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ABSTRACT OF THE DISSERTATION

Quantitative studies of aging using Statistical Mechanics

and Probabilistic approaches

by Diana David-Rus

Dissertation Director: Professor Joel L. Lebowitz

The goal of understanding aging is not just about fulfilling the age-old quest of im-
mortality, but, rather in trying to answer the question of ”"what is aging?” we expect
to generate insight that can be used to improve the health span of an aging organ-
ism. Recently, the biology community has come to play a role into this quest with
identifications of gene pathways that can double, even triple the life spans for certain
organism such as C .elegans and Drosophila melanogaster. Aging biology finds itself in
a post-genomic era. Hopes of bringing methods developed in mathematics, physics or
statistics into the biology realm are widespread. The goal and unifying theme of my
thesis is to get a better understanding of this new and exiting field (and at the same
time ancient subject) of aging as a complex process, using quantitative methods. By
combining molecular and biophysical modeling with statistical and mathematical tools,
my goal was to provide a multi-scale view of the complex biological process that is aging.

The approach I am taking involves consideration of the problem on several levels—from
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transcriptional regulation of gene expression, modeling of biological pathways and in-
teraction networks, to the development of mathematical and statistical methods; from
trying to understand the aging process at a transcriptional level, and analyzing and un-
derstanding how stochastic factors might come to play a role in aging in understanding

aging as an epigenetic process.
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Chapter 1

Introduction

My interest lies at the interface between biological, mathematical and physical sciences.
By combining molecular and biophysical modeling with statistical and bioinformatics
tools, my goal was to provide a multi-scale view of complex biological processes such
as aging and its connection with stochastic and epigenetic processes. The approach
I am taking involves consideration of the problem on several levels—from modeling of
biological pathways and interaction networks, to the development of computational and
statistical methods to understanding transcriptional regulation of gene expression.
Since stochasticity plays a major role into the aging process, in the first chapter I am
developing methods for solving/describing two dimensional stochastic processes that in-
volve interaction. The model I am working on involves the ”simple” but biologically im-
portant problem of protein interaction and stochastic interactions therein. I am building
an artificial-toy model that describes a two dimensional generation/degradation process
of two protein types that interact with each other in the following manner: the rate
of generation of one type of protein changes once the quantity of the second protein
is above a certain threshold. In this work, we study a protein synthesis degradation
process by defining a general mathematical model and showing a route to gain some
analytical insight to the problem. We discuss the model in the steady state situation

in two study cases for a particular choice of states and rules of state transitions and



find exact solutions using generating function technique. Overall, this relatively sim-
ple model can be used to evaluate the impact of stochastic factors in protein folding
on biological fitness. Such analysis would constitute a core unit for considering the
complexities of multiple stochastic processes that are relevant to aging.

Epigenetic regulation of multiple heritable cell fates involves transcriptional repres-
sion or activation of the expression levels of genes, over possibly many cell cycles, with-
out altering the underlying genetic sequence. At the heart of one important mechanism
of epigenetic control is the accessibility of DNA packaged into higher order structures
known as chromatin. More than two decades ago, it was proposed that ’aging of pro-
liferating cells’ results from genome reorganization occurring during the division cycle.
However, progress in the areas of epigenetics and cellular and organismal aging has
been slow and sporadic.

Maintenance of alternative chromatin states through cell divisions pose some funda-
mental constraints on the dynamics of histone modifications. In the second chapter, we
study the systems biology of epigenetic inheritance by defining and analyzing general
classes of mathematical models. We discuss how the number of modification states
involved plays an essential role in the stability of epigenetic states. In addition, DNA
duplication and the consequent dilution of marked histones act as a large perturbation
for a stable state of histone modifications. The requirement that this large perturba-
tion falls into the basin of attraction of the original state sometimes leads to additional
constraints on effective models. Two such models, inspired by two different biological
systems, are compared in their fulfilling the requirements of multistability and of re-
covery after DNA duplication. We conclude that in the presence of multiple histone

modifications that characterize alternative epigenetic stable states, these requirements



are more easily fulfilled.

Microarrays are chips on which genes are attached for hybridization to mRNA
samples—hybridization signals indicate which genes are expressed as messages and can
speak to relative abundance and changes in gene expression over time. In the third
chapter of my thesis I'm using methods developed for data mining microarray experi-
ments, adapted for aging research. Methods bridge knowledge of statistical mechanics
with data mining methods developed in statistical mathematics. Such analyses can
reveal how the transcriptional regulation of genes might coincide, thereby implicating
proteins as parts of networks acting together towards a common biological function.Such
experiments are most useful for complex biological traits that result from the presumed
functioning of several molecular pathways. Aging is one such biological phenomenon
that incorporates numerous molecular mechanisms underlying environmental stimulus
sensing, metabolic regulation, stress responses, reproductive signaling, hibernation, and
transcriptional regulation. Current models of aging emphasize different mechanisms as
driving forces behind aging and lifespan determination. However, an integrated under-
standing of exactly how these mechanisms drive aging has not yet been formulated.
Using an unsupervised approach based on concepts from statistical mechanics, I identi-
fied an interesting gene expression pattern that suggests that a gene expression switch
at midlife. This switch coincides with the onset of biomarkers of aging including age
pigment accumulation

Age-related muscle decline, a condition referred to as sarcopenia and defined as loss
in muscle mass and muscle strength over time, is one of the most pervasive problems
of the elderly, such that significant declines in strength and mobility affects essentially

every old person. Although the rate of decline is relatively slow (estimated to be only



1 procent loss annually), ultimate losses are substantial, such that nearly a 50 procent
loss of muscle mass can occur by age 90. Decreased physical strength is a central
contributor to loss of independence. We have found that aging C. elegans body wall
muscle undergoes a process remarkably reminiscent of human sarcopenia. Both have
mid-life onset and are characterized by progressive loss of sarcomeres and cytoplasmic
volume; both are associated with locomotory decline.

To extend understanding of this fundamental problem, in the forth chapter I have
focused microarray analyses on C. elegans muscle aging. C. elegans genes expressed in
muscle have been experimentally defined. I surveyed expression of all known muscle
related genes to describe a profile of transcriptional changes in muscle that transpires
during adult life and aging. Importantly, the intersection of this dataset with that from
aging flies and some human studies can suggest conserved genes that might impact the
process most strongly. Hypotheses I formulate will be used to drive experiments at the
bench and perhaps to focus attention for human therapies. This research will advance
understanding of conserved aging mechanisms; data should influence novel strategies

to extend healthspan.



Chapter 2

PART I- Protein synthesis-degradation a stochastic

approach

2.1 Introduction

In this work, we study a protein synthesis degradation process by defining a general
mathematical model and showing a route to gain some analytical insight to the problem.
We discuss the model in the steady state situation in two study cases for a particular
choice of states and rules of state transitions and find exact solutions using generating
function technique.

Proteins are essential macromolecules that serve both as structural components of
the cell and as its enzymatic machinery. The turnover of these proteins (synthesis and
degradation) is a dynamic process that plays a critical role in the maintenance of cel-
lular homeostasis. Most of the reported studies have focused on the protein synthesis
aspect of protein turnover, as opposed to protein degradation, and there is a general
consensus that protein synthesis does decline with age (Van Remmen et al. 1995;
Rattan 1996; Ward and Richardson 2000). Although protein synthesis is an obvious
important process, it is worth noting that protein degradation is of equal importance,
as evidenced by the number of critical physiological functions it serves. These functions

include the maintenance of plasma amino acid concentrations, the removal of abnormal



and post-translationally modified proteins and many more. Different pathways of pro-
tein degradation are affected by aging. Continuous turnover of intracellular proteins is
essential for the maintenance of cellular homeostasis and for the regulation of multiple
cellular functions. The first reports showing a decrease in total rates of protein degra-
dation with age are dated more than 50 years ago, when the major players in protein
degradation where still to be discovered.

Protein synthesis is a tightly regulated cellular process that affects growth, repro-
duction, and survival in response to both intrinsic and extrinsic cues, such as nutrient
availability and energy levels. A pronounced, age-related increase or decline of the
total protein synthesis rate has been observed in many organisms, including humans.
The molecular mechanisms underlying this increase-decline and their role in the aging
process remain unclear. A series of recent studies in the nematode, have revealed a
novel link between protein synthesis and aging. Remarkably, these research findings,
in their totality, converge to indicate that reduction of mRNA translation prolongs life
in worms (Syntichacky et.al, Molecular Mechanisms and Models of Aging, Nektarios
Tavernarakis et al. 2006) Signal transduction cascades implicated in aging, such as
the insulin/insulin growth factor-1 pathway, interface with mechanisms regulating pro-
tein synthesis via a battery of key mRNA translation factors. One possibility is that
the effects of these pathways on aging are mediated, in part, by alterations in protein
synthesis.

Given the implications of the protein synthesis/degradation on all major biologically
phenomenon including aging the importance of studying such a process is clear. Here
I study a simple model of protein synthesis and degradation process as described by a

protein -protein interaction.



Intracellular randomness has long been predicted from basic physical principles (1)
and observations of phenotypic heterogeneity (2,3).Such noise’ affects all life processes
and has recently been measured using green fluorescent protein (GFP) (see 4-8). Ran-
dom fluctuations in genetic networks are inevitable as chemical reactions are proba-
bilistic and many genes, RNAs and proteins are present in low numbers per cell.

Biochemical processes frequently involve small numbers of molecules (e.g. a few
molecules of a transcriptional regulator binding to one 'molecule’ of a DNA regulatory
region). Such reactions are subject to significant stochastic fluctuations. Traditionally
Monte Carlo methods with the Gillespie algorithm (see also BKL) are employed to study
the functional consequences of the fluctuations and simulate processes that cannot be
modeled by continuous fluxes of matter.

The aim of this work is to explore minimal models of protein synthesis- degradation
in order to gain some analytical insight of the process described by a general stochastic

model presented in the next section.

2.2 A general stochastic model of protein synthesis-degradation

We envision a protein synthesis degradation process as a continuous in time birth death
Markov process with a discrete (very large) state space. When two different species or
types of proteins with a large number of possible states are involved the stochastic
model that describes the process can be considered a two dimensional birth death
Markov process. The master equation gives the flow for 7 (j, k;t) = 7;i, the probability
of there being j copies of the 1st species, k copies of the second, at time t. For a simple
case where each reaction either creates or annhilates one and only one component, and

for the simple case where birth/decay rates are constant, we have the following master



equation describing the time evolution of the probability distribution

d?‘(‘jk

5= (kB mjeetbje — Wl — mikd) (2.1)

j=1k=1

where:

mjk is the joint probability distribution of type I and II to have j respective k
quantities.

6 and d are the rates of annihilation of protein type 1 respectively 2 which are some
constants proportional to the existing number of protein copies. The rates of creation
for protein type 1 with j copies is # and for protein type 2 with k copies is bjz,. The
two protein types interact in the following way: when protein type 1 gets to a certain

threshold 6, protein type 2 is changing the birth rate as following:

bp, when 5 < 6
bjr =

b1 when j > 6

We will study analytically the stochastic model formulated above in the steady
state case for a particular choice of states and rules of state transitions. To gain some

analytical insight, we will use an analytical approach described in next section.

2.3 Generating function technique

To solve the master equation analytically for the long time behavior of 7 is generally
an impossible task when the state space is very large. One, therefore, has to resort
on various techniques. One such technique often used successfully in stochastic pro-
cesses literature is the “generating function technique” (Bailey,N.T.J.1990, Karlin,S.

and H.Taylor.1975,1981,1998, Linda S. Allen. 2003).



In this section we remind the reader of some well-known aspects of the generating
function technique commonly used in stochastic processes literature, in order to make
the present discussion self-contained.

Assume X is a discrete random variable and assume, for convenience, the state
space is {0,1,2...}. Let f denote the probability mass function of X and suppose the
probabilities are given by:

f(j) = Prob(X =j) =pj,j =0,1,2...,where Z;iopj =1

The mean of X satisfy: ux = E(X) =32, jp;

The probability generating function (p.g.f.) of the discrete random variable X is

defined by
e .
Px(t) = E(t*) =Y p;t!
§=0
for some teR
Because 7% pj = 1, the above sum converges absolutely for [¢| <1
As the name implies, the p.g.f. generates the probabilities associated with the
distribution Px (0) = po, Pk (0) = p1, P x(0) = 2!ps, and in general P% (0) = k!py.

The p.g.f. gives entire information associated with the distribution.

2.4 Two state model

2.4.1 Describing the model

There are 2 types of proteins: type I and type II undergoing a birth- death process with
interaction. Type I protein can have any number of copies/states. Type II protein can
have 2 possible copies/states: 0 or 1, meaning we have no protein or just one protein.

For simplicity, the rates of annihilation for both protein types are: some constants
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0 respectively d proportional to the existing number of protein copies. The rate of
creation for the first protein type is a constant (. The rate of reaction of the second
protein, bjx, can have two possible values, by respectively b1, depending on whether the
quantity of the protein type I is bellow or above a certain threshold taken for simplicity

to be 1.

bg, when j <1

bjr = by when j > 1

0 when k£ > 1Vj

An example of such situation in real life would be a genetic switch on/off. The two
protein types with j respective k copies interact in the following way: when is no protein
type I present than the protein type II will have a constant birth rate byg. When is at
least one copy of protein type I in the system, protein type II is changing the birth rate
from by to b.

Note that for the case when we have just one protein type undergoing a birth
death process with a constant decay/birth rate is a well known fact that in steady
state, its stationary probability distribution is a Poisson distribution (Karlin,S. and

H.Taylor.1975).

2.4.2 Equations which describe the birth death process of the two

protein types in steady state

In steady state the left side of the master equation (1) describing the time evolution of
the probability distribution is 0.

For this model I have in steady state 4 possible situations. Bellow are the equations



11

that defines each situation.

when j =0,k=0:

moo(8 + bo) = m10d + mo1d (2:2)

when 7 > 1,k=0:
mjo(jo + B+ b1) = mjp10(J +1)0 + mjd + mi—100 (2.3)

when j=0,k=1:
m01(B + d) = m116 + moobo (2.4)

when j > 1,k=1:
mi1(j6 + B+ d) = mjp11(J +1)0 + mjoby + mj—118 (2.5)

Using generating function technique we simplify our problem by transforming the
above equations into ODE’s satisfied by the generating function.

Let fr(z) = > 27, mix2’ be the p.g.f.

The marginal Wy giving the probability that species 2 has k elements, k=0,1 is given
by

Wi =220k = >_peo f3 (0)/n! where k=0,1

Since protein 2 doesn’t influence protein 1 the marginal distribution of protein 1 is

given by:

where pj = Tjo + 751
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it follows that:

fia Z gl (B J _ 1 8 J
2: B/ ﬁéE: —B/6 xB/d
i @ (mjo+mj1) ; e /j!<5) — /. ,]'($5> e~ Pl
7=0 =0
(2.6)

and

o)+ Fi(a) = Deteor (2.7

Using generating function technique on equations 2,3 an ODE equation
(eq.8) satisfied by a generating function is derived (see Appendix A for a detailed

derivation)

m5%f0(m) + (B + b1)fo(x) + (bo — b1) fo(0) = 5%]‘1}(@ + fi(x)d + fo(x)Bx  (2.8)

same procedure applied on eq 4,5 and obtain the following equation:

x5%f1 (@) + (8 +d) fi(z) = (bo — b1) fo(0) + 5%f1 (@) + fo(x)br +zfi(x)8  (2.9)

Steps toward obtaining fy(x) :
Using condition (6) in eq.(8) I obtain a new equation (eq.10)in the fy(x) as unknown

which once solved gives me the expression for fy(x) generating function.
d (e-1)8/5
(@ = 1)o-—fo(@) + (=6(z = 1) + b1 + d) fo(z) = de + (b1 — bo) fo(0)  (2.10)

This is a first order ODE;

Using integrand factor method one gets after some calculations (see Appendix B for

a detailed derivation in solving eq.10)
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folw) (1= 2) D000 — fi(0) = (2.11)
by — bo)fo(0) [* bt _
e (1 = (1= ) W/O =51 — (") gy

Setting = 1 in equation 11 one obtains fy(0) and than going back at eq.11 one

gets an expression for fy(x)

2.4.3 RESULTS

from eq. 11 for x=1,

de=P/% 1
b1 +d _ b= bo f —(8/8)y y)bli—ldy

fo(0) =

Given that the derivatives of generating fct at zero gives the probabilities associated

with the distribution, we have:

mo0 = fo(0)
m10 = fo(0)
m20 = fo (0)
Tno = f(gl(o)
From (6) we have fi(x) = e(®*~D8/9 _ f,(x) and then for z = 0 one obtains: f;(0) =

e B8 _ fo(0)

therefore,in same way 1 can easily get:



14

701 = f1(0)
m11 = f1(0)

m1 = f1(0)

TTnl = fln(o)

Using the result above one can determine the probability in the stationary state of
having a given number of proteins type I and II in the system given that the protein
type II can have just 2 possible states.

Next I will expand this result for the case when protein type II can have more than

two states involved in the process.

2.5 Three state model

2.5.1 Describing the model

Having explored a two-state model in the previous section, we now study a simple
three-state model of protein synthesis - degradation.

The system is the same as before except that

the type II protein can now have 3 possible copies/states: 0 or 1, and 2. As before
the rates of annihilation for both protein types are: § respectively d some constants
proportional with the existing number of protein copies. The rate of creation for the
first protein type is a constant 3. The rate of creation of the second protein b;- s Can
have two possible values, b, respectively b} depending on wheater the quantity of protein

type I is bellow or above a certain threshold taken for simplicity in this case to be 2.
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bz), when j < 2

/

bjk = b'1 when j > 2

0 when k > 2Vj

The two protein types with j respective k copies interact in the following way: when
is no more then one protein type I present than the protein type II will have a constant
birth rate by. When are 2 or more protein type I in the system, protein type II is
changing the birth rate from bf, to .

Again I will use that for the case when we have just one protein type undergoing
a birth death process with a constant decay/birth rate is a well known fact that in
steady state, its stationary probability distribution is a Poisson distribution (Karlin,S.

and H.Taylor.1975).

2.5.2 Equations which describe the birth death process of the 2 types

I and II in steady state

The same as in previous model, in steady state, the left side of the master equation (1)

describing the time evolution of the probability distribution is 0. By difference with the

two state model, one gets in steady state 9 possible situations in which quantities of

protein type I and II, j and k, can be. We can write an equation for each such situation.
7k, is probability of type I and II to have j respective k quantities.

when 7 =0,k =0:

m00(8 + o) = m106 + To1d (2.12)



when j =1,k=0:
T10(8 + B+ by) = 12020 + 7018 + m11d
when 7 > 2 k=0:
(0 + B4 b1) = w100 + 1) + mjnd + w100

when 7 =0,k=1:

m01(d + B 4 by) = 116 + Tooby + T022d

when j=1,k=1":

7T11((5+d—|—ﬂ+b6) = 7T2125+7T122d+7[’01ﬂ+7r10b2]

T (6 + B+ +d) =711 + 1)6 + mj22d + 7118 + mj0b;

when j =0,k =2:

7028 + 2d) = 7126 + To1by

when j=1,k=2:

7T12(2d + ﬂ + 5) = 7T222(5 + 71'11[)6 + Wogﬁ

when j > 2 k=2:

7Tj2(j5 + B+ Qd) = 7Tj+1,2(j + 1)5 + 7Tj7172ﬁ + 7Tj7lb,1

16

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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As before, using generating function technique we simplify our problem by trans-
forming the above equations into ODE’s satisfied by the generating function.

Let fx(z) = > %2, mjx2’ be the p.g.f.

The marginal W}, giving the probability that species 2 has k elements, k=0,1,2 is

given by

Wi=>_ mn =2 fi(0)/n!
j=0 n=0

Since protein 2 doesn’t influence protein 1 the marginal distribution of protein 1 is

given by:

where p; = mjo + mj1 + T2

it follows that:

oo ) o0 ) J
folx) + fr(@) + falz) =) 2l (mjo + mjn + mja) = Zm36_6/5; <5) = (2.21)
j=0 '

7=0 0
a5 L ( 5>j /5 2B/5 _ (x—1)8/5
e Z —|z=| =e e =e
= g\ o

and

Fo@) + AL(@) + fo(e) = Sete0os (222)

Using generating function technique on the equations (12-20) together with the
conditions (21-22), one can derive three ODE’s satisfied by the generating function (see

Appendix C for detailed calculations):

(z—1)8fo(x) + (B+by — 28) folx) — dfs () + (by — b)) w107 + (by — by) fo(0) = 0 (2.23)
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!/

(= 1)8f1(x) + fi(x)(by +d+ B — Bx) + f1(0)(by — by) +ami1(by — by) — 2dfa(x) (2.24)

—by fo(x) — fo(0)(by — by) — mioa(by — by) = 0

(& = 1)5f5(2) + fa(2)(B+2d = Bz) = f1(0)(by — b)) = f1(x)by — m1a2(by —by) = 0 (2.25)

and then reduce everything,(see Appendix D), at one eq.

2
(e=1) - fy @)+ (@=1) 5 £o(2) 1220+ fola) 37267~ (e—1)66—20Cy+ O]~ Coa™+ g4 Cs = 0
(2.26)

where C1, Co, C3 are known constants fully determined by the birth/death rates:

Cy =06+ 26+ 2b, +3d
Cy=26+2b, —d
Cs = (B+b)(B+b; +d) +2d° +28d + byd

and

’

fo(0)

(0= 8 —by—2d) + £(0)]

Ci = (by — b1)[—fo(0)B/d +

Cs = (b 0) + 202 5 1 0y 4 20) - 2ol
Co = (b — ) P

depend of fo(0), f1(0), f5(0), £1(0)
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where we know that f()(()) = 700, fl(O) = 701, fé(O) = m10, f{(O) = 711
Equation (26) is a second order ODE with non-constant coefficients;
One can solve such equation by using ” power series solutions method” (see Appendix

E for detailed derivations of eq.(26)) ; Basically assume eq. has a solution of the form:

y=Y aua" = fo(x)
n=0

o0 o0
= D mana = 3t Danaa” = fi(@)

n=0
oo oo
Z n—1)apz" > Z(n +2)(n+ Dapyox" = fo ()
n=2 n=0

Substitute this solution back in eq(26)

Doing this, in the end I'm left with the following recursion relation (see Appendix

D):

an — L 1 L
n+D)m+2K  m+Dn+2K™" (a+Dn+2)K

iz = (2.27)

and therefore obtain for even coefficients:

n—1 2”
d2n = |Kn opl Z Kn—l
and for odd coeflicients:
1 @2+ 1
Gt = on K™ 2n+1 'lz(; Kn—

going back to the assumption I've made on the solution of the 2nd order diff. eq.
and using the expression for the coefficients obtained above, the solution it can be

written as:

y=>_ ant" = fo(z) =
n=0
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Therefore:
o0 n— o0 1 = 2l+1
folx) :nZ:o[ ann ol ZK" ! 2n+7;)[(2n+1)!K” 2n+1 ! pars Kn=
where
K=S20F

F,G,H,R,S,T,C1....Cg are written explicitly bellow:

and C1, Cy, C3 are known constants fully determined by the birth/death rates:

C1=6+23+2b, +3d
Cy=28+2b, —d

Cs = (B+b)(B+b; +d) +2d° +28d + byd

2n+1
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meanwhile

’

Cu = (b~ ) o8 /d + T 6 — 5~ — 2d) + £ (0)
Cs = (by — b)) [f1(0) + fOC(ZO) (8 + by +2d) — foc(10> 5]
Co =ty — v ol

still depend by fo(0), 1(0), fo(0), /1(0)

The next step is to obtain £o(0), f1(0), f5(0), f1(0); Once I will get this T will have
an explicit formula for fo(x). To obtain f5(0), f1(0), f5(0), f1(0); one can go back in the
equations (23-25) and using the conditions (21),(22) for z = 0,z = 1 will obtain the
following equations:

for x=1 and 0 in eq. 23 one obtains:
(bo — b1) fo(0) + (by — b1) fo(0) + by fo(1) — dfi(1) = 0 (2.28)

and respectively:
(B + b0) fo(0) — 6fy — df1(0) =0 (2.29)
for x=1 and 0 in eq. 24:
—(bo=b1) fo(0)— fo(0) (by=b1)— f1(0) (by=b1) =Dy fo(1)+11(0) (Bg—by)+1 (1) (by +d)—2df2(1) = 0
(2.30)

and respectively:

—bo’ fo(0) + f1(0)(d + B + by) — 6£1(0) — 2df2(0) = 0 (2.31)
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for x=1 and 0 in (25):

—f1(0)(by — by) — (by — by) f1(0) — by f1(1) + 2dfa(1) = 0 (2.32)

and respectively
— F1(0)by + (B + 2d) £2(0) — 5£5(0) =0 (2.33)

also conditions (21) and (22) become

£o(0) + f1(0) + f2(0) = e F/° (2.34)
Fo(0) + £1(0) + f2(0) = B/deP/* (2.35)

where we have:
fo(D) + f1(1) + f2(1) =1 (2.36)

In total the equations (28-36) is a system with 9 linear equations in 9 unknowns:

£0(0), £o(0), £1(0), £1(0), £2(0), f5(0) fo(1) f1(1) f2(1)

2.5.3 RESULTS:

solving the above system of equations I'm obtaining the following expression for fy(0),

f1(0) and f2(0):

Eyp, _ p, D3
_ % En b5 — By Dy

El E2 —El%

D
By — By 2

= D
By — By B2

f1(0)

f2(0) = —fo(0) = f1(0) + €5
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’
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e
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/ b
gy _scbo(B+2d) B+2d, 6(1—3%)
= 0+ — §(L=) 4 (1= )T
2d
/ / ,(3+2d d+ﬁ+b
py_ gty B2t sy - 20+ g
? 5 2d6 3
Dy = Be™5 +6(fe=5 +8)e %
are now constants fully determined by the birth/death rates.
Now the expression for

o) = gt 51 2

— 2n+7;)[(2n + 1)!K” 2n +1)! pard K

is fully determined, therefore the joint probability distribution of having proteins
type I/II as well. Using the result above one can determine the probability in the
stationary state of having certain number of proteins type I/II given that the protein

type Il is present in one or two copies or totally absent. This is a generalization of the

case when I have just a presence or absence of the protein I/II involved in the process.

2.6 Discussions and conclusions

The above models are very general and have the potential of being applied in many
various concrete biological scenarious. An example of an alternative way to think about
this models is if we imagine the following scenario.

We have 2 different types of proteins, let’s call these protein types as in the above
model, protein type I and II. The protein type I is benefic for the organism, the protein

type II, each time it gets created even just one protein is immediately detected and

2n+1
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than destroyed by enzymes with an protective role against this bad for the organism
protein type II. Apparently the two protein types have no connection, is just that
when the good protein type I gets to a certain threshold the bad protein, type II, is
increasing it’s rate of being created. This has as consequence the fact that the enzyme
in charge with detecting the bad protein type II created at the previous rate can not
cope anymore with destroying the bad protein at the new rate of being created. This
gives the potential for the bad protein to get accumulated into the organism and in
time to harm the organism.

These simple but very general models provide an mathematical framework which
might help for a better understanding of protein synthesis/degradation when biochem-
ical processes frequently involve small numbers of molecules (e.g. a few molecules of
a transcriptional regulator binding to one 'molecule’ of a DNA regulatory region). As
mentioned such reactions are subject to significant stochastic fluctuations, and there-
fore the stochastc behavior in the process can not be ignored anymore. As mentioned
at the beginning the process of synthesis/degradation of proteins is a process known
to affect many phenomenon including aging, therefore having a general mathematical
framework in which to include this models would be an important step toward a better

understanding of protein synthesis/degradation when stochasticity is involved.
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Chapter 3

Inheritance of Epigenetic Chromatin Silencing

3.1 Introduction

3.1.1 Chromatin modifications and the impact on aging

More than two decades ago, it was proposed that ’aging of proliferating cells’ results
from genome reorganization occurring during the division cycle (Macieira-Coelho,1980).
However, progress in the areas of epigenetics and cellular and organismal aging has been
slow and sporadic. Reasons for this include the complexity of aging, as well as a lack
of specific defined targets that could be probed with specific reagents. The recent dis-
covery that over-expression of Sir2, a NAD+-dependent histone deacetylase extends
yeast and worm lifespan (Hekimi and Guarente,2003) has triggered a renewed inter-
est in the possible role of chromatin remodeling in aging and replicative senescence.
It has been proposed that reassembly of repressive chromatin domains (heterochro-
matin) may contribute to senescence and aging process (Howard, 1996). Chromatin
modifications has been linked to the biology of aging in several ways. Aging produces
phenotypic chromatin defects such as telomere shortening and general heterochroma-
tinization, which correlates with a decrease in the repair of chromatin aberrations (T.
Lezhava, Chromosome and aging (2001), W. E. Wright, 2002). The first clear link

between chromatin-modifying activities and the aging process was described in yeast



27

and pointed to Sir2p (see Kaeberlein Perspective, 2001).

3.1.2 Chromatin modifications and epigenetic processes

Epigenetic regulation of multiple heritable cell fates involves transcriptional repression
or activation of the expression levels of genes, over possibly many cell cycles, without
altering the underlying genetic sequence EpigeneticsAllis. Such regulation is crucial in
eukaryotic development where specialized cells with identical genetic information differ-
entiate early on to serve distinct functions. At the heart of one important mechanism
of epigenetic control is the accessibility of DNA packaged into higher order structures
known as chromatin. The basic unit of such packaging is the nucleosome comprising
146 base pairs of DNA wrapped around a core histone octamer (two each of H2A, H2B,
H3 and H4) in 1% superhelical turns ! MCB. These histones are some of the most evolu-
tionarily conserved proteins known. Covalent post-translational modifications of these
histones have been identified to be a critical player in cellular memory. At least seven
such modifications (or ‘marks’) are documented and have been studied extensively in
recent years; methylation, acetylation, phosphorylation, ubiquitination, sumoylation
and ribosylation. These ‘marks’ create a favorable binding site for specific regulatory
proteins, and thereby play a pivotal role in controlling transcriptional activation and
repression, as well as other cellular processes like mitosis/meiosis and DNA repair; for
a recent overview see Peterson. Another important epigenetic mark is CpG methy-
lation of DNA. In this work we will be mostly concerned with histone modification,
rather than DNA modification, although some of the issues raised may apply to DNA

methylation as well.

'Nucleosome may also contain linker histones, e.g. H1 and variants in higher-order structure like
the 30 nm chromatin fiber.
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One of the defining properties of epigenetic phenomena is its stability— the ability
of the cell to maintain its epigenetic state through many cell divisions. The marks
responsible for the epigenetic effects, be they on DNA itself or on the histones, are bound
to get diluted during DNA replication by introducing newly synthesized DNA and
histone proteins, indicating that these heritable states must be robust against significant
perturbations in the concentration of marks. The aim of this work is to explore minimal
models of epigenetic silencing in order to identify the necessary conditions for stability
of chromatin states that correspond to distinct epigenetic phenotypes.

In order to provide a concrete example, let us focus on the tails of histones H3 and H4
which exhibit a number of modifications. Methylation/acetylation of Lysines(K) and
Argininies (R), phosphorylation of Serines(S) and Threonines(T) on multiple positions
on these tails are some examples. Moreover, Lysine residues can accept from one to
three methylations groups and Arginines can be mono- or di-methylated. The majority
of these post-translational marks occur on amino-terminal (also called ‘N-terminal tail’)
and carboxy-terminal (also called ‘C-terminal tail’) domains, though examples of modi-
fications within the central domains are beginning to be unraveled. As an example of an
N-terminal tail modifications, consider the case of H3K9. This Lysine can be acetylated
or methylated and, as already mentioned, there are three methylated states. There is
no detectable H3K9 methylation in S. Cerevisiae, however in S. Pombe, Drosophila
and mammals, methylation of H3K9 have been associated with trascriptional silencing
and acetylation has been associated with transcriptional activation Peterson, Turner,
Strahl, Lachner. A combination of such marks defines an epigenetic state, and some of
these states are possibly stabilized by histone modifications influencing the presence of

one another.
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Various enzymes coordinate histone modifications and others bind to modified tails,
like chromatin modifying proteins and trascriptional regulatory proteins. From the
Silenced Information Regulator (SIR) proteins in budding yeast, regulating repression
of gene expression from hidden mating loci and from telomeres MCB, to silencing of
developmentally important Hox genes in metazoans by the Polycomb group of proteins
Gilbert, mechanisms of chromatin silencing involve enzymes that can act on more than
one nucleosome in its neighborhood GrewalMoazed. This non-locality of action opens

the possibility of interesting collective aspects of stability of epigenetic states.

3.2 A general stochastic model of epigenetic inheritance

3.2.1 The model

We consider a lattice of size L whose sites correspond to nucleosomes ordered along the
length of the chromatin. The nucleosome corresponding to site i, has multiple states,
corresponding to particular combinations of modifications of a set of side chains that
we are interested in. These states are labeled by s = 1,..., N. The rates of transition
at site ¢ from state s’ to state s, namely, Riss[s1,...,8i-1,5, Si+1,.-.,51], depends
not only on the local state but also on the states of all the neighbors within a range
. In practice, this dependence arises because particular modifications of a site leads
to recruitment of particular histone modifying enzymes that could affect modification
rates of the neighboring nucleosomes. Fig.6 provides a schematic representation for the
model and its dynamics.

The master equation describing the time evolution of the probability distribution
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P[s1,...,sp;t] is given by

d
%P[sl, N
L
= ZZ (Risis’[sla ceey Si—1, S,, Sit+1y--- ,SL]P[Sl, e ’Si71,8/78i+17 ey SL;t]
=1 s
_Rz’s’si [81, e o3 Si—15SiySi+1ly- - SL]P[Sl, e o3 Si—15SiySiH1ly- - SL;t]) (3.1)

for times between DNA replication. At the point of DNA duplication, existing histones
components like H3-H4 octamers and H2A-H2B dimers get distributed with equal prob-
ability to the resulting pair of DNA molecules Sogo, Krude, GasserSogo. This process
retains some memory of the original state. In addition, newly synthesized histones also
get deposited. Thus the process of DNA duplication and subsequent reassembly of
nucleosomes retain, as well as dilute, the information carried by epigenetic marks.
While considering the result of duplication, we would always track one of the two
resulting cells. In this work, we ignore the variability of histone marks over the cell
cycle. We assume that, independently at each site i, there is one half probability of
having the parental histones with epigenetic marks and one half probability of it being
replaced by a newly synthesized histones where the state of histone modification s comes
with probability ps. The process of de novo assembly of histones can be thought to be
independent of existing histone modifications. Therefore, we represent the evolution
of the probability distribution from the parental cell to one of its progeny, due to

replication and reassembly, as follows:

L
1 1
Pls1,...,sp;nT+] = Z H (255“3; + 2p52> P[s},..., s ;nT—]. (3.2)

! Ay
870y =1

where nT+ and nT— refer to the times just after and just before the n-th round of
DNA duplication happening with a time period of T'. We assume that DNA duplication

happens instantaneously (in reality, fast compared to the time between two duplication
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events), namely it occurs at times ¢ = nT", n being an integer.

We will study, computationally, the stochastic model of epigenetic inheritance for-
mulated above for a particular choice of states and rules of state transitions. However,
to gain some insight, it will be useful to carry out a parallel analytical approach which

will be described in the next section.

3.3 Mean field theory

To solve the master equation analytically for the long time behavior of Plsq,...,sp;t]
is generally an impossible task. One, therefore, has to resort to some sort of ap-
proximation. One such approximation often used successfully in statistical mechanics
is the “mean field” approximation (Reichl,1997). In this approach one approximates
Pls1,...,sr;t] by a factorized form []; pi[s;;t]. Using this approximation one derives

that the evolution equation for p;[s;;t] is going to be

d 7 L
i [si;t] = Z](Risis’pi[s it] — Rigs,pilsi; t]) (3.3)

)

where the definition of the average rates R;sy is

Riss = Z Riss'[s1,- .. splpi[s1;t] ... pic1[si—1; tpit1[sit1,t] ... pr[sp; t].
815-,8i—1,8i+1,--»5L

(3.4)
Notice that these averaged rates R;sy are polynomials in p;[s;t] making Eq. 3.3 a
nonlinear equation.
We also need the equivalent of Eq. 3.2, capturing the effect of DNA duplication.

1 1 i1Si; T —| + pg;
pilsi;nT+] = Z (255“3; + 2ps;> pilsi;nT—] = pilsi 5 | +ps : (3.5)

S

In the mean field analysis of all the models discussed in this work, we will ignore the

spatial variation of ‘marks’ and replace them by average concentrations corresponding
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to an entire region of chromatin, namely p;[s;; t] = p[s;;t]. We thereby focus on regions
of chromatin with one epigenetic fate and in the spirit of exploring minimal dynamical
models, we claim that the study of just few histone modification states can already
lead to nontrivial insight about the dynamical system. For example, recent studies
see Sengupta has addressed one such model of silencing that included spatial structure,
leading to predictions about the propagation of silencing, . In this work we will be

concerned with inheritance of ‘uniform’ states. The equations for the variables pl[s; ]

Cplsit] = 3 (Rugplss ]~ Rlsi) (3.6

Sl
where R,y = R;sy, is given by Eq. 3.3. They are independent of i because the rules of
transitions are translation invariant and we ignore boundary effects. The equivalent of

Eq. 3.2, indicating the effect of DNA duplication, in the mean-field context is

pls; nT—] + ps

plsinT+] = 5

(3.7)

We remind the reader of some well-known aspects of the mean-field approxima-
tion commonly used in statistcal physics, in order to make the present discussion self-
contained. On incorporating recruitment and cooperative behavior multiple neighbor-
ing sites of a site influence the probability of the state at that site, therefore, the transi-
tion rates are dependent on what happens on neighboring sites. In what sense can these
rules of transition be thought as depending solely on the state of histone modification
on the site? To answer this, we suppose that the rates R;s,s/[s1, .-, Si—1,5, Si+1,. ., SL]
depend only on the fraction of sites in a given state in the neighborhood of ¢ within
separation [, where 1 << [ (we could still have [ << L to be physically meaningful).
That mean field theory is applicable, and very often an excellent approximation, can be

understood by defining mean-field averaged quantities, i.e., coarse-graining the system.
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We can group L sites into L/l clusters of [ sites each. We redefine the probabilities
pilsi, t] of state s; at site ¢ € [1, L] by the averaged probability p;[s,t| of state S at any

cluster j € [1, L/l], where formally

jl
_ 1 Q
pj[S, t] = 7 Z pi[sivt] (38)
i=jl—1+1

Now we can assume that the averaged probabilities are approximately site independent.
The approximation turns out, a posteriori, to be justified when the chemical noise in the
concentrations of the states is relatively small, and the system is not near a dynamical
critical point. The new states S are not binary corresponding to the presence or absence
of marks but a discrete spectrum of states that can be approximated by the concen-
tration of marks in a cluster. This mean-field equivalence of the local probability of a
binary state at a site to the probability density (or normalized concentration) of states
in a ‘coarse-grained cluster’ is going to be exploited in the rest of the work implicitly
in writing down mean-field differential equations for the dynamics of the system. We
will not introduce in the rest of the work the formal redefinitions of probabilities done

above.

3.4 Two state model

Abiding by our goal of identifying a minimal model of epigenetic silencing, we outline
in this section a two-state model of stable epigenetic marks and observe that with-
out cooperativity one cannot obtain bistability in such models. This is instructive in
appreciating the role of multiple heritable histone modifications in stable epigenetic
states.

Here the epigenetic state s could be just the presence (A) or absence of a mark

(U), and therefore the probabilities are, with notational simplification, p;[A,t] = a;(t)
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and p;[U,t] = u;(t) = 1 — a;(t), where, for example, a;(t) could be the probability of
finding the acetylation mark A on H4K16 on a nucleosome of the chromatin of budding
yeast S. Cerevisiae and wu;(t) of finding that lysine unmodified (deacetylated). The
rate constant for an acetylated mark to be deacetylated owing to Histone deacetylase
(HDAC) activity and natural degradation is given by 74, i.e., Rjya = v4. To include
the effect of recruitment of acetylases by acetylated marks we define a rate constant of

recruitment a 4. We obtain the mean-field expressions for this rate as follows,

R = 5 {apn() +a51(0) (3.9)

Rav ~ aga(t) (3.10)

Similarly, we also include the effect of recruitment of deacetylases by unmodified
sites, for example, SIR2 protein complex is known to have deacetylation activity and is
recruited by deacetylated sites, and the rate constant for this process is denoted by 4.
The constant rate of acetylation of an unacetylated mark is denoted by y 4. With these
definitions, we obtain the equation for the rate of acetylation. In fig. 7 is depicted a

schematic representation of the two state model dynamics.

da(t)
dt

= (1 —a®))(xa + aaa(t)) — (va +na(l — a(t)))a(t) (3.11)

In the spirit of this work, this is the simplest model one can examine. This model has

only one stable state given by

* 1 — —_ —
o' = 3o (OéA —y4 — XA+ VAaaxa + (@a —ya — XA)Q) (3.12)

where a4 = a4 — na. This solution goes to one for vanishing rate of degradation
~v4. This behavior is insufficient as far as epigenetics is concerned— the model fails to

produce bistability even in the absence of a cell cycle. Including DNA duplication in
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the model will not produce multiple dynamical attractors. This very simple analysis
leads us to conclude that cooperativity (of histone modifications) is necessary in a two
state model to attain bistability, as we shall soon present. In the context of the specific
example of silencing in S. Cerevisiae [Kurdistani and Grunstein(2003)], SIR complex
of proteins bind cooperatively at a deacetylated site; see [Sedighi and Sengupta(2003)]
for modeling of this system.

Thus, if we allow the deacetylated and acetylated sites in the above model to recruit
enzymes cooperatively to deacetylate and acetylate neighboring sites respectively, then

the above model is modified to,

da(t)
dt

= (I —a(t){xa+aaa"(t)} = {ya +na(l —a(t))"} a(t) (3.13)

where the degree of cooperative acetylation is n and the degree of cooperative deacetyla-
tion is m. Assume that the basal rates are very small— x4 and 4 can be ignored to the
lowest order approximation. For the simplest case of cooperative behavior (n = m = 2),

the fixed points of the model are

{azl,a:(),a:m} (3.14)

A+ N4

where the first two are stable fixed points, showing explicitly that both a high mark and
a low mark state is stabilized by cooperative effects. More generally, call f(a) the RHS
of Eq. 3.13 with n = 2, f(a) will have three zeros, a; < as < ag in the interval [0, 1].
The scenario relevant to us is when a; and ag is stable and is separated by unstable as.

Any initial states with a(0) < ag will eventually be attracted to a; and any initial
state with a(0) > ao will eventually be attracted to as. Now suppose that the cell
undergoes mitosis with a typical cell-cycle period of 7. For simplicity, assume that

mitosis exactly halves the concentration of marks on chromatin. If ag > %3 then, for
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cell-cycle time T' considerably larger than the timescale of histone modification rates,
only one fixed point will be stable to cell-cycle perturbations over many cell-cycles, and
this fixed point will be approximately a;. This can be understood as follows. Even
when the system starts close to a3 (corresponding to high concentration of marks), the
concentration of marks after mitosis will be less than ao and, therefore will be in the
basin of attraction of the stable fixed point a; (low concentration of marks). However,
for ap < % and T fulfilling the same conditioned stated earlier, two fixed point will
be stable to such cell-cycle perturbations. This condition implies that na < a4 for
stability when y 4 and 4 are negligible. For fairly explicit expressions for 7" in terms
of f(a) and restrictions on the parameters entering f(a) and T" obtained from requiring
stability.

Going beyond mean field theory, we use simulations to explore the tolerance of the
system to changes in the rate parameters and its stability against cell-cycle perturbation
and chemical noise.

Comparison of the simulation of this model against mean-field theory is shown in
Fig. 3.1. The most important conclusions from this study are the following. We have
already observed that even at the mean-field level, the requirement of stability against
cell-cycle perturbations impose constraints on the rate parameters. In particular, the
constraint n4 < a4 implies that the cooperative conversion of U’s into A’s is stronger
than the cooperative conversion of A’s into U’s. Therefore, even when the rates of 4
and x4 (i.e., the rates for spontaneous creation and decay of A) are small, which it
should be in order for the epigenetic marks to be stable within a cell-cycle period, the
fluctuations in U turning into A are magnified compared to the fluctuation in A turning

into U. As an example of this ”instability” of the system for a reasonable choice of
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values for the rate parameter, see Fig. 3.2. The concentration a(t) is plotted against
time for two initial states, a(tp) = 0 and a(tp) = 1. In all these studies, we always
consider cell-cycle period to be much larger than the typical relaxation times to reach a
stable state. Nevertheless, spontaneous fluctuations may flip a low A state to a high A
state eventually, often within a few cell-cycles. This phenomena is quite striking when
compared to the behavior of the three-state model we introduce in the next section. To
anticipate our results, we observe that a three-state model is more stable in the above
sense, and we thereby postulate that presence of multiple epigenetic marks is a design
criterion for epigenetic stability.

An alternative way to think about this phenomenon is as follows. Let us ask our-
selves how can we go beyond mean field theory. Even if the uniform solution with a
nearly zero is stable in mean field theory, there is always a non zero probability of nucle-
ating a cluster of few A sites among all the U’s. This configuration has two boundaries
between the all A phase and the all U phase. The condition 4 < a4, a consequence of
the constraint imposed by the states surviving through cell cycle, implies that, on the
average the boundary would propagate into the all U region. This is the phenomenon
of front propagation between two stable states AronsonWeinberger, CrossHohenberg.
The linear growth of acetylation shown in Fig. 3.1 is the consequence of such a constant
front velocity.

The only way we could make the unacetylated state survive for many rounds of cell
cycle is by having the probability of the initial nucleation lowered. This indeed happens
in models where the range of interaction [ is large, as we have seen from our simulation
of related models (data not shown). The nucleation probability is also low for the the

three state model as we will argue, later.
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3.5 Three state model

Having explored a two-state mean-field model and its limitations in the previous section,
we now study a simple three-state mean-field model of histone modification, originally
proposed in the context of silencing in fission yeast S. pombe Dodd, where the states are
unmodified (U), methylated (M) and acetylated (A). This model is a simple example
from a class of models where we will prove that bistability is a result of the presence of
recruitment of multiple marks. For the sake of clarity, a concrete example of a three-
state model could be the acetylation and methylation marks on H3K9. We belabor the
spirit of this analysis— we are not pretending that these modifications on the histone
are independent of other modifications, or that a high acetylation or high methylation
on any histone tail protein leads to identical functional outcomes, we are, instead,
interested in clarifying the distinctions in stability of epigenetic inheritance obtained
in the presence of multiple marks. The stable fixed points we analyze could as well be
combination of various histone modifications.

Coming back to the example, a methylated site recruits further methylation of
neighboring nucleosomes and an acetylated site similarly recruits further acetylation.
The epigenetic states s are high methylation, high acetylation and unmodified site.
Therefore, we denote the mean-field probabilities as p[M;t] = m(t), p[U;t] = u(t) and
plA;t] = a(t). These probabilities obey the conservation law m(t) + u(t) + a(t) = 1.
Let aps be the net (recruited) enzymatic activity of histone methyltransferase (HMT)
which converts U to M and of histone demethylase (HDM) which converts M to U.
Similarly, let aq be the net (recruited) enzymatic activity of histone acetyltransferase
(HAT) which converts U to A and histone deacetylase (HDAC) which converts A to U.

We also include recruited conversion of A to U in the presence of M parametrized by
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the enzymatic activity Bas, and M to U in the presence of A parametrized by 54. The

kinetic equations for the concentrations are given by

chzit) = apu(t)m(t) — Bar m(t)a(t) (3.15)
d‘;ff) = aau(balt) — Baalt)m(t) (3.16)

One should include basal rates of conversion of U to M and U to A given by rate
constants xps and x4, natural degradation and conversion rates of M to U and A to
U given by rate constants v;; and v4, and we will do so shortly.

We can further embellish this minimal model to suit other observed features like
protein regulations, intermediate states like di- or mono-methylation etc., but the key
aspect of bistability is already captured at this level of sophistication, and we think it
is instructive to present that without complicating the model. The fixed points of the
above equations are determined by the simultaneous roots of the quadratic polynomial,
obtained by setting the LHS of Egs. 3.15 and 3.16 to zero. They are given by

{a* =1,m" =0},{a* =0,m" =1},{a” = 0,m" = 0},

anBa . aaBm }

{a ~ aafu + (an + ﬂM)ﬁA’m — aaBu + (anm + Bur)Ba

It can be easily checked that the first two fixed points are stable, the third fixed point

is an unstable saddle point and the fourth point is unstable. It is not hard to con-
vince oneself that if one includes small basal rates the stability of the model remains
unaffected, and we come back to this later.

This simple level of modeling may already be quite relevant. We observe that in
the absence of active chromatin remodeling processes which may dictate basal rates
for conversion and degradation of marks, recruitment alone ensures that methylated

and acetylated states are quite robust against mitotic perturbations. During mitosis,
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the parental nucleosomes with marks are distributed randomly to daughter chromatins,
however, newly synthesized nucleosomes are modified by recruitment from neighbors,
restoring the original state. Cooperativity is not necessary. One can argue that the
prevalence of multiple modifications of histones, instead of just unmodified and uniquely
modified histones (a two-state scenario), is owing to this efficient robustness achieved
through multiple states. The reason for this increased stability lies in the higher di-
mensionality of the space of configurations and the fact that multiple transitions (say,
M — U — M, at more than one neighboring sites) need to take place before one
nucleates the other stable phase.

For the sake of completeness, we now analyze the model by including basal rates
for conversion and degradation. In fig. 8 is depicted a schematic representation of the

three state model dynamics. The new equations are

dﬂ;t(t) = apru(t)m(t) — Barm(t)a(t) + xaru(t) — yarm(t) (3.17)
dc;it) = aau(t)a(t) — Baalt)m(t) + xau(t) — vaa(t) (3.18)

A plot of the flow lines when high A and high M states are stable is shown in Fig. 3.3.
Points are evenly distributed on a grid and allowed to evolve for a fixed time in gen-
erating the flow lines numerically. The hue of the plotted lines is changed linearly in
time. A similar plot for the scenario when the high A and high M states are unstable
as shown in Fig. 3.4. This is the case when the degradation rates are too high. The

lattice-averaged concentration of mark a(t) as a function of time is plotted in Fig. 3.5.
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3.6 Conclusion

We have formulated a mathematical model of inheritance of epigenetic silencing and
showed how we have two routes to producing stable epigenetic states: one via co-
operativity of silencing factor recruitment and the other via the presence of multiple
marks, where there are barrier states between an active and a repressed states. We
also found that multiple marks allow the cell higher stability to cell-cycle perturba-
tions, in comparison to a single mark system.We believe that the robustness of these
models to cell-cycle perturbation may be a reason why multiple histone modifications
are observed frequently in epigenetic design.We note however, that at a fundamental
level these two are not entirely distinct routes.The presence of intermediate states nat-
urally lead to cooperative effects when each of the intermediate states recruit enzymes
for further modification. Moreover, protein complexes that induce further enzymatic
activity often possess domains that simultaneously recognize histone modifications at
adjacent sites. This is thought to be the case with SIR protein complex and also for
the polycomb silencing mechanism. Effective cooperativity can emerge on eliminating
transient intermediate states in models with first order rates.

We have phrased the mean field theory in terms of coarse-grained quan- tities like
the fraction of sites with a particular mark in a cluster. For those readers familiar
with statistical physics, a natural question is how does effec- tive model change if we
continue the coarse-graining to larger length scales. In other words: how does the
model renormalize” under the blocking trans- formation (Reichl, 1997)? In practice,
setting up a reasonable scheme for doing such block transformation may be dificult.
However we could make some educated guesses about what would happen. In absence

of any conser- vation law, there is no obvious reason why this system should not have
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a finite (although long) correlation length in space and, similarly, a finite corre- lation
time. The system would not have genuinely multiple phases. All these effects, which
are missed by mean field theory, would, in principle, show up in renormalization group
transformations. We had already mentioned how the system could get out of one of
the phases, by nucleation of the other phase, and showed the numerical evidence. Such
nucleation gives rise to do- main boundaries, which are responsible for finite correlation
length in the system. Technically, therefore, the system becomes very weakly coupled if
we coarse-grain to blocks with size larger than the correlation length. Having said that,
in the biological context, the domains usually incorpo- rate few hundred nucleosomes
and epigenetic states are stable for somewhere between 10-100 cell cycles. It is enough
for the model to produce correlation lengths and correlation times in those ranges.
Mean field theory gives us a hint when such correlated states appear. However, in this
approximation, 13 long, but finite, lifetimes become infinite.

As we saw, for both states to be long-lived, we need suppression of the probability of
spontaneous nucleation of the more stable state (as measured by average front velocity
helping to spread the state). This can be achieved either by having a more complex
model which requires multiple marks to occur before nucleation happens, or by having a
long range model where many sites have to have unlikely changes before the nucleation
is complete.

In practice, for the systems biology of silencing, the possibility of more complex
models is worth serious consideration, especially when there is no obvious mechanism
of cooperativity and there appears to be a plethora of histone marks that are involved in
the process. In addition, these models have different degree of robustness to variation of

conditions from cell to cell. Many of the parameters in the model are not just chemical
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reaction rates but also depend upon abundances of certain proteins in the cell. For
example, the effect of the neighbors is often through recruitment of histone modifying
enzymes not explicitly modeled. Variation in the abundance of those enzymes would
change the effective parameter from cell to cell. On the other hand, if the biochemistry
dictates that the basal modification rates are very small, say compared to modification
due to recruited enzymes, the basal is unlikely to become significant player in any of the
cells. If one neglects the basal rates, the two state model has an additional constraint
on the nonzero parameters, in addition to constraints of multistability, whereas the
three state model does not have such an additional condition. As a result, we expect
the functionality of the second model to be more immune to cellular variability.

The interaction between cell cycle and epigenetic silencing is a rich subject in biology.
We have only focused on one aspect of it in these models, namely, the recovery of
the epigenetic information after the dilution caused by DNA duplication, and ignored
other phenomena like cell cycle dependent histone modifications. However, even within
our simplest setup, different classes of models give rise to interesting differences in
performance. Exploring such models in combination with experiment designed to test
qualitative predictions valid for a broad class of models is the way to gain insight into

the nature of epigenetic inheritance.
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Stochastic vs. Mean—Field Plot of the dynamics of a(t) with mitosis
T T T T

1 1 1 1 1
500 600 700

300 400
Time in units of 3t

Figure 3.1: For chapter 3: Two state model’s stochastic simulation, averaged concen-
tration a(t) and mean-field ODE solution fit. Values of parameters: a4y = 5;n4 =
2.5;v4 = 0.1; x4 = 0.01. For the ODE fit, the fitting time-scale is 6t = 56/3.

Instability of the cooperative two state model for a=0 initial condition
T T T T T

0 300 400

50 600 700 800 900 1000
Time in units of &t

Figure 3.2: For chapter 3:Two state model’s stochastic simulation, averaged concen-
tration a(t) starting from initial states a(t = 0) = 1 and a(t = 0) = 0. Values of
parameters: aq = 5;1n4 = 2;v4 = 0.1;x4 = 0.01. Though mean field theory would
predict stability, fluctuations compromise it.
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0.0

Figure 3.3: For chapter 3:Three state model’s phase flow with high A and high M stable,
x-axis is m(t) and y-axis is a(t). Values of parameters used: ag = ay = 5; 64 = Sy =
374 =7 = 0.1, x4 = xmr = 0.01

0.0 0.2 0.4 0.6 0.8 10

Figure 3.4: Three state model’s phase flow with U stable, x-axis is m(t0 and y-axis
is a(t).Values of parameters used: g = apnr = 5;64 = By = 3574 = Y = 5;x4 =
xnm = 0.01
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Figure 3.5: Three state model’s stochastic simulation, averaged concentration a(t) and
mean-field ODE solution fit. Values of parameters: as = ayr = 5; 64 = Oy = 3574 =
Ym = 0.1; x4 = xar = 0.01. For the ODE fit, the fitting time-scale is dt = 15.5.
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PART II
Chapter 4

Quantitative transcriptional analysis of aging C.

elegans
4.1 Introduction

Given the existence of several mechanisms of aging (those conserved across
species), simple models have become important tools for elaborating the basic
biology of aging. Our lab uses the nematode C. elegans to dissect conserved
mechanisms of aging.

Caenorhabditis elegans was chosen by Sydney Brenner in 1965, as a model
organism to study animal development and behavior. This soil nematode has proven
to have a great potential for genetic analysis, partly because of its rapid (3-day) life
cycle, small size (1.5-mm-long adult), and ease of laboratory cultivation. C. elegans
natural way of breeding is as a self-fertilizing hermaphrodite. (see Fig. 1- from

C.elegans 11)
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Fig. 1 C. elegans anatomy (from from C. elegans 1l book)

Another advantageous feature of this nematode is its size, just 20 times that
of E. coli and its simple anatomy of 959 cells, including the 302-cell nervous system.
With such a small nervous system, C. elegans was the first animal model in which its
circuitry was completely reconstructed by serial-section electron microscopy
(White et al. 1986, 1988). The wild-type reconstructions showed all the connections
of all the neurons in the hermaphrodite nervous system. Other unique advantages
offered by this organism are the transparency of the body, the constancy of cell
number, and the constancy of cell position from individual to individual. Due to such
advantages, the complete wild-type cell lineage from fertilized egg to adult was
determined by observation of cell divisions and cell migrations in living animals

(Sulston et al. 1988).


http://www.wormbase.org/db/get?class=Cell_group;name=nervous%20system
http://www.wormbase.org/db/get?class=Cell_group;name=nervous%20system
http://www.wormbase.org/db/get?class=Cell_group;name=neuron
http://www.wormbase.org/db/get?class=Cell_group;name=nervous%20system
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An essentially complete C. elegans sequence was published in Science (Vol.
282 11 December 1998) and the last remaining gap in the sequence was finished in
October 2002. The completed C. elegans genome sequence is represented by over
3,000 individual clone sequences which can be accessed through WormBase. The
worm informatics group at the Sanger Institute play an important role in assembling
the whole database. WormBase is the repository of mapping, sequencing and
phenotypic information for C. elegans (and some other nematodes). WormBase is
based on the Acedb database system. Acedb was originally developed by Jean
Thierry-Mieg (CNRS, Montpellier) and Richard Durbin (Sanger Centre) for the C.
elegans genome project, from which its name was derived (A C. elegans DataBase).
However, the tools in it have been generalized to be much more flexible and the
same software is now used for many different genomic databases from bacteria to
fungi to plants to man. It is also increasingly used for databases with non-biological
content.

The entire genome of C. elegans encodes approximate 19000 genes. Note
that ~50% of C. elegans genes have clear human homologs and many molecular
processes are strikingly conserved from nematodes to higher organisms. Over 400
mutations or RNAi interventions that extend the ~ 3 week C. elegans lifespan have
been identified. Although the longevity phenotype is a focal point for much of the
work in the field, much less is understood about whether longevity genes actually
act to extend healthspan (the period of mid-life “vigor” that precedes decline),

enabling the animal to live a high quality or "youthful-like" life for longer.


http://www.sciencemag.org/content/vol282/issue5396
http://www.sanger.ac.uk/Projects/C_elegans/Genomic_Sequence.shtml
http://www.wormbase.org/
http://www.wormbase.org/
http://www.acedb.org/
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One simple question is what happens to gene expression as animals age--can
analysis of transcriptional profiles inform about the biology of aging and suggest
ways we might extend healthspan? In the first part of my thesis, I have therefore
been analyzing transcriptional profiles of aging animals with a focus on two areas
suggested by ongoing work in the Driscoll lab: one addresses the question of
whether there is a major ‘crisis’ or transcriptional transition during midlife, and a

second focuses on age-associated muscle deterioration.

4.2 Transciptional profiling to characterize aging and identify

genes that might impact healthspan

Microarrays are chips on which genes are attached for hybridization to
mRNA samples--hybridization signals indicate which genes are expressed as
messages and can speak to relative abundance and changes in gene expression over
time. We prepared replicate RNA samples over the course of C. elegans adult life and
hybridized to near complete genome arrays to ask how transcription changes
during adulthood and to correlate some of these with aging phenotypes. My analysis
uses methods developed for data mining microarray experiments, adapted for aging
research. The method I'm using bridges knowledge of statistical mechanics with
data mining methods developed in statistical mathematics. Such analyses can reveal
how the transcriptional regulation of genes might coincide, thereby implicating
proteins as parts of networks acting together towards a common biological function.

Such experiments are most useful for complex biological traits that result from the
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presumed functioning of several molecular pathways. Aging is one such biological
phenomenon that incorporates numerous molecular mechanisms underlying
environmental stimulus sensing, metabolic regulation, stress responses,
reproductive signaling, and transcriptional regulation. Current models of aging
emphasize different mechanisms as driving forces behind aging and lifespan
determination. However, an integrated understanding of exactly how these

mechanisms drive aging has not yet been formulated.

[ used supervised and unsupervised methods for gaining a better
understanding of the gene expression changes that might impact the aging process.
When interpreting the data using a supervised approach, I've tried to address the
major biological theories currently known that describe aging. To address the
oxidative damage theory of aging, for instance, I highlight stress response genes that
exhibit statistically significant changes, and then ask whether the expression
patterns of these genes share a common pattern. Overall, my work includes surveys
of insulins, longevity-implicated genes, dauer-related genes, autophagy-related
genes, muscle, neuronal and germline genes as groups of interest relative to aging

and healthspan that [ analyze in detail.

Using an unsupervised approach based on concepts from statistical
mechanics, I identified an interesting gene expression pattern that suggests that a
gene expression switch at midlife. This switch coincides with the onset of

biomarkers of aging including age pigment accumulation. I conclude my work with
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the description of the gene expression sets that underlie new hypotheses about

impact on later aging.

Several experiments using microarray technologies to address the different models
of aging have been published. A second phase of my analysis was to look at how my
data intersects with similar studies performed. I will focus on comparison of just
two other experiments due to their similarity with our experiment. I've searched for
the overlap between experiments and the common trends in expression pattern
using different statistics methods for normalizing and filtering the data. This part of
my work will not be included in the thesis however will be included in the paper in
preparation (see David-Rus, Driscoll et. al ‘A search for mid-life gene expression

changes that might influence aging’, in preparation).

A first foray into C. elegans microarray analysis was performed using Affymetrix
oligonucleotide-spotted chips.(Hill etal. 2000). This study compared gene
expression profiles from 18,791 predicted open reading frames, mainly over
developmental time points. One mid-life time point (post-fertilization day 14) is
included in the study for comparison. One-way ANOVA analysis was performed on
the data, which then was normalized to have a mean value of zero and a variance of
one. 4221 ORF’s with statistically significant variations in frequency (p< 0.001)
were identified. Of these ORF’s, subclusters (clustered by self-organizing maps
(SOM)) of expression patterns that exhibit declining expression at the 2-week time

point further were studied (Hill et al., 2000).

The first focused microarray study devoted to studying aging in C. elegans utilized a
probe DNA-spotted microarray of 17, 871 open reading frames to study aging
nematodes over a series of time points spanning pre-reproductive adulthood to old
age (Lund, et al,, 2002). In this study a combination of mutation and strains has been

used, see table 1 below:
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Table 1. Time Course of C. elegans from 3 to 18 Days of Age

Dy 3 4 6-7 a-11 1214 1610
far-15 2 0 1 1 1 0
spe-0:for-15 3 a 2 5 2 a
spe-0;omb-27 1 0 1 il 1
Total = 26 G 3 4 i 4
Oocyte production

foung adult ands = 25% survival

The number of arrays and the strain of worm includad in each time point are shown. Notable characteristics of the population are indicatad.

Table 1 from Lund et. al. 2002

An ANOVA analysis was undertaken to identify statistically significant variations
among the time points, then the data was normalized to the earliest time point (non-
aging-related gene expression). Open reading frames showing variations in
expression over time were clustered together in groups showing common
expression changes. Those genes that changed only from the pre-reproductive to
first reproductive time point were labeled as maturity genes. Those genes that had
any changes in expression over the successive time points were designated as aging
genes. After statistical filtering, 201 genes exhibited changes over time; 34 maturity
genes and 167 aging genes. Three genes were subsequently discarded due to strong
correlation with a particular strain, and 72 of the remaining genes were found to

encode proteins conserved across species.

A second study (McElwee et al., 2003) compared the gene expression from daf-16(-
/-) and daf-16(+/+) worms on a daf-2 (-/-) reduction of function mutant background,
only on the first day of adulthood. This microarray utilized DNA probes
corresponding to 17,871 C. elegans genes. 1646 genes were isolated that showed
differential expression of greater than 1.5-fold. 602 genes were up-regulated in daf-

16 (+/+), animals, while 1044 genes were down regulated.

The third study (Murphy et al., 2003) of gene expression changes in aging C. elegans
utilized DNA probes corresponding to 18455 open reading frames. This study also
compared samples from daf-2-deficient and daf-2;daf-16-deficient animals, as well
as from wild-type animals. However, this study went further than the McElwee

study by comparing the results across multiple time points. The time points begin at
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a pre-reproductive age and continue until mid-adulthood (later than the time point

collected in the McElwee study, but earlier than the Lund et al. study.

A fourth study compares results from microarray studies of aging across species,
including C. elegans (from the Murphy et al. data), D. melanogaster, S. cerevisiae, and
H. sapiens. (McCarroll et al., 2004). In this experiment were performed specific
comparisons between C. elegans and D. melanogaster at two points early adulthood
and mid-life adulthood) included several hundred ortholog gene pairs that are
conserved in expression across the two species.

A final study is a time-course study of an aging wild-type (N2) and non-aging daf-2 (-
/-).  What distinguishes this study is that target samples were prepared from
individual nematodes rather than populations, thereby bypassing the variation in

aging inherent to worm populations (Golden and Melov, 2004).

Beyond C. elegans, other studies have looked at genome-wide transcriptional
profiles of aging in specific tissues of other organisms, as well as in the whole
organisms of flies and yeast. Such studies have surveyed aging in mouse liver,
mouse heart, mouse brain, mouse muscle, rat hippocampus, rat kidney and

pituitary, rat muscle, human blood, and human muscle.

When interpreting their data, several of the studies took a similar, supervised
approach in the context of current theories of aging. To address the oxidative
damage theory of aging, for instance, the studies identify stress response genes that
exhibit statistically significant changes, then ask whether the expression patterns of
these genes share a common pattern. Conversely, several of the studies have taken
an unsupervised approach and examine expression cluster groups for patterns that
indicate possible relevance for the biology of aging, looking for commonalities of

function among the listed genes, in addition to the relevance of individual genes for

aging.
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Hill et al. study focuses on cluster groups where the expression patterns decrease
with age. One such cluster group was found to be enriched for genes for metabolic
activity, including oxidoreductases, amino acid metabolism genes, carbohydrate
metabolism genes, and protein synthesis genes. Other down-regulated genes were
found to belong to common functional groups, such as muscle-related genes and

genes coding for extra-cellular matrix proteins.

In the Lund et al. study, a more supervised approach was taken. Insulins, aging-
related genes, dauer-related genes, heat shock genes, transposons, muscle, neuronal
and germline genes all were singled out and their expression profiles was examined.
Key findings here include: 1) that both aging and dauer-related genes cluster to
mount 15 in the Kim expression map when multiple gene expression experiments
are combined, 2) while specific insulin genes change in expression over time, the
insulin signaling pathway genes do not change over time, 3) both muscle and
neuronal genes show an increase in expression in later life, indicative of an up-
regulation of the expression of these genes, or indicative of a general down-
regulation of the majority of other genes 4) heat shock genes are up-regulated
initially, then down-regulated at the latest time points, suggestive of the lack of a
stress-response as being possibly causative for the ultimate demise of the
organism. Lund results are comparable with our results where we identified heat
shock genes as up-regulated as well in cluster G11. By difference with Lund, most of
our heat shock genes stay up-regulated over the entire life of the nematode (see
more at cluster analysis-G11 cluster) 5) mitochondrial genes and genes involved in
oxidative stress resistance do not change over time, 6) transcription of
transposable elements is increased, perhaps indicative of a less stable genome with
age, and 7) germline genes only are down-regulated at the latest time-point,
indicative that the cessation of oocyte production is not dependent on gene
expression regulation. Also indicated is that persisting germline tissues into old age
may retain functional abilities for reproduction if exposed to a favorable
environment. Additionally, an unsupervised approach was taken and 167 genes

that show any type of significant change over time are identified. This relatively low
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number of aging-related genes supports a model where environmental damage
contributes more to aging than genetic influences. However, another plausible
argument is that the modulation of the expression of a few genes may directly

influence life span determination.

In the McElwee et al. study, (Aging cell 2003) results look at comparing an aging
(daf-2 -/-; daf-16 -/-) and delayed-aging (daf-2 -/-; daf-16 +/+) population of worms.
In a delayed-aging population, heat shock and oxidative stress-response genes are
observed to increase. This increase correlates with the decrease in the heat stress-
response genes in the aging Lund et al. population. Furthermore, in the delayed-
aging population, metabolic genes are observed to decrease. This finding might
speak to the theory that a higher metabolism leads to greater tissue damage and
enhanced aging due to buildup of damaging metabolic byproducts. Finally, again
corroborating the Lund et al. data, ins-7 is observed to increase in the delayed-aging
population (Lund et al.’s aging population shows a decrease in ins-7). Interestingly,
no gene expression changes were observed in protein synthesis or protein
degradation genes (both proteosomal, and more specific, non-proteosomal genes).
This finding does not support the theory that reduced protein turnover in a cell

might lead to a buildup of protein damage and an enhancement of aging phenotypes.

The Murphy et al. study, is a similar study comparing daf-16 (+/+)(delayed-aging)
and daf-16(-/-)(aging), includes many results comparable to McElwee et al.. For
example, both oxidative and heat shock stress response genes increase in
expression in the delayed-aging population. Furthermore, metabolic genes were
decreased in the delayed-aging population. Conversely, however, this study finds
ins-7 decreasing in the delayed-aging (daf-16 +/+) population, while increasing in
the aging (daf-16 -/-) population. I will present later how this study compares with
our study. The authors point out further that the gene identified in the McElwee
study as ins-7 really is ins-30 based on the cosmid name. ins-18 is up-regulated in the

delayed-aging population, in contrast to the up-regulation of ins-18 in the aging
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population in the Lund et al. study. Further findings include: 1) that anti-microbial
genes are up-regulated in the delayed-aging population. This finding supports a
theory that the ultimate demise of the animal is due to bacterial infections
overcoming the weakened organism in old age, 2) vitellogenin is down-regulated in
the delayed-aging population, consistent with the theory that excessive expression
of non-essential genes also may contribute to the aging and demise of the organism,
3) in contrast to the McElwee study, several proteases were repressed in the
delayed-aging population, 4) lysosomal genes were up-regulated in the delayed-
aging population, and finally 5) genes from the glyoxylate cycle, which are up-
regulated during dauer and hibernation, also are up-regulated in the delayed-aging
population. This finding is consistent with the data from Lund et al. that shows
dauer and aging genes co-segregating on the same gene expression mountain

(Mount 15).

The cross-species comparison between C. elegans and D. melanogaster (Steven A
McCarroll et. al, Nature genetics 2004) reveals trends common to both species or
unique to each species. Trends in common include: a downregulation of many
mitochondrial and oxidative metabolism genes (including mitochondrial membrane
genes, genes for components of the electron transport chain, ATP synthase genes,
and genes in the citric acid cycle), a downregulation of peptidases, proteins for DNA
repair, and genes coding for ATP-dependent transporters. Gene expression changes
unique to aging C. elegans include: a downregulation of collagens, histones,
trasnposases, and DNA helicases. Gene expression changes unique to D.
melanogaster include upregulations of cytochrome p450 genes, glycosylase genes,

and peptidoglycan receptors.

A more recent (Golden and Melov, 2004) C. elegans microarray study utilized
individual nematodes compared wild- type (N2) to daf-2(-/-) nematodes.
Interestingly, greater gene expression changes were observed between the two
strains rather than between different ages of a single strain. This is consistent with

the Lund et al. data that found few changes in gene expression with age. Many
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individual genes that relate to current models of aging were identified as different
among N2 and daf-2(-/-). In N2 nematodes, an increase in antimicrobial peptides,
mitochondrial electron transport chain proteins, proteasomal components, and
actin all can be explained by the earlier onset of aging in N2 worms, thereby
increasing the needs for defenses and anabolism to compensate for the age-related

deterioration.

While these studies all focus on aging, the varying time points present a problem for
the specific study of the mid-life aging, or healthspan, of the organism. Therefore,
we chose to perform a time-course study of aging wild-type nematodes, from
reproductive to old aged, with an emphasis on covering the mid-life time points,
represented by the post-embryonic days 9-12 when grown at 25 degrees Celsius.
Previous studies from our lab reveal that the mid-life changes in an animal may be
critical in determining the ultimate lifespan of that animal. All of our samples utilize
the same sterile mutant strain and replicates were harvested at the same time point
(give or take an hour). Affymetrix oligonucleotide arrays were chosen based upon
the good coverage of open reading frames on the array, and based on the
optimization of the Affymetrix system. We chose to use a clustering system based
upon the statistical mechanics of disordered granular ferromagnets and developed
in the Domany lab (M. Blatt, S. Wiseman, and E. Domany, (1996)). This clustering
system has proven superior to other clustering methods for a variety of biological

problems (E, Domany et.al, (1997, 1998).

4.3 A search for mid-life gene expression changes that might

influence healthspan- Experimental design

Previously we showed that neuronal cells do not physically deteriorate whereas
muscle cells deteriorate morphologically with age, starting in mid-life (see Herndon
L. et all Nature 2002).Interestingly my microarray analysis capture such tendencies.

| found that neuronal gene expression shows little change for a certain group of
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neuronal related genes and I showed an overall decline in transcription of muscle
expressed genes. Of the muscle related genes, a group of muscle genes is expressed
at lower levels during midlife.

Further more, using unsupervised approaches I've identified an interesting
gene expression pattern that suggests that a previous unknown genetic switch
might occur during midlife day 10 from the time of hatching, consistent with
patterning of changes in age pigment accumulation rates. I noted a similar gene
expression pattern for day 11 in Kenyon data when I clustered this data (see results
at comparison section)

I've also performed a comparative analysis with data from other microarray
studies. Here I've looked for the overlap between experiments and the common
trend in pattern expression, deploying different statistics methods for normalizing
and filtering the data. I've also clustered using Domany algorithm each of the data

set [ used for comparison.

With an interest in tracking gene expression changes over the C. elegans
adult lifespan and in identifying genes that are similarly regulated in aging
microarray experiments in independent laboratories, we performed microarray
analysis using RNA isolated from adults of increasing age.

We identified genes for which expression changes over adult life, using the
oligonucleotide type of chip. These chips were specially designed for C. elegans by
the Hoffmann-LaRoche company, from Basel, Switzerland, as Affymetrics format
which effectively covered 87% of the actual predicted genes. The raw data identified
by Affymetrix ID annotations is found in the supplementary materials (see Table X).

To grow the worms in a synchronous way, and at the same time limit use of
multiple mutations, we used spe-9(hc88) which is a temperature sensitive sterile
mutation. We cultured spe-9 mutants at restrictive temperature of 25.5°C.
Independent samples containing ~ 20000 worms were taken on different days:
day3, day6, day9, day10, day 11, day12, day15. Day 3 is the first day of adulthood,
with day 0 the day of hatching. For each day, the mRNA of 3 independent samples

was extracted. Each sample was labeled and hybridized to the C. elegans genome
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chip so for each day, we have 3 samples hybridized to 3 independent chips.

Because of our focus was on potential relevant changes at the midlife
transition, suggested by changes in rate of age pigment accumulation (Gertsbrein et.
al.) we also prepared another triplicate experiment in which we harvested
nematodes at days 9, 10 and 11. Data from these middle time-points were
combined with those in the more extended trials to increase the significance of
findings at days 9, 10 and 11 (we therefore analyzed six total independent repeats

for the middle life time points).

4.4 Identifying the 2000 genes that show greatest variance over
time points.

The next steps, called data preprocessing, are important to address several
issues related to removal of the effects of systematic sources of variation; to identify
if there are still any discrepant observations and to transform the data into a scale
suitable for analysis. Preprocessing can greatly enhance the quality of any analysis,
therefore is critical to choose the right methods appropriate to the particular type of
data and the questions that will be analyzed.

The microarray data can be represented in a matrix form. The rows are the
genes covered on our chips, and the 7 columns are the seven time points in which
we were interested.

In order to detect the outliers we used the Nalimov outlier test, an outlier exclusion
test. For each gene per condition a modified Nalimov outlier test (Kaiser R,
Gottschalk G (1972)) is performed for data points representing replicate
experiments. In contrast to the original test, we used a modified version called
"Nalimov1". A normal distribution model is calculated for data points to be tested,
and outliers are removed at a 95% confidence level. This means that only in 5 of
100 cases a data point is removed erroneously. Since the test is rather conservative,
Nalimov outlier removal normally improves the quality of results, since (chip)
artifacts are quite reliably removed. Note that the test requires at least 3 data points

(replicate experiments) for an experimental condition, otherwise no outliers can be
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detected. We used, the standard Nalimov 95% confidence level.

Once we identified and discarded the outliers, we scaled the data on each
chip and between chips. In order to achieve this, for each chip, we calculated the
median signal intensity over all probe sets. The median of this median signal
intensity from all chips was calculated. Than, every chip, was scaled to this median
value.

The next step was to transform the data using a logarithmic transformation
in base 2. The reason we do this is that is preferable to work with logged intensities
rather than absolute intensities since the variation of logged intensities tends to be
less dependent on the magnitude of the values; taking log reduces the skewness of
the distributions, comparing with a Gaussian distribution, and improves variance
estimation. Sometimes, “thresholding” is used as part of the preprocessing- any
data that have an expression level below the chosen threshold is discarded. We
were interested in all the data, since we consider that a low level of expression at a
certain time point can be significant for what we were looking for. We therefore
didn’t consider using any threshold level on our data. We've ‘estimated’ the data
based on the values of the K nearest neighbor genes estimator (see Troyanskaya, T.,
Tibshirani, R., Botstein, D. & Altman, R. B. (2001)). In this sense I've chosen KNN=12,
meaning the range of neighbors for the estimation process is 12. I average these 12
values and replace the smallest value I would like to ‘estimate’ with that average.
This method is considered a better estimator than discarding data through the
‘threshold’ method.

We also filtered the data. We consider that genes that vary in expression the
most over the adult life identify the most regulated genes and therefore tell us more
about aging expression of this organisms. Genes were filtered on the basis of their
variation across the time samples. We choose a set of 2000 genes that exhibit the
greatest variation. In presenting the results of our unsupervised as well as
supervised method, we will refer to the list of 2000 genes determined based on
highest variation filtering.

The next step for preprocessing the data was normalization. For normalize

the data, we performed two steps: first, we centered to the median. We subtracted
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from each component of the initial vector the median value between the
components of that vector, to obtain a new vector. We than normalized the newly
obtained vector by dividing each component of the newly obtained vector to its
norm i.e.square root of the sum of the squares of the components. By normalizing all
genes (or raw in the matrix) we get to the stage of being able to compare the genes
with 7 samples between each other and as consequence apply a classification
method. Given that we don’t know exactly what we expect to find in the data, an
unsupervised method is the right method to choose. We choose to cluster the data.
Before clustering the data, we wanted to identify the main direction of
variations of the genes, and to get a better understanding of the structure of the data
we wanted to cluster. In order to do this, we performed a Principal component
analysis (PCA). Using this model one can identify the most important gradient of
variation in the data points, identifies the first and second eigenvalues, than rotates
the data points such that the maximum variability becomes visible, i.e. by plotting

the data on the corresponding first and second eigenvectors.

-02F

2nd principal component

04k

-06

-0

1st principal compaonent

Fig. 2 Principal component analysis performed on the list of 2000

genes.
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The Principal component analysis provides a first clue of the potential
structure existing in the data. For a better understanding of the structure and
possible classes existing in the data we will use a clustering algorithm as an
unsupervised method. If we would have had already a first classification on the data
traditionally we would have used a supervised method. Given that we had no prior
classifications on the data, an unsupervised method for classifying the data is
required. A supervised method is used when you already have some kind of
knowledge on your data, as for example a data classification and you are using that
knowledge to learn more from the data, by contrast with unsupervised methods
which you are using when you know nothing about the data and you learn first hand
from the data. Given that this is our case, we cluster our data.

The clustering method we chose is based on the physical properties of a
magnetic system and enables identification of clusters that have not been obtained
by other unsupervised clustering methods as Tree- View which are based on
Pearson coefficient. This method has a number of unique advantages:

1 Number of the “macroscopic” clusters is an output of the algorithm

2 Hierarchical organization of the data is reflected in the way the clusters
split or merge when a control parameter is varied.

3 Being a Monte Carlo based method, the results are insensitive to the
initial conditions.

Comparing this SPC algorithm with other clustering algorithms, the draw
back of any other methods (such as Tree View) is the high sensitivity to
initialization, poor performance when the data contains overlapping clusters; and
the most serious problem: lack of cluster validity criteria. None of these methods
provide an index that could be used to identify the most significant partitions among
those obtained in entire hierarchy. At the same time, we did not want to use a
clustering method based on K means algorithm, since this method is known for
highly overlapping cluster results that do not necessarily correspond to the
biological process. The fact that K means method can place the same gene in two
different clusters does not necessarily indicate that one gene can be part of several

biological process, but instead reflects incapacity of this algorithm to deal with
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simply overlapping data (see references for K means). SPC eliminates several of this
concerns (see Domany et.al, (1998)).

Using the SPC algorithm- a Monte Carlo based method, stability, is an
attribute of the clusters. The Swendsen-Wang Monte Carlo method has been used,
due to its known ability to speed up the algorithm and make it faster. As we look
“more deeply” into the data (by increasing a control parameter), and unveil the
hierarchical structure of the data, we performed 2500 cycles, with cycle
corresponding to a one step increase in control parameter. The number of cycles in
which a cluster remains intact, before it is split in other clusters, is called stability.
We consider that clusters with higher stability to be more meaningful for biological
interpretation of the data (see, M. Blatt, S. Wiseman and E, Domany, Neural

Computation 9, 1805-1842 (1997) for more on algorithm).

4.5 Clustering results and interpretation

We clustered the list of 2000 genes using SPC approach to identify 34 clusters,
classified, based on size (number of genes in each cluster) and stability.

The hierarchical organization of the data has a graphical representation as a tree,
called a dendogram. See figl (dendogram_main patterns) with main patterns
observed in the data highlighted. The hierarchical organization of the data is
reflected in the way clusters split or merge. First, the entire data set of 2000 genes is
considered to be part of one giant cluster. As we vary the control parameter the
giant cluster will split into multiple small clusters. The clusters or nodes we
obtained were annotated as G1-G34, each with a distinctive pattern. The constraints
we choose for the clustering algorithm were: minimal cluster 10 (any cluster with
less than 10 genes will not be accepted) and stability 3 (meaning, any cluster with
stability less than 3 will not be accepted, or, in other words, any cluster which
breaks down sooner than 3 cycles).

We performed 2500 cycles on the list of 2000 genes, and we used KNN = 12
(KNN-are nearest neighbors - see M. Blatt, S. Wiseman and E, Domany, Neural

Computation (1997), for more on the algorithm, also G. Getz, E. Levine & E.
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Domany, Department of Physics of Complex Systems, Weizmann Inst., Rehovot,
Israel, 2001).

Besides classifications of clusters based on the size and stability criterion
mentioned above (found in size/stability table), we attempted a classification based
on patterns of gene expression identified in each such cluster. The results of this
clustering analysis were compiled for an easy access in a web- based design that
facilitates their analysis.

Table 2 below is a sample of the main web page. The rest of the Tables and figures
which are web based design can be found in the Supplemental data. Main clusters
are displayed each with their respective size, stability and pattern in gene
expression. A color coded dendogram based on cluster patterns found is presented
in figl.

Green are all clusters with an up-regulated pattern, yellow, with a down-regulated
and pink with a day 10 up-ward peak. Smaller sub-patterns are the orange coded
with a down-peak day 10, a grey color for pattern of high peak at day 6 and a lila

color senescence pattern,

Red high stability;

Yellow down regulated pattern, cluster break/split from G18
Green up regulated pattern, cluster break/split from G22
pink up regulated day 10 pattern

Table 2 Color codes corresponding to cluster patterns depicted in the

dendogram from Fig. 3
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-TABLE 2-exerpt from the main web page with cluster results from using SPC

algorithm:

Clusters of Genes: Clusters are annotated from G1-G34; G2 Stability=10 Size=63 down

regulated pattern (see G18 on the dendogram), split from G18

3 Stability=9 Size=13 oscillatory down regulated pattern (see G18 on the

dendogram); split from G18; 5 out of 13 collagen

G4 Stability=12 Size=24 7 out of 24 collagen; low peak day 6, stay low; split from G18; (see
G18 on the dendogram)

G5 Stability=6 Size=28 oscillatory down regulated pattern (see G18 on the
dendogram); it split from G18,)

G6 Stability=4 Size=20 down peak day 10 in upward overall pattern (see G6 on
dendogram); it split from G22

G7 Stability=3 Size=11 down regulated peak day 10, in upward overall pattern

(see G7 on dendo); it split from G22

G8 Stability=3 Size=11 upward regulated peak day10; split from G25

G9 Stability=3 Size=12 downward pattern; (split from G18 see dendogram) )

G10 Stability=11 Size=26 high peak day®, left over the rest of

C. elegans development split from G22

G11 Stability=3 Size=284 upward regulated pattern; major size node ; split from G22

G12 Stability=16 Size=51 upward regulated peak day10; splits from G25
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G13 Stability=3 Size=11 down regulated peak dayl0 sub-pattern in down regulated

general pattern (split from G18 see dendogram)

G14 Stability=9 Size=15 down regulated peak day 10 split from G28

G15 Stability=10 Size=40 up regulated pattern; split from G22

G16 Stability=3 Size=340 up regulated pattern; major size node  split from G22

G17 Stability=7 Size=12 down regulated peak day 10 split from G28

G18 Stability=11 Size=470 down pattern; major size node from which merge:G2,G3,G5,G9;
G4 (dendogram:G18 ) collagen cluster 67 members are collagen related.
G19 Stability=3 Size=11 down peak day 10 split from G28

G20 Stability=6 Size=12 high- peak day 6, down-going main pattern, down-peak day12

[op)]

21 Stability=5 Size=27  down peak day10; from G21 splits G14,G17,G19. G21,splits
from G28

G22 Stability=3 Size=470  up-regulated pattern & low peak day 10; high peak day6 major
size node from which merge: G6,G7,G10, G11, G15,G16

[*p)

23 Stability=4 Size=27 up-regulated peak day10; splits from G25

(op)]

24 Stability=3 Size=14  high day 6, decreasing pattern rest of life

N
[Oa}

Stability=3 Size=100 up-regulated peak day10; splits from G25

26 Stability=4 Size=11 oscillatory down pattern, senescence pattern-increase day 12-

day15
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G27 Stability=3 Size=12 up-peak pattern day 10

G28 Stability=3 Size=789  upward pattern major size node

G29Stability=5 Size=11 down going pattern -senescence as pattern; high expression day
12-day15

G30 Stability=5 Size=10 down peak day 9, pseudo- senescence pattern

[op)]

31 Stability=3 Size=12  senescence pattern

(op)]

32 Stability=11 Size=12  oscillatory pattern

[op)]

33 Stability=4 Size=1941

G34 Stability=4 Size=1978

TABLE 2 extract from main web page, SPC results.

The entire informational content of the web based clustering design is displayed
graphically or in tables. Links from the main web page can be found for:

J Unreordered Data (standardized genes) : a hit-map graph with all the

genes normalized before being clustered.

Unreordered Data (standardized genes)

0g

06

04

4
S15mp\ (original o n)
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e PCA -agraph displaying the principal component analysis
e KNM -graph with K mutual nearest neighbors; helped in building ‘distance
matrix’.

e Reordered distance matrix graph-based on which clusters have been

identified.

Wy B0 B00

e Dendrogram with Stable Clusters -web based accessible dendogram

e Reordered Data : the entire data list of 2000, reordered after clustering, hit-
map graph

e  Dendrogram next to Reordered Data : hit-map graph & dendogram

2000 e —— —
1 2 3 4 5 [ 7
Samples (original order

e Reordered Genes : table with all 2000 genes and the clusters where they fit.
e Samples: time points

e Parameters for SPC
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The access to the above is through a link from the main web page (from G1(S1) ).
Each cluster can be accessed from the main web page and is represented graphically
in two plot formats: as a heat map and as gene expression level changes over time.
In addition, a short description of the biological content, of each cluster,
correspondence of the cluster with any other clusters, and the list of gene members
found in the respective cluster is included. Two tables with clusters sorted based on

the stability and size are also presented (see Tables: _clusters of genes sorted

according to stability and respectively clusters of genes sorted according to size).

Besides size and stability criterion, the genes in a cluster can be hypothesized to
have a functional relationship. An examination of the identity of genes in a cluster
can allow the potential nature of this relationship to be addressed. We identified
sets of genes that could be grouped by some functional criterion. For example, the
genes in some groups shared a protein motif or enzymatic function. In others, the
genes were shown to have similar expression patterns or regulation.

We assume in this experiment we are analyzing the gene expression of the wild
type C. elegans and that the spe-9 mutation we used for age synchronicity, has little
or no influence on the aging phenotype. The spe-9 gene is required for fertility in
Caenorhabditis elegans and encodes a sperm transmembrane protein with an
extracellular domain (ECD) that contains 10 epidermal growth factor (EGF) repeats.
Evidence suggests that (see Singson A. et.al, Dev. Biol.2004) EGF repeats can be

mutated to create animals with temperature-sensitive (ts) fertility phenotypes.

4.5.1 Clustering interpretation

1) The general up-regulated pattern: Cluster G28:
heat-shock genes, insulin like ligands, male- specific genes, genes involved
in life expectancy, linkages genes (genes involved in cross-talk).

G28 features genes that increase in expression levels in adult life; has the size
of 789 genes and stability 3. This cluster breaks quickly (after 3 cycles) the

pattern of up-regulation is maintained in the G22 cluster of size 478 and again,


http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Singson%20A%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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stability 3, and all clusters that merge from it : G15,G16,G11,G6,G7. In the Table
2, as well as in the dendogram (figl above & web based dendogram), these

clusters are highlighted in green.

We analyzed the main G28 cluster, the large cluster that groups genes that can

be broadly considered to be increasing in expression level as the animals age. An
Table with cluster G28 members can be found at Supplemental data. The G28 cluster
includes heat shock proteins, insulin-like ligands, and male-specific genes.
Also in this cluster are genes that were found to be expressed at a higher level in
long-lived C. elegans mutants as compared with wild-type and short-lived mutants.
To determine this, we used the list of short/extended life genes from Murphy et. al.
2003, Nature 424 of ~ 200 genes. The fact that we see an increase in the expression
of the group of genes that are suggested to have a role in the shortening life
expectancy of this organism suggests an increase in the relative activity of the
products of these genes with obvious consequence of shortening the life of the
nematode. On the other hand the increase in the expression of the group of genes
involved in long-lived mutants might suggest that beneficial stress resistance genes
turn on to protect against aging. Modulating longevity or shortivity genes can impact
lifespan

In the case of heat shock genes, most are found in a single sub-cluster, G11, of
size 284 and stability 3 whereas, the other functional groups, are broadly
distributed in several different sub-clusters. A Table with cluster G11 members can

be found at Supplemental data.
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fig4:G11 cluster mostly heat shock genes

An increase in the expression of the heat-shock genes might be considered to
support the cumulative damage aging theory. The heat shock response gene is a
highly conserved biological response, occurring in all organisms. In response to
elevated temperature, proteins misfold. As the organism ages, the damaged proteins
that misfold accumulates in the organism. Indeed, this might be reflected by the

increase in the expression of heat shock genes we are noticing.

Error-repair mechanism in C. elegans doesn’t need to be induced with age:

We should mention here that heat shock genes are not responsible for example
for error repair from DNA replication or transcription. Given that we don’t notice
genes responsible for DNA replication/ transcription repair in the up-regulated
cluster G11 we might infer that for the wild type C.elegans, this mechanism is not
need to be induced in aging animals. We further infer that damage accumulation
that might induce aging in the nematode is not due to internal error accumulation
like DNA error and transcription accumulation but rather is induced by external
stimulus which creates damage that accumulates in organism. The error repair

mechanism might work properly and therefore wouldn’t require any surplus in
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gene expression activity. Alternatively, a decrease in expression over time might be
required for a proper function of the wild type nematode.

An increase in expression for male-specific genes might be explained by the
research done in Andy Singson lab. Interestingly the Singson lab has shown that
male mating desire changes with age. One possibility is that the increase in

expression of male specific genes might be a signature of age.

An increase in the activity of the genes involved in “cross-talk” is noticed in the
G15 cluster-this might tell us that with age the communication between cells and in
the cells is diminished. Also, from a stability criterion point of view, cluster G15, is

interesting since has a high stability of value 10. This cluster has 40 gene members,

see table 3 bellow:

B0228-5_at

q09433 caenorhabditis elegans. probable thioredoxin. 11/1995

B0284-2_at

best hit: p25386 saccharomyces cerevisiae (baker's yeast).
intracellular protein transport protein usol. 7/1998 7.0e-10 22%

CO8E3-4_at

017194 c08e3.4 protein. 5/2000

C17H1-5_at

best hit: 040947 orf 73. 6/2000 2.0e-09 25%

C17H1-6_at

045257 c17h1.6 protein. 1/1999

C31B8-4_at

"best hit: 13439 trans-golgi p230 (256 kda golgin) (golgin-245)
(72.1 protein) (golgi autoantigen, golgin subfamily a, 4). 5/2000
4.0e-12 25%"

C34D1-3_at

ce08571 locus:odr-3 guanine nucleotide-binding protein
(cambridge) tr:q18434 protein_id:cab01489.1.0/0

C34E11-
3_at

"best hit: p10587 gallus gallus (chicken). myosin heavy chain,
gizzard smooth muscle. 12/1998 2.0e-42 22%"

C53A5-9_at

ce08958 ring canal protein like (cambridge) tr:017700
protein_id:cab03989.1. 0/0

10

C53D6-6_at

best hit: 17894 similar to hobo element transposase hfl1. 11/1998
3.0e-27 23%

11

EGAP9-2_at

p91200 cosmid egap9.5/2000

12

FO9F9-3_at

q19283 cosmid f09f9.11/1998

13

F11A1-1_at

q19331 f11al.1 protein. 1/1999

14

F13H8-8_at

q19432 cosmid f13h8.11/1998

15

F15A4-9_at

best hit: 001749 similar to human dihydroxyvitamin d3-induced
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protein. 11/1998 4.0e-17 24%

16/: %P 061963 126411.6 protein. 11/1998
17|F26F2-3_at |[q9xv56 f26f2.3 protein. 11/1999
18 zzf6§t2_ q9xv55 f26f2.4 protein. 11/1999
19 521655' q9xv54 £26f2.5 protein. 11/1999
20 SB;DH_ 044779 £33d11.8 protein. 11/1998
21|F36H5-3_at|p91298 cosmid f36h5.5/2000
22 F43B10- |best hit: p21997 volvox carteri. sulfated surface glycoprotein 185
2_at (ssg 185).10/1996 3.0e-15 51%
ce16039 f-box domain. (cambridge) tr:062239
23F44G3-8 at protein_id:cab05520.1.0/0
24|F44G4-6_at |q20416 f44g4.6 protein. 5/2000
"best hit: p40631 tetrahymena thermophila. micronuclear linker
25|F53B6-4_at |histone polyprotein (mic 1h) [contains: linker histone proteins alpha,
beta, delta and gamma]. 12/1998 1.0e-14 38%"
26|F56H6-2_at|045580 f56h6.2 protein. 5/2000
i best hit: cab92119 dj50024.4 (novel protein with dhhc zinc finger
27|F59C6-2.at | ain). 7/2000 5.0e-13 37%
28 F59E11-  |cel11512 zinc finger protein (st.louis) tr:016752
10_at protein_id:aab66229.1.0/0
H27M09- "best hit: p40631 tetrahymena thermophila. micronuclear linker
29 B at histone polyprotein (mic lh) [contains: linker histone proteins alpha,
- beta, delta and gamma]. 12/1998 4.0e-16 31%"
30 EO;H& ce18024 (st.louis) tr:045179 protein_id:aac04425.1. 0/0
31 11<g9a139- aaf39930 hypothetical protein k09d9.12.7/2000
32|M162-6_at |ce18896 (cambridge) protein_id:cab05252.1.0/0
33|R07B1-2_at|q09605 caenorhabditis elegans. probable galaptin lec-7. 12/1998
34|T07D3-1_at|016727 t07d3.1 protein. 5/2000
) "ce02351 zinc finger, c2h2 type (cambridge) tr:q22676
35|T22(8-3 at protein_id:caa88875.1.0/0"
36 WO01B6- best hit: 044929 microtubule binding protein d-clip-190. 6/2000
9_at 3.0e-12 22%
37 Y102A5C- best hit: 017578 c06h5.2.5/2000 8.0e-19 29%

19 _at
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38 ;1{3?2?50 q9xx81 y102a5c.8 protein. 6/2000

39 ;(ng;jA_ cab54462 y53f4a.2 protein. 8/2000

40 ZK632- p34656 caenorhabditis elegans. hypothetical 51.8 kda protein
11 at zk632.11 in chromosome iii. 11/1997

Table 3 G15 cluster members
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Fig. 5 G15 cluster pattern

This G15 cluster has mostly linker and binding type of proteins, intracellular protein

transport, canal proteins type, micronuclear linker proteins, linker histones

proteins, zink finger proteins, microtubule binder proteins. One reason for this

might be that with age the connections and linkages at cellular and intracellular

level and the cross-talk in and between cells is weakening therefore an increase in

the activity of the products of the genes involved in such processes might be

required.

2) A down-regulated pattern is noticed in G18 (collagen cluster), has mostly

collagen and muscle related genes. Size of this cluster G18 is of 470, stability 11.

The down regulated pattern is maintained in all clusters that merge from
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it:G2,G3,G4,G5,G9,G13. In TABLE 2, as well on the dendogram these genes are
highlighted on yellow. It is worth mentioning that the G18 cluster has a high
stability value 11 in spite of it’s size.

The cluster G18 groups genes that can broadly be considered to be decreasing in
expression as the animals age. Cuticle collagens are very strongly overrepresented
in this cluster—almost one third of the 200+ collagen genes in the worm are found

in this cluster.

Kim, et.al (2002 Nature 418: 975-979), identified a large group of genes that are

expressed at a relatively high level in muscle tissue; these genes are also in the G18
cluster. Many of the muscle-enriched genes are collagens, but if we exclude
collagens from the analysis of muscle genes, we still see most of muscle genes in
cluster G18. We also examined 60 genes that are known to have function in muscle
(e.g. muscle myosin and other muscle motor proteins), and most of them are also in
this G18 cluster. Many of the genes that have human homologs in the total muscle
enriched dataset of David Miller(Genome Biology 2007, vol.8, issue 9) are found in
this cluster as well. We've used this preliminary results genes for a more careful
analysis we’'ve performed later when we’ve analyzed sarcopenia process in C.

elegans (see Chapter 2)

We find two distinct gene expression patterns among genes involved in
cellular damage protection: heat-shock genes vs. oxidative stress genes,
indicating 2 distinctive gene classes among genes with roles in damage

protection.

We find that peroxidases, cytochrome p450s and glutathione S-transferases are
more predominant in cluster G18 with a decrease in gene expression pattern; these
types of proteins have a variety of biological functions, but all are commonly

involved in detoxification and protection from oxidative stress.

Cellular damage can be induced by heat shock, oxidative stress and various toxic

substances. Several pathways are involved in cellular damage. The cumulative


http://dev.wormbase.org/db/misc/paper?name=WBPaper00005428;class=Paper
http://dev.wormbase.org/db/misc/paper?name=WBPaper00005428;class=Paper
http://dev.wormbase.org/db/misc/paper?name=WBPaper00005428;class=Paper
http://dev.wormbase.org/db/misc/paper?name=WBPaper00005428;class=Paper
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theory of aging implies that over time such damage accumulates in organism. Such
accumulation might be reflected at the transcription level in an increase in gene
expression due to an increase in the activity required from the genes with a
protective role such as heat shock related genes, and observed in the pattern of G11

cluster.

The finding that genes involved in oxidative stress and detoxification show a
decrease in expression pattern opposed to the pattern noticed for heat-shock genes
from the cluster G11, might suggest existence of 2 distinct classes among genes
involved in cellular damage protection. Misfolding proteins might be associated with
an increase in gene expression, as the heat shock genes in cluster G11 have,
whereas the oxidative stress theory of aging might have surprisingly an opposite
signature of decreasing in gene expression level as can be depicted in the cluster
G18. Possible hypothesis might be that oxidative stress gene activity in the
nematode doesn’t have to increase with age given that the oxidative damage from
some reason doesn’t accumulate with age in C. elegans. It would be interestingly to
experimentally see the correspondence between, the type of damage these genes

are involved i.e type of toxic agent and the pattern and class category enters.

The high stability value of G18 cluster is maintained in G2,G3 and G4. The
G3 cluster contains 5 -collagen related genes out of 13 gene (it’s size value), and has
an oscillatory down -going pattern. The G4 cluster has an interesting pattern of high
expression day3, and low expression rest of the times. It has 24 members genes of

which 7 are collagen- related genes (see Fig. 6)
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Fig.6: G4 cluster pattern

The G2 cluster has 36 collagen- related genes out of 61 it's total size and has a
similar expression pattern as G3.

G2 and G3 clusters show the strongest decline.(see Fig. 7)
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G2 G3

naemalined

Fig.7: G2 and G3 cluster patterns; x-axis: time points; y-axis: normalized gene

expressions

3) The day 10 pattern can be seen as an oscillatory pattern over all time points
with the particularity that for day 10, the pattern of the expression for down or up

peak is more pronounced.

3.a) An oscillatory pattern with an up-peak pattern at day 10 is observed in
G25: signaling and transcription factors genes might have a common

regulatory loop with germ line genes.

G25 cluster has size 100, and stability 3, and all the subsequent clusters merge
from G25 as: G23, G12, G8. The G25 cluster includes many signaling and
transcription factors genes. This group is defined by an inferred role in regulation,

e.g. kinases, receptors, G proteins, and the like.
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We examined the 23 signaling and transcription factor genes in G25, and found that
7 of them had well-characterized functions in the germline or in early embryonic

development. The G23 cluster has the most prominent day 10 change pattern.

rarmahzed
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Fig. 8 G23 cluster oscillatory pattern with a day 10 peak pattern; x-axis: time

points; y-axis: normalized gene expressions

The fact that an oscillatory pattern describes signaling and transcription factors
genes is expected. What was a surprise for us was that this oscillatory pattern has
high expression peak for day 10. When we later examined a group of germ line
enriched genes we find that they have same gene expression pattern. In case that
this oscillatory day10 up regulated pattern might indeed be a germ line enriched
gene signature than all the rest of genes in this G25 cluster as signaling and
transcription factors genes might have a common regulatory loop with the germ line

genes. See also the discussion on the germ line genes.

3.b) an oscillatory pattern with a pronounced down regulation pattern for

day 10.

This pattern can be seen first in G21, and then the sub-clusters G14,G17,G19. This
down peak pattern at day 10 can also be seen in the clusters with a general, up-

going trend as pattern, as in clusters G6, and G7, which merged from G22 (the main
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up-going pattern); as well as in the clusters with down-going general pattern as can
be seen in the G13 cluster, which merge from G18.

All the clusters with the down peak pattern at day 10 can be seen in Table2 as
well as in dendograms fig 3 (highlighted in light pink). G14 is the cluster with
highest stability among cluster with down going day 10 pattern (size 15 and
stability 9). G14 contains the expression of sri-29 chemoreceptor, gcy-21 which is a
protein kinase, fmo-1 which has disulfide oxidoreductase activity and
monooxygenase activity, also genes with proteolysis function. See Table 4 bellow for

cluster members also fig. 9 for cluster pattern.

017170 b0454.4 protein. 6/2000
B0454-4_at

1 chemoreceptor, sri family
sri-29
- (Serpentine Receptor, class I)

q9xxp2 f08e10.2 protein. 5/2000
2 FO8E10-2 r at

ce04440 contains similarity with human homeotic protein

3o LA Al pbx2 (st.louis) tr:q19696 protein_id:aaa83195.1.0/0
4 F22E5-3 g at ce09555 locus:gcy-21 protein kinase (st.louis) tr:016715
or gcy-21 protein_id:aab66169.1. 0/0

076718 f36h12.16 protein. 11/1998;contains similarity to
5 F36H12-16 at Lactobacillus delbrueckii Abc transporter ATP-binding
protein

best hit: q23181 similarity to c.elegans early embryogenesis

6 Eb3Gl-lal zyg-11 protein. 5/1999 4.0e-66 29%
ce21038 dimethylaniline monooxygenase (cambridge)
tr:q21311 protein_id:caa94291.1. 0/0;
dimethylaniline monooxygenase (N-oxide-forming) activit
K08C7-2_at
7 lor fmo-1

disulfide oxidoreductase activity; monooxygenase activity



http://www.wormbase.org/db/gene/gene?name=WBGene00005541;class=Gene
http://www.wormbase.org/db/gene/gene?name=F08E10.2
http://www.wormbase.org/db/gene/gene?name=F22E5.3
http://www.wormbase.org/db/gene/gene?name=F36H12.16
http://www.wormbase.org/db/gene/gene?name=F53G2.1
http://www.wormbase.org/db/gene/gene?name=WBGene00001476;class=Gene
http://www.wormbase.org/db/ontology/goterm?name=GO%3A0015036;class=GO_term

8 |T06A1-5 at

9 |T23B12-5 at

10 WO07B8-1 at
11 Y47D7A-F_at
12 Y48E1B-6_at
13 Y54G9A-1_at

14 Y54G9A-2 at

15 ZK250-5_at

best hit: 21003 similarity to a putative single-stranded
nucleic acid binding protein. 11/1998 5.0e-47 29%

contains similarity to Pfam domain PF01697 (Domain of
unknown function)

molecular function unknown

similarities with: p70561 fgf receptor activating protein
fragl.8/1998 3.0e-09 27%, is a gene from Ratus
norvegicus;

FRAG1, a gene that activates fibroblast growth factor
receptor by C-terminal fusion through chromosomal
rearrangement.”;

ce14674 thiol protease (st.louis) tr:016289
protein_id:aab65343.1.0/0

proteolysis and peptidolysis

aaf60634 hypothetical protein y47d7a.f. 7/2000
018200 y48e1b.6 protein. 1/1999

q9xwh1 y54g9a.1 protein. 11/1999

q9xwh2 y54g9a.2 protein. 11/1999

85

contains similarity to Giardia lamblia Median body protein.;

017299 zk250.5 protein. 5/2000

Table 4- G14 cluster member. -Some of the genes have direct links to worm

base. The yellow highlighted gene has human similarities


http://www.wormbase.org/db/gene/gene?name=T06A1.5
http://www.wormbase.org/db/gene/gene?name=T23B12.5
http://www.wormbase.org/db/gene/gene?name=W07B8.1
http://www.wormbase.org/db/gene/gene?name=Y54G9A.2
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Fig. 9 pattern of cluster G14:

x-axis: time points; y-axis: normalized gene expressions

As mentioned these genes are involved in signaling or are transcription factors.

Our data reveal a dramatic change in gene expression around day 10 in at

least 13 clusters.

The consistency of the dayl0 pattern suggest a significant physiological
transition in the C. elegans organism during the middle life span time window day 9-
day12 of the nematode. Given that some clusters have an oscillatory up-regulated
day 10 pattern and others have a down-regulated day 10 pattern might suggest
existence of an complementory process among signaling and transcription factors
genes involved in the up-regulated day 10 pattern versus the genes involved in the
down-regulated pattern.

The reason we were able to narrow down this middle life time window changes
focused arround day 10 is due to the statistical analysis performed, as well as the
design of the experiment. This day 10 pattern persists even when we repeated the
experiment We note that day 10 is measured from day0, the moment of hatching,

that the worms were grown at 25C in this study.
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Sub-clusters patterns:

¢ Senescence pattern, neuronal related genes:

Besides this main patterns defined by large clusters we will mention two other
patterns described by smaller sized clusters and found in the list of 2000 adult
regulated genes obtained after filtering.

One such pattern is a “senescence” pattern. The cluster with such a pattern is G31.
This pattern can be characterized as a relative low, constant level of expression that
spans the life of the C. elegans from day 3, toward the end of life of the nematode at
day 12 with a drastic increase in expression level between day 12 and day 15. This
last day is when most of the nematodes grown at the temperature of 25C have
already died and the viable animals we assigned are all decrepit. Day 12 is the time
when the decay of C. elegans as an organism is easily noticeable.

The cluster G31 includes heat shock genes, a homolog of human fetal brain protein,
olfactory receptor, stress-inducible protein and sodium neurotransmitter see Table

5 below with cluster G31 members:

1 |C01G6-9_at |q17575 c01g6.9 protein. 1/1999

ce05268 transthyretin-like family (cambridge) tr:q17937

2 |C12D8-4 at protein_id:caa98234.1.0/0

3 [|C49A9-5_at 044151 c49a9.5 protein. 11/1998
4 |EGAP1-1_at |q19073 cosmid egapl.11/1998

ce09268 heat shock protein (cambridge) tr:q19228
protein_id:cab01147.1.0/0

5 |FO8H9-4_at

F25H5- ce15903 protein-tyrosine phosphatase (cambridge) tr:017840
7_g at protein_id:cab02988.1.0/0
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7 |F59B2-9_at

ce00236 f-box domain. (cambridge) sw:p34484
protein_id:caa77586.1.0/0

8 |T07D4-2_at

best hit: 15777 homo sapiens (human). fetal brain protein 239
(239fb). 5/2000 4.0e-50 41%

Y37A1C-
1B r at

q9xtc4 y37alc.1b protein. 11/1999

10/Y61B8A-1_at

best hit: p91118 similarity in c. elegans olfactory receptor odr-10.
6/2000 4.0e-21 31%

11|ZK1010-9_at

ce23490 sodium:neurotransmitter symporter (cambridge)
tr:018288 protein_id:cab04975.1. 0/0

12|ZK328-7_at

ce05072 stress-inducible protein stil (st.louis) tr:q23468

protein_id:aaa91253.1.0/0

Table 5 G31 cluster members

This senescence pattern (See fig. 10 cluster G31 pattern) was also observed when

we made the analysis of the previous data with just 3 replicates per each time point.

Note that G31 cluster has a majority of neuronal genes in the form of

neurotransmitters, human homologies as fetal brain or olfactory genes. Also

comparing with the sub-pattern of ‘young adult-day 6’ note  that the

neurotransmitter involved in the senescence pattern is Na-related by comparison

with the day 6 young-adult cluster which has K-related neurotransmitter. See the

gene members in G10 cluster.
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fig. 10 cluster G31

x-axis: time points; y-axis: normalized gene expressions
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Both “day 10 pattern” as well as the “senescence pattern” are patterns that were
never noticed in previous experiments performed by other labs. We consider that
this is due in part of the design of our experiment, in particular, the way we chose
the time point sampling, and in part, of the statistical analysis performed, in
particular the clustering algorithm used.

e ‘Young adult pattern, - day6 pattern’-has genes specific for larval

development and adult morphogenesis and again neuronal genes.
The K-related channel is member of the young adult cluster by difference

with Na-channel related which can be found in ‘senescence pattern’ cluster.

We found in G10 an opposite pattern from the senescence pattern as day 6 pattern

nammalized

-1 b 4 i
Day 3 Day & Day 9 Day_10 Day 11 Day_12 Day 15

fig. 11 cluster G10; x-axis: time points; y-axis: normalized gene expressions

The G10 cluster contains kqt-1 a human homolog, which encodes one of three C.
elegans KCNQ-like potassium channel subunits that, with respect to humans, is most

similar to the KCNQ2-5 subfamily of channel proteins; genes similar to human
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necrosis factor-alpha-induced protein with voltage gated potassium channel

activity.

It might be important to note that ‘young adult day-6’ cluster contains K-channel
related genes by difference with ‘senescence’ cluster which has Na-channel related
gene. Also both clusters G31 and G10 have a gene expression similar with protein

tyrosine phosphatase.

Otherwise, G10 also includes genes specific for larval development and
morphogenesis as insulin like families that affect dauer formation and eating
behavior like ptr-3 gene which is in same family with daf-6; acn-1, required for
larval development and adult morphogenesis; the hypodermal expression of acn-1
appears to be controlled by nhr-23 and nhr-25. Another dauer related gene is crb-1

which affects dauer formation and eating behavior. Below is Table 6 with members

of cluster G10.

1 glftCS' p91047 cosmid c16¢8. 11/1998

2 C18A3- ce01800 helix-loop-helix transcription factor (st.louis) tr:q09961
8_at protein_id:aaa68375.1.0/0

ce08386 locus:klg-1 voltage-gated potassium channel (st.louis). 0/0

C25B8- | The kqt-1 gene encodes one of three C. elegans KCNQ-like potassium
3 1 at channel subunits that, with respect to humans, is most similar to the
KCNQ2-5 subfamily of channel proteins;

best hit: 18385 similar to protein tyrosine phosphatase. 6/2000

4 1 at encodes an protein containing an F box (motif considered to mediate
protein/protein interaction)
best hit: p91563 similar to human necrosis factor-alpha-induced
protein b12.6/2000 1.0e-34 45%
C40A11- . -
5 3 at voltage-gated potassium channel activity
6 C41D7- | besthit: p91184 similar to c. elegans protein f44f4.4. 6/2000 3.0e-93

2 at 29%


http://www.wormbase.org/db/gene/gene?name=C33E10.1
http://www.wormbase.org/db/gene/gene?name=C33E10.1
http://www.wormbase.org/db/gene/gene?name=C40A11.3
http://www.wormbase.org/db/gene/gene?name=C40A11.3
http://www.wormbase.org/db/gene/gene?name=C41D7.2
http://www.wormbase.org/db/gene/gene?name=C41D7.2
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or ptr-3

from PaTichedRelatedfamily; in this family is PEE7/asWell Known as

best hit: q21396 similarity to c. elegans proteins c18h2.1 and t28d9.9.
11/1998 1.0e-20 25%

also,(as second hit )similarity with gene CBG19613 from C. briggsae
which has similarity with SGD:YKL129C from S.cerevisiae which is

an class I myosin; One of two class-I myosins; localizes to actin cortical
patches; deletion of MYO3 has little affect on growth, but myo3 myo5
double deletion causes severe defects in growth and actin
cytoskeletion organization; myosin I

ce06951 peptidase (st.louis) tr:q18581 protein_id:aaa98719.1.0/0
acn-1 encodes an ACE-like protein required for larval development
and adult morphogenesis,

is expressed in hypodermal cells, vulval precursor cells, and ray
papillae in the male tail; the hypodermal expression of acn-1 appears
to be controlled by nhr-23 and nhr-25.

ce04278 leucine-rich repeats (st.louis) tr:q18902
protein_id:aaa81094.1.0/0

similarity with H. sapiens Insulin-like growth factor binding protein

complex acid labile chain precursor

and with S.cerevisiae protein required for START A of cell cycle

10

"best hit: baa91749 cdna flj10682 fis, clone nt2rp3000072.7/2000
2.0e-57 40%"

biological fct:proteolysis and peptidolysis

molecular fct: carboxypeptidase A activity

11

F02C12-
3 at

ce23626 (cambridge) tr:q19109 protein_id:caa91020.2. 0/0



http://www.wormbase.org/db/gene/gene?name=C41H7.5
http://www.wormbase.org/db/gene/gene?name=C41H7.5
http://www.wormbase.org/db/gene/gene?name=C56E6.6
http://www.wormbase.org/db/gene/gene?name=C56E6.6
http://www.wormbase.org/db/gene/gene?name=EEED8.6
http://www.wormbase.org/db/gene/gene?name=EEED8.6
http://www.wormbase.org/db/ontology/goterm?name=GO%3A0004182;class=GO_term
http://www.wormbase.org/db/ontology/goterm?name=GO%3A0004182;class=GO_term
http://www.wormbase.org/db/gene/gene?name=F02C12.3
http://www.wormbase.org/db/gene/gene?name=F02C12.3

F11D11-
13 3. at

F11D11-
14 3_g at

F23D12-
15 5_at

F26D10-
16 12_at

F27E11-
17 1_at

F32H2-
6 _at

F55C9-
19 3_at

F55C9-
20 5_at

H16D19-
21 4 at

18

K08B4-

22Zat

R13H4-
23 7_at

TO2E9-
24 5_at

T14B4-
6 at

25 dyp-2 or
rol-2
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ce07053 egf-like repeats (st.louis) tr:q19350 protein_id:aac69012.1.
0/0

proteins with same EGF-like domain are: UNC-52 plays essential roles
in muscle structure development and regulation of growth factor-like
signaling pathways; other genes which encode for proteins with EGF
like domain:eat-20,spe-9,mec-9 and so on;

crb-1 encodes a homolog of Drosophila CRUMBS that affects dauer
formation and feeding behavior

062153 f11d11.3 protein. 1/1999

062153 f11d11.3 protein. 1/1999

best hit: 014607 homo sapiens (human). ubiquitously transcribed y
chromosome tetratricopeptide repeat protein (ubiquitously
transcribed tpr protein on the y chromosome). 7/1999 5.0e-50 28%

ce19812 lectin c-type domain (cambridge) protein_id:cab02321.1.0/0

ce09732 nucleoside transporter (st.louis) tr:016192
protein_id:aab65255.1. 0/0

ce09881 fatty acid synthase (n-terminus) (cambridge) tr:p91866
protein_id:cab04239.1.0/0

q9xuy9 f55c¢9.3 protein. 11/1999
q9xuz0 f55¢9.5 protein. 5/2000

q9xx93 h16d19.4 protein. 11/1999

caeelgn; k08b4-2; -. 7/100; similarity with SW:035598 from M.
Musculus, contributes to the normal cleavage of the cellular prion
protein.

p90946 r13h4.7 protein. 1/1999

q9u382 t02e9.5 protein. 5/2000

p35799 caenorhabditis elegans. cuticle collagen dpy-2 precursor.
11/1997


http://www.wormbase.org/db/gene/gene?name=K08B4.2
http://www.ebi.uniprot.org/entry/O35598
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26 ngfAS_ q9xul8 w04a8.4 protein. 11/1999

Table 6: G10 cluster members; the highlighted genes might be representative
for the biological theme of the G10 cluster.

Higher gene expression after day 6 for the gene members of ‘day-6 young

adult’ cluster pattern might induce shortening in life span of the nematode.

A high peak at day 6 and than decreasing pattern for the rest of time points, is also
maintained in the G24 cluster of size 14 and stability 3. G24 contains unc-44, a
collagen related gene, and ces-2, which is required to activate programmed cell
death in the sister cells of the serotoninergic neurosecretory motor (NSM) neurons,
and is transcriptionally inhibited by activated LET-60. We can hypothesize that the
genes in cluster G10 and G24 are genes important for adult morphogenesis; cell
growth and in general genes involved in cell homeostasis.

Considering the cluster pattern of high peak at day 6 and than a general steady
gene expression for the rest of the life of this nematode we might consider that gene

members of this clusters might act as ‘left-on’ genes.

Day 6- young adult pattern + senescence pattern

G20 cluster is interesting because it has the high peak pattern at day 6, and the
“senescence” pattern, of increase at end stages as well. It contains transcription
factors and heat shock protein. See the gene pattern and gene members in fig. 10

and respectively Table 7 below
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fig.12 G20 cluster; x-axis: time points; y-axis: normalized gene expressions
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1 (530f9a(1}t12- 044457 c09g12.5 protein. 11/1998
2 (5:019;12- 044457 c09g12.5 protein. 11/1998
i ce05468 thiol protease (cambridge) tr:q18740
3 |C50F4-3.at protein_id:caa94738.1.0/0
ce17603 nuclear hormone receptor (st.louis)
tr:016443 protein_id:aab65942.1. 0/0;
transcription factor:; associated with:
e asp-4--biological fct :induction of non-apoptotic
programmed cell death!
C54F6-8 at e csn-3 -biological fct(b.f.):control development;
4
C54F6.8 e csp-3 -b.f.:destruction of protein or peptides by
hydrolysis (proteolysis, peptidolysis)
e clp-3 -involved in neurodegeneration caused by
necrotic cell death
e unc-71 - proteolysis and peptidolysis;
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http://www.wormbase.org/db/gene/gene?name=C54F6.8

) best hit: 044932 vespid allergen antigen homolog.
> FOZEIL-5.at [ 5000 2.0e-23 35%
6 |F35D11-8_at |[q20037 cosmid f35d11.11/1998
) best hit: 22481 similarity to c. elegans hyupothetical
7 |F35HB-2.at [ tein. 11/1998 4.0e-12 32%
8 |[F40G9-7_at |q9tz78 f40g9.7 protein. 5/2000
9 |F59D6-1_at [016344 f59d6.1 protein. 11/1998
K03D3-5_at e 045643 k03d3.5 protein. 1/1999
10 KO03D3.5 * KO03D3.5- by blast- best match with a heat shock
protein from of B. aphidicola organism
11 |T02D1-7_at |045726t02d1.7 protein. 1/1999
12 |ZK1290-1_at |q23439 cosmid zk1290.11/1998

Table 7 G20 cluster members

G4-Young adult-day3-day6 pattern:

95

G4, splits from G18 with a distinct pattern. G4 has a size of 24 expression genes, and

stability 12. It starts with a high pattern at day 3, and than a relative constant low

expression. G4 has 7 collagen related genes. Because of high expression pattern at

day 3 the genes in this cluster might play an important role in the young adult life of

this nematode-see Table 8 with gene members of G4 cluster as well as Fig. 11 for

cluster pattern.

B0024-2_at

ce05147 collagen (cambridge) tr:q17418 protein_id:caa94875.1.
0/0

C09G5-6_at

q09457 caenorhabditis elegans. putative cuticle collagen c09g5.6.
11/1997

C29E4-1_at

p34340 caenorhabditis elegans. putative cuticle collagen c29e4.1.
11/1997

EO3H12-
2_at

002128 cosmid e03h12.11/1998

F11E6-2_at |q9u3j9 f11e6.2 protein. 5/2000

F12E12-

best hit: q17724 similar to the insect-type alcohol
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C_at dehydrogenase/ribitol dehydrogenase family. 5/2000 2.0e-73 55%
7 lii6i4- q20088 similarity to collagen. 11/1998
8 |F36A4-1_at |q20096 cosmid f36a4.11/1998
) ce09993 glutathione s-transferase (cambridge) tr:q93699
9 |F37B1-6.at | tein id:cab02292.1.0/0
10[{F40A3-6_at [016266 f40a3.6 protein. 11/1998
11/F41G4-1 at best hit: 26630 axonemal dynein light chain p33.11/1998 6.0e-41
44%
12 54;“0' 420312 cosmid f42a10. 11/1998
13|M18-1 at 86/%6193 collagen (cambridge) tr:q21556 protein_id:caa92826.1.
i ce03540 cuticle collagen (cambridge) tr:q21855
14]R09A8-4_at protein_id:caa92006.1.0/0
15 goaltBlo- 002153 cosmid t01b10.11/1998
16 gliOEtlo- 22326 similar tocollagen. 6/2000
) ce06420 zinc metalloprotease (cambridge) tr:q22400
17]T11F9-8 at protein_id:caa98532.1.0/0
18|T20B3-2_at |ce20087 troponin (cambridge) protein_id:cab04737.1.0/0
19 \};V(;?B% aaf60391 hypothetical protein w09b7.b. 7/2000
20 Y57A10B- |best hit: p41991 caenorhabditis elegans. pes-10 protein. 11/1995
6 at 2.0e-38 28%
21 ZC101- q06561 caenorhabditis elegans. basement membrane proteoglycan
2E_at precursor (perlecan homolog). 7/1999
22|7ZC373-6_at |q23262 zc373.6 protein. 1/1999
23 ZK1193- 23410 similarity over a short region to tenascin precursors.
3_at 5/2000
24 Lzlliltl%- 23412 cosmid zk1193.11/1998

Table 8 G4 cluster members
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nprmelized

0.4 L 1 L L "
Day 3 Day_E Day 9 Dray_10 Day_ 11 Day_12 Day_i5

fig.13 G4 cluster; x-axis: time points; y-axis: normalized gene expressions

Summary clusters result:

We've analyzed and present some clusters that include the 5 major expression
patterns. We put more emphasis on clusters with high stability. Any other clusters
that are not discussed here can be found in Table clusters in the Appendix for
Chapter 1.

In Table 10 is a summary of the clusters with a short description and color based

representation of the cluster pattern.

Red high stability;
Yellow down regulated pattern, cluster break/split from G18
Green up regulated pattern, cluster break/split from G22

pink up regulated day 10 pattern
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Table 9 legend for the color based representation in the Table below with

cluster summary .

G2 _Size=63 down pattern (see G18 on the dendogram) split
from G18

G3 _ Size=13 oscillatory down pattern (see G18 on the
dendogram); split from G18;

5 out of 13 collagen

G4 _ Size=24 7 out of 24 collagen; low pick day 6,stay low; split
from G18; (see G18 on the dendogram)

G5 Stability=6 Size=28 oscillatory down pattern (see G18 on the
dendogram); it split from G18,)

G6 Stability=4 Size=20 down pick day 10 in upward overall pattern(see
G6 on dendogram); it split from G22

G7 Stability=3 Size=11 down pick day 10,in upward overall pattern( see
G7 on dendo); it split from G22

_Stability=3 Size=11 upward pick day10; _
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G9 Stability=3 Size=12 downward pattern;( it split fromG18see
dendogram) )

I

G10 SIS size=26 hiih iick dai6, left over the rest

of C.elegans development
G soviny=a e-zos wpwardpatter, N ol rom

G0 SERBISN Size=51  upward pick day10; split's from G25

G13 Stability=3 Size=11 down pick day10 sub-pattern in downward
general pattern (it split from G18 see dendogram)

I

| G14 FEADIIES Size=15 down pick day 10  split from G28 |

G15 SEBIGES7e=10  upward pattern; _ split from G22 |
[

|= Stability=3 Size=340  Upward pattern; HiSjonsizeamoas Splitfrom

|G17 Stability=7 Size=12 down pickday 10  split from G28 |

I

G18 _ Size=470 down pattern;_from which

merge:G2,G3,G5,G9; G4( dendogram:G18 ) collagen cluster
67 members are collagen related.

I




100

G19 Stability=3 Size=11

down pick day 10 split from G28

G20 Stability=6 Size=12

high- pick day 6,down-going main pattern, down-

pick day12

G21 Stability=5 Size=27
G21,splits from G28

down pick day 10 ; from G21, splits G14,G17,G19.

Stability=3 Size=470
from which merge: G6,G7,G10, G11,

G15,G16

_& low pick day 10;high pick day6

upward pick day10; split's from G25

@28 stability=4 Size=27

|G24 Stability=3 Size=14

high day 6, decreasing pattern rest of life ‘

@28 stability=3 Size=100

'upward pick day10; split's from G25

26 Stability=4 Size=11
increase day 12-day15

oscillatory down pattern, _

|G27 Stability=3 Size=12

|G28] Stability=3 Size=789




101

G29Stability=5 Size=11 down going pattern _ high

expression day 12-day15

|G30 Stability=5 Size=10  down pick day 9, pseudo- SelleScenceIpatier

|G31 Stability=3 Size=12 |SClcSCenCEIDAtiErn

‘ G32 _ Size=12 oscillatory pattern

‘ G33 Stability=4 Size=1941

G34 Stability=4 Size=1978

Table 10: Clustering results: list, pattern description.

4.6 Specific group of genes analysis-Supervised analysis

Besides performing an un-supervised analysis I was interested in specific
groups of genes. To analyze these genes I used a supervised type of analysis. For a
better understanding of gene pattern data was normalized using same method

described in Section1.

Germ line enriched genes- pattern analysis

We analyzed a list of ~ 500 genes known to be germ line enriched (Lund et.al.

2002). We found 472 genes out of the 500 on our arrays. We checked the pattern
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behavior of these genes in entire data set as well as in various lists filtered based on
the ‘variance threshold-method ‘described for my assembly of list of 2000 greatest
variance genes.! Using such a filtering method I obtained 2 more gene lists of 4500
genes and respectively 1100 genes. We analyzed the gene expression pattern of all
472 germ line enriched gene list find in our data of 18615 genes as well as in the
4500 gene list and in the 1100 gene list. In the list of 4500 genes I identified 220 out
of ~ 500 germ line enriched genes and in the list of 1100 genes I've find 51 genes
out of the 500 germ line enriched genes. For each list we normalized the gene
expression in order to facilitate comparison of the gene patterns. Below is the graph
of germ line gene expression pattern corresponding to 472 out of 500 found in
18617 gene list, 220 out of 500 found in 4500 list and 51 gene germ line enriched
out of 500 found in 1100 gene list.

Same oscillatory gene pattern, with peak at day 10 in various lists:472,220,51
472 out of 500 genes were found in the 18,615 list

Heat map The expression of all genes

The mean expression of all
over the days

genes per time point

|
|

WMM{
I.I‘ i

51 out of 500 genes were found in the ~1100 gene list

=

Fig. 14 Germ line enriched genes.

| 'I'Hll.'ll

Legend fig. 14 :

! We computed the variance for each gene per time point. A ranking between all variances has been
performed and we choose the first 4500 genes with highest variance. In the same way we identified the list
of 1100 genes.
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e First row are the 472 germ line genes found in our raw data in 3 graph
representation: heat map, gene expression over time, mean expression of all
gene per time point.

e Second raw: 220 germ line genes found in 4500 gene list with highest
variation genes in 3 graph representation: heat map, gene expression over
time, mean expression of all gene per time point.

e Third raw: 51 germ line genes found in 1100 gene list with highest variation
genes. in 3 graph representation: heat map, gene expression over time, mean

expression of all gene per time point.

A predominant oscillatory pattern with a ‘day 10 peak’ can be clearly depicted in all
three lists we analyzed. The same pattern we depicted when we clustered the data
and find cluster G25. The main biological theme of this cluster was also of germ line
genes. Since the genes find in the cluster G25 have a common pattern regulation
with germ line genes we might consider that all genes in G25 cluster might have a
common loop regulation with germ line enriched genes (see also the comments for
cluster G25). Given that this day 10 up-regulated peak was detected when we
analyzed directly genes known to be involved with germ line and found also in one
of the clusters with a predominantly germ line genes as a biological theme, we might
conclude that such pattern is the signature of germ line related genes and of that
genes which might have a common loop regulation with germ line enriched genes.
Further we might consider that germ line genes have a major role in the transition

identified at day 10.
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Tissue specific gene expression analysis

Insulin related genes

The gene expression pattern of insulin genes suggests involvement in all

major processes.
Given the importance of insulin pathway in aging biology I wanted to get an

understanding of the expression of insulin related genes [ have on the microarray

chips. I identified 23 insulin related genes, see bellow Table 11:

=1 T T T [ T T

ZK75- q09627 caenorhabditis elegans. probable insulin-like peptide beta-type 2
2_at ins-2 precursor. 7/1999
ZK75- q09628 caenorhabditis elegans. probable insulin-like peptide beta-type 3
3_at ins-3 precursor. 7/1999

ZK75- q09626 caenorhabditis elegans. probable insulin-like peptide beta-type 1
1_at ins-4 precursor. 7/1999

ZK84- best hit: p56173 caenorhabditis elegans. putative insulin-like peptide beta-
3_at ins-5 type 6.7/1998 1.0e-45 89%

ZK84- p56174 caenorhabditis elegans. probable insulin-like peptide beta-type 5
6_at ins-6 precursor. 7/1998

ZK1251- q23430 caenorhabditis elegans. probable insulin-like peptide beta-type 4

2_at ins-7 precursor. 7/1999
C17C3- q18060 caenorhabditis elegans. probable insulin-like peptide gamma-type 1
4 _at ins-11 [f precursor.7/1998

F56F3-

6_at ins-17 [§ q20896 f56f3.6 protein. 5/2000
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cel6518 insulin-like growth factor i like (cambridge) tr:018149
protein_id:cab03444.1.0/0

T28B8-
2_at
M04D8-
1_at
M04D8-
2_at
M04D8-
3_at
7ZC334-
3_at
ZC334-
1_at
ZC334-
2_at
T10D4-
4_at
YBA9A-
6_at
WO09C5-
4 _at
F52B11-
6_at
KO02E2-
4 at
F08G2-
6_at ins-37 [f ce19778 locus:ins-37 (cambridge) protein_id:cab04062.1. 0/0

IT13C5- ’ daf-9

q21507 caenorhabditis elegans. probable insulin-like peptide alpha-type 1
precursor. 7/1998

g21508 caenorhabditis elegans. probable insulin-like peptide alpha-type 2
precursor. 7/1998

q21506 caenorhabditis elegans. probable insulin-like peptide alpha-type 3

precursor. 7/1998

q9ulp6 zc334.3 protein. 5/2000

q9xui9 zc334.1 protein. 11/1999

q9xui8 zc334.2 protein. 11/1999

q9tzf3 t10d4.4 protein. 5/2000

q9tyk2 y8a9a.6 protein. 5/2000

q9u333 w09c5.4 protein. 5/2000

ce18726 locus:ins-34 (cambridge) protein_id:cab05196.1. 0/0

ce18839 locus:ins-35 (cambridge) protein_id:cab04546.1.0/0

ce04942 cytochrome p450 (st.louis) tr:q27523 protein_id:aaa80380.1. 0/0

I 30 0 0 0 N E R EM R




TABLE 11: 23 insulin related genes that are on our array.
Below is the hit map for the 23 insulin genes-. Besides genes where represented also

in a graph with expression of each gene over time in fig.15

(Gene expression insulin data

Day 3 Day B Day 3 Day 10 Day 11 Day 12 Day 15

Legend: each row is a gene expression, each column is a time point sample.



107

Red is high level gene expression, blue is low level gene expression. Gene

expressions are normalized.

Fig.15 heat map of the 23 insulin genes

Expression curve of each gene over time
75 T T v

T T
Expression curve of each insulin gene over time — ins-30
! ' ' ! ) — ing-33

e 1 ey \ — ins3
’ \/,/‘ ins21 \ e ins-37
ins-32 — daf16

1t /
/

0 L 1 I I 1
Day 3 Day B Day 9 Day_10 Day_11 Day_12 Day_15

4 L L L L L
Day 3 Day B Day 9 Day 10 Day_11 Day_12 Day 15

Expression curve of each gene over time ; ;
Expression curve of each gene over time

. . — ins7
' p/ — ins-11

Tt / \ b — ins22 3
M — ins-23

BSf / \ / = b
RN N

\_\/ T

.

550 v ]
/ / | /
st !.-/ o / -
/ /
ast/ e |

-0.8
Day 3 Day 6 Day 9 Day 10 Day_ 11 Day 12 Day_15

4 I I I I I
Day_3 Day_B Day_9 Day_10  Day_11 Day_12 Day_1s

Fig. 16 expression of insulin related gene out of 23 genes. The 4t fig right

down are dauer related gene expressions normalized.

The first 3 plots from fig 16 are expression profile of insulin related genes,
approximate 5 genes per plot. The 4t plot contains dauer related genes found on

our array.
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Various patterns can be identified in this plot. For example ‘day 10 up-peak pattern’
found in the cluster G25 can be seen in the dauer related genes at the bottom of fig
10, right side, the genes: daf-21 daf-18;11;14,;4,;5;19 and in expression of ins-7 gene.
A down-peak at day 10 can be seen for ins-22, ins-23, ins-24.

The insulin genes ins-5;11;21;,32 show an up-regulated pattern.

ins-35 and daf-16 show an oscillatory down-regulated pattern and the ins-30 and
ins-33 show an oscillatory pattern. The ins-37 has an interesting ‘senescence
pattern’ of steady state over all time points and than an abrupt increase in the
expression between day12-15.

Basically, we can identify all 4 patterns found when the general data were clustered
for insulin and dauer related genes . This finding can be interpreted as following: if
we consider the 4 patterns found in the clustered data as patterns that are
describing the main biological processes in this organism, than by observing that
insulin genes are expressed in all 4 patterns suggests that insulin genes are involved
in all main processes which this nematode undergoes: aging, development,
homeostasis. I may further infer that insulin and dauer genes might affect the
longevity of C. elegans just in an indirect way. The fact that when mutations occur on
insulin pathway this in turn affects longevity might be just a signature that insulin
pathway actually affects some other vital biological processes which in turn will

have an affect on the length of the life time of the C. elegans.

e daf-21, daf-18, daf-11, daf-14, daf-4, daf-5, daf-19 and ins-7 might share
same regulatory loop as

daf-2, daf-16 and ins-7

Another interesting aspect is that all daf genes mentioned together with ins-7 have
the same oscillatory pattern with a day 10 up-peak. We know from Kenyon results
(Nature 424,2003) that when DAF-2 is active, DAF-16 activity is inhibited and ins-7
is expressed, allowing further DAF-2 activation. When DAF-2 activity is reduced,

DAF-16 is activated and ins-7 expression is inhibited. Our finding that other daf
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genes: daf-21, daf-18, 11,14,4,5,19- share the same pattern with ins-7 suggests other
insulins may participate in the same or similar regulatory loops.

From this survey of 23 insulin related genes, 6 of genes were in our list of 2000
genes, expressed with highest variance. Below is the plot for expression of this

genes-see Fig. 17a. The second plot represents the normalized data-see Fig. 17b

Expression curve of each insulin gene over time
T T T

ins-2

r 7 ins-21
ins-22
ins-23
ing-31
ins-35

2 . . . . .
Day_3 Day_& Day_2 Day_10 Day_11 Day_12 Day_15

x-axis: time points; y-axis: gene expressions-not normalized, log2 applied.

Fig. 17a-6 insulin genes in our 2000 gene list with highest variance

0.8

0.6 B

0.4+

0.2+

-0.21

04f/ /

06/

—— ins-23
-0.8Y —— ins-31 |
ins-35

x-axis: time points; y-axis: gene expressions- normalized, log2 applied.
Fig. 17b-6 insulin genes in our 2000 gene list with highest variance-

normalized data.
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Differences in insulin gene patterns might be a direct reflection of the

stochastic behavior of gene expression.

Comparing our data on insulin gene expression with Kenyon results (Nature
424,2003), I note that in the Kenyon data ins-2 is increased and ins-21 decreases
slightly, whereas in our data, ins-21 definitely increases and ins-2 has an oscillatory
down-going pattern. Various explanations might be offered for the difference in the
patterns, including the differences in the chips and technology used and the
difference in the biological strains used. Nevertheless, the pattern difference might
also be considered a direct reflection of the stochastic behavior of the gene
expressions in C.elegans. | will return to these issues of interpreting the comparison
between data sets in different labs when I make a careful comparison of our data

with other two microarray experiment data.

Neuronally expressed genes:

For the neuron expressed genes we focused on a list of approximate 90 genes. The
heat map for the expression of these ~ 90 genes, 88 genes to be more precise, can be

seen in fig.18.

Gene expression insulin data

Day 3 Day 6 Day 9 Day_10 Day_11 Day_12 Day_15

Each row is a gene expression, each column is time point sample.
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Red is high level gene expression, blue is low level gene expression. Gene
expressions are normalized.

fig. 18 Heat map of the 88 neurons

From the graph we can already depict two gene categories: a large number of genes
with a relative steady expression value and another category of genes where each of

the gene has a distinct pattern of expression.

¢ Neuronal related genes might be regulated by environmental cues
We were interested to find out what genes from the list of ~ 90 genes expressed in
neurons are in our list of 2000 genes that exhibits highest variation.
Out of the ~ 90 genes I examined, I found 10 genes in the 2000 filtered list based on
highest variation. See neurons_table. The gene expression pattern of each neuron

related gene appears to be a separate pattern.

Expression curve nutnormahzed of neurons gene over time

Acr2
Gar-1
— Gpa1
— 0dr-3
— 0dr10
Osm-6
Tau-4
Unc-29
Une-31
Yab-8

] 1 1 1 1 |
Day 3 Day B Day 9 Day_10 Day_11 Day 12 Day 15

fig. 19 10 neuronal related genes (log2) out of 88 in the 2000 list; x-axis: time

points; y-axis: gene expressions- normalized, log2 applied.

This might be a signature for the fact that some neuronal related genes might be
regulated by various stimulus and environmental cues over entire life of this

organism and that these cues are perceived and integrated in a complex and
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sophisticated fashion by specific neurons. These 10 genes might be a signature of
the neuronal genes that do change over time and consequently impact various

processes at various time points.

‘Steady state’ expression pattern-a signature consistent with no

morphological changes at neuron level.

We wanted to see if neuronal related genes might have any other pattern. In this
sense | enlarged the list of genes with highest variation at 4000. We found 18 more
genes out of the 90 genes. They present a distinct clear ‘steady’ gene expression

pattern over the life span of C. elegans See fig 20.



Neurons related genes
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18 genes out of 88 genes in the list with highest variation

Means of expression per time point of neurons genes

85

Neurons show a relative steady
gene expression over the life
span of the nematode.

Fig. upper right: gene expression over time x-axis: time points; y-axis: gene
expressions- normalized, log2 applied.
Fig down: Each row is a gene expression, each column is time point sample.

Red is high level gene expression, blue is low level gene expression.

expressions are normalized.

Fig. 20 neuronal 18 genes out of ~90 genes

Day 3 Day 6 Day 9 Day 10 Day_11 Day_12 Day_15

Gene expression data
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e Two distinct categories of neuron related genes:

We concluded that neuronal related genes can be grouped into two distinct
categories: one which shows steady expression over the life span of the nematode
and another with variable gene expression over time. The steady state pattern of
gene expression might be a signature of Driscoll lab hypothesis that neurons don’t
show significant morphological changes during the life of the nematode. The
unchanged group of genes is represented by 18 neuronal expression genes.

On the other hand, the group of 10 genes implies that gene expression in aging
animal might be regulated by environmental cues and that these cues are perceived
and integrated in a complex and sophisticated fashion by specific neurons. These 10
genes might be a signature of the neuronal genes that do change over time and

consequently impact various processes at various time points.

Genes predicted to impact longevity

Next we've checked a list of genes considered to be involved in life extension of C.
elegans. The list of 260 genes was taken from Murphy et. al. 2003, (Nature 424).
Approximately one in four genes from the list of life extended genes of 260 genes is
included in our list of 2000 genes with highest variation. The heat map for the 58

genes in this graph can be seen in fig 21.
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gene expression of life extended gene over time
T

I
30 ——————————
35 e
40 L —— e
45 o
- ]
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Day_3 Dag:’_Ei Dag:’_B Day‘_1D Dayl_11 Day_12 Day_15

Each row is a gene expression, each column is time point sample.
Red is high level gene expression, blue is low level gene expression. Gene

expressions are normalized.

Fig 21. Heat map of 58 genes out of 260 life extended genes from Murphy et.al.
2003, (Nature 424)

For a complete description of the 58 life-extended genes see Appendix B

o Life extended genes- regulate key developmental switch, metabolic rate
and core processes in general, in accord with evolutionary theory of

aging.-two class genes:

Some of these genes regulate a key developmental switch, while the others control
core processes, such as the overall rate of metabolism. These are exactly the kinds of
processes predicted to be important to longevity by the evolutionary theory of
aging. This theory suggests that competition for metabolic resources between
processes such as growth, reproduction and cellular maintenance lies at the heart of
the ageing process.

Based on the clustering analysis these genes can be broadly classified into two
classes: one of increasing and the other of decreasing in expression pattern.

¢ General gene expression pattern suggests that the events are taking
place at the beginning of the adulthood day 3-day6 might influence the

final days of this organism.
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In our data the 58 life extended genes show a high expression pattern at day 3, day
6, a decrease in expression up to day 12 and than an increase again between day12-
15

If we consider the possibility that an increase in expression pattern reflects an
increase in the gene activity, than the genes responsible for prolonging the life span
of the nematodes have an increase in activities at the beginning of the adulthood
and than again at the end of the life of this organism suggesting that the events
might take place at the beginning of the adulthood day 3-day6 might determine the

final days of this organism.

Autophagy related genes and their implications in aging studies.

A recent paper provides evidence that macroautophagy is an essential downstream
pathway for one of the mutations known to extend life span (A. Melendez, B. Levine,
Science (2003)) Autophagy, or the degradation of intracellular components by the
lysosomal system, was thought for a long time to be a catabolic process responsible
for cellular cleanup. However, in recent years, we have learned that autophagy
comes in different sizes and shapes, macroautophagy being one of them, and that
this cellular maid plays many more roles than previously anticipated. Activation of
autophagy is essential in physiological processes as diverse as morphogenesis,
cellular differentiation, tissue remodeling, and cellular defense, among others.
Furthermore, macrophautophagy participation in different pathological conditions,
including cancer and neurodegeneration, is presently a subject of intense
investigation. A role in aging has now been added to this growing list of autophagy
functions. The activity of different forms of autophagy decreases with age, and this
reduced function has been blamed for the accumulation of damaged proteins in old
organisms. Research shows that there is much more than trash to worry about when
autophagy is not functioning properly. We wanted to investigate the expression
gene pattern of authophagy genes in our data set. We identified 7 authophagy
related genes that are significant regulated during adult life. Their expression

pattern is presented in fig.22:
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fig.22 authophagy genes: gene expression over time; x-axis: time points; y-axis:

gene expressions.

¢ Gene expression pattern suggests a common regulatory loop between

certain daf genes and autophagy genes.

As can be seen in the table 12 bellow and fig. 22 the autophagy related genes have

similar pattern and have a role in dauer larval development as well.

R07G3.3 npp-21
F41E6.13 atg-18
ZK593.6 lgg-2
C32D5.9 lgg-1
M7.5 atg-7
ZK792.1

authophagy, dauer larval development
authophagy, dauer larval development
not required for dauer larva
development or extended life
authophagy, dauer larval development

authophagy, dauer larval development

nematode larval development, autophag)



http://www.wormbase.org/db/ontology/gene?name=GO%3A0002119;class=GO_term
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Y60A3A.1 unc-51 authophagy, dauer larval development
Table 12-autophagy related genes

Both dauer formation (a stage of developmental arrest) and adult life-span in
Caenorhabditis elegans are negatively regulated by insulin-like signaling, but little is
known about cellular pathways that mediate these processes. Dauer formation is
associated with increased autophagy (A. Melendez, B. Levine et al,, Essential role of
autophagy genes in dauer development and lifespan extension in C. elegans. Science
(2003)).

Interestingly, indeed in our data we find that same oscillatory pattern with ‘day 10’
peak is shared by both dauer genes (see fig 23) and npp-21, atg-18 and unc-51
autophagy genes.

Fig.23 dauer genes gene expression over time x-axis: time points; y-axis: gene

expressions- normalized, log2 applied.

This finding might suggests that daf-21,18,11,14,4,5,19 and npp-21, atg-18, unc-51

may participate in the same or similar regulatory loops.
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Helicases related genes and aging:

Deficiency in a helicase of the RecQ family is found in at least three human genetic
disorders associated with cancer predisposition and/or premature aging. The RecQ
helicases encoded by the BLM, WRN and RECQ4 genes are defective in Bloom’s,
Werner’s and Rothmund-Thomson syndromes, respectively. Cells derived from
individuals with these disorders in each case show inherent genomic instability.

We identified in our data four genes known to be helicase related:

ceWrn him-6 ceRecQ5 ceRecQ4. see fig 24 left. The data presented in fig 24 is
normalized for comparison purpose.

Given the importance of the helicase genes in aging related diseases we wanted
to see how similar is their expression in one more data set. Lund et. al. performed
an experiment similar to our experiment. In spite of some major differences as the
type of chip used, time points and strains used, differences which will be stressed
later, fundamentally, the design of the experiment has some similarities in the sense
that the time points in both data sets cover the entire life span of C. elegans and
both experiments have replicates, therefore we’ve checked the helicase gene

expression in Lund et. al. data as well, see fig. 24, right.
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Helicase family-gene expression in two different data

left: our data; ox-axis: 7 time points: day3,day6,day9,day10,day11,day11,day15.
oy-axis: normalized gene expression. Log 2 was applied.

right: Lunda data; ox-axis: 6 time points: 1/day3 ; 2/day4 ;3/day6-7 ; 4/day9-11 ;
5/day12-14; 6/day16-19; oy-axis: normalized gene expression. Log 2 was applied.

fig.24 Helicases genes

The same oscillatory pattern of day 10 can be notice for him-6 in both data sets. The
RecQ-5 gene as well as the ceWrn gene related with Werner syndrome in humans
show a different pattern in each data set. This might be interpreted as a lack of
robustness of this gene for various stochastic factors that influences ceWrn and
RecQ-5 gene expression. The fact that the gene expression pattern is not repetitive
in the two experiments could be considered a feature of the genes involved with

genomic instability.
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DNA helicases are molecular motors that catalyse the unwinding of energetically
unstable structures into single strands and have therefore an essential role in nearly
all metabolism transactions. Defects in helicase function can result in human
syndromes in which predisposition to cancer and genomic instability are common
features. RecQ helicases are a family of conserved enzymes required for maintaining
the genome integrity that function as suppressors of inappropriate recombination.
Mutations in RecQ4, BLM and WRN give rise to various disorders characterized by
genomic instability and increased cancer susceptibility. One of the signatures of
such genes involved in genomic stability might be exactly this inconsistency in gene
expression between experiments due to the stochastic factors modulating the

expression level of such genes.

Muscle related genes and aging

The behavioral study of ageing nematodes showed a significant decrease in
mobility. Age-associated locomotory defects increase progressively in severity over
time. Progressive locomotory impairment during C. elegans ageing could be the
consequence of a decline in muscle function.

For muscle related genes we had several lists we wanted to check in our data.
First we checked a list of 60 muscle genes , obtained from Lund et al.,, 2001, Curr
Biol. 12(18):1566-73.

In entire raw data of 18 668 the expression of this group of 60 genes after

normalization is as follows: high expression for day 3 to day 6, a relatively steady
expression between day 9 to day 12 and again an increase in expression between
day 12 to day 15. A graphic representation of this genes can be seen in fig. 25 see

bellow.
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fig. 25 Muscle data_60 genes normalized

We've classified the 60 genes in structural, development/assembly, contraction and
anchoring.
When we’ve checked this 60 genes in our list of 2000 genes with highest variation

we found 14 genes. See below their expression pattern in fig 26.

Expression curve of normalized muscle gene over time
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Fig26. a) 23 muscle out of 60 identified in the list with 2000 genes b) same 14 genes

normalized.

A relatively steady expression patterns between day 9 to day 12 can be seen in
most of the expression patterns of the 14 genes.
When I examined the list of 1283 muscle related genes proposed by Kim (Roy,Kim
et.al, 2002, Nature 418) we found 1187 genes, on our chips among which 111 were
within the list of 2000 filtered genes.
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Expreasion cunve of each muscle gene over time

Day_3 Day_12 Day_15 Oay 3 Days  Day 8  Day i0  Day_11  Day 1z  Day 15

fig. 27 125 genes normalized in common between 2000 list & 1187

As for the previous muscle lists we analyzed, most of the genes are highly expressed
at day 3, than a relative steady expression from day 6 to day 12 and than again the
expression pattern of this genes become higher. For complete references on the
genes name list and a short description of 1187 muscle related genes, 111 muscle
related genes.

In conclusion, all muscle expressed genes checked in our data and involved in
structural, development/assembly, contraction and anchoring share a similar
pattern: high expression day 3, day 6, steady expression at the middle life span of

C. elegans (day9-12), and again high expression toward the end of life of the
organism (day12-15). It is interesting that this pattern is similar to that of the long
life gene pattern (from Kenyon et. al) previously analyzed. The apparent changes,
beginning in mid-life, muscle structure (see Driscoll et.al, Nature 2003) might have
as signature at transcriptional level the low expression level between day6-day12.
Besides, as later research I've done will show, another clearly pattern muscle related
is of decrease in expression level starting with day 3, all the way up to day 15.

We performed a much thorough analysis later on the data muscle gene when we
wanted to understand sarcopenia process. Later results will conclude that are
actually two distinctive patterns at the muscle level: one of low expression between
day 6-12, and another of decrease in expression for all time points between day3-
day15. One use of this finding might be if the muscle related group of genes which
start to show an increase of the expression level between day 12-15 might be

considered as genes with the potential of reverting the sarcopenia.
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4.7 Concluding Remarks

Microarray experiments seek to obtain readouts of gene expression levels
over the whole transcriptome . This information can be useful for determining how
the transcriptional regulation of genes might coincide, thereby implicating proteins
as parts of networks acting together towards a common biological function. Such
experiments are particularly useful for complex biological traits that result from the
presumed functioning of several molecular pathways. Aging is one such biological
trait that apparently incorporates numerous molecular mechanisms underlying
environmental stimulus sensing, metabolic regulation, stress responses,
reproductive signaling, and transcriptional regulation. Current models of aging
emphasize different mechanisms as driving forces behind aging and lifespan
determination. However, an integrated understanding of exactly how these
mechanisms drive aging has not yet been formulated.

The methods I used for gaining a better understanding of the mechanisms
which might underline the aging process where supervised and unsupervised. When
interpreting the data, using a supervised approach, I tried to follow the major
biological theories currently known that describe aging. In this sense to address the
oxidative damage theory of aging, for instance, I've identified stress response genes
that exhibit statistically significant changes, and then ask whether the expression
patterns of these genes share a common pattern. Also I've looked into insulin and
dauer pathway, all being considered important leads in aging studies. Insulins,
aging-related gene, dauer-related genes, , autophagy related genes, muscle, neuronal
and germline genes all are singled out and their expression profiles examined.

['ve investigated and addressed two major aging hypothesis, both being
developed in Driscoll’s lab; one is pointing out to a major ‘crisis’ which is going on in
the midlife period of time of the organism especially at the muscle level, which
might be critical for determining the ultimate lifespan of that animal, the other is
underlining the idea that aging must be understood as an stochastic process due to
stochastic cues acting on the organism over the entire lifespan of that organism. The

implications of aging as a stochastic process can be seen at the transcription level in
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various specific group of genes as I've pointed out when I've analyzed insulin or

neuronal related genes.
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Chapter 5

In the search of molecular signature of sarcopenia in C.

elegans

5.1 Introduction

Sarcopenia is an "age-related" loss of muscle mass leading to muscle weakness,
limited mobility, and increased susceptibility to injury. Overall changes with age that
contribute to sarcopenia include declines in androgenic and growth hormone
concentrations, declines in spontaneous physical activity, and changes in dietary
intake of protein and/or energy. Specifically, in skeletal muscle there is a selective
loss of muscle fibers, decline in total muscle area and reduced muscle

capillarization, shortening velocity, and maximal force .

To begin to identify the molecular basis for the loss of muscle mass with age,
investigators have measured in mammals changes in gene expression on a global
scale during aging in skeletal muscle using serial analysis of gene expression, cDNA
arrays, and oligonucleotide-based microarrays. These studies have reported
changes in gene expression consistent with decreased protein synthesis, impaired
oxidative defense, and decreased activity of mitochondrial proteins. They have also
reported differential expression of genes involved in energy metabolism, DNA
damage repair, stress response, immune/inflammatory response, RNA binding and
splicing, and proteasome degradation. Although these studies have provided insight

into the age-related changes in gene expression and therefore the aging process, the
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human studies in particular have limitations with regard to sample size, number of
genes surveyed, overall smaller differences in gene expression, and pooling of
samples. Importantly, investigating the molecular mechanisms underlying
sarcopenia in humans with the use of microarrays is also complicated by the
inherent variability in human gene expression profiles. This variability is likely due
to differences in genetics, diet, environment, and habitual patterns of activity,
making it more difficult to identify true age-specific alterations. In fact, investigators
using the human Affymetrix microarrays to study young vs. older males found that
the intragroup (n = 8) variability was so high that a special ratio method was needed

to be developed to reduce the within-group variance .

Using C. elegans as animal model in an effort to better understand the biology of
aging we put an emphasis on mid-life changes that, we consider might influence
aging, and give us an insight into sarcopenia as a process. Studies in our lab and
others have suggested that critical events during the mid-life of the nematode can
influence the aging of the organism. The small nematodes have less variability in
gene expression profiles, and a lot of muscle-related genes (50% have human
homologie), which presents clear advantages for aging and sarcopenia microarray

studies.

In the present study, Affymetrix GeneChips special designed for C. elegans (by
Hoffmann-LaRoche company, from Basel, Switzerland) were used to interrogate the

expression of 18,612 genes (open reading frames).

5.2 Experimental design

In this study we used same experimental design as described in first chapter. Our
experiment includes time points covering the reproductive and post-reproductive

periods, with a series of consecutive mid-life time points.

In order to be able to grow the worms in a synchronous way, we used only spe-9

(hc88), which is a temperature sensitive mutation. This strain does not produce
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progeny at 25 C;

We cultured spe-9(hc88) mutants at 25.5°C in order to avoid contamination of a
synchronous culture with young animals. spe-9(hc88) is defective in
spermatogenesis and produce unfertilized oocytes when reared at high
temperature. Any “escapers” were visually identified and eliminated manually, so
cultures were highly synchronous. At days 3, 6, 9, 10, 11, 12 and 15 of culture (as
measured from egg deposition) animals just reach adulthood at day 3. We harvested
~ 20,000 worms per time point in three trials and used RNA from each of these for
three independent hybridizations. Because of our focus on potential relevant
changes at the midlife transition, we also prepared another triplicate experiment in

which we harvested nematodes at days 9, 10 and 11.

Data from these middle time-points were combined with those in the more

extended trials to increase the significance of findings at days 9, 10 and 11.

Therefore, in our data we have six total independent repeats for the middle life time

points day 9, 10, 11 and 3 repeats for day3, 6, 12, 15.

5.3. Data Analysis-Methods

5.3.1 Outlier detection:

In order to detect the outliers we used (as outlier exclusion test) the Nalimov outlier
test. For each gene per Condition a modified Nalimov outlier test is performed for
data points representing Replicate experiments. (see, Kaiser R, Gottschalk G

(1972)).

5.3.2 Scaling

In order to achieve, scaling of the data on the chip and between chips, for each chip,
we calculated the median signal intensity over all probe sets. The median of this

median signal intensity from all chips was calculated. Then, every chip, is scaled to



129

this median value.

5.3.3 KNN estimation method

The data was estimated based on the values of the K nearest neighbor genes

estimator, ( Tibshirani, R, Botstein, D. & Altman, R. B. (2001).

We also transformed the data using a logarithmic transformation in base 2, X=
log2(X). The reason we do this is that is preferable to work with logged intensities
rather than absolute intensities since the variation of logged intensities tends to be
less dependent on the magnitude of the values; taking logs, reduces the skewness of

the distributions and improves variance estimation.

5.3.4 Filtering

A special method for filtering genes based on highest variance was designed. Genes
were filtered on the basis of their variation across the samples. A set of 2000 genes
were chosen, on the basis of their standard deviations. I analysed also other lists
choosing as, for example, 2500 genes, 3000, and 5000 genes; or filtering data using
ANOVA as way of filtering and then used FDR test for checking on false positive and
obtained a list of 1241 genes, however after careful unsupervised analysis of all the
lists mentioned, we conclude that the lists of 2000 genes obtained from the filtering
based on highest variation is more suitable for answering question in regard of
aging, sarcopenia and that the ANOVA method is too conservative for our purpose.
Also the lists of 3000 and 5000 genes were unnecessary large from the point of
biology novelty. Therefore in presenting the results of our unsupervised as well as
supervised method, we will refer to the list of 2000 genes obtained based on the

highest variation filtering.
5.3.5 Normalization

In order to normalize the data, I went through two steps: first, the step of what is

known in statistics literature as “center mean”, and obtain this way a new vector.
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Then the new vector is divided to its “standard deviation”, meaning normalize the

newly obtained vector. (See Methods Chapter 1).

5.3.6 Unsupervised method for data mining- clustering

['ve chosen to use for our data a new approach to clustering based on the
physical properties of a magnetic system. The algorithm is a Monte Carlo-based
method (in particular Swedsen-Wang Monte Carlo method) and uses KNN for
defining the neighbors. We were able to find clusters that have not been
obtained by other unsupervised clustering methods as Tree- View or K means

clustering. The reason is that this method has a number of unique advantages:
4 The number of the “macroscopic” clusters is an output of the algorithm.

5 The hierarchical organization of the data is reflected in the way the

clusters split or merge when a control parameter is varied.

6 The results are insensitive to the initial conditions.

Comparing this algorithm with other clustering algorithms, the drawback of
methods like “Tree View” or “K means algorithms” is that they have high sensitivity
to initialization and they have poor performance when the data contains
overlapping clusters; The most serious problem is lack of cluster validity criteria;
none of these methods provide an index that could be used to identify the most
significant partitions among those obtained in entire hierarchy ( Methods Chapter 1

and Domany et. al. Physical Review ‘96 for more on SPC algorithm).
5.3.7 Supervised methods
For compiling various lists I used AQL language which is a new query language for

the Acedb database system. It borrows syntax and ideas from OQL, the ODMG's

proposed query language for object-oriented databases (which is supported by 02),


http://www.acedb.org/
http://www.ootech.com.au/oql.htm
http://www.odmg.org/
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Lorel, a language for querying semi-structured data in the Lore database system

developed at Stanford, and Boulder.

[ also used the Gene Ontology database, (GO_term). (http://www.geneontology.org).

5.4 Results

5.4.1 Sarcopenia signature

[ have expanded on previous work in C. elegans (see Kim et al. 2002, Kenyon et. al
2003) studies by increasing the number of samples over the midlife time window,
and, most importantly, focusing our efforts on defining a molecular signature of
sarcopenia rather than a general survey of gene changes with age. We also extended

our previous analysis on muscle related genes from Chapter 1.

In our sarcopenia studies I used a combination of supervised and un-supervised
methods. For this purpose I compiled several lists of genes muscle- related genes.
The definition of sarcopenia at the phenotypic level is that is an "age-related" loss of
muscle mass leading to muscle weakness and reduce mobility. At the genotypic
level we might suspect that any changes in muscle- related genes might be the
reason of an sarcopenia phenotype. In the rest of the work I will call a sarcopenia
signature any major changes in muscle-related gene expression. Given the
phenotypic aspect of the sarcopenia one might expect to identify as sarcopenia
signature a down-regulated gene expression pattern. As [ will show in this work,
these will not be always the case. 1 will call as ‘positive connection with the

sarcopenia phenotype’ any down-regulated gene expression pattern.

At first I compiled a list of genes considered to be expressed in muscle cells. In
order to do this I used a combination of bioinformatics tools special designed for
searches in Worm Database. I used AQL language (see Methods section) which is a
new query language for the Acedb database system to compile a list of 829 genes
from the worm database expressed in muscle cells. Out of the 829 gene list in our

raw data we identified 721 genes. We wanted to understand how many of these 721


http://www-db.stanford.edu/lore/research/
http://www-db.stanford.edu/lore/
http://www.acedb.org/
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genes considered to be expressed in cell muscle are in our list of 2000 genes with
highest variation. To obtain the list of 2000 genes I used a selection method based
on the highest variation of the gene expression in conjunction with a k-nearest
neighbor estimator (see Methods section). We identified 42 genes as being at the

intersection between the 721 genes with the list of 2000 genes.

The set of 42 muscle expressed genes are included in the list of 2000 genes, that
show greatest variation during adult life, and might serve as a signature of C. elegans
sarcopenia. These 42 genes might be representative as genes involved in muscle if
we consider as underlying hypothesis that genes that vary the most should be more
involved in the biological process than genes that show a relative steady state of

gene expression.

We analyzed the expression of each of the 42 genes which might comprise the
signature of sarcopenia over time. The list of the 42 genes with ORF annotations,
CDG annotation ( or 3 letter names) as well as a concise description for each gene as

was found in worm base using AQL query language can be seen in Table 1.

'T14A8.1' 'ric-3' | development (IMP) protein targeting to membrane

Biological process: embryonic development ending in birth or
egg hatching (IMP) growth (IMP) nematode larval

hypodermis.
'H30A04.1" | 'eat-20' | Biological process: hermaphrodite genitalia development

"eat-20 encodes a paralog of the C. elegans and Drosophila
genes crb-1 and crumbs, expressed in pharynx, head neurons,

'C12C8.1"

'hsp-
70’

'hsp-70 encodes a member of the hsp70 family." Biological
process determination of adult life span

'F11C3.3'

'unc-
54'

"'unc-54 encodes a muscle myosin class II heavy chain (MHC
B); UNC-54 is the major myosin heavy chain expressed in C.
elegans ;

Biological process: body morphogenesis (IMP) inositol lipid-
mediated signaling (IPI) locomotion (IMP) muscle contraction
(IMP) muscle thick filament assembly (IMP) oviposition (IMP)
pharyngeal pumping (IPI) positive regulation of locomotion

'C13B9.4

"C13B9.4 is orthologous to the human gene CALCITONIN
RECEPTOR Biological process: G-protein signaling, adenylate
cyclase activating pathway (ISS) cellular calcium ion



http://www.wormbase.org/db/ontology/gene?name=GO%3A0009792;class=GO_term
http://www.wormbase.org/db/ontology/gene?name=GO%3A0008340;class=GO_term
http://www.wormbase.org/db/ontology/gene?name=GO%3A0010171;class=GO_term
http://www.geneontology.org/GO.evidence.html
http://www.wormbase.org/db/ontology/gene?name=GO%3A0048017;class=GO_term
http://www.wormbase.org/db/ontology/gene?name=GO%3A0048017;class=GO_term
http://www.geneontology.org/GO.evidence.html
http://www.wormbase.org/db/ontology/gene?name=GO%3A0040011;class=GO_term
http://www.geneontology.org/GO.evidence.html
http://www.wormbase.org/db/ontology/gene?name=GO%3A0006936;class=GO_term
http://www.wormbase.org/db/ontology/gene?name=GO%3A0007189;class=GO_term
http://www.geneontology.org/GO.evidence.html
http://www.wormbase.org/db/ontology/gene?name=GO%3A0006874;class=GO_term
http://www.geneontology.org/GO.evidence.html
http://www.wormbase.org/db/ontology/gene?name=GO%3A0040011;class=GO_term
http://www.geneontology.org/GO.evidence.html
http://www.wormbase.org/db/ontology/gene?name=GO%3A0045762;class=GO_term
http://www.wormbase.org/db/ontology/gene?name=GO%3A0045762;class=GO_term
http://www.wormbase.org/db/ontology/gene?name=GO%3A0045762;class=GO_term
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homeostasis (ISS) locomotion (IMP) positive regulation of
adenylate cyclase activity

'ZK721.1

tag-
130’

The precise role is not known;
detected in such tissues as body wall muscle, hypodermis,
intestine, pharynx, and the gonad

'W02C12.3'

'hlh-
30.'

""W02C12.3 is orthologous to the human gene
TRANSCRIPTION FACTOR BINDING TO IGHM ENHANCER 3
(TFE3; OMIM:314310), Helix loop helix transcription factor
EB

'2C101.2'

'unc-
52

biological processes:

cell adhesion (IEA) cell migration (IGI) determination of adult
life span (IMP) embryonic development ending in birth or egg
hatching (IMP) epidermal growth factor receptor signaling
pathway (IGI) locomotion (IMP) molting cycle, collagen and
cuticulin-based cuticle (IMP) muscle development (IMP)
muscle morphogenesis (IGI) nematode larval development
(IMP) positive regulation of growth rate. UNC-52 is
synthesized by the hypodermis and localizes to the
extracellular matrix between hypodermis and muscle

And following Molecular function: calcium ion binding,
structural molecule activity

'C16D9.2'

'rol-3'

biological process: collagen and cuticulin-based cuticle
development, embryonic development ending in birth or egg
hatching, locomotion positive regulation of growth rate (IMP)
protein amino acid phosphorylation (IEA)Cellular component
integral to membrane (IEA)Molecular function ATP binding
(IEA) protein kinase activity (IEA) protein serine/threonine
kinase activity (IEA) protein tyrosine kinase activity (IEA)

'F56D12.1'

'alh-6'

"alh-6 is orthologous to the human gene ALDEHYDE
DEHYDROGENASE 4 FAMILY, MEMBER A1l (ALDH4A1;
OMIM:606811), biological process: locomotion (IMP)
metabolic process, positive regulation of growth rate (IMP)
positive regulation of locomotion (IMP) proline biosynthetic
process (IEA) reproduction (IMP) Cellular component
mitochondrial matrix (IEA)Molecular function 1-pyrroline-5-
carboxylate dehydrogenase activity (IEA) oxidoreductase
activity

'F40F9.10°

Has larval expression: pharynx; anal depressor muscle; body
wall muscle;Adult Expression: pharynx; anal depressor
muscle; body wall muscle;
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'H28G03.6'

'"mtm-
5I

MTM-5 is expressed in adult pharynx, intestine, and body wall
muscle, but has no obvious function in RNAi assays

'RO7B7.11'

'gana-

"RO7B7.11 is orthologous to the human gene ALPHA-
GALACTOSIDASE B (GALB; OMIM:104170), which when
mutated leads to Schindler disease. Description: gana-1
encodes a protein with homology to both human alpha-
galactosidase (alpha-GAL) and alpha-N-
acetylgalactosaminidase (alpha-NAGA) enzymes; GANA-1 is
expressed in body wall muscle and intestinal cells and in
coelomocytes; Biological process: carbohydrate metabolic
process, glycoside catabolic process, metabolic process

'T05C12.10'

'qua-1'

Biological process: cell communication , embryonic
development ending in birth or egg hatching, locomotion
(IMP) molting cycle, collagen and cuticulin-based -cuticle
(IMP) multicellular organismal development (IEA) nematode
larval development (IMP) positive regulation of multicellular
organism growth (IMP) proteolysis (IEA)Molecular function:
peptidase activity (IEA)

'F48F7.1'

'alg-1'

'A homolog of rde-1 that is involved in RNA interference and
affects  developmental timing.  Biological  process:
determination of adult life span (IMP) embryonic
development (IGI) embryonic development ending in birth or
egg hatching (IMP) hermaphrodite genitalia development
(IMP) locomotion (IMP) molting cycle, collagen and cuticulin-
based cuticle (IMP) nematode larval development (IMP)
positive regulation of growth rate (IMP) positive regulation of
locomotion (IMP) positive regulation of multicellular
organism growth (IMP) vulval development

'C26C6.5'

'dcp-
66'

Biological process: embryonic development ending in birth or
egg hatching (IMP) growth (IMP) hermaphrodite genitalia
development (IMP) locomotion (IMP) morphogenesis of an
epithelium (IMP) negative regulation of vulval development
(IMP) nematode larval development (IMP) positive regulation
of growth rate (IMP) positive regulation of wvulval
development (IMP) reproduction

'F11E6.2'

'grl-24'

is expressed in body wall muscle and intestine; No gene
ontology terms have been assigned to grl-24

'T01B10.2'

'grd-
14

Biological process: locomotion (IMP) positive regulation of
multicellular organism growth (IMP) vulval development

'F37H8.5'

Gamma-interferon inducible lysosomal thiol reductase

'F53A9.10'

"tnt-2'

Biological process: locomotion (IMP) positive regulation of
growth rate (IMP) positive regulation of locomotion (IMP)
reproduction

'F42G4.3'

'zyx-1'

""zyx-1 encodes a zyxin homolog that physically interacts with
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P granule components (GLH proteins); Biological process:
reproduction

'C44H4.4'

Uncharacterized conserved protein

'Y38F1A.6'

Biological process: metabolic process (IEA) Molecular
function: metal ion binding (IEA) oxidoreductase activity

'D2045.9'

Biological process: hermaphrodite genitalia development
(IMP) lipopolysaccharide biosynthetic process (IEA)
locomotion (IMP) morphogenesis of an epithelium (IMP)
positive regulation of growth rate (IMP) reproduction

'Y75B8A.7'

Biological process: growth (IMP) hermaphrodite genitalia
development (IMP) nematode larval development (IMP)
positive regulation of growth rate (IMP) rRNA processing
(IEA) reproduction

'TO1C8.5'

Biological process amino acid metabolic process (IEA)
biosynthetic process (IEA) positive regulation of growth rate

'F25H2.1'

Description: none available

'Z2K112.2"

ncl-1 encodes a B-box zinc finger protein that may be a
repressor of RNA polymerase I and III transcription; has much
larger neuronal nucleoli than normal

'F42A10.3'

Molecular function: methyltransferase activity

'F54C9.11'

Guanine nucleotide exchange factor

'FO7A5.7'

'unc-
15’

The unc-15 gene encodes a paramyosin ortholog;

Biological function:

body morphogenesis (IMP) carbohydrate metabolic process
(IEA) growth (IMP) locomotion (IMP) muscle thick filament
assembly (IMP) nematode larval development (IMP)
oviposition (IMP) regulation of cytoskeleton organization and
biogenesis

'F11A1.3'

'daf-12"

daf-12 encodes a member of the steroid hormone receptor
superfamily that affects dauer formation downstream of the
TGF- and insulin signaling pathways, and affects gonad-
dependent adult longevity together with DAF-16. Is
homologous to human VITAMIN D RECEPTOR. Biological
process: negative regulation of multicellular organism growth
(IMP) positive regulation of growth rate (IMP) regulation of
development, heterochronic (IMP) regulation of transcription,
DNA-dependent

'F38E11.2'

'hsp-
12.6'

HSP-12.6 is required in vivo for normal lifespan; hsp-12.6
encodes a small heat-shock protein; HSP-12.6 is
predominantly and ubiquitously expressed in L1 larvae
without any obvious induction by stressors; but, in adult
hermaphrodites, at least one HSP-12 is also expressed in
spermatids (and perhaps spermatocytes), as well as in some
vulval cells; hsp-12.6(RNAi) animals are shorter-lived than
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normal;

'F56H9.4'

'gpa-9'

gpa-9 encodes a member of the G protein alpha subunit family
of heterotrimeric GTPases; it is expressed in AS], PHB, PVQ,
pharyngeal muscle, and the spermatheca

'C40C9.1"

"twk-
20’

Concise Description: none available; Biological process
potassium ion transport

'T27E4.3'

'hsp-
16.48'

hsp-16.48 encodes a 16-kD heat shock protein (HSP) that is a
member of the hspl6/hsp20/alphaB-crystallin (HSP16)
family of heat shock proteins Biological process
determination of adult life span.

'E03D2.2'

'nlp-9'

Concise Description: none available

'C02F4.2'

'tax-6'

tax-6 encodes an ortholog of calcineurin A

Biological process: chemosensory behavior (IMP) chemotaxis
(IMP) dauer larval development (IGI) hyperosmotic response
(IGI) locomotion (IMP) olfactory behavior (IGI) olfactory
learning (IMP) positive regulation of growth rate (IMP)
positive regulation of multicellular organism growth (IMP)
thermosensory behavior (IMP) thermotaxis

'C36B7.7'

'hen-1'

"hen-1 encodes a secretory protein that contains a low-
density lipoprotein receptor class A domain. GFP reporter is
expressed in pharyngeal muscles, the vulva, and weakly in a
subset of neurons;Biological process: associative learning

'F42A10.2"

'nfm-1

nfm-1 encodes a homolog of human merlin/schwannomin
(NF2), which when mutated leads to neurofibromatosis.

'F11E6.5'

'elo-2'

"The elo-2 gene encodes a palmitic acid elongase,
homologous to polyunsaturated fatty acid (PUFA) elongases
such as ELO-1

Biological process: positive regulation of growth rate

'T20B3.2'

'tni-3'

Biological process: muscle contraction (IMP) nematode larval
development (IMP) oviposition (IMP) post-embryonic body
morphogenesis (IMP)

Cellular component: sarcomere

Legend: The blue colored names are down-regulated genes

Table 1 List of 42 genes that might be representative for sarcopenia signature.

The next step should be to identify the gene patterns in this list. In this sense I

clustered the list of 42 genes C. elegans using the SPC approach to identify 8 clusters,

classified (see Chapter 1) based on size (number of genes in each cluster) and

stability. The hierarchical organization of the data reflected in the way clusters split

or merge has a graphical representation as a tree, called a dendogram ( see fig 1).

For details on the clustering algorithm see Chapter 1 as well as in E. Domany et. al,
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Neural Computation (1997). The clusters or nodes I obtained were annotated as G1-
G8, each with a distinctive pattern. Besides classifications of clusters based on the
size and stability criterion mentioned above (found in size/stability table), I
attempted a classification based on patterns of gene expression identified in each
such cluster. The results of this clustering analysis were compiled for an easy access
in a web- based design that facilitates their analysis.

The entire informational content of the web-based clustering design is displayed
graphically or in tables. I will mention below some of the links which can be found in
the main web page:

o heat-map graph with all the genes normalized before being clustered.

Unreordered Data (standardized genes)

06

0.4

0.2

Genes (original arder)

51 Samples (original order)

e PCA -a graph displaying the principal component analysis (see Chapter 1
for details and references on PCA method)

e Dendrogram with Stable Clusters -web based accessible dendogram

o Dendrogram next to Reordered Data (after clustering): hit-map graph &

dendogram

Reordered Genes : table with all 42 genes and the clusters where they fit.

Samples : time points

Parameters for SPC

Access to each cluster for pattern visualization and gene members.

Each cluster can be accessed from the main web page and is represented graphically
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in two plot formats: as a heat map and as gene expression level changes over time.
In addition, a short description of the biological content, of each cluster,
correspondence of the cluster with any other clusters, and the list of gene members
found in the respective cluster is included. Two tables with clusters sorted based on

the stability and size are also presented.

Among the 42 genes I depicted 8 clusters, using SPC clustering algorithm (see more

about SPC in Chapter 1).
Dendragram oscillatory
EEEEE g dOWI-TESUlAT R
GZ@ dayl0

50

45t

4t

34+

25+

down-regulated
pattern

\

up-regulated pattern

1 1
a g 10 15 20 25 30 35 40
Reardered Genes

Fig. (1). Dendogram showing 8 clusters annotated G2-G9 and the pattern

categories they enter

Fig.(1) shows 8 clusters annotated from G2 - G9; the dendogram shows the
hierarchical organization found in the data based on SPC algorithm.

Below is the dendogram and the heat map graph of the 42 genes;
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!- .
0.6

III II

Genes {reardered according to dendrogram)

mﬁ Meim

"2 3 4 5 & 1
Samples (original order)

Legend: x-axis-7 time points: 1/day3; 2/day6; 3/day9; 4/day10; 5/day11;

6/day12; 7/day15; y-axis-42 gene expressions; color bar: from red-high gene

expression too dark blue-low gene expressions.

Fig. 2 Dendogram and heat map of the 42 genes after clustering.

[ depicted 3 main patterns in the clustered data: a down-regulated pattern,
oscillatory pattern and up-regulated pattern. The dendogram in fig.1 shows the 8

clusters and the pattern category each cluster undergoes.

The down-regulated pattern -sarcopenia signature: direct and positive
connection between sarcopenia signs and 24 genes that exhibits a down-

regulated pattern. Genes are involved in developmental and locomotion.

The down-regulated pattern can be depicted in the cluster G6 and the 2 clusters
that merge/split from G6: clusters G4 and G3. The main cluster G6 with down-
regulated pattern has 24 genes, which is more than 50% of the genes in the list of
42 genes. A down regulation of expression of these 24 genes with age might be a

direct reflection of the "age-related” loss of muscle mass leading to muscle
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weakness. In this sense, the 24 genes might be the representative genes for

sarcopenia signature. The genes can be found in Table 1 highlighted in blue.

The common biological theme of the 24 genes is involvement in determination of
adult life, locomotion, positive regulation of growth rate, larval developmental. As
mentioned the down-regulated pattern of cluster G6 is maintained in clusters G3
and G4 as well as the common biological theme. Below are the down-regulated
cluster patterns for the clusters G3 with the highest stability of size 13 and stability
5. The intermediate cluster G4 has size 15 and stability 3. The same common
biological theme as in cluster G6 is preserved in G3 cluster also

Expression curve of each gene over time

'
——— H30A04.1
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FS349.10
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— Y38F1AB
0.2 — T01CBS
F42A10.3
0 FO7AS.7
——F11E6.5
T2083.2
0.2
04

086 1 L 1 I 1
Day 3 Day 6 Day 9 Day_10 Day_11 Day_12 Day_15

Legend: x -axis: time points, y-axis: gene expressions., log2 was applied.
Fig. 3 G3 cluster pattern: stability 5, size 13

Also, below is cluster G4 pattern.
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Expression curve of gach gene over time
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Legend: x -axis: time points, y-axis: gene expressions., log2 was applied.

Fig. 4 G4 cluster pattern: stability 3, size 15.

The emergent biological theme for the down-regulated pattern genes is the

involvement in developmental and locomotion.

Given our finding of the 24 genes, with a decrease in gene expression, that have a
role in locomotion and that the sarcopenia phenotype is defined by signs of
decreasing in locomotion functions might be that this 24 genes could play an
important role in sarcopenia. The fact that the phenotypic outcome over time of this
nematode shows a clearly slow movement with age and that we notice a decrease in
gene expression with age of the 24 genes involved in locomotion might be an
expression of a direct and positive connection between sarcopenia signs and the 24

genes.

Oscillatory down-regulated day 10 pattern: is found in 3 clusters G8,G9,G2 of
very small size of 4 and 2 genes but of very high stability: 35, 12 and 5. The cluster
G2 below is the cluster with highest stability among the 3.
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Expression curve of each gene aver time
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Fig. 5 G2 cluster stability 35: x -axis: time points, y-axis: gene expressions.,

log2 was applied.

The genes in this 3 clusters have in common the fact that are expressed in body wall
muscle; 2 of genes: mtm-5 and hen-1 are expressed in pharyngeal muscle. Involved
in metabolic process is gana-1 which is also orthologous of human galactosidase.
mtm-5 has no obvious function in RNAi assays and nlp-9 has no description of its

function so far.

All 4 genes in cluster G9 exhibit an oscillatory gene expression pattern with a down

pattern in gene expression at midlife time point, day 10.

Up-regulated pattern: can be noticed in the main cluster G7 and then in the cluster
G5 which splits from G7. Cluster G7 has size 14 and stability 20. The cluster G5 has
size 11 and stability 3.

Bellow the G7 cluster pattern can be seen.
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Expression cume of each gene over time
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Fig. 6 G7 cluster of size 14 up-regulated pattern: x -axis: time points, y-axis: gene

expressions., log2 was applied.

Most of the genes in cluster G7 are responsible for mutants defective in locomotion.
Besides G7 contains daf-12, which encodes a member of the steroid hormone
receptor superfamily homologous to the vitamin D receptor that affects dauer
formation downstream of the TGF- and insulin signaling pathways. More important
for the sarcopenia signature DAF-12 together with DAF-16 affects gonad-dependent
adult longevity.

In G7 another human homolog can be found: nfm-1, which encodes a

merlin/schwannomin (NF2), that when mutated leads to neurofibromatosis.

The genes in cluster G7 might be required to have an increase in gene
expression over time as to diminish or delay the sarcopenia signs. A decrease
in gene expression over life span of this nematode for the genes in the cluster G7
might induce more accentuated sarcopenia signs. On the other hand, an increase in
gene expression over life span of the C. elegans for the down-regulated genes in
cluster G6 the main cluster with a down regulated pattern might induce early signs

of sarcopenia.
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So far we discussed the study done on a list of genes identified (using AQL language)

to be expressed in muscle cells.

We identified 24 genes with a down -regulated pattern that might have a
direct connection with the sarcopenia process. These genes are mainly in the
cluster G6. Also we identified 14 genes with an up-regulated pattern, found
mainly in cluster G7. These genes might be required to have an increase in
gene expression over time as to diminish or delay the sarcopenia signs or
might have actually an opposite effect therefore the delay in sarcopenia signs
appearances to happen if their expression would be decreasing. If this would
be the case then this 14 genes are like ‘leftover genes’ for the sarcopenia

process.

In the next section we performed a detailed study on a list of genes muscle-related
which was compiled using Gene Ontology database. We are discussing this study in

the next section.

5.4.2 Gene lists specifically involved in biological process,
molecular function, or cellular component identified as muscle
related.

Compiling gene lists involved in specific biological, cellular or functional muscle

related processes.

To compile such a muscle related gene list [ used Gene ontology database. The Gene
Ontology (GO) project is a collaborative effort to address a consistent description of

gene products in different databases.

The GO project has developed three structured controlled vocabularies (ontologies)
that describe gene products in terms of their associated biological processes,

cellular components and molecular functions

In this sense, using Gene Ontology database (GO-term) I searched for genes involved

in biological process, molecular function, or cellular component muscle- related.
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| identified genes as major structural muscle genes: myosin or actin or genes
involved in biological processes as muscle contractions see Table (2) below. We
keep in mind that for WormBase, GO annotation is currently a "work in progress"
therefore, we’'ve used this list just as a “guiding” list and show no surprise when
some searches results were incomplete. Particularly, for cellular component, where
a protein is localized within a cell, the search of genes expressed in muscle cells
using AQL language outputs many more genes. The advantages of using GO-term
search is that it outputs genes based on the involvement in the biological process or

molecular function as known in literature.

The number of genes found using GO_term search was 151 genes, but since the
same genes were part of several biological or molecular processes, muscle involved,
the total number of unique such genes was edited to 117 genes. Out of this, on our
array we found a total of 95 genes, which are part of various biological processes as
muscle development-the process whose specific outcome is the progression of the
muscle over time, from its formation to the mature structure; or even more specific
pharyngeal muscle development- the process whose specific outcome is the
progression of the pharyngeal muscle over time, from its formation to the mature

structure. See Table (2) for such genes.

Table 2: genes identified using GO-term: gene muscle-related involved in
development and contraction.

Biological process: muscle development:

|act-1 HT04C12.6HAn actin that affects body wall and pharyngeal muscle

|eat-1 HT11B7.4 Heat-l encodes a homolog of mammalian
hlh-1 ||B0304.1 |hlh-1 encodes a basic helix-loop-helix (bHLH)

|
|
|
|m1c-1 HC36E6.3 Hencodes a muscle regulatory myosin light chain \
|syd-2 HF59F5.6 Hsyd-z encodes alpha-liprin, \

l

|

tmd-2 |lC08D8.2 ||
|unc-52HZC101.2 HThe unc-52 gene encodes perlecan, a protein orthologues
lunc-89||C09D1.1 ||
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Biological process: pharyngeal muscle development

|eff—1 HC26D10.5HThe eff-1 gene encodes a novel, type I transmembrane protein \

|glp-1 HF02A9.6 Hglp-l encodes an N-glycosylated transmembrane protein \

|pop-1HW10C8.2 Hpop-l encodes an HMG box-containing protein \

myosin:

biological process: muscle contraction:

|egl-2 HF16BB.1Hegl-2 encodes a voltage-gated potassium channel

|
|itr-1 HF33D4.2Hitr-1 encodes a putative inositol ‘
ijh-l HT22C1.7Hiph-1 encodes a junctophilin, ‘
|pat-10 HF54C1.7Hpat-10 encodes body wall muscle troponin C, ‘
}
|
|

|twk-18HC24A3.6Htwk-18 encodes one of 44 C. elegans TWK
lunc-26/JC8.10 ||

|myo-2 HT18D3.4Hmyo-2 encodes a muscle-type specific myosin heavy
|my0-3 HK12F2.1|‘myo-3 encodes MHC A, the minor isoform of MHC

Other muscle related genes were found to be implicated in biological process as
muscle cell fate specification, which is the process by which a cell becomes capable
of differentiating autonomously into a muscle cell in an environment that is neutral
with respect to the developmental pathway. Interestingly is that upon specification,
the cell fate can be reversed as for example: mls-1 which encodes a T-box
transcription factor orthologous to members of the Tbx1 subfamily of T-box
transcription factors. MLS-1 is required for fate specification of the eight nonstriated
uterine muscle cells generated during postembryonic development. Also ectopic
expression of MLS-1 is sufficient for uterine muscle specification in other
mesodermal lineages. Besides mls-1 reporter gene expression is detected in uterine
progenitors and differentiated uterine muscles, type 2 vulval muscles, the left and
right intestinal muscles, and the anal depressor muscle.

Another important biological process I included in my search was muscle
contraction which is a process leading to shortening and/or development of tension

in muscle tissue. Muscle contraction occurs by a sliding filament mechanism
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whereby actin filaments slide inward among the myosin filaments. Major structural
muscle genes as myosin and actin.

Besides muscle related genes involved in biological processes, using GO term I
identified also genes involved in various biological functions as actin cytoskeleton
organization and biogenesis by which we understand the assembly and
arrangement of cytoskeletal structures comprising actin filaments and their

associated proteins. See table 3 bellow for such genes.

\act-l HT04C12.6 HAn actin that affects body wall and pharyngeal mus
\act-4 HM03F4.2 HAn actin that is expressed in body wall and vulval

\cap-l HD2024.6 Hcap-l encodes an F-actin capping protein alpha sub

|
|
|
‘cap-Z HM106.5 HThe beta subunit of actin capping protein that reg ‘
‘cyk-l HF11H8.4 HThe cyk-1 gene encodes a homolog of Drosophila ‘
fhod-1 |C46H11.11 | |
fhod-2 |F56E10.2 | |
‘fozi-l HKOIB6.1 HK01B6.1 encodes a protein with a zinc-finger domain ‘
l
|
|
|
|
|

pfn-1 [Y18D10A.20]|
pfn-3 |K03E6.6 |
tag-268|F58B6.2 |
‘unc-53 HF45E10.1 HUNC-53 encodes at least five large (~1200-1600 residues
| IF15B9.4 |
| IF56E10.3 |
| IY48G9A.4 |

Table 3 genes involved in actin cytoskeleton organization and biogenesis

Another muscle related biological function would be actin filament organization by
which we understand control of the spatial distribution of actin filaments. This
includes organizing filaments into meshworks, bundles, or other structures, as by

cross-linking. Genes involved in this process would be: ced-12, die-1, wve-1

All 117 genes found based on the search using GO-term involved in various
biological, molecular or cellular function are presented in several tables -at the

beginning of each table I give the definition of the process in which the respective
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genes are involved. Note that some genes have no description in these tables as GO-

term data base is still a work in progress in C. elegans community.

Clustering the gene lists compiled in previous section

In order to identify the gene expression pattern of the 95 muscle related genes
found on our chips, we normalized and clustered the genes using the SPC algorithm.
For a description on the methods see Chapter 1. We obtained 10 clusters annotated
from G1-G9 where G1 contains the entire data to be clustered. The clusters are

classified based on size and stability as can be seen in Table 5 bellow:

G1 Size=95
G1(S1)|G2 G3/G4|G5 G6/G7|G8 /G9 G10

G2 Stability=9 Size=5

G3 Stability=3 Size=4

G4 Stability=3 Size=10

p]

5 Stability=4 Size=30

p]

6 Stability=5 Size=5

[=p]

7 Stability=3 Size=7

p]

8 Stability=13 Size=42

G9 Stability=3 Size=19

G10 Stability=8 Size=47

As in previous analysis we compiled the results of the clustering analysis for an easy
access in a web based design. The entire informational content of the web based

clustering design is displayed graphically or in tables.
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The hierarchical organization found in the data based on SPC algorithm is

presented in the dendogram bellow.

Dendrogram
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Fig. 7 Dendogram with gene nodes/clusters and patterns

We depicted 2 main patterns in the clustered data. The dendogram above shows the

10 clusters and the pattern category in which the clusters enter.

Most of the structural genes are in the down-regulated pattern found in the
cluster G8 of size 42 and stability 13 and all the clusters which split from it:
G5,G4,G3,G2.
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Unreordered Data (standardized genes)

51 Sarnples (original order

x-axis-7 time points: 1/day3; 2/day6; 3/day9; 4/dayl10; 5/dayll; 6/dayl12;
7/day15;y-axis-42 gene expressions; color bar: from red-high gene expression too

dark blue-low gene expressions.
Fig. 8 Heat map cluster G8 -down-regulated pattern

As can be seen in the heat map above of the cluster G8, the gene expression over
the first 2 time points (day3, day 6) are higher expressed than the gene expression
for the rest of the time points: day 9,10,11,12,15. At the same time it should be
mentioned that the gene expression for the rest of the time points 9,10,11,12,15
have an relative steady down -regulated pattern. This pattern is maintained in all

clusters that merge from cluster G8 and mentioned before: G5,G4,G3,G2.

Below can be seen the gene expression pattern for some of the clusters that merge

from cluster G8: clusters G4 and G3
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x —axis: time points, y-axis: gene expressions., log2 was applied.

Fig. 9 G4 cluster gene expression pattern over time points.
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X —axis: time points, y-axis: gene expressions., log2 was applied.

Fig.10 G3 cluster: gene expression pattern over time points
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As mentioned, most of the structural genes are in down-regulated clusters pattern.
Structural muscle related genes show ‘positive connection’ with the
sarcopenia phenotype, meaning they have the down-regulated gene

expression pattern one might expect for a sarcopenia signature.

In the up-regulated pattern found in G10 most of the unc genes and some human
homologues genes are included. The emerging clusters from G10 are: G9,G7,G6.

They do maintain same pattern as G10 cluster.

Unreordered Data (standardized genes)
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Legend: x-axis-7 time points: 1/day3; 2/day6; 3/day9; 4/day10; 5/day11;
6/day12; 7/dayl5; y-axis-42 gene expressions; color bar: from red-high gene

expression too dark blue-low gene expressions.

Fig. 11 Heat map-cluster G10 down-regulated pattern size 47, stability 13.

In the heat map of the cluster G10, gene expression for the last 2 time points (day12,
day 15) are expressed higher than the gene expression for the rest of the time

points: day 3,6,9,10,11.

It should be mentioned that the gene expression for the rest of the time points day
3,6,9,10,11 show an almost steady down-regulated pattern. This pattern is

maintained in all clusters that merge from cluster G10: G9,G7,G6.
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Below the gene expression pattern for the clusters: G7 and G6 can be seen.

Expression curve of each gene over time
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X —axis: time points, y-axis: gene expressions, log2 was applied.

Fig. 12 G7 up-regulated cluster: gene expression pattern over time points
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X —axis: time points, y-axis: gene expressions, log2 was applied.

Fig.13 G6 up-regulated cluster: gene expression pattern over time points.

The fact that in up-regulated pattern clusters I identified mostly unc genes might be
again a signature of sarcopenia. Might be that the unc genes for the fitness of the

muscle acts as ‘leftover’ genes. In this sense, mutants with a decrease in gene
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expression for the genes in the up-regulated cluster G10 might slow the sarcopenia

signs.

To conclude the GO-term list analysis, the gene lists specifically involved in
biological process, molecular function, or cellular components considered to
be muscle related can be classified in two categories of gene expression
pattern : of up-regulated and down-regulated genes. In the down-regulated
group we found more structural muscle related genes like actin or myosin by
difference with the up-regulated group where we can see more of unc-related
genes as well as human homologues genes.

The decrease in gene expression for structural genes might help promoting
sarcopenia signs. In the same time the increase in gene expression for unc
genes identified in cluster G10 as far as concerning sarcopenia, might be a
sign of ‘leftover’ genes, in the sense that mutants with a decrease in gene
expression for genes in cluster G10 might improve the the reduction in muscle

mass and any other sarcopenia signs in general.

5.4.3 Analysis of genes expressed in young muscle

In 2002 an experiment performed by Kim’s group identified gene expressed in C.

elegans muscle (see Kim, et al. Nature 2002);

In this experiment a poly A binding protein was expressed only in muscle. Muscle
messages were then isolated by imunoprecipitation. They used DNA microarrays to
analyze the ratio of the mRNA enriched by co-immunoprecipitation with
FLAG::PAB-1 relative to the mRNA present in the starting cell-free extract.
Fluorescently-labeled probes were then hybridized to DNA microarrays containing
90% of the 19,733 genes currently estimated in the C. elegans genome. L1 larvae

were studied with 6 repeats for ~19000 genes.
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As statistical method used, they’'ve computed a ranking for all genes and a
percentile rank for every gene from the 6 repeats. Then, the percentile rank of

enrichment for every gene from the six repeats was averaged together.

They considered that genes that are not enriched by mRNA-tagging should have
an average percentile rank of about 50%, while genes expressed in muscle should

have a rank significantly higher.

After that they performed a Student's t-test and identified 1364 genes that are
significantly enriched in the muscle mRNA-tagging experiments for p<0.001. See the

graphs bellow.
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Fig. 14- from Kim et. al. Nature 418: 975-979: 2002;
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In the pie chart above can be seen the biological classification of the 1364 genes
identified by t-test and enriched by co-immunoprecipitation with FLAG::PAB-in the
L1 stage of life. The 1364 genes are part of almost every known biological

function.

Analysis of muscle enriched genes identified by Kim et.al; changes in adult

life

Out of 1364 genes from Kim et. al. experiment we identified 1187 genes on our

chips.

We looked for gene expression patterns in the list of 1187 genes and we analyzed
the intersection between 1187 muscle expressed genes and the list of 2000 genes
from our experiment which have the highest variation across tie points. We
identified 111 genes at the intersection of the 2 lists. These 111 are genes expressed
in L1 muscle that show greatest variance sometime during adulthood in our

experiment.

When we analyzed the gene expression patterns in the list of 1187 using SPC
algorithm we identified 28 clusters. (For details on the clustering algorithm see
Chapter 1 as well as M. Blatt, S. Wiseman and E, Domany, Neural Computation

(1997)).

The Fig. 4 below shows the dendogram that reflects the clustering hierarchy
identified in the data as well as the heat map graph for the 1187 genes as found on

our arrays.

Blue means low gene expression, red is high gene expression.
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Fig. 15 Heat map and dendogram of the 1187 genes corresponding to the 1364

genes identified by Kim et. al. as expressed in muscle

Given that the 1364 genes identified by Kim group are part of almost every known
biological function came as no surprise that same biologically consistency we
identified in our list of 1187. In the same time similar patterns identified when
analyzed the 2000 list of genes which vary most in our data were found when

analyzed the list of 1187 genes.

Fig. 16 bellow shows the dendogram with hierarchical organization of the clusters

and the 5 category patterns they enter.
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Fig. 16 dendogram - 28 clusters and the 5 category patterns they enter
The 28 clusters can be identified in five gene expression patterns:
1) oscillatory pattern,

2) down-regulated pattern,

3) down-regulated mid life time points: day9,10,11 and up-regulated gene
expression pattern for day3,6,12,15

4) “Senescence pattern”-oscillatory low expressed day3-12, up-regulated
day12-15

5) a)Up-regulated pattern

b)“Developmental pattern”-steady state day6-15, up-regulated day3-6
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1) oscillatory gene expression pattern ( 4 clusters with this pattern)-

mostly genes with unknown protein function and growth defect.

Cluster G26 has size 8 and stability 6 with a down-regulated peck at day 9. See
graph below.

Expression curve of each gene over time

-1 ' L L 1 L
Day 3 Day & Day 9 Day_ 10 Day_11 Day 12 Day 15

Fig. 17- G26 cluster

In this cluster we have many unknown function genes, genes involved in growth
defect as RNAi phenotype and cuticulin component related gene. See below

Table with cluster members.

1/'F41G4.7" | F41G4.7 Protein of unknown function

2|'C27B7.6' ||C27B7.6 Member of the protein phosphatase protein family
3/'TO6A10.1' | TO6A10.1/mel-46 ; RNAiphenotype:growth defect
4'W01H2.2' |W01H2.2 Protein of unknown function

5/'F55C12.4" | F55C12.4 Protein of unknown function

F53F1.1 Protein with strong similarity to C. elegans cut-1 (Cuticulin
component)

7'Y71H9A.3"| Y71H9A.3 Member of the stomatin protein family

6'F53F1.1'

H13NO06.2 Protein with weak similarity to C. elegans mup-4 (Member

8|'H13N06.2 of the EGF-repeat protein family)

Table 4: G26 cluster members.


http://www.wormbase.org/db/gene/gene?name=T06A10.1
http://www.wormbase.org/db/gene/gene?name=W01H2.2
http://www.wormbase.org/db/gene/gene?name=W01H2.2
http://www.wormbase.org/db/gene/gene?name=F53F1.1
http://www.wormbase.org/db/gene/gene?name=Y71H9A.3
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Expression curve of each gene dver time
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Fig. 18 G27 cluster, size 10, stability 6.

Again in this cluster we have mostly genes that have an unknown protein functions,
a slow growth gene, and a transcription factor gene. See Table x bellow for cluster

members in the G27 cluster.

"MO02F4.4 Protein of unknown function, has strong similarity to C.

1 |MO2F4.1 elegans R04D3.3 "
2 |"ZK54.1' is on Chromosome X;Protein of unknown function; has SNP's ;
3 'MO2F4.1' MO02F4.4 Protein of unknown function, has strong similarity to C.

elegans R04D3.3 "
4 |'"W08A12.2' [W08A12.2 Protein of unknown function

"F28A12.3 Protein of unknown function, has strong similarity to C.
elegans F35C5.11 "

"7ZC334.2 /ins-30;Protein of unknown function, has weak similarity
to C. elegans ZC334.3 "

7 'COBE3.1'" ||CO8E3.1 Member of an uncharacterized protein family

E03A3.3/his-69; Member of the histone H3 protein family; RNAi
phenotype-slow growth

5 |'F28A12.3'

6 |'2ZC334.2

8 'E03A3.3'

"C33D12.1/ceh-31 Homeodomain transcription factor, has
9 'C33D12.1"' | |similarity over 121 amino acids to D. melanogaster B-H1 (BarH1)
homeodomain transcription factor "

is on Chromosome IV; "C25G4.7 Protein of unknown function, has

10§C25G4.7 strong similarity to C. elegans ZK973_14.D "; has SNP's ;

Table 5- G27 cluster members


http://www.wormbase.org/db/gene/gene?name=M02F4.1
http://www.wormbase.org/db/gene/gene?name=F28A12.3
http://www.wormbase.org/db/gene/gene?name=F28A12.3
http://www.wormbase.org/db/gene/gene?name=WBGene00000452;class=Gene
http://www.wormbase.org/db/gene/gene?name=WBGene00000452;class=Gene
http://www.wormbase.org/db/gene/variation?name=uCE4-1183;class=Variation
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Same oscillatory pattern is maintained in the clusters G23 and G24. In this clusters
can be found also member of the chaperonin complex protein family, heat

shock proteins.

Expression curee of each gene over time
0.8 T T T

0B B
ks
04F %
02}
0OF
02t
04t

06k

0.8 . ‘ . . .
Day 3 Day b Day 9 Day_10 Day_11 Day_12 Day_15
Fig. 19 Cluster G23-0x axis- time points; Oy axis- normalized gene expression

2) down-regulated pattern: pattern seen in 5 clusters-mostly collagen genes

G8
Down-regulated

Expeession cunve of each gene over time

Yo Ows  oms  Dwd0 Dl Omaz Dt

Fig.20 Cluster G8-size 54, stability 10, right: heat map graph, left:

normalized gene expressions.
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Same pattern is maintained also in clusters G5,10,11,12.

G10 G11

Gene expressions normalized
i over nematode life span
G12

Fig. 21 Cluster pattern for G12,G10,G11

The cluster G8 the biggest size cluster with a down-regulated pattern has mostly
collagen related genes, a few genes with uncharacterized protein function and
several structural muscle related, no more than 4 genes out of 54 gene expressions,

the size of the G8 cluster.

3) down-regulated mid life time points: day9,10,11 and up-regulated gene
expression pattern for day3,6,12,15-pattern found in 15 clusters-

mostly ribosomal related genes.

This pattern can be seen in 15 clusters out of 28 clusters we identified. ~ 50% of
clusters have a low expression pattern for day 9,10,11 the mid life time span of

this organism.

The overwhelming theme in these clusters is the ribosomal proteins and genes
with unknown protein function. The heat map of the cluster G20 which is

representative for this pattern is presented bellow:
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Unreordered Data (standardized genes)

Genes- G20

3 4 g
51 Samples (original order)

Fig. 22 Heat map of the G20 cluster; x-axis-7 time points: 1/day3; 2/day6;
3/day9; 4/day10; 5/day11; 6/day12; 7/day1l5; y-axis-42 gene expressions; color
bar: from red-high gene expression too dark blue-low gene expressions.

The lower gene expression for the time points 3,4,5 = day9,10,11 can be clearly seen

in the heat map above. Same pattern is maintained in the rest of 14 clusters.

4) Senescence pattern- oscillatory low expressed- day3-12, up-regulated
day12-15. Pattern noticed in one cluster-genes mostly involved in growth

defect.

Cluster G17 has this pattern.

Expression curv of each gene over lime

B L i i H "
-%ay_B Day B Day_9 Day_10 Day_11 Day_12 Day_I5

Fig. 23 Cluster G17 size 9 stability
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Cluster G17 has mostly genes involved in growth rate. See cluster members, in Table

7 below.

8
9

'F21D5.6'

'C16A3.3'

'F33D4.5'

'C34B2.5'

'KO8F4.1'

'ZK632.3'

'M04B2.3'

'F16A11.2"

'2K930.2"

F21D5.6 Protein of unknown function

"C16A3.3 Protein with strong similarity to S. cerevisiae Rrp5p, an
essential protein required for processing of pre-rRNA to 18S and
5.85 rRNA "; RNAi phenotype: Egl Emb Gon Gro Lva; biological

process:embryonic development
gonad development
growth (IMP)
larval development
oviposition (IMP)
positive regulation of growth rate (IMP)
RNA processing

F33D4.5 Protein of unknown function/ RNAi phenotype-embryonic
& post-embryonic defect, lethal

C34B2.5 Protein with moderate similarity to human TTC1
(tetratricopeptide repeat domain 1);Larval Arrest-Late (L3/L4)

"KO8F4.1 Protein with strong similarity to S. cerevisiae Ctf18p,
which is required for chromosome transmission and maintenance of
normal telomere... "; homologies with DNA helicases in H.Sapiens;
function:DNA replication

ZK632.3 Member of the RIO1/ZK632.3 /M]0444 protein family

"M04B2.3 Protein with strong similarity human GAS41/Hs.4029,
which is amplified in glioma cells "

F16A11.2 Member of the uncharacterized UPF0027 protein family;
RNAIi phenotype: slow growth; developmental delay

7ZK930.2 Protein of unknown function

Tabele 6. G17 cluster members.

5) a) Up-regulated pattern

- pattern found in one cluster-size 14-same biological content as G17-

mostly genes involved in growth defect


http://www.wormbase.org/db/gene/gene?name=C16A3.3
http://www.wormbase.org/db/misc/phenotype?name=Egl;class=Phenotype
http://www.wormbase.org/db/misc/phenotype?name=Emb;class=Phenotype
http://www.wormbase.org/db/misc/phenotype?name=Gon;class=Phenotype
http://www.wormbase.org/db/misc/phenotype?name=Gro;class=Phenotype
http://www.wormbase.org/db/misc/phenotype?name=Lva;class=Phenotype
http://www.wormbase.org/db/gene/gene?name=F21D5.6
http://www.wormbase.org/db/gene/gene?name=K08F4.1
http://www.wormbase.org/db/gene/gene?name=F16A11.2
http://www.wormbase.org/db/gene/gene?name=ZK930.2
http://www.wormbase.org/db/gene/gene?name=ZK930.2
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of each gene over time
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Fig. 24 Cluster G13 size 14, stability 11.

Biological theme is the same as for cluster G17. Most of the genes are involved in

growth defect, developmental delay, embryonic &postembryonic defect, larval

arrest in L3 /L4 stage as can be seen in Table x bellow. Cluster G13 has size 14 and

stability 11.

1 80 |'F54F2.7'
2 453 'E04F6.9'
3 540 'WO06E11.2'
4 553 |'F19B2.5'
5 599 'B0212.1'
6 613 'F42H10.4'
7 672 |'C18E9.1'
8 718 'RO5D11.3'
9 730 |'FO9F7.7'
10961 |'T27E4.1'

111066 'C54E10.6'

12 1083 'R05G6.10'

F54F2.7 Protein of unknown function; RNAi phenotype:
growth defect

"EQO4F6.9 Protein of unknown function, has moderate
similarity to C. elegans E04F6.8 "

WO06E11.2 Protein of unknown function;RNAi phenotype:
growth defect

F19B2.5 Protein with strong similarity to C. elegans F19B2.G

"B0212.1 Protein of unknown function, has strong similarity
to C. elegans F14B8.5 "

F42H10.4/cal-2; Member of the LIM domain containing
protein family;

C18E9.1 Member of an uncharacterized protein family; RNAi
phenotype: embryonic defect

"R0O5D11.3 Putative nuclear transport factor, has similarity to
human NTF-2 (nuclear transport factor 2) embryonic defect

FO9F7.7 Protein of unknown function

T27E4.1 Protein of unknown function; is part of cluster aging
of 164 genes, see Lund et.al '02

"C54E10.6 Small protein containing a CHROMO (CHRromatin
Organization MOdifier) domain and a coiled-coil region, has
similarity to C. elegans CEC-... "

R05G6.10 Protein containing an N-terminal RasGEFN domain


http://www.wormbase.org/db/gene/gene?name=W06E11.2
http://www.wormbase.org/db/gene/gene?name=B0212.1
http://www.wormbase.org/db/gene/gene?name=F09F7.7
http://www.wormbase.org/db/gene/gene?name=F09F7.7
http://www.wormbase.org/db/gene/gene?name=F09F7.7
http://www.wormbase.org/db/gene/gene?name=R05G6.10
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and a C-terminal RasGEF domain; has similarity over C-
terminal half to CDC25-like GDP/G...biological process:
intracellular signaling cascade

'F45E12.6'

‘13 ‘1088 ‘F45E12.6 Protein of unknown function

"T22B11.4 Protein of unknown function, has weak similarity

14/11120'T22B11.4 to human kinase scaffold protein GRAVIN (Hs.788) "

Table 7. cluster G13 gene members

5) b) “Developmental up-regulated pattern”-steady state day6-15, up-

regulated day3-6.Two clusters are sharing this gene expression pattern.

Cluster G6 and G4 share this pattern.

a5

a5k 4

Day 3  Dag6  Day 8  Day 10 Day 11 Day 12 Day 15

Fig. 25 cluster G6 size 29, stability 28, normalized gene expressions
The cluster G6 has size 29 and very high stability 28.

The gene expression pattern is characterized by high gene expression for day6-

day15 and low expression at day3.

Fig. 26 Heat map of cluster G6.
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According with expression pattern the gene cluster members might be of

importance for the entire life of C. elegans right after development time, day3.

Interestingly this cluster has a few genes related with proteins known to be human

similar. Many of the genes have an unknown protein functions.

Below is the table with gene members in cluster G6.

1 'C40H1.5'
2 'F25H8.5'

3 'CO8F8.7'
'F44G4.6'
5 'WO01F3.3'

6 |'F59F5.6'

7 |'C13C12.1"
8 'F42H10.3'
9 'F41B5.1'
10 'C28H8.2'

11 'F19F10.9'

12'C17G10.6'

13 'F27D9.8'

14 'M05D6.4'

15'C18B10.3'

16'2C239.6'
17 'F43C1.3'
18'C34C6.2'

19 'KO2F3.4'

C40H1.5 Member of an uncharacterized protein family

"F25H8.5 Putative paralog of dur-1, protein with weak similarity to
H. sapiens SNCB (synuclein, beta) "

CO8F8.7 Ras-related GTP-binding protein of the ras superfamily
F44G4.6 Protein of unknown function
WO01F3.3 Member of the EGF-repeat protein family

F59F5.6 Member of liprin (LAR-interacting protein) family of
proteins

C13C12.1 Calmodulin

F42H10.3 Member of the src homology domain 3 protein family
F41B5.1 Protein of unknown function

C28H8.2 Protein of unknown function

"F19F10.9 Putative antigenic peptides, has strong similarity to H.
sapiens SART1 gene product [squamous cell carcinoma antigen
recognised by T ce... "

"C17G10.6 Protein of unknown function, contains a C-terminal
ShKt (toxin) domain, has weak similarity over middle region to
human TGN51 (trans-Go... "

"F27D9.8 Protein with strong similarity to human Hs.172278
protein, beta2-syntrophin "

M05D6.4 Member of the esterase protein family

"C18B10.3 Protein with similarity to G-protein coupled receptors
of an unnamed subfamily, no homolog found in human or D.
melanogaster, may have ... "

ZC239.6 Member of an uncharacterized protein family

F43C1.3 Protein with weak similarity to S. cerevisiae HIT1 (Protein
required for growth at high temperature)

C34C6.2 Protein of unknown function

"KO02F3.4 Protein with weak similarity to H. sapiens CEBPG
(CCAAT/enhancer binding protein (C/EBP), gamma) "
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T13C2.3 Protein with weak similarity to C. elegans Y97E10AR.E
gene product

Y5H2B.F Protein with similarity to cytochrome P450; putative
ortholog of C. elegans C45H4.2

"VF39H2L.1 Protein with weak similarity to human syntaxin 7
(STX7 ), has weak similarity to C. elegans F36F2.4 "

T14B4.6 Collagen of the collagen triple helix repeat (20 copies)
family

24'C17H1.7' C17H1.7 Member of an uncharacterized protein family
25/'F34H10.1" | F34H10.1 Member of the ubiquitin protein family

26 'Y40B10B.1'| Y40B10B.1 Member of an uncharacterized protein family
27 'F56A3.1' F56A3.1 Protein of unknown function

"FO9EB.2 Protein containing EGF-like repeats, has weak similarity
28 'FO9ES8.2' to human low density lipoprotein receptors and D. melanogaster
TEN-1 (tenascin) "

29 'F54F2.6' F54F2.6 Protein of unknown function

20'T13C2.3'
21 'C45H4.17'
22 'VF39H2L.1'

23/'T14B4.6'

Table 8. gene members cluster G6.

The same pattern characterized by high gene expression for the time points 2-7,
which corresponds to day 6-day 15 and a low gene expression day 3 (see fig. 26) is

maintained in the cluster G4 which splits from G6.
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Expression curve of each gene dver time
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Fig. 27 Cluster G4, size9, stability3, normalized gene expressions

Unreordered Data (standardized genes)

q 0.2
2

0
3
4 -0.2
g

-0.4
8
7 -0.8
8

-0.8
g

81 Samples arlgmalorder

Genes- G4

Fig. 28 Heat map cluster G4: x-axis-7 time points: 1/day3; 2/day6; 3/day9;
4/day10; 5/day11; 6/day12; 7/day15; y-axis-42 gene expressions; color bar: from

red-high gene expression too dark blue-low gene expressions.

Given the expression pattern of cluster G4, the genes in this cluster might be
relevant for the time right after development of C. elegans from day 6 up to day 15.
The high gene expression pattern for most of the life of this organism might imply

that this genes play an important role in the maintenance of vital functions for this
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nematode. This cluster has again a few genes related with proteins known to be

human similar.

1386 |'CO8F8.7' | CO8F8.7 Ras-related GTP-binding protein of the ras superfamily

F59F5.6 Member of liprin (LAR-interacting protein) family of
proteins; biological process: muscle development

3666 |'C28HS8.2' ||C28H8.2 Protein of unknown function

"C17G10.6 Protein of unknown function, contains a C-terminal
4/761 |'C17G10.6' ShKt (toxin) domain, has weak similarity over middle region to
human TGN51

"F27D9.8 Protein with strong similarity to human Hs.172278
protein, beta2-syntrophin "

2525 'F59F5.6'

5|787 ['F27D9.8'

F43C1.3 Protein with weak similarity to S. cerevisiae HIT1
(Protein required for growth at high temperature)

71970 ['C34C6.2" ||C34C6.2 Protein of unknown function

Y5H2B.F Protein with similarity to cytochrome P450; putative
8/1005'C45H4.17' | lortholog of C. elegans C45H4.2; biological process:electron
transport

6956 'F43C1.3'

T14B4.6 Collagen of the collagen triple helix repeat (20 copies)

911012 'T14B4.6' :
family

Table 9. G4 cluster members

Given that genes that might have an important role in the life of this organism have
similarities with human proteins brings again another argument for the importance

of using C.elegans as animal model for aging studies.

Concluding the clustering analysis the majority of the genes proposed by Kim et.al.
and identified on our arrays, a list of 1187 genes, can be found in 2 main pattern
categories. The decreasing pattern category and the pattern category with low gene
expression over mid life time of the nematode. The decreasing pattern is consistent
with what we might consider a sarcopenia signature and consists of mostly
collagen- related genes. This pattern is seen in 5 clusters. The pattern of low gene
expression over the mid life has mostly ribosomal genes. 14 clusters out of 28
clusters, includes these, we identified from clustering the entire list of 1187 genes ~
50% out of all clusters. The rest of the genes enter in 3 other pattern categories of

‘senescence’, ‘developmental’ and oscillatory.


http://www.wormbase.org/db/gene/gene?name=C28H8.2
http://www.wormbase.org/db/gene/gene?name=C45H4.17
http://www.wormbase.org/db/gene/gene?name=C45H4.17
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In general, the cluster patterns found from analysis of the list of 1187 genes
proposed by Kim group resemble a lot the cluster patterns we found when analyzing

the clusters of 2000 gene list of the ‘wild type’ C. elegans (see Chapter 1 results).

We might conclude that analysis of the experiment performed by Kim et.al
brought us valuable information about C. elegans in general and development for the
larval L1 of stage. For more insights on muscle related genes and sarcopenia as a

process new experiments should be designed.
Intersection between 1187 gene list and 2000 gene list

We've looked also at the intersection between Kim list and our list of 2000
genes (see Chapter 1) and we found 111 genes that are both expressed in L1 muscle

and have high variation in gene expressions with time.
The lists analyzed in Kim et.al. experiment are schematized in the Fig. x below.
The pie chart in Fig. x shows the biological composition in the list of 111 genes.

41% have collagen related genes, 11% are genes with human homologies, 12% are

muscle related genes, and, 36% genes with unknown protein related function.
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Analysis performed using datafrom Kim, et.al 2002. Chromosomal

clustering of muscle-expressed genes Nature 418: 975-979;

1364 genes significant

enriched in L1 of the 111 regulated genes proportion of annatation type
12%

1187 on our chips

111 intersection I collzgen
Q [ unknawn function
Wlth [ human muscle homologies
2000 IISt [ Imuscle known

Fig. 29 Lists of genes used in Kim experiment analyzes.

The total genes with muscle or human homologies is 25. See Table 10 below

for these 25 genes.

F46H5.3 Member of the arginine kinase, phosphotransferase protein family

FO07A5.7 Paramyosin, major component of muscle filaments, structural equivalent of the
rod region of myosin heavy chains

F53A9.10 Troponin T, putative paralog of C. elegans F53A9.10 protein; human homologus:
Splice Isoform 8 of Troponin T, cardiac muscle

T22ES5.5 Putative troponin-T, has strong similarity to C. elegans MUP-2 and D. melanogaster
UP (upheld) troponin-T proteins; human homologus-Splice Isoform 8 of Troponin T,
cardiac muscle

T25F10.6 Putative paralog of C. elegans UNC-87 which encodes muscle thin filament-
associated protein
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F42G4.3 ZYX-1 is potentially orthologous to the human gene LIPOMA-PREFERRED
PARTNER (LPP, OMIM:600700). [detailsProtein with strong similarity to members of the
LIM domain containing protein family

WO05G11.6human homolog; Member of the phosphoenolpyruvate carboxykinase protein
family

H22K11.1 Probable aspartyl protease and an ortholog of human cathepsin D

Y38F1A.9 Putative member of Immunoglobulin superfamily

F11C3.3 Sarcomeric Myosin Heavy Chain, major component of thick filaments in body-wall
muscle

F09B9.4 Protein with weak similarity to S. cerevisiae YDLO99W

T20B3.2 Putative troponin-I ; human homologus:Troponin I, cardiac muscle

H14N18.1 Highly similar to mammalian BAG-2, BCL2-associated athanogene 2, a chaperone
regulator

WO01F3.3/mlt-11; simmilarity with human: Splice Isoform Alpha of Tissue factor pathway
inhibitor precursor

F40E10.3 Protein with strong similarity to human CASQZ2 protein, a cardiac muscle
calsequestrin 2

C16A3.6 Protein with strong similarity to S. cerevisiae Mak16p, an essential nuclear protein
required for propagation of M1 double-stranded RNA; human homolog:RNA binding
protein

C38C6.4/sre-13 G protein-coupled receptor, member of a subfamily with SRE proteins
which are expressed in chemosensory neurons, no homolog found in humans...

F55B11.3 Protein with strong similarity to H. sapiens Hs.169504 gene product [Human
mRNA for KIAA0170 gene (GenBank])]

F38C2.5 Zinc finger protein with strong similarity to C. elegans Y57G11C.25 and C. elegans
P0S-1, a cytoplasmic zinc-finger protein involved in ...

T09A5.6- Component of the Mediator complex required for transcriptional regulation of
certain genes human homolog-Hypothetical protein MGC5309
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ZC101.2 Muscle protein that is a member of the Immunoglobulin superfamily

C24A3.5 Member of the 4 TM potassium channel protein family

C13C12.1
Calmodulin

F27D9.8 Protein with strong similarity to human Hs.172278 protein,
beta2-syntrophin

K07A9.2 Serine/threonine protein kinase, has similarity to human, D. melanogaster, and S.
cerevisiae calcium/calmodulin-dependent protein kinase...

Table 10. 25 genes with muscle or human homologues.

The gene expression pattern of the 111 genes on our array is of low gene expression
for the mid life time points day 9,10,11 and high gene expression at the beginning of
the adult life day3 and the end, day 12,15 of this nematode.

111 genes enriched in muscle with highest variation in our

During the midlife time points can be seen a

overall trend of decreasing of gene expression to be followed by a
slight increase in gene expression.

Gene sxpression musche dats

il
|

M

Day 3 Day & Day® Day 10 Day 11 Day_12 Day_i5

Fig. 30 left -heat map of 111 genes, right -gene expression over the time points
day3-day15
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5.4.4 C. elegans and mammalian muscle homologies

One of the final steps in my sarcopenia analysis was to compile mammalian muscle
related genes and find their homologues in C. elegans. I will just mention here the
lists of genes [ compiled. Future analysis remains to be done as comparing the lists I
compiled with other experiments. In this sense I will also mention David Miller’s
recent work on embryonic muscle transcriptome of Caenorhabditis elegans and how

his list of human homologues overlaps with my lists.

Using NCBI data base and SQL language I searched for genes mammalian muscle
related genes. I identified 4136 genes. Among these genes I searched the genes that
have homologies in general and identified 1488 genes. Next step was to look for
genes that have C. elegans homologues among the 1488 genes. I identified 325
genes. In this list of 325 genes 21 are muscle related genes, 10 aging related genes
and the rest are other genes related with various other processes as: cyclin
dependent kinase family, abnormal chemotaxis, abnormal cell linage, defective

laying eggs, kinase proteins.

Another search I've done was for identifying mammalian muscle genes involved in
senescence. I compiled a list of 43 genes. In this list 7 genes have C. elegans

homologies, see below.

Below are the 7 genes

1: laminin

K08C7.3a [Caenorhabditis elegans]Other Aliases: KO8C7.30ther Designations:

K08C7.3bChromosome: IV

2:sir-2.1

yeast SIR related [Caenorhabditis elegans]Other Aliases: R11A8.40ther

Designations: yeast SIR related family member (sir-2.1)Chromosome: IV
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3: pab-3

PolyA Binding protein [Caenorhabditis elegans]Other Aliases: C17E4.50ther

Designations: PolyA Binding protein family member (pab-3)Chromosome:

4: hlh-2

Helix Loop Helix [Caenorhabditis elegans]Other Aliases: MO5B5.50ther

Designations: Helix Loop Helix family member (hlh-2)Chromosome:

5: pmk-1

P38 Map Kinase family [Caenorhabditis elegans]Other Aliases: B0218.30ther

Designations: P38 Map Kinase family member (pmk-1)Chromosome: IV

6: ced-10

CEll Death abnormality [Caenorhabditis elegans]Other Aliases: C09G12.80ther

Designations: CEll Death abnormality family member (ced-10)Chromosome: [V

7: mpk-1

MAP Kinase [Caenorhabditis elegans]Other Aliases: F43C1.20ther Designations: MAP

Kinase family member (mpk-1)Chromosome: III

[ also compiled alist of 119 mammalian muscle-related genes known to be involved in
aging. In this list 20 genes have C. elegans homologies. 16 out of these 20 genes are on our
chips. The graphs with the 16 genes expression as well as a Table with the 20 genes can be
seen in Appendix D. Just four genes out of these 20 genes are expressed in cell muscle and

none of them are among our list with 2000 genes with highest variation in our experiment.

The four genes are:

'F10C1.2" ifb-1
'C12D8.10" akt-1
'ZK792.6' let-60
'C29F9.7' pat-4

David Miller group performed also relatively recent (2007) an experiment with the

purpose of analyzing the embryonic muscle transcriptome of Caenorhabditis
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elegans. They have applied Micro-Array Profiling of Caenorhabditis elegans Cells
(MAPCeL) to muscle cell populations extracted from developing Caenorhabditis
elegans embryos. Fluorescence Activated Cell Sorting (FACS) was used to isolate
myo-3::GFP-positive muscle cells, and their cultured derivatives, from dissociated
early Caenorhabditis elegans embryos. Microarray analysis identified 6,693
expressed genes, 1,305 of which are enriched in the myo-3::GFP positive cell
population relative to the average embryonic cell. The muscle-enriched gene set was
validated by comparisons to known muscle markers, independently derived
expression data, and GFP reporters in transgenic strains. This study provides a
comprehensive description of gene expression in developing Caenorhabditis elegans
embryonic muscle cells. They founded that over half of the muscle-enriched
transcripts encode proteins with human homologs suggesting that mutant analysis
of these genes in Caenorhabditis elegans could reveal evolutionarily conserved
models of muscle gene function with ready application to human muscle
pathologies.

[ used David Miller’'s human homologies genes list of 788 genes suggested in this
study to compare with my lists. Out of these 788 genes, 593 are in our experiment
and all are in the list of 721 genes [ compiled. Just as a reminder, the 721 gene list

are that genes I identified to be expressed in muscle cell using AQL language.

Also I checked for the intersection of the 593 genes in the list of 2000 genes from
our experiment with highest variation and identified 61 genes. A majority of these

genes can be found in the cluster G18 mentioned in Chapter 1.

5. 5 Summarizing and conclusions

Using various bioinformatics tools I compiled various gene lists muscle-related. See
Fig. 31 below. When cluster the 42 genes that represents genes expressed in cell
muscle with high variation in our experiment we identify more the 50% of this
genes as having the expected sarcopenia signature of down-regulated genes pattern.

[ called such pattern and the genes with such pattern as having a ‘positive
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connection” with the sarcopenia phenotype. All this genes are in the cluster G6 (see
section 4.1). The main biological theme for these genes is involvement in growth,
developmental and defective in locomotion. In the same time we identified an up-
regulated pattern in the cluster G7 (again section 4.1). The genes in this cluster

might suggest further bench experiments as I will discuss below.

~
Sarcopenia gene lists: 1364 genes significant
. enriched in L1
Using AQL language Using GO_term
| 1 j
g N a N
829 genes expressed
In muscle cells. 117 muscle unique N
& ) . )
1187 on our chips
g N a N
721 on our chips 95 on our chips j
& ) . )
>
42 genes 111 with highest variation
expressed in cell muscle In our experiment
ith highest variation in our data
/

Using bioinformatics tools Roy, P.].et.al. (2002). Nature 418, 975-979

Fig. 31 gene lists used in Sarcopenia analysis

For example, one might want to know what might happen if the genes in cluster G7
introduced in section 4.1 would have a down-regulated pattern instead of an
increase in gene expression as these genes show in our analyzes of the wild type of
this nematode. One might want to understand if an reverse in gene expression

output for the genes in cluster G7 might slow down the sarcopenia signs.

When I analyzed the 95 gene list using the GO-term I identified 2 main patterns of
up-regulated and down-regulated genes. The genes in the down-regulated category
show same ‘positive connection’ with the signature of sarcopenia as identified in
section 4.1 This genes are mainly structural genes and found in cluster G8 Apart of

these findings [ also analyzed a list of genes significantly enriched in muscle cells of
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young animal (L1 stage). This list was obtained from an experiment performed by
Kim’s group. [ identified 111 genes to have a high variation in our experiment. These
genes are mainly collagen related genes. 25 genes have muscle related function, see

Table 10.

C. elegans body wall muscle undergoes a process remarkably reminiscent of
human sarcopenia. Both have mid-life onset and are characterized by progressive
loss of sarcomeres and cytoplasmic volume; both are associated with locomotory
decline. To extend understanding of this fundamental problem, I have focused
microarray analyses on C.elegans muscle aging. Genes expressed in muscle as well
as muscle related have been identified and emergent patterns in this list were
defined. I surveyed expression of all to describe a profile of transcriptional changes

in muscle that transpires during adult life and aging.

This research describes age-associated changes in muscle gene transcription and

will constitute the first full-genome profile of sarcopenia in any animal.
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