target of future attacks.

More recent trends have shown rookits that operate below the operating system layer. Re-

searchers have demonstrated rootkits that use the virtual machine technology to subvert the system

[4, 5] and rootkits that work independently of the operating system without requesting its services

or affecting its state [3]. While these indicate a new trend in the development of rootkits, they are

7

likely to be unpopular because they are highly platform specific and depend on specific hardware

features for their deployment. The operating system is still an attractive target because kernel level

rootkits work independent of the hardware and can therefore be easily ported across different plat-

forms. The kernel also provides a large code base and numerous amount of complex data structures,

providing the rootkit authors with several avenues for building stealthy innovative attacks.

1.5 Rootkit Attack Techniques

A careful survey of the attack techniques used by rootkits developed by attackers provides an insight

into the kind of solutions that need to be designed to counter them. We classify the attack depending

on the layer that they attack namely (a) the application layer and (b) the operating system layer. We

discuss attack techniques used by rootkits on the Linux and the Windows operating systems, which

covers majority of the rootkits in existence today. Some of these techniques might also apply to

other operating systems, such as BSD.

1.5.1 Application layer

Rootkits that reside in the application layer are also known as user level rootkits. In most of these

attacks, the attacker does not require any form of kernel level control. Most of the stealth and

functionality provided by the rootkit exists in the user space.

On Linux operating systems, user level rootkits have exhibited a solo trend. The purpose of all

rootkits that we surveyed is to hide the presence of malicious objects installed by the attacker on

the system. This is typically achieved by overwriting system binaries, such as ps, top and netstat,

commonly used to inspect the system. More advanced versions achieve system wide control from

user space by overwriting common libraries, such as libc, used by most applications on the system.

They often have other additions that allow the attacker to take advantage of the compromised system,

such as backdoors and key loggers. A detailed list of user level rootkits for Linux is available in

8

Figure 2.7.

Windows rootkits alter user level views of applications by manipulating their in-memory process

image rather than overwriting system binaries on disk. Two features provided by the Windows

operating system namely, the OpenProcess API and the Auto start extensibility points (ASEPs),

enable easy deployment of such techniques.

The OpenProcess API on Windows, allows an application to retrieve a handle to another process

running with the same privilege level. This allows a process to create a remote thread within another

process. Windows also has a DLL injection feature where a process can inject a DLL in the process

space of another process. Code injection into another processes’s memory image is usually used for

process monitoring and debugging in Windows applications. Rootkits use this feature to inject their

own code into a remote process.

The other feature used by rootkits is ASEPs. There are four types of ASEPs, which allow

different types of auto startup functions. ASEPs that start a new process allow processes to be

started automatically on system startup. ASEPs that hook system processes allow a DLL to be

loaded into a system process. ASEPs that load drivers allow loading of drivers and ASEPs that

hook multiple processes allow a DLL to be loaded into every process that links with a particular

DLL [16]. Rootkits use these ASEPs to carry out in-memory attacks that persist across system

reboots.

Several Windows Enumeration API’s are available as dynamically linked libraries (DLL). These

dll’s are linked by all user programs that use the Windows API. By intercepting calls to these dlls,

either by changing the per-process Import Address Table (IAT) or by directly changing the in-

memory API’s [17] or the Export Address Table (EAT), the attacker can hide her own files and

processes successfully. Some rootkits introduce an API detour. They modify the return address on

the stack in such a way that they get called on the return path from the API call and can alter the

9

results.

1.5.2 Operating system layer

Rootkits that alter the operating system kernel or the device drivers are known as kernel level rootk-

its. Kernel level rootkits are dependent on the operating system and might change across different

versions of the OS.

Linux kernel rootkits comprise of a range of rootkits that alter several data structures in the

kernel. The simplest rootkits exhibit hooking behavior at different layers in the kernel. The most

popular target of these rootkits is the system call table. Hooking into this table allows the rootkits to

intercept all application level system calls and alter their view of the system by filtering requests or

responses. The goal is still to hide malicious objects belonging to the attacker on the system. Some

rootkits bypass the regular system call table and install a new system call table of their own. The

system call handler is modified to jump to its newly created system call table. Other rootkits modify

the interrupt descriptor table. The trend exhibited by these rootkits is to modify data structure hooks

that exists along the system call path, the ultimate goal being to hide user level objects in the system.

The Windows kernel rootkits primarily use three techniques - (a) Modifying the System Service

Table (SST) or the IDT, (b) modifying the interrupt request packet function table, or (c) Direct

kernel object manipulation (DKOM). The first category of rootkits, which modify the SST or IDT,

is analogous to those modifying the system call table and the interrupt descriptor table on Linux.

The second technique is to hook into the function table installed by a device driver. This table

can be replaced with rootkit addresses to perform filtering, such as hiding network ports. The

final technique used by Windows kernel rootkits is called direct kernel object manipulation, which

involves modifying non-control data for hiding purposes. One such technique used by the rootkit fu

[13] is to hide a process by removing it from the process list maintained by Windows. This hides the

process from tools, such as Task Manager, which refer to this list to enumerate processes running on

10

the system. The rootkit process still gets scheduled because it present in the list of processes used

by the Windows scheduler.

1.6 Commercial Rootkit Detectors

Commercial rootkit detectors in existence today run on the same system as the system being moni-

tored, much like the anti-virus running on the system. Though many of them use techniques to hide

themselves from rootkits, they basically operate at the same privilege as the rootkit itself and there-

fore, have an equal footing. They use different techniques to detect rootkits, which are discussed in

detail below.

1.6.1 Signature based detectors

Signature based checking is the most primitive technique used mostly by anti-virus software. The

idea behind signature based checkers is to identify the rootkit based on its unique signature, which

might be a sequence of bytes in memory or existence of some unique files on disk. Several tools

implement the signature based checking technique. Chkrootkit [18] checks for modified versions

of system binaries and loadable kernel modules by looking for known strings within the binary. It

also checks for other signs for rootkit such as log file modifications. Rootkit Hunter [19] uses some

amount of signature based checking by scanning binaries and kernel modules for suspect strings.

1.6.2 Integrity based detectors

Tools such as Tripwire [6] and AIDE [7] check the integrity of system binaries on disk. These

tools, in the initialization phase, are run on a clean system. They create checksums of clean system

files and store them in a database. At later points in time, the integrity of system binaries can be

verified by calculating their checksums and comparing the checksums against those stored in the

database. Integrity based checkers have an advantage over signature based checkers as they can

detect rootkits not previously known. Detection is based on the change that is made to a protected

11

binary.

System Virginity Verifier [20] is a memory based integrity checker that verifies the commonly

used Windows components against a known good state. It checks the integrity of commonly com-

promised data structures in the kernel, such as the SSDT, IDT and IRP function tables. It also uses

some heuristics to counter the number of false positives generated by authentic hooking performed

by Windows applications, such as anti-virus software running on the system.

1.6.3 Cross view based detectors

Cross view based checkers can detect rootkits that are hidden in different layers between the user

space and the kernel space. This idea was first proposed by the Microsoft Strider team in their

prototype Ghostbuster [17]. Cross view detection is based on the concept of querying the system

from multiple view points and then comparing the generated answers. Any discrepancies between

the two views indicates the presence of a rootkit. Cross view based detection uses two types of

scans (a) Inside the box scan and (b) Outside the box scan. In the ”inside the box” scan, a user level

view is obtained by querying the OS enumeration APIs. Another view is generated by traversing

the low level kernel data structures. A difference between these two views reveals rootkits that are

hidden between the user and kernel space. An ”outside the box” scan compares the low level view

of the system to a low level view of a clean system, which can be obtained by rebooting the same

system from a clean media. A difference in these views indicates the presence of a kernel rootkit.

The efficacy of this detection technique largely depends on how the tool is implemented.

Microsoft Rootkit Revealer uses the ”inside the box” scanning technique for rootkit detection.

Therefore, it can only detect rootkits that hide between user and kernel space. F-secure Blacklight

uses a similar cross view based approach to detected hidden processes and hidden files [21]. Klister

is another detector that detects rootkits that hide by direct manipulation of kernel objects [22]. It

consists of a set of utilities for Windows, specifically aimed at detecting hiding processes.

12

1.6.4 Behavior based detectors

VICE is a rootkit detector for Windows that checks for hooks in user space processes as well as

within the kernel [23]. It is a standalone program that installs a driver that scans the kernel for

hooks. It uses a policy that every function pointer should resolve to a code address within the kernel

or the process, when looking for process hooks. In the kernel, it checks for IDT and SSDT and

ensures that the function pointers point to kernel code. It checks the IRP function tables in the

drivers and verifies that they point to code within the driver. It also verifies IATs and EATs within

processes to check for hooking. However, VICE has a high false positive rate as several Windows

applications use hooking for genuine purposes.

Patchfinder uses a method called runtime execution path profiling [24]. It is built upon the

observation that a rootkit must add code to a given execution path to perform additional tasks, such

as filtering. It uses the single step feature of the x86 processor to count the number of instructions

executed. This technique has several limitations. First, the processor has to execute in the single

step mode, in which it halts execution after each instruction and calls an interrupt service routine

where the instruction count is updated. This is a huge performance overhead. Secondly, on complex

operating systems such as Windows, this method leads to non-deterministic behavior because of

interleaving of kernel control paths, consequently leading to false positives.

1.6.5 Generic intrusion detection systems

Some generic intrusion detection systems have the capability of detecting certain kind of rootkits.

The St. Jude IDS is a kernel level intrusion detection and response system that can detect improper

privilege transitions occurring due to vulnerability exploitation in the kernel [25]. Rootkits often

exploit such vulnerabilities to get root-level access on a system and therefore, are successfully de-

tected by St. Jude. St. Jude is based on a rule based anomaly detector that uses normal system

13

Year Attack Techniques Defense Techniques
Pre-2003 Tripwire [6], Secure coprocessor [8]
2003 VMI [10]
2004 Copilot [9]
2005 Shadow Walker [27] Ghostbuster [17]
2006 Non-control data attacks [15], Subvirt [4] Specification based detection [15]
2007 Stealth Attacks [14] SBCFI [12]
2008 Cloaker [3] Paladin [28], Lares [11], Gibraltar [29]

Figure 1.2: Timeline showing evolution of rootkit research

behavior in the training phase. The Linux Intrusion Detection System (LIDS) provides a general

intrusion detection framework equipped with mandatory access control, file protection, process pro-

tection and port scan detection [26].

1.7 Rootkits Research

Most research in rootkit attack and defense techniques has been carried out over the past five years.

Figure 1.2 shows the timeline of work done in this area. Researchers have explored different attack

techniques, including proposing new types of advanced attacks that manipulate kernel data and those

that install themselves below the operating system. These attacks have motivated the development of

new tools and techniques to defend against futuristic rootkits. Research has also explored different

architectures for secure placement of the rootkit detector. This Section provides a summary of the

contributions of the latest rootkit attacks and defense architectures, tools and techniques.

1.7.1 Attacks

Researchers have explored novel attack techniques by which the operating system can be subverted

[14,15,27,30]. These techniques include subverting kernel data to launch novel attacks and creating

rootkits that reside below the operating system either independently [3] or by installing a virtual

machine monitor [4, 5].

This dissertation demonstrates a new class of stealth attacks that do not make an explicit attempt

14

to conceal their presence. The attacks operate solely by altering kernel data to achieve stealth and

carry out their malicious goals, such as disabling the firewall or weakening the pseudo random

number generator. These attacks are described in detail in Chapter 3.

Sparks et al. demonstrated a rootkit called Shadow Walker that subverts the memory manage-

ment subsystem by exploiting hardware features [27]. Shadow Walker alters the application’s view

of a memory page, thereby, subverting rootkit detectors that scan physical memory pages to detect

the presence of rootkits. The subversion is achieved by installing a new page fault handler. The

page fault handler exploits the existence of two different TLBs in the Pentium architecture for in-

structions and data. To begin with, the pages belonging to the rootkit are marked as ”not present”

in the page table entries and any corresponding TLB entries are flushed. The next time a request is

made for the rootkit page, it is trapped by the page fault handler, which populates the TLBs. If the

request is for code execution, it passes this to the original page fault handler and the rootkit code

gets executed. The corresponding physical address is stored in the instruction TLB. If a detector

tries to read this page, it is redirected to a fake page by populating the data TLB with a different

physical address, consequently hiding the rootkit code.

King et al. demonstrated a virtual machine based rootkit (VMBR) that installs itself below the

operating system [4]. The VMBR changes the boot sequence on the compromised system, pro-

viding the virtual machine monitor full control over the physical hardware after the system reboots.

The original operating system is hoisted inside a virtual machine. Since the VMBR runs below the

operating system, it can use virtual machine introspection to spy on the guest operating system for

sensitive data or interested events such as system calls. The VMBR is also capable of creating a

new virtual machine and hosting malicious services, effectively using the compromised system for

malicious activities, such as botnets and spam relays.

Rutkowska et al. demonstrated a VMBR called Blue Pill [5] that is much stealthier than Subvirt,

15

by using the AMD SVM technology [31]. Blue Pill does not need to modify the BIOS, the boot

sector or system files. It comprises of a thin layer of hypervisor that installs itself by overwriting

device driver functions within the Windows swap file, and then requesting the kernel to execute the

function. The function then installs blue pill, which takes control of the operating system.

David et al. demonstrated a rootkit called Cloaker that installs itself beneath the operating sys-

tem and hides itself solely by exploiting hardware features [3]. Cloaker does not alter any operating

system state or rely on its services. It exploits two main features provided by the ARM processors

deployed on mobile phones. The first feature it uses is the ability to establish a trampoline interrupt

vector by flipping a single bit in the processor’s control register. This allows Cloaker to intercept all

interrupts and perform the necessary filtering before it invokes the original interrupt handler. The

second feature is the ability to lock down TLB entries, preventing them from being flushed. These

locked down entries correspond to Cloaker payload hidden in unused memory pages. Cloaker also

provides malicious services, such as keylogging, information theft and distributed denial of service

attacks. All of these services are implemented by Cloaker using low level device driver code, which

is built as part of the rootkit.

1.7.2 Architectures

Since kernel level rootkits render the kernel untrustworthy, runtime detection tools must execute on

an entity that is outside the control of the kernel. Researchers have proposed both virtual machine-

based (e.g., [10, 32]) and hardware co-processor based infrastructures [9]), which allow rootkit

detection tools to securely observe the runtime execution state of the kernel.

Zhang et al. first proposed the use of a secure coprocessor to verify the integrity of kernel code

and data [8]. The idea was to isolate the detector from the operating system that it monitors. The

coprocessor boots and executes independently and serves as an external entity that can verify the

operating system state and at the same time, secures itself from the rootkit. Their prototype was a

16

proof of concept that was implemented using a kernel module.

Petroni et al. built a detection system on a real secure coprocessor [9]. Their prototype, Copilot,

works on a secure coprocessor plugged into the PCI bus. It does not rely on the operating system

for any services. It can access the system main memory via PCI DMA. It can monitor the integrity

of kernel code and some well known immutable data structures in the kernel, such as the system

call table. It does this by periodically fetching these well known data structures at fixed locations

from main memory and comparing a cryptographic hash of the memory area against pre-computed

values, previously stored from a clean kernel. Copilot was tested against real-world rootkits and

was found to be effective in detection of almost all of them that modified either kernel code or well-

known immutable data structures in the kernel. It could detect the attack within a matter of a few

seconds.

Garfinkel et al. proposed virtual machine introspection (VMI) architecture for rootkit detection

[10]. This architecture isolates the system being monitored from the detector by running them in

different virtual machines. The detector runs in a privileged VM, and is therefore able to inspect

the target’s physical memory and the events, such as system calls. The VMM intercepts interesting

events and has the capability to forward it to the detector. The detector in this architecture has

an advantage that it is able to provide a suitable response to events over the coprocessor based

architecture.

Payne et al. proposed a virtual machine based architecture for active monitoring of the operating

system inside the guest VM in a secure fashion [11]. Lares installs event hooking and forwarding

components within the untrusted guest operating system. The event handling component installs

the hooks within the guest OS that is responsible for trapping the event. The hook forwards the

event to the trampoline code also running within the guest OS. The trampoline forwards the event

along with the context information to the security application running in the monitoring VM. Lares

17

protects the integrity of the components within the untrusted VM by implementing a write protector

within the hypervisor. Any write performed to these components is trapped by the hypervisor and

disallowed. The security application is responsible for handling the event and implementing the

policy. The response is delegated to the trampoline code through the hypervisor. Lares provides a

systematic framework for introspection applications to securely monitor and interpose on events of

interest within the guest OS.

Petroni et al. proposed a specification-based architecture for detection of rootkits that modify

dynamic data in the kernel [15]. In this architecture, data structures in kernel memory are periodi-

cally checked against integrity specifications. These specifications describe key semantic properties

of data structures, which must hold during normal execution of the kernel; violation of any of these

specifications indicates the presence of a rootkit. The architecture allows the specification writer

to develop these data structure integrity specifications in a higher level language. They developed

a specification compiler that translates these specifications to a low level code. While this tech-

nique has the advantage of being able to detect rootkits that modify both static and dynamic data, it

requires the integrity specifications to be developed manually.

1.7.3 Tools and techniques

Microsoft Strider Ghostbuster proposed a technique to detect rootkits that exhibited hiding behavior

[17]. Their technique is based on a cross view based approach. The idea is to compare multiple

views obtained in different ways and check the resulting answers for ”lies”. Any discrepancy be-

tween the answer indicates the presence of a rootkit that tries to hide its objects. It uses an ”inside

the box” scan that compares results from querying the OS enumeration APIs and a low level query

of the OS data structures. These reveal rootkits that are hiding between user and kernel space.

An ”outside the box” scan compares the low level kernel scan of the system with that of a clean

system, typically obtained by rebooting the same system from a clean media. This scan detects

18

rootkits that alter the kernel state to hide. The efficacy of this technique largely depends on how it

is implemented.

Petroni et al. proposed state based control flow integrity [12], a technique to automatically

verify all dynamic control data in the kernel. The techniques traverses all objects in the kernel heap

beginning from a set of static roots i.e. pointers to objects in the kernel static area. Traversal is

guided by the use of type definitions that is extracted statically from the kernel source code. Upon

encountering function pointers, it checks the integrity of the function pointer based on a certain

policy. A simple policy that they implemented is to ensure that each function pointer points to an

exported function within the kernel code. The policy can be made more accurate by substituting it

with a result from a points-to analysis of the source code.

An alternative to the above runtime techniques are tools that pro actively scan kernel mod-

ules and device drivers to determine whether they are malicious. These include both signature-

matching techniques as employed by most commercial malware detection tools, and symbolic ex-

ecution tools [33, 34], which statically approximate the behavior of a kernel module to determine

whether it likely affects key kernel data structures. Several attestation based approaches have been

proposed to verify the integrity of the running code [35–41]. These approaches use a secure chip

as the trusted computing base to bootstrap trust. The verification procedure is based on comparing

hashes with known good values or timing calculations. These approaches work well for checking

the integrity of code, but they are ill-suited to check the integrity of data.

Grizzard et al. [42] address the issue of recovering from rootkits that modify the system call

table by replacing the infected copy with a clean copy. This is an offline recovery procedure, which

works only for rootkits that modify the system call table.

19

1.8 Monitoring Kernel Data Integrity

The increase in number and complexity of kernel rootkits can be attributed to the large and complex

attack surface that the kernel presents. The kernel manages several hundred heterogeneous data

structures, most of which are critical to its correct operation. A rootkit can subvert the kernel

integrity by subtly modifying any of these data structures.

Kernel data structures that hold control data, such as the system call table and other jump tables,

have long been a popular target for attack by rootkits. However, recent rootkits achieve a variety

of malicious goals by modifying non-control data in the kernel. For example, the fu rootkit hides

a malicious user space process by manipulating linked lists used by the kernel for bookkeeping.

Similarly, in Chapter 3, we demonstrate rootkits that degrade application performance by modifying

memory management meta data and those that affect the output of the pseudo random number

generator by contaminating entropy pools.

1.8.1 Current research

Current research has proposed techniques to monitor the integrity of kernel data. These approaches

are summarized and compared in Table 1.3.

Copilot [9] can monitor the integrity of kernel static immutable data structures in the kernel.

These data structures have to be manually specified and are often derived from known rootkit be-

haviors. It has no provision to detect the integrity of dynamic data in the kernel.

Specification based detection technique [15] can monitor the integrity of data on the kernel

heap but requires elaborate specifications of kernel data structure integrity. These specifications

are supplied by an expert who has a detailed understanding of kernel data structure semantics.

Kernel data structures are continuously monitored during runtime against these specifications, and

violations are used as indicators of rootkit behavior. While this approach has the advantage of

20

Location of data Type of data Specifications
Static Dynamic Control Non-control Automatic

Copilot [9] X x X X x
Specification based detection [15] X X X X x
SBCFI [12] X X X x X
Gibraltar [29] X X X X X

Figure 1.3: Comparison of kernel data integrity monitors

detecting sophisticated rootkits, developing specifications is currently a manual procedure. Because

the kernel maintains several hundred data structures, the specification writer could either fail to

supply certain integrity specifications, e.g., because he is unaware that they exist, or may fail to

realize how a rootkit could exploit them.

SBCFI is an automated integrity checking technique that verifies the integrity of all control data

in the kernel. A simple policy that SBCFI uses is to check if each function pointer encountered in

the kernel points to a valid kernel function address. One shortcoming of this technique is that it can

only verify the integrity of control data in the kernel.

In this dissertation, we propose Gibraltar, discussed in detail in Chapter 4. Gibraltar addresses

the shortcomings of the above techniques by using a learning based approach. It can automatically

generate integrity specifications for all control and non-control data in the kernel based on the invari-

ants that it observes during a training period. However, Gibraltar does suffer from some limitations.

It can only detect rootkits that violate invariants on data structures. It is possible that a rootkit might

manipulate a data structure such that it does not violate an invariant or manipulate data structures in

ways that violate invariants that Gibraltar does not mine for.

1.8.2 The future landscape

Current rootkits make persistent changes to kernel data structures. Persistent modifications give

rootkits long-term control over the system. However, persistent changes to kernel memory are also

21

likely to be detected by systems, such as SBFI [12] and Gibraltar [29]. Thus, with maturing de-

tection techniques, rootkits will increasingly begin to employ transient techniques to achieve their

malicious goals. Existing infrastructures, such as the PCI-hardware based infrastructure and the

VMI-based architecture described previously, do not suffice to detect such rootkits because they

operate by capturing and observing data structures in kernel memory snapshots. Capturing and ana-

lyzing memory snapshots is time-consuming and does not operate in real-time. Consequently, these

detection techniques may miss observing the state of the kernel when the rootkit has compromised

the integrity of a data structure. Alternately, a rootkit could time its modifications so as to evade

these detectors.

1.9 Contributions of this Dissertation

This dissertation explores the threat posed to computer systems from advanced rootkit attacks from

both perspectives; offense and defense. It makes the following contributions:

• A virtualization based architecture for automatic containment of conventional rootkit attacks.

The goal of this work is to minimize the damage caused to the system by executing a con-

tainment procedure upon detection of a rootkit. This work also successfully contains other

malware, such as worms and viruses that use rootkits to hide. We designed and implemented

a prototype Paladin, using the VMware Workstation software. Paladin could effectively con-

tain rootkit attacks and rootkit carrying malware that we used in our experiments. This work

is published in the Elsevier Computers and Security Journal Nov, 2008 [28].

• Identification of a novel class of stealth attacks that manipulate the compromised system by

solely manipulating data structures in the kernel, without making an explicit attempt to hide.

None of these attacks were detectable using the state of the art detection tools. The goal of this

work was to show that the threat to kernel data is systemic, requiring a comprehensive solution

22

that accounts for all data structures in the kernel. It also highlights the shortcomings of the

state of the art tools used for rootkit detection. This work is published in the Proceedings of

the IEEE Symposium of Security and Privacy (IEEE S&P 2007) [14].

• A novel rootkit detection technique that detects advanced data-centric stealth attacks on the

kernel. It is based on the hypothesis that data structures exhibit invariants and attacks violate

some of the invariants exhibited by them. Our technique automatically and uniformly infers

invariants on control as as well as non-control data structures in the kernel. These invariants

are used as specifications of data integrity. At run-time, attacks that violate these invariants are

automatically detected. This work is published in the Proceedings of the Annual Computer

Security Applications Conference (ACSAC 2008, to appear) [29].

1.10 Contributors to this Dissertation

Following are two of my colleagues who co-authored papers from which I used material in this dis-

sertation, along with their contributions: Xiaoxin Chen helped me in building the Paladin prototype

during my internship at VMware Inc. Pandurang Kamat helped in developing some of the attack

ideas in this dissertation. Tzvika Chumash wrote parts of the code for the Paladin driver.

1.11 Organization of this Dissertation

This dissertation is organized as follows. Chapter 2 describes our containment technique designed

using the virtualization architecture, to contain conventional rootkit attacks. Chapter 3 describes

the novel class of stealth attacks against kernel data that we identified. In Chapter 4, we describe

our automated rootkit detection technique based on invariant inference over kernel data structures.

Finally, Chapter 5 concludes this dissertation with some directions for future work.

23

Chapter 2

Attack Containment

Conventionally, kernel rootkits provide most of the malicious functionality as user space programs.

The actual stealth is achieved by altering the code or data in the kernel, particularly control data that

provides the rootkit with a vantage point of intercepting and influencing application level views. The

malicious code injected into the kernel is designed to hide user space objects, such as files, processes

and network connections, belonging to the attacker. The most popular data structure altered for this

purpose is the system call table. Other function pointers in the virtual file system layer also have

been targets of kernel rootkits.

Kernel integrity monitors, which check the integrity of well-known immutable data structures

in the kernel, are able to detect the presence of the rootkit as soon as the data structure is corrupted.

However, sheer detection does not suffice to stop the malicious activity in progress, which might

involve irreversible tasks, such as exfiltration of sensitive information or system involvement in

fraudulent or criminal activities. An effective containment technique must stop or minimize the

ongoing damage to the system.

In this chapter, we propose a technique to contain rootkits by leveraging the virtual machine

technology. We use virtual machine introspection [10] for rootkit detection, and augment it with

a containment algorithm, which is executed upon detection of the rootkit. The key idea behind our

24

technique is to maintain process relationships as the processes are launched on the system, in the

form of a dependency tree. When an rootkit is detected and the offending process is known, the

algorithm refers to this dependency tree and identifies other possible malicious processes and kills

them. This approach also efficiently contains other malware, such as viruses, worms and spyware

that use rootkits to hide.

We built a proof of concept prototype, Paladin, implemented as part of VMware Workstation. It

detects and contains rootkits that use either user mode stealth (e.g. by installing trojaned binaries) or

kernel mode stealth (e.g. by corrupting the system call table) to hide objects. Using this prototype,

we show that our approach is effective in containing a large percentage of Linux rootkits found in

the real world. Paladin also effectively contains the stealthy Lion worm (bundled with a rootkit),

which we used in our experiments.

2.1 Virtual Machine Technology

Today, virtual machines (VMs) are widely used in servers as well as in desktop environments for

running multiple operating systems. In server environments - be it enterprise services, Internet

services or data centers - virtualization results in substantial cost savings and ease and efficiency

of management, due to server consolidation. With increasingly adversarial Internet traffic, security

is a major concern for enterprises as well as lay users. Virtualization provides a secure and robust

computing environment. A virtual machine monitor (VMM) is a thin layer of software that runs

on the bare hardware or on an existing OS. VMM emulates the underlying hardware in such a

way that operating systems can run on top of it without any or little change. VMM also allows

multiple operating systems to run on top of it by virtualizing all resources and efficiently multiplexes

them between multiple operating systems. VMM provides isolation and gives good performance

guarantees for different operating systems running on the same machine. The performance of the

VMM software has improved further due to hardware support built into processors for virtualization

25

Virtual Machine Monitor (VMM)

Guest OS 1 Guest OS 2

Hardware

Virtual Machine Monitor (VMM)

Guest OS 1 Guest OS 2

Hardware

Virtual Machine Monitor (VMM)

Guest OS 1 Guest OS 2

Hardware

Host OS

Virtual Machine Monitor (VMM)

Guest OS 1 Guest OS 2

Hardware

Host OS

(a) Type I (b) Type II

Figure 2.1: Types of virtual machines

[31, 43].

Virtual machines can be classified into two categories: Type I and Type II VMs. As shown in

Figure 2.1, Type I virtualization software, such as VMware ESX server [44] and Xen [45], run

on the bare machine and control the physical resources. It provides a virtual interface to operating

systems running inside the VMs. Figure 2.1 also shows Type II virtualization software, such as the

VMware Workstation, which uses the hosted architecture [46]. In this case, VMware Workstation is

first installed as an application on an existing OS, called the Host OS. The operating system running

inside the virtual machine is known as the Guest OS. VMware runs as a process on the Host OS

and relies on it to fulfill Guest OS I/O requests. Since the Guest OS runs at a less privileged level

on the physical processor, compared to the VMM, the virtual machine monitor has the capability of

intercepting events from the Guest OS. While our prototype is implemented with a Type II virtual

machine, it can just easily be implemented using a Type I virtual machine.

2.2 Security Model

Having the Intrusion Detection System (IDS) on the Host OS to monitor the Guest OS is known

as virtual machine introspection [10]. From the time this model was first proposed, it has been

widely accepted as a secure model for monitoring and intercepting events from the Guest OS. It is

26

extremely difficult for the attacker to compromise the IDS despite having complete control of the

Guest OS, as the Guest OS runs at a lower privilege level compared to the Host OS on the physical

processor.

Our design is derived from this model and has the following properties.

• Encapsulation. The VMM presents a virtual hardware interface to the OS inside the virtual

machine. It is nearly impossible for an attacker in the Guest OS to inject instruction stream

into the virtualization layer or access resources outside of the emulated virtual hardware.

• Introspection. The VMM can inspect the virtual machine’s state at instruction level without

possible detection by the code running inside the VM. Any host-based IDS suffers from the

problem of sharing resources with the OS and can be compromised. On the other hand,

network based IDS has to rely on network stream and is required to reassemble fragments of

evidence to detect possible intrusion. Such approaches are typically less accurate and have

limited visibility of the host operating system.

• Tamper proof. The VMM runs at a higher privilege level on the physical processor compared

to the Guest OS. This makes the VMM code inaccessible from the Guest OS except through

well-defined interfaces.

The encapsulation and tamper proof properties above can be compromised if there is an ex-

ploitable flaw in the VMM. However, this is extremely rare since the VMM is a very thin layer of

software with very well-defined interfaces. This makes the VMM a well-tested component, where

bugs are easily identified and fixed.

2.3 Approach

Our system identifies and counters hiding behavior of rootkits using the combination of the follow-

ing three mechanisms: Prevention & Detection, Tracking and Containment.

27

Kernel

Memory

Files

User

Service
Files

Core System
 Files

 Text
Jump

Tables
Kernel

Kernel Binaries

Figure 2.2: Protected zones in the file system and system memory

2.3.1 Prevention and Detection

This mechanism relies on specification of access control policies for rootkit detection. The policies

are tailored to protect memory areas and system files that are a target of rootkit attacks. These

are categorized into file access control and memory access control policies as depicted in Figure

2.2. File access control policies protect the system utilities from being replaced by their trojaned

counterparts. Memory access control policies protect the kernel code and data structures from being

overwritten in memory, which is a common method utilized by kernel rootkits.

Figure 2.3 shows a sample policy file used by our system. Several directories are made non-

writable. These policies can be tailored as per the system requirement. For example, Figure 2.3

shows that the program /usr/bin/passwd is allowed to write into /etc/passwd, which is readonly to

other programs. Such policies are easy to specify and are commonly used with other tools, such as

Tripwire [6] and AIDE [7]. Memory access control policies for rootkit detection currently include

protecting the kernel system call table, the interrupt descriptor table and the kernel text. These

are the three most common hooking places in memory for rootkits. As rootkit authors find newer

data structures to manipulate, the access control policies can be extended to protect the newer data

regions. Certain legitimate applications may need to write into kernel memory or hook to certain

protected areas. For example, an anti-virus program may need to place a hook into the system

28

File access control policies

/bin RD X

/sbin RD X

/boot RD X

/usr/bin RD X

/usr/sbin RD X

/ etc/ passwd RD ONLY (!/usr/bin/passwd)

Memory access control policies

KERNEL TEXT RD X

SYS CALL TABLE RD X

IDT RD X

Figure 2.3: Sample Paladin policies

call table to scan for files before they are opened by the user. The access control policies can be

tailored to allow only these applications exclusive access to the required protected zones. These

applications, in turn, need to be protected on disk by using appropriate access control policies to

prevent rootkits from modifying them.

The access control policy file resides outside the Guest OS that is being monitored. It is not

visible to the attacker who gains control of the Guest OS. Since attacking the Guest OS does not

give the attacker access to the VMM, the VMM can enforce the access control policies without itself

being compromised.

2.3.2 Tracking

The tracking mechanism generates a dependency tree by maintaining parent-child relationships be-

tween processes and relationships between processes and generated files. This information is up-

dated from the system call events. The dependency tree is used by the containment algorithm to

identify possible malicious processes. Figure 2.8 shows a sample representation of a dependency

tree. Processes are represented by ellipses and files by rectangles. In a process → process re-

lationship, a directed edge from one process to another represents a parent-child relationship. A

process→file dependency, shows that the file is created by the process.

29

We use the following dependency rules for updating the dependency tree:

1. Upon process creation, a link is created between the parent and the newly created child pro-

cess. This is represented as a directed edge from the parent to the child in the dependency

tree.

2. When a process image is overlayed for execution, we store the filename from where the

process was executed. This filename, shown within the ellipse, represents the process name

in the dependency tree.

3. When a process exits, if it has created other files or child processes, the process is not deleted

from the dependency tree but simply marked for deletion. If the process has not spawned any

child processes nor created any files, the process is deleted.

4. When a file is created, a link is created from the process to the file.

5. When a file is deleted, any process that becomes childless and has been previously marked

for deletion is also deleted.

2.3.3 Containment

Containment is required to stop immediate ongoing damage as soon as a violation of the access con-

trol policies is detected. Rootkits are usually bundled with other programs, such as keyloggers and

backdoors. With the current trend of rootkits being shipped with worms, viruses and spyware, these

programs can consist of almost any kind of malware capable of doing immense damage stealthily.

When a rootkit accompanies a virus or a worm, it can (and often does) easily disable anti-virus

software. This makes even already known worms and viruses effective all over again, as the anti-

virus software is stealthily disabled by the rootkit. For example, containment can stop a virus from

30

Figure 2.4: Automated containment in Paladin

formatting the hard disk, an attacker from stealing confidential data, or a worm from spreading.

A violation of an access control policy triggers the containment mechanism. The containment

algorithm tracks possible malicious processes by referring to the information in the dependency

tree. We define a Process Resident Set (PRS) as the set of processes that need to be always running

in the system. These processes include processes, such as init, login and other system daemons that

are usually always present on the system. These programs are listed by the administrator in the form

of full pathnames.

Figure 2.4 shows process P2 performing malicious access. P2 is identified as the offending

process. The system automatically identifies the subtree that is considered malicious using the

information in the dependency tree. A path is traced back from the malicious process P2 to the root

of the dependency tree until a process in the PRS is encountered, all of whose ancestors are also in

the PRS. The previously visited node becomes the root of the subtree. In this case, P0 belongs to the

PRS and hence, P1 becomes the root of the subtree identified as malicious. All processes identified

in this subtree are considered malicious and will be killed by our system. The pseudo code for the

containment algorithm is shown in Figure 2.5.

31

current node = offending process;
prev node = offending process;
root->parent = NULL;

while (current node!=NULL) {
if(!(in PRS(current node)))
{ /* Current node does not belong to PRS */

prev node = current node;
current node = current node->parent;

}
else
{

/* Current node belongs to PRS */

if(all ancestors in PRS(current node))
{ /* Set prev node as root of malicious tree */

set root malicious subtree(prev node);

/* Kills all processes in the subtree rooted at prev node */

kill all processes in tree(prev node);
break;

}
else
{

/* Ignore this node and continue traversing up to the root */

prev node = current node;
current node = current node->parent;

}
}

}

Figure 2.5: The containment algorithm

2.4 Design and Implementation

In this section, we describe the design of the prototype Paladin. As shown in Figure 2.6, Paladin

comprises of several components: the modified form of VMware Workstation, PaladinApp, the

driver and the database. VMApp and the VMM are a part of the VMware Workstation software. We

added hooks into these to enable communication with PaladinApp, which is an application process

in the host OS. Arrows indicate the communication paths between the different components of the

system. The dashed box in the figure represents a virtual machine.

VMware workstation is a type II virtual machine [46], which is installed on a host operating

32

Physical Machine

VMM

Host OS

Virtual Machine

Guest OS

Guest Apps

PaladinApp
VMApp

paladin.config

Paladin

Driver

Process

Resident Set

(PRS)

Policies

Database

VM

Driver

Physical Machine

VMM

Host OS

Virtual Machine

Guest OS

Guest Apps

PaladinApp
VMApp

paladin.config

Paladin

Driver

Process

Resident Set

(PRS)

Policies

Database

VM

Driver

Components shown in dark gray are the ones added by us. Components shown in light gray belong
to the VMware Workstation software.

Figure 2.6: The Paladin architecture

system and relies on the host to fulfil I/O requests from the Guest OS. The VMApp appears as a

process on the host OS. VMApp runs the VMM, which in turn runs the guest operating systems.

2.4.1 Design overview

Hooks added in the VMM and VMApp establish a two way communication channel between the

VMM and PaladinApp. PaladinApp can register events of interest with the VMM. VMM forwards

these events to PaladinApp for processing. A similar channel is established between the VMM and

the driver inside the Guest OS. In this case however, commands are always sent from the VMM and

actions are carried out by the driver.

In our prototype, VMM forwards file and process related system calls to PaladinApp. These

are used by PaladinApp to update the dependency tree, stored in the database. If a violation of a

given access control policy is intercepted by the VMM, it notifies the PaladinApp, which in turn

33

initiates the containment procedure. The Paladin prototype works in the following three phases:

Initialization, Normal Operation and Containment.

Initialization

In the initialization phase, the PaladinApp registers file and process related system calls with the

VMM. The VMApp and PaladinApp processes read the paladin.config file provided by the admin-

istrator. This file consists of a)The access control policy specification (both file and memory access

control) and b)The filenames of process belonging to the Process Resident Set (PRS). The file access

control policies are stored by the VMApp and used to validate system calls. The memory access

control policies are used by the VMM to protect the memory regions. The addresses of the memory

regions are obtained by issuing commands to the driver, which in turn performs symbol lookup in

the guest kernel. The driver is a kernel module and has knowledge about Guest OS semantics. The

entries in the PRS are used only by the containment algorithm. At the end of the initialization phase,

file and memory protection checking is active.

Normal operation

During normal operation, the VMM intercepts system calls and forwards registered system call

events to PaladinApp. PaladinApp validates these events against access control policies. It generates

the dependency tree from this system call information. VMM has to be aware of the system call

interface used by the Guest OS. For the given system call intercepted, VMM provides the system

call argument values to the application by accessing the guest memory. Dependencies are inferred

by matching entries with exits from system calls for processes and file accesses. Since each process

is uniquely identified by a page table during its lifetime, we use the page global directory address

stored in the cr3 register of the x86 virtual CPU as the identifier for processes. Multiple threads

within the same process are distinguished using the stack pointer register.

34

Containment

This phase is initiated when a specified access control policy is violated. In both cases, the process

performing the malicious access is identified by the VMM and the information is passed to the

PaladinApp. In case the illegal access is performed from a kernel module, the process inserting

the module is considered malicious. The PaladinApp refers to the dependency tree and runs the

containment algorithm. It relies on the driver loaded in the guest OS to kill malicious processes.

The driver code itself is protected by the VMM and cannot be tampered with by the attacker.

Protection of the Paladin Driver. An important aspect of this design is to have the driver

inside the Guest OS. This is required for two reasons: a) to retain the VMM as an independent layer

(without building Guest OS semantics into it) and b) to have a component in the Guest OS capable

of performing certain actions that cannot be carried out effectively from the VMM. However, since

the driver exists inside the Guest OS, it is important to protect the driver from being tampered

by a kernel rootkit. This is achieved by verifying the code signature during load time against a

registered signature and protecting the code pages from writes during execution time. Data pages of

the Paladin driver can also be write-protected in a similar fashion during execution time. Whenever

there is a write into these pages, a fault is generated in the VMM. The VMM can then verify that the

instruction pointer where this write originated from is part of the Paladin driver code page. Given

the fact that the driver is called upon only during the initialization and the containment phases and

the driver executes only a small set of instructions during this brief period of time, the overhead of

protecting the driver pages is reasonable. Since there is no way for the rootkit to interpose between

the VMM and the Paladin driver, the driver is considered completely secure.

35

2.4.2 Implementation

Our prototype was developed for VMware Workstation. The host machine and the virtual machine

were running the 2.4 Linux kernel. The database used was MySql. The driver is a Linux kernel

module (LKM). The driver looks up the System.Map file. It finds the symbols for kernel text seg-

ment, system call table and interrupt descriptor table (IDT) and returns the physical addresses of

these symbols2.

System call information consists of the system call number, arguments and the virtual CPU

registers. When a fork is encountered, in a process, a relationship is created between the parent

and the child process. The child process has a different page table root (cr3) than the parent, but

the same stack and instruction pointer upon exit from the fork system call. Thus, a fork system

call return with the same stack pointer and instruction pointer but a different cr3 indicates a return

to a child process. Moreover, when comparing stack pointer values, we use the physical address

converted from the virtual address to avoid ambiguity due to two identical processes making fork

system calls at the same point in the program. This assumes that the OS implementation of process

creation uses copy-on-write for the user stack pages.

We have about 2000 lines of code in PaladinApp, about 150 lines of code in the driver and about

300 lines of code added to the VMware Workstation software.

2.5 Evaluation

In this Section, we describe how we evaluated Paladin, our experimental results and performance

measurements.

2In Linux 2.6, the system call table is not exported. But the driver can still find the address of this table using similar techniques
used by rootkits to hook on to this table. Hence, this approach works equally well with the 2.6 kernel

36

2.5.1 Linux rootkits

We analyzed 36 significant rootkits available for Linux. Figure 2.7 lists these rootkits categorized

according to the hiding mechanisms used. Rootkits classified as Category 1 use trojaned system

binaries to hide from the users. These rootkits are easily portable and can be quickly installed.

Category 2-4 rootkits change the kernel to hide themselves and are highly sophisticated compared to

their user-level counterparts. Many of the rootkits use the Linux kernel loadable module interface to

load their code in the kernel. More sophisticated rootkits write directly in the kernel memory using

the /dev/kmem and /dev/mem interfaces and are effective even when the module support is disabled.

Category 2 rootkits hook to the system call table, still a widely used technique. Category 3 rootkits

change the kernel text and Category 4 rootkits hook to the interrupt descriptor table (IDT). Often,

kernel rootkits use user-space programs to perform the actual malicious job of installing backdoors,

sniffers and keyloggers. Rootkits bundled with other malware, such as viruses, worms and spyware,

have almost no limits on the damage that they can stealthily do to the system.

2.5.2 Experimental methodology

In all the experiments, we first run Paladin with Prevention & Detection enabled and Containment

disabled (PD mode) and then with Prevention, Detection & Containment, all enabled (PDC mode).

This is done to demonstrate experimentally why containment is critical.

As shown in Figure 2.7, we could successfully test 27 rootkits (indicated by a check mark in

column Test Set) against Paladin, and Paladin detected and contained all of them. We were unable

to get a functional version for the nine others and hence, they were excluded from our test set. An

examination of their source code revealed that they use similar techniques as the others within the

same category. Therefore, we contend that Paladin will be able to counter these rootkits as well. We

use simple policies shown in Figure 2.3 for our experiments.

37

Category 1
Rootkit Test Set
0x333openssh-3.7.1 -
ark 1.0.1 X
balaur 2.0 X
cbr00tkit X
devNull v0.9 -
dica X
fk v0.4 X
flea X
lrk5 and variants -
sm4ck X
tl0gin X
tnet-tools v1.55 -
torn 6.66 X
trNkit v1.0 X
troier v 1.0 X

Category 2
Rootkit Test Set
adore-0.42 X
all-root X
linspy2 X
kbd v3 X
kis 0.9 X
knark 2.4.3 X
modhide X
maxty -
override -
phalanx-b6 -
phide X
rial X
rkit 1.01 X
synapsys X
taskigt X

Category 3
Rootkit Test Set
enyelkm v1.1 -
phantasmagoria X
suckit X
suckit2priv X
superkit X

Category 4
Rootkit Test Set
backdoor-caca -

X Included in test set
- Not included in test set

category 1: User-level - Install trojaned system binaries
category 2: Kernel-level - Modify the system call table
category 3: Kernel-level - Modify kernel text
category 4: Kernel-level - Modify interrupt descriptor table (IDT)

Figure 2.7: Linux rootkits publicly available, categorized by hiding techniques

We pick one sample rootkit from each category to describe the effects of our mechanism in

detail. Additionally, to demonstrate the strength of the containment mechanism in case of fast

spreading automated attacks, we evaluate it with a worm called Lion that carried a rootkit [47].

2.5.3 Experimental results

Category 1

The Tornkit rootkit trojans the following system binaries : du, find, ifconfig, in.fingerd, login, ls,

netstat, pg, ps, pstree, sz and top. It also installs a log cleaner (t0rnsb), a standard linux sniffer

(torns) and a sniffer log parser (t0rnp). The kit creates a hidden directory called /usr/src/.puta,

where it stores all the hidden information.

PD mode. In this mode, the system binaries mentioned above are prevented from being overwritten

38

since they violate the specified access control policies. However, this mode cannot prevent running

of the sniffer and the log eraser processes.

PDC mode. In this mode, all the files are protected from being trojaned. Additionally, sniffers and

log erasers are unable to start, as the t0rn process is killed before starting the sniffer process.

Category 2

The Adore rootkit replaces 14 system call entries in the system call table and redirects them to its

own versions. It has a user-space program called ava, which it uses to hide files and processes and

to execute commands as root. Adore is loaded in the kernel as a linux kernel module adore.o

PD mode. Prevents the corruption of the system call table. The module continues to be loaded in

memory but none of the functions in this module can be invoked from user-space. The program ava

is still active.

PDC mode. User-space program ava gets instantly killed preventing process and file hiding.

Category 3

The Suckit rootkit changes machine code in the IDT handler system call and redirects requests to its

own private system call table. It works even when LKM support is disabled for the kernel. It uses

the /dev/kmem interface to write into the kernel. SuckIt is a user process that exploits this interface to

find addresses of kernel symbols. It installs versions of its doctored system calls, which get executed

instead of the original system calls. It very effectively hides itself using this method. It also installs

a backdoor on the system that listens to connections.

PD mode. In this mode, the kernel text is prevented from being corrupted. This does not prevent

the backdoor from running.

PDC mode. In this mode, the backdoor process is killed as well, preventing remote access to the

system.

39

Category 4

Since we did not find code for a rootkit in this category, we wrote a simple kernel module that tries

to overwrite the IDT entry. This illegal access is successfully detected and prevented by Paladin.

Hence, we contend that Paladin will be able to successfully counter rootkits using these hiding

mechanisms as well.

Stealthy worm

Lion is a notorious stealth worm [47] that spread very quickly and evaded detection for a long time

due to the presence of a rootkit. It installs the t0rn rootkit to hide its files. Lion worm has several

variants including some without the rookit. Since we could not find the variant of the Lion worm

with the rootkit, we created a home-grown version of this worm. We combined the variant available

on the Internet that did not contain the rootkit and modified it to include the rootkit.

Lion affects DNS servers that have the BIND TSIG vulnerability [48]. Figure 2.8 shows the

Lion worm in action. Once the worm has gained access to a machine, it scans for vulnerable

hosts with class B Internet addresses. The program pscan is used to scan the network while randb

generates random class B network addresses. If the worm finds a machine with a given IP address,

it checks if the machine is susceptible to the BIND attack. If the target machine has a vulnerable

version of BIND running, it uses the vulnerability to get root privileges on the system and continue

propagating. It installs the t0rn rootkit to hide the compromise. The files scan.sh and hack.sh

execute the worm algorithm. getip.sh tries to find more victims while 1i0n.sh and star.sh are the

controlling processes [49]. The worm finds all the files named index.html present on the system

and defaces the pages by replacing it with its own version.

PD mode. In this mode, only the system binaries are prevented from being corrupted. Malicious

access is detected when the rootkit is activated and tries to overwrite the system binary /bin/ps. Since

40

Figure 2.8: Dependency tree shows the Lion worm attack

the prevention part stops the corruption of the binaries, the hiding behavior is effectively disabled.

The worm activities are visible to the administrator. However, these activities continue to occur.

Lion defaces all the index.html files found on the machine. It also tries to propagate to other hosts

running the vulnerable version of the BIND service.

PDC mode. In this mode, as soon as the malicious access is detected, Paladin kills all the other

processes identified as part of the malicious subtree, as shown in the figure. This stops the worm

from defacing the index.html pages and propagating to other hosts. Before the rootkit springs into

action and tries to overwrite the ps binary, the lion.sh defaces couple of index.html files on the

system that Paladin cannot stop. However, it is useful in preventing further damage to the system.

False positives and false negatives: There were no false negatives during our experiments. All

27 rootkits and the Lion worm were effectively detected and contained by Paladin. We used the

virtual machine as a regular workstation with Paladin enabled for a duration of one week. We also

installed and uninstalled several device drivers. We did not encounter any false positives during

these tests.

41

System call Paladin
Disabled Enabled

fork 1.5 µs 3.5 µs
exit 1.5 µs 1.6 µs
open 0.8 µs 1.5 µs
close 0.5 µs 0.7 µs

Table 2.1: Per system call performance

Task Paladin
Disabled Enabled

File Copy 7m 29s 8m 30s
Kernel Compilation 53m 3s 56m 7s

Table 2.2: Performance overhead

2.5.4 Performance

To test the overhead of Paladin, we performed two system call intensive tasks. First, we copied a

large set of files from one directory to another. The second task was to compile the Linux kernel.

We measured the time taken for both these tasks with and without Paladin support. Table 2.2 shows

the performance overhead incurred by applications that run with and without Paladin prototype.

Paladin adds about 12% overhead to the execution time for applications in the Guest OS.

Table 2.1 shows the per system call overhead for the four most common file and process related

system calls. Paladin incurs relatively larger overhead for open and fork system calls. This is due

to the fact that the application performs bookkeeping and matching of parent/child system calls

respectively.

2.5.5 Dependency tree size

The dependency tree stores information about processes, files and relationships between these ob-

jects. When a new process is created, a new entry is made into the database. When the process

exits, if it has not created a new file, it is deleted from the database. A similar approach is employed

for files. When a file is created, an entry is made for the file and when it is deleted, the cleanup

procedure deletes entries for the file and all the other processes that do not have a role to play in the

dependency tree are deleted as well. This pruning procedure ensures that the number of objects in

42

the database is small and storage requirements are modest.

2.6 Discussion

In this section, we discuss some related issues, counter attacks on Paladin and the limitations of our

solution.

2.6.1 Handling Loadble Modules

Linux kernel modules (LKMs) are handled by Paladin in a different fashion. On module insertion,

the VMM verifies the integrity of the LKM by comparing the code signature at runtime with a

registered signature. If the LKM needs to hook into protected memory areas, the memory protection

is automatically disabled by the VMM and re-enabled after the LKM is loaded, provided the module

is an authorized module. One such LKM is anti-virus software that usually hooks to the open system

call to scan for virus patterns on every file open call.

2.6.2 Counter attacks

Counter attacks are discussed assuming that the attacker has complete knowledge of the defense

techniques used by our system.

Multiple control processes

An immediate attack that comes to mind is the use of multiple control processes to carry out the

attack. Here, the controlling process for the hiding part is separated from the controlling process

that performs other malware activities (non-hiding). This is shown in Figure 2.9. In this figure,

P1 is the controlling process that performs the hiding. P1 may spawn other processes or write into

the kernel directly. P3 is the controlling process for carrying out other activities, such as installing

keyloggers, scanning network packets, sending passwords etc. Here, since P1 and P3 share a parent

P0 (this process could be sshd for example), which resides in the PRS, our containment mechanism

43

Figure 2.9: Multiple control processes

cannot automatically link the process P3 and its children to P1. The hiding processes, P1 and its

children will be killed, while P3 and its children will continue to run.

While this attack cannot be contained by Paladin completely, it exposes the attack to other anti-

malware programs running on the system. This defeats the attacker’s incentive of carrying out such

an attack,xz as it is reduced to launching an attack without the use of a rootkit. Hence, our prototype

works in a complementary fashion with the existing anti-virus tools.

Overwriting disk blocks

The attacker can directly attempt to change system binaries by overwriting disk blocks. Our ap-

proach tracks processes using the system call interface to access files. While this is generally true

for most processes, it is possible for an attacker to perform a write directly to disk blocks. We can

handle this by disabling raw writes to disks by augmenting the access control policies. A more ef-

fective solution is to use other approaches, such as storing data in a separate data VM [50] to force

file access through a well-defined interface.

In-memory corruption of resident processes

Rookits may be able to backdoor resident processes by overwriting code in memory. This attack

is very hard to carry out on Linux due to the absence of APIs to perform such actions. We can

however, defend against this attack by simply protecting the code pages of these processes from the

44

VMM.

2.6.3 Limitations

Though our system manages to detect, prevent and contain several rootkit attacks, it does suffer

from some limitations.

Killing legitimate processes

Our containment algorithm kills all processes inside the malicious subtree, which might involve

other genuine processes run by the user. We contend that this is a better option, rather than allowing

the malware to continue running, which can cause the owner financial or legal distress.

Accidental modifications

It is possible that access-control policies may be accidentally violated by the user. This will result

in killing the user’s processes including the login shell. Considering the fact that users seldom

accidentally overwrite binaries in the system directories, this is a minor issue.

System upgrades

Actions such as installation or upgrade of software inside the Guest OS, which may result in the

modification of protected files or addition of files to protected directories, have to be preceded with

changing the access control policy temporarily. Otherwise, our system will treat them like an attack.

While this exposes a small window of vulnerability to the attacker, it is hard to exploit because the

attacker has no way of determining this from within the Guest OS. The policy file resides on the

Host OS and is not accessible to an attacker who has gained control of the Guest OS.

Other types of stealthy behavior

Other types of stealthy behavior may include modifying the user’s environment variables, so that

the user executes corrupted binaries without his knowledge. Though this is stealthy behavior, it does

45

not strictly fall under the umbrella of the hiding characteristics unique to rootkits. In this case, the

corrupted binaries are visible and can be detected by the user by installing other tools like Tripwire

and AIDE.

2.7 Summary

Attack containment is critical in halting the ongoing damage in progress. In this chapter, we dis-

cussed our containment algorithm, which upon detection of a rootkit, identifies a set of processes as

malicious and kills them, by referring to a process dependency tree. This algorithm is effective in

containing rootkits that provide most of the malicious functionality as user space programs. We dis-

cussed the design and implementation of a prototype, Paladin, built as part of VMware Workstation.

Paladin uses virtual machine introspection for rootkit detection and runs the containment algorithm

when a rootkit is found. Paladin was found to be effective in containing all publicly available Linux

rootkits at the time. It also effectively countered the Lion worm bundled with a rootkit, that we used

in our experiments. In the next chapter, we discuss a new class of stealth attacks that are different

from the conventional rootkits that we discussed here.

46

Chapter 3

Stealth Attacks on Kernel Data

Conventional kernel rootkits provide most of the malicious functionality as user space programs.

Therefore, they are designed to hide user level objects such as files, processes and network con-

nections belonging to the attacker. This hiding behavior is typically achieved by tampering kernel

code or data reachable from the system call control paths. For example, when the user looks at a

directory listing, several system calls are invoked, which display the contents of the directory. To

be able to hide a malicious file that exists in the directory, the attack either places a hook available

in the control paths of the corresponding system calls, or modifies non-control data to achieve the

same. The most common data structure exploited by rootkits to intercept control from user appli-

cations and eventually hide objects is the system call table itself. Attacks have also targeted other

data structures in the virtual file system layer and the process tables that exist at different layers in

the kernel.

3.1 Problem Statement

Implementing malicious functionality as user space programs provides the rootkit authors with lot

of flexibility and ease of writing code. Therefore, they need to manipulate the kernel to hide these

user space programs. These attack techniques that primarily focus on hiding objects have two weak-

nesses. First, detection methods that use a cross view based approach, such as Strider Ghostbuster

47

A

S

User files

Processes

Network

connections

H

Kernel space User space

Kernel data

Hide objects

A

S

User files

Processes

Network

connections

H

Kernel space User space

Kernel data

Hide objects

Set A represents a set of all kernel data structures. Set S represents only those data structures
reachable from the system call control paths (S ⊂ A). Set H represents the data structures within
set S that play a role in creating user level views (H ⊂ S).

Figure 3.1: Kernel data structure affecting user level views

[17], utilize the hiding behavior as a symptom for detection. Therefore, these attacks can be easily

detected, the moment they try to hide. Second, they are limited to exploiting only a small set of data

structures that play a role in creating user level views.

Figure 3.1 depicts this scenario. Set A is a set of all data structures in the kernel. Set S is a

subset of set A, which comprises of data structures that are reachable from the system call paths.

Set H is a subset of set S, consisting of data structures that specifically allow for altering user level

views. Rootkits that attempt to hide malicious objects on the system, alter data structures that are

present only in the set H.

In this chapter, we discuss the design of a new class of attacks that are stealthy by design. The

attacks achieve their malicious objectives solely by manipulating kernel data. Since they do not

depend on user level counterparts to provide malicious functionality, these attacks do not explicitly

attempt to hide any object. Therefore, these attacks are not limited to manipulating data only in the

48

subset H as shown in Figure 3.1. They can affect any data structure belonging to the set A. Further,

they cannot be detected by tools that check for hiding behavior as a symptom for detection. These

attacks demonstrate innovative ways in which an attacker can alter the behavior of different kernel

subsystems in the kernel and are indicative of a more systemic threat posed by future rootkits to

kernel data.

3.2 Disable Firewall

This attack hooks into the netfilter framework of the Linux kernel and stealthily disables the firewall

installed on the system. The user cannot determine this fact by inspecting the system using iptables.

The rules still appear to be valid and the firewall appears to be in effect. In designing this attack, the

goal of the attacker is to disable the network defense mechanisms employed by the target systems,

thereby making them vulnerable to other attacks over the network.

3.2.1 Background

Netfilter is a packet filtering framework in the Linux kernel. It provides hooks at different points

in the networking stack. This was designed for kernel modules to hook into and provide different

functionality such as packet filtering, packet mangling and network address translation. These hooks

are provided for each protocol supported by the system. The netfilter hooks for the IP protocol are

shown in Figure 3.2. Each of the hooks, Pre-routing, Input, Forward, Output and Post-routing,

are hooks at different points in the packets traversal. When the packets come in, after a few sanity

To Processes From Processes

PRE-ROUTING FORWARD POST-ROUTING

INPUT OUTPUT

To Processes From Processes

PRE-ROUTING FORWARD POST-ROUTING

INPUT OUTPUT

Figure 3.2: Hooks provided by the Linux netfilter framework

49

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT tcp -- anywhere anywhere tcp dpt:ssh

ACCEPT tcp -- anywhere anywhere tcp dpt:telnet

ACCEPT tcp -- anywhere anywhere tcp dpt:24

REJECT tcp -- anywhere anywhere tcp dpt:http reject-with

icmp-port-unreachable

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

Figure 3.3: Firewall rules deny admission to the web server port

checks, they are passed to the netfilter framework’s Pre-routing hook. Next, they enter the routing

code, which decides whether the packet is destined for another interface, or a local process. If the

packet belongs to the local system, the netfilter framework’s Input hook is invoked, before being

passed to the process. If the packet is intended for another interface instead, the netfilter framework’s

Forward hook is invoked. The packet then passes a final netfilter Post-routing hook, before being

put on the wire again. The Output hook is called for packets that are created locally.

Iptables is a firewall management command line tool available on Linux. Iptables can be used

to set the firewall rules for incoming and outgoing packets. Iptables uses the netfilter framework to

enforce the firewall rules. Packets are filtered according to the rules provided by the firewall.

3.2.2 Attack description

The pointers to the netfilter hooks are stored in a global table called nf hooks. This is an array of

pointers that point to the handlers registered by kernel modules to handle different protocol hooks.

We modified the hook corresponding to the IP protocol and redirected it to our dummy code, ef-

fectively disabling the firewall. The firewall rules that we used during this experiment are shown in

50

Figure 3.3. The INPUT rules deny admission for incoming traffic to the web server running on the

system. Before the attack, we were unable to access this web server externally. After we inserted

the attack module, we could access the web content hosted by the web server running on http port

(port 80). Running iptables command to list the firewall rules still shows that the same rules are in

effect (as shown in Figure 3.3). The user has no way of knowing that the firewall is disabled as the

rules appear to be in effect.

3.2.3 Impact

A stealthy attack such as the one described cannot be detected by the existing set of tools. Since our

attack module is able to filter all packets without passing it to the firewall, it can run other commands

upon receipt of a specially crafted packet sent by the remote attacker.

3.3 Resource Wastage Attack

This attack causes resource wastage and performance degradation on applications by generating

artificial memory pressure. The goal of this attack is to show that it is possible to stealthily influence

the kernel algorithms by simply manipulating data values. This attack targets the zone balancing

logic, which ensures that there are always enough free pages available in the system memory.

3.3.1 Background

Linux divides the total physical memory installed on a machine into nodes. Each node corresponds

to one memory bank. A node is further divided into three zones: zone dma, zone normal and

zone highmem. Zone dma is the first 16MB reserved for direct memory access (DMA) transfers.

Zone normal spans from 16MB to 896MB. This is the zone that is used by user applications and

dynamic data requests within the kernel. This zone and zone dma are linearly mapped in the kernel

virtual address space. Zone highmem is memory beyond 896MB. This zone is not linearly mapped

and is used for allocations that require a large amount of contiguous memory in the virtual address

51

208000

210000

212000

214000

216000

218000

220000

222000

time

o

f
fr

ee
 p

ag
es

pages_high

pages_low

pages_min

kswapd woken
up

allocator frees
memory synchronously

Figure 3.4: Zone balancing logic and the use of zone watermarks

space.

Each zone is always kept balanced by the kernel memory allocator called the buddy allocator

and the page swapper kswapd. The balance is achieved using zone watermarks, which are basi-

cally indicators for gauging memory pressure in the particular zone. The zone watermarks have

different values for all the three zones. These are initialized on startup depending on the number of

pages present in the zones. These three watermarks are called pages min, page low and pages high

respectively as shown in Figure 3.4. When the number of free pages in the zones drops below

pages low pages, kswapd is woken up. kswapd tries to free pages by swapping unused pages to

the swap store. It continues this process until the number of pages reaches pages high and then,

goes back to sleep. When the number of pages reaches pages min, the buddy allocator tries to syn-

chronously free pages. Sometimes, the number of free pages can go below the pages min, due to

atomic allocations requested by the kernel.

3.3.2 Attack description

The zone watermarks for each zone are stored in a global data structure called zone table. Zone table

is an array of zone t data structures that correspond to each zone. Zone watermarks are stored in-

side this data structure. The location of this table can be found by referring to the System.map

52

Watermark Original Value Modified Value
pages min 255 210000
pages low 510 215000
pages high 765 220000
total free pages 144681 210065

Total number of pages in zone: 225280

Table 3.1: Watermark values and free page count before and after the resource wastage attack

file. We wrote a simple kernel module to corrupt the zone watermarks for the zone normal memory

zone. The original and new values for these watermarks are shown in Table 3.1. We push the

pages min and the pages low watermarks very close to the pages high watermark. We also make

the pages high watermark very close to the total number of pages in that zone. This forces the zone

balancing logic to maintain the number of free pages close to the total number of pages in that zone,

essentially wasting a big chunk of the physical memory. Table 3.1 shows that 210065 (820.56

MB) pages are maintained in the free pool. This attack can be similarly carried out for other zones

as well, wasting almost all memory installed on the system. The table indicates that only about

60MB are used and the rest is maintained in the free pool, causing applications to constantly swap

to disk. This attack also imposes a performance overhead on applications as shown in Table 3.2.

The three tasks that we used to measure the performance overhead are file copy of a large number

of files, compilation of the Linux kernel and file compression of a directory. The table shows the

time taken when these tasks were carried out on a clean kernel and after the kernel was tampered.

Application Before After Degradation (%)
Attack Attack

file copy 49s 1m, 3s 28.57
compilation 2m, 33s 2m, 56s 15.03
file compression 8s 23s 187.5

Table 3.2: Performance degradation in applications after the resource wastage attack

53

The performance degradation imposed by this attack is considerable.

3.3.3 Impact

This attack resembles a stealthier version of the resource exhaustion attack, which traditionally has

been carried out over the network [51–53]. We try to achieve a similar goal, i.e to overwhelm the

compromised system subtly by creating artificial memory pressure. This leads to a considerable

performance overhead on the system. It also causes a large amount of memory to stay unused all

the time to maintain the high number of pages in the free pool, leading to resource wastage. The

attacker could keep the degradation subtle enough to escape detection over extended periods.

3.4 Entropy Pool Contamination

This attack contaminates the entropy pool and the polynomials used by the Pseudo-Random Number

Generator (PRNG) to stir the pools. The goal of this attack is to degrade the quality of the pseudo

random numbers that are generated by the PRNG. The kernel depends on the PRNG to supply good

quality pseudo random numbers, which are used by all security functions in the kernel, as well as

by applications for key generation, generating secure session id’s, etc. All applications and kernel

functions that depend on the PRNG are in turn open to attack.

3.4.1 Background

The PRNG provides two interfaces to user applications namely /dev/random and /dev/urandom as

shown in Figure 3.5. The PRNG depends on three pools for its entropy requirements: the primary

pool, the secondary pool and the urandom pool. The /dev/random is a blocking interface and is used

for very secure applications. The device maintains an entropy count and blocks if there is insufficient

entropy available. Entropy is added to the primary pool from external events such as keystrokes,

mouse movements, disk activity and network activity. When a request is made for random bytes,

bytes are moved from the primary pool to the secondary and the urandom pools. The /dev/urandom

54

Primary

Entropy Pool

Secondary

Entropy Pool

Urandom

Entropy Pool

/dev/random
(blocking)

/dev/urandom
(non-blocking)

keyboard

mouse

interrupts

disk

Entropy sources

Primary

Entropy Pool

Secondary

Entropy Pool

Urandom

Entropy Pool

/dev/random
(blocking)

/dev/urandom
(non-blocking)

keyboard

mouse

interrupts

disk

Entropy sources

Figure 3.5: The Linux random number generator

interface, on the other hand, is non-blocking. The contents of the pool are stirred when the bytes are

extracted from the pools. A detailed analysis of the Linux random number generator is available in

[54].

3.4.2 Attack description

This attack constantly contaminates the entropy pool by writing zeroes into all the pools. This is

done by loading an attack module that consists of a kernel thread. The thread constantly wakes up

and writes zeroes into the entropy pools. It also attacks the polynomials that are used to stir the pool.

Zeroing out these polynomials nullifies a part of the extraction algorithm used by the PRNG. The

location of the entropy pool is not exported by the Linux kernel. We can find the location by simply

scanning kernel memory. Entropy pool has the cryptographic property of being completely random

[55]. Since we know the size of the entropy pools, this can be found by running a sliding window of

the same sizes through memory and calculating the entropy of the data within the window. Kernel

code and data regions are more ordered than the entropy pools and have a lower entropy value. The

pool locations can therefore be successfully located.

We measured the quality of the random numbers generated by using the diehard battery of tests

[56]. The results are summarized in Table 3.3. Diehard is the suite of tests used to measure the

quality of random numbers generated. Any test that generates a value extremely close to 0 or 1

55

File # bday operm binrnk6x8 cnt1s parkinglot mindist sphere squeeze osum craps

1 0.765454 0.497607 0.197306 0.000000 0.159241 0.000000 0.893287 0.423572 0.641313 0.147407

2 0.044118 0.180747 0.143452 0.000000 0.012559 0.000000 0.055361 0.769919 0.002603 0.066102

3 0.079672 0.999996 0.467953 0.000000 0.132155 0.000000 0.001550 0.190808 0.032007 0.468605

4 0.009391 0.000334 0.010857 0.000000 0.400118 0.000000 0.000258 0.573443 0.051299 0.057709

5 0.059726 0.996908 0.754544 0.000000 0.065416 0.000000 0.212797 0.276961 0.009343 0.389614

6 0.384023 0.975071 0.003450 0.000000 0.004431 0.000000 0.021339 0.047575 0.139662 0.082087

7 0.002450 0.458676 0.014060 0.000000 0.002061 0.000000 0.000010 0.044232 0.068223 0.836221

8 0.001195 0.840548 0.115478 0.000000 0.192544 0.000000 0.001535 0.024058 0.000078 0.214631

9 0.427721 0.553566 0.138635 0.000000 0.311526 0.000000 0.071177 0.296367 0.003107 0.679244

10 0.654884 0.106287 0.212463 0.000000 0.072483 0.000000 0.212785 0.338967 0.122016 0.710536

Table 3.3: Results of running the Diehard battery of tests after contamination of the entropy pool

represents a failing sequence. More about the details of these tests can be found in [56]. We run

the tests over ten different 10MB files that were generated by reading from the /dev/random device.

The table shows that the sequence that is generated after attack, fails miserably in two of the tests:

cnt1s and mindist and partially in the others. A failure in any one of the tests means that the PRNG

is no longer cryptographically secure.

3.4.3 Impact

After the attack, the generated pseudo random numbers are of poor quality, leaving the system and

applications vulnerable to cryptanalysis attacks.

3.5 Disable Pseudo-Random Number Generator (PRNG)

This attack overwrites the addresses of the device functions registered by the PRNG with the func-

tion addresses of the attack code. The original functions are never invoked. These functions always

return a zero when random bytes are requested from the /dev/random or /dev/urandom devices. Al-

though this appears similar to the attack by traditional rootkits that hook into function pointers, there

is a subtle difference. Since this particular device does not affect user-level view of objects, this is

not a target for achieving hiding behavior and hence, not monitored by kernel integrity monitors.

56

ext3 MS-DOS
Random

device

ext3 hooks fat32 hooks /dev/random

/tmp/data.txt /floppy/photo.jpg /dev/random

write /tmp/data.txt read /floppy/photo.jpg read /dev/random

close

/tmp/data.txt

Virtual File System (VFS) Layer

ext3 MS-DOS
Random

device

ext3 hooks fat32 hooks /dev/random

/tmp/data.txt /floppy/photo.jpg /dev/random

write /tmp/data.txt read /floppy/photo.jpg read /dev/random

close

/tmp/data.txt

Virtual File System (VFS) Layer

Figure 3.6: File and device hooks in the Linux virtual file system layer

3.5.1 Background

Linux provides a flexible architecture and a common interface for different file systems and devices.

This interface is provided by a layer called the virtual file system (VFS) layer. A new file system or

a device provides a set of hooks when registering with the VFS layer. Figure. 3.6 depicts two file

systems ext3 and MS-DOS and one device /dev/random that are registered with the VFS layer. This

enables user applications to access files residing on both file systems and the access to the device file

with a common set of system calls. The system call is first handled by the VFS code. Depending on

where the file resides, the VFS layer invokes the appropriate function registered by the file system

or device during registration. Some system calls such as the close system call are directly handled

by the VFS layer, which simply requires release of resources.

3.5.2 Attack description

The kernel provides functions for reading and writing to the /dev/random and /dev/urandom de-

vices. The data structures used to register the device functions are called random state ops and

urandom state ops for the devices /dev/random and /dev/urandom, respectively. These symbols are

57

exported by the 2.4 kernel but are not exported by the 2.6 kernel. We could find this data struc-

ture by first scanning for function opcodes of functions present within random state ops and uran-

dom state ops. We then used the function addresses in the correct order to find the data structure in

memory. Once these data structures are located in memory, the attack module replaces the genuine

function provided by the character devices with the attack function. The attack function for reading

from the device simply returns a zero when bytes are requested. After the attack, every read from

the device returns a zero.

3.5.3 Impact

All security functions within the kernel and other security applications rely on the PRNG to supply

pseudo random numbers. This attack stealthily compromises the security of the system, without

raising any suspicions from the user.

3.6 Intrinsic Denial of Service

This attack causes performance degradation on applications by throttling the number of processes

that an application can create to perform tasks in parallel. It achieves this by corrupting data used by

the clone system call in Linux. This attack stealthily causes a measured degree of denial of service

because resources beyond a certain threshold become temporarily unavailable to applications, which

therefore experience a slowdown.

3.6.1 Background

The kernel relies on the process creation mechanisms to satisfy user requests. Especially servers

are designed to be multi process or multi threaded; they constantly create new processes/threads to

service requests obtained from clients. Each process is scheduled to handle a single client request

to improve server efficiency by utilizing concurrent execution. New processes are created using the

clone system call in Linux. The flags passed to clone determine the degree of sharing between the

58

parent and the child processes.

3.6.2 Attack description

This attack changes the max threads variable used by the clone system call. This variable is used to

check if the total number of processes on the system created exceeds the total number of processes

that are allowed to be created. This check within the clone system call is incorporated to curtail

fork bombs. The max threads variable is in the static kernel region and it’s address is available in

the kernel symbol file. By default, a upper limit of 14, 336 is set on the total number of processes

that can exist on a system. The total number of processes existing at the time of attack was 33. The

attack changes this value to the number of processes running on the system to 35, severely limiting

the number of new processes that can be created on the system. Subsequent system calls to create

new processes receive a error message, once the number of processes exceeds 35, indicating the

temporary unavailability of the resource. Applications are programmed to handle this error code

and therefore simply function at less than full capacity.

3.6.3 Impact

Applications experience a slowdown because it is not able to concurrently execute multiple tasks.

This attack resembles an intrinsic denial of service attack, where the service is unable to function

at its full capacity. The level of stealth can range from moderate performance loss to a much severe

one simply by controlling the value of the max threads kernel variable.

3.7 Altering Real Time Clock Behavior

The real time clock (RTC) on the system provides the system time and features such as setting an

alarm clock for scheduled execution of applications at later points in time. This attack alters the

behavior of the real time clock in such a way that alarms registered by certain select applications,

such as anti-virus and other intrusion detection systems running on the systems are never triggered.

59

This disables scheduled virus scans and other defense activities carried out on the system, making

it vulnerable to attacks.

3.7.1 Background

The real time clock in a computer system is powered by a small battery or accumulator and continues

to tick even when the system is turned off. It can be programmed to issue periodic interrupts or issue

an interrupt when the clock reaches a certain value. Linux uses the RTC to retrieve the date and time.

The RTC driver provides the device /dev/rtc to applications, which they can program and use. The

system time can be set by the administrator using the clock system program.

3.7.2 Attack description

The RTC is used by applications that rely on periodic execution of tasks. A classic example of such

an application is the anti-virus software. A user typically schedules complete disk scans for viruses

and worms when the system is not in use because it is a time consuming process that slows down

the system significantly, while the activity is in progress. For example, a periodic scan of the system

might be scheduled to run every Sunday morning at 3:00 am. The anti-virus program relies on the

RTC to issue an interrupt when the clock reaches this time.

The goal of this attack is to disable the scheduled execution of the anti-virus program. Appli-

cations set such an alarm by using the ioctl system call on the /dev/rtc device. This attack works

by overwriting the function pointer for the ioctl system call, which is stored within the data struc-

ture rtc fops. The malicious function can selectively disable alarms only for certain applications of

interest, such as the anti-virus software, thereby other regular applications function flawlessly.

3.7.3 Impact

The system continues to be vulnerable to attacks as anti-virus and intrusion detection systems to not

run at their scheduled times. This attack successfully lowers the system defenses.

60

3.8 Routing Cache Pollution

The goal of this attack is to pollute the routing cache on a routing system and divert traffic meant

for a certain systems through a different gateway. The alternative route might consist of malicious

systems that log all network traffic to perform traffic analysis and extract sensitive information from

the victim systems.

3.8.1 Background

The kernel refers to the forwarding information base, also known as the static routing table, to

determine the next hop of an IP packet. The main table variable points to this complex array of data

structures that store the static routing information. This information is used by the kernel for routing

packets. Looking up this information by walking through the data structures is quite a slow process.

To avoid this delay, the kernel maintains a routing cache for the most recently discovered routes.

This cache includes several entries in sorted order such that more frequently accessed entries can

be accessed more quickly. The cache is available in the variable rt hash table and each entry in the

cache is of type rtable. The rtable data structure stored information about the source and destination

IP address, the gateway IP address and other data relative to the route specified by the entry.

3.8.2 Attack Description

This attack corrupts the concerned entry in the routing cache by setting the gateway to point to

a malicious node on the inter network. This could corrupt the gateway for packets meant for a

certain destination. For example, the attacker might be interested in redirecting traffic generated

for a specific bank website. The cache entry corresponding to the IP address of this website can

be corrupted so that the traffic is routed through the malicious gateway. The malicious gateway

can analyze all traffic and extract sensitive information. Since the entry for the destination in the

routing cache is available, the kernel does not refer to the static routing table but instead uses the

61

information from the routing cache to forward packets.

3.8.3 Impact

The compromised systems faithfully forwards packets to a malicious gateway, giving the attacker

access to all the packets that the attacker is interested in. The attacker can extract sensitive informa-

tion by performing traffic and packet analysis.

3.9 Defeating In Memory Signature Scans

The goal of this attack is to defeat malware detectors that use in-memory signature scans running on

the same system, by providing them with a fake view of memory. The attack achieves this goal by

installing malicious read functions for the /dev/kmem and the /dev/mem devices, which provide in-

terfaces for reading and writing to the kernel virtual address space and the system physical memory

respectively.

3.9.1 Background

The /dev/mem and /dev/kmem character special files on a Linux system provide access to a device

driver that allows read and write access to system memory. /dev/kmem Only privileged users are

allowed to read or write to these files. The device /dev/kmem accesses data from the kernel virtual

memory. The device /dev/mem reads data from the system physical memory. Reading from these

files returns the memory contents existing at the respective memory locations. Writing allows for

patching memory with the required data. Rootkits also use the /dev/kmem interface to patch the

running kernel.

62

3.9.2 Attack description

This attack is similar in objectives to the rootkit Shadow Walker, which makes use of the Pen-

tium split TLB architecture and modification to the kernel page fault handler to fake memory con-

tents. This attack achieves the same by overwriting the function pointers registered by the devices

/dev/mem and /dev/kmem. These are stored in the virtual file system layer in the data structure

kmem fops and mem fops, of type struct file operations. The malicious handlers for the read func-

tion can present a counterfeit view of the memory pages, thus thwarting all detection software that

uses these interfaces to scan memory for malware signatures.

3.9.3 Impact

Rootkit detectors that run on the same system and scan system memory for attack signatures. This

attack thwarts such detectors by providing them with a fake view of memory, doctored as desired

by the attack. Therefore it successfully evades detection.

3.10 Attack Categorization

We have identified several attack categories based on the tampering techniques employed to achieve

rootkit functionality. These categories are derived from the techniques used by publicly available

rootkits as well as the advanced stealth attacks on kernel data. Broadly classified, attacks manipulate

either control data or non-control data in the kernel. Modifying control data allows the rootkit to

redirect control flow to its malicious function. Modification of non-control data alters the behavior

of the kernel algorithms and in some cases also alters the control flow to execute the malicious code

injected by the attacker. This attack categorization spans across static as well as dynamic data in the

kernel.

Our motivation behind creating this categorization is to inspire the building of novel defense

63

techniques that are generic. These can apply to an entire class of attacks when applied comprehen-

sively to all data structure in the kernel, rather than individual attacks themselves.

3.10.1 Control data modifications

We have identified two main categories that rootkits use to modify control data, namely control

hijacking and control interception. In both cases, control flow data (function pointers) is substituted

by some other value. The function pointer data is typically immutable data, which does not change

after initialization. Both sub-categories differ in terms of the functionality. All function pointers in

the kernel are susceptible to control data modification attacks.

Control hijacking.

Control hijacking attack is a form of manipulating the control flow within a kernel control path. This

type of attack redirects the control flow to the attack code and the original code is never invoked or

it sets the function pointer to NULL, effectively disabling the function that the pointer points to.

Control Interception.

Control interception is a technique used by most conventional rootkits. These attacks intercept the

kernel control path in such a way that control first flows to the attack code. The attack code then

invokes the original code. In this fashion, the attacker is able to filter requests to and responses from

the original code. Control interception is typically used for hiding the attacker’s files, processes and

network connections.

3.10.2 Non-control data modifications

Two main categories exist in modifying non-control data namely control tapping and data value

manipulation.

64

Control Tapping.

This type of attack effectively diverts the control flow by simply modifying non-control data in

the kernel, leading to the invocation of the malicious function installed by the attacker. In other

words, the control flow is transferred in such a way that the attack code is not able to manipulate

the arguments being passed to the original function or the return values. It is only invoked on every

call to the original function.

Data Value Manipulation.

These attacks rely on manipulating values of critical variables or aggregate data structures such as

arrays and linked lists, which in turn directly or indirectly alter the behavior of the kernel algorithms.

This category of attacks can further be classified based on the type of variables that they change,

namely, mutable variables changed during the normal operation of the kernel or immutable data that

never changes once the system is initialized. Sometimes attacks might need to modify both kinds

of variables and therefore, might use an hybrid approach.

3.10.3 Attacks in this chapter

We classify the attacks discussed in this chapter based on the tampering technique, according to

the categorization that we proposed. We also show other aspects of the attack i.e. the type of data

modified and the location of the data modified. Table 3.7 summarizes this information.

3.11 Summary

The operating system kernel exposes a large number of data structures that can be subtly exploited

by the attacker. In this chapter, we demonstrated a new class of attacks that exploit kernel data

and achieve specific malicious goals. The attacks are stealthy by design and attack several kernel

subsystems, effectively altering the behavior of the kernel algorithms. Since these attacks achieve

65

Attack Location of data Type of Data Attack
Static Dynamic Control Non-control category

Disable firewall X X Control hijacking
Resource wastage X X Data value manipulation
Entropy pool contamination X X Data value manipulation
Disable PRNG X X Control hijacking
Intrinsic denial of service X X Data value manipulation
Altering RTC behavior X X Control interception
Routing cache pollution X X Data value manipulation
Defeating in-memory scans X X Control interception

Figure 3.7: Attack categorization

the malicious functionality by modifying data structures in the kernel, they do not exhibit hiding

behavior and therefore, cannot be detected by tools that use hiding behavior as a symptom for

detection. These attacks serve to demonstrate that the threat to kernel data is realistic and systemic,

thus requiring a comprehensive protection scheme. We discuss one such detection scheme that we

developed for detecting advanced stealth attacks in the next chapter.

66

Chapter 4

Attack Detection via Invariant Inference

Control data within the kernel has been a common target of kernel rootkits because it allows for easy

redirection of control flow to malicious code. This form of control interception has been especially

popular with conventional rootkits because it allows the rootkit to filter requests and responses,

subsequently affecting application level views of the system. Researchers have lately proposed

solutions that allow for automatic and comprehensive validation of function pointers within the

kernel [12, 57].

4.1 Problem Statement

Rootkits have already evolved to thwart detectors that validate control data. These rootkits alter

non-control data structures in the kernel to achieve their goals. Though non-control data attacks are

harder to conceive, the kernel presents a much larger attack surface for them compared to control

data. Checking the integrity of non-control data is much more complex because a large part of it

is routinely modified by the kernel. To verify the integrity of non-control data, architectures have

been proposed that require manually written specifications of constraints that hold on data structures

[15]. These specifications are supplied by an expert who has a detailed understanding of kernel data

structure semantics. Kernel data structures are continuously monitored during runtime against these

specifications, and violations are used as indicators of rootkit behavior. While this approach has

67

the advantage of detecting sophisticated rootkits, developing specifications is currently a manual

procedure. Because the kernel maintains several hundred data structures, the specification writer

could either fail to supply certain integrity specifications, e.g., because he is unaware that they exist,

or may fail to realize how a rootkit could exploit them.

In this chapter, we present a novel approach that automatically and uniformly checks the in-

tegrity of control and non-control data. This approach is based on the hypothesis that several data

structures in the kernel exhibit invariants at runtime during the normal operation of a clean kernel.

A rootkit that alters the behavior of the kernel by modifying kernel data, violates some of these

invariants.

4.2 Approach

Our approach is based upon automatic inference of data structure invariants that can uniformly

detect rootkits that modify both control and non-control data. The key idea is to monitor the values

of kernel data structures during a training phase, and hypothesize invariants that are satisfied by these

data structures. These invariants include properties of both control and non-control data structures

that serve as specifications of data structure integrity. For example, an invariant could state that the

values of elements of the system call table are a constant (an example of a control data invariant).

Similarly, an invariant could state that all the elements of the running-tasks linked list (used by the

kernel for process scheduling) are also elements of the all-tasks linked list that is used by the kernel

for process accounting (an example of a non-control data invariant) [15]. These invariants are then

checked during an enforcement phase; violation of an invariant indicates the presence of a rootkit.

Because invariants are inferred automatically and uniformly across both control and non-control

data structures, our approach overcomes the shortcomings of prior rootkit detection techniques.

68

This approach is very similar to that used for dynamic invariant inference in application pro-

grams by tools such as Daikon [58] and Diduce [59]. These tools instrument application programs

to generate variable values at certain program points. The instrumented application is run several

times during the training period to collect variable traces. The tool infers invariants over program

variables from the data traces. In contrast, our system observes kernel data structure values asyn-

chronously, and these values are converted and fed into Daikon for invariant inference.

To evaluate the viability of our approach, we built Gibraltar, a rootkit detection tool that au-

tomatically infers invariants on kernel data structures. Gibraltar periodically captures snapshots of

kernel memory via an external PCI card. It uses these snapshots to reconstruct kernel data structures,

and adapts Daikon [58], an invariant inference tool for application programs, to infer invariants on

kernel data structures. Gibraltar has automatically extracted around 718,000 invariants on kernel

data. In experiments with twenty rootkits, including those that modify non-control data, we found

that Gibraltar detected all rootkits with a false positive rate of just 0.65%, and imposed a runtime

monitoring overhead of 0.49%.

4.3 Invariants and Stealth Attacks

This section motivates the use and effectiveness of data structure invariants at detecting rootkits by

presenting six previously demonstrated attacks that employ stealth techniques [14, 15, 30]. These

attacks either modify non-control kernel data (cf. Attacks 1-4) or modify kernel control data without

affecting user-level objects in the system (cf. Attacks 5 and 6), which are typically monitored by

rootkit detection tools. Each of these attacks is successfully detected by Gibraltar; where applicable,

we also discuss existing tools that can detect each attack.

For each attack presented below, we also describe a data structure invariant (automatically in-

ferred by Gibraltar by observing the execution of an uncompromised kernel) that is violated by the

69

attack. In addition, we also describe the semantic meaning of each invariant, i.e., the reason why

a data structure satisfies the property specified by the invariant in an uncompromised kernel. The

invariants listed in this section are examples drawn from several thousand invariants that are auto-

matically inferred by Gibraltar. Particularly noteworthy in the examples below is the heterogeneity

of the data structures over which Gibraltar infers invariants. Although these invariants can be ex-

amined, interpreted and refined by a security expert, Gibraltar, by default, automatically uses these

invariants as specifications of data structure integrity. As we show in Section 4.5, Gibraltar’s default

approach effectively detects rootkits with a low false positive rate.

4.3.1 Attack 1: Entropy pool contamination

The kernel uses the pseudo random number generator (PRNG) to obtain randomness needed to seed

several other security-critical applications. The goal of the entropy pool contamination attack [14]

is to contaminate entropy pools and associated polynomials used by the PRNG, so as to degrade the

quality of random numbers that it generates.

• Attack. The PRNG uses the primary and secondary entropy pools, to generate random numbers.

The primary pool derives entropy from external events such as keystrokes, mouse movements, disk

and network activity. As a request arrives for a random number, the kernel extracts bytes from the

primary pool and moves them to the secondary pool. Bytes extracted from the secondary pool are

in turn used to provide random numbers to kernel functions and user-level applications.

To ensure that the numbers generated by the PRNG are pseudo random, the contents of the

pools are updated using a stirring function each time bytes are extracted from the pools. The stirring

function uses a polynomial whose coefficients are specified in five integer fields of a struct poolinfo

data structure, namely tap1, tap2, tap3, tap4 and tap5. This attack zeroes the coefficients of the

polynomial, which renders ineffective part of the algorithm used to extract bytes from the pool. It

also writes zeroes constantly into the entropy pools. Consequently, the numbers generated by the

70

poolinfo.tap1 ∈ {26, 103}
poolinfo.tap2 ∈ {20, 76}
poolinfo.tap3 ∈ {14, 51}
poolinfo.tap4 ∈ {7, 25}
poolinfo.tap5 == 1

The invariants satisfied by the coefficients of the polynomial used by the stirring function in
the PRNG. The coefficients are fields of a struct poolinfo data structure, shown above as
poolinfo.These invariants are violated by the entropy pool contamination attack (Section 4.3.1).

Figure 4.1: Invariants violated by the entropy pool contamination attack

PRNG are no longer random.

• Invariants. Figure 4.1 shows the invariants that Gibraltar identifies for the coefficients of the

polynomial that is used to stir entropy pools in an uncompromised kernel (the poolinfo data structure

shown in this figure is represented in the kernel by one of random state->poolinfo or sec random state-

>poolinfo). The coefficients are initialized upon system startup, and must never be changed during

the execution of the kernel. The attack violates these invariants when it zeroes the coefficients of

the polynomial. Gibraltar detects this attack when the invariants are violated.

Attack 2: Process hiding

The goal of this attack is to hide a (possibly malicious) user-space process from the system utilities,

such as ps. The attack operates by modifying the contents of the kernel linked lists used for process

accounting and scheduling [13, 15].

• Attack. This attack relies on the fact that process accounting utilities, such as ps, and the kernel’s

task scheduler consult different process lists. The process descriptors of all tasks running on a

system belong to a linked list called the all-tasks list (represented in the kernel by the data structure

init tasks->next task). This list contains process descriptors headed by the first process created on

the system. The all-tasks list is used by process accounting utilities. In contrast, the scheduler

uses a second linked list, called the run-list (represented in the kernel by run queue head->next), to

71

run-list ⊆ all-tasks

The invariant that detects the process hiding attack (Section 4.3.1). In this attack, a task that is
not in the all-tasks linked list appears in the run-list linked list, which is used by the kernel’s task
scheduler.

Figure 4.2: Invariant violated by the hidden process attack

schedule processes for execution.

The process hiding attack removes the process descriptor of a malicious user-space process from

the all-tasks list (but not from the run-list list). This ensures that the process is not visible to process

accounting utilities, but that it will still be scheduled for execution.

• Invariants. Figure 4.2 presents the invariant automatically discovered by Gibraltar. When a

rootkit attempts to remove a task from the all-tasks list, this invariant is violated, and is therefore,

detected by Gibraltar. We note that this attack was previously described by Petroni et al. [15] as an

example of a non-control data attack. They also describe an invariant enforcement tool to detect such

attacks; however, in contrast to Gibraltar, their enforcement tool requires data structure invariants,

such as the one in Figure 4.2, to be supplied manually by a security expert.

Attack 3: Adding binary formats

The goal of this attack is to invoke malicious code each time a new process is created on the sys-

tem [30]. While rootkits typically achieve this form of hooking by modifying kernel control data,

such as the system call table, this attack works by inserting a new binary format into the system.

• Attack. This attack operates by introducing a new binary format into the list of formats supported

by the system. The handler provided to support this format is malicious in nature. The binary for-

mats supported by a system are maintained by the kernel in a global linked list called formats. The

binary handler, specific to a given binary format, is also supplied when a new format is registered.

A new process is created on the system via the system call sys execve. This system call creates

72

length(formats) == 2

Invariant inferred on the formats list; the attack discussed in Section 4.3.1 modifies the length of
this list.

Figure 4.3: Invariant violated by the adding binary formats attack

the process address space, sets up credentials and in turn calls the function search binary handler,

which is responsible for loading the binary image of the process from the executable file. The

function search binary handler iterates through the formats list to look for an appropriate handler

for the binary that it is attempting to load. As it traverses this list, it invokes each handler in it. If a

handler returns an error code E, the kernel considers the next handler on the list; it continues

to do so until it finds a handler that returns the code S.

This attack works by inserting a new binary format in the formats list and supplying the kernel

with a malicious handler that returns the error code E each time it is invoked. Because the

new handler is inserted at the head of the formats list, the malicious handler is executed each time a

new process is executed.

• Invariants. Gibraltar infers the invariant shown in Figure 4.3 on the formats list on our system,

which has two registered binary formats, namely a.out and elf. The size of the list is constant after

the system starts, and changes only when a new binary format is installed. Because this attack

inserts a new binary format, thereby changing the length of the formats list, it violates the invariant

in Figure 4.3; consequently, Gibraltar detects this attack.

Attack 4: Resource wastage

This attack creates artificial pressure on the memory subsystem [14], thereby forcing the memory

management algorithms to constantly free memory by swapping pages to disk. In spite of the avail-

ability of free memory, this memory is not used either by the kernel or by user-space applications.

73

zone table[1].pages min == 255
zone table[1].pages low == 510
zone table[1].pages high == 765
(a) Invariants inferred for watermarks.

zone table[1].pages min = 210, 000
zone table[1].pages low = 215, 000
zone table[1].pages high = 220, 000
(b) Watermark values after the attack.

Part (a) shows the invariants that Gibraltar inferred for zone table[1], a data structure of type
struct zone struct (Gibraltar infers similar invariants for other elements of the zone table array).
Part (b) shows the values of the watermarks after a resource wastage attack. The total number of
pages on the system was 225,280.

Figure 4.4: Invariants violated by the resource wastage attack

Continuous swapping to disk also affects the performance of the system.

• Attack. The kernel’s memory management unit ensures that there are always free pages in mem-

ory to fulfil allocation requests made both from the kernel and user-space applications. To do so,

it employs memory balancing algorithms that use three watermarks to gauge memory pressure,

namely, the fields pages min, pages low and pages high, of a struct zone struct data structure.

When the number of free pages in the system drops below the pages low watermark, the kernel

asynchronously swaps unused pages to disk. This process continues until the number of pages

reaches the pages high watermark. In contrast, if the number of free pages available drops below

the pages min watermark, the kernel synchronously swaps pages to disk.

This attack manipulates the three watermarks and sets their values close to the number of free

pages in the system. Consequently, the number of free pages frequently drops below the pages min

and pages low watermarks, forcing the kernel to continuously swap pages to disk, thereby creating

synthetic memory pressure in the system.

• Invariants. Gibraltar identifies the invariants shown in Figure 4.4(a) for the three watermarks.

These values are initialized upon system startup, and typically do not change in an uncompromised

kernel. Figure 4.4(b) shows the values of these watermarks after the attack; the values of these

watermarks are close to 225,280, which is the number of pages available on our system. Gibraltar

74

detects this attack because the values of the watermarks shown in Figure 4.4(b) violate the invariants

shown in Figure 4.4(a).

Attack 5: Disabling firewalls

The goal of this attack is to stealthily disable firewalls installed on the system [14]; a user is unable

to determine that firewalls have been disabled using the iptables utility. Instead, iptables shows the

firewall rules that were created for the system, and the firewall appears to be enabled.

• Attack. This attack overwrites hooks in the Linux netfilter framework, which is a packet filtering

framework in the Linux kernel. It provides hooks at multiple points in the networking stack, and

was designed for kernel modules to register callbacks for packet filtering, packet mangling and

network address translation. The iptables command line utility enforces firewall rules through the

netfilter framework. Pointers to the netfilter hooks are stored in a global table called nf hooks. This

attack overwrites the hooks for the IP protocol, and instead sets them to point to the attack function,

thereby effectively disabling the firewall. The table where the firewall rules are stored is unaltered

and therefore, displayed by iptables when the user manually inspects the firewall.

• Invariants. Gibraltar inferred the invariant shown in Figure 4.5 for netfilter. The attack overwrites

the hook with the attack function, thereby violating the invariant that function pointer nf hooks[2][1].next.hook

is a constant.

Because this attack modifies kernel function pointers, it can also be detected by SBCFI [12],

which automatically extracts and enforces kernel control flow integrity. In fact, function pointer

nf hooks[2][1].next.hook == 0xc03295b0

An invariant inferred for the netfilter hook. Firewalls are disabled by modifying the function
pointer, thereby violating the invariant.

Figure 4.5: Invariant violated by the disable firewalls attack

75

invariants inferred by Gibraltar implicitly determine a control flow integrity policy that is equivalent

to SBCFI. However, in contrast to SBCFI, Gibraltar can also detect non-control attacks, such as

Attacks 1-4, discussed above.

Attack 6: Disabling the PRNG

This attack overwrites the addresses of the functions registered with the virtual file system layer by

the PRNG [14]. The overwritten values point to functions that always return zero or an attacker-

defined sequence when random bytes are requested from the PRNG; the PRNG’s functions are never

executed.

• Attack. The kernel provides two devices /dev/random and /dev/urandom from which random

numbers can be read. The data structures used to register the device functions are random fops and

urandom fops, both of which are variables of type struct file operations. These data structures have

function pointers to the various functions provided by the PRNG. The attack replaces the genuine

function pointers for the read function within these data structures. After the attack has infected the

kernel, every byte read from the two devices simply returns a zero. The original PRNG functions

are never called.

• Invariants. The invariants inferred by Gibraltar on our system for the random fops and uran-

dom fops are shown in Figure 4.6. The attack code changes the values of the above two function

pointers, violating the invariants. As with Attack 5, this attack can also be detected using SBCFI.

random fops.read == 0xc028bd48

urandom fops.read == 0xc028bda8

Invariants inferred for the PRNG function pointers. These are replaced to point to attacker-
specified code, thereby disabling the PRNG.

Figure 4.6: Invariant violated by the disable PRNG attack.

76

4.4 Design and Implementation

As Gibraltar aims to detect rootkits, it must execute on an entity that is outside the control of the

kernel of the monitored machine, such as a virtual machine monitor [10], or on a coprocessor [8,

9]. In our architecture, Gibraltar executes on a separate machine (the observer) and monitors the

execution of the target machine (the target). Both the observer and the target are interconnected

via a secure back-end network using the Myrinet PCI intelligent network cards [60]. The back end

network allows Gibraltar to remotely access the target kernel’s physical memory. Gibraltar is built

to infer data structure invariants when supplied with raw kernel memory as input. Therefore, it can

be adapted to work with other infrastructures such as virtual machine monitors and coprocessors.

Figure 4.7 presents the architecture of Gibraltar. Like other anomaly detection tools, Gibraltar

operates in two modes, namely, a training mode and an enforcement mode. In the training mode,

Gibraltar infers invariants on data structures of the target’s kernel. Training happens in a controlled

environment on an uncompromised target (e.g., a fresh installation of the kernel on the target ma-

chine). In the enforcement mode, Gibraltar ensures that the data structures on the target’s kernel

satisfy the invariants inferred during the training mode.

As shown in Figure 4.7, Gibraltar consists of four key components (shown in the boxes with

solid lines). The page fetcher responds to requests by the data structure extractor to fetch kernel

memory pages from the target. The data structure extractor, in turn, extracts values of data structures

on the target’s kernel by analyzing raw physical memory pages. The data structure extractor also

accepts as input the data type definitions of the kernel running on the target machine and a set of root

symbols that it uses to traverse the target’s kernel memory pages. Both these inputs are obtained

via an offline analysis of the source code of the kernel version executing on the target machine.

The output of the data structure extractor is the set of kernel data structures on the target. The

77

Page

Fetcher
Invariants

Kernel
Snapshot

Data

Structure

Extractor

Root
Symbols

Kernel Data
Definitions

Monitor

Invariant
Templates

Invariant

Generator

Training

Enforcement

Raw Memory
Pages

Physical
Memory Address

Page

Fetcher
Invariants

Kernel
Snapshot

Data

Structure

Extractor

Root
Symbols

Kernel Data
Definitions

Monitor

Invariant
Templates

Invariant

Generator

Training

Enforcement

Raw Memory
Pages

Physical
Memory Address

Boxes with solid lines show components of Gibraltar. Boxes with dashed lines show data used as
input or output by the different components.

Figure 4.7: The Gibraltar Architecture

invariant generator processes these data structures and infers invariants. These invariants represent

properties of both individual data structures, also known as objects(e.g., scalars, such as integer

variables and arrays and aggregate data structures, such as structs), as well as collections of data

structures (e.g., linked lists). During enforcement, the monitor uses the invariants as specifications

of kernel data structure integrity, which raises an alert when an invariant is violated by a kernel data

structure. The following sections elaborate on the design of each of these components.

4.4.1 The page fetcher

Gibraltar executes on the observer, which is isolated from the target system. However, the observer

must be able to faithfully reconstruct the state of the target’s memory. Gibraltar achieves this goal

by fetching physical memory pages and reconstructing the target’s kernel data structures.

Gibraltar’s page fetcher is a component that takes a physical memory address as input, and

obtains the corresponding memory page from the target. The target runs a Myrinet PCI card to

which the page fetcher issues a request for a physical memory page. Upon receiving a request,

the firmware on the target initiates a DMA request for the requested page. It sends the contents

of the physical page to the observer upon completion of the DMA. The Myrinet card on the target

78

system runs an enhanced version of the original firmware. Our enhancement ensures that when the

card receives a request from the page fetcher, the request is directly interpreted by the firmware

and serviced (rather than forwarding the request to a user-space application running on the target

system). The page fetcher sends the physical memory address of the page to be fetched. If the

required address is present in the linearly-mapped region of the kernel, it subtracts a fixed offset to

get the physical address. If the address is not within this region, it refers to the kernel page tables to

acquire the physical address of the page. (The page tables themselves reside in the linearly-mapped

region of the target at a known physical memory location. Consequently, the page tables are first

fetched and interpreted by the page fetcher.)

4.4.2 The data structure extractor

This component reconstructs snapshots of the target kernel’s data structures from raw physical mem-

ory pages. During this process of reconstruction, it may issue requests to the page fetcher to fetch

physical memory pages from the target.

The data structure extractor processes raw physical memory pages using two inputs to locate

data structures within these pages. First, it uses a set of root symbols, which denote kernel data

structures whose physical memory locations are fixed, and from which all data structures on the

target’s heap are reachable. In our implementation, we use the symbols in the System.map file of

the target’s kernel as the set of roots. Second, it uses a set of type definitions of the data structures in

the target’s kernel. Type definitions are used as described below to recursively identify all reachable

data structures. We automatically extracted 1292 type definitions by analyzing the source code of

the target kernel using a CIL module [61].

The data structure extractor uses the roots and type definitions to recursively identify data struc-

tures in physical memory using a standard worklist algorithm (see Figure 4.8). The extractor first

adds the addresses of the roots to a worklist; it then issues a request to the page fetcher for memory

79

Input: (a) R: addresses of roots; (b) Data structure definitions.
Output: Set of all data structures reachable from R.

1. worklist = R;
2. visited = φ;
3. snapshot = φ;
4. while worklist is not empty do
5. addr = remove an entry from worklist;
6. visited = visited ∪ {addr};
7. M = physical memory page containing addr;
8. obj = object at address addr in M;
9. snapshot = snapshot ∪ value of obj;

10. foreach pointer p in obj do
11. if p < visited
12. worklist = worklist ∪ {p};
13. return snapshot;

Figure 4.8: Algorithm used by the data structure extractor.

pages containing the roots. It extracts the values of the roots from these pages, and uses their type

definitions to identify pointers to more (previously-unseen) data structures. For example, if a root

is a C struct, the data structure extractor adds all pointer-valued fields of this struct to the worklist

to locate more data structures in the kernel’s physical memory. This process continues in a recur-

sive fashion until all the data structures in the target kernel’s memory (reachable from the roots)

have been identified. A complete set of data structures reachable from the roots is defined to be a

snapshot. The data structure extractor periodically probes the target and outputs snapshots.

When the data structure extractor finds a pointer-valued field, it may require assistance in the

form of code annotations to clarify the semantics of the pointer. In particular, the data structure

extractor requires assistance when it encounters linked lists, implemented in the Linux kernel using

the list head structure. In Linux, other kernel data structures that must be organized as a linked

list (called containers) simply include the list head data structure. Figure 4.9 shows an example

of a task struct, in which the field run list is of type list head. Objects of type task struct are

linked together as a list using the next and prev fields, which are members of the list head structure.

80

struct task struct {
...
struct list head Container(struct task struct,run list) run list;
...

}

The field run list within the structure task struct points to the run list field of another task struct object.

Figure 4.9: An example showing the CONTAINER annotation

The kernel provides functions to add, delete, and traverse list head data structures. To traverse and

process a list of task struct structures, the kernel would use locate and traverse to the list head struc-

tures within the task struct structure; it would then identify the corresponding task struct objects in

the list using pointer arithmetic (e.g., the container of macro provided by the Linux kernel).

Linked lists within container objects are problematic for the data structure extractor. In particu-

lar, when it encounters a list head structure, it will be unable to identify the container data structure

(e.g., the task struct data structure in Figure 4.9). To handle such linked lists, we use the Container

annotation, as shown in Figure 4.9. The annotation explicitly specifies the type of the container data

structure (struct task struct) and the field within this type (run list), which the list head pointers

point to. The extractor uses this annotation when it encounters the run list field, and locates the

container task struct data structure. Therefore, the Container annotations disambiguate the se-

mantics of the list head pointer to the data structure extractor. In our experiments, we annotated all

163 annotations of the list head data structure in the Linux-2.4.20 kernel.

In addition to linked lists, Gibraltar also requires assistance to disambiguate opaque pointers

(void *), dynamically-allocated arrays and untagged unions. For example, the extractor would re-

quire the length of a dynamically-allocated arrays in order to traverse and locate objects in the array.

These are not annotated in the current prototype.

81

Because the page fetcher obtains pages from the target asynchronously (without halting the

target), it is likely that the data structure extractor will encounter inconsistencies, such as pointers

to non-existent objects. Such invalid pointers are problematic because the data structure extractor

will incorrectly fetch and parse the memory region referenced by the pointer (which will result

in more invalid pointers being added to the worklist of the traversal algorithm). To remedy this

problem, we currently place an upper bound on the number of objects traversed by the extractor.

In our experiments, we found that on an idle system, the number of data structures in the kernel

varies between 40,000 and 65,000 objects. We therefore, place an upper bound of 150,000; the

data structure extractor aborts the collection of new objects when this threshold is reached. In our

experiments, this threshold was rarely reached, and even so, only when the system was under heavy

load.

4.4.3 The invariant generator

In the training mode, the output of the data structure extractor is used by the invariant generator,

which infers likely data structure invariants. These invariants are used as specifications of data

structure integrity.

To extract data structure invariants, we adapted Daikon [58], a state of the art tool invariant in-

ference tool. Daikon attempts to infer likely program invariants by observing the values of variables

during multiple executions of a program. Daikon first instruments the program to emit a trace that

contains the values of variables at selected program points, such as the entry points and exits of

functions. It then executes the program on a test suite, and collects the traces generated by the pro-

gram. Finally, Daikon analyzes these traces and hypothesizes invariants—properties of variables

that hold across all the executions of the program. The invariants produced by Daikon conform

to one of several invariant templates. For example, the template x == const checks whether the

value of a variable x equals a constant value const (where const represents a symbolic constant; if

82

x has the constant value 5, Daikon will infer x == 5 as the invariant). Daikon also infers invariants

over collections of objects. For example, if it observes that the field bar of all objects of type struct

foo at a program point have the value 5, it will infer the invariant “The fields bar of all objects of

type struct foo have value 5.”

We had to make three key changes to adapt Daikon to infer invariants over kernel data structures.

• Inference over snapshots. Daikon is designed to analyze multiple execution traces obtained

from instrumented programs and extract invariants that hold across these traces. We cannot

use Daikon directly in this mode because the target’s kernel is not instrumented to collect

execution traces. Rather, we obtain values of data structures by asynchronously observing

the memory of the target kernel. To adapt Daikon to infer invariants over these data struc-

tures, we represent all the data structures in one snapshot of the target’s memory as a single

Daikon trace. As described in Section 4.4.2, the data structure extractor periodically re-

constructs snapshots of the target’s memory. Multiple snapshots, therefore, yield multiple

traces. Daikon processes all these traces and hypothesizes properties that hold across all

traces, thereby yielding invariants over kernel data structures

• Naming data structures. Because Daikon analyzes instrumented programs, it represents

invariants using global variables and the local variables and formal parameters of functions

in the program. However, because Gibraltar aims to infer invariants on data structures re-

constructed from snapshots, the invariants output by Gibraltar must be represented using the

root symbols. Gibraltar represents each data structure in a snapshot using its name relative

to one of the root symbols. For example, Gibraltar represents the head of the all-tasks linked

list, described in Section 4.3.1, using the name init tasks->next task (here, init tasks is a root

symbol). The extractor names each data structure as it is visited for the first time (in Lines 11

83

and 12 of Figure 4.8).

In addition, Gibraltar also associates each name with the virtual memory address of the data

structure that it represents in the snapshot. These addresses are used during invariant in-

ference, where they help identify cases where the same name may represent different data

structures in multiple snapshots. This may happen because of deallocation and reallocation.

For example, suppose that the kernel deallocates (and reallocates, at a different address) the

head of the all-tasks linked list. Because the name init tasks->next task will be associated

with different virtual memory addresses before and after allocation, it represents different

data structures; Gibraltar ignores such objects during invariant inference.

• Linked data structures. Linked lists are ubiquitous in the kernel and, as demonstrated in

Section 4.3, can be exploited subtly by rootkits. It is therefore important to preserve the

integrity of kernel linked lists. Daikon, however, does not infer invariants over linked lists.

To overcome this shortcoming, we represented kernel linked lists as arrays in Daikon trace

files, and leveraged Daikon’s ability to infer invariants over arrays. We then converted the

invariants that Daikon inferred over these arrays to invariants over linked lists.

Daikon infers invariants that conform to 75 different templates [58], and infers several thousand

invariants over kernel data structures using these templates. In the discussion below, and in the

experimental results reported in Section 4.5, we focus on five templates; in the templates below,

var denotes either a scalar variable or a field of a structure.

• Membership template (var ∈ {a, b, c}). This template corresponds to invariants that

state that var only acquires a fixed set of values (in this case, a, b or c). If this set is a

singleton {a}, denoting that var is a constant, then Daikon expresses the invariant as var ==

a.

84

• Non-zero template (var != 0). The non-zero template corresponds to invariants that de-

termine that a var is a non-NULL value (or not 0, if var is not a pointer).

• Bounds template (var ≥ const), (var ≤ const). This template corresponds to invari-

ants that determine lower and upper bounds of the values that var acquires.

The three example templates discussed above correspond to invariants over variables and fields

of C struct data structures. These invariants can be inferred over individual objects, as well as over

collections of data structures (e.g., the fields bar of all objects of type struct foo have value 5).

Invariants over collections describe a property that hold for all members of that collection across all

snapshots.

• Length template (length(var) == const). This template describes invariants over lengths

of linked lists.

• Subset template (coll1 ⊂ coll2). This template represents invariants that describe that

the collection coll1 is a subset of collection coll2. This is used, for instance, to represent

invariants that describe that every element of one linked list is also an element of another

linked list.

The last two example templates are used to describe properties of kernel linked lists. As reported

in Section 4.5, in our experiments, invariants that conformed to the Daikon templates sufficed to

detect all the control and non-control data attacks that we tested. However, to accommodate for

rootkits that only violate invariants that conform to other kinds of templates, we may need to extend

Gibraltar with more templates in the future. Fortunately, Daikon supports an extensible architecture.

Newer invariant templates can be supplied to Daikon, thereby allowing Gibraltar to detect more

attacks.

85

4.4.4 The monitor

During enforcement, the monitor ensures that the data structures in the target’s memory satisfy the

invariants obtained during training. As with the invariant generator, the monitor obtains snapshots

from the data structure extractor, and checks the data structures in each snapshot against the invari-

ants. This ensures that any malicious modifications to kernel memory that cause the violation of an

invariant are automatically detected.

4.4.5 Persistent v/s Transient Invariants

The invariants inferred by Gibraltar can be categorized as either persistent or transient. Persistent

invariants represent properties that are valid across reboots of the target machine, provided that the

target’s kernel is not reconfigured or recompiled between reboots. All the examples in Figures 4.1-

4.6 are persistent invariants.

An invariant is persistent if and only if the names of the variables in the invariant persist across

reboots and the property represented by the invariant holds across reboots. Thus, a transient in-

variant either expresses a property of a variable whose name does not persist across reboots or

represents a property that does not hold across reboots. For example, consider the invariant in Fig-

ure 4.10, which expresses a property of a struct file operations object. This invariant is transient

because it does not persist across reboots. The name of this object changes across reboots as it

appears at different locations in kernel linked lists; consequently, the number of next and prevs that

appear in the name of the variable differ across reboots.

init fs->root->d sb->s dirty.next->i dentry.next->d child.prev->d inode->i fop.read == 0xeff9bf60

Figure 4.10: Example of a transient invariant.

The distinction between persistent and transient invariants is important because it determines

86

the number of invariants that must be inferred each time the target machine is rebooted. In our

experiments, we found that out of a total of approximately 718,000 invariants extracted by Gibraltar,

approximately 40,600 invariants persist across reboots of the target system.

Although it is evident that the number of persistent invariants is much smaller than the total

number of invariants inferred by Gibraltar (thus necessitating a training each time the target is

rebooted), we note that this does not reflect poorly on our approach. In particular, the persistent

invariants can be enforced as Gibraltar infers transient invariants after a reboot of the target machine,

thus providing protection during the training phase as well. The cost of retraining to obtain transient

invariants can potentially be ameliorated with techniques such as live-patching [62, 63], which can

be used to apply patches to a running system.

4.5 Experimental Results

This section presents the results of experiments to test the effectiveness and performance of Gibraltar

at detecting rootkits that modify both control and non-control data structures. We focus on three

concerns:

• Detection accuracy. We tested the effectiveness of Gibraltar by using it to detect both publicly-

available rootkits as well as those proposed in the research literature [14,15,30]. Gibraltar detected

all these rootkits (Section 4.5.2).

• False positives. During enforcement Gibraltar raises an alert when it detects an invariant viola-

tion; if the violation was not because of a malicious modification, the alert is a false positive. Our

experiments showed that Gibraltar has a false positive rate of 0.65% (Section 4.5.3).

• Performance. We measured three aspects of Gibraltar’s performance and found that it imposes a

negligible monitoring overhead (Section 4.5.4).

All our experiments are performed on a target system with a Intel Xeon 2.80GHz processor with

87

Attack Name Data Structures Affected
Rootkits from Packet Storm [64].
Adore-0.42 System call table
Adore-ng Vfs hooks, Udp recvmsg
All-root System call table
Kbd v3 System call table
Kis 0.9 System call table
Knark 2.4.3 System call table, Proc hooks
Linspy2 System call table
Modhide System call table
Phide System call table
Rial System call table
Rkit 1.01 System call table
Shtroj2 System call table
Synapsys-0.4 System call table
THC Backdoor System call table

This table shows the data structures modified by the rootkit. Gibraltar successfully detects all
the above rootkits. The invariants violated are all Object invariants detected by the Member-
ship(constant) template.

Table 4.1: Rootkits that modify control data

1GB RAM, running a Linux-2.4.20 kernel (infrastructure limitations prevented us from upgrading

to the latest version of the Linux kernel). The observer also has an identical configuration.

4.5.1 Experimental methodology

Our experiments with Gibraltar proceeded as follows. We first ran Gibraltar in training mode and

executed a workload that emulated user behavior (described below) on the target system. We con-

figured Gibraltar to collect fifteen snapshots during training. Gibraltar analyzes these snapshots and

infers invariants. We then configured Gibraltar to run in enforcement mode using the invariants ob-

tained from training. During enforcement, we installed rootkits on the target system, and observed

the alerts generated by Gibraltar. Finally, we studied the false positive rate of Gibraltar by executing

a workload consisting of benign applications.

88

Workload.

We chose the Lmbench [65] benchmark as the workload that runs on the target system. This work-

load consists of a micro benchmark suite that is used to measure operating system performance.

These micro benchmarks measure bandwidth and latency for common operations performed by ap-

plications, such as copying to memory, reading cached files, context switching, networking, file

system operations, process creation, signal handling and IPC operations. This benchmark therefore,

exercises several kernel subsystems and modifies several kernel data structures as it executes.

4.5.2 Detection accuracy

In this section, we report the detection accuracy of Gibraltar. We test Gibraltar with fourteen pub-

licly available rootkits and six other attacks proposed by research literature.

Publicly available rootkits

We used fourteen publicly-available rootkits [64] to test the effectiveness of Gibraltar. Each of these

rootkits modifies kernel data structures (in particular, we did not use rootkits that modify kernel

code; these rootkits can trivially be detected by Gibraltar by ensuring that the invariant that kernel

code area is an invariant). Table 4.1 summarizes the list of rootkits that modify kernel control data

that we used in our experiments.

Gibraltar successfully detects all the above rootkits. Each of these rootkits violated a persistent

invariant that conformed to the template var == constant. Because these rootkits modify kernel

control flow, they can also be detected by SBCFI. The invariants on control data structures inferred

by Gibraltar implicitly determine a control flow integrity policy that is equivalent to SBCFI.

89

Attack Name Data Structures Affected Invariant Type Template
Entropy Pool Contamination struct poolinfo Collection Membership
Hidden Process all-tasks list Collection Subset
Linux Binfmt formats list Collection Length
Resource Wastage struct zone struct Object Membership (constant)
Disable Firewall struct nf hooks[] Object Membership (constant)
Disable PRNG struct random state ops Object Membership (constant)

struct urandom state ops

Rootkits from research literature [14, 15, 30]. This table also shows the data structure modified
by the attack, the type of the invariant violated and the template that this invariant conforms to.

Table 4.2: Rootkits from research literature.

Attacks from research literature

We used six attacks discussed in prior work [14, 15, 30] to test Gibraltar. These attacks, and the

invariants that they violate were discussed in detail in Section 4.3. Table 4.2 summarizes these

attacks, and shows the data structures modified by the attack, the invariant type (collection/object)

violated, and the template that classifies the invariant. Each of the invariants that was violated was

a persistent invariant, which survives a reboot of the target machine.

4.5.3 Invariants and false positives

We report the number of invariants inferred by Gibraltar, and the evaluation of false positives in this

section.

Invariants

As discussed in Section 4.4, Gibraltar uses Daikon to infer invariants; these invariants express prop-

erties of both individual objects, as well as collections of objects (e.g.,all objects of the same type;

invariants inferred over linked lists are also classified as invariants over collections). Table 4.3 re-

ports the number of invariants inferred by Gibraltar on individual objects as well as on collections

90

Template Object Collection
Membership 643,622 422
Non-zero 49,058 266
Bounds 16,696 600
Length NA 4,696
Subset NA 3,580
Total 709,376 9,564

Invariants inferred by Gibraltar. These in-
variants are used as data structure integrity
specifications during enforcement.

Table 4.3: Number of invariants inferred by
Gibraltar.

Template Object Collection
Membership 0.71% 1.18%
Non-zero 0.17% 2.25%
Bounds 0% 0%
Length NA 0.66%
Subset NA 0%
Average false positive rate: 0.65%

False positive rates, classified by the type of
invariant and the template that classifies the
invariant.

Table 4.4: Gibraltar false positive rate

of objects. Table 4.3 also presents a classification of invariants by templates; the length and sub-

set invariants apply only to linked lists. As this table shows, Gibraltar automatically infers several

thousand invariants on kernel data structures.

False positives

To evaluate the false positive rate of Gibraltar, we designed a test suite consisting of several benign

applications, which performed the following tasks: (a) copying the Linux kernel source code from

one directory to another; (b) editing a text document (an interactive task); (c) compiling the Linux

kernel; (d) downloading eight video files from the Internet; and (e) perform file system read/write

and meta data operations using the IOZone benchmark [66]. This test suite ran for 42 minutes on

the target. We enforced the invariants inferred using the workload described in Section 4.5.1.

The false positive rate is measured as the ratio of the number of invariants for which violations

are reported and the total number of invariants inferred by Gibraltar. Table 4.4 presents the false

positive rate, further classified by the type of invariant (object/collection) that was erroneously vi-

olated by the benign workload, and the template that classifies the invariant. As this table shows,

the overall false positive rate of Gibraltar was 0.65%. Improving the false positive rate significantly

to make the system practical is an important direction for future work [67]. An automated filtering

91

strategies for classes of data structures could be identified and eliminated. Alternatively, a similar

process could be carried out by a manual security expert.

4.5.4 Performance

We measured three aspects of Gibraltar’s performance: (a) training time, i.e., the time taken by

Gibraltar to observe the target and infer invariants; (b) detection time, i.e., the time taken for an alert

to be raised after the rootkit has been installed; and (c) performance overhead, i.e., the overhead on

the target system as a result of the DMA requests issued by the Myrinet PCI card.

Training time.

The training time is calculated as the cumulative time taken by Gibraltar to gather kernel data struc-

ture values and infer invariants when executing in training mode. Overall, the process of gathering

15 snapshots of the target kernel’s memory requires approximately 25 minutes, followed by 31

minutes to infer invariants, resulting in a total of 56 minutes for training.

Training is currently a time-consuming process because our current prototype invokes Daikon

to infer invariants after collecting all the kernel snapshots. Training time can potentially be reduced

by adapting Daikon to use an incremental approach to infer invariants. In this approach, Daikon

would hypothesize invariants using the first snapshot, in parallel with the execution of the workload

to produce more snapshots. As more snapshots are produced, Daikon can incrementally refine the

set of invariants. We leave this enhancement for future work.

Detection time.

Gibraltar raises an alert when an invariant over a kernel data structure is violated. We measure the

detection time as the interval between the installation of the rootkit and Gibraltar detecting that an

invariant has been violated. Because Gibraltar traverses the data structures in a snapshot and checks

invariants over each data structure, detection time is proportional to the number of objects in each

92

snapshot. Detection time also depends upon the order in which its algorithms traverse objects in the

snapshot, and the data structure whose invariant is violated.

Gibraltar’s detection time varied from a minimum of fifteen seconds (when there were 41,254

objects in the snapshot) to a maximum of 132 seconds (when there were 150,000 objects in the

snapshot). On average, we observed a detection time of approximately 20 seconds.

Monitoring overhead.

The Myrinet PCI card fetches raw physical memory pages from the target using DMA; because

DMA increases contention on the memory bus, the target’s performance will potentially be af-

fected. We measured this overhead using the Stream benchmark [68], a simple, synthetic benchmark

that measures sustainable memory bandwidth. Measurement is performed four vector operations,

namely, copy, scale, add and triad. The vectors are chosen so that they clear the last-level cache in

the system, forcing data to be fetched from main memory.

Table 4.5 presents the bandwidth measurements for these four vector operations, both with

Gibraltar’s monitoring turned off, and turned on. Bandwidth measurements and time taken for the

four vector operations are shown. This table shows the maximum and minimum time taken for each

operation, and the average over 100 executions. As this table shows, Gibraltar imposes a negligible

overhead of 0.49% on the operation of the target system.

Function Time (Monitoring OFF) Time (Monitoring ON) Overhead
Avg. Min Max Avg. Min Max

Copy 0.2260 0.2259 0.2271 0.2272 0.2269 0.2277 0.48%
Scale 0.2239 0.2237 0.2242 0.2251 0.2248 0.2254 0.49%
Add 0.3316 0.3313 0.3321 0.3329 0.3326 0.3336 0.39%
Triad 0.3295 0.3292 0.3298 0.3308 0.3304 0.3314 0.37%

Table 4.5: Results from the Stream microbenchmark averaged over 100 iterations.

93

4.6 Summary

In this chapter, we presented a novel approach that uniformly detects rootkits that violate control as

well as non-control data by identifying violations of automatically-inferred kernel data structure in-

variants. Our approach is based on extracting invariants by observing the behavior of a clean kernel

at runtime. We present Gibraltar, a prototype tool that uses the above approach for rootkit detection.

We presented the design and implementation of Gibraltar. We also present a comprehensive eval-

uation of Gibraltar on twenty rootkits that affect both control and non-control data structures and

show that Gibraltar can detect all of them, with a low false positive rate and negligible monitoring

overhead.

94

Chapter 5

Conclusions and Future Work

5.1 Concluding Remarks

Kernel-level rootkits pose a significant and growing threat to computer systems. Operating systems

expose a large attack surface because they employ a diverse set of complex data structures, which

can be manipulated in very subtle ways. Rootkit attacks that alter kernel data can be highly stealthy

and are capable of causing long term damage to the system, in the absence of appropriate detection

tools. Losses to the end user or corporations, victim to such attacks, might be in the form of exfil-

tration of sensitive information, performance degradation, wastage of system resources or system

involvement in other malicious activities.

This dissertation has made several contributions in understanding the threat model and proposed

automated techniques for the detection and containment of kernel rootkits. To contain the ongoing

damage done to the system by conventional rootkits, this dissertation proposes a containment al-

gorithm, built upon the virtualization architecture. This dissertation also identifies a novel class of

attacks on the kernel, which are stealthy by design and achieve their malicious objectives by solely

modifying kernel data. Finally, this dissertation also proposes a novel comprehensive detection

method for kernel rootkits, based on automatic mining of kernel data structure invariants.

95

Conventionally, rootkits tamper with the kernel to achieve stealth, while most of the malicious

functionality is provided by accompanying user space programs. Therefore, stealth is achieved by

trying to hide the objects, such as files, processes and network connections present in user space

belonging to the attacker. Since user space programs can access or modify user space objects using

system calls, the rootkit is limited to manipulating code or data structures that are reachable from

the system call paths alone. While rootkit detectors are able to detect such attacks effectively,

they cannot stop the user space programs from continuing with their malicious activities. While

an administrator can shutdown the system upon detection of a rootkit; such responses adversely

affect the productivity of commercial systems and do not scale with growing rate of attacks. In

this dissertation, we propose a containment algorithm that uses virtual machine introspection for

detection. To perform containment, it keeps track of process dependencies and identifies processes

at runtime that might be malicious and immediately kills them. This algorithm is also effective in

containing worms and viruses that use rootkits to hide.

To better understand the threat model, we demonstrated a new class of stealth attacks that do not

employ the traditional hiding behavior used by rootkits but are stealthy by design. They manipulate

data within several different subsystems in the kernel to achieve their malicious objectives. They

are based upon the observation that kernel rootkits need not necessarily be limited to manipulation

of data structures that lie within the system call paths. Other subsystems within the kernel are

also vulnerable to such attacks. To demonstrate this threat, we built several new attacks. We have

designed attack prototypes to demonstrate that such attacks are realistic and indicative of a more

systemic problem in the kernel.

Previously proposed rootkit detection techniques largely detect attacks that modify kernel con-

trol data; techniques that detect non-control data attacks, especially on dynamically-allocated data

96

structures, require specifications of data structure integrity to be supplied manually. In this disser-

tation, we present a novel rootkit detection technique that detects rootkits uniformly across control

and non-control data. The approach is based on the hypothesis that several invariants are exhibited

by kernel data structures at runtime during its correct operation. A rootkit that modifies the behavior

of the kernel algorithms violates some of these invariants. To validate this hypothesis, this disser-

tation presents Gibraltar, a tool that automatically infers and enforces specifications of kernel data

structure integrity. Gibraltar infers invariants uniformly across control and non-control kernel data,

and enforces these invariants as specifications of data structure integrity. Our experiments showed

that Gibraltar successfully detects rootkits that modify both control and non-control data structures,

and does so with a low false positive rate and negligible performance overhead.

5.2 Future Work

Research over the past few years has made significant strides in the development of stealth at-

tacks and tools and techniques for monitoring the integrity of the kernel. Numerous novel research

challenges have also emerged that show promise towards building more robust and comprehensive

kernel integrity monitors. Below, we discuss some interesting directions for future work in this area.

5.2.1 Data Structure Repair

Detection of rootkits that tamper with the kernel data structures has received a lot of attention over

the past five years [9, 10, 12, 15, 29]. Detection techniques are able to identify the data structures

that are modified by the attack. While some work has been done in containment of ongoing attacks

[28] and offline recovery of select data structures, such as the system call table [42], the commonly

employed approach in the face of such attacks is to format the disk and install a new operating

system image. The current response procedure besides being tedious and time consuming, does not

scale with the current attack growth rate.

97

Kernel integrity monitors such as Gibraltar discussed in Chapter 4, monitor invariants exhibited

by kernel data. These are used as integrity specifications and are checked during runtime. The

monitor can therefore, identify the data structure and the invariant that is violated when an alert is

raised by the system. In such cases, repair of the data structure comprises of restoring the invariant

that is violated. For example, if a data structure exhibits the constancy invariant, then a violation

occurs when the rootkit replaces this value with a different one. The repair action comprises of

restoring the old value. While restoring other more complex invariants might require sophisticated

methods, we believe that data structure repair is a promising research direction.

To secure the monitor, current approaches isolate it from the system that it monitors [9, 10,

12, 15, 29]. As a result, the monitor is limited to external asynchronous memory based scans. It is

unable to acquire locks from the operating system that is concurrently executing and modifying the

data structures that are monitored. Repairing data structures requires the monitor to be able to make

modifications to kernel data structures without affecting the correctness of kernel code. This also

requires the invention of better mechanisms for realizing inline data structure repairs.

5.2.2 Mining Complex Invariants

Complex invariants that express conjunction or disjunction between simple invariants discussed in

this dissertation might express interesting properties. It is also possible to mine more complex in-

variants that express relationships between different data structure fields or between different data

structures altogether. Invariants might also be mined using more complex invariant templates. Veri-

fying a large number of invariants has performance implications for the monitor. Therefore a careful

study of the kind of invariants that are more likely to be violated by attacks will provide some insight

into the type of invariants that are more interesting than others.

98

5.2.3 Transient Kernel Attacks

The advancement in techniques to detect attacks that modify persistent control flow data or persis-

tent non-control data, are most likely to lead attackers to explore transient ways of exploiting the

kernel. Some attacks have been demonstrated to this effect already [69]. Transient kernel attacks

target data structures that are mutable and are modified on a regular basis by authentic kernel code.

No detection technique currently exists to identify such attacks. Verification of the integrity of tran-

sient kernel attacks requires innovation in terms of techniques to be used for detection as well as

mechanisms.

5.2.4 Stealth Kernel Attacks on Mobile Devices

Mobile devices such as smart phones, which run full-fledged operating systems are already being

used by millions of users. Smart phones, especially the ones equipped with VoIP features, have

been identified to be susceptible to hundreds of viruses. Attacks carried out on these devices, such

as voice spam, smishing and denial of service attacks, jeopardize not just the user but the whole

communication infrastructure. In one example of a DoS attack, a hacker could program 50 million

mobile and/or VoIP phones to call 911 simultaneously in order to disable the Enhanced 911 system.

An emerging threat that researchers have completely ignored so far is the threat posed by rootkits

to the phone operating system kernel. An attacker who has complete control of the phone kernel

can launch particularly stealthy attacks. Since users rely on the correct operation of these devices,

stealth attacks on them that are executed without the user’s knowledge, can cause severe hardship

and financial loss. For example, attacks might stealthily record voice conversations, send expensive

messages without the user’s consent, spoof location information to cause inconvenience or steal

usernames and passwords. Currently, this area is largely uncharted.

99

References

[1] Rootkits, part 1 of 3: A growing threat, April 2006. MacAfee AVERT Labs Whitepaper.

[2] Anti rootkit software, news, articles and forums. http://antirootkit.com/.

[3] Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy H. Campbell. Cloaker: Hard-
ware supported rootkit concealment. In SP ’08: Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, May 2008.

[4] Samuel King, Peter Chen, Yi-Min Wang, Chad Verblowski, Helen J. Wang, and Jacob R.
Lorch. Subvirt: Implementing malware with virtual machines. In SP ’06: Proceedings of the
2006 IEEE Symposium on Security and Privacy, Oakland, CA, May 2006.

[5] Joanna Rutkowska. The blue pill. http://bluepillproject.org/.

[6] Gene H. Kim and Eugene H. Spafford. The design and implementation of tripwire: a file
system integrity checker. In CCS ’94: Proceedings of the 2nd ACM Conference on Computer
and Communications Security, Fairfax, VA, November 1994.

[7] Advanced intrusion detection environment. http://sourceforge.net/projects/aide.

[8] Xiaolan Zhang, Leendert van Doorn, Trent Jaeger, Ronald Perez, and Reiner Sailer. Secure
coprocessor-based intrusion detection. In EW ’02: Proceedings of the 10th ACM SIGOPS
European Workshop: Beyond the PC, Saint-Emilion, France, July 2002.

[9] Nick L. Petroni Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copilot - a
coprocessor-based kernel runtime integrity monitor. In Security ’04: Proceedings of the
USENIX Security Symposium, San Diego, CA, August 2004.

[10] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based architecture for
intrusion detection. In NDSS ’03: Proceedings of the 10th Network and Distributed Systems
Security Symposium, San Diego, CA, February 2003.

[11] Bryan D. Payne, Martim Carbone, Monirul I. Sharif, and Wenke Lee. Lares: An architecture
for secure active monitoring using virtualization. In SP ’08: Proceedings of the 2008 IEEE
Symposium on Security and Privacy, Oakland, CA, May 2008.

[12] Jr. Nick L. Petroni and Michael Hicks. Automated detection of persistent kernel control-flow
attacks. In CCS ’07: Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security, Alexandria, VA, October 2007.

[13] Fu rootkit. http://www.rootkit.com/project.php?id=12.

100

[14] Arati Baliga, Pandurang Kamat, and Liviu Iftode. Lurking in the shadows: Identifying sys-
temic threats to kernel data. In SP ’07: Proceedings of the 2007 IEEE Symposium on Security
and Privacy, Oakland, CA, May 2007.

[15] Jr. Nick L. Petroni, Timothy Fraser, Aaron Walters, and William A. Arbaugh. An architecture
for specification-based detection of semantic integrity violations in kernel dynamic data. In
Security ’06: Proceedings of the 15th USENIX Security Symposium, Vancouver, Canada, July
2006.

[16] Yi-Min Wang, Roussi Roussev, Chad Verbowski, Aaron Johnson, Ming-Wei Wu, Yennun
Huang, and Sy-Yen Kuo. Gatekeeper: Monitoring auto-start extensibility points (aseps) for
spyware management. In LISA ’04: Proceedings of the 18th USENIX Conference on System
Administration, Atlanta, GA, November 2004.

[17] Doug Beck, Binh Vo, and Chad Verbowski. Detecting stealth software with strider ghostbuster.
In DSN ’05: Proceedings of the 2005 International Conference on Dependable Systems and
Networks, Yokohoma, Japan, June 2005.

[18] Chkrootkit - rootkit detection tool. http://www.chkrootkit.org/.

[19] Rootkit hunter - rootkit detection tool. http://www.rootkit.nl/.

[20] System virginity verifier. http://www.antirootkit.com/software/System-Virginity-Verifier.htm.

[21] F-secure blacklight. http://www.f-secure.com/blacklight/.

[22] Klister rootkit detector. http://www.rootkit.com/project.php?id=14.

[23] James Butler. Vice rootkit detector. http://www.blackhat.com/presentations/bh-usa-04/bh-us-
04-butler/bh-us-04-butler.pdf.

[24] Patch finder. http://www.rootkit.com/project.php?id=15.

[25] The st. jude intrusion detection system. http://freshmeat.net/projects/stjude/.

[26] The linux intrusion detection system. http://www.lids.org/.

[27] Sherri Sparks and Jamie Butler. Shadow walker.
http://www.phrack.org/issues.html?id=8&issue=63.

[28] Arati Baliga, Liviu Iftode, and Xiaoxin Chen. Automated containment of rootkit attacks.
Elsevier Journal on Computers and Security, 27:323–334, August 2008.

[29] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. Automatic inference and enforcement of
kernel data structure invariants. In ACSAC ’08: Proceedings of the 2008 Annual Computer
Security Applications Conference, Anaheim, CA, December 2007.

[30] Shellcode Security Research Team. Registration weakness in linux kernel’s binary formats.
http://goodfellas.shellcode.com.ar/own/binfmt-en.pdf, September 2006.

[31] Amd pacifica virtualization technology. http://enterprise.amd.com/Downloads/Pacifica en.pdf.

[32] Lionel Litty and David Lie. Manitou: a layer-below approach to fighting malware. In ASID,
San Jose, CA, October 2006.

101

[33] Jeffrey Wilhelm and Tzi cker Chiueh. A forced sampled execution approach to kernel rootkit
identification. In RAID ’07: Proceedings of the 10th International Symposium on Recent
Advances in Intrusion Detection, Queensland, Australia, September 2007.

[34] Christopher Kruegel, William Robertson, and Giovanni Vigna. Detecting kernel-level rootkits
through binary analysis. In ACSAC ’04: Proceedings of the 20th Annual Computer Security
Applications Conference, Anaheim, CA, December 2004.

[35] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla. Swatt: Software-
based attestation for embedded devices. In SP ’04: Proceedings of the 2004 IEEE Symposium
on Security and Privacy, Oakland, CA, May 2004.

[36] Rick Kennell and Leah H. Jamieson. Establishing the genuinity of remote computer systems.
Washington, DC, August 2003. Security ’03: Proceedings of the 12th USENIX Security Sym-
posium.

[37] Elaine Shi, Adrian Perrig, and Leendert van Doorn. Bind: A fine-grained attestation service
for secure distributed systems. In SP ’05: Proceedings of the 2005 IEEE Symposium on
Security and Privacy, Oakland, CA, May 2005.

[38] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and Pradeep K.
Khosla. Pioneer: Verifying vode integrity and enforcing untampered code execution on legacy
systems. In SOSP ’05: Proceedings of the 20th ACM Symposium on Operating System Prin-
ciples, Brighton, United Kingdom, October 2005.

[39] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and implemen-
tation of a tcg-based integrity measurement architecture. In Security ’04: Proceedings of the
2004 USENIX Security Symposium, San Diego, CA, August 2004.

[40] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A virtual
machine-based platform for trusted computing. In SOSP ’03: Proceedings of the 19th ACM
Symposium on Operating System Principles, Bolton Landing, New York, October 2003.

[41] Reiner Sailer, Trent Jaeger, Xiaolan Zhang, and Leendert van Doorn. Attestation-based policy
enforcement for remote access. In Proceedings of the ACM Conference on Computer and
Communications Security, Alexandria, VA, October 2004.

[42] Julian B. Grizzard, John G. Levine, and Henry L. Owen. Re-establishing trust in compromised
systems: Recovering from rootkits that trojan the system call table. In ESORICS ’04: Pro-
ceedings of the 9th European Symposium On Research in Computer Security, French Riviera,
France, September 2004.

[43] Intel virtualization technology specification for the ia-32 intel architecture.
ftp://download.intel.com/technology/computing/vptech/C97063-002.pdf.

[44] Carl A. Waldspurger. Memory resource management in vmware esx server. SIGOPS Operat-
ing System Review, 36(SI):181–194, 2002.

[45] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham, and
R. Neugebauer. Xen and the art of virtualization. In SOSP ’03: Proceedings of the 19th ACM
Symposium on Operating Systems Principles, Bolton Landing, New York, October 2003.

102

[46] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing i/o devices on
vmware workstation’s hosted virtual machine monitor. In UTC ’01: Proceedings of the 2001
USENIX Annual Technical Conference, Boston, MA, June 2001.

[47] Lion worm attack advisory. http://www.ciac.org/ciac/bulletins/l-064.shtml.

[48] Bind tsig vulnerability. http://www.sans.org/resources/idfaq/tsig.php.

[49] Dan Ellis. Worm anatomy and model. In WORM ’03: Proceedings of the 2003 ACM Work-
shop on Rapid Malcode, Washington, DC, October 2003.

[50] Xin Zhao, Kevin Borders, and Atul Prakash. Towards protecting sensitive files in a compro-
mised system. In Proceedings of the IEEE Security in Storage Workshop, San Fransisco, CA,
December 2005.

[51] H. Wang, D. Zhang, and K. Shin. Detecting syn flooding attacks. New York, NY, June 2002.

[52] Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. spafford, Aurobindo Sun-
daram, and Diego Zamboni. Analysis of a denial of service attack on tcp. In SP ’97: Proceed-
ings of the 1997 IEEE Symposium on Security and Privacy, Oakland, CA, May 1997.

[53] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and Stefan Sav-
age. Inferring internet denial-of-service activity. ACM Transactions on Computer Systems,
24(2):115–139, 2006.

[54] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of the linux random number
generator. In SP ’06: Proceedings of the 2006 IEEE Symposium on Security and Privacy,
Oakland, CA, May 2006.

[55] Adi Shamir and Nicko van Someren. Playing ”hide and seek” with stored keys. In FC
’99: Proceedings of the Third International Conference on Financial Cryptography, Anguilla,
British West Indies, February 1999.

[56] G Marsaglia. The marsaglia random number cdrom including the diehard battery of tests of
randomness. http://stat.fsu.edu/pub/diehard.

[57] Zhi Wang, Xuxian Jiang, Weidong Cui, and Xinyuan Wang. Raid ’08: Countering persistent
kernel rootkits through systematic hook discovery. In RAID, Cambridge, MA, September
2008.

[58] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,
Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1–3):35–45, December 2007.

[59] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using automatic
anomaly detection. In ICSE ’02: Proceedings of the 24th International Conference on Soft-
ware Engineering, Orlando, Florida, May 2002.

[60] Myricom: Pioneering high performance computing. http://www.myri.com.

[61] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. Cil: Intermedi-
ate language and tools for analysis and transformation of c programs. In CC ’02: Proceedings
of the 11th International Conference on Compiler Construction, Grenoble, France, April 2002.

103

[62] Jeffrey Brian Arnold. Ksplice: An automatic system for rebootless linux kernel security up-
dates. http://web.mit.edu/ksplice/doc/ksplice.pdf.

[63] Haibo Chen, Rong Chen, Fengzhe Zhang, Binyu Zang, and Pen-Chung Yew. Live updating
operating systems using virtualization. In VEE ’06: Proceedings of the 2nd International
Conference on Virtual Execution Environments, Ottawa, Canada, 2006.

[64] Packet storm. http://packetstormsecurity.org/UNIX/penetration/rootkits/.

[65] Larry McVoy and Carl Staelin. Lmbench: portable tools for performance analysis. In UTC
’96: Proceedings of the USENIX Annual Technical Conference, San Diego, CA, January 1996.

[66] W. Norcott. Iozone benchmark. http://www.iozone.org, 2001.

[67] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM Trans-
actions on Information and System Security, 3(3):186–205, 2000.

[68] John D. McCalpin. Memory bandwidth and machine balance in current high performance
computers. In IEEE Technical Committee on Computer Architecture newsletter, December
1995.

[69] Jinpeng Wei, Bryan D. Payne, Jonathon Giffin, and Calton Pu. Soft-timer driven transient
kernel control flow attacks and defense. In ACSAC ’08: Proceedings of the 24th Annual
Computer Security Applications Conference, Anaheim, CA, December 2008.

104

Curriculum Vita

Arati Baliga

Education

1993-1997 B.E. Computer Engineering; Goa Engineering College, Goa University, India.

2000-2001 M.S. Computer Science; New Jersey Institute of Technology, NJ, USA.

2003-2009 Ph.D. Computer Science; Rutgers University, NJ, USA.

Industry

2005 Engineering Intern, VMware Inc, Palo Alto, CA

2000-2003 Principal Software Engineer, Permar Systems, Brooklyn, NY, USA

1998-2000 Software Engineer, Indo-Swiss Financial Software Ltd., Goa, India

1997-1998 Software Engineer, Websci Technologies, Goa, India

Publications

2008 A. Baliga, V. Ganapathy and L. Iftode, Automatic Inference and Enforcement of Kernel
Data Structure Invariants. In proceedings of the Annual Computer Security and Appli-
cations Conference, Anaheim, CA, 2008 (Best Student Paper Award).

2008 A. Baliga, X. Chen and L. Iftode, Automated Containment of Rootkit Attacks. In the
Elsevier Journal on Computers and Security 27 (2008) pp. 323-334, Nov. 2008.

2008 P. Kamat, A. Baliga and W. Trappe, Secure, Pseudonymous and Auditable Communica-
tion in Vehicular Networks, In the Wiley Inter Science Journal of Security and Commu-
nication Networks, Special Issue on Security in Wireless Sensor Networks, Volume 1,
Issue 3, pp. 233-244, Jun. 2008.

2007 A. Baliga and J. Kilian, On Covert Collaboration. In proceedings of the ACM Multime-
dia and Security Workshop, Dallas, TX, 2007.

2007 A. Baliga, J. Kilian and L. Iftode, A Web based Covert File System. In proceedings of the
Usenix Symposium on Hot Topics in Operating Systems, San Diego, CA, 2007.

105

2007 A. Baliga, P. Kamat, and L. Iftode, Lurking in the Shadows: Identifying Systemic Threats
to Kernel Data, (short paper). In proceedings of the IEEE Symposium on Security and
Privacy, Oakland, 2007.

2006 P. Kamat, A. Baliga and W. Trappe, An Identity-based Security Framework for VANETs,
(short paper). In proceedings of ACM International Workshop on Vehicular Ad Hoc
Networks (VANET) held with MOBICOM, Los Angeles, CA, 2006.

Reviewer/Co-reviewer

Computer and Communications Security 2008 (CCS 2008).

Annual Computer Security and Applications Conference (ACSAC 2008).

High Performance Grid Middleware Workshop, (HiperGrid 2008).

Elsevier Journal on Computers and Security, 2007 and 2008.

Workshop on Vehicular Ad Hoc Networks, (VANET 2005, 2007).

Usenix Annual Technical Conference, (USENIX 2008).

European Conference on Parallel and Distributed Computing (Euro-Par 2007).

High Performance Distributed Systems (HPDC 2006).

Vehicular Technology Conference (VTC 2006 Spring).

International Conference on Parallel Processing (ICPP 2005)

