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ABSTRACT OF THE DISSERTATION

Flexural Study And Design Method Of Wood Beams
Reinforced With High Modulus Fibers

BY YANXI CAI
Dissertation Director: Professor P. N. Balaguru

This dissertation presents a strength model to predict the elastic strength and
ultimate strength of bending wood beams. The model can also be applied to wood
beams reinforced with high modulus carbon fibers on compression and tension sides.
For a plain wood beams, its behavior is elasto-plastic in compression and linear elastic
in tenson. For strengthened beams, considering the composite contributes to steady
decrease of tension strength after yielding, part of plastic region is incorporated in the

model.

A specific strength model is described for balsa beams due to the distinct
properties of balsa wood. The balsa wood model considered the influence of shear
stress and deflection due to shear. In elastic range, the model is established on the
fact that the elastic properties reach their elastic limit in directions other than the

natural axes. The basa beam model predicted failure based on ultimate shear strength.

Extensve laboratory program results were gathered and compared with
analysis results from the strength model. The experimental results were aso utilized
to calibrate the model. The comparison verifies that the behavior of wood beams can

be predicted from the proposed strength model with reasonable error.



Step by step design procedure for high modulus carbon fiber reinforced wood
beams is presented to estimate the dimension of wood core needed and the amount of

reinforcement needed for required loading situation.
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Chapter 1

Introduction

11 Resear ch Objective

Composite materias have been in existence for centuries. There are existing
fragments of laminated wood from more than 4500 years. The practical history of
composite analysis goes back to the second-world-war when some early experiments
were conducted with flax as a reinforcing fiber and development work on glass-
reinforced plastics was done. Generally, well-known materials such as dispersion-
hardened metal aloys, glass, aramid, concrete, and carbon fiber are composites.
Wood is actually aso fiber composite with cellulose fiber reinforcing a lignin matrix.
The composites have been used for repair and retrofit in a wide variety of man-made
structures such as houses, bridges, furniture, bridge, buildings, parking garages, and

various types of infrastructures.

High strength composites made of high strength fibers and ductile organic
matrix have very high specific strength and are more resistant to corroson. Besides,
these light weight composites are easy to apply in most places. Composite with good
properties that could be handled and used in reasonably simple manufacturing
operations are also being evauated for use in engineered timber to increase both
strength and gtiffness. If economical means can be found to enormously increase the
srength of timber with such composites, it would widely influence the whole

construction industry.



Experiments were carried out to study the improvement of the strength of
timber beams while they are strengthened with commercialy available economical
fibers. It is shown from the result that the strength of the timber beams could be
increased considerably or even doubled. The Hiffness of the timber is aso found
improved, thus the deflection of the beams could be reduced. However, due to the
specific mechanical properties of wood beams, traditional simple linear elastic models
were concluded not sufficient for the prediction of the behavior of strengthened

timber beams.

A non-linear model that predicts the flexura behavior of timber accurately is
used in this dissertation. The non-linear model was applied to the analysis of timber
beams either strengthened or not strengthened with composite materia, and the

anaytical prediction matches well with experimental investigation.

In order to predict the bending behavior of composite strengthened timber
beam, the understanding of wood strength properties is necessary. In this chapter, the
definition of the terms used in this dissertation will be given, and timber flexura
strengths properties related to analysis and strength model for property prediction will

be introduced.

1.2 Definition of Terms Timber, Lumber and Clear Wood

Clear wood or WOOD in this dissertation refers to clear and defect-free small
sSzes wood, usualy used in laboratory investigations for standard tests. The term
TIMBER refers to commercially sawn timber that is suitable for (or prepared for) use

in structures, usudly containing natural or man-made defects. Timber beam is



referring to timber members of 127mm (5in) or more in the least dimension, with a
width of more than 51mm (2in) and a thickness less than its width. The term
LUMBER is timber cut into standard-sized planks and refers to timber members
containing natura or man-made defects of 102mm (4in) in the least dimension and

lessin thickness.

1.3  Timber Strength Properties

Since timber elements such as flooring, beams, columns and joints are broadly
used in construction to bearing loads, investigator’s research interest are focused on
their mechanical properties: easticity modulus, stiffness, crushing strength, tenson

strength and bending strength.

Timber grading is applied based on the assessment of their growth
characteristic and defects. Timbers can be visually graded according to the limiting
characteristic. The properties of dimensional lumber are assessed by tests of full-size
members following the procedure given in ASTM (American Society for Testing and
Materias Standards) D1990 (2). The mechanical properties of structura timber are
calculated from substantive test data on small, clear specimens according to

procedures givenin ASTM D 245 (2).

However, full size in-grade structural timber and clear wood specimen show
quite different behavior in most cases. Timber is the most ancient and complex
organic natural material on earth, and all wood is composed of different cellulose,
lignin, hemicelluloses, and minor amounts of extraneous materials, thus its properties

are affected by various factors such as the volume of these components, defects,



orientation of grain, and man-made damages. The present of defects in timber makes
it more brittle than clear wood and timber mechanical characteristics are affected by
defects considerably, especially the brittle fracture properties of timber, tension
strength. Because the sze, location and distribution of the defects in timber elements
are hard to investigate, their effects on timber properties are difficult to predict.
Therefore, strength properties obtained from testing on clear wood cannot be taken as
timber strength properties. The current approach to deal with the difference is to
assume the section area occupied by defects totally functionless conservatively. The

adjust factors are introduced to adjust strength properties of clear wood.

There are also problems for the full sze test properties from dimensional
lumber. Such full size tests involve thousands of specimens to get a predictable resullt,
and statistical approach to brittle fracture is used to analysis lumber properties. A
satistical distribution model is chosen to fit the distribution of data and the
introduction of a calibration is then necessary. However, since timber fracture
mechanism is very complex and has not been clearly discovered yet, the research of
brittle fracture statistics in this field can easily become simple data accumulation and
curve fitting while genera curve fitting is not an accurate and reliable way to predict

the mechanical properties of timber.

Fortunately, in the research of composite strengthened timber beams, the
difference among the properties of clear wood, structura timber and lumber is much
smaller. The composites act like bridges over the timber defects. The existence of
composite material makes the structural member section more ductile, and the

influence of the defects in the wood, timber or lumber is reduced. Since the difference



of the mechanical properties of timber and clear wood is much smaller than in the
unstrengthened caseg, it provides the possibility to apply clear wood properties as the

properties of structural timber in theoretical analysis.

Based on statistic analysis, wood strength properties of most species were
investigated. Relationships between strength properties and corresponding elasticity
modular were established. These relationships can be further used to determine certain
strength properties such as parallel-to-grain tensile strength. These relationships for
clear wood can then be applied to composite strengthened timber, while the
interaction between timber and composites makes the structural element section more
ductile. This approach can make best use of available clear wood properties and avoid

large amount of experiments.

14  Wood Non-linear Model in Bending

The properties of wood vary enormously from one to another and are highly
dependent on their texture. For instance, the modulus of easticity of oak and hickory
can be as large as 20800M Pa, while the modulus of elasticity of balsa and ceiba could
be just around 2800M Pa. Moreover, timber could not be modified during engineering
process. Because of the complexity of timber material, the design of timber elements
often utilized simplified alowable stress design. Designers use modulus of rupture of
timber directly in design practice. It is assumed that the timber elements aways
experience tenson falure and the non-linearity of the stress-strain relationship of

wood isignored.



However, strengthened by composite materia, the stress-strain distribution of
timber element is extended. The modulus of rupture can no longer control its
properties and compression failure must be taken into consderation for better
prediction and design. Based on the fact above, the non-linearity of the timber must be
presented in wood analysis model so as to more accurately match the behavior of

strengthened timber.

A non-linear strength model for predicting the strength of timber members in
bending from Balaguru and Chen’s work is presented and described in this
dissertation. The model incorporates more ductile non-linear behavior in compression
sde and linear elastic behavior associated with brittle tensile fracture. The
relationship between strength properties and modulus of easticity is used to find the
equivalent maximum compressive strength. Tensile strength of timber beams is aso
determined using the relationship between fractural strength and strength distribution
parameters. This non-linear model is applied to the analysis of the timber beams
srengthened with composite materials such as FRP layers. Comparing with
l[aboratory investigation data on different species of wood, it is shown that this model
results in accurate theoretical prediction of the strengthened timber beam in bending.
Sensitive analysis is followed to study major parameters related to the model in order
to give better insght of the model and to provide more information for design. Design
method based on the strength modd is investigated. The methodology study is
followed by feasible design guidelines for FRP strengthened timber beam. A detailed

procedure is summarized and flow chart for the design is presented.



15 Reinforcing Composite Materials

Composite materials are made up of at least one type of continuous reinforcing
fiber and a resin material to permeate the fibers and then be solidified. Hybrid
laminate composites and sandwich constructions are being used broadly in the filed of

arcraft, marine applications and lightweight structural members in construction.

Sandwich gtructure is a hybrid composite type with fiber skin and non-fiber
core. The skins consist of types of fiber arranged in either same or different directions.
Core materials range from species in nature such as balsa and oak wood to man made
materials like honeycomb or foam structures. In engineering and scientific
application, the sandwich structures are found to have better insulation and stiffness,

greater resistance to impact, corrosion and damage.

While used as an element under flexura load, sandwich structures behave
smilarly like an I-beam. The Fiber skin act as the flange of the I-beam and the core
part could be considered as the shear web of the beam. The top skin is under
compression and the bottom skin is under tensile stress. The core material bears the
shear stress. The structura properties of sandwich structures such as rigidity and
flexural strength can be easily and enormously adjusted by simply increase or

decrease the cross section area of the core.

Because of the wide use of sandwich structures, the theoretical investigation
and prediction of the flexural properties of structure members in this dissertation was
compared with the experimental results from the tests on sandwich beams. The skin

material consgs of various FRP reinforcements and the core is from solid oak wood



and solid balsa. The tests were conducted in engineering lab in Rutgers, The State

University of New Jersey.



Chapter 2

Literature Review

21 Introduction

Wood is the most widely used structural material with applications all over the
world. Wood is adso one of the most complex natural organic materials, and its
mechanical properties vary tremendousy between different wood species. The
properties of most of the commercial wood are listed in Wood Handbook [1999] or in

ASTM [1999], which is helpful to wood property analysis.

This brief literature review describes the analyss of the timber mechanical
behavior and strength properties with focus on the flexural strength and axial loading
srength. A review of the development and investigation history in this field is
presented in this chapter. The wood strength model presented in later chapters is

based on some of the results referred to in this chapter.

For more than one hundred years, researchers have been trying to find a
method to predict bending behavior of timber members based on the data from the
tension and compression tests. However, because of material variability, non-linear
stress-strain behavior in compresson and the presence of very significant size effects,
this attempt is showed to be much more difficult for wood than for other man made
materials such as steel and concrete. Quite afew of different analysis approaches were
proposed and applied to the engineering application, and some of the most important

ones are presented below.



10

22  Wood Axial Compression and Tension Strength

The deformation of axial loaded member is not usualy an important
consideration. More considerations were put on combined loads or bending. However,
axial tension and compression behavior of dmilar members is the foundation of
srength prediction. Models are aso developed to predict the strength of lumber in
bending, and in combined bending and axia loading on the basis of axial tension and
compression behavior of smilar members. Knowing how a material sample contracts
or elongates as it is stressed up to failure provides a crucial model for its performance

in an actual structure.

Wood has two compressive strengths: one was loaded paralld to the grain and
the other was loaded perpendicular to the grain. Laboratory investigations show that
the strength and modulus parale to the grain are much higher than in the transverse
direction. Strong carbon bonds in the fibers aligned along the axes of the cells, which
are parallel to the grain, give the high strength and modulus in this direction. Across
the grain, the cells are hollow and are held together by weak, low molecular weight
resins leading to the low modulus and strength. Generaly strength and modulus

across the grain are only about 10% of the values parallel to the grain.

Columns are verticd load-bearing elements that are normally loaded in
compression. Axially loaded wood columns may fail either by crushing or buckling.
A short column fails when its compressive strength paralle to the grain is exceeded.
When timber is loaded in axial compression pardle to the grain, it exhibits linear

stress-strain behavior up the yield stress that approximate half of the rupture modulus.
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Then the timber column drops until ductile crushing at ultimate load. While the
ultimate load is reached, characteristic compression wrinkles due to local buckling of

wood fibers become visible.

Current standard wood test for compression parallel to the grain uses a clear
graight-grained specimen (51mm x 51mm x 203mm). A compressive axial load was
axially applied to the specimen slowly until failure occurs, obtaining simultaneous
readings of load and axia deformation for every unit of specimen deformation. The

results of extensive testing programs have been published in Wood Handbook [1999].

Wood has its highest strength in compression. Compression failure occurs
when critical strain is reached. The tensile strength is usualy somewhat lower due to
flaws. Failure occurs in tension, when stress exceeds defect strength. Based on the
weakest link of chain principle and the principle of brittle fracture mechanics, it is
assumed that defect strength defines the tension strength. It is extremely difficult to
perform tension tests on wood due to physical problems of gripping the specimen in a

testing device and making a connection stronger than the test specimen.

Until the 1960s, allowable tensile stress in timber elements was established in
engineering practice for tensile strength design as a theoretical extrapolation measured
tensile failure stress of bending specimens. This was partly due to the difficulties of
developing axia tensle load testing equipment that could test timber specimens to
failure without simply breaking at the grips and this approach was considered to be

conservative and safe. The grip zone failure casts legitimate doubts on the tensile
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dresses in the member at failure. The first recorded test on wood in axial tension

paralld to the grain was performed in 17" century.

In nowadays the ASTM standard test use 450mm long piece of clear wood
necked down to 4.8mm x 9.5mm over a 64mm gauge length to conduct the axia
tension tests. Markwardt and Y ounguist (1956) have described the evolution of this

test specimen.

Taking tensile design stresses equal to the bending design stress was not a
serious problem in 1960s because there is no high stresses developed in tension
members of rea structures which requires suitable connection. Eventualy, new grips
were developed that led to effective results could be used in axial tension strength
evauation. The commercial size materia with defects was tested and the influence of
Sze effect in tension was realized, thus the interest in tension strength of clear wood is
renewed. Unfortunately, the new tension tests demonstrated that wood has less tensile
srength than previously predicted on the basis of the flexural tests. For smaller
specimens, the differences between axialy-induced and bending-induced tensile
stresses were not obvious. However, the differences became significant while the
specimen size increased. The 1977 NDS specifications introduced a new reduction
factor of as much as 40 percent for allowable tensile stresses for members 254mm (10

inches) and wider, and number 1 grade or less.

Compared with the secant formula, the Euler curve, and The National Design
Specification (NDS) (1997) for Wood Construction, Burl E. Dishongh (2002) has

proposed a universal column formula (UCF) The UCF relates compressive strength to



13

the slenderness values for axially loaded columns. The UCF is to perform any axialy

loaded timber and steel column strength analysis and design.

23  Wood Bending Strength

Timber, which is made up of natural polymers, is extraordinarily complex
material that has been used for thousands of years as a structural material. The most
important structural properties are those relating force to deformation, or stress to
srain. Knowing how awood sample contracts or elongates asiit is stressed up to
failure provides a crucia model for its performance in an actual structure. Not only is
its ultimate stress indicated, but also a measure of its resistance to strain, linear and

non-linear behavior.

Wood beams are used to sustain flexural stressin structure members. Bending
tests were conducted to study the mechanism of bending of timber beams. It is shown
that the compression side of the beam behaves elastically until it reaches a yield limit.
After that, the neutra axis shifts down towards the tensle side of the beam and the
stress on tension face keeps increasing even after the compression face yield until the

beam reaches its ultimate load.

A linear relationship between stress and strain is an indicator of elastic
behavior. Traditionally, it is assumed that the mechanical properties of timber beam
are linear elastic until it fails. For typical wood beams, this smplification is feasible in
design practice. This is because the maximum moment capacity is reached when the
outer most tensle face of the beam reaches its dastic limit. Then the neutral axis of

the beam is close to the tension face and the lever arm is small, thus the descending
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part of the stress curve does not corresponding to an obvious moment capacity

increase.

The modulus of rupture was computed by dividing the maximum bending
moment of the wood beam by section modulus and was taken as the failure stress of
the beam while it fails. Thisis true if the beam is perfect linear elastic. If the behavior
of the beam is not perfectly linear, the modulus of rupture is just an gpproximation of
the bending failure stress. Since the wood beam was assumed to be linear eastic in

early years, this rupture modulus could be used in bending strength design.

However, things have been changed since composite materials were
introduced to reinforce wood core in sandwich members. The existence of composite
material makes the wood beam more ductile and doesn’t fail when the tensile face of
the wood core reaches its elastic limit, thus the stress-strain relationship of the beam
should be extended and the inelastic part of the stress-strain relationship can no longer
be ignored. Instead, the non-linearity behavior and plastic behavior that characterized
by permanent deformations of timber should be studied and analyzed to get an
accurate prediction of the wood beam, especially when failure loads are being

computed.

Wood beams are generaly designed for bending stress and then checked for
shear and deflection. Severa orthotropic failure criteria have been investigated for
combined stresses in wood members (Cowin 1979, Goodman and Bodig 1971,

Keenan 1974, Liu 1984a, Norris 1950, Tsai and Wu 1971). Sometimes, in-grade
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testing method is shown to be useful if consistent safety indices are to be maintained
(Webster, 1986). Mechanical grading method based on the relation between Young's
modulus (E) and strength (o) with some linear regresson models is aso popular

(Takeda, Hashizume, 2000).

A stress distribution of wood beam was proposes by Neely (1898) to modify
the existing linear elastic design model. It is assumed that wood presents bilinear
elasto-plastic stress-strain relationship in compression and remains elastic in tension.
In other words, approximate analytical procedures, based on an elasto-plastic
compression and linear tension stress-strain distribution in tension, are used to predict
ultimate strength. This is a reasonable approximation comparing with real test results.
For clear wood that has no influence from defects, the tension strength is much larger
than the compression strength, so Neely claimed that the flexura capacity could be
evauated from the compression failure along. Figure 2.1 shows the simplified form of

Neely’s model.

Compression Strergth

Timber Strain

Figure 2.1:Stress-Strain Distribution of Wood Beam Proposed by Nedly
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Biblis described a new theoretical anaysis for wood fiberglass composite
beams in static bending within and beyond the elastic region in 1965. He studied the
behavior of Wood-Fiberglass composite beams within and beyond the elastic region,
taken into consideration of the classic flexural model and the shear effect of the core
wood, either in terms of rigidity modulus, or indirectly, by using the “vertically-
transformed depth” of the composite. His theoretical analysis results in elastic and

plastic regions match excellently with the values from experimental tess.

The compression tests on small clear Sitka spruce beams that Bechtel and
Norris (1952) carried out produced a stress-strain curve as shown in dashed line in

Figure 2.2.

Stress
[ ]
Ivlax. tension stress|. ...

» Strain

Teated cure

Lgzmmed curve

.| lazx. compressive stress

Figure 2.2: Elasto-Plastic Stress-Strain Distribution Proposed by Bechtel and Norris

They simplified the stress-strain relationship to be perfect elasto-plagtic in
compression side and linear elastic in tension. Wood properties were calcul ated based
on this model, and in 1955, Norris proposed a criterion of failure under combined

bending and shear stress.
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Comben (1957) tested series of clear wood beams. He confirmed that plane
cross section of the beam remains plain and the tenson behavior of wood remains
linear elagtic until failure. He aso found that the compression stresses at yielding limit
are the same for wood beam in pure compression and for compression face of bending
specimen. Ramos (1961) proposed that the compression stress block in bending could
be estimated from the axial compression stress-strain distribution. Nwokoye (1975)
proposed a theory based on stress-strain relationship similar to Bechtel and Norris’s
model and got very accurate strength prediction. He also confirmed the plane sections
remained plane in bending and that the extreme fiber stress in bending at the

proportiona limit is the same as the stress of the compressive failure strength.

Bazan (1980) and Buchanan (1990) proposed a refined elasto-plastic
relationship in compression. The proposed stress-strain relationship in compression
was described as bilinear and is increases up to maximum stress and then reduces
linearly until failure. Buchanan further assumed that the slope of the falling segment
of the relationship could be taken as a constant material property. The refinement is
mean to predict the ultimate strength more accurately and the model is more close to

the actual case, but the anaysis becomes much more complicated.

Compared al the advantages and drawbacks of the models above, Chen
(2003) introduced a new elasto-plastic stress-strain relationship in compression
behavior of bending wood beam. He proposed an equivalent maximum compressive
srength, and the plastic strains started from this equivalent maximum compressive

srength, not the real actua compressive stress. Theoretical analysis in this
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dissertation is mainly based on Chen’s model, and detailed description is to be shown

later.

24 Lumber Size Effect

Wood has its highest strength in compression. The tensile strength is usually
somewhat lower due to flaws. The defects commonly found in timber act as stress
raisers. This reduction of the strength depends on the ratio of the area of the defects to
the area of the timber member and on the sharpness of the geometry of the defect.
Different from the clear wood, the lumber has defects, thus the properties obtained
from clear wood specimen cannot be applied directly onto lumber property study.
Size effect in wood industry should always be considered serioudy in theoretical

anadysis and practical design.

Extensve tests showed that lumber in larger Szes tends to present lower
srength comparing with smaller size ones. Weibull (1951) proposed the statistical
approach of the brittle material strength. He explained the strength of weak link
system by a cumulative exponentia distribution, and how the stress distributions and
srength varies with volume of the test specimen. His statistic theory has wide

applications and is known as Weibull’s distribution.

The tests that Comben (1957) carried out also show that there was significant
reduction in failure stress while the wood beam size increases. Based on numerical
data for Douglas-fir beams, Liu (1982) expanded the anadysis of size effect on
bending strength of rectangular wood beams based on Weibull's theory of brittle

fallure to wood beams under arbitrary loading conditions. The mathematical
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formulations are expressed in terms of the two parameters in Weibull's model. The

parameters must be determined experimentally for each wood species.

25  Composite Reinforcing Material

A promising use for high performance composite materials is to reinforce
timber beams. Many researchers studied the use of carbon and glass fibers to reinforce
sawn timber sections as a composite materid in increasing the stiffness and strength
of timber products. Consideration is given to strength phenomena of timber beam

alone and in reinforced sections in bending and shear.

Experiment result shows that even the wood itself in the composite section
shows strength increase, and that the increase in moment resistance of the reinforced
beams is far greater than that predicted by simple models, but the existence of the
reinforcement is till to resist major load acting on the composite system. The fiber
reinforcement material constitutes the largest volume part in a composite material.
Typicd fiber reinforcements used in industry are E-glass fiber, S-glass fiber, carbon,

aramid and basalt.

Because of its advantages such as low cost, high tensile strength, high
chemical resistance and excellent insulating properties, glass fibers became most
popular in composite industry. But it also has its disadvantages, namely, low tensile
modulus, sensitivity to abrasion with handling, relatively low fatigue resstance and
high hardness. Glass fiber includes E-glass, S-glass, chemical glass and Alkali-

resistant glass. The first two types are most common in industry.
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The advantages of carbon fibers are their high electrical conductivity, high
tensile strength-to-weight ratios, high tensle modulus-to-weight ratios, high fatigue
srength and very low coefficient of linear thermal expansion. However, they aso
have their disadvantages such as low impact resistance and high cost (Amateau, 2003;
Mallick, 1993), and the carbon fiber debris generated during weaving may cause
shorting in circuit. The moduli of carbon fibers range from 30,000 ks to 150,000 ksi.
High modulus carbon fibers result in lighter weight composite structure due to their
high stiffness (Competitive Cyclist, 2003) and were successfully utilized to

construction applications (Moy, 2002).

Aramid fiber is a synthetic organic polymer fiber produced by spinning a solid
fiber from liquid chemical blend, and has the lowest specific gravity and highest
tensile strength-to-weight ratio of all reinforcing fibers. It aso possesses good
resistance to abrason, impact, chemicals and thermal degradation. Aramid fibers were
widely used in making military body armor, marine cordate, oxygen bottles, rocket
casings, etc. On the other hand, aramid fibers aso present low compressive strength,
degradation if exposed to ultraviolet light, and enormous difficulty in machining
(Mallick, 1993; Smith, 1996; SP Systems, 2001). Theses drawbacks should aso be

taken into consideration in industry practice.

Basalt fiber is derived from volcanic material deposits and has excellent
strength, durability, thermal stability, heat and sound insulation properties, and great
vibration and abrasion resistance. Basalt fibers are used in paving and construction
industry, for instance, heat shields, composite reinforcements, therma and acoustic

barriers (Albarrie, 2003).
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Fiber reinforcements are available in a variety of forms include spools of tow,
roving, milled fiber, chopped strands, chopped or thermo-formable mat, and woven

fabrics. A brief description of the common forms of fibersislisted as follows:

Filament:
Filament is individua fibers drawn during drawing and spinning. It cannot
function individually and must be gathered into strands of fibers so as to be applied in

fiber composites (Watson and Raghupathi, 1987).

Yarn:
A yarn is a teem for a closely associated bundle of twisted filaments,
continuous strand of fibers, or strands in a form suitable for knitting, weaving, or

otherwise interwining to form atextile fabric.

Tow:
Tow is untwisted bundle of continuous filaments. It is normally used in
manufactured fibers, especialy carbon fibers. Tows are measured by weight and are

usually wound onto spools.

Roving:

Roving is loosely associated parallel bundle of untwisted fiber filaments or
srands. Each filament in a roving has the same diameter. Roving has been most
commonly used in continuous molding operations such as filament winding and

pultrusion.
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Chopped Strands:
Chopped strand are produced by cutting continuous strand into segments with
shorter-length. Chopped strands with a length between 3.2mm to 12.7mm are

typically applied in injection molding processes.

Milled fibers:
Milled fibers are very short fiber segments cut from continuous strand in a
hammer mills. They are typically used in reinforced reaction injection molding,

phenolics, and potting compounds (Watson, et al., 1987).

Fiber Mats:
Fiber mat is randomly oriented fibers held together with adhesive binder. The
advantages of fiber mats are their low cost, high permesability while the low stiffness

and strength and worse mechanica properties are their disadvantages.

Fabrics:
Fabric is a flat sheet of fibers assembled from long fibers of carbon, aramid,
glass, other fibers or a combination of fiber materials. Typical used types of weave

formsinclude plain, twill, basket weave, harness satin, and crowfoot satin.

Composite materials are made up of continuous reinforcing fiber and aresin
material to permeate the fibers. The major functions of the matrix are to transfer
stresses between fibers, to provide a barrier against the environment, and to protect

the surface of the fibers. There are two maor types of matrices, organic and
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inorganic. The most widely used organic resins are polyester, vinyl ester, and epoxy,
but organic matrices also cause heath concerns and flammability hazards. Inorganic
matrices are more suitable for applications in high temperatures circumstances, for

instance, geopolymer.

2.6 Sandwich Beams

Hybrid composite with fiber skin and non-fiber core is referred to as sandwich

dructure.

The rigidity and flexura strength of sandwich structures can be easily and
considerably adjusted by increase or decrease the cross section area of the core.
Sandwich structures aso have other advantages such as lightweight, lower cost,
greater insulation, excellent impact and damage resistance and sound attenuation.
They are designed for aircraft because of their advantages. Moreover, sandwich
panels can aso reduce the stiffeners needed in condruction, and can be used as
economical, light and strong building components. Another application of FRP
strengthening is that this reinforcing method can be applied without necessitating the
removal of the overhanging part of the pre-existing wood structure, thus maintaining

the original historical structure (Borri, Corradi, Grazini, 2005).

The core material between the fiber skins increases the stiffness of the member
enormously and transfer shear across the structure. There is extensive range of the
material used as core in sandwich structures. The most common utilized core

materials include hardwood, honeycomb and polymetric foams. In the laboratory
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investment conducted in Rutgers University, The State University of New Jersey, oak

wood and balsa wood were chosen as the core material in sandwich beams.

Facing material is the mail load-bearing element in sandwich member. Almost
any material used in building such as plywood, hardwood, plastics, stedl, duminum,
FRP, could be applied to the core material as the facing materia (Allen, 1969). When
a sandwich beam is loaded in bending, the top face is usually in compression and the

bottom face is alwaysin tension.

Some of the most common configurations of sandwich structures are listed in

the following table:

Facing Material Core Materidl
Metal Plywood
Metal Foam
Aluminum Aluminum Honeycomb
Aluminum Balsawood
Fiberglass Reinforced Plastic Foam
Fiberglass Reinforced Plastic Balsawood
Fiberglass Reinforced Plastic Nomex Honeycomb
Carbon-phenolic Nomex Honeycomb

Table 2.1: Common Configurations of Sandwich Structures

27  FRP Strengthened Wood Beams

High strength, low weight, corrosion resistance, and electromagnetic neutrality
make fiber-reinforced plastic (FRP) a suitable candidate in many structural
applications, including rehabilitation, strengthening and new construction. FRP

reinforced wood construction can enable contemporary wood structures to play
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greater role in construction. In the past years, much effort was made to study wood-

FRP laminates, the interaction and bond strength of FRP-wood interface.

Triantafillou and Deskovic (1992) establish the novel technique for
reinforcing wood members involving external bonding of pretensioned FRP sheets on
their tension zones, and the anaytical model is verified with tests on carbon/epoxy-

prestressed wood beams.

Pultruded FRP composite as a composite material is used in increasing the
stiffness and strength of timber products and finite element model is introduced to

evauate the bond strength (Barbero, Davalos, Munipalle, 1994).

Triantafillor and Thanasic (1997) studied mechanical behavior of wood
members strengthened to the shear-critical zones externally with FRP materials in the
form of laminates or fabrics. The analysis is followed by parametric studies to assess
the influence of the type and amount of FRP reinforcement on the strength of FRP
drengthened elements. He (1998) also studied the use of composites as shear
strengthening materials for wood members. They presented analytica models for the
contribution of composites to the shear capacity of strengthened elements within the

framework of ultimate limit states.

Johns and Lacroix (2000) carried out tests to evaluate the application of FRP
reinforcement in strengthening wood beams. They concluded that the FRP can

effectively improve the performance of wood structures in repairing and retrofitting.
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FRP tensile reinforcement in reducing creep deformations is effective. Davids,
Dagher, and Breton (2000) focused their study on the development and calibration of
numerical method for modeling creep deformations of glulam beams strengthened on
the tension side with FRP. A numerical model based on layered moment-curvature
anaysis is proposed and is shown to be able to accurately predict the relative creep

displacements of the glulam beams.

Judd and Fonseca (2003) discussed the response of wood-frame roofs
strengthened with FRP sheathing panels. A finite element model is developed and it is
shown that the model is fairly accurate. Tests indicated that wood-frame roofs using
FRP are 37% to 144% stronger and nearly twice as stiff compared to unstrengthened

ones.

Chen and Balaguru (2003) conducted non-linear analysis for strengthened
timber beams usng FRP. Analysis was developed using elasto-plastic behavior in
compression and linear eastic behavior in tenson for wood and linear elastic
behavior for composites. Delayed tenson fracture of wood beams when FRP sheets

are present in the tension face, are also investigated.

Nordin and Taljsten (2004) studied the hybrid beam consists of a glass fiber I-
beam with carbon fiber strengthened bottom flange and a rectangular concrete block
in the compressive zone. It is shown that the glass fiber 1-beam would take up the
main part of the shear force. The results showed that there could be a good composite

action between carbon, glass and concrete.
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Lyons and Ahmed (2005) studied the effects that resin system, wood surface
condition, moisture content, primer application, and environmental exposures have on
bond strength and durability. It is shown that there is arelationship between resin type
and wood moisture content with respect to bond strength. Application of the

composite on arough surface overall improves the bond strength.

Theoretical analysis of wood beams either strengthened or unstrengthened
with FRP is presented in this dissertation. The model is simplified from Bechtel and
Norris’ theory based on Balaguru and Chen’s elasto-plastic analytical model. Details

of the analysis and procedures will be presented in later chapters.
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Chapter 3

Clear Wood Flexural Model

31 Introduction

A non-linear flexural model for clear wood was introduced in Balaguru and
Chen’s thesisin 2002 in order to predict the behavior of wood beams in bending. The
refined stress-strain relationship proposed by Bazan (1980) and Buchanan (1990)
described the compression behavior of wood as bilinear and is increases up to
maximum stress and then reduces linearly until failure. The refinement might be able
to predict the ultimate strength more accurately theoretically, but the analysis
becomes much more complicated and more parameters are required to complete the
anadysis. More accurate than Bechtel and Norris’s model and simpler than Bazan and
Buchanan’s model, Balaguru and Chen’s model introduced a strength model with a
perfect plagtic line started below the maximum compression strength. The plastic line
represents a strength so called wood equivalent maximum compressive strength. This

model will be described in detail later.

This chapter will state the basic relationships between clear wood properties,
general mechanics of loaded wood specimen. Chen’s wood flexurad mode will be

presented with all the relating assumptions.

3.2 Basic Reationships Between Wood Mechanical Properties

3.2.1 Factorsthat Affect Wood Properties
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The unique characteristics and abundance of wood made it a most popular
natural material for building and other structural members. Wood is usually composed
of cellulose, lignin, hemiceluloses, and minor amounts of extraneous materias
contained in cellular structure. Different characteristics and volume of any of these
components give wood different physical properties and mechanica properties. Wood
aways exchanges moisture and heat with surrounding environment. The amount and
direction of the exchange were influenced by the relative humidity, temperature and
the amount of water in wood. The moisture relationship has enormous influence on
wood strength and performance. Besides, the age of the wood, the loading rate, the
loading time will aso affect the strength of wood. Generally, it is considered thereisa
positive linear relationship between the density and strength of wood. Tests were
conducted on clear wood with different density in Rutgers University Engineering lab.
The results were analyzed and can support this argumentation. The data gained and
andyzed in this dissertation is based on tests on wood with moisture content of

around 12%.

Based on the testing and analysis results, some relationship between properties

of clear wood can be summarized as follows:

1) Wood axial modulus of easticity varies linearly with densty: Price

(1928).

2) Wood axial compression strength varies linearly with density, Wood

Handbook (1999).



30

3) Wood axial tension strength varies linearly with density, Wood Handbook

(1999).

3.2.2 Stress-Strain Relationship of Wood

The basic characteristic of compressve stress-strain curve can be described as
follows: While the strain of wood is smdl and is in the range of 0-0.02, the
compressive behavior of wood can be considered as linear elastic. This linear elastic
region is followed by a stress falling branch and then a stress plateau until strain
reaches a range of 0.2-0.8. The ending compressive strain of the plateau depends on
the strength of different wood member. It is assumed in Chen’s model that the starting
of the compresson stress drop before the stress plateau corresponds to the
compression failure of wood. The maximum compressive strain of the strongest wood
is considered to be 0.05, and the maximum compressive strain of the weakest wood is

0.1.

Based on the results of many investigations on tensile behavior of wood, it is
known that the stress-strain relationship of wood in tension performs linearly until it
reaches the critical point. The model Chen presented is based on analyss of clear
wood and the assumption that the tension strength from both tension test and bending
test are the same. In fact, if the specimen is not clear wood, then its strength is aways
affected by the defects on the cross section, and the influence from the knots and
defects is larger if the tenson area is larger. It is known that the tension area is larger
in axial tension than in bending, and that is the reason that the tension strength from

axial tension test and bending test are different since the tension area is not the same
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in these two types of tests. The “weakest link theory” will be used to analyze such

differences.

33 Balaguru and Chen’sWood Flexural Mode

3.3.1 Wood Flexural Model

Typicdly, linear approximation is used for the flexural design and analysis of
wood in engineering practice. Modulus of rupture of wood is often used as wood
bending strength. The value of the modulus of rupture is estimated with simplified
linear elastic method while bending wood members behave non-linearly, thus the
modulus of rupture is not a true stress and can not represent the maximum load
bearing capacity of wood. For a clear wood specimen in bending, the compressive
Sde reaches the elastic limit much earlier than the tensile side and then behaves non-
linearly. When the compression wood reaches the maximum compression stress, its
corresponding strain increases and the stress decreases, which is shown in Figure 3.1.

Stress
k r
Ivlax. tension stress

» Strain

Typical tested curve K /

D .
Ivlax. compressive stress

Figure 3.1: Clear Wood Stress-Strain Curve

Different models that are trying to predict the behavior of bending wood
specimens more accurately were reviewed in the previous chapter and the elasto-
plastic models were discussed. Neely (1898) and Bechtel and Norris model is shown

in Figure 3.2. Bazan (1980) and Buchanan (1984) proposed their model based on
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Bechtel and Norris’ model that is shown in Figure 3.3. Neely’s model ignored the
faling part of the compressive stress and assumed the compressive stress remains
maximum since it reaches the peak value. Bazan and Buchanan tried to include the
faling branch of the compressive stress into the model. They proposed a bi-linear
model and a straight declined line to represent the decreasing part of compressive
sress. Theoretically, this model can describe the real case more effectively, but it
makes the analyss much more complicated because more parameters were
introduced.

Stress

Ivlax. tension stress

+ Stram

Tested I:T‘JIi-'E —\. '

-\.“. -

| Max. compressive stress

Proposed by Neely
{1898), Bechtel and
Homis (1952)

Figure 3.2: Nedly, Bechtel and Norris Elasto-plastic Compressive Model
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Figure 3.3: Bazan and Buchanan’s Bi-linear Compressive Model
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Trying to make the analysis both smple and accurate, Chen’s model was
proposed, combining the advantages of both Neely’s and Bazan’s mode. The new
model remained to be dastic-plastic in compression and linear elastic in tension. The
difference between the new model and Neely’s model is that the plastic strain in new
model started from an introduced equivaent maximum compressive stress instead of
the real maximum compressive stress (Figure 3.4). Equaling area A with the
summation of area B, the location of the equivalent maximum compressive Stress is
determined. Theoretically, thisis to make the compressive area under the tested curve
equals the area under the elastic-plastic line. Chen’s model can be proved to be a
better approximation to the actua non-linear bending behavior of clear wood in the

following anaysis.

Ivlax. tension stress

_ Strain

Tested curve
B \' B Proportional lirat

Proposed equivalent max. compressive stress
Ilax compresstve stress

Froposed in this dissertation

Figure 3.4: Wood Stress-Strain Relationship Proposed by Chen



3.3.2 Basic Assumptions of Chen’s M odel

The basic assumptions of the flexura model of wood beams are listed as

follows:

1) The behavior of clear wood beam accords with classical bending theory.
In other words, the dtrain distribution is always linear across the whole

depth of beam. Plane remains plane after loading process.

2) The modulus of elagticity of wood is the same for wood in axia

compression, axial tension and bending.

3) Strength properties of wood in axial tenson and compression can be

applied to analysis of wood in bending.

4) Wood in compression has elasto-plastic stress-strain relationship. The
maximum compression strain is considered to be 0.05 for the strongest

wood and 0.1 for the weakest wood.

5) For plan wood beams, wood in tenson has linear stress-strain
relationship up to the elastic limit of wood. The failure of wood members

is always controlled by the failure of maximum tensile fiber of the wood.

34  Unstrengthened Wood with Rectangular Cross Section Analysis

As we discussed in the previous section, the behavior of the unstrengthened

clear wood is considered to be elastic-plastic on the compressive face and linear

elastic on the tensile face. Balaguru and Chen’s model defined two loading stages of

clear wood up to its failure. When loaded with small pure bending, the behavior of
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wood beam is linearly eastic until the beam reaches the elastic compressive stress.
This marks the ending point of the first stage of loading. The second stage starts when
the compressive face entered the plastic range, and ends when the tension face of the
beam achieves its elastic limit and fails. The equations derived and listed later can be

utilized to analysis the performance of plain rectangular wood beam (Figure 3.5).

w A
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Figure 3.5: Unstrengthened Rectangular Wood Section

34.1 Stagel—Compressive Wood in Elastic Range

The cross section of the rectangular clear wood beam is shown in Figure 3.5.
The width of the beam is b, and the height of the beam is h. When the moment is
small and the beam isin the elastic range, the depth of neutral axis of the beam c=h/2,
and the moment of inertia I=bh*12. Since the maximum compression and tension

dressin timber fy can be evaluated with:

f :WI_W (3.1)

While the neutral axisis still in the middle of the section,

6M

fo=>0
™ bh?

(3.2)
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The modulus of rupture f; is calculated based on linear eastic assumption. If

Mnax IS the maximum moment that the section can sustain, then

6M
|, = mex 3.3
T Ton? (33)
Thus,
2
M. :%’ f, (3.4)

34.2 Stagell—Compressive Wood in Plastic Range

The second stage of the loading process on a rectangular section wood beam
was defined to start at the maximum elastic compressive stress fe. and end at the
ultimate tensile stress fie. A new parameter m was introduced to the analysis modd,

and the definition of mis;

m=—c (3.5)

Since O£ f £ f, for most cases of wood, the value of mislimited from O to

1.
The stress and strain distribution along the cross section of beam is shown in
Figure 3.6.
2 f
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Figure 3.6: Stress & Strain Distribution of Rectangular Section Beam in Stage |1
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From force equilibrium equation, we have

Fe+Fy =Fe (3.6)
Which can be also presented as:
1 1 fie
—bm(h-c)f,+b(c+mc- mh)f, ==b(h- c)—= (3.7)
2 2 m

Where fee is the maximum eastic compressive stress and fie is the ultimate
dadtic tendile stress.

Substitute Equation 3.5 into Equation 3.7,

%bm(h -c)f,+b(c+mc- mh)f = %b(h -C)f, (3.8)
Solving equation 3.8,
2
c= 2XM -, (3.9)
d+m)

Based on moment equilibrium relation of the cross section area,

M, = Fteé(h_ c)+ Fceém(h— C)+ Fcy[%(c+ mc- mh)+m(h- ¢)] (3.10)
which s,
Mo =20 O 2(0- 0+ brfh- O, - O+ f e o mA (e mhy+r(h- O]

(3.11)
Simplified Equation 3.11, we have

M zkb(h— c)? +£bmz(h- c)? +£b(c+mc— mh)(c + mh- mc)
3m 3 2

max

(3.12)
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Substitute Equation 3.4 into Equation 3.12, the relationships between f, and fce

and fie can be obtained as follows:

foe _m#1 (3.13)
f, 3-m
and
k:m—ﬂ (314)
f, B3-m™m
or
f(f,+f)
—z_celice  'r/ 3.15
eTT5TT (3.15)
From Equation 3.13,
m:M (3.16)
fet T,

Equation 3.16 shows us that the value of model parameter m is unique when

the modulus of rupture and equivalent maximum compression strength is determined.

35 The Relationship between f., and fee

The maximum equivalent compressive stress fce was introduced to the new
model, and it could be determined theoretically, but sometimes it is necessary to
obtain the value of f, without calculation so as to apply this modd to further
engineering analysis. Therefore, it is important to establish the relationship between
fee and commonly used strength parameters. The test data of wood strength that is
easy to obtain in real engineering practice include the paralel to grain compression
drength f., the average paralel to grain tension strength fi and the modulus of

rupture f;.
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Ratio « is introduced to establish a relation between the parallel to grain

compression strength fe, and the maximum equivalent compressive stress fee. It is

assumed that:
fo=2a ’ fo (3.17)
thus Equation 3.15 can be rewritten as:
f (fotf
— a CU( ce r ) (318)

© 3f, - f,

3.6 Relationship between f,, Et, fcy, fte, @, mand fee

The relationship between fo, and fe. can be further expanded to relationship
among f;, Er, fo, fie, @, m and fe. Based on the data from 120 commercial wood
species in Wood Handbook [1999], linear regression between f, and the modulus of
easticity Er, foy and Er are performed, and the result indicate very strong correlation
between the parameters. The linear relationships are established as follows:

f =8.95E, - 12200 (3.19)

f,, =3.65E; +5120 (3.20)
Substitute Equation 3.17 into Equation 3.20,
fe =a(3.65E; +5120) (3.21)
Solving Equation 3.19 and Equation 3.21,

f_ =a(0.408f, +10095) (3.22)

Substitute Equation 3.22 back to Equation 3.16,

_ 31 (0408, +10095) - f

i (3.23)
a (0.408f, +10095) + f,
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From the equations above, if Er is known, f;, fo, can be determined, and if f; is
known, m, fee and fie can be estimated. For agiven type of clear wood, f; values can be

obtained from handbooks or actual testing.

3.7 aand Simplified Relationship Equations
Equation 3.18 can be rearranged to be:
f la?+(f -3f)f,a+ff. =0 (3.24)
which means that if the modulus of rupture f;, the parallel-to-grain tension

strength fie and the parallel-to-grain compression strength ¢, is known, the value of o

can be determined.

To simplify the analysis process, a linear regression anaysis between o and Ex
was run, but the result indicates that there is no obvious relationship between the two
parameters. Then the a values of al the wood species that has pardle-to-grain tensile
srength provided in Wood Handbook are caculated. It is assumed that the mean
value of a can be utilized in general wood species anadysis. The average value of « is
estimated to be:

a =093 (3.25)
This o value simplifies Equation 3.22 as.

f. =0.397f, +9388 (3.26)

and Equation 3.23 to be:

_ 0.138f, + 28165
1.379f, +9388

(3.27)

3.8 Size Effect
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3.8.1 Introduction to Size Effect

All the data and analysis above are based on test results of clear and defect
free wood specimens. However, these predictions and properties cannot be applied
directly into lumber design and analysis. This is because that lumbers, as we defined
earlier in Chapter 1, refer to commercia quality sawn timer, usually have greater
dimension while clear wood specimens are usually clear cut small size wood and are
usualy free of knots and defects. Knots and cross grain affect the properties of the
specimens considerably, so the results from clear wood have to be adjusted before

applying to lumber cases.

Some of the major factors that influence the strength of lumber are concluded

below:

1) Larger size lumber tends to have lower strength than smaler sze lumber. This
is because that the probability a critica defects exists in large size lumber is
much greater than in a small lumber, so the major flaw are statically less and

smaller in small lumber specimens.

2) In commercial lumber, species are grouped on the similarities of properties

and appearance.

3) The moisture content of lumber is also related to its size and strength. The
strength increase of small clear wood specimen due to drying is not obviousin
large size lumber since the drying stresses due to uneven shrinkage in large

cross sections might counteract the increase of timber strength.
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3.8.2 BrittleFracture Theory and Application in Timber Analysis
3.8.2.1 Weibull’s Distribution

Weibull published a paper in 1951 and proposed his theory to estimate the
strength of brittle materia with statistical approach. Weibull introduced his statistical
model and showed the theory can be validated by many tests on different kinds of
brittle materials. He explained the strength of weak link system by exponentia type
cumulative distribution. He aso illustrated that for either uniform or varying
distributions of stress within the weak specimen, how the strength is related to the
specimen volume. The basic idea of Weibull’s theory can be described briefly as
follows: A brittle fractural material can be considered to be constituted with a large
number of small elements with strength distribution statistically. While the failure
strength of the weakest element in the specimen is reached, the whole member fails.
Size effect is essential to such materials since the larger the volume, the greater the
possibility of containing stressed weak elements. The brittle fracture theory was
established for fracture materia, however, Weibull’s theory has much wider
application besides brittle solids, and this series of statistical distribution functions is

called Weibull’s distribution or weakest-link theory.

3.8.2.2 Applications of Weibull’s Distribution in Lumber Analysis
Weibull’s digribution is widely used to brittle fracture materias. These
materials share some common brittle fracture phenomena which lumber/timber aso

have. These major size effects are listed below.
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1) Comparing with short members, long members fail at lower stresses at similar

loading status.

2) Comparing with members with smaller bending depth, deeper members under

bending fail a lower stresses at similar loading status.

3) Comparing with members with smaller axial tenson area, members with
larger cross section under axial tenson fail at lower stresses if loading status

are the same.

4) For a specimen with given dimension, loaded members tends to have lower

failure stress when the cross section area under tension increases.

These size effects are al observed in the tests on timber, and timber can be

treated as brittle materials and Weibull’s weakest-link theory can be applied.

Buchannan (1966) first applied the theory on to the analyss of the strength of
wood beams with different sizes. He adjusted the theory according to timber test
results to make it fit timber study better. He found that if only the length size effect
and depth size effect are taken into consideration, test data match statistica model
accurately. He also claimed hat there is no size effect with varying cross-section sizes

in axial tensgon tests.

The parameters relating to depth effects derived in Buchanan’s theory have

been utilized in some design codes.



In 1983, Buchanan further claimed that previous theory did not explain the
relationship between axid tension strength and bending strength exactly. In order to
predict timber strength more accurately, he proposed that the parameters be separated
to quantify length effects, depth effect and width effect. He introduced stress-
distribution effects based on the brittle theory. Buchanan established a relationship
between axial tension stress and bending stress so as to obtain the bending strength

directly from in-grade axial tension results.

Baaguru and Chen (2003) established a relationship between modulus of
rupture and bending strength based on the brittle fracture theory and on the fact that at
low strength level, the modulus of rupture and compression strength are of the same

value. Thismodel is developed to predict the tension stress of timber and lumber.

3.8.2.3 Length Effect, Depth Effect and Stress Distribution Effect
As we mentioned earlier, long boards fail at lower stresses comparing with
shorter boards loaded under similar loading status. This phenomenon is caled length

effect. The weakest link theory can be used for length effect under the condition that:

1) The timber under axia loading is assumed to be a chain-like materia and its
failure strength is determined by the strength of the weakest link within the

whole length.

2) The calibrated two-parameter Weibull’s distribution is utilized in calculation.

For atimber board with infinite length, the strength is zero.



In-grade axia tension test results confirmed that failure of timber member
usualy occurs at single cross section. Thus for low-grade timber, the adjusted brittle

material theory can be applied.

Comparing with members with smaller bending depth, deeper members under

bending fail a lower stresses at similar loading status.

In a bending or axial tension test, degper members tend to have lower failure
strength than the specimens with smaller depth if the loading conditions are the same.
This is caled as depth effect. Assuming the depth effect to be a brittle fracture
phenomenon, the theory used for length effect can be used in depth effect. The
investigation of depth effects of timber was conducted for both bending and for axial

tension condition.

The term stress-distribution effect refers to the phenomenon that, if the cross
section dimension is given, members with larger axial tension area fail at lower
stresses if loading circumstances are similar comparing with members with smaller
tension area. The stress-distribution effect is closely related to depth effect and can be
described using the same parameters. Buchanan established the relationship between
axial tenson stress and bending stress with brittle fracture theory. Chen (2003)
derived the relationship between modulus of rupture and bending stress with the

weakest link theory.



Species Moisture | Specific | F, (kPa) | Er (MPa) | F.,
content | gravity (kPa) (MPa) (MPa)
Alder red 12% 0.41 G000 0500 40100
Ash Black 12% 0.49 ST000 11000 41200
Blue 12% 0.58 Q5000 9700 48100
Green 12% 0.56 Q7000 11400 48800
Oregon 12% 0.55 ZR000 9400 41600
White 12% 0.60 103000 12000 51100
Bigtooth 12% 0.39 63000 0900 36500
Quaking 12% 0.38 52000 8100 29300
Basswood- American 12% 0.37 B0000 10100 32600
Beech- American 12% 0.64 103000 11900 50300
Paper 12% 0.55 5000 11000 30200
Sweet 12% 0.65 117000 15000 58000
Yellow Green 12%, 0.62 114000 13900 56300
Butternut 12% 0.38 56000 8100 36200
Cherry- black 12% 0.50 &5000 10300 49000
Chestnut- American 12% 0.43 59000 8500 36700
Balsam poplar 12% 0.34 47000 7600 27700
Black Green 12%, 0.35 50000 8200 31000
Eastern 12% 0.40 59000 0400 33800
American 12% 0.50 21000 9200 38100
Rock 12% 0.63 102000 10600 42600
Slippery 12% 0.53 Q0000 10300 43900
Hackberry 12% 0.53 TG00 8200 37500
Bitternut 12% 0.66 118000 12300 62300
Nutmeg 12% 0.60 114000 11700 47600
Pecan Green 12% 0.66 04000 11900 54100
Water Green 12%, 0.62 123000 13900 59300
Mockernut 12% 0.72 132000 15300 G1600
Pignut 12% 0.75 139000 L5600 3400
Shaghark 12% 0.72 138000 14900 63500
Shellbark 12% 0.69 125000 13000 55200
Honeylocust 12% - 101000 11200 51700
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Table 3.1: Strength Properties of Some Commercial Hardwoods Grown in the United

States (metric), Wood Handbook (1999)



Species Moisture | Specific | F, (kPa) | Ep (MPa) F.,
content | gravity (kPa) (MPa) (MPa)
Cucumber tree 12%, 0.48 B5000 12500 43500
Southern 12%, 0.50 TT000 0700 37600
Bigleaf 12% 0.48 T4000 10000 41000
Black 12% 0.57 Q2000 11200 46100
Red 12% 0.54 Q2000 11300 45100
Silver 12% 047 B1000 7900 36000
Sugar 12% 0.63 106000 12600 54000
Black 12% 0.61 QG000 11300 45000
Cherrybark 12% 0.68 125000 15700 60300
Laurel 12% 0.63 87000 11700 48100
Northern red 12% 0.63 99000 12500 46600
Pin 12%, 0.63 7000 11900 47000
Scarlet 12%, 0.67 120000 13200 57400
Southern red 12% 0.59 Ta000 10300 42000
Water 12% 0.63 106000 13900 46700
Willow 12% 0.69 100000 13100 48500
Oak- white Bur 12% 0.64 TLO00 7100 41800
Chestnut 12% 0.66 82000 11000 47100
Live 12%, 0.88 127000 13700 61400
Overcup 12%, 0.63 7000 G200 42700
Post 12%, 0.67 91000 10400 45300
Swamp chestnut 12% 067 26000 12200 50100
Swamp white 12% 0.72 122000 14100 59300
White 12% 0.68 105000 12300 51300
Sassafras 12% 0.46 G2000 7700 32800
Sweetgum 12% 0.52 8E000 11300 43600
Sycamore American 12% 0.49 G9000 8300 7100
Tupelo Black 12%, 0.50 GE000 2300 38100
Water 12% 0.50 GE000 8700 40800
Walnut- black 12% 0.55 101000 11600 52300
Willow- black 12% 0.39 34000 T000 28300
Yellow-poplar 12% 042 TO000 10800 38200
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Table 3.2: Strength Properties of Some Commercial Hardwoods Grown in the United

States (metric), Wood Handbook (1999), (continued)



Species Moisture | Specific | F, (kPa) | Er (MPa) F..
content | gravity [kPa) (MPa) (MPa)
Baldeypress 12% 0.46 73000 2900 43900
Atlantic white 12% 0.32 47000 6400 32400
Eastern redcedar 12% 0.47 61000 G100 41500
Incense 12% 0.37 55000 T200 35900
Northern white 12% 0.31 45000 H500 7300
Pori-Orford 12% 0.43 BE000 11700 43100
Western redeedar 12% 0.32 51700 TT00 31400
Yellow 12% 0.44 7000 a800 43500
Coast Green 12% 0.48 25000 13400 40900
Interior West 12% 0.50 BT000 12600 51200
Interior North 12% 0.48 90000 12300 4T600
Interior South 12% 0.46 E2000 10300 43000
Balsam 12% 0.35 63000 10000 36400
California red 12% 0.38 72400 10300 ATE00
Grand 12%, 0.37 61400 10800 36500
Noble 12% 0.39 74000 11900 42100
Pacific silver 12% 0.43 Tae00 12100 44200
Subalpine 12% 0.32 29000 2000 33500
White 12% 0.39 G000 10300 40000
Eastern 12% 0.40 61000 B300 37300

Table 3.3: Strength Properties of Some Commercial Softwoods Grown in the United

States (metric), Wood Handbook (1999)
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Species Moisture | Specific | F, (kPa) | Ey (MPa) F..
content | gravity (kPa) (MPa) (MPa)
Mountain 12% 0.45 Ta000 0200 44400
Western 12% 0.45 THOOO 11300 49000
Larch western 12% 0.52 Q0000 12900 52300
Eastern white 12% 0.35 508000 2500 33100
Jack 12% 0.43 G000 0300 39000
Lohlolly 12% 0.51 AE000 12300 49200
Lodgepole 12% 0.41 G5000 0200 37000
Longleaf 12% 0.59 100000 L3700 HE400
Pitch 12% 0.52 T4000 Q000 41000
Pond 12% 0.56 20000 12100 52000
Ponderosa 12% 0.40 65000 2900 36700
Red 12% 0.46 TEOOO 11200 41900
Sand 12% 0.48 20000 0700 47700
Shortleaf 12% 0.51 SO000 12100 0100
Slash 12% 0.59 112000 L3700 BE100
Spruce 12% 0.44 72000 2200 39000
Sugar 12% 0.36 57000 2200 30200
Virginia 12% 0.43 Q0000 L0500 46300
Western white 12% 0.33 67000 10100 34700
Old-growth 12% 0.40 GO000 9200 42400
Young-growth 12% 0.35 54000 TR0 36000
Black 12% 0.46 74000 11100 41100
Engelmann 12% 0.35 54000 2000 30900
Red 12% 0.40 T4000 11100 38200
Sitka 12% 0.36 GHO00 Q900 35700
White 12% 0.40 GE000 0200 700
Tamarack 12% 0.53 0000 11300 49400

Table 3.4: Strength Properties of Some Commercial Softwoods Grown in the United

States (metric), Wood Handbook (1999), (continued)
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Species F, (kPa) | Ex (MPa) | Fi (kPa) | F., (kPa) vy
American Beech 59000 G500 G200 24500 L.07
Sugar Maple G000 10700 103200 27700 1.00
Overcup 55000 Ta00 TTO00 23200 1.07
Pin 57000 2100 112400 25400 0.91
Balsam Poplar 47000 TEO0 51000 27700 087
Seetgum 49000 2300 03800 21000 0.06
Black Willow 33000 5400 T3100 14100 0.93
Yellow Poplar 41000 2400 109600 15300 (.56
Baldeypress 46000 8100 SRE00 24700 0.96
Western Redeedar 35000 6500 45500 19100 0.97
Interior North, Douglas-fir 51000 Q700 107600 23000 0.50
California Red 40000 2100 TTa00 19000 0.90
Pacific Silver 44000 G9E00 95100 21600 .54
Western Hemlock 46000 000 H0600 23200 0.85
Western Larch 53000 10100 111700 25000 0.85
Eastern White 34000 BA00 73100 16200 0.584
Loblolly 50000 a700 A0000 24200 094
Ponderosa 35000 GO00 57900 16900 0.93
Virginia 0000 2400 04500 23600 091
Young Grouth 41000 G600 62700 21400 0.80
Engelmann 32000 T100 E4800 15000 0.584
Sitka 34000 700 50300 16200 0.93

Table 3.5: o Calculated from Wood Test Data Based on Wood Handbook (1999)
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Chapter 4

Flexural Model Application and Verification

41 Introduction

This chapter deals with the application of the flexural model to lumber
anaysis. The verification of the model is also presented. Basic mechanical properties
of lumber can be obtained from in-grade testing, and then the non-linear model of
clear wood analysis developed can be applied to lumber analysis. The weakest link

theory can be applied to brittle features analyss of lumber.

The first part of this chapter discussed the application of the model to lumber
analysis. An analytical procedure based on elasto-plastic behavior was aso devel oped
to estimate the material properties needed non-linear analysis. If other properties such
as elastic modulus and modulus of rupture are known, they can be used in the analysis
instead of estimated properties. The second part presented experimenta verification
of the flexura model. Experimental results were compared with theoretically

predicted results.

4.2  Application to Lumber Analysis

For given wood species, with the average compression strength, the average
tension strength and modulus of rupture, the bending strength of the wood can be

predicted based on the strength model presented in the previous chapter.
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421 Current Strength Model

The bi-linear model proposed by Bazan and Buchanan is widely used in
engineering application. The faling branch of the tension part in the strength model
was adjusted to be a declined line. The basic assumptions of the current model are

listed below:

1) Plane sections are assumed to remain plane under bending stress.

2) Timber behaves linear-elastically under tensile stress until it fails.

3) Timber behaves non-linearly under compression stress. Its elasto-plastic

manner can be described with Buchanan’s strength model [1999].

4) Size effects (length effects and depth effects) should be considered to adjust
maximum attainable stresses for timber member under axial tenson and axia

compression.

5) Timber in bending is subjected to stress-distribution effect. The depth of
timber cross-section under tension should be considered to determine the

maximum tension stress.

6) Variation of easticity modulus along the length direction of timber members

is not considered.
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7) Torsional or out-of-plane deformations and duration of load effects are not

considered in the strength model.

Based on the assumptions above, analysis procedure is developed. The first
parameters to be inputted into strength model are the axia tension strength and axia
compression strength. Taken size effects into consideration, axia tension and
compression strengths decrease as the length or cross section of timber specimen is

increased.

Assume the depth of the tension zone hy is half of the total section depth h,
Weibell distribution is used to predict stress-distribution effect, and then the bending
strength can be predicted with weakest link theory. The bending strength calculated
based on axial tenson and compression strength from test results can be applied into
the bi-linear strength model to obtain the bending capacity of the whole cross-section

of the member.

Because of the influence of the member size on beam strength, the inputted
srength information, such as the modulus of rupture and compression strength of
lumber, should be from members of the same size if the size effects are not to be
considered in the anaysis. In other words, the modulus of rupture and compression
srength inputted must be based on tests of members from same grade, species and
cross section, otherwise, the length effects, depth infects and stress-distribution effects

have to be considered in the calculation.



4.2.2 Comparison of Buchanan’s M odel and Balaguru and Chen’s Model
Generally, Balaguru and Chen’s model combines the advantages of existing

srength models and presented a smpler and accurate approach to predict timber

drength properties and andyze lumber grength. Comparing Chen’s model with

Buchanan’s model, some improvements are discussed below.

Bending strength is very important input parameter in lumber strength
analysis. Sometimes it is necessary to predict the bending capacity with the help of
srength model. Axial tension, modulus of rupture and bending stress are closely
related. In Buchanan’s model, axial tenson is an essential input parameter to predict
bending strength. As we discussed in Chapter 2, it is difficult to perform tension test
on wood and to make a tensile connection stronger than the specimen. Introducing the
ratio of compresson strength and tension strength m, the relationship between
modulus of rupture and bending strength was established in Balaguru and Chen’s
model. In other words, the modulus of rupture, which is much easier to obtain

comparing with tension strength, can be used to predict the bending strength.

Another contribution of Balaguru and Chen’s model is on the calculation of
sress-distribution effects. It is assumed that the tension zone of the cross-section of
member is aways half of the total section depth h in prediction of stress-distribution
effect parameter in Buchanan’s model. This is just an approximation to simplify the
calculation. The depth of the tension zone decreases when the compression side yields
and the neutral axis moves down towards tenson zone, thus this assumption may

affect the accuracy of predicted bending strength of lumber. Contrarily, in Chen’s
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model, the depth of the tension zone is calculated from the strength model and makes

the parameter obtained more accurate.

4.2.3 Lumber Modulusof Rupture

Modulus of rupture is used to calculate bending stress in Balaguru and Chen’s
srength model. At a low strength level (at about 2.5% probability of failure), the
compression strength f. equals modulus of rupture f;, and the modulus of rupturesis
the true bending stresses at or below this strength level. At any strength above this
balance level, the compression zone behaves non-linearly and modulus of rupture no
longer reflects atrue stress. However, formulaintroduced in Chen’s model can still be
used to predict the bending strength from the modulus of rupture for clear wood. The
bending strength can be derived from equation 3.18 as,

o
A f -f

Cc r

f, = (4.1)

where f, is the bending strength, f. is the compression strength and f; is the
modulus of rupture. The value a introduced in Chen’s model is the ratio between the

maximum equivalent compressive stress fe. and the grain compression strength fe,.

424 Basic Assumptions of Balaguru and Chen’s Strength Model

Baaguru and Chen’s model presents an analytical procedure based on easto-
plastic behavior of timber and provided a better prediction of the performance of
srengthened beams. The model combines advantages of other elasto-plastic model
and keeps simplicity at the same time without introducing too many new parameters.
This strength modé is easto-plastic in timber compression. The equivalent maximum

compressive strength is used as compression strength limit. A constant a was
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introduced into the model so as to equa the area under stress-strain curve A and the

areaunder curve B.

1)

2)

3)

4)

5)

6)

7)

Assumptions of Balaguru and Chen’s strength model are listed below:

Plane section is assumed to remain plane in bending.

Timber stressed under tension stress behaves linear-elasticaly until brittle

fracture occurs at proportiona elagtic limit in tension, stress fie and strain ee.

Timber stressed under compression stress behaves in a linear plastic ductile

manner a compressive stress fe. The non-linear portion of the curve

represents the plastic region.

Classical bending theory including linear strain distribution across the

thickness up to failureis till valid.

The modulus of elasticity is the same for wood in tension, compression and

bending.

Wood tension strength and compression strength properties can be used

directly in analysis of wood bending behavior.

Timber compression strength is not subjected to size effect.
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8) Size effects should be considered when the cross section under investigation is

other than ASTM standards.

9) Failureload occurs at the cross section under maximum moment.

10) No out of plane deformation is considered in the model.

11) Duration of load effects and fatigue are not considered.

12) Shear failures are not considered.

43 Experimental Procedure and Results

The experimental procedures and results are taken from Buchanan’s (1983)
dissertation. Only experiments and results related to bending are referred in Chen’s

study. Test material and results are described as follows.

431 Test Material
4.3.1.1 Test Species

Buchanan’s tests were carried out on boards from 38mm x 39mm (nominal
2x4 inch?) spruce-pine-fir (SPF) timber from Quebec, Canada. No attempt was made

to quantify the actual species, but al tests appeared to be predominantly spruce.
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4.3.1.2 Moisture Content
All boards were purchased kiln-dried. No climate controlled storage areas
were available in testing location. All boards were kept indoors, and moisture content

recorder at the time of testing using an electrical resistance moisture meter.

Testing was carried out over a period of several months, and there were some
minor moisture content changes during this period. The moisture content varied from
7% to 13%, with an average value of 10: 4%. The test results are believed to be

representative of material of this moisture content range.

4.3.1.3 Sample Selection

Two samples of 90 boards 2.9m long were selected for the long tension and
compression tests. Two samples of 90 boards 1.9m long were selected for bending
test. One sample was tested full length, the other was cut in two halves, one haf
length tested edgewise, the other half was tested flatwise. Ten boards 2.9m long were

cut up for short compression tests.

43.2 SampleSize
4.3.2.1 Sample Sizes

The intension for most tests was to have a sample sze of 100. In practice the
useful sample sizes were usudly dightly less due to minor problems. The sample
Szes used allow calculation of mean or median values with considerable confidence,
and upper and lower tail values with significantly less confidence. The 5th and 95th
percentile values have been used as indicators of behavior at the tails of the

distribution. In Buchanan’s study, al of the data was used to fit an appropriate
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distributional model to the data, then to calculate the percentile values from the fitted

distribution using Weibull distribution.

4.3.2.2 Weibull Digribution

The Weibull distribution is a flexible distribution that has been widely used for
studying the strength of wood and other materials. The Weibull's distribution is the
most appropriate for describing material strength properties because for large sample
Szes, it is the asymptoticaly exact distribution for extreme values from any initial
distribution that is bounded in the direction of the extreme value. Materia strength fits
this description because it tends to be governed by the strength of the weakest one of a
large number of elements, particularly when brittle failures occur. In this study, the
Weibull distributions have been fitted to experimental data by estimating the Weibull

parameters with maximum likelihood equations.

4.3.3 Test Procedure
4.3.3.1 Bending Tests

Bending tests were performed on an Olsen 900kN universal testing machine.
Load was applies mechanicaly at a controlled displacement rate of approximately
30mm/min, which produced failure in about one minute. Lateral supports near the
load points prevented lateral bucking. Maximum load was recorded from the load

indicator attached to the machine.

All the bending tests were carried out with ssmple supports and one-third-point

loading. All of these tests had a span-to-depth ratio of 9.5 for 38mm x 89mm boards.
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4.3.3.2 Axial Tension

Tests of long boards were carried out on an axial loading machine. This
machine has friction grips at each end with steel plates grip the board when forced
together by a hydraulic jacking system. The specimen is stressed in tension when
using a second hydraulic jacking system increases the length of the whole machine.
Failure load is recorded from a carefully cdibrated hydraulic fluid pressure gauge.
The friction grips are rigidly mounted to prevent rotation about any axis. The 38mm x

89mm boards were tested over afree length of 2.0m.

The grip pressure was controlled manually throughout the tests, being
increased gradually if the specimen began to dip in grips, with care not to cause
excessive crushing perpendicular to the grain. The loading was at a uniform
displacement rate controlled by the electric pump on the hydraulic jacking system.

Failure generally occurred in about 30 seconds if on dippage in the grip.

Although these test are referred to as axial tenson tests, there was probably
some bending induced in most boards due to variations in wood properties within
each board. Any such bending has been neglected and the tension stress in the boards

has been calculated by smply dividing the axia force by the cross section area.

Short boards were also tested in axial tension to obtain information on length
effects. The tenson test machine described above was modified to accept any length

assmall as 0.9m.
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4.3.3.3 Axial Compression

Compression tests of long boards were performed in the same machine as the
tension tests, with the loading jacks reverse. A system of lateral supports faced with
teflon pads prevented lateral buckling in either direction. The lateral supports were
located with just enough clearance for the boards to be inserted easly without
adjustment for each board. No attempt was made to force each board into a perfectly
draight condition so a very small amount of bending moment may have been

presented in addition to the applied axial loan. Any such bending has been neglected.

4.3.3.4 Modulus of Elagticity
Modulus of elasticity is required for input to the strength model. Different

methods were used to assess modulus of elasticity.

A random sample of al the boards were subjected to a static bending test, and

the measured deflection used to calculate the modulus of elasticity.

All of the 38x39mm boards subsequently tested in tension and compression
were subjected to flexura stiffness measurements. An average modulus of

elaticity is calculated from the load, the deflection, and the board dimensions.

4.3.4 Comparison between Experimental Resultsand Theoretical Analysis
Test results were listed below and compared with theoretically predicted

values in Table 4.1 which is completed by Balaguru Chen. Maximum compression

strength f.,, modulus of rupture f, and axial tension f; from experiments are presented

in column (2), (3) and (4). The vaues in these columns have already considered size
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effects, and correspond to the cumulative distribution probability shown in column

(D).

a value was introduced to modify the maximum compression strengths and

bending strengths were obtained from equation 4.1 and listed in column (5).

Based on the derivation in Chapter 3, the value of m can be calculated from:

3f, - f
m=—r 4.2
e (42)

and the depth ratio of tension zone hy, can be obtained from:

2m

h,

Based on the stress distribution parameter evaluated, the predicted axial tension
strength f; can be calculated and the values are listed in column (8) of Table 4.1. The
differences of the f; values from experiments and from theoretica prediction were listed in
column (9) of Table 4.1and were found to be reasonably small for design and analysis

gpplication.
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Percentile | Test f., | Teat f. | Test f, | bending 3, | m hy | Predicted f; | % Difference
(1) (2) (3) (4) (5) (6) | (7] (8) (@)
(MPa) | (MPa) | (MPa) | (MPa) (MPs)

oth 0.0 0.0 0.0 0.0 — — — —

2.5th 2. 210 12,0 21.0 1000 | 0500 123 -2.6%
5th 230 25,0 140 25.2 0T | 0400 148 -5.3%
10th 25.0 a0 17.5 32.3 0736 | 0,403 156 -5.0%
15th 6.0 35,0 2000 T 0.705 | 0.485 21.2 -5.6%
20th 275 AT 21.5 41.2 0L.GAS | (482 2249 -6.3%
25th 28.0 40.0 22.5 44.5 0,647 | 0477 244 TR
30th 25 43.0 24.5 48.5 0.628 | 0.474 26.3 -6.7%
35th 30,0 45.0 26.0 5LT 060D | D460 276 5%
40th 3.2 47.0 27.2 54.2 0506 | 0468 288 5.5%
45th 35 48,0 280 55.8 0.585 | 0,466 205 -5.0%
50th 32.0 a2.0 300 (3.0 0524 | 0451 32.2 -6.7%
55th 32.3 33.5 3l.5 67.1 0.504 | 0446 33.2 -5.0%
B0th 32.5 25,0 32.5 705 L4586 | 0,440 34.2 -4.0%,
B5th a3.0 875 33.0 762 0450 | 0431 358 -T.0%
Toth 3.5 0.0 350 765 0.476 | 0,437 36.7 -4.6%
T5th 35.0 62.5 3.0 Bh.5 0436 | 0,423 30.1 -5.3%
R0th 35,5 G40 S8.0 BR.T 0,427 | 0419 40,0 -5.1%
B5th 36.0 G653 41.0 5.4 0405 | 0.410 41.7 1.7
a0th a7.0 T0.0 43.0 104.3 0,333 | 0.4 4.0 -1.3%
n5th as.0 T 48,0 130.4 L322 | 0368 488 LT
Lo0ch 42.5 0.0 G0 1651 0.233 | 0.344 57.3 4.7T%

Table 4.1: Comparison between Experimental and Theoretical Results




Chapter 5

Strength Model for Reinforced Timber Beam

51 Introduction

In order to reinforce timber beams, materials that can provide strength and are
a the same time corrosion-resistant, rot-proof, thermally insulating, dielectric and
nonmagnetic are obviously desirable. Composite material, which is light, and
corrosion resistant, can be easily utilized without an obvious increase of the dead

load.

In most cases, Fiber Reinforced Polymers (FRP) has excellent potentia for
improving the strength and stiffness, and has been applied to construction and
rehabilitation of structure of different type. To take full advantage of elasto-plastic
behavior of timber, composite materids can be applied to both tension and
compression sides as a substitute of the reinforcement for timber beams. A strength
model of FRP srengthened timber beam is presented in this chapter. The model is

based on the timber strength model we constructed in previous chapters.

52  An Overview of FRP Strengthened Timber Beam

From available experimenta results conducted for both side strengthened
timber beam, it was shown that the existence of the composte layer, when applied to
the compression and tension zone of the timber, improves the behavior of the timber

evidently. Composite can support high failure stress, and is not easy to break. Since
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the composite is more ductile than timber and has much higher strength resistance, it
arrests cracks and confines the local rupture so as to help the timber part to behave
better and support higher load. The composite reinforcement helps to stabilize the

timber core. In such case, the best of composite and timber is made.

This also indicates that FRP material reduces the effect of natural or man-
made defects in wood. Because of unpredictable characteristics of checks and knots,
such as size, location and distribution, the strength of timber was affected obviously.
During the process of timber beam analysis, the strength of clear wood has to be
deducted by a certain safety factor. But with the confinement and support of
composite, the influence of defects, orientation of grain and damages became
insignificant. Based on this fact, this dissertation introduced an assumption for the
composite strengthened timber beam, which is, the clear wood strength properties can

be applied to the strengthened beam directly without strength deduction.

Past experiments investigated the use of carbon and glass fiber reinforcement
of the timber beams, and the conclusion is that they cooperate effectively to sustain
higher compression/tension stress and bending moment, and can be utilized to repair
and retrofit in different structures, from houses and bridges to furniture, from
laminated tennis racquets to skis. However, previous study seem to be underestimated
the action of the composites thus underestimated the strength capacity of the whole
beam. An analytica procedure based on the elasto-plastic behavior of timber
presented in Chapter 3 has been extended to fit the use of FRP strengthened timber
beams. The new mode offers a reasonable prediction and fits nicely with the

experimental data.
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53  Strength Model for Beams Strengthened with Composites

Although wood behavior is nonlinear and very complicated, it has been
smplified to linear elastic model for centuries in most of design practice and
gructural analysis. The simple model received quite reasonable results. Assume
design and analysisis based on 5™ percentile, the modulus of rupture is very close to
the compressive strength, hence is very close to the true bending strength of timber,
thus the model which simplifies timber behavior to be linear can give satisfactory
results. But because of the strengthening of FRP on both sides of the timber beam, the
more accurate nonlinear model becomes a necessity to provide more reasonable

description and predictions of strength and deformation.

Load M oad
" ximem Loa
//’fnge i
» ¥ 1, kding of fimber
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Shapge T
/|
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Figure 5.1: Three Loading Stages of the FRP Strengthened Timber Beam

Basically, three loading stages were introduced to analyze FRP strengthened
timber beam. When load is small, before the timber reaches its compression yield
value, both timber and composite behaves linearly, and all the assumptions and
methods that are used before can be applied to analysis. This stage ends when the

timber exceeds its compressive yielding strength, and then the second stage starts. The
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compressive fiber of wood behaves plasticaly in the second stage, and the tensile
fiber remains elastic. The second stage ends when the extreme tension fiber reaches
its eastic limit. In the third stage, compression fiber is in plastic state, the stress of
tension fiber is faling down linearly, but the composite materias on both tension and
compression sides remain linearly elastic. The third stage ends with the failure of FRP
material, either on the compression side or the tenson side. Generally, because of the
high strength of composite material, failure of the composte in the first stage is
uncommon. The ultimate strength of the strengthened beam varies with different type
of timber and amount of composite reinforcement. Some times the beams fail in the
second stage and sometimes they fail in the third stage. The strength model presented
here used a rectangular cross section timber as an example, and FRP reinforcement is
at both faces of the beam. The forces, stress and strain, and moment equilibrium for
each stage was analyzed and the depth of neutra axis and moment capacity are
calculated. The equations to obtain the curvature are aso listed. Appropriate

modifications can be made to fit beams with different geometry.

53.1 Stagel. Timber and Compositein Linear Elastic Range.

In the analysis of FRP material, the thickness of the composite is very small
comparing with the thickness of the timber and is ignored when calculating the lever
arm of the composite. The contribution of composite can be adjusted to match with
the calculation of timber. The area A; of the cross section of FRP can be substituted
with equivalent area Ar, and as in the case of reinforced concrete beams (ACI code),
can be assumed to be equal to n At. Assuming the bonding between face material and

wood is perfect,

mim

(5.1)
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where
Ec =the modulus of elasticity of composite

Et = the modulus of timber

The depth of neutra axis for elastic behavior ¢ can be compute using the first

moment of area,

2 Y
n’ ACC’c+b; :b(hzc) +n” Ac(h- ©) (5.2)
Solve for this equation,
2
o= bh® + 2hnA. (53)
2(bh+nA.)

Once the depth of neutral axis c is known, the moment of inertia, | can be
computed

using the equation:

3 3
[ _be®  b(h- ¢
3

3 +nA.(h- c)? (5.4)

Using classical bending theory, maximum compressive stress in timber can be

estimated as:
i =M, (5.5)
The maximum tensile stress in wood
f :I\I/I—(h - ¢) (5.6)
The stressin compression composite,
-nM. (5.7)

c
I

fC

and the stress in tension composite,
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fo = nl\l/l—(h ) (5.8)

The maximum moment that can be reached in this stage is controlled by the
elastic limit of extreme compressive timber fiber.

M :E = ETeoeI (59)

C C

where &¢ IS the compressive elastic limit of timber.

53.2 Stage2. Strain in Extreme Compression Fiber Exceeded Elastic Limit

In the second stage the compression zone timber behaves elasto-plastically,
and the load-deflection behavior becomes nonlinear, Figure 5.1. Equations are derived
to obtain the curvature and the corresponding the moment capacity when the extreme

tension fiber reaches its tensile elastic limit.

The depth of neutra axis, ¢ can be computed using the force equilibrium and

strain compatibility.

Fee tFe+Fy =Fe +Fq (5.10)

where
_C

FCc - rc A:c ECete (511)
_bm

Fce —7(h- C)ETITEte (512)

F, =b(c- mh+mc)E, me, (5.13)
b

Fte :E(h' C) ETete (5-14)

Fo = AcEc€e (5.15)

Equating tension and compression forces, the depth of neutral axisis:
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c=_
b(1+ m)2E,

VALE? + (AgEc - bhmE 1)? + 2A, E¢ (Aq E +bh(1+ m+m?)E,))

(A E. + A4 E( + bhE, + bhmE | + bhm ?E; -

(5.16)
The maximum moment for this stage, can be computed using
c? bm?
M max, |1 = Abc ECete + _(h - C)2 ETete
h-c 3
bm b 2
+ 7(C - mh+ mc)(c - mc+ mh) ETete + §(h - C) ETete + ACt Ecete(h - C)
(5.17)
The corresponding curvature
F="Ce (5.18)
h-c

This point in moment-curvature relationship corresponds to the end point of
the second stage. The variation of moment curvature between beginning and ending

of this stageis assumed to be linear.

The timber exhibits a short plastic zone in tenson. Equations similar to 5.8
and 5.10 can be derived when the extreme tension fiber reaches the fracture strain of
ew- Since the difference between yield and fracture strains are normally less than 5%,

the computations for this strain condition are not warranted.

53.3 Stage 3. Strain in Extreme Tenson Fiber is Greater than Elastic Limit
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In the case of unstrengthened timber beams, it is assumed that the moment
corresponding to the descending part of the curve of tension stress is not taken into
account because the lever arm will start to decrease with larger and larger curvature.
The maximum moment capacity is reached when the extreme tension fiber reaches the
eastic limit fe unless there is a plastic region. This is no more the case in FRP
strengthened beams. Since the fiber composite can support increasing tension stress as
the curvature increases, the contribution of descending part of the tension stress-strain
curve of timber aso contributes to increase in moment capacity. Moreover, the
existence of composite allows for much steadier decrease in tension force after the
peak strain because the composite confines the occurrence of large splinters and

absorbs small losses of forces due to controlled splintering or splitting of timber.

fre

tension

Ete Etu €

compression

fCU

Figure 5.2: Stress-strain Relationship for Strengthened Timber Beam

Based on the fact that the descending part contributes to the strength partialy,
a linear descending stress-strain relationship is assumed for post-peak tensile stress

region of timber in Balaguru and Chen’s model as shown in Figure 5.2. Here again,



72

since the failure of timber with lower strengths are more ductile than stronger timbers,
fracture strain ey, is assumed to vary from 1.0 gie t0 2.0 e, Which is:

e, =b’ e, (5.19)

where
S = 1.0 for strongest timber
S = 2.0 for the weakest timber.
Based on this assumption, in failure analysis presented:
The behavior of timber in compression is elasto-plastic.
The behavior of timber in tension is linear both in ascending and descending
branches of the stress-strain curve.
The behavior of composite used for both compression strengthening and
tension strengthened is linearly elastic up to peak and has no post-peak

srength.

In addition, the failure is assumed to occur by failure of either compressive

composite or tensile composite, and the following sequence is suggested for the

computation of failure moment.

1) Assume failure occurs due to failure of tensile composite.

2) Compute the depth of neutral axis of the beam.

3) Evaluate the strain in the extreme compression fiber.
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4) If the strain in extreme compression fiber exceeds compressive fracture strain

for composite, recomputed neutral axis based on maximum compressive

grain. In this case falure is initiated by crushing of compressive FRP, and the

drain in tensle composite is less than its fracture strain.

5.3.4 Depth of Neural Axisand Moment Capacity for Failure by Fracture of

Tensle Composite

Typicd strain and stress distributions for failure by fracture of composite are

shown in Figure 5.3. The ultimate tension strain for composite is defined as ec¢ , and

the maximum compressive strain for composite is defined as ec..

|<b—>, eCc £ eCu f
[ Fce
vy T <
Fcp <__
h C Ece
Fce <__
. NA| |\ _ Y Y.
F
h-c Ete _ ] L ©
v v X1 13 Fo
B B it Fa
Beam section i ) te.
Failure Strain Failure stress

Figure 5.3: Stress and Strain Relationship of Tension Failure
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These force components can be computed using linear strain distribution and

material behavior of timber and composite. The forces on the beam, shown in Figure

6.3, can be divided into six parts consisting of:

Compressive force from the composite in compresson zone, Fcc.

Compressive force from plastic part of the stress-strain curve of timber, Fep.

Compressive force from the elastic part of the stress-strain curve of timber, Fee.

Tensile force from the ascending part of the stress-strain curve of timber, Fie.

Tensile force from the descending part of the stress-strain curve of timber, F.

Tension force from composite in tenson zone, Fct.

For the force equilibrium;

Fee tFe tFp =R+ R, +Fg (5.20)
in which:
. C
FCc _rcp\tc ECeCf (521)
£ =D o5 (5.22)
2eq
=b(c- Z= (h- o)) f
F, =b(c- e—( - o) f, (5.23)

Cf
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be,

Fe = Eecf (h-c)f, (5.24)

(fte + Er - (be, - e )L- S )(h- ¢) (5.25)
b - €u

= AqEceq (5.26)

where f is greater than or equal to 1.0 and

ete = the tendle fracture strain of timber

The equilibrium equation can be smplified as

- 2cA. Eceq ® +Db(c- hyf,((c- hye, +2ce,

2(c- h)eg
1 b(-c+h)f_e, et ET (-eq *+bey)
= E.e, + £ +pb(-c+h)(1- —==)(f
5 (Ao Eceq o (e (e + = )
(5.27)

Solve the equation, the depth of neutral axis ¢ can be found as:

c=((b- Dbhf,e, +bhf.e, +bhie, +AEe, +AEey) +hiEe,” +Ee., +hEE,E, - bES,)

\/«b D, (b - DEPPF,2 +2NE (- Ay +AB He))F
E.(b- DAL +A))E & +2A. (- Dbhfey +AEL”) - bhE (e - )€ - beg))))
JO(F, s + FoEr0 +225,)) 0 - D- Er(Ey - €€ - bEL))

(5.28)
After computing the depth of neutral axis ¢, compute the maximum strain in
the extreme compressive strain in composite using:

€C

= 5.29
= (5.29)
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If this gtrain is less than permissible maximum compressive strain ecy,
compute maximum moment, otherwise, recomputed the depth of neutral axis using

equations presented in the next section.

The moment capacity, M, can be obtained by multiplying the six forces

components by the corresponding lever arms.

M, = Feo0t SF 22 (- )+ 2, (0422 (h- 0)
3 Teqg 2 ey

(5.30)

+ g Fee e

m-®+ﬁﬂjem-®+a+FQm-®

Cf
where
e = the distance from elastic tensile limit to the center of trapezoid area and

can be calculated as:

E € - ee
[fte +2b7_T1(em - € )]( & t )(h' C)
oz - cf (5.31)
q fte +b—_71(em - € )]
and the curvature @ d failureis;
e
Fu:h?c (5.32)

5.3.5 Depth of Neutral Axisand Moment Capacity if Failure Occurs by
Crushing of Compressive Composite
If failure occurs by crushing of compressive composite in the compression
zone, the maximum strain at the extreme compressive face is ec, and the strain in the
tensile composite is less than its fracture strain ecr. Using linear strain distribution and

smilar triangles, strain in tensile composite,
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€y =€q—— (5.33)

Two cases can be identified for the failure by crushing of wood. When the
drain in FRP composite in tension, ec; is larger than tension strain elastic limit, e,
there exists a trapezoid plastic range in stress-strain relationship, Figure 5.4. In case
I, when e is less than g, the tension strain is within the elastic limit of timber, no
trapezoid plagtic range in the tension side, and the stress-dtrain is linearly distributed,

Figure5.5.

The two cases are discussed in the following sections separately.

FCC «

A
B_B

3
eCt ete
Beam section

Failure Strain Failure stress

Figure 5.4: Stress and Strain Relationship of Compression Failure Type |



Casel: ect > ete

— (ZC_ h)etu 1:te
‘ C(etu - ete)

The equilibrium equationis:

FCc + Foe + Fcp = Fte + Ftp + FCt
where
FCc = Abc ECeCu

F . =
26

ce

ce

eoe
F,, =bc(l- —=)f,

Cu

te 2 ecu

b €,
Ftp :E(fte-'- ftt)(h_ C- _tc)

Cu

=0, + B Moty ¢ g
2 C(etu - ete) eCu
h-c

Fet = AxEcec, ?
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(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

Equal the tension and compression force, after simplification, the equilibrium

bee,,

1:ce (bC- ) + A’;c ECeCu

Cu

bfte (C(h B 2C)eteetu + (C B h)eCu (Cete + (h B 3C)etu ))

2(C - h) A’;c ECe(ZEu +
e

+ e~ €

tu

2ce.,

=0

(5.42)
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Use equilibrium, the function of the depth of neutral axis can be obtained as:

c=-(bhfe.g.- e 8 (A+A)- Dhfeg, +Ee 8 (A +A)- bhigs,

N \/(43%(2%5&”( o~ € Tbhe )¢ f e 2) 6.~ 6) + (e B F)- Z%equ)))
+AA +AIEE (6.- 8)+bhi(-e 6.- 4.)+e8)))

[(A(fCe- )€~ ) Hi(-& 8- F)+EELY))

(5.43)
the maximum moment capacity is,
_ 2_¢€e, . C €.
Mu_FCcC+_Foe C+_Fcp(:|'+ )
3 Cu 2 eCu
5 (5.44)
+ R (h 0+ Ry (Tt ) +Fg (- )
Cu Cu

in which
e = the distance from elastic tensile limit to the center of trapezoid area, Figure
5.4.

(fo+2f)(h- c- ~c)
e

e= el (5.45)
3(fie t 1)

And the corresponding curvature is:

F :e—gu (5.46)

Casell: ect < &te
Inthis case, no F, exists, so the equilibrium equation becomes:

FCc + Fce + Fcp = Fte + FCt (547)
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eCt £ ete

Beam section Failure Strain Failure stress

Figure 5.5: Stress and Strain Relationship of Compression Failure Type Il

The expressions for Fee, Fer, Fee, Fop and @, are the same as shown in case |,

and the tensile force from the ascending part of the curve, F is:

_ 2
F =ge PN-9°

= 5.48
te T~Cu 2C ( )

Simplifies the equilibrium equation,

(c- h)E.(- 2'%12: b(e- Mo, (5 .49)

bce
fo(bc- —=)+ €y =
ce( 2ecu) A:CEC Cu
Solve it, the depth of the neutral axisis:

c=(es, Ec(A +Ay) +bhie, 'Ee
(B 2(Es (A + Ay +bhE)%e, 2 - BI(2A, +BhE) (e - 260,) +Ec s ))
/ (b( fce(ece - k(:u) + fteeCquC))

(5.50)
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The Analysis Procedures

The following step-by-step procedure can be used for analyzing timber beams

for which the material properties are available in the handbooks. If it is feasble to test

the timber to obtain the properties experimentally, then more accurate predictions can

be made.

55

1)

2)

3)

4)

5)

For the given type of wood, refer to the handbooks, USDA [29] or ASTM [43]
and choose the modulus of rupture f;.

Estimate the ratio of elastic limits, m with the ratio of elastic stress limits of
timber fee and fie Using equation presented in Chapter 3;

Estimate the maximum failure strain of timber in compression, ¢, and tension,
ew. Estimate the maximum failure strain of composite in compression, ec, and
in tension, ec.

Analysis the unstrengthened beams and estimate the moment capacity. If
defects are present, estimate the size effects and reduced moment capacity.
Typicd Defects are: grains that are not parald to the principal stresses and
presence of knots.

Analyze the strengthened beam. Assume the timber to be clear wood in this
case. Use the manufacturer's recommendations for the modulus and failure

strains of high strength fibers or equivalent properties of the composites.

Conclusions

Based on the anaytical procedure introduced in this chapter, some

assumptions and conclusions could be drawn.
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1) A non-linear approach for the behavior of timber is needed in order to predict
the capacity of the composite strengthened timber beams.

2) An elasto-plagtic behavior assumption in the compression zone for strengthened
timber beam is developed. The timber properties are assumed to be the same as
clear wood.

3) Results available in the handbook used to estimate the material properties

needed for the non-linear model.



83

Chapter 6

L oad-Deflection Relationship of Oak Beams

6.1 Introduction

Wood is one of the oldest building materias and has been commonly used for
thousands of years. Different timber species have different applications depends on
the mechanical properties variations in timber. Lightweight cores, like balsawood, are
widely used in sandwich panels. They have high strength due to their light core
material and high strength facing material while providing high therma insulation.
Comparing with the lightweight woods, hardwoods, like oak and lignum vitae, are
extremely hard and offer high resistance to abrasion.

Many of these mechanical properties are highly dependent upon one common
factor, the density of the wood. In fact, the density of a wood specimen is one of the
most reliable indicators of its strength. Some properties, such as end-wise
compressive strength and bending stiffness, varies with the density. Flexural strength
changes dlightly more rapidly than the density, while toughness and shock absorption
ability varies aimost as the square of density. Therefore, one piece of wood, which has
twice the density of a second piece of the same species, would be expected to have
double the bending stiffness and endwise compressive strength, about two and a half
times the flexura strength, and about three and a half times the toughness of the
second piece (Garratt, 1931).

In this chapter, composite reinforced beams with oak cores are studied both

experimentally and theoretically. The flexura strength, load—deflection relationship
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is evaluated. A brief comparison of the behavior is also made between oak and balsa

beam.

6.2  Experimental Resultsfor Reinforced Beams Utilizing Oak Wood Cores

6.2.1 Experimental Investigation

The experimental study of oak beams were conducted by James Giancaspro.
For all samples, the inorganic matrix was used to bond the reinforcement to the oak
wood core. The samples were categorized into one of seven sets based upon the core
type and whether the beam was strengthened or unstrengthened. The primary

variables investigated in this study were:

1) Spanlength— 457mm (18 in)

2) Beam width-64mm or 76mm (2.5 or 3.0 in)

3) Density of core material —560 to 826kg/m®

4) Corethickness— four depths of 19mm 25mm (%4 inor 1in.)

5) Type of reinforcement — 12k high modulus carbon tows (“12k HMC Tows”),
woven carbon fabric with glass in the fill direction made using 3k tows (“3k
Woven C&G”), unidirectional carbon tape made using 3k tows (“3k Uni C”),
and 2k akali-resistant glass tows (“AR-glass Roving”). The area of
reinforcement for each 12k high modulus carbon tow is 1.14mm?. The areas of
reinforcement per unit width for the 3k woven carbon and glass fabric and the

3k unidirectional carbon tape are 0.72 and 0.96mm?%cm, respectively.

6) Amount of reinforcement — between zero and four carbon tows; one or two
woven carbon tapes; one or two unidirectional carbon tapes; zero, four, or eight

AR-Glass tows
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7) Location of reinforcement — only on the tension side or on both the tension and

compression sides

The sample designations and the details of the control samples are presented in
Table 6.1and Table 6.2 presents the flexure test parameters. The strengthened oak
specimens are presented in Tables 6.3. For each designation, two or three identical
beams were prepared and tested in flexure, resulting in a total of 60 beams. The four
types of sample thickness were chosen to cover diverse practical applications and to

adjust the shear stresses at the interface.

6.2.2 Specimen Preparation

All oak cores were dimensioned and weighed to determine the densities in
accordance with ASTM C271 (American Society for Testing and Materials, 2001).
The oak core densities ranged from 560 to 826kg/m® (35 to 52Ibg/ft®). The surface of
the oak was extremely hard and could not be abraded to improve the bonding between
the core and reinforcing composite material. The reinforcement was hand-
impregnated with matrix and placed on the core. The samples were allowed to curein

open air at approximately 21°C for 3 weeks.

6.2.3 Test Method

The flexure tests were conducted over a Smply supported span in accordance
with ASTM C393 (American Society for Testing and Materials, 1999). The four-point
flexure test setup is shown in Figure 6.1. The span length is 445mm (18in). This
yielded span-to-depth ratios of 18:1 and 76:1. An MTS Sintech 10/GL was used to

test the beams under deflection control at a mid-span deflection speed of 4mm/min for
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the oak. Using these test speeds, each sample was tested to failure in approximately 6

minutes. Load and deflection readings were taken and the failure mode was recorded.

6.2.4 Test Results

The typical load-deflection responses for the oak beams as well as moment
capacity, toughness (energy), and stiffness (flexural rigidity) are presented in Figures
6.2 through 6.7. Figure 6.2 presents the flexural response of plain oak beams with
varying dendties. Figures 6.3, 7.4, and 6.5 present the results for oak beams
strengthened with 12k HMC Tows, 3k Unidirectional Carbon tapes, and 3k Woven
C&G Tapes. Figure 6.6 compares the effect of carbon reinforcement type and Figure
6.7 presents the flexural response of oak beams strengthened with AR-Glass Tows. In
these figures, “T” and “C” denote the location of the reinforcement, namely on the
tenson or compression face, respectively. The designation “T, C” indicates that

reinforcement is placed on both tension and compression faces.

The flexura strength of plain beams was determined using basic strength of
material analysis. For a beam with a rectangular cross-section of width, b, and depth,
h, the flexural strength,

g =M__ M
" Z bh?e

(6.1)

Where M is the maximum bending moment at mid-span and Z is the section
modulus. The flexura strengths for the control beams are tabulated in Table 6.2,
while Figures 6.8, 6.9, and 6.10 present flexura strength versus density for plain

balsa, plain oak, and all beams, respectively. To compare the beams strengthened with

reinforcement to the control beams, an “apparent” flexural strength was calculated for
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each strengthened beam using the previous formulas. These flexural strengths are

presented in Tables 6.3 for the oak beams.

To study the effect of beam density on moment capacity, the moments were

standardized to account for varying cross-sectiona dimensions,

Ui

M, =
' bh?

(6.2)

Where M, is the standardized maximum flexural moment capacity of samplei
and M, is the maximum flexurd moment obtained directly from test results

(ungandardized). Similarly, the mid-span deflection at maximum load was

standardized for varying dimensions and span lengths using,

d,,
di = bh3ll_3 (63)
Where d, = Standardized deflection at maximum load for samplei, dUi isthe

midspan deflection a maximum load obtained directly from test results

(unstandardized) and L is the span length.

To measure the relative performance of the strengthened beams with respect to
the control beams, the percent increase in moment capacity was calculated. This

moment capacity was also standardized with respect to density,

. o
Increase= g ol Ea =3- 100% (6.4)
M. g a0

Where M, is the average standardized control moment (1698 N/m? for oak
beam), r,is the density of sample i, andr is the average density of control samples

(688.2 kg/m® for oak beam).
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The coefficient of determination, R?, was used to measure the strength of a
linear relationship between density and standardized maximum moment capacity and
sandardized deflection. For each type of reinforcement configuration, a separate
linear correlation was made, Table 6.4. In general, R? > 0.85 indicates a good linear
relationship.

The specific strength of the strengthened beams, s , was determined using,

Ss=— (6.5)

6.2.5 FailurePattern

Beams reinforced on both sides can fail in different ways depending on the
properties of the facing and core materials, the geometry of the sandwich structure,
and the loading arrangement used to test the structure. All of the oak beams failed
with a brittle fracture on the tensile sde of the beam. The amount, type, and location
of reinforcement do not affect the type of failure for the oak beam. The shear strength
of the core, which is directly related to density, should have played a very important
role in determining the failure mode. Despite the different failure modes, no
delamination happened for any of the oak beams. This also shows that the inorganic

reinforcement bonds well to oak wood.

6.2.6 Stiffness

The stiffness (flexural rigidity) was computed using the initially linear portion
of the load—deflection curve. Using the initial straight-line portion of the load-
deflection curve and basic strength of materials anaysis, the flexura stiffness can be

calculated as:
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_ (DP)a

El = )&
48(Dd)

(3L%- 4a?) (6.6)

Where
El = the equivalent flexura stiffness
DP = the load increment
Dd = the corresponding deflection increment
L = span length

a = the distance from the left (or right) point load to the left (or right) support.

In genera, the increase of any type of reinforcement to the oak wood core
resulted in a significant improvement in stiffness. While the reinforcement ratio
increased, the Htiffness increased correspondingly. However, the largest stiffness for
each set dways occurred when three 2 3k Uni C tapes were applied to both sides of
the beam. This can be illustrated in Figures 6.3 through 6.6 by computing the slope of

theinitial linear portion of the load-deflection curves.

6.3  Theoretical Analysisof Reinforced Beams Utilizing Oak Wood Cores

6.3.1 Background

Theoretical analysis of oak core both-side reinforced beams was conducted
corresponding to the experimental tests. The purpose of the theoretical anaysis is to
examine the assumptions of the model, and to find out a set of parameters of different
timber that can be used commonly in practical applications. The parameters to be
determined include Young’s modulus of the timber E,, Young’s modulus of the
reinforcing composite Ec, the maximum elastic strain and the ultimate strain of

timber.
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6.3.2 Basic Assumptions

To set up the andlysis model of oak core both-side reinforced beams, some

assumptions were taken in the calculation. Mgor assumptions are listed below.

1)

2)

3)

4)

5)

6)

7

All timber cores are assumed to be clear wood. Clear wood refers to clear
defect-free small sizes of wood, usualy used in laboratory for standard
experiments.

The bond of the interfaces between the timber cores and reinforcing composite
material is assumed to be perfect. In other word, the strain of the core and the
composite on the interfaces always remains same.

Plane section is assumed to remain plane in bending.

Wood tension strength and compression strength properties can be used directly
in analysis of wood bending behavior.

Timber compression strength is not subjected to size effect.

The behavior of timber core is easto-plastic. Two loading stages for lumber are
identified. When loads are small, the behavior of timber core is linearly elastic
and strength of materials approach can be used in the analysis. This first stage
terminates when the extreme compression fiber reaches equivalent maximum
compressve srength. The second stage starts when the extreme compression
fiber yields and ends when the extreme compression fiber reaches the plastic
limit.

In the second loading stage, the stress of each point in the compression zone

remains unchanged until the beam fails.
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6.3.3 Young’sModulusE,, Maximum Elastic Strain &, and Ultimate Strain &,
of Oak Core
To determine the basic material parameters of oak wood, such as Young’s
modulus E,,, maximum elastic strain e, and ultimate strain &, following calculation

are based on the tests of the plain wood beams (unstrengthened).

6.3.3.1 Young’sModulus E,, Maximum Elastic Strain .

From the test record shows the load 4P and the deflection 40 that is
corresponding to the maximum elastic strain. Span parameters L, |, a, and depth h,
width W of al oak beam samples are presented in Table 6.2 and Table 6.3. The
moment of inertial can be calculated from the dimensiona parameters. Substitute al
the parameters aswell as AP and 46 into equation 6.6,

_ (DP)a

El = )&
48(Dd)

(3L2- 4a?) (6.6)

the Y oung’s modulus E,, can be evaluated. The calculation was taken for
every sample beam, and E,, ranges from 10.8GPato 12.7GPa. The moment applied to
the beam while the timber reachesits elastic strain limit is:
M,=Dp a (6.7)
therefore the elastic limit strain e of the oak beam can be calculated as

M_"h
e =—2= 6.8
® = o (6.8)

and the elastic limit stressfee is:

d= (6.9)
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6.3.3.2 Ultimate Strain &, of Oak Core

Two equations are utilized to compute the ultimate stress ¢, of timber and its
corresponding neutra axis depth c. The first equation is the maximum moment
capacity of the cross section, and the second eguation is the force equilibrium of the

section.

6.3.3.3 Maximum M oment Capacity Equation:
For the analysis of oak beam, we assume that the beam failure happens by

crushing of oak wood, and e, £ e,, at falure. Thisisto say, during the whole loading

period, the strain of timber in the tenson zone is linearly increasing and is in the
elastic range. No trapezoid plagtic range in stress—strain relationship exists. In such
case, from the flexural model analysis in Chapter 5, the force equilibrium:
Fee tFetFyp =Fe + R (6.10)

where

Fce= Compressive force from the composite in compression zone.

Fep =Compressive force from plagtic part of the stress-strain curve of timber.

F.e =Compressive force from the elagtic part of the stress-strain curve of
timber.

Fi =Tensle force from the ascending part of the stress-strain curve of timber.

Fo= Tension force from composite in tenson zone.

Since the caculation of wood parameter is focused on plain wood case, Fcc

and F¢ equals zero. From chapter 5,



93

Fo= % (6.12)
2ey
e
F, =bcl- =) f, (6.12)
eCu
F =28 (6.13)
2eg,
thus the moment of the plain wood beam equals:
2_ e c e 2_ e
M, ==F.,—=c+-F, Q+—=)+=F,—<(h-c 6.14
0GP Ot Pl ) R (- O (6.14)
The maximum load Pyux Capacity is presented in the test result, so the
maximum moment capacity can be calculated as:
M, = P @ (6.15)

Since the sizes of the beams investigated were small, and the related
deflections were also small comparing with their thickness, thus equation 6.15 is till
accurate enough. Therefore, the unknown parametersin equation 6.14 are ¢, and

N.A. depthc.

6.3.3.4 The Force Equilibrium Equation
The force equilibrium eguation of the section is established with numerical
method. The beam was divided to 100 equal width strips across the thickness h, thus

the thickness t of each strip equals:

The strip on the top is strip No.1, and the strip on the bottom of the beam is
grip No. 100. Assume the strain at the upper most compression face is ¢, then the

drain g a the middle of strip i is:



e =Su (ot i+l 6.17)
o 2

where c isthe neutral axis depth. therefore the force f on any strip i is:
f,=t"b" E, e ife £e,
f,=t"b" E, e,ife3e, (6.18)
where b is the width of the oak beam.

Based on this numerical expression, the force equilibrium eguation of the

section can be denoted as

100

af@i)=0 (6.19)

In equation 6.14 and 6.19, the only unknown parameters are ., and N.A.
depth c. Solving equation 6.14 and 6.19, the ultimate compression strain ¢, of oak

wood and its failure neutral axis depth c are determined.

6.3.4 Relationship between Moment and Curvature

To estimate the relationship between moment and curvature of the beam, the
same numerical method was used. The only difference is that we assume the
maximum strain in compression side to be emax, and enex ranges from 0.0001 to &,

with an increment of 0.001 each step. The equation of the strain of each strip became:

e =8m oot ivly (6.20)
c 2
and the force f; on any strip i is still:
f,=t"b"E, e ife £e,
f,=t"b" E, e,ife3e, (6.21)
Since emax 1S known now, use the force equilibrium equation to calculate

neutral axis depth c of the plain beam for each enux:
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¥, , e , .t
af@=at'b E, (-t i+-)=0 (6.22)
1 i=1 c 2

therefore, while the maximum compression strain is emax, the moment on the
section and the curvature of the plain wood beam can be expressed as:
PPN
M=a |f(| )|
i=1

c-t’ i+% (6.23)

For the composite strengthened case, still use the force equilibrium to compute
the neutral axis depth c for each enux. The force from the composite material should be
taken into equilibrium equation:

5‘1’" £() = gj t' b E,’ eTmaX(c- t | +%) +AE.e,. +AQECemaxh_TC=O
(6.24)
where:

Acc = composite reinforcement area in the compression side

Act = composite reinforcement areain the tension side

Ec =Y oung’s modulus of the reinforcing composite material

And the moment on the section and the curvature of the strengthened beam is

expressed as.
M = l5100|f M lc-ti +% +A Eee._c+AEe,. (h'cc)z (6.25)
i=1
when the N.A. depth c of the beam is known, the curvature
y = Smac (6.26)
c

With the assistance of computer program, awhole set of M—Y¥ data can be
calculated corresponding to different emax from 0.0001 to &q,. Thus the relationship

between moment and curvature of the unstrengthened and strengthened beams is
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found. The M—¥ relationship is linear while e, £e,. When e ° e, , theM—¥
relationship becomes nonlinear. The relationship can be expressed as:

y =f(M) (6.27)
6.3.5 Calculation of Maximum Elastic L oad and Ultimate Failure L oad

The maximum elastic moment on the oak beam is a function of maximum

elastic load Pge,

c’ bm?®
M max, 1 :rCACcECete +T(h_ C)ZETete

+ 20 (c- mh+mo)(c - me+ M e, +2 (- ©)°Ere, + Ay Ece, (h- O

(6.28)

When the compression fiber reaches its elagtic limit,

y = f(M):eTce (6.29)

Since e_, and c. are known, substituting equation 6.28 into equation 6.29, the

value of P is determined. Similarly, the value of ultimate load Py, is determined by

substituting equation 6.30 into equation 6.31.

M, = F(P) = Foc+2F, S c+ OF 1+ %)+ 2F_Be (h- g+ F (h- 0)
3 eCu 2 eCu 3 Cu
(6.30)
e
y =f(M)= C°“ (6.31)

cu
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6.3.6 Theoretical Analysis Result of Load—Deflection Curve

Load P

!

Support A Support B

The moment-curvature relationships calculated previously can be used to
estimate the curvatures and deflections along the beam corresponding to a given load
condition. A smplified loading beam is drawn above. Point A is the left end of the
beam, point B is the right end, and point C is at the mid-span of the oak beam. The
deviation of point A from atangent drawn at point C is equa to the first moment of
area of the area under the curvature diagram between A and B taken about point A.

da = Y (Xc- x)dx (6.32)

a

For the two point loaded beam, the deflection at mid-span can be found as:

0.5L
D= ¢ " x" dx (6.33)
0
In order to determine the deflection it is convenient to perform the integration

numericaly. Divide half span beam into 100 segments,

® . .,... D
d,c :ay(l) D" (D I_E) (6.34)
Increase the load P from O to P, and the load—deflection curves are drawn for
al oak beams with different dimensions and different reinforcement. Figure 6.11 to
figure 6.16 shows the load deflection curves for the oak beam from theoretical

anaysis.



98

6.3.7 Comparison with Test Results

The purpose to establish this flexural model established is to find out a
theoretical model that matches well with the experimental results so that could be
gpplied in design practice. Comparison was made between the load—deflection
curves from tests and theoretical anaysis. In Figure 6.17 to Figure 6.22, both test and

analysis results were put together to present the similarity and difference.



Flexure Test Dimensions Flexural
SaTle VTV;SS Lengh L | | a_[span: Depth]_Srendth
(mm) (mm) (mm) Ratio (MPa)
1 Balsa 457 152 153 76 5
2 Balsa 292 76 108 46 8
3 Balsa 292 76 108 46 20
4 Balsa 457 152 153 36 6
5 Balsa 292 76 108 23 7
6 Balsa 292 76 108 23 12
7 Balsa 457 152 153 24 9
8 Balsa 292 76 108 15 8
9 Balsa 457 76 191 18 8
10 Oak 457 152 153 24 80
11 Oak 457 152 153 24 121
12 Oak 457 152 153 24 146
13 Oak 457 152 153 18 92
14 Oak 457 152 153 18 o1

Table 6.1: Details of Control Specimens

99



100

Oak Core Properties _ Apparent Flexural
Sample | sty | Depth | width Reinforcement Strength
ID
(kgm’) | (mm) | (mm) | # Type (MPa)

47 601 25 51 2 12k HMC Tow * 75
48 623 25 51 4 12k HMC Tow 107
49 627 25 51 2 12k HMC Tow 110
50 627 25 51 1 3k Uni C Tape 100
51 610 25 51 2 3k Uni C Tape 127
52 693 19 64 2 12k HMC Tow * 125
53 765 19 64 2 12k HMC Tow 149
54 695 19 64 4 12k HMC Tow 146
55 701 19 64 1 3k Uni C Tape* 131
56 603 19 64 1 3k Uni C Tape 104
57 793 19 64 2 3k Uni C Tape* 179
58 670 19 64 1 | 3k Woven C&G Tape* 122
59 673 19 64 1 3k Woven C&G Tape 131
60 675 19 64 2 | 3k Woven C&G Tape* 125
61 600 25 76 4 AR-Glass Tows * 105
62 612 25 76 8 AR-Glass Tows * 110

* Reinforcement only on tension side

Table 6.2: Flexure Test Parameters and Strength Results for Control Specimens

Reinforcement Coefficient of Correlation, R?

Compression Face Tension Face Standardizeq | Stendardized

. Deflection at

# Type # Type Max. Capacity | ;| oad

0 None 1 12k HMC Tow 0.04 0.04
1 12k HMC Tow 1 12k HMC Tow 0.09 0.00
3 12k HMC Tow 3 12k HMC Tow 0.00 0.01
1 3k Woven C&G Tape 1 3k Woven C&G Tape 0.96 0.06
2 3k Woven C&G Tape 2 3k Woven C&G Tape 0.05 0.05
1 3k Uni C Tape 1 3k Uni C Tape 0.86 0.32
2 3k Uni C Tape 2 3k Uni C Tape 0.41 0.11
0 Control 0 Control 0.97 0.09

Table 6.3: Details and Strength Results of Strengthened Oak Samples
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Figure 6.1: Test Setup for Flexure Testing of Oak and Balsa Beams
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Figure 6.2: Load vs. Deflection for Control Oak Beams of Varying Density
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Figure 6.3: Load vs. Deflection for Oak Beams with Core of 19mm Thick and 64mm

Wide, Strengthened with 12k HMC Tows
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Figure 6.4: Load vs. deflection for oak beams with core of 19mm Thick and 64mm
Wide, strengthened with 3k Unidirectional Carbon Tapes
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Figure 6.5: Load vs. Deflection for Oak Beams with Core 19mm Thick, 64mm Wide,
Strengthened with 3k Woven C& G Tapes
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Figure 6.6: Load vs. Deflection for Oak Beams of 25mm Thick and 64mm Wide
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Load-Deflection Curve From Analysis
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Figure 6.11: Theoretical Computed Load Deflection Curve for Oak Beams with Core
of 19mm Thick and 64mm Wide, Strengthened with 12k HMC Tows
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Figure 6.12: Theoretical Computed Load Deflection Curve for Oak Beams with Core
of 19mm Thick and 64mm Wide, Strengthened with 3k Woven C& G Tapes
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Figure 6.13: Theoretical Computed Load Deflection Curve for Oak Beams with Core

of 19mm Thick and 64mm Wide, Strengthened with 3k Uni C Tapes
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Figure 6.14: Theoretical Computed Load Deflection Curve for Oak Beams with Core

of 25mm Thick and 64mm Wide, Strengthened with 12k HMC Tows
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Figure 6.15: Theoretical Computed Load Deflection Curve for Oak Beams with Core
of 25mm Thick and 64mm Wide, Strengthened with 3k Uni C Tapes
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Figure 6.16: Theoretical Computed Load Deflection Curve for Osk Beams with Core
of 25mm Thick and 64mm Wide, strengthened with AR Glass tows
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Figure 6.17: Comparison of the Load Deflection Curves for Oak Beams with Core of
19mm Thick and 64mm Wide, Strengthened with 12k HMC Tows
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Figure 6.18: Comparison of the Load Deflection Curves for Oak Beams with Core of
19mm Thick and 64mm Wide, Strengthened with 3k Woven C& G Tapes
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Load Deflection Curve Comparison
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Figure 6.19: Comparison of the Load Deflection Curves for Oak Beams with Core of
19mm Thick and 64mm Wide, Strengthened with 3k Uni C Tapes
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Figure 6.20: Comparison of the Load Deflection Curves for Oak Beams with Core of
25mm Thick and 64mm Wide, Strengthened with 12k HMC Tows
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Figure 6.21: Comparison of the Load Deflection Curves for Oak Beams with Core of
19mm Thick and 64mm Wide, Strengthened with 3k Uni C Tapes
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Figure 6.22: Comparison of the Load Deflection Curves for Oak Beams with Core of
19mm Thick and 64mm Wide, Strengthened with AR Glass Tows
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Chapter 7

Parametric Study

7.1 Introduction

The following parametric study deals with the influence and sensitivity of the

material parameters. The analyzed parameters are:

1.

2.

Modulus of elasticity of the oak wood,
Maximum elastic strain of the oak wood,
Ultimate strain of the timber,

The amount of reinforcement,

Modulus of elasticity of the composite.

The parametric study tests the influence of the variation in these independent

material variables. The relative effects that each variable have on the load—deflection

relationship is shown by this study. Therefore, the parametric study provides an

analysis on the accuracy of the load—deflection curve to see if there are errorsin the

estimation of the above independent parameters, and variations that occur due to the

nonOuniformity of wood within the range of interesting.

7.2  Parametric Study Procedure

The sendtivity of each of the parameters was studied based on the load—

deflection relationship model. The outline of the analysis procedure is as follows:
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The oak wood beams are divided into seven groups based on their Young’s
Modulus. The modulus of the oak wood varies from the weakest timber with the
elasticity modulus of 8.75GPa to the strongest timber with the elasticity modulus of
16.25GPa. The range of timber modulus of elasticity is based on the wood testing

records.

For each oak beam group with a specific elastic modulus, we further divided
this group into smaller groups based on the difference of their reinforcements. The
composite reinforcements applied to the oak beams are 12k HMC tows and 3k Uni C
tapes. The elastic modulus of the 12 k HMC tows were 512GPa after a 20% of
deduction while the eastic modulus of 3k Uni C tapes were taken as 180GPa after a

10% of deduction.

For the 3k Uni C tape reinforcement group, the oak beams were strengthened
either on tension side only or both the tenson and compression sides with 1 tape, 2
tapes, 3 tapes and 4 tapes respectively. For the 12k HMC tows reinforcement group,
the oak beams were strengthened either on tension side only or both the tension and
compression sides with 2 tows, 4 tows, 6 tows and 8 tows respectively. The value of
the maximum failure load and the elastic load for al these cases were evaluated so as

to analysis the sensitivity of each independent parameter more accurately.

For each sdlected timber group, al parameters should have ther specific
values and a corresponding maximum failure load. One of the five parametersis set to
be varying within a certain range. For each different value of a specific independent

parameter, a new maximum failure load of the beam could be caculated. The



114

sengtivity of each parameter is analyzed in two reinforcement types respectively, in
other words, reinforced by 12k HMC tows and reinforced by 3k Uni C tape. The
calculated maximum failure loads of different reinforcement amount are then
averaged and compared with the given moment capacity based on variation of the

parameter.

The maximum failure load variation obtained from every oak beam group for
a certain parameter was gathered to compare the sensitivity of this parameter on

different wood strength.

The calculation results are studied for al of the five parameters.

The influence that one parameter (Modulus of easticity of the oak wood,
Maximum elastic strain of the oak wood, Ultimate strain of the timber) has on
maximum failure load is graded into very high, high, medium, low, very low. The

definitions are listed as follows;

Very high — above = 8 % corresponding to +£10% change of a specific
parameter.

High — less than = 8% corresponding to +£10 % change of a specific parameter.
Medium — less than + 6 % corresponding to +£10% change of a specific
parameter.

Low — less than + 4 % corresponding to +£10 % change of a specific parameter.
Very low — less than = 2 % corresponding to £10 % change of a specific

parameter.
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The reinforcement amount is graded into 4 levels for both 12k HMC tow and
3k Uni C tape cases. The 4 levels for the 3k Uni C tape case are 1 tape, 2 tapes, 3
tapes, 4 tapes, and the 4 levelsfor 12k HMC tow case are 2 tows, 4 tows, 6 towsand 8
tows. To study the sensitivity of the reinforcement amount has on the ultimate failure

load, the influence of this parameter is graded as.

Very high — above + 8 % corresponding to one grade change of the
reinforcement amount.
High — less than + 8% corresponding to one grade change of the reinforcement
amount.
Medium — less than £ 6 % corresponding to one grade change of the
reinforcement amount.
Low — less than + 4 % corresponding to one grade change of the reinforcement
amount.
Very low — less than + 2 % corresponding to one grade change of the
reinforcement amount.
All of the five parameters were studied and the results are listed in Figure 7.1
through Figure 7.10. The following sections described the anayze results of each

parameter.

7.3  Modulusof Elagticity of Oak Wood
The modulus of elasticity of timber is one of the most important parametersin
the study of beam bending strength. Since the modulus of elasticity, tension and axial

compression are al varying linearly with its density, it is assumed that the wood
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compression and axia tenson have a linear relationship with the modulus of

elasticity.

The sensitive analysis of modulus of easticity is conducted based on the
senditivity analysis of the maximum failure load with the change in Er. The modulus
of elasticity is set at 7 different strength level, namely between 8.75GPa for the
weakest beam and 16.25GPa for the strongest beam. The medium strength of oak
beam is 12.5GPa. At each modulus of dasticity level, the change of Er is set to £10%.
With every varied value of modulus of elasticity, a different maximum failure load
could be calculated for all the beam groups with different maximum elastic strain,
ultimate strain, reinforcement type and amount. Then these varied falure loads were
averaged and compared with the standard failure load to gain the sensitivity

percentage. The analysisresults are givenin Figures 7.1 and 7.2.

1) 3k Uni C tape reinforcement on tension side only:

Generally, the maximum effect on the ultimate failure load happened at the
lower timber modulus of elasticity. For +10% of change in Er, the maximum change
in maximum failure load is about +11.4% and an average change of +8.8%, which
means that the change of Er has very high influence on the final beam failure load

while the beam is reinforced by the 3k Uni C tape on tension side only.

2) 3k Uni C tape reinforcement on both tension and compression sides:
The maximum effect on the ultimate failure load always happened at the lower
timber modulus of elasticity. For £10 % of change in Er, the maximum change in

ultimate failure load is about £7.8 % and an average change of +4.0 %, which means
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that the change of Er has medium influence on the final failure load of both side tape

reinforced beam.

3) 12k HMC tows reinforcement on tension side only:

Generally, the maximum effect on the ultimate failure load happened at the
lower timber modulus of elasticity. For +10% of change in Er, the maximum change
in maximum failure load is about +11.4% and an average change of +8.9%, which
means that the change of Er has very high influence on the final beam failure load

while the beam is reinforced by the 12k HM C tows on tension side only.

4) 12k HMC tows reinforcement on both sides:

The maximum effect on the ultimate failure load aways happened at the
lower timber modulus of elasticity. For £10 % of change in Er, the maximum change
in maximum failure load is about +7.2 % and an average change of +4.4 %, which
means that the change of Er has medium influence on the failure load of the beams

that are reinforced on both sides with 12k HM C tows.

74 Maximum Elastic Strain of the Timber

The elastic strain ¢, can be found from the tests records. From the
experimental results, we can calculate . from the eastic load limit and the beam
dimensions and the timber parameters. The modulus of elasticity of oak wood can be

found from handbooks or experiments results.

The sengitive analysis of the e is conducted based on sensitivity of the vaue
change in & on the ultimate failure load of the oak beam. The elastic strainis set a a

medium level of 0.004. Set a 10% of change of the value of &, the lowest level of the
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elastic strain is 0.0032 for the weakest beam and the highest level of e is 0.0048 for
the strongest beam. For each varied value of &, a different maximum failure load
could be caculated for all the beam groups with different modulus of elagticity,
ultimate strain, reinforcement type and amount. The newly calculated ultimate failure
load for all the groups is then averaged and compared with the given failure load. The

anaysis results are given in Figures 7.3 and 7.4.

1) 3k Uni C tape reinforcement on tension side only:

The maximum effect on the ultimate failure load happened at the lower oak
beam dastic strain. For £10% of change in &, the maximum change in maximum
falure load is about +£8.6% and an average change of +6.5%, which means that the
change of ¢ has high influence on the final beam failure load while the beam is

reinforced by the 3k Uni C tape on tension side only.

2) 3k Uni C tape reinforcement on both tension and compression sides:

The maximum effect on the ultimate failure load always happened at the lower
timber eastic strain. For £10 % of change in e, the maximum change in maximum
falure load is about +4.7 % and an average change of £2.8 %, which means that the
change of ¢ has low influence on the final failure load of both side tape reinforced

beam.

3) 12k HMC tows reinforcement on tension side only:
Generally, the maximum effect on the ultimate failure load happened at the

lower timber dastic strain. For +10% of change in ¢, the maximum change in
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maximum failure load is about +8.6% and an average change of +6.4%, which means
that the change of ¢ has high influence on the final beam failure load while the beam

isreinforced by the 12k HM C tows on tension side only.

4) 12k HMC tows reinforcement on both sides:

The maximum effect on the ultimate failure load always happened at the
lower oak beam elastic strain. For £10 % of change in &c, the maximum change in
maximum failure load is about +5.4 % and an average change of +3.1%, which means
that the change of &, has low influence on the failure load of the beams that are

reinforced on both sides with 12k HM C tows.

75 Ultimate Strain of Timber

The ultimate strain ¢y can be found from the tests records. From the
experimental results, we can calculate ¢, from the failure load and the beam
equilibrium. The modulus of elasticity of oak wood can be found from handbooks or

experiments results.

The sengitive analysis of the ¢, is conducted based on sensitivity of the vaue
change in ec, on the ultimate failure load of the oak beam. The ultimate strain is set at
amedium level of 0.009. Set a 10% of change of the value of &, the lowest level of
the elagtic strain is 0.0072 for the weakest beam and the highest level of ¢, is 0.0108
for the strongest beam. For each varied value of ¢, a different ultimate failure load
could be caculated for al the beam groups with different modulus of elasticity,

maximum elastic strain, reinforcement type and amount. The calculated ultimate
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failure load for all these groups is then averaged and compared with the given failure

load. The anaysis results are given in Figures 7.5 and 7.6.

1) 3k Uni C tape reinforcement on tension side only:

The maximum effect on the ultimate failure load happened at the lower oak
beam ultimate strain. For £10% of change in ¢, the maximum change in maximum
falure load is about +£6.6% and an average change of +4.5%, which means that the
change of &, has medium influence on the final beam failure load while the beam is

reinforced by the 3k Uni C tape on tension side only.

2) 3k Uni C tape reinforcement on both tension and compression sides:

The maximum effect on the ultimate failure load always happened at the
lower oak beam ultimate strain. For +10 % of change in &, the maximum change in
maximum failure load is about +£9.8 % and an average change of +7.95 %, which
means that the change of &, has high influence on the find failure load of both sde

tape reinforced beam.

3) 12k HMC tows reinforcement on tension side only:

Generally, the maximum effect on the ultimate failure load happened at the
lower timber ultimate strain. For +10% of change in &, the maximum change in
maximum failure load is about +8.8% and an average change of +4.7%, which means
that the change of ¢, has medium influence on the finad beam failure load while the

beam is reinforced by the 12k HMC tows on tension side only.
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4) 12k HMC tows reinforcement on both sides:

The maximum effect on the ultimate failure load always happened at the
lower timber ultimate strain. For £10 % of change in &, the maximum change in
maximum failure load is about +£8.9 % and an average change of +7.8%, which means
that the change of &¢, has high influence on the failure load of the beams that are

reinforced on both sides with 12k HM C tows.

7.6 The Reinfor cement Amount

The reinforcement amount is one of the most important parameters in
sendtivity study. To get maximum beam strength improvement with relative less

composite materia is a problem to be solved with high practica significance.

The sendtive analysis of the reinforcement amount is conducted based on
sendtivity of the grade change in reinforcement amount on the ultimate failure load of
the oak beam. The smallest reinforcement amount is set to be 1 tape or 2 tows. Set
one grade change of the reinforcement amount, and the maximum reinforcement
amount is 4 tapes or 8 tows. For each varied vaue of reinforcement amount, a varied
ultimate failure load could be calculated for all the beam groups with different
modulus of easticity, maximum elastic and ultimate strain and the reinforcement
type. The varied maximum failure load caculated for all these groups is then
averaged and compared with the given fallure load. The analysis results are given in

Figures 7.7 and 7.8.

1) 3k Uni C tape reinforcement on tension side only:
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The maximum effect on the ultimate failure load happened a lower
reinforcement amount. For a grade change in reinforcement amount, the maximum
change in maximum failure load is about +9.7% and an average change of +5.3%,
which means that the change of reinforcement amount has medium influence on the
final beam failure load while the beam is reinforced by the 3k Uni C tape on tension

sdeonly.

2) 3k Uni C tape reinforcement on both tension and compression sides:

The maximum effect on the ultimate failure load aways happened at lower
reinforcement amount. For £10 % of change in reinforcement amount, the maximum
change in maximum failure load is about +51.0 % and an average change of +£32.1 %,
which means that the change of reinforcement amount has very high influence on the

final failure load of both side tape reinforced beam.

3) 12k HMC tows reinforcement on tension side only:

Generally, the maximum effect on the ultimate failure load happened at lower
reinforcement amount. For +10% of change in reinforcement amount, the maximum
change in maximum failure load is about +9.5% and an average change of +5.2%,
which means that the change of reinforcement amount has medium influence on the
final beam failure load while the beam is reinforced by the 12k HMC tows on tension

sdeonly.

4) 12k HMC tows reinforcement on both sides:
The maximum effect on the ultimate falure load aways happened at lower

reinforcement amount. For £10 % of change in reinforcement amount, the maximum
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change in maximum failure load is about +47.0 % and an average change of +24.3%,
which means that the change of reinforcement amount has high influence on the

faillure load of the beams that are reinforced on both sides with 12k HM C tows.

7.7  Modulusof Elagticity of Composite

The sensitive analysis of the modulus of elasticity of the composte is
conducted based on sensitivity of the change in modulus of elasticity of the composite
on the ultimate failure load of the oak beam. The smaller modulus of elasticity of the
composite is 180GPa for 3k Uni C tapes and the larger modulus of elasticity of the
composite is 512GPa for 12k HMC tows. For different value of Ec, a varied ultimate
fallure load could be caculated for all the beam groups with different modulus of
elagticity of timber, maximum elastic and ultimate strain and the reinforcement
amount. The varied maximum failure load calculated for al these groups is then
averaged and compared with the given falure load. The comparisons are between 1
tape case and 2 tows case, 2 tapes case and 4 tows case, 3 tapes case and 6 tows case,

4 tapes case and 8 tows case. The analysisresults are given in Figures 7.9 and 7.10.

1) Reinforcement on tension side only:

The maximum change in maximum failure load is about +66.7% and an

average change of £21.1%, which means that the change of reinforcement modulus

has very high influence on the final beam failure load while the beam is reinforced by

composite material on tension side only.

2) Reinforcement on both tension and compression sides:
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The maximum change in ultimate failure load is about +£69.7.0 % and an
average change of +50.0 %, which means that the change of reinforcement material
has very high influence on the fina failure load of beam that is reinforced on both

sdes.
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Chapter 8

L oad-Deflection Relationship of Balsa Beam

8.1 Introduction

Sandwich construction has a number of advantages. Core materials range from
natural species to engineered honeycomb or foam structures. The load-deflection
relationship of oak beams is studied in chapter 6. Comparing with wood species with
higher density, balsa wood is among the lightest and fastest growing hardwoods. End
grain balsa wood is used world wide by maor GRP (Glassfibre Reinforced Plastics)
or FRP (Fibreglass Reinforced Plastics) manufacturers in marine, rail and road

transportation, industrial, military and aircraft applications.

Lightweight core materials, like balsa wood, are widely used in sandwich
panels. They have combined advantages of lightweight and high strength due to their
light cores and high modulus face reinforcement. Balsa wood is one of the most
efficient core material used to make sandwich panels. The carbon and glass fibers are

usually combined with balsawood to make panels in engineering applications.

Basa trees grow naturdly in the humid rain forests of Central and South
America. Its natural range extends south from Guatemala, through Central America,
to the north and west coast of South America as far as Bolivia. Balsa needs a warm
climate with plenty of rainfall and good drainage. For that reason, the best stands of

balsa usually appear on the high ground between tropicd rivers. Finished balsa wood,
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varies widely in weight. The general run of commercial balsa weighs between 6 and

18 pounds per cu. ft.

The advantages of basa wood as core material include good thermal
insulation, excellent stiffness and bond strength, and great local impact resistance. In
fact, basa wood is often considered the strongest wood for its weight in the world.
Pound for pound it is stronger in some respects than pine or even oak. Balsawood can
increase the stiffness of structural components dramatically for little additional
weight, and is one of the oldest and most commonly used core materials applied to
sandwich construction. Balsa is a very "friendly" wood to work with -- so light, so

s0ft, so easily worked into so many things.

In this chapter, both-side reinforced wood beams with balsa cores are sudied
theoretically and the result is compared with the laboratory results. The flexura

strength, load—deflection relationship is evaluated.

82  Experimental Investigation of Balsa Beams

82.1 Test Preparation and Test Method

The experiments were conducted by James Giancaspro in Rutgers University
Engineering lab. Similar with the tests for reinforced beams with oak core, al samples
with balsa core were aso categorized into one of seven sets based upon the core type
and whether the beam was strengthened or unstrengthened. The area of reinforcement
for each 12k high modulus carbon tow is 1.14mm? The areas of reinforcement per
unit width for the 3k woven carbon and glass fabric and the 3k unidirectional carbon

tape are 0.72mm?/cm and 0.96mm?/cm, respectively.
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The primary variables investigated in this study were:

1) Spanlength — 292in and 445mm (12in and 18in.)

2) Beam width-50mm and 102mm (2in and 4in.)

3) Density of core material ~65kg/m? to 150kg/m? (4.1lbg/ft to 9.4Ibs/ft?)

4) Core thickness— four depths of 6, 13, 19, and 25mm (Y, %, %, and 1in.)

5) Type of reinforcement — 12k high modulus (640GPa) carbon tows (“12k
HMC Tow”), woven carbon fabric with glass in the fill direction made using
3k tows (“3k Woven C&G”), and unidirectional carbon tape made using 3k
tows (“3k Uni C”)

6) Amount of reinforcement — zero, one, or three tows; one or two woven tapes,
one or two unidirectional tapes

7) Location of reinforcement — only on the tension side or on both the tenson

and compression sdes.

All balsa samples were cut from commercially available balsa wood beams
and were inspected for defects. Wire brush and compressed air were applied to balsa
surface to improve the bonding between the balsa core and composite surface. The

samples were cured in open air at room temperature for 3 weeks.

8.2.2 Test Setup and Results
The flexure tests were conducted over a Smply supported span in accordance
with ASTM C393 (American society for testing and material, 1999). A schematic

diagram of the four-point flexure test setup is presented in Figure 8.1. Reinforced
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beams with depths of 6mm, 13mm and 19mm were tested with span of 292mm (12”),
and the samples that have depth of 25mm were tested over a 445mm (18”) span.
Totally 70 beams were tested, and two identical beams were used in 3 point bending
test for each designation. Load and deflection were recorded until failure and
experimental load-deflection curve is drawn. The failure load is aso recorded. The
results are presented from Figure 8.2 to Figure 8.6 base on James Giancaspro’s
experiments. Moment-curvature anaysis is conducted for the whole elasto-plastic
loading procedure on beams with same dimensions. Results from theoretical analysis

will be compared with experimental results.

8.2.3 Study of Density

In the study of the strength of wood and its dendity, a positive correlation is
found. Since the density of balsa wood is very low, its strength is more sensitive to
even very small density change. The density of each samples were measured before

experiments. Table 8.1 listed sample details for both-side reinforced balsa beams.

It could be seen in Figure 8.1 that L is the span length, and a is the distance
from support point to the loading point. The gtiffness could then be computed with the
dope of the load-deflection. Using the initia linear portion of the load-deflection
curve and basic information of the tested beams, the flexura stiffnessis:

DP
48(Dd)

El = (3L% - 4a%)a (8.1)

where El is the equivalent flexural stiffness, DP is the load increment, and Dd is the
corresponding deflection on the load-deflection curve. L is the span length and a

equals the distance from the left (or right) point load to the left (or right) support.
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The stiffness of dl plain balsa beams were calculated and presented in Figure
8.7. While Eiimver is determined for every group of samples, aregression anaysis was
conducted to find out the relationship between Young’s modulus and density, and a
regression line shown in Figure 8.8 was drawn. The stiffness has very strong

correlation with recorded density of each beam.

83  Theoretical Analysis Background

8.3.1 Orthotropic Nature of Wood Properties

The properties of timber were made dependent upon the direction of loading
due to the physical structure and the celular organization of the wood. Wood is
considered as an orthotropic material. It has specific and independent properties in
three mutually perpendicular axes. The longitudina axis L, the tangential axis T, and
the radial axis R are shown below. Generaly speaking, the tangential and radial axes
are defined as being perpendicular the grain. The properties of wood in the

longitudinal axis are higher than those in the tangential and radial directions.

Longitodinal
Figure 8.1: Three Principal Axes of Wood with Respect to Grain Direction
Values of the shear modulus G g, Gt and Ggr, aso called the modulus of
rigidity, are listed in Wood Handbook [1999] as rations with E,. The subscripts refer

to the plane over which the shear stress and shear strain is studied.
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8.3.2 Shear Influence on Balsa Beams

Due to its high density and high modulus, the shear deformation of oak wood
is very small comparing with the flexural deformation. In the deflection calculation in
Chapter 7, shear deformation of oak beams were neglected. However, the property of
composite beams with balsa core is largely affected by shear stress due to the low
modulus of the core material, and the shear deformation has to be taken into
consideration in the anaysis of balsa beams.

Based on the calculation of displacement by virtual work method, neglecting

the axia force and torsion,
M,M V.V
d= 0EJ—|dI + O(?dl (8.2

where ¢ is the total displacement, and

My is the moment due to a unit virtual force applied at the coordinate j where the
displacement is required,;

V, is the shear force due to a unit virtual force applied at the coordinate j where the

displacement is required,;

Referring to figure 8.1, the deflection due to shear
a E' 1
Jyor =O—=—dl 8.3
sh QG a (8.3)
in which G is the shear modulus, and a; is the reduced area of the cross section. For |-
sections, a; is considered equal to the cross section area of web. Since the composite

beams were transformed to I-section beams, a, wastakenas b” hin the analysis.

From previous section, it is known that
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_ (DP)a
43(Dd)

El (3L7 - 4a?) (8.4)

and Dd is the total deflection reading from the experiments which correspond to
flexural deformation. In the analysis of oak beams, the shear deformation was
ignored. When it comes to basa beams, the shear effect has to be taken into
consideration and the experimental results are combined with flexural deformation
and shear deformation. To continue to use equation 8.4 for the strengthened beams
with balsa core, Dd hasto be corrected from the experimental readings.

Ddbalsa :dexp. - dshear (85)

thus

(DP)a

= 480, - d,) (3L - 4a%) (8.6)

8.3.3 Stiffness Analysisand Comparison
8.3.3.1 Evaluation of the Stiffness from Experimental Results

Based on the load-deflection curves from the experiments, test results in the
elastic portion of the curve were chosen to carry out the giffness analyss.

Substituting equation 8.3 into equation 8.6, the stiffness from experimental resultsis:

(DP)a 2 pa2
_(3L2- 4a?) (8.7)
48(dexp - DF,) a)
G  a

(EDep. =

v

in which DP is the total load difference, a, is the reduced area of the cross section
which equas b” h, and in this analysis, G.r is used as shear modulus. From the
Wood Handbook, the ratio of the shear modulus and Y oung’s modulus E, is taken as

0.054 E, for balsawood.
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8.3.3.2 Evaluation of the Stiffness Theor etically

For plain wood beams without any reinforcement,

., b hd
(ED treory = Evaisa ETH (8.8)

For plain balsa wood beams, (El),, is identicd with (El),,,. For beams
strengthened with 12 HMC tows and 3k Carbon & Glass woven tapes, several factors
are taken into consideration to estimate the equivalent stiffness, namely, the
contribution of the fiber (EI)q,. ., the contribution of the matrix (El), ..ix,» ad the
multi-layer strength deduction factor w for 3k C&G woven tape case. Since the cross

section area of the FRP reinforcement is very small comparing with the whole beam,

the inertia of wood core isignored.

The contribution of the stiffness from 12 HM C tows or 3k C&G woven tapes

can be expressed as:

I For 12 HMC towsreinforced case,

(El)fiber:é B A’ d? (8.9)

i=1
where Ac is the area of the cross section of one tow, which equals 1.14mm? mis the

number of tows applied to a specific tow. Eg,, is the eastic modulus of the

composite tow and is 640GPa for the specimens in the experiments. d is the distance

between the center of the 12 HMC tows to the neutral axis of the beam.

I For 3k Carbon & Glass woven tape reinforced case,

(El)fiber:é W Efpe A d? (8.10)
i=1
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where Ac for each 3k C&G woven tapes is 3.63mn?. E,.. is 220GPa for the

specimens in the experiments. Since the bonding between the surfaces is not perfect,
the contribution of the second layer of tape is less than the first layer that is more
closdly bonded to the wood core. To correct the error caused by imperfect bonding, w
is introduced into the model as a multi-layer reinforcement deduction factor. The
value of w is set to be 1.0 for the 1% layer and 0.95 for the 2™ layer for 3k C&G
woven tapes applied to the beam.

The contribution of the stiffness from the matrix can be expressed as:

(ED v =8 Epan” Ay~ O (8.11)

i=1
Eewix 1S the Young’s modulus of the matrix material, and value of E_,, iS10.5GPa.
A,, is the equivalent cross section area of the matrix. For 12k HMC tows, the ratio
A, 1 Ac=2.5, and for 3k C&G woven tapes, theratio A, / A, =10.

Sum up equation 8.9 through 8.12, a general equation to evauate the stiffness

theoretically can be expressed as:

. b h?
(EI )theory = Ewood ?4— (El)ﬂber + (EI )ma1rix (812)

Both experimental analysis and theoretical calculation of the equivalent
gtiffness was conducted corresponds to dl tested beams. Figure 8.9 through Figure
8.14 presents the comparison of the experimental and theoretical iffness. The
difference between the results ranges from 0.8% to 20%, which means accuracy of the

theoretical modd is acceptable.

84  Basic Assumptions

The basic assumption of theoretical analysis of balsa beam are as followed:
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1) All timber cores are assumed to be clear wood.

2) The bond of the interfaces between the timber cores and reinforcing composite
material isassumed to be perfect.

3) The maximum strain of FRP reinforcement is larger than failure strain of wood
fibers, both in compression and tension sides.

4) The behavior of timber coreis easto-plastic. Two loading stages for lumber are
identified.

5) In the second loading stage, the stress of each point in the compression zone
remains unchanged until the beam fails.

6) Considering the shear stress, the compressive balsa wood fiber yieds in

principle stress direction.

85 Determination of Maximum Elastic Strain and Ultimate Failure Strain

85.1 Maximum Elastic Strain e
Based on experimental results on plain balsa wood, while the beam reaches its

maximum € astic limit, the moment
M, =Dp  a (8.13)

Where 4P is the load applied to the beam a that moment. Then the maximum elastic

gtrain can be calculated as;

e =—% (814)
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8.5.2 Ultimate Failure Strain e,

Ultimate failure strain can be obtained from manufacturers. If not, it can be
calculated from basic tests. To determine the maximum failure strain, combine the
maximum moment capacity of the cross section equation, and the force equilibrium of

the section as follows:

. 2 €. C € 2 €,
My = P = FCCC+_Fce_C+EFcp(1+e_)+_Fte = (h- c)+Fq(h-c)
Cu Cu Cu
(8.15)
100 100 ]
AfH=4t b E,~ Sm(c-t’ i+1) +AEce +AotEcemaxh—C=0
1 i=1 C 2 c
(8.16)

in which

Fcc= Compressive force from the composite in compression zone.

Fep =Compressive force from plastic part of the stress-strain curve of timber.
F.. =Compressive force from the elagtic part of the stress-strain curve of timber.
Fie =Tensile force from the ascending part of the stress-strain curve of timber.
Fo= Tension force from composite in tension zone.

Acc = composite reinforcement area in the compression side

Act = composite reinforcement area in the tension side

Ec =Y oung’s modulus of the reinforcing composite material

h =the depth of the plain balsa wood beam

¢ =the neutral axis depth
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8.6  Load-deflection Relationship Analyssof Strengthened Beamswith Balsa

Corein Elastic Range

8.6.1 Transformation of the Reinforced Beam to I-beam
Similar with reinforced concrete beams, the face of the beam is usualy

transformed to |-section beam that has the sasme modulus with the core material.

Facing material and core material of the strengthened beam are completely
different. In theoretical analysis, reinforcing composite tows and tapes can be
transformed to the flange of the I-beam. The width of the flange of the transformed I-
section beam:

b. = nw, (8.17)
where wc is the origina width of the composite reinforcement, and n is the ratio
between the modulus of composite materia and balsa wood multiply by a reduction
factor 0.9, which can be presented as:

n= 0.9% (8.18)

W

50 the area of the flange of the transformed I-section beam

A. =b." he (8.19)
in which hc is the thickness of the composite reinforcement. The original beam
section and the transformed beam section are presented in Figure 8.15 and Figure

8.16.

8.6.2 Elastic Strength Calculated from Experimental Results

The moment of inertia of the | beam
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bh® .. bh® _.
| =21 427 €< 42 d? 8.20
B B (Acd?) (8.20)

where d is the distance between the center of the flange to the center of the I-section

beam and

d=n ; h (8.21)

when the extreme compression fiber reaches its maximum compressive strength, the
shear dtress at edge of the web can be estimated as:

VS

t =—
Ib

(8.22)

where v is the shear force on the cross section, and s is area inertia. b is the width of
the section. For the transformed |-section balsa beam, b is taken as the width of the
web b;. The shear stress reaches maximum value under the loading points. If P isthe
maximum elastic load from test record, the shear stress on the edge of wood core can

thus be expressed as:

i —poel—pad (8.23)

and the normal stress

Mo Vo _ Pe a/h
S = I = (2) (8.24)

where ynex is the maximum distance from the extreme fiber to the centroid of the

section and Mg is the maximum moment at e astic limit.

when the shear stress and normal stress are determined, the principle stress

_S _ [Syeii2_Pe @ h Pe @ hyo P A dy2
81—2+,/(2)+t Al +\/( Al )"+ ( |'q)

(8.25)
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The angle a is between the direction of the normal stress and the principle

stress and can be calculated from:

E:Ld (8.26)
a h'b a

8.6.3 Elastic Strength Based on Theoretical Analysis

tan(2a ) =

8.6.3.1 Study of Orthotropic Nature of Balsa and Factor Determination
Because of the orthotropic nature, wood has unique and independent
properties in the directions of three mutualy perpendicular axes. The modulus of
balsa wood reaches the maximum value in longitudinal axis direction, and amost
become zero aong the fiber direction. It is assumed that the strength of balsawood in
one direction is related between this angle of this direction and the lingitudinal
direction. Since the wood fiber fails in principle stress direction first instead of the
normal stress direction, when the strength of the balsawood beam is to be calculated,
afunction isintroduced:
E¢=E e® (8.27)
in which E” is the modulus in principle stress direction, a is the angle between normal
dress and principle stress, and B is a factor to be determined from analysis. At the

mean while, it is known that in the principle stress direction,

E¢=>1 (8.28)
e

ce

thus the factor B can be determined through:
S

Ln L

(z )

B=_ —w S (8.29)
a

In the Equation 8.29 above, all the parameters are derived from James

Giancaspro’s test results so that the value of B can be calculated corresponding to
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each test sample. The average of B values from all experiments, which is 0.4999, is

taken as the factor B in the introduced analysis modd.

8.6.3.2 Equation Derivation to Predict Maximum Elastic L oad

Increase the load on the beam up to P. The moment at the loading point

M = p(L—éI) (8.30)

then the maximum normal stress and corresponding shear stress are

_M'y_pah
s == —) (8.31)

(P A o

50 the principle stress

s, =2+ |G+

. — — (8.33)
:pah_'_ (pah)Z_'_(pAb d)Z
4 4l Y
Since the limit of the elastic strain of balsawood is
—_ S 1 — S 1ce
e =—2%= 8.34
“ E¢ E, e™ (8:34)
Combine Equation 8.33 and 8.34, the maximum elastic load from anadysisis:
, , Ba
p,=— %= Eu © (8.35)
a’h a’h? . Ald?
41 \161% 1%}

Substitute al the parameters into equation 8.35 and calculate maximum elastic
load P for dl the beam samples with different reinforcement. Thus normal stress,

shear stress, and principle stress can be cal culated.
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8.6.4 Comparison Between Tested Beam Deflection and Theor etical Prediction
When the maximum elastic load is determined, the deflection corresponding to
increasing load can be calculated based on equation

_ (DP)a
43(Dd)

El (3L7 - 4a?) (8.36)

When the maximum elastic load P is evaluated for each test group, the load-
deflection relation can also be predicted.

_ (DP)a
P A8(EI)

(3L? - 4a%) (8.37)

Thus the total deflection of the beam is;

i = dbending 0 gy (8.38)
in which the deflection due to shear dgesr Can be expressed as:
P a
Oyoe =—— 8.39
ser = 57 o (8.39)

The load-deflection relation in the elastic range is developed and compared to
test result. Figure 8.17 through 8.20 presented the comparison of the load-deflection
curve between test results and theoretical prediction. The load-deflection curves based
on test results are also smplified to linear lines. The comparison shows that previous
theory provided a comparable accurate prediction for the behavior of FRP reinforced

balsa beams in the elastic range.

87  Maximum Load Analysisof Reinforced Beamswith Balsa Core

8.7.1 Failure Mechanism
Most of the engineering design applications of wood beams are based on

eastic anayss, but the ultimate failure loads should also be estimate and to be
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considered one of the factors of ultimate strength design. In engineering, a failure
occurs when a device or structure is no longer able to function as intended. Beam
failures can be caused by bad engineering, poor manufacturing, loading and service
environment, and the most common forms of material failures are fracture, corrosion,
wear and deformation. Failure study in this dissertation is concentrated on the failure

due to fracture crushing of wood and FRP material.

The falure andlysis of the FRP reinforced balsa beams contains two parts.
First of all, the actual failure mechanism should be determined. Secondly, stress
anaysis, fracture mechanic analysis should be performed, and the failure load should

be predicted theoretically so as to guide the design.

For wood beams in bending, since the compression strength is lower than the
tensile strength, beam failure occurs in compression side more than in tensile side. If
the shear strength is reached earlier than the bending strength, then the beam fails due
to shear instead of bending. For FRP material reinforced beams with basa cores,
snce the stiffness of the beam is much smaller than beams with hard wood cores,
their failure is more affected by shear stress. In-depth analysis and comparison of

bending strength and shear strength is conducted and presented below.

8.7.2 Shear Strength Study from Wood Handbook
8.7.2.1 Balsa Wood Shear Strength from Wood Book

In the shear study of balsa wood beam, shear strength parallel to grain, which
is the ability to resist interna dipping of one part upon another alone the grain,

influenced the failure of the beam most.
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In wood handbook 1999, the mechanical properties of balsawood were listed.
For dried balsa wood with 12% moisture content, the listed shear strength parallel to
grain is 2100KPa. This listed shear strength value is the result of averaging the shear
drength in radial and tangential shear planes. This is to take shear in both directions

into consideration to get more convincing result.

Based on previous study of the relationship between densty, stiffness and
strength, the shear strength of the balsa wood used in James Giancaspro’s tests could
be determined. Balsa wood samples in tests are completed dried and therefore have
smaller density and stiffness than the balsa wood listed in the handbook. This aso

needs to be considered in calculation.

8.7.2.2 Determination of the Shear Strength of the Sample

Based on James Giancaspro’s test result of plain balsa beams, a linear
relationship between the modulus of balsa wood (MPa) and its density (kg/m®) was
found and has very high correlation. The regression line was drawn for Epqsa and the
density of the wood ppaisa

Epue = 2165 1 o, (8.40)

From the handbook, we got the modulus of elasticity of the balsa wood listed
in the handbook is 3400MPa, and its corresponding shear strength is 2100KPa.
Comparing with the modulus and density of samples tested for our study, from
Equation 8.40, we may estimate the density of the balsawood tested in the handbook.
We assumed the relationship between density and shear strength is aso linear, and
since the shear strength of balsa samples in wood handbook is known, then the shear

strength of the samplesin James Giancaspro’s tests can be approximately predicted.
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When balsa wood reaches its elastic limit, the reinforcing FRP material sustain
more increasing load. The resin matrix materia transfers stress from FRP material to
balsa core. The beams were studied as |-section beam. The resin transferred the shear
sress on the flange of the I-section beam to a wider area. A new parameter r is

introduced to adjust shear transformation.

8.7.2.3 Ultimate Failure Load Prediction

Beam failures can be caused by different factors and reasons, and the most
common cause of beam failures is shear stress and bending stress. Comparing the
bending strength and the shear strength of a beam, and the beams fails when the lower
srength is reached. Therefore the failure loads were calculated based on bending
strength and shear strength specifically. Comparing with the experimental results, the

failure mechanism of beams can be determined.

The failure load should be predicted based on bending theory, assuming the
FRP reinforced beams with balsa core fails due to bending. The calculation was based
on bending strength of balsa. The results shows that the predicted failure load based
on bending strength are higher than the prediction derived from shear strength, so it
can be determined that the beams failure are controlled by shear. Comparison of the
maximum load the beam can sustain estimated from bending strength and shear
srength for four point loading beams is shown in Figure 8.21. The values are

normalized.

It is shown from the experiments that balsa beam’s failure is started from the

crushing of wood. The transformed I-section beam model is still used in the ultimate
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load analysis. Based on the shear strength of the balsa wood in the study, assume the
falure is caused by shear, the failure load of the beams can be calculated. To predict
the maximum shear strength that the reinforced beam can sustain, the following

equation is used:

(8.41)

where sis the areainertia of the shear area, 7 is shear strength, and Vg is the maximum
fallure load due to shear. For one tow reinforcement case, the adjusting parameter r is
1.75, and for three tow reinforcement case, r equals 1.25. For the tape reinforcement

samples, the parameter r is 1.1.
——mx 7 (8.42)
and the maximum moment

M, =-mx - 2 7 9 (8.43)

n

Assuming the balsa beams fails due to shear, the predicted failure load
matches well with James Giancaspro’s laboratory results. The difference between
theoretical and test failure load is larger than the maximum dastic load. Thisis partly
caused by the reason that, comparing with yield strength, the failure of wood is more
affected by defects (checks and knots), orientation of grain, and man-made damages.
Figure 8.22 through 8.25 presented the comparison of theoretical and experimental

results.
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Figure 8.1: Test Setup for Flexure Testing of Reinforced Beams with Balsa Core
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Figure 8.17: Comparison of Load-deflection Relation, 6mm Thick Beam
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Figure 8.18: Comparison of Load-deflection Relation, 13mm Thick Beam
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Figure 8.19: Comparison of Load-deflection Relation, 19mm Thick Beam
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Figure 8.21: Comparison of Normalized Bending and Shear Strength of Balsa Beams

300 4

250

200

150

100

Failure load (N)

50 -

6mm, 1 tow, both sides

Otheoretical pedictions

H experimental results

6mm, 3 tows, both 13mm, 1 tow, both 13mm, 3 tows, both
sides sides sides

Tow reinforcement, 6mm and 13mm beams

Figure 8.22: Comparison of Theoretical and Experimental Results Reinforced with
High Modulus Tows, 6mm and 13mm Beams




161

600 -

500

400

300

200 -

Failure load (N)

100 -

O theoretical

pedictions
W experimental

results

19mm, 1 tow, both
sides

19mm, 3 tows,
both sides

25mm, 1 tow, both
sides

25mm, 3 tows,
both sides

Tow reinforcement, 19 mm and 25 mm beams
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Core ] Span Reinforcement Reinf.
Salrgple Density Depth | Width Length|  Compression Face Tension Face Ratio, p;
(kg/m®) | (mm) | (mm) | (mm) | # Type # Type (%)
B1l 79 25 51 445 0 Control 0 Control 0
B2 79 25 51 445 0 None 1| 12k HMC Tow 0.09
B3 79 25 51 445 1 12k HMC Tow 1| 12k HMC Tow 0.18
B4 80 25 51 445 3 12k HMC Tow 3| 12k HMC Tow 0.53
B5 81 25 51 445 1 3k WovenC&G | 1 | 3k Woven C&G 0.57
B6 83 25 51 445 2 3k WovenC&G | 2 | 3k Woven C&G 113
B7 79 19 51 292 0 Control 0 Control 0
B8 80 19 51 292 0 None 1| 12k HMC Tow 0.12
B9 77 19 51 292 1 12k HMC Tow 1| 12k HMC Tow 0.24
B 10 76 19 51 292 3 12k HMC Tow 3| 12k HMC Tow 0.71
B11 78 19 51 292 1 3k WovenC&G | 1 | 3k Woven C&G 0.75
B 12 77 19 51 292 2 3k WovenC&G | 2 | 3k Woven C&G 151
B 13 68 13 51 292 0 Control 0 Control 0
B 14 68 13 51 292 0 None 1| 12k HMC Tow 0.18
B 15 66 13 51 292 1 12k HMC Tow 1| 12k HMC Tow 0.35
B 16 65 13 51 292 3 12k HMC Tow 3| 12k HMC Tow 1.06
B 17 64 13 51 292 1 3k WovenC&G | 1 | 3k Woven C&G 113
B 18 66 13 51 292 2 3k WovenC&G | 2 | 3k Woven C&G 2.26
B 19 76 6 51 292 0 Control 0 Control 0
B 20 75 6 51 292 0 None 1| 12k HMC Tow 0.35
B 21 75 6 51 292 1 12k HMC Tow 1| 12k HMC Tow 0.71
B 22 75 6 51 292 3 12k HMC Tow 3| 12k HMC Tow 212
B 23 72 6 51 292 1 3k Woven C&G | 1 | 3k Woven C&G 2.26
B 24 73 6 51 292 2 3k WovenC&G | 2 | 3k Woven C&G 452
B 25 109 13 102 292 0 Control 0 Control 0
B 26 107 13 102 292 1 3kUni C 1 3kUni C 113
B 27 108 13 102 292 2 3kUni C 2 3kUni C 2.27
B 28 148 6 102 292 0 Control 0 Control 0
B 29 145 6 102 292 1 3k Uni C 1 3kUni C 2.27
B 30 141 6 102 292 2 3kUni C 2 3kUni C 453
B 31* 78 13 51 292 0 None 1| 12k HMC Tow 0.18
B 32* 61 13 51 292 1 12k HMC Tow 1| 12k HMC Tow 0.35
B 33* 70 13 51 292 3 12k HMC Tow 3| 12k HMC Tow 1.06
B 34* 61 13 51 292 1 3k WovenC&G | 1 | 3k Woven C&G 113
B 35* 69 13 51 292 2 3k WovenC&G | 2 | 3k Woven C&G 2.26

Note: 12k HMC Tow ? 12k High Modulus Carbon Tow; 3k Woven C&G ? 3k Woven Carbon & Glass; 3k
Uni C ? 3k Unidirectional Carbon Tape; * Organic Epoxy (Epondex?

Table 8.1: Sample Details for Balsa Sandwich Beams
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Chapter 9

Douglasfir beam analysis

91 Introduction

This chapter presented test and theoretical analyss results of some Douglas-fir
beam with dimensions that can be used in real engineering applications. Previous
calculation in Chapter 6 and Chapter 8 also presented test and analysis results of FRP
reinforced wood beams. Those beams were designed for laboratory use thus the
dimensions are comparably smaller than the ones used in industrial and construction,
and the material used in chapter 6 and Chapter 8 were clear wood instead of
commercia timber. The purpose of the study in this chapter is to apply previous
strength model onto commercial Douglas fir beams so as to provide a comparison of
prediction of the laboratory used perfect samples and commercial timber samples that
has knots and defects and to prove that the proposed model can be applied to

commercia beam design and analysis.

On the other hand, FRP reinforcements were applied symmetrically on the
tensile side and compression side in previous wood samples in Chapter 6 and Chapter
8. The timber samples used in Chapter 9 were just reinforced on the tension side so as

to provide experimental and theoretical data of the unsymmetrica reinforcement case.
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The experiments on the Douglas-fir beams were described and test results
were presented. Theoretical model is presented and analysis result based on the mode

is compared with test results.

9.2  Experimental Settingsand Results

9.2.1 ExperimentsPreparation

Douglas Fir is widely used in construction in United States, so green Douglas
fir beams with construction grade were tested in 3-point bending over a 6 feet span.
The experiments were conducted by M. Secaras in Rutgers University Engineering
l[ab. The dimension of the beam is 1.5” x 5.5”x 6” (38.1mm x 139.7mm x183mm).
There were knots presented in the industrid wood beam, the rupture modulus of
Douglas fir f; is 47,000KPa to 90,000KPa and the elagticity modulus ranges from

13,400MPato 8,000M Pa (U.S. Forest Products, 1999).

The reinforcement material used on the tension sde of the beam was high
modulus fiber tows. The tensile modulus of the carbon fiber was 640GPa and the
tensile strength was 2,600MPa. Inorganic geo-polymer based epoxy matrix was
applied between the carbon tow and timber beam surface. The serrated roller was then
rolled along the top of the fibers to work the matrix into the fibers and down to the
timber. Due to the use of this serrated roller, approximately 10% of the applied carbon

tows are lost.

There were totally 8 beams tested. Two beams that were denoted as No. 7 and
No. 8 were used as control specimens. Beam No. 1 and No. 6 were reinforced with 4
tows on the tension side, beam No. 2 and No. 5 were reinforced with 5 carbon tows on

the tenson side, and beam No. 3 and No. 4 were reinforced with 2 tows on the bottom
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of the beam. All the beams were tested in 3-point bending with the loading rate of
2.54mm/min. Simple supports were placed 6’ apart from each other on top of the W
section and each beam was centered under the loading point. All beams except for

No.1 were tested until failure.

922 Test Results

Maximum elastic load and ultimate load of all the beams were recorded.
Figure 9.2 shows a bar chart for the ultimate load recorded from experiments. The
load-deflection relationships were presented in Figure 9.3. All strengthened beams
showed remarkable increase in strength capacity and stiffness, and there was more
increase in strength capacity and stiffness with the increase the reinforcement ratio.
Figure 9.4 presents the flexural stiffness of strengthened beams compared with the

control specimens.

9.2.3 FailureType

All the reinforced beams fail due to the rupture of the FRP tows, and due to
the low tensile strain limit of the composite material, the tension wood fibers are still
in elagtic range when the beam fails. As mentioned before, most reinforced wood
beams fail due to compression failure than due to tension failure while the tension
wood has already yielded, the reason of the different failure type is partly caused by
the unsymmetric reinforcement and the extremely low FRP strain. Figure 9.5 presents

aphoto of the failure of the beams.

9.3 Theoretical Analysis

The strength model is based on Balaguru and Chen’s model. The equations

presented in previous Chapters were for wood beams reinforced with symmetric
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reinforcement cases. Since the Douglas fir beam is just reinforced on the tension side,

equations for the unsymmetrical strengthened beams are presented in this Chapter.

9.3.1 Material Parametersof Douglasfir

From wood handbook 1999 and the FRP materia information from
manufacturers, basic material parameters of green Douglas fir reinforcing material
can be obtained. Simple tests can also be conducted for more accurate values. The
Characters of FRP materials should be adjusted due to different fabrication methods

and core materia used. Some parameters used are listed below.

f, =24.1MPa
f, = 41.4MPa
E, = 7310MPa

E, = 640023MPa

f, = 78MPa
e, =0.00803
e, =0.00433
e,, =0.01250
e, = 0.00553
ey =0.0081

where fe is the maximum elastic compression strain of Douglas fir beam, fie is
the maximum elastic tension strain of Douglas fir beam. Er is the elasticity modulus
for timber in tension and E. is the easticity modulus for timber in tension. f; isthe
ruputure modulus. & is the ultimate tension strain of Douglas Fir, ece is the maximum

compression strain in elastic range, &q is the ultimate compression strain, e is the
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maximum € astic tension strain, and eq is the maximum failure strain of the

strengthening carbon tows.

9.3.2 Strength Model for Unsymmetrical Reinforced Beamsthat Fail Due to

Fracture of Tensile FRP Material

The tests and previous calculation both proved that the failure of Douglas fir
beams with tension reinforcement was caused by the fracture of tensile composite
tows. It was assumed that the behavior of composite used fro strengthening is linearly
elastic till faillure at has no post-peak strength. The stress and strain distributions for
fallure by fracture of carbon tows are shown below. Since high modulus FRP is
applied to the surface of Douglas fir beams to increase stiffness and to control the
deflection, and the elastic tension strain limit is as low as 0.004, the tension failure of
Douglas fir beams are controlled by composite material. The tensile wood fiber is still
in its elastic range when the beam fails. The stress-strain relationship is different

from what was shown previougly.

|<L>| fee
A T
c
h
o NA| | I Y M
h-c
> F,
v R |,
BB Fo
Beam section
Failure Strain Failure stress

Figure 9.1: Stress-strain Relationship in Tension Failure of Douglas Fir Beam
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As mentioned in Chapter 5, the area of composite Ac can be transformed to
material area Arwith same eastic modulus as timber core. n, the ratio between Ac and
Ar, can be expressed as.

n=09 Ec (9.1)
ET

The factor 0.9 is due to lose of composite strength during manufacturing.

The moment inertial can be calculated as:

|:b_§+M;)3+nAb(h-c)2 9.2)

In the elagtic range, the compressive stressin timber is:
f =—"c (9.3)
and the tension stressin timber is:
f :'\I"—’ (h- ¢) 9.4)
and the stressin composite in tension:
. :'\I"—’ (h- ¢ n (9.5)

The maximum elastic load limit of the Douglas fir beam is reached when the
extreme compression fiber yields. Before the beams yield, the stress and strain
diagrams were both linear. If the elastic limit of timber in compression is &, from
equation 9.3,

M, = M (9.6)
C

If the span of the beam is |, and the beam is under 3-point loading, the

maximum €l astic load,

p =M (9.7)



In the failure stage, the equilibrium equation is:

Foe + I:cp = Fte + FCt
in which:
F. :be_W(h_ of,
2eq

F, =b(c- == (h- ¢))f,,
e

Cf

F :Eete
2e

te

(h - C) fte

Cf
Foo = AuEcey
Solve the equilibrium equation for neutral axis depth c,

€ +@e

bh
— (fe)-
c= ct €t

) 2 —(fee + fie) + AcEceq

b e le
-~ f 1_ te
2( ) o

Cf Cf

When the neutral axis depth c is calculated, the ultimate failureload M, is:

M, = F,2 8% (h- 0+ F, 2o+ S (- O] + F, 2 o
3e 2 ey 3e

Cf

Cf

9.3.3 Load-deflection Relationship Prediction

R L

(h-c)+F.(h-c)
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(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)

(9.14)

In order to check the accuracy and effectiveness of the prediction of the el asto-

plastic model, load-deflection curve is draw from theoretica andysis for al

reinforced Douglas fir beams. The predicted |oad-deflection relationship is compared

to the curve recorded from bending experiments.

9.3.3.1 Moment and Curvature Relationship

Since the failure is caused by tension, the analysis mode is dightly different

with the model used to predict the moment-curvature relationship in Chapter 6. In
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order to estimate the M-y relationship of the Douglas fir beam, similar numerical

method as used previously was used.

Similar with the method used to calculate value of ¢, the beam was divided to

100 equa width strips along the thickness h, and the thickness t of each strip is:

The strip on the top is strip No. 1, and the strip on the bottom of the beam is
strip No. 100. Assuming the strain at the upper most compression face is enax, then the
drain ¢ a the middle of strip i is:

e =Cm et i+l (9.16)
o 2

where c isthe neutral axis depth. Therefore the force fi onany strip i is:
ff=t"b" E, e ife £e,
fi=t"b " E, e,ife3e, (9.17)
The difference is that the failure of Douglas fir beam is controlled by
composite tension failure, and the tension wood fiber is till in elastic rang when the

beam fails. It is assumed that the maximum strain in tendle side to be &, and

corresponding extreme compression strain emax can be retained from:

Cc
e =

& ranges from 0.0001 to ecy, thus enax Can be calculated correspondingly. The force

equilibrium equation for plain wood beams can be expressed as:

Q. . 8. . _ .e Lot
af@=aft'b E,  —™(c-t |+§):O (9.19)
1 Cc

i=1
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and neutral axis depth c of the beam for each ey Value can be obtained from equation
9.29. Therefore, while the maximum compression strain is eémax, the moment on the

cross-section of the plain wood beam is:

g
M= |f)
i=1

c—t’i+l
2

(9.20)

If the beam in reinforced with FRP materid, the force from the composite
material should be taken into equilibrium equation. If the beam is only strengthened
on the tenson side, the equilibrium equation used to compute the neutral axis depth ¢

for each enex became:

g 8, , e ,. t h-c
af@=at'b" g, /™(c-t i+-)+AEe,u,—=0 (9.21)
1 i=1 C 2 c

in which:

Act = composite reinforcement area in the tension side
Ec =Y oung’s modulus of the reinforcing composite material

And the moment on the cross section of the strengthened beam is expressed as:

100 _ A2
M=a|f) c—t’i+%+AthCemax (h-©) (9.22)
i=1
when the N.A. depth c of the beam is known, the curvature
y = Smac (9.23)
o

With the assistance of computer program, a whole set of M—¥ data can be
caculated corresponding to different ¢ from 0.0001 to ecr. Thus the relationships
between moment and curvature of plain and strengthened beams can be found. From
the elasto-plastic model, it is known that the M—W reationship is linear while

€. E€e- When e, %e,, the M—¥ reationship becomes nonlinear. The

relationship can be summarized as:
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y =f(M) (9.24)
Maximum elastic strength and ultimate failure strength can aso be obtained
based on the developed M—Y relationship.

The maximum elastic moment can be expressed as.

c? bm?
M fra, :mACCECete+T(h_ C)*Ere,

+2(c- mh+mo)(c- me+Mh)Ere, +2 (h- O Ere, + AyEce, (h- O

(9.25)
When the strain of extreme compression fiber reaches its dastic limit,
e
y =f(M)=—= (9.26)
Cce

Since e, is known and ce can be caculated from equation 9.19 and 9.21,

substituting equation 9.25 into equation 9.26, the vaue of P is determined. Then the
linear load-deflection curve can be determined. Similarly, the value of ultimate load
P, is determined by substituting equation 9.27 into equation 9.28.

M, = F, 2 5% (h- 0+ F, 2o+ 5= (- O] + F, 2 o
3 2 ey 3e

€ cf

(h- ¢)+F.(h- c) (9.27)

et
h-c

y =f(M)= (9.28)

and the points between P and P, on the load deflection curve can be determined

from the same model.

9.3.4 Theoretical Prediction and Comparison with Experimental Results
To establish this flexural model established is purposed to find out a
theoretical model that matches well with the experimental results on FRP reinforced

wood beams so the model could be applied in real design practice. Comparison was
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made between the load-deflection curves drawn from tests and theoretica prediction.
Figure 9.6 through Figure 9.8 presented the comparison between theoretical
prediction and experimental records. Figure 9.9 through figure 9.12 presents the test
results for maximum elastic load, failure load, maximum deflection, deflection at
falure, and predicted value for these loads and deflections from the strength model.

The difference between lab record and theoretical analysisis also listed in the table.

It could be seen from the figures comparing the test and theoretical results that
the theoretical predictions are close to lab results. For most of the beams, the
theoretical prediction values are higher than lab results. Because the Douglas fir
beams made from industrial used timber, there are defects in the beams. Considering
the influence of knots and other defects, the errors are reasonable. The beam No. 4
and No. 5 has much larger deflection at failure comparing with the result from
anaysis model. Part of the deflection is post falure deflection. The deflection can

aso explained by the rotation and local debonding of the beam.

It is shown that the analysis produces accurate predictions that match well
with experimental results. This implies that the model can be applied to design work.
However, the test samples in our study are not enough. More testing should be
completed to adjust the safety factors and design process so as to establish a safe,

reliable and accurate model which is applicable in engineering practice.
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Figure 9.5 Photo of Tension Failure
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Figure 9.6: Experimental Results vs. Theoretical Analysis Result, Douglas Fir Beam
Reinforced in Tension by 2 Carbon Fiber Tows
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Figure 9.7: Experimental Results vs. Theoretical Analysis Result, Douglas Fir Beam
Reinforced in Tension by 4 Carbon Fiber Tows
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Figure 9.8: Experimental Results vs. Theoretical Analysis Result, Douglas Fir Beam
Reinforced in Tension by 4 Carbon Fiber Tows
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Chapter 10

Design Procedure

According to the study of FRP reinforced beams with oak cores and balsa
cores, a guideline for the design of high modulus carbon fiber reinforced polymer
materials for strengthening typical wood beams is proposed. This chapter deals with
the design procedure for FRP material strengthened wood beams. The felxural model
was developed with assumptions of the linear elastic behavior in tension, elasto-
plastic behavior in compresson and linear elastic behavior in composite material.
Procedures to estimate necessary properties are also developed. The design guidelines
include: Estimation of FRP area required to resist increased load and verification of
the strength increased. The procedure and the flow chart for the design are presented

for the design.

10.1 Introduction

Wood beams have been widely used in construction since hundreds of years
ago. Due to the elastio-plastic behavior of wood beams, they can be reinforced to
improve their load capacity. Fiber reinforced polymer materials were proved to be a
good and cost effective reinforcement of wood structures. Since composte is
lightweight and does not corrode, they can replace steel plates to repair or to
rehabilitate various structures.

An analytical procedure based on the elasto-plastic behavior of timber

provided a good prediction of the performance of FRP reinforced wood beams,
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especialy for relatively hard wood species. A design guideline is also proposed based

on this analytical model. The details of the anaytical and design procedure are

presented in the following sections. Hard wood species and soft wood species are

designed respectively due to their different mechanical behavior.

10.2

Design Philosophy and Assumptions

The alowable live load and allowable moment for wood beams strengthened

with high modulus FRP tows or tapes should satisfy following conditions.

1)

2)

3)

4)

5)

6)

7)

8)

The design mode! is based on following assumptions:

No out of plane deformation.

The bond of the interfaces between the timber cores and reinforcing composite
material is assumed to be perfect. In other word, the strain of the core and the
composite on the interfaces always remains same.

Failure load occurs at the cross section under maximum moment.

Wood tension strength and compression strength properties can be used
directly in analysis of wood bending behavior.

The behavior of timber core is elasto-plagtic.

Size effect is not currently considered in the model.

The maximum compression strain of FRP material is larger than maximum
compression strain of timber. The maximum tension strain of FRP materia is
larger than maximum tension strain of timber.

Size effect should be taken into consideration if the dimension of the beamsis

different from ASTM standards.
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10.3 Design Theories

10.3.1 Determination of Failure Type
The proposed timber analysis model classified the failure of FRP reinforced

wood beam into 2 types. Both failure types are discussed below:

1) Tensionfailure.
The beam fails due to fracture of extreme tensile fiber. When the compression
fiber yields, the neutral axis moves downwards to the tension side of the beam.
When the load increases and the strain of tensile wood fiber exceeds its elastic
drain limit, wood in tension fails. For unstrengthened beams, it is assumed
that the maximum moment capacity is reached when the extreme tension fiber
reaches its maximum elastic strain f. Since the curvature become too big
when the tension fiber yields, it is assumed that the descending part of the
curve does not result in moment capacity increase. But it is different for
strengthened beams. Since usually the failure tension strain of composite fiber
is greater than the failure tension strain of the wood fiber, FRP tows and tapes
can bridge cracks and fractures when the wood fiber reaches fie, the post-peak
drength of tension timber is taken into consideration. The stress-strain

relationship figure at failureis shown in below:
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Figure 10.1: Stress-strain Relationship of Tension Case
2) Compression failure
The beam fails due to crush of compression timber or reinforcing composite
material. Compression failure can be further divided to two cases.

< ety
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Compression Failure Type |
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Figure 10.2: Stress-strain Relationship of Compression Failure Case

a) As first figure in Figure 10.2 shown, when the compression side of beam
reaches its maximum compression limit, the tenson timber is still in elastic

range.

b) As second figure in Figure 10.2 shown, when the compression side of beam
reaches its maximum compression limit, the tenson timber has aready

yielded and contributed part of the post-peak strength capacity.

The first step of designing a FRP reinforced wood beams is to determine the
falure type of the beam. The following procedure is proposed to compute failure

moment.
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1) Assume failure occurs due to tension composite failure.

2) The neutral axis depth is to be calculated based on tension faillure mode.
Substitute ultimate tension strain into the model and obtain the strain in the
extreme compression fiber at failure.

3) Compare the strain in compression obtained in step 2 with the ultimate
compression strain. If it is lower than the ultimate compression strain, then the
beam fail due to tension fracture. If it is higher than the maximum compression
strain, then the failure type should be adjusted as compression failure.

4) The neutral axis depth c is also calculated based on compression failure modd.
Substitute ultimate compression strain into the mode to obtain the strain in the
extreme tension fiber. If the tension strain in exceeds maximum tension strain of
the wood material, then the beam failure is compression failure type | thus the
post-peak trapezoid plastic strength is counted. If then tension strain in extreme
tenson fiber is smaller than maximum tension strain of the timber, then the
beam failure is compression failure type I, and the tension wood fiber is still in

elastic range at failure.

10.3.2 Design Theoriesfor Hard Wood Beams

Chen’s structure model was proposed just for wood beams strengthened on
tension side. His model was extended to wood beams strengthened with FRP material
on both compression and tension sides. Major eguations to evaluate the strength of the
FRP reinforced beams are listed again to summarize the design procedure of the

beams with wood cores.



10.3.21 Failure Caused by Tension

If the failure is due to tension, the force equilibrium equationis:

FCc + Fce + I:cp = Fte + Ftp + FCt

in which:

Cc
Fo. =——A.E.e
Cc h-C c —C™~Cf

be
F. =—%(h-c)f
oo (- Of

ce
Cf

eoe
F, =b(c- e—(h— 0)f.

cf
Fte :% e (h_ C) fte
cf
b E €,
Ftp :E(fte +b—j1(bete - €q ))(1' et )(h' C)
cf

Fo = AxEceq

where the value of f ranges between 1.0 and 2.0.

ete = the tendle fracture strain of timber
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(10.1)

(10.2)

(10.3)

(10.4)

(10.5)

(10.6)

(10.7)

Solve the equilibrium equation, the depth of neutral axis ¢ can be found as:

c=((b - D(bhf, e, +bhf e, +bhfe + A Ecey + AcEceq 2) +bh(Erey + Ereq€. + bErece, - bETet:)

\/((b - Deg (b - DO*," + 2DhE, Foo(- Ayl + AnclCe +Ec))) +
+

2 2= 2, 2 2 )
Ec((b- DA + A )E ey +2A((b - Dbhfiey + AxEcey ™) - bhE (€ - €.)Ec - b))

IO((fifer + Fee(€re + 28 )0 - - Er (s - €¢)(Ecr - bE)))

where

(10.8)
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e = the distance from elastic tensile limit to the center of trapezoid area and can be

calculated as:
E € - ee
[fo+2, 7 @ eI, )= ©)
e= = cf (10.9)
q fte +b—_T1(em - € )]
and the curvature @ at failureis
e
F,=—2 (10.10)
h-c

then compute the maximum strain in the extreme compressive strain in composite

using:

e, =2~ (10.11)

The moment capacity, M, can be obtained by multiplying the six forces

components by the corresponding lever arms.

M, = Foo 0t SR, S (- )+~ F, (04 22 (h- 0)
3 ey 2 ey
, (10.12)
+EF S (h- o)+ F (2= (h- ) +€) + Fy (- ©)
eCf eCf

10.3.2.2 Failure Caused by Compression

10.3.2.2.1 Compression Failure Before Tension Wood Yields

There are two types of compression failure. If the beam failure happens by
crushing of wood in compression side, and the strain of timber in the tension zone is
linearly increasing and is in the elastic range till falure. In such case, the force

equilibrium of the beam can be presented as
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Fo. tFot FCp =F.+F4 (10.13)

where

Fcc= Compressive force from the composite in compression zone.

Fep =Compressive force from plastic part of the stress-strain curve of timber.
Fee =Compressive force from the elastic part of the stress-strain curve of timber.
Fie =Tensile force from the ascending part of the stress-strain curve of timber.

Fo= Tension force from composite in tenson zone.

In order to design a wood core strengthened beam, material properties and
dimensions, number of FRP tows or tapes used, and types of resin are original inputs.
The dimensions of wood core and FRP material are known. The contribution of
timber and FRP material can be based on manufactures recommended strain and the
modulus of easticity. To evaluate some other properties, such as modulus of rupture
and ultimate compression strength, if they were not recommended by the

manufactures, the value listed in the wood handbook can be referred to.

If the ultimate strain ¢, of the timber material are unknown, &, needs to be
calculated from test result. Maximum load capacity can be obtained from bending
test. Since the calculation of wood parameter is focused on plain wood case, Fc. and

Fc: equals zero. From chapter 5,

F=D%w ¢ (10.14)
2eq
=be(l- S 10.15
I:cp - C(l_ _) ce ( . )
Cu
Fo=D8e (10.16)
2eg,
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C= (6o, B (Aec + An) +bhiee, B
(B, (B (A + Ay +bhE,)e.,” - DH2A, +BNE)(f. (0.~ 22,) +E-f8:,)
/ (b( fce(ece - k(:u) + fteeCquC))

(10.17)
thus the moment of this plain wood beam equals:

ete

M, = FCCC%Fcee—"eC+§Fcp(1+e—°e)+3ﬁe (h- ¢)+Fy(h-c)  (10.18)

Cu Cu Cu
therefore, the unknown parameters in equation 10.13 are ¢, and neutral axis depth ¢

a falure.

The force equilibrium equation of the section is established with numerical
method. The beam was divided to 100 equa width strips across the thickness h, thus

the thickness t of each strip equals:
t=— (10.19)

The strip on the top is strip 1, and the strip on the bottom of the beam is strip
100. Assume the strain at the upper most compression face is e, then the strain g at

the middle of strip i is:
e =%t i+l (10.20)
c 2
where c isthe neutral axis depth. therefore the force fi onany gripi is:
f,=t"b" E, e ife £e,
f,=t"b" E, e,ife3e, (10.21)
where b is the width of the oak beam.

Based on this numerica expression, the force equilibrium equation of the

section can be denoted as
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3 f@)=0
1
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(10.22)

combine equation 9.17 and 9.22, ¢, and corresponding neutral axis depth c are

calculated.

One of the most remarkable advantages of the FRP reinforced wood beams is

that the strength of timber in plastic range can be utilized more effectively and the

sustainable moment could be increased tremendously due to the existence of FRP

material. Based on the extended elasto-plastic strength model,

When e < &, the equilibrium equation is:

FCc + I:ce + I:cp = Fte + FCt

(10.23)

The expressions for Fee, Fer, Fee, Fep and @ are the same as shown above, and

the tendle force from the ascending part of the curve, Fis:

b(h- c)?
Fo=Ereo, Ao

thus the maximum moment capacity in such casesis:

ete

M, =Foct2F, 2o+ SF, @+ 2) +2F, % (n- g+ Fy(h- o)
e

Cu Cu Cu

and the normal working moment capacity is:

2 3
M n :C—AbcECete +bi(h_ C)ZETete
h-c 3

+20(c- mh+ mo)(c- me+MEre, +2 (- O Ere, + Ay Ecey (h- O

or design for working moment with factored maximum stress, whichis:

(10.25)

(10.25)

(10.26)
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(10.27)

fee and fie in the calculation can be evauated based on Chen’s model presented in

Chapter 3 or refer to the manufactures or test results.

The corresponding curvature is:

10.3.2.2.2 Compression Failurewhen Tension Wood Already Yielded

(10.28)

If the beam failure happens by crushing of wood in compression side, and the

drain of timber in the tenson zone is a trapezoid shape and has post-peak strength,

the force equilibrium can be presented as:

where

FCc + Fce + Fcp = Fte + Ftp + FCt

FCc = Abc ECeCu

F, = 2% ¢
2ey

ce

ece
F, =bc(l- =) f,

Cu

Fte = 9 ete Cfte
2eg,
b €
Ftp :E(fte + ftt)(h' c- — C)
Cu
=2, + B Mol ¢ g
2 C(etu - ete) eCu

h-c
Foo = A EceCuT

(10.29)

(10.30)

(10.31)

(10.32)

(10.33)

(10.34)

(10.35)
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in above eguations:

— (ZC_ h)etu fte

C(etu - ete) (1036)

tt

the function of the depth of new troll axis can be obtained as:

c=- (bhfe .- 258, 8. (Ac+ Ay - dhfeg, + 258 8 (A +Ay)- bhfes,

.\ \/(4beCu(2Achch(%- ) tbhfe ) (- fe(€e- 220.)(Ec - )+ ey - 30) - 2280))
+ (A + A EEE (6 - &)+ (6. - 4B.) +E.8,)))

I2(fo(Ee- 26) €~ 6)F (- 6y (6c - ) +228.)))

)

(10.37)
the maximum moment capacity is,
2_ ¢ C e
Mu = FCcC+_Foe_OeC+_ Fcp(1+_oe)
3 eCu 2 Cu
) (10.38)
+ZF, 2 (h- ) +F (2o c+e)+Fy (h- ©)
3 Cu eCu

in which

e = the distance from elastic tensile limit to the center of trapezoid area, Figure 10.2

(left)
e
(fe+2f)(h-c- "0
e= Cou (10.39)
3(fie * 1)
And the corresponding curvature is:
=S (10.40)

c

10.3.3 Design Theoriesfor Balsa Wood Species
Balsa wood is very special in hard wood species. The density of balsawood is
very small. Comparing with its weight, it has relatively very high strength. Specific

tests were designed and conducted for reinforced beams with balsa core. Different
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design and analysis procedures were developed for balsawood. The philosophy of the

design of FRP reinforced balsa beams is presented as follows.

The design model for balsawood beam is based on following assumptions:

1) Timber on compression side yields in the direction of the principle stress.

2) The modulus of éasticity of balsa drops exponentialy with the change of the
direction of principle stress.

3) The bonding between the FRP material and balsa wood is perfect.

4) The basabeam has no defects.

5) Inélastic range, the relationship between the stress and strain of the beam
behaves linearly. When the stress-strain relationship starts to be non-linear, the
balsa beam starts plastic deformation.

6) The amount of reinforcement on both compression and tension side are the

Same.

To design a wood core FRP reinforced beam, material properties and
dimensions, number of FRP tows or tapes used, and types of resin are origina inputs.
The dimensions of wood core and FRP material are known. The contribution of
timber and FRP material can be based on manufactures recommended strain and the
modulus of easticity. To evaluate some other properties, such as modulus of rupture
and ultimate compression strength, if they were not recommended by the

manufactures, the value listed in the wood handbook can be referred to.

The same as designing for other wood beams, some basic design inputs, such

as material properties and dimensions, number of FRP tows or tapes used should be
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known beforehand. The FRP materid is transformed to materia that has the same
modulus of elasticity with the core materia in balsa beam analysis. The modulus of
easticity of the strengthening tapes of tows can refer to the manufacture’s
recommendation. If the elasticity modulus of the balsa wood is unknown, it could be
estimated based on the density of the timber. A linear relationship was proposed based

on the test results on balsa beams.

The strengthened balsa beam is transformed to I-section beam. The FRP tows
and tapes are known. Keeping the thickness of the tows and tapes as the thickness of
the flange of the I-section, and extend the width of the tows and tapes according to the
ratio between the elasticity modulus of high modulus carbon and the timber. n is the
ratio between the modulus of composite material and balsa wood multiply by a

reduction factor 0.9,

n= 0.9% (10.41)

W

The moment of inertia of the | beam

bh® .. bh® _.
| =211 427 £t 42 d? 10.42
1 B (Acd?) (10.42)

where:
b; is the width of the wood core, and h; is the thickness of the core. b. and h; are the
width and thickness of the transformed flange. Ac is the cross section area of the FRP

material on each side.

Since it is assumed that the wood fiber yield in principle stress direction first

instead of in the normal stress direction, and the modulus of easticity of balsa wood
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in a specific direction is an exponential function of the elasticity modulus in the
longitudinal direction,

=E e® (10.43)

in which E, is the modulus in principle stress direction, a is the angle between
normal stress and principle stress, and B is a factor to be determined. The value of B is
—0.005 from anaysis presented in Chapter 8. For four point loading Stuation, the

maximum elastic load from analysisis:

4 - ~Ba
P = S € (10.44)
a’ hl L [ah, Ald?
41 \1612 1%

in which a is moment arm, d is the distance between neutral axis and the flange, E, is
modulus of easticity in longitudinal direction, o is the angle between the normal
dress and principle stress at the elastic limit of balsa wood, w; is the width of the

extended flange of the I-section beam. The angle a at the dastic limit can be

expressed as.
tan(za) =2 = 4 d (10.45)
s b'h”a
Thus the maximum working moment
, , Ba
M. = E, e " a (10.46)
a’ hl a’h?  Ad?
+ +
41 \161* 1%

the working load limit can also be calculated as:

=0.8M, (10.47)
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From the density-modulus relationship and the shear strength listed in the
wood handbook, the shear strength of the balsa wood to be designed can be estimated

as presented in chapter 8, and the maximum moment capacity is:

Mu=tm"x | ,bl r 9 (10.48)
A d

10.4 Required Design Inputs

10.4.1 Design Inputsfor Hard Wood
The primary design inputs for hard wood such as oak beams are listed below:
| isthe length of the wood beam
b is the width of the wood core
h is the thickness of the wood core
&ce 1S the maximum el astic strain of the wood material
ete ISthe fracture tension strain of the wood material
£cu 1S the ultimate failure strain of wood
ecu IS the ultimate compression strain of FRP material
ect IS the ultimate tension strain of FRP material
Ec isthe modulus of elasticity of FRP materia
Er isthe modulus of elasticity of timber material
fce IS the compression stress of timber when it reaches its elagtic strain limit
fie ISthe tension stress of timber when it reaches its elastic strain limit
Ac: isthe cross section area of FRP materia in compression side
Ac isthe cross section area of FRP material in compression side
misthe ratio introduced in Chen’s model presented in Chapter 3, that is:

e, _3f.- T
€ fe-f

ce r

m= (10.49)
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10.4.2 Design Inputsfor Balsa Wood

Since the specific analysis and design procedure were conducted, the design
inputs are different from the above list.

| isthe length of the wood beam

a is the maximum arm of force

d isthe outer edge of the flange to the neutral axis

b; isthe width of the balsa core

h; is the thickness of the balsa core

bc is the width of the reinforcing tows or tapes

hc is the thickness of the reinforcing tows or tapes

wc is the width of the flange of the transformed |-section beam

&ce IS the maximum elastic strain of balsa

&cu 1S the ultimate failure strain of balsa

ecu ISthe ultimate failure strain of FRP materia

Ec isthe modulus of elasticity of FRP materia

E. isthe modulus of elasticity of balsa

Ac isthe flange area of transformed beam on either compression sde or

tension side

Tmax IS the shear strength of balsa wood

10.5 Design Procedure

10.5.1 Design Flowchart for Hard Wood Beams
The following flow chart shows the design procedure of hard wood beams

srengthened with FRP materials on compression and tension side.
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( Hardwood beam design starD

Input data:

b - the width of the wood core

h - the thickness of the wood core

gce - the maximum elastic strain of the wood
material

&te - the fracture tension strain of the wood material
ecu - the ultimate failure strain of wood

ecy - the ultimate failure strain of FRP materia

ecr —the maximum tension strain of FRP material
Ec - the modulus of elagticity of FRP materia

Er - the modulus of elasticity of timber material
fce - the compression stress of timber when it
reaches its eastic strain limit

fie - the tension stress of timber when it reaches its
dastic srain limit

Acc - the cross section area of FRP materid in
compression side

Act - the cross section area of FRP material in

h 4

Assume failure occurs due to tension fracture when tension strain reaches e

h 4

Calculate neutra axis depth c based on the equation:
c :((b - 1)(bhfce ece + bhfceeCf + bhfteeCf + AbcECesz + A}ECeCfZ) + bl«(ETeCf2 + ETeCf ete + bETeCf ete
\/((b - Deg (b - DON* f,.” +20NE oo (- Ayl +Acc(Cre +€))+ )
+
Ec((b- DA + A )Ec ey +2Ac (b - Dbhfey + AyEceq”) - BhE (e - &)y - bEL)))))
I0((feer + fe(Ce ¥264))0 - D - E; (6 - €)(€ - DE)))

- bET etez )

v

When the beam in tenson reaches ecy,
calculate the corresponding compression
strain ¢ at extreme compression fiber:
.= e
c h -c Cf




200

CoMPare g with gcy

If e, £eg,, then the beam should be designed for tension failure. Go to
hardwood beam design start A for ultimate strength design.

If e, 3 eg,, then the beam should be designed for compression failure. The
beam fails when the extreme compression fiber reaches ¢c,.

i

Assume the beam fails due to compression and the tension fiber is still in
linear elastic range. Calculate extreme tension fiber strain g; when the
compression strain reaches ecy,

\
CoMPare ¢ with maximum elastic tenson strain ;e of wood fiber,
If e, £e,, then the beam fails when the tension fiber is till in linear elastic

range. Go to hardwood beam design start B for ultimate strength design.

If €& £€,, then the beam fails when the tenson wood fiber is in off peak
range. Go to hardwood beam design start C for ultimate strength design.

v
@)r maximum working load D
v

The neutral axis depth ¢ corresponding maximum working moment can be solved
by:

1

= - E.+ A.E_. +bhE_ +bhmE _ + bhm2E, -
c b(1+m)2ET (ACC C ACt C T T T

VA E” + (AqEg - bhmE ;)7 + 2A, E¢ (Aq E¢ +bh(1+m+m?)E,))




201

Calculate the working moment the beam can sustain with the neutral axis depth c:

2 3
Mn :C_AZCECete +bi(h_ C)ZETete
h-c 3

+ 20(c- mh+ mo)(c- Mo+ mh)Ere, +2 (- O Ere, + AvEce,(h- O

in which the ratio m can be expressed as:

e, _3f.- 1,
€ fce - fr
Or using:
M, =0.85M,

In the calculation of working moment:

Cc
FCC = h - CACCECele

Fce :b_m(h_ C)ETrnete
2
F, =b(c- mh+mc)E, me,
_b
Fte _E(h_ C)ETete

Fo = AuEc€e

i
e
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Qardwood beam design startD

Calculate the neutral axis depth c at failure of the beam

c= ((b - ])(bhfce ece +bhfceeCf +bhteeCf + A:cEcesz + AZIECesz) +br(ETem2 + ETeCfeIe + bETeCfeIe - bETeIez)
J((b - Do (b - DO 2 +2DhE fo(- Ayer + Aucllre +ec)))
+

2 2 2 2 2 )
Ec(b- DA + A )ECE: ™ +2A((b - Dhee +AEcey”) - PhE (B - €)€cr - PE.)))))
/(u(fteecf + fce(ece +%Cf ))(b - 1) - ET (eCf - ete)(eCf - er)))

!

Calculate the maximum fracture moment the beam can sustain:

M, =F.c+2F, e (h c)+ F(c+S= (h- o))
3 "e ey

cf

2_ €, €,
* 3 (- O R (E(h- 0+ +Fu(h- 0

Ccf
In the above calculation of maximum moment:

c
N

be
F.=—=(h-c
= o (h-o)fe.

Cf

ece
F, =b(c- e—(h— 0)f.

Cf

b e,
Fte :Eet (h_ C) fte

Cf

= 2+ (be, - e )L SE)(h- ©)
eCf

= AqEceq

End
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@ardwood beam design startD

Calculate the neutral axis depth c at failure of the beam

c= (eCquC (Aic + A:t) + bhfteeCquC

+ \/(ECeCuz(EC (A:c + A:t + bhfte)zeCu2 - bh(ZA:[ + bhfte)( fce(ece - 2eCu) + EC fteeCuz)))
/(b( fce (ece - 2eCu) + fteeCquC ))

Calculate the maximum fracture moment the beam can sustain:

M, = F&C+§Feeic+£|:cp(1+ ece)+2|:te €ie

Ct

(h-c)+Fq(h-0

Cu Cu

l

In the above calculation of maximum moment:

Cu

ece
FCp =bc(l- =) f,
eCu
Fe = be, cf
2e

Cu

te

Fee = AccEcec,

h-c
FCt :ACtECeCu?
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@ardwood beam design starta

The neutral axis depth ¢ corresponding ultimate failure load can be solved by:

c=- (bhf e.6. - 2E.e.,°€.(Ax + Ay) - 4bNf e.8, +2E.e.,7%e, (A + Ay) - bhf e.e,

. \/(4bhch (2AqEceq, (6 - &) thhfe )(- fe(ee - 265,)(e - €) * fie(Ecy (6 - 3e,) - 2eleetu)))
+(2(Ag, + Ay )EceS, (€ - &) +bhf (- e, (e - 4e,) +e8,))%)

I(2b(f (€ - 280, )(E - €) + (- €0, (€ - 38,) +22.8,)))

l

Cdlculate the ultimate moment the beam can sustain with the neutral axis depth c:

|\/|u = FCcC+g Fcee—ceC"'E Fcp(1+e_06)
3 Cu 2 Cu
+2F, B (h- )+ (Becre)+Fy(h- 0
3 Cu eCu

In the cal culation of working moment:
Fee = AccEcec,

F, =% ¢

ce
2ey

ce

ece
F, =bc(l- —=)f,

Cu

be, b
Fte = Ee;u Cfte Fte :E(h - C) ETete
" :E(fte+w)(h_ C- &C)
2 C(etu - € Cu

h-c
FCt :ACtECeCu?
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10.5.2 Design flow chart for reinforced balsa beams
For balsa beam specifically, the design procedure is different. The decrease of
modulus with the increase of stress angle was considered to calculate the yield

strength more accurately. The flow chart is as follows.



( Balsa beam design start >
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Input data:

| isthe length of the wood beam

a is the maximum arm of force

d isthe outer edge of the flange to the neutral axis
b, isthe width of the balsa core

h; is the thickness of the balsa core

bc is the width of the reinforcing tows or tapes

hc is the thickness of the reinforcing tows or tapes
Wc isthe width of the flange of the transformed 1-
section beam

gce 1S the maximum e astic strain of balsa

ecu ISthe ultimate failure strain of balsa

ecy IS the ultimate failure strain of FRP materia
Ec isthe modulus of elasticity of FRP materia

Ew isthe modulus of elagticity of balsa

Ac isthe flange area of transformed beam on
either compression side or tension side

Tmax 1S the shear strength of balsa wood

l

Calculate for maximum normal working load:

M = e. E, e*
nTo . 21, 2 242
a hl+ ah + Ad
47 | 161> 170
where B is anayzed to be —0.005 and angle o can be estimated by:

“a

M, =0.8M,

Or using:




Calculate the maximum moment capacity of the beam:

I\/qutmaxl,blra
A.”d

where the shear strength of the balsa wood can be estimated based on the

density of timber material.

'
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Chapter 11

Conclusions

An elasto-plastic model was presented in this dissertation. The application of
the model is in engineering design practice of FRP reinforced wood beams. This
model is extended from Balaguru and Chen’s andysis. The invegtigation in this

dissertation can be divided into 5 focus areas dealing with:

§ The presented strength model is extended from unsymmetrical strengthening

to wood beams strengthened on both compression and tension sides.

8 Theoretical analysis for hard wood beams is conducted for oak beams under
four points bending. The whole load-deflection curve was predicted. All
results from the model for the same oak beams were compared to test results

and reach a satisfactory accuracy.

§ Parametric study was conducted on the proposed strength modd. Most
important parameters related to beam strength were studied to see their

sengtivity level.

§ Theoretical andysis is conducted specifically for balsa beams under four
points bending. A different approach is proposed specifically for balsa wood

due to its unique material properties. The load-deflection curve was drawn
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based on the theoretical results. Analysis results were compared to lab results,

and they match well.

Theoretical study of hard wood beams with dimensions used in true
engineering was accomplished to test the feasibility of the model in real world.
Douglas fir wood was chosen as the objects of the study. Theoretical
predictions based on proposed modd were compared with test results. The

comparison presents a good match.

Design guild line was proposed for FRP strengthened wood beams, including

normal hard wood species and relatively soft wood species such as balsa.

Timber Elasto-plastic Strength Modéel

The three loading stage of the eastio-plastic model is specified. The equations

of the extended model were presented. This chapter yields following conclusions.

§ Comparing with Balaguru and Chen’s model, the extended model takes the

§

contribution of FRP material in compression into consideration. The
compression carbon fiber not only increases the stiffness and strength of the
beam, it adso helps to improve the stability and to reduce deformation and to

prevent sudden buckling.

The model used wood beams with rectangular cross section as an example.

Strength for wood beams of other shape of cross section can also be derived.
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The extended model aso considers the contribution of post-peak strength of

tension wood fiber before tension wood fiber completely fractures.

Compare Theoretical Analysis Results of Oak Beam with Test Results.

Applying the model to oak beams, the maximum eastic load, ultimate falure

load, maximum elastic deflection, and the maximum ultimate deflection were

predicted. The entire load-prediction curve was drawn. Comparisons were made

between analysis and test results. The conclusions are as follows:

§ Carbon tows and tapes were applied to compression and tensile sides of the

beams. Assume 10% of FRP material strength was lost during processing. If
the cross section area of carbon tows and tapes need to be transformed to same

material as the core, dso consider 10% of arealose.

Comparing theoretica prediction with test results. The difference of maximum
dastic load P is below £10%, and the difference of ultimate failure load P,
is below +20%. The prediction is considered to be close enough to

experimental value.

The difference between predicted maximum elastic deflection with test result
and the difference between predicted deflections at failure with tested failure

deflection are all below +20%. The accuracy is acceptable.
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11.3 Sengitivity Analysis of the Parameters Related to Beam Strength

The sengitivity of the most important parameters that affect the beam strength
was studied. The purpose of the study is to evaluate the influence the parameters have
on the maximum beam strength. Based on the test results, the following conclusions

were reached.

8 For one side (tension side) strengthened beams, variation of eastic modulus of
timber Er and modulus of the FRP materiad Ec has very high influence on

beam strength.

§ For one side (tension side) strengthened beams, variation of maximum elastic

srain of timber &c. has high influence on beam strength.

8 For one side (tenson side) strengthened beams, variation of ultimate strain of

timber ¢, and the reinforcement type has medium influence on beam strength.

8§ For both-sides strengthened beams, variation of reinforcement type and

modulus of the FRP materia Ec has very high influence on beam strength.

8 For both-sides strengthened beams, variation of maximum elastic strain of

timber & has low influence on beam strength.

8 For both-sides strengthened beams, variation of ultimate strain of timber &,

has high influence on beam strength.
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8 For both-sides strengthened beams, variation of elastic modulus of timber Er

has medium influence on beam strength.

11.4 Compare Theoretical Analysis Results of Balsa Beam with Test Results

Theoretical analysis is accomplished on FRP reinforced balsa beams.
Although classified as hardwood, the density of balsa wood is much smaller than most
other hardwood commonly used in industry. The shear stress cannot be ignored for
balsa wood. A different model considering shear stress and shear deflection is
developed specifically for strengthened balsa beams. Maor conclusions is listed

below:

8 While calculating the tiffness of the entire beam, the contribution of timber,
the reinforcing tapes and tows and the contribution of matrix between timber

and FRP materia should all be included.

8 The elasticity modulus of balsawood is aso linearly related to its density.

8 The deflection of balsa beam includes its bending deflection and shear
deflection. The calculated deflection of balsa beams based on the proposed

model matches well with lab records.

§ To caculate the maximum elastic load, assuming the compression timber fiber
first yielded in the principle stress direction so that the shear stress is
incorporated in the model. The error between prediction and tess is below

+20%.
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To calculate the ultimate load, estimate the shear strength and bending
strength of reinforced balsa beams. It is proved that balsa beams reach their
shear strength first. Balsa beams fail due to shear failure. The error between

prediction and testsis around £20%.

Theoretical Analysis Results of Douglasfir Beam and Corresponding Test

Results

In order to estimate the feasibility of the proposed strength model in

engineering applications, analyss of some reinforced Douglas fir beams that have

smilar dimension with industrial beams reinforced unsymmetrically were conducted

to predict their strength behavior and load-deflection curve. Comparing the estimated

values and test results, the following conclusions can be drawn.

§

§

Proposed strength model can be applied to real engineering applications with

guite reasonable error.

Analysis for oak beams and balsa beams in previous chapters are all based on
compression failure case. Theoretica evauation for Douglas fir beams used
the tension failure model. It is proved that the tension failure model aso

produces results with good accuracy.

Theoretical prediction of maximum elastic load P. and ultimate failure load

P, has an error of smaller than £20% comparing with test results.
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8 Theoretical prediction of maximum elastic deflection d¢ and ultimate failure

load dcy has reasonable error comparing with test results. Due to rotation of the
beams and bucking, some beams produces larger deflection than theoretical

prediction.

11.6 Design Guild Linesand Procedures

Based on theoretical analysis and study, design guild line and procedure for

reinforced wood beams were presented. Some conclusions were drawn from this

chapter.

8 The proposed design guild lines presented different procedures for balsa wood

11.7

and other hard wood species because of distinct characteristics of balsawood.

The first step of designing is to determine the failure type of the beam.

Different failure type would lead to different design procedure and estimation.

The necessary parameters needed during design process could be from
manufacturer’s suggestion, tests or handbooks. Some of the parameters can be
derived from basic measurement, smple experiments and calculation if not
given. Some other parameters should be adjusted to specific loading and

manufacturing process.

Suggestion for Future Study

The strength model is proved to be useful and accurate for high modulus

carbon fiber reinforced wood beams. On the other hand, further research is needed to
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establish a perfect strength model and design procedure that can be applied

extensively in engineering design. The following objectives and suggestions should

be consdered in future study.

§

Some of the parameters in the analysis in this dissertation were estimated
theoretically. More experiments on the beams can help to determine the

parameters more accurately.

In the proposed design procedure, the failure type was determined based on
calculations based on the strength modd. If more bending test can be
conducted, the designers can understand actual failure mechanism and make

sure that they are using the right strength model.

Previous presented design guild lines used the maximum elastic load as the
working load. This is somehow conservative because the reinforcement
material contributes to improve the working load. Further laboratory
experiments, stress and fracture analyss should be completed to find out
appropriate safety factors to make use of the strength of the beams efficiently

and adequately.

The experiments and analyss in the dissertation applied the high modulus
carbon tows or tapes to the entire length of wood beams. It is also assumed
that the matrix transfer stress evenly. Further studies should consider the
strength of the beams if only part of the beam was reinforced. Localized stress

concentrations can develop in the matrix near cracks or defects. Research
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about how to minimize stress concentration in the matrix needs to be

accomplished.

Similarly, part of previous study was based on tests of clear wood samples that
were assumed to be perfect and have no defects and knots. More experiments
and research is necessary for commercia timber so as to establish standards

for reinforcing timber beams design.

All of the wood cores used in the dissertation have rectangular cross section.
All tests and analysis are for three points or four points bending. Further
research should be extended to beams with other cross section shape and

different load stuations.

Size effect should be taken into consideration in the strength design model.

Influence of fatigue can also be investigated.
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