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ABSTRACT OF THE DISSERTATION 
 

Flexural Study And Design Method Of Wood Beams 
Reinforced With High Modulus Fibers 

 
BY YANXI CAI 

Dissertation Director: Professor P. N. Balaguru 

 

This dissertation presents a strength model to predict the elastic strength and 

ultimate strength of bending wood beams. The model can also be applied to wood 

beams reinforced with high modulus carbon fibers on compression and tension sides. 

For a plain wood beams, its behavior is elasto-plastic in compression and linear elastic 

in tension. For strengthened beams, considering the composite contributes to steady 

decrease of tension strength after yielding, part of plastic region is incorporated in the 

model.  

 

A specific strength model is described for balsa beams due to the distinct 

properties of balsa wood. The balsa wood model considered the influence of shear 

stress and deflection due to shear.  In elastic range, the model is established on the 

fact that the elastic properties reach their elastic limit in directions other than the 

natural axes. The balsa beam model predicted failure based on ultimate shear strength.  

 

Extensive laboratory program results were gathered and compared with 

analysis results from the strength model. The experimental results were also utilized 

to calibrate the model. The comparison verifies that the behavior of wood beams can 

be predicted from the proposed strength model with reasonable error.  

 



 iii 

Step by step design procedure for high modulus carbon fiber reinforced wood 

beams is presented to estimate the dimension of wood core needed and the amount of 

reinforcement needed for required loading situation. 
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Chapter 1 

Introduction 

1.1 Research Objective 

Composite materials have been in existence for centuries. There are existing 

fragments of laminated wood from more than 4500 years. The practical history of 

composite analysis goes back to the second-world-war when some early experiments 

were conducted with flax as a reinforcing fiber and development work on glass-

reinforced plastics was done. Generally, well-known materials such as dispersion-

hardened metal alloys, glass, aramid, concrete, and carbon fiber are composites. 

Wood is actually also fiber composite with cellulose fiber reinforcing a lignin matrix. 

The composites have been used for repair and retrofit in a wide variety of man-made 

structures such as houses, bridges, furniture, bridge, buildings, parking garages, and 

various types of infrastructures.  

 

High strength composites made of high strength fibers and ductile organic 

matrix have very high specific strength and are more resistant to corrosion. Besides, 

these light weight composites are easy to apply in most places. Composite with good 

properties that could be handled and used in reasonably simple manufacturing 

operations are also being evaluated for use in engineered timber to increase both 

strength and stiffness. If economical means can be found to enormously increase the 

strength of timber with such composites, it would widely influence the whole 

construction industry.  
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Experiments were carried out to study the improvement of the strength of 

timber beams while they are strengthened with commercially available economical 

fibers. It is shown from the result that the strength of the timber beams could be 

increased considerably or even doubled. The stiffness of the timber is also found 

improved, thus the deflection of the beams could be reduced. However, due to the 

specific mechanical properties of wood beams, traditional simple linear elastic models 

were concluded not sufficient for the prediction of the behavior of strengthened 

timber beams.  

 

A non-linear model that predicts the flexural behavior of timber accurately is 

used in this dissertation. The non-linear model was applied to the analysis of timber 

beams either strengthened or not strengthened with composite material, and the 

analytical prediction matches well with experimental investigation.  

 

In order to predict the bending behavior of composite strengthened timber 

beam, the understanding of wood strength properties is necessary. In this chapter, the 

definition of the terms used in this dissertation will be given, and timber flexural 

strengths properties related to analysis and strength model for property prediction will 

be introduced.  

 

1.2 Definition of Terms Timber, Lumber and Clear Wood 

Clear wood or WOOD in this dissertation refers to clear and defect-free small 

sizes wood, usually used in laboratory investigations for standard tests. The term 

TIMBER refers to commercially sawn timber that is suitable for (or prepared for) use 

in structures, usually containing natural or man-made defects. Timber beam is 
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referring to timber members of 127mm (5in) or more in the least dimension, with a 

width of more than 51mm (2in) and a thickness less than its width. The term 

LUMBER is timber cut into standard-sized planks and refers to timber members 

containing natural or man-made defects of 102mm (4in) in the least dimension and 

less in thickness.  

 

1.3 Timber Strength Properties 

Since timber elements such as flooring, beams, columns and joints are broadly 

used in construction to bearing loads, investigator’s research interest are focused on 

their mechanical properties: elasticity modulus, stiffness, crushing strength, tension 

strength and bending strength. 

 

Timber grading is applied based on the assessment of their growth 

characteristic and defects. Timbers can be visually graded according to the limiting 

characteristic. The properties of dimensional lumber are assessed by tests of full-size 

members following the procedure given in ASTM (American Society for Testing and 

Materials Standards) D1990 (2). The mechanical properties of structural timber are 

calculated from substantive test data on small, clear specimens according to 

procedures given in ASTM D 245 (2).  

 

However, full size in-grade structural timber and clear wood specimen show 

quite different behavior in most cases. Timber is the most ancient and complex 

organic natural material on earth, and all wood is composed of different cellulose, 

lignin, hemicelluloses, and minor amounts of extraneous materials, thus its properties 

are affected by various factors such as the volume of these components, defects, 
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orientation of grain, and man-made damages. The present of defects in timber makes 

it more brittle than clear wood and timber mechanical characteristics are affected by 

defects considerably, especially the brittle fracture properties of timber, tension 

strength. Because the size, location and distribution of the defects in timber elements 

are hard to investigate, their effects on timber properties are difficult to predict. 

Therefore, strength properties obtained from testing on clear wood cannot be taken as 

timber strength properties. The current approach to deal with the difference is to 

assume the section area occupied by defects totally functionless conservatively. The 

adjust factors are introduced to adjust strength properties of clear wood. 

 

There are also problems for the full size test properties from dimensional 

lumber. Such full size tests involve thousands of specimens to get a predictable result, 

and statistical approach to brittle fracture is used to analysis lumber properties. A 

statistical distribution model is chosen to fit the distribution of data and the 

introduction of a calibration is then necessary. However, since timber fracture 

mechanism is very complex and has not been clearly discovered yet, the research of 

brittle fracture statistics in this field can easily become simple data accumulation and 

curve fitting while general curve fitting is not an accurate and reliable way to predict 

the mechanical properties of timber.  

 

Fortunately, in the research of composite strengthened timber beams, the 

difference among the properties of clear wood, structural timber and lumber is much 

smaller. The composites act like bridges over the timber defects. The existence of 

composite material makes the structural member section more ductile, and the 

influence of the defects in the wood, timber or lumber is reduced. Since the difference 
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of the mechanical properties of timber and clear wood is much smaller than in the 

unstrengthened case, it provides the possibility to apply clear wood properties as the 

properties of structural timber in theoretical analysis. 

 

Based on statistic analysis, wood strength properties of most species were 

investigated. Relationships between strength properties and corresponding elasticity 

modular were established. These relationships can be further used to determine certain 

strength properties such as parallel-to-grain tensile strength. These relationships for 

clear wood can then be applied to composite strengthened timber, while the 

interaction between timber and composites makes the structural element section more 

ductile. This approach can make best use of available clear wood properties and avoid 

large amount of experiments. 

 

1.4 Wood Non-linear Model in Bending 

The properties of wood vary enormously from one to another and are highly 

dependent on their texture. For instance, the modulus of elasticity of oak and hickory 

can be as large as 20800MPa, while the modulus of elasticity of balsa and ceiba could 

be just around 2800MPa. Moreover, timber could not be modified during engineering 

process. Because of the complexity of timber material, the design of timber elements 

often utilized simplified allowable stress design. Designers use modulus of rupture of 

timber directly in design practice. It is assumed that the timber elements always 

experience tension failure and the non-linearity of the stress-strain relationship of 

wood is ignored.  
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However, strengthened by composite material, the stress-strain distribution of 

timber element is extended. The modulus of rupture can no longer control its 

properties and compression failure must be taken into consideration for better 

prediction and design. Based on the fact above, the non-linearity of the timber must be 

presented in wood analysis model so as to more accurately match the behavior of 

strengthened timber. 

 

A non-linear strength model for predicting the strength of timber members in 

bending from Balaguru and Chen’s work is presented and described in this 

dissertation. The model incorporates more ductile non-linear behavior in compression 

side and linear elastic behavior associated with brittle tensile fracture. The 

relationship between strength properties and modulus of elasticity is used to find the 

equivalent maximum compressive strength. Tensile strength of timber beams is also 

determined using the relationship between fractural strength and strength distribution 

parameters. This non-linear model is applied to the analysis of the timber beams 

strengthened with composite materials such as FRP layers. Comparing with 

laboratory investigation data on different species of wood, it is shown that this model 

results in accurate theoretical prediction of the strengthened timber beam in bending. 

Sensitive analysis is followed to study major parameters related to the model in order 

to give better insight of the model and to provide more information for design. Design 

method based on the strength model is investigated. The methodology study is 

followed by feasible design guidelines for FRP strengthened timber beam. A detailed 

procedure is summarized and flow chart for the design is presented.  
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1.5 Reinforcing Composite Materials 

Composite materials are made up of at least one type of continuous reinforcing 

fiber and a resin material to permeate the fibers and then be solidified. Hybrid 

laminate composites and sandwich constructions are being used broadly in the filed of 

aircraft, marine applications and lightweight structural members in construction.  

 

Sandwich structure is a hybrid composite type with fiber skin and non-fiber 

core. The skins consist of types of fiber arranged in either same or different directions. 

Core materials range from species in nature such as balsa and oak wood to man made 

materials like honeycomb or foam structures. In engineering and scientific 

application, the sandwich structures are found to have better insulation and stiffness, 

greater resistance to impact, corrosion and damage.   

 

While used as an element under flexural load, sandwich structures behave 

similarly like an I-beam. The Fiber skin act as the flange of the I-beam and the core 

part could be considered as the shear web of the beam. The top skin is under 

compression and the bottom skin is under tensile stress. The core material bears the 

shear stress. The structural properties of sandwich structures such as rigidity and 

flexural strength can be easily and enormously adjusted by simply increase or 

decrease the cross section area of the core.   

 

Because of the wide use of sandwich structures, the theoretical investigation 

and prediction of the flexural properties of structure members in this dissertation was 

compared with the experimental results from the tests on sandwich beams. The skin 

material consists of various FRP reinforcements and the core is from solid oak wood 
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and solid balsa. The tests were conducted in engineering lab in Rutgers, The State 

University of New Jersey. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Wood is the most widely used structural material with applications all over the 

world. Wood is also one of the most complex natural organic materials, and its 

mechanical properties vary tremendously between different wood species. The 

properties of most of the commercial wood are listed in Wood Handbook [1999] or in 

ASTM [1999], which is helpful to wood property analysis.  

 

This brief literature review describes the analysis of the timber mechanical 

behavior and strength properties with focus on the flexural strength and axial loading 

strength. A review of the development and investigation history in this field is 

presented in this chapter. The wood strength model presented in later chapters is 

based on some of the results referred to in this chapter.  

 

For more than one hundred years, researchers have been trying to find a 

method to predict bending behavior of timber members based on the data from the 

tension and compression tests. However, because of material variability, non-linear 

stress-strain behavior in compression and the presence of very significant size effects, 

this attempt is showed to be much more difficult for wood than for other man made 

materials such as steel and concrete. Quite a few of different analysis approaches were 

proposed and applied to the engineering application, and some of the most important 

ones are presented below. 
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2.2 Wood Axial Compression and Tension Strength 

The deformation of axial loaded member is not usually an important 

consideration. More considerations were put on combined loads or bending. However, 

axial tension and compression behavior of similar members is the foundation of 

strength prediction. Models are also developed to predict the strength of lumber in 

bending, and in combined bending and axial loading on the basis of axial tension and 

compression behavior of similar members. Knowing how a material sample contracts 

or elongates as it is stressed up to failure provides a crucial model for its performance 

in an actual structure.  

 

Wood has two compressive strengths: one was loaded parallel to the grain and 

the other was loaded perpendicular to the grain. Laboratory investigations show that 

the strength and modulus parallel to the grain are much higher than in the transverse 

direction. Strong carbon bonds in the fibers aligned along the axes of the cells, which 

are parallel to the grain, give the high strength and modulus in this direction. Across 

the grain, the cells are hollow and are held together by weak, low molecular weight 

resins leading to the low modulus and strength. Generally strength and modulus 

across the grain are only about 10% of the values parallel to the grain. 

 

Columns are vertical load-bearing elements that are normally loaded in 

compression. Axially loaded wood columns may fail either by crushing or buckling. 

A short column fails when its compressive strength parallel to the grain is exceeded. 

When timber is loaded in axial compression parallel to the grain, it exhibits linear 

stress-strain behavior up the yield stress that approximate half of the rupture modulus. 
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Then the timber column drops until ductile crushing at ultimate load. While the 

ultimate load is reached, characteristic compression wrinkles due to local buckling of 

wood fibers become visible. 

 

Current standard wood test for compression parallel to the grain uses a clear 

straight-grained specimen (51mm x 51mm x 203mm). A compressive axial load was 

axially applied to the specimen slowly until failure occurs, obtaining simultaneous 

readings of load and axial deformation for every unit of specimen deformation. The 

results of extensive testing programs have been published in Wood Handbook [1999]. 

 

Wood has its highest strength in compression. Compression failure occurs 

when critical strain is reached. The tensile strength is usually somewhat lower due to 

flaws. Failure occurs in tension, when stress exceeds defect strength. Based on the 

weakest link of chain principle and the principle of brittle fracture mechanics, it is 

assumed that defect strength defines the tension strength. It is extremely difficult to 

perform tension tests on wood due to physical problems of gripping the specimen in a 

testing device and making a connection stronger than the test specimen.  

 

Until the 1960s, allowable tensile stress in timber elements was established in 

engineering practice for tensile strength design as a theoretical extrapolation measured 

tensile failure stress of bending specimens. This was partly due to the difficulties of 

developing axial tensile load testing equipment that could test timber specimens to 

failure without simply breaking at the grips and this approach was considered to be 

conservative and safe. The grip zone failure casts legitimate doubts on the tensile 
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stresses in the member at failure. The first recorded test on wood in axial tension 

parallel to the grain was performed in 17th century. 

 

In nowadays the ASTM standard test use 450mm long piece of clear wood 

necked down to 4.8mm x 9.5mm over a 64mm gauge length to conduct the axial 

tension tests. Markwardt and Younguist (1956) have described the evolution of this 

test specimen.  

 

Taking tensile design stresses equal to the bending design stress was not a 

serious problem in 1960s because there is no high stresses developed in tension 

members of real structures which requires suitable connection. Eventually, new grips 

were developed that led to effective results could be used in axial tension strength 

evaluation. The commercial size material with defects was tested and the influence of 

size effect in tension was realized, thus the interest in tension strength of clear wood is 

renewed. Unfortunately, the new tension tests demonstrated that wood has less tensile 

strength than previously predicted on the basis of the flexural tests. For smaller 

specimens, the differences between axially-induced and bending-induced tensile 

stresses were not obvious. However, the differences became significant while the 

specimen size increased. The 1977 NDS specifications introduced a new reduction 

factor of as much as 40 percent for allowable tensile stresses for members 254mm (10 

inches) and wider, and number 1 grade or less.  

 

Compared with the secant formula, the Euler curve, and The National Design 

Specification (NDS) (1997) for Wood Construction, Burl E. Dishongh (2002) has 

proposed a universal column formula (UCF) The UCF relates compressive strength to 
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the slenderness values for axially loaded columns. The UCF is to perform any axially 

loaded timber and steel column strength analysis and design.  

 

2.3 Wood Bending Strength 

Timber, which is made up of natural polymers, is extraordinarily complex 

material that has been used for thousands of years as a structural material. The most 

important structural properties are those relating force to deformation, or stress to 

strain. Knowing how a wood sample contracts or elongates as it is stressed up to 

failure provides a crucial model for its performance in an actual structure. Not only is 

its ultimate stress indicated, but also a measure of its resistance to strain, linear and 

non-linear behavior. 

 

Wood beams are used to sustain flexural stress in structure members. Bending 

tests were conducted to study the mechanism of bending of timber beams. It is shown 

that the compression side of the beam behaves elastically until it reaches a yield limit. 

After that, the neutral axis shifts down towards the tensile side of the beam and the 

stress on tension face keeps increasing even after the compression face yield until the 

beam reaches its ultimate load.  

 

A linear relationship between stress and strain is an indicator of elastic 

behavior. Traditionally, it is assumed that the mechanical properties of timber beam 

are linear elastic until it fails. For typical wood beams, this simplification is feasible in 

design practice. This is because the maximum moment capacity is reached when the 

outer most tensile face of the beam reaches its elastic limit. Then the neutral axis of 

the beam is close to the tension face and the lever arm is small, thus the descending 
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part of the stress curve does not corresponding to an obvious moment capacity 

increase.  

 

The modulus of rupture was computed by dividing the maximum bending 

moment of the wood beam by section modulus and was taken as the failure stress of 

the beam while it fails. This is true if the beam is perfect linear elastic. If the behavior 

of the beam is not perfectly linear, the modulus of rupture is just an approximation of 

the bending failure stress. Since the wood beam was assumed to be linear elastic in 

early years, this rupture modulus could be used in bending strength design.  

 

However, things have been changed since composite materials were 

introduced to reinforce wood core in sandwich members. The existence of composite 

material makes the wood beam more ductile and doesn’t fail when the tensile face of 

the wood core reaches its elastic limit, thus the stress-strain relationship of the beam 

should be extended and the inelastic part of the stress-strain relationship can no longer 

be ignored. Instead, the non-linearity behavior and plastic behavior that characterized 

by permanent deformations of timber should be studied and analyzed to get an 

accurate prediction of the wood beam, especially when failure loads are being 

computed.  

 

 

Wood beams are generally designed for bending stress and then checked for 

shear and deflection. Several orthotropic failure criteria have been investigated for 

combined stresses in wood members (Cowin 1979, Goodman and Bodig 1971, 

Keenan 1974, Liu 1984a, Norris 1950, Tsai and Wu 1971). Sometimes, in-grade 
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testing method is shown to be useful if consistent safety indices are to be maintained 

(Webster, 1986). Mechanical grading method based on the relation between Young's 

modulus (E) and strength (σ) with some linear regression models is also popular 

(Takeda, Hashizume, 2000). 

  

A stress distribution of wood beam was proposes by Neely (1898) to modify 

the existing linear elastic design model. It is assumed that wood presents bilinear 

elasto-plastic stress-strain relationship in compression and remains elastic in tension. 

In other words, approximate analytical procedures, based on an elasto-plastic 

compression and linear tension stress-strain distribution in tension, are used to predict 

ultimate strength. This is a reasonable approximation comparing with real test results. 

For clear wood that has no influence from defects, the tension strength is much larger 

than the compression strength, so Neely claimed that the flexural capacity could be 

evaluated from the compression failure along. Figure 2.1 shows the simplified form of 

Neely’s model.  

 

 

Figure 2.1:Stress-Strain Distribution of Wood Beam Proposed by Neely 
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Biblis described a new theoretical analysis for wood fiberglass composite 

beams in static bending within and beyond the elastic region in 1965. He studied the 

behavior of Wood-Fiberglass composite beams within and beyond the elastic region, 

taken into consideration of the classic flexural model and the shear effect of the core 

wood, either in terms of rigidity modulus, or indirectly, by using the “vertically-

transformed depth” of the composite. His theoretical analysis results in elastic and 

plastic regions match excellently with the values from experimental tests. 

 

The compression tests on small clear Sitka spruce beams that Bechtel and 

Norris (1952) carried out produced a stress-strain curve as shown in dashed line in 

Figure 2.2. 

 

Figure 2.2: Elasto-Plastic Stress-Strain Distribution Proposed by Bechtel and Norris  

 

They simplified the stress-strain relationship to be perfect elasto-plastic in 

compression side and linear elastic in tension. Wood properties were calculated based 

on this model, and in 1955, Norris proposed a criterion of failure under combined 

bending and shear stress. 
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Comben (1957) tested series of clear wood beams. He confirmed that plane 

cross section of the beam remains plain and the tension behavior of wood remains 

linear elastic until failure. He also found that the compression stresses at yielding limit 

are the same for wood beam in pure compression and for compression face of bending 

specimen. Ramos (1961) proposed that the compression stress block in bending could 

be estimated from the axial compression stress-strain distribution. Nwokoye (1975) 

proposed a theory based on stress-strain relationship similar to Bechtel and Norris’s 

model and got very accurate strength prediction. He also confirmed the plane sections 

remained plane in bending and that the extreme fiber stress in bending at the 

proportional limit is the same as the stress of the compressive failure strength. 

 

Bazan (1980) and Buchanan (1990) proposed a refined elasto-plastic 

relationship in compression. The proposed stress-strain relationship in compression 

was described as bilinear and is increases up to maximum stress and then reduces 

linearly until failure. Buchanan further assumed that the slope of the falling segment 

of the relationship could be taken as a constant material property. The refinement is 

mean to predict the ultimate strength more accurately and the model is more close to 

the actual case, but the analysis becomes much more complicated. 

 

Compared all the advantages and drawbacks of the models above, Chen 

(2003) introduced a new elasto-plastic stress-strain relationship in compression 

behavior of bending wood beam. He proposed an equivalent maximum compressive 

strength, and the plastic strains started from this equivalent maximum compressive 

strength, not the real actual compressive stress. Theoretical analysis in this 



 

 

18

 

dissertation is mainly based on Chen’s model, and detailed description is to be shown 

later. 

 

2.4 Lumber Size Effect 

Wood has its highest strength in compression. The tensile strength is usually 

somewhat lower due to flaws. The defects commonly found in timber act as stress 

raisers. This reduction of the strength depends on the ratio of the area of the defects to 

the area of the timber member and on the sharpness of the geometry of the defect. 

Different from the clear wood, the lumber has defects, thus the properties obtained 

from clear wood specimen cannot be applied directly onto lumber property study. 

Size effect in wood industry should always be considered seriously in theoretical 

analysis and practical design. 

 

Extensive tests showed that lumber in larger sizes tends to present lower 

strength comparing with smaller size ones. Weibull (1951) proposed the statistical 

approach of the brittle material strength. He explained the strength of weak link 

system by a cumulative exponential distribution, and how the stress distributions and 

strength varies with volume of the test specimen. His statistic theory has wide 

applications and is known as Weibull’s distribution.   

 

The tests that Comben (1957) carried out also show that there was significant 

reduction in failure stress while the wood beam size increases. Based on numerical 

data for Douglas-fir beams, Liu (1982) expanded the analysis of size effect on 

bending strength of rectangular wood beams based on Weibull's theory of brittle 

failure to wood beams under arbitrary loading conditions. The mathematical 
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formulations are expressed in terms of the two parameters in Weibull's model. The 

parameters must be determined experimentally for each wood species.  

 

2.5 Composite Reinforcing Material 

A promising use for high performance composite materials is to reinforce 

timber beams. Many researchers studied the use of carbon and glass fibers to reinforce 

sawn timber sections as a composite material in increasing the stiffness and strength 

of timber products. Consideration is given to strength phenomena of timber beam 

alone and in reinforced sections in bending and shear.  

 

Experiment result shows that even the wood itself in the composite section 

shows strength increase, and that the increase in moment resistance of the reinforced 

beams is far greater than that predicted by simple models, but the existence of the 

reinforcement is still to resist major load acting on the composite system. The fiber 

reinforcement material constitutes the largest volume part in a composite material. 

Typical fiber reinforcements used in industry are E-glass fiber, S-glass fiber, carbon, 

aramid and basalt.  

 

Because of its advantages such as low cost, high tensile strength, high 

chemical resistance and excellent insulating properties, glass fibers became most 

popular in composite industry. But it also has its disadvantages, namely, low tensile 

modulus, sensitivity to abrasion with handling, relatively low fatigue resistance and 

high hardness. Glass fiber includes E-glass, S-glass, chemical glass and Alkali-

resistant glass. The first two types are most common in industry. 
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The advantages of carbon fibers are their high electrical conductivity, high 

tensile strength-to-weight ratios, high tensile modulus-to-weight ratios, high fatigue 

strength and very low coefficient of linear thermal expansion. However, they also 

have their disadvantages such as low impact resistance and high cost (Amateau, 2003; 

Mallick, 1993), and the carbon fiber debris generated during weaving may cause 

shorting in circuit. The moduli of carbon fibers range from 30,000 ksi to 150,000 ksi. 

High modulus carbon fibers result in lighter weight composite structure due to their 

high stiffness (Competitive Cyclist, 2003) and were successfully utilized to 

construction applications (Moy, 2002). 

 

Aramid fiber is a synthetic organic polymer fiber produced by spinning a solid 

fiber from liquid chemical blend, and has the lowest specific gravity and highest 

tensile strength-to-weight ratio of all reinforcing fibers. It also possesses good 

resistance to abrasion, impact, chemicals and thermal degradation. Aramid fibers were 

widely used in making military body armor, marine cordate, oxygen bottles, rocket 

casings, etc. On the other hand, aramid fibers also present low compressive strength, 

degradation if exposed to ultraviolet light, and enormous difficulty in machining 

(Mallick, 1993; Smith, 1996; SP Systems, 2001). Theses drawbacks should also be 

taken into consideration in industry practice.  

 

Basalt fiber is derived from volcanic material deposits and has excellent 

strength, durability, thermal stability, heat and sound insulation properties, and great 

vibration and abrasion resistance. Basalt fibers are used in paving and construction 

industry, for instance, heat shields, composite reinforcements, thermal and acoustic 

barriers (Albarrie, 2003).  
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Fiber reinforcements are available in a variety of forms include spools of tow, 

roving, milled fiber, chopped strands, chopped or thermo-formable mat, and woven 

fabrics. A brief description of the common forms of fibers is listed as follows: 

 

Filament:  

Filament is individual fibers drawn during drawing and spinning. It cannot 

function individually and must be gathered into strands of fibers so as to be applied in 

fiber composites (Watson and Raghupathi, 1987). 

 

Yarn: 

A yarn is a term for a closely associated bundle of twisted filaments, 

continuous strand of fibers, or strands in a form suitable for knitting, weaving, or 

otherwise interwining to form a textile fabric. 

 

Tow: 

Tow is untwisted bundle of continuous filaments. It is normally used in 

manufactured fibers, especially carbon fibers. Tows are measured by weight and are 

usually wound onto spools. 

 

Roving: 

Roving is loosely associated parallel bundle of untwisted fiber filaments or 

strands. Each filament in a roving has the same diameter. Roving has been most 

commonly used in continuous molding operations such as filament winding and 

pultrusion.  
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Chopped Strands: 

Chopped strand are produced by cutting continuous strand into segments with 

shorter-length. Chopped strands with a length between 3.2mm to 12.7mm are 

typically applied in injection molding processes.  

 

Milled fibers: 

Milled fibers are very short fiber segments cut from continuous strand in a 

hammer mills. They are typically used in reinforced reaction injection molding, 

phenolics, and potting compounds (Watson, et al., 1987). 

 

Fiber Mats: 

Fiber mat is randomly oriented fibers held together with adhesive binder. The 

advantages of fiber mats are their low cost, high permeability while the low stiffness 

and strength and worse mechanical properties are their disadvantages. 

 

Fabrics: 

Fabric is a flat sheet of fibers assembled from long fibers of carbon, aramid, 

glass, other fibers or a combination of fiber materials. Typical used types of weave 

forms include plain, twill, basket weave, harness satin, and crowfoot satin. 

 

Composite materials are made up of continuous reinforcing fiber and a resin 

material to permeate the fibers. The major functions of the matrix are to transfer 

stresses between fibers, to provide a barrier against the environment, and to protect 

the surface of the fibers. There are two major types of matrices, organic and 
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inorganic. The most widely used organic resins are polyester, vinyl ester, and epoxy, 

but organic matrices also cause health concerns and flammability hazards. Inorganic 

matrices are more suitable for applications in high temperatures circumstances, for 

instance, geopolymer.  

 

2.6 Sandwich Beams 

Hybrid composite with fiber skin and non-fiber core is referred to as sandwich 

structure.  

 

The rigidity and flexural strength of sandwich structures can be easily and 

considerably adjusted by increase or decrease the cross section area of the core. 

Sandwich structures also have other advantages such as lightweight, lower cost, 

greater insulation, excellent impact and damage resistance and sound attenuation. 

They are designed for aircraft because of their advantages. Moreover, sandwich 

panels can also reduce the stiffeners needed in construction, and can be used as 

economical, light and strong building components. Another application of FRP 

strengthening is that this reinforcing method can be applied without necessitating the 

removal of the overhanging part of the pre-existing wood structure, thus maintaining 

the original historical structure (Borri, Corradi, Grazini, 2005). 

 

The core material between the fiber skins increases the stiffness of the member 

enormously and transfer shear across the structure. There is extensive range of the 

material used as core in sandwich structures. The most common utilized core 

materials include hardwood, honeycomb and polymetric foams. In the laboratory 
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investment conducted in Rutgers University, The State University of New Jersey, oak 

wood and balsa wood were chosen as the core material in sandwich beams.  

 

Facing material is the mail load-bearing element in sandwich member. Almost 

any material used in building such as plywood, hardwood, plastics, steel, aluminum, 

FRP, could be applied to the core material as the facing material (Allen, 1969). When 

a sandwich beam is loaded in bending, the top face is usually in compression and the 

bottom face is always in tension.  

 

Some of the most common configurations of sandwich structures are listed in 

the following table: 

 

Facing Material Core Material 
Metal  Plywood 
Metal Foam  

Aluminum Aluminum Honeycomb 
Aluminum Balsa wood 

Fiberglass Reinforced Plastic Foam 
Fiberglass Reinforced Plastic Balsa wood 
Fiberglass Reinforced Plastic Nomex Honeycomb 

Carbon-phenolic Nomex Honeycomb 

Table 2.1: Common Configurations of Sandwich Structures 

 

2.7 FRP Strengthened Wood Beams 

High strength, low weight, corrosion resistance, and electromagnetic neutrality 

make fiber-reinforced plastic (FRP) a suitable candidate in many structural 

applications, including rehabilitation, strengthening and new construction. FRP 

reinforced wood construction can enable contemporary wood structures to play 
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greater role in construction. In the past years, much effort was made to study wood-

FRP laminates, the interaction and bond strength of FRP-wood interface.  

 

Triantafillou and Deskovic (1992) establish the novel technique for 

reinforcing wood members involving external bonding of pretensioned FRP sheets on 

their tension zones, and the analytical model is verified with tests on carbon/epoxy-

prestressed wood beams. 

 

Pultruded FRP composite as a composite material is used in increasing the 

stiffness and strength of timber products and finite element model is introduced to 

evaluate the bond strength (Barbero, Davalos, Munipalle, 1994). 

 

Triantafillor and Thanasic (1997) studied mechanical behavior of wood 

members strengthened to the shear-critical zones externally with FRP materials in the 

form of laminates or fabrics. The analysis is followed by parametric studies to assess 

the influence of the type and amount of FRP reinforcement on the strength of FRP 

strengthened elements. He (1998) also studied the use of composites as shear 

strengthening materials for wood members. They presented analytical models for the 

contribution of composites to the shear capacity of strengthened elements within the 

framework of ultimate limit states.  

 

Johns and Lacroix (2000) carried out tests to evaluate the application of FRP 

reinforcement in strengthening wood beams. They concluded that the FRP can 

effectively improve the performance of wood structures in repairing and retrofitting. 
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FRP tensile reinforcement in reducing creep deformations is effective. Davids, 

Dagher, and Breton (2000) focused their study on the development and calibration of 

numerical method for modeling creep deformations of glulam beams strengthened on 

the tension side with FRP. A numerical model based on layered moment-curvature 

analysis is proposed and is shown to be able to accurately predict the relative creep 

displacements of the glulam beams. 

 

Judd and Fonseca (2003) discussed the response of wood-frame roofs 

strengthened with FRP sheathing panels. A finite element model is developed and it is 

shown that the model is fairly accurate. Tests indicated that wood-frame roofs using 

FRP are 37% to 144% stronger and nearly twice as stiff compared to unstrengthened 

ones. 

 

Chen and Balaguru (2003) conducted non-linear analysis for strengthened 

timber beams using FRP. Analysis was developed using elasto-plastic behavior in 

compression and linear elastic behavior in tension for wood and linear elastic 

behavior for composites. Delayed tension fracture of wood beams when FRP sheets 

are present in the tension face, are also investigated. 

 

Nordin and Taljsten (2004) studied the hybrid beam consists of a glass fiber I-

beam with carbon fiber strengthened bottom flange and a rectangular concrete block 

in the compressive zone. It is shown that the glass fiber I-beam would take up the 

main part of the shear force. The results showed that there could be a good composite 

action between carbon, glass and concrete. 
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Lyons and Ahmed (2005) studied the effects that resin system, wood surface 

condition, moisture content, primer application, and environmental exposures have on 

bond strength and durability. It is shown that there is a relationship between resin type 

and wood moisture content with respect to bond strength. Application of the 

composite on a rough surface overall improves the bond strength. 

 

Theoretical analysis of wood beams either strengthened or unstrengthened 

with FRP is presented in this dissertation. The model is simplified from Bechtel and 

Norris’ theory based on Balaguru and Chen’s elasto-plastic analytical model. Details 

of the analysis and procedures will be presented in later chapters.  
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Chapter 3 

Clear Wood Flexural Model 

3.1 Introduction 

A non-linear flexural model for clear wood was introduced in Balaguru and 

Chen’s thesis in 2002 in order to predict the behavior of wood beams in bending. The 

refined stress-strain relationship proposed by Bazan (1980) and Buchanan (1990) 

described the compression behavior of wood as bilinear and is increases up to 

maximum stress and then reduces linearly until failure. The refinement might be able 

to predict the ultimate strength more accurately theoretically, but the analysis 

becomes much more complicated and more parameters are required to complete the 

analysis. More accurate than Bechtel and Norris’s model and simpler than Bazan and 

Buchanan’s model, Balaguru and Chen’s model introduced a strength model with a 

perfect plastic line started below the maximum compression strength. The plastic line 

represents a strength so called wood equivalent maximum compressive strength. This 

model will be described in detail later. 

 

This chapter will state the basic relationships between clear wood properties, 

general mechanics of loaded wood specimen. Chen’s wood flexural model will be 

presented with all the relating assumptions. 

3.2 Basic Relationships Between Wood Mechanical Properties 

3.2.1 Factors that Affect Wood Properties 
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The unique characteristics and abundance of wood made it a most popular 

natural material for building and other structural members. Wood is usually composed 

of cellulose, lignin, hemicelluloses, and minor amounts of extraneous materials 

contained in cellular structure. Different characteristics and volume of any of these 

components give wood different physical properties and mechanical properties. Wood 

always exchanges moisture and heat with surrounding environment. The amount and 

direction of the exchange were influenced by the relative humidity, temperature and 

the amount of water in wood. The moisture relationship has enormous influence on 

wood strength and performance. Besides, the age of the wood, the loading rate, the 

loading time will also affect the strength of wood. Generally, it is considered there is a 

positive linear relationship between the density and strength of wood. Tests were 

conducted on clear wood with different density in Rutgers University Engineering lab. 

The results were analyzed and can support this argumentation. The data gained and 

analyzed in this dissertation is based on tests on wood with moisture content of 

around 12%. 

 

Based on the testing and analysis results, some relationship between properties 

of clear wood can be summarized as follows:  

 

1) Wood axial modulus of elasticity varies linearly with density: Price 

(1928). 

 

2) Wood axial compression strength varies linearly with density, Wood 

Handbook (1999). 
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3) Wood axial tension strength varies linearly with density, Wood Handbook 

(1999). 

 

3.2.2 Stress-Strain Relationship of Wood 

The basic characteristic of compressive stress-strain curve can be described as 

follows: While the strain of wood is small and is in the range of 0-0.02, the 

compressive behavior of wood can be considered as linear elastic. This linear elastic 

region is followed by a stress falling branch and then a stress plateau until strain 

reaches a range of 0.2-0.8. The ending compressive strain of the plateau depends on 

the strength of different wood member. It is assumed in Chen’s model that the starting 

of the compression stress drop before the stress plateau corresponds to the 

compression failure of wood. The maximum compressive strain of the strongest wood 

is considered to be 0.05, and the maximum compressive strain of the weakest wood is 

0.1.  

 

Based on the results of many investigations on tensile behavior of wood, it is 

known that the stress-strain relationship of wood in tension performs linearly until it 

reaches the critical point. The model Chen presented is based on analysis of clear 

wood and the assumption that the tension strength from both tension test and bending 

test are the same. In fact, if the specimen is not clear wood, then its strength is always 

affected by the defects on the cross section, and the influence from the knots and 

defects is larger if the tension area is larger. It is known that the tension area is larger 

in axial tension than in bending, and that is the reason that the tension strength from 

axial tension test and bending test are different since the tension area is not the same 
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in these two types of tests. The “weakest link theory” will be used to analyze such 

differences. 

3.3 Balaguru and Chen’s Wood Flexural Model 

3.3.1 Wood Flexural Model 

Typically, linear approximation is used for the flexural design and analysis of 

wood in engineering practice. Modulus of rupture of wood is often used as wood 

bending strength. The value of the modulus of rupture is estimated with simplified 

linear elastic method while bending wood members behave non-linearly, thus the 

modulus of rupture is not a true stress and can not represent the maximum load 

bearing capacity of wood. For a clear wood specimen in bending, the compressive 

side reaches the elastic limit much earlier than the tensile side and then behaves non-

linearly. When the compression wood reaches the maximum compression stress, its 

corresponding strain increases and the stress decreases, which is shown in Figure 3.1.  

 

Figure 3.1: Clear Wood Stress-Strain Curve 

 

Different models that are trying to predict the behavior of bending wood 

specimens more accurately were reviewed in the previous chapter and the elasto-

plastic models were discussed. Neely (1898) and Bechtel and Norris’ model is shown 

in Figure 3.2. Bazan (1980) and Buchanan (1984) proposed their model based on 
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Bechtel and Norris’ model that is shown in Figure 3.3. Neely’s model ignored the 

falling part of the compressive stress and assumed the compressive stress remains 

maximum since it reaches the peak value. Bazan and Buchanan tried to include the 

falling branch of the compressive stress into the model. They proposed a bi-linear 

model and a straight declined line to represent the decreasing part of compressive 

stress. Theoretically, this model can describe the real case more effectively, but it 

makes the analysis much more complicated because more parameters were 

introduced. 

 

Figure 3.2: Neely, Bechtel and Norris Elasto-plastic Compressive Model 

 

 

Figure 3.3: Bazan and Buchanan’s Bi-linear Compressive Model 
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Trying to make the analysis both simple and accurate, Chen’s model was 

proposed, combining the advantages of both Neely’s and Bazan’s model. The new 

model remained to be elastic-plastic in compression and linear elastic in tension. The 

difference between the new model and Neely’s model is that the plastic strain in new 

model started from an introduced equivalent maximum compressive stress instead of 

the real maximum compressive stress (Figure 3.4). Equaling area A with the 

summation of area B, the location of the equivalent maximum compressive stress is 

determined. Theoretically, this is to make the compressive area under the tested curve 

equals the area under the elastic-plastic line. Chen’s model can be proved to be a 

better approximation to the actual non-linear bending behavior of clear wood in the 

following analysis. 

 

 

Figure 3.4: Wood Stress-Strain Relationship Proposed by Chen  
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3.3.2 Basic Assumptions of Chen’s Model 

The basic assumptions of the flexural model of wood beams are listed as 

follows: 

1) The behavior of clear wood beam accords with classical bending theory. 

In other words, the strain distribution is always linear across the whole 

depth of beam. Plane remains plane after loading process. 

 

2) The modulus of elasticity of wood is the same for wood in axial 

compression, axial tension and bending. 

 

3) Strength properties of wood in axial tension and compression can be 

applied to analysis of wood in bending. 

 

4) Wood in compression has elasto-plastic stress-strain relationship. The 

maximum compression strain is considered to be 0.05 for the strongest 

wood and 0.1 for the weakest wood.  

 

5) For plain wood beams, wood in tension has linear stress-strain 

relationship up to the elastic limit of wood. The failure of wood members 

is always controlled by the failure of maximum tensile fiber of the wood. 

3.4 Unstrengthened Wood with Rectangular Cross Section Analysis  

As we discussed in the previous section, the behavior of the unstrengthened 

clear wood is considered to be elastic-plastic on the compressive face and linear 

elastic on the tensile face. Balaguru and Chen’s model defined two loading stages of 

clear wood up to its failure. When loaded with small pure bending, the behavior of 
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wood beam is linearly elastic until the beam reaches the elastic compressive stress. 

This marks the ending point of the first stage of loading. The second stage starts when 

the compressive face entered the plastic range, and ends when the tension face of the 

beam achieves its elastic limit and fails. The equations derived and listed later can be 

utilized to analysis the performance of plain rectangular wood beam (Figure 3.5).  

 

 

 

 

 

 

 

Figure 3.5: Unstrengthened Rectangular Wood Section 

 

3.4.1 Stage I—Compressive Wood in Elastic Range  

The cross section of the rectangular clear wood beam is shown in Figure 3.5. 

The width of the beam is b, and the height of the beam is h. When the moment is 

small and the beam is in the elastic range, the depth of neutral axis of the beam c=h/2, 

and the moment of inertia I=bh3/12. Since the maximum compression and tension 

stress in timber fmax can be evaluated with: 

I
My

f max
max =                                                   (3.1) 

While the neutral axis is still in the middle of the section,  

2max
6
bh

Mf =                                                      (3.2) 

Neutral Axis 

h 

b 

c 

h-c 
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The modulus of rupture fr is calculated based on linear elastic assumption. If 

Mmax is the maximum moment that the section can sustain, then 

2
max6

bh
M

f r =                                                     (3.3) 

Thus, 

rfbhM ×=
6

2

max                                                (3.4) 

3.4.2 Stage II—Compressive Wood in Plastic Range  

The second stage of the loading process on a rectangular section wood beam 

was defined to start at the maximum elastic compressive stress fce and end at the 

ultimate tensile stress fte. A new parameter m was introduced to the analysis model, 

and the definition of m is: 

te

ce

f
f

m =                                                         (3.5) 

Since tece ff ≤≤0  for most cases of wood, the value of m is limited from 0 to 

1. 

The stress and strain distribution along the cross section of beam is shown in 

Figure 3.6. 

 

Figure 3.6: Stress & Strain Distribution of Rectangular Section Beam in Stage II 
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From force equilibrium equation, we have 

tecyce FFF =+                                                  (3.6) 

Which can be also presented as: 

m
fchbfmhmccbfchbm te

cece )(
2
1)()(

2
1

−=−++−                   (3.7) 

Where fce is the maximum elastic compressive stress and fte is the ultimate 

elastic tensile stress.  

Substitute Equation 3.5 into Equation 3.7, 

 tecece fchbfmhmccbfchbm )(
2
1)()(

2
1

−=−++−                    (3.8) 

 

Solving equation 3.8,  

h
m
mc ×

+
+

= 2

2

)1(
1                                              (3.9) 

Based on moment equilibrium relation of the cross section area,  

)]()(
2
1[)(

3
2)(

3
2

max chmmhmccFchmFchFM cycete −+−++−+−=      (3.10) 

which is, 
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3
2)(

2
1

max chmmhmccmhmccbfchmfchbmch
m
f

chbM cece
ce −+−+−++−−+−−=    

                                                                                                              (3.11) 

Simplified Equation 3.11, we have 

))((
2

)(
3

)(
3

222
max mcmhcmhmccbfchbmfchb

m
fM cecece −+−++−+−=                    

           (3.12) 
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Substitute Equation 3.4 into Equation 3.12, the relationships between fr and fce 

and fte can be obtained as follows: 

m
m

f
f

r

ce

−
+

=
3

1                                                 (3.13) 

and  

mm
m

f
f

r

te

×−
+

=
)3(
1                                             (3.14) 

or  

rce

rcece
te ff

ffff
−
+

=
3

)(
                                          (3.15) 

From Equation 3.13, 

rce

rce

ff
ff

m
+
−

=
3

                                              (3.16) 

Equation 3.16 shows us that the value of model parameter m is unique when 

the modulus of rupture and equivalent maximum compression strength is determined.  

3.5 The Relationship between fcu and fce 

The maximum equivalent compressive stress fce was introduced to the new 

model, and it could be determined theoretically, but sometimes it is necessary to 

obtain the value of fce without calculation so as to apply this model to further 

engineering analysis. Therefore, it is important to establish the relationship between 

fce and commonly used strength parameters. The test data of wood strength that is 

easy to obtain in real engineering practice include the parallel to grain compression 

strength fcu, the average parallel to grain tension strength fte and the modulus of 

rupture fr.  
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Ratio α is introduced to establish a relation between the parallel to grain 

compression strength fcu and the maximum equivalent compressive stress fce. It is 

assumed that: 

cuce ff ×= α                                                       (3.17) 

thus Equation 3.15 can be rewritten as: 

rce

rcecu
te ff

fff
f

−
+

=
3

)(
α                                              (3.18) 

3.6 Relationship between fr, ET, fcu, fte, α, m and fce 

 

The relationship between fcu and fce can be further expanded to relationship 

among fr, ET, fcu, fte, α, m and fce. Based on the data from 120 commercial wood 

species in Wood Handbook [1999], linear regression between fr and the modulus of 

elasticity ET, fcu and ET are performed, and the result indicate very strong correlation 

between the parameters. The linear relationships are established as follows: 

1220095.8 −= Tr Ef                                      (3.19) 

 

512065.3 += Tcu Ef                                      (3.20) 

Substitute Equation 3.17 into Equation 3.20, 

)512065.3( += Tce Ef α                                    (3.21) 

Solving Equation 3.19 and Equation 3.21,  

)10095408.0( += rce ff α                                   (3.22) 

Substitute Equation 3.22 back to Equation 3.16,  

rr

rr

ff
ffm

++
−+

=
)10095408.0(
)10095408.0(3

α
α

                                 (3.23) 
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From the equations above, if ET is known, fr, fcu can be determined, and if fr is 

known, m, fce and fte can be estimated. For a given type of clear wood, fr values can be 

obtained from handbooks or actual testing. 

3.7 α and Simplified Relationship Equations 

Equation 3.18 can be rearranged to be: 

0)3(22 =+−+ tercutercu ffffff αα                                   (3.24) 

which means that if the modulus of rupture fr, the parallel-to-grain tension 

strength fte and the parallel-to-grain compression strength fcu is known, the value of α 

can be determined. 

 

To simplify the analysis process, a linear regression analysis between α and ET 

was run, but the result indicates that there is no obvious relationship between the two 

parameters. Then the α values of all the wood species that has parallel-to-grain tensile 

strength provided in Wood Handbook are calculated. It is assumed that the mean 

value of α can be utilized in general wood species analysis. The average value of α is 

estimated to be:  

 93.0=α                                                   (3.25) 

 This α value simplifies Equation 3.22 as: 

9388397.0 += rce ff                                       (3.26) 

and Equation 3.23 to be: 

9388379.1
28165138.0

+
+

=
r

r

f
fm                                       (3.27) 

3.8 Size Effect 
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3.8.1 Introduction to Size Effect 

All the data and analysis above are based on test results of clear and defect 

free wood specimens. However, these predictions and properties cannot be applied 

directly into lumber design and analysis. This is because that lumbers, as we defined 

earlier in Chapter 1, refer to commercial quality sawn timer, usually have greater 

dimension while clear wood specimens are usually clear cut small size wood and are 

usually free of knots and defects. Knots and cross grain affect the properties of the 

specimens considerably, so the results from clear wood have to be adjusted before 

applying to lumber cases. 

 

Some of the major factors that influence the strength of lumber are concluded 

below: 

 

1) Larger size lumber tends to have lower strength than smaller size lumber. This 

is because that the probability a critical defects exists in large size lumber is 

much greater than in a small lumber, so the major flaw are statically less and 

smaller in small lumber specimens. 

 

2) In commercial lumber, species are grouped on the similarities of properties 

and appearance.  

 

3) The moisture content of lumber is also related to its size and strength. The 

strength increase of small clear wood specimen due to drying is not obvious in 

large size lumber since the drying stresses due to uneven shrinkage in large 

cross sections might counteract the increase of timber strength. 
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3.8.2 Brittle Fracture Theory and Application in Timber Analysis 

3.8.2.1 Weibull’s Distribution 

Weibull published a paper in 1951 and proposed his theory to estimate the 

strength of brittle material with statistical approach. Weibull introduced his statistical 

model and showed the theory can be validated by many tests on different kinds of 

brittle materials. He explained the strength of weak link system by exponential type 

cumulative distribution. He also illustrated that for either uniform or varying 

distributions of stress within the weak specimen, how the strength is related to the 

specimen volume. The basic idea of Weibull’s theory can be described briefly as 

follows: A brittle fractural material can be considered to be constituted with a large 

number of small elements with strength distribution statistically. While the failure 

strength of the weakest element in the specimen is reached, the whole member fails. 

Size effect is essential to such materials since the larger the volume, the greater the 

possibility of containing stressed weak elements. The brittle fracture theory was 

established for fracture material, however, Weibull’s theory has much wider 

application besides brittle solids, and this series of statistical distribution functions is 

called Weibull’s distribution or weakest-link theory.  

 

3.8.2.2 Applications of Weibull’s Distribution in Lumber Analysis 

Weibull’s distribution is widely used to brittle fracture materials. These 

materials share some common brittle fracture phenomena which lumber/timber also 

have. These major size effects are listed below. 
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1) Comparing with short members, long members fail at lower stresses at similar 

loading status. 

 

2) Comparing with members with smaller bending depth, deeper members under 

bending fail at lower stresses at similar loading status. 

 

3) Comparing with members with smaller axial tension area, members with 

larger cross section under axial tension fail at lower stresses if loading status 

are the same. 

 

4) For a specimen with given dimension, loaded members tends to have lower 

failure stress when the cross section area under tension increases.  

 

These size effects are all observed in the tests on timber, and timber can be 

treated as brittle materials and Weibull’s weakest-link theory can be applied. 

 

Buchannan (1966) first applied the theory on to the analysis of the strength of 

wood beams with different sizes. He adjusted the theory according to timber test 

results to make it fit timber study better. He found that if only the length size effect 

and depth size effect are taken into consideration, test data match statistical model 

accurately. He also claimed hat there is no size effect with varying cross-section sizes 

in axial tension tests.  

 

The parameters relating to depth effects derived in Buchanan’s theory have 

been utilized in some design codes. 
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In 1983, Buchanan further claimed that previous theory did not explain the 

relationship between axial tension strength and bending strength exactly. In order to 

predict timber strength more accurately, he proposed that the parameters be separated 

to quantify length effects, depth effect and width effect. He introduced stress-

distribution effects based on the brittle theory. Buchanan established a relationship 

between axial tension stress and bending stress so as to obtain the bending strength 

directly from in-grade axial tension results. 

  

Balaguru and Chen (2003) established a relationship between modulus of 

rupture and bending strength based on the brittle fracture theory and on the fact that at 

low strength level, the modulus of rupture and compression strength are of the same 

value. This model is developed to predict the tension stress of timber and lumber.  

 

3.8.2.3 Length Effect, Depth Effect and Stress Distribution Effect 

As we mentioned earlier, long boards fail at lower stresses comparing with 

shorter boards loaded under similar loading status. This phenomenon is called length 

effect. The weakest link theory can be used for length effect under the condition that: 

 

1) The timber under axial loading is assumed to be a chain-like material and its 

failure strength is determined by the strength of the weakest link within the 

whole length.  

 

2) The calibrated two-parameter Weibull’s distribution is utilized in calculation. 

For a timber board with infinite length, the strength is zero. 
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In-grade axial tension test results confirmed that failure of timber member 

usually occurs at single cross section. Thus for low-grade timber, the adjusted brittle 

material theory can be applied. 

 

Comparing with members with smaller bending depth, deeper members under 

bending fail at lower stresses at similar loading status. 

 

In a bending or axial tension test, deeper members tend to have lower failure 

strength than the specimens with smaller depth if the loading conditions are the same. 

This is called as depth effect. Assuming the depth effect to be a brittle fracture 

phenomenon, the theory used for length effect can be used in depth effect. The 

investigation of depth effects of timber was conducted for both bending and for axial 

tension condition.  

 

The term stress-distribution effect refers to the phenomenon that, if the cross 

section dimension is given, members with larger axial tension area fail at lower 

stresses if loading circumstances are similar comparing with members with smaller 

tension area. The stress-distribution effect is closely related to depth effect and can be 

described using the same parameters. Buchanan established the relationship between 

axial tension stress and bending stress with brittle fracture theory. Chen (2003) 

derived the relationship between modulus of rupture and bending stress with the 

weakest link theory. 
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Table 3.1: Strength Properties of Some Commercial Hardwoods Grown in the United 

States (metric), Wood Handbook (1999) 
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Table 3.2: Strength Properties of Some Commercial Hardwoods Grown in the United 

States (metric), Wood Handbook (1999), (continued) 
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Table 3.3: Strength Properties of Some Commercial Softwoods Grown in the United 

States (metric), Wood Handbook (1999) 
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Table 3.4: Strength Properties of Some Commercial Softwoods Grown in the United 

States (metric), Wood Handbook (1999), (continued)
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Table 3.5: α Calculated from Wood Test Data Based on Wood Handbook (1999) 
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Chapter 4 

Flexural Model Application and Verification 

4.1 Introduction 

This chapter deals with the application of the flexural model to lumber 

analysis. The verification of the model is also presented. Basic mechanical properties 

of lumber can be obtained from in-grade testing, and then the non-linear model of 

clear wood analysis developed can be applied to lumber analysis. The weakest link 

theory can be applied to brittle features analysis of lumber.  

 

The first part of this chapter discussed the application of the model to lumber 

analysis. An analytical procedure based on elasto-plastic behavior was also developed 

to estimate the material properties needed non-linear analysis. If other properties such 

as elastic modulus and modulus of rupture are known, they can be used in the analysis 

instead of estimated properties. The second part presented experimental verification 

of the flexural model. Experimental results were compared with theoretically 

predicted results. 

4.2 Application to Lumber Analysis 

For given wood species, with the average compression strength, the average 

tension strength and modulus of rupture, the bending strength of the wood can be 

predicted based on the strength model presented in the previous chapter. 
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4.2.1 Current Strength Model 

 

The bi-linear model proposed by Bazan and Buchanan is widely used in 

engineering application. The falling branch of the tension part in the strength model 

was adjusted to be a declined line. The basic assumptions of the current model are 

listed below: 

 

1) Plane sections are assumed to remain plane under bending stress. 

 

2) Timber behaves linear-elastically under tensile stress until it fails. 

 

3) Timber behaves non-linearly under compression stress. Its elasto-plastic 

manner can be described with Buchanan’s strength model [1999]. 

 

4) Size effects (length effects and depth effects) should be considered to adjust 

maximum attainable stresses for timber member under axial tension and axial 

compression. 

 

5) Timber in bending is subjected to stress-distribution effect. The depth of 

timber cross-section under tension should be considered to determine the 

maximum tension stress. 

 

6) Variation of elasticity modulus along the length direction of timber members 

is not considered. 
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7) Torsional or out-of-plane deformations and duration of load effects are not 

considered in the strength model. 

 

Based on the assumptions above, analysis procedure is developed. The first 

parameters to be inputted into strength model are the axial tension strength and axial 

compression strength. Taken size effects into consideration, axial tension and 

compression strengths decrease as the length or cross section of timber specimen is 

increased.  

 

Assume the depth of the tension zone hb is half of the total section depth h, 

Weibell distribution is used to predict stress-distribution effect, and then the bending 

strength can be predicted with weakest link theory. The bending strength calculated 

based on axial tension and compression strength from test results can be applied into 

the bi-linear strength model to obtain the bending capacity of the whole cross-section 

of the member. 

 

Because of the influence of the member size on beam strength, the inputted 

strength information, such as the modulus of rupture and compression strength of 

lumber, should be from members of the same size if the size effects are not to be 

considered in the analysis. In other words, the modulus of rupture and compression 

strength inputted must be based on tests of members from same grade, species and 

cross section, otherwise, the length effects, depth infects and stress-distribution effects 

have to be considered in the calculation.   
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4.2.2 Comparison of Buchanan’s Model and Balaguru and Chen’s Model 

Generally, Balaguru and Chen’s model combines the advantages of existing 

strength models and presented a simpler and accurate approach to predict timber 

strength properties and analyze lumber strength. Comparing Chen’s model with 

Buchanan’s model, some improvements are discussed below.   

 

Bending strength is very important input parameter in lumber strength 

analysis. Sometimes it is necessary to predict the bending capacity with the help of 

strength model. Axial tension, modulus of rupture and bending stress are closely 

related. In Buchanan’s model, axial tension is an essential input parameter to predict 

bending strength. As we discussed in Chapter 2, it is difficult to perform tension test 

on wood and to make a tensile connection stronger than the specimen. Introducing the 

ratio of compression strength and tension strength m, the relationship between 

modulus of rupture and bending strength was established in Balaguru and Chen’s 

model. In other words, the modulus of rupture, which is much easier to obtain 

comparing with tension strength, can be used to predict the bending strength. 

 

Another contribution of Balaguru and Chen’s model is on the calculation of 

stress-distribution effects. It is assumed that the tension zone of the cross-section of 

member is always half of the total section depth h in prediction of stress-distribution 

effect parameter in Buchanan’s model. This is just an approximation to simplify the 

calculation. The depth of the tension zone decreases when the compression side yields 

and the neutral axis moves down towards tension zone, thus this assumption may 

affect the accuracy of predicted bending strength of lumber. Contrarily, in Chen’s 
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model, the depth of the tension zone is calculated from the strength model and makes 

the parameter obtained more accurate. 

 

4.2.3 Lumber Modulus of Rupture 

Modulus of rupture is used to calculate bending stress in Balaguru and Chen’s 

strength model. At a low strength level (at about 2.5% probability of failure), the 

compression strength fc equals modulus of rupture fr, and the modulus of ruptures is 

the true bending stresses at or below this strength level. At any strength above this 

balance level, the compression zone behaves non-linearly and modulus of rupture no 

longer reflects a true stress. However, formula introduced in Chen’s model can still be 

used to predict the bending strength from the modulus of rupture for clear wood. The 

bending strength can be derived from equation 3.18 as,  

rc

rcc
b ff

fff
f

−×
+×

=
α
α

α
3

)(
                                           (4.1) 

where fb is the bending strength, fc is the compression strength and fr is the 

modulus of rupture. The value α introduced in Chen’s model is the ratio between the 

maximum equivalent compressive stress fce and the grain compression strength fcu.  

 

4.2.4 Basic Assumptions of Balaguru and Chen’s Strength Model 

Balaguru and Chen’s model presents an analytical procedure based on elasto-

plastic behavior of timber and provided a better prediction of the performance of 

strengthened beams. The model combines advantages of other elasto-plastic model 

and keeps simplicity at the same time without introducing too many new parameters. 

This strength model is elasto-plastic in timber compression. The equivalent maximum 

compressive strength is used as compression strength limit. A constant α was 
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introduced into the model so as to equal the area under stress-strain curve A and the 

area under curve B.  

   

Assumptions of Balaguru and Chen’s strength model are listed below: 

 

1) Plane section is assumed to remain plane in bending. 

 

2) Timber stressed under tension stress behaves linear-elastically until brittle 

fracture occurs at proportional elastic limit in tension, stress fte and strain εte. 

 

3) Timber stressed under compression stress behaves in a linear plastic ductile 

manner at compressive stress fce. The non-linear portion of the curve 

represents the plastic region. 

 

4) Classical bending theory including linear strain distribution across the 

thickness up to failure is still valid. 

 

5) The modulus of elasticity is the same for wood in tension, compression and 

bending. 

 

6) Wood tension strength and compression strength properties can be used 

directly in analysis of wood bending behavior. 

 

7) Timber compression strength is not subjected to size effect. 
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8) Size effects should be considered when the cross section under investigation is 

other than ASTM standards. 

 

9) Failure load occurs at the cross section under maximum moment. 

 

10) No out of plane deformation is considered in the model. 

 

11) Duration of load effects and fatigue are not considered. 

 

12) Shear failures are not considered. 

 

4.3 Experimental Procedure and Results 

The experimental procedures and results are taken from Buchanan’s (1983) 

dissertation. Only experiments and results related to bending are referred in Chen’s 

study. Test material and results are described as follows. 

 

4.3.1 Test Material 

4.3.1.1 Test Species 

Buchanan’s tests were carried out on boards from 38mm x 39mm (nominal 

2x4 inch2) spruce-pine-fir (SPF) timber from Quebec, Canada. No attempt was made 

to quantify the actual species, but all tests appeared to be predominantly spruce. 
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4.3.1.2 Moisture Content  

All boards were purchased kiln-dried. No climate controlled storage areas 

were available in testing location. All boards were kept indoors, and moisture content 

recorder at the time of testing using an electrical resistance moisture meter. 

 

Testing was carried out over a period of several months, and there were some 

minor moisture content changes during this period. The moisture content varied from 

7% to 13%, with an average value of 10: 4%. The test results are believed to be 

representative of material of this moisture content range. 

 

4.3.1.3 Sample Selection 

Two samples of 90 boards 2.9m long were selected for the long tension and 

compression tests. Two samples of 90 boards 1.9m long were selected for bending 

test. One sample was tested full length, the other was cut in two halves, one half 

length tested edgewise, the other half was tested flatwise. Ten boards 2.9m long were 

cut up for short compression tests. 

 

4.3.2 Sample Size  

4.3.2.1 Sample Sizes 

The intension for most tests was to have a sample size of 100. In practice the 

useful sample sizes were usually slightly less due to minor problems. The sample 

sizes used allow calculation of mean or median values with considerable confidence, 

and upper and lower tail values with significantly less confidence. The 5th and 95th 

percentile values have been used as indicators of behavior at the tails of the 

distribution. In Buchanan’s study, all of the data was used to fit an appropriate 
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distributional model to the data, then to calculate the percentile values from the fitted 

distribution using Weibull distribution. 

 

4.3.2.2 Weibull Distribution 

The Weibull distribution is a flexible distribution that has been widely used for 

studying the strength of wood and other materials. The Weibull's distribution is the 

most appropriate for describing material strength properties because for large sample 

sizes, it is the asymptotically exact distribution for extreme values from any initial 

distribution that is bounded in the direction of the extreme value. Material strength fits 

this description because it tends to be governed by the strength of the weakest one of a 

large number of elements, particularly when brittle failures occur. In this study, the 

Weibull distributions have been fitted to experimental data by estimating the Weibull 

parameters with maximum likelihood equations. 

 

4.3.3 Test Procedure 

4.3.3.1 Bending Tests 

Bending tests were performed on an Olsen 900kN universal testing machine. 

Load was applies mechanically at a controlled displacement rate of approximately 

30mm/min, which produced failure in about one minute. Lateral supports near the 

load points prevented lateral bucking. Maximum load was recorded from the load 

indicator attached to the machine. 

 

All the bending tests were carried out with simple supports and one-third-point 

loading. All of these tests had a span-to-depth ratio of 9.5 for 38mm x 89mm boards. 
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4.3.3.2 Axial Tension 

Tests of long boards were carried out on an axial loading machine. This 

machine has friction grips at each end with steel plates grip the board when forced 

together by a hydraulic jacking system. The specimen is stressed in tension when 

using a second hydraulic jacking system increases the length of the whole machine. 

Failure load is recorded from a carefully calibrated hydraulic fluid pressure gauge. 

The friction grips are rigidly mounted to prevent rotation about any axis. The 38mm x 

89mm boards were tested over a free length of 2.0m. 

 

The grip pressure was controlled manually throughout the tests, being 

increased gradually if the specimen began to slip in grips, with care not to cause 

excessive crushing perpendicular to the grain. The loading was at a uniform 

displacement rate controlled by the electric pump on the hydraulic jacking system. 

Failure generally occurred in about 30 seconds if on slippage in the grip.  

 

Although these test are referred to as axial tension tests, there was probably 

some bending induced in most boards due to variations in wood properties within 

each board. Any such bending has been neglected and the tension stress in the boards 

has been calculated by simply dividing the axial force by the cross section area. 

 

Short boards were also tested in axial tension to obtain information on length 

effects. The tension test machine described above was modified to accept any length 

as small as 0.9m.  
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4.3.3.3 Axial Compression 

Compression tests of long boards were performed in the same machine as the 

tension tests, with the loading jacks reverse. A system of lateral supports faced with 

teflon pads prevented lateral buckling in either direction. The lateral supports were 

located with just enough clearance for the boards to be inserted easily without 

adjustment for each board. No attempt was made to force each board into a perfectly 

straight condition so a very small amount of bending moment may have been 

presented in addition to the applied axial loan. Any such bending has been neglected. 

 

4.3.3.4 Modulus of Elasticity 

Modulus of elasticity is required for input to the strength model. Different 

methods were used to assess modulus of elasticity.  

 

• A random sample of all the boards were subjected to a static bending test, and 

the measured deflection used to calculate the modulus of elasticity.  

 

• All of the 38x39mm boards subsequently tested in tension and compression 

were subjected to flexural stiffness measurements. An average modulus of 

elasticity is calculated from the load, the deflection, and the board dimensions. 

 

4.3.4 Comparison between Experimental Results and Theoretical Analysis 

Test results were listed below and compared with theoretically predicted 

values in Table 4.1 which is completed by Balaguru Chen. Maximum compression 

strength fcu, modulus of rupture fr and axial tension ft from experiments are presented 

in column (2), (3) and (4). The values in these columns have already considered size 
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effects, and correspond to the cumulative distribution probability shown in column 

(1). 

 

α value was introduced to modify the maximum compression strengths and 

bending strengths were obtained from equation 4.1 and listed in column (5). 

 

Based on the derivation in Chapter 3, the value of m can be calculated from: 

 

rc

rc

ff
ffm

+
−

=
3

                                                    (4.2) 

and the depth ratio of tension zone hb can be obtained from: 

 

2)1(
2

m
mhb +

=                                                     (4.3) 

Based on the stress distribution parameter evaluated, the predicted axial tension 

strength ft can be calculated and the values are listed in column (8) of Table 4.1. The 

differences of the ft values from experiments and from theoretical prediction were listed in 

column (9) of Table 4.1and were found to be reasonably small for design and analysis 

application.  
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Table 4.1: Comparison between Experimental and Theoretical Results 
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Chapter 5 

Strength Model for Reinforced Timber Beam 

 

5.1 Introduction 

In order to reinforce timber beams, materials that can provide strength and are 

at the same time corrosion-resistant, rot-proof, thermally insulating, dielectric and 

nonmagnetic are obviously desirable. Composite material, which is light, and 

corrosion resistant, can be easily utilized without an obvious increase of the dead 

load.  

 

In most cases, Fiber Reinforced Polymers (FRP) has excellent potential for 

improving the strength and stiffness, and has been applied to construction and 

rehabilitation of structure of different type. To take full advantage of elasto-plastic 

behavior of timber, composite materials can be applied to both tension and 

compression sides as a substitute of the reinforcement for timber beams. A strength 

model of FRP strengthened timber beam is presented in this chapter. The model is 

based on the timber strength model we constructed in previous chapters.  

 

5.2 An Overview of FRP Strengthened Timber Beam 

From available experimental results conducted for both side strengthened 

timber beam, it was shown that the existence of the composite layer, when applied to 

the compression and tension zone of the timber, improves the behavior of the timber 

evidently. Composite can support high failure stress, and is not easy to break. Since 
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the composite is more ductile than timber and has much higher strength resistance, it 

arrests cracks and confines the local rupture so as to help the timber part to behave 

better and support higher load. The composite reinforcement helps to stabilize the 

timber core. In such case, the best of composite and timber is made.  

 

This also indicates that FRP material reduces the effect of natural or man-

made defects in wood. Because of unpredictable characteristics of checks and knots, 

such as size, location and distribution, the strength of timber was affected obviously. 

During the process of timber beam analysis, the strength of clear wood has to be 

deducted by a certain safety factor. But with the confinement and support of 

composite, the influence of defects, orientation of grain and damages became 

insignificant. Based on this fact, this dissertation introduced an assumption for the 

composite strengthened timber beam, which is, the clear wood strength properties can 

be applied to the strengthened beam directly without strength deduction.  

 

Past experiments investigated the use of carbon and glass fiber reinforcement 

of the timber beams, and the conclusion is that they cooperate effectively to sustain 

higher compression/tension stress and bending moment, and can be utilized to repair 

and retrofit in different structures, from houses and bridges to furniture, from 

laminated tennis racquets to skis. However, previous study seem to be underestimated 

the action of the composites thus underestimated the strength capacity of the whole 

beam. An analytical procedure based on the elasto-plastic behavior of timber 

presented in Chapter 3 has been extended to fit the use of FRP strengthened timber 

beams. The new model offers a reasonable prediction and fits nicely with the 

experimental data.  
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5.3 Strength Model for Beams Strengthened with Composites 

Although wood behavior is nonlinear and very complicated, it has been 

simplified to linear elastic model for centuries in most of design practice and 

structural analysis. The simple model received quite reasonable results. Assume 

design and analysis is based on 5th percentile, the modulus of rupture is very close to 

the compressive strength, hence is very close to the true bending strength of timber, 

thus the model which simplifies timber behavior to be linear can give satisfactory 

results. But because of the strengthening of FRP on both sides of the timber beam, the 

more accurate nonlinear model becomes a necessity to provide more reasonable 

description and predictions of strength and deformation. 

 

Figure 5.1: Three Loading Stages of the FRP Strengthened Timber Beam 

 

Basically, three loading stages were introduced to analyze FRP strengthened 

timber beam. When load is small, before the timber reaches its compression yield 

value, both timber and composite behaves linearly, and all the assumptions and 

methods that are used before can be applied to analysis. This stage ends when the 

timber exceeds its compressive yielding strength, and then the second stage starts. The 
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compressive fiber of wood behaves plastically in the second stage, and the tensile 

fiber remains elastic. The second stage ends when the extreme tension fiber reaches 

its elastic limit. In the third stage, compression fiber is in plastic state, the stress of 

tension fiber is falling down linearly, but the composite materials on both tension and 

compression sides remain linearly elastic. The third stage ends with the failure of FRP 

material, either on the compression side or the tension side. Generally, because of the 

high strength of composite material, failure of the composite in the first stage is 

uncommon. The ultimate strength of the strengthened beam varies with different type 

of timber and amount of composite reinforcement. Some times the beams fail in the 

second stage and sometimes they fail in the third stage. The strength model presented 

here used a rectangular cross section timber as an example, and FRP reinforcement is 

at both faces of the beam. The forces, stress and strain, and moment equilibrium for 

each stage was analyzed and the depth of neutral axis and moment capacity are 

calculated. The equations to obtain the curvature are also listed. Appropriate 

modifications can be made to fit beams with different geometry.    

 

5.3.1 Stage 1. Timber and Composite in Linear Elastic Range. 

In the analysis of FRP material, the thickness of the composite is very small 

comparing with the thickness of the timber and is ignored when calculating the lever 

arm of the composite. The contribution of composite can be adjusted to match with 

the calculation of timber. The area Ac of the cross section of FRP can be substituted 

with equivalent area AT, and as in the case of reinforced concrete beams (ACI code), 

can be assumed to be equal to n AT. Assuming the bonding between face material and 

wood is perfect, 

T

C

E
En =                                                        (5.1) 
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where 

EC =the modulus of elasticity of composite  

ET = the modulus of timber 

 

The depth of neutral axis for elastic behavior c can be compute using the first 

moment of area, 
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=+××                      (5.2) 

Solve for this equation,  
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Once the depth of neutral axis c is known, the moment of inertia, I can be 

computed 

using the equation: 
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Using classical bending theory, maximum compressive stress in timber can be 

estimated as: 

c
I

Mf c =                                                     (5.5)  

The maximum tensile stress in wood  
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The stress in compression composite, 

c
I

MnfCc =                                                 (5.7)             

and the stress in tension composite, 
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The maximum moment that can be reached in this stage is controlled by the 

elastic limit of extreme compressive timber fiber.  

c
IE

c
IfM ceTce

I
ε

==max,                                    (5.9) 

where εce is the compressive elastic limit of timber. 

 

5.3.2 Stage 2. Strain in Extreme Compression Fiber Exceeded Elastic Limit 

In the second stage the compression zone timber behaves elasto-plastically, 

and the load-deflection behavior becomes nonlinear, Figure 5.1. Equations are derived 

to obtain the curvature and the corresponding the moment capacity when the extreme 

tension fiber reaches its tensile elastic limit.  

 

The depth of neutral axis, c can be computed using the force equilibrium and 

strain compatibility.  

CttecpceCc FFFFF +=++                                       (5.10) 

where 
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teCCtCt EAF ε=                                              (5.15) 

Equating tension and compression forces, the depth of neutral axis is: 
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The maximum moment for this stage, can be computed using  
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The corresponding curvature 

ch
te
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ε                                                    (5.18) 

 

This point in moment-curvature relationship corresponds to the end point of 

the second stage. The variation of moment curvature between beginning and ending 

of this stage is assumed to be linear. 

 

The timber exhibits a short plastic zone in tension. Equations similar to 5.8 

and 5.10 can be derived when the extreme tension fiber reaches the fracture strain of 

εtu. Since the difference between yield and fracture strains are normally less than 5%, 

the computations for this strain condition are not warranted. 

 

5.3.3 Stage 3. Strain in Extreme Tension Fiber is Greater than Elastic Limit 
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In the case of unstrengthened timber beams, it is assumed that the moment 

corresponding to the descending part of the curve of tension stress is not taken into 

account because the lever arm will start to decrease with larger and larger curvature. 

The maximum moment capacity is reached when the extreme tension fiber reaches the 

elastic limit fte unless there is a plastic region. This is no more the case in FRP 

strengthened beams. Since the fiber composite can support increasing tension stress as 

the curvature increases, the contribution of descending part of the tension stress-strain 

curve of timber also contributes to increase in moment capacity. Moreover, the 

existence of composite allows for much steadier decrease in tension force after the 

peak strain because the composite confines the occurrence of large splinters and 

absorbs small losses of forces due to controlled splintering or splitting of timber. 

 

 

 

 

 

 

 

 

Figure 5.2: Stress-strain Relationship for Strengthened Timber Beam 

 

Based on the fact that the descending part contributes to the strength partially, 

a linear descending stress-strain relationship is assumed for post-peak tensile stress 

region of timber in Balaguru and Chen’s model as shown in Figure 5.2. Here again, 
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since the failure of timber with lower strengths are more ductile than stronger timbers, 

fracture strain εtu is assumed to vary from 1.0 εte to 2.0 εte, which is: 

tetu εβε ×=                                            (5.19) 

 

where 

β = 1.0 for strongest timber  

β = 2.0 for the weakest timber. 

Based on this assumption, in failure analysis presented: 

• The behavior of timber in compression is elasto-plastic. 

• The behavior of timber in tension is linear both in ascending and descending 

branches of the stress-strain curve. 

• The behavior of composite used for both compression strengthening and 

tension strengthened is linearly elastic up to peak and has no post-peak 

strength. 

 

In addition, the failure is assumed to occur by failure of either compressive 

composite or tensile composite, and the following sequence is suggested for the 

computation of failure moment. 

 

1) Assume failure occurs due to failure of tensile composite. 

 

2) Compute the depth of neutral axis of the beam. 

 

3) Evaluate the strain in the extreme compression fiber. 
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4) If the strain in extreme compression fiber exceeds compressive fracture strain 

for composite, recomputed neutral axis based on maximum compressive 

strain. In this case failure is initiated by crushing of compressive FRP, and the 

strain in tensile composite is less than its fracture strain. 

 

5.3.4 Depth of Neural Axis and Moment Capacity for Failure by Fracture of 

Tensile Composite 

 

Typical strain and stress distributions for failure by fracture of composite are 

shown in Figure 5.3. The ultimate tension strain for composite is defined as εCf , and 

the maximum compressive strain for composite is defined as εCc.  

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Stress and Strain Relationship of Tension Failure 
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These force components can be computed using linear strain distribution and 

material behavior of timber and composite. The forces on the beam, shown in Figure 

6.3, can be divided into six parts consisting of: 

 

• Compressive force from the composite in compression zone, FCc. 

 

• Compressive force from plastic part of the stress-strain curve of timber, Fcp. 

 

• Compressive force from the elastic part of the stress-strain curve of timber, Fce. 

 

• Tensile force from the ascending part of the stress-strain curve of timber, Fte. 

 

• Tensile force from the descending part of the stress-strain curve of timber, Ftp. 

 

• Tension force from composite in tension zone, FCt. 

 

For the force equilibrium; 
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where β is greater than or equal to 1.0 and 

εte = the tensile fracture strain of timber  

 

The equilibrium equation can be simplified as  
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Solve the equation, the depth of neutral axis c can be found as: 
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After computing the depth of neutral axis c, compute the maximum strain in 

the extreme compressive strain in composite using:  
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If this strain is less than permissible maximum compressive strain εCu, 

compute maximum moment, otherwise, recomputed the depth of neutral axis using 

equations presented in the next section.  

 

The moment capacity, Mu can be obtained by multiplying the six forces 

components by the corresponding lever arms. 
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where  

e = the distance from elastic tensile limit to the center of trapezoid area and 

can be calculated as: 
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and the curvature Ф at failure is: 

ch
Cf

u −
=Φ

ε
                                                       (5.32) 

 

5.3.5 Depth of Neutral Axis and Moment Capacity if Failure Occurs by 

Crushing of Compressive Composite 

If failure occurs by crushing of compressive composite in the compression 

zone, the maximum strain at the extreme compressive face is εCu and the strain in the 

tensile composite is less than its fracture strain εCf. Using linear strain distribution and 

similar triangles, strain in tensile composite,  
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c
ch

CuCt
−

= εε                                                    (5.33) 

 

Two cases can be identified for the failure by crushing of wood. When the 

strain in FRP composite in tension, εCt is larger than tension strain elastic limit, εte, 

there exists a trapezoid plastic range in stress-strain relationship, Figure 5.4. In case 

II, when εCt is less than εte, the tension strain is within the elastic limit of timber, no 

trapezoid plastic range in the tension side, and the stress-strain is linearly distributed, 

Figure 5.5. 

 

The two cases are discussed in the following sections separately. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Stress and Strain Relationship of Compression Failure Type I 
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Case I: εCt > εte 

 

)(
)2(

tetu

tetu
tt c

fhcf
εε
ε

−
−

=                                          (5.34) 

The equilibrium equation is: 
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where 
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Equal the tension and compression force, after simplification, the equilibrium 

is: 
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Use equilibrium, the function of the depth of neutral axis can be obtained as: 
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the maximum moment capacity is, 
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in which  

e = the distance from elastic tensile limit to the center of trapezoid area, Figure 

5.4. 
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And the corresponding curvature is: 

c
Cuε

=Φ                                                   (5.46) 

Case II: εCt < εte 

In this case, no Ftp exists, so the equilibrium equation becomes: 

CttecpceCc FFFFF +=++                                    (5.47) 
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Figure 5.5: Stress and Strain Relationship of Compression Failure Type II 

 

The expressions for FCc, FCt, Fce, Fcp and Φu are the same as shown in case I, 

and the tensile force from the ascending part of the curve, Fte is: 
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Simplifies the equilibrium equation,  
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Solve it, the depth of the neutral axis is: 
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5.4 The Analysis Procedures  

The following step-by-step procedure can be used for analyzing timber beams 

for which the material properties are available in the handbooks. If it is feasible to test 

the timber to obtain the properties experimentally, then more accurate predictions can 

be made. 

 

1) For the given type of wood, refer to the handbooks, USDA [29] or ASTM [43] 

and choose the modulus of rupture fr. 

2) Estimate the ratio of elastic limits, m with the ratio of elastic stress limits of 

timber fce and fte using equation presented in Chapter 3;  

3) Estimate the maximum failure strain of timber in compression, εcu and tension, 

εtu. Estimate the maximum failure strain of composite in compression, εCu and 

in tension, εCf. 

4) Analysis the unstrengthened beams and estimate the moment capacity. If 

defects are present, estimate the size effects and reduced moment capacity. 

Typical Defects are: grains that are not parallel to the principal stresses and 

presence of knots. 

5) Analyze the strengthened beam. Assume the timber to be clear wood in this 

case. Use the manufacturer's recommendations for the modulus and failure 

strains of high strength fibers or equivalent properties of the composites.  

 

5.5 Conclusions 

Based on the analytical procedure introduced in this chapter, some 

assumptions and conclusions could be drawn. 
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1) A non-linear approach for the behavior of timber is needed in order to predict 

the capacity of the composite strengthened timber beams. 

2) An elasto-plastic behavior assumption in the compression zone for strengthened 

timber beam is developed. The timber properties are assumed to be the same as 

clear wood. 

3) Results available in the handbook used to estimate the material properties 

needed for the non-linear model. 
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Chapter 6 

Load-Deflection Relationship of Oak Beams 

 

6.1 Introduction 

Wood is one of the oldest building materials and has been commonly used for 

thousands of years. Different timber species have different applications depends on 

the mechanical properties variations in timber. Lightweight cores, like balsa wood, are 

widely used in sandwich panels. They have high strength due to their light core 

material and high strength facing material while providing high thermal insulation. 

Comparing with the lightweight woods, hardwoods, like oak and lignum vitae, are 

extremely hard and offer high resistance to abrasion.  

Many of these mechanical properties are highly dependent upon one common 

factor, the density of the wood. In fact, the density of a wood specimen is one of the 

most reliable indicators of its strength. Some properties, such as end-wise 

compressive strength and bending stiffness, varies with the density. Flexural strength 

changes slightly more rapidly than the density, while toughness and shock absorption 

ability varies almost as the square of density. Therefore, one piece of wood, which has 

twice the density of a second piece of the same species, would be expected to have 

double the bending stiffness and endwise compressive strength, about two and a half 

times the flexural strength, and about three and a half times the toughness of the 

second piece (Garratt, 1931). 

In this chapter, composite reinforced beams with oak cores are studied both 

experimentally and theoretically. The flexural strength, load—deflection relationship 
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is evaluated. A brief comparison of the behavior is also made between oak and balsa 

beam.   

6.2 Experimental Results for Reinforced Beams Utilizing Oak Wood Cores 

6.2.1 Experimental Investigation 

    The experimental study of oak beams were conducted by James Giancaspro.  

For all samples, the inorganic matrix was used to bond the reinforcement to the oak 

wood core.  The samples were categorized into one of seven sets based upon the core 

type and whether the beam was strengthened or unstrengthened. The primary 

variables investigated in this study were: 

 

1) Span length – 457mm (18 in) 

2) Beam width-64mm or 76mm (2.5 or 3.0 in)  

3) Density of core material –560 to 826kg/m3 

4) Core thickness – four depths of 19mm 25mm (¾ in or 1 in.) 

5) Type of reinforcement – 12k high modulus carbon tows (“12k HMC Tows”), 

woven carbon fabric with glass in the fill direction made using 3k tows (“3k 

Woven C&G”), unidirectional carbon tape made using 3k tows (“3k Uni C”), 

and 2k alkali-resistant glass tows (“AR-glass Roving”). The area of 

reinforcement for each 12k high modulus carbon tow is 1.14mm2.  The areas of 

reinforcement per unit width for the 3k woven carbon and glass fabric and the 

3k unidirectional carbon tape are 0.72 and 0.96mm2/cm, respectively. 

 

6) Amount of reinforcement – between zero and four carbon tows; one or two 

woven carbon tapes; one or two unidirectional carbon tapes; zero, four, or eight 

AR-Glass tows 
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7) Location of reinforcement – only on the tension side or on both the tension and 

compression sides 

 

The sample designations and the details of the control samples are presented in 

Table 6.1and Table 6.2 presents the flexure test parameters. The strengthened oak 

specimens are presented in Tables 6.3. For each designation, two or three identical 

beams were prepared and tested in flexure, resulting in a total of 60 beams. The four 

types of sample thickness were chosen to cover diverse practical applications and to 

adjust the shear stresses at the interface. 

    

6.2.2 Specimen Preparation 

All oak cores were dimensioned and weighed to determine the densities in 

accordance with ASTM C271 (American Society for Testing and Materials, 2001).  

The oak core densities ranged from 560 to 826kg/m3 (35 to 52lbs/ft3). The surface of 

the oak was extremely hard and could not be abraded to improve the bonding between 

the core and reinforcing composite material. The reinforcement was hand-

impregnated with matrix and placed on the core.  The samples were allowed to cure in 

open air at approximately 21°C for 3 weeks. 

 

6.2.3 Test Method 

The flexure tests were conducted over a simply supported span in accordance 

with ASTM C393 (American Society for Testing and Materials, 1999). The four-point 

flexure test setup is shown in Figure 6.1. The span length is 445mm (18in).  This 

yielded span-to-depth ratios of 18:1 and 76:1.  An MTS Sintech 10/GL was used to 

test the beams under deflection control at a mid-span deflection speed of 4mm/min for 
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the oak.  Using these test speeds, each sample was tested to failure in approximately 6 

minutes.  Load and deflection readings were taken and the failure mode was recorded. 

 

6.2.4 Test Results 

The typical load-deflection responses for the oak beams as well as moment 

capacity, toughness (energy), and stiffness (flexural rigidity) are presented in Figures 

6.2 through 6.7. Figure 6.2 presents the flexural response of plain oak beams with 

varying densities. Figures 6.3, 7.4, and 6.5 present the results for oak beams 

strengthened with 12k HMC Tows, 3k Unidirectional Carbon tapes, and 3k Woven 

C&G Tapes. Figure 6.6 compares the effect of carbon reinforcement type and Figure 

6.7 presents the flexural response of oak beams strengthened with AR-Glass Tows. In 

these figures, “T” and “C” denote the location of the reinforcement, namely on the 

tension or compression face, respectively. The designation “T, C” indicates that 

reinforcement is placed on both tension and compression faces. 

 

The flexural strength of plain beams was determined using basic strength of 

material analysis. For a beam with a rectangular cross-section of width, b, and depth, 

h, the flexural strength, 

62bh
M

Z
M

f ==σ                                          (6.1) 

Where M is the maximum bending moment at mid-span and Z is the section 

modulus. The flexural strengths for the control beams are tabulated in Table 6.2, 

while Figures 6.8, 6.9, and 6.10 present flexural strength versus density for plain 

balsa, plain oak, and all beams, respectively. To compare the beams strengthened with 

reinforcement to the control beams, an “apparent” flexural strength was calculated for 
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each strengthened beam using the previous formulas. These flexural strengths are 

presented in Tables 6.3 for the oak beams. 

 

To study the effect of beam density on moment capacity, the moments were 

standardized to account for varying cross-sectional dimensions, 

2bh
M

M iU
i =                                             (6.2) 

Where iM  is the standardized maximum flexural moment capacity of sample i 

and iUM  is the maximum flexural moment obtained directly from test results 

(unstandardized). Similarly, the mid-span deflection at maximum load was 

standardized for varying dimensions and span lengths using,  

33Lbh
iU

i
δ

δ =                                             (6.3)  

Where iδ  = Standardized deflection at maximum load for sample i, iUδ  is the 

midspan deflection at maximum load obtained directly from test results 

(unstandardized) and L is the span length. 

 

To measure the relative performance of the strengthened beams with respect to 

the control beams, the percent increase in moment capacity was calculated. This 

moment capacity was also standardized with respect to density, 

%100−
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=
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c
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M
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ρ
ρ                           (6.4) 

Where cM is the average standardized control moment (1698 N/m2 for oak 

beam), iρ is the density of sample i, and cρ is the average density of control samples 

(688.2 kg/m3 for oak beam).   
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The coefficient of determination, R2, was used to measure the strength of a 

linear relationship between density and standardized maximum moment capacity and 

standardized deflection. For each type of reinforcement configuration, a separate 

linear correlation was made, Table 6.4.  In general, R2 > 0.85 indicates a good linear 

relationship. 

The specific strength of the strengthened beams, sσ , was determined using, 

i

f
s ρ

σ
σ =                                                (6.5) 

6.2.5 Failure Pattern 

Beams reinforced on both sides can fail in different ways depending on the 

properties of the facing and core materials, the geometry of the sandwich structure, 

and the loading arrangement used to test the structure. All of the oak beams failed 

with a brittle fracture on the tensile side of the beam. The amount, type, and location 

of reinforcement do not affect the type of failure for the oak beam. The shear strength 

of the core, which is directly related to density, should have played a very important 

role in determining the failure mode. Despite the different failure modes, no 

delamination happened for any of the oak beams. This also shows that the inorganic 

reinforcement bonds well to oak wood. 

 

6.2.6 Stiffness 

The stiffness (flexural rigidity) was computed using the initially linear portion 

of the load—deflection curve. Using the initial straight-line portion of the load-

deflection curve and basic strength of materials analysis, the flexural stiffness can be 

calculated as: 
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)43(
)(48

)( 22 aLaPEI −
∆

∆
=

δ
                                   (6.6) 

Where  

EI = the equivalent flexural stiffness 

P∆ = the load increment 

δ∆ = the corresponding deflection increment 

L = span length 

a = the distance from the left (or right) point load to the left (or right) support. 

 

In general, the increase of any type of reinforcement to the oak wood core 

resulted in a significant improvement in stiffness. While the reinforcement ratio 

increased, the stiffness increased correspondingly. However, the largest stiffness for 

each set always occurred when three 2 3k Uni C tapes were applied to both sides of 

the beam. This can be illustrated in Figures 6.3 through 6.6 by computing the slope of 

the initial linear portion of the load-deflection curves.  

6.3 Theoretical Analysis of Reinforced Beams Utilizing Oak Wood Cores 

6.3.1 Background 

Theoretical analysis of oak core both-side reinforced beams was conducted 

corresponding to the experimental tests. The purpose of the theoretical analysis is to 

examine the assumptions of the model, and to find out a set of parameters of different 

timber that can be used commonly in practical applications. The parameters to be 

determined include Young’s modulus of the timber Ew, Young’s modulus of the 

reinforcing composite EC, the maximum elastic strain and the ultimate strain of 

timber.  
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6.3.2 Basic Assumptions 

To set up the analysis model of oak core both-side reinforced beams, some 

assumptions were taken in the calculation. Major assumptions are listed below. 

1) All timber cores are assumed to be clear wood. Clear wood refers to clear 

defect-free small sizes of wood, usually used in laboratory for standard 

experiments. 

2) The bond of the interfaces between the timber cores and reinforcing composite 

material is assumed to be perfect. In other word, the strain of the core and the 

composite on the interfaces always remains same. 

3) Plane section is assumed to remain plane in bending.  

4) Wood tension strength and compression strength properties can be used directly 

in analysis of wood bending behavior. 

5) Timber compression strength is not subjected to size effect. 

6) The behavior of timber core is elasto-plastic. Two loading stages for lumber are 

identified. When loads are small, the behavior of timber core is linearly elastic 

and strength of materials approach can be used in the analysis. This first stage 

terminates when the extreme compression fiber reaches equivalent maximum 

compressive strength. The second stage starts when the extreme compression 

fiber yields and ends when the extreme compression fiber reaches the plastic 

limit.  

7) In the second loading stage, the stress of each point in the compression zone 

remains unchanged until the beam fails.     
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6.3.3 Young’s Modulus Ew, Maximum Elastic Strain εce, and Ultimate Strain εcu 

of Oak Core 

To determine the basic material parameters of oak wood, such as Young’s 

modulus Ew, maximum elastic strain εce, and ultimate strain εcu, following calculation 

are based on the tests of the plain wood beams (unstrengthened). 

 

6.3.3.1 Young’s Modulus Ew, Maximum Elastic Strain εce 

From the test record shows the load ΔP and the deflection Δδ that is 

corresponding to the maximum elastic strain. Span parameters L, l, a, and depth h, 

width W of all oak beam samples are presented in Table 6.2 and Table 6.3. The 

moment of inertia I can be calculated from the dimensional parameters. Substitute all 

the parameters as well as ΔP and Δδ into equation 6.6,    

                         )43(
)(48

)( 22 aLaPEI −
∆

∆
=

δ
                              (6.6) 

the Young’s modulus Ew can be evaluated. The calculation was taken for 

every sample beam, and Ew ranges from 10.8GPa to 12.7GPa. The moment applied to 

the beam while the timber reaches its elastic strain limit is: 

apM ce ×∆=                                              (6.7) 

therefore the elastic limit strain εce of the oak beam can be calculated as 

EI
hM ce

ce 2
×

=ε                                             (6.8) 

and the elastic limit stress fce is: 

Ef cece ×= ε                                              (6.9) 
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6.3.3.2 Ultimate Strain εcu of Oak Core 

Two equations are utilized to compute the ultimate stress εcu of timber and its 

corresponding neutral axis depth c. The first equation is the maximum moment 

capacity of the cross section, and the second equation is the force equilibrium of the 

section. 

 

6.3.3.3 Maximum Moment Capacity Equation: 

For the analysis of oak beam, we assume that the beam failure happens by 

crushing of oak wood, and teC εε ≤  at failure. This is to say, during the whole loading 

period, the strain of timber in the tension zone is linearly increasing and is in the 

elastic range. No trapezoid plastic range in stress—strain relationship exists. In such 

case, from the flexural model analysis in Chapter 5, the force equilibrium:  

CttecpceCc FFFFF +=++                                     (6.10) 

where 

FCc= Compressive force from the composite in compression zone. 

Fcp =Compressive force from plastic part of the stress-strain curve of timber. 

Fce =Compressive force from the elastic part of the stress-strain curve of 

timber. 

Fte =Tensile force from the ascending part of the stress-strain curve of timber. 

FCt= Tension force from composite in tension zone. 

 

Since the calculation of wood parameter is focused on plain wood case, FCc 

and FCt equals zero. From chapter 5, 
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thus the moment of the plain wood beam equals: 
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             (6.14)  

The maximum load Pmax capacity is presented in the test result, so the 

maximum moment capacity can be calculated as:  

     apM u ×= max                                             (6.15) 

Since the sizes of the beams investigated were small, and the related 

deflections were also small comparing with their thickness, thus equation 6.15 is still 

accurate enough. Therefore, the unknown parameters in equation 6.14 are εcu and 

N.A. depth c. 

  

6.3.3.4 The Force Equilibrium Equation 

The force equilibrium equation of the section is established with numerical 

method. The beam was divided to 100 equal width strips across the thickness h, thus 

the thickness t of each strip equals: 

100
ht =                                               (6.16) 

The strip on the top is strip No.1, and the strip on the bottom of the beam is 

strip No. 100. Assume the strain at the upper most compression face is εcu, then the 

strain εi at the middle of strip i is:  
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ε                                          (6.17) 

where c is the neutral axis depth. therefore the force fi on any strip i is:  

iwi Ebtf ε×××=  if cei εε ≤      

cewi Ebtf ε×××=  if cei εε ≥                               (6.18) 

where b is the width of the oak beam. 

Based on this numerical expression, the force equilibrium equation of the 

section can be denoted as 

0)(
100

1

=∑ if                                                    (6.19) 

In equation 6.14 and 6.19, the only unknown parameters are εcu and N.A. 

depth c. Solving equation 6.14 and 6.19, the ultimate compression strain εcu of oak 

wood and its failure neutral axis depth c are determined. 

 

6.3.4 Relationship between Moment and Curvature 

To estimate the relationship between moment and curvature of the beam, the 

same numerical method was used. The only difference is that we assume the 

maximum strain in compression side to be εmax, and εmax ranges from 0.0001 to εcu 

with an increment of 0.001 each step. The equation of the strain of each strip became: 

)
2

(max titc
ci +×−=

ε
ε                                       (6.20) 

and the force fi on any strip i is still:  

iwi Ebtf ε×××=  if cei εε ≤  

cewi Ebtf ε×××=  if cei εε ≥                             (6.21) 

Since εmax is known now, use the force equilibrium equation to calculate 

neutral axis depth c of the plain beam for each εmax:  
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therefore, while the maximum compression strain is εmax, the moment on the 

section and the curvature of the plain wood beam can be expressed as: 
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For the composite strengthened case, still use the force equilibrium to compute 

the neutral axis depth c for each εmax. The force from the composite material should be 

taken into equilibrium equation:  
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where: 

ACc = composite reinforcement area in the compression side 

ACt = composite reinforcement area in the tension side 

EC =Young’s modulus of the reinforcing composite material 

 

And the moment on the section and the curvature of the strengthened beam is 

expressed as: 

c
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when the N.A. depth c of the beam is known, the curvature 

c
maxε

ψ =                                                        (6.26) 

With the assistance of computer program, a whole set of M—Ψ data can be 

calculated corresponding to different εmax from 0.0001 to εcu. Thus the relationship 

between moment and curvature of the unstrengthened and strengthened beams is 
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found. The M—Ψ relationship is linear while ceεε ≤max . When ceεε ≥max , the M—Ψ 

relationship becomes nonlinear. The relationship can be expressed as: 

)(Mf=ψ                                                      (6.27) 

  

6.3.5 Calculation of Maximum Elastic Load and Ultimate Failure Load  

 

The maximum elastic moment on the oak beam is a function of maximum 

elastic load Pce,  
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 When the compression fiber reaches its elastic limit, 

c
Mf ceε

ψ == )(                                                (6.29) 

Since ceε  and cce are known, substituting equation 6.28 into equation 6.29, the 

value of Pce is determined. Similarly, the value of ultimate load Pcu is determined by 

substituting equation 6.30 into equation 6.31. 
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6.3.6 Theoretical Analysis Result of Load—Deflection Curve 

 

 

 

 

The moment-curvature relationships calculated previously can be used to 

estimate the curvatures and deflections along the beam corresponding to a given load 

condition. A simplified loading beam is drawn above.  Point A is the left end of the 

beam, point B is the right end, and point C is at the mid-span of the oak beam. The 

deviation of point A from a tangent drawn at point C is equal to the first moment of 

area of the area under the curvature diagram between A and B taken about point A.  

∫ −=
c

a

x

x
cAC dxxx )(ψδ                                   (6.32) 

For the two point loaded beam, the deflection at mid-span can be found as: 

∫ ××=∆
L

dxx
5.0

0

ψ                                                     (6.33) 

In order to determine the deflection it is convenient to perform the integration 

numerically. Divide half span beam into 100 segments, 

)
2

()(
100 ∆

−×∆×∆×= ∑
=

ii
i

AC ψδ                               (6.34) 

Increase the load P from 0 to Pu and the load—deflection curves are drawn for 

all oak beams with different dimensions and different reinforcement. Figure 6.11 to 

figure 6.16 shows the load deflection curves for the oak beam from theoretical 

analysis. 

 

Support A Support B 

Load P 
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6.3.7 Comparison with Test Results 

The purpose to establish this flexural model established is to find out a 

theoretical model that matches well with the experimental results so that could be 

applied in design practice. Comparison was made between the load—deflection 

curves from tests and theoretical analysis. In Figure 6.17 to Figure 6.22, both test and 

analysis results were put together to present the similarity and difference.  
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Length, L l a
(mm) (mm) (mm) (MPa)

1 Balsa 457 152 153 76 5
2 Balsa 292 76 108 46 8
3 Balsa 292 76 108 46 20
4 Balsa 457 152 153 36 6
5 Balsa 292 76 108 23 7
6 Balsa 292 76 108 23 12
7 Balsa 457 152 153 24 9
8 Balsa 292 76 108 15 8
9 Balsa 457 76 191 18 8

10 Oak 457 152 153 24 80
11 Oak 457 152 153 24 121
12 Oak 457 152 153 24 146
13 Oak 457 152 153 18 92
14 Oak 457 152 153 18 91

Wood 
Type

Flexural 
StrengthSample  

ID

Flexure Test Dimensions

Span : Depth 
Ratio

 

Table 6.1: Details of Control Specimens 
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Density Depth Width 

(kg/m3) (mm) (mm) # (MPa)

47 601 25 51 2 75
48 623 25 51 4 107
49 627 25 51 2 110
50 627 25 51 1 100
51 610 25 51 2 127
52 693 19 64 2 125
53 765 19 64 2 149
54 695 19 64 4 146
55 701 19 64 1 131
56 603 19 64 1 104
57 793 19 64 2 179
58 670 19 64 1 122
59 673 19 64 1 131
60 675 19 64 2 125
61 600 25 76 4 105
62 612 25 76 8 110

* Reinforcement only on tension side

3k Woven C&G Tape *
3k Woven C&G Tape

3k Woven C&G Tape *
3k Uni C Tape *
3k Uni C Tape 
3k Uni C Tape *

3k Uni C Tape 

12k HMC Tow
12k HMC Tow

AR-Glass Tows *

12k HMC Tow

AR-Glass Tows *

3k Uni C Tape 

12k HMC Tow *

12k HMC Tow
12k HMC Tow *

Apparent Flexural 
Strength

Type

ReinforcementSample  
ID

Oak Core Properties

 

Table 6.2: Flexure Test Parameters and Strength Results for Control Specimens 

 

# #

0 1 0.04 0.04
1 1 0.09 0.00
3 3 0.00 0.01
1 1 0.96 0.06
2 2 0.05 0.05
1 1 0.86 0.32
2 2 0.41 0.11
0 0 0.97 0.09

Reinforcement Coefficient of Correlation, R 2

Compression Face Tension Face Standardized 
Max. Capacity

Standardized 
Deflection at 
Max LoadType Type

None 12k HMC Tow
12k HMC Tow 12k HMC Tow
12k HMC Tow 12k HMC Tow

3k Woven C&G Tape 3k Woven C&G Tape
3k Woven C&G Tape 3k Woven C&G Tape

3k Uni C Tape 3k Uni C Tape
3k Uni C Tape 3k Uni C Tape

Control Control  

Table 6.3: Details and Strength Results of Strengthened Oak Samples 
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Figure 6.1: Test Setup for Flexure Testing of Oak and Balsa Beams 
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Figure 6.2: Load vs. Deflection for Control Oak Beams of Varying Density 

Reinforced wood beam 
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L 
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Figure 6.3: Load vs. Deflection for Oak Beams with Core of 19mm Thick and 64mm 
Wide, Strengthened with 12k HMC Tows 
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Figure 6.4: Load vs. deflection for oak beams with core of 19mm Thick and 64mm 
Wide, strengthened with 3k Unidirectional Carbon Tapes 
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Figure 6.5: Load vs. Deflection for Oak Beams with Core 19mm Thick, 64mm Wide, 
Strengthened with 3k Woven C&G Tapes 
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Figure 6.6: Load vs. Deflection for Oak Beams of 25mm Thick and 64mm Wide  



 

 

104

 

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0 5 10 15 20 25 30
Deflection (mm)

To
ta

l L
oa

d 
(N

)  

8 AR-Glass Tows - T

4 AR-Glass Tows - T

Control

 

Figure 6.7: Load vs. Deflection for Oak Beams with a Core 25mm Thick and 76mm 
Wide, strengthened with AR-Glass Tows 
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Figure 6.8: Flexural Strength versus Density for Unstrengthened Balsa Beams 
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Figure 6.9: Flexural Strength vs. Density for Unstrengthened Oak Beams 
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Figure 6.10: Flexural Strength vs. Density for Unstrengthened Beams 
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Load-Deflection Curve From Analysis 
(12k HMC tows)
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Figure 6.11: Theoretical Computed Load Deflection Curve for Oak Beams with Core 
of 19mm Thick and 64mm Wide, Strengthened with 12k HMC Tows  
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Figure 6.12: Theoretical Computed Load Deflection Curve for Oak Beams with Core 
of 19mm Thick and 64mm Wide, Strengthened with 3k Woven C&G Tapes 
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Load Deflection Curve From Analysis
(3k Uni C tape)
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Figure 6.13: Theoretical Computed Load Deflection Curve for Oak Beams with Core 
of 19mm Thick and 64mm Wide, Strengthened with 3k Uni C Tapes 
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Figure 6.14: Theoretical Computed Load Deflection Curve for Oak Beams with Core 
of 25mm Thick and 64mm Wide, Strengthened with 12k HMC Tows 
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Load-Deflection Curve From Analysis
 (3k Uni C tapes)
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Figure 6.15: Theoretical Computed Load Deflection Curve for Oak Beams with Core 
of 25mm Thick and 64mm Wide, Strengthened with 3k Uni C Tapes 
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Figure 6.16: Theoretical Computed Load Deflection Curve for Oak Beams with Core 
of 25mm Thick and 64mm Wide, strengthened with AR Glass tows 
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Load-Deflection Curve Comparison
(12k HMC tows)
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Figure 6.17: Comparison of the Load Deflection Curves for Oak Beams with Core of 
19mm Thick and 64mm Wide, Strengthened with 12k HMC Tows  
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Figure 6.18: Comparison of the Load Deflection Curves for Oak Beams with Core of 
19mm Thick and 64mm Wide, Strengthened with 3k Woven C&G Tapes 
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Load Deflection Curve Comparison
(3k Uni C tape)
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Figure 6.19: Comparison of the Load Deflection Curves for Oak Beams with Core of 
19mm Thick and 64mm Wide, Strengthened with 3k Uni C Tapes 
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Figure 6.20: Comparison of the Load Deflection Curves for Oak Beams with Core of 
25mm Thick and 64mm Wide, Strengthened with 12k HMC Tows 
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Figure 6.21: Comparison of the Load Deflection Curves for Oak Beams with Core of 
19mm Thick and 64mm Wide, Strengthened with 3k Uni C Tapes 
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Figure 6.22: Comparison of the Load Deflection Curves for Oak Beams with Core of 
19mm Thick and 64mm Wide, Strengthened with AR Glass Tows 
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Chapter 7 

Parametric Study 

7.1 Introduction 

The following parametric study deals with the influence and sensitivity of the 

material parameters. The analyzed parameters are: 

1. Modulus of elasticity of the oak wood, 

2. Maximum elastic strain of the oak wood, 

3. Ultimate strain of the timber, 

4. The amount of reinforcement, 

5. Modulus of elasticity of the composite. 

 

The parametric study tests the influence of the variation in these independent 

material variables. The relative effects that each variable have on the load—deflection 

relationship is shown by this study. Therefore, the parametric study provides an 

analysis on the accuracy of the load—deflection curve to see if there are errors in the 

estimation of the above independent parameters, and variations that occur due to the 

non0uniformity of wood within the range of interesting. 

 

7.2 Parametric Study Procedure 

The sensitivity of each of the parameters was studied based on the load—

deflection relationship model. The outline of the analysis procedure is as follows: 
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The oak wood beams are divided into seven groups based on their Young’s 

Modulus. The modulus of the oak wood varies from the weakest timber with the 

elasticity modulus of 8.75GPa to the strongest timber with the elasticity modulus of 

16.25GPa. The range of timber modulus of elasticity is based on the wood testing 

records. 

 

For each oak beam group with a specific elastic modulus, we further divided 

this group into smaller groups based on the difference of their reinforcements. The 

composite reinforcements applied to the oak beams are 12k HMC tows and 3k Uni C 

tapes. The elastic modulus of the 12 k HMC tows were 512GPa after a 20% of 

deduction while the elastic modulus of 3k Uni C tapes were taken as 180GPa after a 

10% of deduction.  

 

For the 3k Uni C tape reinforcement group, the oak beams were strengthened 

either on tension side only or both the tension and compression sides with 1 tape, 2 

tapes, 3 tapes and 4 tapes respectively. For the 12k HMC tows reinforcement group, 

the oak beams were strengthened either on tension side only or both the tension and 

compression sides with 2 tows, 4 tows, 6 tows and 8 tows respectively. The value of 

the maximum failure load and the elastic load for all these cases were evaluated so as 

to analysis the sensitivity of each independent parameter more accurately.  

 

For each selected timber group, all parameters should have their specific 

values and a corresponding maximum failure load. One of the five parameters is set to 

be varying within a certain range. For each different value of a specific independent 

parameter, a new maximum failure load of the beam could be calculated. The 
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sensitivity of each parameter is analyzed in two reinforcement types respectively, in 

other words, reinforced by 12k HMC tows and reinforced by 3k Uni C tape. The 

calculated maximum failure loads of different reinforcement amount are then 

averaged and compared with the given moment capacity based on variation of the 

parameter. 

 

The maximum failure load variation obtained from every oak beam group for 

a certain parameter was gathered to compare the sensitivity of this parameter on 

different wood strength.  

 

The calculation results are studied for all of the five parameters. 

 

The influence that one parameter (Modulus of elasticity of the oak wood, 

Maximum elastic strain of the oak wood, Ultimate strain of the timber) has on 

maximum failure load is graded into very high, high, medium, low, very low. The 

definitions are listed as follows: 

 

• Very high – above ± 8 % corresponding to ±10% change of a specific 

parameter. 

• High – less than ± 8% corresponding to ±10 % change of a specific parameter. 

• Medium – less than ± 6 % corresponding to ±10% change of a specific 

parameter. 

• Low – less than ± 4 % corresponding to ±10 % change of a specific parameter. 

• Very low – less than ± 2 % corresponding to ±10 % change of a specific 

parameter. 
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The reinforcement amount is graded into 4 levels for both 12k HMC tow and 

3k Uni C tape cases. The 4 levels for the 3k Uni C tape case are 1 tape, 2 tapes, 3 

tapes, 4 tapes, and the 4 levels for 12k HMC tow case are 2 tows, 4 tows, 6 tows and 8 

tows. To study the sensitivity of the reinforcement amount has on the ultimate failure 

load, the influence of this parameter is graded as: 

 

• Very high – above ± 8 % corresponding to one grade change of the 

reinforcement amount. 

• High – less than ± 8% corresponding to one grade change of the reinforcement 

amount. 

• Medium – less than ± 6 % corresponding to one grade change of the 

reinforcement amount. 

• Low – less than ± 4 % corresponding to one grade change of the reinforcement 

amount. 

• Very low – less than ± 2 % corresponding to one grade change of the 

reinforcement amount. 

All of the five parameters were studied and the results are listed in Figure 7.1 

through Figure 7.10. The following sections described the analyze results of each 

parameter.    

 

7.3 Modulus of Elasticity of Oak Wood 

The modulus of elasticity of timber is one of the most important parameters in 

the study of beam bending strength. Since the modulus of elasticity, tension and axial 

compression are all varying linearly with its density, it is assumed that the wood 
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compression and axial tension have a linear relationship with the modulus of 

elasticity.  

 

The sensitive analysis of modulus of elasticity is conducted based on the 

sensitivity analysis of the maximum failure load with the change in ET. The modulus 

of elasticity is set at 7 different strength level, namely between 8.75GPa for the 

weakest beam and 16.25GPa for the strongest beam. The medium strength of oak 

beam is 12.5GPa. At each modulus of elasticity level, the change of ET is set to ±10%. 

With every varied value of modulus of elasticity, a different maximum failure load 

could be calculated for all the beam groups with different maximum elastic strain, 

ultimate strain, reinforcement type and amount. Then these varied failure loads were 

averaged and compared with the standard failure load to gain the sensitivity 

percentage. The analysis results are given in Figures 7.1 and 7.2. 

 

1) 3k Uni C tape reinforcement on tension side only:  

Generally, the maximum effect on the ultimate failure load happened at the 

lower timber modulus of elasticity. For ±10% of change in ET, the maximum change 

in maximum failure load is about ±11.4% and an average change of ±8.8%, which 

means that the change of ET has very high influence on the final beam failure load 

while the beam is reinforced by the 3k Uni C tape on tension side only. 

 

2) 3k Uni C tape reinforcement on both tension and compression sides: 

The maximum effect on the ultimate failure load always happened at the lower 

timber modulus of elasticity. For ±10 % of change in ET, the maximum change in 

ultimate failure load is about ±7.8 % and an average change of ±4.0 %, which means 
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that the change of ET has medium influence on the final failure load of both side tape 

reinforced beam. 

 

3) 12k HMC tows reinforcement on tension side only: 

Generally, the maximum effect on the ultimate failure load happened at the 

lower timber modulus of elasticity. For ±10% of change in ET, the maximum change 

in maximum failure load is about ±11.4% and an average change of ±8.9%, which 

means that the change of ET has very high influence on the final beam failure load 

while the beam is reinforced by the 12k HMC tows on tension side only. 

 

4) 12k HMC tows reinforcement on both sides: 

  The maximum effect on the ultimate failure load always happened at the 

lower timber modulus of elasticity. For ±10 % of change in ET, the maximum change 

in maximum failure load is about ±7.2 % and an average change of ±4.4 %, which 

means that the change of ET has medium influence on the failure load of the beams 

that are reinforced on both sides with 12k HMC tows. 

7.4 Maximum Elastic Strain of the Timber 

The elastic strain εce can be found from the tests records. From the 

experimental results, we can calculate εce from the elastic load limit and the beam 

dimensions and the timber parameters. The modulus of elasticity of oak wood can be 

found from handbooks or experiments results.  

 

The sensitive analysis of the εce is conducted based on sensitivity of the value 

change in εce on the ultimate failure load of the oak beam. The elastic strain is set at a 

medium level of 0.004. Set a 10% of change of the value of εce, the lowest level of the 
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elastic strain is 0.0032 for the weakest beam and the highest level of εce is 0.0048 for 

the strongest beam. For each varied value of εce, a different maximum failure load 

could be calculated for all the beam groups with different modulus of elasticity, 

ultimate strain, reinforcement type and amount. The newly calculated ultimate failure 

load for all the groups is then averaged and compared with the given failure load. The 

analysis results are given in Figures 7.3 and 7.4. 

 

1) 3k Uni C tape reinforcement on tension side only:  

 

The maximum effect on the ultimate failure load happened at the lower oak 

beam elastic strain. For ±10% of change in εce, the maximum change in maximum 

failure load is about ±8.6% and an average change of ±6.5%, which means that the 

change of εce has high influence on the final beam failure load while the beam is 

reinforced by the 3k Uni C tape on tension side only. 

 

2) 3k Uni C tape reinforcement on both tension and compression sides: 

The maximum effect on the ultimate failure load always happened at the lower 

timber elastic strain. For ±10 % of change in εce, the maximum change in maximum 

failure load is about ±4.7 % and an average change of ±2.8 %, which means that the 

change of εce has low influence on the final failure load of both side tape reinforced 

beam. 

 

3) 12k HMC tows reinforcement on tension side only: 

Generally, the maximum effect on the ultimate failure load happened at the 

lower timber elastic strain. For ±10% of change in εce, the maximum change in 
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maximum failure load is about ±8.6% and an average change of ±6.4%, which means 

that the change of εce has high influence on the final beam failure load while the beam 

is reinforced by the 12k HMC tows on tension side only. 

 

4) 12k HMC tows reinforcement on both sides: 

  The maximum effect on the ultimate failure load always happened at the 

lower oak beam elastic strain. For ±10 % of change in εce, the maximum change in 

maximum failure load is about ±5.4 % and an average change of ±3.1%, which means 

that the change of εce has low influence on the failure load of the beams that are 

reinforced on both sides with 12k HMC tows. 

 

7.5 Ultimate Strain of Timber 

The ultimate strain εcu can be found from the tests records. From the 

experimental results, we can calculate εcu from the failure load and the beam 

equilibrium. The modulus of elasticity of oak wood can be found from handbooks or 

experiments results.  

 

The sensitive analysis of the εcu is conducted based on sensitivity of the value 

change in εcu on the ultimate failure load of the oak beam. The ultimate strain is set at 

a medium level of 0.009. Set a 10% of change of the value of εcu, the lowest level of 

the elastic strain is 0.0072 for the weakest beam and the highest level of εcu is 0.0108 

for the strongest beam. For each varied value of εcu, a different ultimate failure load 

could be calculated for all the beam groups with different modulus of elasticity, 

maximum elastic strain, reinforcement type and amount. The calculated ultimate 
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failure load for all these groups is then averaged and compared with the given failure 

load. The analysis results are given in Figures 7.5 and 7.6. 

 

1) 3k Uni C tape reinforcement on tension side only:  

 

The maximum effect on the ultimate failure load happened at the lower oak 

beam ultimate strain. For ±10% of change in εcu, the maximum change in maximum 

failure load is about ±6.6% and an average change of ±4.5%, which means that the 

change of εcu has medium influence on the final beam failure load while the beam is 

reinforced by the 3k Uni C tape on tension side only. 

 

2) 3k Uni C tape reinforcement on both tension and compression sides: 

The maximum effect on the ultimate failure load always happened at the 

lower oak beam ultimate strain. For ±10 % of change in εcu, the maximum change in 

maximum failure load is about ±9.8 % and an average change of ±7.95 %, which 

means that the change of εcu has high influence on the final failure load of both side 

tape reinforced beam. 

 

3) 12k HMC tows reinforcement on tension side only: 

Generally, the maximum effect on the ultimate failure load happened at the 

lower timber ultimate strain. For ±10% of change in εcu, the maximum change in 

maximum failure load is about ±8.8% and an average change of ±4.7%, which means 

that the change of εcu has medium influence on the final beam failure load while the 

beam is reinforced by the 12k HMC tows on tension side only. 

 



 

 

121

 

4) 12k HMC tows reinforcement on both sides: 

  The maximum effect on the ultimate failure load always happened at the 

lower timber ultimate strain. For ±10 % of change in εcu, the maximum change in 

maximum failure load is about ±8.9 % and an average change of ±7.8%, which means 

that the change of εcu has high influence on the failure load of the beams that are 

reinforced on both sides with 12k HMC tows. 

 

7.6 The Reinforcement Amount 

 
The reinforcement amount is one of the most important parameters in 

sensitivity study. To get maximum beam strength improvement with relative less 

composite material is a problem to be solved with high practical significance. 

  

The sensitive analysis of the reinforcement amount is conducted based on 

sensitivity of the grade change in reinforcement amount on the ultimate failure load of 

the oak beam. The smallest reinforcement amount is set to be 1 tape or 2 tows. Set 

one grade change of the reinforcement amount, and the maximum reinforcement 

amount is 4 tapes or 8 tows. For each varied value of reinforcement amount, a varied 

ultimate failure load could be calculated for all the beam groups with different 

modulus of elasticity, maximum elastic and ultimate strain and the reinforcement 

type. The varied maximum failure load calculated for all these groups is then 

averaged and compared with the given failure load. The analysis results are given in 

Figures 7.7 and 7.8. 

 

1) 3k Uni C tape reinforcement on tension side only:  
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The maximum effect on the ultimate failure load happened at lower 

reinforcement amount. For a grade change in reinforcement amount, the maximum 

change in maximum failure load is about ±9.7% and an average change of ±5.3%, 

which means that the change of reinforcement amount has medium influence on the 

final beam failure load while the beam is reinforced by the 3k Uni C tape on tension 

side only. 

 

2) 3k Uni C tape reinforcement on both tension and compression sides: 

The maximum effect on the ultimate failure load always happened at lower 

reinforcement amount. For ±10 % of change in reinforcement amount, the maximum 

change in maximum failure load is about ±51.0 % and an average change of ±32.1 %, 

which means that the change of reinforcement amount has very high influence on the 

final failure load of both side tape reinforced beam. 

 

3) 12k HMC tows reinforcement on tension side only: 

Generally, the maximum effect on the ultimate failure load happened at lower 

reinforcement amount. For ±10% of change in reinforcement amount, the maximum 

change in maximum failure load is about ±9.5% and an average change of ±5.2%, 

which means that the change of reinforcement amount has medium influence on the 

final beam failure load while the beam is reinforced by the 12k HMC tows on tension 

side only. 

 

4) 12k HMC tows reinforcement on both sides: 

  The maximum effect on the ultimate failure load always happened at lower 

reinforcement amount. For ±10 % of change in reinforcement amount, the maximum 
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change in maximum failure load is about ±47.0 % and an average change of ±24.3%, 

which means that the change of reinforcement amount has high influence on the 

failure load of the beams that are reinforced on both sides with 12k HMC tows. 

  

7.7 Modulus of Elasticity of Composite 

The sensitive analysis of the modulus of elasticity of the composite is 

conducted based on sensitivity of the change in modulus of elasticity of the composite 

on the ultimate failure load of the oak beam. The smaller modulus of elasticity of the 

composite is 180GPa for 3k Uni C tapes and the larger modulus of elasticity of the 

composite is 512GPa for 12k HMC tows. For different value of EC, a varied ultimate 

failure load could be calculated for all the beam groups with different modulus of 

elasticity of timber, maximum elastic and ultimate strain and the reinforcement 

amount. The varied maximum failure load calculated for all these groups is then 

averaged and compared with the given failure load. The comparisons are between 1 

tape case and 2 tows case, 2 tapes case and 4 tows case, 3 tapes case and 6 tows case, 

4 tapes case and 8 tows case. The analysis results are given in Figures 7.9 and 7.10. 

 

1) Reinforcement on tension side only:  

 

The maximum change in maximum failure load is about ±66.7% and an 

average change of ±21.1%, which means that the change of reinforcement modulus 

has very high influence on the final beam failure load while the beam is reinforced by 

composite material on tension side only. 

 

2) Reinforcement on both tension and compression sides: 
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The maximum change in ultimate failure load is about ±69.7.0 % and an 

average change of ±50.0 %, which means that the change of reinforcement material 

has very high influence on the final failure load of beam that is reinforced on both 

sides. 
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Figure 7.1: Sensitivity Analysis of ET, εce = 0.0032, εcu =0.0108,  
Two Tapes on Tension Side Only 
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Figure 7.2: Sensitivity Analysis of ET, εce = 0.0032, εcu =0.0108,  
One Tape on Both Sides 
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Figure 7.3: Sensitivity Analysis of εce, ET =12.5GPa, εcu =0.009,  
Two Tapes on Tension Side Only 
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Figure 7.4: Sensitivity Analysis of εce, ET =12.5GPa, εcu =0.009,  
Two Tapes on Each Sides 
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Figure 7.5: Sensitivity Analysis of εcu, ET =12.5GPa, εce = 0.004, 
3 Tapes on Tension Side Only 
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Figure 7.6: Sensitivity Analysis of εcu, ET =12.5GPa, εce = 0.004, 
Four Tapes on Both Sides. 
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Figure 7.7: Sensitivity Analysis of Reinforcement Amount, εce = 0.0032,  
εcu =0.0108, Tape on One Side Only 
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Figure 7.8: Sensitivity Analysis of Reinforcement Amount, εce = 0.0032, εcu =0.0108, 
Tape on Both Sides 

 



 

 

129

 

 

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4

Amount of reinforcement applied

F
a
i
l
u
r
e
 
l
o
a
d
/
m
m
2
 
(
N
/
m
m
2
)

Tape on tension side only

Tows on tension side  

 
Figure 7.9: Sensitivity Analysis of Reinforcement Modulus, εce = 0.004, εcu =0.009,  

ET =11.25GPa, Reinforced on One Side Only 
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Figure 7.10: Sensitivity Analysis of Reinforcement Modulus, εce = 0.004, εcu =0.009,  
ET =11.25GPa, Reinforced on Both Sides 
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Chapter 8 

Load-Deflection Relationship of Balsa Beam 

8.1 Introduction 

Sandwich construction has a number of advantages. Core materials range from 

natural species to engineered honeycomb or foam structures. The load-deflection 

relationship of oak beams is studied in chapter 6. Comparing with wood species with 

higher density, balsa wood is among the lightest and fastest growing hardwoods. End 

grain balsa wood is used world wide by major GRP (Glassfibre Reinforced Plastics) 

or FRP (Fibreglass Reinforced Plastics) manufacturers in marine, rail and road 

transportation, industrial, military and aircraft applications.  

 

Lightweight core materials, like balsa wood, are widely used in sandwich 

panels. They have combined advantages of lightweight and high strength due to their 

light cores and high modulus face reinforcement. Balsa wood is one of the most 

efficient core material used to make sandwich panels. The carbon and glass fibers are 

usually combined with balsa wood to make panels in engineering applications. 

 

Balsa trees grow naturally in the humid rain forests of Central and South 

America. Its natural range extends south from Guatemala, through Central America, 

to the north and west coast of South America as far as Bolivia. Balsa needs a warm 

climate with plenty of rainfall and good drainage. For that reason, the best stands of 

balsa usually appear on the high ground between tropical rivers. Finished balsa wood, 



 

 

131

 

varies widely in weight. The general run of commercial balsa weighs between 6 and 

18 pounds per cu. ft.  

 

The advantages of balsa wood as core material include good thermal 

insulation, excellent stiffness and bond strength, and great local impact resistance. In 

fact, balsa wood is often considered the strongest wood for its weight in the world. 

Pound for pound it is stronger in some respects than pine or even oak. Balsa wood can 

increase the stiffness of structural components dramatically for little additional 

weight, and is one of the oldest and most commonly used core materials applied to 

sandwich construction. Balsa is a very "friendly" wood to work with -- so light, so 

soft, so easily worked into so many things. 

 

In this chapter, both-side reinforced wood beams with balsa cores are studied 

theoretically and the result is compared with the laboratory results. The flexural 

strength, load—deflection relationship is evaluated.  

 

8.2 Experimental Investigation of Balsa Beams 

8.2.1 Test Preparation and Test Method  

The experiments were conducted by James Giancaspro in Rutgers University 

Engineering lab. Similar with the tests for reinforced beams with oak core, all samples 

with balsa core were also categorized into one of seven sets based upon the core type 

and whether the beam was strengthened or unstrengthened. The area of reinforcement 

for each 12k high modulus carbon tow is 1.14mm2.  The areas of reinforcement per 

unit width for the 3k woven carbon and glass fabric and the 3k unidirectional carbon 

tape are 0.72mm2/cm and 0.96mm2/cm, respectively. 
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The primary variables investigated in this study were: 

 

1) Span length – 292in and 445mm (12in and 18in.) 

2) Beam width-50mm and 102mm (2in and 4in.) 

3) Density of core material –65kg/m3 to 150kg/m3 (4.1lbs/ft3 to 9.4lbs/ft3) 

4) Core thickness – four depths of 6, 13, 19, and 25mm (¼, ½, ¾, and 1 in.) 

5) Type of reinforcement – 12k high modulus (640GPa) carbon tows (“12k 

HMC Tow”), woven carbon fabric with glass in the fill direction made using 

3k tows (“3k Woven C&G”), and unidirectional carbon tape made using 3k 

tows (“3k Uni C”) 

6) Amount of reinforcement – zero, one, or three tows; one or two woven tapes; 

one or two unidirectional tapes   

7) Location of reinforcement – only on the tension side or on both the tension 

and compression sides. 

 

All balsa samples were cut from commercially available balsa wood beams 

and were inspected for defects. Wire brush and compressed air were applied to balsa 

surface to improve the bonding between the balsa core and composite surface. The 

samples were cured in open air at room temperature for 3 weeks.  

 

8.2.2 Test Setup and Results 

The flexure tests were conducted over a simply supported span in accordance 

with ASTM C393 (American society for testing and material, 1999). A schematic 

diagram of the four-point flexure test setup is presented in Figure 8.1. Reinforced 
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beams with depths of 6mm, 13mm and 19mm were tested with span of 292mm (12”), 

and the samples that have depth of 25mm were tested over a 445mm (18”) span. 

Totally 70 beams were tested, and two identical beams were used in 3 point bending 

test for each designation. Load and deflection were recorded until failure and 

experimental load-deflection curve is drawn. The failure load is also recorded. The 

results are presented from Figure 8.2 to Figure 8.6 base on James Giancaspro’s 

experiments. Moment-curvature analysis is conducted for the whole elasto-plastic 

loading procedure on beams with same dimensions. Results from theoretical analysis 

will be compared with experimental results.  

 

8.2.3 Study of Density  

In the study of the strength of wood and its density, a positive correlation is 

found. Since the density of balsa wood is very low, its strength is more sensitive to 

even very small density change. The density of each samples were measured before 

experiments. Table 8.1 listed sample details for both-side reinforced balsa beams. 

 

It could be seen in Figure 8.1 that L is the span length, and a is the distance 

from support point to the loading point. The stiffness could then be computed with the 

slope of the load-deflection. Using the initial linear portion of the load-deflection 

curve and basic information of the tested beams, the flexural stiffness is: 

aaLPEI )43(
)(48

22 −
∆

∆
=

δ
                                         (8.1) 

where EI is the equivalent flexural stiffness, ∆P is the load increment, and ∆δ is the 

corresponding deflection on the load-deflection curve. L is the span length and a 

equals the distance from the left (or right) point load to the left (or right) support. 
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The stiffness of all plain balsa beams were calculated and presented in Figure 

8.7. While Etimber is determined for every group of samples, a regression analysis was 

conducted to find out the relationship between Young’s modulus and density, and a 

regression line shown in Figure 8.8 was drawn. The stiffness has very strong 

correlation with recorded density of each beam. 

8.3 Theoretical Analysis Background 

8.3.1 Orthotropic Nature of Wood Properties 

The properties of timber were made dependent upon the direction of loading 

due to the physical structure and the cellular organization of the wood. Wood is 

considered as an orthotropic material. It has specific and independent properties in 

three mutually perpendicular axes. The longitudinal axis L, the tangential axis T, and 

the radial axis R are shown below. Generally speaking, the tangential and radial axes 

are defined as being perpendicular the grain. The properties of wood in the 

longitudinal axis are higher than those in the tangential and radial directions. 

 

 

Figure 8.1: Three Principal Axes of Wood with Respect to Grain Direction  

Values of the shear modulus GLR, GLT and GRT, also called the modulus of 

rigidity, are listed in Wood Handbook [1999] as rations with EL. The subscripts refer 

to the plane over which the shear stress and shear strain is studied. 
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8.3.2 Shear Influence on Balsa Beams 

Due to its high density and high modulus, the shear deformation of oak wood 

is very small comparing with the flexural deformation. In the deflection calculation in 

Chapter 7, shear deformation of oak beams were neglected. However, the property of 

composite beams with balsa core is largely affected by shear stress due to the low 

modulus of the core material, and the shear deformation has to be taken into 

consideration in the analysis of balsa beams. 

Based on the calculation of displacement by virtual work method, neglecting 

the axial force and torsion,  

dl
Ga

VV
dl

EI
MM

r

ujuj ∫∫ +=δ                                            (8.2) 

where δ is the total displacement, and 

Muj  is the moment due to a unit virtual force applied at the coordinate j where the 

displacement is required; 

Vuj is the shear force due to a unit virtual force applied at the coordinate j where the 

displacement is required; 

 

Referring to figure 8.1, the deflection due to shear 

dl
aG

P
a

r
shear ∫ ×

×
=

0

1
2δ                                         (8.3) 

in which G is the shear modulus, and ar is the reduced area of the cross section. For I- 

sections, ar is considered equal to the cross section area of web. Since the composite 

beams were transformed to I-section beams, ar was taken as hb × in the analysis.  

From previous section, it is known that 
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)43(
)(48

)( 22 aLaPEI −
∆

∆
=

δ
                                   (8.4) 

and δ∆  is the total deflection reading from the experiments which correspond to 

flexural deformation. In the analysis of oak beams, the shear deformation was 

ignored. When it comes to balsa beams, the shear effect has to be taken into 

consideration and the experimental results are combined with flexural deformation 

and shear deformation. To continue to use equation 8.4 for the strengthened beams 

with balsa core, δ∆  has to be corrected from the experimental readings. 

shearbalsa δδδ −=∆ .exp                                         (8.5) 

thus 

)43(
)(48

)( 22

.exp

aLaPEI
shear

−
−

∆
=

δδ
                            (8.6) 

 

8.3.3 Stiffness Analysis and Comparison 

8.3.3.1 Evaluation of the Stiffness from Experimental Results 

Based on the load-deflection curves from the experiments, test results in the 

elastic portion of the curve were chosen to carry out the stiffness analysis. 

Substituting equation 8.3 into equation 8.6, the stiffness from experimental results is: 

)43(
)(48

)()( 22

.exp

.exp aL

aG
aP

aPEI

r

−

×
×∆

−

∆
=

δ
                     (8.7) 

in which P∆  is the total load difference, ra is the reduced area of the cross section 

which equals hb × , and in this analysis, GLR is used as shear modulus. From the 

Wood Handbook, the ratio of the shear modulus and Young’s modulus EL is taken as 

0.054 EL for balsa wood.  
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8.3.3.2 Evaluation of the Stiffness Theoretically 

For plain wood beams without any reinforcement, 

12
)(

3hbEEI balsatheory
×

×=                                         (8.8) 

For plain balsa wood beams, .exp)(EI  is identical with theoryEI )( . For beams 

strengthened with 12 HMC tows and 3k Carbon & Glass woven tapes, several factors 

are taken into consideration to estimate the equivalent stiffness, namely, the 

contribution of the fiber fiberEI )( , the contribution of the matrix matrixEI )( , and the 

multi-layer strength deduction factor ω for 3k C&G woven tape case. Since the cross 

section area of the FRP reinforcement is very small comparing with the whole beam, 

the inertia of wood core is ignored. 

  

The contribution of the stiffness from 12 HMC tows or 3k C&G woven tapes 

can be expressed as: 

 

l For 12 HMC tows reinforced case, 

 fiberEI )( = 2

1

dAE Cfiber

m

i

××∑
=

                                    (8.9) 

where AC is the area of the cross section of one tow, which equals 1.14mm2. m is the 

number of tows applied to a specific tow. fiberE  is the elastic modulus of the 

composite tow and is 640GPa for the specimens in the experiments. d is the distance 

between the center of the 12 HMC tows to the neutral axis of the beam.  

 

l For 3k Carbon & Glass woven tape reinforced case, 

 fiberEI )( = 2

1

dAE Cfiber

n

i

×××∑
=

ω                               (8.10) 
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where AC for each 3k C&G woven tapes is 3.63mm2. fiberE  is 220GPa for the 

specimens in the experiments. Since the bonding between the surfaces is not perfect, 

the contribution of the second layer of tape is less than the first layer that is more 

closely bonded to the wood core. To correct the error caused by imperfect bonding, ω 

is introduced into the model as a multi-layer reinforcement deduction factor. The 

value of ω is set to be 1.0 for the 1st layer and 0.95 for the 2nd layer for 3k C&G 

woven tapes applied to the beam.  

The contribution of the stiffness from the matrix can be expressed as: 

matrixEI )( = 2

1
dAE Mmatrix

n

i
××∑

=

                            (8.11) 

matrixE  is the Young’s modulus of the matrix material, and value of matrixE  is 10.5GPa. 

MA  is the equivalent cross section area of the matrix. For 12k HMC tows, the ratio 

MA / CA =2.5, and for 3k C&G woven tapes, the ratio MA / CA =10.  

Sum up equation 8.9 through 8.12, a general equation to evaluate the stiffness 

theoretically can be expressed as: 

matrixfiberwoodtheory EIEIhbEEI )()(
12

)(
3

++
×

×=                       (8.12) 

Both experimental analysis and theoretical calculation of the equivalent 

stiffness was conducted corresponds to all tested beams. Figure 8.9 through Figure 

8.14 presents the comparison of the experimental and theoretical stiffness. The 

difference between the results ranges from 0.8% to 20%, which means accuracy of the 

theoretical model is acceptable. 

8.4 Basic Assumptions  

The basic assumption of theoretical analysis of balsa beam are as followed: 
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1) All timber cores are assumed to be clear wood.  

2) The bond of the interfaces between the timber cores and reinforcing composite 

material is assumed to be perfect. 

3) The maximum strain of FRP reinforcement is larger than failure strain of wood 

fibers, both in compression and tension sides.  

4) The behavior of timber core is elasto-plastic. Two loading stages for lumber are 

identified.   

5) In the second loading stage, the stress of each point in the compression zone 

remains unchanged until the beam fails. 

6) Considering the shear stress, the compressive balsa wood fiber yields in 

principle stress direction.    

8.5 Determination of Maximum Elastic Strain and Ultimate Failure Strain 

8.5.1 Maximum Elastic Strain εce 

Based on experimental results on plain balsa wood, while the beam reaches its 

maximum elastic limit, the moment 

 

apM ce ×∆=                                               (8.13) 

     

Where ΔP is the load applied to the beam at that moment. Then the maximum elastic 

strain can be calculated as:              

IE
hM

wood

ce
ce 2

×
=ε                                              (8.14) 
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8.5.2 Ultimate Failure Strain εcu 

Ultimate failure strain can be obtained from manufacturers. If not, it can be 

calculated from basic tests. To determine the maximum failure strain, combine the 

maximum moment capacity of the cross section equation, and the force equilibrium of 

the section as follows: 

 

)()(
3
2)1(

23
2

max chFchFFccFcFapM Ct
Cu

te
te

Cu

ce
cp

Cu

ce
ceCcu −+−++++=×=

ε
ε

ε
ε

ε
ε  

(8.15) 
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= c

chEAEAtitc
c

Ebtif CCtCCc
i

w εε
ε       

(8.16) 

in which  

FCc= Compressive force from the composite in compression zone. 

Fcp =Compressive force from plastic part of the stress-strain curve of timber. 

Fce =Compressive force from the elastic part of the stress-strain curve of timber. 

Fte =Tensile force from the ascending part of the stress-strain curve of timber. 

FCt= Tension force from composite in tension zone. 

ACc = composite reinforcement area in the compression side 

ACt = composite reinforcement area in the tension side 

EC =Young’s modulus of the reinforcing composite material 

h =the depth of the plain balsa wood beam 

c =the neutral axis depth 
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8.6 Load-deflection Relationship Analysis of Strengthened Beams with Balsa 

Core in Elastic Range 

8.6.1 Transformation of the Reinforced Beam to I-beam 

Similar with reinforced concrete beams, the face of the beam is usually 

transformed to I-section beam that has the same modulus with the core material.  

 

Facing material and core material of the strengthened beam are completely 

different. In theoretical analysis, reinforcing composite tows and tapes can be 

transformed to the flange of the I-beam. The width of the flange of the transformed I-

section beam: 

CC nwb =                                                          (8.17) 

where wC is the original width of the composite reinforcement, and n is the ratio 

between the modulus of composite material and balsa wood multiply by a reduction 

factor 0.9, which can be presented as: 

 
w

C

E
En 9.0=                                                       (8.18) 

so the area of the flange of the transformed I-section beam 

CCC hbA ×=                                                     (8.19) 

in which hC is the thickness of the composite reinforcement. The original beam 

section and the transformed beam section are presented in Figure 8.15 and Figure 

8.16. 

 

8.6.2 Elastic Strength Calculated from Experimental Results 

The moment of inertia of the I beam 
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)(2
12

2
12

2
33

11 dA
hbhbI C

cc ×+×+=                                      (8.20) 

where d is the distance between the center of the flange to the center of the I-section 

beam and 

2
1 chhd +

=                                                          (8.21) 

when the extreme compression fiber reaches its maximum compressive strength,  the 

shear stress at edge of the web can be estimated as:  

Ib
vs

=τ                                                              (8.22) 

where v is the shear force on the cross section, and s is area inertia. b is the width of 

the section. For the transformed I-section balsa beam, b is taken as the width of the 

web b1. The shear stress reaches maximum value under the loading points. If Pce is the 

maximum elastic load from test record, the shear stress on the edge of wood core can 

thus be expressed as: 

1bI
dAp Cce

×
××

=τ                                                   (8.23) 

and the normal stress 

)
2

( 1max h
I

ap
I

yM cece ×
=

×
=σ                                       (8.24) 

where ymax is the maximum distance from the extreme fiber to the centroid of the 

section and Mce is the maximum moment at elastic limit. 

 

when the shear stress and normal stress are determined, the principle stress  

        2
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The angle α is between the direction of the normal stress and the principle 

stress and can be calculated from: 

abh
dAC

××
×

==
11

42)2tan(
α
τ

α                                          (8.26) 

8.6.3 Elastic Strength Based on Theoretical Analysis 

8.6.3.1 Study of Orthotropic Nature of Balsa and Factor Determination  

Because of the orthotropic nature, wood has unique and independent 

properties in the directions of three mutually perpendicular axes. The modulus of 

balsa wood reaches the maximum value in longitudinal axis direction, and almost 

become zero along the fiber direction. It is assumed that the strength of balsa wood in 

one direction is related between this angle of this direction and the lingitudinal 

direction. Since the wood fiber fails in principle stress direction first instead of the 

normal stress direction, when the strength of the balsa wood beam is to be calculated, 

a function is introduced: 

αBeEE ×=′                                                   (8.27) 

in which E’ is the modulus in principle stress direction, α is the angle between normal 

stress and principle stress, and B is a factor to be determined from analysis. At the 

mean while, it is known that in the principle stress direction, 

ce

E
ε
σ 1=′                                                     (8.28) 

thus the factor B can be determined through: 

α
ε

σ
)( 1

cewE
Ln

B ×
=                                             (8.29) 

In the Equation 8.29 above, all the parameters are derived from James 

Giancaspro’s test results so that the value of B can be calculated corresponding to 
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each test sample. The average of B values from all experiments, which is 0.4999, is 

taken as the factor B in the introduced analysis model. 

 

8.6.3.2 Equation Derivation to Predict Maximum Elastic Load 

Increase the load on the beam up to P. The moment at the loading point 

2
)( lLpM −

=                                           (8.30) 

then the maximum normal stress and corresponding shear stress are 

)
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( 1h
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so the principle stress 
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Since the limit of the elastic strain of balsa wood is 

α

σσ
ε B

w

cece
ce eEE ×

=
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= 11                                               (8.34) 

Combine Equation 8.33 and 8.34, the maximum elastic load from analysis is: 
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Substitute all the parameters into equation 8.35 and calculate maximum elastic 

load Pce for all the beam samples with different reinforcement. Thus normal stress, 

shear stress, and principle stress can be calculated.  
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8.6.4 Comparison Between Tested Beam Deflection and Theoretical Prediction 

When the maximum elastic load is determined, the deflection corresponding to 

increasing load can be calculated based on equation 

)43(
)(48

)( 22 aLaPEI −
∆

∆
=

δ
                                       (8.36) 

When the maximum elastic load Pce is evaluated for each test group, the load-

deflection relation can also be predicted.  

)43(
)(48

)( 22 aL
EI

aP
bending −

∆
=∆δ                                    (8.37) 

Thus the total deflection of the beam is: 

shearbendingtotal δδδ +=                                            (8.38) 

in which the deflection due to shear δshear can be expressed as: 

r
shear aG

aP
×
×

=δ                                                   (8.39) 

The load-deflection relation in the elastic range is developed and compared to 

test result. Figure 8.17 through 8.20 presented the comparison of the load-deflection 

curve between test results and theoretical prediction. The load-deflection curves based 

on test results are also simplified to linear lines. The comparison shows that previous 

theory provided a comparable accurate prediction for the behavior of FRP reinforced 

balsa beams in the elastic range.  

8.7 Maximum Load Analysis of Reinforced Beams with Balsa Core  

8.7.1 Failure Mechanism  

Most of the engineering design applications of wood beams are based on 

elastic analysis, but the ultimate failure loads should also be estimate and to be 
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considered one of the factors of ultimate strength design.  In engineering, a failure 

occurs when a device or structure is no longer able to function as intended. Beam 

failures can be caused by bad engineering, poor manufacturing, loading and service 

environment, and the most common forms of material failures are fracture, corrosion, 

wear and deformation. Failure study in this dissertation is concentrated on the failure 

due to fracture crushing of wood and FRP material.  

 

The failure analysis of the FRP reinforced balsa beams contains two parts. 

First of all, the actual failure mechanism should be determined. Secondly, stress 

analysis, fracture mechanic analysis should be performed, and the failure load should 

be predicted theoretically so as to guide the design. 

 

For wood beams in bending, since the compression strength is lower than the 

tensile strength, beam failure occurs in compression side more than in tensile side. If 

the shear strength is reached earlier than the bending strength, then the beam fails due 

to shear instead of bending. For FRP material reinforced beams with balsa cores, 

since the stiffness of the beam is much smaller than beams with hard wood cores, 

their failure is more affected by shear stress. In-depth analysis and comparison of 

bending strength and shear strength is conducted and presented below.  

 

8.7.2 Shear Strength Study from Wood Handbook 

8.7.2.1 Balsa Wood Shear Strength from Wood Book 

In the shear study of balsa wood beam, shear strength parallel to grain, which 

is the ability to resist internal slipping of one part upon another alone the grain, 

influenced the failure of the beam most.  
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In wood handbook 1999, the mechanical properties of balsa wood were listed. 

For dried balsa wood with 12% moisture content, the listed shear strength parallel to 

grain is 2100KPa. This listed shear strength value is the result of averaging the shear 

strength in radial and tangential shear planes. This is to take shear in both directions 

into consideration to get more convincing result. 

 

Based on previous study of the relationship between density, stiffness and 

strength, the shear strength of the balsa wood used in James Giancaspro’s tests could 

be determined. Balsa wood samples in tests are completed dried and therefore have 

smaller density and stiffness than the balsa wood listed in the handbook. This also 

needs to be considered in calculation. 

 

8.7.2.2 Determination of the Shear Strength of the Sample 

Based on James Giancaspro’s test result of plain balsa beams, a linear 

relationship between the modulus of balsa wood (MPa) and its density (kg/m3) was 

found and has very high correlation. The regression line was drawn for Ebalsa and the 

density of the wood ρbalsa 

balsabalsaE ρ×= 65.21                                                 (8.40) 

From the handbook, we got the modulus of elasticity of the balsa wood listed 

in the handbook is 3400MPa, and its corresponding shear strength is 2100KPa. 

Comparing with the modulus and density of samples tested for our study, from 

Equation 8.40, we may estimate the density of the balsa wood tested in the handbook. 

We assumed the relationship between density and shear strength is also linear, and 

since the shear strength of balsa samples in wood handbook is known, then the shear 

strength of the samples in James Giancaspro’s tests can be approximately predicted. 
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When balsa wood reaches its elastic limit, the reinforcing FRP material sustain 

more increasing load. The resin matrix material transfers stress from FRP material to 

balsa core. The beams were studied as I-section beam. The resin transferred the shear 

stress on the flange of the I-section beam to a wider area. A new parameter r is 

introduced to adjust shear transformation.  

 

8.7.2.3 Ultimate Failure Load Prediction 

Beam failures can be caused by different factors and reasons, and the most 

common cause of beam failures is shear stress and bending stress. Comparing the 

bending strength and the shear strength of a beam, and the beams fails when the lower 

strength is reached. Therefore the failure loads were calculated based on bending 

strength and shear strength specifically. Comparing with the experimental results, the 

failure mechanism of beams can be determined.  

 

The failure load should be predicted based on bending theory, assuming the 

FRP reinforced beams with balsa core fails due to bending. The calculation was based 

on bending strength of balsa. The results shows that the predicted failure load based 

on bending strength are higher than the prediction derived from shear strength, so it 

can be determined that the beams failure are controlled by shear. Comparison of the 

maximum load the beam can sustain estimated from bending strength and shear 

strength for four point loading beams is shown in Figure 8.21. The values are 

normalized. 

 

It is shown from the experiments that balsa beam’s failure is started from the 

crushing of wood. The transformed I-section beam model is still used in the ultimate 
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load analysis. Based on the shear strength of the balsa wood in the study, assume the 

failure is caused by shear, the failure load of the beams can be calculated. To predict 

the maximum shear strength that the reinforced beam can sustain, the following 

equation is used: 

 
bI
sVQ

×

×
=τ                                                       (8.41) 

 

where s is the area inertia of the shear area, τ is shear strength, and VQ is the maximum 

failure load due to shear. For one tow reinforcement case, the adjusting parameter r is 

1.75, and for three tow reinforcement case, r equals 1.25. For the tape reinforcement 

samples, the parameter r is 1.1.  

s
rbIPu

×××
= maxτ                                                (8.42) 

and the maximum moment  

s
arbIMu

××××
= maxτ                                          (8.43) 

Assuming the balsa beams fails due to shear, the predicted failure load 

matches well with James Giancaspro’s laboratory results. The difference between 

theoretical and test failure load is larger than the maximum elastic load. This is partly 

caused by the reason that, comparing with yield strength, the failure of wood is more 

affected by defects (checks and knots), orientation of grain, and man-made damages. 

Figure 8.22 through 8.25 presented the comparison of theoretical and experimental 

results.  
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Figure 8.1: Test Setup for Flexure Testing of Reinforced Beams with Balsa Core 
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Figure 8.2: Load vs. Deflection for Balsa Beams with Core Thickness of 6mm and 
Width of 51mm (0.25” ×  2”) Reinforced with Inorganic Carbon Composite  
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Figure 8.3: Load vs. Deflection for Balsa Beams with Core Thickness of 13mm and 
Width of 51mm (0.50” ×  2”) Reinforced with Inorganic Carbon Composite  
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Figure 8.4: Load vs. Deflection for Balsa Beams with Core Thickness of 19mm and 
Width of 51mm (0.75” ×  2”) Reinforced with Inorganic Carbon Composite 
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Figure 8.5: Load vs. Deflection for Balsa Beams with Core Thickness of 25mm and 
Width of 51mm (1” ×  2”) Reinforced with Inorganic Carbon Composite  
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Figure 8.6: Load vs. Deflection for Balsa Beams with Core Thickness of 6mm and 
Width of 102mm (0.25” ×  4”) Reinforced with 3k Uni Carbon Tapes on Both Faces  
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Figure 8.7: Stiffness of Plain Balsa Beams  
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Figure 8.8: Relationship Between Young’s Modulus and the Density of Balsa Wood 
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Figure 8.9: Stiffness Analysis for Balsa Beams with Core Thickness of 6mm and 
Width of 51mm Reinforced with Inorganic Carbon Composite 
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Figure 8.10: Stiffness Analysis for Balsa Beams with Core Thickness of 13mm and 

Width of 51mm Reinforced with Inorganic Carbon Composite 
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Figure 8.11: Stiffness Analysis for Balsa Beams with Core Thickness of 19mm and 

Width of 51mm Reinforced with Inorganic Carbon Composite 
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Figure 8.12: Stiffness Analysis for Balsa Beams with Core Thickness of 25mm and 
Width of 51mm Reinforced with Inorganic Carbon Composite 
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Figure 8.13: Stiffness Analysis for Balsa Beams with Core Thickness of 6mm and 
Width of 102mm Reinforced with 3k Uni. Carbon Tapes on Both Faces 
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Figure 8.14: Stiffness Analysis for Balsa Beams with Core Thickness of 13mm and 
Width of 102mm Reinforced with 3k Uni. Carbon Tapes on Both Faces 
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Figure 8.15 Cross Section of Balsa Beam Reinforced with FRP Material 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.16 Cross Section of the Transformed I-section Beam 
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Figure 8.17: Comparison of Load-deflection Relation, 6mm Thick Beam 
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Figure 8.18: Comparison of Load-deflection Relation, 13mm Thick Beam 
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Figure 8.19: Comparison of Load-deflection Relation, 19mm Thick Beam 
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Figure 8.20: Comparison of Load-deflection Relation, 25mm Thick Beam  
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Figure 8.21: Comparison of Normalized Bending and Shear Strength of Balsa Beams  
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Figure 8.22: Comparison of Theoretical and Experimental Results Reinforced with 
High Modulus Tows, 6mm and 13mm Beams 
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Figure 8.23: Comparison of Theoretical and Experimental Results Reinforced with 
High Modulus Tows, 19mm and 25mm Beams 
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Figure 8.24: Comparison of Theoretical and Experimental Results Reinforced with 
Tapes, 6mm and 13mm Beams 
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Figure 8.25: Comparison of Theoretical and Experimental Results Reinforced with 
Tapes, 19mm and 25mm Beams  
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(kg/m3) (mm) (mm) (mm) # # (%)
B 1 79 25 51 445 0 0 0
B 2 79 25 51 445 0 1 0.09
B 3 79 25 51 445 1 1 0.18
B 4 80 25 51 445 3 3 0.53
B 5 81 25 51 445 1 1 0.57
B 6 83 25 51 445 2 2 1.13
B 7 79 19 51 292 0 0 0
B 8 80 19 51 292 0 1 0.12
B 9 77 19 51 292 1 1 0.24
B 10 76 19 51 292 3 3 0.71
B 11 78 19 51 292 1 1 0.75
B 12 77 19 51 292 2 2 1.51
B 13 68 13 51 292 0 0 0
B 14 68 13 51 292 0 1 0.18
B 15 66 13 51 292 1 1 0.35
B 16 65 13 51 292 3 3 1.06
B 17 64 13 51 292 1 1 1.13
B 18 66 13 51 292 2 2 2.26
B 19 76 6 51 292 0 0 0
B 20 75 6 51 292 0 1 0.35
B 21 75 6 51 292 1 1 0.71
B 22 75 6 51 292 3 3 2.12
B 23 72 6 51 292 1 1 2.26
B 24 73 6 51 292 2 2 4.52
B 25 109 13 102 292 0 0 0
B 26 107 13 102 292 1 1 1.13
B 27 108 13 102 292 2 2 2.27
B 28 148 6 102 292 0 0 0
B 29 145 6 102 292 1 1 2.27
B 30 141 6 102 292 2 2 4.53

B 31* 78 13 51 292 0 1 0.18
B 32* 61 13 51 292 1 1 0.35
B 33* 70 13 51 292 3 3 1.06
B 34* 61 13 51 292 1 1 1.13
B 35* 69 13 51 292 2 2 2.26

Note:  12k HMC Tow ? 12k High Modulus Carbon Tow; 3k Woven C&G ? 3k Woven Carbon & Glass; 3k 
Uni C ? 3k Unidirectional Carbon Tape; *Organic Epoxy (Epondex?

3k Woven C&G 3k Woven C&G

12k HMC Tow 12k HMC Tow
3k Woven C&G 3k Woven C&G

None 12k HMC Tow
12k HMC Tow 12k HMC Tow

Sample  
ID

Type Type

Core 
Density Depth 

Control Control
None 12k HMC Tow

12k HMC Tow 12k HMC Tow
12k HMC Tow 12k HMC Tow
3k Woven C&G 3k Woven C&G
3k Woven C&G 3k Woven C&G

Control Control
None 12k HMC Tow

12k HMC Tow 12k HMC Tow
12k HMC Tow 12k HMC Tow
3k Woven C&G 3k Woven C&G
3k Woven C&G 3k Woven C&G

Control Control
None 12k HMC Tow

12k HMC Tow 12k HMC Tow
12k HMC Tow 12k HMC Tow
3k Woven C&G 3k Woven C&G
3k Woven C&G 3k Woven C&G

Control Control
None 12k HMC Tow

12k HMC Tow 12k HMC Tow
12k HMC Tow 12k HMC Tow

Control
3k Uni C 3k Uni C

3k Woven C&G 3k Woven C&G
3k Woven C&G 3k Woven C&G

Control

3k Uni C 3k Uni C
3k Uni C 3k Uni C

3k Uni C 3k Uni C
Control Control

Reinf. 
Ratio, ρt Compression Face Tension Face

Width Span 
Length 

Reinforcement

 
 

Table 8.1: Sample Details for Balsa Sandwich Beams 
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Chapter 9 

Douglas fir beam analysis 

9.1 Introduction 

This chapter presented test and theoretical analysis results of some Douglas-fir 

beam with dimensions that can be used in real engineering applications. Previous 

calculation in Chapter 6 and Chapter 8 also presented test and analysis results of FRP 

reinforced wood beams. Those beams were designed for laboratory use thus the 

dimensions are comparably smaller than the ones used in industrial and construction, 

and the material used in chapter 6 and Chapter 8 were clear wood instead of 

commercial timber. The purpose of the study in this chapter is to apply previous 

strength model onto commercial Douglas fir beams so as to provide a comparison of 

prediction of the laboratory used perfect samples and commercial timber samples that 

has knots and defects and to prove that the proposed model can be applied to 

commercial beam design and analysis.  

 

On the other hand, FRP reinforcements were applied symmetrically on the 

tensile side and compression side in previous wood samples in Chapter 6 and Chapter 

8. The timber samples used in Chapter 9 were just reinforced on the tension side so as 

to provide experimental and theoretical data of the unsymmetrical reinforcement case.  
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The experiments on the Douglas-fir beams were described and test results 

were presented. Theoretical model is presented and analysis result based on the model 

is compared with test results. 

9.2 Experimental Settings and Results 

9.2.1 Experiments Preparation 

Douglas Fir is widely used in construction in United States, so green Douglas 

fir beams with construction grade were tested in 3-point bending over a 6 feet span. 

The experiments were conducted by M. Secaras in Rutgers University Engineering 

lab. The dimension of the beam is 1.5” x 5.5”x 6’ (38.1mm x 139.7mm x183mm). 

There were knots presented in the industrial wood beam, the rupture modulus of 

Douglas fir fr is 47,000KPa to 90,000KPa and the elasticity modulus ranges from 

13,400MPa to 8,000MPa (U.S. Forest Products, 1999).  

 

The reinforcement material used on the tension side of the beam was high 

modulus fiber tows. The tensile modulus of the carbon fiber was 640GPa and the 

tensile strength was 2,600MPa. Inorganic geo-polymer based epoxy matrix was 

applied between the carbon tow and timber beam surface. The serrated roller was then 

rolled along the top of the fibers to work the matrix into the fibers and down to the 

timber. Due to the use of this serrated roller, approximately 10% of the applied carbon 

tows are lost.  

 

There were totally 8 beams tested. Two beams that were denoted as No. 7 and 

No. 8 were used as control specimens. Beam No. 1 and No. 6 were reinforced with 4 

tows on the tension side, beam No. 2 and No. 5 were reinforced with 5 carbon tows on 

the tension side, and beam No. 3 and No. 4 were reinforced with 2 tows on the bottom 
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of the beam. All the beams were tested in 3-point bending with the loading rate of 

2.54mm/min. Simple supports were placed 6’ apart from each other on top of the W 

section and each beam was centered under the loading point. All beams except for 

No.1 were tested until failure. 

  

9.2.2 Test Results 

Maximum elastic load and ultimate load of all the beams were recorded. 

Figure 9.2 shows a bar chart for the ultimate load recorded from experiments. The 

load-deflection relationships were presented in Figure 9.3. All strengthened beams 

showed remarkable increase in strength capacity and stiffness, and there was more 

increase in strength capacity and stiffness with the increase the reinforcement ratio. 

Figure 9.4 presents the flexural stiffness of strengthened beams compared with the 

control specimens.  

 

9.2.3 Failure Type 

All the reinforced beams fail due to the rupture of the FRP tows, and due to 

the low tensile strain limit of the composite material, the tension wood fibers are still 

in elastic range when the beam fails. As mentioned before, most reinforced wood 

beams fail due to compression failure than due to tension failure while the tension 

wood has already yielded, the reason of the different failure type is partly caused by 

the unsymmetric reinforcement and the extremely low FRP strain. Figure 9.5 presents 

a photo of the failure of the beams.  

9.3 Theoretical Analysis 

The strength model is based on Balaguru and Chen’s model. The equations 

presented in previous Chapters were for wood beams reinforced with symmetric 
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reinforcement cases. Since the Douglas fir beam is just reinforced on the tension side, 

equations for the unsymmetrical strengthened beams are presented in this Chapter. 

 

9.3.1 Material Parameters of Douglas fir 

From wood handbook 1999 and the FRP material information from 

manufacturers, basic material parameters of green Douglas fir reinforcing material 

can be obtained. Simple tests can also be conducted for more accurate values. The 

Characters of FRP materials should be adjusted due to different fabrication methods 

and core material used. Some parameters used are listed below.  

MPaf ce 1.24=  

MPaf te 4.41=  

MPaET 7310=  

MPaEc 640023=  

MPaf r 78=  

00803.0=tuε  

00433.0=ceε  

01250.0=cuε  

00553.0=teε  

0081.0=Cfε  

where fce is the maximum elastic compression strain of Douglas fir beam, fte is 

the maximum elastic tension strain of Douglas fir beam. ET is the elasticity modulus 

for timber in tension and Ec is the elasticity modulus for timber in tension. fr is the 

ruputure modulus. εtu is the ultimate tension strain of Douglas Fir, εce is the maximum 

compression strain in elastic range, εcu is the ultimate compression strain, εte is the 
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maximum elastic tension strain, and εCf is the maximum failure strain of the 

strengthening carbon tows. 

 

9.3.2 Strength Model for Unsymmetrical Reinforced Beams that Fail Due to   

Fracture of Tensile FRP Material  

The tests and previous calculation both proved that the failure of Douglas fir 

beams with tension reinforcement was caused by the fracture of tensile composite 

tows. It was assumed that the behavior of composite used fro strengthening is linearly 

elastic till failure at has no post-peak strength. The stress and strain distributions for 

failure by fracture of carbon tows are shown below. Since high modulus FRP is 

applied to the surface of Douglas fir beams to increase stiffness and to control the 

deflection, and the elastic tension strain limit is as low as 0.004, the tension failure of 

Douglas fir beams are controlled by composite material. The tensile wood fiber is still 

in its elastic range when the beam fails.  The stress-strain relationship is different 

from what was shown previously.  

 

 

 

 

 

 

 

 

 

Figure 9.1:  Stress-strain Relationship in Tension Failure of Douglas Fir Beam 
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As mentioned in Chapter 5, the area of composite AC can be transformed to 

material area AT with same elastic modulus as timber core. n, the ratio between AC and 

AT, can be expressed as: 

T

C

E
En ×= 9.0                                                       (9.1) 

The factor 0.9 is due to lose of composite strength during manufacturing.  

The moment inertia I can be calculated as: 

2
33

)(
3

)(
3

chnAchbbcI C −+
−

+=                                      (9.2) 

In the elastic range, the compressive stress in timber is: 

c
I

Mf c ×=                                                                                   (9.3) 

and the tension stress in timber is: 

)( ch
I

Mf t −×=                                                  (9.4) 

and the stress in composite in tension: 

nch
I

MfC ×−×= )(                                              (9.5) 

The maximum elastic load limit of the Douglas fir beam is reached when the 

extreme compression fiber yields. Before the beams yield, the stress and strain 

diagrams were both linear. If the elastic limit of timber in compression is εce, from 

equation 9.3,  

c
IEM ceT

ce
××

=
ε

                                                    (9.6) 

If the span of the beam is l, and the beam is under 3-point loading, the 

maximum elastic load, 

4
lMP ce

ce
×

=                                                         (9.7) 
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In the failure stage, the equilibrium equation is: 

Cttecpce FFFF +=+                                                (9.8) 

in which:  

ce
Cf

ce
ce fchbF )(

2
−=

ε
ε

                                               (9.9) 
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Cf
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cp fchcbF ))(( −−=

ε
ε

                                       (9.10) 

te
Cf

te
te fchbF )(

2
−=

ε
ε                                              (9.11) 

CfCCtCt EAF ε=                                                   (9.12) 

Solve the equilibrium equation for neutral axis depth c,  
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ε
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ε
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ε
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=                    (9.13) 

When the neutral axis depth c is calculated, the ultimate failure load Mu is: 

)()(
3
2)]([

2
1)(

3
2 chFchFchcFchFM C

Cf

te
te

Cf

ce
cp

Cf

ce
ceu −+−+−++−=

ε
ε

ε
ε

ε
ε        (9.14) 

9.3.3 Load-deflection Relationship Prediction 

In order to check the accuracy and effectiveness of the prediction of the elasto-

plastic model, load-deflection curve is draw from theoretical analysis for all 

reinforced Douglas fir beams. The predicted load-deflection relationship is compared 

to the curve recorded from bending experiments.  

 

9.3.3.1 Moment and Curvature Relationship 

Since the failure is caused by tension, the analysis model is slightly different 

with the model used to predict the moment-curvature relationship in Chapter 6. In 
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order to estimate the M-ψ relationship of the Douglas fir beam, similar numerical 

method as used previously was used.  

 

Similar with the method used to calculate value of εte, the beam was divided to 

100 equal width strips along the thickness h, and the thickness t of each strip is: 

100
ht =                                                            (9.15) 

The strip on the top is strip No. 1, and the strip on the bottom of the beam is 

strip No. 100. Assuming the strain at the upper most compression face is εmax, then the 

strain εi at the middle of strip i is:  

)
2

(max titc
ci +×−=

ε
ε                                              (9.16) 

where c is the neutral axis depth. Therefore the force fi on any strip i is:  

iwi Ebtf ε×××=  if cei εε ≤  

cewi Ebtf ε×××=  if cei εε ≥                                  (9.17) 

The difference is that the failure of Douglas fir beam is controlled by 

composite tension failure, and the tension wood fiber is still in elastic rang when the 

beam fails. It is assumed that the maximum strain in tensile side to be εt, and 

corresponding extreme compression strain εmax can be retained from: 

ch
c

t −
= εε max                                                       (9.18) 

εt ranges from 0.0001 to εCf, thus εmax can be calculated correspondingly.  The force 

equilibrium equation for plain wood beams can be expressed as: 

0)
2

()(
100

1

max
100

1

=+×−×××= ∑∑
=i

w
titc

c
Ebtif ε

                     (9.19) 
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and neutral axis depth c of the beam for each εmax value can be obtained from equation 

9.29.  Therefore, while the maximum compression strain is εmax, the moment on the 

cross-section of the plain wood beam is: 

2
)(

100

1

titcifM
i

+×−×= ∑
=

                                  (9.20) 

If the beam in reinforced with FRP material, the force from the composite 

material should be taken into equilibrium equation. If the beam is only strengthened 

on the tension side, the equilibrium equation used to compute the neutral axis depth c 

for each εmax became:  

0)
2

()( max

100

1

max
100

1

=
−

++×−×××= ∑∑
= c

chEAtitc
c

Ebtif CCt
i

w ε
ε

           (9.21) 

in which: 

ACt = composite reinforcement area in the tension side 

EC =Young’s modulus of the reinforcing composite material 

And the moment on the cross section of the strengthened beam is expressed as: 

c
chEAtitcifM CCt

i

2

max

100

1

)(
2

)( −
++×−×= ∑

=

ε                         (9.22) 

when the N.A. depth c of the beam is known, the curvature 

c
maxε

ψ =                                                  (9.23) 

With the assistance of computer program, a whole set of M—Ψ data can be 

calculated corresponding to different εt from 0.0001 to εCf. Thus the relationships 

between moment and curvature of plain and strengthened beams can be found. From 

the elasto-plastic model, it is known that the M—Ψ relationship is linear while 

ceεε ≤max . When ceεε ≥max , the M—Ψ relationship becomes nonlinear. The 

relationship can be summarized as: 
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)(Mf=ψ                                                      (9.24)    

Maximum elastic strength and ultimate failure strength can also be obtained 

based on the developed M—Ψ relationship.  

The maximum elastic moment can be expressed as: 

)()(
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2

2
32

max,

chEAEchbEmhmccmcmhcbm

EchbmEA
ch

cM

teCCtteTteT

teTteCCcII

−+−++−+−+

−+
−

=

εεε

εε
    

(9.25) 

When the strain of extreme compression fiber reaches its elastic limit, 

ce

ce

c
Mf ε

ψ == )(                                                (9.26) 

Since ceε  is known and cce can be calculated from equation 9.19 and 9.21, 

substituting equation 9.25 into equation 9.26, the value of Pce is determined. Then the 

linear load-deflection curve can be determined. Similarly, the value of ultimate load 

Pcu is determined by substituting equation 9.27 into equation 9.28. 

)()(
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2)]([
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1)(
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te
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ε
ε

ε
ε

ε
ε          (9.27) 

ch
Mf t

−
==

ε
ψ )(                                               (9.28) 

and the points between Pce and Pcu on the load deflection curve can be determined 

from the same model.  

 

9.3.4 Theoretical Prediction and Comparison with Experimental Results 

To establish this flexural model established is purposed to find out a 

theoretical model that matches well with the experimental results on FRP reinforced 

wood beams so the model could be applied in real design practice. Comparison was 
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made between the load-deflection curves drawn from tests and theoretical prediction. 

Figure 9.6 through Figure 9.8 presented the comparison between theoretical 

prediction and experimental records. Figure 9.9 through figure 9.12 presents the test 

results for maximum elastic load, failure load, maximum deflection, deflection at 

failure, and predicted value for these loads and deflections from the strength model. 

The difference between lab record and theoretical analysis is also listed in the table.  

 

It could be seen from the figures comparing the test and theoretical results that 

the theoretical predictions are close to lab results. For most of the beams, the 

theoretical prediction values are higher than lab results. Because the Douglas fir 

beams made from industrial used timber, there are defects in the beams. Considering 

the influence of knots and other defects, the errors are reasonable. The beam No. 4 

and No. 5 has much larger deflection at failure comparing with the result from 

analysis model. Part of the deflection is post failure deflection. The deflection can 

also explained by the rotation and local debonding of the beam.  

 

It is shown that the analysis produces accurate predictions that match well 

with experimental results. This implies that the model can be applied to design work. 

However, the test samples in our study are not enough. More testing should be 

completed to adjust the safety factors and design process so as to establish a safe, 

reliable and accurate model which is applicable in engineering practice.   
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Figure 9.2: Ultimate Load Comparison of Green Douglas Fir Beam 

 

 
Figure 9.3: Load Deflection Relationship from Experiments 
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Figure 9.4: Flexural Stiffness of Douglas Fir Beams 

 

 

 

Figure 9.5 Photo of Tension Failure  
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Figure 9.6: Experimental Results vs. Theoretical Analysis Result, Douglas Fir Beam 
Reinforced in Tension by 2 Carbon Fiber Tows 
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Figure 9.7: Experimental Results vs. Theoretical Analysis Result, Douglas Fir Beam 
Reinforced in Tension by 4 Carbon Fiber Tows 
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Figure 9.8: Experimental Results vs. Theoretical Analysis Result, Douglas Fir Beam 
Reinforced in Tension by 4 Carbon Fiber Tows 

 

Figure 9.9: Comparison of experimental and theoretical maximum elastic load Pce  
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Figure 9.10: Comparison of Experimental and Theoretical Elastic Deflection 

 

 
Figure 9.11: Comparison of Experimental and Theoretical Maximum Elastic Load Pcu  
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Figure 9.12: Comparison of Experimental and Theoretical Ultimate Failure Deflection 
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Chapter 10 

Design Procedure 

 

According to the study of FRP reinforced beams with oak cores and balsa 

cores, a guideline for the design of high modulus carbon fiber reinforced polymer 

materials for strengthening typical wood beams is proposed. This chapter deals with 

the design procedure for FRP material strengthened wood beams. The felxural model 

was developed with assumptions of the linear elastic behavior in tension, elasto-

plastic behavior in compression and linear elastic behavior in composite material. 

Procedures to estimate necessary properties are also developed. The design guidelines 

include: Estimation of FRP area required to resist increased load and verification of 

the strength increased. The procedure and the flow chart for the design are presented 

for the design. 

 

10.1 Introduction 

Wood beams have been widely used in construction since hundreds of years 

ago. Due to the elastio-plastic behavior of wood beams, they can be reinforced to 

improve their load capacity. Fiber reinforced polymer materials were proved to be a 

good and cost effective reinforcement of wood structures. Since composite is 

lightweight and does not corrode, they can replace steel plates to repair or to 

rehabilitate various structures.   

An analytical procedure based on the elasto-plastic behavior of timber 

provided a good prediction of the performance of FRP reinforced wood beams, 
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especially for relatively hard wood species. A design guideline is also proposed based 

on this analytical model. The details of the analytical and design procedure are 

presented in the following sections. Hard wood species and soft wood species are 

designed respectively due to their different mechanical behavior. 

10.2 Design Philosophy and Assumptions 

The allowable live load and allowable moment for wood beams strengthened 

with high modulus FRP tows or tapes should satisfy following conditions.  

 

The design model is based on following assumptions: 

1) No out of plane deformation. 

2) The bond of the interfaces between the timber cores and reinforcing composite 

material is assumed to be perfect. In other word, the strain of the core and the 

composite on the interfaces always remains same. 

3) Failure load occurs at the cross section under maximum moment. 

4) Wood tension strength and compression strength properties can be used 

directly in analysis of wood bending behavior. 

5) The behavior of timber core is elasto-plastic.  

6) Size effect is not currently considered in the model.  

7) The maximum compression strain of FRP material is larger than maximum 

compression strain of timber. The maximum tension strain of FRP material is 

larger than maximum tension strain of timber. 

8) Size effect should be taken into consideration if the dimension of the beams is 

different from ASTM standards.   
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10.3 Design Theories  

10.3.1 Determination of Failure Type 

The proposed timber analysis model classified the failure of FRP reinforced 

wood beam into 2 types. Both failure types are discussed below: 

 

1) Tension failure.  

The beam fails due to fracture of extreme tensile fiber. When the compression 

fiber yields, the neutral axis moves downwards to the tension side of the beam. 

When the load increases and the strain of tensile wood fiber exceeds its elastic 

strain limit, wood in tension fails. For unstrengthened beams, it is assumed 

that the maximum moment capacity is reached when the extreme tension fiber 

reaches its maximum elastic strain fte. Since the curvature become too big 

when the tension fiber yields, it is assumed that the descending part of the 

curve does not result in moment capacity increase. But it is different for 

strengthened beams. Since usually the failure tension strain of composite fiber 

is greater than the failure tension strain of the wood fiber, FRP tows and tapes 

can bridge cracks and fractures when the wood fiber reaches fte, the post-peak 

strength of tension timber is taken into consideration. The stress-strain 

relationship figure at failure is shown in below: 
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Figure 10.1: Stress-strain Relationship of Tension Case 

2) Compression failure 

The beam fails due to crush of compression timber or reinforcing composite 

material. Compression failure can be further divided to two cases. 
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Compression Failure Type II 

Figure 10.2: Stress-strain Relationship of Compression Failure Case 

 

a) As first figure in Figure 10.2 shown, when the compression side of beam 

reaches its maximum compression limit, the tension timber is still in elastic 

range. 

 

b) As second figure in Figure 10.2 shown, when the compression side of beam 

reaches its maximum compression limit, the tension timber has already 

yielded and contributed part of the post-peak strength capacity.  

 

The first step of designing a FRP reinforced wood beams is to determine the 

failure type of the beam. The following procedure is proposed to compute failure 

moment. 
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1) Assume failure occurs due to tension composite failure. 

2) The neutral axis depth is to be calculated based on tension failure model. 

Substitute ultimate tension strain into the model and obtain the strain in the 

extreme compression fiber at failure.  

3) Compare the strain in compression obtained in step 2 with the ultimate 

compression strain. If it is lower than the ultimate compression strain, then the 

beam fail due to tension fracture. If it is higher than the maximum compression 

strain, then the failure type should be adjusted as compression failure. 

4) The neutral axis depth c is also calculated based on compression failure model. 

Substitute ultimate compression strain into the model to obtain the strain in the 

extreme tension fiber. If the tension strain in exceeds maximum tension strain of 

the wood material, then the beam failure is compression failure type I thus the 

post-peak trapezoid plastic strength is counted. If then tension strain in extreme 

tension fiber is smaller than maximum tension strain of the timber, then the 

beam failure is compression failure type II, and the tension wood fiber is still in 

elastic range at failure. 

 

10.3.2 Design Theories for Hard Wood Beams 

Chen’s structure model was proposed just for wood beams strengthened on 

tension side. His model was extended to wood beams strengthened with FRP material 

on both compression and tension sides. Major equations to evaluate the strength of the 

FRP reinforced beams are listed again to summarize the design procedure of the 

beams with wood cores.  
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10.3.2.1 Failure Caused by Tension 

If the failure is due to tension, the force equilibrium equation is: 

CttptecpceCc FFFFFF ++=++                                 (10.1) 

in which: 
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CfCCtCt EAF ε=                                            (10.7) 

 

where the value of β ranges between 1.0 and 2.0. 

εte = the tensile fracture strain of timber  

 

Solve the equilibrium equation, the depth of neutral axis c can be found as: 
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where  
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e = the distance from elastic tensile limit to the center of trapezoid area and can be 

calculated as: 
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and the curvature Ф at failure is: 
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                                             (10.10) 

then compute the maximum strain in the extreme compressive strain in composite 

using:  
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ε
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The moment capacity, Mu can be obtained by multiplying the six forces 

components by the corresponding lever arms. 
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10.3.2.2 Failure Caused by Compression 

10.3.2.2.1 Compression Failure Before Tension Wood Yields 

There are two types of compression failure. If the beam failure happens by 

crushing of wood in compression side, and the strain of timber in the tension zone is 

linearly increasing and is in the elastic range till failure. In such case, the force 

equilibrium of the beam can be presented as:  
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CttecpceCc FFFFF +=++                                           (10.13) 

where 

FCc= Compressive force from the composite in compression zone. 

Fcp =Compressive force from plastic part of the stress-strain curve of timber. 

Fce =Compressive force from the elastic part of the stress-strain curve of timber. 

Fte =Tensile force from the ascending part of the stress-strain curve of timber. 

FCt= Tension force from composite in tension zone. 

 

In order to design a wood core strengthened beam, material properties and 

dimensions, number of FRP tows or tapes used, and types of resin are original inputs. 

The dimensions of wood core and FRP material are known. The contribution of 

timber and FRP material can be based on manufactures recommended strain and the 

modulus of elasticity. To evaluate some other properties, such as modulus of rupture 

and ultimate compression strength, if they were not recommended by the 

manufactures, the value listed in the wood handbook can be referred to.   

 

If the ultimate strain εcu of the timber material are unknown, εcu needs to be 

calculated from test result. Maximum load capacity can be obtained from bending 

test. Since the calculation of wood parameter is focused on plain wood case, FCc and 

FCt equals zero. From chapter 5, 

ce
Cf

ce
ce fbcF

ε
ε

2
=                                                    (10.14) 

ce
Cu

ce
cp fbcF )1(

ε
ε

−=                                              (10.15) 

te
Cu

te
te cfbF

ε
ε

2
=                                                    (10.16) 



 

 

190

 

)))2((/(

)))))2()(2()(((

)((

2

2222

22

CCuteCucece

CuteCCuceceteCtCuteCtCcCCuC

CCuteCtCcCCu

Effb

fEfbhfAbhbhfAAEE

EbhfAAEc

εεε

εεεεε

εε

+−

+−+−+++

++=

 

(10.17) 

thus the moment of this plain wood beam equals:                                                                                                        
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therefore, the unknown parameters in equation 10.13 are εcu and neutral axis depth c 

at failure. 

  

The force equilibrium equation of the section is established with numerical 

method. The beam was divided to 100 equal width strips across the thickness h, thus 

the thickness t of each strip equals: 

100
ht =                                                         (10.19) 

The strip on the top is strip 1, and the strip on the bottom of the beam is strip 

100. Assume the strain at the upper most compression face is εcu, then the strain εi at 

the middle of strip i is:  
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( titc
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ε                                           (10.20) 

where c is the neutral axis depth. therefore the force fi on any strip i is:  

iwi Ebtf ε×××=  if cei εε ≤    

cewi Ebtf ε×××=  if cei εε ≥                                     (10.21) 

where b is the width of the oak beam. 

Based on this numerical expression, the force equilibrium equation of the 

section can be denoted as 
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0)(
100

1
=∑ if                                                (10.22) 

combine equation 9.17 and 9.22, εcu and corresponding neutral axis depth c are 

calculated. 

 

One of the most remarkable advantages of the FRP reinforced wood beams is 

that the strength of timber in plastic range can be utilized more effectively and the 

sustainable moment could be increased tremendously due to the existence of FRP 

material. Based on the extended elasto-plastic strength model,  

 

When εCt < εte, the equilibrium equation is: 

 

CttecpceCc FFFFF +=++                                         (10.23) 

The expressions for FCc, FCt, Fce, Fcp and Φu are the same as shown above, and 

the tensile force from the ascending part of the curve, Fte is: 

c
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= ε                                             (10.25) 

thus the maximum moment capacity in such cases is: 
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and the normal working moment capacity is: 
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or design for working moment with factored maximum stress, which is: 
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un MM 85.0=                                                  (10.27) 

fce and fte in the calculation can be evaluated based on Chen’s model presented in 

Chapter 3 or refer to the manufactures or test results.  

 

The corresponding curvature is: 
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−
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10.3.2.2.2 Compression Failure when Tension Wood Already Yielded 

If the beam failure happens by crushing of wood in compression side, and the 

strain of timber in the tension zone is a trapezoid shape and has post-peak strength, 

the force equilibrium can be presented as:  
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where 
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in above equations: 
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the function of the depth of new troll axis can be obtained as: 
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the maximum moment capacity is, 
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in which  

e = the distance from elastic tensile limit to the center of trapezoid area, Figure 10.2 

(left) 
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And the corresponding curvature is: 

c
Cuε

=Φ                                                        (10.40) 

 

10.3.3 Design Theories for Balsa Wood Species 

Balsa wood is very special in hard wood species. The density of balsa wood is 

very small. Comparing with its weight, it has relatively very high strength. Specific 

tests were designed and conducted for reinforced beams with balsa core. Different 
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design and analysis procedures were developed for balsa wood. The philosophy of the 

design of FRP reinforced balsa beams is presented as follows. 

 

The design model for balsa wood beam is based on following assumptions: 

1) Timber on compression side yields in the direction of the principle stress. 

2) The modulus of elasticity of balsa drops exponentially with the change of the 

direction of principle stress. 

3) The bonding between the FRP material and balsa wood is perfect. 

4) The balsa beam has no defects. 

5) In elastic range, the relationship between the stress and strain of the beam 

behaves linearly. When the stress-strain relationship starts to be non-linear, the 

balsa beam starts plastic deformation. 

6) The amount of reinforcement on both compression and tension side are the 

same. 

 

To design a wood core FRP reinforced beam, material properties and 

dimensions, number of FRP tows or tapes used, and types of resin are original inputs. 

The dimensions of wood core and FRP material are known. The contribution of 

timber and FRP material can be based on manufactures recommended strain and the 

modulus of elasticity. To evaluate some other properties, such as modulus of rupture 

and ultimate compression strength, if they were not recommended by the 

manufactures, the value listed in the wood handbook can be referred to.   

 

The same as designing for other wood beams, some basic design inputs, such 

as material properties and dimensions, number of FRP tows or tapes used should be 
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known beforehand. The FRP material is transformed to material that has the same 

modulus of elasticity with the core material in balsa beam analysis. The modulus of 

elasticity of the strengthening tapes of tows can refer to the manufacture’s 

recommendation. If the elasticity modulus of the balsa wood is unknown, it could be 

estimated based on the density of the timber. A linear relationship was proposed based 

on the test results on balsa beams.  

 

The strengthened balsa beam is transformed to I-section beam. The FRP tows 

and tapes are known. Keeping the thickness of the tows and tapes as the thickness of 

the flange of the I-section, and extend the width of the tows and tapes according to the 

ratio between the elasticity modulus of high modulus carbon and the timber. n is the 

ratio between the modulus of composite material and balsa wood multiply by a 

reduction factor 0.9, 
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The moment of inertia of the I beam 
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where: 

b1 is the width of the wood core, and h1 is the thickness of the core. bc and hc are the 

width and thickness of the transformed flange. AC is the cross section area of the FRP 

material on each side. 

 

Since it is assumed that the wood fiber yield in principle stress direction first 

instead of in the normal stress direction, and the modulus of elasticity of balsa wood 
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in a specific direction is an exponential function of the elasticity modulus in the 

longitudinal direction, 

α
α

BeEE ×=                                                   (10.43) 

in which Eα  is the modulus in principle stress direction, α is the angle between 

normal stress and principle stress, and B is a factor to be determined. The value of B is 

–0.005 from analysis presented in Chapter 8. For four point loading situation, the 

maximum elastic load from analysis is: 
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in which a is moment arm, d is the distance between neutral axis and the flange, Ew is 

modulus of elasticity in longitudinal direction, α is the angle between the normal 

stress and principle stress at the elastic limit of balsa wood, wc is the width of the 

extended flange of the I-section beam. The angle α at the elastic limit can be 

expressed as: 
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Thus the maximum working moment 
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the working load limit can also be calculated as: 

un MM 8.0=                                                        (10.47) 
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From the density-modulus relationship and the shear strength listed in the 

wood handbook, the shear strength of the balsa wood to be designed can be estimated 

as presented in chapter 8, and the maximum moment capacity is: 

dA
arbIM

C
u ×

××××
= 1maxτ                                            (10.48) 

10.4 Required Design Inputs 

10.4.1 Design Inputs for Hard Wood 

The primary design inputs for hard wood such as oak beams are listed below: 

l is the length of the wood beam 

b is the width of the wood core 

h is the thickness of the wood core 

εce is the maximum elastic strain of the wood material 

εte is the fracture tension strain of the wood material 

εcu is the ultimate failure strain of wood 

εCu is the ultimate compression strain of FRP material 

εCf is the ultimate tension strain of FRP material 

EC is the modulus of elasticity of FRP material 

ET is the modulus of elasticity of timber material 

fce is the compression stress of timber when it reaches its elastic strain limit 

fte is the tension stress of timber when it reaches its elastic strain limit 

ACc is the cross section area of FRP material in compression side 

ACt is the cross section area of FRP material in compression side 

m is the ratio introduced in Chen’s model presented  in Chapter 3, that is : 
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10.4.2 Design Inputs for Balsa Wood 

Since the specific analysis and design procedure were conducted, the design 

inputs are different from the above list.  

l is the length of the wood beam 

a is the maximum arm of force 

d is the outer edge of the flange to the neutral axis  

b1 is the width of the balsa core 

h1 is the thickness of the balsa core 

bC is the width of the reinforcing tows or tapes 

hC is the thickness of the reinforcing tows or tapes 

wC is the width of the flange of the transformed I-section beam 

εce is the maximum elastic strain of balsa 

εcu is the ultimate failure strain of balsa 

εCu is the ultimate failure strain of FRP material 

EC is the modulus of elasticity of FRP material 

Ew is the modulus of elasticity of balsa 

AC is the flange area of transformed beam on either compression side or 

tension side 

τmax is the shear strength of balsa wood 

10.5 Design Procedure 

10.5.1 Design Flowchart for Hard Wood Beams 

The following flow chart shows the design procedure of hard wood beams 

strengthened with FRP materials on compression and tension side.  
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 Hardwood beam design start 

 
Input data: 
b - the width of the wood core 
h - the thickness of the wood core 
εce - the maximum elastic strain of the wood 
material 
εte - the fracture tension strain of the wood material 
εcu - the ultimate failure strain of wood 
εCu - the ultimate failure strain of FRP material 
εCf –the maximum tension strain of FRP material 
EC - the modulus of elasticity of FRP material 
ET - the modulus of elasticity of timber material 
fce - the compression stress of timber when it 
reaches its elastic strain limit 
fte - the tension stress of timber when it reaches its 
elastic strain limit 
ACc - the cross section area of FRP material in 
compression side 
ACt - the cross section area of FRP material in 

Assume failure occurs due to tension fracture when tension strain reaches εCf  

Calculate neutral axis depth c based on the equation: 

))))(()1))(2(((/(

)
))))))(())(1((2))(1((

)))((2)(1(()1((

)())(1((

22222

2222

2222

teCfteCfTCfceceCfte

teCfteCfTCfCCtCfteCcCfCCtCcC

CfceCcCfCfceCceCf

teTteCfTteCfTCfTCfCCtCfCCcCfteCfcecece

Effb

bhEEAbhfAEAAE

AAfbhEfhb

EEEEbhEAEAbhfbhfbhfc

βεεεεβεεε

βεεεεεεβεβ

εεεβεβ

εβεεβεεεεεεεεβ

−−−−++

−−−+−++−

+++−+−−
+

−+++++++−=

 

When the beam in tension reaches εCf, 
calculate the corresponding compression 
strain εc at extreme compression fiber: 

Cfc ch
c

εε ×
−

=  
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CoMPare εc with εCu 
If Cuc εε ≤ , then the beam should be designed for tension failure. Go to 
hardwood beam design start A for ultimate strength design. 
If Cuc εε ≥ , then the beam should be designed for compression failure. The 
beam fails when the extreme compression fiber reaches εCu. 

Assume the beam fails due to compression and the tension fiber is still in 
linear elastic range. Calculate extreme tension fiber strain εt when the 
compression strain reaches εCu: 

c
ch

Cut
−

= εε  

CoMPare εt with maximum elastic tension strain εte of wood fiber, 
If tet εε ≤ , then the beam fails when the tension fiber is still in linear elastic 
range. Go to hardwood beam design start B for ultimate strength design. 
If tet εε ≤ , then the beam fails when the tension wood fiber is in off peak 
range. Go to hardwood beam design start C for ultimate strength design. 

Design for maximum working load and 

The neutral axis depth c corresponding maximum working moment can be solved 
by: 
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Calculate the working moment the beam can sustain with the neutral axis depth c: 
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in which the ratio m can be expressed as: 
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Or using: 
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In the calculation of working moment: 
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End 
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 Hardwood beam design start A 

Calculate the neutral axis depth c at failure of the beam 
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Calculate the maximum fracture moment the beam can sustain: 
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In the above calculation of maximum moment: 
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End 
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 Hardwood beam design start B 

Calculate the maximum fracture moment the beam can sustain: 
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In the above calculation of maximum moment: 
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Calculate the neutral axis depth c at failure of the beam 
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End 
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Calculate the ultimate moment the beam can sustain with the neutral axis depth c: 
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In the calculation of working moment: 
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The neutral axis depth c corresponding ultimate failure load can be solved by: 
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 Hardwood beam design start C 
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10.5.2 Design flow chart for reinforced balsa beams 

For balsa beam specifically, the design procedure is different. The decrease of 

modulus with the increase of stress angle was considered to calculate the yield 

strength more accurately. The flow chart is as follows.  
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Balsa beam design start 

Input data: 
 
l is the length of the wood beam 
a is the maximum arm of force 
d is the outer edge of the flange to the neutral axis  
b1 is the width of the balsa core 
h1 is the thickness of the balsa core 
bC is the width of the reinforcing tows or tapes 
hC is the thickness of the reinforcing tows or tapes 
wC is the width of the flange of the transformed I-
section beam 
εce is the maximum elastic strain of balsa 
εcu is the ultimate failure strain of balsa 
εCu is the ultimate failure strain of FRP material 
EC is the modulus of elasticity of FRP material 
Ew is the modulus of elasticity of balsa 
AC is the flange area of transformed beam on   
either compression side or tension side 
τmax is the shear strength of balsa wood 

Calculate for maximum normal working load: 
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where B is analyzed to be  –0.005 and angle α can be estimated by: 
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Calculate the maximum moment capacity of the beam: 
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C
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= 1maxτ  

 
where the shear strength of the balsa wood can be estimated based on the 
density of timber material. 

End 
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Chapter 11 

Conclusions 

 

An elasto-plastic model was presented in this dissertation. The application of 

the model is in engineering design practice of FRP reinforced wood beams. This 

model is extended from Balaguru and Chen’s analysis. The investigation in this 

dissertation can be divided into 5 focus areas dealing with: 

 

§ The presented strength model is extended from unsymmetrical strengthening 

to wood beams strengthened on both compression and tension sides.   

 

§ Theoretical analysis for hard wood beams is conducted for oak beams under 

four points bending. The whole load-deflection curve was predicted. All 

results from the model for the same oak beams were compared to test results 

and reach a satisfactory accuracy. 

 

§ Parametric study was conducted on the proposed strength model. Most 

important parameters related to beam strength were studied to see their 

sensitivity level.  

 

§ Theoretical analysis is conducted specifically for balsa beams under four 

points bending. A different approach is proposed specifically for balsa wood 

due to its unique material properties. The load-deflection curve was drawn 
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based on the theoretical results. Analysis results were compared to lab results, 

and they match well. 

 

§ Theoretical study of hard wood beams with dimensions used in true 

engineering was accomplished to test the feasibility of the model in real world. 

Douglas fir wood was chosen as the objects of the study. Theoretical 

predictions based on proposed model were compared with test results. The 

comparison presents a good match. 

 

§ Design guild line was proposed for FRP strengthened wood beams, including 

normal hard wood species and relatively soft wood species such as balsa. 

 

11.1 Timber Elasto-plastic Strength Model 

The three loading stage of the elastio-plastic model is specified. The equations 

of the extended model were presented. This chapter yields following conclusions.  

 

§ Comparing with Balaguru and Chen’s model, the extended model takes the 

contribution of FRP material in compression into consideration. The 

compression carbon fiber not only increases the stiffness and strength of the 

beam, it also helps to improve the stability and to reduce deformation and to 

prevent sudden buckling. 

 

§ The model used wood beams with rectangular cross section as an example. 

Strength for wood beams of other shape of cross section can also be derived. 
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§ The extended model also considers the contribution of post-peak strength of 

tension wood fiber before tension wood fiber completely fractures.   

 

11.2 Compare Theoretical Analysis Results of Oak Beam with Test Results.  

Applying the model to oak beams, the maximum elastic load, ultimate failure 

load, maximum elastic deflection, and the maximum ultimate deflection were 

predicted. The entire load-prediction curve was drawn. Comparisons were made 

between analysis and test results. The conclusions are as follows: 

 

§ Carbon tows and tapes were applied to compression and tensile sides of the 

beams. Assume 10% of FRP material strength was lost during processing. If 

the cross section area of carbon tows and tapes need to be transformed to same 

material as the core, also consider 10% of area lose. 

 

§ Comparing theoretical prediction with test results. The difference of maximum 

elastic load Pce is below ±10%, and the difference of ultimate failure load Pcu 

is below ±20%. The prediction is considered to be close enough to 

experimental value.  

 

§ The difference between predicted maximum elastic deflection with test result 

and the difference between predicted deflections at failure with tested failure 

deflection are all below ±20%. The accuracy is acceptable.  
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11.3 Sensitivity Analysis of the Parameters Related to Beam Strength 

The sensitivity of the most important parameters that affect the beam strength 

was studied. The purpose of the study is to evaluate the influence the parameters have 

on the maximum beam strength. Based on the test results, the following conclusions 

were reached. 

 

§ For one side (tension side) strengthened beams, variation of elastic modulus of 

timber ET and modulus of the FRP material EC has very high influence on 

beam strength.  

 

§ For one side (tension side) strengthened beams, variation of maximum elastic 

strain of timber εce has high influence on beam strength.  

 

§ For one side (tension side) strengthened beams, variation of ultimate strain of 

timber εcu and the reinforcement type has medium influence on beam strength.  

 

§ For both-sides strengthened beams, variation of reinforcement type and 

modulus of the FRP material EC has very high influence on beam strength. 

 

§ For both-sides strengthened beams, variation of maximum elastic strain of 

timber εce has low influence on beam strength. 

 

§ For both-sides strengthened beams, variation of ultimate strain of timber εcu 

has high influence on beam strength. 
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§ For both-sides strengthened beams, variation of elastic modulus of timber ET 

has medium influence on beam strength. 

 

11.4 Compare Theoretical Analysis Results of Balsa Beam with Test Results 

Theoretical analysis is accomplished on FRP reinforced balsa beams. 

Although classified as hardwood, the density of balsa wood is much smaller than most 

other hardwood commonly used in industry. The shear stress cannot be ignored for 

balsa wood. A different model considering shear stress and shear deflection is 

developed specifically for strengthened balsa beams. Major conclusions is listed 

below: 

 

§ While calculating the stiffness of the entire beam, the contribution of timber, 

the reinforcing tapes and tows and the contribution of matrix between timber 

and FRP material should all be included. 

 

§ The elasticity modulus of balsa wood is also linearly related to its density. 

 

§ The deflection of balsa beam includes its bending deflection and shear 

deflection. The calculated deflection of balsa beams based on the proposed 

model matches well with lab records.  

 

§ To calculate the maximum elastic load, assuming the compression timber fiber 

first yielded in the principle stress direction so that the shear stress is 

incorporated in the model. The error between prediction and tests is below 

±20%.  
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§ To calculate the ultimate load, estimate the shear strength and bending 

strength of reinforced balsa beams. It is proved that balsa beams reach their 

shear strength first. Balsa beams fail due to shear failure. The error between 

prediction and tests is around ±20%. 

 

11.5 Theoretical Analysis Results of Douglas fir Beam and Corresponding Test 

Results 

In order to estimate the feasibility of the proposed strength model in 

engineering applications, analysis of some reinforced Douglas fir beams that have 

similar dimension with industrial beams reinforced unsymmetrically were conducted 

to predict their strength behavior and load-deflection curve. Comparing the estimated 

values and test results, the following conclusions can be drawn. 

 

§ Proposed strength model can be applied to real engineering applications with 

quite reasonable error.  

 

§ Analysis for oak beams and balsa beams in previous chapters are all based on 

compression failure case. Theoretical evaluation for Douglas fir beams used 

the tension failure model. It is proved that the tension failure model also 

produces results with good accuracy.  

 

§ Theoretical prediction of maximum elastic load Pce and ultimate failure load 

Pcu has an error of smaller than ±20% comparing with test results.  
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§ Theoretical prediction of maximum elastic deflection δce and ultimate failure 

load δcu has reasonable error comparing with test results. Due to rotation of the 

beams and bucking, some beams produces larger deflection than theoretical 

prediction.  

 

11.6 Design Guild Lines and Procedures 

Based on theoretical analysis and study, design guild line and procedure for 

reinforced wood beams were presented. Some conclusions were drawn from this 

chapter. 

 

§ The proposed design guild lines presented different procedures for balsa wood 

and other hard wood species because of distinct characteristics of balsa wood. 

 

§ The first step of designing is to determine the failure type of the beam. 

Different failure type would lead to different design procedure and estimation.  

 

§ The necessary parameters needed during design process could be from 

manufacturer’s suggestion, tests or handbooks. Some of the parameters can be 

derived from basic measurement, simple experiments and calculation if not 

given. Some other parameters should be adjusted to specific loading and 

manufacturing process. 

11.7 Suggestion for Future Study 

The strength model is proved to be useful and accurate for high modulus 

carbon fiber reinforced wood beams. On the other hand, further research is needed to 
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establish a perfect strength model and design procedure that can be applied 

extensively in engineering design. The following objectives and suggestions should 

be considered in future study. 

 

§ Some of the parameters in the analysis in this dissertation were estimated 

theoretically. More experiments on the beams can help to determine the 

parameters more accurately.  

 

§ In the proposed design procedure, the failure type was determined based on 

calculations based on the strength model. If more bending test can be 

conducted, the designers can understand actual failure mechanism and make 

sure that they are using the right strength model.  

 

§ Previous presented design guild lines used the maximum elastic load as the 

working load. This is somehow conservative because the reinforcement 

material contributes to improve the working load. Further laboratory 

experiments, stress and fracture analysis should be completed to find out 

appropriate safety factors to make use of the strength of the beams efficiently 

and adequately. 

 

§ The experiments and analysis in the dissertation applied the high modulus 

carbon tows or tapes to the entire length of wood beams. It is also assumed 

that the matrix transfer stress evenly. Further studies should consider the 

strength of the beams if only part of the beam was reinforced. Localized stress 

concentrations can develop in the matrix near cracks or defects. Research 
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about how to minimize stress concentration in the matrix needs to be 

accomplished. 

 

§ Similarly, part of previous study was based on tests of clear wood samples that 

were assumed to be perfect and have no defects and knots. More experiments 

and research is necessary for commercial timber so as to establish standards 

for reinforcing timber beams design. 

 

§ All of the wood cores used in the dissertation have rectangular cross section. 

All tests and analysis are for three points or four points bending. Further 

research should be extended to beams with other cross section shape and 

different load situations. 

 

§ Size effect should be taken into consideration in the strength design model. 

Influence of fatigue can also be investigated.  
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