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ABSTRACT OF THE DISSERTATION

Topics within the String Landscape and Metastable

Supersymmetry Breaking

by Korneel van den Broek

Dissertation Director: Professor Thomas Banks

In this thesis we focus on different aspects related to the central concept of the string

landscape. We will first briefly situate the idea of the landscape within string theory and

comment on its appealing and less appealing features. We then proceed to describe three

projects which all take a different angle on the landscape. First we focus on a particular string

compactification which is part of the landscape and analyze this background in detail. Secondly,

we do a survey of the different compactification techniques and investigate which properties of

the vacuum might lead to a long lived state. Thirdly, we discuss the idea of metastable dynamical

supersymmetry breaking and the computer package VScape which was developed to assist in

finding metastable states of supersymmetric models.
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Chapter 1

Introduction

1.1 The String Landscape

1.1.1 String Theory, Flux Compactifications and the Landscape

Perturbative string theory is essentially a conformal field theory (CFT) defined on the two di-

mensional worldsheets of the string. The fields living on the worldsheet describe how the string

is embedded in spacetime. The action of this theory contains background fields that interact

with the string. Depending on which kind of string theory one works with, the background

consists of e.g. a background metric in spacetime, a scalar field (dilaton) and several antisym-

metric tensor fields. The background should be thought of as the net effect from other strings

in spacetime.

Essential here is that requiring the two dimensional theory to be consistent leads to two

important constraints. First, spacetime should have ten dimensions1. As we do not see ten

dimensions in Nature, we have to explain why and how the additional six dimensions are small

and compactified to obtain our four dimensional world. Secondly, the background fields need

to satisfy certain equations of motion, i.e. not all backgrounds are consistent. To leading order,

these equations turn out to be the equations of motion of a supergravity theory (type IIA, IIB

or I).

An important aim is to compactify the theory down to four dimensions by choosing the

background fields appropriately and to get a theory that nicely describes Nature as we see it.

It turns out that there are many background configurations that seem to satisfy all the con-

sistency conditions, so there might indeed be a setup that exactly corresponds to our world.

This is studied in the field of flux compactifications, where the word flux stands for the various

antisymmetric tensor fields being turned on in analogy with Maxwell’s theory of electromag-

netism where one can turn on magnetic flux. However, there might even too much freedom in

choosing the background. String theory does not seem to single out just one background, as

1We will not discuss non-critical string theory where this constraint is relaxed.
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was originally hoped.

A common approach to flux compactifications is to take a certain ansatz on the form of the

background and then to compactify the theory to four dimensions. Usually, one starts with a

setup that has no fluxes turned on. A common way to obtain a four dimensional theory with

N = 1 supersymmetry, which might be seen at the Large Hadron Collider (LHC) and makes

computations tractable, is to assume that the six dimensional manifold, that is compactified, is

a Calabi-Yau manifold with an orientifold plane in it. A Calabi-Yau manifold is a manifold with

special properties that are well studied. The orientifold is an object which can be compared

with half of space being filled with a conductor in electrostatics. The compactified theory still

suffers from some problems. There is a large amount of massless scalar fields (they are called

‘moduli’) which we do not detect in Nature. Turning on the fluxes leads to a potential for (most

of) the moduli and stabilizes them.

Flux compactifications and the subsequent stabilization of moduli are often studied using a

four dimensional classical effective potential, constructed by integrating out the leading order

effects of the compact manifold. The idea that the resulting potential surface might contain a

multitude of possible (meta)stable vacua of the theory led to the term ‘the string landscape’. To

study all the possible flux compactifications we might have to resort to statistical techniques.

1.1.2 Challenges and questions related to the Landscape

As we mentioned in the previous section, the worldsheet action contains contributions from the

background fields. That is, we can describe how a string propagates in a certain background, but

we do not know how to incorporate strings joining or splitting, we don’t have a full string field

theory. Thus, the full 1PI effective potential which would contain all low energy information

of string (field) theory is unknown. However, the concept of the string landscape is formulated

using a four dimensional effective potential. The effective potential that is used is the analog of

the Wilsonian effective potential, which by its definition is only valid around a single minima

or a set of quasi degenerate vacua2[10].

An additional problem for specific flux compactifications is that they often combine orien-

tifolds with fluxes that are turned on. We do not have a perturbative string theory definition

of such configurations. Instead these backgrounds are commonly constructed in the low energy

supergravity approximation.

If, on the other hand, we take the positive point of view with respect to the landscape, then

2and has a fixed asymptotic background.
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there is a whole new set of interesting questions that one can ask. One of the central questions

being, how to characterize the landscape, and find dynamical mechanisms for populating and

selecting among the vacua.

1.1.3 Outline of the Thesis

This thesis will describe three related projects which all take a different approach to the central

concept that Nature contains a whole set of possible vacua consistent with the idea of the string

landscape.

In chapter 2, we will focus on one particular family of flux compactification [7]. This par-

ticular setup should be thought of as a specific way of compactifying the ten dimensions from

string theory to a four dimensional world. This background itself has a few discrete parameters

which are (completely) free and as such it describes a family of backgrounds, all with similar

properties. This DeWolfe et al. background is particularly interesting since it seems to address

some of the challenges within the field of flux compactifications, as we will discuss extensively

below.

In chapter 3, we will take a broader view of the string landscape. Instead of focusing in on

the details of a certain compactification as in chapter 2, we will survey all the different known

techniques to compactify. In this chapter we assume that the landscape view of string theory

is correct, and investigate what the tunneling rate between the different vacua is. The basic

idea behind this project is that while the landscape might consist of a multitude of consistent

backgrounds, if most of these backgrounds are unstable against decay, only a limited set of

specific compactifications will be relevant to our world since our world is clearly (relatively)

stable.

In chapter 4, we will address a question which relates more directly to phenomenology.

String theory is a supersymmetric theory. However, since supersymmetry is not apparent in

our world, we need to find an explanation how supersymmetry is broken. Recently, an interesting

new idea[2] was put forward explaining why we might not observe supersymmetry. Instead of

trying to construct a theory where the global (i.e. stable) minimum of the effective potential

is a supersymmetry breaking vacuum, one could entertain the hypothesis that our world is not

global minimum but only a (long lived) local (i.e. metastable) minimum of the potential. Since

the computation of the 1PI effective potential is often computationally involved in realistic

models, chapter 4 describes the design of a computer program that computes the 1PI effective

action of a chiral supersymmetric field theory up to first loop order and searches for the minima
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of this potential.

In the following sections we will briefly introduce each of these three projects.

1.2 The DeWolfe et al. background

1.2.1 Interesting features of the background

In 2005, a paper was published discussing a flux compactification with several nice features

[7]. First, in this compactification all the moduli are fixed at the classical level in supergravity.

Secondly, the solution was formulated in (massive) type IIA theory which has the additional

difficulty that turning on the fluxes on the Calabi-Yau basically destroys the Calabi-Yau struc-

ture, since it was proven that if one imposes N = 1 supersymmetry with fluxes turned on in

type IIA theory, one will generically not get a Calabi-Yau manifold[8]. Usually, one assumes

that the fluxes are small so that the manifold only deviates a little from the fluxless Calabi-Yau

case. In this paper, this problem was solved by starting from a six dimensional torus, T 6, which

has more symmetry than a generic Calabi-Yau. Adding an orientifold and fluxes one can still

get a supersymmetric theory. In addition, they arranged their setup so that it resembled the

usual Calabi-Yau case by having the same kinds of moduli fields. This allows for the well known

Calabi-Yau techniques to be used while we are allowed to turn on a lot of flux.

The third feature of the setup is that some of the fluxes are unconstrained. The net charge

of the flux has to be zero in a compact space, since the field lines do not have the option

of running off to infinity as in Maxwell’s theory in three dimensions. The orientifolds have a

negative charge and most fluxes come from positive charges. We cannot choose the number of

orientifolds freely since it is linked with the manifold we are working on. Thus, we cannot turn

on an arbitrarily high number of fluxes (note that since the supergravity theories are quantum

theories the amount of flux is quantized). In this particular setup, though, some fluxes evade

this general picture and are unconstrained.

This last feature has interesting implications. The coupling constant between strings depends

on the flux background we turn on and as we can turn on as much of certain fluxes as we want,

the string coupling constant can come arbitrarily close to zero. Also, the volume of the compact

space grows but not faster than the non-compactified spacetime which means that, effectively,

this setup remains four dimensional even when a lot of flux is turned on.

In the late nineties, J. Maldacena discovered that a string theory in an Anti de Sitter (AdS)

spacetime background (this is a symmetric spacetime with negative cosmological constant) can

completely be described by a conformal field theory [1]. We can employ this powerful insight
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since the non-compactified spacetime in the DeWolfe et al. solution is a four dimensional AdS

space. Just as for (most) flux compactifications, we do not have a perturbative worldsheet

description of the DeWolfe et al. background. However, the apparent control we have over this

setup with its free parameter that we can crank up arbitrarily, might open the door of finding

a conformal field theory which could describe this family of compactifications. The existence of

this CFT would then be instrumental in trying to answer the question whether the multitude of

landscape vacua can indeed be considered different minima of the same theory, as is presupposed

by the idea of the string landscape.

1.2.2 Our aim and methods

In the first place, our aim in chapter 2 will be to shed some more light on the validity of

the DeWolfe et al. massive type IIA description of the compactification. In particular, the

background contains an orientifold, known to be singular within a supergravity description. In

addition, massive type IIA does not have a perturbative worldsheet expansion.

Several aspects of the DeWolfe et al. compactification will guide us to reach our aim. We

will discuss them here briefly.

Entropy computation

One can add a black hole to the four dimensional AdS space of our setup. A black hole can

be described by thermodynamics and so we can compute its entropy. In the string theory

configuration, adding a black hole corresponds to adding a brane of some sort (these are the

charged sources for the fluxes we discussed earlier). The entropy scaling of a stack of M2-branes

in M-theory was studied. Computing the entropy of a black hole added to the AdS space of

the DeWolfe et al. background, we find that this entropy matches the entropy of a stack of

M2-branes. This indicates that we should first try to understand the configuration from the

M-theory point of view.

Supersymmetry conditions in M-theory

Since we have a number of supersymmetries in the problem, we can study how this restricts

the solution in M-theory. It turns out that the M-theory configuration will consist of an eight

dimensional part that has to satisfy certain topological conditions, namely it should be a cone

over a manifold with G2-structure. In addition there are other differential restrictions depending

on the fluxes in M-theory [30]. Writing down these differential restrictions, one gets that the
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M-theory picture should involve a four dimensional AdS space and a seven dimensional space

with weak G2-holonomy. The conditions also indicate that our setup involves M2-branes.

Lift to M-theory

Using a technique similar to the one used by M. Schulz to construct the leading order ap-

proximation M-theory setup of a configuration in (non-massive) type IIA [17], we attempt to

construct an explicit M-theory lift of the DeWolfe et al. compactification. M. Schulz first ap-

plies T-duality transformations before going to M-theory. These duality transformations are

symmetries of the string theory (i.e. we are describing exactly the same setup while the actual

configuration of the background looks different). We take the same approach and find that we

end up after two properly chosen T-dualities with a non-massive type IIA configuration where

most fluxes are zero. The effect of the some of the flux shows up as twists in the metric. This

is related to ‘non-geometrical backgrounds’, a branch of string theory that has received a lot

of attention lately. This non-massive configuration can then be lifted to M-theory using the

standard methods.

1.2.3 Summary of our conclusions

The DeWolfe et al. setup has in particular three different (4-form) fields. The setup studied

in the original paper has all those fields turned on and large. We first considered a different

regime where we only make one of those fields grow. An entropy computation suggest that

the correct approximation scheme to describe this situation is 11 dimensional M-theory. Using

the dualities that relate the different approximation schemes of string theory, we succeeded in

constructing an (approximate) M-theory setup corresponding to the original compactification.

The M-theory picture is a stack of M2-branes at the tip of the cone where the M2-branes are on

top of the orientifold. The M-theory configuration is approximate in a sense that we were not

able to include the exact geometry which encodes the orientifold. The exact M-theory geometry

corresponding to an orientifold is only known for the simple case where one has flat space with

an orientifold inserted.

We then proceed to consider the original DeWolfe et al. regime where all fluxes are large.

While this regime is harder to describe, an approximate double T-duality relates the massive

type IIA compactification to a usual type IIA compactification. This new type IIA point of

view, indicates that we have a stack of D2-branes reminiscent of the M2-branes found in the

regime discussed above. We argue that there is a region near those D2-branes which grows
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as you increase the flux. This region cannot properly be described in the (massive) type IIA

approximation scheme, instead one has to use M-theory in this region. We thus believe that

the entire configuration cannot be described with (massive) type IIA string theory, instead

one has the complex situation where part of the compactification can be studied using one

approximation scheme and another part in another approximation.

1.3 Tunneling in the Landscape

1.3.1 The question we aim to address and method used

In chapter 3, we will work under the assumption that the circumstantial evidence for the

existence of a vast number of states in the landscape is correct. We thus assume that when we

consider the classical effective action and find classically stable stationary points which have a

small string coupling and a large internal volume such that supergravity is a valid approximation,

that these stationary points are sensible metastable vacua.

The central question we will try to address is whether these states are stable against decay.

If it turns out, as we will find, that most generic states are prone to rapid decay to other states,

the vast amount of vacua, among which one hopes to find a vacuum describing our world, might

not be such a big problem as feared at first. Since the world we observe is fairly stable, we

will only need to consider states within the landscape that have the properties that ensure

metastability.

In our survey of all known types of compactifications, we distinguish five different classes

each with distinct features: weak string coupling, large compactification volume, low energy

supersymmetry breaking, light moduli and warping. We will model the tunneling between

neighboring states within the landscape using the Coleman-De Luccia decay. This implies

several assumptions which will be discussed in detail below. For each of the classes, we will

then study how the Coleman-De Luccia decay probability scales as we dial certain characteristic

parameters.

1.3.2 Summary of conclusions

We will find that the vast majority of flux vacua with small cosmological constant are unstable

to rapid decay to a big crunch. Only compactifications which have a large compactification

volume or states which are (approximately) supersymmetric have a suppressed decay. Neither

weak string coupling, warping, or the existence of very light particles are, by themselves, enough
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to render states reasonably metastable.

With this conclusion a new interesting question emerges: if the world we live in was reached

through a decay channel from a highly unstable state, what is a likely decay channel? While

our answer with respect to this question is speculative, we propose that a discrete R-symmetry

might be a cosmological attractors even though these states are uncommon in the landscape.

This since vacua with large compactification volumes seem more difficult to construct and states

with low energy supersymmetry breaking without discrete R-symmetry tend to be isolated in the

landscape in that they tend to be surrounded by a multitude of AdS states. Such a decay channel

is thus less likely since the chance of reaching the isolated state with a positive cosmological

constant is smaller.

1.4 Metastable vacua in chiral supersymmetric theories

1.4.1 Supersymmetry breaking

In chapter 4, we will discuss the computer package VScape to analyze phenomenological super-

symmetric models and their (meta)stable states.

Anticipating new experimental high energy particle data from the LHC by the end of 2008,

the theory community has focused more on model building in recent years. Most of the models

introduced have supersymmetry built in at high energies. Since our world is definitely not

supersymmetric, one has to provide a mechanism by which the supersymmetry is broken at

energy scales of our world.

To obtain spontaneous supersymmetry breaking in the minimal supersymmetric extension

of the Standard Model (MSSM), one has to add additional fields since both mechanisms to

break supersymmetry (D-term and F-term breaking) using only MSSM fields do not lead to

acceptable models. Adding another sector that interacts at tree level with the MSSM is also

problematic since it generally speaking leads to unacceptable particle spectra. Therefore, the

most commonly studied option is that the supersymmetric breaking terms in the MSSM come

from an indirect or radiative effect. In many models the supersymmetry breaking happens in

a hidden sector. This hidden sector talks to particles which interact with the MSSM fields and

as such mediate the breaking to the MSSM by generating soft breaking terms when the effects

of the hidden sector are integrated out.

There are two main proposals for what the mediating interactions might be. One, a gravity

mediated scenario the mediation happens via new physics at the Planck scale (and includes

gravity). Another possibility which is also flavor blind is that the mediating particles interact



9

through ordinary electroweak or QCD interactions. This is the gauge mediated scenario. A

variant of the second scenario is direct gauge mediation where there is no distinction between

the mediation sector and the hidden sector.

Below we will discuss a model for metastable supersymmetry breaking that can be used as

hidden sector. This model is particularly promising for the construction of direct mediation

models where one has a large global symmetry group with a subgroup which is gauged and then

identified with the Standard Model gauge group. An example of this setup is given in [66].

1.4.2 Metastability

In [3], spontaneous supersymmetry breaking is tied with the existence of an R-symmetry in

the model. Generically, a supersymmetric theory with an exact R-symmetry has a ground

state with broken supersymmetry. On the other hand, a theory without (or with a broken) R-

symmetry has a supersymmetric ground state. R-symmetry is thus a valuable tool to investigate

supersymmetry breaking.

From a phenomenological point of view we want the supersymmetric partners to the gauge

bosons, the gauginos, to be rather massive since we have not yet observed these particles

in experiments. A gaugino mass term implies that R-symmetry should be broken. This R-

symmetry breaking can either be spontaneous in which case you have an R-axion which might

cause phenomenological problems since it is a light particle. The breaking can also be explicit.

Since a full theory of gravity is not expected to contain any continuous global symmetry, gravity

will necessarily break the R-symmetry, though this breaking might not be strong enough to solve

the problems with the R-axion.

If we assume that R-symmetry is explicitly broken not just by gravity, then the ground state

is supersymmetric unless one constructs a non-generic model. Such models are not as appealing

since they tend to be more complex. Models with a supersymmetric ground state, on the other

hand, were not considered since most people worked with the assumption that our world should

be the ground state of some theory. However, in [2] a paradigm shift was proposed. It was

argued that it is possible for our world to be in a metastable state of a model, as long as this

metastable state is long-lived.

These metastable states are expected to be common in many models. Indeed, the model

studied in the original paper [2] is the simple and well studied supersymmetric extension of

quantum chromodynamics (SQCD). Subsequently, many other theories have been studied and

were found to exhibit long-lived metastable states too. These models can then be built in as
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the hidden sector of a phenomenologically realistic model as was explained earlier.

1.4.3 VScape

The computation of the one-loop effective potential of phenomenologically interesting models

are often not tractable analytically due to the complexity of the model and the number of

parameters. The computation of the one-loop Coleman-Weinberg potential is calculationally

intensive, so we opted to develop VScape, a C++ computer program that computes and analyzes

the one-loop 1PI effective potential.

The program was tested in a variety of cases. The results of the analytical case presented

in [2] where compared to the results of the package and were found to match. By now, the

program has been used by other research groups to study different models [4, 5].
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Chapter 2

Analysis of the DeWolfe et al. background

2.1 Introduction

In this chapter we will discuss in detail our findings of the work done in collaboration with

T. Banks [6].

Flux compactifications [8] provide the arena for most of the discussions of the String Land-

scape as well as modern approaches to string phenomenology. The discussion of these com-

pactifications is generally carried out in low energy effective field theory [9] [10], despite the

fact that they all contain orientifold singularities. Further, there is no perturbative world sheet

treatment of these backgrounds. Recently, DeWolfe et al.[7] introduced a sequence of models

characterized by an integer N . Earlier work on similar type IIA flux compactifications was done

in [11]. The DeWolfe et al. compactifications are classical solutions of Type IIA SUGRA, with

a singular orientifold source and a variety of Ramond-Ramond and Neveu Schwarz fluxes. The

parameter N is related to the value of certain quantized fluxes, and may be taken arbitrarily

large. This is in marked contrast to typical flux compactifications, where fluxes are bounded

[12]. The authors of [7] argue that for large N the moduli can be stabilized at values where

all radii are large compared to the string scale, and the string coupling is small. Furthermore,

the four non-compact directions are an AdS space with a radius RAdS whose ratio to the com-

pactification scale grows with N . The latter property is in marked contrast to the sequences of

models treated in the AdS/CFT correspondence.

Our aim in this paper is to investigate further the models of [7], and to determine whether

they admit a systematic low energy field theory expansion (see also [13]) and/or a weakly

coupled string expansion. The inevitable orientifold of flux compactifications is one potential

barrier to an effective field theory treatment1. In addition, these models contain a ten form

flux F0, and correspond to solutions of the massive Type IIA SUGRA Lagrangian. It is well

known that quantization of F0 is a problem for effective field theory, and that the massive Type

1G. Moore and S. Ramanujam have emphasized to us the problems with the back reaction of the orientifold,
which they have analyzed extensively in the context of the original DeWolfe et al. solutions[14].
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IIA string theory does not have a perturbative world sheet expansion (the D8-brane solution

of this theory has a string coupling which grows at infinity). In addition, the effective field

theory treatment has the usual problem of orientifold singularities. Thus despite apparently

small parameters, it is far from clear that there is a systematic large N expansion of this system.

We approach this problem indirectly. Ignoring the back reaction of the orientifold, we

perform a double T-duality on the DeWolfe et al. background2. The result is Type IIA string

theory on a twisted torus, with flux only in the four AdS directions. Despite the fact that this

configuration does not satisfy tadpole cancellation, the T-duality is a legitimate operation on

the orbifold CFT. We then restore tadpole cancellation in the T-dual picture (the formal dual

of the original orientifold).

Regime with one large 4-flux:

We argue that the resulting model in this regime does not have a weakly coupled Type IIA world

sheet expansion. In this limit, from the point of view of DeWolfe et al., the string coupling

remains weak, the scales of both AdS4 and the compact manifold are large, and the Kaluza-

Klein radius is parametrically smaller. However, some cycles on the compact manifold shrink

to zero size, and this is not a limit in which DeWolfe et al. would claim to have a controlled

expansion. In the limit where we only turn on one four form flux, the fixed temperature entropy

computed from the AdS geometry scales like N3/2 as one would expect from a large number

of M2-branes. We show that this is explained in the T-dual IIA picture by a large number

of D2-branes sitting at the orientifold locus, where the string coupling is large. The D2/M2

world volumes are in the AdS directions. In typical orientifold compactifications that have been

studied in string theory, those with a known world sheet expansion, the effect of the orientifold

is confined to a region of order string scale. Here we argue that this is not the case, since the

parameter N , which apparently tunes the string coupling to be small, in fact counts a large

number of branes near the orientifold singularity. We argue that in fact the strong coupling

region completely dominates the geometry in the single flux limit. The resulting theory for

large N is M-theory on AdS4 × M7, where M7 is a manifold of weak G2 holonomy. The AdS

and compact radii scale the same way with N .

2We work in the orbifold limit. The authors of [7] took pains to show that the blow up moduli of the orbifold
can be stabilized at large values of the radii of shrinking cycles. We address the analogous question in the T-dual
picture.
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Regime with all 4-flux large:

For the generic regime of the background, we find that 11D SUGRA is not a valid approximation.

This is a consequence of the small string coupling found by DeWolfe et al., combined with the

observation that the AdS radius is much larger than that of the compact manifold computed

using our naive T-duality rules. Thus, in this region where DeWolfe et al. claimed a systematic

expansion, many features of their picture are valid. However, our picture also includes large

numbers of D-branes sitting at the orientifold locus in the regime where all fluxes are large. We

argue that the weak coupling approximation breaks down in a vicinity of the orientifold whose

size scales like N1/20ls. This rules out a uniform weak coupling expansion in the large N limit.

Furthermore, if we apply 11D SUGRA to the region around the orientifold, it suggests that

this region actually blows up to a seven manifold whose radius of curvature is of order the AdS

radius. In the conclusions, we also provide a heuristic explanation of the peculiar N9/2 entropy

scaling of the regime with all fluxes large. This argument also seems to require a compact

manifold with volume much larger than that suggested by De Wolfe et al..

Our conclusion is that the generic DeWolfe et al. configuration probably exists as a valid

model of quantum gravity in AdS4. However, it is unclear to us whether is has a compactifi-

cation radius parametrically smaller than the AdS radius. No existing approximation scheme

computes its large N expansion. Different approximations, apparently valid in different re-

gions of the compact manifold suggest different values for the ratio of scales. The problem of

different approximation schemes for different regions is somewhat analogous to F-theory so-

lutions for fluxless compactifications. However, the large supersymmetry algebra of F-theory

compactifications provides reliable computational tools, which are absent for these models.

This chapter is organized as follows. In section 2, we review the DeWolfe et al. background.

In section 3, we transform the background by a double T-duality, using the approximations

noted above. This allows us to eliminate the massive type IIA flux. We also comment on the

approximate character of the transformation. Section 4 deals with the Bianchi condition for

the dualized background. In section 5, we will argue that the DeWolfe et al. solution with

one large flux should be considered in an M-theory setting. We will explicitly lift the dualized

background to M-theory. Section 6 will detail some of the aspects of the obtained 11D SUGRA

solution. We will discuss its interpretation as a stack of M2-branes. We conclude in section 7

where we speculate on the nature of the generic DeWolfe et al. compactification. Appendix 2.8

and 2.9 give some more details on the double T-duality transformation of the DeWolfe et al.
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background, while Appendix 2.10 reviews the formulas to lift the background to M-theory.

2.2 The DeWolfe et al. background

2.2.1 The metric, fluxes and discrete symmetries of the solution

In [7], DeWolfe et al. describe an infinite set of N = 1 solutions of massive type IIA SUGRA

[15]. The compact manifold in their solution is T 2 × T 2 × T 2, modded out by three discrete

symmetries:

• Ωp(−1)FLσ with σ : zi → −z̄i

• T : (z1, z2, z3) → (α2z1, α
2z2, α

2z3)

• Q : (z1, z2, z3) → (α2z1 + 1+α
3 , α4z2 + 1+α

3 , z3 + 1+α
3 )

with α = e2πi/6. The resulting space is orientifolded T 6/Z
2
3. The combination of the imposed

discrete symmetries and fluxes turned on leads to a background where all moduli are fixed. The

metric and the fluxes of the background are given by,

ds2 = γ1(dx2
1 + dx2

2) + γ2(dx2
3 + dx2

4) + γ3(dx2
5 + dx2

6) + ds2
AdS4

(2.1)

H3 = −4π2α′h3 β0 (2.2)

= −4π2α′h3
4
√

3
√

2
(
dx1 ∧ dx3 ∧ dx5 − dx1 ∧ dx4 ∧ dx6

− dx2 ∧ dx3 ∧ dx6 − dx2 ∧ dx4 ∧ dx5

)
(2.3)

eϕ =
1

4
|h3| 4

√
335

|f0f1
4f2

4 f3
4 |

(2.4)

F4 = (2π
√

α′)3 3
√

κf i
4w̃

i (2.5)

= 4(2π
√

α′)3 3
√

3
(
f1
4 dx3 ∧ dx4 ∧ dx5 ∧ dx6

+ f2
4 dx5 ∧ dx6 ∧ dx1 ∧ dx2 (2.6)

+ f3
4 dx1 ∧ dx2 ∧ dx3 ∧ dx4

)

F2 ≈ 0 (2.7)

F0 =
f0

2π
√

α′ , (2.8)

where f0, h3, f
1
4 , f2

4 , f3
4 ∈ Z; z1 = x1 + ix2, . . . and

γi = 4π2α′ 2
3
√

3

√
5|f1

4 f2
4f3

4 |
|f0|

1

|f i
4|

. (2.9)

The tadpole cancellation condition for F2 reduces to f0h3 = −2. Notice that we defined the

R-R fluxes following the conventions of [16] instead of those in [7] (see footnote 3 in [7] v3). The
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non-compact part of the metric, ds2
AdS4

, is a 4-dimensional AdS4 space with radius (in string

frame),

R2
AdS = 4π2α′ 16

√
53|f1

4 f2
4 f3

4 |
33|f0|3|h3|4

. (2.10)

The volume of the compact manifold is computed to be

vol6 =
1

8
√

3
γ1γ2γ3 (2.11)

= (4π2α′)3

√
53|f1

4f2
4 f3

4 |
33|f0|3

, (2.12)

where the factor

1

8
√

3
=

(
1

91/6

)3( √
3

91/62

)3

, (2.13)

comes from the discrete identifications in the compact manifold. The four dimensional Planck

length then becomes:

lP (4) =
1√
16π

(
vol6

2κ2
10e

2ϕ

)−1/2

(2.14)

= |h3|
√

33α′

275

|f0|
|f1

4 f2
4 f3

4 |
, (2.15)

where we used the convention 2κ2
10 = (2π)7α′4.

2.2.2 The orientifold in the DeWolfe et al. background

The orientifold, constructed by modding out by Ωp(−1)FLσ, lies on

x1 = x3 = x5 = 0 . (2.16)

Taking into account the identifications under Z3×Z3, we get the three dimensional surface along

which the orientifold is extended in the compact space. In figure 2.1, this surface is pictured

in the fundamental region of one of the tori of T 2 × T 2 × T 2. The orientifold also fills the

non-compact space.

The 3-cycle that is invariant under Z2 × Z3 × Z3, is the cycle on which the orientifold is

wrapped. This cycle α0, is determined by its Poincaré dual 3-form,

O6 : α0−cycle (2.17)

:
4
√

3
√

2
(
dx1 ∧ dx3 ∧ dx5 − dx2 ∧ dx4 ∧ dx5

− dx1 ∧ dx4 ∧ dx6 − dx2 ∧ dx3 ∧ dx6

)
(2.18)

= β0 . (2.19)
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Z3

Z3

Z2

Z2

x1

x2

Figure 2.1: The z1-plane of T 6 with the actions of the non-free Z3 and the orientifolding Z2

indicated. The O6-plane is pictured in thicker, dashed lines.

2.2.3 Remark on the F2-flux

The Bianchi identity for the massive type IIA solution reads:

dF2 = F0H3 + 2κ2
10µpδO6 6= 0 , (2.20)

where µp = −2
√

πκ−1
10 (4π2α′)−3/2, is the charge of the orientifold. Equation (2.7),

F2 = 0 (2.21)

should thus be seen as an approximation to the exact solution.

2.2.4 Scaling behavior

The integer parameters f1
4 , f2

4 and f3
4 are not constrained by any tadpole condition, but we

need to take each f i
4 6= 0, to have a non-degenerate solution (see (2.9)).

We will be interested in the regime

f1
4 = f2

4 = f3
4 = N , (2.22)
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where we take N → ∞. The parameters characterizing the compactification scale as:

lP (4) ∼ N− 3

2

√
α′ (2.23)

RAdS ∼ N
9

4 lP (4) (2.24)

RKK ∼ N
7

4 lP (4) (2.25)

gs ∼ N− 3

4 , (2.26)

where RKK = 6
√

vol6 is a measure for the size of the compact manifold. We see that the string

coupling gs is small, while the radii characterizing the solution are large. In addition, we notice

that the background remains effectively four dimensional since the AdS radius grows faster than

the Kaluza Klein radius.

Let us now consider the regime where:

f1
4 = N, f2

4 = f3
4 = O(1) , (2.27)

which results in,

lP (4) ∼ N− 1

2

√
α′ (2.28)

RAdS ∼ N
3

4 lP (4) (2.29)

RKK ∼ N
7

12 lP (4) (2.30)

gs ∼ N− 1

4 . (2.31)

However in this regime, γ1 (see eq. (2.9)) shrinks to zero, indicating that (massive) type IIA is

not the correct description for this case. The above scalings might thus not hold in this scaling

limit.

2.3 Approximate double T-duality

The DeWolfe et al. model is formulated in massive type IIA SUGRA. This theory does not

have a perturbative world sheet expansion and quantization of the F0 is problematic. The

second difficulty is that the model also contains an orientifold which is a singular object when

described in type IIA SUGRA [17]. To study the model, we will first apply two T-dualities,

ignoring back reaction of the orientifold. These will bring us to non-massive type IIA. We will

address the second problem by inserting the orientifold in the dualized configuration. The T-

duality transformations have the additional benefit that the H3 flux vanishes. The original H3

flux turns into a geometric flux showing up as twists in the metric.
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2.3.1 Approximate character of the T-dualities

Let us first point out that applying a double T-duality on a configuration with fluxes results

in general in a non-geometric compactification [18]. However, the T-dualities we will perform

are chosen such that we do not violate the condition ensuring that we remain in the domain of

geometric compactification [19].

We will first perform a T-duality on the x1-direction, followed by a T-duality in the x2-

direction. The T-duality transformations will only be valid in an approximate sense:

• The loops on the T 6 defined by the x1 and x2-directions are contractible on the fixed

points of the Z2 × Z3 × Z3 identifications. We thus do not have an S1-isometry required

for an exact T-duality.

• In addition, we will work in the approximation where F2 = 0. As discussed in section 2.2.3,

this flux does not satisfy the Bianchi condition. We thus expect that the Bianchi identity

after T-dualities will not be satisfied either. The F2 flux is sourced by the orientifold and

by the flux term F0H3. In the T-duality computation we will keep track of the fluxes F0,

H3 and the cycle on which the orientifold is wrapped. This information will be helpful to

correct the T-dualized solution.

• Notice that we can expect the correct F2 in the original setup to depend on all coordinates

xi, since we expect that close to the orientifold the F2 flux resembles the F2 flux of an

orientifold in flat space. Because of the identifications the orientifold is extended along all

coordinate directions (see figure 2.1). This implies that the F2 flux breaks the S1-isometry

in the coordinate directions. Thus, if we would include the back reaction of the orientifold,

which sources the F2-flux, we would not be able to T-dualize.

There are two related ways to view our approximate T-dualities. So far we have emphasized

the first, which is the interpretation of T-duality mapping solutions of Type IIA supergravity

into other solutions. In our case it takes solutions of massive Type IIA into solutions of ordinary

Type IIA, because the duality eliminates the F0 flux. This duality is only approximate and in

order to perform it we must ignore the orientifold (or at least its back reaction).

Alternatively, we can start from the orbifold conformal field theory of DeWolfe et al. Turning

on fluxes corresponds to deformations of the background in the direction of certain vertex

operators, and the orientifold corresponds to modding out the CFT by one of its symmetry

operations. We can perform an exact T-duality on the CFT (just a change of variables) and
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try to understand which vertex operators must be turned on in the T-dual language3. Similarly

we can mod out by the T-dual symmetry operation. The result of this operation is a CFT just

as mysterious as the one, one might have tried to write down in the original picture. However

to leading order in the string tension expansion, it leads to a new set of equations of motion,

to which we may try to find a solution. The reader may choose whichever interpretation of our

procedure (s)he finds most convincing. We do not pretend that we have presented a rigorous

argument for either approach.

At any rate, as a consequence of the approximations, we can expect the solution after T-

dualities to contain inconsistencies. By imposing the equations of motion, the Bianchi conditions

and supersymmetry conditions on the dualized configuration, we hope to find a tractable version

of the DeWolfe et al. solutions, with a well defined large N expansion.

2.3.2 Orientifold projection in a twisted torus

The H3-flux in the DeWolfe et al. paper leads to twisting in the geometry after T-duality. In

this section we study how an orientifold fixed plane behaves under T-duality when a non-trivial

H3-flux background is turned on.

Since the H3-flux (2.2) and the orientifold (2.17), have several components along different

xi-directions, we get several twisting terms in the metric after T-duality in the xi coordinate

system. The T-duality action allows us to break this problem in several smaller problems by

focusing on one term in the orientifold and one term of the H3-flux. Let us work out the case

where we focus on the term

H3 ∼ dx1 ∧ dx4 ∧ dx6 + . . . (2.32)

and where the orientifold fixed plane is wrapped on the compact 3-cycle

O6 : dx1 ∧ dx3 ∧ dx5 + . . . (2.33)

in the Calabi-Yau manifold. Let us rename and rescale, x1, x4, x6 as θ, Y, Z. We can now focus

on the 3-torus T 3 with H3-flux [19]:

ds2
3 = dθ2 + dY 2 + dZ2 (2.34)

H3 = dθ ∧ dY ∧ dZ , (2.35)

where we take θ, Y and Z to have periodicities 2π. The location of the orientifold in this T 3

3The real problem here is that since fluxes are discrete, the sought for CFT is not a small perturbation of
the original orbifold.
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subspace of the compact manifold is determined by the fixed plane of the symmetry,

θ → −θ (2.36)

Y → Y (2.37)

Z → Z . (2.38)

The bosonic part of the worldsheet action which encodes the dynamics on the T 3 is given

by (d2z = dσ1dσ2):

S =
1

2πα′

∫
d2z{∂θ∂̄θ + ∂Y ∂̄Y + ∂Z∂̄Z + Y ∂θ∂̄Z − Y ∂Z∂̄θ} . (2.39)

This action is invariant under the periodic identifications of the target space coordinates since

the periodic identification, Y → Y + 2π, only contributes a total derivative. The action is also

invariant under the discrete orientifold symmetry σΩθ:

θ(z, z̄) → −θ(z̄, z) (2.40)

Y (z, z̄) → Y (z̄, z) (2.41)

Z(z, z̄) → Z(z̄, z) . (2.42)

Now we can perform a T-duality in the θ-direction by gauging the U(1)-isometry along that

direction [20]. The new action reads,

S =
1

2πα′

∫
d2z{(∂θ + A)(∂̄θ + Ā) + ∂Y ∂̄Y + ∂Z∂̄Z (2.43)

+ Y (∂θ + A)∂̄Z − Y ∂Z(∂̄θ + Ā) + θ̃F} , (2.44)

with F = ∂Ā − ∂̄A. The field θ̃, is a Lagrange multiplier with period 2π. Integrating out θ̃

gives the original action.

The new action is only invariant under the periodicity Y → Y +2π, if we take θ̃ → θ̃−2πZ,

simultaneously. We can also extend the action of the orientifold symmetry by requiring that

the new action is invariant under the extended orientifold symmetry. The orientifold symmetry,

σΩθ, becomes:

θ(z, z̄) → −θ(z̄, z) Y (z, z̄) → Y (z̄, z) (2.45)

A(z, z̄) → −A(z̄, z) Z(z, z̄) → Z(z̄, z) (2.46)

Ā(z, z̄) → −Ā(z̄, z) F (z, z̄) → F (z̄, z) (2.47)

θ̃(z, z̄) → θ̃(z̄, z) . (2.48)



21

Fixing the gauge with the condition θ = 0 and integrating out the fields A and Ā gives the dual

action:

S =
1

2πα′

∫
d2z{(∂θ̃ + Y ∂Z)(∂̄θ̃ + Y ∂̄Z) + ∂Y ∂̄Y + ∂Z∂̄Z} . (2.49)

Translating this to the target space gives,

ds2
3 = (dθ̃ + Y dZ)2 + dY 2 + dZ2 (2.50)

H3 = 0 , (2.51)

with the identifications,

θ̃ → θ̃ + 2π (2.52)

Y → Y + 2π and θ̃ → θ̃ − 2πZ (2.53)

Z → Z + 2π . (2.54)

The metric is thus a circle bundle over a torus. The non-trivial identifications indicate that

the coordinate θ̃, along the fibre is not globally well-defined. Let us introduce the one form Θ,

which is globally defined by dΘ = dY ∧ dZ and gives locally Θ = dθ̃ + Y dZ. The action of the

orientifold symmetry now reads:

Θ → Θ (2.55)

Y → Y (2.56)

Z → Z . (2.57)

This is, for the example we considered, the orientifold wraps both the fibre and the torus base

space after T-duality. The Poincaré dual form of the cycle on which the orientifold is wrapped

becomes:

O7 : dx3 ∧ dx5 + . . . . (2.58)

We can repeat this exercise for different combinations of terms in the H3-flux and orientifold

cycle. We find that the orientifold either wraps the fibre of the twisted torus, Θ → Θ, or reflects

the fibre Θ → −Θ. In the T-duality computation of the DeWolfe et al. solution, we will follow

the orientifold by keeping track of the Poincaré dual form of the cycle on which the orientifold

is wrapped. The above discussion shows that this is a consistent treatment of the orientifold.

2.3.3 Doubly dualized background

In appendix 2.8, we review the action of T-duality on a background of SUGRA. In appendix

2.9, we work out the double T-duality transformation of the DeWolfe et al. model. The result
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reads:

ds2 =
4π2α′

γ1

(
9

2

3 Θ2
1 + 42 3−

2

3 Θ2
2

)
+ γ2(dx2

3 + dx2
4) + γ3(dx2

5 + dx2
6)

+ ds2
AdS4

(2.59)

H3 = 0 (2.60)

eϕ =
1

4
|h3| 4

√
335

|f0f1
4 f2

4 f3
4 |

(2.61)

F4 = 4(2π
√

α′)3 3
√

3f1
4

1

γ2γ3
vol4 (2.62)

F2 = −4(2π
√

α′)3
3
√

3

γ1
(f2

4 dx5 ∧ dx6 + f3
4 dx3 ∧ dx4)

+ f0
2π

√
α′

γ1
4 · 3 1

3 Θ1 ∧ Θ2 (2.63)

F0 = 0 (2.64)

1

2κ2
10Ã

=
1

2κ2
10A

γ2
1

(4π2α′)2 4 · 3 1

3

(2.65)

Θ1 = 2π
√

α′dx1 + 2π
√

α′h3

4
√

3
√

2

9
1

3

(x3dx5 − x4dx6) (2.66)

Θ2 = 2π
√

α′dx2 + 2π
√

α′h3

4
√

3
√

2

4 · 3− 1

3

(−x3dx6 − x4dx5) , (2.67)

where x1 ∈ [0, 9−1/6] and x2 ∈ [0, 2−1 31/6].

The original orientifold splits into an O5- and O7-plane after the first T-duality (see appendix

2.9). The second T-duality recombines those two orientifold planes to give an O6-plane wrapped

on the Poincaré dual of the α̃0-cycle:

O6 :
4
√

3
√

2
(
+

2 · 3− 1

6 Θ2

2π
√

α′ 9
1

6

∧ (dx3 ∧ dx5 − dx4 ∧ dx6) (2.68)

+
9

1

6 Θ1

2π
√

α′ 2 · 3− 1

6

∧ (dx4 ∧ dx5 + dx3 ∧ dx6)
)

= β̃0 . (2.69)

2.4 The Bianchi identity after the double T-duality

As mentioned earlier, we expect the dualized solution (2.59)-(2.67) to contain inconsistencies.

We will do the full analysis of the consistency conditions later. Here we will focus on the Bianchi

condition. Taking the F2 flux from the dualized solution we compute:

dF2 = f0
2π

√
α′

γ1
4 · 3 1

3 (dΘ1 ∧ Θ2 − Θ1 ∧ dΘ2) (2.70)

= f0h3
(2π

√
α′)3

γ1
2 · 3 1

6 β̃0 . (2.71)

This 3-form is everywhere non-zero.
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On the other hand, since the configuration after T-dualities is a solution of massless type

IIA string theory, with the orientifold as only source for F2, we expect the Bianchi identity to

read:
1

2κ2
10Ã

dF2 = µ6δO6 = µ6δ(β̃0) . (2.72)

The distributional 3-form dF2, is thus localized on the orientifold plane, which lies on the

Poincaré dual of the 3-form β̃0. This is clearly at odds with (2.71). This inconsistency was not

unexpected as mentioned earlier.

We will now modify the dualized background such that it satisfies the Bianchi condition.

From equation (2.72) we get:

dF2 = −2
(2π

√
α′)3

γ1
2 · 3 1

6 δ(β̃0) . (2.73)

Integration over the β̃0-cycle gives,

∫

β̃0

dF2 =

∫

vol6

dF2 ∧ ∗6β̃0 = −2
(2π

√
α′)3

γ1
2 · 3 1

6 , (2.74)

or, after partial integration,

2 · 3 1

6

γ1

(2π
√

α′)3
h3

∫

vol6

F2 ∧ (dx3 ∧ dx4 ∧ dx5 ∧ dx6) = −2 . (2.75)

In the original DeWolfe et al. solution, the flux from the orientifold was absorbed by the

F0H3 term in the Bianchi identity. This leads to the constraint f0h3 = −2. The above derivation

shows how the twisted geometry, with the non-closed 3-form ∗6β̃0, absorbs the orientifold flux

without the F0H3 flux term.

The integrated Bianchi condition also gives us some information on the correct F2 flux. It

should contain a (distributional) term proportional to f0Θ1∧Θ2. We also learn that as N → ∞,

the F2 flux has to decrease. From now on we will ignore the term,

f0
2π

√
α′

γ1
4 · 3 1

3 Θ1 ∧ Θ2 , (2.76)

in (2.63). Instead we will include a term F2, O6 which satisfies (2.73).

2.5 Lift to M-theory

2.5.1 Entropy computation and motivation for an M-theory interpre-

tation

Let us return to the original DeWolfe et al. solution. It is supposed to be an AdS4 space-time,

Maldacena dual to a 2+1 dimensional CFT. Following [21] we can calculate the entropy of this
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system,

SBH =
AEinst

horizon

4G4d
N

(2.77)

= π (2MRAdS)
2

3

(
160 · 2 7

8 3
3

4 5
1

4 π

27

1

|f0| 54 |h3|2
|f1

4 f2
4 f3

4 |
3

4

) 2

3

, (2.78)

where M is the mass of the black hole.

Let us now consider the different scalings of the four form flux as discussed in section 2.2.4.

For the regime f1
4 = f2

4 = f3
4 = N , we find that

SBH ∼ N
3

2 . (2.79)

This gives us the entropy as a function of the energy of the black hole. Using standard CFT

thermodynamics, this implies a scaling

SBH ∼ N
9

2 . (2.80)

as a function of the temperature4. We do not know of a conformal field theory with this kind

of scaling.

If we take the other scaling regime where f1
4 ∼ N , while the other two four form fluxes are

held fixed, then we find an entropy scaling like N3/2 at fixed temperature, in the large N limit.

We know that the entropy of the CFT describing a stack of N M2-branes scales in precisely

this manner[23]. This computation thus seems to indicate that we should look for an M-theory

interpretation of the special cases of the DeWolfe et al. background, with one large four form

flux and the others of order one. We note that repeating the entropy computation in the doubly

dualized background gives exactly the same answer as (2.78).

Indeed, we found that in our double T-dual solution, there was four form flux in the AdS4

directions, corresponding to of order N D2-branes at the end of the universe. Note that this

flux comes only from f1
4 , the flux we have chosen to be large in order to get M2-branes entropy

scaling. Our entropy calculation suggests that these D-branes are behaving like M2-branes.

This could be explained, if the IIA string coupling on the compact manifold is strong in the

region where the M2-branes are localized.

There is a second reason indicating that we should look for an M-theory setting of the

problem. The orientifold is a singular object in 10D SUGRA. The M-theory lift of an orientifold

in flat space is the Atiyah-Hitchin manifold [24] [25]. In 11 dimensions, we have thus a non-

singular, completely geometric description. The orientifold is singular in the Type IIA limit,

4This computation was done independently in [22]
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because the string coupling is always large in the core of the Atiyah-Hitchin manifold, no matter

what its value is at infinity. Since the orientifold locus includes the AdS4 directions, the D2-

branes in our T-dual configuration are sitting in a strong coupling region. This explains why

they behave like M2-branes.

Such a picture is inconsistent with a weak coupling string theory interpretation of the De-

Wolfe et al. configurations, with only one large flux. We note that these observations are valid

in the region where f1
4 is large, and the other two four form fluxes are non-zero, and may be

large or small. DeWolfe et al. only claimed to have a weakly coupled four dimensional com-

pactification in the region where all fluxes are large. In our T-dual picture, even this regime has

a large number of branes sitting near the orientifold. Our next thought was that there might

be an M-theory interpretation with N M2-branes embedded in a smooth manifold. We will

see that this is possible only for a single large flux with the other fluxes fixed and non-zero.

Although the calculations of DeWolfe et al. still indicate a weakly coupled four dimensional

compactification in this limit, certain cycles of the compact manifold shrink to zero for large

N . These authors do not claim to have control over the regime that we claim has a smooth

M-theory limit with comparable AdS4 and M7 radii.

2.5.2 Lift to M-theory

Given a massive type IIA solution (without H3 flux), C. M. Hull constructed a procedure to

lift the solution to M-theory [26]. This process consists roughly of a T-duality to type IIB and

then a lift via F-theory to M-theory5. As discussed earlier, if we T-dualize the DeWolfe et

al. background once, some H3 flux remains which complicates the lift to M-theory. Therefore,

we will follow the slightly different track of T-dualizing twice and then using the strong-weak

correspondence between type IIA string theory and M-theory to lift the configuration to 11D[27].

In the 10D theories the orientifold is a singular object which we included by keeping track of

the cycle on which it was wrapped and via its source term in the Bianchi identity. As mentioned

earlier, in M-theory this singular object translates into a non-singular geometric object. Its

explicit form is only known in the case of an orientifold in flat space [29]. Our strategy will be

to first construct a naive lift ignoring the orientifold. Appendix 2.10 reviews the formulas to lift

a non-singular type IIA SUGRA background to M-theory. However, omitting the orientifold

will introduce inconsistencies. In a second step, we will impose the consistency conditions and

try to modify the naive lift.

5There are complications on the quantum level with this construction [28]. Our analysis has been on the
classical level.
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Constructing the naive lift to M-theory of the dualized background gives, with LM =

2π
κ
10Ã√

π(2π
√

α′)3
:

ds2 = R2
MΘ2

M + γ̃11Θ
2
1 + γ̃12Θ

2
2 + γ̃2(dx2

3 + dx2
4) + γ̃3(dx2

5 + dx2
6) + ds2

AdS4
(2.81)

G4 = 6m vol4 (2.82)

Θ1 = dx1 + h3

4
√

3
√

2

9
1

3

(x3dx5 − x4dx6) (2.83)

Θ2 = dx2 + h3

4
√

3
√

2

4 · 3− 1

3

(−x3dx6 − x4dx5) (2.84)

ΘM = dxM + A1 (2.85)

dA1 = −2 · 3 1

6 (f2
4 dx5 ∧ dx6 + f3

4 dx3 ∧ dx4) + F̃2, O6 (2.86)

1

2κ2
11M

=
1

16πl9P11

=
1

2κ2
10A

γ2
1

(4π2α′)2 4 · 3 1

3

1

LM
. (2.87)

where F̃2, O6 = F2, O6/LM and with

RM =
3

5

6 π
2

9

2
7

9 5
1

6

|f0h
4
3|

1

6

|f1
4 |

1

6

|f2
4 f3

4 |
1

2

lP11 (2.88)

γ̃11 =
2 · 2 4

9 3
5

6 π
4

9

5
1

3

|f0| 13
|h3| 23

|f1
4 |

1

3 l2P11 (2.89)

γ̃12 =
32 · 2 4

9 3
5

6 π
4

9

9 · 5 1

3

|f0| 13
|h3| 23

|f1
4 |

1

3 l2P11 (2.90)

γ̃2 =
8 · 2 4

9 3
5

6 5
2

3 π
4

9

9

1

|f0h3| 23
|f1

4 |
1

3 f3
4 l2P11 (2.91)

γ̃3 =
8 · 2 4

9 3
5

6 5
2

3 π
4

9

9

1

|f0h3| 23
|f1

4 |
1

3 f2
4 l2P11 (2.92)

RAdS =
8 · 2 2

9 3
5

6 5
5

6 π
2

9

9

1

|f0| 56 |h3| 43
|f1

4 |
1

6 |f2
4 f3

4 |
1

2 lP11 (2.93)

m =
2

7

9 3
7

6 5
1

6

160π
2

9

|f0|
5

6 |h3|
4

3

f1
4

|f1
4 |

7

6 |f2
4 f3

4 |
1

2

1

lP11
. (2.94)

Notice that we also rescaled Θ1, Θ2 by 1/(2π
√

α′) as compared to the previous sections.

2.6 Discussion of the naive M-theory lift

2.6.1 Condition on F2, O6

The term LM F̃2, O6 = F2, O6 in (2.86) has to satisfy the Bianchi identity (2.73). Integration as

in (2.75) leads to the condition

4 · 3 1

3 h3

∫

vol6

F̃2, 06 ∧ (dx3 ∧ dx4 ∧ dx5 ∧ dx6) = −2 . (2.95)

As discussed earlier, this constraint should lead to f0h3 = −2.
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2.6.2 Volume of the compact manifold

The volume of the compact 7 dimensional manifold is

vol7 =
64 · 2 5

9 3
5

6 5
5

6 π
14

9

27

1

|f0| 56 |h3| 43
|f1

4 |
7

6 |f2
4 f3

4 |
1

2 l7P11 . (2.96)

The Kaluza-Klein radius becomes

RKK = 7

√
vol7 (2.97)

=
2

59

63 3
29

42 5
5

42 π
2

9

3

1

|f0| 5

42 |h3| 4

21

|f1
4 |

1

6 |f2
4 f3

4 |
1

14 lP11 . (2.98)

2.6.3 The entropy

Let us express the entropy as a function of the energy of the black hole as in (2.78). The scaling

part of the entropy of the configuration is given by,

SBH ∼
(

RAdS

lP4

) 2

3

(2.99)

∼
(

160 · 2 7

8 3
3

4 5
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4 π

27

1

|f0| 54 |h3|2
|f1

4 f2
4f3

4 |
3

4

) 2

3

. (2.100)

Comparing this to the scaling part of the entropy in the original setup (see equation (2.78)), we

see that they match perfectly.

2.6.4 Scaling behavior

In the regime f1
4 = f2

4 = f3
4 = N , the various parameters of the background scale as,

RM ∼ N− 5

6 lP11 (2.101)

RAdS ∼ N
7

6 lP11 (2.102)

vol7 ∼ N
13

6 l7P11 (2.103)

RKK ∼ N
13

42 lP11 (2.104)

m ∼ N− 7

6 l−1
P11 (2.105)

SBH ∼ N
3

2 , (2.106)

where we express the scaling of the entropy as a function of the energy as in (2.78). We see

that just as the original DeWolfe et al. solution, the M-theory configuration is effectively 4

dimensional, since RAdS grows faster with N than RKK. Note that the same analysis on the

doubly dualized type IIA background teaches us that background is also effectively 4 dimensional

in this particular scaling regime. The radii characterizing the solution grow as N increases,
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except the M-theory radius RM , which decreases with growing N . We will discuss this property

below.

Taking a look at the other scaling f1
4 = N, f2

4 = f3
4 = O(1), we get,

RM ∼ N
1

6 lP11 (2.107)

RAdS ∼ N
1

6 lP11 (2.108)

vol7 ∼ N
7

6 l7P11 (2.109)

RKK ∼ N
1

6 lP11 (2.110)

m ∼ N− 1

6 l−1
P11 (2.111)

SBH ∼ N
1

2 . (2.112)

Here we conclude that the AdS and the compact manifold grow at the same rate such that

the compactification is not effectively four dimensional. On the other hand, in this case all the

radii of the 11 dimensional solution grow with N making 11D SUGRA a valid approximation

for large N . As previously mentioned, the scaling of the entropy as function of the temperature

in this regime is N3/2.

2.6.5 Checking the consistency conditions

M-theory equations of motion

From (2.153), we get the equation of motion for the metric:

RicMN =
2

4!

(
GMPQR G PQR

N − 1

12
gMN GPQRS GPQRS

)
. (2.113)

Taking the indices M , N in the AdS space, this condition reduces to:

1

R2
AdS

= 4m2 . (2.114)

This condition is satisfied as we can verify from (2.94).

The equation of motion for the compact part of the metric, g
(7)
mn, becomes:

Ricmn = 6m2g(7)
mn . (2.115)

This implies that the compact 7-manifold is an Einstein manifold. As is common in similar

cases, this condition will be satisfied if the supersymmetry condition is satisfied.

We can verify that the equation of motion and Bianchi condition on G4,

d ∗ G4 +
1

2
G4 ∧ G4 = 0 (2.116)

dG4 = 0 , (2.117)
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are satisfied.

Supersymmetry conditions

The original background was an N = 1 compactification in four dimensions. From [30], we

learn that the supersymmetry requirement on the M-theory lift, AdS4 × M7, is that M7 has

weak G2 holonomy. Weak G2 holonomy of a 7-manifold is defined by the condition that there

exists a 3-form φ3 and a real number m such that,

dφ3 = 4m ∗7 φ3 . (2.118)

From this condition one can derive the equation of motion (2.115) [31]. We conclude that if the

supersymmetry conditions are obeyed then the naive M-theory lift is fully consistent.

When N → ∞, m → 0 and the supersymmetry condition on the compact manifold simplifies

to G2 holonomy:

dφ3 = 0 (2.119)

d ∗7 φ3 = 0 . (2.120)

The 4 dimensional analysis in [7] led to stricter conditions on the signs of the F4 flux

parameters f1
4 , f2

4 and f3
4

6:

sign(f0f
1
4 f2

4 f3
4 ) < 0 (2.121)

sign(f1
4 ) = sign(f2

4 ) = sign(f3
4 ) . (2.122)

Backgrounds violating the above condition are believed to be stable but non-super-symmetric

solutions [7]. We can thus expect that the above conditions will follow from the weak G2

holonomy condition.

If we check the weak G2 holonomy condition for the naive lift, we find that it does not

satisfy the conditions. We included the implicitly determined flux F̃2, O6 which is sourced by

the orientifold, while we did not include the Atiyah-Hitchin like geometry from the orientifold.

As the coupling constant flows from type IIA to M-theory, we expect the singular orientifold to

get some thickness, modifying the geometry in the region close to the orientifold. We thus expect

that the naive lift is only an approximation for the geometry far away from the orientifold.

We did not succeed in finding an explicit solution to (2.118) in the regime where f1
4 =

N, f2
4 = f3

4 = O(1), but neither have we found any obstruction to the existence of a metric of

6Equation (2.122) follows from the Kähler cone conditions for the background. There are additional Kähler
cone conditions for the blow ups of the singularities. We do not consider those conditions here since our strategy
was to ignore the singularities in the first step.
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weak G2 holonomy with the scaling properties and behavior near the M2-brane locus that we

were led to. We believe that in the limit of a single large flux there is a systematic M-theory

expansion. The background is AdS4 ×M7, with M7 a manifold of weak G2 holonomy. The anti

de Sitter and M7 radii are comparable. For other configurations of large flux we believe that

the M-theory picture is only valid locally, in the vicinity of the orientifold, but that this region

is large and cannot be ignored for large N . The string coupling does go to zero over another

large region of the manifold.

2.6.6 Interpretation as a stack of M2-branes

The entropy argument of section 2.5.1 indicated that for a certain flux configuration we could

expect the DeWolfe et al. solution to be the near horizon of a stack of M2-branes. The AdS4×M7

background with a weak G2 holonomy condition on M7, as discussed in the previous section, is

in [30] indeed interpreted as the near horizon limit of M2-branes.

The background of a stack of N M2-branes at the tip of a cone, is given by

ds2 = H− 2

3 ds2
3 + H

1

3 ds2
8 (2.123)

G4 = vol3 ∧ dH−1 , (2.124)

with ds2
3 and vol3 the Minkowski metric and worldvolume of the M2-branes and ds2

8 = du2 +

u2ds2
7 the metric of the cone in the directions transverse to the M2-branes. The function H is

given by

H = 1 +
a6

u6
, (2.125)

and a is determined by the number of M2-branes [32]:

a6 = N
κ2

11MT3

3Ω7
= N

κ2
11M

3a−7vol7

(
4π2

2κ2
11M

) 1

3

, (2.126)

with vol7 the volume form on ds2
7. The near horizon limit of this background becomes (after a

coordinate transformation r = 2u2/a):

ds2 =
r2

4a2
(−dt2 + dy2

1 + dy2
2) +

a2

4r2
dr2 + a2ds2

7 (2.127)

G4 =
6

a
vol4 , (2.128)

where vol4 is the volume form on the AdS4 space which has RAdS = a/2. Comparing this to

the M-theory lift of the DeWolfe et al. solution (2.81), we find that m = 1/a and using (2.126),

we compute that the number of M2-branes is given by:

N = |f1
4 | . (2.129)
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We know that the entropy (as a function of energy) of the CFT corresponding to a stack of

M2-branes scales as N1/2 = |f1
4 |1/2. We can compare this to the scaling of the entropy of the

M-theory lift (2.100), |f1
4 f2

4 f3
4 |

1

2 . In the regime where f1
4 = N , f2

4 = f3
4 = O(1), the scaling of

the entropy is exactly the same. We can thus interpret the M-theory lift of the DeWolfe et al.

solution in that regime as a stack of N M2-branes at the tip of a cone. We do not have a deep

understanding of the more generic regime, where all four form fluxes are large, nor the regime

where two are large and one is small. We note again that De Wolfe et al. only claimed to have

a systematic weak coupling and low energy expansion when all fluxes are large.

2.6.7 Validity of 11 dimensional supergravity in the generic regime

Let us consider the regime f1
4 = f2

4 = f3
4 = N . The M-theory radius of the naive lift (2.101)

decreases as N grows, indicating that the 11 dimensional supergravity approximation cannot

be trusted, since the curvature of the background becomes too large and corrections to 11D

SUGRA will be important. We find that N < 3 for RM > lP11. However, we also see that we

need N > 1 for
√

γ̃11 > lP11. We see that supergravity is only valid in a certain small range of

values for N .

The above reasoning is entirely based on our naive lift. Including the orientifold in the

geometry changes the situation close to the orientifold. For an orientifold embedded in flat

space, the dilaton increases the closer you get to the orientifold. This corresponds to a larger

M-theory radius RM . We can expect the same behavior in our configuration: including the

correct geometry coming from the orientifold will give an M-theory radius which is larger than

our naive estimate.

The geometry of the 11D SUGRA solution that incorporates the orientifold, can be thought

of as an interpolation between the region close to the orientifold (bolt-geometry)[29] and the

region far away from the orientifold (naive lift). The twisted tori in the region away from the

orientifold come from the F0H3 term in the original Bianchi identity, while (part of) the twist

in the M-theory direction corresponds to the F2 flux sourced by the orientifold.

Let us now focus on large N . The size of the compact manifold is large, so there are points

located far away from the orientifold. We expect this region far away from the orientifold to

resemble our naive lift. Further yet from the orientifold we enter into a weak coupling region.

This is the region where the original argument of DeWolfe et al. operates. In the large flux limit

there is a large region where it fails. To see this, note that our T-dual Type IIA configuration

has a flux in the AdS4 directions, consistent with N D2-branes lying in the orientifold locus.
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The dilaton in such a D2-brane background has the form

eϕ =

(
1 +

c2gsNl5s
r5

)1/4

, (2.130)

with c2 a numerical constant. Plugging in the DeWolfe et al. value for the coupling at infinity,

we find that the coupling gets large at a distance of order N1/20ls from the stack of D2-branes.

Thus, the weak coupling approximation breaks down over a parametrically large region of the

manifold as N → ∞.

a.

N1/20ls

R11d
KK

R10d
KK

RKK(10d)

N1/20ls

b.

Figure 2.2: Two possible scenarios. The right hand side of each drawing represents the region
where (massive) type IIA is the correct description and where the radius of curvature of the
compact manifold, R10d

KK, scales with N at a slower rate than RAdS. The left hand side is the
region close to the D2/orientifold locus (indicated with the dot). This region has a size that
scales as N1/20ls. The compact manifold radii in this region, R11d

KK, scale as fast as RAdS scales
with N , resulting in a flat patch (case a) or a mushroom cap (case b).

If we make the plausible assumption that an 11D description is valid near the orientifold, we

find that the local radius of curvature in the presence of the branes is of order the AdS radius.
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We connect the weak coupling geometry to a seven dimensional patch whose size is of order

N1/20ls ∼ N13/60lP11 (see figure 2.2), and whose geometry is that of the manifold of weak G2

holonomy we described above. The radius of curvature of that geometry is of order the AdS

radius, and thus, much larger than the size of the patch. There now seem to be two possibilities

for a geometrical description of what is going on in the large N limit7. In the first, the patch

is essentially flat (see figure 2.2a). Alternatively, the whole geometry could mushroom out to

a large seven dimensional patch with weak G2 holonomy and size of order the AdS radius (see

figure 2.2b). We believe that neither the methods of DeWolfe et al. nor our own, are powerful

enough to distinguish between these two alternatives. In the second alternative there would be

KK excitations with a mass of order the inverse AdS radius, and the compactification would

not be four dimensional.

2.7 Conclusions and speculation

We believe that we have provided ground for suspecting that the massive IIA description of

the DeWolfe et al. background does not provide a systematic low energy expansion due to the

back reaction of the orientifold. The doubly dualized description still has the same problem.

However, this low energy effective description has the advantage that the F0 and H3 fluxes are

absent.

Regime f1
4 = N , f2

4 = f3
4 = O(1):

The scaling of the entropy indicates that there might be a correct expansion using 11D SUGRA

in this regime. We constructed a naive lift to 11 dimensions. We gave arguments that a 7-

manifold of weak G2 holonomy exists and that N M2-branes at an approximately Atiyah-Hitchin

locus on this manifold might give a description of the physics of these compactifications. We

reiterate that this is not a regime where DeWolfe et al. claimed to have a controlled expansion.

We thus claim that in the regime where f1
4 is large, and the other four form fluxes are of

order 1, there should be a valid 11D SUGRA approximation to the DeWolfe et al. models. This

would be the near horizon limit of the configuration of f1
4 M2-branes at the tip of a cone over a

seven manifold M7 of weak G2 holonomy. The linear size of M7 scales in the same way as the

AdS4 radius. The exact description of this regime would be a 2+1 dimensional CFT with fixed

7We emphasize that since we have no complete approximation scheme for this regime, there is no argument
that any geometrical picture is valid.
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temperature entropy of order (f1
4 )3/2. It should be possible to find it as the endpoint of the

RG flow along a relevant perturbation of the CFT of M2-branes in flat space, which breaks the

symmetry down to minimal 2 + 1 dimensional SUSY. The supergravity solution would enable

one to compute dimensions of low dimension operators at this fixed point. However, since the

SUSY algebra is so small, there might not be any checks of these computations at the UV fixed

point.

There is no sense in which this model is well approximated by weakly coupled string theory.

In addition, the compactification is not approximately four dimensional. The AdS and M7

radii are comparable. If our picture is the correct one, the failure of the weak coupling analysis

should be attributed to the naive treatment of the orientifold. In M-theory, the center of the

orientifold is a locus of strong IIA coupling. In these compactifications, for large f4
1 (in the

T-duality frame we have chosen), a large number of M2 branes sit at this locus, and their back

reaction completely changes the weak coupling geometrical picture. Of course, the limit of a

single large flux was not controllable in the picture of DeWolfe et al.. Nonetheless it is striking

that a single shrinking cycle (from their point of view) can actually lead to a completely different

picture of the geometry, and of the strength of the coupling.

Generic regime f1
4 = f2

4 = f3
4 = N :

This regime is more mysterious. The fixed temperature entropy of the CFT scales like N9/2.

We would like to propose a heuristic explanation of this scaling law, but we warn the reader that

many aspects of this proposal are obscure. Klebanov and Tseytlin proposed an explanation [33]

of the N3 scaling of the (2, 0) CFT that describes M5-branes, in terms of partially BPS states

of membranes in a pair of pants configuration with boundaries on three different 5-branes. We

would like to propose a similar explanation for the generic scaling of the entropy in the models of

DeWolfe et al. There are two important differences. First of all, we hypothesize multi-layered

pairs of pants (see figure 2.3 for an illustration). That is, each geometrical pair of pants is

wrapped by N M2-branes rather than a single one. Secondly, the M2-branes end on Kaluza-

Klein monopoles instead of on M5-branes. We claim that the entropy comes from N3 copies of

the M2-brane field theory, each with entropy N3/2.

The symmetry of the formulae under interchange of the three four form fluxes, suggests that

a picture based on string networks in Type IIB string theory might capture some of the physics.

Thus, we would imagine an Argentine bola string junction, with N allowed sites for each of its

ends. Each bola would consist of N strings. The M2-brane scaling of the world volume theory of
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Figure 2.3: N M2-branes ending on 3 stacks of N Kaluza-Klein monopoles. Notice that each
end of the trousers is stitched together.
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the string junction, could be explained by hypothesizing that it passed through a large volume

on the compact manifold, where the M-theory torus had large area. The endpoints of the bola

would be better described in terms of weakly coupled Type IIB string theory, though perhaps

different ends would be weakly coupled in different S-duality frames.

We have argued that the weak coupling expansion claimed by DeWolfe et al. in this regime

cannot be uniformly valid, since there is a region of size N1/20ls where the coupling is not

weak in the large N limit. Since there is no single low energy field theory that describes

these configurations, and since observables in theories of gravity in Anti-de Sitter space are not

local on the compact manifold, we are not sure how one would go about making a systematic

computation of these observables for large N .

We presented two heuristic geometrical pictures of how the weak coupling geometry could

connect on to a region best described in terms of 11D SUGRA on a manifold of weak G2

holonomy. The approximate 4 dimensionality of the compactification is valid only in one of

them. The weak coupling analysis might be missing a large mushroom cap region hidden near

the strong coupling orientifold singularity. We believe that no extant methods can distinguish

between these two pictures, or provide a systematic description of the physics of this system at

large N . We have also presented a heuristic model of the entropy of the regime with all fluxes

large. This model also depends on the existence of large regions of the compact geometry which

are weakly curved eleven manifolds.

Given these arguments, and the success of our 11D picture in the regime of a single large

flux where the weakly coupled region completely disappears, we see serious reasons to doubt the

validity of the simple weak coupling picture advocated by DeWolfe et al., even when all fluxes

are large. The reason for this is the back reaction of a large number of branes near the strongly

coupled orientifold locus, which changes the geometry in ways that cannot be understood from

the perturbative picture.

In our opinion, the best one could hope for would be some analog of F-theory, in which

different string expansions governed local physics in different regions of the compact manifold.

It is entirely unclear to us whether the particular duality frame we have emphasized is the

best description of this regime. Furthermore, since we are working with a very small amount

of supersymmetry, it is unlikely that we can use non-renormalization theorems to glean exact

information about these compactifications from their geometrical formulation. This is a pity,

because it is the only one in which an approximately 4 dimensional compactification might arise.

It would seem that the only way to really investigate the physics of these backgrounds

of string theory is to find and solve the dual 2 + 1 dimensional conformal field theory. For
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the special flux configurations described above, it is plausible that this CFT can be found by

perturbing the Yang-Mills theory of D2-branes by an appropriate relevant operator, obtaining

the CFT dual to M2-branes at the tip of a cone over a manifold of weak G2 holonomy. We

conjectured that the correct description of more general configurations might be explained in

terms of a tensor product of field theories, or some theory which approximately reduced to such

a tensor product for purposes of counting the large N asymptotics of the entropy.

2.8 Appendix: Type IIA - Type IIB T-duality dictionary

We take the bosonic type IIA action in the string frame to be (omitting the Chern-Simons

terms):

SIIA =
1

2κ2
10A

∫ √−g10Ae−2ϕA(R + 4∂ϕA∂ϕA) − 1

4κ2
10A

∫
e−2ϕAH3 ∧ ∗H3

− 1

4κ2
10A

∫
F4 ∧ ∗F4 + F2 ∧ ∗F2 + F0 ∧ ∗F0 , (2.131)

while the bosonic type IIB action is given by:

SIIB =
1

2κ2
10B

∫ √−g10Be−2ϕB(R + 4∂ϕB∂ϕB) − 1

4κ2
10B

∫
e−2ϕBH3 ∧ ∗H3

− 1

4κ2
10B

∫
1

2
F5 ∧ ∗F5 + F3 ∧ ∗F3 + F1 ∧ ∗F1 , (2.132)

where we impose the self-duality of F5 in the equations of motion by hand (see [34] for a

consistent treatment of self-dual field theories). The T-duality dictionary between both theories
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for a warped metric reads [35],

ds2
A = L2

Ae2αφΘ2
A + e2βφds2

9 ↔ ds2
B = L−2

A e−2αφΘ2
B + e2βφds2

9

H3 = H̃3 + H̃2 ∧ ΘA ↔ H3 = H̃3 − F̃NS ∧ ΘB

ϕA ↔ ϕB = ϕA − αφ ,

F4 = F̃4 + F̃3 ∧ LAΘA ↔ F5 = e(α+β)φ ∗9 F̃4 + F̃4 ∧ L−1
A ΘB

F2 = F̃2 + F̃1 ∧ LAΘA ↔ F3 = F̃3 + F̃2 ∧ L−1
A ΘB

F0 = F̃0 ↔ F1 = F̃1 + F̃0 ∧ L−1
A ΘB

1
2κ2

10A

↔ 1
2κ2

10B

=
L2

A

2κ2

10A

,

dΘA = F̃NS ↔ dΘB = −H̃2 ,

ΘA = 2π
√

α′dx + ÃNS ↔ ΘB = 2π
√

α′dx − B̃1 ,

(2.133)

where the last line is valid locally, with F̃NS = dÃNS , H̃2 = dB̃1 and x ∈ [0, 1] parametrizes

the U(1) isometry. The Hodge star in F5 is with respect to the ds2
9 metric on the type IIB side

of the dictionary. In our notation, the forms on the right hand sides of the equations never

contain ΘA or ΘB explicitly.

2.9 Appendix: Computing the double T-dual of the DeWolfe et al.

background

We start from the DeWolfe et al. solution (2.1)-(2.8). We use the dictionary from Appendix

2.8. To apply a first T-duality in the x1-direction, x1 ∈ [0, 1], we take,

L2
A =

γ1

4π2α′ 9
− 1

3 (2.134)

ΘA = 2π
√

α′ 9
1

6 dx1 (2.135)

ΘB = 9
1

6 Θ1 (2.136)

α = β = 0 . (2.137)
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The factor 91/6 comes from the discrete symmetries Z3 × Z3 (see (2.13)). This results in:

ds2 =
4π2α′

γ1
9

2

3 Θ2
1 + γ1dx2

2 + γ2(dx2
3 + dx2

4) + γ3(dx2
5 + dx2

6) + ds2
AdS4

(2.138)

H3 = 4π2α′h3
4
√

3
√

2 (dx2 ∧ dx3 ∧ dx6 + dx2 ∧ dx4 ∧ dx5) (2.139)

eϕB =
1

4
|h3| 4

√
335

|f0f1
4f2

4 f3
4 |

(2.140)

F5 = 4(2π
√

α′)3
3
√

3f1
4

(
∗9(dx3 ∧ dx4 ∧ dx5 ∧ dx6)

+

√
4π2α′ 9

2

3

γ1
dx3 ∧ dx4 ∧ dx5 ∧ dx6 ∧ Θ1

)
(2.141)

=

(
4(2π

√
α′)3

3
√

3f1
4

1

γ2γ3
vol4

)√
γ1

4π2α′ 4 · 3− 1

3

∧ (2π
√

α′ 2 · 3− 1

6 dx2)

+ ∗9̃

(
4(2π

√
α′)3

3
√

3f1
4

1

γ2γ3
vol4

)
(2.142)

F3 = −4(2π
√

α′)2 3
√

3

√
4π2α′

γ1
(f2

4 dx5 ∧ dx6 ∧ dx2 + f3
4 dx2 ∧ dx3 ∧ dx4) (2.143)

F1 =
f0√
γ1

9
1

3 Θ1 (2.144)

1

2κ2
10B

=
1

2κ2
10A

γ1

4π2α′ 9
1

3

(2.145)

Θ1 = 2π
√

α′dx1 + 2π
√

α′h3

4
√

3
√

2

9
1

3

(x3dx5 − x4dx6) . (2.146)

The last line is again only valid locally. We use the notation where, ∗9, means the Hodge star

with respect to the metric after T-duality without the x1-direction, while, ∗9̃, means the Hodge

star with respect to the metric after T-duality without the x2-direction. vol4 is the volume form

of AdS4.

The first T-duality transformation splits the original orientifold (2.17) into an O5- and an

O7-plane:

O5 :
4
√

3
√

2

2π
√

α′ 9
1

6

(+dx3 ∧ dx5 − dx4 ∧ dx6) (2.147)

O7 :
4
√

3
√

2 9
1

6

2π
√

α′ 2 · 3− 1

6

(−dx4 ∧ dx5 − dx3 ∧ dx6) ∧ (2π
√

α′ 2 · 3− 1

6 dx2) ∧ Θ1 (2.148)

After this first T-duality the solution still has an (approximate) U(1)-isometry in the x2-

direction, x2 ∈ [0,
√

3/2]. We take

L2
A =

4π2α′

γ1

(
4

3
9

1

3

)
(2.149)

ΘB = 2π
√

α′
(

2√
3

9
1

6

)
dx2 (2.150)

ΘA = 2 · 3− 1

6 Θ2 (2.151)

α = β = 0 , (2.152)
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this results in the solution (2.59)-(2.67).

2.10 Appendix: Type IIA - M-theory dictionary

For the type IIA theory we start again from the action (2.131), for M-theory we take as definition

of our theory,

SM =
1

2κ2
11

∫ √−g11R − 1

4κ2
11

∫
F4 ∧ ∗F4 (2.153)

− 1

4κ2
11

∫
C3 ∧ F4 ∧ F4 . (2.154)

The compactification of M-theory on a circle gives the following type IIA - M-theory corre-

spondence:

ds2
A = ds2

10 ↔ ds2
M = L2

Me
4

3
ϕAΘ2

M + e−
2

3
ϕAds2

10

ϕA

H3 ↔ G4 = F4 + H3 ∧ LMΘM

F4

F2 ↔ dΘM = 1
LM

F2 ,

ΘM = dxM + 1
LM

C1 ,

F0 = 0

1
2κ2

10A

↔ 1
2κ2

11M

= 1
2κ2

10A
LM

,

LM = 2π κ10A√
π(2π

√
α′)3

,

(2.155)

with xM ∈ [0, 1].
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Chapter 3

Tunneling in the Landscape

3.1 Introduction: Stability in the Landscape

In this chapter we will discuss in detail our findings of the work done in collaboration with

M. Dine, G. Festuccia and A. Morisse [36].

Much of the focus of landscape studies has been on states with some degree of supersym-

metry. These are easier to study as supersymmetry provides an added degree of theoretical

control. KKLT[37] exhibited states in which it appears that all moduli are fixed in a regime of

weak coupling and large compactification radius. They (and subsequently others[38]), argued

that a substantial number of such states would exhibit dynamical supersymmetry breaking with

positive cosmological constant. More generally, if one considers likely mechanisms for super-

symmetry breaking among the known supersymmetric states, it is likely that a finite fraction

have hierarchically small breaking scales, as expected from conventional ideas about naturalness

[39].

While some degree of calculational control is valuable to theorists, however, it is not clear

why this should be important to nature. The assumption of low energy supersymmetry re-

stricts the structure of the effective action and permits inferences about the strong coupling

and small radius regimes. Plausible assumptions about the distribution of the lagrangian para-

meters (e.g. uniform distribution of complex parameters in the superpotential) can be checked

in the weak coupling region. For example, one can argue that there should be many metastable

and stable states even for small radius, and make arguments for the distribution of super-

symmetry breaking scales and cosmological constants.1 But while supersymmetry provides

many simplifications and a greater degree of control, one expects that there should be more

non-supersymmetric, metastable states, possibly vastly more. There have been some studies

of the statistics of non-supersymmetric states, both with spontaneous breaking[7] and explicit

breaking[40]. Most of these studies have involved AdS vacua. Attempts to study broader classes

1This point was first made to one of the authors (M.D.) several years ago by Shamit Kachru.
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of non-supersymmetric vacua include those of Douglas and Denef in the case of IIB orientifolds

on Calabi-Yau spaces[42, 43]. Their counting requires approximate supersymmetry. To obtain

finite results, a cutoff must be imposed on the scale of supersymmetry breaking. Without such

a cutoff, there is no control over the calculations. The vast majority of states are then located

at the cutoff scale. Questions such as stability against tunneling are difficult to address for such

states. A more ambitious program is that of Silverstein, who argues that there may be various

constructions which yield large numbers of non-supersymmetric, de Sitter vacua[41], and that

one may have a high degree of control.

One of the most urgent, and potentially accessible, questions in the landscape is the origin

of the gauge hierarchy. Is it due to strong dynamics or warping, to supersymmetry, or perhaps

just anthropic selection among a vast array of otherwise undistinguished states. In other words,

could it be that the explanation of the hierarchy lies not in symmetries or dynamics, but simply

in the existence of an overwhelmingly large number states which accidentally have a small scale

of weak interactions[44, 45]?

The analysis of Douglas and Denef illustrates why it is hard to settle this question. In a

typical, non-supersymmetric state, there will be no small parameters at all, and the crutch

of supersymmetry is not available. Unlike the supersymmetric case, there do not seem to be

any simple arguments to give a handle on the most rudimentary statistics, much less overall

counting.

In the absence of small parameters, one question looms particularly large: stability. If the

landscape picture has any validity, the state in which we find ourselves, with small positive

cosmological constant, sits in a large sea of states with negative cosmological constant. Many of

these are “close by”. Stability of any would-be state requires that the amplitude to decay to any

one of these states be very small[46, 47]. Indeed, the very notion of state requires this. As we

will see, the cutoff of Douglas and Denef can be understood as emerging from the requirement

of stability.

The significance of this last point can be understood by supposing that one has a flux

landscape of 100 dimensions (i.e. 100 independent fluxes), and typical fluxes are large (say 10).

Then there are of order 10100 states. Among these states will be states of small cosmological

constant. Any one of these will be surrounded by many states with negative cosmological

constant. One might expect, for example, that there are of order 3100 within three flux units.

In order that the state be stable, it is necessary that the tunneling amplitude to any one of

these states (more precisely to the corresponding big crunch) be small. In the absence of a

small parameter, one might imagine that there is a probability of order 1/2 that the tunneling
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amplitude be zero to any one state[47]. So the chance that any particular state is stable, absent

any symmetries or small parameters, is of order

Pstab =

(
1

2

)3100

. (3.1)

One might immediately object that there might be qualitative reasons why a particular state

does not decay rapidly – or at all – to any of its neighbors. But this is precisely what makes

this question important: long-lived states are likely to be special. Optimistically, they might

have features related to phenomena we see – or better, might hope to see, in nature. Within

the landscape, a number of classes of states have been isolated with distinguishing features.

It is natural to ask which of these features might contribute to stability (In what follows, we

use “false” vacuum to describe the candidate metastable state; “true” refers to any prospective

decay channel):

1. Weak coupling in the “false” vacuum and/or candidate “true” vacua.

2. Large compactification volume in either or both the ”false” and ”true” vacua.

3. Low energy supersymmetry

4. Light moduli in the “false” vacuum.

5. Warping in the “false” vacuum.

In this chapter, we investigate these possibilities. To be concrete, we consider mainly Type

IIB theories compactified on Calabi-Yau spaces with fluxes and an orientifold projection. In

this case, the large number of would-be metastable states is due to a large number of possible

flux choices. There is, of course, the risk with such specialization that our results are not

sufficiently generic. For example, with our present knowledge of IIB theories, it is difficult to

make statements about compactification radii (without supersymmetry), yet as we will see, large

radius is a regime (unlike weak coupling) where one might have a realistic hope to find large

metastable neighborhoods. The constructions of [41] may yield vast sets of non-supersymmetric,

large volume compactifications. We will use these, and AdS models in IIA theory, to give some

insight into possible behaviors with volume.

In the end, of the list above, we will argue that only the large volume and supersymmetric

states are generically stable. The rest of this paper is organized as follows. We first discuss

some general scaling arguments for tunneling amplitudes. Theses arguments make clear why

states with large flux are prone to rapid decay. We review the argument that supersymmetric
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states are stable. We then consider the (supersymmetric) states discussed by Giddings, Kachru

and Polchinski (GKP)[48]. We verify our scaling arguments for domain wall tensions and

cosmological constants. Because of supersymmetry, these states are stable; we will see that this

is again consistent with simple scaling arguments.

From these exercises, we confirm that our basic scaling arguments for domain wall tensions

and energy splittings are robust. We then suppose that one has found a landscape of non-

supersymmetric states, and ask what features might account for stability. We find that while

weak coupling, by itself, cannot account for metastability, large volume – more precisely volume

scaling suitably with flux, N – can. Warping, in the sense discussed by GKP seems not to lead

to stability. The existence of approximate moduli, by itself, also does not lead to stability. We

consider states with a small breaking of supersymmetry (compared to the fundamental scale),

and illustrate in simple models why these are typically metastable or completely stable.

While this sort of reasoning can establish classes of states which are metastable, it does not

indicate whether one is likely to make transitions into a particular state. This is closely related

to the questions of measures for eternal inflation which have been widely studied recently. While

we currently have little new to add to this discussion, we point out that the landscape is likely to

be more complicated than assumed in many simple models of eternal inflation. For example, a

typical KKLT vacuum is likely surrounded by many AdS states, both supersymmetric and not.

Whether one can neatly transition into the KKLT minimum seems a serious question. We spec-

ulate that states with (discrete) symmetries, though rare, might be attractors in cosmological

evolution.

In the conclusions, we indulge in conjecture. Our results, we note, hardly prove that low

energy supersymmetry is a feature of the landscape, but they suggest, in ways we explain, that

it might be. They suggest, alternatively, what is required to establish the existence of a vast

set of non-supersymmetric states in the landscape.

3.2 Scaling Arguments for Non-Supersymmetric States

In this section, we ask how we might expect potentials, domain wall tensions, and tunneling

amplitudes to scale in the limit of large fluxes, in non-supersymmetric states. In order that in

these hypothetical states there be some validity to a semiclassical analysis in a ten dimensional

effective field field theory, we will suppose that the compactification volume, V , is large. We

will also assume, when necessary, that couplings are small. We suppose that we have many

three-form fluxes (b), with typical values of order N . The potential is quadratic in N/V (in the
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Einstein frame, i.e. in four dimensional Planck units).

We are considering a Type IIB landscape, with various RR and NS 3 form fluxes, Ni and Ki.

We will think of the fluxes as very large, Ni ∼ N , and Ki ∼ K, for some large N and K. We wish

to compare neighboring states in the landscape, i.e. states in which one flux, say, Ni, changes

by one, or perhaps a few fluxes change by a few. Take the first case. For simplicity, suppose

first that K ∼ N . In this case, there is no particular reason for a semiclassical approximation

to be valid, but we will use the classical formulas for the potential in order to get some feeling

for how amplitudes might scale with N in a “typical” state. Later, we will adjust the fluxes so

that the string coupling is weak.

When all fluxes are comparable, because the potential is homogeneous in N , the changes

in the moduli fields are of order 1/N , and the change in the potential is of order N for small

changes (∆N ≪ N) in flux.

In the decays of interest to us, both the four dimensional fields and the fluxes change, and

General Relativity plays an important role.. But first it is worthwhile to review some aspects

of tunneling in ordinary field theory, without gravity. For our discussion it is important to

recognize that even though the barrier may be quite high, if the neighboring well is very deep

and the field excursions are not too large, the tunneling amplitude is not necessarily small.

Consider a theory of a scalar field φ, in 4 dimensions, with a potential of the form:

V (φ) =
N2

V 2
f(φ). (3.2)

Here N is supposed to be large, as in our problem above, and f(φ) is a function with two

minima. Let’s first ask about the range of validity of the semiclassical analysis in the two

would-be minima. Assuming a canonical kinetic term, corrections to the kinetic term, at one

loop, behave as N2/V 2 (the vertices each give a factor of N2/V 2, and there is a factor of 1/m2
φ

from the integral). So the perturbative analysis would seem to be valid if V ≫ N . We will see

that stability seems to give a somewhat stronger condition.

Turning to tunneling, ignoring gravity, the bounce action behaves as V 2/N3. This follows

from simple scaling arguments on the terms in the action. But it can be seen by considering

the standard thin wall analysis, which will be valid in the case that the two minima of f are

nearly degenerate, differing by ∆E. Then the bubble tension is given by (∆φ ∼ 1/N)

T =

∫ ∆φ

dφ
√

2V (φ) ∼ 1

V
, (3.3)

so the standard thin wall analysis[46] gives

Sb = C
T 4

∆E3
= AV 2/N3, (3.4)
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where C and A are numerical constants. So unless the volume is large (of order N3/2 in

fundamental units), the bounce action is small and the tunneling amplitude is of order one.

This same scaling can readily be shown to hold for more general functions f .

Typically, gravitational corrections will be large. From the Coleman-De Luccia analysis, in

the case of tunneling, say, from flat or AdS space to AdS space, one learns that gravitational

corrections are important when the radius of the would-be bubble is comparable to the AdS

radius. In our example above, the radius of the bubble wall is:

Rb =
T

∆E
∼ V/N (3.5)

while the AdS radius is of order V/N .

On the other hand, for the case of interest to us in the landscape, the initial state, by

assumption, has zero or nearly zero cosmological constant. So,

RAdS ∼ V√
N

(3.6)

and one does not expect gravitational corrections to be important. More generally, one does not

expect a suppression of decays from states with large positive to negative cosmological constant.

Of course, by definition, if the bounce action is not large, the semiclassical calculation is not

reliable. We take this result as evidence that suppressing tunneling requires N3 ≪ V 2. Note

that this constraint is more severe than the naive perturbative condition, V ≫ N .

When we consider flux vacua, we will be interested in the Coleman or Coleman-De Luccia

analysis in cases where the bubble can be thought of as a brane (M5 or D5) wrapped on

some internal manifold. Such branes can be thought of as thin-walled bubbles. To make

the comparison, it is useful to reformulate the conventional field theory analysis in terms of a

collective coordinate. If the bounce is described by a function φcl(r−R) (spherically symmetric),

we can introduce a collective coordinate, R(t), and obtain an action for R by writing:

φ(r) = φcl(r − R(t)) : (3.7)

S =

∫
dt
(
TR2Ṙ2 − V (R)

)
(3.8)

with

V (R) = TR2 − ∆ER3. (3.9)

The bounce action follows from an ordinary WKB calculation with this action.2 For the

case of wrapped branes, this is the structure of the appropriate Born-Infeld action.

2In terms of our earlier remark about quantum tunneling, it is the unusual form of the kinetic term for R

and the pressure term which account for the enhanced tunneling rate.
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The estimates in this section suggest that the tunneling amplitude quickly becomes of order

one as N increases, if V and the couplings are fixed. But one might worry that this field

theory analysis is not applicable to the case of interest, where transitions are accompanied by

changes of flux and emission of extended objects like branes. In the next section, we will see

that precisely these scalings of tensions and cosmological constants occur in well-studied string

theory examples.

3.3 A Prototype: GKP

A useful model for stabilized moduli and domain wall tensions is provided by the work of

Giddings, Kachru and Polchinski. This is a IIB orientifold model, with compactification on a

Calabi-Yau space at a point in the (approximate) moduli space near a conifold singularity. In

this model, the moduli are τ , ρ and z, zi. τ is the IIB string coupling; ρ describes the overall

size of the compact manifold,

ρ = R4M4
10 (3.10)

(where M10 is the ten-dimensional Planck scale), and z is a complex structure modulus which

describes the deformation of the conifold. The zi represent other complex structure moduli. τ ,

zi and z are fixed by fluxes; ρ is undetermined in a semiclassical treatment (the model has a

no-scale structure). It will be useful to consider an effective field theory without ρ, as well, in

which supersymmetry is unbroken.

For large ρ, the theory turns out to be approximately supersymmetric. Following GKP, we

will consider light fields z, τ and ρ. Their dynamics can be described by a superpotential and

Kahler potential. The superpotential takes the form:

W = MG(z) − Kτz − K ′τh(z) (3.11)

where M is the RR three-form flux along the A cycle associated with the conifold; K is the

NS-NS three form flux along the corresponding B cycle; and K ′ is the flux along some other

cycle, B′. The function G has the form:

G(z) =
z

2πi
ln(z) + G(0) + f(z) (3.12)

where f(z) is a holomorphic function of z which vanishes as z → 0. The Kahler potential

K = −3 ln(ρ − ρ∗) − ln(τ − τ∗) + f(z, z∗) (3.13)

where f(z, z∗) is a finite function of z which tends to a constant as z → 0.
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For suitable choices of flux, the equations for supersymmetric stationary points of z and τ

have solutions with z small and τ large:

z = exp(
2πK Im τ

M
) Imτ = −MG(0)

K ′h(0)
. (3.14)

As noted above, at these points, ρ is undetermined and the potential, classically, vanishes. For

large ρ, the gravitino mass is small and one can argue that the computation is self-consistent.

The masses of the lightest Kaluza-Klein modes are of order

m2
KK ∼ 1

ρ2
, (3.15)

where this, which is expressed in four dimensional Planck units, applies in the limit of large ρ

and moderate z.

The masses of the gravitino, m3/2, is of order:

m2
3/2 ∼ |MG(0)|2ρ−3gs, (3.16)

justifying the use of a the supersymmetric lagrangian, for large ρ (and/or small z). The masses

of z and τ are of order:

m2
τ ∼ |MG(0)|2 gs

ρ3
m2

z ∼ M2 gs

ρ3z2
. (3.17)

So the inclusion of τ in the low energy effective lagrangian is sensible; for fixed ρ, however, z

becomes massive as z → 0, and a more careful analysis seems required. We will proceed without

worrying about this potential subtlety, as we will be generally interested in rough scalings of

tunneling amplitudes, in any case.

3.3.1 Tensions and Cosmological Constants

The vacua in this leading approximation are all degenerate (zero cosmological constant), so

this model is not useful for discussing tunneling amplitudes. As a toy model, we can consider

a theory without ρ, with minima which are supersymmetric and AdS. However, because of

supersymmetry, there is still no tunneling between the vacua. The model is useful, however,

for studying how domain wall tensions and vacuum energies (cosmological constants) scale with

flux, and also how warping effects these quantities. Without ρ (or with ρ fixed), the domain

wall tension between vacua of different flux is[49]:

T = 2∆|eK/2W |. (3.18)

We can consider various types of transitions. For transitions with ∆M = ±1, the tension is

given by

T ≈ 2

∣∣∣∣G(0)eK/2 + eK/2(K ′h(0) − 1

2τ
[MG(0) + τK ′(0)])∆τ

∣∣∣∣ (3.19)
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∼ 2|G(0)|ρ−3/2g1/2
s .

Where we used that at the minima τ = −τ̄ and neglected contributions of order z. This is

in accord with the general scaling arguments of section 3.2; the tension is of order one, if all

fluxes are scaled uniformly. In addition, in the theory absent ρ, the change in the cosmological

constant is of order M , again in accord with our general scaling arguments.

For those with ∆K ′ = ±1, the tension is of order:

T ∼ M/K ′ρ−3/2g1/2
s . (3.20)

Again, if all scales become uniformly large, this is in accord with our earlier arguments. Inter-

estingly, however, for small string coupling, this is enhanced relative to the ∆M = 1 transitions.

The change in the cosmological constant is of order

M2/K ′ρ−3gs. (3.21)

Finally, changes in K are associated with domain walls with tension suppressed by z, and with

changes in cosmological constant similarly suppressed.

3.3.2 GKP As a Prototype for Non-Supersymmetric Scalings

Because of the supersymmetry of the GKP solution, without ρ, or the degeneracy with ρ,

semiclassically there is no tunneling. But we have seen that the domain wall tension and energy

splittings behave as expected for theories without supersymmetry, so we can use the GKP

solution as a model for transitions among non-supersymmetric states. We would then expect

that tunneling amplitudes would behave roughly as e−Sb , where Sb ∼ T 4/∆E3. So, for example,

for the for transitions with ∆M = 1, we would have, for the bounce action:

Sb =
e−K

M3
∼ V 2τ

M3
∼ V 2

M2K ′ . (3.22)

Here we have used the flux dependence of τ , eqn. 3.14 This flux and volume behavior is as we

anticipated in section 3.2, in the sense that it involves three powers of flux in the denominator,

though one of these factors is the small (NS-NS) flux.

In any case, this model is compatible with our naive estimates: obtaining a large set of

metastable non-supersymmetric compactifications would seem to require that the volume scale

as a power of the flux. Following our discussion in section 3.2, we would expect that, while

in general, gravitational corrections are important and might suppress the decay amplitude in

some cases, this is not the case if the initial state has small cosmological constant.
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This has a close parallel to the field theory discussion along the lines of [46, 47]. For the

case of a change of one unit of RR flux, the expanding bubble can be thought of as a wrapped

D5 brane. Three of the directions along the brane are wrapped on a three cycle; the remaining

two dimensions correspond to the bubble wall. Of the four collective coordinates of the brane,

three are located at a point on the internal manifold; the remainder is the coordinate, R(t),

describing the wall surface. The tension of the D5 brane is just the tension we identified before:

T =
1

gs
M6

s (R3M3
10)M

−3
10 (3.23)

=
1

gs
ρ−3/2M3

p

which is what we found from the heuristic field-theoretic argument.

We need, also, to worry about conservation of D3 brane charge. In general, transitions

involving changes in flux will involve emission of D3 branes, as well. We won’t consider this

problem in detail. However, for special cases (those for which
∫

H ∧F vanishes), there need be

no D3 brane emission. In cases where there is brane emission, the energetics are the same as

suggested by the field theory arguments. For a change in K of order one, one needs a change

in the D3 brane density of order M . Wrapped D3 branes have tension (mass) of order 1/gsMp

(independent of ρ), so the energy density is of the same order as the change in energy due to

the change in flux. So we expect that our estimates of tunneling rates above are still correct.

3.4 Tunneling From Approximately Supersymmetric Vacua

From the point of view of stability, supersymmetric vacua are special. According to quite general

arguments, they are stable. This is perhaps surprising, since in supergravity it is perfectly

possible for a lagrangian to exhibit a supersymmetric state (say with vanishing cosmological

constant) and a non-supersymmetric state with large, negative cosmological constant. In such

a case, one does not expect, for example, a BPS domain wall.

The essential point was made by Deser and Teitelboim[50], Witten[52], Hull[51] and others

long ago. They noted that in a classical supergravity theory in an asymptotically flat space,

one can define not only a total energy and momentum, but also global supercharges. These

obey the standard supersymmetry algebra, so, just as is familiar in global supersymmetry, the

energy of any configuration can be shown to be greater than or equal to zero. (This is a special

case of the positive energy theorem.)

The stability of exactly supersymmetric states may or may not be of interest, but clearly the

stability of approximately supersymmetric states is of great potential importance. Suppose the
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scale of supersymmetric breaking, F , is small compared to the Planck scale and other possible

scales of interest (string scale, compactification scale). Then the decay probability behaves as

Γ ∼ e−1/|F |2 (3.24)

or vanishes. It is only non-vanishing if susy breaking in the AdS state is comparable or smaller

than that in the approximately flat space state.

3.4.1 Models

These features of decays of (nearly) supersymmetric states can be illustrated with simple models.

Consider, first, a theory of a single scalar field, φ, with superpotential:

W =
1

2
Mφ2 − 1

3
γφ3. (3.25)

Before coupling to gravity, this theory has supersymmetric minima at

φ0 = 0; φ0 =
M

γ
. (3.26)

These can be joined by a domain wall, with tension:

T = 2∆W. (3.27)

Now couple the system to (super)gravity, with M ≪ Mp. In this case, the domain wall tension

is approximately unchanged, but there is a splitting between the states,

∆E = 3
|∆W |2

M2
p

(3.28)

∆E is small compared to the scales in the superpotential, so a thin wall approximation is

appropriate. The bubble radius is, again,

Rb =
3T

∆E
(3.29)

As explained by Coleman and De Luccia, the decay amplitude vanishes if

Rb

Λ
= 2 (3.30)

and precisely this condition is satisfied in this model.

Now let’s add supersymmetry breaking to the mix. This can be done by adding an additional

chiral field, Z, and taking for the superpotential:

W =
M

2
φ2 − γ

3
φ3 + Zµ2 + W0. (3.31)
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The Z field can be stabilized in both vacua by adding a term Z†ZZ†Z to the Kahler potential.

W0 is chosen so that the φ = 0 state has zero cosmological constant:

3|W0|2 = |µ4|. (3.32)

Note that the phase of W0 is not fixed by this condition.

For this system, the bubble wall tension is approximately as it was in the previous case, but

the energy shift is different. Calling the original shift ∆E0, the shift is larger or smaller by an

amount of order FM3/(γ2Mp), depending on the sign of W0. In the latter case, the amplitude

vanishes; in the former, it is of order

Γ ≈ e−6π2M4

p/|F |2 . (3.33)

Note that even for moderately small F (in whatever are the appropriate units) and in the

presence of an exponentially large number of decay channels, the decay rate is extremely small.

We might expect that |F | ∼ 10−3 M2
p would more than adequately suppress the decay rate.

The implications of this observation for a possible prediction of low energy supersymmetry will

be discussed in the conclusions.

3.5 Large volume, Weak Coupling, Light Moduli and Warping

From our studies of the GKP model, we can already see that weak string coupling, by itself, does

not insure stability. However, a combination of weak coupling and large volume does. What is

required is that there be a large number of states whose volume scales with a power (3/2) of

the flux. One suspects, more generally, that whatever is the parameter(s) which account for the

exponentially large number of states, the volume must scale with a power of this parameter.

In the IIB constructions which have been studied, the fixing of the volume is not well un-

derstood (except in special cases which have exact or approximate low energy supersymmetry).

In IIA theories, however, candidate vacua have been identified with all moduli fixed[7, 40]. In

these cases, one has an infinite sequence of AdS vacua, with or without supersymmetry, with

progressively larger volume and smaller cosmological constant. We can again take these as a

model, supposing that there exists a set of dS vacua with similar scalings, and ask how the

tunneling amplitudes would behave.

Without reviewing the IIA models in detail, we note that the important large number in

these constructions is the four-form flux, which we will refer to generically as N . As in the

IIA case, the action scales as N2. At the minimum, one finds that the the volume, v, and the
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dilaton, eφ, scale as

v ∼ N3/2 eφ ∼ N−3/4 (3.34)

and the cosmological constant behaves as N−9/2. As a result, the tension of the bubble walls

and the energy splittings between states behave as

T ∼ N−13/4 ∆E ∼ N−11/2 (3.35)

giving a result for the bounce action which grows rapidly with N :

Sb ∼ N3.5. (3.36)

Another model for scaling with volume is provided by the proposal of Silverstein and Saltz-

man to compactify string theory on products of Riemann surfaces[41]. Again, without reviewing

the details of the model, there are various numbers, such as 5-form flux, q5, which can become

large, accounting for the large number of states, many of which are believed to be de Sitter.

The volume, in this case, scales as q3
5 , while the vacuum energy scales as V −4/3. So again the

bounce action grows as a power of the large parameter.

Both of these models suggest that if there do exist large sets of de Sitter vacua with growing

volume and decreasing cosmological constant, they are likely to be highly metastable.

Warping, on the other hand, does not seem, by itself, to lead to suppression of tunneling

rates, as we see from the GKP model. One might have expected this in any situation where

there are large numbers of fluxes. The GKP construction suggests that warping is obtained by

tuning some set of fluxes on cycles associated with the warp region; changing far away fluxes,

then, may be possible without spoiling this feature. Formulas 3.19-3.21 exhibit no singular

dependence on z.

3.6 Tunneling from states with Light Moduli

Supersymmetric vacua with moduli are very familiar. Much of the recent focus on flux vacua is

motivated by the observation that these have few or no light moduli. Still, we might speculate

that there exist classes of non-supersymmetric vacua with comparatively light pseudomoduli.

Those with small cosmological constant would likely have neighbors with negative cosmological

constant, and no moduli at all.

One can ask whether the presence of light moduli would somehow suppress tunneling. In

the standard treatment (we will ignore the effects of gravity in this section) one needs to study

an analog problem, the motion of a particle in a potential, with boundary conditions that in
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the far future, the system settle into the false minimum of the potential. One might hope that

the light field would only slowly settle into its minimum, giving rise to a large bounce action.

This turns out not to be the case, in general.

In the transition, one expects a significant rearrangement of the degrees of freedom. The

final state in the transition likely will have no light fields, or at least different numbers of them.

High energy string states in one vacuum might be relatively light states in another. To develop

some intuition, we consider a field theory with two fields, X and φ. φ is light in the “false”

vacuum but heavy in the “true” vacuum; X is heavy in both. For the potential we take:

V =
1

2
µ2φ2 +

M2

2
X2 − 1

4
X4 +

Γ

6
X6 + ǫX2(φ − φ0)

2. (3.37)

The idea here is that µ is extremely small compared to M , Γ, which define mass scales of

the same order. To permit simple calculations, we can take ǫ to be a small number. Γ is chosen

so the vacuum with X 6= 0 has lower energy than the X = 0 vacuum. Again, to allow simple

approximations, we can tune Γ so that the energy difference between the X = 0 vacuum and

the X 6= 0 vacuum is, say, of order ǫM4.

For small ǫ, we can consider first the dynamics of X by itself. We will also ignore gravity

at first. This is then a standard thin wall tunneling problem. The bounce has a size of order

r0 = t0 = 1/(ǫM), where r0 is meant to denote the bubble radius and t0 denotes the typical

time in the analog particle problem. In the particle analogy with inverted potential, X starts

extremely close to the top of the hill (the true vacuum),

X − X0 ∼ Me−Mt0 . (3.38)

It then rolls quickly to the false vacuum. As it approaches the false vacuum (X = 0), it behaves,

again, as

X ∼ Me−M(t−t0). (3.39)

For sufficiently large time (M(t − t0) = − ln(ǫ)), ǫX2 ≈ µ2. Until that time, the minimum of

the φ potential lies at φ0. In the inverted problem, φ0 then rolls away from that point (towards

the origin).

Note, however, that this time is much smaller than µ−1 (it is also smaller than r0). So φ

satisfies the equation:

φ̈ +
3

t
φ̇ = 0. (3.40)

This has solutions φ = 1/t2 + constant. By tuning the initial conditions, one can arrange that

φ < µ in a time much less than µ−1; for such motions, there is no enhancement of the bounce

action.
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3.7 Implications and Speculations

From this survey, we have concluded that generic, metastable states, are likely to satisfy special

conditions. We have identified two possibilities:

1. (Approximate) Supersymmetry at scales well below the fundamental scale.

2. Compactification radii much larger than the string scale

and ruled out several others.

The strongest indication for the existence of large numbers of large volume, dS states comes

from the work of [41], but the work of [42, 7] is also suggestive. For many of these constructions,

there are good reasons for skepticism (see, e.g., [6], though it should be noted that there are

also reasons to be skeptical of supersymmetric constructions). Even if such states exist, it

is conceivable that many are in some sense uninteresting, since coupling constants become

small in the large volume limit. If, in the end, the explanation of hierarchy is the existence

of a vast array of non-supersymmetric states (with large volume or some other feature which

accounts for metastability), the question will be: are these states distinguished in some other

way? Otherwise, observations of phenomena at accelerator energies will provide us with no

information about physics at extremely high energies.

One might speculate that there do not exist such large sequences of large volume compactifi-

cations, no some other generic vast class of non-supersymmetric metastable dS states. Stability

might favor low energy supersymmetry. It is then interesting to ask whether among these states,

there might be further selection effects.

3.7.1 R Symmetric Points as Cosmological Attractors

Having established that some set of states are metastable, it is natural to ask whether the

universe might find its way into them. To address this issue, the first task is to survey the

neighborhood of some particular state (or class of states) of interest. Let’s begin with the KKLT

vacua. It seems likely that these are surrounded by AdS vacua, largely non-supersymmetric.

From our arguments above, the KKLT vacua are likely stable against decays to these states.

Because of these many AdS states, transitions into the KKLT vacua might be difficult.

A potentially interesting set of states are those which exhibit discrete R symmetries. Such

states are likely rare in the landscape[53], but their neighborhoods may be more interesting. In

general, one finds such states by setting to zero all fluxes which transform non-trivially under

the candidate symmetry. Typically, this is a substantial fraction of the fluxes – 2/3 or more.
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Arguably this is what one expects for symmetric states: they are special and thus rare. But

the idea that cosmological considerations (e.g. high temperatures) can favor symmetric states

is familiar. For the flux lattice, things cannot be so simple; we are concerned about discrete

transitions. But it seems possible that such symmetric states might be cosmological attractors.

Consider the neighborhood of the R symmetric states, i.e. states for which the symmetry

preserving fluxes, Ni, are large, while those which break the symmetry are much smaller, say

nα. Similarly, there are fields, Zi, which transform like W at the R symmetric point, and fields,

φa, which transform differently. At the R symmetric point, there is a superpotential:

W = Zif
i(φa, Zi) (3.41)

The condition for unbroken supersymmetry is:

Zi = 0; fi(φa, 0) = 0. (3.42)

Provided there are more φa type fields then Zi fields, these equations, generically, possess a

moduli space of solutions.

Now treat Ni and nα as sufficiently large that they can be thought of as continuous, with

|Ni| ≫ |nα|, for all i and α. As we turn on small nα we can study an effective lagrangian

for the light moduli of the symmetric vacuum. There is no reason to think that the structure

of stationary points of the effective lagrangian for this potential is different than the general

(non-R) case. So there will typically be solutions with broken supersymmetry, and positive

or negative cosmological constant[42]. Introducing polar coordinates, ~n = (n, θ1, θ2, . . . ). The

cosmological constant, as a function of ~n, then has the structure:

Λ(~n) = n2v(θi). (3.43)

It is then plausible that there are finite elements of “solid angle” with either sign of the cosmo-

logical constant, and in particular finite regions with positive cosmological constant and energy

tending to zero as n → 0. For these regions, the symmetric state may function as a cosmological

attractor. Since most “jumps” will be very rapid, it is perhaps appropriate to think of ~n as a

collective coordinate, and the motion in this space as reasonably smooth. Note that in the last

few transitions, the continuous approximation for n will break down, and there may be AdS

states close to the symmetric point, which may have catastrophic consequences for a particular

decay chain. But it is at least plausible that finite domains of the landscape are attracted to R

symmetric vacua.
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3.7.2 Implications of Stability

Of cosmological issues within the landscape, metastability is the simplest criterion which states

must satisfy. Of generic features of landscape states, we have seen that only large volume, or ap-

proximate supersymmetry, seem to result in some degree of metastability. It is conceivable that

we could settle the question of whether vast arrays of large volume, non-supersymmetric states

exist in an underlying theory of gravity. As we have noted, if they do, and they are otherwise

undistinguished, it is unclear how one might imagine developing a string phenomenology. Not

only would we fail to make predictions, e.g. for LHC physics, but we would not know how to

interpret LHC outcomes. If not, however, low energy supersymmetry would seem a prediction

of string theory.

We should stress, of course, that stability, by itself, does not imply weak scale supersymmetry.

A quite high scale of supersymmetry breaking will insure an adequate level of stability. However,

within the supersymmetric branches of the landscape, the scale of supersymmetry breaking is

likely flat on a log scale[39]. So, just as expected from conventional naturalness arguments, light

Higgs should arise with low supersymmetry breaking scale.

We have gone further, examining the neighborhood of the KKLT vacua, as well as sets of

vacua with approximate R symmetries, suggesting reasons why cosmology might favor the later.

These remarks are on far shakier ground, but are worthy of further study.
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Chapter 4

Metastable supersymmetry breaking and Vscape

4.1 Introduction

In this chapter we will discuss in detail our work published in [54].

The requirement that supersymmetry is broken at the global minima in field theories with

dynamical supersymmetry breaking[55] puts tight constraints on model building. Recently, dy-

namical supersymmetry breaking in metastable vacua has attracted attention as a promising

phenomenological possibility. This greatly simplifies the model building problems. The meta-

stable states are viable candidates to describe our world, when the tunneling probability to the

supersymmetric ground state is highly suppressed. As argued in [2], metastable vacua might

be quite generic in supersymmetric theories[56][57]. With some mild assumptions, low energy

supersymmetry breaking even requires our world as we know it to be a long lived metastable

state[58]. From the string theory point of view, non-supersymmetric flux compactifications

might also be rather generic in the landscape of vacua[59].

An important role in studying the moduli space of supersymmetric theories is played by the

one-loop effective potential of the field theory. The classical (pseudo)moduli space can contain

flat directions. The one-loop corrections often lift those pseudomoduli directions of the classical

theory, thus creating isolated (meta)stable vacuum. Generically, several fields will have vacuum

expectation values (vevs) at those local minima. The important phenomenological objective

is then to create models that communicate this dynamical breaking of supersymmetry to the

supersymmetric standard model such that one gets attractive superpartner spectra[60].

The computation of the Coleman-Weinberg potential[61] in realistic models often becomes

rather involved as the mass matrices become large and one can expect several fields to gain vevs.

Even for symbolic software package, multiple diagonalization of large mass matrices is rather

time consuming, while numerical packages usually do not provide the flexibility of working with

symbolic formulas. Vscape aims to bridge this gap between symbolic and numerical packages.

The flexibility of the Vscape users interface gives the user the freedom to define the physics of the

model symbolically, while the computationally intensive evaluations of the Coleman-Weinberg
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potential rely on fast numerical C++ routines.

In addition Vscape provides the necessary tools to analyse a metastable vacuum once one is

found. Commands are provided to compute the mass spectrum at the local minimum. Those

results can then be used as input data for a spectrum generator such as SOFTSUSY[62]. Vscape

has a command implemented with allows for the creation of files formatted according the Model

Input File standard described in the Les Houches Accord 1.0. to supply the high energy input

to the spectrum generator.

The code for Vscape was written in object-oriented C++ since this language compiles to

speed efficient programs, allowing for fast diagonalization of large matrices for the Coleman-

Weinberg potential. Using C++ also has the advantage that an extensive collection very pow-

erful, mathematical libraries are freely available. Vscape makes use of the recent libraries GSL

[63], GiNaC and CLN [64]. Vscape also has Tab-completion build in, if one has the readline

library installed. The program can freely be downloaded and installed from either:

http://www.physics.rutgers.edu/~korneel/vscape/vscape.html

or

http://projects.hepforge.org/vscape/

Detailed installation instruction (Linux and Windows) can also be found there. Updates and

fixes of possible errors will also appear on those websites.

In section 4.2, we briefly introduce the physics behind the commands of Vscape. We then

give a short account on how the program is structured in section 4.3. Section 4.4 lists several

possibilities for further extensions of the program. Appendix 4.5 and 4.6 contain the detailed

syntax and functionality of all the commands understood by Vscape. Section 4.6.8 discusses

the precision of the numerical computations, while section 4.6.9 lists the commands to change

the control parameters of the program to influence the algorithms underlying the program.

4.2 Physics Overview

4.2.1 The supersymmetric model of chiral fields

The current version of Vscape allows one to study various N = 1 supersymmetric models with

chiral fields[65]. The user defines the model by specifying the parameters and chiral fields φi

of the model. In addition, one has to specify the subset of fields which are a priori allowed

to obtain a vev for their scalar component. Let us denote this subset of background fields as
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ϕi, while we will use the symbol ϕ̃n for the fields that are not allowed to get a scalar vev.

The model is then defined through the superpotential W and the D-term potential VD. The

D-term potential is only taken into account in the tree level potential1. The current version of

the program does not include terms from vector multiplets in the Coleman-Weinberg potential

computation. The program assumes a canonical Kähler potential,

K = Tr φ†φ . (4.1)

When a new model is loaded, the program computes and stores the following information

symbolically:

V0 = W ∗
i |ϕ̃n=0 W i

∣∣
ϕ̃n=0

+ VD|ϕ̃n=0 (4.2)

(Fterms)i = Wi|ϕ̃n=0 (4.3)

(mF)ij = Wij |ϕ̃n=0 (4.4)

(mB)ij = W ∗
ijkW k

∣∣
ϕ̃n=0

(4.5)

where an index i to the superpotential W stands for a derivative with respect to field φi. The

|ϕ̃n=0 indicates that the fields that are not allowed to get a vev by the user, are set to zero in

the expression. The commands detailed in section 4.6.2 give you access to this information.

4.2.2 Coleman-Weinberg computation

To compute the Coleman-Weinberg potential, the numerical values for the vevs and parameters

are substituted into the matrices mF and mB. The program then constructs the numerical

mass squared matrices

M †
1/2M1/2 = W ∗

jkW ik (4.6)

M2
0 =


 W ∗

jkW ik W ∗
ijkW k

W ijkW ∗
k W ∗

ikW jk


 (4.7)

The mass squared eigenvalues of these matrices, (m2
1/2)i and (m2

0)i respectively, are computed

and substituted in the Coleman-Weinberg formula[61]

Vcw =
1

64π2

(
∑

i

(m2
0)

2
i ln(m2

0)i − 2
∑

i

(m2
1/2)

2
i ln(m2

1/2)i

)
. (4.8)

1We include the D-terms in the tree level potential to accomodate models like [66] where the hidden sector
itself does not have a D-term potential but where the Supersymmetric Standard Model (SSM) sector does
contribute D-terms to the tree level potential. This also allows us to described the metastable vacua of the
models studied in [2] where the theory is gauged, but the effect of the gauge fields drops out of the one-loop
correction.
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The effective potential is thus a function of the vevs of the background fields ϕi. Notice that the

program implicitly fixes the renormalization scale at 1, in whatever units the model is defined.

To check the proper functioning of the Coleman-Weinberg computation, Vscape allows to

check the supertrace of the tree-level squared mass matrices. The supertrace is computed

completely analogous to the Coleman-Weinberg potential, in that the eigenvalues of the matrices

(4.6) and (4.7) are computed. The eigenvalues are then substituted in the formula:

STr(M2) =
∑

i

(m2
0)i − 2

∑

i

(m2
1/2)i . (4.9)

4.2.3 Metastable vacua

Vscape contains several commands to scan for local minima on the one-loop effective potential

surface. Once a local minima of the effective potential is found, one can compute the one-loop

corrected masses at the minima from:

Veff |min = Veff |min +
1

2
Hij |min ϕiϕj + . . . (4.10)

where Hij is the Hessian matrix. The eigenvalues of the Hessian are the mass squareds of

the associated mass eigenstates. The mass squared eigenvalues allow you to verify (within

error bounds, see section 4.6.8) whether the minimum is indeed stable. Depending on the setup

studied, the actual mass squared eigenvalues can be used as input parameters for SSM spectrum

generators.

4.3 Structure of the program

The physics of the supersymmetric model is entirely encoded in the class CModel which is

defined in the files phenomodel.h and phenomodel.cc. CModel has several routines relying on

symbolic computations using the GiNaC library while other GSL-based routines are numerical.

The user-interface of Vscape was build on ginsh, the interactive frontend for the GiNaC

symbolic computation framework [64]. This lightweight package for symbolic computations

provided the appropriate user-interface to communicate between the phenomenological model

and the user. We slightly extended the commands of the original ginsh application, to fit our

needs.

Ginsh is implemented using the tools flex and bison which provide the detailed code for

the lexer which reads the input (ginsh_lexer.ll) and parser which interprets the input

(ginsh_parser.yy). Ginsh contains several commands, which are not related to the under-

lying phenomenological model. Those commands are detailed in Appendix 4.5.
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The original ginsh implementation allowed for additional commands to be added by other

programmers in the separate file ginsh_extensions.h. The commands that specifically re-

late to the phenomenological model are defined in vscape.h and vscape_functions.h. They

are included via ginsh_extensions.h. The shorter functions are implemented in vscape.h

while the longer, mathematically involved algorithms such as minimization, are implemented in

vscape_functions.h. Appendix 4.6 details the specific commands which allow you to interact

with the phenomenological model CModel.

4.4 Outlook

This project grew out of a program written to study the Pentagon Model [66] [67]. Originally, the

definition of the model was hardwired into the code. The added symbolic interface of Vscape

gives the user the freedom to define the physics of the model her/himself. The commands

available in Vscape provide the functionality that we needed to study the Pentagon Model.

There are several additional features which might be interesting to include.

• Including vector multiplets in the computation of the Coleman-Weinberg potential.

• Allowing for a more general Kähler potential instead of the currently assumed canonical

one.

• Specific commands to study the barrier heights and associated tunneling probabilities.

• Extending the user interface by introducing indexed symbols and control flow statements

such as if-then statements and loops.

• Faster symbolic-numeric interface (technical extension). Currently the interface between

the symbolic library GiNaC and the numeric library GSL is based on the GiNaC subs()

command, which is rather time consuming. One could create a derived class of the GiNaC

numeric class, which stores numerical data as actual C++ doubles. The implementation

of the automatically invoked eval() command in the class should then take care of numeric

evaluation, without having to do explicit subs() command. GSL could then manipulate

directly on the doubles of this class.

4.5 General Symbolic Commands

In this section, we detail the general math commands known to the Vscape. It is a slightly

extended set of the original ginsh commands. The original manual of ginsh can be found as the
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linux ginsh manual.

4.5.1 Running Vscape

You run Vscape by typing

./Vscape [file ...]

where the list of files is optional. Vscape will first attempt to read and interpret the commands

from the file(s). When no files were specified or all the commands in the files have been executed,

Vscape displays a prompt (> ) signifying that it is ready to accept your input. Acceptable input

are numeric or symbolic expressions consisting of numbers (e.g. 42, 2/3 or 0.17), symbols

(e.g. x or result), mathematical operators like + and *, and functions (e.g. sin or normal).

Every input expression must be terminated with either a semicolon (;) or a colon (:). If

terminated with a semicolon, Vscape will evaluate the expression and print the result to stdout.

If terminated with a colon, Vscape will only evaluate the expression but not print the result. It

is possible to enter multiple expressions on one line. Whitespace (spaces, tabs, newlines) can be

applied freely between tokens. To quit Vscape, enter quit or exit, or type an EOF (Ctrl-D)

at the prompt.

4.5.2 Comments

Anything following a double slash (//) up to the end of the line, and all lines starting with a

hash mark (#) are treated as a comment and ignored.

4.5.3 Numbers

Vscape accepts numbers in the usual decimal notations. This includes arbitrary precision in-

tegers and rationals as well as floating point numbers in standard or scientific notation (e.g.

1.2E6). The general rule is that if a number contains a decimal point (.), it is an (inexact)

floating point number, otherwise it is an (exact) integer or rational. Integers can be specified in

binary, octal, hexadecimal or arbitrary (2-36) base by prefixing them with #b, #o, #x, or #nR,

respectively.

4.5.4 Symbols

Symbols are made up of a string of alphanumeric characters and the underscore (_), with the

first character being non-numeric. E.g. a and mu_1 are acceptable symbol names, while 2pi is
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not. It is possible to use symbols with the same names as functions (e.g. sin), Vscape is able

to distinguish between the two.

Symbols can be assigned values by entering

symbol = expression

To unassign the value of an assigned symbol, type

unassign(’symbol’);

Assigned symbols are automatically replaced by their assigned value when they are used. To

refer to the unevaluated symbol, put single quotes (’) around the name, as demonstrated for

the unassign command above.

Symbols are considered to be in the complex or real domain depending on the mode in which

they were defined. If the program is in the complex mode, every new symbol that has not been

used before during the session is considered to be complex. If the program is in the real mode,

every newly encountered symbol is considered to be real. The mode of the program only affects

newly defined symbols. Thus when the program is in the real mode, symbols that were defined

previously in the complex mode, remain complex. This mode of the program is switch using

the keywords real_symbols and complex_symbols. The program is in the complex mode by

default.

The following symbols are pre-defined constants that cannot be assigned a value by the user:

Pi Archimedes’ Constant

Catalan Catalan’s Constant

Euler Euler-Mascheroni Constant

I imaginary unit i

FAIL an object of the GiNaC ‘fail’ class

There is also the special

Digits

symbol that controls the numeric precision of calculations with inexact numbers. Assigning an

integer value to digits will change the precision to the given number of decimal places.

4.5.5 Wildcards

The has(), find(), match() and subs() functions accept wildcards as placeholders for expres-

sions. These have the syntax
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$number

for example $0, $1 etc.

4.5.6 Last printed expressions

Vscape provides the three special symbols

%, %% and %%%

that refer to the last, second last, and third last printed expression, respectively. These are

handy if you want to use the results of previous computations in a new expression.

4.5.7 Operators

Vscape provides the following operators, listed in falling order of precedence:

! postfix factorial

^ powering

+ unary plus

- unary minus

* multiplication

/ division

+ addition

- subtraction

< less than

> greater than

<= less or equal

>= greater or equal

== equal

!= not equal

= symbol assignment

All binary operators are left-associative, with the exception of ^ and = which are right-associative.

The result of the assignment operator (=) is its right-hand side, so it’s possible to assign multiple

symbols in one expression (e.g. a = b = c = 2;).
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4.5.8 Lists

A list consists of an opening curly brace ({), a (possibly empty) comma-separated sequence of

expressions, and a closing curly brace (}). A list is not a set in that it can contain several times

the same element (e.g. {1,2,3,4,3,3,x^2}).

4.5.9 Matrices

A matrix consists of an opening square bracket ([), a non-empty comma-separated sequence of

matrix rows, and a closing square bracket (]). Each matrix row consists of an opening square

bracket ([), a non-empty comma-separated sequence of expressions, and a closing square bracket

(]). If the rows of a matrix are not of the same length, the width of the matrix becomes that

of the longest row and shorter rows are filled up at the end with elements of value zero.

4.5.10 Functions

A function call in Vscape has the form

name(arguments)

where arguments is a comma-separated sequence of expressions. Vscape provides a couple of

built-in functions and also ‘imports’ all symbolic functions defined by GiNaC and additional

libraries. There is no way to define your own functions other than linking Vscape against a

library that defines symbolic GiNaC functions.

Vscape provides Tab-completion on function names: if you type the first part of a function

name, hitting Tab will complete the name if possible. If the part you typed is not unique,

hitting Tab again will display a list of matching functions. Hitting Tab twice at the prompt

will display the list of all available functions.

A list of the built-in functions follows. They nearly all work as the respective GiNaC

methods of the same name, so I will not describe them in detail here. Please refer to the GiNaC

documentation.

append(list1, list2)

appends list2 to list1

charpoly(matrix, symbol)

characteristic polynomial of a matrix

coeff(expression, object, number)

extracts coefficient of object^number from a polynomial
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collect(expression, object-or-list)

collects coefficients of like powers (result in recursive form)

collect_distributed(expression, list)

collects coefficients of like powers (result in distributed form)

collect_common_factors(expression)

collects common factors from the terms of sums

conjugate(expression)

complex conjugation

content(expression, symbol)

content part of a polynomial

decomp_rational(expression, symbol)

decompose rational function into polynomial and proper rational function

degree(expression, object)

degree of a polynomial

denom(expression)

denominator of a rational function

determinant(matrix)

determinant of a matrix

diag(expression...)

constructs diagonal matrix

diff(expression, symbol [, number])

partial differentiation

divide(expression, expression)

exact polynomial division

eigenherm(matrix)

compute the eigenvalues and eigenvectors of an n by n hermitian matrix M of num-

bers. The function returns a list with a 1 by n matrix of eigenvalues fol-

lowed by the n by n unitary matrix were each column is an eigenvec-

tor. The columns of eigenvector are ordered in the same way the eigenvalues ap-

pear in the 1 by n matrix. Note: this is a numerical command, it does not accept ex-

pressions that cannot be evaluated numerically. The command works with double preci-

sion internally.

eigensymm(matrix)
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compute the eigenvalues and eigenvectors of an n by n real symmetric ma-

trix M of numbers. The function returns a list with a 1 by n matrix of eigenval-

ues followed by the n by n orthogonal matrix were each column is an eigenvec-

tor. The columns of eigenvector are ordered in the same way the eigenvalues ap-

pear in the 1 by n matrix. Note: this is a numerical command, it does not accept ex-

pressions that cannot be evaluated numerically. The command works with double preci-

sion internally.
eval(expression [, level])

evaluates an expression, replacing symbols by their assigned value

evalf(expression [, level])

evaluates an expression to a floating point number

evalm(expression)

evaluates sums, products and integer powers of matrices

expand(expression)

expands an expression

find(expression, pattern)

returns a list of all occurrences of a pattern in an expression

fsolve(expression, symbol, number, number)

numerically find rootof a real-valued function within an interval

gcd(expression, expression)

greatest common divisor

has(expression, pattern)

returns ‘1’ if the first expression contains the pattern as a subexpression, ‘0’ otherwise

importfile(filename)

read commands from filename. Note that this command cannot be nested in files.

integer content(expression)

integer content f a polynomial

inverse(matrix)

inverse of a matrix

is(relation)

returns ‘1’ if the relation is true, ‘0’ otherwise (false or undecided)

lcm(expression, expression)

least common multiple

lcoeff(expression, object)
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leading coefficient of a polynomial

ldegree(expression, object)

low degree of a polynomial

lsolve(equation-list, symbol-list)

solve system of linear equations

map(expression, pattern)

apply function to each operand, the function to be applied is specified as a pat-

tern with the ‘$0’ wildcard standing for all the operands
match(expression, pattern)

check whether expression matches a pattern

returns a list of wildcard substitutions or ‘FAIL’ if there is no match

minus(list1, list2)

returns the set-theoretic difference of list1 and list2

nops(expression)

number of operands in expression

normal(expression [, level])

rational function normalization

numer(expression)

numerator of a rational function

numer_denom(expression)

numerator and denumerator of a rational function as a list

op(expression, number)

extract operand number from expression, can also be used to get elements in a matrix

power(expression1, expression2)

exponentiation (equivalent to writing expression1^expression2 )

prem(expression, expression, symbol)

pseudo-remainder of polynomials

primpart(expression, symbol)

primitive part of a polynomial

quo(expression, expression, symbol)

quotient of polynomials

rank(matrix)

rank of a matrix

rem(expression, expression, symbol)
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remainder of polynomials

resultant(expression, expression, symbol)

resultant of two polynomials with respect to symbols

rnd(number1, number2)

generate a random number with double precision with uniform distribution within the in-

terval [number1, number2]
save(filename[, string] [, expression])

open filename and append string and/or expression; to file

series(expression, relation-or-symbol, order)

series expansion

sprem(expression, expression, symbol)

sparse pseudo-remainder of polynomials

sqrfree(expression [, symbol-list])

square-free factorization of a polynomial

sqrt(expression)

square root

symbolicmatrix(integer1, integer1, symbol)

create an integer1 by integer2 matrix with entries symbol XX

subs(expression, relation-or-list)

subs(expression, look-for-list, replace-by-list)

substitute subexpressions (you may use wildcards)

tcoeff(expression, object)

trailing coefficient of a polynomial

time(expression)

returns the time in seconds needed to evaluate the given expression

trace(matrix)

trace of a matrix

transpose(matrix)

transpose of a matrix

unassign(symbol)

unassign an assigned symbol

unit(expression, symbol)

unit part of a polynomial

unique(list)
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removes all multiple occurrences of expressions in the list

4.5.11 Special Commands

To exit Vscape, enter quit or exit. Vscape can display a (short) help for a given topic (mostly

about functions and operators) by entering ?topic. Typing ?? will display a list of available

help topics. The command

print(expression);

will print a dump of GiNaC’s internal representation for the given expression. This is useful for

debugging and for learning about GiNaC internals. The command

print_latex(expression);

prints a LaTeX representation of the given expression. The command

print_csrc(expression);

prints the given expression in a way that can be used in a C or C++ program. The command

iprint(expression);

prints the given expression (which must evaluate to an integer) in decimal, octal, and hexadec-

imal representations. Finally, the shell escape

![command [arguments]]

passes the given command and optionally arguments to the shell for execution. With this

method, you can execute shell commands from within Vscape without having to quit.

4.5.12 Error messages

When you enter something which Vscape is unable to parse, it will report

syntax error, unexpected foo at bar

Please check the syntax of your input and try again. If the computer reports

argument num to function must be a type

it means that the argument number num to the given function has to be of a certain type (e.g.

a symbol, or a list). The first argument has number 0, the second argument number 1, etc.
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4.5.13 Examples

> a = x^2-x-2;

-2-x+x^2

> b = (x+1)^2;

(x+1)^2

> s = a/b;

(1+x)^(-2)*(-2-x+x^2)

> diff(s, x);

-2*(1+x)^(-3)*(-2-x+x^2)+(-1+2*x)*(1+x)^(-2)

> normal(s);

(1+x)^(-1)*(-2+x)

> x = 3^50;

717897987691852588770249

> s;

717897987691852588770247/717897987691852588770250

> Digits = 40;

40

> evalf(s);

0.999999999999999999999995821133292704384960990679

> unassign(’x’);

x

> s;

(1+x)^(-2)*(-2-x+x^2)

>

> s = x^3 + x^2 + y + 1;

1+y+x^3+x^2

> map(s, $0^2);

1+y^2+x^4+x^6

> match(s, $0+$1^2);

{$1==x,$0==1+y+x^3}

>

> series(sin(x),x==0,6);

1*x+(-1/6)*x^3+1/120*x^5+Order(x^6)
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>

> lsolve({3*x+5*y == 7}, {x, y});

{x==-5/3*y+7/3,y==y}

> lsolve({3*x+5*y == 7, -2*x+10*y == -5}, {x, y});

{x==19/8,y==-1/40}

>

> M = [ [a, b], [c, d] ];

[[-x+x^2-2,(x+1)^2],[c,d]]

> op(M, 0); op(M, 2);

-x+x^2-2

c

> determinant(M);

-2*d-2*x*c-x^2*c-x*d+x^2*d-c

> collect(%, x);

(-d-2*c)*x+(d-c)*x^2-2*d-c

>

> save("test.txt", "# test saving M to file");

Wrote to file <test.txt>: "# test saving M to file"

> save("test.txt", "M = ", M);

Wrote to file <test.txt>: "M = [[-2-x+x^2,(1+x)^2],[c,d]];"

> save("test.txt", M);

Wrote to file <test.txt>: "[[-2-x+x^2,(1+x)^2],[c,d]];"

>

> solve quantum field theory;

syntax error, unexpected T_SYMBOL at quantum

> quit

In this example, three lines where added to the end of the file "test.txt":

# test saving M to file

M =[[-2-x+x^2,(1+x)^2],[c,d]];

[[-2-x+x^2,(1+x)^2],[c,d]];

If the file did not exist originally, it was created the first time the command save()was executed.
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4.6 Commands to find and analyse metastable vacua

In this section, we introduce the Vscape commands that allow you to interact with the build in

supersymmetric model in Vscape.

4.6.1 Defining the model

First you need to define the supersymmetric model that you want to study. The command

ModelConstruct(Params, Fields, Vevs, W , V D)

allows you to specify the model. Params is a list of parameters that appear in the model (e.g.

coupling constants). Fields is a list of expressions, every symbol in the list will be considered

a field in your model. Vevs is a subset of Fields, it contains the fields which you allow to

acquire a non-zero vacuum expectation value. The order in which the symbols appear in Fields

determines the ordering of fields in the mass matrices and in the list of F-terms (see example

later on). The expression W, specifies the superpotential and V D is the expression for the

D-term potential which is added to the tree level potential. Both expressions may only contain

symbols that are listed either in Fields or Params. The command ModelConstruct() will

return 0 if it successfully defined the model, otherwise it will show an error message. Once the

model is successfully loaded, you can use all the other commands described below to study the

model.

The command ModelConstruct() computes the F-terms and mass-matrices symbolically.

Depending on the number of fields in the model and calculational speed this command might

take some time. Once the model is computed with ModelConstruct(), you can use the com-

mand

ModelSave(filename)

to save the computed model to filename. This command saves all the information about the

model including F-terms and mass matrices such that, later on, when you want to load that

specific model again, the computer does not have to redo the lengthy computation of the F-

terms and mass matrices. ModelSave() will return 0 if it successfully saved the model otherwise

it will show an error message.

Reloading a specific model, is done by simply invoking importfile(filename). Vscape will

execute the commands in filename. filename was created by ModelSave() such that it will

first define the fields, parameters, vevs, superpotential, D-term potential, F-terms and mass
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matrices. The last line of filename will call the command ModelLoad() (discussed below) which

does the actually loading of the model into Vscape. So after invoking importfile(filename),

where filename is a file that was created with ModelSave(), the model is loaded into Vscape

and you can use all the commands described below to study the model.

I would advise against manually editing files created by ModelSave(), since they contain

all the information of the model you defined with ModelConstruct() in a consistent way. It

contains the exact mass matrices and F-terms corresponding to the superpotential with the

correct ordering. E.g. the order in which the F-terms appear in filename is determined by the

order in which the fields are listed in filename.

The command

ModelLoad(Params, Fields, Vevs, W , V D, Fterms, mF, mB)

is called implicitly as the last line of any file which was created with ModelSave(), so you will

rarely need to use it explicitly. Like ModelConstruct(), this command loads a specific model

into Vscape such that it can be studied with subsequent commands. However, in this case the

F-terms and mass matrices need to be specified as an argument, so this command avoids the

sometimes time-consuming computation of the F-terms and mass matrices. Fterms should be

a list of expressions for the different F-terms. mF and mB are the fermion and scalar mass

matrices respectively. The entries in Fterms, mF and mB should be ordered as the fields are

ordered in Fields. Thus e.g. the second entry in the list Fterms is the F-term with respect to

the second field appearing in the list Fields. Warning: the program does not check whether the

given F-terms and mass matrices actually correspond to the superpotential given!

If you invoke ModelConstruct() (or implicitly ModelLoad() via importfile()), when a

model was already loaded, the internal model of Vscape will be changed to the new model.

Thus, all the subsequent commands will involve that new model.

Example

This example and the subsequent examples use the model discussed in [2] with N = 1 and

Nf = 6. A slightly modified version of this example is included in the distribution of Vscape

and can be loaded with importfile("path/examples/iss.txt")where path is the correct path

to the file. Note: the file iss.txt was not created with ModelSave(), the file does not contain

F-terms nor mass matrices, so you safely modify it.

> ## Switch to real mode, to introduce two real parameters

> real_symbols;
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All new symbols introduced from now on are assumed to be real.

> Lambda:

> m_ISS:

>

> ## Switch to complex mode, to introduce all the other symbols

> complex_symbols;

All new symbols introduced from now on are assumed to be complex.

>

> ## Define the model

> Params = {Lambda, m_ISS}:

> B = symbolicmatrix(6,1,B_);

[[B_0],[B_1],[B_2],[B_3],[B_4],[B_5]]

> Bt = symbolicmatrix(1,6,Bt_):

> M = symbolicmatrix(6,6,M_):

> Fields = {B,Bt,M}:

> Vevs = {B_5,Bt_5,M_00,M_11,M_22,M_33,M_44,M_55}:

> W = evalm(Bt*M*B) //

> - determinant(M)*Lambda^(-3) //

> + Lambda*m_ISS*trace(M):

> V_D = 0:

>

> ## Construct the model

> ModelConstruct(Params, Fields, Vevs, W, V_D);

Loading Model...

Computing F-terms and mass matrices...

F-terms: i = 047;

Mass matrices: i = 047; j = 047; k = 047;

Done.

Model successfully loaded...

0

>

> ## Now we save the model to a file

> ModelSave("examples/isscomputed.txt");

The internal model was successfully saved to <examples/isscomputed.txt>.
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0

From now on this specific model can quickly be loaded using the command

importfile("examples/isscomputed.txt");

Note that the file isscomputed.txt was created using ModelSave() and thus contains the

correctly ordered F-terms and mass matrices of this specific model, so this file should not be

modified by hand. Whenever you want to define a new model different from the above one (e.g.

with one more term in the superpotential) you will have to use the command ModelConstruct()

again)

4.6.2 Symbolic commands for the model

There are several commands which give you symbolic information on the model that is loaded.

ModelParams()

Returns the parameters of the model in a list

ModelFields()

Returns the fields of the model in a list

ModelVevs()

Returns the fields with non-zero expectation value in a list

ModelW()

Returns the superpotential

ModelVD()

Returns the D-term potential

ModelV0()

Returns the tree level potential symbolically

ModelFtermsi(integer)

Returns the F-terms related to field integer

ModelFterms()

Returns the F-terms in a list

ModelmFij(a, b)

Returns entry a, b of the fermion mass matrix: W ab

ModelmBij(a, b)

Returns entry a, b of the upper right block of the scalar mass matrix: W ∗ abc W c

ModelmF()
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Returns the fermion mass matrix: W ab

ModelmB()

Returns the upper right (off diagonal) block of the scalar mass matrix: W ∗ abc W c

The list of F-terms and the entries in the mass matrices are ordered according to the occurrence

of the fields in ModelFields(). The integer values in the above command also refer to the

occurrence of the field in ModelFields(), the first field has integer 0.

Example

To try the example below, you will need the file examples/isscomputed.txtwhich was created

in the example above.

> importfile("examples/isscomputed.txt");

> ModelFields();

{B_0,B_1,B_2,B_3,B_4,B_5,

Bt_0,Bt_1,Bt_2,Bt_3,Bt_4,Bt_5,

M_00,M_01,M_02,M_03,M_04,M_05,

M_10,M_11,M_12,M_13,M_14,M_15,

M_20,M_21,M_22,M_23,M_24,M_25,

M_30,M_31,M_32,M_33,M_34,M_35,

M_40,M_41,M_42,M_43,M_44,M_45,

M_50,M_51,M_52,M_53,M_54,M_55}

> ModelFterms();

{0,0,0,0,0,Bt_5*M_55,

0,0,0,0,0,M_55*B_5,

m_ISS*Lambda-M_33*Lambda^(-3)*M_44*M_11*M_55*M_22,0,0,0,0,0,

0,m_ISS*Lambda-M_33*M_00*Lambda^(-3)*M_44*M_55*M_22,0,0,0,0,

0,0,-M_33*M_00*Lambda^(-3)*M_44*M_11*M_55+m_ISS*Lambda,0,0,0,

0,0,0,-M_00*Lambda^(-3)*M_44*M_11*M_55*M_22+m_ISS*Lambda,0,0,

0,0,0,0,m_ISS*Lambda-M_33*M_00*Lambda^(-3)*M_11*M_55*M_22,0,

0,0,0,0,0,-M_33*M_00*Lambda^(-3)*M_44*M_11*M_22+Bt_5*B_5+m_ISS*Lambda}

>

> ## F-term wrt B_5;

> myFterm = ModelFtermsi(5);

Bt_5*M_55
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>

> ## entry associated with B_0, Bt_0 in mass matrices;

> ModelmFij(0,6);

M_00

> ModelmBij(0,6);

m_ISS*Lambda-M_33*Lambda^(-3)*M_44*M_11*M_55*M_22

4.6.3 Numerical commands for the model: the effective potential

All commands that involve numeric computations work with double precision, independent from

the Digits setting for the symbolic computations. The commands to evaluate the potential

numerically are,

ModelnumV0(SubsList)

Evaluates the tree level potential numerically

ModelnumVcw(SubsList)

Evaluates the Coleman-Weinberg potential numerically

ModelnumVeff(SubsList)

Evaluates the one loop effective potential numerically

ModelnumSTrM2(SubsList)

Evaluates the supertrace over scalar and fermion mass matrices

ModelnummF2(SubsList)

Returns the numerical (tree level) mass squared eigenvalues of the fermion mass matrix

ModelnummB2(SubsList)

Returns the numerical (tree level) mass squared eigenvalues of the scalar mass matrix

The SubsList is a list of equations which specify the value of the parameters and fields which

were allowed to have non-zero expectation value.

Example

The example below uses the file examples/isscomputed.txt which was created in an example

above.

> importfile("examples/isscomputed.txt");

> Subs = {Lambda == 1000.0, m_ISS == 10.0, //

> B_5 == 0.00 + 100.0*I, //
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> Bt_5 == 0.01 + 100.0*I, //

> M_00 == 0.0, //

> M_11 == 0.0, //

> M_22 == 0.0, //

> M_33 == 0.0, //

> M_44 == 0.0, //

> M_55 == 0.0}:

> ModelnumVcw(Subs);

3.3551986738766286522E7

> ModelnumSTrM2(Subs);

3.456079866737127304E-11

4.6.4 Minima of the effective potential

You can find local minima of tree level and the one loop effective potential by using the com-

mands:

ModelMinV0(SubsPattern, Variables, StartPoint)

ModelMinVeff(SubsPattern, Variables, StartPoint)

SubsPattern is a list of equations which specifies the values of the parameters and fields with

non-zero vev as function of the variables. The variables are specified in the field Variables as

a list of real symbols. The minimization algorithm will minimize the potential as a function

of those variables. The field StartPoint is a list of initial value for each of the variables. The

command returns a list with values for the variables at the minima. The value for simplex size

shown while the command is running is discussed in section 4.6.9

This command is calculationally intensive for the effective potential, the calculation time

depends on the number of fields in the model. While the calculation progresses the computer

will display the current iteration of the algorithm and the minimum value of the potential that

has been reached so far. The algorithm used to minimize the function is the simplex algorithm of

Nelder and Mead [68]. This algorithm has the advantage that it does not rely on computational

intensive gradients to iterate towards the minimum. Some more details and parameters that

influence the simplex algorithm are given in section 4.6.9.

Another command that analyzes the effective potential is

ModelStatBox(SubsPattern, Variables, StartPoint, Point1, Point2)
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where the fields SubsPattern and Variables have the same function described above. The

command starts from the value of the effective potential where the variables have the value

specified in StartPoint. The algorithm then picks several random points in the box defined by

Point1 and Point2 and checks whether the value of the effective potential at that point is lower

than the minimum value found so far. The command returns a list of values for the variables

at the random point with lowest effective potential.

Example

The example below uses the file examples/isscomputed.txt which was created in an example

above.

> importfile("examples/isscomputed.txt");

> Subs = {Lambda == 1000.0, m_ISS == 10.0, //

> B_5 == 0 + b*I, //

> Bt_5 == c + d*I, //

> M_00 == 0.0, //

> M_11 == 0.0, //

> M_22 == 0.0, //

> M_33 == 0.0, //

> M_44 == 0.0, //

> M_55 == e}:

> ModelMinSimpl(Subs, {b,c,d,e}, {100,0,100,0});

250: Veff = +5.33497644174886226654e+08

Simplex size = +1.56969168925476587682e-05

{98.755419109029958236, 8.6554575838203248834E-7,

98.755388956674764245, 7.9209619553734771633E-7}

> ModelMinSimpl(Subs, {b,c,d,e}, {0,900,900,900});

680: Veff = +5.33497644174886107445e+08

Simplex size = +3.02342927540789435954e-06

{98.7554136717079416, -3.5353383568610648586E-8,

98.755391871241812396, 5.7324975688985215976E-8}

>

>

> Subs = {Lambda == 1000.0, m_ISS == 10.0, //
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> B_5 == 0 + b*I, //

> Bt_5 == c + d*I, //

> M_00 == a, //

> M_11 == a, //

> M_22 == a, //

> M_33 == a, //

> M_44 == a, //

> M_55 == e}:

> ModelMinSimpl(Subs,{a,b,c,d,e},{900,0,0,0,900});

660: Veff = -1.03509432378173447649e-05

Simplex size = +1.69541545589374184433e-13

{398.10717886889341344,

5.7428257024330178013E-7,

1.7617897585483444842E-6,

-8.3947951601006729255E-7,

398.107133987191105}

>

> ModelStatBox(Subs,{a,b,c,d,e},{0,98,0,98,0}, //

> {200,0,0,0,200},{500,0,0,0,500});

Checking random point no. 90; (so far 6 lower points found)

{381.46924413740634918, 0.0, 0.0, 0.0, 467.38906654063612223}

The first two minimizations started at different points but led to the same metastable minimum

discussed in [2]. Both results are equal up to numerical precision as discussed in section 4.6.8.

The U(1)B symmetry is spontaneously broken giving rise to a Goldstone direction. We fixed

this freedom by choosing ReB5 = 0.

The third minimization led to the supersymmetric vacua of the model. Notice that the rank-

condition mechanism for supersymmetry breaking for models with N = 1 only holds around

the origin in fieldspace. Away from the origin there is a point where all the F-terms become

zero due to the additional determinant term in the superpotential. The numerical value for the

effective potential at the supersymmetric point is slightly negative but zero within error bounds

as discussed in section 4.6.8.

The fourth operation was a statistical search. We started from a point close to the metastable

vacuum and search randomly in the interval M00 = · · · = M44 ∈ [200, 500], M55 ∈ [200, 500].
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The algorithm returned a point in fieldspace relatively close to the supersymmetric minima with

a lower value for the effective potential.

4.6.5 Analyzing the vacua

The commands to analyse a minimum all use the same structure of arguments as described

above: SubsPattern is a list of equations linking the parameters and fields with non-zero vev to

the variables which are specified in the list Variables. The values for the variables are given in

the list of numbers Point.

ModelGradient(SubsPattern, Variables, Point)

Evaluates the gradient of the effective potential at Point. The command re-

turns a list with the gradient followed by error flags on the gradient each format-

ted as a 1 by n matrix. The computer will show the estimated time to complete the al-

gorithm since this computation is calculationally intensive.
ModelHessian(SubsPattern, Variables, Point)

Evaluates the Hessian matrix at Point. The command returns a list with the hes-

sian matrix followed by the matrix of error flags. The computer will show the esti-

mated time to complete the algorithm since this computation is calculationally intensive.
Modeldiff2(SubsPattern, Variables, Point, i, j, dx i, dx j)

Evaluates the second order derivative with respect to fields i and j. dx i and dx j are sug-

gested stepsize to compute the derivative (see section 4.6.9 for more informa-

tion). The command returns a list with the second order derivative followed by the er-

ror flag.
ModelNegEig(SubsPattern, Variables, Point, Hessian, HessianError)

Checks whether there are negative eigenvalues of the Hessian matrix of the ef-

fective potential at Point. You need to make sure that Hessian (and Hessian-

Error) are indeed the Hessian matrix (and error flags) of the effective poten-

tial at Point. The function will return the original Point or, if there are negative eigen-

values that are larger than the average error flag, another Point where the effective po-

tential has a lower value. Used as cross check for the other minimization commands.

Example

The example below uses the file examples/isscomputed.txt which was created in an example

above.

> importfile("examples/isscomputed.txt");

> Subs = {Lambda == 1000.0, m_ISS == 10.0, //
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> B_5 == 0.0 + b*I, //

> Bt_5 == 0.0 + d*I, //

> M_00 == 0.0, //

> M_11 == 0.0, //

> M_22 == 0.0, //

> M_33 == 0.0, //

> M_44 == 0.0, //

> M_55 == 0.0}:

> Min = ModelMinSimpl(Subs, {b,d}, {100,100});

160: Veff = +5.33497644174886047840e+08

Simplex size = +3.29244092296298119244e-06

{98.75539482502895794,98.75540931029662772}

>

>

> ModelGradient(Subs, {b,d}, {100,100});

2/2: 00:01s to go...

{[[44055.476986700297857, 44055.476986670022598]],

[[6.273248519121328748, 6.27324852896071139]]}

> ModelGradient(Subs, {b,d}, Min);

2/2: 00:01s to go...

{[[-5.261715075073619019, -5.2542854259666373906]],

[[ 3.8105577427291033032, 3.81055711846567835]]}

>

> ModelHessian(Subs, {b,d}, Min);

3/3: 00:19s to go...

{[[17652.30720837064655, 17140.548392404118204],

[17140.548392404118204, 17652.301781115671474]],

[[ 10.064568391628851529, 10.455072325682765566],

[ 10.455072325682765566, 10.064565316884026558]]}

> Hessian = op(%, 0): HessianErr = op(%%, 1):

> eigensymm(Hessian);

{[[34792.852887147491856, 511.75610233882599687]],

[[ 0.7071068371597952762, -0.70710672521329531737],

[ 0.70710672521329531737, 0.7071068371597952762]]}
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The second column in the last matrix in the example is the eigenvector corresponding to the

pseudo-moduli direction in [2]. The corresponding mass squared eigenvalue indeed corresponds

to the theoretical value computed in [2]: 511.756 GeV2 versus 489.248 GeV2.

4.6.6 Plots

There are three commands in Vscape to plot:

ModelPlotV0(filename, SubsPattern, Variables, xmin, xmax, ymin, ymax)

ModelPlotVcw(filename, SubsPattern, Variables, xmin, xmax, ymin, ymax)

ModelPlotVeff(filename, SubsPattern, Variables, xmin, xmax, ymin, ymax)

Each commands writes 3d plotting data of respectively V0, Vcw or Veff to the file filename.

SubsPattern again indicates how the parameters and fields with non-zero vev depend on the

Variables. Variables should be a list of 2 variables which will be on the x and y axis of the

3d plot. The variables will be evaluated between xmin and xmax (ymin, ymax resp.) with

a stepsize of 1. The computer will show the progress for all plotting commands since it is

calculationally intensive. The command returns 0 when it was successful. The file is formatted

such that it can then easily be imported in other math packages. A maple file (Plotting.mw)

which can import the data is included in the distribution of Vscape in the directory examples/.

The file format is

xmin xmax

ymin ymax

f(xmin,ymin) f(xmin+1,ymin) ... f(xmax,ymin)

f(xmin,ymin+1) f(xmin+1,ymin+1) ... f(xmax,ymin+1)

...

f(xmin,ymax) f(xmin+1,ymax) ... f(xmax,ymax)

where the first two lines contain integer values, while all other data consists of doubles.

Example

The example below uses the file examples/isscomputed.txt which was created in an example

above.

> importfile("examples/isscomputed.txt");

> pi = evalf(Pi):
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Figure 4.1: The effective potential from the metastable vacuum to the supersymmetry vacuum.
The axis into the paper is the flat Goldstone direction of the U(1)B. The axis along the paper
cuts through the one-loop effective potential from the metastable minima on the left to the
supersymmetric vacuum on the right side.

> M = 398.1*b/80:

> B = 98.755*(1 - b/80):

> Subs = {Lambda == 1000.0, m_ISS == 10.0, //

> B_5 == exp( 2*pi*a*I/10)*(B*I), //

> Bt_5 == exp(-2*pi*a*I/10)*(B*I), //

> M_00 == M, //

> M_11 == M, //

> M_22 == M, //

> M_33 == M, //

> M_44 == M, //

> M_55 == M}:

> ModelPlotVeff("BarrierPlot.txt", Subs, {a,b}, 0, 9, 0,99);

The 3d plotting data was successfully saved to <BarrierPlot.txt>.

0

The plot obtained from the example using examples/plotting.mw in Maple 10 is shown in

figure 4.1.
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4.6.7 Interface with spectrum generators

The command

ModelSpectr(Filename, SubsList)

allows interaction with spectrum generators. The command takes the file filename as input file.

This file should be formatted according to the Les Houches Accord [69], except that numbers

can be replaced by formulas. ModelSpectr()will substitute the values specified in SubsList and

the current values of all other variables used up to that point in Vscape and generate an output

file <filename.out>. This file can then be used as input file for spectrum generators. Whenever

an unknown symbol is encountered, the entire line is copied verbatim without substitution and

a message is printed on the screen. Vscape will add a Block containing version information to

the output file, to indicate that the file was generated with Vscape.

Example

The example below uses the file examples/isscomputed.txt which was created in an example

above. As input file in this example, we use LesHoucheSymbolic.txt

# SUSY Les Houches Accord 1.0 - example input file

#

Block MODSEL # Select Model

1 2 # (m)GMSB

Block SMINPUTS # Standard Model inputs

3 0.1172 # alpha_s(MZ) SM MSbar

Block MINPAR # Susy breaking input parameters

1 sqrt(Lambda*m_ISS) # scale of soft susy breaking

3 ReHu0/ReHd0 # tanb

4 1.0 # sign(mu)

Block EXPAR # Non-minimal susy breaking input parameters

23 g_S*S # mu-term

The commands sequence of the example is

> importfile("examples/isscomputed.txt");

> Subs = {Lambda == 1000.0, m_ISS == 10.0, //

> B_5 == 0 + b*I, //



88

> Bt_5 == c + d*I, //

> M_00 == 0.0, //

> M_11 == 0.0, //

> M_22 == 0.0, //

> M_33 == 0.0, //

> M_44 == 0.0, //

> M_55 == e}:

> ModelMinSimpl(Subs, {b,c,d,e}, {100,0,100,0});

250: Veff = +5.33497644174886226654e+08

Simplex size = +1.56969168925476587682e-05

{98.755419109029958236, 8.6554575838203248834E-7,

98.755388956674764245, 7.9209619553734771633E-7}

> MinSubs = subs(Subs, {b,c,d,e}, %);

{Lambda==1000.0, m_ISS==10.0,

B_5==98.755419109029958236*I,

Bt_5==8.6554575838203248834E-7+98.755388956674764245*I,

M_00==0.0, M_11==0.0, M_22==0.0, M_33==0.0, M_44==0.0,

M_55==7.9209619553734771633E-7}

> g_S = 0.6:

> S = 0.001:

> ModelSpectr("LesHouchesSymbolic.txt", MinSubs);

unknown symbol ’ReHu0’

=> just copied this data line from inputfile to output file...

Unable to match all symbols in <LesHouchesSymbolic.txt>

with currently defined symbols...

2

This example produces the output file <LesHouchesSymbolic.txt.out>

# SUSY Les Houches Accord 1.0 - example input file

#

Block VSCAPE # program info

1 Vscape # program

2 1.0.0 # version number

Block MODSEL # Select Model
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1 2 # (m)GMSB

Block SMINPUTS # Standard Model inputs

3 0.1172 # alpha_s(MZ) SM MSbar

Block MINPAR # Susy breaking input parameters

1 100.0 # scale of soft susy breaking

3 ReHu0/ReHd0 # tanb

4 1.0 # sign(mu)

Block EXPAR # Non-minimal susy breaking input parameters

23 6.0E-4 # mu-term

Notice that the line specifying tanβ was not replaced by a number, since our simple example

did not specify a value for ReH0
u.

4.6.8 Numerical precision and error flags

The numerical format used for all the numerical computations in Vscape is double precision,

which has 52 significant bits or approximately 16 decimal digits.

Precision of the Coleman-Weinberg potential

In one of the examples above, we found that the effective potential at the supersymmetric

minima had a negative numerical value of order −10−5. The value for the vevs of some of

the fields at that point was around 400. This implies that some of the squares of the mass

squared eigenvalues of the mass matrices will be of the order m4 ≈ 4004 ≈ 1011. Those

squares of mass squared eigenvalues appear in the Coleman-Weinberg potential. As the internal

numerical algorithm uses double precision, we can expect the absolute error on the potential to

be estimated by

|φmax|410−16 . (4.11)

Or, in our example of the order of 10−5, which implies that the value for the effective potential

at the supersymmetric minimum is zero within error bounds.

Precision of the vevs after minimization

In another example, we found two slightly different sets of vevs for the fields at the metastable

minima, since we started the minimization process from a different point. The relative difference

between the vevs was of order 10−7. The vevs of some of the fields at the metastable minima

was of order 102. Following the reasoning from the previous paragraph, we estimate that the
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absolute error on the effective potential is of order 10−8 and since the actual value of the effective

potential at the minimum was of order 108, the relative error is of order 10−16. Minimizing the

potential then holds,

Veff(φi) ≈ Veff(φi) ± |φmax|410−16 (4.12)

= Veff(φi)(1 ± 10−16) (4.13)

= Veff(φi + ǫi) (4.14)

= Veff(φi) +
1

2

∂2Veff

∂φi∂φj
ǫiǫj (4.15)

where ǫi is the error on the vev of the field φi at the minimum coming from the limited precision

on Veff . In the example above, Veff was of order 108 at the metastable minima, while the second

order derivative can be at most of order the cutoff squared, which was 106. We find that the

highest precision on the fields at the metastable minimum is of order 10−7, which corresponds

to the results found in the example. A lower value for the second order derivative gives less

precision.

4.6.9 Parameters controlling the internal algorithms

Simplex minimization

The algorithm that is used for the command ModelMinSimpl() is the Simplex algorithm by

Nelder and Mead [68]. An n-simplex is chosen around the start point in variable space. By

changing the vertices of the simplex, the algorithm minimizes the size of the simplex step by

step. When the size of the simplex is smaller than MinimizerSizeTest, the algorithm considers

the minimum to be found. When the command ModelMinSimpl() is running, the current size

of the simplex is shown on the screen. The parameter MinimizerInitialStep determines the

size of the initial simplex with which the algorithm starts. MinimizerMaxIterations sets the

maximal number of iterations, the algorithm will quit even if the algorithm has not found a

minimum. Sometimes the size of the simplex never becomes small enough to get a successful

end of the algorithm, while the simplex is already at its most optimal position. The parameter

MinimizerMaxDeadIterations determines the maximal number of iterations that the algorithm

can proceed without finding a point with a lower functional value.

Statistical minimization

The number of random points the command ModelStatBox() test for a lower value of the

effective potential, is determined by the parameter StatBoxMaxIterations.
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Derivatives

The numerical derivatives are computed using the 11-point rule:

df(x0)

dx
≈ 1

2520∆x

(
− 2f(x0 − 5∆x) + 25f(x0 − 4∆x) − 150f(x0 − 3∆x)

+ 600f(x0 − 2∆x) − 2100f(x0 − 1∆x)

+ 2100f(x0 + 1∆x) − 600f(x0 + 2∆x)

+ 150f(x0 + 3∆x) − 25f(x0 + 4∆x) + 2f(x0 + 5∆x)
)

(4.16)

where ∆x is the stepsize of the algorithm. The algorithm estimates the error flags coming from

rounding errors where the relative error on the effective potential is set by diffErrorOnf. In

addition, the truncation error which is estimated by comparing the 9-point rule with the 11-

point rule result is also determined. The rounding error scales as ∆x−1 while the truncation error

goes like ∆x8. Using those two competing errors, the algorithm estimates a new optimal ∆x

and repeats the process until the relative error is smaller than diffTolerance [70]. It will iterate

at most diffMaxCycle times. One more parameter determines the behavior of the algorithm,

if the new guess for an optimal ∆x is bigger than diffMaxdx then the algorithm quits. The

command Modeldiff2() allows you to suggest the initial step sizes of the derivatives in the i

and j direction with the arguments dx i, dx j. The other commands make an automatic initial

estimate.

Changing the control parameters

You can get the values of all the parameters discussed above with the command

GetPrecision()

You can set the parameters with the command

SetPrecision(StatBoxMaxIterations, MinimizerSizeTest, MinimizerInitialStep, Minimiz-

erMaxIterations, MinimizerMaxDeadIterations, diffMaxCycle, diffTolerance, diffMaxdx, dif-

fErrorOnf )

If you set an argument in SetPrecision() to zero, the parameter will maintain its old value.

The default parameters of the program have been optimized for models of the kind used

in the examples, with a cutoff of the order of 1000 where we think in units of GeV. Different

models might require different parameters. For example, if one has a very shallow metastable

minima, MinimizerInitialStep should not be chosen too large, since this would result in the
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algorithm jumping out of the metastable minima in favor of another minima with a lower

effective potential.



93

References

[1] J. M. Maldacena, The large N limit of superconformal field theories and supergravity,
Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-
th/9711200].

[2] K. Intriligator, N. Seiberg, D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP
0604, 021 (2006) [arXiv:hep-th/0602239].

[3] A. E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl.
Phys. B 416, 46 (1994) [arXiv:hep-ph/9309299].

[4] R. Essig, K. Sinha and G. Torroba, Meta-Stable Dynamical Supersymmetry Breaking Near
Points of Enhanced Symmetry, JHEP 0709, 032 (2007) [arXiv:0707.0007 [hep-th]].

[5] S. Abel, C. Durnford, J. Jaeckel and V. V. Khoze, Dynamical breaking of U(1)R and
supersymmetry in a metastable vacuum, Phys. Lett. B 661, 201 (2008) [arXiv:0707.2958
[hep-ph]].
S. A. Abel, C. Durnford, J. Jaeckel and V. V. Khoze, Patterns of Gauge Mediation in
Metastable SUSY Breaking, JHEP 0802, 074 (2008) [arXiv:0712.1812 [hep-ph]].

[6] T. Banks, K. van den Broek, Massive IIA flux compactifications and U-dualities, JHEP
0703, 068 (2007) [arXiv:hep-th/0611185].

[7] O. DeWolfe, A. Giryavets, S. Kachru, W. Taylor, Type IIA Moduli Stabilization, JHEP
0507, 066 (2005) [arXiv:hep-th/0505160].

[8] M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept.
423, 91 (2006) [arXiv:hep-th/0509003].
M. R. Douglas, S. Kachru, Flux Compactification, Rev. Mod. Phys. 79, 733 (2007)
[arXiv:hep-th/0610102].

[9] T. Grimm, J. Louis, The Effective action of type IIA Calabi-Yau orientifolds, Nucl. Phys.
B 718, 153 (2005) [arXiv:hep-th/0412277].
P. G. Camara, A. Font, L. E. Ibanez, Fluxes, moduli fixing and MSSM-like vacua in a
simple IIA orientifold, JHEP 0509, 013 (2005) [arXiv:hep-th/0506066].

[10] T. Banks, Landskepticism or why effective potentials don’t count string models, [arXiv:hep-
th/0412129].

[11] J.-P. Derendinger, C. Kounnas, P.M. Petropoulos, F. Zwirner, Superpotentials in IIA com-
pactifications with general fluxes, Nucl. Phys. B 715, 211 (2005) [arXiv:hep-th/0411276].
G. Villadoro, F. Zwirner, N=1 effective potential from dual type-IIA D6/O6 orientifolds
with general fluxes, JHEP 0505, 047 (2005) [arXiv:hep-th/0503169].
J.-P. Derendinger, C. Kounnas, P.M. Petropoulos, F. Zwirner, Fluxes and gaugings: N=1
effective superpotentials, Fortsch. Phys. 53, 926 (2005) [arXiv:hep-th/0503229].

[12] M. R. Douglas, Z. Lu, Finiteness of volume of moduli spaces, [arXiv:hep-th/0509224].
B. S. Acharya, M. R. Douglas, A Finite landscape?, [arXiv:hep-th/0606212].
G. Torroba, Finiteness of Flux Vacua from Geometric Transitions, JHEP 0702, 061 (2007)
[arXiv:hep-th/0611002].



94

[13] B. S. Acharya, F. Benini, R. Valandro, Fixing Moduli in Exact Type IIA Flux Vacua, JHEP
0702, 018 (2007) [arXiv:hep-th/0607223].

[14] G. Moore, S. Ramanujam, unpublished.

[15] L. J. Romans, Massive N=2A Supergravity in Ten-Dimensions, Phys. Lett. B 169, 374
(1986).

[16] J. Polchinski, String theory. Vol. 1-2, Cambridge University Press, 1998.

[17] M. B. Schulz, Calabi-Yau duals of torus orientifolds, JHEP 0605, 023 (2006) [arXiv:hep-
th/0412270].

[18] C. M. Hull, A Geometry for Non-Geometric String Backgrounds, JHEP 0510, 065 (2005)
[arXiv:hep-th/0406102].
J. Shelton, W. Taylor, B. Wecht, Nongeometric flux compactifications, JHEP 0510, 085
(2005) [arXiv:hep-th/0508133].

[19] S. Kachru, M. B. Schulz, P. K. Tripathy, S. P. Trivedi, New Supersymmetric String Com-
pactifications, JHEP 0303, 061 (2003) [arXiv:hep-th/0211182].

[20] A. Giveon, M. Roček, Generalized Duality in Curved String-Backgrounds, Nucl. Phys. B
380, 128 (1992) [arXiv:hep-th/9112070].
A. Giveon, M. Porrati, E. Rabinovici, Target Space Duality and String Theory, Phys. Rept.
244, 77 (1994) [arXiv:hep-th/9401139].

[21] E. Witten, Anti-de Sitter Space, Thermal Phase Transition, And Confinement in Gauge
Theories, Adv. Theor. Math. Phys. 2, 505 (1998) [arXiv:hep-th/9803131].

[22] O. Aharony, Y. E. Antebi and M. Berkooz, On the Conformal Field Theory Duals of type
IIA AdS4 Flux Compactifications, JHEP 0802, 093 (2008) [arXiv:0801.3326 [hep-th]].

[23] I. Klebanov, A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475, 164
(1996) [arXiv:hep-th/9604089].

[24] N. Seiberg, IR dynamics on branes and space-time geometry, Phys. Lett. B 384, 81 (1996)
[arXiv:hep-th/9606017].

[25] N. Seiberg, E. Witten, Gauge dynamics and compactification to three-dimensions,
[arXiv:hep-th/9607163].

[26] C. M. Hull, Massive String Theories from M-theory and F-theory, JHEP 9811, 027 (1998)
[arXiv:hep-th/9811021].

[27] M. Haack, J. Louis, H. Singh, Massive type IIA theory on K3, JHEP 0104, 040 (2001)
[arXiv:hep-th/0102110].
H. Singh, Duality symmetric massive type II theories in D = 8 and D = 6, JHEP 0204,
017, (2002) [arXiv:hep-th/0109147].
H. Singh, Romans type IIA theory and the heterotic strings, Phys. Lett. B 545, 403 (2002)
[arXiv:hep-th/0201206].

[28] G. Moore, N. Saulina, T-Duality, and the K-Theoretic Partition Function of Type IIA
Superstring Theory, Nucl. Phys. B 670, 27 (2003) [arXiv:hep-th/0206092].

[29] G. W. Gibbons, N. S. Manton, Classical And Quantum Dynamics Of Bps Monopoles, Nucl.
Phys. B 274, 183 (1986).
A. Sen, A Note on Enhanced Gauge Symmetries in M- and String Theory, JHEP 9709,
001 (1997) [arXiv:hep-th/9707123].



95

[30] D. Martelli, J. Sparks, G Structures, Fluxes and Calibrations in M Theory, Phys. Rev. D
68, 085014 (2003) [arXiv:hep-th/0306225].

[31] A. Bilal, J.P. Derendinger, K. Sfetsos, (Weak) G2 holonomy from self-duality, flux and
supersymmetry, Nucl. Phys. B 628, 112 (2002) [arXiv:hep-th/0111274].

[32] M. J. Duff, TASI lectures on branes, black holes and Anti-de Sitter space, Boulder 1999,
Strings, branes and gravity, [arXiv:hep-th/9912164].

[33] I. Klebanov, A. Tseytlin, Intersecting M-branes as four-dimensional black holes, Nucl.
Phys. B 475, 179 (1996) [arXiv:hep-th/9604166].

[34] D. Belov, G. Moore, Holographic Action for the Self-Dual Field, [arXiv:hep-th/0605038].

[35] T. H. Buscher, A Symmetry Of The String Background Field Equations, Phys. Lett. B 194,
59 (1987).

[36] M. Dine, G. Festuccia, A. Morisse and K. van den Broek, Metastable Domains of the
Landscape, JHEP 0806, 014 (2008) [arXiv:0712.1397 [hep-th]].

[37] S. Kachru, R. Kallosh, A. Linde, S. P. Trivedi, De Sitter vacua in string theory, Phys. Rev.
D 68, 046005 (2003) [arXiv:hep-th/0301240].

[38] T. Banks, M. Dine, E. Gorbatov, Is there a string theory landscape?, JHEP 0408, 058
(2004) [arXiv:hep-th/0309170].

[39] M. Dine, E. Gorbatov, S. D. Thomas, Low energy supersymmetry from the landscape,
[arXiv:hep-th/0407043].

[40] M. Dine, A. Morisse, A. Shomer, Z. Sun, IIA moduli stabilization with badly broken super-
symmetry, JHEP 0807, 070 (2008) [arXiv:hep-th/0612189].

[41] A. Saltman, E. Silverstein, A new handle on de Sitter compactifications, JHEP 0601, 139
(2006) [arXiv:hep-th/0411271].

[42] F. Denef, M. R. Douglas, Distributions of nonsupersymmetric flux vacua, JHEP 0503, 061
(2005) [arXiv:hep-th/0411183].

[43] M. Dine, D. O’Neil, Z. Sun, Branches of the landscape, JHEP 0507, 014 (2005) [arXiv:hep-
th/0501214].

[44] L. Susskind, Supersymmetry breaking in the anthropic landscape, [arXiv:hep-th/0405189].

[45] M. R. Douglas, Statistical analysis of the supersymmetry breaking scale, [arXiv:hep-
th/0405279].

[46] S. R. Coleman, The Fate Of The False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15,
2929 (1977) [Erratum-ibid. D 16, 1248 (1977)].

[47] S. R. Coleman, F. De Luccia, Gravitational Effects On And Of Vacuum Decay, Phys. Rev.
D 21, 3305 (1980).

[48] S. B. Giddings, S. Kachru, J. Polchinski, Hierarchies from fluxes in string compactifications,
Phys. Rev. D 66, 106006 (2002) [arXiv:hep-th/0105097].

[49] M. Cvetic, S. Griffies, S. J. Rey, Static domain walls in N=1 supergravity, Nucl. Phys. B
381, 301 (1992) [arXiv:hep-th/9201007].

[50] S. Deser, C. Teitelboim, Supergravity Has Positive Energy, Phys. Rev. Lett. 39, 249 (1977).

[51] C. M. Hull, The Positivity Of Gravitational Energy And Global Supersymmetry, Commun.
Math. Phys. 90, 545 (1983).



96

[52] E. Witten, A Simple Proof Of The Positive Energy Theorem, Commun. Math. Phys. 80,
381 (1981).

[53] M. Dine, Z. Sun, R symmetries in the landscape, JHEP 0601, 129 (2006) [arXiv:hep-
th/0506246].

[54] K. van den Broek, Vscape V1.1.0: An interactive tool for metastable vacua, Comput. Phys.
Commun. 178, 52 (2008) [arXiv:0705.2019 [hep-ph]].

[55] E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188, 513 (1981).
K. Intriligator, N. Seiberg, Lectures on Supersymmetry Breaking, Class. Quant. Grav. 24,
S741 (2007) [arXiv:hep-ph/0702069].

[56] M. Dine, J. L. Feng, E. Silverstein, Retrofitting O’Raifeartaigh models with dynamical scales,
Phys. Rev. D 74, 095012 (2006) [arXiv:hep-th/0608159].

[57] M. Dine, J. Mason, Gauge mediation in metastable vacua, Phys. Rev. D 77, 016005 (2008)
[arXiv:hep-ph/0611312].

[58] D. Shih, Spontaneous R-symmetry breaking in O’Raifeartaigh models, JHEP 0802, 091
(2008) [arXiv:hep-th/0703196].
K. Intriligator, N. Seiberg, D. Shih, Supersymmetry breaking, R-symmetry breaking and
metastable vacua, JHEP 0707, 017 (2007) [arXiv:hep-th/0703281].

[59] F. Denef, M. R. Douglas, Distributions of flux vacua, JHEP 0405, 072 (2004) [arXiv:hep-
th/0404116].
M. R. Douglas, J. Shelton, G. Torroba, Warping and Supersymmetry Breaking,
[arXiv:0704.4001 [hep-th]].

[60] G. F. Giudice, R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys.
Rept. 322, 419 (1999) [arXiv:hep-ph/9801271].
Y. Shadmi, Y. Shirman, Dynamical supersymmetry breaking, Rev. Mod. Phys. 72, 25 (2000)
[arXiv:hep-th/9907225].
M. A. Luty, 2004 TASI lectures on supersymmetry breaking, [arXiv:hep-th/0509029].

[61] S. Coleman, E. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry
Breaking, Phys. Rev. D 7, 1888 (1973).

[62] B. C. Allanach, SOFTSUSY: A C++ program for calculating supersymmetric spectra, Com-
put. Phys. Commun. 143, 305 (2002) [arXiv:hep-ph/0104145].

[63] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, F. Rossi, GNU
Scientific Library Reference Manual - Revised Second Edition, ISBN 0954161734.

[64] C. Bauer, A. Frink, R. Kreckel, Introduction to the GiNaC Framework for Symbolic Com-
putation within the C++ Programming Language, J. Symbolic Computation 33 (2002) 1.
J. Vollinga, GiNaC: Symbolic computation with C++, Nucl. Instrum. Meth. A 559, 282
(2006), [arXiv:hep-ph/0510057].

[65] S. Martin, A Supersymmetry Primer, [arXiv:hep-ph/9709356].

[66] T. Banks, Remodeling the Pentagon After the Events of 2/23/06, [arXiv:hep-ph/0606313].

[67] T. Banks, K. van den Broek, to appear.

[68] J. A. Nelder, R. Mead, A Simplex Method for Function Minimization, Comput. J. 7 (1965)
308.



97

[69] P. Skands, B. C. Allanach, H. Baer, C. Balázs, G. Bélanger, F. Boudjema, A. Djouadi,
R. Godbole, J. Guasch, S. Heinemeyer, W. Kilian, J-L. Kneur, S. Kraml, F. Moortgat,
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