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Regulation of gene expression is pivotal to cell behavior. It is achieved predominantly by 

transcription factor proteins binding to specific DNA sequences (sites) in gene promoters. 

Identification of these short, degenerate sites is therefore an important problem in biology. 

The major drawbacks of the probabilistic machine learning methods in vogue are the use 

of arbitrary thresholds and the lack of biophysical interpretations of statistical quantities. 

We have developed two machine learning methods and linked them to the biophysics of 

transcription factor binding by incorporating simple physical interactions. These methods 
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estimate site binding energy, recognizing that it determines a site’s function and 

evolutionary fitness. They use the occupancy probability of a transcription factor on a 

DNA sequence as the discriminant function because it has a straightforward physical 

interpretation, forms a bridge between binding energy and evolutionary fitness, and has a 

natural threshold for classifying sequences into sites that allows establishing the threshold 

in a principled manner. Our methods incorporate additional characteristics of sites to 

enhance their identification. The first method, based on a hidden Markov model (HMM), 

identifies self-overlapping sites by combining the effects of their alternative binding 

modes. It learns the threshold by training emission probabilities using unaligned 

sequences containing known sites and estimating transition probabilities to reflect site 

density in all promoters in a genome. While identifying sites, it adjusts parameters to 

model site density changing with the distance from the transcription start site. Moreover, 

it provides guidance for designing padding sequences in experiments involving self-

overlapping sites. Our second method, the Phylogeny-based Quadratic Programming 

Method of Energy Matrix Estimation (PhyloQPMEME), integrates evolutionary 

conservation to reduce false positives while identifying sites. It learns the threshold by 

solving an iterative quadratic programming problem to optimize the distribution of 

correlated binding energies of neutrally evolving orthologous sequences while restricting 

the values of binding energies of known sites and their orthologs. We have used the NF-

κB transcription factor family as a case study for both methods and gained new insights 

into its biology. 
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Chapter 1 

Biological Context 

 

“I am among those who think that science has great beauty. A scientist in 
his laboratory is not only a technician: he is also a child placed before 

natural phenomena which impress him like a fairy tale.” 
Marie Curie (1867-1934) 

 

1.1 Regulation of Gene Expression 

 

The fundamental problem in biology is to understand how organisms function. It requires 

answers to several related questions: How does a single fertilized cell develop into a 

multicellular organism? How do thousands of molecules in a cell interact with one 

another? How do hundreds of different cell types form despite the identical genetic 

content in each cell? How do increasingly complex structures such as tissues and organs 

work as single units? How do 1014 cells in a human body cooperate with each other and 

function in harmony? How do organisms respond to external signals? How do species 

adapt to their environment and evolve? Scientists strive to seek answers to these 

questions not just to satisfy their intellectual curiosity. They expect that these answers 

will provide a key to two issues important to our welfare: Why do things go wrong? And, 

how do we correct them? Let’s take an example of cancer. How does a physiological 

disorder in which a flaw in a tiny part of a single cell impairs the function of other cells 

and ultimately ends up destroying the entire organism? And how do we snuff out the 
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rogue cell while protecting the good ones? Admittedly, these are problems of tall order. 

Our knowledge of biological systems still remains pitifully miniscule in spite of the fact 

that we have taken tremendous strides in our understanding in the last few decades. We 

have at least established a few basic underlying paradigms.  

 

A cell, the basic unit of an organism, receives an external signal and gives out an 

appropriate response. One of the important paradigms is that different cells are 

programmed to respond to specific sets of signals in different manners. This accounts for 

various cellular behaviors (phenotypes) such as physiological functions, structural 

changes, growth, differentiation, morphogenesis and death [1]. To give a few examples, 

the neurotransmitter acetylcholine decreases the rate and force of contraction of heart 

muscle cells. The cytokine interleukin-2 stimulates growth and differentiation of immune 

cells. During the development of an organism, cells in its different parts receive different 

stimuli and some become neurons, some others epithelial cells, some others yet 

lymphocytes. Interestingly, different cell types sometimes give different responses even 

to the same stimulus. For example, when treated with glucocorticoid hormones, liver 

cells increase glucose production, fat cells reduce tyrosine aminotransferase production, 

while some other cell types do not respond at all. Although we know the nature of 

external signals and the resulting cellular phenotype, as in many biological experiments, 

the exact cellular mechanism precipitating the change still eludes us. 

 

What we do know, however, of this mechanism is that regulation of gene expression is 

pivotal to cell behavior.  Gene expression is the process of synthesizing RNA and 
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proteins, the functional products of a gene. Different cell types have distinct phenotypes 

on account of differences in the relative abundance of these products. The regulation of 

gene expression, or gene regulation, consists of controlling the abundance and timing of 

these products in response to external conditions. Cells typically contain hundreds of 

complex and interconnected molecular signaling pathways (cascades) starting with 

receptor proteins which sense external signals. Signals are then propagated, amplified, 

combined and tuned along the pathway, ultimately resulting in the change in the 

abundance of RNA and proteins that alters the cell phenotype. The reason why the 

signals cause varied responses in different cells is that they regulate gene expression 

differently, i.e. change the abundance of these products differently. Thus, gene regulation 

is the key to an organism’s survival and adaptability, and defects in this process result in 

pathogenesis. 

 

In eukaryotes, gene regulation is carried out in any of the following ways:  (1) 

Specialized proteins called transcription factors determine the rate of transcription from 

DNA to mRNA (messenger RNA) in a process called transcriptional regulation. (2) The 

transcription of some mRNA molecules is prematurely terminated in a process known as 

transcription attenuation. (3) RNA molecules are alternatively spliced, incorporating 

different combinations of exons and sometimes of introns. (4) Cleavages at different sites 

at the 3’ end create mRNA molecules of different lengths. (5) Nucleotide sequences of 

some mRNA molecules are changed in mRNA editing. (6) The addition of a 5’ cap and a 

3’ poly-A tail stabilizes mRNAs. (7) Shortening of a poly-A tail or the presence of certain 

sequences in the 3’ untranslated region (UTR) causes mRNA decay. (8) Export of 
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mRNAs from nucleus to cytoplasm is regulated. (9) Proteins bindings to the 5’ and 3’ 

UTRs of mRNAs can abort translation from RNA to protein at the initiation, elongation 

or termination steps. (10) Post-translational modifications such as phosphorylation 

modulate the amount of functional protein. 

 

Of all these, transcriptional regulation, in which transcription factors bind to specific 

DNA sequences in the promoters of particular genes, is not only chronologically the first 

but also the most predominant form of gene regulation as it limits synthesis of unwanted 

products and thereby saves energy. Transcription factors thus play a central role in 

establishing, maintaining and altering cell behavior [2]. They are to a large extent 

responsible for the tremendous diversity in cell behavior. 

 

1.2 Transcription Factors 

 

Transcription factors are proteins that, as we have seen, regulate gene expression by 

binding to specific DNA sequences [3-5]. They activate or repress the expression of 

certain genes which are their direct targets. These (specific) transcription factors should 

be distinguished from general transcription factors, a set of extremely well-conserved 

proteins responsible for initiating transcription of every mRNA in eukaryotes by 

assembling with RNA polymerase II. 

 

The more complex the organism the greater are the transcription factors, not just in 

absolute number but also in their ratio to the gene population [6]. To wit, only 5% of the 
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~6000 yeast genes code for transcription factors; it is 10% in humans. In humans, 

transcription factors form the largest protein family. As each gene is regulated by 

multiple transcription factors, the 2000+ transcription factors in humans can potentially 

yield millions of combinations. Moreover, formation of transcription factor complexes, 

either of the same type (homodimers) or of different types (heterodimers), further 

increases the variety. This phenomenon facilitates singular responses to thousands of 

environmental conditions. 

 

Some examples of transcription factors are: (1) Highly conserved Hox proteins which 

control body pattern formation during the development of an organism, (2) Tissue-

specific transcription factors, such as the liver-specific HNF proteins, which maintain cell 

phenotypes, (3) p53 which suppresses tumors by activating DNA repair machinery, 

arresting cell cycle and inducing apoptosis, (4) Heat shock factor (HSF) which induces 

expression of genes important for survival at high temperatures, and (5) Members of the 

Jun, Fos and ATF transcription factor families which control cell proliferation, 

differentiation and transformation. 

 

A transcription factor protein consists of modules, called protein domains. One such 

domain is the DNA-binding domain (DBD), which binds to specific DNA sequences in 

its target genes. Another is the transactivation domain, also known as activation function 

(AF). It forms complexes with auxiliary gene regulatory proteins called cofactors. One 

other domain is an optional ligand-binding domain (LBD), which binds to signaling 

molecules. 



  6  

    

 

External signals activate transcription factors in a number of ways [7]. Signaling 

molecules bind either directly to nuclear transcription factors (e.g. hormones binding to 

nuclear hormone receptors such as glucocorticoid or estrogen receptors) or to receptors 

on the cell surface. In the latter case, the resulting molecular signaling cascades activate 

the nuclear transcription factors such as CREB and ATM family members by 

phosphorylating their particular serine residues. The signaling cascades also activate 

cytoplasmic transcription factors using various mechanisms: serine (e.g. SMADs) or 

tyrosine phosphorylation (e.g. STATs), removal of phosphorylation (e.g. NFAT), 

proteolytic cleavage of the transcription factor (e.g. Notch) or its binding molecule (e.g. 

NF-κB, see more below). The activated cytoplasmic transcription factors then translocate 

to the nucleus. Internal signals also activate transcription factors using similar 

mechanisms (e.g. DNA damage activates p53). 

 

The activation or repression of gene expression is effected through various mechanisms. 

In one mechanism, activating transcription factors promote the assembly of RNA 

polymerase II and general transcription factors. In another mechanism, activating 

transcription factors simultaneously decondense the chromatin, a packaged complex of 

DNA and proteins (e.g. histones). Decondensation consists of acetylation of histones and 

remodeling of nucleosomes (the basic units of chromatin). These together make the DNA 

more accessible to transcription. Repressing transcription factors work just the reverse 

way. They inhibit transcription by blocking the assembly of RNA polymerase II and 

general transcription factors. They also condense the chromatin by deacetylating histones 
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and remodeling nucleosomes. Repression can sometimes also be carried through by 

inhibiting functional binding of DNA to activating transcription factors. The same 

transcription factors that activate gene expression in some cases may repress it in other 

cases, depending upon target genes, external signals and/or cell types. For example, while 

NF-κB is known to activate several hundred genes, it also represses the BLNK and 

BCAP genes in the B-cell receptor pathway in lymphoid cells [8]. 

 

Thus, transcription factors are critical in controlling cell behavior. What now remains to 

be done is the identification of DNA sequences to which a given transcription factor will 

attach itself, like a piece in a jigsaw puzzle. 

 

1.3 Transcription Factor Binding Sites 

 

A transcription factor binds to a specific DNA sequence called a transcription factor 

binding site, regulatory element or response element. We shall refer to it simply as a 

“site.” A site is a short stretch of DNA 5-20 bp in length, that binds to the DBD (DNA-

binding domain) of a transcription factor by forming non-covalent bonds (such as 

hydrogen or van der Waals). Naturally, the DBD will try to seek those DNA sequences 

which contain energetically most favorable nucleotides at each position. In certain 

positions in a site, the interaction between a nucleotide and the DBD is so strong that a 

specific nucleotide will always be present at that position. On the other hand, nucleotide 

variations are acceptable at a site position where the interactions are weak, which 

accounts for the degeneracy. 
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In higher eukaryotes, sites are located at various positions along a gene. A vast majority 

of these are present in the region of –1000 to +250 bp around the transcription start site 

(TSS), many of them in the proximal promoter (the 250 bp region upstream of the TSS.) 

A small number of sites may also be found further upstream or downstream of the gene 

or in an intron. Sites often form complexes, known as cis-regulatory modules (CRMs), a 

few hundred base pairs in length, containing one or more binding sites for multiple 

transcription factors. The exact order and spacing of sites within a CRM is usually not 

important. CRMs activating gene expression are called enhancers and those repressing 

gene expression are called silencers. CRMs can be present in an intron or upstream or 

downstream of a gene as far as 100 kb away from a gene. Thus, determining the location 

of a site can be quite difficult. 

 

Identification of transcription factor binding sites is an important problem in biology. Site 

identification helps determine the direct targets of each transcription factor and enables 

enumeration of various transcription factors controlling each gene’s expression. It is the 

first step towards understanding the combinatorial effects of transcription factors on gene 

regulation. If we can then measure the exact nature of gene regulation, that is how 

transcription factors quantitatively affect a gene’s expression independently and 

collectively, we can combine this information with the existing knowledge about 

signaling cascades and the functions of transcription factors and target genes, and thus 

begin to paint a picture of the mechanism by which a cell responds to environmental 

signals. We can thus decipher the black box in an important paradigm of biology.  
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Popular experimental methods for identifying sites include traditional low-throughput 

methods such as gel shift assay, DNA footprinting and ChIP; and high-throughput 

methods such as SELEX and ChIP-chip [1, 9-12]. In a gel shift assay or EMSA 

(electrophoretic mobility shift assay), DNA fragments travel through an electric field in a 

polyacrylamide gel, and are separated by size as larger fragments, facing greater viscous 

forces, advance more slowly through the gel. Thus, transcription factor-bound DNA 

fragments separate from unbound DNA due to the slow progression of the former. After 

removal of the protein, they are amplified using multiple rounds of PCR (polymerase 

chain reaction) and sequenced. We can identify the exact location of a site in a DNA 

fragment by DNA footprinting, in which multiple copies of the DNA fragment are 

labeled at one end, bound to the transcription factor and cleaved at random positions with 

a nuclease. They are then run on a gel shift assay, where no bands (footprint) are 

observed at locations corresponding to protection from cleavage due to protein binding. 

In each round of the high-throughput in vitro method SELEX (systematic evolution of 

ligands by exponential enrichment), DNA fragments from a combinatorial library that are 

bound to a transcription factor are separated from unbound DNA and PCR amplified, 

thus detecting even weak-binding sites after multiple rounds of partition and 

amplification. We can also identify sites occupied by a known protein in the native DNA 

structure of cells of interest using ChIP (chromatin immunoprecipitation), in which the 

bound protein is cross-linked with the DNA using formaldehyde, cells are lysed, DNA is 

broken into fragments, and the fragments bound to the protein are precipitated using an 

antibody against the protein, after which cross-linking is reversed and the DNA sequence 
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is identified using PCR amplification. In its high-throughput version called ChIP-chip, 

DNA sequences identified in ChIP are PCR amplified uniformly and hybridized to 

microarray chips containing genomic sequences to identify genomic binding locations. 

After identifying a site, its functional importance can be determined in site-directed 

mutagenesis by cloning the promoter or enhancer containing the site in front of a reporter 

gene and studying the change in the readout after modifying some nucleotides in the site. 

Despite the progress in the above methods, experimental identification of all sites for all 

transcription factors in higher eukaryotes is still a difficult proposition in view of the facts 

that the genes number in thousands, that genome sizes are large, and that there is a great 

variability in the position of regulatory regions with respect to genes. Experimentally, 

these cause low signal-to-noise ratios. 

 

Because experimental methods have limitations at the present time, we need to resort to 

computational methods to identify transcription factor binding sites. While many of the 

currently used computational methods restrict themselves to identifying sites, methods 

that are also able to predict the occupancy of transcription factors on the sites will take us 

one step closer to understanding the exact nature of gene regulation. In this thesis, we 

describe two methods that identify transcription factor binding sites and predict 

occupancy of transcription factors on these sites. 

 

A model of a transcription factor’s binding sites that incorporates the degeneracy is called 

a “motif.” In the next chapter, we will study three important motif models – regular 

expression (also called consensus sequence), weight matrix and energy matrix. In this 



  11  

    

section, we will review the popular visual representations of these models (Figure 1.1) 

[13-17]. The most basic representation corresponds to a consensus sequence or regular 

expression. In this, each position is represented by the symbol of the most prevalent 

nucleotide at that position. If two or more nucleotides are present at a position with nearly 

equally high frequency, a symbol representing all of them is used (e.g. R for purines A 

and G). N represents positions with no nucleotide preference. Another representation is a 

4-by- A  table, where A  is the motif length, corresponding to a weight matrix or an energy 

matrix. Each element of the table contains the relative frequency (for weight matrix) or 

the binding energy (for energy matrix) of each nucleotide at every position of the site. In 

the third, perhaps the most visually appealing, representation, known as a sequence logo, 

the overall height of the nucleotide stack at each position is drawn proportional to the 

information content at that position, and the height of each nucleotide within the stack is 

proportional to its relative frequency. 

 

In the next section, we will take up an important family of transcription factors, the NF-

κB (nuclear factor-kappa B) family. These transcription factors are critical for the 

development and well-being of an organism. We have taken NF-κB as the case study in 

this thesis for reasons that will become apparent in the course of the discussion. We will 

see what they are, what processes they regulate, how they regulate them, how defects in 

their regulation leads to pathogenesis, and also how certain viruses manage to cheat the 

immune system which is the main defense of an organism.    
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1.4 NF-κB and Its Self-Overlapping Binding Sites 

 

The NF-κB family plays a major balancing role in several cellular processes including 

cell cycle control, growth, proliferation, apoptosis (programmed cell death) and 

differentiation [8, 18-49]. It is involved in the nervous, hepatic, epidermal (e.g. hair, tooth, 

mammary glands) and many other systems. But it is the immune system where NF-κB is 

of paramount importance. It regulates the cell formation, negative or positive selection 

leading respectively to either proliferation or apoptosis of cells, cell differentiation and 

maturation, as well as the survival after maturity of most immune cells. It is also 

implicated in the development of primary (bone marrow and thymus) and secondary 

(spleen, lymph nodes, etc.) lymphoid organs. 

 

Various trauma conditions such as invasion by microbes, irradiation, oxidative stress, 

injury, hemorrhagic shock (excessive blood loss), heavy metals and therapeutic drugs 

(including chemotherapeutic agents) also activate NF-κB. In the event of an invasion by 

viruses, bacteria, fungi or parasites, pathogen-associated molecular patterns (PAMPs) 

activate NF-κB via pattern recognition receptors (PRRs) such as toll-like receptors 

(TLRs). Activated NF-κB drives an innate (or non-specific) immune response in a 

process called inflammation. This response consists of (i) the release of antimicrobial 

proteins, such as defensins and nitrogen and oxygen molecules, (ii) upregulation of 

cytokines (e.g. tumor necrosis factor and interleukin-1), chemokines, enzymes (e.g. 

cyclooxygenase-2) and adhesion molecules, and (iii) recruitment and activation of 

professional immune cells at the site of infection for killing the infectious agents. In a 
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positive feeback loop, proinflammatory cytokines further activate NF-κB. NF-κB 

orchestrates the adaptive (or antigen-specific) immune response by modulating the 

activation, selection and maturation of antigen-presenting cells (APCs) and T and B cells. 

 

The failure of proper regulation of the immune system leading to pathogenesis can also 

be traced to the NF-κB family. Some viruses use NF-κB to their advantage. HIV, for 

example, contains DNA sites that are activated by NF-κB in such a way as to cause HIV 

to proliferate. Another example is that of an avian retrovirus. It carries its own NF-κB 

homolog, v-Rel, which causes fatal leukemia. Any malfunction of the NF-κB signaling 

pathways is generally a hallmark of various types of cancer, where NF-κB helps growth 

of tumor cells, causes them to proliferate and prevents their apoptosis. Furthermore, it 

causes angiogenesis, local invasion and metastasis, thus spreading cancerous cells to the 

healthy regions of the organism. In the case of autoimmune diseases, such as chronic 

inflammation, asthma and rheumatoid arthritis, NF-κB gives out misguided response, and 

in the case of many infectious diseases inadequate response. The failure of NF-κB in 

systems other than the immune system can cause neurodegenerative and heart diseases. 

 

The NF-κB family of proteins is among the most studied transcription factors. It is 

interesting to note that mammals share NF-κB proteins with organisms evolutionarily as 

distant as jellyfish. Dorsal, Dif and Relish in the model organism fruit fly Drosophila are 

NF-κB proteins important for the species’ development and immunity, and have received 

a great deal of attention in scientific studies. In mammals, the NF-κB family consists of 

five proteins divided into two subfamilies. All five NF-κB proteins contain a conserved 
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300 amino acid Rel homology domain (RHD) for DNA binding, dimerization and 

binding to the inhibitor IκB protein. The RHD also possesses a nuclear localization signal. 

 

The first subfamily of NF-κB, called the Rel subfamily, includes RelA, RelB and c-Rel 

(with official human gene symbols RELA, RELB and REL, respectively). They contain a 

C-terminal transcriptional activation domain (TAD) that directly interacts with co-

activators and the general transcription factor machinery. The second subfamily consists 

of p105 and p100 (with official human gene symbols NFKB1 and NFKB2, respectively). 

Instead of a TAD, they contain C-terminal ankyrin repeats which inhibit their own 

activity, and which are removed by proteolysis to respectively produce the active proteins 

p50 and p52.  

 

Like many other transcription factors, all NF-κB proteins form homodimers and 

heterodimers with other family members in vivo, with the exception of RelB, which 

cannot form homodimers. On the other hand, p50 and p52 can form homodimers, but 

their homodimers or the p50/p52 heterodimer cannot activate transcription as they lack 

the necessary TAD.  NF-κB dimers have slightly different, not yet well-characterized 

DNA-binding specificities, expression profiles and target genes. It should be noted that in 

the entire NF-κB family (including the products and dimers) the p50/RelA heterodimer is 

so predominant that it is often referred to as NF-κB in the literature.  

 

In the absence of signals, inactive (dormant) NF-κB dimers are sequestered in the 

cytoplasm. They are bound to an inhibitory protein called IκB. They are exported to the 
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cytoplasm from the nucleus with the help of a nuclear export signal in their alpha subunit 

of the IκB protein. Once in the cytoplasm, they cannot enter the nucleus because the IκB 

protein masks their nuclear localization sequences. The dimers containing p105 or p100 

are also kept in the cytoplasm by the ankyrin repeats-containing domain which masks 

their own nuclear localization signals.  

 

An external signal activates dormant NF-κB through possibly many signal transduction 

pathways. Two of these are known. One is called classical or canonical, and the other 

alternative or non-canonical. The classical or canonical pathway is activated primarily 

during (i) the innate immune response and (ii) the survival of immune cells. In this 

pathway, PAMPs or proinflammatory cytokines bind to their receptors and phosphorylate 

the beta subunit of the IKK (IκB kinase) complex. Activated IKK phosphorylates IκB and 

marks it for degradation, releasing NF-κB for transcription. The alternative or non-

canonical pathway is activated primarily during (i) the adaptive immune response, (ii) the 

development and organization of the secondary lymphoid organs and (iii) B-cell 

maturation. In this pathway, lymphotoxin, BAFF (B-cell activating factor) or CD40 bind 

to their receptors and activate NIK (NF-κB inducing kinase), which phosphorylates the 

alpha subunit of IKK. Activated IKK then phosphorylates the ankyrin-rich domain of 

p100 in the p100/RelB complex and marks it for degradation, producing p52/RelB.  

 

In the next step of both pathways, the active NF-κB dimer enters the nucleus with the 

help of the exposed nuclear localization signal and starts regulating the expression of its 

targets genes. It is sometimes post-transcriptionally modified (e.g. phosphorylated and 
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acetylated) prior to starting its function. NF-κB activation is often transient due to auto-

regulatory feedback loops. For example, one of the genes whose expression is 

upregulated by NF-κB is its own inhibitory protein IκB-alpha. The newly formed IκB-

alpha binds to the nuclear NF-κB and translocates it to the cytoplasm as a dormant dimer 

with the help of the inhibitory protein’s strong nuclear export signal. 

 

Once in the nucleus, NF-κB will bind to a site in its target genes. NF-κB binding sites 

(κB sites) have the consensus nucleotide sequence GGGRNNYYCC [50].  (As explained 

before, N stands for no preference, R for either A or G, and Y for either T or C.) As 

expected from the high evolutionary conservation of the NF-κB proteins, κB sites are also 

found to be highly conserved in mammals [51]. In Chapter 5, we will develop a 

biophysical model to identify conserved κB sites.  

 

κB sites often self-overlap because they contain multiple G’s at the 5’ end and multiple 

C’s at the 3’ end (Figure 1.2). For a good κB site, when the sequence window is shifted 

by one position in either the 5’ or the 3’ direction, the resulting sequence is often a 

putative κB site. Moreover, we can have additional possibility of self-overlap because the 

reverse complement of a κB site is often a κB site, allowing functional binding in the 

opposite direction.  

 

There are examples in which NF-κB can also bind to sites that deviate significantly from 

the above κB site [45, 65]. RelA/c-Rel heterodimer is known to bind with high affinity to 

AGGAAAGTAC in the promoter of murine urokinase plasminogen. Similarly, p52/RelB 
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binds to AGGAGATTTG. However, the incidence of such sites is rare and hence we will 

not consider them in this thesis.  

 

It is important that a good computational method should take into account all of the 

alternative binding modes (i.e. include self-overlapping sites) while scoring a candidate 

regulatory site, although there are many in literature that fail to do so. Ignoring the self-

overlapping nature of the site will obviously lead to an incorrect design and interpretation 

of in vitro experiments. For example, a 3’ padding sequence (sequence immediately 

following the site in the experiment construct) starting with nucleotide C in a gel shift 

experiment can form a spurious strong κB site, and thus confer a falsely high binding 

affinity to the experimental sequence. This is in spite of the fact that the test sequence, in 

the context of the native promoter, may make for a weak κB site. A computational 

method which identifies the self-overlapping sites and helps in the design of padding 

sequences will obviously avoid such errors. In Chapter 3, we will design a hidden 

Markov Model to identify self-overlapping κB sites. 

 

Self-overlapping κB sites is not a feature unique to NF-κB. Several transcription factors 

bind to self-overlapping sites. When a site consists of highly conserved consecutive 

positions containing the same nucleotide (although the nucleotide can be different for 

different sets of highly conserved consecutive positions within the site), the transcription 

factor can bind in different sequence windows, i.e. to self-overlapping sites. Examples 

include Drosophila developmental transcription factor Hunchback [52], worm PHA-4 

[53], human Sp-1, C/EBPalpha, yeast ADR1, MIG1, chicken Cdx-1, Arabidopsis 
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Agamous, etc. [54]. Furthermore, when binding by the transcription factor in either 

orientation is permissible, the corresponding binding DNA site and its reverse 

complement will have to be considered as two different types of self-overlapping sites as 

long as they are not exactly palindromic. Hence, the identification of self-overlapping 

sites and a proper accounting for them is equally important in the treatment of many other 

transcription factors. Problems similar to the identification of self-overlapping sites also 

arise in the context of prediction of nucleosome positioning [55]. 

 

Although the NF-κB family is probably the most studied transcription factor family and 

its several target genes, including the sites, have been identified experimentally [18, 45, 

50, 56-64] and computationally ([65-68]; see the next chapter for limitations), our 

knowledge of this family in many respects is far from complete. We do not know whether 

pathways in addition to the two discussed above exist. In fact, we do not know very much 

about even these two signaling pathways. The other features of NF-κB that are still 

mystery to us are (1) its decision-making process concerning apoptosis versus cell 

survival, (2) the dynamics of its signaling, (3) the composition of its dimers, (4) 

mechanisms used by NF-κB to control several cellular and organismal processes, and (5) 

its roles in a multitude of diseases.  

 

We need to identify many more target genes regulated by NF-κB to tackle the above 

issues. Knowledge of the NF-κB pathways based upon the identification of NF-κB’s 

direct target genes will help understand the regulatory actions of NF-κB and shed light on 

the pathogenesis of cancer as well as inflammatory and other diseases. Armed with this 
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knowledge, we will be in a better position to discover new therapeutic targets present in 

the NF-κB pathways and to decipher the mechanism of action and side-effects of drugs 

affecting the NF-κB pathways. 

 

1.5 Thesis Overview 

 

In this chapter, we provided the biological framework for transcription factors and their 

binding sites on the DNA sequences of their target genes. We discussed the importance 

of identifying the binding sites. We briefly described experimental methods that are in 

vogue to achieve the goal of such identification. Because we propose to use NF-κB 

proteins, one of the most important families of transcription factors, as a case study in the 

subsequent chapters of this thesis, we developed the necessary background of this family 

in terms of its biology and its self-overlapping binding sites. We remarked upon how the 

ignorance of self-overlapping sites can lead to inaccurate experiments. In Chapter 2, we 

will review the computational methods currently used for identifying transcription factor 

binding sites with an emphasis on the various issues in computational modeling as well as 

on the limitations of the current models. In Chapter 3, we will address the issue of self-

overlapping sites. We will present the hidden Markov model (HMM) method that we 

have developed for identifying them. In Chapter 4, we will discuss the incorporation of 

evolutionary information for site identification. We will review the relevant evolutionary 

models and computational methods. In Chapter 5, we will identify evolutionarily 

conserved sites by developing a composite model in which we integrate biophysics with 

evolutionary conservation. We call this model the Phylogeny-based Quadratic 
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Programming Method of Energy Matrix Estimation (PhyloQPMEME). Finally, in 

Chapter 6, we will summarize our findings with a discussion on how the methods we 

have developed will enhance our understanding of NF-κB biology, and with it that of the 

biological systems in general in which NF-κB plays such an important role. We will close 

the final chapter with an outlook of the future. 
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Figure 1.1: Commonly used visual representations of the motif models 

corresponding to the binding site of the transcription factor NF-κB.  

A. Consensus sequence or regular expression. R represents a purine (A or G), Y 

represents a pyrimidine (C or T) and N represents any nucleotide.  

B. Table. Each element contains the relative frequency (for weight matrix) or the binding 

energy (for energy matrix) of the nucleotide at the site position. Table for a weight matrix 

is shown.  

C. Sequence logo. The overall height of the nucleotide stack at each position is 

proportional to the information content at that position and the height of each nucleotide 

within the stack is proportional to its relative frequency. 

 

 

A      GGGRNNYYCC 

 

B  
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C  
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Figure 1.2: Self-overlapping κB sites. 

Four self-overlapping κB sites are present on the two strands in three adjacent 10 bp 

sequence windows. 
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Chapter 2 

Computational Methods for Identifying Transcription 

Factor Binding Sites 

 

“The important thing in science is not so much to obtain new facts as to 
discover new ways of thinking about them.” 

William Bragg (1890-1971) 
 

2.1 Machine Learning for Identifying Binding Sites 

 

Machine learning consists of programming computers to develop the optimum 

performance criterion based on past examples, which are collectively known as a training 

set [69]. For this purpose, complex mathematical simulation models are built using 

statistical theory. Algorithms employing advanced techniques in computer science are 

then written for efficient execution of programs. Machine learning is either “supervised” 

or “unsupervised”. In supervised learning, each example in the training set contains an 

input and an output. During the training stage, the algorithm learns the correct mapping 

(function) of the input to the output while being “supervised” by the output. Then comes 

the “scoring” stage. In this, the trained algorithm predicts the output of new input data. 

The two main examples of supervised learning are classification, where the outputs are 

discrete class labels, and regression, where the outputs are generally continuous numbers. 

In unsupervised learning, the outputs are not provided in the training set and hence the 
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algorithm learns only the patterns in the input data during the training stage. It isolates the 

already learned patterns during the scoring stage.  

 

Machine learning algorithms are used for computationally identifying transcription factor 

binding sites (referred to as sites). The problem of site identification generally appears in 

two contexts. In the first context, one wants to identify sites in new sequences based on 

known examples of experimentally validated sites. This is a supervised machine learning 

classification problem, where sequences are to be partitioned into two classes – binding 

sites and non-binding sequences. During the training stage, a learning algorithm (1) 

constructs a motif (a model of sites) by making certain assumptions, (2) creates a 

discriminant function that can be evaluated for any sequence, and (3) determines a 

threshold value (or cutoff, or decision boundary) such that only sequences with the 

discriminant value on one side of the threshold are considered sites. When scoring a new 

sequence, it calculates the value of the discriminant function of each subsequence in a 

sliding window of length equal to that of the site, and compares it to the threshold to 

determine the positions of potential sites in the sequence. Both algorithms developed in 

this thesis are supervised machine learning classification algorithms. 

 

In the other context, the training set consists of large sequences, often the promoters of 

co-expressed or co-regulated genes, which may contain none, one or multiple sites. One 

wants to determine statistically over-represented motifs in these sequences and then 

identify corresponding sites in these and new sequences based on a discriminant function 

and a threshold. This requires unsupervised learning algorithms. We will only review 
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some of the unsupervised learning algorithms arising in this context, while concentrating 

almost exclusively on supervised learning algorithms in the thesis. 

 

2.2 Motif Models and Statistical Framework 

 

We now describe motif models used in the machine learning methods for identifying sites. 

As pointed out earlier, the three important models are regular expression, weight matrix 

and energy matrix. 

 

The regular expression model is the most basic of the motif models. In the training stage, 

the most prevalent nucleotide at each position in the training set is assigned that position. 

(See Section 1.3 for more information.) When scoring a new sequence, its subsequences 

in a sliding window the size of the site length are declared “hits” if they match the regular 

expression. Although this model is a good starting point, it fails to take into account 

statistical variations that are present at sites. Consequently, it is not expected to be highly 

accurate. Moreover, it has no physical interpretation in terms binding energy or other 

useful parameters. 

  

Weight matrix [16, 70] and energy matrix [71-74] models, being probabilistic in nature, 

allow for variations at sites in a meaningful way. The weight matrix model is the most 

widely used model at present, but, as we will see, it contains certain assumptions that 

may not always be valid. These assumptions make the mathematics simpler, but the 
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results are suspect, as they may be fraught with inaccuracies [75]. The energy matrix 

model attempts to do away with these assumptions, as we will see below.  

 

In both these models, each term in the matrix can be interpreted as a function of the 

binding energy of each of the four nucleotides at each position in the site, and of the state 

parameters such as temperature and concentration. The matrix is of dimensions 4 x A, 

where A is the length of the site. Both models assume that positions in a site are 

independent. Thus, the total binding energy is just the sum of the binding energies of 

nucleotides at different positions, quite a good approximation [76] in view of the fact that 

the second order energy terms are negligibly small. Furthermore, their simple versions 

also assume that sites in the training set are independent. (Chapter 4 discusses modeling 

of dependent sites in the training set using evolutionary models.) 

 

In the weight matrix model, the matrix terms are derived with the a priori assumption 

that the occupancy probability, i.e. the probability that a transcription factor occupies a 

DNA sequence at equilibrium, follows a Boltzmann distribution [17, 75, 77-84]. Each 

term of the energy matrix, on the other hand, is derived with the consideration that the 

occupancy probability follows a more general Fermi-Dirac distribution. This distribution 

reduces to the Boltzmann distribution only in the limiting events when the concentration 

levels of the transcription factor are very low or when the binding energies are very high 

(see Section 2.3). 
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We will now review the general statistical framework for site identification and 

sophisticated methods of supervised and unsupervised learning based on weight matrix, 

followed by other methods for site identification. We will discuss the energy matrix 

model in the next section. 

 

According to the definition of a weight matrix (WM), also called position-specific score 

matrix (PSSM) or profile and denoted by w , each of its elements is taken to be equal to 

the probability (i.e. “weight”) of each nucleotide at each position of the motif [16, 70]. 

Let’s now see how a weight matrix model is trained. As training sites and positions 

within each site are assumed to be independent, the likelihood of the training set S  is 

( ) ( ) ( )
1

| | in
i

s S i

p S w p s w w α

α
α∈ =

= =∏ ∏∏
A

, where s  is each training site, A  is the length of 

the motif, i  is each position in the motif, iwα  is the weight (probability) of the nucleotide 

α  at the i th position of the motif and inα  is the frequency of the nucleotide α  at the i th 

position of the training sites. The maximum likelihood estimator (MLE) of iwα  is 

i
i

i

nw
n
α

α = , where i in nα
α

= ∑  is the number of training sites for which the nucleotide at 

the i th position is known. 

 

One drawback of this formalism is that some small probabilities iwα  may get recorded as 

zero particularly since in  is small. This happens because the number of known sites of a 

transcription factor is usually small, and hence the training set may not cover all the 

possible nucleotides present at a position in a functional site. The probability that a given 
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sequence is a site is the product of the probabilities of nucleotides at all positions of the 

sequence. A sequence containing a nucleotide that the training set did not contain at a 

position will never be identified as a site because the probability of this sequence is zero 

(a case of false negatives). 

 

This situation is remedied by taking a Bayes estimator. According to the Bayes formula, 

the posterior probability of the weight matrix given the training set is 

( ) ( ) ( )| |p w S p S w p w∝ . The class of the prior probability distribution is chosen such 

that the distribution of the posterior probability has the same class as that of the 

likelihood. Such prior probability distribution is said to be conjugate to the likelihood 

distribution. The Dirichlet distribution, which is the multiple parameter generalization of 

the beta distribution, is conjugate to the multinomial distribution. Because the nucleotides 

at a position have a multinomial distribution, a Dirichlet prior is used for weight matrices. 

The Dirichlet prior at the i th position of the motif has the general form 

( ) ( ) 1i

i ip w w αψ
α

α

−∝∏ , which results in the Bayes estimator i i
i

i i

nw
n
α α

α
ψ
ψ

+
=

+
. The term 

iαψ  is called a pseudocount because increasing its value by one has the same effect on 

the posterior as adding one to the frequency count. The weight matrix is trained using the 

Bayes estimator. 

 

Before moving to scoring using a weight matrix, let’s see how the background sequence 

is modeled. One can treat the background the same way as transcription factor binding 

sites by thinking of it as a special type of site of unit length. The background is thus 
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modeled using a motif of unit length. A nucleotide’s background probability will then be 

its weight in this motif. 

 

When scoring a new sequence, each subsequence s  in the sliding window of length A  

has the weight matrix score of ( )
( ) 1

|
ln ln

|
i

i

p s w w
p s b b

α

α=

= ∑
A

, where bα  is the probability of the 

nucleotide α  in the background motif b . The weight matrix score measures the 

distinctness between the probabilities that the subsequence is generated from the weight 

matrix or the background model. s  is called a site if the score is above an arbitrary 

threshold.  

 

In practice, ln iw
b
α

α

 terms are used in a weight matrix table for two reasons. First, 

summing them gives the weight matrix score of the subsequence. Second, each of these 

logarithmic terms corresponds to the binding energy of the nucleotide α  at the i th 

position of the motif, when the occupancy probability distribution is assumed to be 

Boltzmann [17, 75, 77-84]. Thus, the higher the weight matrix score, the lower the 

binding energy (using the convention that binding energy decreases with higher affinity). 

 

Weight matrices have often been used to identify binding sites of a particular 

transcription factor. For example, we identified NF-κB-binding sites in the promoters of 

B-cell linker (BLNK) and B-cell adaptor for phosphoinositide 3-kinase (BCAP) in the B-

cell receptor (BCR) signaling pathway, which uncovered a possible role of NF-κB in the 

transcriptional repression of these molecules that results in tumor [8]. Weight matrices 
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can also be used to identify cis-regulatory modules (CRMs). A CRM, as we have seen 

before, is a cluster of one or more binding sites for multiple transcription factors. To 

determine if a large sequence is a CRM, algorithms such as ModelInspector and CIS-

ANALYST are used to identify binding sites in the sequence using all available weight 

matrices for multiple transcription factors [85-89]. They declare the sequence to be a 

CRM if the number of sites present in the sequence exceeds an arbitrary threshold. (This 

threshold should not be confused with the thresholds used for identifying individual 

sites.) 

 

The major shortcoming of the weight matrix method is that the weight matrix score does 

not provide a natural threshold to allow classification of sequences into sites. Boltzmann 

distribution, by its nature, does not have a natural threshold. Weight matrix scores are 

shown not to corroborate well with experimental binding data [75]. 

 

The use of weight matrices and statistical inference leads to a hidden Markov model 

(HMM), such that the HMM emission and transition probabilities correspond to the 

weight matrix and the prior probabilities of motifs, respectively [90]. While we will 

discuss HMMs in detail in the next chapter, let’s review the statistical framework here 

because it applies to many supervised and unsupervised learning algorithms. Given a 

motif’s weight matrix w , its prior probability z  and background probabilities b  (b  is 

thought of as a one nucleotide long weight matrix of the background, as explained 

before), the joint probability of new sequence s  and configuration c  of motifs in the 

sequence takes the general form 
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( ) ( ) ( ) ( ) ( ), | , | , , | , | , |p s c W Z p s c W Z p c W Z p s c W p c Z= = . Here, the set W  contains 

the weight matrix w  and the background probabilities b ; the set Z  contains the prior 

probabilities of the motif z  and the background ( )1 z− ;  configuration c  may contain 

one or more motifs at various positions in the sequence or none at all. The latter equality 

in the above equation follows because the probability of the sequence given a 

configuration is independent of Z  (and hence ( ) ( )| , , | ,p s c W Z p s c W= ) and the 

probability of a configuration depends only on Z  (and hence ( ) ( )| , |p c W Z p c Z= ). 

The first term on the equation’s right hand side is ( )
1

| ,
m b

j j
i

j i j

p s c W w bα α
=

=∏∏ ∏
A

, where 

mj  and bj  are the start positions of the instances of the motif and the background in the 

configuration respectively, and jbα  and j
iwα  are the probabilities of the nucleotide α  at 

the background and the i th position of the motif starting at the j th position of the 

sequence, respectively. The second term is ( ) ( )| 1 bm
nnp c Z z z= − , where mn  and bn  are 

the number of instances of the motif and the background in the configuration. Note that 

the above formalism can be extended easily for multiple types of motifs, where W  

contains multiple motif types and the background, and Z  contains their prior 

probabilities. 

 

Let’s consider supervised learning, i.e. when known examples of sites are provided. The 

training stage consists of estimating Z  and W . We described W  estimation above.  

Z can be estimated from the equation ( ) ( ) ( )| , | , |p Z S W p S W Z p Z W∝ . Because the 

term ( )|p Z W  does not contain any prior information, Z  is estimated by maximizing the 
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likelihood ( ) ( ) ( ) ( ) ( )| , | , , | , | , , |
c c

p S W Z p S W Z c p c W Z p S W Z c p c Z= =∑ ∑ . This 

requires summing over all configurations and hence an analytical solution of Z  is not 

possible. Using expectation maximization (EM), 
'

'

m

m
m

n
z

n
=
∑

, where mn  is the 

expected number of instances of the motif and 'm  are the different motif types including 

the background. While the HMM program called Stubb [91, 92] estimates Z  using EM, 

another HMM program called Ahab [93] uses the conjugate gradient method to arrive at 

similar estimates. Both Stubb and Ahab estimate W  using the weight matrix training 

method described above. While scoring, both programs divide a sequence into segments 

of length L , determine Z  for each segment and call a  segment a CRM if the likelihood 

ratio ( )
( )

| ,
| , b

p s W Z
p s b z

 is above a threshold, where bz  and ( )| , bp s b z  are the prior probability 

and the likelihood of the background, respectively. Stubb also takes into account the 

order and correlation of motifs in a sequence. 

 

The major disadvantage of many HMM-based methods is that an arbitrary threshold 

needs to be chosen while scoring. Furthermore, these methods do not explicitly discuss 

the physical meaning of a motif’s prior probability as the transcription factor’s 

concentration. They also do not train W  while training Z . We will discuss all these 

issues in the next chapter. 

 

In unsupervised learning, W  of statistically over-represented motifs needs to be 

estimated when sites are not known and the training set S  consists of long sequences that 



  34  

    

may contain sites. The two popular methods are (1) expectation maximization (EM) and 

(2) Gibbs sampling. EM focuses on ( ) ( ) ( )| , | , |p W S Z p S W Z p W Z∝ , where the prior 

( )| ( )p W Z p W=  is the pseudocounts. Similar to the EM estimate of Z  above, EM 

estimate of W  is ;i m
i

m

n
w

n
α

α = , where ;i mnα  is the expected number of motif instances 

containing the nucleotide α  at the i th position and mn  is the expected number of motif 

instances. Algorithms such as MEME [94], MAST [95] and MDscan [96] use EM. The 

Gibbs sampling procedure determines the best configuration first before estimating W  by 

focusing on ( ) ( ) ( )| , | , |p c S Z p S Z c p c Z∝ , where 

( ) ( ) ( ) ( ) ( )| , | , , | , | , ,
W W

p S Z c p S W Z c p W Z c dW p S W Z c p W dW= =∫ ∫ . The posterior 

( )| ,p c S Z  is a complicated equation in terms of beta functions and polynomials and thus 

cannot be solved analytically. However, a Gibbs sampler samples from it to determine 

the configuration c  that maximizes the posterior. Gibbs sampling procedures include the 

original algorithms [97-99] as well as extensions such as AlignACE [100], Motif Sampler 

[101], BioProspector [102] and Gibbs Recursive Sampler [103]. Unlike the above 

methods, CONSENSUS identifies sites that have weight matrices with the best p-values 

[104]. Furthermore, unsupervised site identification methods that enumerate all possible 

sequences of a particular length based on regular expressions or word “dictionaries” have 

also been developed [105-109].  

 

Udalova et al. used regression instead of classification for identification of κB sites. They 

developed a principal coordinate model to specifically determine relative binding 
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affinities of κB sites using experimental quantitative binding data [67]. They selected a 

subset of the 256 possible variants of the fully palindromic NF-κB binding consensus 

sequence GGRRNNYYCC such that no variant differed from the selected sequences or 

their reverse complements by more than one nucleotide. They mapped these sequences to 

a Euclidean space using metric scaling by defining the distance between two sequences 

as the number of positions with different nucleotides. They then used the largest principal 

components in the mapped space as features for least-squared linear regression of the 

logarithm of binding affinity in a gel shift assay. This model automatically incorporated 

effects of interactions between base pair positions in the binding motif, its predictions 

were highly correlated with experimental binding data, and it identified motif positions 

responsible for differential binding of homodimeric p50 versus p50p65 based upon their 

gel shifts. Moreover, its results regarding differential binding between homodimeric p50 

and p52 were consistent with crystallographic studies [66]. The authors subsequently 

devised an algorithm to optimize selection of sequences for experimental testing, and 

used microarrays for high-throughput quantitative binding assays [65]. The model’s 

disadvantages are that (1) it requires experimental quantitative binding data of all selected 

sequences and (2) includes variants of only the consensus sequence. Because several 

known κB sites do not fit the consensus sequence [54], inclusion of all possible 10-mer 

variants for this model will require binding experiments with a large number of 

sequences, making this model infeasible. 
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2.3 Threshold, Occupancy Probability and a Biophysical Model 

 

Threshold determination is a major roadblock in identifying sites. In a typical two-class 

classification problem, the training set consists of examples of both classes, and many 

standard algorithms exist to determine the “best” threshold in some sense. When 

identifying sites, however, one usually does not know experimentally validated non-

binding sequences, and hence the training set consists of examples of only one class, 

requiring new techniques to determine the threshold. A good threshold should have a 

palatable biophysical interpretation and should offer insight into the biological function 

of sequences classified as sites. Most site identification methods proclaim that a sequence 

is a site if its score is above an arbitrary threshold or statistically significant compared to 

the score of a background sequence. These criteria do not have a biophysical 

interpretation and do not offer any information about the importance of a site in 

modulating gene expression. Moreover, an arbitrary stringent threshold misclassifies true 

sites whereas a lenient threshold classifies random sequences as sites.  

 

A good threshold with a biophysical interpretation can be determined in the following 

ways. We will see in the next chapter that an HMM trained on all binding sites and non-

binding sequences in a genome, which the HMMs described above are not, learns the true 

threshold in terms of the transcription factor’s concentration as its transition probability 

to the motif. Another way of finding a good threshold is to use a discriminant function 

whose physical interpretation offers a natural threshold. 
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Occupancy probability makes an excellent discriminant function for site identification 

due to the following three reasons. First, unlike a purely statistical entity, it has a 

straightforward biophysical interpretation. A transcription factor’s occupancy on the 

promoter determines gene expression. Second, highly occupied sites may be 

physiologically more significant. Thus, occupancy probability not only helps in 

classifying sequences as sites but also offers insight into their influence on gene 

expression. We will see in Chapter 5 that evolutionary fitness can be thought of as a 

linear function of occupancy probability. Third, occupancy probability has a natural 

threshold at 0.5 as we will see below. 

 

Occupancy probability of a sequence by a particular transcription factor depends upon (1) 

its sequence and (2) the transcription factor’s concentration. At a particular transcription 

factor concentration, only sequences with favorable bonds and low binding energy 

qualify as sites. However, as the transcription factor’s concentration increases, it also 

binds to sequences forming less favorable bonds and higher binding energy, the 

equilibrium shifts toward more bound product and the threshold shifts to assign more 

sequences as sites. 

 

Let’s derive an equation for the occupancy probability of a sequence and study its 

behavior as a function of binding energy (which depends upon the sequence) and the 

transcription factor concentration [71-74]. When a transcription factor protein P binds to 

DNA D to form a complex DP ( P D DP+ U ), the dissociation constant is 
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( ) [ ][ ]
[ ]

b

G
E sK T

d

P D
K e e

DP
β

Δ

= = =

D

, where bK  is the Boltzmann constant, T is the absolute 

temperature, 1

bK T
β = , ( )G E sΔ =D  is the binding free energy of DNA sequence s  under 

standard conditions, and [ ]P , [ ]D  and [ ]DP  are the equilibrium concentrations of the 

free protein, free DNA and protein-DNA complex, respectively. The occupancy 

probability of sequence s  is then 

( ) [ ]
[ ] [ ] [ ] [ ] [ ] ( ) [ ] ( )( )

1 1 1 1
1 1 1 1

bound
E s E s

d

DP
p s

DP D D DP K P e P eβ β μ−
= = = = =

+ + + + +
, 

where [ ]ln P
μ

β
=  is the chemical potential and dK  is the dissociation constant. Thus, 

occupancy probability has the well-known Fermi-Dirac distribution (Figure 2.2). It has 

the following features: 

• When the binding energy ( )E s  of a sequence is very low or the transcription 

factor concentration [ ]P  (and hence μ ) is very high, ( )( )E sβ μ− → −∞ , 

( )( ) 0E seβ μ− ≈  and hence the sequence is always occupied as seen in the top left 

part of the figure. 

• When the transcription factor concentration [ ]P  (and hence μ ) is very low or the 

binding energy ( )E s  of a sequence is very high, ( )( ) 1E seβ μ− �  and hence the 

occupancy probability has an approximate Boltzmann distribution 

( ) ( )( )E sboundp s e β μ− −≈ , as seen in the bottom right part of the figure. Logarithms of 

the weight matrix terms correspond to binding energies when occupancy 



  39  

    

probability has a Boltzmann distribution [17, 75, 77-84], i.e. when the 

transcription factor concentration is very low or binding energy is very high. 

• Occupancy probability of 0.5 can be thought of as a natural threshold in 

classifying sequences as sites. It corresponds to binding energy equal to the 

chemical potentialμ . Sequences with binding energy less than the chemical 

potential ( ( )E s μ< ) have occupancy probability greater than 0.5 and hence 

should be classified as sites. 

 

The biophysical model QPMEME (Quadratic Programming Method of Energy Matrix 

Estimation) estimates binding energies based upon occupancy probability [71, 73, 74]. 

Assuming that the binding energy at each position of a sequence is independent of other 

positions, the binding energy ( )E s  of a sequence is the sum of the binding energies at 

individual positions. Binding energies of all possible sequences of length A  are 

approximately normally distributed when 1A �  because binding energy at each position 

is a random variable and ( )E s  is the sum of these A  random variables. When this normal 

distribution of binding energies and the Fermi-Dirac distribution of occupancy 

probability are compared on the same scale, the Fermi-Dirac distribution can be 

approximated by the step function for 1A �  because the standard deviation of the 

binding energy distribution is much greater that bK T  [110-113]. Thus, a true site has 

binding energy ( )E s μ<  and hence is occupied, while a random sequence with 

( )E s μ>  is not occupied (the threshold binding energyμ  is at the far left of the mean of 

the normal distribution). The likelihood of the training sequences consisting of only true 
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sites is maximized by minimizing the probability of a random sequence with binding 

energy below μ  while ensuring that all known sites have binding energy below μ . The 

probability of a random sequence with energy below μ  is minimized by minimizing the 

variance of the normal distribution. Let ε  be the binding energy vector of length 4A  

containing binding energy of each nucleotide at each position ( iαε ), and S  be the 

sequence vector of length 4A  such that each element is α  equals one if the sequence has 

the nucleotide α  at the i th position and zero otherwise. Then the sequence’s binding 

energy is 
4

1 1

( ) i i
i

E s sα α
α

ε
= =

= ⋅ = ∑∑ε S
A

. If we set mean binding energy ( )E s  to zero and 

1μ = − , binding energy is expressed in terms of μ . Let’s assume that the probability of a 

nucleotide ( pα ) is the same at all positions of a random sequence. The above problem is 

a quadratic programming problem (quadratic objective function with linear constraints; 

explained in Chapter 5) in 4 iαεA  variables with Lagrangian 

( )
4 4 4

2

1 1 1 1 1 1

1 1
2

a
i a i i i i

i a i i

p s pα α α α α α
α α α

ε λ ε ν ε
= = = = = =

⎛ ⎞ ⎛ ⎞+ + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑∑ ∑ ∑∑ ∑ ∑
A A A

, where i  is any position in 

the sequence. The first constraint is that the binding energy of each training sequence is 

less than μ:
4

1 1
( ) 1a a

i i
i

E s sα α
α

ε
= =

= ≤ −∑∑
A

. The second constraint is that at each position i , the 

average binding energy is set to 0: 
4

1

0ipα α
α

ε
=

=∑ . aλ  and iν  are Lagrange multipliers 

and 0aλ ≥ . QPMEME estimates the binding energy of each nucleotide at each position of 

the motif by solving the above problem. 
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2.4 Limitations of Conventional Methods and Addition of 

Heterogeneous Data 

 

The conventional computational methods for site identification described above have 

several limitations [17]. (1) They identify several false positives because sites are short 

(5-15 bases) and degenerate (the nucleotides at each position are not unique). (2) They 

assume that adjacent positions in a site are independent. (3) In higher eukaryotes, sites are 

present upstream or downstream of genes, in introns or even in regions far away from 

genes. (4) Genomic backgrounds around sites can differ widely. (5) Moreover, they do 

not explicitly identify overlapping motifs such as for NF-κB. As mentioned in the last 

section, most methods other than QPMEME (6) use an arbitrary threshold lacking a 

straightforward biophysical interpretation for classifying sequences into sites and (7) fail 

to estimate occupancy probability that helps elucidate a site’s role in gene expression 

modulation. 

 

Furthermore, these primary sequence-based methods have limitations in predicting 

functioning sites in vivo. A predicted site may be inaccessible to a transcription factor in 

vivo due to DNA methylation or condensation of chromatin structure. Moreover, a 

transcription factor may not be able to bind to a site if another transcription factor has 

occupied a sequence overlapping the site. Even if a transcription factor binds to a site, it 

may be unable to initiate transcription due the unavailability of cofactors. 
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Due to the above limitations of classical methods, new methods have begun incorporating 

various types of data (heterogeneous data) to identify sites more accurately. The 

following heterogeneous data have been included: (1) Conservation of sites in orthologs 

in related species (see Chapter 4 for more information), (2) Experimental identification in 

high-throughput binding experiments (e.g. ChiP-chip) [114], (3) Occurrence of sites in 

the promoters of genes with a similar expression pattern (e.g. microarray gene expression 

data) [102, 115], (4) Occurrence of sites in the promoters of genes with a similar function 

(e.g. Gene Ontology categories), (5) Presence of multiple sites in a promoter [116], (6) 

Occurence of a site within a cluster of binding sites for different transcription factors 

[116], (7) Network-level conservation, i.e. over-representation of sites in the promoters of 

genes present in the transcription factor’s network in closely related species [117] . 

 

A composite model is required to take full advantage of heterogeneous data. Some 

methods analyze each type of data separately to identify sites that have a score above a 

threshold for each type of data, and declare sites that have scores higher than thresholds 

for all data types as the true sites [116] . They fail to identify sites that have scores lower 

than the individual thresholds, but have a good overall composite score (figure 2.3). 

Composite models that incorporate sequence conservation form the focus of Chapters 4 

and 5. Bussemaker et al. have built a composite model of sequence composition and 

high-throughput expression data that fits the logarithm of the expression ratio to the sum 

of activating and inhibitory contributions of motifs and thus finds statistically significant 

motifs [118].  
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We have developed two novel methods that identify sites by addressing the threshold 

issue and estimating occupancy probability. In Chapter 3, we describe the HMM that 

identifies overlapping sites and offers many more improvements to the existing HMMs. 

In Chapter 5, we describe a method that combines the QPMEME biophysical model with 

sequence conservation data. 
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Figure 2.1: Schematic of the weight matrix method to identify transcription factor 

binding sites. 

WM is trained using the known sites and assuming that the training sites as well as the 

positions in each site are independent. Each element of the WM  iwα  is estimated using 

the Bayes estimator as shown, where inα  is the frequency of the nucleotide α  at the i th 

position of the training sites, in  is the number of training sites for which the nucleotide at 

the i th position is known, and the ψ  terms are the pseudocounts. When scoring a new 

sequence, weight matrix score of each subsequence in a sliding window of length A  equal 

to that of the site is calculated, where bα  is the background probability of the nucleotide 

α . A subsequence is declared a hit if its weight matrix score is above a threshold (10 in 

this figure). 
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Figure 2.2: Occupancy probability as a function of binding energy of a sequence.  

Occupancy probability has an overall Fermi-Dirac distribution. A sequence is always 

occupied by the transcription factor protein if its binding energy is very low or the protein 

concentration (and hence the chemical potential) is very high. If the protein concentration 

(and hence the chemical potential) is very low or binding energy is very high, occupancy 

probability has an approximate Boltzmann distribution. In classifying sequences as sites, 

the natural threshold is the occupancy probability of 0.5, which corresponds to binding 

energy equal to the chemical potential.  
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Figure 2.3: Illustration showing the need for a composite model when analyzing 

heterogeneous data. 

Red triangles are true sites, whereas gray circles are random sequences. The x 

coordinates are weight matrix (WM) scores and the y coordinates are conservation scores, 

i.e. how well a sequence is conserved in orthologs. Dotted lines show the thresholds for 

each type of data such that a score higher than the threshold in each dimension 

corresponds to a putative hit. Dashed brown arc shows the threshold used in a composite 

model. Methods that declare only those sequences with the weight matrix and the 

conservation scores above the corresponding thresholds as sites fail to identify true sites 

with individual scores lower than the thresholds but a good composite score. 
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Chapter 3 

Hidden Markov Model to Identify Self-Overlapping Sites 

 

“All truths are easy to understand once they are discovered; the point is to 
discover them.” 

Galileo Galilei (1564-1642) 
 

3.1 Markov Model and Hidden Markov Model 

 

We briefly describe discrete Markov models before proceeding to discrete hidden 

Markov models, which form the focus of this chapter [69, 119, 120] (a continuous 

Markov model requires a slightly different treatment). Consider a system which changes 

from one state to another using a stochastic process as it moves forward in space or time. 

If the process is a homogeneous Markov process, the state at a particular instance (1) 

depends only upon the previous state and (2) is independent of states prior to the previous 

state. Such a system is called a Markov chain and the associated probabilistic model is 

called a Markov model. In a Markov model, the probability of transition from one state 

( i ) to another ( j ) in unit interval is called a transition probability ( ija ), and the 

probability of a state at the first instance is called its initial probability ( jπ  for state j ). 

Thus, the probability of state j  at any instance t  is given by ( ) ( )1t t ij
i

p j p i a−= ∑ . (For 

the special case of 1t = , ( )t jp j π= .) 
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As an example, one can think of a Markov model as generating a string of DNA sequence 

as it moves 5’ to 3’. If the four types of nucleotides are considered as the four states, the 

Markov model can generate a sequence based on its transition and initial probabilities 

(Figure 3.1A). A Markov model can generate many different nucleotide sequences with 

different probabilities. Each sequence can be thought of as a state path, i.e. a path in 

which particular states are present at particular positions. An observed sequence is one 

state path, and one can easily calculate its likelihood in terms of initial and transition 

probabilities given a Markov model. While this example describes change in a sequence 

in space (5’ to 3’), we will see another example of Markov models in the next chapter – 

an evolutionary model that describes change in a sequence with time as a species evolves. 

 

In the above “observable” Markov model, nucleotides are considered as states (such that 

a nucleotide at a position depends only on the nucleotide at its 5’ position) and thus states 

are observable in the data. However, what if a DNA sequence has a hidden underlying 

structure that actually determines the chain of nucleotides? For example, a promoter 

sequence if often made of motifs corresponding binding sites of transcription factors and 

the background. One can model such a sequence by considering the motif and the 

background as the two states (the simplest case; Figure 3.1B). Nucleotides in such a 

model are not states themselves but merely the observed symbols emitted by these states. 

The problem is that the states – background and motif – cannot be observed. Only the 

nucleotides emitted by these states can be observed. Of course, the two hidden states have 

different emission probabilities according to which they emit these nucleotides (otherwise, 
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there is no need of considering two separate hidden states). Such a Markov model is 

called a hidden Markov model (HMM). Its hidden states emit symbols that one can 

observe using a stochastic process and the associated probabilities are called emission 

probabilities. Incidentally, just like the states in an “observable” Markov model, states in 

an HMM change from one to another based on their transition probabilities. Thus, an 

HMM has two sources of randomness that correspond to transition and emission 

probabilities.  

 

Such an HMM can also be thought of as a sequence generating model [90]. It generates a 

sequence from 5’ to 3’ as follows. At any position in the sequence, the HMM (1) 

determines the probabilities of the motif and the background states at the previous 

position, (2) calculates the probability of either state at the current position using the 

transition probabilities and (3) generates the new nucleotide based upon the states’ 

emission probabilities. An HMM can generate many hidden state paths each with a 

specific probability, and each hidden state path can generate the observed sequence with 

a specific probability. 

 

An HMM is trained using a dynamic programming expectation-maximization (EM) 

algorithm called the Baum-Welch algorithm. An HMM consists of five elements: (1) 

number of states, (2) symbols (nucleotides in the above example) emitted by states, (3) 

initial probabilities, (4) transition probabilities and (5) emission probabilities. The first 

two elements are hyper-parameters and are determined before training. Given a training 
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set of observation sequences, the Baum-Welch algorithm iteratively learns the other three 

elements as model parameters by maximizing the likelihood of generating the training set.  

 

In this chapter, we pay extra attention to one of the intermediate variables, called the 

gamma (γ ) variable, computed during the training procedure. This variable corresponds 

to the probability of each state at each position. It is actually the normalized product of 

the forward (α ) and backward (β ) variables for each state at that position. That is, the 

probability of state i  at position t  is given by ( ) ( ) ( )

( ) ( )
1

t t
t n

t t
j

i i
i

j j

α β
γ

α β
=

=

∑
, where n  is the 

number of states and j  denotes each of these states during normalization. The forward 

and backward variables are in turn calculated using the standard HMM recursion 

relations. The probability of observing the partial sequence 1 tO O"  until position t  and 

being in state j  at position t  is given by the recursion relation 

( ) ( ) ( )1
1

n

t t ij j t
i

j i a b Oα α −
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ , where ija  is the transition probability from state i  to state 

j , and ( )j tb O  is the emission probability of state j  that generates the nucleotide at 

position t . (It is initialized as ( ) ( )1 1j jj b Oα π= , where jπ  is the initial probability of 

state j .) Similarly, the probability of being in state i  at position t  and observing the 

partial sequence 1t TO O+ "  until the end position T  is given by the recursion relation 

( ) ( ) ( )1 1
1

n

t ij t j t
j

i a j b Oβ β + +
=

= ∑ . (It is initialized as ( ) 1T iβ = .) The gamma variable is 
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important because it gives a transcription factor’s occupancy probability when the HMM 

is used as a physical binding model for site identification (see below). 

 

There are two popular ways of scoring a new sequence using an HMM. We can calculate 

its likelihood using a dynamic programming algorithm that takes into account all hidden 

state paths. We can also calculate the state path that has the greatest probability of 

generating the new sequences using a similar dynamic programming algorithm called the 

Viterbi algorithm. 

 

As indicated in the previous chapter, emission and transition probabilities of HMMs used 

in site identification generally correspond to the weight matrix and the prior probabilities 

of motifs, respectively. If a motif is assumed to have the same prior probability z  

irrespective of the state in the previous position, transition probability to the motif state 

from any state is the same. While this simplifying assumption does not require a model as 

complex as an HMM, the HMM framework is often used to take advantage of its 

standard training and scoring procedures. 

 

3.2 HMM as a Physical Binding Model for Site Identification 

 

Even though in the context of site identification an HMM is usually interpreted as a 

sequence generative model, we focus on its somewhat obscure interpretation as a 

physical binding model of a transcription factor on DNA. This interpretation leads us to 

transform the statistical HMM model into a biophysical one. We can then determine the 
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occupancy probability of a transcription factor on a DNA sequence, and think of the prior 

probability of the motif (transition probability to the motif z ) as a measure of 

transcription factor concentration and the weight matrix (motif emission probabilities) as 

a measure of binding energies. More importantly, the biophysical model offers a 

principled threshold for classifying sequences into sites. 

 

We discussed in the last section that an HMM is commonly used to generate spatial or 

time series sequences in the machine learning field. This pedestrian approach to an HMM, 

however, misses the role played by the occupancy of a transcription factor. Therefore, we 

wish to emphasize the interpretation of an HMM as a physical binding model that 

estimates the occupancy probability of a transcription factor on a particular position of a 

DNA sequence, i.e. how often the transcription factor is bound to that position of the 

DNA sequence. When an HMM has a background and a motif state, the occupancy 

probability at a position is the probability of the motif state at that position. It is given by 

the gamma (γ ) variable of the motif state at that position. As the sum of the probabilities 

of the two states at a position is one, this allows us to conclude that the probability of the 

background state is the probability of unbound DNA at that position. 

 

The above two interpretations of an HMM, it must be noted, are not really that different if 

we bear in mind that the generative probability of the motif state is in fact the occupancy 

probability of the transcription factor. 
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Although the occupancy probability of a transcription factor at a particular position in a 

sequence can easily be calculated using the standard HMM techniques, we still review  

the method of calculating it from  first principles [90]. This is done primarily for two 

reasons. First, the comparison of these two methods will show how the HMM is 

computationally a great deal easier to use, particularly since (i) the factors determining 

occupancy probability are actually trained and (ii) occupancy probability is calculated as 

an intermediate variable using HMM techniques. Secondly, it will reveal the underlying 

physical connection between the occupancy probability obtained from the basic 

thermodynamics principles and the statistical quantities associated with an HMM. For the 

purpose of demonstration, we only consider the case of non-self-overlapping sites and 

assume that binding is allowed only on one strand. (A more general case is discussed in 

Appendix A.) 

 

In calculating occupancy probability using first principles [90], let’s denote the motif 

state, representing the entire site, as m  and the background state as b . The emission 

probability of the motif state corresponds to its weight matrix, whereas the transition 

probability to the motif state from either state is the prior probability of the motif z . Let 

( )p b  be the probability that a long sequence s  does not contain any motifs (i.e. it is all 

background), and ( )jp m  be the probability that the sequence has one motif m  starting at 

the j th position. This latter probability can be written as 

( ) ( ) ( ) ( )1 1

1

( ) 1 . . . . 1 .b j b jmj
j i

i

p m z w z w z wα α α
− + +

=

= − −∏
A

A… … ,  where the transition probability to 

the motif state at any particular position in a sequence is small ( 0z ≈ ), A  is the length of 
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the motif, mj
iwα  is the probability that the nucleotide α  at the ( )1j i+ − th position of the 

sequence is emitted by the i th position of the motif state, and ( )1b jwα
−  is the probability 

that the nucleotide α  at the ( )1j − th position of the sequence is emitted by the 

background state. Note that this formulation fits into the general Bayesian probabilistic 

framework described in Section 2.2 such that the product of the w  terms is the likelihood 

and the product of the z  terms is the prior. We can write 

( ) 1

( ) ( ). ( ). .
1

mj
i

j jbj
i i

z wp m p b p b z E
wz

α

α=

= ≈
−

∏
A

A , where ( )1 1z− ≈A  and bj
iwα  is the probability 

that the nucleotideα  at the ( )1j i+ − th position of the sequence is emitted by the 

background state. Also, jW
jE e=  such that 

1

ln
mj
i

j bj
i i

wW
w

α

α=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏
A

 is the weight matrix score 

of the motif starting at the j th position of the sequence. Then, the occupancy probability 

at the j th position of the sequence is 
( ) . .( )

( ) ( ) 1 . 1 .

j

j

W
j jbound

j W
j j

p m z E z ep s
p b p m z E z e

= ≈ =
+ + +

.  

 

Thus, the two factors determining occupancy probability are (i) the transition probability 

to the motif z  and (ii) the measure of distinctness of the emission probabilities of the 

motif from that of the background (weight matrix). Both these factors need to be high for 

the transcription factor to be bound to a particular position in a DNA sequence with high 

probability. For example, even if the weight matrix score is high, occupancy probability 

cannot reach one if z  is really small. A site identification method based only on a weight 

matrix has no way of dealing with this interplay with z . 
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The HMM training techniques offer two advantages over the calculations made using 

first principles. First, the HMM Baum-Welch procedure trains the transition and emission 

probabilities. This produces optimized values of z  and the weight matrix, which are 

essential for an accurate estimation of occupancy probability. Secondly, as mentioned 

above, the HMM training procedure also calculates an intermediate variable called the 

gamma (γ ) variable. The occupancy probability at a particular position is given simply 

by the gamma variable of the motif state at that position: ( ) 1m b
j j jp s γ γ= = − , where m

jγ  

and b
jγ  are the gamma values of the motif and background states at that position, 

respectively. Thus, the calculation of occupancy probability in a new sequence requires a 

simple extension of the scoring procedure in which the gamma variable is computed just 

like during the training procedure. 

 

We now transform the statistical HMM model into a biophysical model. Based on the 

thermodynamics principles described in Section 2.3, occupancy probability can be 

written as ( ) [ ] ( )

[ ] ( )1

j

j

E s
bound
j E s

P e
p s

P e

β

β

−

−
=

+
, where [ ]P  is the concentration of a free 

transcription factor at equilibrium, ( )jE s  is the binding energy at position j , 1

bK T
β =  

where bK  is the Boltzmann’s constant, and T  is the absolute temperature [73]. A 

comparison of this equation with the equation of occupancy probability obtained from 

first principles gives us ( )j jW E sβ= −  and [ ]z P= . Thus, the weight matrix represents 

binding energy [17]. In addition, the transition probability to the motif z  corresponds to 

the free transcription factor concentration. As the transcription factor concentration 
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increases, the transition probability to the motif increases and we expect higher 

occupancy by the transcription factor on the DNA. 

 

The greatest benefit of this transformation of an HMM to a biophysical model is that it 

enables the HMM to learn the threshold for classification of sequences into sites in a 

principled way. We have seen in the last chapter that occupancy probability offers a 

natural threshold at 0.5 when used as a discriminant function. We just saw that the 

occupancy probability depends upon the transition probability to the motif z  and the 

weight matrix, both of which are trained by an HMM. Thus, when an HMM uses 

occupancy probability as a discriminant function, it learns the natural threshold based on 

the training sequences. Because of this accurate estimation of the threshold, an HMM is 

expected to identify weak sites much more accurately with a fewer false positives. There 

is, however, one caveat. The method requires that the training sets are chosen carefully so 

that the emission probabilities reflect the weight matrix of the motif, and that the 

transition probability to the motif z  represents the density of sites in the promoters of all 

genes in a genome. This is by no means an easy task. We will discuss the training of such 

an HMM in a subsequent section. 

 

While the use of an HMM is thus advantageous in identifying sites, we have discovered 

that an HMM offers tremendous benefits for the special case of identifying self-

overlapping sites. 
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3.3 HMM Advantage in Identifying Self-Overlapping Sites 

 

We mentioned in Chapter 1 that binding sites of many transcription factors self-overlap, 

the effects of which are quite complicated. We know of no method that explicitly takes 

these effects into account for identifying self-overlapping sites. We will show here how a 

simple extension of an HMM described in the previous section can be used simply and 

appropriately for this purpose. 

 

When sites self-overlap, the occupancy probability at a position in a DNA sequence 

depends upon the strength of all sites containing that position. Thus, the effects of 

binding in all sequence windows containing the position need to be integrated. Moreover, 

the binding strength of the reverse strand sequence needs to be taken into account by 

incorporating an additional motif type whose emission probabilities are flipped from 5’ to 

3’ with respect to the original motif type. As described in detail in Appendix A, the 

resulting occupancy probability at the j th position based on first principles has a rather 

complicated formula of 1

1

.
( )

1 .

m

m

j

m mk
k j mbound

j j

m mk
k j m

z E
p s

z E

= − +

= − +

≈
+

∑ ∑

∑ ∑
A

A

, where k  corresponds to the first 

position of each sequence window containing position j , m  is the motif type (including 

the one corresponding to the site on the other strand), mA  is the length the m th motif type, 

and mz  is the transition probability to the m th motif type. While many site identification 

methods do not estimate the transition probability to the motif z, the above equation 

shows that calculation of the occupancy probability at a position using these methods is 
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tedious even when z is known. The calculation of the overall occupancy probability over 

the entire sequence is even harder because a simple equation using the z and the weight 

matrix does not exist. 

 

The use of a gamma variable in the HMM method that we have developed enables us to 

compute the occupation probability for multiple types of self-overlapping sites. This is a 

distinct advantage over the two HMM scoring methods in vogue at the present time, viz. 

the likelihood method and the Viterbi method. Both fail to calculate occupancy 

probability at a particular position in a sequence and identify self-overlapping sites. The 

likelihood of a sequence is greater when more sites are present in the sequence. Still, its 

exact correspondence with the occupancy probability of a transcription factor is obscure. 

In addition, the likelihood score does not indicate the location of sites in a promoter. In 

contrast, the Viterbi method proclaims the presence of sites at positions where the state 

path with the highest probability contains the motif state. It, however, fails to consider 

self-overlapping sites because self-overlapping sites cannot be present in the same state 

path. It also fails to estimate occupancy probability.  

 

The trick in using HMM gamma variables is to break up each motif type into A  states 

each corresponding to one position in the motif. The emission probabilities of each state 

are the weights corresponding to that position of the weight matrix. When the site 

contains no insertions or deletions, the transition probabilities between the states 

associated with the consecutive positions within the motif are equal to one. Such an 

HMM calculates the occupancy probability at each position by combining the strengths 
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of all overlapping motifs (in different sequence windows) in a natural way, even when 

multiple types of motifs exist. The occupancy probability of any transcription factor at a 

position is simply the sum of the γ ’s of all motif states corresponding to the transcription 

factor (including those corresponding to binding on the opposite DNA strand) at that 

position. Thus, its occupancy probability at the j th position is 
1

( )
m

imbound
j j

m M i
p s γ

∈ =

= ∑ ∑
A

, 

where M  is the set of motif types corresponding to the transcription factor, and im
jγ  is 

the γ  of the state corresponding to the i th position in motif m  at the j th position of the 

sequence. When the binding of only one transcription factor is considered, the formula 

simplifies further to ( ) 1bound b
j jp s γ= − , as in the case of non-self-overlapping sites, where 

b
jγ  is the γ  of the background state at that position. We can also easily calculate 

transcription factor occupancy over the entire sequence for non-overlapping or 

overlapping sites using an HMM as ( ) 1

1

L
mbound
j

j m
p s γ

=

= ∑∑ , where 1m
jγ  is the γ  of the state 

corresponding to the first position of the m th motif type at the j th position of the 

sequence.  

 

Even though HMMs serve well for identifying sites, we will see below the difficulties 

involved in using existing HMMs for identifying self-overlapping sites, and a need to 

develop a new HMM to address these difficulties. 
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3.4 Need for a New HMM for Identifying Self-Overlapping Sites 

 

An HMM can be considered a good method for classifying sequences into self-

overlapping sites only if it can be made to learn the classification threshold in a 

principled manner. Its transition probabilities should therefore be trained to reflect the 

density of sites in promoters in an entire genome. Its emission probabilities should be 

trained using known sites in their native promoters to capture the relationship between 

emission and transition probabilities properly. Moreover, it should take into account the 

alternative binding modes of self-overlapping sites. 

 

HMMs, now popular for identification of sites for more than a decade [121], have been 

used in two different ways. 

 

(1) For identification of one or more occurrences of non-overlapping sites: ‘Profile 

HMMs’ are generally used for this purpose. Profile HMMs were originally designed to 

model protein domains such as a kinase domain or a serine protease domain [122-124]. 

More recently, they have been used to identify binding sites of transcription factors, for 

example, of cAMP receptor protein in cyanobacterium Anabaena [125], liver X receptor 

[126] and CREB [127]. A profile HMM library was built using TRANSFAC sequences 

to classify transcription factors [128]. In a profile HMM, each position within a motif has 

three states. A match state is associated with a nucleotide being present at that position 

and has corresponding emission probabilities. A deletion state corresponds to absence of 

any nucleotide at that position. An insertion state allows for insertion of nucleotides 
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between the current position and the next position within the motif, and has its own 

emission probabilities. A profile HMM becomes much simpler when the motif is known 

not to contain any insertions or deletions. Such a profile HMM does not contain insertion 

or deletion states, and the transition probabilities between the match states of successive 

positions within the motif are equal to one. The HMM described in the previous section 

for identifying self-overlapping sites belongs to this category.  

 

(2) For identification of cis-regulatory modules (CRMs) that contain multiple sites of 

different types: This is usually performed using ‘motif HMMs’ [92, 93, 129-132].  In a 

motif HMM, the entire motif, i.e. all positions within the motif, is represented by one 

state. Different states correspond to different motif types (i.e. motifs associated with 

different transcription factors). The statistical framework of motif HMMs is described in 

detail in Section 2.2. Phylogenetic conservation has been incorporated in motif HMMs to 

reduce false positives [92, 133-137].  

 

Both the above HMMs, however, have a number of disadvantages. A profile HMM has a 

complicated architecture and requires a large number of parameters as a consequence. 

Because the number of known sites is generally small, training of a profile HMM using 

known sites in their native promoters (which effectively requires their simultaneous 

alignment) is usually not possible. Therefore, a profile HMM is generally trained using 

pre-aligned sites. Because the whole promoters containing the training sites are not used, 

transition probability to the motif z  from background is not trained, and the relationship 

between transition and emission probabilities is likewise not captured. Motif HMMs, on 
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the other hand, are more focused on identifying motifs of multiple types. But while they 

attempt to estimate the transition probability to the motif z , they generally use only the 

promoters containing the motifs for training z  and thus overestimate z . Moreover, they 

usually train emission probabilities of motifs separately using pre-aligned training sites, 

thus ignoring the effect of z  on emission probabilities. 

 

Many of these HMMs use the likelihood or the Viterbi algorithm for scoring, and thus 

end up using an arbitrary classification threshold. Furthermore, they leave their 

relationship with biophysical models rather obscure and thus fail to calculate the 

occupancy probability. These shortcomings are in addition to their basic failure to 

explicitly consider the combinatorial effects of self-overlapping sites. 

 

We have therefore developed a new HMM to identify self-overlapping sites based on the 

theoretical framework described in the previous sections [138]. It uses occupancy 

probability as the discriminant function. It trains the threshold in a principled manner by 

training emission probabilities using known sites in their native promoters and training 

transition probabilities using promoters in an entire genome. The NF-κB family of 

transcription factors is a prominent example of transcription factors with self-overlapping 

sites, and we will use identification of its binding sites (κB sites) as a case study. 

 

We will begin by describing the HMM that we have developed and its training procedure. 
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3.5 Two-Step Training and Behavior of HMM Parameters 

 

Our HMM consists of 21 states: one background state and a state corresponding to each 

of the ten positions within the κB motif on the two DNA strands (Figure 3.2). Because 

the κB motif is not known to contain insertions or deletions, the transition probabilities 

between the states corresponding to successive positions within the motif on a strand are 

fixed to one. The nine transition probabilities available for training are the transition 

probabilities from (i) the motif states corresponding to the last position in the motif on 

both strands and (ii) the background state to (i) the motif states corresponding to the first 

position in the motif on both strands and (ii) the background state. The rest of the 

transition probabilities are fixed to zero. The emission probabilities of the motif states on 

the two strands are flipped from 5’ to 3’ so as to represent identical binding irrespective 

of the motif strand. Because initial probabilities are a special case of the transition 

probabilities at one edge of the sequences, we will not mention them separately from now 

on. 

 

The transition probabilities were initiated using the transition probability to the motif z  

chosen by us. The motif emission probabilities (motif profile) were initiated using the 97 

κB sites generated in unbiased experiments and obtained from TRANSFAC 9.3 [54, 56-

59]. We will refer to this motif profile as the initial motif profile. The promoters were 

defined as the regions starting at 800 bp upstream of the TSS (transcription start site) and 

ending at 100 bp downstream of the TSS. The background state’s emission probabilities 

were assigned from the nucleotide distribution of the promoters corresponding to the 
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reference sequences of all human genes in RefSeq Release 19 [139] associated with 

human assembly hg18, NCBI Build 36.1 available at the University of California Santa 

Cruz (UCSC) genome bioinformatics site (http://genome.ucsc.edu/) [140, 141]. The 

background probabilities were also used as pseudocounts when generating the motif 

profile initially and during subsequent training. 

 

The HMM parameters can be divided into two sets: (1) the emission probabilities of each 

motif state (motif profile) and the background, and (2) the transition probabilities that 

depend upon the transition probability to the motif (z). While the HMM needs to be 

trained using site-rich sequences to learn the motif profile, training on random sequences 

(promoters of randomly selected genes) is required to learn z reflecting the site density in 

the promoters of all genes in the human genome.  

 

We therefore trained the HMM, using the Baum-Welch algorithm [69], in two steps. In 

the first step, we trained both the emission and transition probabilities using short 

sequences rich in known sites with the aim of accurately estimating the motif profile. In 

the second step, we kept the emission probabilities constant, and trained the transition 

probabilities on promoters containing known sites as well as random promoters to 

accurately estimate the transition probability to the motif z  reflecting the site density in 

the promoters of all genes in the human genome. We estimated z separately for the TSS-

800:TSS (upstream 800 bp) and TSS:TSS+100 (downstream 100 bp) regions because the 

κB site density is different in these regions. Training an HMM to discover motif locations 

in unlabeled promoter sequences would generally be regarded as an unsupervised 

http://genome.cse.ucsc.edu/index.html
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learning algorithm. We, however, initiated the motif profile based on known sites and 

trained it using promoters enriched in known sites. Thus, our HMM can be considered as 

a semi-supervised learning algorithm. 

 

In the first step, we used two types of site-rich sequences of different lengths as well as 

various initial z’s to train all HMM parameters and determine the emission probabilities 

to be used in the second step. We used the following two types of promoters. (1) The 

“TSS-n promoters” consist of n nucleotides upstream of the TSS of the 42 human genes 

known to contain a κB site [54, 61, 62]. (2) The “Surround-n promoters” consist of 34 

promoters containing the 36 known κB sites whose exact genomic locations were 

identified (two promoters each contained two closely located known κB sites) and the 

surrounding regions. Each surround-n promoter is n nucleotides long. The HMMs trained 

on these promoters were called “TSS-n HMMs” and “surround-n HMMs,” respectively. 

After each training iteration, the emission probabilities of the motif states of the 

corresponding motif positions on both strands were averaged to ensure that the learned 

motif profiles on both strands were exactly flipped 5’ to 3’. After training, the sum of the 

transition probabilities from the background state to the motif states corresponding to the 

first motif position on both strands was estimated as z  (the transition probabilities to the 

motif states on the two strands are near identical). 

 

Trained motif profiles of TSS-n HMMs appear similar to the background emission 

probabilities regardless of the promoter length and initial z. On the other hand, trained 

motif profiles of surround-50 or surround-100 HMMs with a reasonable initial z (between 
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0.0001 and 0.01) are distinct from the background (Figure 3.3A). They are also distinct 

from the initial motif profile, as their symmetrical Kullback-Leibler (KL) divergences 

(defined as 1
2

1
( ( || ) ( || ))

l

KL i i KL i i
i

D P Q D Q P
=

+∑ , where iP  and iQ  are the emission 

probability distributions of the i th motif positions of motif profiles P  and Q , A  is the 

motif length and KLD  is the log e-based KL divergence) with respect to the initial motif 

profile are high (0.49 and 0.5, respectively; in comparison, the KL divergences between 

the initial motif profile and 100 multinomial distributions simulated from the initial motif 

profile have a normal distribution with mean 0.0015 and standard deviation 0.00038). 

The trained motif profiles are slightly weaker than the initial motif profile, i.e. more 

similar to the background. In a surround-50 or surround-100 HMM, any initial z between 

0.0001 and 0.01 results in the same trained motif profile, indicating that perhaps a local 

optimum is reached. Trained motif profiles of surround-200 HMMs, however, appear 

more and more like the background as the initial z increases above 0.001. Trained motif 

profiles of surround-400 HMMs appear similar to the background regardless of the initial 

z. We used the trained motif profile of the surround-50 HMM for further analysis (Figure 

3.3A). 

 

The above results show that successful training of the motif profile requires a high 

density of sites in training promoters and a reasonable transition probability to the motif 

at the beginning of the training (initial z ). Training of the motif profile using TSS-n 

promoters failed due to the low density of κB sites in these promoters – long promoters 

contained too few sites as compared to the total number of nucleotides and many short 

promoters did not contain any κB sites. Training of the motif profile using surround-400 
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promoters also failed because the density of the κB sites was too low even though each 

training promoter contained a κB site. Motif profile was successfully trained only in the 

case of surround-50 and surround-100 promoters, and surround-200 promoters with 

initial z  less than 0.1. High initial z , which presupposes high density of sites, forces the 

motif profile to appear like the background because many background sequences are 

characterized as sites during training. As expected, this failure to properly train the motif 

profile with a high initial z  is more pronounced for promoters with lower density of sites 

– for initial z  of 0.1, training of the motif profile of the surround-200 HMM failed while 

that of the surround-50 HMM did not. 

 

We used unaligned sequences containing known sites rather than pre-aligned known sites 

to estimate the motif profile. As we have seen before, the motif profile and the transition 

probability to the motif z  corresponding to a training set are competing parameters, i.e. 

higher value of z  corresponds to a weaker motif profile. To avoid arbitrarily 

strengthening or weakening the motif profile, we used the known sites and their 

surrounding sequences, and trained the motif profile and z  simultaneously to get the best 

estimates based on expectation maximization. When sequences surrounding the known 

sites are not used in training, z  cannot be trained and thus an arbitrary z  is used while 

training the motif profile. 

 

Unlike most HMMs in the literature, we successfully trained the HMM emission 

probabilities without requiring pre-alignment of training sites. Because a κB site does not 

contain any insertions or gaps, we did not need to model the insertion and deletion 
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probabilities as in profile HMMs. This reduced the number of training parameters 

substantially, allowing us to train the emission probabilities using unaligned sites. 

 

Before we discuss the second training step, it is instructive to note that trained z  is 

proportional to site density. To see this, we examined the effect of the nature and the 

length of training promoters on trained z . We used the initial motif profile in this study 

and kept it fixed during training to isolate the effect on z. When trained on TSS-n 

promoters, z is inversely proportional to the training promoters’ length in the range 

between 500-3000 bp. Hence, the quantity *z promoter length  is relatively constant at 

~0.9 (Figure 3.4). It drops slightly between 500 to 200 bp and then substantially after 200 

bp due to the lack of κB sites in the shorter training promoters. When trained on 

surround-n promoters, the trained z is again inversely correlated to the training 

promoters’ length and the above quantity is higher at ~1.8 (z = 0.0347, 0.0175 and 0.0087 

when n = 50, 100 and 200, respectively). Trained z  is a great deal higher when the HMM 

is trained on surround-n promoters as opposed to TSS-n promoters because all surround-n 

promoters are guaranteed to contain κB sites. Incidentally, the initial z of TSS-n or 

surround-n HMMs in the range between 0.0001 and 0.1 does not affect the trained z 

probably because a global optimum is reached after a few expectation maximization 

(EM) iterations during training. 

 

Another interesting feature is that trained z  is inversely related to the strength of the 

motif profile. In other words, when the motif profile is kept constant and only z  is 

trained, the weaker the motif profile used (e.g. closer to the background), the higher the 
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trained z . To see this, we compared the quantity *z promoter length  after training z  on 

the initial motif profile vs. the motif profiles of surround-n HMMs, which are weaker. 

Again, the motif profiles were fixed during training. Surround-n promoters were used for 

training. The quantity *z promoter length  is ~1.9 when trained on motif profiles of 

surround-n HMMs (z = 0.0363 and 0.02 when n = 50 and 100, respectively) as opposed 

to ~1.8 when trained on the initial motif profile. This is probably the result of the 

compensating mechanism between the motif profile and z  discussed above. As one can 

recall, this competition between z  and the motif profile also determines occupancy 

probability.  

 

The goal of the second training step was to estimate the transition probability to the motif 

z  reflecting the site density in the promoters of all genes in the human genome. This z  

corresponds to the appropriate threshold when identifying sites in all human promoters. 

As noted above, the trained z  is proportional to the site density in the training sequences. 

The problem is that we do not know how many sites are present in the promoters of all 

genes in the human genome. Obviously, z  trained in the first step was not appropriate 

due to the high site density in the site-rich training sequences. We need to train z  on all 

human promoters, which is computationally expensive, or train it on a sufficient number 

of promoters to get a reasonable estimate of z . Therefore, we began with the human 

promoters containing the known sites as the training set and progressively added 

promoters of randomly selected human genes to the training set, training z  each time. As 

expected, the trained z  decreased with the addition of random promoters until the 

training set reached a few thousand promoters and then stabilized (Figure 3.3B). We 
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estimated this z as representing sites in all human promoters. The motif profile of the 

surround-50 HMM was used during this training. It was not trained in this step because 

the trained motif profile would have appeared similar to the background thanks to the low 

site density in the training sets, as discussed above. 

 

We estimated the z separately for the upstream 800 bp and downstream 100 bp regions. 

The estimated z for the upstream 800 bp regions was slightly higher (0.00017 vs. 

0.00012), reflecting the fact that the proximal promoter (up to 200 bp upstream of the 

TSS) has a high density of κB sites. 

 

With these trained parameters in hand, we will now turn to our scoring scheme. 

 

3.6 Scoring with Location-Dependent Transition Probabilities 

 

A novel feature of our scoring scheme is the tuning of parameters with the distance from 

the TSS in accordance with the varying density of sites. 

 

The majority of known κB sites are located just upstream of the TSS in gene promoters 

and the number of known κB sites decreases further upstream. Specifically, of the 36 

known κB sites upstream of the TSS, 16 are located within 100 bp and 28 are located 

within 200 bp of the TSS. Liu et al. have also made a similar observation in the 

promoters of NF-κB-regulated immune genes [68]. To counter the claim that such an 

observation for binding sites may be due experimental bias, we cite Tabach et al. who 
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showed in a wide-scale bioinformatic study that functional binding sites are more likely 

to be present in the 200 bp region upstream of the TSS than any other upstream region for 

most human transcription factors and specifically for NF-κB [142]. They defined 

functional binding sites as those over-represented in functionally related genes (in the 

same Gene Ontology categories) and conserved in related species. To bolster their 

conclusion, they showed location dependence of binding sites for the transcription factor 

Mycardin in a controlled experiment. Xie et al. also arrived at a similar conclusion based 

on binding site conservation [143]. Even though the exact reasons for the occurrence of 

such a phenomenon are not known at the present time, a better interaction of the 

transcription factor with the transcription machinery if it is bound close to the TSS and 

the low density of nucleosomes near the TSS [55] heuristically explain why this 

phenomenon may occur. 

 

While we agree that a great number experiments need to be conducted to definitively 

prove the location dependence of functional κB sites, we feel that a site identification 

method must be able to take it into account. Therefore, the commonly used site 

identification methods are certainly deficient in that they assume equal probability of a 

site everywhere in the gene structure and thus fail to adjust according to the location 

within the gene structure.  

 

Noticing that site density decreases sharply with the upstream disease from the TSS and 

that transition probability to the motif z is proportional to site density, we modeled z 

using an exponential functional form such that a region close to the TSS had a higher site 
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density than a region further upstream. We estimated the mean of this exponential 

functional form as follows. z  can be written as 0 xzz e θ

θ
−=  at x  positions upstream of 

the TSS, where θ  is the mean distance of κB sites upstream of the TSS (in number of 

nucleotide positions) and 0z  is the scale factor. Based on the position of known upstream 

κB sites, the maximum likelihood estimate of the mean for the exponential form was 170, 

and the estimate of the mean using the median was quite close at 169
ln 2

medianθ = ≈ . The 

maximum likelihood estimate was used in further analysis. To determine the scale factor 

0z , we noted that the site density per promoter is 800 * z  if z has a uniform functional 

form and 
800

0

0

xz e dxθ

θ
−

∫  if z has an exponential functional form. Equating these two 

expressions for the uniform z = 0.00017 obtained from training and θ  = 170 results in 

0 0.137z = . 

 

We used location-dependent transition probabilities based on the above calculations to 

compute occupancy probability (γ  variable) and identify sites in the upstream promoter 

regions. The value of z was calculated at each upstream position. Accordingly, a different 

transition probability matrix was generated at each upstream position as follows. We 

assigned the transition probability from (i) the background and (ii) the motif states 

corresponding to the last motif position on either strand to the background state as 1 z− , 

and the transition probability from (i) the background and (ii) the motif states 

corresponding to the last motif position on either strand to the motif states corresponding 

to the motif first position on either strand as 2z . Because the transition probabilities ija  
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are position-specific, the forward (α ) and backward (β ) variables and the resulting 

occupancy probability (γ  variable) also depend upon the position in the promoter. 

 

On the other hand, the sites in the downstream 100 bp regions (of the TSS) were 

identified using location-independent transition probabilities based on the uniform z of 

0.00012 obtained in training. This choice was made due to the paucity of evidence of 

positional dependence of site density in these regions. 

 

The benefit of the exponential form of z is that the probability of identifying a site 

decreases further upstream but never reaches zero (and the transition probability matrix 

varies accordingly). Even though this approach may fail to identify sites in distal 

promoters and enhancers, we believe that it allows site search in large upstream regions 

without identifying too many false positives. Whereas we used the exponential form by 

observing the locations of the known κB sites, a better functional form for location 

dependence can be incorporated if positions of a larger number of known sites are 

available. 

 

We now examine some properties of the occupancy probabilities calculated by our HMM. 

A κB site exerts influence on the occupancy probabilities at the positions surrounding the 

site in either direction. Because self-overlapping binding sites are usually present when 

the scoring window is moved by one position, occupancy probability stays high at all 

positions in that window. When the window is moved by more positions, the occupancy 

probability at the new positions dips slightly below the average due to the high motif 
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probability at the site. The occupancy probability returns to the average background value 

when the scoring window moves by ten positions. 

 

Moreover, the relationship between the occupancy probabilities of sites located close to 

each other is quite instructive. When two sites are in tandem without any space between 

them, occupancy probabilities of both of them are lower due to the small motif-to-motif 

transition probability. Occupancy probabilities are not very high even when the sites are 

one position apart because a window shift by one position from a κB site usually contains 

an overlapping κB site. The sites need to be at least two positions apart so that they do 

not exert significant influence on each other’s occupancy probabilities. Please note that in 

any case, the overall occupancy in a region containing two nearby sites is quite high. 

 

We will now see that all the above efforts taken to identify self-overlapping sites indeed 

pay off. 

 

3.7 Our HMM Performs Better than a Weight Matrix 

 

We compared the performance of our HMM to that of a weight matrix (WM) as follows. 

WM scoring was performed with the motif profile used to initialize the HMM. All 

overlapping windows on both strands were considered and the highest WM score was 

recorded. Positive examples consist of the 36 known human κB sites present in upstream 

800 bp regions (in their native promoters). Negative examples consist of all 10-mers in 

the upstream 800 bp regions in 100 randomly selected human genes that have no 
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association with inflammation or cancer. Leave-one-out cross-validation was performed, 

where each site was scored using an HMM trained on the surround-50 promoters of the 

other 35 known κB sites. The lists of HMM and WM scores of the negative examples 

were compressed by taking the maxima of the consecutive scores above a threshold (0.03 

for HMM, 4 for WM) to ensure that self-overlapping binding sites were represented by 

the score of the strongest site. 

 

The ROC analysis shows that our HMM performs better than the weight matrix (Figure 

3.5). While both the HMM and the WM are highly accurate when identifying strong sites, 

the HMM is more accurate in identifying weak sites. The segregation of weak sites from 

site-like sequences is quite difficult due to degeneracy and provides a crucial test. In this 

respect, our model far outperforms the WM.  We believe that this superior performance 

of our HMM is the result of training the threshold in a principled manner to minimize 

false positives and false negatives. 

 

We will now focus on the predictions made by our HMM. 

 

3.8 Validation using Conservation and Expression 

 

We predicted κB sites in the upstream 800 bp and downstream 100 bp regions of all 

genes in the human genome and calculated their occupancy probabilities. Two types of 

data suggest that they may be functional sites. Many predicted κB sites are (i) 

evolutionarily conserved and (ii) regulated after NF-κB over-expression 
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First, evolutionary conservation scores of κB sites predicted by our HMM are higher than 

those of 1000 10-tuples randomly selected from human promoters, and κB sites with 

higher HMM occupancy probability have higher evolutionary conservation scores 

(Figure 3.6). To calculate the conservation score of a site, its multiple alignment was 

retrieved from UCSC. Only mammalian sequences with at least five nucleotides present 

in the alignment were included. Consensus nucleotides were determined at all positions 

in the alignment where the human sequence did not contain a gap, and the number of 

sequences containing the consensus nucleotide was counted for each position. The 

conservation score was calculated as the ratio of the sum of these counts at all positions 

to the product of the number of sequences in the alignment and the number of nucleotides 

in the site (generally 11 or 12 for self-overlapping κB sites, 10 for non-overlapping κB 

sites), multiplied by 100. The perfect score, when all aligned sequences are identical, is 

100. Kernel-smoothing density estimates of the conservation scores of sets of κB sites 

were calculated using default MATLAB parameters. 

 

Secondly, the chicken genes regulated by over-expressed NF-κB proteins in a microarray 

experiment [8] and their human orthologs are enriched with κB sites predicted by our 

HMM (Figure 3.7). Notably, genes regulated in a higher number of comparisons are more 

enriched with HMM-predicted sites. Also, our HMM predicted more κB sites per 

regulated gene among genes predicted to contain κB sites probably because true NF-κB 

targets contain multiple sites. Interestingly, human orthologs of regulated chicken genes 

are more enriched with predicted NF-κB targets than the chicken genes themselves 
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probably due to the availability of higher quality sequences for humans. In this 

experiment, seven NF-κB proteins from different species were over-expressed in chicken 

DT40 pre-B cell lines, and regulated genes were identified by comparing the expression 

level for each experimental condition against the control.  Human orthologs of the 

regulated chicken genes were obtained using Ensembl [144]. 

 

We will now see that the occupancy probabilities predicted by our HMM are indeed quite 

accurate. 

 

3.9 Correlation with Gel Shift Experiment Results 

 

As shown in Figure 3.8, a strong correlation exists between the occupancy probabilities 

predicted by our HMM and the in vitro binding affinity of the NF-κB family members c-

Rel and RelA for oligonucleotides in a gel shift experiment (correlation coefficients of 

0.91 and 0.92, respectively). This validates our physical binding model because the 

HMM-predicted occupancy probabilities appear to correspond to observed binding 

affinities. 

 

Gel shift experiments were performed by our collaborators using double-stranded 

radiolabeled oligonucleotide probes containing 10-mers derived from several chicken 

promoters to determine if our HMM accurately predicted occupancy probabilities.  
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For comparison with gel shift binding affinities, occupancy probabilities need to be 

calculated based on an accurate transition probability to the motif (z), which corresponds 

to the protein concentration as we have seen above. However, protein concentration in a 

gel is higher than in the cellular context, and is difficult to determine. We therefore 

estimated z as follows: (1) calculate the occupancy probabilities of all the sequences in 

the gel shift experiment using various z’s, (2) compute the sum of KL divergences of the 

occupancy probabilities of all the sequences with their binding affinities in the gel shift 

experiment, and (3) estimate z as the one corresponding to the minimum sum. The 

rationale behind this procedure is that the occupancy probabilities resulting from the 

correct z should be in the same ballpark range as gel shift binding affinities. KL 

divergence can be used as a measure to determine if they are indeed in the same ballpark 

range. The estimated z is 0.001 for both RelA and c-Rel.  

 

We take this opportunity to show the effect of z on HMM-predicted occupancy 

probability. We plotted the HMM-predicted occupancy probability with respect to z while 

keeping the same motif profile (Figure 3.9). Three characteristics of the dependence 

between z and occupancy probability stand out: (1) Occupancy probability increases 

sigmoidally and then saturates as z increases. (2)  Occupancy probability of a stronger 

site (e.g. itm2b vs. bcap κB site in the figure) saturates at lower z, and therefore 

occupancy probability of the stronger site is greater at a particular z. (3) Occupancy 

probability is influenced by surrounding sequences due to the formation of spurious self-

overlapping sites (e.g. it is higher when the 3’ padding sequence of a κB site in a gel shift 

construct starts with a C than with a T). 
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3.10 Take-Away for Scientists when Designing Experiments 

 

The current practice for performing gel shift experiments in the NF-κB community 

consists of using particular padding sequences around the 10-mer corresponding to a 

potential κB site (for example see [19, 25, 29, 40]). The padding sequences, however, 

need to be chosen carefully. As we have discussed in Chapter 1, certain nucleotides in the 

padding sequences in positions adjacent to the 10-mer can form spurious κB sites due to 

the self-overlapping nature of κB sites, and hence the experiment cannot represent 

binding of the 10-mer in the native promoter. Choice of such padding sequence may lead 

to incorrect results. 

 

Our HMM reveals the dependence of occupancy probability on padding sequences of 

self-overlapping sites, and thus offers guidance on the selection of correct padding 

sequences when designing experiments. We observed that the occupancy probabilities 

calculated using the sites in their native chicken promoters did not correlate as well with 

the experimental binding affinities as those calculated in the previous section using the 

sites and their padding sequences in the gel shift construct. When we observed that the 

difference was due to a C in the padding sequence 3’ of the predicted κB sites in the 

oligonucleotides used for gel shift, we performed a systematic combinatorial analysis 

using HMM to determine the padding sequences that did not form spurious self-

overlapping binding sites and hence affected native binding the least. We found that the 

use of the padding sequences in the above experiment (the 5’ padding sequence is 
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gatctgaattcgt and the 3’ padding sequence is cacctctcctta) may misrepresent NF-κB 

binding. The predicted occupancy probabilities suggest that a gel shift oligonucleotide 

containing an A 5’ to the 10-mer and a T 3’ to the 10-mer in the padding sequence has 

the least chance of forming spurious binding sites (e.g. AGGGAATTCCCT, where the 10-

mer is shown in italics). Any other nucleotide forms a spurious site shifted one position 

from the 10-mer, and in some cases may even change the binding occupancy by more 

than 50%. Any of the C, G or T in the 5’ end creates a site beginning with CGG…, 

GGG… or TGG…. An A, C or G in the 3’ end creates a site on the opposite strand 

beginning with TGG…, GGG… or CGG…. In addition, a C at the 3’end also creates a 

site on the same strand ending with …CCC. We have already seen in Figure 3.9 that the 

predicted occupancy probability of the bcap and itm2b oligonucleotides used in the gel 

shift experiment oligonucleotides is greater when the 3’ padding sequence begins with a 

C than with a T.  

 

Based on the HMM analysis, we recommend that a gel shift oligonucleotide should have 

an A 5’ to the κB site and a T 3’ to the κB site for minimum interference, and that a 3’ C 

should be avoided at all cost. Ideally, oligonucleotides containing a few bases 

corresponding to those surrounding the κB site in the promoter of the gene should be 

used to pad the site. This will capture the effects of all the neighboring self-overlapping 

binding sites in the native promoter and will avoid creation of artifacts based on the 

nucleotides present in the padding sequence. 
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3.11 Biological Insights from Identification of NF-κB Targets 

 

Although hundreds of NF-κB-regulated genes have been identified (see a review in [45]), 

it is not known whether many of them are direct or indirect targets of NF-κB. We 

therefore predicted κB sites in the promoters of all genes in the human genome. Genes 

containing at least one κB site with predicted occupancy probability greater than or equal 

to 0.5 are designated as putative direct targets of NF-κB. We also identified cellular 

pathways, biological functions and diseases in which our predicted NF-κB targets were 

over-represented through the use of Ingenuity Pathways Analysis (Ingenuity® Systems, 

www.ingenuity.com) and DAVID [145-147]. 

 

We were able to ascertain known NF-κB targets in the pathways NF-κB is known to 

regulate. We also identified novel targets in the pathways affected by NF-κB. Most 

interestingly, we discovered novel roles of NF-κB in the pathways in which it is not 

known to be involved. 

 

As expected, we found many known NF-κB target genes with roles in B or T cell 

receptor signaling, NF-κB signaling, cytokine and chemokine signaling, antigen 

presentation, acute phase response, or in death receptor and apoptosis signaling among 

others (Table 3.1).  

 

Importantly, our HMM also located several novel candidate NF-κB targets in these and 

other pathways that have not yet been described in literature to be regulated by NF-κB 

http://www.ingenuity.com/
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[18, 45]. For example, (1) activation of DIABLO, which potentiates some forms of 

apoptosis, and the TRAF family-associated NF-κB activator TANK, which activates cell 

death signals and inhibits survival signals, may shed light on the less well-characterized 

but nonetheless important pro-apoptotic activity of NF-κB. (2) Our HMM can also 

illuminate novel roles of NF-κB in the ubiquitination pathway, which is responsible for 

the control of protein activity through proteolytic degradation. While NF-κB is known to 

activate the expression of deubiquitinating enzymes CYLD and A20 (TNFAIP3) that 

negatively regulate NF-κB signaling [148-151], our HMM identified the E2 ubiquitin-

conjugating and ubiquitination-promoting enzymes UBE2H, UBE2D3 and UBE2M as 

putative NF-κB targets. (3) BTRC (better known as beta-TrCP) facilitates degradation of 

the NF-κB inhibitor IκB proteins. If BTRC is a true target of NF-κB as predicted, this 

would suggest that upregulation of BTRC by NF-κB could set up a positive feedback 

loop for amplifying NF-κB signaling. (4) Potential positive feedback loops can also be 

uncovered if IΚBΚB (IKΚBeta; IKK2), which is the key NF-κB activating kinase in the 

canonical NF-κB signaling pathway, and Toll-like receptor 7 (TLR7), which participates 

in the innate immune response to microbial agents, are genuine NF-κB targets. (5) 

Moreover, our HMM predicted κB sites for deacetylases HDAC8 and SIRT1, as well as 

for transcriptional corepressor SIN3A, which may uncover a new mode of action for NF-

κB in gene-specific transcriptional repression [8, 23, 36]. 

 

Our HMM also provided new insights into the influence of NF-κB on signaling pathways 

in which its role has not been established. This is exemplified by (1) the Notch signaling 

pathway, which is involved in cell-cell communications to regulate a broad array of cell-
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fate determinations. While the role of the Notch signaling pathway in the activation of 

NF-κB pathways is known (reviewed in [152]), impact of NF-κB on the Notch signaling 

pathway is not. We identified κB sites in several key mediators in the Notch signaling 

pathway, including the delta-like 1 ligand for Notch receptors DLL1, the Notch2 receptor, 

transcriptional regulator RBP that acts as a transcriptional repressor in the absence of 

Notch but is a transcriptional activator when associated with activated Notch, and 

mastermind-like 2 (MAML2) that serves as a transcriptional coactivator for Notch. Thus, 

NF-κB may modulate Notch signaling to influence cell fate determination during 

development, immunity and cancer. (2) Based on the putative target list that includes the 

ras-related G-protein RRAS, ribosomal protein S6 kinase 1 RPS6KA1, 

phosphatidylinositol 3-kinase regulatory subunit PIK3R2 and transcription factor cyclic 

AMP-responsive element-binding protein 1 (CREB1), NF-κB may be involved in 

neurotrophin/Trk signaling cascade and thus in the regulation of neuronal survival and 

function in the nervous system. (3) Our HMM also pinpointed candidate targets in 

xenobiotic metabolism, including sulfotransferase SULT1C2, aldehyde dehydrogenase 3 

family gene ALDH3B2, and transcription factor nuclear factor erythroid derived 2-like 2 

(NFE2L2) that regulates the oxidative stress response, suggesting a possible role for NF-

κB in drug metabolism, multidrug resistance and detoxification of poisonous compounds. 

 

As we have seen, in addition to identifying many known NF-κB target genes, our HMM 

identified several novel candidate NF-κB targets that have not yet been shown to be 

controlled by NF-κB. Further studies are needed to determine which of them are genuine 

NF-κB targets. They will likely shed light on the role of NF-κB in its less-characterized 
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or novel pathways mentioned above. The experimental evidence (reviewed in [20, 31, 

153, 154]) suggests a role for NF-κB in immunological and inflammatory diseases, 

cancer and therapy-resistance, in skeletal myogenesis and cachexia, as well as in 

cognition, behavior and neurological disorders. In accordance, our HMM identified κB 

sites in genes with roles in disease conditions ranging from immune and inflammatory 

disorders to infectious diseases, cancer, skeletal muscular disorders and neurological 

diseases (Table 3.1). In view of all of these, we believe that our HMM is a powerful tool 

with a potential to uncover various biological functions of NF-κB. 

 

3.12 Summary  

 

Our model successfully identifies self-overlapping transcription factor binding sites, 

besides having a straightforward physical interpretation. It has the following advantages 

and unique features: 

o It is the first model to deal specifically with identifying self-overlapping sites. It 

takes into account all of the alternative binding modes of such sites. 

o It provides guidance in the selection of padding sequences in gel shift experiments.  

o When considered as a biophysical model, our HMM estimates a transcription 

factor’s occupancy probability on a site. The high correlation with experimental 

binding affinities justifies the use of such an estimate. 

o Estimation of occupancy probability offers more biological insight than most of 

the current site identification methods do. 
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o The use of occupancy probability as a discriminant function allows our HMM to 

learn the threshold in a principled manner. To learn the threshold, the HMM trains 

emission probabilities using unaligned sequences containing known sites, and 

estimates transition probabilities to reflect site density in all promoters in a 

genome. An accurate threshold thus leads to accurate identification of weak sites. 

o While identifying sites, it adjusts its parameters to reflect the change in the 

density of sites with respect to the distance from the TSS. 

 

On the other hand, our method has the following limitations. It requires a complicated 

two-step training procedure. Moreover, we have considered only κB sites, which do not 

contain insertions or deletions. Consequently, the architecture of the HMM is simple and 

well-suited for the simultaneous training of emission and transition probabilities. We do 

not yet know if such training is possible if a site contains insertions or deletions since it 

will require a full-fledged profile HMM. In addition, we have considered the transition 

probability to the motif z in the upstream region to decrease exponentially during the 

scoring procedure. This density function may not be accurate, especially for enhancers. 

We will need many more sites to establish a more accurate density function. 

Identification of sites in the introns or downstream of genes may also be difficult because 

few known sites are present in these regions, and therefore z in these regions cannot be 

estimated.  

 

On the whole, we expect that the high evolutionary conservation scores and enrichment 

in experimentally regulated genes suggest that κB sites predicted by our method might be 
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functional. Our results may provide important new insights into the function and 

regulation of NF-κB and uncover possible new biological roles for this important 

transcription factor family. 

 

The biophysical model described so far focuses on site identification in a single species.  

In the next chapter we will focus our attention to the conservation of sites in similar 

species.  Such evolutionary conservation can be profitably used to identify the sites more 

accurately. We will then develop a biophysical model for site identification that 

incorporates evolutionary conservation. 
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Table 3.1: Selected pathways, functions and diseases enriched with NF-κB targets 

predicted by the HMM. 

Selected cellular pathways, biological functions and diseases in which our predicted NF-

κB targets were over-represented are shown. The associated predicted NF-κB targets are 

represented by official human gene symbols. Genes containing κB sites with predicted 

occupancy probability greater than 0.5 were used in this analysis. Genes known in the 

literature to be regulated by NF-κB (although not necessarily directly) [18] are denoted 

with *. 

 

Pathway/Function/Disease Gene Symbols 
NF-κB Signaling NFΚB2*, CD40*, IL1F9, IΚBΚB, RRAS, 

TNFAIP3*, BCL3*, TLR7, TRAF5, NFΚBIB, 
NFΚB1*, LTA*, PIK3C3, NFΚBIA*, RELB*, 
BTRC, PIK3R2, ZAP70, TRAF3, IL1RN*, 
PLCG2, MAP3K8 

Glucocorticoid Receptor 
Signaling 

VCAM1*, ICAM1*, MED1, SMAD3, IΚBΚB, 
RRAS, MAPK12, BCL3*, IL13*, CCL5*, 
NFΚBIB, NFΚB1*, IL8*, PIK3C3, NFΚBIA*, 
NR3C1*, STAT1, CXCL3*, CREB1, PIK3R2, 
JAK3, SELE*, IL1RN*, IL6* 

Antigen Presentation 
Pathway 

B2M*, PSMB9*, HLA-A, CD74, HLA-B*, HLA-
DQA1, TAPBP* 

Acute Phase Response 
Signaling 

SAA1*, IL1F9, RBP1, IΚBΚB, RRAS, MAPK12, 
BCL3*, SERPINA3*, NFΚBIB, CFB*, NFΚBIA*, 
NR3C1*, PIK3R2, NOLC1, SAA2*, SOCS2, 
IL1RN*, IL6* 

B Cell Receptor Signaling IΚBΚB, RRAS, MAPK12, BCL3*, NFΚBIB, 
CALML5, NFATC1, PTPN6, NFΚBIA*, PIK3C3, 
CREB1, MAP3K11, PIK3R2, PLCG2, MAP3K8 

Death Receptor Signaling NFΚBIA*, BIRC3, DIABLO, IΚBΚB, BCL3*, 
TANK, NFΚBIB, TNFSF15* 

Apoptosis Signaling NFΚBIA*, BIRC3, DIABLO, IΚBΚB, RRAS, 
BCL3*, MAPK6, TP53*, NFΚBIB, RPS6KA1, 
PLCG2, MAP3K8 

Cell Cycle: G1/S Checkpoint 
Regulation 

BTRC, SMAD3, SIN3A, TP53*, HDAC8, E2F6 

Chemokine Signaling CCL4*, RRAS, CCR3, MAPK12, CCL5*, 
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PLCG2, CALML5 
T Cell Receptor Signaling NFATC1, PIK3C3, NFΚBIA*, IΚBΚB, RRAS, 

PIK3R2, ZAP70, CALML5 
Notch Signaling DLL1, NOTCH2, RBPJ, MAML2 
P53 Signaling BBC3, PIK3C3, SIRT1, PPP1R13B, MED1, 

PIK3R2, TP53* 
Xenobiotic Metabolism 
Signaling 

IL4I1, SULT1C2, MED1, RRAS, MAPK12, 
NFΚB1*, NFΚB2*, GSTP1*, PIK3C3, PPP2CB, 
ALDH3B2, EIF2AK3, PIK3R2, NFE2L2, IL6*, 
IL1RN*, GSTA5 

Neurotrophin/TRK Signaling PIK3C3, CREB1, RRAS, PIK3R2, RPS6KA1 
Protein Ubiquitination 
Pathway 

UBE2H, UBE2D3, B2M*, UBE2M*, BIRC3, 
BTRC, PSMB9*, HLA-A, HLA-B* 

Skeletal and Muscle 
Development and Function 

CD40*, CSF1*, CXCL11*, DLL1, IΚBΚB, IL6*, 
IL13*, IL1RN*, MED1, NFATC1, NFΚB1*, 
NFΚB2*, NFΚBIA*, RBPJ, SMAD3, STAT1, 
VCAM1*, WNT10B* 

Infection of Virus CCL4*, CCL5*, CLEC4M, DEFA1, ICAM1*, 
IL13*, IRF8, XPO1 

Cancer ACACA, AIM2, B2M*, BBC3, BCL2L10, BIRC3, 
BTRC, C6ORF66, CARD8, CD40*, CREB1, 
CTGF, CYLD, DBC1, DIABLO, DLL1, DPP4, 
DUT, EGR2, EIF2AK3, GNB1, GNB2L1*, 
HINT1, HUWE1, IER3*, IFNB1*, IGFBP6, IL6*, 
IL8*, IL13*, IL1RN*, IRF1*, IRF8, ITGA5, 
LCN2*, LTA*, LTB*, MAML2, MAP3K11, 
MAPK12, MEN1, MIA, MSX1, MYB*, NFΚB1*, 
NFΚB2*, NFΚBIA*, NFΚBIZ, NR3C1*, OAS3, 
PLCG2, PPP1R13B, PPP5C*, PTPN6, RBM17, 
REL*, RHOC, RPS6KA1, RUNX1T1, SMPD2, 
STAT1, THOC1, TNFAIP3*, TNFSF13, TP53*, 
TRAF3, TWIST1* 

Rheumatoid Arthritis ACAN, ACTA1, ADAMTS7, B2M*, BLR1*, 
CARD8, CCL1*, CCL4*, CCL5*, CCL19*, 
CD40*, CD69*, CD70, CD74, CD83*, CD86*, 
CD274*, CFB*, CXCL1*, CXCL2*, CXCL3*, 
CXCL5*, CXCL6*, CXCL10*, DEFA1, DPP4, 
GP1BA, HLA-A, HLA-DQA1, HPRT1, ICAM1*, 
IFNB1*, IL6*, IL8*, IL13*, LTA*, LTB*, 
MAPK12, NFΚB1*, NFΚBIA*, NR3C1*, 
PSMB9*, SAA1*, SAA2*, TNFAIP3*, 
TNFRSF13B, TNFSF15*, TP53*, TPM2, VIM*, 
WNT10B* 

Experimental Autoimmune 
Encephalomyelitis 

B2M*, CD40*, CD86*, CXCL10*, DPP4, HLA-
DQA1, IFNB1*, IΚBΚB, IL6*, LTA*, LTB*, 
NR3C1*, REL*, STAT1 
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Figure 3.1: A Markov model and a hidden Markov model of a DNA sequence. 

A. Markov model. The four states corresponding to nucleotides A, C, G and T are 

observable. The observed sequence at the bottom can be interpreted as one state path 

generated by the Markov model.  

B. Hidden Markov model (HMM). The hidden states are the background (red) and the 

motif (yellow), both emitting one of the four nucleotides. One can think of an HMM as 

generating many hidden state paths with different probabilities, each of which can 

generate the observed sequence with different probabilities.  

Circles represent states. Transition probabilities and emission probabilities are shown in 

black and blue, respectively. Initial probabilities of the states are not shown for simplicity. 

 

A 
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Figure 3.2: Our HMM. 

Our HMM consists of 21 states. The background state is colored red and designated by B. 

Each of the 20 motif states corresponds to each of the ten positions within the κB motif 

on the two DNA strands. The motif states are colored yellow and designated using M, the 

position within the motif and the strand. The emission probabilities of the motif states on 

the two strands are flipped from 5’ to 3’ so as to represent identical binding irrespective 

of the motif strand. The transition probabilities between the states corresponding to 

successive positions within the motif on a strand are fixed to one. They are represented 

with black arrows and the transition probability values are shown. The nine transition 

probabilities available for training are also represented with black arrows. The sum of the 

transition probabilities from the background state to the states representing the first 

position of the motif on the two strands ( 1z  and 2z ) is estimated as the transition 

probability to the motif z . The rest of the transition probabilities are fixed to zero and are 

not shown.  
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Figure 3.3: Trained HMM Parameters. 

A. Sequence logo of the motif profile of the HMM trained on 50 bp sequences each 

consisting of a known κB site and surrounding region (surround-50 HMM) with initial 

transition probability to the motif (z) equal to 0.02. The overall height of the nucleotide 

stack at each position is proportional to the information content at that position and the 

height of each nucleotide within the stack is proportional to its frequency.  

B. The estimated transition probability to the motif (z) for upstream 800 bp and 

downstream 100 bp regions with respect to the transcription start site (TSS) as the 

number of randomly selected training genes increases. The estimated z stabilizes after the 

addition of a few thousand genes. Each training set for estimating z in the upstream 800 

bp region contains sequences consisting of the 20 κB sites known to be present in this 

region. Similarly, each training set for estimating z in the downstream 100 bp region 

contains sequences consisting of the 4 κB sites known to be present in this region. 

A 
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Figure 3.4: Trained z is inversely proportional to the length of the training promoter. 

HMMs were trained on TSS-n promoters keeping the initial motif profile fixed. The 

transition probability to the motif (z) is inversely proportional to the training promoters’ 

length in the range between 500-3000 bp and hence *z promoter length  is constant 

around 0.9. This quantity drops slightly between 500 to 200 bp and then substantially 

after 200 bp due to the lack of κB sites in the shorter training promoters. 
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Figure 3.5: ROC analysis shows that our HMM performs better than a weight 

matrix. 

The performances of the HMM and the weight matrix (WM) are represented by the green 

and the blue curves, respectively. Whereas the HMM and the WM perform similarly for 

strong sites, the HMM is more accurate in identifying weak sites. The positive examples 

consist of the 36 known human κB sites present in upstream 800 bp regions (in their 

native promoters), and the negative examples consist of all 10-mers in the upstream 800 

bp regions in 100 randomly selected human genes as described in the text. Leave-one-out 

cross-validation was performed. ROC: Receiver Operating Characteristic curve. 
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Figure 3.6: κB sites with greater HMM occupancy probability are conserved better. 

Each curve represents the kernel-smoothing density estimate of the evolutionary 

conservation scores of a set of κB sites. Each set consists of κB sites predicted by our 

HMM to have occupancy probability above a threshold shown in the legend. The 

“random” set consists of 1000 10-tuples randomly selected from the human promoters. 

Conservation scores of κB sites predicted by our HMM are higher than those of the 

random sequences. Moreover, κB sites with higher HMM occupancy probability have 

higher conservation scores. Conservation scores and kernel-smoothing density estimates 

were calculated as described in the text.  
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Figure 3.7: Regulated genes are enriched with HMM-predicted κB sites. 

The chicken genes regulated by over-expressed NF-κB proteins in a microarray 

experiment and their human orthologs are enriched with κB sites predicted by our HMM.  

A. The y-axis shows the fraction of chicken genes that contains at least one κB site with 

HMM-predicted occupancy probability above the thresholds shown on the x-axis. The 

data is shown for three sets of genes: (i) genes regulated in at least four of the seven 

comparisons in the experiment, (ii) genes regulated in at least two comparisons and (iii) 

all genes. 

B. The y-axis shows the fraction of the human orthologs of the chicken genes in part (A). 

Genes regulated in a higher number of comparisons are more enriched with HMM-

predicted sites. Human orthologs of regulated chicken genes are more enriched with 

predicted NF-κB targets than the chicken genes themselves probably due to the 

availability of higher quality sequences for humans. In this experiment, seven NF-κB 

proteins from different species were over-expressed in chicken DT40 pre-B cell lines, 

and regulated genes were identified by comparing the expression level for each 

experimental condition against the control [8]. 
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Figure 3.8: In vitro binding affinity of NF-κB’s RelA and c-Rel proteins to κB sites 

correlates well with HMM-predicted binding occupancy probability. 

A, B. Gel shift assays with extracts from 293T cells transiently transfected with either 

CMV-hRelA (A), CMV-hc-Rel (B) or empty CMV vector as control (vector) and 

radiolabeled double-stranded oligonucleotide probes containing the predicted NF-κB sites 

derived from chicken blnk site 1 or site 2, pdcd4, itm2b, pp1e, bcap, igλ, or mip-1β, or a 

palindromic NF-κB DNA site as control (κB-PD). Reactions containing the κB-PD probe 

alone, in absence of cell extract, were loaded as control (probe). DNA/protein complexes 

were resolved from unbound DNA probes in native 5% polyacrylamide gels.  

C. Sum of Kullback-Leibler (KL) divergences of the HMM-predicted occupancy 

probabilities of the above sequences (in the gel shift constructs) with their binding 

affinities in the gel shift experiments, as a function of the transition probability to the 

motif z. The sum of the KL divergences is minimum at z equal to 0.001 for both NF-κB 

proteins.  

D. Correlation between the gel shift binding affinities of the above sequences and their 

occupancy probabilities predicted by the HMM at z equal to 0.001. The correlation 

coefficients are 0.91 and 0.92 in the case of RelA and c-Rel, respectively. The dashed 

lines are linear least square fits. 
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Figure 3.9: Occupancy probability increases sigmoidally with respect to z, is greater 

for stronger κB sites and depends upon the padding sequences in the case of self-

overlapping sites. 

Occupancy probability of the bcap and itm2b oligonucleotides used in the gel shift 

experiment, with either a C or a T at the beginning of the 3’ padding sequence, was 

predicted using an HMM with different z’s. The HMM’s motif profile was the same in all 

instances. The predicted occupancy probability rises as a sigmoidal function of z. The 

occupancy probability of the stronger κB site (itm2b vs. bcap) saturates at lower z, and 

therefore the occupancy probability of the stronger site is greater at a particular z. 

Moreover, the occupancy probability of oligonucleotides is greater when the 3’ padding 

sequence begins with a C (resulting in a stronger spurious self-overlapping site) than a T. 
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Chapter 4 

Phylogeny, Sequence Conservation and Transcription 

Factor Binding Sites 

 

“We all grow up with the weight of history on us. Our ancestors dwell in 
the attics of our brains as they do in the spiraling chains of knowledge 

hidden in every cell of our bodies.” 
Shirley Abbott (1934-) 

 

4.1 Phylogeny and Evolution 

 

Charles Darwin revolutionized biology with the theory of evolution, which asseverates 

that different species on earth have evolved from a common ancestor [155]. The idea that 

we the humans are related to all the life forms that have ever existed on earth, from 

albatross to algae, from Bactrian camels to bacteria, from chicken to chickpeas, from 

crabs to cockroaches, from dinosaurs to dandelions, from elephants to eels, from frogs to 

fruit flies, from kangaroos to kiwis, from mice to mosquitoes, from redwood trees to 

radish, from saber-toothed tigers to snakes, from wolves to worms, from yellowtail fish to 

yeast, from psychrophiles that inhabit arctic soils and dark oceanic depths at temperatures 

below 15˚C to hyperthermophiles reigning at temperatures above 80˚C and emanating 

the brilliant colors of the hot springs at the Yellowstone National Park, all originating 
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from a single fountainhead – a primitive microbe of over some three billion years ago, is 

mind-boggling, fantastic and romantic. 

 

The phylogeny of species (phylo- means “tribe” or “race” and -geny means “origin”), i.e. 

their evolutionary history and relationships, can be depicted using a phylogenetic tree, 

also called an evolutionary tree. Each node and leaf of the tree represents a species. A 

node signifies the most recent common ancestor of the descendent species. A leaf denotes 

a contemporary species or an extinct species with no descendents. The length of each 

branch corresponds to the evolutionary distance or divergence between the ancestor and 

the descendent to which it connects. Figure 4.1 shows four examples of phylogenetic 

trees. The first example is a schematic of the tree of life, showing the relationships 

between many types of life forms on earth [156]. The second phylogenetic tree shows the 

evolutionary history of baker’s yeast Saccharomyces cerevisiae, commonly used as a 

model organism in molecular and cell biology, and species closely related to it [157]. The 

third example consists of a phylogenetic tree of animals, where the divergence between 

different species in terms of millions of years is indicated [158]. A phylogenetic tree of 

the animals representing major groups of placental mammals comprises the fourth 

example [159]. While no consensus exists on the exact topology of these trees, they serve 

as good examples in demonstrating how evolutionary relationships can be depicted 

graphically as well as providing some quantitative measure for the relative divergence 

between species. 
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We now briefly describe the phylogeny of mammals [159-165]. The divergence estimates 

of periods, in million years ago (Ma), are somewhat approximate. It must also be noted 

that some group assignments are still subjects of controversy. Mammal-reptile divergence 

occurred ~310 Ma, after which placental mammals diverged from Monotremes (e.g. 

platypus) ~210 Ma and from Marsupials (e.g. opossum) ~180 Ma. Placental animals are 

divided into four superorders. While most scientists agree that the superorders 

Euarchontoglire and Laurasiatheria can be grouped into Boreoeutheria, the branching 

pattern of placental mammals into Boreoeuteria and the superorders Afrotheria and 

Xenarthra is not yet clearly established. The controversial Euarchontoglire superorder 

consists of Euarchonta, which contain primates, treeshrews and flying lemurs, and Glires, 

which are divided into rodents and Lagomorphs (e.g. rabbit). The Laurasiatheria 

superorder is a diverse group that consists of Carnivores, further divided into dog-like 

(e.g. wolf, seal, walrus, bear, panda, raccoon, weasel, skunk) and cat-like (e.g. lion, hyena, 

mongoose) mammals, Cetartiodactyla, further divided into Cetacea (e.g. whale, dolphin) 

and Artiodactyla (even-toed ungulate; e.g. hippo, pig, camel, llama, cattle, sheep, deer, 

giraffe), Chiroptera (e.g. bat) and Perissodactyla (odd-toed ungulate; e.g. horse, tapir, 

rhino), among others. The examples of the Afrotheria superorder, evolved mainly in 

Africa, are elephant, tenrec and sea cow manatee. Finally, the Xenarthra superorder 

evolved in Central and South America, and consists of species such as armadillo and 

sloth. Genomic sequences of the mammals shown in the phylogenetic tree in Figure 4.1D 

are available, and therefore these mammals are used in the site identification method 

developed in the next chapter. 

 



  107  

    

Phylogenetic trees have been traditionally constructed with the help of fossil records 

[166]. Physiological and morphological attributes have been used as characters, or 

features that quantitatively determine the similarity between species and thus establish 

evolutionary relationships. This approach has many shortcomings. Physiological and 

morphological attributes may not accurately reflect the divergence between species. A 

common example of this are bats, which are not classified as birds in spite of the fact that 

they have wings. Moreover, these attributes are complex and hard to model. They are 

sometimes unfit to determine relationships between distant groups of species, such as 

between mammals and bacteria. Paucity of data is another major issue for this approach. 

Fossil records of these attributes corresponding to ancestor species are often not available. 

Thus, the number of physiological and morphological attributes that can be used for 

comparison is limited. 

 

In recent years, DNA sequences are increasingly being used to create phylogenetic trees. 

Because DNA of a species is its blueprint, comparison of DNA sequences of different 

species is expected to reflect their evolutionary history accurately. The DNA sequences 

of all life forms on earth have the same four types of nucleotides, making determination 

of the evolutionary relationship between any two species possible. Moreover, DNA 

evolution follows a pattern and hence can be modeled mathematically. Finally, DNA 

sequences are long and contain a much larger amount of information than physiological 

and morphological attributes. These long sequences have now been available to 

researchers thanks to the advent of high-throughput DNA sequencing techniques in the 

last two decades. 
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The simple principle of sequence conservation is used while comparing the DNA 

sequences of different species. If two species are closely related, that is they diverged 

from a common ancestor in the recent past, their sequences have not had a great deal of 

time to evolve separately. Therefore, their sequences are expected to be similar. In other 

words, they are expected to have a high degree of sequence conservation. In contrast, 

sequences of distantly related species will show a low degree of conservation.  

 

Before we discuss how to determine sequence conservation, let’s briefly review the 

mechanism of evolution of a sequence. The first step in a sequence evolution is the 

mutation in the sequence of one individual. The three types of mutations at a particular 

position in a sequence are (1) substitution of the nucleotide by a different type of 

nucleotide, (2) insertion of one or more nucleotides or (3) deletion of the nucleotide. The 

major causes of a mutation are (1) mistakes made by the DNA replication machinery 

during replication, (2) intrusion by mobile genetic elements (e.g. transposons that move 

to different positions in a sequence), and (3) environmental factors such as radiation. The 

second step in a sequence evolution is fixation, in which a mutation spreads through the 

population of the species so that, after several generations, the entire population contains 

the mutation. In other words, only the descendents of the mutated individual survive after 

many generations and they comprise the entire population of the species. While many 

mutations disappear from the population, some are fixed, either by sheer chance (genetic 

drift) or because they offer a selective advantage to the individuals possessing them, who 

as a result have a greater fitness for surviving in the contemporaneous environment 
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(natural selection). Sometimes a mutation gets fixed in a subpopulation that is 

reproductively isolated from the rest of the population. If this sub-population evolves 

separately from the rest of the population and accumulates a large number of different 

mutations for many generations, it is unable to breed with the rest of the population to 

produce fertile offspring. It thus evolves into a separate species. Sequences in the 

descendent species that have evolved from the same sequence in a common ancestor by 

speciation (formation of new species) are called orthologous sequences. 

 

Establishing evolutionary relationships is not the only use of sequence conservation data. 

As we have mentioned in Chapter 2, evolutionary conservation of sequences can be used 

for accurate identification of transcription factor binding sites. 

 

4.2 Phylogenetic Footprinting 

 

Phylogenetic footprinting is the forensic tool to identify functional sequences such as 

transcription factor binding sites in the non-coding regions of orthologous genes [9, 51, 

158, 167-171]. The basic premise of phylogenetic footprinting is that better conserved 

orthologous sequences are more likely to be functional sequences (Figure 4.2). The 

reasoning is that functional sequences have come under a greater selective pressure than 

non-functional sequences during the long periods of evolution and are therefore better 

conserved. It is argued that a random non-functional sequence may appear like a site in 

one species by pure chance, but the probability of its orthologous sequences (in other 

species) appearing like sites is extremely low; phylogenetic footprinting thus reduces 
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false positives. Because genome sequences of different species have become available 

only in the last few years, phylogenetic footprinting is a relatively recent research field. 

 

Phylogenetic footprinting consists of the following steps: 

1. Selection of species for identifying conserved functional sequences. One 

generally wants to identify functional sequences in a particular species, 

sometimes referred to as the reference species (e.g. humans), that are conserved in 

other related species. The choice of related species depends upon their divergence 

from the reference species and upon the type of functional sequences to be 

identified. The selected species must have sufficient divergence from the 

reference species so that the non-functional sequences are not conserved 

(reducing false positives), but not so much divergence that even the desired type 

of functional sequences are not conserved (reducing false negatives). Different 

species, their divergence from humans (in terms of Ma – million years ago) and 

regions conserved with humans are listed below: 

o Bony fish (~450 Ma): Only coding sequences.  

o Birds (~310 Ma): Coding sequences and a small subset of transcription 

factor binding sites. 

o Mammals (<210 Ma): Coding sequences and a great number of 

transcription factor binding sites. 

o Primates (<40 Ma): Most functional sequences and even some non-

functional sequences. 
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Therefore, using the above criteria, non-primate mammals appear to be the ideal 

choice for identifying conserved transcription factor binding sites in humans. 

2. Identification of orthologous regions. This involves identification of orthologous 

genes, determination of their regulatory regions and removal of repeated elements. 

Identification of promoter regions is especially difficult in higher eukaryotes. (See 

the discussion in Chapter 2.) Anchors other than the annotated transcription start 

site (TSS) are often needed because the TSS may not be annotated correctly and 

the distance between the TSS and regulatory regions may vary in different species. 

3. Alignment of orthologous regions. While local alignment programs have higher 

specificity in general, global alignment programs have higher sensitivity in 

aligning conserved regions, and hence they are known to perform slightly better 

[172]. Furthermore, programs that align multiple species simultaneously (e.g., 

MLAGAN, MAVID using global alignment, and MultiPipMaker, Multiz using 

local alignment) are better than those that align pairwise (e.g. LAGAN and 

AVID). 

4. Calculation of a score based on sequence conservation and determination of a 

threshold. Local neutral substitution rates are sometimes needed to be taken into 

account while calculating this score because different regions of a genome evolve 

at different rates. 

The sequences with a score above the threshold are identified as sites. 

 

Phylogenetic footprinting methods in the literature identify sites in at least three different 

ways. (1) Use conservation as the sole criterion. (2) Treat site specificity (i.e. motif, 
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modeled by a weight matrix or energy matrix) and conservation as two separate axes of 

data (Figure 2.3). A site needs to have specificity and conservation scores above the 

respective thresholds. (3) Build a composite model of site specificity and conservation. 

Methods falling into the first two categories generally ignore the evolutionary 

relationships among the selected species and treat orthologous sequences as independent. 

On the other hand, a composite model incorporates the dependence of orthologous 

sequences using evolutionary models. 

 

Methods that use conservation as the sole criterion typically calculate the conservation 

score of a putative site as the ratio of the number of identical nucleotides at the 

corresponding positions in orthologous sequences to the site length [51, 173, 174]. The 

putative site is declared a site if the score exceeds a threshold or is statistically significant. 

Other methods in this category forgo alignment and instead use unsupervised learning 

methods, designed to find over-represented motifs in independent sequences (e.g. Gibbs 

Sampler), on the orthologous sequences [175, 176]. The only method that takes the 

phylogenetic relationships into account is FootPrinter [177, 178]. 

 

Methods that treat specificity and conservation as two separate axes of data identify sites 

whose motif is either known (supervised learning) or not known (unsupervised learning). 

Supervised learning methods calculate the motif score first and the conservation score 

second, or vice-versa. For example, they first identify a sequence in the reference species 

as a putative site if its weight matrix score is above a threshold [116]. They then calculate 

the weight matrix scores of its orthologs and declare the putative site as a site if a certain 
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number of its orthologs have weight matrix scores above the threshold. This approach has 

been extended to identify CRMs [134, 179-181]. For example, eCIS-ANALYST first 

identifies putative CRMs in a reference species as regions with at least a certain number 

of sites with weight matrix scores above a threshold [89] and determines CRMs as those 

with a high number of aligned (or overlapped) and preserved (not aligned but present in 

the orthologous region) sites. Unsupervised learning methods use training sets that 

contain orthologous sequences as additional independent instances to find statistically 

over-represented motifs. For example, PhyloCon extends the CONSENSUS algorithm to 

include other species [182]. 

 

However, any method that ignores the evolutionary relationships between the species and 

treats orthologous sequences as independent is bound to lead to inaccuracies. As pointed 

out earlier, close species will tend to increase the incidence of false positives, and 

divergent species will tend to increase the incidence of false negatives. Put it differently, 

the conservation of orthologous sequences between divergent species is a better 

indication of sites than that between close species. Therefore, we need some quantitative 

measure that accounts for the closeness of species. We must account for the fact that 

orthologous sequences in a species pair with a larger divergence have had more time to 

evolve separately and are less dependent upon each other. For example, a mouse 

sequence should be weighed more heavily than a chimp sequence when calculating the 

conservation score of human sequences. 

 



  114  

    

Evolutionary models take into account the dependence between orthologous sequences 

based upon the phylogenetic tree and the divergence between the species. In the next 

section, we will review evolutionary models and methods that use evolutionary models to 

identify transcription factor binding sites. We will focus primarily on the evolutionary 

models dealing with the substitution of nucleotides. 

 

4.3 Evolutionary models 

 

Evolution of a DNA sequence can be modeled using a Markov model consisting of the 

nucleotides as discrete states that can change continuously in time [120]. (See Chapter 3 

for an introduction to Markov models.) An evolutionary model typically assumes that a 

nucleotide at each position in a sequence evolves independently of nucleotides at other 

positions. Its parameters are a set of qαβ , the instantaneous substitution rates between 

nucleotides α  and β  (in this section, we use the term “substitution” instead of the 

standard “transition” to denote a change in Markov model states because the term 

transition in the biological context is reserved to denote a change from a purine (A or G) 

to a purine or from a pyrimidine (C or T) to a pyrimidine). By definition, sum of the 

instantaneous substitution rates from a nucleotide to all nucleotides including itself is 0 

( 0qαβ
β

=∑ ). For an evolutionary model, substitution probabilities ( )p tαα  and ( )p tαβ  

for any time t  are calculated using a system of differential equations, called the Forward 

Kolmogorov equations. The stationary distribution at a given site, which is essentially the 

probabilities of nucleotides αϕ  at t = ∞ , can in principle be determined from the initial 
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distribution. In practice, however, it is a formidable task in mathematics, as it involves 

sixteen coupled differential equations. Different models therefore make many simplifying 

assumptions, as we will see below, by placing “reasonable” constraints on qαβ . 

 

One such constraint is to demand that the solutions to Kolmogorov equations be time 

reversible. This greatly simplifies the analysis of related contemporary sequences in 

phylogenetic footprinting. A Markov model is considered reversible if the Markov chain 

running forward in time is the same as the Markov chain running backward in time. Thus, 

an observer watching a Markov chain cannot tell if it is going forward or backward in 

time. When analyzing contemporary sequences from different species, a reversible 

evolutionary model allows reaching one sequence from another by going to back in time 

to the presumed common ancestor and then forward in time to the other sequence. A 

model is reversible if it satisfies the detailed balance equation ( ) ( )p t p tα αβ β βαϕ ϕ=  for 

all pairs of nucleotides α  and β  – the equation implies that the amount of change from 

any nucleotide α  to any nucleotide β  when moving forward in time is the same as that 

from β  to α  when moving backward in time. 

 

Several evolutionary models for DNA sequences are available in the literature (Table 4.1). 

They can be roughly divided into two categories. (1) Models in which the instantaneous 

substitution rate qαβ  depends upon the nature of both α  andβ . The simplest of these 

models is the Jukes-Cantor model, which is a one-parameter model. Here, substitution 

rates from any nucleotide to any other nucleotide are assumed to be the same. Thus, 
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q qαβ =  for all α β≠  and qαα  is determined from 0qαβ
β

=∑ . One drawback of this 

model is that all nucleotides in the stationary distribution are equiprobable due to 

symmetry. A better model is the Kimura K2P model, which has two instantaneous 

substitution rates: one for transition and the other one for transversion (substitution from 

a purine to a pyrimidine or vice-versa). This model, too, suffers from the same drawback 

that the nucleotides have equal probability in the stationary distribution. (2) Models that 

use a back-door approach, and assign substitution rates proportional to the known 

(present) stationary states in such a manner as to get the stationary state independent of 

the initial state. In the Felsenstein F81 model, for example, the instantaneous substitution 

rate is proportional to the stationary probability of the substituting nucleotide βϕ , i.e. 

q uαβ βϕ= , where the proportionality constant u , called multiplier, is the same for all 

substitutions. On solving Kolgamarov forward equations, we get substitution 

probabilities as ( ) ( )1ut utp t e eαβ αβ βδ ϕ− −= + − , where αβδ  is the Kronecker delta ( 1αβδ =  

if α β= , and 0 otherwise). Thus, at 0t = , the substitution probability matrix is an 

identity matrix, as it must, and at t = ∞ , βαβ ϕ=∞)(p , resulting in the stationary state 

[ ], , ,A C G Tϕ ϕ ϕ ϕ  for any initial state. 

 

No single model is suited to represent the evolution of both sites and background 

sequences due to the different ways they evolve. During the evolution of a sequence at a 

position, first a random mutation occurs. The mutated nucleotide is fixated in a 

population because of genetic drift or selection. In the background (i.e. in non-functional 

sequences), fixation after mutation occurs only through genetic drift as they are not under 
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selection pressure. Therefore, one can assume that sequences at all positions in a 

background sequence evolve at the same rate if the mutation rates at all positions are 

assumed to be identical. Thus, the models that use the same parameter values for all 

positions are perfectly suited for background sequence evolution. The Jukes-Cantor, K2P 

and F81 models are among these and are more often used than the others because they 

have fewer parameters and they are reversible. In contrast to the background sequences, 

sites evolve more slowly, and different positions in sites evolve at different rates because 

of the functional constraint and the consequent selection pressure [183]. A “bad” 

mutation, for example, will be quickly weeded out through the process of selection. 

Therefore, evolutionary models of sites should not only have different parameter values 

but should also take into account position-specific variation.  

 

Evolution of sites is generally modeled after one of the two reversible models that allow 

position-specific variation: the “adapted F81” model and the more complex Halpern-

Bruno (HB) model. The F81 model adapted for the evolution of a site assumes that the 

stationary distribution at each position consists of the weight matrix probabilities at that 

position, and hence the substitution probability is the weight matrix probability of the 

substituting nucleotide at that position. The HB model separates the mutation and fixation 

processes [184, 185]. It assumes that mutation is identical at all positions but fixation at 

each position in all species considered in the phylogenetic tree occurs with a probability 

specific to that position. Moreover, it assumes that the time of fixation after mutation is a 

great deal shorter than the time between mutations, thus ignoring polymorphisms. The 
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substitution rate is proportional to the product of the position-invariant mutation rate and 

the position-specific fixation rate. 

 

Let us discuss a model, which is a composite of weight matrix and evolutionary models, 

for the identification of sites when aligned orthologous sequences are provided. Let’s 

assume that the topology of the phylogenetic tree T  of the species whose sequences 

comprise the training set is known and the branch lengths of the tree are also known. 

Unlike the simple formula for the likelihood in the case of independent training 

sequences ( ( ) ( )| |
s S

p S w p s w
∈

=∏ ), the likelihood ( )| ,p S T w  at a position for 

orthologous sequences is a much more complicated equation with no easy analytical 

solution for the maximum likelihood estimators of w  [90]. The likelihood is usually 

calculated as follows: (1) traverse the tree from the leaves (contemporary sequences) to 

the root, and determine the probability that each node has a particular nucleotide and its 

descendent leaves have the observed nucleotides using a recursion relation; (2) sum over 

the probabilities of all nucleotides at the root node (with the weight matrix values used as 

prior probabilities) to obtain the likelihood. In these calculations, the conditional 

probability of the child node’s nucleotide given the parent node’s nucleotide at each 

branch is the substitution probability according to one of the evolutionary models 

described above. 

 

We will now review supervised and unsupervised learning methods that use a composite 

weight matrix-evolutionary model to identify sites. The supervised learning methods do 

not generally train the weight matrix explicitly using example sites from different species. 
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They get the weight matrix as an input, either based on the weight matrix training method 

described in Chapter 2 or using an unsupervised learning method described in the next 

paragraph. The supervised learning methods focus on scoring orthologous sequences. 

MONKEY uses the HB model for sites and the Jukes-Cantor or the HKY model for the 

background sequence [186]. It assumes that either all or none of the branches of the 

phylogenetic tree evolve according to motif’s weight matrix (i.e. they are under selection 

pressure). MotEvo uses the adapted F81 model and determines the branches leading to 

contemporary sequences with high weight matrix scores as being under selection pressure 

[187]. eSimAnn aligns orthologous sequences in two species using an extended Smith-

Waterman algorithm that also takes the weight matrix into account, and simultaneously 

identifies conserved sites in the sequences [183]. It uses the adapted F81 or HB model for 

sites and the Jukes-Cantor model for the background. Based on long sequence windows 

containing one or more aligned blocks, the HMM Stubb identifies CRMs by computing 

the overall likelihood as the sum of the likelihood of each block treated as one unit and 

the likelihood of the unaligned sequences [91, 92]. While it has reported results for two 

species, it can incorporate more than two species by assuming star topology (i.e. the 

ancestor has more than two direct descendents).  

 

The unsupervised methods identify statistically over-represented motifs when motifs are 

not known by incorporating orthologous sequences using a composite weight matrix-

evolutionary model. OrthoMEME, EMnEM and PhyMe extend the Expectation-

Maximization (EM) algorithm [188-190]. While OrthoMEME extends MEME to two 

species, EMnEM assumes that sites evolve more slowly than the background under the 
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Jukes-Cantor model, and PhyMe uses the adapted F81 model and permits any topology of 

the phylogenetic tree. On the other hand, PhyloGibbs, CompareProspector and Li et al. 

extend the Gibbs sampling algorithm to include multiple species [191-193]. PhyloGibbs 

uses the adapted F81 model as in PhyME, but assumes star topology of the phylogenetic 

tree. While CompareProspector biases site search in conserved regions based on 

conservations scores, Li et al. assume that sites evolve more slowly than the background 

and find motifs without requiring ortholog alignments. MultiModule discovers CRMs 

using a coupled HMM while assuming star topology in its current form and using the 

adapted F81 and K2P models for the sites and the background, respectively [135]. 

 

The methods described above have the same problems of thresholds and occupancy 

probability as described in Chapter 2. In addition, they fail to consider site loss and 

turnover, which is the topic of the next section, as well as the fitness interactions between 

the positions within a site. This latter is discussed in the next chapter. 

 

4.4 Site Loss and Turnover 

 

In earlier sections we discussed methods based on sequence evolution models that deal 

only with substitutions within binding sites. However, sites are not always conserved 

across species. Even closely related species sometimes have different regulatory 

networks, probably owing to adaptation to different environments. This is especially true 

in higher eukaryotes. While many related species have a similar number of genes, the 

differences arise mainly due to variations in their regulatory networks. If the expression 
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patterns of genes in species are different, the corresponding ancestral sites are no longer 

under selection pressure. They evolve according to a neutral substitution rate. Even in 

cases in which a regulatory network is conserved, sites are not necessarily conserved. 

This occurs for a number of reasons. First, orthologous transcription factors can have 

different binding specificities due to mutations in the DNA-binding domain, subjecting 

sites to different selection pressures. Second, the concentrations of orthologous 

transcription factors and their cofactors may also be different in different species, 

changing the selection pressure on sites. Third, some promoters have multiple sites with 

redundant functions, permitting loss of a particular site without changing the function. 

Conserved sites sometimes falsely appear to be lost because (i) alignment programs fail 

to align them, particularly if the sites occur within long stretches of non-conserved 

sequences, or (ii) sequences in some species are simply not available in the current draft 

versions of their genomes. Systematic genome-wide estimates about site loss are 

available only in a few cases. According to one estimate, more than 30% of 

experimentally identified sites in Drosophila are not conserved [134]. 

 

An associated phenomenon is site turnover. A site at a particular location of the promoter 

is lost while a new site is formed at another location, thus keeping the function intact. 

Another variation of site turnover is that a strong site can be lost and its function is taken 

up by multiple weak sites in multiple locations. Moreover, sometimes the entire promoter 

is rearranged and thus the site cannot be properly aligned with those of the related species. 

The flexibility of site location within a promoter facilitates site turnovers. Site turnovers 
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cause problems in site identification methods that use alignments to determine site 

conservation. 

 

Models that take site loss/gain into account have begun to appear in the literature only 

recently [194, 195]. Doniger et al. calculated the likelihood of semi-conserved sites by 

integrating over loss of site events in the phylogenetic tree of four yeast species, and 

compared it to the likelihoods of conserved sites or of neutral evolution [194]. They 

found that a great number of sites were lost in closely related yeast species and that only 

about half of the loss events could be explained by site turnover. Lässig and colleagues 

have developed a model based on binding energy distributions of sites and background 

sequences (more in the next chapter) that considers site loss or gain to identify sites in 

three bacterial species [195]. 

 

In this chapter, we have seen how models combining weight matrix and sequence 

evolution have been used to identify sites. In the next chapter, we will first show that 

modeling the evolution of the energy of an entire site is more important than that of 

sequences at individual positions, and then we will build a composite energy matrix-

evolutionary model. 
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Table 4.1: Simple evolutionary models for DNA sequences. 

They fall into two categories: (1) models in which an instantaneous substitution rate qαβ  

depends upon the nature of both α  and β , and (2) models in which an instantaneous 

substitution rate is proportional to the stationary probability of the substituting nucleotide 

βϕ  and has a corresponding proportionality constant (multiplier). The general model of 

the first category has 12 parameters because the constraint 0qαβ
β

=∑  allows at most 3 

free parameters for substitution rates from any particular nucleotide. In the general time 

reversible (GTR) model of the second category, multipliers for reverse substitutions are 

the same; for example, AG Gq Dϕ=  if GA Aq Dϕ=  where the multiplier D  is specific to 

these substitutions. Transition means substitution from a purine (A or G) to a purine or 

from a pyrimidine (C or T) to a pyrimidine. Transversion means substitution from a 

purine to a pyrimidine or vice-versa. Pu = purine and Py = pyrimidine.  
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1. qαβ  depends upon the nature of both α  and β  

Name Number of 
Parameters 

Description of Instantaneous 
Substitution Rates qαβ  

Reversibility 

Jukes-Cantor 1 All rates are equal Yes 
Kimura K2P 2 One rate for transition and the other for 

transversion 
Yes 

Kimura 3ST 3 One transition rate & two transversion 
rates: (1) A↔T/G↔C, (2) A↔C/G↔T 

Yes 

Kimura (3) 3 One transition rate & two transversion 
rates: (1) Pu→Py, (2) Py→Pu 

Yes 

Blaisdell 4 Two transition rates: (1) A→G/T→C, 
(2) G→A/C→T & two transversion 
rates: (1) Pu→Py, (2) Py→Pu 

No 

Schadt 8 Four transition rates & four 
transversion rates  

Conditional 

General 12 All rates are different No 
2. qαβ  is proportional toβ ’s stationary probability 

Name Number of 
Multipliers 

Description of Multipliers Reversibility 

Felsenstein 
F81 

1 Same multiplier for all substitutions Yes 

HKY 2 Different multipliers for transition and 
transversion (combination of the F81 
and K2P models) 

Yes 

General time 
reversible 
(GTR) 

6 Multipliers for reverse substitutions are 
the same 

Yes 

General 12 All multipliers are different No 
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Figure 4.1: Examples of phylogenetic trees. 

A. Tree of life.  

B. Phylogenetic tree of yeast.  

C. Phylogenetic tree of animals. Divergences in terms of million years are shown at each 

branch division. Common names of species are indicated in parentheses.  

D. Phylogenetic tree of animals representing the major groups of placental mammals. 

Chicken and western clawed frog are used as outgroups; numbers represent bootstrap 

supports in likelihood calculations and Bayesian posterior probabilities, respectively.  

The trees were adapted from [156], [157], [158] and [159], respectively. They are for 

illustrative purposes only, as no consensus exists in the scientific community about their 

exact topology. 
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Figure 4.2: Illustration of the phylogenetic footprinting principle. 

Sequence alignment of a regulatory region of the CCL5 gene in eleven mammals is 

shown. A binding site for the transcription factor NF-κB (κB site) is more conserved than 

the surrounding sequences. Sequence positions containing the same nucleotide in all the 

species are indicated with an asterisk in the bottom row. The sequences were obtained 

from UCSC [141] and the alignment was created using Clustal W [196]. 
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Chapter 5 

Phylogeny Based Biophysical Model to Identify 

Conserved Sites 

 

“In time of test, family is best.” 
Burmese Proverb 

 

5.1 Site Energy, Occupancy and Fitness 

 

The ultimate measure of a site’s functional significance is the evolutionary fitness of the 

individual possessing the site [197-201]. Fitness is the central concept in evolutionary 

biology that describes the ability of an individual of a particular genotype, or genetic 

makeup, to reproduce. Evolving sites are subject to two opposing forces, mutation and 

selective pressure. While a mutation in a site’s sequence tends to weaken its fitness, 

selection pressure maintains or even increases its fitness [72, 111, 112, 197]. A site is lost 

when mutation destroys its functionality, and it is conserved when the selection pressure 

wins. But what aspect of a site is under selection pressure, and how does this aspect 

determine the site’s fitness? 

 

A site’s binding energy, and not its sequence, is under selection pressure [110-113, 195, 

202, 203]. An entire site is the functional unit, its basic phenotype is the binding energy, 



  132  

    

and its fitness depends entirely on the binding energy. A site imparts its function entirely 

through its binding energy, regardless of its sequence. In other words, two sites with 

different sequences but the same binding energy are functionally equivalent. It has been 

shown that while the sequences of many orthologous sites are quite different, their 

energies are quite similar. The change in binding energy caused by the substitution in one 

position is negated by compensatory substitutions in the other positions in the site. 

Moreover, nucleotides only at energetically important site positions are highly conserved 

because substitutions there would change binding energies drastically in the absence of 

strong compensatory substitutions at the other positions. Thus, a function is conserved 

through the conservation of energy, not of sequences, and therefore a proper model of a 

site’s energy is essential to understand its evolution and to identify conserved sites. 

 

The connection between a site and fitness has not been well established. Lässig and 

colleagues have showed that fitness is a non-linear function of energy. They have 

proposed that fitness is related to the log ratio of binding energy distributions of sites and 

background sequences. The resulting fitness has a mesa landscape. Fitness decreases non-

linearly with a negative curvature as energy increases to a threshold value. The energy 

above the threshold value corresponds to background sequences and hence the 

corresponding fitness value is flat. 

 

The non-linear relationship between energy and fitness causes fitness interactions, or 

epistasis, between nucleotides at different positions in a site [203]. When the nucleotide 

at a position in a site is substituted, the binding energy change is independent of 
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nucleotides at other positions in the site because binding energies of individual 

nucleotides in a site are approximately additive. However, the change in fitness depends 

upon the initial energy and thus on all the other nucleotides in the site. Thus, the 

evolution of nucleotides at any two positions in a site is correlated.  

 

Models in the previous chapter assumed that nucleotides at different positions in a site 

evolve independently of each other. Fitness in these models therefore is a linear function 

of the binding energy [185, 194]. A linear relationship between energy and fitness, 

however, cannot explain the observed evolutionary correlations at various positions in a 

site. Thus, these models are not adequate to account for site evolution. 

 

Although we agree in principle that fitness should be a non-linear function of energy and 

that a model incorporating this fact is necessary to capture the evolution of a site, we 

claim that fitness can be better approximated as a linear function of occupancy 

probability. One can easily visualize this when the transcription factor is active in only 

one cellular state. Let a cellular state be characterized by a particular concentration of the 

transcription factor. Now consider two cellular states, the inactive one in which the 

transcription factor is absent (and hence there is no activity associated with it), and the 

active one in which the transcription factor is present with a certain concentration, 

responds to a stimulus and imparts its function.  One can intuitively understand that the 

occupancy of a site in the active state, i.e. the amount of time the transcription factor sits 

on a site, will determine  the increase or decrease (in the case of activation or repression, 

respectively) in the number of mRNA copies it makes of the target gene. Thus, the 
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occupancy probability is better related to fitness. It is easy to see that the non-linear 

relationship between fitness and binding energy is a built-in feature of our model which 

considers a linear relationship between fitness and occupancy probability. (Note that 

occupancy probability itself is a non-linear function of binding energy since it has the 

Fermi-Dirac form for a particular concentration of the transcription factor.)  

 

We are aware that certain objections to this approximation are possible at this point. It 

may be contended that in the case of a graded response by a transcription factor to a 

stimulus, that is when the transcription factor is active in many cellular states, fitness will 

be a function of the combinations of occupancy probabilities in these multiple states. This 

will result in a very complicated model. Moreover, when constitutive activity of the 

transcription factor is not desired, as in the case of NF-κB, a strong binder site with very 

low binding energy may have a low fitness. Such a site can bind even in the inactive 

cellular state when the concentration of the transcription factor is negligible and thus 

transcription factor activity is not controlled. However, this lack of control does not 

necessarily have to be programmed in binding energy. We know that external controls 

such as tethering NF-κB with IκB in the inactive cellular state have been used by nature. 

Another possible objection is that there appears to be a wide gap between the control of 

abundance of the mRNA of a gene and the evolutionary fitness of the individual, and that 

there is very little by way of theoretical understanding and available experimental data to 

link these two at the present juncture. 
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These objections can adequately be addressed as more research becomes available. It 

should be clear, however, that occupancy probability is a more logical choice than, say, 

binding energy or an arbitrary function of the site sequence to establish site fitness. This 

is one of the reasons for using occupancy probability as the discriminant function for 

identifying sites. In the next section, we will develop a model of site binding energy 

evolution that wields occupancy probability to identify conserved sites. 

 

5.2 PhyloQPMEME: Using Covariance of Energies of 

Orthologous Sequences 

 

PhyloQPMEME (Phylogeny-based Quadratic Programming Method of Energy Matrix 

Estimation) integrates the biophysical model QPMEME, reviewed in Chapter 2, with 

evolutionary conservation to accurately identify sites of a transcription factor using a 

principled threshold [204]. It constructs a model of binding energies of orthologous 

sequences. For a particular transcription factor’s binding sites, it estimates the energies of 

nucleotides at each position of the sites by optimizing the distribution of binding energies 

of orthologs of neutrally evolving sequences while restricting the values of binding 

energies of experimentally validated sites and their orthologs. PhyloQPMEME performs 

quadratic programming, a special type of constrained optimization, iteratively to arrive at 

the solution. The training set consists of experimentally validated sites as well as their 

orthologs. In the scoring stage, PhyloQPMEME identifies evolutionarily conserved sites 

by calculating the binding energies and occupancy probabilities of orthologous sequences 

in all the considered species. 



  136  

    

 

Our motif model consists of an energy matrix as in QPMEME described in Chapter 2. In 

brief, the energy matrix has dimensions 4 x A, where A is the length of the site. Each 

matrix element corresponds to the binding energy of a nucleotide at a position in the site. 

Binding energies of the nucleotides at various positions in the site are assumed to be 

independent of the other positions, and are added to give a good approximation of the 

total binding energy of the site. 

 

The binding energy of any sequence s  of length A can be calculated using the following 

vector notation. Let S  be the sequence vector of length 4A  such that each element is α  

equals one if the sequence has nucleotide α  at the i th position and zero otherwise. Thus, 

the sequence vector has the form ( )1 1 1 1 2 2 2 2 3A C G T A C G T As s s s s s s s s=S " . 

For example, sequence CGA… can be represented using the sequence vector 

( )0 1 0 0 0 0 1 0 1=S " . The energy matrix can be similarly written as 

energy vector ε  of length 4A  of the form 

( )1 1 1 1 2 2 2 2 3A C G T A C G T Aε ε ε ε ε ε ε ε ε=ε " , and its each element iαε  is the 

binding energy of a nucleotide α  at the i th position.  Then, the binding energy of the 

sequence is 
4

1 1

( ) i i
i

E s sα α
α

ε
= =

= ⋅ = ∑∑ε S
A

. 

 

A unique feature of PhyloQPMEME is the model of binding energies of neutrally 

evolving orthologous sequences. A sequence and its orthologs are collectively defined as 
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the orthologous set of the sequence. Let E be the vector of binding energies of an 

orthologous set in d  species. The binding energy of a sequence in any species is 

calculated using the energy matrix described above. We assume that the binding energy 

of a nucleotide at a position ( iαε ) is equal in all species. We also approximate the set of 

neutrally evolving sequences to all possible random sequences, and hence the terms 

“neutrally evolving” and “random” are used interchangeably. The binding energy 

distribution of all sequences of length 1A �  in one species is approximately normal 

because binding energy of a sequence is the sum of the binding energy at each position, 

each of which is a random variable. Analogously, we assume that the binding energies of 

orthologous sets of all possible sequences have the multivariate normal distribution 

( )

1
2

1/ 2/ 2( )
2 d

ep
π

−−

=

T 1E C E

E
C

, where the mean of E is assumed to be 0 and C  is the covariance 

matrix of binding energies of orthologous sets. The covariance matrix is given as 

4 4 4 4 4
2

1 1 1 1 1 1 1 1

4 4 4
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4 4
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p p

p

α α αβ α β αβ α β
α α β α β
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⎜ ⎟
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A

"
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# %

, where α  and β  

are nucleotides, the capital letters in the superscripts denote species, p with one subscript 

and one superscript is the probability of a nucleotide in a species, and p with two 

subscripts and superscripts is the joint probability of two nucleotides in two species. 

These probabilities are assumed to be identical at all positions of a random sequence, and 

they can be readily obtained from aligned sequences. 
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The covariance matrix of binding energies of orthologous sets captures the evolutionary 

relationships of the selected species. As we saw above, it is constructed using the joint 

probabilities of all pairs of nucleotides for all pairs of species. The joint probabilities 

decrease as the divergence between the species pairs increases. The shape of the resulting 

multivariate normal distribution of binding energies correctly reflects the species 

divergence. The greater the divergence between two species, the less the correlation 

between the binding energies of the corresponding orthologous sequences. In effect, this 

model of binding energies gives more importance to the sequence conservation in highly 

diverged species. The representation of evolutionary relationships by the covariance 

matrix allows any number of species for sequence comparison and any topology of the 

phylogenetic tree. The only restriction is that a sufficient number of aligned sequences 

are available for accurate calculation of joint probabilities of nucleotides. Incidentally, 

because PhyloQPMEME explicitly calculates the joint probabilities of nucleotides in the 

contemporary species, it does not need to assume an evolutionary model. 

 

The principled threshold used by PhyloQPMEME, as by QPMEME, comes from the 

distribution of occupancy probability, which it uses as a discriminant function for 

classifying sequences as sites. From basic thermodynamics, occupancy probability has a 

Fermi-Dirac distribution with a natural threshold at the chemical potential μ . Because 

the standard deviation of the distribution of binding energies of all sequences of length 

1A �  is much greater than bK T  [110-113], where bK  is the Boltzmann constant and T is 

the absolute temperature, the Fermi-Dirac distribution can be approximated by the step 
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function when compared on its scale. Thus, a site has binding energy ( )E s μ<  and 

hence it is occupied, whereas a random sequence with ( )E s μ>  is not occupied. The 

threshold binding energyμ  is at the far left of the mean of the normal distribution, and 

hence a few sequences have energy less than μ . The threshold binding energy can be 

different in different species. 

 

The goal of PhyloQPMEME is to estimate iαε  such that all known sites and their 

orthologs have binding energies below a threshold and occupancy probabilities of one, 

whereas the probability that a random sequence and its orthologs have binding energies 

below the threshold and are thus occupied is as small as possible (Figure 5.1). 

 

Before proceeding, let’s note from the figure that a random sequence may have a binding 

energy below the threshold by chance, but the probability that all its orthologs also have 

binding energies below the corresponding thresholds is considerably small. 

PhyloQPMEME thus reduces false positives by considering multiple species. 

 

To estimate iαε , PhyloQPMEME optimizes the joint probability distribution of binding 

energies of orthologous sets of random sequences. Our assumption that this distribution is 

multivariate normal facilitates the formulation of this problem. If we set the vector of 

binding energy thresholds in different species [ ]1 2 dμ μ μ=μ "  to [ ]1 1 d− − " , 

binding energies of sequences in each species will be determined in the units of the 

corresponding thresholds. The probability that the orthologous set of a random sequence 
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has binding energies below the threshold (shaded area in Figure 5.1) is given by the 

integral 
( )

1
12 1/ 2 2

/ 2 1/ 2

1 .
2 d

eI d cofactor e
π

−−
−

−∞

= ≈∫
T 1

T -1
E C Eμ

μ C μ
E C

C
. This probability is 

determined by the two covariance terms. Because the exponential term dominates, we can 

write 
1
2I e

−
≈

T -1μ C μ
. Thus, this probability is minimized by solving the optimization 

problem max T -1

ε
μ C μ . Although the covariance matrix C  is a quadratic function of iαε , 

-1C  is not, and hence the objective function (see definition below) is hard to optimize. 

We can bypass this issue by solving an equivalent optimization problem of 

,

1min
2

−T T

y ε
y Cy μ y . We prove the equivalence as follows. Let 1

2
f = − +T Ty Cy y μ . At its 

maximum value, 0f∂
= = − +

∂
Cy μ

y
and hence = -1y C μ . Substituting the values of y  in 

f , ( ) ( ) ( )1 1 1
2 2 2

f = − + = + =
T T-1 -1 -1 T -1 -1 T -1 T -1C μ C C μ C μ μ μ C CC μ μ C μ μ C μ . The reason 

for using numerical optimization to solve the problem is that no analytical solution exists. 

 

We now proceed to deal with the constraints associated with this optimization problem, 

such as the constraint placed on the values of binding energies of the training sites and 

their orthologs. The constrained optimization problem requires the use of Lagrange’s 

unknown multipliers, as outlined in the next section. 
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5.3 Constrained Optimization and Lagrange Multipliers 

 

Optimization, also called mathematical programming, is a branch of mathematics devoted 

to finding the extremum (minimum or maximum) value of a function, called objective 

function, and the corresponding values of its variables { }1 2, ,x x … , collectively written as 

x  [205]. We will focus on function minimization in this section, since minimizing any 

function is equivalent to maximizing its negative function (or maximizing its reciprocal, 

if the function does not change sign). In an optimization problem, a local minimum is the 

point in the variable space at which the value of the function is smaller than that of any 

other point in the close neighboring region. A global minimum, on the other hand, is the 

point at which the value of the function is smaller than at any other point in the entire 

variable space. One is generally interested in finding the global minimum, which is either 

the smallest of minima or some value on the boundary of the variable space. When 

solving an optimization problem, one then has to find all local solutions first. A major 

issue in optimization is that for complicated objective functions, the number of local 

solutions is usually unknown and hence it is difficult to ascertain that the global solution 

has indeed been arrived at.  

 

There are two main types of optimization problems: unconstrained and constrained. In an 

unconstrained optimization problem, the solution can lie anywhere in the variable space. 

A constrained optimization problem, however, consists of constraints on what values 

each variable or the combination of variables can take. One needs to consider two types 

constraints: (i) equality constraints ( ) 0c x =  and (ii) inequality constraints ( ) 0c x ≥  
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(constraints of the type ( ) 0c x ≤ are equivalent to ( ) 0c x− ≥ ). The part of the variable 

space that satisfies the constraints is called the feasible region. An inequality constraint is 

said to be active at point x  if ( ) 0c x = . This point lies on a boundary of the feasible 

region. An inequality constraint is inactive at a point inside the feasible region, i.e. when 

( ) 0c x > . In constrained optimization, the objective function needs to be minimized 

while satisfying the constraints on its variables, and the solutions lie in the feasible region. 

 

We will now briefly describe the three important special cases of constrained 

optimization: convex programming, linear programming (LP) and quadratic 

programming (QP). In convex programming, the objective function is convex, the 

equality constraints are linear and the inequality constraints are concave. Therefore, local 

solutions are global solutions. This feature is a great advantage because one only needs to 

find one local solution to find the global solution, which is relatively easy as compared to 

finding an unknown number of local solutions as in the general case. The second special 

case is LP, used most commonly in practice, which consists of a linear objective function 

and linear constraints. QP is the third special case and consists of a quadratic objective 

function and linear constraints. QP, when the objective function’s Hessian is positive 

semi-definite, and LP are in fact examples of convex programming. The QPMEME 

algorithm described in Chapter 2 uses convex QP [73]. Moreover, the PhyloQPMEME 

algorithm solves a constrained quartic optimization problem (quadratic in two sets of 

variables) using iterative convex QP, as we will see in the next section. 
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Let’s see the general conditions for a local solution in a constrained optimization problem 

(and global solution in convex programming). At any point x  in the feasible set, let d  be 

a direction in which the objective function ( )f x  decreases. According to the Taylor 

series, ( ) ( ) ( ) 0f x d f x f x d+ − ≈ ∇ ⋅ < , and hence the angle between the gradient 

( )f x∇  and d  is greater than 90° , or equivalently, d  is  in the open half-space opposite 

of ( )f x∇  (Figure 5.2A). x  is a solution only if no d  exists at x . This is possible if (i) 

( ) 0f x∇ =  or (ii) the open half-space opposite of ( )f x∇  lies outside the feasible region. 

 

We will now see the conditions for a local solution when (i) it lies inside the feasible 

region, (ii) an equality constraint is active, or (iii) an inequality constraint is active. Inside 

the feasible region (when an inequality constraint is inactive, or in unconstrained 

optimization where the entire variable space is the feasible region), d  will not exist at a 

point only if ( ) 0f x∇ = , and hence a solution fulfills the condition ( ) 0f x∇ = . A point 

where an equality or inequality constraint is active can be a solution if it fulfills either of 

the conditions described above. Let’s now focus on the second condition for equality and 

inequality constraints. We discuss them separately because the details of the condition 

differ for each constraint.  

 

In the case of an equality constraint ( ) 0c x =  (Figure 5.2B), direction d  satisfies the 

constraint (i.e. ( ) 0c x d+ = ) if ( ) ( ) ( ) ( ) 0c x d c x c x d c x d+ ≈ +∇ ⋅ = ∇ ⋅ = , and thus d  

is perpendicular to ( )c x∇ . We noted above that the angle between d  and ( )f x∇  is 
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greater than 90° . From these two statements, we can see that d  does not exist only when 

( )c x∇  is in the same or opposite direction of ( )f x∇ , leading to the contradiction 

( ) 0f x d∇ ⋅ =  and ( ) 0f x d∇ ⋅ < . Thus, when an equality constraint is active, a solution 

fulfills the condition ( ) ( )f x c xλ∇ = ∇ , where the Lagrange multiplier λ  can have either 

sign. 

 

When an inequality constraint ( ) 0c x ≥  is active (Figure 5.2C), ( ) 0c x = . In this case, 

direction d  satisfies the constraint (i.e. ( ) 0c x d+ ≥ ) if ( ) 0c x d∇ ⋅ ≥ , and the angle 

between d  and ( )c x∇  is less than or equal to 90° . As the angle between d  and ( )f x∇  

must be greater than 90° , the only scenario where d  does not exist is when ( )c x∇  and 

( )f x∇  have the same direction, resulting in the contradiction ( ) 0f x d∇ ⋅ ≥  and 

( ) 0f x d∇ ⋅ < . Thus, a point is a solution only when ( ) ( )f x c xλ∇ = ∇ , where λ  is 

strictly positive.  

 

Based on the above discussion, a constrained optimization problem with multiple equality 

and inequality constraints can be solved using the Lagrange multiplier method. Consider 

the Lagrangian function ( ) ( ) ( ), i i
i E I

x f x c xλ λ
∈

Λ = − ∑
∪

, where E  and I  are the sets of 

equality and inequality constraints, respectively. A solution satisfies the following 

Karush-Kuhn-Tucker (KKT) conditions: (1) ( ), 0x x λ∇ Λ = , (2) ( ) 0ic x =  for all i E∈ , 

(3) ( ) 0ic x ≥  for all i I∈ , (4) 0iλ ≥  for all i I∈  and (5) ( ) 0i ic xλ =  for all i I∈ . The 



  145  

    

last condition (complementarity condition) implies that the Lagrange multiplier can be 

positive only when the constraint is active and is always zero when the constraint is 

inactive. Whether the solution is actually a minimum (as opposed to a maximum or a 

saddle point) is determined by using second derivatives. 

 

The algorithm we will develop in the next section is very similar to a one-class support 

vector machine (SVM) [206]. An SVM is a classification method using a linear 

discriminant in a high-dimensional space. It is a special case of constrained optimization 

method. Let’s illustrate it with a simple example, where the training instances ix  of the 

negative ( 1iy = − ) and the positive ( 1iy = + ) classes are separable. Let the equation of 

the separating hyperplane be 0b⋅ + =w x , where w  is normal to the hyperplane, | |
|| ||

b
w

 

is the perpendicular distance of the hyperplane from the origin and || ||w  is w ’s 

Euclidean norm. For each instance, one can write the inequality constraints of the training 

data as 1i b⋅ + ≥ +x w  for 1iy = +  and 1i b⋅ + ≤ −x w  for 1iy = − , or ( ) 1 0i iy b⋅ + − ≥x w  

in a combined form. The instances for which the constraints are active (i.e. 

( ) 1i iy b⋅ + =x w ) are called support vectors. The margin is the distance between the 

hyperplanes of the support vectors of the negative and the positive classes (these 

hyperplanes are parallel to the separating hyperplane) and turns out to be 2
|| ||w

. The 

SVM finds a hyperplane that maximizes the margin, i.e. minimizes its reciprocal, given 

the constraints. Hence, the Lagrangian is ( )( )21 || || 1
2 i i i

i
y bλ− ⋅ + −∑w x w , where the 
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Lagrange multipliers are greater than 0 ( 0iλ ≥ ). This is a convex QP problem. Because 

examples of the negative class are generally not known when identifying transcription 

factor binding sites, we use a different objective function below. The general structure of 

the problem, however, is similar. 

 

Armed with the above knowledge of constrained optimization problems, let’s proceed 

with the formulation of the PhyloQPMEME problem. 

 

5.4 Constrained Optimization Problem to Identify Conserved 

Sites 

 

Constraints need to be added to the optimization problem due to the restriction on the 

binding energies of the sequences in the training set and due to the designation of the 

average binding energies of random sequences. 

 

All experimentally validated sites and their orthologs need to have binding energies 

below (or equal to) the thresholds. Let ,a ds  denote a sequence in the training set 

corresponding to the known site a in species d. Thus, each training sequence introduces 

the constraint 
4

, ,

1 1
( ) 1a d a d

i i
i

E s sα α
α

ε
= =

= ≤ −∑∑
A

. Because training sequences are treated equally, 

the number of above constraints equals the number of unique training sequences.  
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This model is similar to a one-class SVM with non-separable data [206] and is shown 

graphically in Figure 5.3. The training sequences with binding energy exactly equal to the 

threshold determine the separating hyperplane in the sequence space and are thus like 

support vectors. 

 

Even though we would like to constrain the binding energy of every sequence in the 

training set, we do not know if all orthologs of the experimentally validated sites are 

functional binding sites. We have seen in the last chapter that site loss occurs frequently 

due to the lack of selection pressure and, as a result, the orthologous sequence evolves 

according to the neutral rate. In our case study of NF-κB, we observed that some 

sequences had evolved quite far away from the consensus (e.g. GAGGGATCTG), and 

the hard constraint that the binding energy of such sequences had to be below the 

threshold resulted in a great number of false positives while identifying conserved sites 

(~1.8% of all possible unique sequences). Unfortunately, there is no principled way of 

removing such “erroneous” sequences from the training set. 

 

PhyloQPMEME therefore uses a “soft margin” during training. It keeps the potentially 

erroneous sequences in the training set, and allows them to have binding energies above 

the threshold only at a cost. The constraint in the above “hard margin” PhyloQPMEME 

model is modified to 
4

, , ,

1 1
( ) 1a d a d a d

i i
i

E s sα α
α

ε ξ
= =

= ≤ − +∑∑
A

 in this new soft margin model, 

where , 0a dξ ≥  is a positive slack variable (or error) for each sequence. , 0a dξ >  for an 

erroneous training sequence. PhyloQPMEME penalizes such a sequence by adding a 
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positive penalty ,a dCξ  to the objective function, which it is actually trying to minimize. 

The positive cost parameter C  is chosen by the user. Higher C  increases the penalty and 

thus reduces the number of erroneous training sequences. Due to the constraints 

described here, the optimization process tries to balance the implicit cost of restricting the 

binding energy of an erroneous sequence below the threshold with the penalty of 

allowing its binding energy to have a value above the threshold. 

 

The average binding energies of random sequences also need to be specified because 

binding energies can take arbitrary values. The average binding energy at each position i 

is set to zero, adding the constraint 
4

1
0ipα α

α

ε
=

=∑  for every position. It is not necessary to 

add this constraint for every species because pα  in each of these species is assumed to be 

the same (this is a reasonable assumption for our case study, as described in the next 

section).  

 

Thus, the following Lagrangian equation needs to be optimized. 

4
, , , , , ,

, , , 1 1 ,

4

1 1

1min 1
2

a d a d a d a d a d a d
i i

a d a d i a d

i i
i

C s

p

α α
α

α α
α

ξ λ ε ξ τ ξ

ν ε

= =

= =

⎛ ⎞− + + + − −⎜ ⎟
⎝ ⎠

⎛ ⎞− ⎜ ⎟
⎝ ⎠

∑ ∑ ∑∑ ∑

∑ ∑

T T

y ε
y Cy μ y

A

A

"
 

In this equation, ,a dλ , ,a dτ  and iν  are the Lagrange multipliers for the three types of 

constraints. The KKT conditions are as follows. 
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• A  linear equality constraints specifying the average binding energy at each 

position i is to be 0: 
4

1
0ipα α

α

ε
=

=∑ . 

• Two types of linear inequality constraints due to the restrictions of the binding 

energies of the training sequences: 
4

, ,

1 1
1 0a d a d

i i
i

sα α
α

ξ ε
= =

− + − ≥∑∑
A

, , 0a dξ ≥ . The 

number of each type of constrains equals the number of training sequences. 

• The Lagrange multipliers corresponding to the inequality constraints are required 

to be non-negative: , 0a dλ ≥ , , 0a dτ ≥ . 

• The complementarity conditions: 
4

, , ,

1 1

1 0a d a d a d
i i

i

sα α
α

λ ε ξ
= =

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠
∑∑
A

, , , 0a d a dτ ξ = .  

The derivative of the Lagrangian with respect to ,a dξ  gives , ,a d a dC λ τ= + , showing that 

these Largrange multipliers are bounded by the cost parameter C . This equation, along 

with the second complementarity condition, implies that ,a dC λ>  when the binding 

energy of a sequence is not above the threshold ( , 0a dξ = ).  

 

The above problem is a constrained quartic optimization problem. The objective function 

is quartic – quadratic in both iαε  (because the covariance matrix C  is quandratic in iαε ) 

and y . It can be solved using iterative quadratic programming (QP). Each iteration 

consists of two steps. In the first step, the binding energies iαε  are estimated by QP while 

keeping y  fixed. The global solution is found because the objective function is convex, 

the Hessian of the covariance matrix C  is always positive semi-definite and the 

constraints are linear. In the second step, y  is updated by the simple formula = -1y C μ . 
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While the condition number of C  can be used to assess whether this linear system is 

well-conditioned, the generalized inverse (or pseudoinverse) of C  is used to calculate y  

as it avoids any problems associated with the possible singularity of C . Constrained 

quadratic optimization is performed using the “fmincon” solver with the active set 

algorithm in MATLAB (version R2008a, The MathWorks, Inc.). The final output of the 

training procedure is the energy matrix. 

 

We have so far focused on the training of the PhyloQPMEME model. We now move our 

attention to the scoring procedure for the identification of conserved sites. 

 

5.5 Scoring Procedure 

 

During scoring, PhyloQPMEME (i) identifies a putative site in the reference species, (ii) 

determines the binding energies of its orthologs while allowing for some misalignment, 

and (iii) counts the number of species in which it is conserved, i.e. its orthologs have 

binding energy below the threshold. The conservation score equals this count plus one (to 

account for the reference species). 

 

In the first step, PhyloQPMEME scans all A -mer windows (where A  is the site length) on 

both strands in a promoter sequence in the reference species and calculates the binding 

energies of the sequences in these windows with the help of the trained energy matrix. A 

sequence with binding energy below the threshold (-1) is a putative site. When sites 

overlap, only the one with the lowest binding energy is considered. 
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To determine if the putative site is conserved in a related species, PhyloQPMEME 

retrieves the sequence for that species from the alignment corresponding to the site and a 

certain number of flanking nucleotides on its either side. Flanking nucleotides allow the 

capture of the orthologous site even if the local sequence alignment is not accurate. 

However, the number of flanking nucleotides is smaller than the site length so as not to 

include the ortholog of a potential tandem site from the reference species. (For example, 

it was chosen to be seven for identifying conserved κB sites of length ten described in the 

next section.) PhyloQPMEME removes gaps from the retrieved sequence and counts the 

number of nucleotides. If this number is less than the site length, the site is considered to 

be “unaligned” and thus lost in this species. Otherwise, PhyloQPMEME scans all A -mer 

windows in this sequence and calculates binding energies as described above. If the 

lowest binding energy is below the threshold, the corresponding sequence is assigned to 

be the conserved orthologous site. Or else, the site is considered to be aligned but lost in 

this species. Thus, a site is considered to be lost in another species when (i) it is not 

aligned or (ii) it is aligned but has binding energy above the threshold. After repeating 

this procedure for all the related species, the conservation score is calculated by counting 

the number of conserved sites in the orthologous set of the putative site. 

 

This scoring scheme has the following shortcomings: (i) it does not have a built-in model 

to allow for site loss in divergent species, and (ii) it uses a hard threshold for 

classification, declaring sequences with binding energy just above the threshold as lost 

sites. Other scoring schemes can be used to overcome these shortcomings. Based on the 
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phylogeny of the considered species and the number of lost sites in the training set, a site 

loss rate can be calculated as a function of species divergence using a maximum 

likelihood method. Then a composite score that penalizes site loss in the inverse 

proportion of species divergence can be calculated. Alternatively, a composite score can 

be calculated based on the likelihoods of selection constraint loss at various branches of 

the phylogenetic tree. If the Fermi-Dirac distribution of occupancy probabilities is not 

approximated by a step function, sequences with binding energies just above the 

threshold may be considered to be partially conserved by constructing a scoring model 

based on their occupancy probabilities. Finally, a likelihood scoring model integrating 

site loss probabilities and occupancy probabilities can be generated. These scoring 

schemes, however, have their own set of problems. For example, the exact phylogeny is 

usually unknown, a simple relationship between site loss rate and divergence may not 

exist, the link between site loss rate and penalty amount in a composite score or between 

occupancy probability and the amount of partial conservation does not have strong 

theoretical underpinnings, and the training data may be too sparse to estimate the 

additional parameters. Moreover, these scoring schemes are expected to increase false 

positives. We have therefore decided to use the simple scoring scheme. 

 

Leave-one-out cross-validation of training sequences is performed as follows. A training 

set consists of orthologous sets of known sites. For each orthologous set, PhyloQPMEME 

estimates the energy matrix by training on all the other orthologous sets in the training set 

and scores the orthologous set to determine its conservation.  
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5.6 Identification of κB Sites Conserved in Mammals 

 

Now that we have explained the PhyloQPMEME model, we will describe a case study of 

its application. Let’s recall from Chapter 1 that the binding sites of the transcription 

factor family NF-κB, called κB sites, are highly conserved [51]. With human chosen as 

the reference species for obvious reasons, we have used PhyloQPMEME to identify 

conserved human κB sites. 

 

PhyloQPMEME required the following input: (1) related species for determining 

conservation, (2) alignment of human promoters with orthologous sequences in these 

species for locating conserved sites, (3) single-species probabilities and joint probabilities 

in each pair of the selected species associated with neutrally evolving promoter sequences 

for construction of the covariance matrix, (4) experimentally validated κB sites and their 

orthologs that comprise the training set and (5) the cost parameter for penalty assignment 

to erroneous training set sequences. 

 

Mammals were deemed to be the appropriate choice of species for determining conserved 

sites. As we have discussed in the last chapter, the selected species should neither be too 

closely related nor be too divergent. Whereas closely related species conserve even non-

functional sequences and cause false positives, divergent species fail to conserve even 

functional sites and result in false negatives. Non-primate mammals, with divergence 

from humans greater than 40 Ma (million years ago) but less than 210 Ma, appear to be 

the ideal choice for identifying conserved human sites [168]. More than 30% of the 
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human sequence is aligned with that of another mammal and many known human κB 

sites are conserved in mammals [140, 141]. Primates were also included in this case study 

because the covariance matrix of PhyloQPMEME appropriately gives them low weight. 

Non-mammals, on the other hand, were not used because their high divergence from 

humans allows conservation of few transcription factor binding sites. Less than 10% of 

the human sequence is aligned with that of a non-mammal, and less than 10% of the 

known human κB sites are conserved in a non-mammal. 

 

The twelve mammals used in this case study are human (Homo sapiens), chimp (Pan 

troglodytes), rhesus macaque (Macaca mulatta), rat (Rattus norvegicus), mouse (Mus 

musculus), rabbit (Oryctolagus cuniculus), cow (Bos taurus), dog (Canis familiaris), 

armadillo (Dasypus novemcinctus), elephant (Loxodonta africana), tenrec (Echinops 

telfairi) and opossum (Monodelphis domestica). The primary reason for this particular 

choice of mammals was the ready availability of the sequence alignment of their 

genomes with the human genome. Moreover, these species cover a wide range of 

divergence within the mammalian class. They represent all four super-orders of primates 

– Euarchontoglire (human, chimp, rhesus macaque, rat, mouse and rabbit), Laurasiatheria 

(cow and dog), Xenarthra (armadillo) and Afrotheria (elephant and tenrec) – while 

opossum is a marsupial (see Figure 4.1D). 

 

We defined a promoter as the region from 800 bp upstream to 200 bp downstream of the 

transcription start site (TSS) of a gene. More than 85% of the known human κB sites fall 

into this region. Inclusion of additional regions is thus expected to yield few more sites. 
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On the flip side, the covariance matrix, whose terms are calculated based on the 

nucleotide composition of promoters, may change substantially with the inclusion of 

additional regions due to different nucleotide compositions in different parts of the 

genome. For example, promoter regions are GC rich, whereas intergenic regions are AT 

rich. 

 

PhyloQPMEME takes the alignments of promoters with orthologous sequences as an 

input. While alignment of multiple sequences is a complex problem, a number of good 

algorithms are available in the literature [172, 207, 208], and hence PhyloQPMEME does 

not focus on this problem. However, its success depends on the accuracy of the 

alignments. 

 

17-way multiple sequence alignments of the promoters corresponding to all human 

reference sequences (RefSeq Release 19 [139]) with the sequences of other vertebrates 

were retrieved from the University of California Santa Cruz (UCSC) genome 

bioinformatics site (http://genome.ucsc.edu/) [140, 141]. Human sequences in these 

multiple sequence alignments correspond to human assembly hg18, NCBI Build 36.1. 

Sequences of promoters corresponding to all human reference sequences were also 

retrieved from the UCSC site. Duplicate entries were removed. Moreover, only 

mammalian sequences in the multiple sequence alignments were retained.  

 

Nucleotide probabilities in each species and joint probabilities of two nucleotides in all 

pairs of species corresponding to neutrally evolving sequences are required in the 

http://genome.cse.ucsc.edu/index.html
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covariance matrix. They were calculated using the aligned promoter sequences retrieved 

above.The assumption made by PhyloQPMEME that the single-species distributions of 

nucleotides in all the considered species are identical seems to be reasonable. These 

distributions were indeed found to be similar. They are close to the vector 

[ ] [ ], , , 0.22,0.28,0.28,0.22A C G Tp p p p = , which was used as the single-species 

distribution for all species. Furthermore, as one would expect, the joint probability of the 

same nucleotide in two species decreases as the divergence between the species increases. 

For example, it is ~0.98 between human and chimp, ~0.94 between human and rhesus 

macaque, in the range 0.7-0.75 between human and other placental mammals, and ~0.63 

between human and opossum.  

 

The training set consists of 50 experimentally validated (known) κB sites from 

TRANSFAC 9.3 [54, 56-59] that are present in the promoters defined above, as well as 

the mammalian orthologs of these known sites according to the UCSC multiple sequence 

alignments. 43 of the known sites are from human and the other seven are from mouse. 

An orthologous sequence the same length of a κB site was retrieved only if it was 

available from the alignment. A total of 473 sequences were obtained, 114 of which are 

unique. 

 

The final input, i.e. the cost parameter, required an elaborate procedure which we 

describe in the next section. 

 



  157  

    

5.7 Determination of the Cost Parameter 

 

The cost parameter needs to be set by considering the trade-off between false positives 

and false negatives. When the value of the cost parameter is high, the penalty for 

allowing the binding energy of potential erroneous training sequences to be above the 

threshold is high. Therefore, many erroneous training sequences are forced to have 

binding energy below the threshold, creating a lenient threshold. Even though such a 

model correctly classifies most genuine sites (few false negatives), the probability that a 

random sequence has binding energy below (or equal to) the threshold is substantial, 

resulting in many false positives. The extreme case is the cost parameter value of positive 

infinity, when all training sequences are forced to have a binding energy below the 

threshold. This is the hard margin PhyloQPMEME noted above. In contrast, a low value 

of the cost parameter creates a stringent threshold. Even though it restricts the number of 

false positives, it misclassifies many genuine sites (many false negatives) due to the low 

penalty of allowing binding energies to be above the threshold.  

 

To determine the cost parameter, we trained PhyloQPMEME on all sites in the training 

set using different cost parameters (Figure 5.4). We then scored the training sites as well 

as all possible unique sequences of length ten ( 104  sequences) with the trained energy 

matrix and determined their binding energies. The number of training sites with binding 

energy above the threshold (an approximate measure of potential false negatives) 

decreases precipitously as the cost parameter increases from 0.4 to 0.6 and flattens out 

above 0.6 (blue line in Figure 5.4A). On the other hand, the number of all possible unique 
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sequences with binding energy below the threshold (an approximate measure of potential 

false positives) increases substantially as the cost parameter increases above 0.8 (Figure 

5.4B). Thus, the cost parameter range of 0.6-0.8 appears to be reasonable. We chose 0.6 

as the cost parameter for our model as it appears to have a good balance between 

potential false negatives (~20%) and potential false positives (0.2%). Even though the 

potential false negative rate appears to be high, we have to keep in mind that 

experimentally not validated orthologs of the known sites, in addition to the known sites, 

were used to calculate it. Thus, it may be misleading. In fact, all the known sites had 

binding energy below the threshold, while all the training sequences that had binding 

energy above the threshold were orthologs of the known sites. Thus, the potential false 

negatives seen above may have been lost sites. Incidentally, Figure 5.4 shows that using 

cost parameter values above 1.2 is equivalent to training with a hard margin 

PhyloQPMEME. 

 

The energy matrix obtained after training PhyloQPMEME on the above data is shown in 

Figure 5.5. As expected, G has the lowest binding energies at positions 1-3 and C has the 

lowest binding energies at positions 9-10 (see Chapter 1). While T has the lowest binding 

energies at positions 6-7, A and G have comparable low binding energies at position 4, 

and C and T have comparable low binding energies at position 8. Nucleotide at position 5 

does not appear to be important for specific binding to the transcription factor, as binding 

energies of all nucleotides at this position are close to zero. 
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5.8 Conservation and Loss of κB Sites 

 

We performed leave-one-out cross-validation on the training set to assess the 

performance of PhyloQPMEME as well as to understand the characteristics of κB site 

conservation and loss.  

 

All known human and mouse κB sites have binding energies below the threshold, 

showing that PhyloQPMEME is quite sensitive. Moreover, about one third of the κB sites 

are conserved in at least eleven of the twelve mammals in this case study, and about two 

thirds of the κB sites are conserved in at least nine mammals (Figure 5.6). This high 

conservation rate validates our approach of using related species for identifying 

conserved κB sites.  

 

As expected, the site loss rate increases with species divergence from human (Figure 5.7). 

However, the correlation between the site loss rate and the divergence is not exact. 

Species can be roughly divided into three groups based on the fraction of lost sites. (1) 

Less than one eighth of the sites lost: For example, primates (chimp, rhesus macaque). 

All sites, including the orthologs of the known mouse sites, are conserved in human. (2) 

About one fourth of the sites lost: For example, the rest of the Boreoeutheria, which 

consists of the placental mammal super-orders Euarchontoglire (e.g. rat, mouse and rabbit, 

in addition to primates) and Laurasiatheria (e.g. cow and dog). Site loss rates in the non-

primate Euarchontoglires and Laurasiatheria appear to be similar probably because the 

divergence between human and the rest of the Euarchontoglires considered in this 
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analysis is not much less than the divergence between human and Laurasiatheria (see 

Figure 4.1D). (3) Between one third and one half of the sites lost: This includes the rest 

of the mammals. Although the site loss rate is expected to be proportional to the 

divergence of mammals from humans, it is not always the case. Using this criterion, the 

marsupial opossum, for example, should have a much larger site loss rate than all 

placental mammals. But this is not true. The species in which the most sites are lost is 

elephant, not opossum, in spite of a better overall alignment of human promoters with the 

elephant’s than with the opossum’s sequences. The site loss rate does not appear to be a 

simple function of divergence. 

 

Figure 5.7 also shows that when a site is lost, that is when selection constraint is no 

longer applicable, a sequence often changes so much that it is difficult to align with a 

conserved site. Majority of the lost κB sites cannot be aligned with the conserved sites. 

Only a few lost sites align but have binding energy above the threshold. 

 

We also identified conserved κB sites in the promoters of all genes in the human genome. 

The number of mammals in which a predicted κB site is conserved increases from one to 

three and then drops offs exponentially (Figure 5.8). When a predicted κB site is 

conserved in three mammals, the species with conservation are usually human, chimp and 

rhesus macaque. Therefore, the peak of conservation at three species can be attributed to 

the high conservation of non-functional sequences in primates, and most of these 

predicted κB sites are false positives. Finally, 302 κB sites are conserved in all mammals 

and 884 are conserved in eleven mammals. 
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What is a reasonable threshold for the conservation score? Or, how many species does a 

predicted κB site need to be conserved in to enable us to declare that it is a real κB site? 

According to Figure 5.9A, as the threshold decreases from twelve to nine, about two 

thirds of the known sites are recovered (declared to be conserved; also seen in Figure 

5.6.) However, as this threshold decreases further, the gain in true positives (recovered 

known sites) is quite small compared to the additional number of predicted sites, most of 

which are expected to be false positives. Figure 5.9B is more informative. It shows that 

the gain in true positives, in comparison with the number of predicted κB genes (genes 

whose promoters contain the predicted κB sites), decreases noticeably if the conservation 

score threshold is reduced below ten. The figure also shows that while a sizable number 

of κB sites are conserved in a small number of species, their identification using 

conservation as the sole classification criterion is made quite difficult in view of the 

occurrence of a large number of false positives. 

 

Figure 5.10 shows that most of the 1186 predicted κB sites conserved in 11 or more 

mammals lie close to the TSS, and that their number decreases in the regions further 

upstream away from the TSS. This fact is in agreement with the observed distribution of 

the known κB sites, discussed at length in Chapter 3 and supported by a number of 

studies [68, 142, 143]. We are therefore confident that many of the sites conserved in 11 

or more mammals are indeed real functional κB sites. 
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5.9 Site Energy is Better Conserved than Site Sequence 

 

We began this chapter with the theme that a site’s binding energy rather than its sequence 

needs to be conserved to maintain its fitness. In one of the key results of this chapter, we 

show that this indeed is the case with κB sites. 

 

To start out, we calculated the Hamming distance between each pair of orthologous sites 

in the orthologous sets of the 302 predicted κB sites that are conserved in all mammals. 

Hamming distance between two sequences is simply the number of positions where their 

nucleotides differ. As expected, the Hamming distance between orthologous site pairs has 

an exponential-like distribution in which most pairs are identical (Figure 5.11). We then 

calculated the maximum pairwise Hamming distance in each orthologous set (i.e. the 

maximum of the Hamming distances calculated for all site pairs in an orthologous set.)  

 

The distribution of the maximum pairwise Hamming distance (MPHD) in orthologous 

sets is striking (Figure 5.12). The MPHD within an orthologous set is often quite high. 

The largest fraction of the orthologous sets has the MPHD of five. Over 36% of the 

orthologous sets have the MPHD of five or more. In other words, over one third of the 

orthologous sets have at least one pair of sites that has different nucleotides in at least 

half the positions (the κB site length is ten). Four orthologous sets have the MPHD of 

seven! For example, the human site in the promoter of the gene DTNA has the sequence 

GCGAAATCCC, whereas its orthologous site in cow has the sequence TGGGCTTTCG. 
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Despite these vastly different sequences, the binding energies of the human and cow sites 

are -1.04 and -1.08, respectively. 

 

These data clearly demonstrate that the selection pressure during site evolution works on 

binding energies rather than on sequences, at least for κB sites. They also highlight the 

superiority of evolutionary models of site binding energies, like the PhyloQPMEME 

model, over evolutionary models of site sequences described in the last chapter. An 

evolutionary model of site sequences will have a great deal of difficulty in explaining the 

fact that sites in which seven out of ten nucleotides differ are actually conserved. 

 

After showing the merits of the PhyloQPMEME model, we now discuss the biological 

significance of conserved κB sites as identified by PhyloQPMEME. 

 

5.10 Biological Insights from Conserved NF-κB Targets 

 

Because the conservation threshold of 11 recovers one third of the known sites while 

predicting a reasonable number of NF-κB target genes (972 genes corresponding to 1186 

sites; Figure 5.9), we decided to ascertain the biological significance of the resulting gene 

set. While we are aware that this gene set misses many NF-κB target genes, we believe 

that most genes included in the gene set are true positives. We identified cellular 

pathways, biological functions and diseases in which these putative NF-κB targets were 

over-represented by using Ingenuity Pathways Analysis (Ingenuity® Systems, 

www.ingenuity.com) and DAVID [145-147]. 

http://www.ingenuity.com/
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The NF-κB targets in this gene set fall into three categories: (i) known targets in the 

pathways regulated by NF-κB, (ii) previously unknown targets in the NF-κB pathways 

and (iii) targets in the pathways not known to be regulated by NF-κB (Table 5.1). 

PhyloQPMEME predicted many well-known NF-κB targets, such as chemokines, 

integrins and interleukins, associated with the antigen presentation, glucocorticoid 

receptor signaling, G-protein coupled receptor signaling, MAP kinase signaling and B 

cell receptor signaling pathways, among others. Because NF-κB influences the 

inflammation-fibrosis-cancer axis in liver [209], a lot of genes involved in hepatic 

fibrosis are also highlighted. The Wnt-beta catenin signaling cascade plays quite an 

important role in many aspects of development. While the role of NF-κB in this pathway 

is still emerging [210], PhyloQPMEME has pinpointed several genes, including WNT5A 

and WNT8B, as NF-κB targets. As discussed in Chapter 3, NF-κB’s role in the regulation 

of ubiquitination is not well characterized. The targets identified by PhyloQPMEME may 

help elucidate this role. Moreover, the predicted NF-κB targets in the actin cytoskeleton 

signaling may shed light on the exact role of NF-κB in this particular pathway. Just like 

the HMM, PhyloQPMEME has also identified several potential targets responsible for 

xenobiotic metabolism. Interestingly, our analysis also suggests roles for NF-κB in 

various nervous system pathways, including circadian rhythm signaling, synaptic long 

term potentiation and dopamine receptor signaling. 

 

It remains to be determined if these and other genes identified using PhyloQPMEME are 

genuine NF-κB transcriptional targets. If confirmed, they could yield important new 
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insights into the roles of NF-κB in numerous pathways and associated diseases. The 

comparison of the genes predicted by the HMM and PhyloQPMEME is discussed in the 

next chapter. 

 

5.11 Summary 

 

We have successfully built a composite model integrating binding energies from 

biophysics with evolutionary conservation to identify transcription factor binding sites. 

PhyloQPMEME has a number of advantages and unique features: 

o Consideration of multiple species substantially reduces the number of false 

positives. 

o Modeling evolution of a site’s binding energy is more appropriate than modeling 

evolution of its sequence because binding energy of a site is conserved better than 

its sequence. 

o PhyloQPMEME uses occupancy probability as the discriminant function, which 

itself provides a number of benefits including a clear biophysical interpretation. 

o Occupancy probability can be linked to evolutionary fitness in a logical manner, 

especially if a transcription factor functions during one cellular state. 

o Based on the thermodynamics principles, PhyloQPMEME assumes the Fermi-

Dirac distribution of occupancy probability, which is applicable in any range of 

transcription factor concentrations.  

o This occupancy probability distribution also offers a non-arbitrary threshold, 

unlike most other methods in vogue. 
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o Because the covariance matrix captures the correlations between the binding 

energies of orthologous sequences, PhyloQPMEME places no restrictions on the 

number of species or the topology of the phylogenetic tree. 

o Unlike the other supervised learning methods, PhyloQPMEME takes the 

evolutionary relationships into account during the training procedure. While the 

covariance matrix deals with neutrally evolving sequences, binding energies of 

known sites and their orthologs are used explicitly as constraints in the 

optimization problem for estimating binding energies. 

o PhyloQPMEME uses a soft margin during training, which enables the 

incorporation of sequence information of experimentally unverified orthologs of 

known sites, while allowing for the loss of selection constraint in some of them. 

 

PhyloQPMEME also has the following limitations. Its success depends on the accuracy 

of the sequence alignments provided to it. Moreover, its scoring scheme does not 

incorporate site loss, and uses a hard threshold that may potentially misclassify genuine 

sites with binding energy just above the threshold as lost sites. It also makes the 

following assumptions: 

o Binding energies at different positions in a site are independent and additive. This 

assumption is quite common, and is shown to be very reasonable [76].  

o Binding energy of a nucleotide at a position in a site ( iαε ) is identical in all 

species, which is expected to be true if the transcription factor is highly conserved 

(as is the case of NF-κB in mammals).  
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o Binding energies of orthologous sets have a multivariate normal distribution and 

the Fermi-Dirac distribution of the occupancy probability can be approximated by 

a step function. Both these assumptions are valid only if the site length is 

substantially greater than one (e.g. ten in the case of κB sites). 

o The distribution of neutrally evolving nucleotides is identical in the selected 

species, which again is a reasonable assumption for species that are not too 

divergent (e.g. mammals). 

o The set of neutrally evolving sequences can be approximated by all possible 

random sequences because a very small proportion of all possible sequences are 

functional and thus under selection pressure. 

 

Through the application of PhyloQPMEME, we demonstrated that (i) the majority of 

functional sites are indeed conserved in many species, (ii) the site loss increases roughly 

with species divergence, (iii) the sequences of lost sites often change so much that their 

alignment with conserved sites becomes difficult, and (iv) the site binding energy rather 

than its sequence is under selection pressure. Moreover, pathway analysis shows that the 

predictions made by PhyloQPMEME are biologically significant. 
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Table 5.1: Selected pathways, functions and diseases enriched with NF-κB targets 

predicted by PhyloQPMEME. 

Selected cellular pathways, biological functions and diseases in which our predicted NF-

κB targets were over-represented are shown. The associated predicted NF-κB targets are 

represented by official human gene symbols. Genes containing κB sites with the 

conservation score of eleven or more were used in this analysis. Genes known in the 

literature to be regulated by NF-κB (although not necessarily directly) [18] are denoted 

with *. 

 

Pathway/Function/Disease Gene Symbols 
Wnt/beta-catenin Signaling GJA1, GSK3B, WNT5A, TLE3, PPP2R5C, 

CSNK1A1, CSNK2A1, SOX17, SOX4, SOX12, 
PPP2CB, PPP2R1A, PPP2R2B, MARK2, SOX14, 
WNT8B, RARA, TGFB3, NLK 

PI3K/AKT Signaling NFKB2*, YWHAQ, GSK3B, HSP90AA1*, 
PPP2R5C, PIK3CB, NFKBIA*, YWHAE, 
PPP2CB, NRAS, SHC1, PPP2R2B, PPP2R1A, 
FOXO3, MAP3K8 

Chemokine Signaling CCL4*, CCL2*, PPP1R12A, NRAS, CCL5*, 
MAPK11, PTK2B, PPP1CC, PLCB2, CALML5, 
CAMK2A 

G-Protein Coupled Receptor 
Signaling 

NFKB2*, PDE1A, ADCY3, DUSP6, RASA1, 
CAMK2A, RGS14, PDE4D, PIK3CB, NFKBIA*, 
PDE11A, GRM2*, CREB1, NRAS, SHC1, 
CREB5, PTK2B, PLCB2, PDE7A*, MAP3K8 

Hepatic Fibrosis / Hepatic 
Stellate Cell Activation 

MYL1, NFKB2*, EGF, VCAM1*, CCL5*, CTGF, 
CYP2E1*, CCL2*, CXCL1*, MYH6, IGF1, IL4, 
EDN1*, TGFB3, IL6* 

Glucocorticoid Receptor 
Signaling 

HSPA1A, VCAM1*, IL13*, CCL5*, MNAT1, 
HSP90AA1*, MAPK11, TAF9, HSPA1L, 
POU2F1, PIK3CB, CCL2*, CXCL1*, NFKBIA*, 
POU2F2, IL4, CREB1, NRAS, SHC1, GTF2A2, 
SELE*, TGFB3, IL6*, IL2* 

Antigen Presentation 
Pathway 

HLA-G*, CALR, HLA-C, PSMB9*, HLA-B*, 
HLA-F, HLA-DMB 

B Cell Receptor Signaling NFKB2*, GSK3B, MAPK11, CALML5, 
CAMK2A, PIK3CB, POU2F2, NFKBIA*, 
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CREB1, NRAS, CREB5, SHC1, EGR1*, 
MAP3K8, PIK3AP1* 

Actin Cytoskeleton Signaling MYL1, MSN, EGF, NCKAP1L, ACTN1, VCL, FGF7, 
FGF18, PIK3CB, FGF14, PPP1R12A, MYH6, PAK3, 
GRLF1, NRAS, TTN, ARPC5, SHC1, PPP1CC, PAK4 

Circadian Rhythm Signaling BHLHB3, CREB1, CREB5, NR1D1, GRIN2A* 
Synaptic Long Term 
Potentiation 

PPP1R12A, GRIA3, GRM2*, CREB1, NRAS, 
CREB5, PPP1CC, PLCB2, CALML5, GRIN2A*, 
CAMK2A 

Protein Ubiquitination 
Pathway 

PSMC6, PAN2, UBE2D3, PSME2*, HLA-C, PSMB9*, 
USP15, PSMD3, CDC20, HSP90AA1*, PSMB10, 
USP48, HLA-B*, PSMD1, USP2, PSMB3 

Dopamine Receptor 
Signaling 

PPP1R12A, ADCY3, PPP2CB, SPR, PPP2R2B, 
PPP2R1A, PPP1CC, PPP2R5C 

Xenobiotic Metabolism 
Signaling 

NFKB2*, NR1I3, HSP90AA1*, MAPK11, 
PPP2R5C, GSTM3, CAMK2A, PIK3CB, 
ALDH1L2, AIP, ALDH6A1, CYP2C19, PPP2CB, 
NRAS, PPP2R2B, PPP2R1A, AHR, NDST1, IL6* 

Rheumatoid Arthritis ADAMTS4, CCL2*, CCL4*, CCL5*, CCL19*, 
CD68, CD69*, CD86*, CFB*, CSF3R, CXCL1*, 
CXCL2*, CXCL3*, CXCL5*, CXCL6*, CXCL9*, 
CXCL10*, EIF1B, FOSB, HLA-C, HLA-DMB, 
HLA-G*, HSPA1A, HSPB8, IGF1, IL6*, IL9*, 
IL13*, LCP1, LTA*, LTB*, MAPK11, MME, 
NFKBIA*, NR4A2*, OSM, PDE4D, PSMB9*, 
PTPN22, RUNX1, STAT4, TNFSF4, TPM2, 
USP15, ZNF143 
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Figure 5.1: Illustration of the basic idea of PhyloQPMEME.  

The illustration is shown for two species. E1 and E2 are the binding energies of 

orthologous sequences (orthologous set) in the two species. μ1 and μ2 are the 

corresponding thresholds. A sequence with binding energy below the threshold has 

occupancy probability of one. The shaded area contains orthologous sets such that both 

sequences in the set have binding energies below the corresponding thresholds and hence 

are occupied. PhyloQPMEME determines the binding energy of each nucleotide at each 

position so as to minimize the probability that orthologous sets of random sequences fall 

into the shaded area, while confining orthologous sets of all known sites to the shaded 

area. This is shown graphically by the black arrows compressing the ellipse or 

equivalently by the black arrows moving the shaded area away from the center. 

PhyloQPMEME assumes that the binding energies of orthologous sets of random 

sequences have a multivariate normal distribution and maximizes T -1μ C μ  subject to 

constraints, where μ  is the vector of threshold binding energies andC  is the covariance 

matrix of binding energies of orthologous sets of random sequences. Consideration of 

multiple species reduces false positives because the probability that the orthologs of a 

random sequence have energies below the thresholds is miniscule, even though it may 

have energy less than the threshold by sheer chance. The joint distribution of the energies 

has the shape of an ellipse unaligned with the axes, indicating the correlation in the 

binding energies of orthologous sequences. The blue dots represent the binding energies 

of random sequences the same length as the known sites. The red plus signs denote the 

binding energies of the known sites. 
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 Figure 5.2: Explanation of the constrained optimization problem. 

A. Any direction d  in the open half-space opposite of the gradient ( )f x∇  (i.e. with 

angle greater than 90° ) decreases the value of the objective function ( )f x . Many such 

directions are shown. ( )f x∇  in parts (B) and (C) is assumed to be in the same direction 

as in part (A) and equal in the entire space.  

B. Equality constraint: feasible region is assumed to be a circle (e.g. 

( ) 2 2
1 2 1 0c x x x≡ + − = ). At any point A, one of the two directions lies in the open half-

space opposite of ( )f x∇  and thus decreases the function value. Constraint gradient 

( )c x∇  at point B is in the same direction as ( )f x∇  and ( )c x∇  at point C is in the 

opposite direction. Direction d  does not exist at either point, and both points are 

potential minima. Thus, a local solution satisfies the condition ( ) ( )f x c xλ∇ = ∇ , where 

the Lagrange multiplier λ  can be either positive or negative.  

C. Inequality constraint: feasible region is assumed to be the interior of a circle (shaded 

region; e.g. ( ) 2 2
1 21 0c x x x≡ − − ≥ ). The constraint is active at points D and E. At point D, 

( )c x∇  and ( )f x∇  are in the same direction and d  does not exist; D is a local solution. 

At point E, ( )c x∇  and ( )f x∇  are in the opposite direction and d  exists as shown; thus, 

E is not a local solution. At any point F where the constraint is inactive (inside the 

feasible region), d  exists as long as ( )f x∇  is not zero. Points with a star are local 

solutions.  
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Figure 5.3: Classification in sequence space. 

A sequence of length A  (site length) can be represented by sequence vector S  of length 

4A  such that each element is α  equals one if the sequence has nucleotide α  at the i th 

position and zero otherwise. Such sequence vectors occupy the surface of a sphere in a 

4A -dimensional space. PhyloQPMEME constructs a separating hyperplane or threshold 

in this space such that sequences on its one side have binding energy below the threshold 

and those one the other side have binding energy above the threshold. Because only 

known sites are usually available for training, PhyloQPMEME estimates binding energies 

of individual bases in such a way as to obtain the fewest random sequences on the side of 

the separating hyperplane corresponding to binding energy below the threshold. This 

model is similar to a one-class support vector machine (SVM). The known sites with 

binding energy equal to the threshold are responsible for defining the separating 

hyperplane and are thus like support vectors. Sequence vectors corresponding to known 

sites with binding energy below the threshold, known sites with binding energy equal to 

the threshold and random sequences with binding energy above the threshold are shown 

with black, red and blue arrows, respectively. 
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Figure 5.4: Binding energy distribution as a function of the cost parameter. 

A. The fraction of unique training sites with binding energy above the threshold (an 

approximate measure of potential false negatives) decreases as the cost parameter used to 

train PhyloQPMEME increases. The fraction decreases sharply when cost parameter 

increases from 0.4 to 0.6 and then flattens out. It reaches zero when the cost parameter is 

1.2. The fractions with binding energy above the threshold and with binding energy equal 

to or above the threshold are shown with the blue and green lines, respectively. The 

fraction of unique training sequences with binding energy exactly equal to the threshold 

(difference between the y positions of the blue and green lines), which is responsible for 

determining the classification boundary, is ~7-13% when the cost parameter value is 

above 0.6.  

B. The fraction of all possible unique sequences ( 104  sequences) with binding energy 

above the threshold (an approximate measure of potential false positives) increases with 

the cost parameter. Its slope is high in the cost parameter range of 0.8-1.2, after which it 

is flat because the hard margin PhyloQPMEME limit is reached.  

Based on parts (A) and (B), the cost parameter range of 0.6-0.8 appears to have a good 

tradeoff between potential false negatives and potential false positives. 
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Figure 5.5: Trained energy matrix. 

The negative values of the trained binding energies of nucleotides at each position of a 

κB site are shown. At each position, nucleotides with high negative energies, or high 

positive values in the figure, have strong affinities to the DNA-binding domain of the 

transcription factor. Thus, the nucleotides with the strongest affinities are G at positions 

1-4, T at positions 6-8 and C at positions 9-10. 
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Figure 5.6: Conservation of the known κB sites. 

A histogram of the number of considered mammals in which the known κB sites are 

conserved is shown. While about one third of the κB sites are conserved in at least eleven 

species, about two thirds of the κB sites are conserved in at least nine species. The 

fraction of sites conserved in a particular number of species is displayed at the top of the 

corresponding bar. The 50 known κB sites present in the PhyloQPMEME training set 

were considered. Conservation was determined by PhyloQPMEME using the leave-one-

out cross-validation procedure described in Section 5.5. 
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Figure 5.7: Species-wise loss rates of the known κB sites. 

The fraction of the known κB sites lost in each species is shown. A site is considered to 

be lost (i.e. not conserved; green line) in a species (i) if it cannot be aligned (blue line) or 

(ii) if the binding energy of the aligned sequence is above the threshold. The majority of 

the lost sites fall in the first category. Site loss rate increases with species divergence 

from humans, although the correlation is only approximate. Primates (chimp, rhesus 

macaque) have the lowest site loss rates of less than 15%, the rest of the Boreoeutheria 

(consisting of the placental mammal super-orders Euarchontoglire and Laurasiatheria; rat 

through dog in the figure) have site loss rates of ~20-30%, and the rest of the mammals 

have site loss rates of ~35-50%. Site loss rate in human is not shown because all sites, 

including the orthologs of the known mouse sites, are conserved in human. The 50 known 

κB sites present in the PhyloQPMEME training set were considered. Loss rate was 

determined by PhyloQPMEME using the leave-one-out cross-validation procedure 

described in Section 5.5. 
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Figure 5.8: Conservation of the predicted κB sites. 

A histogram of the number of considered mammals in which the predicted κB sites are 

conserved is shown. PhyloQPMEME predicted the conserved κB sites by performing a 

genome-wide search. The reason for conservation of the largest fraction of predicted κB 

sites in three mammals is that most of these sites are false positives which, like many 

other non-functional sequences, are conserved in human, chimp and rhesus macaque. The 

number of sites conserved in a particular number of species is displayed at the top of the 

corresponding bar. 
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Figure 5.9: Comparison of the known κB sites with predictions as a function of the 

conservation score threshold. 

A. The x- and y-axes correspond to the number of predicted κB sites and the fraction of 

recovered known κB sites (i.e. declared to be conserved) at a particular conservation 

score threshold, respectively. 

B. The x- and y-axes correspond to the number of predicted κB genes (i.e. genes whose 

promoters contain the predicted κB sites) and the fraction of recovered known κB sites at 

a particular conservation score threshold, respectively. 

As the conservation score (the number of species in which an orthologous set is 

conserved) decreases from twelve to one, the fraction of recovered known sites increases. 

The number of predicted κB sites in a genome-wide search and the corresponding 

number of κB genes also increase. After the conservation score of nine, the number of 

predicted κB sites increases much faster than the fraction of recovered known sites. After 

the conservation score of ten, the number of predicted κB genes increases much faster 

than the fraction of recovered known sites. Each conservation score threshold is shown 

and the corresponding point is depicted by a circle in the plots. This figure is based partly 

on Figure 5.6 and Figure 5.8. 

 



  184  

    

A 

 

B 

 



  185  

    

Figure 5.10: Distribution of location of the predicted conserved κB sites in 

promoters. 

Data is shown for the 1186 predicted κB sites conserved in 11 or more mammals. The 

majority of sites are located near the transcription start site (TSS). Their number 

decreases in the regions further upstream of the TSS. Location in promoters is shown 

with respect to the TSS. Upstream regions have negative coordinates and downstream 

regions have positive coordinates.  

 

 

 

 

 



  186  

    

Figure 5.11: Pairwise Hamming distance in conserved κB sites. 

Distribution of the Hamming distance between each pair of orthologous sites in 

conserved orthologous sets is shown. It has an exponential-like form. Most site pairs are 

identical, and the number of site pairs decreases sharply as the Hamming distance 

increases. The orthologous sets correspond to the 302 predicted κB sites conserved in all 

mammals. 
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Figure 5.12: Distribution of the maximum pairwise Hamming distance in conserved 

orthologous sets of κB sites shows conservation of binding energy. 

The high maximum pairwise Hamming distance (MPHD) values for a large number of 

conserved orthologous sets demonstrate that site energy rather than site sequence is 

conserved. The largest fraction of the orthologous sets has the MPHD of five. Over 36% 

of the orthologous sets have the MPHD of five or more, which corresponds to quite a 

large difference in orthologous κB sites that are only ten nucleotides long. Four 

orthologous sets have the MPHD of seven. The orthologous sets correspond to the 302 

predicted κB sites conserved in all mammals. MPHD in an orthologous set is the 

maximum of the Hamming distances calculated for all site pairs in that set. 
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Chapter 6 

Conclusions and Outlook 

 

“I do not know what I may appear to the world; but to myself I seem to 
have been only like a boy playing on the seashore, and diverting myself in 
now and then finding a smoother pebble or a prettier shell than ordinary, 

whilst the great ocean of truth lay all undiscovered before me.” 
Isaac Newton (1643-1727) 

 

6.1 Conclusions 

 

Unraveling the biological significance of a small degenerate sequence that constitutes a 

transcription factor’s binding site is a formidable task requiring sophisticated knowledge 

in a variety of scientific disciplines. It is indeed a long road from a seemingly simple site 

sequence to the species survival. The numerous milestones along the way can be briefly 

outlined. A site’s sequence determines its binding energy, which governs its occupancy 

probability, which affects the mRNA expression of the target gene, which in turn 

determines the resulting protein’s abundance, which influences cellular pathways, which 

shape a cell’s function, which affects the survival of an organism, which corresponds to 

the organism’s evolutionary fitness, which ultimately determines the survival of its 

progeny. 

 

Two types of models can in principle be used for site identification. At one extreme, there 

is a purely biophysical model, in the realm of structural biology or molecular modeling, 
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which emulates the physical binding interaction of a transcription factor protein with a 

DNA sequence in atomistic details. It models the bond lengths, bond angles and torsion 

angles within each molecule as well as the van der Waals forces and electrostatic 

interactions between neighboring atoms. (The associated set of parameters of such a 

model is called a force field.) It aims to minimize the potential energy, also called the 

potential function, of the interaction between the two molecules using simulations and 

optimization techniques. Because calculation of the binding energy of a transcription 

factor with even a single DNA sequence requires huge computational power, this 

approach has had limited success in identifying sites.  

 

At the other extreme is a plethora of probabilistic machine learning models. They use 

limited physical intuition but they are able to identify sites based on the sequences of a 

few known sites.  

 

Our approach falls in between these models. While we do not model each atomic 

interaction in the three-dimensional space, we do not confine ourselves to purely 

statistical quantities either. We have set up our machine learning models by incorporating 

simple physical interactions, modeling binding energies and using occupancy as a way of 

scoring things.  

 

To be able to develop a stochastic model with biophysical underpinnings, one needs to be 

conversant with various fields, from computer science to genetics, from statistics to 

systems biology and from thermodynamics to evolutionary biology. Computational 
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identification of a transcription factor’s binding site alone requires a confluence of such 

diverse fields as machine learning (which itself is an amalgamation of statistics and 

computer science), biophysics, systems biology and evolutionary biology. Site 

identification is a classification problem in machine learning that partitions sequences 

into binders and non-binders through the use of a discriminant function. Transcription is a 

biophysical process dealing with a site’s binding energy and occupancy of a transcription 

factor on DNA. Systems biology takes up the study of gene expression on the cell 

function.  Evolutionary biology is concerned with how a site’s composition and direct 

function affects evolutionary success, and its subfield of population genetics focuses on 

the relationship between the fitness of an organism with the survival of its progeny.  

 

In this work, we have linked machine learning methods of site identification to 

biophysical models of transcription factor binding in a single species and then extended 

these techniques to a model of site evolution involving a number of species. 

 

One part of our work is thus devoted to the biophysical interpretation of machine learning 

methods to calculate occupancy probability of a transcription factor on a site and to 

establish the classification threshold in a principled manner. We recognize that binding 

energy of a site, and not its sequence – as is commonly assumed –, is its key property that 

determines its function and evolutionary fitness. Occupancy probability in a sense forms 

a bridge between binding energy and fitness. It has a sigmoidal shape (Fermi-Dirac 

distribution) with a natural threshold at 0.5 when viewed as a function of binding energy. 

Therefore, if binding energy of a sequence, at a particular transcription factor 
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concentration, corresponds to occupancy probability of greater than 0.5, it can be 

considered a functional site.  

 

The hidden Markov model (HMM) that we have developed interprets the weight matrix 

as binding energy, the transition probability to the motif as transcription factor 

concentration and the gamma variable as occupancy probability. PhyloQPMEME 

determines binding energies and occupancy probability after solving a constrained 

optimization problem.  Because they use occupancy probability as the discriminant 

function, they learn the associated natural threshold in a principled manner during the 

training procedure. These features highlight the distinction between our methods and 

most other machine learning methods for site identification which deal with statistical 

quantities that are not immediately interpretable as the biophysical variables. These latter 

methods, therefore, are forced to resort to arbitrary, often non-physical, thresholds. In 

contrast, linking our machine learning models to biophysics not only allows a rigorous 

interpretation of the statistical quantities but also improves their performance.  

 

The second part of our work deals with specific characteristics of sites to enhance their 

identification. The HMM combines the effects of alternative binding modes of self-

overlapping sites. It then biases site identification in regions with high site density. Our 

HMM analysis provides guidance on the design of padding sequences in experiments 

associated with self-overlapping sites. On the other hand, PhyloQPMEME integrates 

evolutionary conservation of sites into a model of binding energies. Conservation in 
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multiple species is a hallmark of continuing selection pressure due to functional 

constraints, and hence the use of the conservation criterion helps reduce false positives.  

 

By identifying the direct target genes of the NF-κB transcription factor family using both 

the HMM and PhyloQPMEME, we have been able to learn a great deal about NF-κB 

biology, the evolution of κB sites and the predictive nature of these two methods. With 

the aim of determining the biological significance of the sets of κB target genes predicted 

by these methods at the various thresholds, we used pathway analysis to discover the 

pathways enriched in these κB target genes (Figure 6.1). Two types of measures were 

applied to determine the biological significance of the gene sets: (1) the sum of the 

negative logarithm of the p-values of the top 25 enriched pathways, and (2) the number of 

pathways enriched with a p-value less than 0.01. It is useful to note that only about 50-

70% of the genes in each gene set are available for pathway analysis because the rest of 

the genes are not adequately annotated. The numbers in Figure 6.1, however, correspond 

to the number of genes in the entire gene sets. 

 

The gene sets predicted by the HMM at various occupancy probability thresholds are 

much more biologically significant than randomly selected genes. Moreover, the 

biological significance reaches a peak at the occupancy probability threshold of 0.5 

(corresponding to ~800 genes). This implies that the gene sets corresponding to the 

thresholds greater than 0.5 have many false negatives, because of which these gene sets 

do not have enough key target genes to attain high significance. On the contrary, the gene 

sets corresponding to the thresholds less than 0.5 have many more false positives which 
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dilute these sets and lower their biological significance. Thus, the HMM appears to 

identify sites most accurately in a short window around the threshold of 0.5. This 

observation ties excellently with our justification for training the HMM threshold and the 

use of occupancy probability as the discriminant function. 

 

While the PhyloQPMEME-predicted gene sets at various conservation score thresholds 

have much greater biological significance as compared to randomly selected genes, their 

biological significance has a much broader peak going down to the conservation scores of 

7-8 (corresponding to a few thousand genes). This suggests that many genuine sites are 

conserved in only some of the considered mammals. In other words, a great number of 

κB sites have been lost during evolution (although we do not know their turnover rate), 

and hence a significant number of sites can be recovered even when the conservation 

score is low. This observation is in agreement with the fact that one third of the known 

sites are conserved in fewer than 9 of the considered mammals (Figure 5.6). The above 

discussion does not imply that higher conservation thresholds are useless. Even though 

gene sets corresponding to these thresholds contain many false negatives, we have 

already seen that several well-known NF-κB pathways are enriched with these genes. In 

addition, one should not forget their significance in terms of evolutionary conservation. 

Therefore, these gene sets should serve as non-comprehensive but reliable sets of κB 

targets. 

 

The comparison of the gene sets predicted by the HMM and PhyloQPMEME shows that 

both these methods are useful in investigating the role played by κB sites and NF-κB 
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target genes. We compared the gene set corresponding to the HMM occupancy 

probability threshold of 0.5 (~800 genes) with that corresponding to the PhyloQPMEME 

conservation score threshold of 11 (~900 genes). Even though only ~15% of the genes in 

these sets overlap, the enriched pathways associated with these gene sets are remarkably 

similar. Many of the well-known NF-κB pathways are shared by these gene sets, 

including glucocorticoid receptor signaling, antigen presentation, B cell receptor 

signaling, chemokine signaling, and so on. Interestingly, both gene sets highlighted the 

less well-characterized roles of NF-κB in the ubiquitination and xenobiotic metabolism 

signaling pathways. However, the most extraordinary feature of the comparison was the 

suggestion by both gene sets of the potential NF-κB-regulated pathways in the nervous 

system, an idea still in its infancy among the biologists at the current time. 

 

In conclusion, in this work we have developed machine learning methods to enhance 

identification of transcription factor binding sites, emphasized the paradigm of bridging 

probabilistic models with biophysics, and gained new insights into NF-κB biology. We 

believe that our work will uncover hidden truths about the regulation of gene expression 

and contribute to a better understanding of biology. 

 

6.2 Outlook 

 

One logical extension of our work is to combine the HMM of self-overlapping sites with 

a model of site energy evolution like PhyloQPMEME. However, our understanding of 

site evolution is very deficient at the present time. While little information is gained from 
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species with a small divergence, we believe that PhyloQPMEME has adequately dealt 

with it. With species having large divergence, however, phenomena such as lost sites, site 

turnovers and promoter reorganizations complicate the use of species evolution as a way 

to decide about binding sites. A comprehensive treatment of these phenomena and the 

determination of a principled conservation threshold are still a distant goal. 

 

Another possible extension to the current work is the discrimination between the sites of 

slightly different specificities associated with binding to different configurations of a 

transcription factor or to related transcription factors. For example, members of the NF-

κB transcription factor family form various homo- and hetero-dimers that have slightly 

different binding specificities [56]. As some functions of these dimers are known to be 

different, identification of sites that prefer one dimer to another (i.e. marginal κB sites) 

will help us to better understand their differential gene regulation effects. The problem 

here is that their binding specificities (modeled by a weight matrix or an energy matrix) 

are quite similar, and as a result, most sites are expected to bind to many dimers without 

discrimination. There is not even sufficient experimental data which distinguishes the 

binding of different dimers and which can conceivably be used to fine-tune theoretical 

models. In this work, therefore, we have treated all κB sites as a single set. In the future, 

one can tease out different affinities of these NF-κB dimers once the experimental data on 

the marginal sites becomes available and computational modeling is focused on these 

sites. In particular, data about the abundance of various dimers on marginal sites are 

needed as the training set. Computational models like PhyloQPMEME or support vector 

machines can be made to establish classification thresholds based on marginal sites. They 
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are more appropriate in this case than weight matrices or HMM, which are based on the 

affinities of all sites and thus dilute the effect of marginal sites. 
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Figure 6.1: Biological significance of predicted target gene sets using pathway 

analysis. 

Biological significance is shown with the help of the pathways enriched in the κB target 

gene sets predicted by the HMM and PhyloQPMEME at various thresholds. The two 

statistics used are: 

A. The sum of the negative logarithm of the p-values of the top 25 enriched pathways.  

B. The number of pathways enriched with a p-value less than 0.01. 

Gene sets associated with both methods are biologically significant as compared to 

randomly selected genes. While the HMM-predicted genes show a peak at the threshold 

occupancy probability of 0.5 (~800 genes), PhyloQPMEME-predicted genes show a 

much broader peak at the conservation score thresholds of 7-8 (a few thousand genes). 

The thresholds used for obtaining the gene sets for the pathway analysis (occupancy 

probability threshold between 0.05 and 0.7 for HMM and conservation score threshold 

between 6 and 12 for PhyloQPMEME) are indicated. HMM-predicted gene sets, 

PhyloQPMEME-predicted gene sets and randomly selected gene sets are indicated by 

blue, green and red curves, respectively. Only about 50-70% of the genes in each gene set 

are available for pathway analysis because the rest of the genes are not adequately 

annotated. The numbers in the figure, however, correspond to the number of genes in the 

entire gene sets. 
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Appendix A. Derivation of Occupancy Probability of 

Overlapping Sites 

 

In this Appendix, we will calculate the occupancy probability of sites at any position in a 

sequence as well as over the entire sequence using both first principles method and 

standard HMM techniques. We will consider the cases of (i) one site, (ii) non-

overlapping sites of the same type, (iii) exactly overlapping sites of multiple types, and 

finally, (iv) the most general case of overlapping sites of multiple types. We will also 

show that even though a conventional weight matrix and an HMM are closely related in 

principle, an HMM is more appropriate to determine occupancy probability when self-

overlapping sites exist. 

 

We will use the following symbols in the derivation below: b for the background state; m 

for the motif state, where the motif is a representation of a type of binding sites; α   for a 

nucleotide; A  for the length of the motif; i for the position in the motif; z for the transition 

probability to the motif; s for a sequence; L for the entire length of the sequence; j for the 

position in the sequence; bjwα  for the probability that nucleotideα  at the jth position of 

the sequence is emitted by the background state; mj
iwα  and bj

iwα  for the respective 

probabilities that nucleotideα  at the ( )1j i+ − th position of the sequence is emitted by 

the ith position of the motif state or by the background state ; ( )bound
jp s  for the occupancy 

probability of transcription factors at the jth position of the sequence; ( )boundp s  for the 
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occupancy of transcription factors over the entire sequence. Because most of the 

promoter sequence is the background, transition probability to the motif 0z ≈  and hence 

( ) ( ). 0, 1 1& 1 1z z z≈ − ≈ − ≈AA . 

The weight matrix score corresponding to the motif starting at the jth position of the 

sequence is defined as  

1

ln
mj
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j bj
i i

wW
w
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∏
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The motif’s strength compared to the background at that position is  
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A.1 One Site 

 

When a sequence is scored using an HMM, the likelihood of the sequence is the sum of 

all configurations, i.e. combinations of the background and motif states at all positions of 

the sequence. The configuration that has the background state at all positions is given by 

the probability  

( ) ( ) ( ) ( )1

1

( ) 1 . . 1 . 1 .
L
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The configuration with motif m at the jth position has the probability 
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and can be expressed in terms of the probability of the configuration of the background 

state at all positions as follows: 

( ) ( )1

( ) ( ). ( ). . ( ). . ( ). .
1 1

j j

mj
W Wi

j jbj
i i

z w zp m p b p b e p b z e p b z E
wz z

α

α=

= = ≈ =
− −

∏
A

A A  (A4) 

Thus, the two factors z and jW
jE e= , one the transition probability to the motif and the 

other a measure of distinctness of the emission probabilities of the motif (motif profile) 

from that of the background, determine occupancy probability. Occupancy probability at 

the jth position in terms of the transition probability to the motif and the weight matrix 

score is given by  
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As long as we know z, we can calculate the occupancy probability at a sequence position 

using the weight matrix, and hence the weight matrix threshold for classifying sequences 

into sites can be easily determined from the occupancy probability threshold. For 

example, the occupancy probability threshold of 0.5 (corresponding to ( ) ( )jp m p b=  and 

. 1jWz e = ) results in the weight matrix threshold of lnW z= − .  

 

We can also calculate occupancy probability using an HMM. The HMM gamma variable 

corresponds to the probability that position j of the sequence is in a certain state. For 

example, m
jγ  and b

jγ  correspond to the probabilities of the motif and background states at 

the jth position, respectively. 1m b
j jγ γ+ =  if only these two states are considered. Hence, 
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gamma of the motif state at a sequence position is the occupancy probability at that 

position ( ( ) 1bound m b
j j jp s γ γ= = − ). 

 

A.2 Non-overlapping sites of the same type 

 

A configuration containing two non-overlapping sites of the same type at positions 1j  

and 2j  has the probability 
( )

1 2

1 2 1 22
1 1

1( ) . . ( ). . . .
1

mj mj
j j i i j j

i i

p m z w z w p b z E z E
z

α α
= =

= =
−

∏ ∏
A A

A… … …  

To explain the case of non-overlapping sites better, we can think of the motif state at a 

sequence position to be emitting A  nucleotides, and thus each sequence position has one 

of the two states m or b.  

 

Let’s calculate the overall likelihood of the sequence to understand the relationships 

between the different terms. The likelihood is the sum of the probabilities of all 

configurations: 1 2 1 2 1 2( ) ( ) ( )e p b b p b m p m b= + + +L … … … … , where L  is the log 

likelihood. When the transition probability to the background or to the motif state is 

independent of the previous state (which is assumed for the HMMs in this text), 

1 2 1 2 1 2( ). ( ) ( ). ( ) ( ). ( )e p b p b p b p m p m p b= + + +L … … … …  

( ) ( )1 1 2 2( ) ( ) . ( ) ( )e p b p m p b p m= + +L … …  

( )
1

( ) ( )
L

j j
j

e p b p m
=

= +∏L  



  203  

    

( )1

( ). 1 .
1

L

j
j

ze p b E
z=

⎛ ⎞
= +⎜ ⎟

⎜ ⎟−⎝ ⎠
∏L

A … (A6) 

( )
( )1 1

1 . . 1 .
1

L L
L bj

j
j j

ze z w E
zα

= =

⎛ ⎞
= − +⎜ ⎟

⎜ ⎟−⎝ ⎠
∏ ∏L

A … From equation (A3) 
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In equation (A7), the first term corresponds to the configuration with only background, 

the second term corresponds to all configurations with one site, the third term 

corresponds to all configurations with two non-overlapping sites, etc. Note that the 

summation terms in equation (A7) do not take overlapping sites into account, and hence 

the above equations are inaccurate for overlapping sites. 

 

We see from equation (A6) that the likelihood is dominated by high Ej’s. If there is only 

one strong weight matrix score ( . . 1jW
jz E z e= >> ), the likelihood is in the order of 

magnitude of its exponent. If there are multiple strong weight matrix scores, the 

likelihood is in the order of magnitude of the product of their exponents (equivalently, the 

log likelihood is in the order of magnitude of the sum of the weight matrix scores). 

However, if there are many moderate weight matrix scores ( . 1jz E ≈ ), the likelihood will 

also increase slightly. Most weight matrix scores are very low ( . 1jz E << ) and thus do not 

contribute significantly to the likelihood. 
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To determine the occupancy over the entire sequence, let’s calculate the maximum 

likelihood estimate (MLE) of z by taking the derivative of log likelihood. 

( ) ( )
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=
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∑

∑

∑

L

L  

Therefore, occupancy over the entire sequence, i.e. the product of the sequence’s length 

and the transition probability to the motif, is given by 

( )
1

.
.

1 .

L
jbound

j j

z E
p s L z

z E=

= =
+∑  … (A8) 

As with the case of calculating the occupancy probability at a position, the knowledge of 

z allows us to calculate the occupancy over the entire sequence with the help of a weight 

matrix. In the HMM context, this is simply the sum of the occupancy probabilities at all 

positions. For the case of non-overlapping sites, it is the sum of the gammas of the motif 

states at all positions ( ( )
1

L
bound m

j
j

p s γ
=

= ∑ ). 

 

A.3 Exactly overlapping sites of multiple types 

 

When different types of sites are present such that they overlap exactly, for example 

when we consider the κB site on both strands, the occupancy probability of any type of 

site at a position is 
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where m  indicates the motif type, mz  is the transition probability to the m th motif type, 

and mjE  is the exponent of the weight matrix of motif type m  starting at sequence 

position j. In this case, calculation of occupancy probability using weight matrices 

requires knowledge of multiple z’s. In the HMM context, however, the occupancy 

probability is simply the sum of gammas of all motif states, i.e. ( )bound m
j j

m
p s γ= ∑ , or 

alternatively ( ) 1bound b
j jp s γ= − , where b

jγ  is the gamma of the background state at that 

position. 

 

The likelihood of the entire sequence is then 

( )
1

( ) ( 1 ) ( 2 )
L

j j j
j

e p b p m p m
=

= + +∏L  

( )1 1 2 2
1 1

( ). 1 . . ( ). 1 .
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The occupancy of any type of site over the entire sequence is ( )
1

.

1 .

m mjL
bound m

j m mj
m

z E
p s

z E=

=
+

∑
∑ ∑

. 

Its calculation using weight matrices is tedious. However, it can be easily calculated 

using HMMs if we divide up each motif type into A  states each corresponding to one 

position in the motif (this HMM architecture is described in detail for the next case). The 
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occupancy over the entire sequence is then ( ) 1

1

L
mbound
j

j m

p s γ
=

= ∑∑ , where 1m
jγ  is the 

gamma of the first position of the mth type of motif at the jth position of the sequence. 

 

A.4 Overlapping sites of multiple types 

 

Finally, we consider the most general case of overlapping sites of multiple types. The 

probabilities of configurations of two self-overlapping sites are shown below: 

( ) ( ) ( ) ( ) ( ) ( )1 1 2

1

( ) 1 . . . . 1 . . 1 .b j b j b jmj
j i

i

p m z w z w z w z wα α α α
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They show that calculation of the occupancy probability at a position requires 

consideration of all windows containing the position. When only one type of motif is 

considered, the occupancy probability at a sequence position is given by an equation 

similar to equation (A9): 

1

1

.
( )

1 .

j

k
k jbound

j j

k
k j

z E
p s

z E

= − +

= − +

≈
+

∑

∑
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 … (A10) 

where k is the first position of each sequence window containing sequence position j. We 

can extend equation (A10) to calculate the occupancy probability at a position in 

overlapping sites of multiple types as follows: 
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where m  is the motif type (including the motif on the other strand corresponding to the 

same transcription factor), and mA  is the length of the m th motif type. Because this 

occupancy probability depends upon multiple sequence windows, its calculation using 

weight matrices is not straightforward even when we know the z’s.  

 

The HMM architecture described briefly at the end of the discussion of the last case 

allows easy calculation of occupancy probability. In this HMM, each motif type actually 

corresponds to mA  states, each state associated with one position in the motif. Each 

state’s emission probabilities are equal to the weights corresponding to that position of 

the motif’s weight matrix. If the motif does not contain insertions or deletions, the 

transition probabilities between successive states within the motif are equal to one. This 

HMM’s gamma variable automatically takes the overlaps into account. The occupancy 

probability of a particular transcription factor at the j th position is 
1

( )
m

imbound
j j

m M i
p s γ

∈ =

= ∑ ∑
A

, 

where M  is the set of motif types corresponding to the transcription factor, and im
jγ  is 

the gamma of the state corresponding to the i th position in motif m  at the j th position 

of the sequence. If the HMM contains multiple motif types corresponding to only 

transcription factor, the occupancy probability at a position is simply  

( ) 1bound b
j jp s γ= −  … (A12) 
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where b
jγ  is the gamma of the background at that position. This is the same formula as 

for exactly overlapping sites. 

 

Calculation of the occupancy over an entire sequence in the above case is quite difficult 

using weight matrices and quite easy using an HMM. Because a single configuration 

cannot contain overlapping sites, no simple formula exists for the overall likelihood of 

the sequence (for example, the third term in equation (A7) is invalid). Hence, the 

knowledge of the z and the weight matrix does not allow us to calculate the overall 

occupancy of the sequence quickly. However, as for exactly overlapping sites, we can 

easily calculate the overall occupancy using an HMM as  

( ) 1

1

L
mbound
j

j m
p s γ

=

= ∑∑  … (A13) 

where 1m
jγ  is the gamma of the motif corresponding to the first position of the mth motif 

type at the jth position of the sequence. 

 

In the absence of overlapping sites, occupancy probability at a sequence position 

calculated using the weight matrix score and the z (and thus not calculated using an 

HMM), the HMM gamma of the first state of the motif at that position and the HMM 

gamma of the entire motif at that position (i.e. the sum of the HMM gamma’s of the 

various states of the motif at that position) are identical. However, in the case of 

overlapping sites, the HMM gamma of the entire motif is greater than the occupancy 

probability calculated using the weight matrix score and the z because the latter fails to 

consider overlapping sites. This occupancy probability is in turn greater than the HMM 
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gamma of the first state of the motif, which has a low value due to the presence of a site 

in an overlapping window. 
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