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ABSTRACT OF THE DISSERTATION

Some Properties of Robust Statistics Under Asymmetric

Models

by JUE WANG

Dissertation Director: David E. Tyler

Properties of robust statistics have been extensively studied in the univariate setting

when the underlying model is presumed to be symmetric, and in the multivariate case

when the underlying model is presumed to be elliptically symmetric. Much less at-

tention has been given to the behavior of robust statistics under asymmetric models.

The goal of this dissertation is thus to obtain theoretical results for robust statistics

under asymmetric models. To this end, local asymmetric alternatives to symmetric and

elliptically symmetric distributions are considered. A key tool used in obtaining the

theories presented in this dissertation is the LeCam’s lemmas on contiguity.

The classes of robust univariate statistic considered here are the M-estimates, one-

step version of the M-estimates, the W-estimates and the trimmed means. The classes of

robust multivariate statistics considered are the M-estimates, the S-estimates, the CM-

estimates and the MM-estimates, which are all treated under the unified framework of

M-estimates with auxiliary scale, as well as their one-step versions. Asymptotic distri-

butions of these statistics are obtained under local mixture models and skew-symmetric

models. The asymptotic properties for the MM-estimates, even under elliptical sym-

metry, are the first such results for the multivariate MM-estimates.

Under asymmetry, different robust statistics for location are not consistent with each
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other, i.e. they are estimating different notions of central tendency. Likewise, in the

multivariate setting, under non-elliptical distributions, the different scatter statistics

are again not consistent with each other and are reflecting different structures of the

underlying distribution. This suggests the difference in location statistics can be used

to detect asymmetry and the comparison of different scatter statistics can be used to

detect deviations from elliptical symmetry.

Consequently, new classes of tests for symmetry and for elliptical symmetry are in-

troduced in this dissertation based upon the comparisons of different location statistics

and different scatter statistics respectively. Furthermore, the asymptotic null distribu-

tions of the proposed test statistics are derived as well as their local power functions

under contiguous mixture distributions. The local power functions help provide some

guidelines for choosing the proper tuning constant of the proposed tests.
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Chapter 1

Introduction

1.1 Preliminaries

The validity of many widely applied statistical procedures in multivariate analysis de-

pends on a key assumption that the data comes from a normal distribution. Under nor-

mality assumption, the sample mean and sample covariance-matrix jointly are sufficient

statistics based on which the inferences about location and scatter of the underlying

distribution can be correctly described and summarized. Even though they form the

basis of many standard data analysis techniques, sample mean and sample covariance

matrix are unfortunately non-robust in that they are very sensitive to and can be grossly

distorted by tiny amount of perturbation in the underlying normal population. At the

presence of even one outlier, inference based on sample mean and sample covariance

becomes unreliable and skeptical.

A variety of alternative choices on the estimates of multivariate location vector and

scatter-matrix have since been proposed in an attempt to protect against the sensitivity

to non-normality, but these robust estimates may not be very accurate in case no outly-

ing observations are present. To balance extreme sensitivity and accuracy, quantitative

measures on these two descriptive quantities are also developed during the evolution

of robust estimators. The sensitivity or robustness of estimators are measured both

globally by the concept of finite sample breakdown point [8, 12], which indicates the

smallest proportion of outliers that can take the estimate over all bounds, and locally

by influence function [12], which reflects the impact of an infinitesimal contamination

having on the estimate; whereas the accuracy of estimators are customarily quantified

and compared by their asymptotic efficiency.

An early class of robust estimates was the M-estimates proposed by Maronna (1976).
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They have a high efficiency over a broad range of population model, and a bounded

influence function, that is, they are locally robust to, hence not greatly disturbed by, a

small perturbation in the data. Their global robustness, however, have a low breakdown

point [24] which is disappointingly no more than 1/(p + 1), where p is the dimension

of the data, due to the increasing sensitivity of M-estimates of scatter to outliers in a

higher dimensional data [37].

Subsequently, different versions of robust estimates with high breakdown points

were proposed by Stahel (1981), Donoho (1982), Rousseeuw (1985) and others. Today

the most widely known high breakdown multivariate estimates of location and scatter

are probably the S-estimates introduced by Davies (1987) and Lopuhaä (1989). Com-

plimentary to M-estimates, many of the high breakdown point statistics come with an

ironic disadvantage that they are inefficient at normal model [22] or tend to have poor

local robustness properties [38]. To some extend, S-estimates and M-estimates behave

oppositely to each other, choosing between the two estimates is to make a trade off

between asymptotic efficiency and breakdown point.

In the hope of bringing the efficiency of M-estimates together with the high break-

down property of S-estimates and with bounded influence, more flexible variations of

S-estimates have recently been discussed. Notably among them were the Constrained

M-estimates, or CM-estimates for shorthand, introduced by Kent and Tyler (1996),

and one-step W-estimates studied by Lopuhaä (1999) - that is to perform a one-step

appropriately chosen re-weight on an initial estimator of high breakdown and bounded

influence (naturally S-estimates for example). Both CM-estimates and one-step W-

estimates on an S-estimate improve the efficiency and local robustness while maintain-

ing the high breakdown.

Tatsuoka and Tyler (2000) noted that multivariate estimates discussed so far can be

embedded within a larger class of estimates which they called multivariate M-estimates

with auxiliary scale. M-, S-, and CM-estimates are identified as special cases of this su-

per class with simultaneously defined auxiliary scale statistics. Alternatively, Tatsuoka

and Tyler [33] proposed to use a preliminary scale statistic. This gives the rise to the
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class of MM-estimates, which are essentially redescending M-estimates of high asymp-

totic efficiencies with high breakdown points, and when properly tuned, MM-estimates

can achieve low gross error sensitivity (high local robustness) as well.

Under the elliptical symmetric model, the consistency and asymptotic normality

were proved by Maronna (1976) for M-estimates (with unbounded ρ-function), by

Davies (1987) for S-estimates, and by Kent and Tyler (1996) for CM-estimates un-

der certain regularity requirements. The uniqueness and consistency for MM-estimates

along with breakdown properties were established by Tatsuoka and Tyler (2000) un-

der broader classes of symmetric distributions. The asymptotic normality and local

robustness of MM-estimates, however, were left as open questions. One of the primary

purposes of this dissertation is to study the local robustness of MM-estimates in terms

of influence function, and to derive the forms of the asymptotic distributions of M-, S-,

MM-, and one-step W-estimates under certain non-elliptical models, particularly under

the mixture of two elliptical distributions of different shapes. Before studying their

asymptotic under asymmetry, these robust estimates are to be formally introduced and

a nice property shared by all of them, namely affine equivariance, is to be discussed.

1.2 Class of Affine Equivariant Estimates of Location Vector and Scat-

ter/Shape Matrix

Affine Equivariance

Let Fz represent the distribution of z ∈ Rp, and Fx represent the distribution of x =

Bz + b, with B being a nonsingular matrix of order p and b ∈ Rp. The location and

scatter functionals of F , denoted by µ(F ) ∈ Rp and V (F ) ∈ PDS(p) - the set of all

positive definite symmetric matrices of order p, are affine equivariant iff

µ(Fx) = Bµ(Fz) + b and V (Fx) = B V (Fz)B′ (1.2.1)

Given a scatter functional V (F ), the scale functional of distribution F is defined as

σ(F ) = |V (F )|1/2p. A scale functional σ(F ) is affine equivariant iff

σ(Fx) = | det(B)|1/pσ(Fz) (1.2.2)
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The sample versions of location, scatter and scale estimates, denoted by µ̂(F ),

V̂ (F ), and σ̂(F ) respectively are affine equivariant iff they satisfy respective equations

of (1.2.1) and (1.2.2).

M-estimates of location and scatter are originally defined as solutions to the M-

estimating equations

µ̂ =
∑n

i=1 u(si)xi∑n
i=1 u(si)

and V̂ =
n∑
i=1

u(si) (xi − µ̂) (xi − µ̂)′ (1.2.3)

where si = (xi − µ̂) V̂ −1 (xi − µ̂)′, and u(·) is some appropriately chosen weight func-

tion.

S-estimates are defined as the solution of the optimization problem where ti = [(xi −

µ̂)V̂ −1(xi − µ̂)]1/2:

min|V̂ | subject to
1
n

∑
ρ(ti) = ε0ρ(+∞)

where ε is a fixed value between 0 and 1/2, and ρ(t) is a bounded non-increasing

function for t > 0. For a differentiable ρ with derivative ψ, the S-estimates satisfy the

simultaneous S-estimating equations [20]

µ̂ =
∑n

i=1 u(ti)xi∑n
i=1 u(ti)

and V̂ =
∑n

i=1 u(ti)
(
xi − µ̂

)(
xi − µ̂

)′∑n
i=1w(ti)

(1.2.4)

where u(t) = ψ(t)/t and w(t) = [ψ(t)t− ρ(t) + ε0ρ(+∞)] /p

One-step W-estimates are re-weighted version of sample mean and sample covari-

ance matrix with weights relying on initial affine equivariant estimates of location µ̂o

and scatter V̂o,

µ̂ =
∑n

i u1(so,i)xi∑n
i u1(so,i)

, and V̂ =
∑n

i u2(so,i)(xi − µ̂o)(xi − µ̂o)′∑n
i u2(so,i)

(1.2.5)

where so,i = (xi − µ̂o)′V −1
o (xi − µ̂o).

MM-estimates

Let σ̂ be a preliminary scale-estimate satisfying the equivariant property (1.2.2),

and suppose (µ̂, Γ̂) is any solution which minimizes
n∑
i=1

ρ

{
(xi − µ̂)′Γ̂−1(xi − µ̂)

σ̂2(F )

}
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over all µ̂ ∈ Rp and Γ̂ ∈ PDS(p) with |Γ̂| = 1. Then µ̂ and V̂ = σ̂2Γ̂ are called

MM-estimates of location and scatter [39].

It will be shown in Section 5.5 that for a differentiable ρ function, the MM-estimating

equations are

µ̂ =
∑n

i=1 u(si)xi∑n
i=1 u(ti)

and V̂ =
∑n

i=1 u(si)
(
xi − µ̂

)(
xi − µ̂

)′∑n
i=1 ψ(si)/p+ log |Γ̂|

(1.2.6)

where si = (xi − µ̂)V̂ −1(xi − µ̂), u(s) = 2ρ′(s) and ψ(s) = u(s)t.

1.3 Exploring Difference in Robust Statistics, and Motivation

In the univariate setting, if the underlying population is symmetric, then all location

estimates are basically estimating the same characteristic of the distribution, namely

the center of symmetry. On the contrary, if the data arises from a distribution which

is asymmetric, different location estimates represent different aspects of the central

tendency; the quantified measures yielded from variety of location estimates may not

be the same. This simple observation underlies the origination of Pearson’s skewness

measure, and subsequent variations following it – Bowley’s and Yule’s coefficients for

examples. These classical skewness coefficients are in essence the standardized differ-

ences between two different location estimates which are zero at symmetric models but

not necessarily equal to zero at asymmetric distributions.

These experiences with the univariate data motivate one to apply the similar ideas

in the multivariate analysis of scatter matrix. A scatter functional V (F ) on a distribu-

tion F can be decomposed into what Kent and Tyler (1996) call ”shape” and ”scale”

components. A shape component is any function of V (F ) which is invariant under a

positive scalar multiple, such as V/tr(V ); and a scale component is any equivariant

function of V (F ) under the same transformation, such as tr(V ). Under the spherical

distributions Ep(0, Ip), all scatter estimates should have the same shape component

which is the identity matrix, though they may have varying scales. It follows, all scat-

ter estimates are proportional to each other if sampling from an elliptical symmetric

distribution Ep(µ,Σ). This claim will not hold true if the data comes from a distribu-

tion other than an elliptical symmetric distribution, even one which is symmetric [40].
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This suggests an idea that the departure of underlying distribution from an elliptical

symmetric may well be detected by comparing the shapes of different scatter matrices

as they are measuring different quantities of a non-elliptical distribution; a new test of

elliptical symmetry against non-elliptical asymmetry may be constructed based on this

comparison.

On the other hand, the classical skewness measures at the univariate setting are

sometimes equals to zero hence fail to capture the skewness of certain non-symmetric

models. This is simply because these statistics are comparing pre-determined, fixed

two location estimates whose values may be coincident even though the underlying

population is clearly asymmetric. This unpleasant drawback can be overcome by looking

at values of a class of location estimates instead of particularly two. A class of location

functional indexed by a tuning constant associated with the defining weight function

can be viewed as a transformation of distribution, which is constant if and only if

the underlying distribution is symmetry. For a sample of course, there will be some

statistical variability, and no sample transform will be exactly constant. By comparing

a class of location estimates, though, one can construct a consistent test of asymmetry

or skewness by considering the difference between maximum and minimum values of

estimates or by some other measure of non-constancy. This idea can too be extended

to the multivariate analysis. The best shape test of non-elliptical distributions ought

to be built up on the maximum difference between classes of scatter matrices rather

than on the difference of particularly two scatter estimates.

This paper is the first attempt to implement these ideas.

1.4 Organizations of Dissertation

This thesis has essentially two self-contained but closely related parts, one for univariate

location estimates and the other for multivariate scatter-matrices. Though primary

studies are focused on multivariate scatters, the ideas there are originated from and

preluded by the reflecting cases in the univariate setting.
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The paper is organized as follow. Chapter 3 alone is solely attributed to univari-

ate location problems where the asymptotic distributions of some traditional skewness

measures, and of a new procedure in the form of the difference between two robust loca-

tion estimates are studied and formulated under three different non-symmetric models;

the concept of separating class is introduced; and the efficiencies of the new procedure

at testing skewness or detecting mixture are derived and compared against classical

skewness coefficients.

The multivariate scatter estimates are studied through chapter 4, 5 and 6. Chap-

ter 4 lays out the theoretical foundations for the asymptotic properties of the robust

scatter estimates under asymmetric models of skew-elliptical or elliptical mixture. The

specifics of asymptotic normality for the individual members themselves aforementioned

from the general class of Multivariate M-estimates with auxiliary scale are presented in

Chapter 5 with emphasis on the MM-estimates, of which the influence function for local

robustness is deduced and comparisons of efficiencies at elliptical mixture models are

completed across families of MM-estimates and through different underlying spherical

distributions. A new set of statistics based on two robust scatter estimates is formally

proposed in Chapter 6 for the multivariate shape analysis. The asymptotic relative

efficiency of the new statistic at testing elliptical mixture against elliptical symmetric

model is compared within M-estimates and within MM-estimates.

The main technical tools implemented to obtain the results in both the univariate

and multivariate cases are the LeCam’s lemmas related to the concepts of contiguity

which, for completeness and smoothness, are themselves constituents of Chapter 2.

The thesis is concluded by Chapter 7 where conclusions and open research questions

are enumerated along with further discussions. Formal proofs as well as tables and

figures are reserved in the appendices of each respective chapter for the neatness of the

layout.
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Chapter 2

Background: Concept of Contiguity, LeCam’s Lemmas

and Asymptotic Normality

Most descriptive statistics and test procedures employed in a classical multivariate

analysis are based on a key assumption that the underlying distribution is a normal

where the location (mean) vector together with the scatter matrix is a sufficient statistic.

Recently, Robust statistics researches have been flourishing in a particular generation

of the normal distribution, namely class of elliptical distributions, denoted by Ep
(
b,Σ

)
,

whose density is of the form

f(x) = |Σ|−1/2h
[
(x− b)′Σ−1(x− b)

]
,

where x, b ∈ Rp, Σ ∈ PDS(p), the set of positive definite symmetric matrices of order p,

and h : [0,∞)→ [0,∞) is a fixed function depending x only through (x−b)′Σ−1(x−b).

Under elliptical distribution, several classes of robust estimates of multivariate lo-

cation and scatter estimates have been implemented, trying to address the concerns of

non-normality, especially a distribution with longer tails (than a Normal) on either di-

rection or with outlying points. Though comparison of these newly proposed estimates

haven’t been completed and studies within elliptical distribution are still promising,

vigorous research beyond elliptical has yet to provide any encouraging result, to bear

fruit.

The distribution space outside elliptical is unlimited, yet one can focus on the first

steps of a natural extension beyond symmetry of Elliptical. A skew-elliptical distribu-

tion, and a mixture of two elliptical distributions with different shapes are examples

of such asymmetric distributions. To investigate the characteristics of a traditional

statistical procedure under these asymmetric framework, a basic yet powerful technical
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instrument is the contiguity of probability measures that leads to (local) asymptotic

normality of statistical models.

A comprehensive treatment of contiguity can be found, for example, in [13, 29]. For

the purpose of reference and completeness, main results are enumerated in this section.

Definition 2.0.1. Let (Ω,A) be some measurable space, with M(A) denoting the set

of all finite measures. A bounded sequence Qn ∈M(A) is called contiguous to another

bounded sequence Pn ∈M(A) if for any sequence of events An ∈ A ,

lim
n→∞

Pn(An) = 0 =⇒ lim
n→∞

Qn(An) = 0

The concept of contiguity is essentially instrumental for the asymptotic methods,

which are the primary technologies implemented in this dissertation to investigate the

statistical properties of some common Robust-procedures under certain non-symmetric

distributions. Imagine that Qn is a sequence of asymmetric distributions of interests,

while Pn is a sequence of symmetric ones. Once the contiguity of Qn to Pn is established,

the asymptotic behaviors of a statistic Sn that is based on sample z1, · · · , zn ∈ Rp are

well founded in the elegant LeCam third Lemma. Moreover, the powerful LeCam first

Lemma renders a surprisingly simple tool to examine the contiguity.

Lemma 2.0.2. (LeCam first Lemma) Let Pn , Qn ∈ M(A) be two sequences of prob-

abilities. If the log-likelihood function Ln = log dQn/dPn is under Pn asymptotically

normal,

Ln(Pn) d−→ N
(
− τ2/2, τ2

)
for some τ ∈ [0,∞), then Qn is contiguous to Pn.

Lemma 2.0.3. (LeCam third Lemma) Let Pn, Qn be two sequences of probabilities

with log likelihood Ln = log dQn/dPn, and Sn a sequence of statistics on (Ω,A) taking

values in some finite-dimensional
(
R̄m, B̄m

)
, where B̄ is a Borel σ-algebra on R̄, such

that for some a, c ∈ Rm, τ ∈ [0,∞), and A ∈ Rm
m

(
Sn
Ln

)
(Pn) d−→ N

 a

−τ2/2

 ,

A c

c′ τ2
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Then (
Sn
Ln

)
(Qn) d−→ N

a + c

τ2/2

 ,

A c

c′ τ2


The proofs of LeCam’s lemmas can be found, for example, in [29].

Contiguity and LeCam’s Lemmas together suggest a feasible and efficient platform

on which the behavioral differences in statistical aspects of a robust procedure (statis-

tic), if any, when the underlying distribution changes from elliptical-symmetric P to

asymmetric Q, could be tracked, analyzed and compared locally and asymptotically.

One can set up a sequence of (local) hypotheses, H0,n verses H1,n indexed by n ∈ N,

in which Qn is the joint distribution of a sample of size n when it is from alternative

hypothesis while Pn is the joint distribution when sampling from null-hypothesis. The

hypotheses are set-up in a way that Qn is contiguous to Pn, and for a fixed n, Qn and

Pn are the (local) realizations of asymmetric Q and symmetric P respectively.

If location/shape functions exhibit interesting statistical differences between P and

Q (expressed locally and asymptotically as between Qn and Pn), then analyses on

the differences across class of location/shape functions may lead to the suggestion or

development of a new robust procedure at testing and estimating the location/shape

of a multivariate data that would work equally powerful even when the underlying

distribution is not limited to a symmetric one, rather, includes certain asymmetric

ones.

In this spirit, the asymptotics of a location/shape estimate will be investigated at

various platforms of asymmetric distributions.



11

Chapter 3

Univariate Location Estimates at Skewed or Mixture

Model

3.1 Introduction

The concept of skewness - shape and asymmetry - of a univariate distribution has

long history in the literature, beginning with different measures on how to quantitate

skewness. Most of today’s classical functionals measuring skewness were introduced in

the early 1920. Using notations µ, M , σ2 for the population mean, mode, and variance

respectively of a univariate random variable X ∼ F , and letting Qp represent (p∗100)th

percentile (quartile) of F , some of the early proposed measures of skewness were

(µ−M)/σ

E(X − µ)3/σ3

(Q0.75 +Q0.25 − 2Q0.5)/(Q0.75 −Q0.25)

(µ−Q0.5)/σ

Pearson (1895)

Charlier (1905) and Edgeworth (1904)

Bowley (1920)

Yule (1911)

David and Johnson (1954) suggested a generalization of Bowley’s coefficient

γp(F ) =
[Q1−p −Q0.5]− [Q0.5 −Qp]
[Q1−p −Q0.5] + [Q0.5 −Qp]

, p ∈
(

0,
1
2

)
Integrating the numerator and denominator of γp(F ) yields another skewness coef-

ficient ∫ 1/2
0 [Q1−p +Qp − 2Q0.5] dp∫ 1/2

0 [Q1−p −Qp] dp
=

µ−Q0.5

E|X −Q0.5|

Except the most prominent “measure of skewness”, E(X − µ)3/σ3, these skewness

coefficients are essentially test statistics measuring a standardized distance between two

separate location parameters. In particular, the Yule’s skewness coefficient (µ−Q0.5)/σ

and Pearson’s skewness measure (µ−M)/σ are members of the family of statistics in the
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form (µ1−µ2)/σ, where µ′is are affine equivariant location estimates, whereas Bowley’s

coefficient (Q0.75 +Q0.25− 2Q0.5)/(Q0.75−Q0.25) can be viewed as a special case of the

family that represents a comparison of two different measures of central tendency or

location measure, namely (Q1−p +Qp)/2 and the median.

The sample versions of these measures have long been served as classical test statis-

tics in the detection of asymmetry as well. The performances of these skewness co-

efficients in the context of hypothesis testing under certain alternative non-symmetric

models have been studied and compared rigorously. Abundant research papers focusing

on this subject can be found in the literature. Yet most of the comparisons are either

limited within these skewness measures themselves or isolated made with respect to a

newly-proposed but eventually short-lived test statistic. Little attention has been paid

to from the point of view that they are distinct but plain members of a broader class;

little is known as what is the asymptotic distribution of an arbitrary member from this

class under some common models - symmetric or asymmetric; and what is the relative

efficiency between two members of this class that are randomly chosen to test skewness

or detect asymmetry. This chapter is devoted to answer these questions.

Let µ̂i be the consistent estimator of µi based on empirical sample, one part of this

dissertation is intended to investigate the statistical properties of statistic T̂ = µ̂2 − µ̂1

and its relative efficacy as a test statistic compared with traditional procedures when

samples are from a skewed distribution of one of the following populations

Mixture (1− ε)f(x) + εg(x− θ)

Asymmetry f(x)I[x≤0] + 1
τ f
(
x
τ

)
I[x>0]

Skew-Symmetry 2f(x)G(θx)

where f and g are symmetric about 0; ε ∈ (0, 1), θ 6= 0, τ > 0 are fixed.

3.2 Difference of Two Location Estimates

These classical statistics were first introduced as “measures of skewness”. Since these

measures are zero for any symmetric distribution, estimates of these measures have
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served as test statistics in testing for asymmetry. A disappointing problem associated

with these test statistics is that the corresponding skewness measure being zero doesn’t

necessarily imply the underlying distribution is symmetry, and so such tests are not

consistent for detecting asymmetry. In general, two different location measures can be

equal even though the underlying distribution is clearly non-symmetric. Consequently,

a test for asymmetry based upon the difference of two particular location estimates can

fail to detect asymmetry.

Many examples can be constructed to illustrate the aforementioned phenomena.

Consider, for example, the mixture of two normal distributions given by

3
5
N(0, 1) +

2
5
N

(
5
2
z0.8,

9
4

(z0.8/z0.05)2

)
, (3.2.1)

where zα is the 100α% quantile of a standard normal. This distribution is asymmetric,

as is evident from the plot of its density displayed in Figure 3.1.a. Nevertheless, both

the mean and the median of this normal mixture are equal to z0.8, and hence Yule’s

measure of skewness is zero. An example of an asymmetric distribution for which the

mean and mode coincide, and hence has a Pearson’s skewness measure equal to zero, is

one with a density given by

f(x) =
2γ

1 + 2γ

(
(1 + γx)I[− 1

γ
≤x<0] + e−xI[x≥0]

)
, (3.2.2)

with γ = 1/
√

6. This density is plotted in Figure 3.1.b, and has both a mean and

a mode equal to zero. An example of an asymmetric distribution for which Bowley’s

skewness coefficient has a value of zero can be obtain by considering a half Normal and

half Cauchy density, This density is given by

f(x) =
1

2π
e−

x2

2 I[x≤0] +
I[x>0]

π z0.75

(
1 + (x/z0.75)2

) , (3.2.3)

which is plotted in Figure 3.1.c. For this density, the first, second and third quan-

tile agree with those of a standard normal distribution. Finally, consider a standard

Weibull(k) distribution, whose density (Figure 3.1.d) is given by

f(x) = kx(k−1)e−x
k

for x ≥ 0, (3.2.4)
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with k > 0 being a shape parameter. This distribution has mean µ = Γ (1 + 1/k),

median Q0.5 = k
√

ln2, mode M = k
√

(1− 1/k) and quartiles Qp = (−ln(1− p))1/k for

p ∈ (0, 1). Thus, for certain values of the shape parameter k, the Weibull distribution,

although nonsymmetric, can have a Yule coefficient of zero, a Pearson coefficient of

zero, or a Bowley coefficient of zero. For k = 3.4395, one obtains µ = Q0.5 = 0.89892,

whereas for k = 3.31247, one obtains µ = M = 0.89718, and for k = 3.2883, one obtains

(Q0.75 +Q0.25)/2 = Q0.5 = 0.89452.

One way to overcome the ambiguity regarding skewness measures is to examine a

family of location measures rather than simply considering two fixed ones. The median

and mean are two special members of the family of Huber M-estimates, or more properly

M-functionals, see e.g. [12, 15]. For a given tuning constant c > 0, a Huber M-functional

of location is defined implicitly to be the solution µc(F ) to the “M-estimating” equation

EF [ψc(X − µc)] = 0, where ψc(r) = max[−c,min(r, c)]. (3.2.5)

Equivalently, the M-estimating equation can be expressed as

µc =
EF [uc(X − µc)X]
EF [uc(X − µc)]

, (3.2.6)

where the weight function uc(r) = ψc(r)/r. This expression gives the intuitive inter-

pretation of µc as an adaptively weighted mean.

It is shown in [41] that the set of all Huber functions, ΨH = {ψc, c > 0}, constitutes

a semi-separating class. We say that a class of functions Ψ forms a semi-separating

class if whenever the equality∫ +∞

0
ψc(r)dF (r) =

∫ +∞

0
ψc(r)dG(r), (3.2.7)

holds for all ψc ∈ Ψ, where F and G are two distribution functions, then F (r) = G(r)

for all r ≥ 0. It then follows that if all Huber location functionals µc(F ) are the same

for any c > 0, then F is symmetric about µ = µc(F ), i.e. F (x− µ) = 1− F (−(x− µ)).

We will call a class of locational functionals possessing this property to be a symmetry

identifying class.

The property of being a semi-separating class can be shown to extend to many other
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classes of ψ-functions. For example, the class

ψc(x) = xe−|x/c|
α

for c > 0, (3.2.8)

which corresponds to the Gaussian weight functions uc(x) = e−|x/c|
α
, and the class

ψc(x) = x[1− (x/c)2]2+ for c > 0, (3.2.9)

which yields Tukey’s biweight functions uc(x) = [1−(x/c)2]2+, both form semi-separating

classes. Unlike Huber’s ψ, however, these two classes of ψ-functions are redescenders

and hence do not necessarily admit unique solutions. However, suppose one considers

the one-step M-functionals of location

µ1,c = µo +
EF [ψc (X − µo)]
EF [ψ′c (X − µo)

(3.2.10)

or the W-functionals of location

ωc =
EF [uc(X − µo)X]
EF [uc(X − µo)]

, (3.2.11)

based on these ψ-functions, where µo is some fixed location functional, e.g. the median.

It follows that if µ1,c or ωc is constant over c > 0, when Ψ = {ψc, c > 0} is a semi-

separating class, then F is symmetric about µo.

Classes of location measures which uniquely imply symmetry can also be found

outside of the M-functionals and the W-functionals of location. The symmetry of F is

also implied whenever the α-trimmed mean defined as,

Tα(F ) =
1

1− 2α

∫ 1−α

α
F−1(s)ds (3.2.12)

remains constant for all α ∈ (0, 1/2), as well as by the constancy of the α-Winsorized

mean

Wα(F ) =
∫ 1−α

α
F−1(s)ds+ α

(
F−1(α) + F−1(1− α)

)
(3.2.13)

over α ∈ (0, 1/2), and by the constancy of (Q1−p + Qp)/2 over p ∈ (0, 1/2), which

appears in the generalized Bowley’s coefficients. The latter case is equivalent to the

generalized Bowley’s coefficient being equal to zero for all p ∈ (0, 1/2).
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3.3 Symmetry Identifying Transformations

A symmetry identifying class of location functionals indexed by a real value can be

viewed as a transformation of a distribution, which is constant if and only if the under-

lying distribution is symmetric. For a sample of course, there will be some statistical

variability, and no sample transform will be exactly constant. By considering the values

of such a symmetry identifying class of location estimates, though, one can construct

consistent tests of asymmetry by considering the difference between the maximum and

minimum values of the estimates or by some other measure of non-constancy. The

statistical theory for such an approach is fairly challenging, and we leave that to future

research. In any event, plotting a family of such location statistics provides a trans-

formation of the data for which it may be visually easier to notice a departure from

constancy than it would be to notice asymmetry in a plot of a density estimate.

Furthermore, if a distribution is not symmetric, then summarizing its central ten-

dency by a single value may not be sufficiently descriptive. So, aside from using a sym-

metry identifying transformation for detecting asymmetry, it also serves as a graphical

descriptive summary of central tendency.

For illustrative purposes, we consider the computationally simple one step M-estimates,

W-estimates and α-trimmed means. For a sample x1, · · · , xn, the one step M-estimates

consider here are given by

µ̂c,1 = m̂+ s

∑n
1 ψc

(
xi−m̂
s

)
∑n

1 ψ
′
c

(
xi−m̂
s

) , (3.3.1)

where m̂ and s denote respectively the sample median and MAD, i.e. the median abso-

lute deviation about the median. The W-estimates considered here are defined by

ω̂c =

∑n
1 uc

(
xi−m̂
s

)
xi∑n

1 uc

(
xi−m̂
s

) . (3.3.2)

The sample versions of trimmed means are given by

T̂ (α) =
1

n− 2m

n−m∑
i=m+1

x(i), where m = [(n− 1)α]. (3.3.3)

The given definitions for the one step M-estimates (3.3.1) and the W-estimates

(3.3.2) are not simply the sample versions of (3.2.10) and (3.2.11) respectively. As
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defined in the previous section, the M-functionals, the one-step M-functionals and the

W-functionals are location measures in the sense that they are equivariant under trans-

lation and reflection. That is, if T (FX) represents a location measure for the random

variableX ∼ FX , then for Y = X+a, with a ∈ <, T (FY ) = T (FX)+a, and for Y = −X,

T (FY ) = −T (FX). However, unlike the α-trimmed means and the α-Winsorized mean,

they are not necessarily scale equivariant, meaning that if Y = b X, with b ∈ <, then

T (FY ) is not necessarily equal to b T (FX). So, to make them scale equivariant, one

usually introduces a scaling term such as the MAD. Note, however, such a scaling term

is not necessary when considering a class of location estimates over the range c > 0,

since the scaling term s and the tuning constant c are confounded. In other words, any

of these classes of location estimates is scale invariant.

Figure 3.2 gives the plots of the one-step Huber M-estimates µ̂1,c, the W-estimates

ω̂c based on the Gaussian weights (3.2.8) and the bisquare weights (3.2.9) respectively

as functions of the tuning constant c > 0, as well as the α-trimmed mean as a function

of α, for a random sample of size n = 10000 from the normal mixture given in (3.2.1).

In each of these plots, the location estimates vary from the median, on the left, and

the mean, on the right. As noted in section (3.2), the population mean and median

are equal for this example, but the distribution is not symmetric. Hence, we note the

curves are not constant.

3.4 Asymptotic Distributions of New Test Statistics

When the observations Xi are i.i.d according to P , the difference between a location

parameter(functional) T (P ) and its consistent estimate T̂ derived from the empirical

distribution can be approximated adequately, under certain regularity conditions [15],

by the influence function as

Sn =
√
n
(
T̂ − T

)
=

1√
n

n∑
i=1

IF(xi;T, P ) +Op(n−1/2) (3.4.1)

hence two location estimates are asymptotically joint normal

√
n

T̂1 − T1

T̂2 − T2

 −→ N

0

0

 ,

σ11 σ12

σ12 σ22

 ,
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where σij = EP

(
IF(X;Ti, P )IF(X;Tj , P )

)
. Their difference follows asymptotic normal

as well

√
n
[(
T̂1 − T̂2

)
−
(
T1 − T2

)]
−→ N

[
0, EP

(
IF(X;Ti, P )− IF(X;Tj , P )

)2]
We notice that the difference of the two influence functions is actually the influence

function of T1 − T2.

When P is symmetric, location parameters are constant, thus
√
nµ̂n/σ̂ → N(0, 1),

where µ̂n = T̂1 − T̂2, and σ̂2 is a consistent estimator of the asymptotic variance. As a

test statistic, µ̂n preserves its normality when the underlying distribution changes from

symmetry to a mixture or asymmetry, but it will have a non-zero asymptotic mean in

most cases.

3.4.1 On Mixture

Let F and G be two symmetric distributions with pdf f and g respectively. Let P1,n

denote the joint distribution of x1, · · · , xn when they are i.i.d. according to

(1− ε)F (x) + ε G(x− θn), with θn = θ/
√
n

Let P0,n denote their joint distribution when they are i.i.d. P ∼ (1− ε)F + ε G.

Theorem 3.4.1. P1,n are contiguous to P0,n.

Corollary 3.4.2. Under P1,n, Sn
d−→ N

(
εθu, υ2

)
, where u = −

∫ ∞
−∞[IF(x;T, P )]g′(x)dx,

and υ2 = EP [IF(x;T, P )]2. In particular, when g(x) = 1
bf
(
x
b

)
having non-zero g′(x),

1. For T1 = µ−Q0.5, u = (1−ε)(b−1)
(1−ε)b+ε , υ2 = (1− ε+ εb2)EFX2 − 1−ε+εb

(1−ε+ ε
b)f(0)

EF |X|+
1

4[(1−ε+ ε
b)f(0)]2

2. For T2 = E(X−µ)3

σ3 , u = 3(1−ε)(b2−1)

(1−ε+εb2)3/2

(
EFX

2
)−1/2, υ2 = (1−ε+εb6)

(1−ε+εb2)3
EFX

6

(EFX2)3
−

6 (1−ε+εb4)
(1−ε+εb2)2

EFX
4

(EFX2)2
+ 9

3. For T3 = Q(1−p)+Qp−2Q0.5

Q(1−p)−Qp
, υ2 =

[
1

[(1−ε)f(q)+ ε
b
f( qb )]

2 − 2

[(1−ε)f(q)+ ε
b
f( qb )](1−ε+ ε

b)f(0)

]
p

2q2
+

1

4q2[(1−ε+ ε
b)f(0)]2

,

u =
1
b
f( qb )

[(1−ε)f(q)+ ε
b
f( qb )]q

−
1
b

[(1−ε)+ ε
b ]q

, where (1− ε)F (q) + εF
( q
b

)
= 1− p.
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Corollary 3.4.2 implies that a location estimator would have an asymptotic mean

of 0 if the underlying distribution is a mixture of a symmetry with a point mass or

with a Uniform. To construct a meaningful test statistic, Corollary 3.4.3 through

Corollary 3.4.6 assume g′(x) 6= 0.

Corollary 3.4.3. If T (P ) is an M-estimator defined implicitly by EP (ψ(x−T (P )) = 0,

then under P1,n , Sn
d−→ N

(
εθ

(1−ε)u+ε ,
EP [ψ(x)]2

{EP [ψ′(x)]}2

)
, where u = EF [ψ′(x)]

EG[ψ′(x)] . In particular,

u = EF [ψ′(x)]
EF [ψ′(bx)] if G(x) = F (x/b).

Proof. Since M-estimate has influence function ψ(x)
EP [ψ′(x)] , where EP [ψ′(x)] = (1 −

ε)EF [ψ′(x)] + εEG[ψ′(x)], the proof is a direct application of Corollary 3.4.2. A discus-

sion on the difference of two Huber-Type M-estimators on special cases is in Appendix

B

Corollary 3.4.4. If T (P ) is a W-estimator defined implicitly as T = EP [w(x−T )x]
EPw(x−T ) ,

then T̂ has the same asymptotic distribution under P1,n as an M-estimator defined by

ψ(x) = w(x)x.

Proof. W-estimators defined by w(x) possess the same influence function as M-estimators

defined by ψ(x) = w(x)x (page 116 of [12]), the conclusion follows Corollary 3.4.3.

Corollary 3.4.5. If T (P ) is a one-step M-estimator defined as

T = T0 + S0

EP

[
ψ
(
x−T0
S0

)]
EP

[
ψ′
(
x−T0
S0

)] ,
where ψ is odd, T0 and S0 are preliminary estimates of location and scale, then under

P1,n,

Sn
d−→ N

 εθ

(1− ε)u+ ε
, S2

0

EP

[
ψ2
(
x−T0
S0

)]
{
EP

[
ψ′
(
x−T0
S0

)]}2

 .

where u =
EF

[
ψ′
(
x−T0
S0

)]
EG

[
ψ′
(
x−T0
S0

)] . In particular, u =
EF

[
ψ′
(
x−T0
S0

)]
EF

[
ψ′
(
bx−T0
S0

)] if G(x) = F
(
x
b

)
.

Proof. The results follow the fact that when ψ is odd and P is symmetric, the one-step

M-estimator has influence function IF(x;T, P ) =
S0ψ

(
x−T0
S0

)
EP

[
ψ′
(
x−T0
S0

)] (page 141 of [15]).
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Corollary 3.4.6. If T (P ) = 1
1−2α

∫ 1−α
α P−1(s)ds is the α-trimmed mean, then under

P1,n, Sn is asymptotically normal with mean equals to εθ 2G(q)−1
1−2α and variance equals to

2(1− ε)
(
q2F (−q) + EFX

21[0<X≤q]
)

+ 2ε
(
q2G(−q) + EGX

21[0<X≤q]
)

(1− 2α)2

where P (q) = (1− ε)F (q) + εG(q) = 1− α

Proof. The symmetry of P implies P−1(α) = −P−1(1 − α) and a simplified influence

function of T (P ) (page 58 of [15]),

IF(x;T, P ) =
1

1− 2α
max{P−1(α),min[x, P−1(1− α)]}

3.4.2 On Asymmetry

Gupta [11] has considered a class of distribution functions f(x)I[x≤0] + 1
τ f
(
x
τ

)
I[x>0],

when testing the hypothesis of symmetry

H0 : τ = 1 vs H1 : τ > 1

Mira [25] introduced an equivalent sequence of alternatives

H1,n : τ = 1 +
η√
n

Let F1,n and F0,n denote the joint distribution of x1, · · · , xn when they are i.i.d.

from H1,n and from F ∼ H0 respectively

Theorem 3.4.7. F1,n are contiguous to F0,n.

Corollary 3.4.8. If d
2f(x)
dx2 6= 0, Sn

d−→ N
(
ηu, υ2

)
under F1,n, with υ2 = EF

[
IF
(
x;T, F

)]2,

and u = −EF
[
IF
(
x;T, F

) (
1 + xf ′(x)

f(x)

)
I[x>0]

]
. In particular,

1. For T1 = µ−Q0.5, u = 1
2EF |x|, υ

2 = EF
(
x2
)
− EF |x|

f(0) + 1
4f2(0)

2. For T2 = E(x− µ)3/σ3, u = 3
2

(
EF |x|3−Ex2EF |x|

(Ex2)3/2

)
, υ2 = EF x

6

(Ex2)3
− 6 Ex4

(Ex2)2
+ 9

3. For T3 = Q1−p+Qp−2Q0.5

Q1−p−Qp , u = 1
2 , υ2 = 1

4q2

(
2p

f2(q)
− 4p

f(q)f(0) + 1
f2(0)

)
, where q =

F−1(1− p)
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3.4.3 On Skew-Symmetry

The exact definition of Skew-Symmetric distribution has yet to be unified. Let F and

G be two symmetric distributions with pdf f and g respectively, one class of Skew-

Symmetric distribution that was discussed by Azzalini [1] has its pdf ψ of this form

ψ = 2f(x)G(αx). The test of skewness(α 6= 0) versus symmetry (α = 0) again can be

examined locally by a sequence of hypotheses. Let Ψ1,n denote the joint distribution of

x1, · · · , xn when they are i.i.d. according to

2f(x)G(αnx), with αn = 1/
√
n

Let Ψ0,n denote their joint distribution when they are i.i.d. from F

Theorem 3.4.9. Ψ1,n are contiguous to Ψ0,n, provided g′(0) = 0.

Corollary 3.4.10. Under H1,n, Sn
d−→ N

(
2g(0)u, υ2

)
, where u = EF

(
xIF(x;T, F )

)
,

and υ2 = EF [IF(x;T, P )]2. In particular,

1. For T1 = µ−Q0.5, u = Ex2 − E|x|
2f(0) , υ2 = Ex2 − E|x|

f(0) + 1
4f2(0)

2. For T2 = E(x−µ)3

σ3 , u =
Ex4−3(Ex2)2

(Ex2)3/2
, υ2 = Ex6

(Ex2)3
− 6 Ex4

(Ex2)2
+ 9

3. For T3 = Q1−p+Qp−2Q0.5

Q1−p−Qp , u =
E(|x|I[|x|>q])

2qf(q) − E|x|
2qf(0) , υ2 = 1

4q2

(
2p

f2(q)
− 4p

f(q)f(0) + 1
f2(0)

)
,

where q = F−1(1− p)

3.5 Power and Efficacy Comparing With Classical Skewness Tests

3.5.1 On Mixture

The performance of a statistic on the hypothesis testing of mixtures

H0 : F (x) vs H1 : (1− ε)F (x) + εF (x− θ)

can be evaluated by its efficacy on the sequence of equivalent hypotheses

H0 : (1− ε)F + εG vs H1,n : (1− ε)F (x) + εG (x− θn) , where θn =
θ√
n

with g(x) = 1
bf
(
x
b

)
, and b = 1. Under this setting, all the test statistics discussed in

Corollary 3.4.2 would have zero Pitman’s efficacy [19, 28], yet we can still compare them
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by looking at their asymptotic relative efficiency as b approaching 1. Letting b → 1,

the ARE of (µ−M0.5) with respect to E(x− µ)3/σ3 is then obtained as

EFX
6 − 6

(
EFX

4
) (
EFX

2
)

+ 9
(
EFX

2
)3

36 (EFX2)2
(
EFX2 − EF |X|

f(0) + 1
4f2(0)

) ,

while the ARE of (µ−Q0.5) with respect to
(
Q(1−p) +Qp − 2Q0.5

)
/
(
Q(1−p) −Qp

)
is

(
f(q)
f ′(q)

)2

(
1

f2(q)
− 2

f(q)f(0)

)
p

2q2
+ 1

4q2f2(0)

EFX2 − EF |X|
f(0) + 1

4f2(0)

, where q = F−1(1− p).

The values on the ARE’s on different symmetric distributions are presented in Ta-

ble 3.1, and Table 3.2.

Within the family of Huber M-estimates

{µc : Eψc(x− µc) = 0 for ψc(r) = max[−c,min(r, c)], }

where the limiting cases c → ∞ and c → 0 corresponding to mean µ and median

Q0.5 respectively, we are particularly interested in the relationship between traditional

skewness test µ−Q0.5 and an arbitrary test statistic µc1 − µc2 in terms of asymptotic

efficiency.

Figure 3.3 gives the contour plot of ARE (µc1−µc2 , µ−Q0.5) as functions of (c1, c2)

when F are Normal, , Student T3, Laplace, and Triangular respectively. Except under

Laplace distribution, the µ−Q0.5 is not the most powerful test within this Huber family.

3.5.2 On Asymmetry

In a similar pattern, we compare the efficiency of different statistics on testing asym-

metry

H0 : f(x) vs H1,n : f(x)I[x≤0] +
1
τ
f
(x
τ

)
, τ > 0

by comparing their efficacies at a sequence of equivalent local alternatives

H0 : f(x) vs H1,n : f(x)I[x≤0] +
1
τn
f

(
x

τn

)
, where τn = 1 + n−1/2

whose analytical solutions are available by Corollary 3.4.8 and listed in Table 3.3



23

3.5.3 On Skew-Symmetry

Again, the powers of statistics at testing skewness

H0 : f(x) vs H1 : 2f(x)G(αx)

are compared by their Pitman’s efficacies [19, 28] at testing a sequence of local hypothe-

ses

H0 : f(x) vs H1,n : 2f(x)G
(
x√
n

)
When f(x) = φ(x) is the Standard Normal, the three statistics of interests T1, T2,

and T3 are all having zero asymptotic mean by Corollary 3.4.10; to achieve comparison,

a mixture of Normal is replacing the standard one

f(x) = (1− ε)φ(x) +
ε

b
φ
(x
b

)
Letting b→ 1, we obtain AREs between the three test statistics. The AREs under other

suitable distributions, particularly for the class of G = F with f ′(0) = 0, are calculated

directly from statistics’ asymptotic means and variances given in Corollary 3.4.10, and

are listed in Table 3.4

When testing Skewness, the difference of mean and median (T1) are not the best

test in terms of relative efficiency compare to the difference of other members of Huber-

family (Figure 3.4), some of which are highly efficient that they beat the “Measure of

Skewness”as well. Note that the ARE of µc1−µc2 versus µ−Q0.5 at testing Skew-Normal

is the same as at testing Mixture of Normal (Figure 3.3).
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3.6 Appendix A: Separating Class

Claim: Suppose that the solution T (F ) to the equation EFψc(x − T (F )) = 0, where

ψc(x) = xe−|x/c|
α
, is constant in c > 0, then F is symmetric.

Proof. WLOG, let T (F ) = 0.

EFψ(x) =
∫ +∞

−∞
xe−|x/c|

α
f(x)dx =

∫ +∞

0
xe−(x/c)α (f(x)− f(−x)) dx = 0

Let k = |1c |
α, y = e−x

α
, then x = (− ln y)1/α, dx = (− ln y)1/α−1

−αy , and for all k > 0,∫ 1

0
ykh(y) = 0, where h(y) =

(− ln y)2/α−1

y

(
f [(− ln y)1/α]− f [−(− ln y)1/α]

)
This implies h(y) = 0 for all y ∈ (0, 1), it follows f(x) = f(−x).

It is clear from this proof that if ψc constitutes a separating class, then the fact

T (F ), for which EFψc (x− T (F )) = 0, remains constant in c will imply the symmetry

of F , i.e. ψc being a separating class is sufficient to conclude the symmetry of F , but

this is not a necessary condition. For example, let ψc be Huber functions

ψc(x)/x =


1 |x| ≤ c

c/|x| |x| > c

(3.6.1)

Then, EFψ(x) = 0 for all c > 0 implies the symmetry of F , but ψc is not a separating

class. For, let F be asymmetric distribution with pdf f , let G be a continuous function

with derivative g(x) = dG = f(x)−f(−x)
2 , clearly G(x) = F (x)−(1−F (−x))

2 6= F (x), but the

symmetry of dF − dG = f(x)+f(−x)
2 guarantees

∫
ψcdF =

∫
ψcdG for all c > 0.

Claim: If EFψc(x) = 0 for all c > 0, where ψ(x) = x[1− (x/c)2]2I(|x| ≤ c), then F is

symmetric.

Proof.

EFψc(x) =
∫ c

−c
x

[
1−

(x
c

)2
]2

f(x)dx =
∫ c

0
x

[
1−

(x
c

)2
]2

(f(x)− f(−x)) dx = 0

Letting k = c2, y = x2 gives

EFψk(x) =
∫ k

0

(
1− y

k

)2
G(y)dy = 0, where G(y) = f(

√
y)− f(−√y)
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Taking derivatives,

0 =
∂2EFψk(x)

∂k2
∝
∫ k

0
y2G(y)dy ≡ H(k)

then, H
′
(k) = k2G(k) = 0, for all k > 0. It follows f(x) = f(−x)

Claim: If the α−trimmed mean T (F ) = 1
1−2α

∫ 1−α
α F−1(s)ds is a constant for all

α ∈
(
0, 1

2

)
, then F is symmetric. Similar argument holds for α−Winsorized mean

W (F ) =
∫ 1−α

α
F−1(s)ds+ αF−1(α) + αF−1(1− α)

Proof. WLOG, let T (F ) = 0.

0 =
∂T (F )
∂α

=
2

1− 2α
T (F )− F−1(1− α)− F−1(α)

which gives F−1(1− α) = −F−1(α), i.e. F (−x) = 1− F (x).

3.7 Appendix B: Proofs of Theorems and Corollaries

Proof of Theorem 3.4.1 and Corollary 3.4.2

Proof. The log-likelihood is given by Ln = log(P1,n/P0,n) =
∑n

i=1 h(xi), where

h(x) = log
(

1 + ε
g(x− θn)− g(x)

dP

)
= ε

(
g(x− θn)− g(x)

dP

)
− ε2

2

(
g(x− θn)− g(x)

dP

)2

+O(n−3/2)

Now g(x−θn)−g(x)
dP = −g′(x)

dP
θ√
n

+ 1
2
g′′(x)
dP

θ2

n +O(n−3/2), also EP
(
g′(x)
dP

)
= EG (g′/g) =

0, EP
(
g′′(x)
dP

)
= EG (g′′/g) = 0, so under P0,n,

Ln = εθ

{
1√
n

n∑
i=1

−g′(xi)
dP

}
+
εθ2

2

{
1
n

n∑
i=1

g′′(xi)
dP

}
− ε2θ2

2

{
1
n

n∑
i=1

(
g′(xi)
dP

)2
}

+O(n−1/2)

= εθ

{
1√
n

n∑
i=1

−g′(xi)
dP

}
− ε2θ2τ2

2
+O(n−1/2) , where τ2 = EP

(
g′(x)
dP

)2

d−→ εθ N(0, τ2)− ε2θ2τ2

2
∼ N

(
−ε2θ2τ2/2, ε2θ2τ2

)
.

By LeCam first Lemma [29], P1,n are contiguous to P0,n. The limiting distribution of

Sn under P1,n follows LeCam third Lemma,
√
nSn

d−→ N(u, υ2), where by the same
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Lemma, υ2 = EP [IF(x;T, P )]2, and

u = EP (SnLn) = εθ EP

[
−g′(x)
dP

IF(x;T, P )
]

= −εθ
∫ +∞

−∞
g′(x)IF(x;T, P )dx = −εθ EG

[
∂IF(x;T, P )

∂x

]
if g′(x) 6= 0. The parameters of particular statistics when g(x) = 1

bf
(
x
b

)
are obtained by

noting that T1 = µ−Q0.5 has influence function x− sign(x)/2
(1−ε)f(0)+εg(0) , and T2 = E(x−µ)3

σ3 has

influence function x3−3xEP (x2)

[EP (x2)]3/2
, while IF(x;T3, P ) is the odd step-function with values

for x > 0 given by 1
2q

(
I[x>q]

(1−ε)f(q)+εg(q) −
1

(1−ε)f(0)+εg(0)

)
(Groeneveld [10]), where q is the

solution to (1− ε)F (q) + εG(q) = 1− p

Proof and Discussion of Corollary 3.4.3

Proof. The influence function of an M-estimate implicitly defined by a ψ(·) function is of

the form ψ(x)
EP [ψ′(x)] , the proof is a direct application of Corollary 3.4.2. In the case when

T (P ) is the difference of two Huber-Type M-estimators Ti(P ) that are associated with

functions ψi(x) = max[−ki,min(x, ki)], k1 < k2, and suppose F (x/σ) = G(x), then
√
n
(
T1(P̂n)− T2(P̂n)

)
converges to a normal distribution N(µ, τ2) under Qn with

µ = ε θ

{
F (k1/σ)− 1/2

(1− ε)F (k1) + ε F (k1/σ)− 1/2
− F (k2/σ)− 1/2

(1− ε)F (k2) + ε F (k2/σ)− 1/2

}
τ2 =

(1− ε)
{
k2

1F (−k1) + I1(x, k1)
}

+ ε
{
k2

1F (−k1/σ) + I1(σx, k1)
}

2 {(1− ε)F (k1) + ε F (k1/σ)− 1/2}2

+
(1− ε)

{
k2

2F (−k2) + I1(x, k2)
}

+ ε
{
k2

2F (−k2/σ) + I1(σx, k2)
}

2 {(1− ε)F (k2) + ε F (k2/σ)− 1/2}2

− (1− ε) {k1k2F (−k2) + k1I2(x, k1, k2) + I1(x, k1)}+ ε {k1k2F (−k2/σ) + k1I2(σx, k1, k2) + I1(σx, k1)}
{(1− ε)F (k1) + ε F (k1/σ)− 1/2} {(1− ε)F (k2) + ε F (k2/σ)− 1/2}

where I1(x, k) = EF
(
x2 · 1[0<x<k]

)
, and I2(x, k1, k2) = EF

(
x · 1[k1<x<k2]

)
Proof of Theorem 3.4.7 and Corollary 3.4.8

Proof. Let qx(τ) =
(

1
τ
f(xτ )−f(x)

f(x)

)
I[x>0]. Then

q′x(1) = −
(

1 +
xf ′(x)
f(x)

)
I[x>0] , and q′′x(1) =

(
2 + 4

xf ′(x)
f(x)

+
x2f ′′(x)
f(x)

)
I[x>0]
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Re-write the log-likelihood by its Taylor expansion,

Ln = log(F1,n/F0,n) =
n∑
i=1

log

(
f(xi)I[xi≤0] + 1

τ f
(
xi
τ

)
I[xi>0]

f(xi)

)

=
n∑
i=1

log

(
1 +

[
1
τ f
(
xi
τ

)
− f(xi)

f(xi)

]
I[xi>0]

)

=
n∑
i=1

(
qxi(τ)− 1

2
q2
xi(τ) + · · ·

)

=
η√
n

n∑
i=1

[
q
′
xi(1)

]
− η2

2n

n∑
i=1

[
q
′
xi(1)

]2
+
η2

2n

n∑
i

[
q′′xi(1)

]
+O

(
n−

1
2

)
Sn and Ln will be asymptotically joint normal under H0, this is because that EF

[
q
′
xi(1)

]
=

EF
[
q′′xi(1)

]
= 0 leads toSn
Ln

 =
1√
n

n∑
i=1

IF[xi;T, F ]

η q
′
xi(1)

+

 0

− η2

2n

∑n
i=1

[
q
′
xi(1)

]2

+O
(
n−

1
2

)

H0−→ N


 0

−η2γ2

2

 ,

EF [IF(x;T, F )]2 c

c η2γ2


where γ2 = EF

[
q
′
x(1)

]2, c = −ηEF
[
IF
(
x;T, F

) (
1 + xf ′(x)

f(x)

)
I[x>0]

]
. Therefore, F1,n

are contiguous to F0,n by LeCam first Lemma. Subsequently LeCam third Lemma

gives the asymptotic distribution of Sn under F1,n.

Proof of Theorem 3.4.9 and Corollary 3.4.10

Proof. The first terms of the log-likelihood ratio

Ln = ln
(

Ψ1,n

Ψ0,n

)
=

n∑
i=1

ln
(

2G(αnxi)
)

=
n∑
i=1

ln
(

1 +
2g(0)xi√

n
+
g′(0)x2

i

n
+ o(1)

)
=

1√
n

n∑
i=1

(
2g(0)xi

)
− 1

2n

n∑
i=1

(
2g(0)xi

)2
+

1
n

n∑
i=1

(
g′(0)x2

i

)
+ o(1)

H0−→ N

(
−σ

2

2
+
[
g′(0)EFx2

]
, σ2

)
, where σ2 = EF

(
2g(0)x

)2

Ψ1,n is contiguous to Ψ0,n iff g′(0) = 0. At contiguity, LeCam third Lemma gives

the asymptotic distribution of Sn under H1,n:
√
nSn

d−→ N(u, υ2), where υ2 =

EF [IF(x;T, F )]2, and u = EF (SnLn) = 2g(0)EF
(
xIF(x;T, F )

)
. This completes the

proof.
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3.8 Appendix C: Tables and Figures

f(x) ARE
(
µ−Q0.5,

E(x−µ)3

σ3

)
Normal, 1√

2π
e−

x2

2
1

3π−6 ≈ 0.292

Logistic, ex

(1+ex)2
23π2

35(π2+12−24 ln 2)
≈ 1.2391

Laplace, 1
2e
−|x| 3.5

Triangular, 1− |x|, |x| ≤
1

9
70

Tν
ν2−ν+10

(3πα∗ν− 6 ν−3
ν−1)(ν−4)(ν−6)

Γ( ν+1
2 )

√
νπ Γ( ν2 )

(
ν+x2

ν

)− ν+1
2 ARE =


5.3685, ν = 7
2.5482, ν = 8
1.6829, ν = 9

Slash, S = Z
U1/k ,

k4−10k3+42k2−68k+80{
3π( k+1

k )2−6 k2−k−4
(k−2)(k−1)

}
k(k−2)(k−4)(k−6)

k√
2π

∫ 1
0 t

ke−
(tx)2

2 dt ARE =


1.2800, k = 7
0.6945, k = 8
0.5209, k = 9

Table 3.1: ARE on Mixture (Part 1)

where α∗ν = ν−2
ν αν =

(
ν−2

2

)( Γ( ν2 )
Γ( ν+1

2 )

)2
ν−→ 1, φ(x) is the pdf of a Normal
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f(x) ARE
(
µ−Q0.5,

Q1−p+Qp−2Q0.5

Q1−p−Qp

)
Normal, 1√

2π
e−

x2

2

(
eq

2−2e
q2

2

)
p+ 1

2

π
2
−1

π
q4

, min=0.4561
(p=0.012)

Logistic, ex

(1+ex)2
0.5−4p2+4p3

(2p−1)2p(1−p)2
(

ln 1−p
p

)2(
π2

3
−8 ln 2+4

) , min=0.1859
(p=0.0495)

Laplace, 1
2e
−|x| eq−1

q2
=

1
2p
−1

(ln2p)2
, min=1.544

(p=0.1016)

Triangular, 1− |x|, |x| ≤
1

12p
1−
√

2p
min=0
(p=0)

Tν ,

(1+ q2

ν

)ν+1

−2

(
1+ q2

ν

) ν+1
2

p+ 1
2

π
2
αν−2 ν

ν−1
+ ν
ν−2

π
q4

(
ν+q2

ν+1

)2
αν ,

Γ( ν+1
2 )

√
νπ Γ( ν2 )

(
ν+x2

ν

)− ν+1
2 Min =


3.140(p = 0.111), ν = 3
2.009(p = 0.085), ν = 4
1.578(p = 0.070), ν = 5

Slash, S = Z
U1/k ,

p
2
−
√

2π( k+1
k )f(q)p+π

2 ( k+1
k )2

f2(q)(
kφ(q)−(k+1)f(q)

)(
π
2 ( k+1

k )2
+ k
k−2
−2 k+1

k−1

)

f(x) =
k√
2π

∫ 1
0 t

ke−
(tx)2

2 dt

Min =


0.553(p = 0.064), k = 3
0.645(p = 0.045), k = 4
0.630(p = 0.035), k = 5

Table 3.2: ARE on Mixture (Part 2)

where α∗ν = ν−2
ν αν =

(
ν−2

2

)( Γ( ν2 )
Γ( ν+1

2 )

)2
ν−→ 1, φ(x) is the pdf of a Normal
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T1 = µ−Q0.5 T2 = E(x−µ)3

σ3 T3 = Q1−p+Qp−2Q0.5
Q1−p−Qp

f(x) c υ2 Efficacy c υ2 Efficacy Max Efficacy p

Normal, 1√
2π
e−

x2
2 1√

2π
η π

2 − 1 0.2788 3√
2π
η 6 0.2387 0.2501 0.053

Logistic, ex

(1+ex)2

Laplace, 1
2e
−|x| 1

2η 1 0.25 15
2 η 594 0.0947 0.1619 0.1016

Tν ,
Γ( ν+1

2 )
√
νπ Γ( ν2 )

(
ν+x2

ν

)− ν+1
2

Slash, S = Z
U1/k

Table 3.3: Efficacy on Asymmetry

f(x) ARE
(
µ−Q0.5,

E(x−µ)3

σ3

)
ARE

(
µ−Q0.5,

Q1−p+Qp−2Q0.5
Q1−p−Qp

)
Normal, 1√

2π
e−

x2
2 1

3π−6 ≈ 0.292

(
eq

2
−2e

q2
2

)
p+ 1

2

π
2−1

π
q4 , min=0.4561

(p=0.012)

Logistic, ex

(1+ex)2

345
(
π2
3 −4 ln 2

)2

7
(
π2
3 −8 ln 2+4

) ≈ 0.7658

Laplace, 1
2e
−|x| 3.5 eq−1

q2 =
1
2p−1

(ln2p)2
, min=1.544

(p=0.1016)

Tν ,
Γ( ν+1

2 )
√
νπ Γ( ν2 )

(
ν+x2

ν

)− ν+1
2 (ν2−ν+10)(ν−4)

(3πα∗ν− 6 ν−3
ν−1 )(ν−1)2(ν−6)

,

ARE =


1.3421, ν = 7
0.8321, ν = 8
0.6574, ν = 9

Slash, S = Z
U1/k ,

(k4−10k3+42k2−68k+80)(k−4){
3π( k+1

k )2−6 k2−k−4
(k−2)(k−1)

}
k(k−1)2(k−2)(k−6)

,

f(x) = k√
2π

∫ 1

0
tke−

(tx)2

2 dt ARE =


0.3200, k = 7
0.2268, k = 8
0.2035, k = 9

Table 3.4: ARE on Skew-Symmetry

where α∗ν = ν−2
ν αν =

(
ν−2

2

)( Γ( ν2 )
Γ( ν+1

2 )

)2
ν−→ 1
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Figure 3.1: Asymmetric Distributions that classical skewness measures fail to capture
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Chapter 4

Beyond Multivariate Elliptical: Skew-Elliptical

Distributions and Mixture of Elliptical Distributions

A key assumption that validates most descriptive statistics and test procedures em-

ployed in a classical multivariate analysis is unrealistic, that the underlying distribu-

tion has to be a normal distribution for which the location (mean) vector together with

the scatter matrix is a sufficient statistic. Recently, Robust statistics researches have

been flourishing in a particular generation of the normal distribution, namely class of

elliptical distributions, denoted by Ep
(
b,Σ

)
, whose density is of the form

f(x) = |Σ|−1/2h
[
(x− b)′Σ−1(x− b)

]
,

where x, b ∈ Rp, Σ ∈ PDS(p), the set of positive definite symmetric matrices of order p,

and h : [0,∞)→ [0,∞) is a fixed function depending x only through (x−b)′Σ−1(x−b).

Several classes of robust estimates of multivariate location and scatter estimates have

been implemented in an attempt to address the concerns of non-normality, especially

a distribution with longer tails (than a Normal) on either direction or with outlying

points. These robust estimates have desirable properties within the framework of ellip-

tical symmetric distributions. Though comparison of these newly proposed estimates

haven’t been completed yet and studies within elliptical models are still promising,

more vigorous researches beyond elliptical are necessary to provide some encouraging

result, to bear meaningful fruit.

The non-elliptical distribution space is too broad, yet one can focus on the first

steps of a natural extension beyond symmetry of elliptical. A skew-elliptical distribu-

tion, and a mixture of two elliptical distributions with different shapes are examples of

such asymmetric distributions. To investigate the characteristics of a statistical proce-

dure under these asymmetric framework, a basic yet powerful technical instrument is
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the contiguity of probability measures that leads to (local) asymptotic normality of

statistical models, which together with LeCam’s Lemmas suggest a feasible and efficient

platform on which the behavioral differences in statistical aspects of a robust procedure

(statistic), if any, when the underlying distribution changes from elliptical-symmetric P

to asymmetric Q, could be tracked, analyzed and compared locally and asymptotically.

One can set up a sequence of (local) hypotheses, H0 verses H1,n indexed by n ∈ N,

in which Qn is the joint distribution of a sample of size n when it is from alternative

hypothesis while Pn is the joint distribution when sampling from null-hypothesis. The

hypotheses are set-up in a way that Qn is contiguous to Pn, and for a fixed n, Qn and

Pn are the (local) realizations of asymmetric Q and symmetric P respectively.

If scatter/shape functions exhibit interesting statistical differences between P and

Q (expressed locally and asymptotically as between Qn and Pn), then analyses on the

differences across class of scatter/shape functions may lead to the suggestion or devel-

opment of a new robust procedure at testing and estimating the shape of a multivariate

data that would work equally powerful even when the underlying distribution is not

limited to a symmetric one, rather, includes certain asymmetric ones.

In this spirit, the asymptotics of a scatter/shape estimate will be investigated sepa-

rately on a Skew-Elliptical distribution, and on a mixture of multivariate distributions.

4.1 Asymptotic Distributions of Location/Shape Estimators

Let µ(F ) ∈ Rp and V (F ) ∈ Rp
p be affine equivariant Location and Shape functionals of

distribution F , respectively, with µ̂ and V̂ denoting their consistent estimators based

on sample. In this dissertation, the derivations of asymptotics of µ̂ and V̂ on asymmet-

ric distribution Q rely heavily on the influence functions of µ and V at a symmetric

distribution P , denoted by IF(z;µ, P ) and IF(z;V, P ). The influence functions are not

only of general simple forms, but also natural bridges connecting the estimators µ̂ and

V̂ with their corresponding functionals µ and V .

Lemma 4.1.1. (Hampel 1986) Let F ∼ Ep(0, I) denote the Spherical distribution in

Rp.
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1. Affine equivariant location and shape functionals are characterized by three func-

tions, w0, w1, w2 : R+ → R through

IF(z;µ, F ) = w0(z′z)z

IF(z;V, F ) = w1(z′z)zz′ − w2(z′z) Ip

2. Suppose z1, · · · , zn ∼ z ∈ Rp are i.i.d. from F . Under certain regularity condi-

tions,

√
n (µ̂− µ) =

1√
n

n∑
i=1

IF (zi;µ, F ) + op(1)

√
n
(
V̂ − V

)
=

1√
n

n∑
i=1

IF (zi;V, F ) + op(1)

Proof. See for example Hampel etc. [12]

Taking trace of the influence function of scatter(shape) functional V , the relationship

of w1 and w2 can be readily revealed,

w2(z′z) =
1
p

[
w1

(
z′z
)
z′z
]
− 1
p

tr
[
IF(z;V, F )

]
and this relationship is oftentimes applied to re-write the influence function of V in an

equivalent form

IF(z;V, F ) = w1(z′z)
[
zz′ − z′z

p
I

]
+

tr
[
IF(z;V, F )

]
p

I

By affine-equivariance, the general expressions of influence functions at an elliptical

distribution F ∗ ∼ Ep
(
b,Σ

)
can be readily derived as

IF
(
x;µ, F ∗

)
= B

[
IF
(
B−1(x− b);µ, F

)]
= w0(s)

(
x− b

)
IF
(
x;V, F ∗

)
= B

[
IF
(
B−1(x− b);V, F

)]
B′ = w1(s)

(
x− b

)(
x− b

)′ − w2(s) Σ

here, Σ = BB′ and s = (x− b)′Σ−1(x− b).

Throughout this dissertation, location and scatter functionals and their consistent

estimates are assumed to have properties described in this Lemma 4.1.1.
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4.1.1 On Skew-Elliptical Distributions

Though multiple skewness mechanisms have been suggested in the literature, yielding

various approaches to construct a skewed multivariate distribution of mathematical

tractability and shape flexibility, most of these proposals are in essence the general-

ization of, hence resulting in similar probability density function as the popular model

implemented by Azzalini and Dalla Valle [2], in which the pdf of a skew-symmetric

random vector x ∈ Rp is a multiplicative function

2f(x; b,Σ)G
(
α′
(
x− b

))
where f(x; b,Σ) is the pdf of a p-dimensional elliptical F ∼ Ep (b,Σ), and G is the cdf

of a univariate elliptical E1(0, 1)

The asymptotic of an affine equivariant estimate on skew-symmetric distribution

(α 6= 0) versus symmetry (α = 0) can be investigated locally under the framework of

a sequence of hypotheses

H0 : α = 0 vs H1,n : α = a/
√
n, where a′ = (a1, · · · , ap) ∈ Rp

Let Φ1,n and Φ0,n be joint densities of sample x1, · · · ,xn ∼ x ∈ Rp when x is from H1,n,

and from F ∼ H0 respectively. Without loss of generality, assuming F is the spherical

distribution, i.e. b = 0 and Σ = Ip.

Theorem 4.1.2. Φ1,n is contiguous to Φ0,n, provided g(x) = dG(x)/dx depends on x

only through x2.

Corollary 4.1.3. Under H1,n, location estimate µ̂ and scatter estimate V̂ are asymp-

totically independent and

1.
√
n
(
µ̂− µ

) d−→ Np
(
c1 a , c2 Ip

)
where

c1 = 2g(0)Es [w0(s)s] /p

c2 = Es
[
w2

0(s)s
]
/p, s = x′x ∼ πp/2

Γ(p/2)
s
p
2
−1f(s)

2.
√
n
(
V̂ − V

)
d−→ Np

p (0,Ω), where

Ω = EF

{
Vec
[
IF(x;V, F )

]
Vec
[
IF(x;V, F )

]′} ∈ Rp2

p2
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Corollary 4.1.3 implies that an equivariant scatter estimate has the same asymptotic

on an elliptical F as on the multiplicative skew-elliptical distribution generated from F ,

consequently, any equivariant scatter estimate would have no test power in detecting

such asymmetry. Therefore in the remaining of this dissertation, the aspects of scatter

functions on skew-elliptical distributions will not be further explored.

4.1.2 On Mixture of Elliptical Distributions

Let F
(
0, Ip

)
and G

(
0, Ip

)
be two Spherical distributions. There are two similar but

different mechanisms to build a mixture that is not-symmetric

Case A: H0 : F
(
0, Ip

)
vs H1,n : (1− δ/

√
n)F

(
0, Ip

)
+ (δ/

√
n)G

(
0, Ip

)
The contiguity of H1,n to H0 is proved by Kankainen (2007) etc. in [16], in which the

asymptotic normality of V̂ under alternatives is given explicitly as
√
n V̂

d−→ N (δα,Ω),

where

α = EG [IF(z;V, F )]

Ω = EF

{
Vec
[
IF(z;V, F )

]
Vec
[
IF(z;V, F )

]′}
An immediate implication is that, when G is of the same shape as F but with

different scale and center, i.e. G
(
0, Ip

)
= F

(
a, bIp

)
, V̂ would have asymptotic mean of

0 under local alternatives. Any affine equivariant scatter estimate will not be able to

differentiate such mixture that is non-symmetry from a contiguous symmetry. Because

of this very reason, in later chapters statistical properties of a scatter-matrix function

will not be discussed under asymmetry of this type of mixture distributions.

Case B:

H0 : (1−ε)F
(
0, Ip

)
+εG

(
0, Ip

)
vs H1,n : (1−ε)F

(
0, Ip

)
+εG

(
a/
√
n,
(
Ip +D/

√
n
)−1
)

where ε ∈ (0, 1) is fixed, a = (a1, · · · , ap)′ ∈ Rp, and D is a p× p diagonal matrix with

diagonal entries di. Denote P the distribution of null-hypothesis.

Theorem 4.1.4. Let Qn and Pn be the joint probabilities of sample z1, · · · , zn ∼ z ∈ Rp

from H1,n, and from H0, respectively. Qn is contiguous to Pn.
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Theorem 4.1.5. Let µ̂ and V̂ be consistent estimates of affine equivariant location

functional µ and scatter functional V respectively. Under local alternative hypotheses,

1. µ̂ and V̂ are asymptotically independent

2. Let S be either µ or V , and denote by Ŝ the consistent estimator of S based on

empirical distribution.
√
n
(
Ŝ − S

)
d−→ N

(
ε
(
α− 2α1

)
,Ω
)

, where

Ω = EP

{
Vec
[
IF(z;S, P )

]
Vec
[
IF(z;S, P )

]′}
,

α = EG

[(
tr(D)

2
+
g′(z′z)
g(z′z)

z′Dz
)

IF(z;S, P )
]

α1 = EG

[
g′(z′z)
g(z′z)

(
z′a
)

IF(z;S, P )
]

It is indicated clearly from the proof of Theorem 4.1.5 that when S = V is a

scatter/shape matrix, then α1 = 0. This in turn indicates that the location-shift a by

component G of this type mixture has no effect on the asymptotics of an equivariant

scatter estimator. By the same argument, α = 0 for location µ̂, this implies that the

shape transformation D from component G doesn’t change the asymptotic of a location

estimator.

4.2 Summary

This dissertation is mainly focusing on the asymptotic behavior of a scatter matrix

under a multivariate distribution that is beyond elliptical. As having discussed so far,

a meaningful asymmetric platform on which the aspect of an equivariant scatter matrix

can be further investigated is the mixture of two ellipticals:

(1− ε)F
(
0, Ip

)
+ εG

(
0,
(
Ip +D

)−1
)

To facilitate the powerful instruments of Contiguity and LeCam’s lemmas, the sta-

tistical properties of a scatter function under this asymmetric mixture will be explored

locally and asymptotically on the sequence of equivalent alternative hypotheses:

Hn : (1− ε)F
(
0, Ip

)
+ εG

(
0, Ip

)
vs

H1,n : (1− ε)F
(
0, Ip

)
+ εG

(
0,
(
Ip +D/

√
n
)−1
)

(4.2.1)
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An affine-equivariant scatter estimate V̂ of scatter function V is asymptotically

normal under H1,n,
√
n
(
V̂ − V

)
d−→ N

(
εα,Ω

)
,

with the explicit formulae of α and Ω presented in Theorem 4.1.5.

This sets up the primary framework and distribution-space that underly the discus-

sions in the remaining chapters.
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4.3 Appendix

Proof of Theorem 4.1.2

Proof. First note that g(x) is a function of x2 implies g′(0) = dg(x)
dx |x=0 = 0. The

log-likelihood ratio statistics for testing H1,n against H0 is given by

Ln = log
Φ1,n

Φ0,n
=

n∑
i

log
[
2G
(

1√
n

a′xi

)]
=

n∑
i

log
[
1 +

2g(0)√
n

a′xi +O(n−1)
]

=
1√
n

n∑
i

(
2g(0)a′xi

)
− 1

2n

n∑
i

(
2g(0)a′xi

)2 + o(1)

under H0−−−−−−→
n

N
(
−τ2/2, τ2

)
since 2g(0)a′EF (x) = 0. Here τ2 = EF

(
2g(0)a′x

)2. The contiguity of Φ1,n to Φ0,n

follows LeCam first Lemma.

Proof of Corollary 4.1.3

Proof. This is a direct application of Theorem 4.1.2 and LeCam third Lemma, from

which
√
n
(
V̂ − V

)
d−→ Np

p (A,Ω) underH1,n, where Ω = EF

{
Vec
[
IF(x;V, F )

]
Vec
[
IF(x;V, F )

]′}.

Since IF
(
x;V, F

)
= w1(x′x) (xx′)− w2(x′x)I for some w1 and w2,

A = lim
n

{
Cov

[
Ln,
√
n
(
V̂ − V

)]}
= 2g(0)EF

[(
a′x
)

IF(x;V, F )
]

= 2g(0)EF
[(

a′x
)(
w1(x′x)xx′ − w2(x′x)I

)]
= 2g(0)Es

(
w1(s)s

3
2

)
Eu

[
(a′u)uu′

]
− 2g(0)Es

(
w2(s)s

1
2

)
Eu

(
a′u
)
I

where s = x′x ∼ πp/2

Γ(p/2)s
p
2
−1f(s), and u = x/

√
s is uniformly distributed on the the

unit sphere Sp−1. It follows Eu

[(
a′u
)
uu′
]

= 0 and Eu

(
a′u
)
I = 0, hence A = 0.

Similarly,
√
n (µ̂− µ) d−→ Np (c,Ω0) under H1,n. With IF(x;µ, F ) = w0(x′x) (x),

Ω0 = EF
[
w2

0(x′x)xx′
]

= Es
[
w2

0(s)s
]
Eu

[
uu′
]

= p−1Es
[
w2

0(s)s
]
I

c = lim
n

{
Cov

[
Ln,
√
n
(
µ̂− µ

)]}
= 2g(0)EF

[(
a′x
)

IF(x;µ, F )
]

= 2g(0)EF
[(

a′x
)(
w0(x′x)x

)]
= 2g(0)Es [w0(s)s]Eu

[(
a′u
)
u
]

Since Eu [uu′] = p−1Ip, Eu [(a′u)u] = a/p. This completes the proof.
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Proof of Theorem 4.1.4

Proof. Let Σ−1
n = I + D/

√
n, an = a/n, d = (d1, · · · , dp)′, and dn = d/n. The log-

likelihood ratio statistic for testing H1,n against H0 is given by Ln = log(dQn/dPn) =∑n
i=1 l(zi), where

l(z) = log

(
(1− ε)f(z′z) + ε|Σn|−

1
2 g
[
(z− an)′Σ−1

n (z− an)
]

(1− ε)f(z′z) + εg(z′z)

)

= log

(
1 + ε

|Σn|−
1
2 g
[
(z− an)′Σ−1

n (z− an)
]
− g(z′z)

dP

)

= log
(
1 + εh

)
= εh− (εh)2

2
+ · · ·

where h ∈ R is a function of an and dn, in the form

h =
|Σn|−

1
2 g
[
(z− an)′Σ−1

n (z− an)
]
− g(z′z)

dP

=


p∏
j=1

(
1 +

dj√
n

)1/2

g

 p∑
j=1

(
1 +

dj√
n

)(
zj −

aj√
n

)2
− g(z′z)

 /(dP )

whose Taylor expansion around the neighborhood of 0 ∈ R2p is simply,

h

 an

dn

 =
1√
n

(
a′,d′

)
∂h

∂an

∂h

∂dn

+
1
n

(
a′,d′

)
∂2h

∂an
2

∂2h

∂dn∂an

∂2h

∂an∂dn

∂2h

∂dn
2


a

d

+ o

(
1
n

)

Denoting 1 as the p × 1 column vector of all ones, and � as the Hadamard prod-

uct, straightforward yet tedious calculations give the rather simple forms of the above

derivatives of h evaluated at 0,

∂h

∂an
=
[
− 2g(z′z)z

]
/dP,

∂2h

∂an
2

=
[
2g′(z′z)Ip + 4g′′(z′z)zz′

]
/dP

∂h

∂dn
=
[
g(z′z)

2
1 + g′(z′z)

(
z� z

)]
/dP

∂2h

∂dn
2 =


− g(z

′z)
4

+g′(z′z)z21+g′′(z′z)z41 ,
g(z′z)

4
+
g′(z′z)

2
(z21+z22)+g′′(z′z)(z21 z

2
2) , ···

... , − g(z
′z)
4

+g′(z′z)z22+g′′(z′z)z42 , ···
... ,

... ,
. . .

 /dP
=
[
g(z′z)

4

(
11′ − 2Ip

)
+
g′(z′z)

2

((
z� z

)
1′ + 1

(
z� z

)′)+ g′′(z′z)
((

z� z
)(

z� z
)′)]

/dP

∂2h

∂dn∂an
=
[

∂2h

∂an∂dn

]′
=
[
−g′(z′z)

(
z1′ + 2Diag

(
z
))
− 2g′′(z′z)z

(
z� z

)′]
/dP
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All these derivatives are of expectation 0 (∈ Rp or ∈ Rp
p), over the null-distribution

P . This claim is trivially true for (∂h/∂an) and
(
∂2h/∂dn∂an

)
because of the symmetry

of z. To see this claim remains true for the other three derivatives, one needs to

utilize the properties that if z ∼ G(0, Ip), then s = z′z has density πp/2

Γ(p/2)s
p
2
−1g(s)

such that Es
(
g′(s)
g(s) s

)
= −1

2p, Es
(
g′′(s)
g(s) s

2
)

= 1
4p(p + 2), Es

(
g′′(s)
g(s) s

)
= −p

2Es

(
g′(s)
g(s)

)
;

and u = z/
√
s is independent of s with identities E

[
uu′
]

= 1
pI, E

[
u � u

]
= 1

p1,

E
[(

u� u
)(

u� u
)′] = 1

p(p+2)11′ + 2
p(p+2)I, so that

EP

[
∂h

∂dn

]
=

1
2
1 + EG

[
g′(z′z)
g(z′z)

(
z� z

)]
=

1
2
1 + Es

[
g′(s)
g(s)

s

]
Eu

[
u� u

]
= 0 ∈ Rp

EP

[
∂2h

∂an
2

]
= EG

[
2
g′(z′z)
g(z′z)

Ip + 4
g′′(z′z)
g(z′z)

zz′
]

= 2Es

[
g′(s)
g(s)

]
I + 4Es

[
g′′(s)
g(s)

s

]
Eu

[
uu′
]

= 0 ∈ Rp
p

EP

[
∂2h

∂dn
2

]
= 4
[
11′ − 2Ip

]
+

1
2
EG

{
g′(z′z)
g(z′z)

[(
z� z

)
1′ + 1

(
z� z

)′]}
+ EG

{
g′′(z′z)
g(z′z)

[(
z� z

)(
z� z

)′]}
= 4
[
11′ − 2Ip

]
+

1
2
Es

[
g′(s)
g(s)

s

]
Eu

[(
u� u

)
1′ + 1

(
u� u

)′]
+ Es

[
g′′(s)
g(s)

s2

]
Eu

[(
u� u

)(
u� u

)′] = 0 ∈ Rp
p

To this end, let

β(z) =
(
a′,d′

)
∂h

∂an

∂h

∂dn

 =
[
−2 g′(z′z)z′a +

tr(D)
2

g(z′z) + g′(z′z)z′Dz
]
/dP

and observe that,

EP

[
β(z)

]
= −2EG

[
g′(z′z)
g(z′z)

z′a
]

+
tr(D)

2
+ EG

[
g′(z′z)
g(z′z)

z′Dz
]

= −2Es

[
g′(s)
g(s)
√
s

]
Eu

[
u′a
]

+
tr(D)

2
+
[
Es
g′(s)
g(s)

s

]
Eu

(
u′Du

)
= 0 ∈ R1

The Taylor expansion of the log-likelihood ratio hence becomes

Ln =
n∑
i

l(zi) =
1√
n

n∑
i

[
εβ(zi)

]
− 1

2n

n∑
i

[
εβ(zi)

]2
+ o(n−1)

under H0−−−−−−→
n

N
(
− τ2/2, τ2

)
where τ2 = EP

[
εβ(z)

]2. The contiguity of Qn to Pn follows LeCam first Lemma.
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Proof of Theorem 4.1.5

Proof. The limiting distribution of
√
n
(
Ŝ − S

)
under local alternative hypotheses is

a multivariate normal distribution according to LeCam third Lemma because of the

contiguity of H1,n to H0. Using notations in the proof of Theorem 4.1.4, the asymptotic

mean µ and Variance-Covariance matrix Ω are obtained as

µ = EP

[
εβ(z) IF(z;S, P )

]
= ε

∫ (
−2 g′(z′z)z′a +

tr(D)
2

g(z′z) + g′(z′z)z′Dz
)

IF(z;S, P )dz

= −2εEG

[
g′(z′z)
g(z′z)

(
z′a
)
IF(z;S, P )

]
+ εEG

[(
tr(D)

2
+
g′(z′z)
g(z′z)

z′Dz
)

IF(z;S, P )
]

= −2εα1 + εα, say.

Ω = EP

{
Vec
[
IF(z;S, P )

]
Vec
[
IF(z;S, P )

]′}
.

For the case when S = V is an affine equivariant scatter matrix, the structure of its

influence function (Lemma 4.1.1), IF(z;V, F ) = w1(z′z)zz′ − w2(z′z) Ip, leads to

α1 = EG

[
g′(z′z)
g(z′z)

(
z′a
)
IF(z;V, P )

]
= Es

[
g′(s)
g(s)

w1(s)s
3
2

]
Eu

[(
a′u
)
uu′
]
− Es

[
g′(s)
g(s)

w2(s)s
1
2

]
Eu

[
a′u
]
I

where the last step comes from the symmetry of u = z/
√

z′z whenever z =
√
su ∼

G
(
0, I
)

is from a spherical distribution.
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Chapter 5

Robust Shape/Scatter Estimators at Mixture Models

5.1 M-estimates

The multivariate M-functionals of location and scatter were first independently intro-

duced by Maronna (1976) and Huber (1977). Let ρ(s) be a given function on s ≥ 0 and

let PDS(p) denote the set of positive definite symmetric matrices of order p. Let x ∈ Rp

be a random vector from distribution F . The M-functionals of multivariate location

and scatter are defined to be any pair µ(F ) ∈ Rp and V (F ) ∈ PDS(p) respectively

which minimizes the objective function

L(µ, V ; x) = E
[
ρ
(
(x− µ)V −1(x− µ)

)]
+

1
2

log |V | (5.1.1)

over all µ ∈ Rp and V ∈ PDS(p), where the expectation is taken over F . If the

expectation is taken over the empirical distribution Fn of a random sample x1, · · · ,xn

from F , the solutions to the minimization problem (5.1.1), denoted by µ̂(Fn) and V̂ (Fn)

are conventionally called M-estimates of location and scatter, respectively.

If ρ is differentiable, then setting the derivatives of (5.1.1) with respect to µ and V

to 0 yields the simultaneous estimating equations

µ = E
[
u(s)x

]
/E
[
u(s)

]
(5.1.2)

V = E
[
u(s)

(
x− µ

)(
x− µ

)′] (5.1.3)

where s = (x− µ)V −1(x− µ) and u(s) = 2ρ′(s).

The existence and uniqueness problems of solutions (µ̂, V̂ ) to the implicitly defined

M-estimating equations (5.1.2) and (5.1.3) were initially attempted by Maronna (1976),

and Huber (1981), but completely solved by Kent and Tyler (1991). Certain conditions

on the function ρ(s), weight function u(s) , as well as on the data {x1, · · · ,xn} are
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needed to ensure the existence and uniqueness. In general, the function ρ(s) should be

unbounded (Maronna (1976)), and su(s) has to be non-decreasing in s (Kent and Tyler

(1991)).

When the M-estimates of multivariate location and scatter are defined through

implicit equations, more general form than that given by (5.1.2) and (5.1.3) is proposed

in the literatures. Maronna (1976) allows the two weight functions u(s) in (5.1.2)

and (5.1.3) differ from each other, hence creating a more general class of multivariate

M-estimates that needs not to be related a minimization problem of form (5.1.1).

This dissertation primarily concerns with the analysis of the shape of a multivariate

distribution via robust scatter matrix. With out loss of generosity, the location (center)

of a symmetric distribution, elliptical distribution for example, can be assumed to be

known and to be 0. In this scatter-only setting, the M-functional of the scatter of a

multivariate distribution has a simpler definition.

Definition 5.1.1. A scatter M-functional V ∈ PDS(p) at F is defined implicitly as

the solution to EF (ψ(z, V )) = 0, where ψ(z, V ) = u
(
z′V −1z

)
zz′ − V for some suitable

function u. A scatter M-estimate V̂ is a consistent estimator of V based on sample

{z1, · · · , zn} satisfying 1/n
∑n

i=1 ψ(zi, V̂ ) = 0 under regularity conditions.

Proposition 5.1.2. A scatter M-functional V at F ∼ Ep(0, I) defined by ψ(z, V ) =

u(z′V −1z)zz′ − V has influence function

IF (z;V, F ) =
u (z′z/λ)
2h+ 1

zz′ −
h

(2h+1)u (z′z/λ) z′z + λ

(p+ 2)h+ 1
Ip

=
u (z′z/λ)
2h+ 1

(
zz′ − z′z

p
I

)
+
u (z′z/λ) z′z/p− λ

(p+ 2)h+ 1
I

where h = E
(
u′(z′z/λ)(z′z/λ)2

)
/p(p+2), and λ is the solution to E (u (z′z/λ) z′z/λ) =

p.

As summarized in section (4.2), the asymptotic of an M-estimate of scatter on a

non-elliptical distribution will be investigated under the platform on a sequence of

hypotheses defined in (4.2.1), i.e.

H0 : (1− ε)F
(
0, Ip

)
+ εG

(
0, Ip

)
vs (5.1.4)

H1,n : (1− ε)F
(
0, Ip

)
+ εG

(
0,
(
Ip +D/

√
n
)−1
)
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Using the notations in Theorem 4.1.4, assuming that G(0, I) = F
(
0, ν2I

)
, i.e. g(x′x) =

ν−pf(x′x/ν2) and the null hypothesis is a mixture P ∼ (1 − ε)F
(
0, Ip

)
+ εF

(
0, ν2Ip

)
,

the asymptotic distribution of an M-estimate of scatter is readily obtained via Theo-

rem 4.1.5.

Theorem 5.1.3. Let V be an M-functional of Definition 5.1.1 with influence function

defined in Proposition 5.1.2, and V̂ be an affine equivariant estimator of V based on

sample. Under sequence of alternative hypotheses H1,n of 5.1.4, V → λI, where λ is

the solution to equation (1− ε)Es [u(s/λ)(s/λ)] + εEs
[
u(sν2/λ)(sν2/λ)

]
= p; and

1.
√
n
(
V̂ − λI

)
d−→ N(−ελm,Ω ), where m = αD − β tr(D)I, Ω = γ(I + Kp) +

ηVec(I)Vec(I)′, and

α =
1

2h+ 1

{
Es
[
u
(
sν2/λ

) (
sν2/λ

)]
p

+
2Es

[
u′
(
sν2/λ

)
(sν2/λ)2

]
p(p+ 2)

}

β =
1

(2h+ 1)[(p+ 2)h+ 1]

hEs
[
u
(
sν2/λ

) (
sν2/λ

)]
p

−
Es

[
u′
(
sν2/λ

) (
sν2/λ

)2]
p(p+ 2)


h =

1
p(p+ 2)

Es

[
(1− ε)u′ (s/λ) (s/λ)2 + εu′

(
sν2/λ

) (
sν2/λ

)2]
γ =

1
(2h+ 1)2p(p+ 2)

{
(1− ε)Es [u(s/λ)s]2 + εEs

[
u
(
sν2/λ

)
sν2
]2}

η =
[1− 2h2(p+ 2)]γ − λ2

[(p+ 2)h+ 1]2
, s ∼

πp/2

Γ(p/2)
s
p
2
−1f(s)

2. If ν2 = 1, i.e. F
(
0, Ip

)
= G

(
0, Ip

)
, then

√
n
(
V̂ − λI

)
d−→ Np

p (−ελD,Ω ).

Corollary 5.1.4. Assuming notations in Theorem 5.1.3, under the sequence of alter-

native hypotheses H1,n of 5.1.4,

1. n

[
log

(
1
p

tr V̂
)p

|V̂ |

]
d−→ γ

λ2 χ
2
q(δ), a non-central Chi-square distribution with degree

of freedom q = 1
2(p+ 2)(p− 1) and non-centrality δ = (ελα)2

2γ

[
tr
(
D2
)
− 1

ptr2(D)
]

2. n
2 log

[
tr V̂ · tr (V̂ −1)

p2

]p
d−→ γ

λ2 χ
2
q(δ)

From the proof of Corollary 5.1.4, the limiting distribution of n
[
p log

(
tr V̂ /p

)
− log |V |

]
is proportional to Z ′AZ, where Z ∈ Rp2 is a random vector of normal distribution
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and A =
(

1
2 (I +Kp)− 1

p Vec(I)Vec(I)′
)

is an idempotent matrix of order p2, i.e.

A = A2. This idempotent has eigenvalue 0 occurring 1
2p(p − 1) + 1 times. The as-

sociated Eigenvectors are the linear combinations of the identity and skew-symmetric

matrices. This property leads to two immediate consequences. Firstly, the non-

centrality parameter δ will depend on the influence function only through ω1 whenever

IF (z;V −1
1 V2, F ) = ω1zz′ − ω2I. Secondly, the statistics in theorem 5.1.3 are unable to

separate a distribution G from an elliptical F , if G is such that
√
n
(
V̂ − λI

)
has an

asymptotic mean proportional to I or to B = −B′.

5.2 S-estimates

S-estimate was first introduced by Rousseeuw and Yohai (1984) in the context of mul-

tiple regression as a generalization of LMS estimator. Davies (1987) gave a slightly

different definition in an attempt to address the low breakdown property inherited

within M-estimates. Today’s universal accepted version of S-estimates of location and

scatter is suggested by Lopuhaä (1989).

Definition 5.2.1. The S-functionals of multivariate location and scatter are defined to

be any pair of µ(F ) ∈ Rp and V (F ) ∈ PDS(p) respectively which minimizes det(V ),

subject to the constraint

E
[
ρ
(√

(x− µ)V −1(x− µ)
)]

= ε0ρ(∞), (5.2.1)

where ε0 is a fixed value between 0 and 1, and for s ≥ 0, ρ(s) is non-decreasing, left

continuous everywhere, right continuous at zero with 0 = ρ(0) < ρ(∞) <∞

When ρ is differentiable with derivative ψ, Lopuhaä [20] showed the S-functionals

of location and scatter satisfy the simultaneous S-estimating equations

µ = E
[
u2(t)x

]
/E
[
u2(t)

]
(5.2.2)

V = E
[
u2(t)

(
x− µ

)(
x− µ

)′]
/E
[
u3(t)

]
(5.2.3)
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where t =
√

(x− µ)V −1(x− µ) and

u2(t) = ψ(t)/t

u3(t) = [ψ(t)t− ρ(t) + ε0ρ(∞)] /p

It follows that S-functionals (µ, V ) meet first-order conditions (5.1.3) and (5.1.2) of

M-functionals defined by Huber (1981). Consequently, their influence functions exist

under certain regularity condition [20], and satisfy the following relationship [12, 15] IF(x;µ, F )

Vec [IF(x;V, F )]

 =

Λµ0

ΛV0

−1 Ψ1

(
x,µ0, V0

)
Vec

[
Ψ2

(
x,µ0, V0

)]
 (5.2.4)

where (µ0, V0) are solutions to problem (5.2.1), Ψ1 and Ψ2 are functions

Ψ1 = u2(t)(x− µ) , Λµ0
=
∂Ψ1

∂µ
|µ0,V0

Ψ2 = u2(t)
(
x− µ

)(
x− µ

)′ − u3(t)V , ΛV0 =
∂Vec (Ψ2)
∂Vec(V )

|µ0,V0

The relationship (5.2.4) of influence functions implies that the influence function of

scatter V is independent of that of location µ. Hence when the scatter-functional V is

the only interest, one can assume, without loss of generality, location is known and is

at 0.

Lopuhaä [20] showed that the influence function of S-functional is the same as

that of corresponding M-functional V satisfying EF [u2(t)zz′ − u3(t)V ] = 0, where t =
√

z′V −1z, u2(t) = ψ(t)/t and u3(t) = (ψ(t)t− ρ(t) + ε0ρ (∞)) /p

Proposition 5.2.2. An S-estimate V (F ) of definition 5.2.1 equals to λI for some λ > 0

when F ∼ Ep(0, I), its influence function at F is of the form

IF(x;V, F ) =
u2(
√

x′x/λ)
2h1 + h3

xx′ −

(
h1−h2
2h1+h3

)
u2(
√

x′x/λ)(x′x) + λu3(
√

x′x/λ)

(2h1 + h3) + p(h1 − h2)
Ip

=
u2(
√

x′x/λ)
2h1 + h3

xx′ −
[
− 4h1 + h3

p(2h1 + h3)h3
u2(
√

x′x/λ)(x′x) +
2λ
h3
u3(
√

x′x/λ)
]
Ip

=
ψ(
√

x′x/λ)
(2h1 + h3)

√
x′x/λ

xx′ −

[
ψ(
√

x′x/λ)
√

x′x/λ
p(2h1 + h3)

− 2
ph3

(
ρ(
√

x′x/λ)− b0
)]

λIp

=
u2(
√

x′x/λ)
2h1 + h3

(
xx′ − x′x

p
I

)
+

2λ
ph3

(
ρ(
√

x′x/λ)− ε0ρ(∞)
)
Ip
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where

h1 =
1

2p(p+ 2)
EF

[
u′2(
√

z′z/λ)(
√

z′z/λ)3
]

=
1

2p(p+ 2)
EF

[
ψ
′
(
√

z′z/λ)
(
z′z/λ

)
− ψ(

√
z′z/λ)

√
z′z/λ

]
h2 =

1
2p
EF

[
u′3(
√

z′z/λ)(
√

z′z/λ)
]

=
1

2p2
EF

[
ψ
′
(
√

z′z/λ)
(
z′z/λ

)]
h3 = EF

[
u3(
√

z′z/λ)
]

=
1
p
EF

[
ψ(
√

z′z/λ)
√

z′z/λ
]

The influence function deduced by Lopuhaä is presented as a function of t =√
(x− µ)V −1(x− µ). This representation makes subsequent computation surprisingly

complicated in the scatter-only problem, and unnecessarily confusing as the ρ functions

that define S-estimates are commonly denoted in terms of s = t2. A representation

of IF(x, V, F ) as a function of s is much needed especially when S-estimates based

on empirical distribution are to compute. Let u(s) = 2ρ′(s), and implementing the

relationship

ψ(t) = u
(
t2
)
t ψ′(t) = u(s) + 2u′(s)s

ψ(t)t = u(s)s ψ′(t)t2 = u(s)s+ 2u′(s)s2

the influence function of scatter V can be represented equivalently in terms of s,

Proposition 5.2.3. An S-functional V of definition 5.2.1 has influence function

IF(x;V, F ) =
u(x′x/λ)

(2h1 + h3)
xx′ −

[
u (x′x/λ) (x′x/λ)
p(2h1 + h3)

− 2
ph3

(
ρ(x′x/λ)− ε0ρ(∞)

)]
λIp

=
u(x′x/λ)
2h1 + h3

(
xx′ − x′x

p
I

)
+

2λ
ph3

(
ρ(x′x/λ)− ε0ρ(∞)

)
Ip

where λ is necessarily a solution to equation EFρ (z′z/λ) = ε0ρ(∞), and

h1 =
1

p(p+ 2)
EF
[
u′(z′z/λ)(z′z/λ)2

]
h3 =

1
p
EF
[
u(z′z/λ)

(
z′z/λ

)]
Again the asymptotic of an S-estimate of scatter on a mixture of two elliptical

distributions will be investigated under the platform on a sequence of hypotheses defined
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in (4.2.1) with particular interests at G(0, I) = F
(
0, ν2I

)
, i.e.

H0 : (1− ε)F
(
0, Ip

)
+ εF

(
0, ν2Ip

)
vs (5.2.5)

H1,n : (1− ε)F
(
0, Ip

)
+ εF

(
0, ν2

(
Ip +D/

√
n
)−1
)

Denote by P the distribution of null-hypothesis, an application of Theorem 4.1.5

gives readily the asymptotics of S-estimates of scatter.

Theorem 5.2.4. Let V be an S-functional of Definition 5.2.1 with influence function

defined in Proposition 5.2.3, and V̂ be an affine equivariant estimator of V based on

sample. Under sequence of alternative hypotheses H1,n of (5.2.5), V → λI, where λ is

the solution to EP [ρ(x′x/λ)] = ε0ρ
(
∞
)
, and

1.
√
n
(
V̂ − λI

)
d−→ N(−ελm,Ω ), where m = αD − β tr(D)I, Ω = γ(I + Kp) +

ηVec(I)Vec(I)′, and

α =
1

2h1 + h3

{
Es
[
u
(
sν2/λ

) (
sν2/λ

)]
p

+
2Es

[
u′
(
sν2/λ

)
(sν2/λ)2

]
p(p+ 2)

}

β =
2

p2(2h1 + h3)

Es
[
u′
(
sν2/λ

) (
sν2/λ

)2]
p+ 2

−
h1Es

[
u
(
sν2/λ

) (
sν2/λ

)]
h3


h1 =

1
p(p+ 2)

Es

[
(1− ε)u′ (s/λ) (s/λ)2 + εu′

(
sν2/λ

) (
sν2/λ

)2]
h3 =

1
p
Es
[
(1− ε)u (s/λ) (s/λ) + εu

(
sν2/λ

) (
sν2/λ

)]
γ =

1
(2h1 + h3)2p(p+ 2)

{
(1− ε)Es [u(s/λ)s]2 + εEs

[
u
(
sν2/λ

)
sν2
]2}

η = −2λ2

p
γ +

4λ2

p2h3

[
(1− ε)Esρ2

(
s/λ
)

+ εEsρ
2
(
sν2/λ

)
− ε20ρ2

(
∞
)]

s ∼
πp/2

Γ(p/2)
s
p
2
−1f(s)

2. If ν2 = 1, i.e. F
(
0, Ip

)
= G

(
0, Ip

)
, then

√
n
(
V̂ − λI

)
d−→ Np

p (−ελD,Ω ).

Corollary 5.2.5. Assuming notations in Theorem 5.2.4, under the sequence of alter-

native hypotheses H1,n of (5.2.5),

1. n

[
log

(
1
p

tr V̂
)p

|V̂ |

]
d−→ γ

λ2 χ
2
q(δ), a non-central Chi-square distribution with degree

of freedom q = 1
2(p+ 2)(p− 1) and non-centrality δ = (ελα)2

2γ

[
tr
(
D2
)
− 1

ptr2(D)
]
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2. n
2 log

[
tr V̂ · tr (V̂ −1)

p2

]p
d−→ γ

λ2 χ
2
q(δ)

5.3 One-Step W-estimates

Sample mean x̄ and sample covariance-matrix Sn are the primary and most commonly

employed descriptive statistics of location and scatter in the inference of multivariate

analysis. As members of M-estimates, sample mean and sample covariance-matrix are

unfortunately having low breakdown point (which is no more than 1/(p + 1), where

p is the dimension of distribution), hence are very sensitive to outliers. To develop

high breakdown estimates that serve as better summary statistics in the presence of

contamination, Tukey [34] first introduced the weighted sample mean and weighted

sample covariance-matrix as the simplest alternatives to x̄ and Sn,

µ̂ =
∑n

i u1(so,i)xi∑n
i u1(so,i)

, and V̂ =
∑n

i u2(so,i)(xi − x̄)(xi − x̄)′∑n
i u2(so,i)

(5.3.1)

where so,i = (xi − x̄)′S−1
n (xi − x̄).

The location and scatter estimates defined in equation (5.3.1) are called One-Step

W-estimates as they are in fact the first step of an iterative algorithm for adaptively

weighted sample mean and sample covariance-matrix,

µ̂(k+1) =
∑n

i u1(sk,i)xi∑n
i u1(sk,i)

, and V̂(k+1) =

∑n
i u2(sk,i)

(
xi − µ̂(k)

)(
xi − µ̂(k)

)′∑n
i u2(sk,i)

where sk,i =
(
xi − µ̂(k)

)′
V −1

(k)

(
xi − µ̂(k)

)
.

Because of the computational expensive and inefficient nature of an iterative al-

gorithm, One-Step W-estimates have become and remained popular in the statistical

application since their inceptions. In their original definition of (5.3.1), sample mean

and sample covariance-matrix are assumed to be the initial location and scatter esti-

mates. By taking any affine-equivariant location µ̂o and scatter V̂o statistics as the

initial estimates, the concept of One-Step W-estimates can be extended [40],

µ̂ =
∑n

i u1(so,i)xi∑n
i u1(so,i)

, and V̂ =
∑n

i u2(so,i)(xi − µ̂o)(xi − µ̂o)′∑n
i u2(so,i)

(5.3.2)

where now so,i = (xi − µ̂o)′V −1
o (xi − µ̂o).
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In a scatter-only problem, one can assume the location is known to be 0 and popu-

lation version of a One-Step W-functional of scatter is defined analogously as replacing

the
∑

is equation (5.3.2) by the expectation over the distribution F of the population.

Definition 5.3.1. Given an affine equivariant scatter functional V1 and a weight func-

tion u(·), the One-Step W-functional of scatter matrix V2 is defined as

V2 =
EF
[
u
(
z′V −1

1 z
)
z′z
]

EF
[
u
(
z′V −1

1 z
)]

Proposition 5.3.2. Let V1 and V2 be as in definition 5.3.1. Suppose Vi = λiI at

elliptical F ∼ Ep(0, I), then the influence function of V2, denoted by IF(z;V2, F ) is of

the form

− 2h4

λ2
1h1

IF(z;V1, F ) +
(
λ2h3 − h4

λ2
1h1

)
tr [IF(z;V1, F )] I +

u (z′z/λ1)
(
zz′ − λ2I

)
h1

,

where it is necessarily for λ2 = EF [u(z′z/λ1)(z′z)] /(ph1), and

h1 = EF
[
u(z′z/λ1)

]
h3 = EF

[
u′(z′z/λ1)(z′z)

]
/p

h4 = EF
[
u′(z′z/λ1)(z′z)2

]
/p(p+ 2)

The asymptotic distribution of
√
n
(
V̂2 − V2

)
under the sequence of hypothesis H1,n

of (5.2.5) can too be deduced directly from Theorem 4.1.5. But it is more interesting to

understand the relationship between the limiting distribution of One-Step estimate V̂2

and that of the original scatter estimate V̂1. To this end, let Z1 be the limiting distribu-

tion of
√
n
(
V̂1 − V1

)
under H1,n, and Z2 be the limiting distribution of n−1/2

∑n
i ψ(xi),

where ψ(x) = u(x′x/λ1)(x′x− λ2I)/h1. The contiguity of H1,n to H0 guarantees that

both Z1 and Z2 are normally distributed. For brevity, let α = −2h4/λ
2
1h1 and β be

the shorthand of (λ2h3 − h4)/λ2
1h1. The connection between a scatter matrix and its

influence function presented in Lemma (4.1.1) gives
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Vec
[√

n
(
V̂2 − V2

)]
=

1√
n

n∑
i

Vec [IF(xi;V2, P )] + op(1)

=
(
αIp2 + βVec(I) [Vec(I)]′

)
Vec

[
1√
n

n∑
i

IF(xi;V1, P )

]
+ Vec

[
1√
n

n∑
i

ψ(xi)

]
+ op(1)

=
(
αIp2 + βVec(I) [Vec(I)]′ , Ip2

)
Vec

 1√
n

∑n
i IF(xi;V1, P ) =

√
n
(
V̂1 − V1

)
+ op(1)

1√
n

∑n
i ψ(xi)


H1,n−→

(
αIp2 + βVec(I) [Vec(I)]′ , Ip2

)
Vec

Z1

Z2

 ≡ (A, Ip2)Vec

Z1

Z2

 say.

Following LeCam third Lemma and Theorem 4.1.5, Z1 and Z2 are jointly normal

Vec

Z1

Z2

 = N

Vec

εm1

εm2

 ,

Ω1 Σ

Σ Ω2


with P denoting the mixture of (1 − ε)F (0, I) + εG(0, I), where G(0, I) = F (0, ν2I),

the parameters are

m1 = EG

[(
tr(D)

2
+
g′(x′x)
g(x′x)

x′Dx
)

IF(x;V1, P )
]
, m2 = EG

[(
tr(D)

2
+
g′(x′x)
g(x′x)

x′Dx
)
ψ(x)

]
Ω1 = EP

{
Vec [IF(x;V1, P )] Vec [IF(x;V1, P )]′

}
, Ω2 = EP

{
Vec [ψ(x)] Vec [ψ(x)]′

}
Σ = EP

{
Vec [IF(x;V1, P )] Vec [ψ(x)]′

}
All these results come to the fruition of this assertion

√
n Vec

(
V̂2 − V2

)
H1,n−→ Np

p

(
εAVec(m1) + εVec(m2), AΩ1A+ Ω2 + 2AΣ

)
This facilitates the following theorem,

Theorem 5.3.3. Let V be an M-functional of definition 5.1.1 or an S-functional of

definition 5.2.1 with influence function IF(x;V, F ) = w(x′x)xx′ − π(x′x)I. Let V2 be

a One-Step W-functional of definition 5.3.1, based on a weight function u(·) and V .

Denote by V̂2 and V̂ respectively the consistent estimates of V2 and V at empirical

distribution. Under sequence of alternative hypotheses H1,n of (5.2.5),
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1.
√
n
(
V̂2 − λ2I

)
d−→ N(−εm,Ω ), where m = α2D+β2 tr(D)I, Ω = γ2(I+Kp)+

η2 Vec(I)Vec(I)′, and

α2 =
(
−λ∗2 −

2k∗4 − 2k4

k1λ

)
β2 =

(
λ2k

∗
3 − k∗4
k1λ

− λ2k3 − k4

k1λ
α+

pλ2k3 − (p+ 2)k4

k1λ
β

)
γ2 =

(
2k4

k1λ2

)2

γ +
1

p(p+ 2)k2
1

{
(1− ε)Es

[
u2(s/λ)s2

]
+ εEs

[
u2
(
sν2/λ

) (
sν2
)2]}

− 4k4

p(p+ 2)k2
1λ

2

{
(1− ε)Es

[
w(s)u(s/λ)s2

]
+ εEs

[
w
(
sν2
)
u
(
sν2/λ

) (
sν2
)2]}

here α, β, γ and λ are defined as in theorem 5.2.4 or 5.1.3,

k1 = Es
[
(1− ε)u (s/λ) + εu

(
sν2/λ

)]
k3 = (1− ε)Es

[
u′ (s/λ) s

]
/p+ εk∗3, k∗3 = Es

[
u′
(
sν2/λ

)
sν2
]
/p

k4 = (1− ε)
Es
[
u′ (s/λ) s2

]
p(p+ 2)

+ εk∗4, k∗4 =
Es

[
u′
(
sν2/λ

) (
sν2
)2]

p(p+ 2)

λ2 = (1− ε)Es [u (s/λ) s] /(pk1) + ελ∗2, λ∗2 = Es
[
u
(
sν2/λ

)
sν2
]
/(pk1)

s ∼
πp/2

Γ(p/2)
s
p
2
−1f(s)

2. If ν2 = 1, i.e. F
(
0, Ip

)
= G

(
0, Ip

)
, then

√
n
(
V̂2 − λ2I

)
d−→ Np

p (−ελ2D,Ω ).

5.4 Invariant Scatter Estimates

Almost all scatter estimates appeared in the literature are of affine-equivariance. They

are popular due to their nice properties. Given such a scatter functional V (F ), the

scaled shape functional h(V ) = pV/tr(V ) is apparently not affine-equivariant, because

|h(V (F ))| = 1 for all spherical F ∼ Ep
(
0, ν2Ip

)
. The corresponding non affine-

equivariant scatter estimate h(V̂ ), however, has a slight advantage over the affine-

equivariant ones in the application of testing hypothesis on the mixtures of elliptical

distributions (5.2.5).

The computation of asymptotic mean and covariance matrix of a scatter estimate

is enormously intensive (Theorem 4.1.5), involves heavily with the influence function

of the scatter-functional which is typically of the form ω1(|z|)zz′ − ω2(|z|)I, and in
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all known cases ω2 is a much more complicated function of |z| than ω1. The scaled

scatter estimate h(V̂ ) on the other hand has a simpler influence function than original

non-scaled affine-equivariant one.

Proposition 5.4.1. Let V be an affine equivariant scatter matrix functional with in-

fluence function IF (z;V, F ) = ω1(|z|)zz′−ω2(|z|)I, and having value of λI at spherical

distribution F ∼ E(0, I). Then the matrix functional S = p
tr(V )V has influence function

IF (z;S, F ) = ω1
λ

(
zz′ − (z′z)

p I
)

.

Given an equivariant scatter statistic V̂ , a corresponding scaled scatter estimate

Ŝ = pV̂ /tr(V̂ ) provides a computationally simple choice for computing its asymptotic

distribution. In fact,

Theorem 5.4.2. Suppose
√
n
(
V̂ − V

)
is asymptotically normal under the sequence of

hypothesis H1,n of (5.2.5), with mean m = −ελ [αD − β tr(D)I], and covariance-matrix

Ω = γ(I +Kp) + ηVec(I)Vec(I)′

1.
√
n
(
Ŝ − I

)
d−→ N(−εm∗,Ω∗ ), where Ω∗ = γ

λ2

[
(I +Kp)− 2

pVec(I)Vec(I)′
]
,

and m∗ = α
[
D − tr(D)

p I
]

2. n
2 log

[
tr Ŝ· tr (Ŝ−1)

p2

]p
∼ n

[
log

(
1
p

tr Ŝ
)p

|Ŝ|

]
∼ n

[(
1
p

tr V̂
)p

|V̂ |

]
d−→ γ

λ2 χ
2
q(δ), a non-

central Chi-square distribution with degree of freedom q = 1
2(p + 2)(p − 1) and

non-centrality δ = (ελα)2

2γ

[
tr
(
D2
)
− 1

ptr2(D)
]

5.5 MM-Estimates

MM estimates of multivariate location and scatter were recently introduced by Tatsuoka

and Tyler (2000) to combine the efficiency of M-estimates with the high breakdown

properties of S-estimates. In their paper, however, they do not derive the asymptotic

distribution of the MM-estimates. Thus the results presented in this section are the

first steps to formally address this problem.

Definition 5.5.1. For a distribution F in Rp and an equivariant scale functional

σ(F ) > 0, the multivariate location and scatter MM-functionals are defined to be µ(F )
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and V (F ) = σ2(F )Γ(F ) respectively, where (µ,Γ) is any solution which minimizes

EF

[
ρ

{
(x− µ)′Γ−1(x− µ)

σ2(F )

}]
(5.5.1)

over all µ ∈ Rp and Γ ∈ PDS(p) with det(Γ) = 1

5.5.1 Relationship to M-functional

The objective function L of the minimization problem (5.5.1) can be constructed as

L(µ,Γ) = EF

[
ρ

{
(x− µ)′Γ−1(x− µ)

σ2(F )

}]
+ λ log(det(Γ))

A solution (µ,Γ) of (5.5.1) must satisfy the equations

∂L

∂µ
= EF

[
−u (t)

σ2
Γ−1(x− µ)

]
= 0 (5.5.2)

∂L

∂Γ
= EF

[
−u (t)

2σ2
Γ−1(x− µ)(x− µ)′Γ−1

]
+ λΓ−1 = 0 (5.5.3)

where u(t) = 2ρ′(t) and t = (x− µ)′Γ−1(x− µ)/σ2. Multiplying (5.5.3) by Γ and taking

the trace gives λ = EF (u(t)t) /(2p). Denote ψ(t) = u(t)t, a solution (µ,Γ) of (5.5.1) is

also a solution to equations

EF [u (t) (x− µ)] = 0 (5.5.4)

EF
[
u (t) (x− µ)(x− µ)′

]
− σ2

p
EF [ψ (t)] Γ− log |Γ|Γ = 0 (5.5.5)

The term − log |Γ|Γ is being added to equation (5.5.5) because merely substitute

λ into (5.5.3) would only render a system of dependent equations that has no unique

solution.

5.5.2 Influence Function of Shape-Functional Γ

The influence function for µ and Γ can be treated separately. Hence Γ with det(Γ) = 1

must satisfy EΨ(z,Γ) = 0, where

Ψ(z,Γ) = u

(
z′Γ−1z
σ2

)
zz′ − σ2

p
ψ

(
z′Γ−1z
σ2

)
Γ− log |Γ|Γ = 0 (5.5.6)

By [12], the influence function of Γ is proportional to Ψ:

Vec {IF(z; Γ, F )} = M−1Vec{Ψ(z,Γ0)}
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where M = −EF
[
∂Vec{Ψ(z,Γ)}
∂Vec(Γ)

]
Γ=Γ0

∈ Rp2

p2
and Γ0 is such that EF [Ψ(z,Γ0)] = 0. When

F ∼ E(0, Ip), Γ0 = I clearly is a solution, so

M = E

[
1
σ2
u′
(

z′z
σ2

)
zz′ ⊗ zz′ − 1

p
ψ′
(

z′z
σ2

)
Vec(Ip)Vec(zz′)′ +

σ2

p
ψ

(
z′z
σ2

)
Ip2

]
+Vec(Ip)Vec(Ip)

Let u = z/|z|. Using the identities that

EF
(
uu′
)

= p−1Ip and

EF
(
uu′ ⊗ uu′

)
=

1
p(p+ 2)

[(
Ip2 +Kp

)
+ Vec(Ip)Vec(Ip)′

]
,

, the closed form of M is obtained as

M =
σ2

p(p+ 2)
E

[
u′
(

z′z
σ2

)(
z′z
σ2

)2
] [(

Ip2 +Kp

)
+ Vec(Ip)Vec(Ip)

]
− σ2

p2
E

[
ψ′
(

z′z
σ2

)(
z′z
σ2

)]
Vec(Ip)Vec(Ip)′ +

σ2

p
E

[
ψ

(
z′z
σ2

)]
Ip2 + Vec(Ip)Vec(Ip)

= (h1 + h3)Ip2 + h1Kp + (h1 − h2)Vec(Ip)Vec(Ip)′

where

h1 =
σ2

p(p+ 2)
E

[
u′
(

z′z
σ2

)(
z′z
σ2

)2
]

h2 =
σ2

p2
E

[
ψ′
(

z′z
σ2

)(
z′z
σ2

)]
− 1 =

σ2

p2
E

[
u′
(

z′z
σ2

)(
z′z
σ2

)2

+ ψ

(
z′z
σ2

)]
=
(

1 +
2
p

)
h1 +

h3

p
− 1

h3 =
σ2

p
E

[
ψ

(
z′z
σ2

)]
=
σ2

p
E

[
u

(
z′z
σ2

)(
z′z
σ2

)]
It follows,

M−1 =
1

2h1 + h3

[
h1 + h3

h3
Ip2 −

h1

h3
Kp −

h1 − h2

(2h1 + h3) + p(h1 − h2)
Vec(Ip)Vec(Ip)′

]
=

1
2h1 + h3

[
h1 + h3

h3
Ip2 −

h1

h3
Kp −

(
1
p
− 2h1 + h3

p2

)
Vec(Ip)Vec(Ip)′

]
,

this gives,

Vec {IF(z; Γ, F )} = M−1

{
u

(
z′z
σ2

)
Vec(zz′)− σ2

p
ψ

(
z′z
σ2

)
Vec(Ip)

}
=

1
2h1 + h3

[
u

(
z′z
σ2

)
Vec(zz′)− 1

p
u

(
z′z
σ2

)
(z′z)Vec(I)

]
which in turn gives

IF(z; Γ, F ) =
u
(
z′z/σ2

)
2h1 + h3

(
zz′ − z′z

p
I

)
The MM-Scatter functional V (F ) = σ2(F )Γ(F ) satisfies equation (5.5.5), is thus an

affine equivariant with influence function IF(z;V, F ) = σ2IF(z; Γ, F )



60

5.5.3 Asymptotic Distribution on Mixture of Elliptical Distributions

For the purpose of consistency and easy comparison, the characteristics of an MM-

estimate of scatter matrix on an asymmetric non-elliptical will be examined asymp-

totically on a mixture of two elliptical distributions in the context of a sequence of

hypotheses defined in (4.2.1), i.e.

H0 : (1− ε)F
(
0, Ip

)
+ εG

(
0, ν2Ip

)
vs (5.5.7)

H1,n : (1− ε)F
(
0, Ip

)
+ εG

(
0, ν2

(
Ip +D/

√
n
)−1
)

Denote by P the distribution of null-hypothesis, when interests are particularly at

G(0, I) = F
(
0, ν2I

)
, the asymptotics of an MM-estimate is a straightforward applica-

tion of Theorem 4.1.5.

Theorem 5.5.2. In particular if G(0, I) = F (0, bI), then P is the mixture of (1 −

ε)F (0, I) + ε F (0, bI), let s ∼ πp/2

Γ(p/2)s
p
2
−1f(s), then under H1,n,

1.
√
n
(
V̂ − σ2I

)
d−→ N

[
−εσ2α

(
D − trD

p I
)
, γ(I +Kp)− 2γ

p Vec(I)[Vec(I)]′
]
, where

α =
1

2h1 + h3

Es
[
u
(
bs/σ2

) (
bs/σ2

)]
p

+
2Es

[
u′
(
bs/σ2

) (
bs/σ2

)2]
p(p+ 2)


γ =

1
p(p+ 2)(2h1 + h3)2

{
(1− ε)Es

[
u2
(
s/σ2

)
s2
]

+ εEs
[
u2
(
bs/σ2

)
(bs)2

]}
h1 =

1
p(p+ 2)

Es

[
(1− ε)u′

(
s/σ2

) (
s/σ2

)2 + εu′
(
bs/σ2

) (
bs/σ2

)2]
h3 =

1
p
Es
[
(1− ε)u

(
s/σ2

) (
s/σ2

)
+ εu

(
bs/σ2

) (
bs/σ2

)]

2. n

(
1− |V̂ |(

1
p

tr V̂
)p
)

∼ n

(
log

(
1
p

tr V̂
)p

|Γ̂|

)
∼ n

2 log
(

tr V̂
p ·

tr (Γ̂−1)
p

)p
∼

n

(
1− |Γ̂|(

1
p

tr Γ̂
)p
)

∼ n

(
log

(
1
p

tr Γ̂
)p

|Γ̂|

)
∼ n

2 log
(

tr Γ̂
p ·

tr (Γ̂−1)
p

)p d−→ γ
(σ2)2

χ2
q(δ),

where δ = (εσ2α)2

2γ

(
tr(D2)− 1

ptr2(D)
)

, and q = 1
2(p+ 2)(p− 1)

5.5.4 Efficiency at Mixture of Elliptical Distributions

In this section, we will investigate the efficiency of an MM-estimate at a mixture of

elliptical distributions (1− ε)F (0,Σ) + εF (0, bΣ).
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By its very construction, an MM-functional V = σ2Γ is naturally separated into

what Kent and Tyler (1996) call ”shape” and ”scale” components. A shape component

of a matrix V is any function H(V ) which is invariant under a positive scalar multiple,

H(λV ) = H(V ), λ > 0; and a scale component is any equivariant function under the

same transformation. Kent and Tyler (1996) argue that scale component is an ill-

defined nuisance parameter, hence investigation of a scatter estimate should be focused

only on its shape component. Tyler (1983) was the first to give an explicit formula of

the asymptotic covariance matrix of a shape component H(V̂ )

γ h′(V )(I +Kp) (V ⊗ V ) [h′(V )]′ (5.5.8)

where γ is the only scalar whose value depends on the ρ function that defines scatter V̂ .

Motivated by this singleton form of the variance of a shape component along with other

interesting arguments, Kent and Tyler (1996) suggest a convenient way to compare

the asymptotic relative efficiency of scatter estimates. That is to simply look at the

variance-matrix of its shape component and compare the corresponding values of γ for

varying choices of ρ function.

From theorem 5.5.2 and using the argument of affine equivariance, the asymptotic

covariance matrix of the shape component an MM-estimate is in the form of

γ (I +Kp) (Σ⊗ Σ)− 2γ
p

Vec(Σ)Vec(Σ)′ (5.5.9)

which in fact belongs to type (5.5.8) with h(V ) = V/ (p|V |). Subsequently, the ARE’s

of MM-estimates will be examined through γ in conformity with Kent and Tyler(1996),

and with Lopuhaä (1999).

Huber Estimate

The Huber weight function for a scatter-matrix estimate is given as

uc(s) =


1 (s < c)

c/s (s ≥ c)
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which implies the ρ-function is of the form,

ρc(s) = cρ(s/c) =
1
2


s (s < c)

c log(s/c) + c (s ≥ c)

and the derivative is simply u′c(s) = −c/s2, s ≥ c.

Consider the values of the asymptotic variance coefficient γ of Huber MM-estimates

of scatter as a function of tuning constant c. The graphs of this function are plotted

in Figure 5.1 for Normal-distributions and in Figures 5.2 & 5.3 for multivariate T-

distribution tv,p. Since γ(c) is confounded with the scale-functional σ2, without loss of

generosity, σ is set to be 1. Note that the limiting case of Huber estimate, c → ∞,

corresponds to the sample covariance matrix, whose γ under tv,p converges to (v−2)/(v−

4). This claim comes from Theorem 5.5.2, that u(s) = 1 for all s gives s/p ∼ Fp,v, hence

γ (∞) =
1

p(p+ 2)
Es2(
1
pEs

)2 =
(

p

p+ 2

) (p+2)v2

p(v−2)(v−4)

v2

(v−2)2

=
v − 2
v − 4

On the other end, the limiting case of c → 0 has asymptotic γ = (p + 2)/p. It follows

immediately that the Huber estimates do not attain its minimum variance at c = ∞

under tv,p distribution.

Tukey’s Biweight Estimate

Tukey’s Biweight estimates are defined by

ρc(s) = cρ (s/c) =


s
2 −

s2

2c + s3

6c2
, 0 < s ≤ c

c
6 , s > c

It follows

uc(s) = 2ρ′c (s) =
(

1− s

c

)2
I[0≤s≤c]

u′c (s) =
2
c

(s
c
− 1
)

I[0≤s≤c]

As a function of tuning constant c, values of asymptotic variance coefficient γ(c)

of Tukey’s MM-estimates are plotted in Figure 5.4 for Normal (or Normal mixture)

distributions and in Figure 5.5 for T-distribution tv,p with degree of freedom 1 and 3
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on different dimensions. Vigorous computations have shown that γ does not attain its

minimum at c→∞ or maximum at c→ 0 under non-normal model.

Welsh’s Estimate

Welsh ρ-function is of the form ρc(s) = cρ(s/c) = c
2

(
1− e−s/c

)
. The defining weight

functions of a Welsh’s scatter-estimate are given as

uc (s) = 2ρ′c (s) = e−
s
c

u′c (s) = −1
c
e−

s
c

When the underlying (H0) distribution is a mixture of two Normals, i.e.P = (1 −

ε)N(0, Ip) + εN(0, bIp), the scalar α of asymptotic mean and γ of asymptotic variance

have closed forms,

α(c) =
1

(1− ε)α∗ + ε
, where α∗ =

1
b

(
cσ2 + 2b
cσ2 + 2

) p
2

+2

γ(c) =
(
σ2
)2 1−ε

(cσ2+4)
p
2 +2

+ εb2

(cσ2+4b)
p
2 +2[

1−ε
(cσ2+2)

p
2 +2

+ εb

(cσ2+2b)
p
2 +2

]2

(cσ2)
p
2

+2

Under a multivariate normal distribution Np(0, I), Welsh’s estimate has its min-

imum variance coefficient γ at c → +∞ which corresponds to the sample variance-

covariance matrix. Under a mixture of Normal distributions, however a Welsh’s esti-

mate can attain its minimum variance anywhere of the tuning constant c depending

the structure of the underlying mixture (Figure 5.6).

5.5.5 When Scale Parameter σ Is Unknown

Intuitively, one would substitute with an consistent estimate ŝ when the auxiliary

scale parameter σ is unknown. In fact it is a conjecture that the asymptotics of MM-

estimates deduced in section 5.5.3 will remain unchanged when ŝ replaces σ, if the

following conditions are met

1. The underlying distribution Fx is symmetric

2. The scale estimate ŝ satisfies the equivariant property of (1.2.2)
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3. ŝ converges at
√
n -rate to σ(Fx)

An easy way to produce such a scale estimate is to set ŝ = |V̂o|1/2p, where V̂o is

an affine equivariant scatter estimate with high breakdown points. The proof of this

conjecture is to be completed and presented in a subsequent paper.

Some important remarks have to be made before closing on this chapter. It is a

well known fact that the efficiency of a scatter estimate improves as the dimension of

data increases, therefore the variance coefficient γ of a scatter must be smaller in higher

dimensions. The plots of values of γ in Appendix B, however seem disagree with this

principal in that γ looks like increasing as p getting larger. A simple explanation is

this, the horizontal axis on each of those graphs are not the tuning constant c, rather it

is co = cσ(Fx). Due to the very construction of an MM-estimate, the scale functional

σ is confounded with the tuning constant c from weight function. For the simplicity

of computation, the values of γ are calculated assuming σ(Fx) = 1 for varying c. In

reality, σ depends on underlying distribution Fx and is neither equal to 1 unless at a

Normal model nor constant for different dimensional spaces. Thus, to make an accurate

inference on γ across dimension p, one has to factor in the value of σ for a particular

model.
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5.6 Appendix A: Proofs of Theorems and Corollaries

Proof of Proposition 5.1.2

Proof. In addition to its representation, IF (z;V, F ) = ω1 (|z|)zz′ − ω2(|z|) Ip, given by

Lemma 4.1.1, the influence function of an M-functional has a unique property that it

is always proportional to ψ (page 230 in Hampel [12]):

Vec{IF (z;V, F )} = M−1 Vec{ψ(z, V0)}

where V0 is such Eψ(z, V0) = 0, and M = −E
[
∂Vec{ψ(z,V )}
∂Vec(V )

]
V=V0

∈ Rp2

p2
. Since V0 = λIp

under F ,

M = E

{
µ′
(

z′z
λ

)
Vec

(
zz′

λ

)[
Vec

(
zz′

λ

)]′}
+ Ip2 = h

(
Ip2 +Kp

)
+hVec(Ip) [Vec(Ip)]

′+ Ip2

where the close form of h is given by Tyler [35]. It follows,

M−1 =
1

2h+ 1

[
(h+ 1) Ip2 − hKp −

h

(p+ 2)h+ 1
Vec(Ip) [Vec(Ip)]

′
]

which in turn gives the result.

Proof of Theorem 5.1.3

Proof. Let z ∼ F
(
0, I
)
, and x = σz. Then x ∼ G

(
0, I
)
F
(
0, σ2I

)
. The asymptotic

mean of
√
n
(
V̂ − V

)
is defined in Theorem 4.1.5, which equals to

EG

[(
tr(D)

2
+
g′(x′x)
g(x′x)

x′Dx
)

IF(x;V, P )
]

The influence function of an M-functional is given by Proposition 5.1.2

IF (x;V, F ) =
u (x′x/λ)

2h+ 1

(
xx′ − x′x

p
I

)
+
u (x′x/λ) x′x/p− λ

(p+ 2)h+ 1
I

where h = E
(
u′(x′x/λ)(x′x/λ)2

)
/p(p+2), λ is the solution to equation E

(
u (x′x/λ) x′x/λ

)
=

p, and the expectation is taken over the null-distribution P ∼ (1−ε)F
(
0, I
)
+εF

(
0, σ2I

)
.

It is well known that when z ∼ F
(
0, I
)
, the random radius s = z′z is independent of

u = z/s, and u is uniformly distributed on Sp−1 with identities Eu

[
uu′Duu′

]
=
[
2D+

tr(D)I
]
/
[
p(p+2)

]
and Eu

[
u′Du

]
= tr(D)/p. Also notice that change-of-variable in the



66

integration gives EG
[
g′(x′x)/g(x′x)

]
= Es

[
f ′(s)/f(s)

]
/σ2 and Es

[
f ′(s)/f(s)s

]
= −p/2

. With the aid of these properties, one can carry out the tedious calculations.

A1 =
tr(D)

2
EG

[
u (x′x/λ)

2h+ 1

(
xx′ − x′x

p
I

)]
= 0

A2 =
tr(D)

2
EG

[
u (x′x/λ) x′x/p− λ

(p+ 2)h+ 1
I

]
=

tr(D)
2
[
(p+ 2)h+ 1

]Es [u (sσ2/λ
)
sσ2/p− λ

]
I

A3 = EG

[
g′(x′x)
g(x′x)

(
x′Dx

)u (x′x/λ)
2h+ 1

(
xx′ − x′x

p
I

)]
=

1
2h+ 1

Es

[
f ′(s)
f(s)

u
(
sσ2/λ

)
s2σ2

]
Eu

[(
uu
)′
D

(
uu′
)
− 1
p

(
u′Du

)
I

]
=

2
p(p+ 2)(2h+ 1)

Es

[
f ′(s)
f(s)

u
(
sσ2/λ

)
s2σ2

] [
D − tr(D)

p
I

]
A4 = EG

[
g′(x′x)
g(x′x)

(
x′Dx

)(u (x′x/λ) x′x/p− λ
(p+ 2)h+ 1

)]
I

=
1

p
[
(p+ 2)h+ 1

]Es [f ′(s)
f(s)

(
u
(
sσ2/λ

)
s2σ2

p
− λs

)]
Eu

[
u′Du

]
I

=
tr(D)

p2
[
(p+ 2)h+ 1

]Es [f ′(s)
f(s)

u
(
sσ2/λ

)
s2σ2

]
I +

λtr(D)
2
[
(p+ 2)h+ 1

]I
The sum of A′is is the asymptotic mean, which can be simplified by noting

Es

[
f ′(s)
f(s)

u
(
sσ2/λ

)
s2σ2

]
= − 1

λ
Es

[
u′
(
sσ2/λ

) (
sσ2
)2]− p+ 2

2
Es
[
u
(
sσ2/λ

) (
sσ2
)]

Proof of Corollary 5.1.4

Proof. First let h(V ) = log

[(
1
p

trV
)p

|V |

]
= p log (trV ) − log |V | − p log(p). Denote

(∂a/∂b) as the matrix of partial derivatives (∂ai/∂bj), where i varies over rows and

j runs over columns. Taking into account of the symmetry of V , the first and second

order derivatives of h(V ) with respect to V are conventionally defined as

h(1) (V ) =
∂ h(V )
∂Vec (V )

1
2

(I + Jp) ∈ R1
p2

h(2) (V ) =
1
2

(I + Jp)

(
∂
[
h(1)(V )

]′
∂Vec (V )

)′
∈ Rp2

p2

where Jp =
∑p

i=1 eie′i ⊗ eie′i and ei ∈ Rp is a vector of zero but a 1 in position i.
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Applying the identities that

∂|V |
∂Vec(V )

1
2

(I + Jp) = |V |[Vec(V −1)]′

trV
∂Vec(V )

1
2

(I + Jp) = [Vec(I)]′

to the calculations of the first derivative,

h(1) (V ) =
p

trV
[Vec(I)]′ −

[
Vec(V −1)

]′
Let Vij be the ij-th element of V . The identity ∂V −1/∂Vij = −V −1 (∂V/∂Vij)V −1

can be extended to obtain

∂Vec(V −1)
∂Vec(V )

= −
(
V −1 ⊗ V −1

) [dVec(V )
d V11

,
dVec(V )
d V12

, · · · , dVec(V )
d Vpp

]
= −

(
V −1 ⊗ V −1

)
(I +Kp − Jp)

With the aid of (I +Kp − Jp) 1
2(I + Jp) = 1

2(I +Kp),

h(2)(V ) =
1
2
(
I +Kp

) (
V −1 ⊗ V −1

)
− p

(trV )2 Vec(I) [Vec(I)]′

Interests are laid in the evaluations of the derivatives at V = λI when H1,n reaches

its limit (i.e. when the null hypothesis is true). This gives h(1)(V ) = 0, h(2)(V ) =[
1
2 (I +Kp)− 1

p Vec(I)Vec(I)′
]
/λ2. The Taylor expansion of h(V̂ ) at V = λI hence

becomes

h
(
V̂
)
− h

(
V
)

=
[
Vec

(
V̂ − V

)]′(1
2

h(2)(V )
)[

Vec
(
V̂ − V

)]
+ op(n−1)

Denote Z the limiting distribution of
√
n
[
Vec

(
V̂ − V

)]
. It follows,

n log


(

1
p trV

)p
|V |

 = n
[
h
(
V̂
)
− h

(
V
)] d−→ γ

λ2
Z ′
[
λ2

2γ
h(2)(V )

]
Z =

γ

λ2
Z ′BZ say.

From Theorem 5.1.3, Z has asymptotic mean µ = −ε λ (αD − β tr(D)I), and Variance-

Covariance matrix Ω = γ(I +Kp)− ηVec(I)[Vec(I)]′ under H1,n.

Let B = λ2/(2γ)h(2)(V ) =
[

1
4 (I +Kp)− 1

2p Vec(I)Vec(I)′
]
/γ. Since BΩB = B,

the quadratic form Z ′BZ is a χ2 distribution; since 2γB = (2γB)2 is idempotent, this
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χ2 has degree of freedom = rank (B) = tr (2γB) = 1
2 (p+ 2)(p− 1); the non-centrality

parameter δ is by definition equal to Vec(µ)′BVec(µ) = (ελα)2

2γ

[
tr
(
D2
)
− 1

ptr2(D)
]

To find the limiting distribution of n
2 log

[
tr V̂ · tr (V̂ −1)

p2

]p
= n

2

[
h
(
V̂
)

+ h
(
V̂ −1

)]
,

we first observe that at V = λI,

h(1)
(
V −1

)
=
∂ h
(
V −1

)
∂V

=
∂h
(
V −1

)
∂V −1

∂V −1

∂V
= 0

h(2)
(
V −1

)
=
∂2 h

(
V −1

)
∂V 2

=

[
∂2h

(
V −1

)
∂(V −1)2

∂V −1

∂V
+
∂h
(
V −1

)
∂V −1

∂2V −1

∂(V −1)∂V

]
∂V −1

∂V

= λ2

[
1
2

(I +Kp)−
1
p

Vec(I)Vec(I)′
] [
−1

2
(I +Kp)

(
V −1 ⊗ V −1

)]2

= λ−2

[
1
2

(I +Kp)−
1
p

Vec(I)Vec(I)′
]

= h(2) (V )

hence the Delta method again gives the desired asymptotic distribution.

Proof of Proposition 5.3.2

Proof. Let Ψ(z, V1, V2) = u
(
z′V −1

1 z
) (
V2 − zz′

)
, and ∆x be a point mass at a given

x ∈ Rp. Put for brevity

Fε ∼ (1− ε)F + ε∆x , and V1,ε = V1 (Fε) , V2,ε = V2 (Fε)

By definition, V1,0 = V1(F ) = λ1I, V2,0 = V2(F ) = λ2I are solutions to

EF [Ψ(z, V1,0, V2,0)] = 0 (5.6.1)

Then V1,ε together with V2,ε verifies

0 = EFεΨ (z, V1,ε, V2,ε) = (1− ε)EFΨ (z, V1,ε, V2,ε) + εΨ (x, V1,ε, V2,ε)

Taking VEC operation and differentiating with respect to ε yields

0 =−Vec [EFΨ (z, V1,ε, V2,ε)] + EF

[
u
(
zV −1

1,ε z
)]

Vec
(
∂V2,ε

∂ε

)
+ EF

[
u′
(
zV −1

1,ε z
)]

Vec
(
V2,ε − zz′

)
Vec

(
−V −1

1,ε zz′V −1
1,ε

)′
Vec

(
∂V1,ε

∂ε

)
+ Vec [Ψ (x, V1,ε, V2,ε)] + o(ε) (5.6.2)
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The first term varnishes at ε = 0 by (5.6.1). For simplicity, denote by A1 and A2 the

influence functions of V1 and V2 at x respectively, taking ε ↓ 0 yields

EF
[
u
(
z′z/λ1

)]
Vec (A2) = −Vec [Ψ (x, V1,0, V2,0)]

+ EF

[
u′ (z′z/λ1) (z′z)λ2

pλ2
1

] (
Vec(I) [Vec(I)]′

)
Vec (A1)

− EF

[
u′ (z′z/λ1) (z′z)2

p(p+ 2)λ2
1

] (
I +K + Vec(I) [Vec(I)]′

)
Vec (A1)

=−Vec [Ψ (x, V1,0, V2,0)] +
(
λ2h3 − h4

λ2
1

)
tr(A1)Vec(I)− 2h4

λ2
1

Vec (A1)

It follows

A2 = − 2h4

λ2
1h1

A1 +
(
λ2h3 − h4

λ2
1h1

)
tr(A1)I +

u (x′x/λ1)
(
xx′ − λ2I

)
h1

Proof of Proposition 5.4.1

Proof. Let h(V ) = pV/tr(V ) and Fε = (1 − ε)F + εδx, where δx is a point-mass at

x. Define h′(V ) = 1
2 [∂Vec(h(V ))/∂Vec(V )] (I + Jp), where Jp =

∑p
i=1 eie′i ⊗ eie′i and

ei ∈ Rp is a vector of zero but a 1 in position i [36]. By definition

Vec
[
IF
(
x; h(V ), F

)]
= lim

ε→0

Vec
[
h
(
V (Fε)

)
− h

(
V (F )

)]
ε

= lim
ε→0

Vec
[
h
(
V (Fε)

)
− h

(
V (F )

)]
Vec [V (Fε)− V (F )]

lim
ε→0

Vec [V (Fε)− V (F )]
ε

= h′(V (F ))Vec [IF(x;V, F )]

=
[

p

tr(V )
Ip2 −

p

tr2(V )
Vec(V )[Vec(I)]′

]
Vec [IF(x;V, F )]

By affine-equivariance V (F ) = λIp at spherical distribution F ∼ E(0, Ip), hence

h′(V ) =
[
Ip2 − 1

pVec (Ip) [Vec (Ip)]
′
]
/λ, and

h′(V )Vec [IF(z;V, F )] =
1
λ

[
Ip2 −

1
p

Vec (Ip) [Vec (Ip)]
′
][
ω1(|z|)Vec

(
zz′
)
− ω2(|z|)Vec(I)

]
=
ω1(|z|)
λ

[
Vec

(
zz′
)
− (z′z)

p
Vec (I)

]
.

This completes the proof.

Proof of Theorem 5.4.2
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Proof. Continue the notations in the proof of Proposition 5.4.1, since V → λI and

S = h(V )→ I asymptotically,

Vec
[√

n
(
Ŝ − I

)]
= h′(V ) Vec

[√
n
(
V̂ − V

)]
+ op(1)

H1,n−→ 1
λ

[
Ip2 −

1
p

Vec (Ip) [Vec (Ip)]
′
]
Vec(Z)

where Z ∼ N(m,Ω). This proves the first claim. The second claim is proved similarly

using the lines in the proof of Corollary 5.1.4.
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5.7 Appendix B: Figures
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Figure 5.1: Variance coefficient γ of Huber MM-Estimates at Normal distributions
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Figure 5.2: Variance coefficient γ of Huber MM-Estimates at tv,p (part 1)
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Figure 5.3: Variance coefficient γ of Huber MM-Estimates at tv,p (part 2)
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Figure 5.4: Variance coefficient γ of Tukey MM-Estimates at Normal distributions
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Chapter 6

Shape Analysis Based on Two Robust Estimators

6.1 Preliminary

As discussed in the Introduction, when the underlying distribution is outside elliptically

symmetric, a symmetric one but non-elliptical for example, different scatter functionals

are not necessarily representing the same distribution quantity. This triggers an idea

that comparing scatter estimates of different types may help discover the departure of

underlying distribution from an elliptical symmetric one, that otherwise may not be re-

vealed through single or one type estimate of multivariate scatter. Tyler etc.(2008) gave

an interesting argument that the difference between two estimates of scatter matrix V̂i

can and should be maximally summarized by looking at this new statistic T̂ = V̂ −1
1 V̂2.

Various reasoning and interpretations of a statistic of this form were presented there [40],

but in the context of detecting mixture though, the reasons why it is excited to use this

type of statistics are quite simple. Firstly T̂ is affine equivariant as long as V̂ ′i s are;

secondly at elliptical symmetric model, scatter estimates are proportional to each other,

hence proposition (6.1.1) below implies T̂ would have asymptotic mean of 0, whereas

scatter matrices are not necessarily proportional to each other at a non-elliptical model

which may render a non-zero asymptotic mean for T̂ . Consequently, T̂ is likely to have

some power at detecting non-elliptical, specifically at a mixture of two elliptical distri-

butions. This chapter is to examine and compare this power through families of scatter

estimates. In order to accomplish this goal, the specifics of the asymptotic distribution

of T̂ must be first obtained, which is achieved again through the aid of contiguity and

usage of influence function.
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Proposition 6.1.1. Let z1, · · · , zn ∼ z ∈ Rp be i.i.d. from F ∼ Ep(0, I). Suppose that

Vk(k = 1, 2) are affine equivariant scatter matrix functionals at F possessing influence

function IF (z;Vk, F ), and V̂k are respective consistent estimators based on sample.

Then,

1. IF (z;V1
−1V2, F ) = V −1

1

(
IF (z;V2, F )V −1

2 − IF (z;V1, F )V −1
1

)
V2

2.
√
n
(
V̂ −1

1 V̂2 − V −1
1 V2

)
= 1√

n

∑n
i=1 IF (zi;V −1

1 V2, F ) + op(1)

A random symmetric matrix Z ∈ Rp
p is rotationally invariant iff Z

d= HZH ′, ∀H ∈ Op,

where Op = {H ∈ Rp
p : HH ′ = I}. The following theorem proved by Tyler [35] charac-

terizes the general form of the mean and variance of any rotationally invariant random

matrix Z and its variation V 1/2ZV 1/2

Theorem 6.1.2. Let Ni ∈ Rp
p (i = 1, 2) be two real symmetric random matrices with

finite second moments, and Vi ∈ Rp
p be real symmetric such that V −1/2

i NiV
−1/2
i are

rotationally invariant. Then, there exist constants λi, αi, βi, and γi such that

E (N1) = λ1 V1 , E (N2) = λ2 V2

var{vec(N1)} = α1 (I +Kp) (V1 ⊗ V1) + α2 vec (V1) vec (V1)′

var{vec(N2)} = β1 (I +Kp) (V2 ⊗ V2) + β2 vec (V2) vec (V2)′

Cov{vec(N1), vec(N2)} = γ1 (I +Kp)
(
V

1/2
1 V

1/2
2 ⊗ V 1/2

1 V
1/2

2

)
+ γ2 vec(V1)vec(V2)′

where α1 represents the variance of any off-diagonal element of V −1/2
1 N1V

−1/2
1 , α2 rep-

resents the covariance between any two distinct diagonal elements of V −1/2
1 N1V

−1/2
1 ; γ1

represents the covariance between ij -th elements of V
−1/2

1 N1V
−1/2

1 and V
−1/2

2 N2V
−1/2

2 ,

and γ2 represents the covariance between ii -th element of V −1/2
1 N1V

−1/2
1 and jj -th el-

ement of V −1/2
2 N2V

−1/2
2 ( i 6= j ).

Corollary 6.1.3. Let z1, · · · , zn be a random sample from an elliptical distribution

z ∼ Ep(u,Σ). Let Vi ∈ Rp
p (i = 1, 2) be affine equivariant scatter matrix functionals, V̂i

be consistent estimates of Vi based on the sample empirical distribution. Write ∆̂n =
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V̂ −1
1 V̂2 and ∆ = V −1

1 V2. Then
√
n
(

∆̂n − ∆
)

d−→ Np
p ( 0, Ω ), where

Ω = α1(V2∆⊗ V −1
1 ) + β1(V2 ⊗∆V −1

1 ) + (α1 + β1)Kp(∆⊗∆′) + (α2 + β2 − 2γ2)vec(∆)vec(∆)′

− γ1

(
V

1/2
2 V

1/2
1 ∆⊗∆V −1/2

2 V
−1/2
1 + ∆′V 1/2

1 V
1/2
2 ⊗ V −1/2

1 V
−1/2
2 ∆′

)
− γ1Kp

(
∆V −1/2

2 V
1/2
1 ∆⊗ V 1/2

2 V
−1/2
1 + V

−1/2
1 V

1/2
2 ⊗∆′V 1/2

1 V
−1/2
2 ∆′

)

6.2 Two Huber M-Estimates

Let Vi = E [ui (x′Vix)] be two implicitly defined M-functional of Definition 5.1.1 with

influence functions defined as in Proposition 5.1.2,

IF(x;V1, F ) = w1 xx′ − π1I

IF(x;V2, F ) = w2 xx′ − π2I

where wi and πi are functions of x′x.

Let V̂i be consistent estimates of Vi, respectively, based on empirical distributions.

Let ∆ = V −1
1 V2, and ∆̂ = V̂ −1

1 V̂2. Obviously ∆ is affine equivariant whenever V ′i s

are. As summarized in section (4.2), the distribution of ∆̂ on a non-elliptical will be

investigated locally and asymptotically on the platform of a sequence of hypotheses

defined in (4.2.1), i.e.

H0 : (1− ε)F
(
0, Ip

)
+ εG

(
0, Ip

)
vs H1,n : (1− ε)F

(
0, Ip

)
+ εG

(
0,
(
Ip +D/

√
n
)−1
)

particularly, the case when G(0, I) = F (0, bI) is of primary interests, i.e. g(x′x) =

b−
p
2 f (x′x/b) and the null hypothesis is a mixture P ∼ (1 − ε)F

(
0, Ip

)
+ εF

(
0, bIp

)
.

Using the notations in Theorem 4.1.4, the deviations of asymptotic distribution of ∆̂ is

an easy extension of Theorem 4.1.5.

Theorem 6.2.1. Under sequence of alternative hypotheses H1,n, ∆ → λ2/λ1I, where

λi is the solution to equation (1 − ε)Es [ui(s/λi)(s/λi)] + εEs [ui (sb/λi) (sb/λi)] = p;

and
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1.
√
n
(

∆̂−∆
)

d−→ N

(
−ε
(
λ2
λ1

)
m,

(
λ2
λ1

)2
Ω
)

, where

m = (α2 − α1)D − (β2 − β1) tr(D)I

Ω = (γ1 + γ2 − 2γ1,2) (I +Kp) + (η1 + η2 − 2 η1,2) Vec(I)[Vec(I)]′, and

αi =
1

2hi + 1

{
Es [ui (sb/λi) (sb/λi)]

p
+

2Es
[
u′i (sb/λi) (sb/λi)2

]
p(p+ 2)

}

βi =
[(p+ 2)hi + 1]−1

(2hi + 1)

hiEs [ui (sb/λi) (sb/λi)]
p

−
Es

[
u′i (sb/λi) (sb/λi)

2
]

p(p+ 2)


hi =

1
p(p+ 2)

Es

[
(1− ε)u′i (s/λi) (s/λi)

2 + εu′i (sb/λi) (sb/λi)
2
]

γi =
1

(2hi + 1)2p(p+ 2)

{
(1− ε)Es

[
ui
(
s/λi

)
(s/λi)

]2 + εEs
[
ui
(
sb/λi

)
(sb/λi)

]2}
γ1,2 = (1− ε)

Es
[
u1

(
s/λ1)u2

(
s/λ2) s2/(λ1λ2)

]
(2h1 + 1)(2h2 + 1)p(p+ 2)

+

ε
Es
[
u1

(
sb/λ1)u2

(
sb/λ2) (sb)2/(λ1λ2)

]
(2h1 + 1)(2h2 + 1)p(p+ 2)

ηi =
[1− 2h2

i (p+ 2)]γi − 1
[(p+ 2)hi + 1]2

, s ∼
πp/2

Γ(p/2)
s
p
2
−1f(s)

2. If b = 1, i.e. F
(
0, Ip

)
= G

(
0, Ip

)
, then

√
n
(

∆̂−∆
)

d−→ Np
p

(
0,
(
λ2
λ1

)2
Ω
)

.

Corollary 6.2.2. Assuming notations in Theorem 6.2.1, under the sequence of alter-

native hypotheses H1,n,

1. n

[
log

(
1
p

tr ∆̂
)p

|∆̂|

]
d−→ γ∗ χ2

q(δ), a non-central Chi-square distribution with degree

of freedom q = 1
2(p+ 2)(p− 1) and non-centrality δ = (εα∗)2

2γ∗

[
tr
(
D2
)
− 1

ptr2(D)
]
,

where γ∗ = (γ1 + γ2 − 2 γ1,2), and α∗ = α2 − α1

2. n
2 log

[
tr ∆̂· tr (∆̂−1)

p2

]p
d−→ γ∗ χ2

q(δ)

The weight function for a Huber M-estimate of scatter matrix is given by

βuc(s) =


1 (s < c)

c/s (s ≥ c)
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The scaling factor β is defined so that E
[
u
(
χ2
p

)
χ2
p

]
= p. This implies the ρ-function

is of the form,

ρc(s) = cρ(s/c) =
1

2β


s (s < c)

c log(s/c) + c (s ≥ c)

and the derivative is simply u′c(s) = −c/
(
βs2
)
, s ≥ c.

As the tuning constant c ranges over [0,+∞], a family of Huber estimates, de-

noted by V̂c, is defined, where the limiting case limc→+∞ V̂c corresponds to the sample

variance-covariance matrix.

The performance of V̂ −1
c1 V̂c2 on the hypothesis testing of symmetric elliptical verse

non-elliptical (mixture of two elliptical distributions)

H0 : F (0, I) vs H1 : (1− ε)F (0, I) + εF (0, bI)

can be evaluated and compared through its asymptotic efficacy on the sequence of

equivalent hypotheses defined in (4.2.1), i.e.

H0 : (1− ε)F
(
0, Ip

)
+ εF

(
0, bIp

)
vs H1,n : (1− ε)F

(
0, Ip

)
+ εF

(
0, b

(
Ip +D/

√
n
)−1
)

with b = 1. Unfortunately, Theorem 6.2.1 indicates that any M-estimate of scatter

would have the same asymptotic mean if b = 1, i.e. when the underlying distribution

of null-hypothesis is a symmetric elliptical. Consequently, the statistics V̂ −1
c1 V̂c2 in

Corollary 6.2.2 would have zero non-centrality δ, hence zero Pitman’s efficacy [19, 28]

no matter which pair of c1 and c2 is chosen . It seems the comparison of their ability to

distinguish a contamination from a symmetric elliptical is unattainable. However, these

statistics do have non-zero non-centrality parameters δ when the underlying distribution

of null is a mixture of two different elliptical distributions (b 6= 1), they would have

varying efficacies at detecting non-elliptical from a mixture of elliptical. This suggests

a way to compare these statistics’ ability when it comes to separating a non-elliptical,

particularly a mixture of two elliptical, from a symmetric elliptical distribution. This

goal can be achieved by simply looking at their asymptotic-relative-efficacy as b → 1.

More rigorously, let δ0,+∞ be the non-centrality of V̂ −1
0 V̂+∞ in Corollary 6.2.2, and
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define

ARE(c1, c2) = lim
b→1

δc1,c2
δ0,+∞

This quantity ARE measures the asymptotic efficacy of a pair V̂ −1
c1 V̂c2 with respect to

that of fixed baseline V̂ −1
0 V̂+∞.

As a function of c1 and c2, the contour plots of ARE of V̂ −1
c1 V̂c2 with respect to

V̂ −1
0 V̂+∞ within the family of Huber M-estimates are presented in Figure 6.1 and 6.2

of Appendix B. The graphs there indicate indubitably that V̂ −1
0 V̂+∞ is not the best

statistic at detecting Normal mixture.

6.3 Tukey MM-Estimates vs Tukey

Let σi(i = 1, 2) be two preliminary scale functionals of affine equivariance, and Γi be the

minimizers of E
[
ρi
(
x′Γ−1

i x/σ2
i

)]
over all Γ ∈ PDS(p) with det(Γ) = 1. Consequently

the scatter matrices Vi = σ2
i Γi, (i = 1, 2) are two MM-functionals of definition 5.5.1.

Denote again by V̂i the sample version of Vi.

Under the sequence of mixture distributions

(1− ε)F
(
0, Ip

)
+ εF

(
0, b

(
Ip +D/

√
n
)−1
)

(6.3.1)

the statistic V̂ −1
1 V̂2 is

√
n consistent and is convergent to a multi-normal distribution,

whose mean and covariance are determined by Theorem 4.1.5 in terms of expectations

on influence function of V −1
1 V2 which is readily deduced from Proposition 6.1.1 and

through the lines in Section 5.5.2.

Theorem 6.3.1. Let s ∼ πp/2

Γ(p/2)s
p
2
−1f(s), ui(s) = 2ρ′i(s). Under a sequence of mixture

distributions of (6.3.1), V −1
1 V2 → σ2

2/σ
2
1I, and
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1.
√
n
(
V̂ −1

1 V̂2 − V −1
1 V2

)
d−→ N

(
−ε
(
σ2
2

σ2
1

)
m,

(
σ2
2

σ2
1

)2
Ω
)

, where

m = (α2 − α1)
(
D − tr(D)

p
I

)
Ω = (γ1 + γ2 − 2γ1,2)

[
(I +Kp)−

2
p

Vec(I)[Vec(I)]′
]

αi =
1

2hi + ki

{
2Es

[
u′i
(
bs/σ2

i

)
(bs/σ2

i )
2
]

p(p+ 2)
+
Es
[
ui
(
bs/σ2

i

)
(bs/σ2

i )
]

p

}

hi =
1

p(p+ 2)
Es

[
(1− ε)u′i

(
s/σ2

i

) (
s/σ2

i

)2 + εu′i
(
bs/σ2

i

) (
bs/σ2

i

)2]
ki =

1
p
Es
[
(1− ε)ui

(
s/σ2

i

) (
s/σ2

i

)
+ εui

(
bs/σ2

i

) (
bs/σ2

i

)]
γi =

(2hi + ki)−2

p(p+ 2)

{
(1− ε)Es

[
u2
i

(
s/σ2

i

) (
s/σ2

i

)2]+ εEs

[
u2
i

(
bs/σ2

i

) (
bs/σ2

i

)2]}

γ1,2 =
(1− ε)Es

[
u1

(
s
σ2
1

)
u2

(
s
σ2
2

)
s2

(σ2
1σ

2
2)

]
+ εEs

[
u1

(
bs
σ2
1

)
u2

(
bs
σ2
2

)
(bs)2

(σ2
1σ

2
2)

]
p(p+ 2)(2h1 + k1)(2h2 + k2)

2. If b = 1, i.e. F
(
0, Ip

)
= G

(
0, Ip

)
, then α2 = α1 = 1, that implies

√
n
(
V̂ −1

1 V̂2 − V −1
1 V2

)
has asymptotic mean of 0.

The efficiency of V̂ −1
1 V̂2 can be measured by its Pitman’s efficacy [19, 28], denoted

by δ, which is proportional to (α2−α1)2/(γ1 + γ2− 2γ1,2). It is of primary interests to

find and compare the efficiencies at a mixture of distribution of this form

(1− ε)F
(
0, Ip

)
+ εF

(
0,
(
Ip +D/

√
n
)−1
)

which is a special case of (6.3.1) with b = 1. Under this mixture model, the efficacy

of V̂ −1
1 V̂2 is unfortunately 0 by Theorem 6.3.1. However, one can still obtain the

asymptotic relative efficiency (ARE) of V̂ −1
1 V̂2 with respect to V̂ −1

o V̂+∞ by

ARE = lim
b→1

δ
V̂ −1
1 V̂2

δ
V̂ −1
0 V̂+∞

as both V̂ −1
1 V̂2 and V̂ −1

0 V̂+∞ have non-zero efficacies at b 6= 1, where V̂0 and V̂+∞ are

members of Huber M-estimates with V̂+∞ corresponding to sample covariance matrix

and V̂0 corresponding to the Tyler-estimate.

As illustration, consider Tukey MM-estimates determined by scale functional σ and
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Tuykey’s ρ function

ρc(s) = cρ (s/c) =


s
2 −

s2

2c + s3

6c2
, 0 < s ≤ c

c
6 , s > c

which induces the weight function and its derivative

uc(s) = 2ρ′c (s) =
(

1− s

c

)2
I[0≤s≤c]

u′c (s) =
2
c

(s
c
− 1
)

I[0≤s≤c]

As the tuning constant c ranges over (0,+∞), a family of Tukey’s MM-estimates V̂c

is forged. The ARE’s of V̂ −1
c1 V̂c2 with respect V̂ −1

0 V̂+∞ are depicted in Figure 6.3 and

in Figure 6.4. It is interesting to observe that for any V̂ from the family of Tukey

MM-estimates, the best scatter estimate within the family that generates the maximal

difference from V̂ is the sample covariance matrix.

A final remark. Any two scatter estimates will not be the best for detecting all

departures from an elliptical distribution since the class of non-elliptical distributions

is very broad. A good strategy may be to compare many scatters simultaneously

and choose the two extreme values. The procedure to find two appropriate scatter

estimates that will render the maximum difference between them hence the best test

statistic has yet to be discovered which can’t be accomplished without first completing

the comparison of the AREs across families; the asymptotic distributions of V̂ −1
1 V̂2

when the auxiliary scale is unknown, which turn out to be analogous to current result

based on known auxiliary scale, are to be presented in a subsequent paper.
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6.4 Appendix A: Proofs of Theorems and Corollaries

Proof of Proposition 6.1.1

Proof. Let Vi = Vi(F ), i = 1, 2 be two affine equivariant scatter functionals at distri-

bution F , with influence functions denoted by Ai = IF(x;Vi, F ). Let Fε denote the

contaminated distribution (1 − ε)F + εδx, where δx is a point mass at x ∈ Rp. The

relationship between V1(Fε) and V1(F ) is defined via the definition of influence function,

V1(Fε) = V1(F ) + εA1 + o(ε), which implies V −1
1 (Fε) = V −1

1 − εV −1
1 A1V

−1
1 + o(ε). Then

V −1
1 (Fε)V2(Fε) =

[
V −1

1 − εV −1
1 A1V

−1
1 + o(ε)

]
[V2 + εA2 + o(ε)]

= V −1
1 V2 − εV −1

1 A1V
−1

1 V2 + εV −1
1 A2 + o(ε)

The influence function of V −1
1 V2 is readily obtained as

IF
(
x;V −1

1 V2, F
)

= lim
ε→0

V −1
1 (Fε)V2(Fε)− V −1

1 V2

ε
= V −1

1

(
A2V

−1
2 −A1V

−1
1

)
V2

Proof of Corollary 6.1.3

Proof. The assumptions on V̂i assure

√
n vec

(
V̂1 − V1 , V̂2 − V2

)
d−→ vec (N1 , N2) ∼ N ( 0, Ω0 )

where, by Theorem 6.1.2,

Ω0 =

 α1 (I+Kp) (V1⊗V1) +α2 Vec(V1) [Vec(V1)]′, γ1 (I+Kp)

(
V

1
2

1 V
1
2

2 ⊗V
1
2

1 V
1
2

2

)
+ γ2 Vec(V1) [Vec(V2)]′

γ1 (I+Kp)

(
V

1
2

2 V
1
2

1 ⊗V
1
2

2 V
1
2

1

)
+ γ2 Vec(V2) [Vec(V1)]′, β1 (I+Kp) (V2⊗V2) + β2 Vec(V2) [Vec(V2)]′


The inverse of V̂1 can be approximated as

V̂ −1
1 = [V1 + (V̂1 − V1)]−1 = V −1

1 − V −1
1 (V̂1 − V1)V −1

1 + O
(
n−1/2

)
which in turn gives the approximation of V̂ −1

1 V̂2,

V̂ −1
1 V̂2 = [V1 + (V̂1 − V1)]−1 [V2 + (V̂2 − V2)]

= V −1
1 V2 + V −1

1 (V̂2 − V2)− V −1
1 (V̂1 − V1)V −1

1 V2 + O
(
n−1

)
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It follows,

√
n
(
V̂ −1

1 V̂2 − V −1
1 V2

)
d−→ V −1

1 N2 − V −1
1 N1V

−1
1 V2 ≡ N say.

N is a multivariate normal matrix with mean 0, its covariance matrix is obtained by

noting

Vec(N) =
(
−V2V

−1
1 ⊗ V −1

1 , I ⊗ V −1
1

)Vec(N1)

Vec(N2)
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6.5 Appendix B: Figures
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Ratio of Non−centralities

c1 (p=5)

c2

 0.2 

 0.2 

 0.2 

 0.4 

 0.4 

 0.4 

 0.6 

 0.6 

 0.6 

 0.8 

 0.8 

 0
.8

 

 0.8 

 1 

 1  1.2 

 1.2 

 1.4 

 1.4 

 1.6 

 1.6 

0 5 10 15 20 25 30

0
5

10
20

30

0 5 10 15 20 25 30

0.
2

0.
6

1.
0

1.
4

c1 = 5

c2

0 5 10 15 20 25 30

0.
6

0.
8

1.
0

1.
2

1.
4

c1 = 10

c2

0 5 10 15 20 25 30

0.
4

0.
8

1.
2

1.
6

c1 = 20

c2

Figure 6.2: ARE of V −1
c1 Vc2 with respect to V −1

0 V+∞ within Family of Huber M-
estimates (p=5)



89

Ratio of Efficacies
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Ratio of Efficacies
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Chapter 7

Summary and Conclusions

This dissertation presents a pioneering study of the problem of constructing powerful

testing procedures based on the maximum difference of two robust statistics under cer-

tain asymmetry models. The main results of this thesis are categorized into univariate

and multivariate settings.

In the univariate setting, the asymptotic distributions of a class of new statistics{
Tc1,c2 : T = µ̂c1 − µ̂c2 , ci ∈ [0,+∞]

}
are derived for the three most widely cited non-

symmetric distributions, where µ̂ci are any two robust location estimates defined by

weight functions ui,ci ; most classical skewness measures are special members of this

general class, however they are usually not the most efficient and powerful test statistics

at testing asymmetry or skewness.

Within this class, the best tests are most likely those based on the difference between

two extreme values of location estimates. The statistical theory to find such maximal

T is fairly challenging, and we leave that for future research.

On the multivariate shape analysis, families of statistics in the form of

{
∆c1,c2 : ∆ = V̂ −1

c1 V̂c2 , ci ∈ [0,+∞]
}

are proposed to detect possible departure of elliptical distributions, where V̂ci are any

members from the super class of multivariate M-estimates with auxiliary scale. The

asymptotic normality of these families is established under skew-elliptical and elliptical

mixtures models; asymptotic efficiencies are compared respectively within the family of

Huber M-estimates and within the family of Tukey MM-estimates at Normal mixture

models . In either family, the ∆ based on two extreme members, V̂+∞ which corresponds

to the sample covariance and V̂0, which in the class of Huber MM-estimates is the
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so-called Tyler estimate, is not the best test statistic. The influence functions of MM-

estimates are also formally derived.
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