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Chapter 1

Introduction

1.1 Mechanism Design Under Incomplete Information

The theory of mechanism design analyzes resource allocation under incomplete information.

The main objective of the theory is to identify, among all possible allocation schemes, the

ones that are optimal for di¤erent parties involved in the process. The analysis depends

heavily on the revelation principle which implies that attention can be restricted, without

loss of generality, to those allocation schemes which (1) ask agents to report their private

information, or their types, t = (t1; :::; tn), (2) choose an allocation '(t) = ('1(t); :::; 'n(t))

and payments x(t) = (x1(t); :::; xn(t)) depending on the reported types and (3) induce

truthful reporting. Such allocation schemes are direct revelation mechanisms of the form

('; x); and they are the primary focus of this dissertation. That agents should report their

information truthfully imposes certain incentive constraints on the choice of a mechanism.

These incentive constraints are incentive compatibility, the requirement that it is some kind

of an equilibrium in the game induced by the mechanism for agents to report their types

truthfully, and individual rationality, the requirement that at this equilibrium, each agent

gets at least the payo¤ he would get from his outside option. Thus, a typical mechanism

design problem is one of �nding a mechanism which is optimal for a given party (or for a

group of people) among the class of mechanisms which satisfy these incentive constraints.

Several di¤erent versions of the mechanism design problem can be studied, depending on

the details of the model at hand. A model needs to specify, among other things, the exact

nature of the allocation problem and the private information possessed by economic agents,

whether agents� valuations are private or interdependent, and what kind of equilibrium

strategies agents are required to use. To be speci�c, let us consider the classical example

of allocating, or selling, an object, a private good, to one of several buyers i = 1; :::; n who

have private information regarding their valuations. An allocation is a choice of a buyer to

give the object to, or a randomization among the buyers. A natural and tractable choice is

to let each agent�s private information, or type, be a random variable ti taking values on the
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real line, which determines his valuation fully or partially. The random variables t1; :::; tn

could be independent or correlated, they could be drawn from the same distribution, or

from di¤erent distributions. If ti completely determines each agent i�s valuation, we can let

vi(ti) = ti be i�s valuation function. In this case valuations are said to be private. Valu-

ations are interdependent if the collective type vector (t1; :::; tn) determines the valuation

vi(t1; :::; tn) of each agent i. Finally, we can impose various versions of incentive constraints

on the mechanisms. It is commonplace in models with private information, to require turth-

ful revelation to be either a Bayes-Nash equilibrium or a dominant strategy equilibrium of

the revelation game induced by the mechanism. In models with interdependent values, the

equilibrium concept used is usually Bayes-Nash or ex post Nash.

Myerson [1981] is the classical paper that studies the seller-optimal mechanism design

problem in the single object environment with private values, independently distributed

types and Bayesian incentive constraints. Under certain special conditions, Myerson [1981]

shows that standard auction procedures are optimal for the seller. The main contribution

of Myerson [1981] is a reformulation of the optimal mechanism design problem in which

incentive constraints are replaced with a more tractable monotonicity constraint, and pay-

ments received by the seller are replaced by "virtual" valuations of the buyers. Virtual

valuations are modi�cations of buyers�valuations, which take into consideration the distri-

bution of their types. For a class of "regular" problems the monotonicity constraints in the

reformulation can safely be ignored and the seller should give the object to the buyer with

the highest nonnegative virtual valuation and keep the object if all virtual valuations are

negative. This allocation rule, coupled with a payment scheme identi�ed by Myerson [1981]

solves the optimal mechanism design problem.

Implementation theory studies the related but di¤erent problem of attaining a given

allocation rule, ', as part of a mechanism ('; x) which satis�es incentive constraints. In

other words, given an allocation rule ', implementation theory analyzes whether one can

�nd payments x such that ('; x) becomes feasible in mechanism design problems. Such

payments x are said to implement the allocation rule '. Two questions of interest in

implementation theory are whether certain desirable allocation rules are implementable,

and whether a class of implementable allocation rules can be identi�ed . The Vickrey-



3

Clarke-Groves (VCG) mechanism (Vickrey [1961], Clarke [1971] and Groves [1973]) gives

a positive answer to the �rst question when valuations are private. Any allocation rule

which maximizes the sum of agents�valuations at every type con�guration is implemented

by VCG payments.

1.2 Ex Post Implementation over Lattices

Models in which implementation questions are addressed start out with a set of social

choices, or allocations, available to a planner whose decision has to be based on private

information of economic agents. The set of choices typically consists of allocations of a

given supply of a resource or resources. Consider a combinatorial allocation problem in

which members of a set of objects 
 are to be allocated to members of a set of agents N .

The important characteristic of such a setting is that if agent i receives object a, then agent

j 6= i may receive any object b 6= a but not a. In many problems these restrictions are

either too stringent or too loose. If each object is a membership to a club, for example, and

if a club may have su¢ ciently many members, then both i and j may receive a. On the

other hand in problems with topological structures, if i receives a and j is not "close" to i,

then j can not be given objects which are "close" to a.

The �rst essay of this dissertation analyzes a model in which such considerations can be

addressed. In particular, we model the set of choices available to the planner to be a subset

of a product of lattices. In the combinatorial allocation problem we mentioned above, the

set of choices is f(A1; :::; An) : Ai � 
 and Ai \Aj 6= ; if i 6= jg and is a subset of (2
)n. If

we want to study a combinatorial model in which agents are not riva in using the objects,

as in the club membership example, then the set of choices is exactly (2
)n. Our model

can be used to analyze both problems. A multiunit allocation problem in which the set of

allocations is f(q1; :::; qn) 2 <n+ :
P
qi � Qg is another special case of our environment.

Other important features of the model we analyze are interdependence of valuations

and imposition of ex post incentive constraints. In such a setting we introduce a class

of mechanisms, the Monotone-Implementation mechanisms, denoted ('; x') which are ex

post incentive feasible (i.e., ex post incentive compatible and ex post individually rational)

if ' satis�es an individual monotonicity property. In other words, the class of allocation
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rules which satisfy the individual monotonicity property are ex post implementable. We

furthermore show that the payments x' coincide with (1) the VCG payments if ' is indi-

vidually monotone and ex post e¢ cient and if values are private, and (2) the generalized

Vickrey auction payments (Ausubel [1999]) in multiunit allocation problems with interde-

pendent values. We also identify conditions which guarantee that ex post e¢ cient allocation

rules are individually monotone using supermodularity theory. In combinatorial allocation

problems complementarity between the objects plays a key role.

1.3 The Optimal Combinatorial Mechanism Design Problem

In many problems of interest in economics, an uninformed party has to allocate several

objects among privately informed agents. Such problems are multiobject, or combinatorial,

mechanism design problems. In our analysis of the optimal combinatorial mechanism design

problem in the second essay, we extend Myerson�s (1981) single object analysis in a number

of directions. We formulate the problem with interdependent values and ex post incentive

constraints. Then, we reformulate this problem using virtual valuations and monotonicity

constraints. We de�ne the class of regular problems as those in which monotonicity con-

straints can be ignored and establish conditions that guarantee regularity in two nonnested

environments. These are the conditions that guarantee that an allocation rule maximizes

the sum of virtual valuations at every type vector also satis�es monotonicity constraints.

The conditions are analogs of the conditions identi�ed in the �rst essay, which guarantee

that ex post e¢ cient allocation rules are monotone.

Special cases of our results appear in Branco [1996], Levin [1997], Monteiro [2002] and

Ledyard [2007]. All of these papers treat combinatorial mechanism design problems in a

variety of environments. Branco [1996] studies a model with interdependent values, multiple

identical objects and decreasing marginal utilities. Monteiro [2002] analyzes a private values

model with identical objects but without the decreasing marginal utilities assumption of

Branco, allowing for synergies or complementarities between objects. Levin [1997] analyzes

a problem with full complementarity and solves the mechanism design problem for two

complementary objects and private values. Ledyard [2007] analyzes a combinatorial problem

with several nonidentical objects and with private values, however with a special valuation
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structure: each agent has a positive valuation for exactly one speci�c subset of the grand

set of objects. We show that these models are special cases of our model and that our

approach uni�es their treatment of the optimal mechanism design problem.

1.4 An Application: Internet Advertising with Unit Demand

In the third essay, we formulate an optimal mechanism design in which agents demand

only one object. This formulation is geared towards the internet advertising application.

Internet search engines sell to potential advertisers advertisement spots displayed following

a keyword search. Each advertisement spot is a di¤erent object, as di¤erent locations on

the screen have varying degrees of success in attracting users to visit the displayed sponsor.

Hence the internet advertising problem is a combinatorial mechanism design problem and

methods of the second essay can be applied in it s analysis. Furthermore special features of

the internet advertising problem make it possible to identify the optimal mechanism, which

is like an auction, under convenient assumptions and decentralize it using type contingent

prices. In particular, we show that the payments of the optimal mechanism solve the dual

of the linear assignment problem in which spots are allocated to advertisers in decreasing

order of their virtual valuations.
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Chapter 2

Ex Post Implementation Over Lattices

2.1 Introduction

Consider a setting in which a social decision is going to be made based on information

privately held by a group of individuals. Suppose that these individuals are asked to report

what they know to an outside party, who will then base the social decision on the collected

information. If the social decision will a¤ect their well being, these individuals will take

into consideration the possibility of changing the social decision in their favor by misre-

porting. The theory of implementation is concerned with the identi�cation of those social

choice rules, and the environments in which they operate, which will give holders of private

information the incentive to report it truthfully. In particular the theory investigates the

e¤ects of monetary transfers on the possibility of creating the incentives to report truthful

information, whenever such transfers are possible. If for a given decision rule such transfers

exist, the rule is said to be implementable. To be precise, a social decision rule coupled

with a payment scheme, a mechanism in short, induces a game of incomplete information

played by the members of the society, the agents. In this game, each agent reports his

private information, or his type, in ignorance of what others report. Implementation is in

Bayes-Nash strategies (ex post Nash strategies, dominant strategies) if it is a Bayes-Nash

(ex post Nash, dominant strategy) equilibrium for agents to report their true types.

Work on implementation theory has considered mainly two related but di¤erent ques-

tions: (A) whether a given -desirable- social choice rule (for example a total welfare maxi-

mizing, i.e., e¢ cient social choice rule) is implementable, and (B) whether a class of imple-

mentable social choice rules can be identi�ed. An answer to the question (B) helps answer

question (A) as well, since once a class of implementable social choice rules is identi�ed,

then conditions may be analyzed under which a desirable rule belongs to this class.

These two questions are usually studied in models that di¤er on a variety of dimensions

including: (1) whether values are private or interdependent, (2) the kind of equilibrium

strategies agents are required to use, (3) the nature of private information, and (4) the
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speci�cation of the set of possible choices. The research frontier is currently expanding as

models are getting more general and assumptions are being dropped in these dimensions.

This chapter answers question (B) in a fairly general model in terms of dimensions (1),

(2) and, in particular, in dimension (4). We also indirectly provide an answer to question

(A) using the class of social choice rules we identify. In terms of the dimensions of di¤erence

we referred to above, our model possesses the following features:

(1) Values are interdependent.

(2) Agents use ex post Nash equilibrium strategies. Ex post Nash equilibrium allows us

to ignore assumptions regarding the distribution of private information, since agents do not

need to have a prior to play these strategies. Truthful revelation of private information is

an ex post Nash equilibrium if, at every type vector, it is a best response for an agent to

report truthfully when he believes that everyone else is doing exactly the same.

(3) Private information is one dimensional and can take values in an interval on the real

line. The one dimensionality restriction is almost necessary as recent work by Jehiel and

Moldovanu (2001) shows that e¢ cient ex post implementation is in general not possible

when private information is multidimensional.

(4) Agents�valuations are de�ned over lattices, and social decisions belong to a partially

ordered set. For example, agents�valuations can be de�ned over the power set of a given

set, and social choices could be allocations of the members of this set between agents.

An answer to question (A) has been given by Vickrey (1961), Clarke (1971) and Groves

(1973) in their analyses of what is now called the Vickrey-Clarke-Groves (VCG) mechanism.

The VCG mechanism is capable of implementing e¢ cient social choice rules, i.e., social

choice rules which maximize the total welfare in the society at every con�guration of private

information, in dominant strategies. This means that, faced with the VCG payments, an

individual prefers to report his information truthfully regardless of how he expects others

will behave. This strong result crucially depends on the assumption of private values. If

values are interdependent, then the VCG mechanism does not have any desirable incentive

properties.

Several recent papers study extensions of the VCG mechanism to interdependent value

settings. Ausubel (1999), analyzes a typical "auction problem" where multiple identical
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objects are to be allocated to several agents with interdependent values. A social choice

rule in this problem maps agents�valuations to allocations. Ausubel shows that generalized

VCG payments can be constructed which implement the e¢ cient allocation rule in ex post

Nash strategies. In related auction problems Dasgupta and Maskin (2000) and Perry and

Reny (2001) develop auction mechanisms which have minimal informational requirements

on the auctioneer. These auctions induce truthful bidding as ex post Nash equilibrium

and implement an e¢ cient allocation of objects. Our work is closest to but more general

than Ausubel (1999). We analyze a general implementation problem of which resource

allocation problems with several homogenous or heterogeneous objects may be considered

special cases.

An answer to question (B) has been provided by Crémer and McLean (1985), who �nd

that in an interdependent values model, "monotone" decision rules are implementable in

ex post Nash strategies. Crémer and McLean (1985) also show that in problems where

a �xed supply of a divisible object will be allocated between agents with interdependent

values, e¢ cient allocation rules are "monotone" under certain conditions. These conditions

include a single crossing property on valuations and an interpersonal valuation comparison

condition, which roughly states that the information possessed by an agent has a greater

e¤ect on his payo¤, than on other agents�payo¤s. Analogous conditions appear in many

other papers in the literature, and they will certainly play a key role in our model. More-

over, under a certain full rank condition on the distribution of private information, Crémer

and McLean (1985) show that it is possible to extract full surplus from the agents in the

allocation problem they analyze. It is important to note that in the Crémer-McLean model

private information of each agent belongs to a �nite and completely ordered set, for example

to a �nite subset of the positive reals. The generalization of the Crémer-McLean transfer

scheme and full surplus extraction result to a model where private information can take

values in an interval is an open question in the literature.

The chapter proceeds as follows. We introduce the model in the next section. In Section

1.3 we introduce the Monotone-Implementation mechanism and identify a class of social

choice rules it implements. This class consists of rules which satisfy a monotonicity property.

In Section 1.4 we show that the Monotone-Implementation mechanism is a generalization of
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the VCG mechanism by showing that the two mechanisms coincide in private values models

under certain mild conditions. In Section 1.5 we identify conditions under which e¢ cient

social choice rules are monotone in the sense of Section 1.3. These conditions include

supermodularity of valuations. In Section 1.6 we discuss how these conditions relate to the

conditions studied in the literature and examples in which some of them can be dropped.

Section 1.7 relates our monotone implementation mechanism to the generalized Vickrey

auction analyzed by Ausubel (1999) and Section 1.8 concludes.

2.2 The Model

We will analyze an extension of the classical mechanism design problem in which agents�

valuations are de�ned over a lattice and we begin with some notation. Let N = f1; :::; ng be

the set of agents. For each i, let Li be a lattice with associated partial order -i and join and

meet operators _ and ^.1 Let �i be the induced strict order on Li and let LN = �i2NLi

and L�i = �j 6=iLj : We will denote elements of LN typically by q and write q = (qi; q�i)

where q�i lists all coordinates of q corresponding to the members of Nnfig.

We will let the space of social outcomes be a subset C of LN : For some of the results,

we will need to impose restrictions on C, for example we will need C to be a lattice.

Agents have private information in the form of one dimensional types. Agent i�s private

information, or his type, is ti 2 Ti = [ai; bi]. We will let T = �i2NTi; T�i = �j 6=iTj denote

members of T and T�i by t and t�i and write t = (ti; t�i). We allow for informational exter-

nalities, but no allocation externalities and assume quasilinearity in money. The valuation

function for agent i is a map vi : Li� T ! <: In particular, agent i�s payo¤ depends on (1)

the ith component of a social outcome q and (2) the collective private information vector. If

the social outcome is q = (qi; q�i), the type vector is t = (ti; t�i), and he pays xi, agent i�s

payo¤ is vi(qi; ti; t�i)� xi. We maintain the following technical assumptions on valuations

vi.

Assumption 1 For every i; t�i and qi, vi(qi; �; t�i) is nondecreasing and di¤erentiable on

[ai; bi].

1We write _ and ^ instead of the more precise _i and ^i to lighten the notation and no confusion should
result.
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Assumption 2 For every i and t�i, vi(�; �; t�i) satis�es nondecreasing di¤erences (NDD),

i.e., for every t0i < ti and q
0
i �i qi

vi(qi; t
0
i; t�i)� vi(q0i; t0i; t�i) � vi(qi; ti; t�i)� vi(q0i; ti; t�i):

Assumption 1 implies, by a result in Koliha (2006), that vi(qi; �; t�i) is absolutely con-

tinuous and enables us to use the Fundamental Theorem of Calculus. We will denote the

derivative of vi(qi; �; t�i) by @vi(qi; �; t�i). Note that in the presence of Assumption 1, As-

sumption 2 implies q0i �i qi ) @vi(q
0
i; ti; t�i) � @vi(qi; ti; t�i) for every i:

2.3 Ex-Post Implementation via Monotone Implementation Mechanisms

A (revelation) mechanism f is a pair ('; x) consisting of a social choice rule ' : T ! C

and a payment rule x : T ! <n. We will write '(t) = ('1(t); :::; 'n(t)) and x(t) =

(x1(t); :::; xn(t)). We will be interested in the following ex post conditions satis�ed by social

choice rules and mechanisms.

A social choice rule ' is ex post outcome e¢ cient if for every t,

'(t) 2 arg max
(q1;:::;qn)2C

X
i2N

vi(qi; t):

A mechanism ('; x) satis�es ex post Nash incentive compatibility (XIC) if for every i; ti

and t�i,

ti 2 arg max
t0i2[ai;bi]

vi('i(t
0
i; t�i); ti; t�i)� xi(t0i; t�i),

ex post individual rationality (XIR) if for every i and t,

vi('i(t); t)� xi(t) � 0,

and feasibility if for every t, X
i2N

xi(t) � 0 for every t.

A mechanism that satis�es XIC, XIR and feasibility is said to be ex post incentive feasible.

A social choice rule ' is ex post (Nash) implementable if there exists x such that the
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mechanism ('; x) is ex post incentive feasible.

First we will investigate which social choice rules are ex post implementable. Throughout

the paper we will restrict attention to social choice rules for which ti 7! @vi('i(ti; t�i); ti; t�i)

is Lebesgue integrable for every i and t�i. The following class of mechanisms will play a

key role.

De�nition 1 Let ' be a social choice rule. A monotone implementation (MI) mechanism

is a pair ('; x') satisfying, for every i and t = (ti; t�i);

x'i (t) := vi('i(t); t)�
Z ti

ai

@vi('i(z; t�i); z; t�i)dz: (1)

The ex post incentive feasibility of an MI mechanism depends on the following property

of its social choice rule.

De�nition 2 A social choice rule ' is individually monotone if for every i and t�i

t0i < ti ) 'i(t
0
i; t�i) 4i 'i(ti; t�i):

Our �rst result shows that all individually monotone social choice rules are ex post

implementable.

Proposition 1 If Assumptions 1 and 2 hold and the social choice rule ' is individually

monotone, then the MI mechanism ('; x') is ex post incentive feasible.

Proof. Fix i; t�i and t0i < ti and an individually monotone social choice rule '. We have

x'i (ti; t�i)� x
'
i (t

0
i; t�i)

= vi('i(ti; t�i); ti; t�i)� vi('i(t0i; t�i); t0i; t�i)�
Z ti

t0i

@vi('i(z; t�i); z; t�i)dz

� vi('i(ti; t�i); ti; t�i)� vi('i(t0i; t�i); t0i; t�i)�
Z ti

t0i

@vi('i(t
0
i; t�i); z; t�i)dz

= vi('i(ti; t�i); ti; t�i)� vi('i(t0i; t�i); ti; t�i)

where the inequality follows from individual monotonicity of ' and Assumption 2. Similarly

if ti < t0i. This shows that the MI mechanism is ex post incentive compatible. That
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0 � x'i (t) � vi('i(t); t) follows directly from the de�nition and hypotheses and therefore

('; x') is ex post incentive feasible.

2.4 Private Values

In order to highlight the relationship between MI mechanisms and VCG mechanisms, we

specialize the model to the case of private values by making the following assumption.

Assumption 3 For each i; qi; ti; t0�i 6= t�i, vi(qi; ti; t�i) = vi(qi; ti; t0�i).

In this section we will abuse notation and write vi(qi; ti):We will also need the following

notation:

Ci = fqi 2 Li : (qi; q�i) 2 C for some q�i 2 L�ig

C�i = fq�i 2 L�i : (qi; q�i) 2 C for some qi 2 Lig

C�i(qi) = fq�i 2 L�i : (qi; q�i) 2 Cg

Obviously [qiC�i(qi) = C�i.

De�nition 3 A Vickrey-Clarke-Groves (VCG) mechanism is a pair ('; y') where ' is ex

post outcome e¢ cient and for every i and t = (ti; t�i)

y'i (t) = max
q�i2C�i

X
j 6=i

vj(qj ; tj)� max
q�i2C�i('i(t))

X
j 6=i

vj(qj ; tj): (2)

It is easy to verify that VCG mechanisms are ex post incentive e¢ cient. A naive exten-

sion of VCG mechanisms to interdependent value environments is obtained by modifying

payments into

y'i (t) = max
q�i2C�i

X
j 6=i

vj(qj ; t)� max
q�i2C�i('i(t))

X
j 6=i

vj(qj ; t):
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However this extension is not ex post incentive compatible. We now argue that the MI

mechanism is a suitable extension of VCG mechanisms to interdependent value environ-

ments by showing that the two mechanisms coincide under private values. We will need to

make the following assumptions.

Assumption 4 For every i and ti, vi(inf Li; ti) = 0:

Assumption 5 The set C is �nite and it contains (inf Li)i2N . Furthermore, for every i,

C�i(inf Li) = C�i.

Note that if the map qi 7! C�i(qi) is nonincreasing, that is if q0i � qi ) C�i(qi) � C�i(q0i),

then the condition C�i(inf Li) = C�i in Assumption 5 would follow.

Proposition 2 If Assumptions 1-5 hold and if ' is an ex post outcome e¢ cient and in-

dividually monotone social choice rule, then x' = y'; i.e., agents�payments are the same

under the MI mechanism and the VCG mechanism.

Proof. Fix an ex post outcome e¢ cient and individually monotone social choice rule ';

an agent i and a type vector t. Let �i(t) := f'i(z; t�i) : z � tig. Note that �i(t) has

to contain �nitely many elements because of the �niteness condition in Assumption 5 and

is a completely ordered subset of Li since ' is individually monotone. Write �i(t) =

fq1i ; :::; qmi g where m = j�i(t)j and qki .i qk+1i . Divide [ai; ti] into subsets �1i ; :::;�
m
i such

that 'i(z; t�i) = qki if and only if z 2 �ki . Note that �ki is nonempty and connected, and

that [ai; ti] = [mk=1�ki . Consequently inf �ki = sup�
k�1
i . Let 
ki = inf �

k
i . Fix k. For every

z 2 �ki we must have

vi(q
k
i ; z) + max

q�i2C�i(qki )

X
j 6=i

vj(qj ; tj) = vi('i(z; t�i); z) +
X
i2N

vj('j(z; t�i); tj)

� vi(q
k�1
i ; z) + max

q�i2C�i(qk�1i )

X
j 6=i

vj(qj ; tj)

where the inequality follows from ex post e¢ ciency. Similarly, for every z0 2 �k�1i we must
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have

vi(q
k�1
i ; z0) + max

q�i2C�i(qk�1i )

X
j 6=i

vj(qj ; tj) � vi(qki ; z0) + max
q�i2C�i(qki )

X
j 6=i

vj(qj ; tj):

Using continuity of valuations in types and taking limits as z ! 
ki and z
0 ! 
ki we get

vi(q
k
i ; 


k
i )� vi(qk�1i ; 
ki ) = max

q�i2C�i(qk�1i )

X
j 6=i

vj(qj ; tj)� max
q�i2C�i(qki )

X
j 6=i

vj(qj ; tj) (3)

Now we can write, by letting 
m+1i = ti and 
0i = inf Li

x'i (t) = vi('i(t); ti)�
Z ti

ai

@vi('i(z; t�i); z)dz

= vi(q
m
i ; ti)�

mX
k=1

Z 
k+1i


ki

@vi(q
k
i ; z)dz

=
mX
k=1

[vi(q
k
i ; 


k
i )� vi(qk�1i ; 
ki )]

=
mX
k=1

24 max
q�i2C�i(qk�1i )

X
j 6=i

vj(qj ; tj)� max
q�i2C�i(qki )

X
j 6=i

vj(qj ; tj)

35
= max

q�i2C�i(inf Li)

X
j 6=i

vj(qj ; tj)� max
q�i2C�i(qki )

X
j 6=i

vj(qj ; tj)

= y'i (t):

The �rst equality is by de�nition. The second is by the construction of sets �ki . The third

equality follows from Assumption 4 and the fourth from Equation (3). The �fth follows

from a telescoping argument and the last equality from Assumption 5.

Assumption 5 holds for several important problems. For example let 
 be a �nite set,

Li = 2

, and

C = f(A1; :::; An): [i Ai � 
 and Ai are disjointg:

2.5 Implementing Ex Post E¢ cient Social Choice Rules

If we are interested in implementing an ex post outcome e¢ cient social choice rule, then
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we must make additional assumptions that guarantee that such a social choice rule is indi-

vidually monotone. To that end, we need the following notation: for every i; t and qi, let

v��i(qi; t) be the maximal feasible total valuation of agents other than i if the i
th component

of the social outcome is to be qi; that is,

v��i(qi; t) = max
q�i2C�i(qi)

X
j 6=i

vj(qi; t)

Assumption 6 Valuations satisfy the extended strict single crossing property, i.e., for every

i; t = (ti; t�i); t0i < ti and q
0
i � qi;

vi(qi; t
0
i; t�i)� vi(q0i; t0i; t�i) � v��i(q0i; t0i; t�i)� v��i(qi; t0i; t�i)

) vi(qi; t)� vi(q0i; t) > v��i(q0i; t)� v��i(qi; t):

Assumption 7 For every i and t, vi(�; t) is supermodular, i.e., for every q0i, qi 2 Li;

vi(q
0
i; t) + vi(qi; t) � vi(qi _i q0i; t) + vi(qi ^ q0i; t).

Assumption 8 C � LN is a lattice.

Topkis (1998, Lemma 2.2.3) shows that if C is a lattice, then so are C�i and C�i(qi) for

every qi.

Proposition 3 If Assumptions 1, 2, 6�8 hold and if ' is an ex post outcome e¢ cient social

choice rule, then the MI mechanism ('; x') is ex post incentive feasible.

In order to prove Proposition 3, we need the following two technical results.

Lemma 1 (Monotone Selection Theorem) Let K be a lattice with partial order -, h :

K � [a; b] ! < and l(z) 2 argmaxl2K h(l; z) for every z. Suppose that (1) h satis�es the

strict single crossing property, i.e., for every l0 � l and z0 < z, if h(l0; z0) � h(l; z0), then

h(l0; z) < h(l; z), and that (2) h(�; z) is supermodular for every z. Then z0 < z implies

l(z0) - l(z).
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Proof. See Topkis (1998), Theorem 2.8.4.

Lemma 2 (Preservation of supermodularity) For each i 2 N; the function

qi 7! v��i(qi; t) = max
q�i2C�i(qi)

X
j 6=i

vj(qj ; t)

is supermodular on the lattice C�i:

Proof. See Topkis(1998), Theorem 2.7.6 or Corollary 2.7.2.

Proof of Proposition 3. It su¢ ces to show that any ex post outcome e¢ cient social

choice rule satis�es individual monotonicity. If ' is ex post outcome e¢ cient, then for every

i and t = (ti; t�i)

'i(t) 2 arg max
qi2Ci

�
vi(qi; t) + v

�
�i(qi; t)

�
:

Note that (qi; ti) 7! vi(qi; t) + v
�
�i(qi; t) satis�es the strict single crossing property by As-

sumption 3. By Lemma 2 qi 7! v��i(qi; t) is supermodular. Since the sum of supermodular

functions is also supermodular, qi 7! vi(qi; t) + v
�
�i(qi; t) is supermodular and we deduce

from Lemma 1 that t0i < ti ) 'i(t
0
i; t�i) -i 'i(ti; t�i): Thus ' is individually monotone and

Proposition 1 implies that ('; x') is ex post incentive feasible.

Assumption 8 is only used in order to utilize the conclusion of Lemma 2. Consequently,

we can replace Assumption 8 with the conclusion of Lemma 2.

Assumption 80 For each i 2 N; Ci is a lattice and the function

qi 7! v��i(qi; t) = max
q�i2C�i(qi)

X
j 6=i

vj(qj ; t)

is supermodular on Ci:

Now the following slightly more general result holds:

Proposition 4 If Assumptions 1, 2, 6, 7 and 80 hold and if ' is an ex post outcome e¢ cient

social choice rule, then the MI mechanism ('; x') is ex post incentive feasible.
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2.6 Discussion and Examples

Assumptions 1, 2 and 7 are quite common and, indeed, are satis�ed by almost every ex-

ample that appears in the literature dealing with implementation and mechanism design.

However, Assumptions 6 and 8 (and 8�) require further comment. Informally, Assumption

6 requires that an increase in the type of agent i must have a "bigger" e¤ect on i�s marginal

valuation than on the marginal valuations of other agents. Such an assumption seems crit-

ical to proving individual monotonicity of ex post outcome e¢ cient mechanisms. Similar

assumptions designed for the same purpose have appeared in, e.g., Cremer and McLean

(1985), Ausubel (1999), and Perry and Reny (1999).

Assumption 5 is satis�ed in many but not all cases of interest.

Example 1 Consider the standard example in which Li is a sublattice of Rm+ with 0 2 Li and

-i is the usual partial order on Rm+ , i.e., x - y if and only if xk 5 yk for each k 2 f1; ::;mg:

Let Q 2 Rm++ and let

C := f(q1; :::; qn) 2 LN :
X
i2N

qi - Qg:

Then C is not a generally a sublattice of LN and Assumption 8 will not be satis�ed. In

certain special cases, however, Assumption 80 will be satis�ed. If m = 1, for example,

then qi 7! v��i(qi; t) is function of a real variable and is trivially supermodular. Letting Li

be the set of positive integers and Q = m > 0, we obtain the classic model in which m

identical indivisible objects are to be allocated to n agents. If n = 2, then q2 7! v�1(q2; t)

is supermodular on L2 and q1 7! v�2(q1; t) submodular on L1. To see this, suppose that

q01; q
00
1 2 C1 = fq1 2 L1jq1 - Qg. Then

C2(q
0
1) = fq2 2 L2 : q2 - Q� q01g and

C2(q
00
1) = fq2 2 L2 : q2 - Q� q001g:

Let

q02 2 arg max
q22C2(q01)

v2(q2; t) and q002 2 arg max
q22C2(q001 )

v2(q2; t)
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Since

q02 - Q� q01 and q002 - Q� q001

it follows that

q02 _ q002 - (Q� q01) _ (Q� q001) = Q� (q01 _ q001) and

q02 ^ q002 - (Q� q01) ^ (Q� q001) = Q� (q01 ^ q001):

Since q02 _ q002 2 L2 and q02 ^ q002 2 L2; we conclude that

v�2(q
0
1; t) + v

�
2(q

00
1 ; t) = v2(q

0
2; t) + v2(q

00
2 ; t)

� v2(q
0
2 _ q002 ; t) + v2(q02 ^ q002 ; t)

� v�2(q
0
1 _ q001 ; t) + v�2(q01 ^ q001 ; t)

where the �rst inequality follows from the supermodularity of v2(�; t): Similarly for v�1(�; t).

Example 2: Consider the special case of Example 1 in which n is a positive integer,

m = 2; Q = (1; 1) and Li = L = f(0; 0); (0; 1); (1; 0); (1; 1)g: Furthermore, suppose that

vi((0; 0); t) = 0 for all i and t. This case corresponds to the allocation of two indivisible

objects to n agents and was considered by Levin (1997). In this very simple case, Ci = L

for each i and qi 7! v��i(qi; t) is supermodular on L if and only if

v��i((0; 1); t) + v
�
�i((1; 0); t) � v��i((0; 0); t) + v��i((1; 1); t) = v��i((0; 0); t):

To prove this inequality, suppose that vj((1; 0); t) = v��i((0; 1); t) and vk((0; 1); t) = v
�
�i((1; 0); t):

If j = k, then supermodularity of vk(�; t) implies that

v��i((0; 1); t) + v
�
�i((1; 0); t) = vj((1; 0); t) + vj((0; 1); t)

� vj((1; 1); t) + vj((0; 0); t)

= v��i((0; 0); t):

If j 6= k, then qj = (1; 0); qk = (0; 1) and qq = (0; 0) for all other q 6= i is feasible for the
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problem

max
q�i2C�i(0;0)

X
j 6=i

vj(qi; t)

from which we deduce that

v��i((0; 1); t) + v
�
�i((1; 0); t) = vj((1; 0); t) + vk((0; 1); t) � v��i((0; 0); t):

The argument used in Example 2 is speci�c to the case of two indivisible objects and

breaks down with more that two objects. Unfortunately, the function v��i(�; t) will not

generally be supermodular on Ci when C is not a lattice, not even in the special "budget

constrained" model of Examples 1 and 2 when n and m are both greater than 2. On the

other hand, the many applications involve valuation functions whose special structure does

not require that Assumptions 8 or 8�hold and these are treated in the next chapter.

2.7 Allocation of an Indivisible Object

Consider a multinit allocation problem in which a Q units of of an indivisible object will

be allocated between the agents. In this application we have:

Li = Z+

C = f(q1; :::; qn) 2 Zn+ :
X
i2N

qi � Qg

Ci = [0; Q]

C�i = fq�i 2 Zn�1+ :
X
j 6=i

qi � Qg

C�i(qi) = fq�i 2 Zn�1+ :
X
j 6=i

qi � Q� qig

where Z+ is the set of nonnegative integers. Suppose that there exist maps wi : Li�T ! <+

such that

vi(qi; t) =

qiX
k=1

wi(k; t):

The number wi(k; t) is the marginal valuation of agent i for the kth unit, if the type vector

is t. Suppose that wi(0; t) = 0.
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In this environment, an e¢ cient social choice rule must be monotone if Assumption 6

is satis�ed. Note that Assumptions 7 and 80 do not impose any restriction as vi(�; t) is

de�ned on a completely ordered set and is therefore trivially supermodular. Even though

Assumption 8 is de�nitely not satis�ed by the set of social choices, Proposition 4 implies

that under Assumptions 1, 2 and 6, the MI mechanism implements e¢ cient allocation rules.

Furthermore the payments in Equation (1) which characterizes the MI mechanism may

be given an interpretation in terms of the marginal values. Fix an individually monotone

allocation rule ', an agent i, and a type vector t. De�ne 
ki (t�i) = inffy : 'i(y; t�i) = kg

for k = 1; :::; 'i(t) and let 

k+1 = ti. In words, 
ki (t�i) is agent i�s critical type for the kth

unit. We have

x'i (t) =

'i(t)X
k=1

wi(k; t)�
Z ti

ai

'i(y;t�i)X
k=1

@wi(k; y; t�i)dy

=

'i(t)X
k=1

wi(k; t)�
'i(t)X
l=1

Z 
l+1i (t�i)


li(t�i)

lX
k=1

@wi(k; y; t�i)dy

=

'i(t)X
k=1

wi(k; 

k
i (t�i); t�i):

Thus, in a multiunit model with an indivisible object MI mechanism asks each agent to pay

the sum of marginal valuations for each unit that he obtains, where these marginals are

evaluated at his critical type for that unit. Analogous results have been obtained in Ausubel

(1999) in his analyziz of the generalization of the Vickrey auction to an interdependent value

environment.

2.8 Conclusion

In this chapter we developed an approach to the ex post Nash implementation problem when

the social choice set is a subset of a product lattice. We identify a class of implementable

social decision rules which satisfy the individual monotonicity property. The Monotone-

Implementation mechanism we introduce coincides with the VCG mechanism on a class of

social choice problems with private values and it coincides with the generalization of the

Vickrey multiunit auction to interdependent value environments by Ausubel (1999). We
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analyze conditions under which e¢ cient allocation rules are individually monotonic. An

extended single crossing property plays a key role. Our methods further require either

(a) the social choice set be a lattice and a supermodularity condition hold, or (b) the

social choice set be a partially ordered set, not necessarily a lattice and a larger set of

supermodularity conditions hold.

A typical example in which our methods apply is the combinatorial allocation problem

which we analyze in depth in the next chapter. In particular, just like in any other con-

strained allocation problem, the social choice set in the combinatorial allocation problem

is not a lattice and therefore several supermodularity restrictions must be imposed for our

methods to work.

There are many problems where supermodularity conditions do not play a role, for

example when the valuations are de�ned over completely ordered sets. Further work is

necessary to understand how the Monotone-Implementation mechanism functions in these

environments.
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Chapter 3

Optimal Combinatorial Mechanism Design

3.1 Introduction

In many problems of interest in economics, an uninformed party has to allocate several

objects among privately informed agents. Such is the nature of the problem faced by an

internet search engine in selling advertisement spots displayed after a keyword search, by the

FCC in selling radiospectrum licenses and by the FAA in selling airport arrival and departure

gates. An important common feature in these problems is that the objects o¤ered for sale

are heterogeneous and they may be related in a complex way. Di¤erent advertisement spots

will not generally attract the same number of users. An arrival gate and a departure gate

in suitable locations at suitable times may be complements while two arrival gates at the

same airport at the same time are substitutes. A wireless communication company may

view radiospectrum licenses for two neighboring locations as complements and licenses for

two distant locations as substitutes.

The main purpose of this chapter is to analyze the combinatorial mechanism design

problem in some generality. The literature on mechanism design with independently dis-

tributed private information has established many celebrated results. In the seminal paper

of this literature, Myerson [1981] considers an environment in which a principal interacts

with several privately informed agents in order to allocate a single object and, in return,

collect payments. The revelation principle implies that the mechanism can be chosen from

among those which collect valuation reports from the agents and then determine an allo-

cation and payments. Myerson characterizes the incentive constraints via "monotonicity"

and "envelope" conditions. For each agent i and each of his types ti, let Qi(ti) be the

expected probability of winning the object and let Ui(ti) be the expected payo¤ from re-

porting truthfully. Loosely speaking, monotonicity requires Qi to be nondecreasing and the

envelope condition requires that Qi(ti) = U 0i(ti). Myerson then reformulates the principal�s

revenue maximization problem as one of maximizing the expected sum of "virtual" valua-

tions of the agents subject to his monotonicity constraint, where an agent�s virtual valuation
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for the object is his actual valuation less the reciprocal of the hazard rate of the distribution

of his valuation. Next, he asks when the constraints in the reformulated problem will not

be binding and shows that under a regularity condition, a solution to the mechanism design

problem can be obtained by focusing on the simpler problem of maximizing the expected

sum of virtual valuations without the incentive constraints.

In this chapter, we extend Myerson�s analysis in a number of directions. First, ours is a

multi-object (combinatorial) setting in which objects could be complements or substitutes.

Second, we formulate the optimal mechanism design problem with interdependent values

and ex post incentive constraints. Agents have interdependent values if their valuations

for sets of objects depend on each other�s information. Incentive constraints are ex post

if agents� behavior constitute an ex post Nash equilibrium in the game induced by the

mechanism. Ex post incentive compatibility implies that agents don�t need to know the

distribution of other agents�private information.

Some important features of our setting are as follows. We work with several objects but

one dimensional type spaces. Each agent i is equipped with a valuation function vi which

associates a real number with each type vector t = (t1; :::; tn) and each set of objects A in a

grand set 
. Thus each t generates a vector of valuations (vi(A; t))A�
. Our assumptions

on vi make it possible to analyze complements, substitutes and more hybrid valuation

structures. We assume that vi is common knowledge so that the principal need only elicit

one dimensional type reports from the agents in order to calculate their valuations for all

subsets of 
. Our approach allows us to focus on the multidimensionality associated with

allocating sets, in the absence of the well known problems of incentive characterization in

models with multidimensional private information. We will identify conditions under which

the former kind of multidimensionality is analytically tractable.

Besides Myerson [1981], the papers that are most closely related to this chapter are

those of Branco [1996], Levin [1997], Monteiro [2002] and Ledyard [2007]. All of these

papers treat combinatorial mechanism design problems in a variety of environments. My-

erson [1981] solves the mechanism design problem for a single object and with a restricted

form of interdependence of valuations. Branco [1996] studies a model with interdependent

values, multiple identical objects and decreasing marginal utilities. Monteiro [2002] an-
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alyzes a private values model with identical objects but without the decreasing marginal

utilities assumption of Branco, allowing for synergies or complementarities between objects.

Levin [1997] analyzes a problem with full complementarity and solves the mechanism design

problem for two complementary objects and private values.1 Ledyard [2007] analyzes a com-

binatorial problem with several nonidentical objects and with private values, however with

a special valuation structure: each agent has a positive valuation for exactly one speci�c

subset of the grand set of objects. We show that these models are special cases of our model

and that our approach uni�es their treatment of the optimal mechanism design problem.

In related work, Maskin and Riley [1989] and Ausubel and Cramton [1999] analyze the

mechanism design problem when the principal has a continuum of identical objects with

private and interdependent values, respectively. Our approach can be extended to include

these models as special cases as well and we discuss this extension in Section 5.

The plan of the chapter is as follows. In Section 2.2 we introduce the environment. In

Section 2.3, we characterize ex post incentive compatibility using monotonicity and envelope

conditions in a way that extends Myerson�s analysis. Our monotonicity condition accom-

modates multiple nonidentical objects and nonlinear valuations. In Section 2.4 we analyze

the optimal mechanism design problem and derive a reformulation of it. The solution to

this reformulation also solves the original problem when coupled with the right payments.

We identify conditions that guarantee regularity for di¤erent classes of valuations. First,

we develop a supermodularity based analysis of the su¢ ciency conditions making use of

the theory of monotone selection in maximization problems over lattices. Next, we ana-

lyze problems in which preferences over sets can be represented by valuation functions over

real numbers, or more generally over any completely ordered set. In these problems su-

permodularity conditions do not impose any restriction. Many examples of combinatorial

problems studied in the literature fall in this category, including some interesting problems

with submodular valuations which violate supermodularity conditions of the �rst approach.

In Section 2.5 we discuss extensions to various related models, including those with looser

feasibility requirements. Section 2.6 concludes.

1Levin uses a direct approach tailored for the two object scenario instead of a Myersonesque reformulation.
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3.2 The Model

We consider a mechanism design problem in which (possibly a strict subset of) a �nite set 


of indivisible objects will be allocated by an uninformed principal among privately informed

agents in return for monetary transfers. All actors are risk-neutral. Let N = f1; :::; ng be

the set of agents. The space of outcomes is C �<n where

C = f(A1; :::; An) : [iAi � 
 and Ai \Aj = ; if i 6= jg (1)

is the set of lists of n pairwise disjoint subsets of 
. The set Ai in the list (A1; :::; An)

identi�es the objects allocated to agent i. Note that a list (A1; :::; An) 2 C need not cover


, i.e., some members of 
 may remain unallocated to any agent. The requirement that

the sets Ai and Aj be disjoint for di¤erent agents i and j ensures that no single object

is allocated to multiple agents. Note that in general C is not a lattice when it is ordered

by the componentwise extension of the set order �. In the special case when n = 1, then

C = 2
 is a lattice:

Agents have private information in the form of one dimensional types. We will assume

that the private information is independently distributed across agents. The type of agent

i is a random variable ~ti with a positive density fi and associated distribution Fi on a

support Ti = [ai; bi]. We denote by ti a typical element of Ti. We de�ne random vectors

~t = (~t1; :::; ~tn), ~t�i = (~t1; :::; ~ti�1; ~ti+1; :::; ~tn), write ~t = (~ti; ~t�i) and denote the typical

realizations of these random vectors by t and t�i. We let f and f�i be the joint densities

for ~t and ~t�i, with associated distributions F and F�i. We denote by Ei;E�i and E, the

expectations computed with respect to Fi; F�i and F .

We allow for informational externalities but there are no externalities pertaining to

the allocation of objects. The payo¤ of agent i depends on the set of objects he receives,

the size of his payment, and the realized collective private information vector. Given an

outcome (A1; :::; An; x1; :::; xn) 2 C � <n; and a type vector t, i�s payo¤ is vi(Ai; t) � xi

where vi : 2
�T ! < is his valuation function. We maintain the following assumptions on

valuations throughout the paper.
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Assumption 1 For each i; t�i and A; vi(A; �; t�i) is di¤erentiable (right di¤erentiable at ai

and left di¤erentiable at bi) and nondecreasing.2

Assumption 2 For each i; ti and A; vi(A; ti; �) is (Lebesgue) integrable.

These assumptions place minimal restrictions on how valuations depend on the collective

type vector. In particular, we make no curvature assumption regarding the way in which vi

depends on agent i�s type (cf. Maskin and Riley [1984 and 1989], Levin [1997], Krishna and

Maenner [2001], Figueroa and Skreta [2007]). In addition, di¤erent authors have speci�ed

various assumptions regarding the way in which vi depends on sets of objects. In particular,

objects may be complements as in Levin [1997], or substitutes as in Branco [1996] and

Monteiro [2002]. Agents may be "single-minded," in the sense of having positive valuation

for only one speci�c set of objects as in Ledyard [2006]. In general, of course, an agent may

view some objects as complements and others as substitutes. One agent may view some

objects as complements, while another agent may view the same objects as substitutes, and

di¤erent types of an agent may have di¤erent valuation structures. The assumptions that

we will make below will include the aforementioned models as special cases.

The principal attaches no value to the objects and his payo¤ is simply the sum of

payments
P
xi. At the cost of additional notation, all our results directly extend to a

setting in which the principal has positive valuations for various sets of objects, as long as

these valuations do not depend on agents�private information. This is, in fact, a point of

departure from Myerson [1981] who assumes a very restricted form of interdependence of

valuations. In Myerson�s model, the information held by i a¤ects the valuation of each j 6= i

as well as the valuation of the principal through what Myerson calls revision e¤ects. The

exact form of his results depends critically on the symmetry and the linearity of revision

e¤ects. Although we allow virtually any form of interdependence between the agents, we rule

out the possibility that an agent�s information has any e¤ect on the principal�s valuation.

We will discuss the generalization of Myerson�s full �edged model with revision e¤ects to

multiple objects in Section 6.

For future reference let us record some technical de�nitions. In order to save space, we

2We will denote the derivative of vi with respect to ti by @vi(A; �; t�i).
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will make use of the di¤erence operator which we denote by �. In particular, for any real

valued function h,

��;�[h] := h(�)� h(�):

Suppose that L is a lattice ordered with the weak order � and the induced strong order �

and K is an interval in <. Denote generic elements of L by l and l0, those of K by k and k0

and the meet and join operations on members of L by ^ and _ respectively. Two lattices

of interest are L = 2
 and L = <m.

We will be interested in variants of three kinds of properties which a map � : L�K ! <

may satisfy.

De�nition 1 (Monotone di¤erences) The map � satis�es nondecreasing di¤erences (NDD)

if �k;k0 [�l;l0 [�(�; �)]] � 0 for every l0 � l and every k0 � k, and strictly increasing di¤erences

(SID) if �k;k0 [�l;l0 [�(�; �)]] > 0 for every l0 � l and every k0 < k.

De�nition 2 (Single crossing) The map � satis�es the single crossing property (SCP) if

�l;l0 [�(�; k0)] > (�)0 implies �l;l0 [�(�; k)] > (�)0 for every l0 � l and k0 < k, and the strict

single crossing property (SSCP) if �l;l0 [�(�; k0)] � 0 implies �l;l0 [�(�; k)] > 0 for every l0 � l

and k0 < k.

De�nition 3 (Supermodularity) For any k 2 K, the map �(�; k) is supermodular if �(l; k)+

�(l0; k) � �(l_ l0; k)+�(l^ l0; k) for every l and l0, strictly supermodular if �(l; k)+�(l0; k) <

�(l _ l0; k) + �(l ^ l0; k) for every unordered pair l and l0, and pseudo-supermodular if

maxf�(l; k); �(l0; k)g � (>)�(l^ l0; k) implies �(l_ l0; k) � (>)minf�(l; k); �(l0; k)g for every

l; l0 and k. The map � is supermodular if �(l; k) + �(l0; k0) � �(l _ l0;maxfk; k0g) + �(l ^

l0;minfk; k0g) for every (l; k) and (l0; k0), and strictly supermodular if �(l; k) + �(l0; k0) <

�(l _ l0;maxfk; k0g) + �(l ^ l0;minfk; k0g) for every (l; k) and (l0; k0) such that l and l0 are

unordered.

It is fairly easy to prove that NDD implies SCP, SID implies SSCP and supermodularity

implies pseudo-supermodularity. Moreover � is supermodular (strictly supermodular) if and

only if � satis�es NDD (SID) and �(�; k) is supermodular (strictly supermodular) for every
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k. For a thorough treatment, see Milgrom and Shannon [1994], Topkis [1998] and also

Agliardi [2000] who introduces the concept of pseudo-supermodularity.

3.3 Mechanisms

In this section we will de�ne mechanisms and discuss the concept of feasibility that we

will adopt and its rami�cations. The revelation principle tells us that, regardless of his

objective, the principal need only consider direct mechanisms which ask agents to report

their types, induce truthful reporting, and determine allocation and payments depending on

the reported types. We will be interested in deterministic mechanisms that induce truthful

reporting as an ex post Nash equilibrium.

A (direct and deterministic) mechanism consists of an allocation rule S : T ! C and a

payment rule x : T ! <n and is denoted (S; x). We will write S(t) = (S1(t); :::; Sn(t)) and

x(t) = (x1(t); :::; xn(t)). Given a mechanism (S; x), the ex post payo¤ to agent i when the

type vector is t = (ti; t�i) and all agents report truthfully is

Vi(tjS; x) = vi(Si(t); t)� xi(t):

Whenever convenient, we will suppress the dependence of the ex post payo¤ on the underly-

ing mechanism and simply write Vi(t). A mechanism (S; x) satis�es ex post Nash incentive

compatibility (XIC) if Vi(t) � vi(Si(t0i; t�i); t)�xi(t0i; t�i) for every i; t = (ti; t�i) and t0i 6= ti,

and ex post individual rationality (XIR) if Vi(t) � 0 for every i and t: A mechanism that

satis�es both XIC and XIR is said to be ex post incentive feasible. We will denote by

F the set of ex post incentive feasible mechanisms. An allocation rule S is ex post Nash

implementable if there is a payment rule x such that the mechanism (S; x) 2 F .

3.3.1 Characterizing Incentives

We begin by characterizing the class of mechanisms that satisfy XIC using, as is standard in

the literature, "monotonicity" and "envelope" conditions that are appropriate for our com-

binatorial setting. These conditions, in their various versions, are fundamental workhorses

of mechanism design theory.
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De�nition 4 An allocation rule S satis�es monotonicity (M) if for every i; t = (ti; t�i); t0i 6=

ti,

vi(Si(t); t) � vi(Si(t); t0i; t�i) +
Z ti

t0i

@vi(Si(y; t�i); y; t�i)dy: (M)

We leave it to the reader to verify that in the standard single unit environment with

private values, where j
j = 1 and vi(
; t) = ti, M is equivalent to the following condition:

the agent to whom the object is allocated does not change when only that agent�s type

goes up. This property is easily recognized to be the ex post version of the monotonicity

condition in Myerson [1981]. Toward the end of this section we will identify two important

environments in which M is implied by more useful and appealing conditions.

De�nition 5 A mechanism (S; x) satis�es the envelope condition (E) if for every i; t =

(ti; t�i); t0i 6= ti,

Vi(t) = Vi(t
0
i; t�i) +

Z ti

t0i

@vi(Si(y; t�i); y; t�i)dy: (E)

Using results in Milgrom and Segal [2002] and Koliha [2006], the following result char-

acterizes XIC. In particular, it shows that XIC implies E under two standard assumptions:

monotonicity and di¤erentiability of vi in ti.

Lemma 1 A mechanism (S; x) satis�es XIC if and only if (S; x) satis�es condition E and

S satis�es condition M.

Proof. ()) Suppose that (S; x) satis�es XIC. Since vi(A; �; t�i) is di¤erentiable and non-

decreasing, @vi(A; �; t�i) is Lebesgue integrable and Proposition 1 in Koliha [2006] applies,

rendering vi(A; �; t�i) absolutely continuous. Now condition E follows from Theorem 2

in Milgrom and Segal [2002]. To see that S satis�es condition M, note that for every

i; t = (ti; t�i) and t0i 6= ti

Z ti

t0i

@vi(Si(y; t�i); y; t�i)dy = Vi(t)� Vi(t0i; t�i)

= vi(Si(t); t)� xi(t)

�[vi(Si(t0i; t�i); t0i; t�i)� xi(t0i; t�i)]

� vi(Si(t); t)� xi(t)� [vi(Si(t); t0i; t�i)� xi(t)]

= vi(Si(t); t)� vi(Si(t); t0i; t�i)
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where the inequality follows from XIC.

(() Suppose that S satis�es condition M and (S; x) satis�es condition E. For every

i; t = (ti; t�i) and t0i 6= ti

Vi(t)� Vi(t0i; t�i) =

Z ti

t0i

@vi(Si(y; t�i); y; t�i)dy

� vi(Si(t); t)� vi(Si(t); t0i; t�i)

from which XIC follows.

Lemma 1, in particular the exact form of condition M, depends critically on the technical

assumption regarding the way in which agents�valuations depend on their own types. The

literature does not seem to have an agreed upon way to model this particular relationship.

In Maskin and Riley [1984, 1989] and in Levin [1997] valuations are concave in agents�own

types whereas in Krishna and Maenner [2001] and Figueroa and Skreta [2007], they are

convex. Krishna [2002] shows that in the special case of linear valuations, as in Myerson

[1981], a "subgradient condition" can be used to characterize incentive compatibility. For

example, consider the case in which vi(A; t) = �i(A)ti for every i; A and t where �i : 2

 !

R+: Then a mechanism (S; x) satis�es XIC if and only if for every i; ti and t�i, �i(Si(ti; t�i))

is a subgradient of Vi(�; t�i) at ti. Unfortunately examples can be constructed showing that

this result does not work in general, even when valuations are convex in types. This is also

apparent from a close reading of Rochet [1987]. In general, condition M is indispensable in

the characterization of XIC.

We will �nish this section by recording three corollaries of Lemma 1. Corollary 1 obtains

a revenue equivalence theorem for combinatorial mechanism design problems. Corollary 2

characterizes ex post Nash implementable allocation rules. Corollary 3 characterizes ex post

incentive feasible mechanisms.

Corollary 1 All mechanisms which satisfy XIC, which have the same allocation rule and

which leave the lowest type of each agent with the same ex post payo¤ generate the same

ex post revenue.
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Proof. If a mechanism satis�es XIC, then by Lemma 1 it also satis�es E implying that

Vi(t) = Vi(ai; t�i) +

Z ti

ai

@vi(Si(y; t�i); y; t�i)dy

for each i and t. Consequently, an agent�s payment depends only on the allocation rule and

the payo¤ received by his lowest type.

Corollary 2 An allocation rule S is ex post Nash implementable if and only if S satis�es

condition M.

Proof. The only if part trivially follows from the de�nition of ex post Nash implementability

and Lemma 1. Suppose that S satis�es condition M and choose x such that for every i and

t�i, xi(ai; t�i) � vi(Si(ai; t�i); ai; t�i) and if ti > ai then

xi(ti; t�i) = vi(Si(ti; t�i); ti; t�i)�
Z ti

ai

@vi(Si(y; t�i); y; t�i)dy

�[vi(Si(ai; t�i); ai; t�i)� xi(ai; t�i)] (2)

This choice of x implies condition E. Thus (S; x) must satisfy XIC. Since @vi(A; ti; t�i) � 0

for every i; A and t = (ti; t�i), this choice of x also implies XIR. We conculde that (S; x) 2 F :

Corollary 3 A mechanism (S; x) 2 F if and only if (S; x) satis�es condition E, S satis�es

condition M, and for every i and t�i, Vi(ai; t�ijS; x) � 0.

Proof. If (S; x) 2 F , then Conditions E and M follow from Lemma 1 and XIR implies

that Vi(ai; t�ijS; x) � 0. If S 2 M and (S; x) satis�es Condition E, then XIC follows from

Lemma 1. Using condition E, we can write

Vi(tjS; x) = Vi(ai; t�ijS; x) +
Z ti

ai

@vi(Si(y; t�i); y; t�i)dy

which is nonnegative since Vi(ai; t�ijS; x) � 0 and vi is increasing in ti. Hence (S; x) satis�es

XIR as well.
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3.3.2 Restricted Environments

There are two important and nonnested environments in which condition M is implied by

simpler and more appealing conditions. Below we identify these environments and the

corresponding conditions guaranteeing condition M.

Environment A For each i and t�i, vi(�; �; t�i) : 2
 � Ti ! <+ satis�es NDD.

In our model NDD implies a complementarity relationship between an agent�s private

information and the objects. It can be shown that vi satis�es NDD in (A; ti) if and only if

for every t�i; t0i < ti; ! 2 
; and A � 
nf!g;

vi(A [ f!g; t0i; t�i)� vi(A; t0i; t�i) � vi(A [ f!g; ti; t�i)� vi(A; ti; t�i);

that is, the marginal value of attaining another object (when the agent already has the set

A and when the collective type vector for the remaining agents is t�i) is higher for higher

types. This does not mean that the objects are complements. In fact valuations may satisfy

NDD even if all agents think that the objects in 
 are perfect substitutes. Note that an

agent i treats the objects as complements (substitutes) for every collective type realization

if for each t, vi(�; t) is supermodular (submodular). A map is submodular it its negative is

supermodular.

We will call a map � : [a; b] ! 2
 weakly expanding if a � y0 < y � b implies �(y0) �

�(y). We will skip the proof of the following result.

Lemma 2 In Environment A, an allocation rule S satis�es condition M if Si(�; t�i) is weakly

expanding for every i and t�i.

Environment B For each i, there exist maps �i : 2

 ! < and wi : �i(2
)� T ! <+ such

that

1. for every A and t, vi(A; t) = wi(�i(A); t),

2. for every t�i, wi(�; �; t�i) : �i(2
)� Ti ! <+ satis�es NDD,

where �i(2

) = f�i(A) : A 2 2
g.
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To use the terminology introduced by Mookherjee and Reichelstein [1992], in Envi-

ronment B, valuations satisfy the "one-dimensional condensation property", that is, they

depend on scalars associated with sets, rather than the sets themselves. An important

example is the case of perfect substitutes where �i is the counting measure.

Lemma 3 In Environment B, an allocation rule S satis�es condition M if �i(Si(�; t�i)) is

nondecreasing on [ai; bi] for every i and t�i.

Note that the su¢ cient conditions for condition M obtained in Lemmas 2 and 3 are

usually nonnested. In Environment B, we may have an allocation rule S with nondecreasing

�i(Si(�; t�i)), without Si(�; t�i) being weakly expanding. To see this, consider a single

agent problem with [a1; b1] = [0; 1];
 = f�; �g, v(A; t) = �(A)t; �(;) = �(f�g) = 0 and

�(f�g) = �(f�; �g) = 1. Consequently, w : f0; 1g � T ! < is de�ned as w(z; t) = zt

and satis�es NDD. If S(t) = f�g when 0 � t < 1
2 and S(t) = f�g when 1

2 � t � 1; then

t 7! �(S(t)) is nondecreasing but t 7! S(t) is not weakly expanding.

3.4 Optimal Mechanism Design

In this section we will analyze the optimal mechanism design problem:

max
(S;x)2F

E
X
i2N

xi(~t) (OMD)

In order to reformulate this problem in a way so that the choice of the allocation rule can

be separated from the choice of payments, we need to de�ne virtual valuations. Agent i�s

virtual valuation is a map ui : 2
 � T ! < de�ned by

ui(A; t) = vi(A; t)� @vi(A; t)
1� Fi(ti)
fi(ti)

:

A well-known result in mechanism design theory allows us to replace payments with virtual

valuations in this problem. We record this result next.
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Lemma 4 If (S; x) satis�es Condition E, then

E
X
i2N

xi(~t) = E[
X
i2N

ui(Si(~t); ~t)�
X
i2N

Vi(ai; ~t�i)]: (3)

Proof. By a simple integration by parts argument we obtain for any i and t�i

Ei
Z ~ti

ai

@vi(Si(y; t�i); y; t�i)dy = Ei@vi(Si(~ti; t�i); ~ti; t�i)�i(~ti) (4)

where �i(ti) = (1� Fi(ti))=fi(ti). Using Condition E, we can write, for any i and ti

E�ixi(ti; ~t�i) = E�i[vi(Si(ti; ~t�i); ti; ~t�i)� Vi(ai; ~t�i)]

�E�i
Z ti

ai

@vi(Si(y; ~t�i); y; ~t�i)dy:

Computing expectations with respect to ti we obtain

Exi(~t) = Evi(Si(~t); ~t)� E�iVi(ai; ~t�i)

�E�iEi
Z ~ti

ai

@vi(Si(y; ~t�i); y; ~t�i)dy:

Using Equation 4 and summing over i, �nishes the proof.

Following Myerson [1981], the next result reformulates OMD using Lemma 4. The

reformulation separates the choice of the allocation rule from the choice of the payment

rule and this will play a key role in the ensuing analysis. We will denote byM the class of

allocation rules satisfying condition M.

Proposition 1 If S� solves the reformulated problem

max
S2M

E
X
i2N

ui(Si(~t); ~t) (R)

and if

x�i (t) = vi(S
�
i (t); t)�

Z ti

ai

@vi(S
�
i (y; t�i); y; t�i)dy (5)

for every i and t, then the mechanism (S�; x�) solves OMD.
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Proof. The allocation rule S� satis�es Condition M and the choice of x� implies that the

mechanism (S�; x�) satis�es Condition E. Therefore, by Lemma 1, (S�; x�) satis�es XIC.

The choice of x� also indicates that (S�; x�) satis�es XIR. Note that for every i and t�i,

Vi(ai; t�ijS�; x�) = 0 since x�i (ai; t�i) = vi(S
�
i (ai; t�i); ai; t�i). Thus (S

�; x�) is feasible in

OMD. For any other ex post incentive feasible mechanism (S; x) we have,

E
X
i2N

xi(~t) = E[
X
i2N

ui(Si(~t); ~t)�
X
i2N

Vi(ai; ~t�ijS; x)]

� E
X
i2N

ui(Si(~t); ~t)

� E
X
i2N

ui(S
�
i (~t); ~t)

= E
X
i2N

x�i (~t)

where the �rst equality follows from Lemma 4, the �rst inequality follows because (S; x)

must satisfy XIR, the second inequality is by hypotheses and the second equality follows

from Lemma 4 and the observation that Vi(ai; t�ijS�; x�) = 0 for every i and t�i.

Two remarks on Proposition 1 are in order.

Remark 1 Fix

S� 2 arg max
S2M

E
X
i2N

ui(Si(~t); ~t)

and consider the set X(S�) = fx : (S�; x) 2 Fg. This set is nonempty since (S�; x�) 2 F if

x� is as de�ned in Equation 5. If � 2 X(S�), then for every i and t, we have

x�i (t) = vi(S
�
i (t); t)�

Z ti

ai

@vi(S
�
i (y; t�i); y; t�i)dy

� vi(S
�
i (t); t)�

Z ti

ai

@vi(S
�
i (y; t�i); y; t�i)dy

�[vi(S�i (ai; t�i); ai; t�i)� �i(ai; t�i)]

= �i(t)

where the �rst equality is by de�nition. the inequality follows from the fact that (S�; �)

must satisfy XIR, and the second equality follows because (S�; �) must satisfy Condition E.
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Thus x� achieves the highest possible revenue for the mechanism designer within the class

of mechanisms f(S�; x) : x 2 X(S�)g:

Remark 2 The implication in Proposition 1 can be reversed. Suppose that the mechanism

(S�; x�) solves OMD. Then the following must hold: S� solves Problem R and payments

satisfy Equation 2 with x�i (ai; t�i) � vi(S�i (ai; t�i); ai; t�i) for every i and t�i.

Proposition 1 is useful in separating the choice of the allocation rule from the choice of

the payments. In order to solve OMD, the allocation rule can be chosen to solve Problem

R and payments can be derived by using this allocation rule in Equation 5. But solving

Problem R may still be formidable as we don�t know much about the structure of the

constraint setM in general. Regularity addresses exactly this issue.

De�nition 6 The optimal mechanism design problem is regular if whenever S is such that

S(t) solves

max
(A1;:::;An)2C

X
i2N

ui(Ai; t) (OPn)

for every t, then S satis�es Condition M.

If the optimal mechanism design problem is regular, the mechanism designer need only

choose an allocation such that S(t) solves the optimal partitioning problem with n agents

(OPn) and then choose payments as in Proposition 1. The resulting mechanism will solve

OMD.

We move on to establishing su¢ cient conditions for regularity in Environments A and

B.

3.4.1 Regularity with Supermodularity: Environment A

In this subsection we will restrict attention to Environment A in which each vi satis�es

NDD in (A; ti). It is instructive to start with the single agent problem. When there is only

one agent Problem OP1 becomes maxA22
 u(A; t), where, importantly, the constraint set

2
 is a lattice. The theory of monotone selection of optimizers (Topkis [1998], Milgrom and

Shannon [1994] and Agliardi [2000]) can now be used to show that an optimal selection
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t 7! S�(t) is monotonic in the sense of Condition M if (1) u(�; t) is pseudo-supermodular for

every t, (2) u satis�es the strict single crossing property, and (3) S�(t0) � S�(t) whenever

t0 < t. Thus su¢ cient conditions for regularity can be obtained by referring to established

results of the literature when there is a single agent.

However this simplicity rests on two important features of the single agent problem.

First, when there is a single agent, C = 2
 is a lattice and therefore S(t0) [ S(t) and

S(t0)\S(t) are elements of C: This ceases to be the case in general, as the constraint set in

the multiagent problem OPn, de�ned in Equation 1, is not a lattice when it is ordered with

the componentwise extension of the standard set order �. Second, the complications arising

from interdependence of valuations are absent in the single agent problem. In multiagent

problems ti has an e¤ect on uj . Loosely speaking, we must make sure that ti has a larger

e¤ect on the set received by i than on the set received by j 6= i.

We will now identify conditions under which monotone comparative static results can

be obtained in OPn: We need some more notation. De�ne, for each i, A and t

u�Nni(Ai; t) = maxf
X
j 6=i

uj(A
0
j ; t) : (Ai; A

0
�i) 2 Cg

where A0�i lists fA0j : j 6= ig: In words, u�Nni(Ai; t) is the largest sum of virtual valuations

of all other agents conditional on i getting set Ai when the type vector is t.

De�nition 7 Virtual valuations satisfy the extended strict single crossing property (E-

SSCP) if for every i; t = (ti; t�i); t0i < ti and A
0
i � Ai

ui(Ai; t
0
i; t�i)� ui(A0i; t0i; t�i) � u�Nni(A

0
i; t

0
i; t�i)� u�Nni(Ai; t

0
i; t�i)

) ui(Ai; t)� ui(A0i; t) > u�Nni(A
0
i; t)� u�Nni(Ai; t)

To explain E-SSCP, �x t�i and sets Ai and A0i with A
0
i � Ai: Now consider two "type

dependent" plans. In the �rst plan, the set Ai is assigned to agent i and the remaining

objects in 
nAi are allocated to the agents in Nni in an optimal fashion. In the second

plan, the set A0i is assigned to agent i and the remaining objects in 
nA0i are allocated to

the agents in Nni in an optimal fashion. If the �rst plan dominates the second when agent
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i is of type t0i; i.e., if

ui(Ai; t
0
i; t�i) + u

�
Nni(Ai; t

0
i; t�i) � ui(A0i; t0i; t�i) + u�Nni(A

0
i; t

0
i; t�i);

then E-SSCP requires that the �rst plan strictly dominate the second when agent i is of

type ti > t0i: If valuations are private, then the right hand sides of the displayed inequalities

in the de�nition of E-SSCP are 0. In this case virtual valuations satisfy E-SSCP if and only

if they satisfy SSCP. In this sense, E-SSCP is an extension of SSCP.

De�nition 8 Virtual valuations satisfy the extended supermodularity property (E-SUPM)

if for every i and t;

1. ui(�; t) : 2
 ! < is supermodular, and

2. u�Nni(�; t) : 2

 ! < is supermodular.

If the virtual valuations satisfy E-SUPM, then Problem OPn can be reformulated in a

way that the constraint set becomes a lattice and the objective function becomes super-

modular over the constraint set. If Condition E-SSCP is also satis�ed, then the objective

function in the reformulated problem satis�es SSCP. We record this �nding in the next

result.

Proposition 2 In Environment A, the optimal mechanism design problem is regular if

virtual valuations satisfy Conditions E-SSCP and E-SUPM.

Proof. Pick a selection S(t) = (S1(t); :::; Sn(t)) that solves OPn for every t. For every i,

Si(t) must also solve

max
Ai22


[ui(Ai; t) + u
�
Nni(Ai; t)]::

Note that the constraint set in this problem is a lattice. Condition E-SSCP implies that

the objective function satis�es SSCP over 2
 � Ti and Condition E-SUPM implies that

it is supermodular on 2
. By Theorem 2.8.4 in Topkis (1998) we conclude that Si(�; t�i)

is weakly expanding. By Lemma 2, this implies that S(�) satis�es Condition M and we

conclude that OMD is regular.
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In an interesting paper Levin [1997] considers the optimal mechanism design problem

with two complementary goods and private values. His results are extended by Proposition

2 to any number of objects and interdependent values. In his analysis, Levin uses a direct

argument tailored to the two object case. Without invoking the machinery of supermodular

optimization, he employs an exhaustive analysis of all possible cases to prove that the

optimal allocation has the expansion property of our Lemma 2. The assumptions that

Levin makes in his two object model coincide exactly with the assumptions of Corollary

2 when specialized to a two object problem. Even though a direct extension of Levin�s

analysis to more than two objects can be discouragingly cumbersome, our analysis shows

that his result works for arbitrary number of complementary objects.

To see how Levin�s model can be incorporated in our model, let 
 = f!1; !2g, and for

each agent i let there exist nonnegative and di¤erentiable functions vi1; vi2;{i such that:

v0i1(ti); v
0
i2(ti) > 0; {0i(ti) � 0

v00i1(ti); v
00
i2(ti);{00i (ti) � 0

vi(S; ti) =

8>>>>>>><>>>>>>>:

0 if S = ;

vi1(ti) if S = f!1g

vi2(ti) if S = f!2g

vi1(ti) + vi2(ti) + {i(ti) if S = f!1; !2g

Now assume that the hazard rates of type distributions are nondecreasing (Levin�s As-

sumption 2) so that vi and ui satisfy SID. This implies, together with private values that

the E-SSCP condition is satis�ed. Finally assume that {i(ti) � 1�Fi(ti)
fi(ti)

{0i(ti) � 0 (Levin�s

Assumption 3) so that ui(�; ti) is supermodular. Then, as discussed in Example 2 of the

previous chapter, the second requirement in the E-SUPM condition is also satis�ed. Now

Proposition 2 applies and we conclude that the mechanism design problem is regular.
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3.4.2 Regularity without Supermodularity: Environment B

In this subsection we restrict attention to Environment B in which a one dimensional con-

densation property holds together with a NDD condition: for every i there exist maps

�i : 2

 ! < and v̂i : �i(2
) � T ! <+ such that vi(A; t) = v̂i(�i(A); t) and v̂i(�; �; t�i) has

NDD. In order to motivate the analysis, consider the following example with private values,

multiple identical units and decreasing marginal valuations. Agents are only interested in

the number of units they obtain and their valuations take the form vi(A; t) = �(jAj)ti where

� is strictly concave on f1; :::; j
jg. Suppose that ti is distributed uniformly over [0; 1] so

that 1�Fi(ti)fi(ti)
= 1� ti. Proposition 2 can not be used to determine the regularity of OMD in

this environment, since the maps fui(�; ti)gti2[0;1] are not supermodular: for every i; ti >
1
2

and !1; !2 2 
;

ui(f!1; !2g; t)� ui(f!1g; t) = [�(2)� �(1)][2ti � 1]

< [�(1)� �(0)][2ti � 1]

= ui(f!2g; t)� ui(;; t):

Multiunit environments with decreasing marginal valuations are one of the important

mechanism design environments to study, and Environment B is the right environment to

analyze them. De�ne

ûi(z; t) = v̂i(z; t)� @v̂i(z; t)
1� Fi(ti)
fi(ti)

C� = f(�1(A1); :::; �n(An)) : [iAi � 
 and Ai are disjointg, and

û�Nni(zi; t) = maxf
X
j 6=i

ûj(aj ; t) : (a1; :::; ai�1; zi; ai+1; :::; an) 2 C�g

Adapting De�nition 7, we will say that the virtual valuations ûi, i = 1; :::; n, satisfy the

E-SSCP if for every i; t�i; z0i < zi and t
0
i < ti

ûi(zi; t
0
i; t�i)� ûi(z0i; t0i; t�i) � û�Nni(z

0
i; t

0
i; t�i)� û�Nni(zi; t

0
i; t�i)

) ûi(zi; t)� ûi(z0i; t) > û�Nni(z
0
i; t)� û�Nni(zi; t):
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The conditions that guarantee regularity do not involve supermodularity in Environment

B.

Proposition 3 In Environment B, the optimal mechanism design problem is regular if the

virtual valuations satisfy the E-SSCP.

Proof. If f(S1(t); :::; Sn(t)) : t 2 Tg is a selection of maximizers in Problem OPn, then for

every i and t, �i(Si(t)) solves

max
zi2f�i(A):A�
g

[ûi(zi; t) + û
�
�i(zi; t)]:

E-SSCP implies that (zi; ti) 7! [ûi(zi; ti; t�i) + û��i(zi; ti; t�i)] satis�es SSCP implying that

ti 7! �i(Si(ti; t�i)) is nondecreasing for every i and t�i. In Environment B, this is su¢ cient

for Condition M.

Note that zi 7! ûi(zi; t) + û
�
�i(zi; t) is de�ned on a completely ordered set and su-

permodularity does not impose any restriction on it. Therefore we don�t have a super-

modularity condition in Proposition 3. A second important aspect of this result is the

nature of the strong monotonicity conditions obtained. Suppose that (Si(t))i2N is a se-

lection from the solutions of Problem OPn. In the proof of Proposition 2, we show that

t0i < ti ) Si(t
0
i; t�i) � Si(t

0
i; t�i) whereas in the proof of Proposition 3, we show that

ti 7! �i(Si(ti; t�i)) is a nondecreasing function. These two strong monotonicity conditions

are, in general, nonnested.

As in Environment A, more tractable su¢ cient conditions for regularity can be obtained

in Environment B in the special case of private values. In particular we obtain the following

corollary to Proposition 4, whose proof we skip.

Corollary 4 In Environment B and with private values, the optimal mechanism design

problem is regular if for each i, (zi; ti) 7! ûi(zi; ti) satis�es SSCP.

Two interesting problems in which Proposition 3 and Corollary 4 apply are the optimal

mechanism design problem with multiple identical units, analyzed by Branco [1996] and
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Monteiro [2002] and the optimal mechanism design problem with single-minded agents. We

brie�y analyze how these problems can be mapped into our model next.

3.4.2.1 Identical Objects

In problems with identical objects, agents are only interested in the cardinality of the set

of objects that they receive. Hence, the one-dimensional condensation property is satis�ed

with �i(A) = jAj, i.e., for every A and t,

vi(A; t) = wi(jAj ; t)

where wi : f0; 1; ::;mg�T ! <+ and m = j
j. In order, to apply Proposition 3, we need to

identify conditions under which wi satis�es NDD and E-SSCP. To this end de�ne, abusing

notation slightly, the maps wik : T ! < and uik : T ! < by

wi0(t) = wi(0; t);

ui0(t) = ui(0; t)

wik(t) = wi(k; t)� wi(k � 1; t) if k = 1; :::;m; and

uik(t) = ui(k; t)� ui(k � 1; t) if k = 1; :::;m:

so that vi(A; t) =
PjAj
k=1wik(t) and ui(A; t) =

PjAj
k=1 uik(t):

Proposition 4 Suppose that for each k, i and t,

1. wik(�; t�i) is nondecreasing,

2. uik(t) � buik+1(t),
3. uik(�; t�i) is strictly increasing.

4. uik(t0i; t�i) > ujk0(t
0
i; t�i) whenever uik(ti; t�i) � ujk0(ti; t�i) and t0i > ti.

Then the associated optimal mechanism design problem is regular.



43

Proof. For every t; let u(1)(t) � u(2) � �� � u(m)(t) be the �rst m highest elemenst of

fuik : i = 1; :::; n and k = 1; :::mg and de�ne the set of "winning" marginal virtual valuations

as

W (t) = fu(1)(t); :::; u(m)(t)g \ fuik(t) : uik(t) � 0g.

Let Wi(t) = W (t) \ fuik(t) : k = 1; :::;mg be the set of agent i�s winning bids. For this

identical units problem, �(A) = jAj and therefore

C� = f(a1; :::; an) :
X

ai � m and ai is a nonnegative integerg:

The optimal partitioning problem becomes

max
(A1;:::;An)2C

nX
i=1

jAijX
k=1

uik(t)

and if S(t) is a solution to this problem, then (jS1(t)j; :::; jSn(t)j) solves

max
(a1;:::;an)2C�

nX
i=1

aiX
k=1

uik(t)

implying that jSi(t)j = jWi(t)j. Fix an agent j and types t0j < tj and t�j . Suppose that

S(t0j ; t�j) and S(tj ; t�j) solve the OPn problem at the corresponding type vectors. Let

jSj(t0j ; t�j)j = k0 > 0. Then ujk0(t0j ; t�j) 2W (t0j ; t�j), i.e., fuj1(t0j ; t�j); :::; ujk0(t0j ; t�j)g is a

subset of W (t0j ; t�j) by assumption 2 of the proposition. Towards a contradiction suppose

that ujk0(tj ; t�j) =2 W (tj ; t�j). By assumption 3, ujk0(tj ; t�j) > ujk0(t0j ; t�j) and therefore

ujk0(tj ; t�j) > 0. Then there must be some i and k such that uik(t0j ; t�j) =2 W (t0j ; t�j)

but uik(tj ; t�j) 2 W (tj ; t�j). In particular this implies that uik(t0j ; t�j) � ujk0(t0j ; t�j) but

uik(tj ; t�j) � ujk0(tj ; t�j) violating assumption 4. So it must be the case that ujk0(tj ; t�j) 2

W (tj ; t�j) and jSj(t0j ; t�j)j � jSj(tj ; t�j)j. Since by assumption 1 (k; ti) 7! wi(k; ti; t�i)

satis�es NDD for every i and t�i, the conditions for Environmen B are satis�ed, this proves

that S satis�es Condition M and the OMD is regular.
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3.4.2.2 Single-minded Agents

Ledyard [2006] considers a private values model in which for each i, there exists a special

set of objects A�i such that vi(A; ti) = ti if A
�
i � A and zero otherwise. Letting �i(A) = 1 if

A�i � A and zero otherwise, and letting vi(A; ti) = �i(A)ti we can conclude, by Corollary 4,

that the mechanism design problem with such single-minded agents is regular if the hazard

rates are nondecreasing.

3.5 Extensions

In this section we will discuss four directions in which our model can be extended without

substantially changing the analysis. We �rst consider a speci�c form of interdependent

valuations whereby agents�private information has an e¤ect on each other�s as well as the

mechanism designer�s valuations. Next we consider �uid models in which there is a contin-

uous supply of one or many objects which are perfectly divisible. Then we remark on the

e¤ects of weakening the notion of incentive feasibility that we adapt and allowing for sto-

chastic mechanisms. Finally we consider more general mechanism design problems in which

the mechanism designer maximizes the expected sum of a weighted average of all parties

involved. Optimal mechanism design is a special case of this more general formulation, in

which all weight is placed on the welfare of the mechanism designer.

3.5.1 Myerson�s revision e¤ects

The main di¤erence between Myerson�s original formulation of the mechanism design prob-

lem and the present model lies in the principal�s valuation structure. In Myerson�s model

an agent�s type a¤ects the valuations all other agents and the principal linearly and in ex-

actly the same way, a feature which Myerson calls revision e¤ects. In our model the precise

statement of revision e¤ects is as follows.

De�nition 9 Valuations exhibit revision e¤ects if for each i there exist maps ei : 2
�Ti !

< and wi : 2
 � Ti ! < such that

1. ei(�; ti) is additive, i.e., if A \A0 = ;, then ei(A [A0; ti) = ei(A; ti) + ei(A0; ti),
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2. vi(A; t) = wi(A; ti) +
P
j 6=i ej(A; tj); and

3. the principal�s valuation is given by v0(A; t) =
P
j2N ej(A; tj).

If valuations exhibit revision e¤ects, then the principal�s valuation is also a function of

the collective type vector and the optimal mechanism design problem becomes:

max(S;x)2F E
P
i[xi(~t)� v0(Si(~t); ~t)]

As a result, simple changes in the arguments show that the reformulated problem becomes:

maxS2M E
P
i �i(Si(~t); ~ti)

where �i : 2
 � Ti ! < is de�ned by

�i(A; ti) = wi(Ai; ti)� ei(Ai; ti)� @wi(Ai; ti)
1� Fi(ti)
fi(ti)

:

Quite remarkably, �i does not depend on t�i even though agents have interdependent

valuations. As a result we get the following proposition whose proof we skip.

Proposition 5 Suppose that valuations satisfy revision e¤ects and de�ne �i as above. The

mechanism design problem is regular if for each i, wi has NDD, �i has SSCP and �i(�; ti)

is supermodular.

3.5.2 Fluid Models

In important work, Maskin and Riley [1989] and Ausubel and Cramton [1999] analyze the

multiunit optimal mechanism design problem in a slightly di¤erent environment than ours.

They analyze a problem in which the object is divisible with a �xed supply of q0 units

and valuations take the form vi : [0; q0] � T ! <. In particular they hypothesize that

vi(q; t) =
R q
0 pi(y; t)dy for some demand function p : <+ � T ! <+. In Maskin and Riley

[1989] values are private and the demand function is symmetric across agents. Since the

object is perfectly divisible in these models, we will call them �uid models.
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The techniques of supermodular optimization can be employed in �uid models which are

more general then the ones analyzed by Maskin and Riley [1989] and Ausubel and Cramton

[1999], as we outline next.

Suppose there arem�uid objects and the supply constraints are given by qk0 , k = 1; :::;m.

A feasible allocation is a vector q = (q1; :::; qn) where qi = (qki )
m
k=1 and

P
i q
k
i � qk0 . Let

Q = [0; q10]� � � �� [0; qm0 ]: Note that Q is a lattice ordered with the partial order � given by

�qi � qi if �qki � qki for every k. Suppose that valuations take the form vi : Q� T ! < where

vi(qi; �; t�i) is di¤erentiable and increasing and de�ne ui(qi; t) = vi(qi; t)� @vi(qi; t)1�Fi(ti)fi(ti)
.

Now appropriately modifying the proof of Proposition 2, we can prove that if each vi satis�es

NDD on Q�Ti, if virtual valuations satisfy the appropriate modi�cations of Conditions E-

SSCP and E-SUP then the mechanism design problem is regular and maximizing for every

type pro�le the sum of virtual valuations is a legitimate way of solving for the revenue-

maximizing mechanism. In Maskin and Riley [1989] and Ausubel and Cramton [1999],

m = 1 and, not surprisingly, the conditions they identify for regularity do not require

supermodularity.

3.5.3 Interim Incentives and Stochastic Mechanisms

The notion of feasibility that we adopt in this paper has two restrictions: mechanisms must

be (1) ex post incentive feasible, (2) deterministic. In this subsection we will argue that

these two restrictions are, in some sense, without loss of generality.

By a stochastic mechanism, we mean a mechanism that determines probabilities of

di¤erent allocations based on type reports. Hence a deterministic mechanism (S; x) is a

stochastic mechanism that puts probability one on the allocation S(t) at every collective

type report t. Thus, a stochastic mechanism is a pair (q; x) where x : T ! <n determines

payments and q : C � T ! [0; 1] is such that q(�; t) is a probability distribution over C for

every t. In particular, for every t; q satis�es:

q(S; t) � 0X
S2C

q(S; t) = 1:
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Note that we require
P
S q(S; t) = 1 since C is de�ned such that an allocation S 2 C, need

not cover 
. Given (q; x) the ex post payo¤ of agent i is

Vi(t
0
i; t�ijq; x) =

X
S2C

q(S; t0i; t�i)vi(Si; t)� xi(t0i; t�i)

if he reports t0i and other agents report t�i. Note that i�s payo¤ only depends on the ith

component of the allocation S(t).

Bayesian (interim) incentive feasibility is weaker than ex post incentive feasibility. A

mechanism is Bayesian incentive feasible if incentive constraints hold when they are evalu-

ated at the interim stage, after agents learn their own type, but in ignorance of each other�s

types. Let FB be the class of interim incentive feasible deterministic mechanisms and �F

and �FB be the corresponding classes of ex post and interim incentive feasible stochastic

mechanisms. To be precise,

(S; x) 2 FB , 8i; ti

8><>:
ti 2 argmax

t0i2Ti
EVi(t0i; ~t�ijS; x)

EVi(ti; ~t�ijS; x) � 0

(q; x) 2 �F , 8i; ti; t�i

8><>:
ti 2 argmax

t0i2Ti
Vi(t

0
i; t�ijq; x)

Vi(ti; t�ijq; x) � 0

(q; x) 2 �FB , 8i; ti

8><>:
ti 2 argmax

t0i2Ti
EVi(t0i; ~t�ijq; x)

EVi(ti; ~t�ijq; x) � 0

The optimal mechanism design problem can be formulated in four di¤erent ways.
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max
(S;x)2F

E
X
i2N

xi(~t) (OMD)

max
(S;x)2FB

E
X
i2N

xi(~t) (OMD0)

max
(q;x)2�F

E
X
i2N

xi(~t) (OMD00)

max
(q;x)2�FB

E
X
i2N

xi(~t) (OMD000)

The constraint set is the largest in OMD000 and smallest in OMD. In Section 2.4 we analyzed

OMD. Myerson [1981], Branco [1996] and Levin [1997], among others, analyze OMD000 in

di¤erent environments.

It can be shown, by changing the de�nition of regularity appropriately for each problem,

that

1. Identical conditions imply regularity in all four problems.

2. Under these su¢ cient conditions,

(a) there are deterministic solutions to OMD00 and OMD000, and

(b) there are ex post incentive feasible solutions to OMD0 and OMD000.

We will illustrate these assertions for OMD000 only, but in two environments, �rst, in

the single object environment of Myerson, and next, in our combinatorial environment.

It is an open question whether conditions can be identi�ed which guarantee regularity in

the Bayesian optimal mechanism design problem, for example in OMD000, which lead to a

solution that is not ex post incentive feasible.

3.5.3.1 The Environment in Myerson (1981)

Let 
 = f!g. Abusing notation, replace the allocation rule by a map q : T ! <n where

q(t) = (q1(t); :::; qn(t)) is such that qi(t) � 0 and
P
i qi(t) � 1. The number qi(t) is the

probability that the object will be given to agent i. Let vi(f!g; t) = ti and vi(;; ti) = 0.
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Myerson�s monotonicity condition is:

for every i; ti 7! Qi(ti) := Eqi(ti; ~t�i) is nondecreasing

The virtual valuation of an agent is given by ci(ti) = ti � �i(ti). It can be shown that an

expected revenue maximizing mechanism can be constructed by choosing an allocation rule

q which solves

maxE
X
i2N

qi(~t)ci(~ti) subject to q satis�es Myerson monotonicity.

The unconstrained version of this reformulation can be solved by solving the following

problem parametrized by t:

max
(q1(t);:::;qn(t))

X
i2N

qi(t)ci(ti):

This is exactly the single object and stochastic analog of our OPn. Ignoring ties, the solution

is given by setting qi(t) = 1 if ci(ti) = maxfcj(tj) : j 2 Ng and if ci(ti) > 0. Suppose that q�

is constructed such that q�(t) solves this problem at every t. It does not necessarily follow

that q� should be Myerson monotonic and therefore that it should solve the reformulation.

However, if ci is strictly increasing, then this is indeed the case. If i would win the object

at a lower type, then he de�nitely wins it at a higher type. Indeed, Myerson�s regularity

condition is precisely that ci should be increasing, which follows if �i is nonincreasing.

It is important to note, however that if ci is increasing for every i, then q�i (�; t�i) is

nondecreasing for every i and t�i. This result is stronger than Myerson monotonicity which

characterizes Bayesian incentive compatibility. In fact, when coupled with the payments

identi�ed by Myerson, q� is ex post incentive compatible.

Under the su¢ cient conditions for regularity in OMD000, we conclude that the optimal

mechanism is deterministic and ex post incentive compatible. It can also be shown that this

mechanism is ex post individually rational and therefore ex post incentive feasible. Thus,

with a single object the solutions of OMD and OMD000 coincide. It is not clear whether

conditions can be identi�ed in Myerson�s model under which a Bayesian incentive feasible

optimal mechanism can be obtained, which is not ex post incentive feasible.
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3.5.3.2 The Multiobject Environment

The observation that optimal mechanism design with Bayesian feasibility conditions leads

to optimal mechanisms which are ex post incentive feasible does not depend on the features

of the Myerson problem which we generalize in this paper. In our multiobject model with

interdependent types and valuations nonlinear in types, the same conclusion follows.

Consider problem OMD000 in the multiobject setting. Since F is a strict subset of �FB, it

may be expected that the value of this problem should exceed the value of OMD. However,

just like in Myerson (1981), the conditions we have to impose to analyze the problem

constrained by �FB imply that the optimal mechanism be in F . We proceed with an outline

of the arguments.

An allocation function q satis�es the monotonicity condition MB if for each i; ti and t0i

E
X
S2C

q(S; t0i; ~t�i)
�
vi(Si; ti; ~t�i)� vi(Si; t0i; ~t�i)

�
� E

Z ti

t0i

X
S2C

q(S; y; ~t�i)@vi(Si; y; ~t�i)dy:

Note that Condition M is exactly the ex post and deterministic version of MB. Let

MB be the class of allocation rules satisfying MB. It is straightforward to check that in

the single object case with private values MB coincides with the monotonicity condition

used by Myerson [1981], which we introduced in Section 2.5.3.1. Condition MB reduces in

Myerson�s model to:

Eqi(t0i; ~t�i)(ti � t0i) � E
Z ti

t0i

qi(y; ~t�i)dy:

To see that MB implies Myerson�s condtion, observe that for any i; t0i and ti, we must have

Eqi(t0i; ~t�i)(ti � t0i) � E
Z ti

t0i

qi(y; ~t�i)dy

= �E
Z ti

t0i

qi(y; ~t�i)dy

� �Eqi(ti; ~t�i)(t0i � ti)

= Eqi(ti; ~t�i)(ti � t0i):
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Now, if t0i < ti, it follows that Eqi(t0i; ~t�i) � Eqi(ti; ~t�i) and Myerson�s condition holds. To

see that Myerson�s condition implies MB, �x i; t0i < ti. We have

E
Z ti

t0i

qi(y; ~t�i)dy =

Z ti

t0i

Eqi(y; ~t�i)dy

=

Z ti

t0i

Qi(y)dy

�
Z ti

t0i

Qi(t
0
i)dy

= Qi(t
0
i)(ti � t0i).

Similarly if t0i > ti and MB follows. Thus MB is an extension of Myerson�s monotonicity

condition and it will serve precisely the same purpose Condition M serves in Section 4, i.e.,

Condition MB will constrain a reformulation of OMD000.

Consider the following reformulation of OMD000.

max
q2MB

E
X
i2N

X
S2C

q(S; ~t)ui(Si; ~t) (R000)

Proposition 6 If q solves R000 and payments are de�ned by

xi(t) =
X
S2C

q(S; t)vi(Si; t)�
Z ti

ai

X
S2C

q(S; y; t�i)@vi(Si; y; t�i)dy

for each i and t = (ti; t�i), then the mechanism (q; x) solves OMD000.

We will omit the proof which proceeds in a fashion similar to the arguments of Section

2.4. The critical observation is that Bayesian incentive compatibility is equivalent to MB

plus an envelope condition. A solution to the reformulated problem must satisfy MB. The

envelope condition follows by choice of payments. Therefore the mechanism proposed by the

Proposition Bayesian incentive compatible, and in fact Bayesian incentive feasible. Using

independence of types, an exact analog of Lemma 4 indicates that maximizing the expected

sum of payments is equivalent to maximizing the expected sum of virtual valuations while

leaving all agents with zero expected surplus at their lowest types. Since the mechanism of

the Proposition has these properties, the result follows.
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Thus, the principal need only solve R000 and determine payments as in the Proposition

6 to solve OMD000. Note that payments in Propositions 1 and 6 coincide. There is no easy

way to solve R000, as we do not know much about the constraint set MB. To solve the

unconstrained version of R000, i.e, the problem

max
q:C�T!<

E
X
i2N

X
S2C

q(S; ~t)ui(Si; ~t)

one can solve

max
q(�;t):C!<

X
i2N

X
S2C

q(S; t)ui(Si; t)

at every t. But the objective of this maximization problem is a convex combination of the

numbers f
P
i ui(Si; t) : (S1; :::; Sn) 2 Cg and the choice variables are the weights. So, in

order to solve the unconstrained version of R000, it su¢ ces to solve the optimal partitioning

problem

max
S2C

P
i2N

ui(Si; t)

for each t 2 T: Note that this is precisely the same partitioning problem OPn which appeared

in Section 2.4. If S(t) denotes a solution to OPn, then de�ning q�(S(t); t) = 1 for all t yields

an optimal solution to the unconstrained version R000. Of course, q� need not be a solution

to R000. Regularity addresses exactly this issue.

De�nition 10 The optimal mechanism design problem OMD000 is regular if, whenever (i)

S(t) is a solution to OPn and (ii) q�(S(t); t) = 1 for each t, then q� satis�es MB.

Note that MB reduces to Condtion M if q is deterministic. Thus the conditions under

which the allocation rule constructed by solving the OPn are precisely the same conditions

that guarantee regularity in Section 2.4. Under these conditions the optimal mechanism is

(1) nonstochastic, (2) satis�es M and (3) satis�es the envelope condition of Section 2.3 by

choice of payments in Proposition 6: This implies that the resulting mechanism is ex post

incentive feasible.
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3.5.4 Other Objective Functions

The optimal mechanism design problem is a special case of a more general mechanism design

problem where the objective is to maximize the expectation of a weighted sum of both the

principal�s and the agents�welfare. Let �0; �1; :::; �n be nonnegative numbers adding up to

1. The general formulation of the mechanism design problem would be:

max
(S;x)2F

E[
X
i2N

�0xi(~t) +
X
i2N

�ivi(Si(~t); ~t)]

A solution to this problem will be an ex post incentive feasible mechanism which is not

"ex ante dominated" by any other ex post incentive feasible mechanism in the sense of

Holmstrom and Myerson [1983].3 Now the optimal mechanism design problem is the special

case in which �0 = 1:

Using Lemma 5 we can replace payments with virtual valuations and the problem be-

comes

max(S;x)2F E
P
i 'i(Si(~t); ~t)

where 'i(Si(~t); ~t) = �0xi(~t)+�ivi(Si(~t); ~t). Now regularity can be obtained in Environments

A and B by placing analogous restrictions on the maps 'i.

3.6 Conclusion

In this paper, we consider mechanism design problems with multiple possibly nonidentical

objects and interdependent values, assuming that agents�preferences are parametrized by

one dimensional types. We identify conditions and assumptions under which the analysis of

the linear, single-object problem of Myerson [1981] extends to a fully nonlinear combinatorial

problem with a general interdependent valuation structure. We show that ex post incentive

constraints can be characterized with only minimal assumptions on agents�valuations. We

de�ne regularity as the condition under which the incentive constraints are not binding and

identify su¢ ciency conditions for it. Our model is rich enough to incorporate problems with
3The nature of the domination relation between mechanisms can be altered by letting agents�welfare

weights depend on their own types (interim domination) or by letting all weights depend on the collective
type vector. It can be shown that if a mechanism is not ex ante dominated by any other feasible mechanism,
then it is not interim (or ex post) dominated by any feasible mechanism either.
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complements, substitutes and hybrid problems in which objects are complements for some

types and substitutes for others. In our analysis of the e¢ cient mechanism design problem

we identify conditions under which the Vickrey-Clarke-Groves mechanism can be extended

to interdependent value environments while preserving its ex post incentive compatibility

properties. In our analysis of the optimal mechanism design problem we show that our

approach uni�es and generalizes earlier work on the problem in more restricted settings.

A very useful aspect of the notion of regularity used by Myerson [1981] is that its

converse also lends itself to a tractable analysis. In the linear model of Myerson, regularity

is equivalent to the condition that the hazard rates of type distributions are nondecreasing.

Su¢ cient conditions for regularity in our model are conditions on valuation functions as

well as type distributions. Hence the interesting question about the analysis of irregular

problems may be far too complicated in a nonlinear model.

The methods we employ apply to more general settings as long as the lattice structure is

preserved. As an example, consider a single agent mechanism design problem in which the

outcome space is a lattice L1 and the valuation of the agent is a map v : L1�[a; b]! < given

by v(q; t) = g(w(q); t) where w : L1 ! L2 is isotone, L2 is a lattice and g : L2 � T ! <. If

L1 = L2 = 2

 for some �nite set 
 and if w is the identity map, we specialize to Environment

A. If L1 = 2
, L2 = < and w is a set function we specialize to Environment B.
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Chapter 4

Mechanism Design with Unit-Demand:

An Application to Internet Advertising

4.1 Introduction

Consider an internet search engine selling to potential advertisers various advertisement

spots displayed on the computer screen following a keyword search. Each advertisement

spot is a di¤erent object, as di¤erent locations on the screen have varying degrees of success

in attracting users to visit the displayed sponsor. The search engine must, in ignorance

of the valuations of the sponsors, �nd a way to sell the spots in the most pro�table way.

Internet advertising is a source of substantial income for internet giants like Google and

Yahoo!, and it is an attractive new environment of analysis for economists.

The internet advertising environment �ts nicely into the framework of the previous

chapters and methods of mechanism design can be used to analyze the expected revenue

maximization problem of the seller. An important feature of the internet advertising setup

is that it is reasonable to model private information as one dimensional. The private in-

formation of an advertiser is the expected amount of money spent by the user who clicks

on his advertisement. If the expected expenditure of the user is independent of the spot in

which the advertisement is displayed, then private information is just a number. Another

important feature of this setup is that the objects at hand are physically ranked from top

to bottom. Thus, it is reasonable to assume that advertisers�valuations are also ranked as

such, i.e., that each advertiser likes the top spot the best, the second spot next, and so on.

This common ranking feature simpli�es the problem quite a bit.

The analyses of internet advertising have always assumed, implicitly or explicity, that

each advertiser demands at most one spot. This means that if a sponsor is allocated a set of

spots, his valuation is exactly what it would have been had he been allocated the top spot

in that set. This assumption is made for a very good reason. Under the assumption of unit

demand, together with other assumptions which we discuss below, mechanisms which can

be considered extensions of standard auctions can be made revenue maximizing by choice of
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a reserve price. In this chapter our goal is to analyze mechanism design problems with unit

demand. As in Chapter 3, the level of generality of our analysis will allow for asymmetric

agents and interdependent valuations. We will argue that the unit demand model can not

be analyzed as a special case of Environment A or Environment B, which we studied in

Chapter 3. The unit demand problem usually lacks the supermodularity features which are

needed in Environment A and it lacks the type-independent scalarization feature necessary

in Environment B. However the unit demand problem associated with internet advertising

is a special case of Environment B, and we analyze the optimal mechanism design problem

as a special case of the methods of Chapter 3.

Although the assumptions we make in analyzing internet advertising are a compromise

from generality, these assumptions are standard in the literature. In particular, this struc-

ture allows us to identify the revenue maximizing mechanism. It also makes it possible for

us to interpret the payments in the optimal mechanism as the solution to the dual of a

linear program in which spots are assigned to advertisers in a way to maximize revenue.

This implies that the optimal mechanism can be decentralized via prices.

Although quite new, the literature on internet advertising already has two strands. In

one strand are papers which analyze the equilibrium behavior in the auctions that are or

could be used to sell the spots to the advertisers. For example Varian (2006) and Edelman

et al. (2007) analyze a particular auction, called the generalized second price auction, and

show that it has a symmetric equilibrium in which higher types submit higher bids. In this

auction each advertiser submits a bid and bidders are ranked in decreasing order of their

bids. Advertisers then submit the search engine a �xed payment every time their ad is

clicked on. In the generalized second price auction the per click payment of the kth highest

bidder is the next highest bid, or zero if he is the lowest bidder. Feng et al. (2006) analyze

what could be called a discriminatory auction in which the kth highest bidder pays the

search engine his own bid per click. One can imagine other standard auction formats in this

setting, which allocate the spots in the same way, but determine payments di¤erently. In a

Vickrey auction, an advertiser�s payment would coincide with the externality he imposes on

the others by his presence. In a uniform price auction, each advertiser would pay the highest

losing bid per click. It can be shown that these four auctions are revenue equivalent under
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suitable conditions and they are also equivalent to any other auction which possesses an

equilibrium at which bidders use increasing bid functions and which leaves the lowest types

with zero expected surplus. Furthermore, in our model the standard auctions are optimal

with an appropriately chosen reserve price. Hence, there is a sense in which the basic results

of auction theory extend to the internet advertising environment. Note, however, that the

standard auctions we considered assign each advertiser at most one spot. As such, in the

absence of the unit demand assumption, they are not optimal with or without appropriate

reserve prices.

A second strand of the literature analyzes the internet advertising literature from a

mechanism design point of view. Iyengar and Jumar (2006) and Feng (2007) �nd the

optimal mechanism within the class of mechanisms which allocate each advertiser at most

one spot. This chapter complements these two papers. We show, �rst, that the regularity

conditions in the optimal mechanism design problem can be studied using the analysis of the

previous chapter and we derive the optimal mechanism. We then show that the payments

in the optimal mechanism can be given the interpretation of prices by analyzing the internet

advertising problem in a linear assignment framework.

4.2 The Unit Demand Model

Let 
 = f!1; :::; !mg be a �nite set of objects and let N = f1; :::; ng be a �nite set of

agents. Each agent i has a type ~ti which is a random variable taking takes values in [ai; bi].

We assume that types are independently drawn from continuous and strictly increasing

distributions Fi, i 2 N , whose inverse hazard rates are �i. We will denote the expectation

operator by E and realizations of ~ti by ti and write ~t = (~ti; ~t�i) and t = (ti; t�i). Agents

have interdependent valuations and unit demand. To be precise, for each i there exists a

scalar valued map gi : 
 � T ! <+ such that the valuation of i for every A � 
 at every

type vector t = (ti; t�i) is given by the unit demand valuation

vi(A; t) = max
!2A

gi(!; t).

In Chapter 3, we presented two nonnested environments in which regularity conditions
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can be obtained that allow us to solve the optimal mechanism design problem. However,

the valuation functions as de�ned above do not �t into either environment. Since vi(�; t)

is actually submodular, we cannot apply the results developed for environment A except

in very special cases. Furthermore, there may not exist a set function A 7! �i(A) and

a function wi such that vi(A; t) = wi(�i(A); t) so the results in environment B may not

be applicable either. These comments apply to the general unit demand valuation function

de�ned above and it turns out that the unit demand valuations associated with internet click

auctions have a special feature that allows us to apply the results developed for environment

B.

Let 
 = f1; :::;mg be the set of ad positions that will be displayed by an internet

search engine after a keyword search ranked from top to bottom. Each position k 2 
 is

associated with a number �k interpreted as the number of user clicks on the ad displayed at

that position. Suppose that the positions 1; ::;m are ranked according to "clicks per unit

time" so that �1 > � � � > �m: Let N = f1; :::; ng be the set of potential advertisers. In the

click auction, the payo¤ to advertiser i who is assigned position k when the type pro�le is

t is de�ned as gi(�k; t) so that

vi(S; t) = max
k2S

gi(�k; t):

In the case of click auctions, it is assumed that k < j implies gi(�k; t) > gi(�j ; t): Now

de�ne �(S) = minfk : k 2 Sg: Then

vi(S; t) = max
k2S

fgi(�k; t)g = gi(��(S); t)

De�ning

wi(k; t) = gi(�k; t)

it follows that

vi(S; t) = gi(��(S); t) = wi(�(S); t)

and condition 1 in the de�nition of environment B is satis�ed. If we make the additional
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assumption that

wi(k; t)� wi(k + 1; t) � wi(k; t�i; t0i)� wi(k + 1; t�i; t0i)

whenever ti > t0i and 1 � k � m�1; then wi satis�es NDD and condition 2 in the de�nition

of Environment B is satis�ed.

We will use our methods to derive the optimal mechanism for the data of a symmet-

ric private values auction model proposed by Feng et al. Adopting their notation, let

wi(k; t�i; ti) = Vk(ti) where x 7! V (x) is twice di¤erentiable, nondecreasing and concave

for each k and suppose that Fi = F; ai = a and bi = b for all i. Furthermore, it is assumed

that NDD is satis�ed: if x > x0 and 1 � k � m� 1; then

Vk(x)� Vk+1(x) � Vk(x0)� Vk+1(x0):

As a consequence of NDD and the di¤erentiability of Vk(�); it follows that

V 0k(x) � V 0k+1(x) for each x 2 [a; b]:

The common inverse hazard rate will be denoted � and it is assumed that � is nonincreasing.

Consequently, using the notation of Chapter 3, the problem OPn becomes

max
(S1;::;Sn)

X
i2N

h
V�(Si)(ti)� V

0
�(Si)

(ti)�(ti)
i
:

For each k, consider the function

x 7! uk(x) = Vk(x)� V 0k(x)�(x)

Since

u0k(x) = V
0
k(x)� V 00k (x)�(x)� V 0k(x)�0(x) � 0

it follows that x 7! uk(x) is nondecreasing for each k. Now suppose that the type pro�le t



60

has the property that t1 > � � � > tn: Then uk(t1) > � � � > uk(tn) and to solve the problem

max
(S1;::;Sn)

u�(S1)(t1) + : : :+ u�(Sn)(tn)

we need only use the following procedure. First, de�ne the m numbers �1(t); ::; �m(t) as

follows:

�1(t) 2 argmax
k2


uk(t1)

�2(t) 2 arg max
k2
nf�1(t)g

uk(t2)

...

�m(t) 2 arg max
k2
nf�1(t);::;�m�1(t)g

uk(tm)

Assume that fk : u�k(t)(tk) � 0g 6= ? and de�ne

i� = maxfk : u�k(t)(tk) � 0g:

An optimal solution to OPn is then de�ned by

S�i (t) = f�i(t)g if 1 � i � i�

= ; if i > i�(t):

Note that to use Corollary 4 to conclude that this solution corresponds to an optimal

mechanism, we need to make sure that the maps (k; ti) 7! uk(ti) satisfy SSCP.

Note also that ti > tj does not imply that agent i is assigned a higher advertising position

than agent j in an optimal solution to OPn: In order to obtain a solution in which ti > tj

implies that agent i is assigned a higher advertising position than agent j, it is su¢ cient

that the virtual valuations satisfy the following additional monotonicity condition: for each

x and 2 � k � m;

uk(x) � 0) uk�1(x) � uk(x):

In this case, t1 > � � � > tn implies that �i(t) = i if 1 � i � i� where i� = maxfk : uk(tk) �
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0g: In the next section, we interpret the optimal solution and associated payments when

wi(k; ti) = �kti:

4.3 An Optimal Mechanism for Internet Advertising with Linear Valuations

The optimal solution computed in the previous section has a particularly appealing inter-

pretation when wi(k; ti) = �kti: In this case,

uk(x) = �k [x� �(x)] � �kc(x)

Pick a vector of types t and assume that t1 � � � � � tn: Note that c is strictly increasing

since � is nonincreasing. Then

fk : uk(tk) � 0g = fk : c(tk) � 0g = fk : tk � c�1(0)g

Suppose that fk : tk � c�1(0)g is nonempty and let i� = m or i� = maxfi : ti � c�1(0)gg

whichever number is lower.

Proposition 1 Under the assumptions above the mechanism (S�; x�) de�ned for every i

and t by

S�i (t) =

8><>: fig if i � i�

; if i > i�

x�i (t) =

8><>:
Pi��i
s=i (�s � �s+1)ts+1 + �i�c�1(0) if i < i�

�i�c
�1(0) if i = i�

solves the optimal mechanism design problem for internet advertising.

Proof. Fix t and assume without loss of generality that ti weakly decreases in i. Then

c(t1) > � � � > c(tn) and since the problem is regular by assumption, the optimal allocation

rule S� solves

max
(A1;:::;An)2C

X
i2N

maxf�k : k 2 Aigc(ti):
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This implies that the allocation rule in the statement proposition is optimal. Suppose that

i� = maxfi : ti � c�1(0)g � m so that there are at least as many spots as there are

advertisers whose types exceed c�1(0). The expression for optimal mechanism payments

given in Equation 1 becomes, for every i 2 f1; :::; i� � 1g,

xi(t) = vi(Si(t); ti)�
Z ti

a
@vi(Si(y; t�i); y)dy

= �iti �
i��iX
s=i

Z ts

ts+1

�sdy �
Z t�i

c�1(0)
�i�dy

= �iti �
i��iX
s=i

�s(ts � ts+1)� �i�(ti� � c�1(0))

=
i��iX
s=i

(�s � �s+1)ts+1 + �i�c�1(0)

which �nishes the proof.

Note that at the optimal mechanism, agents who do not receive a position do not pay.

Note also that there is a strictly positive probability that some positions will remain empty.

In particular if there is no agent i such that ti � c�1(0), then no position is allocated.

If i < i�, then xi(t) depends on the payments of all advertisers placed in lower positions.

Simple calculations show that

�ic
�1(0) � xi(t) � �iti+1:

If advertisers bid their true types, then the upper bound for the optimal payment is the

payment collected by the generalized second price auction and the lower bound is the

payment collected by a mechanism which imposes a uniform price of c�1(0) per click. It is

known however that these mechanisms do not induce truthful bidding. However they have

equilibria with increasing bid functions. We can therefore conclude, using standard revenue

equivalence arguments, that they would earn the search engine exactly the same revenue as

the optimal mechanism if they are complemented by the reserve price c�1(0).

A special case of the internet advertisement auction in which positions are perfect substi-

tutes can be analyzed by letting �k = � for each k. This is exactly the symmetric version of
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the multiunit problem analyzed by Branco (1996). Under the assumption of unit demand,

the optimal mechanism assigns a position to each agent whose type exceeds c�1(0) and

collects �c�1(0) from him. Note that with m = 1 we recover the single object mechanism

design problem.

4.4 A Linear Assignment Approach

The internet advertising problem is similar to a linear assignment problem. This similarity,

within the context of the generalized second price auction, is discussed in both Edelman

et al. (2007) and Varian (2006). The optimal mechanism design problem for internet

advertisement could also be approached as a linear assignment problem. Let us introduce

the following notation. Let zik = 1 if spot k is assigned to agent i and 0 otherwise. Let

z0k = 1 if k is not assigned to any agent and 0 otherwise. In e¤ect, we are treating the

search engine as agent 0. Assume, once again, that t1 � � � � � tn and recall that c(�)

is increasing. Assume that for some i, ti � c�1(0). A version of the linear assignment

problem whose dual has an interesting and straightforward decentralization interpretation

is as follows.

max
fxikg

nX
i=1

mX
k=1

�ktizik +

mX
k=1

�kc
�1(0)z0k

subject to

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

nP
i=0
zik = 1 for each k

mP
k=1

zik � 1 for each i 6= 0
nP
k=0

z0k � m

zik � 1 for each i and k

zik � 0 for each i and k.

The last summation term in the objective accounts for the fact that optimally, the principal

would not like to assign a position to an agent whose type is less than c�1(0). Some of

the constraints in this problem are clearly redundant. If zik � 1 for each i and k, thenP
k z0k � m for each k. Moreover if zik � 0 for each i and k and

Pn
i=0 zik = 1 for each k,
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then zik � 1 for each i and k. So the problem becomes:

max
fxikg

nX
i=1

mX
k=1

�ktizik +

mX
k=1

�kc
�1(0)z0k

subject to

8>>>>><>>>>>:

nP
i=0
zik = 1 for each k

mP
k=1

zik � 1 for each i 6= 0

zik � 0 for each i and k.

Once again, let i� = minfm;maxfi : ti � c�1(0)gg. The solution to the primal entails

assigning the �rst i� positions to the �rst i� advertisers and leaving any remaining positions

open. Hence a solution to the primal is given by zii = 1 if i � i�; and z0k = 1 otherwise.

The optimal value of the primal is
Pi�

i=1 �iti +
Pm
i=i�+1 �ic

�1(0):

The dual problem is

min
fqkg;fpig

mX
k=1

qk +

mX
i=1

pi

subject to

8><>: qk + pi � �kti for each i and k

pi � 0 for each i.

Using the theory of duality we can �nd a solution to the dual.

Proposition 2 The dual of the internet advertisement problem is solved by:

qk =

8><>: xk(t) if k � i�

�kc
�1(0) otherwise

pi =

8><>: �iti � qi if i � i�

0 otherwise

This solution is facilitated by the informed guess that the payments in the optimal

mechanism, when presented as prices to the agents, will lead to self-selection and solve the

dual: qk = xk(t) may be given the interpretation of the price of position k. In e¤ect, the

search engine presents the advertisers with a menu f(k; qk)gk=1;:::;m and each i = 1; :::; i�

optimally picks item i from the menu. The rest of the agents do not �nd it optimal to
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purchase an item. The conditions pi � 0may be viewed as ex post individual rationality and

the conditions pi � �kti� qk may be viewed as ex post incentive compatibility conditions.

Proof of Proposition 2. Note that dual program achieves the optimal value of the

primal at the proposed solution. So all that needs to be checked is feasibility. We have

pi � 0 since if i � i�, then

pi = �iti � xi(t)

=

i��1X
s=i

�s(ts � ts+1) + �i�(ti� � c�1(0))

� 0:

In order to check qk+ pi � �kti for each i and k we need to focus on several cases. Suppose

that k = i. If i � i� then pi + qi = �iti. If i > i�, then pi + qi = �ic�1(0) � �iti. If k � i�

then

xi(t)� xk(t) =
k�1X
s=i

(�s � �s+1)ts+1

�
k�1X
s=i

(�s � �s+1)ti

= (�i � �k)ti

which in turn implies

pi = �iti � xi(t)

� �kti � xk(t):
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If i < i� < k, we have

pi = �iti � xi(t)

=

i��1X
s=i

�s(ts � ts+1) + �i�(ti� � c�1(0))

�
i��1X
s=i

�i�(ts � ts+1) + �i�(ti� � c�1(0))

= �i�(ti � c�1(0))

� �k(ti � c�1(0)):

= �kti � qk:

If i = i�, then

pi� = �i�ti� � xi�(t)

= �i�(ti� � c�1(0))

� �k(ti� � c�1(0))

= �kti � qk:

If i� < i, then

pi = 0

� �kti � �kc�1(0)

= �kti � qk:

Now suppose that k < i. If i � i�; then

xk(t)� xi(t) =
i�1P
s=k

(�s � �s+1)ts+1

�
i�1P
s=k

(�s � �s+1)ti

= (�k � �i)ti
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which implies

pi = �iti � xi(t)

� �kti � xk(t)

= �kti � qk:

If k < i� < i; then

pi = 0

� �kc
�1(0)� xk(t)

� �kti � qk:

If i� � k; then

pi = 0

� �kti � �kc�1(0)

= �kti � qk:

This �nishes the proof.

4.5 Conclusion

We analyze a multiobject mechanism design problem with agents who have unit demands

at a fairly general level. The main bene�t of assuming unit demand is that a mechanism

can be assumed, without loss of generality, to give each agent at most one object. The

internet advertising problem provides an interesting and tractable example. In particular,

the assumptions of linearity of valuations in types and private values imply that the standard

monotone hazard rate condition is su¢ cient for regularity. The assumption of unit demand

makes it possible to solve for the combinatorial optimization problem in which, for each

type vector, advertisement spots are allocated between advertisers in a way to maximize the

sum of virtual valuations. If the monotone hazard rate condition holds, then the optimal
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mechanism identi�es a critical type at which the virtual valuation is zero and ranks the

advertisers in the order of their types provided that their types exceed the critical type.

The payment of each advertiser who gets a spot can easily be calculated. These payments

form a solution to the dual of the linear assignment problem in which spots are allocated to

advertisers in a way to maximize total welfare provided that their type exceeds the critical

type.

Even though the generalization of the internet advertising problem to valuations be-

yond the unit demand assumption is interesting, it lacks tractability as the combinatorial

optimization problem OPn becomes more involved. However, the regularity conditions for

such problems can easily be obtained and computational methods can be used to solve the

problem. In particular, as long as the valuations are linear in types and isotone in the set

of objects received, the monotone hazard rate condition will continue to be su¢ cient for

regularity.



69

References

[1] E. Agliardi, A Generalization of Supermodularity, Economics Letters 68, 2000, 251-
254

[2] L. Ausubel, Generalized Vickrey Auction, University of Maryland working paper,
1999.

[3] L. Ausubel and P. Cramton, The Optimality of Being E¢ cient, University of Maryland
working paper, 1999

[4] F. Branco,.Multiple Unit Auctions of an Indivisible Good, Economic Theory 8, 1996,
77-101.

[5] E. Clarke, Multipart Pricing of Public Goods, Public Choice, 2, 1971, 19-33.

[6] J. Cremer, R. McLean, Optimal Selling Strategies Under Uncertainty for a Discrimi-
nating monopolist when Demands are Interdependent, Econometrica, 53, 345-361.

[7] P. Dasgupta and E. Maskin, E¢ cient Auctions, Quarterly Journal of Economics, 115,
2000, 341-388.

[8] B. Edelman, M. Ostrovsky and M. Schwarz, Internet Advertising and the Generalized
Second Price Auction, American Economic Review, 97:1, 2007, 242-259.

[9] J. Feng, Optimal Mechanism for Selling a Set of Commonly Ranked Objects, forth-
coming in Marketing Science, 2007.

[10] J. Feng, Zuo-Jun Max Shen and Roger Lezhou Zhan, Ranked Items Auctions and
Online Advertisement, 2006, forthcoming in Production and Operations Management.

[11] N. Figueroa and V. Skreta, The Role of Outside Options in Auction Design, NYU
working paper, 2007.

[12] T. Groves, Incentives in Teams, Econometrica, 41, 1973, 617-631.

[13] B. Holmstrom and R. Myerson, E¢ cient and Durable Decision Rules under Incomplete
Information, Econometrica 51, 1983, 1799-1821.

[14] P. Jehiel. and B. Moldovanu, E¢ cient Desgin with Interdependent Values, Economet-
rica, 69, 2001, 1237-1259.

[15] J. J. Koliha, Fundamental Theorem of Calculus for Lebesgue Integration, American
Mathematical Monthly 113,.2006, pp. 551-555.

[16] V. Krishna and E. Maenner, Convex Potentials with an Application to Mechanism
Design, Econometrica 69, 2001, 1113-1119.

[17] V. Krishna,. Auction Theory, Academic Press, 2002.

[18] J. Ledyard, Optimal Combinatoric Auctions with Single-Minded Bidders, working
paper 2007.



70

[19] J. Levin, An Optimal Auction for Complements, Games and Economic Behavior 18,
1997, 176-192.

[20] E. Maskin, and J. G. Riley, Monopoly with Incomplete Information, The Rand Journal
of Economics, 15:2, 1984, 171-196.

[21] E. Maskin, and J. G. Riley, Optimal Multi-unit Auctions, in The Economics of Missing
Markets, Information, and Games (F. Hahn, Ed.), 1989, Oxford: Oxford University
Press.

[22] P. Milgrom and I. Segal, Envelope Theorems for Arbitrary Choice Sets, Econometrica
70, 2002, 583-601.

[23] P. Milgrom and C. Shannon, Monotone Comparative Statics, Econometrica 62, 1994,
157-180.

[24] P. K. Monteiro, Optimal Auctions in a General Model of Identical Goods, Journal of
Mathematical Economics 37:1, 2002, 71-79.

[25] D. Mookherjee and S. Reichelstein, Dominant Strategy Implementation of Bayesian
Incentive Compatible Allocation Rules, Journal of Economic Theory, 56, 2, 1992,
378-399.

[26] R. Myerson, Optimal Auction Design, Mathematics of Operations Research 6, 1981,
58-73.

[27] M. Perry. and P. Reny, An Ex-Post E¢ cient Aucution, Econometrica, 70, 1199-1212.

[28] J. C. Rochet, A Necessary and Su¢ cient Condition for Rationalizability in a Quasi-
Linear Context, Journal of Mathematical Economics 16, 2, 1987, 191-200.

[29] D. Topkis, Supermodularity and Complementarity, 1998, Princeton University Press.

[30] H. Varian, Position Auctions, International Journal of Industrial Organization, 2006,
doi:10.1016/j.ijindorg.2006.10.002

[31] W. Vickrey, Counterspeculation, Auctions and Competitive Sealed Tenders, Journal
of Finance, 16, 1961, 8-37.



71

Vita

Levent Ülkü

2008 Ph.D in Economics, Rutgers University, New Brunswick, New Jersey

2005 M.A. in Economics, Rutgers University, New Brunswick, New Jersey

2001 M.A in Economics, Bogazici University, Istanbul, Turkey

1998 B.A in Economics, Bogazici University, Istanbul, Turkey


