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Vision

by Ning Huang

Dissertation Director: Joseph Wilder

Machine learning from previous examples or knowledge is a key element in many image

processing and pattern recognition tasks, e.g. clustering, segmentation, stereo match-

ing, optical flow, tracking and object recognition. Acquiring that knowledge frequently

requires human labeling of large data sets, which can be difficult and time-consuming

to obtain. One way to ameliorate this task is to use Semi-supervised Learning (SSL),

which combines both labeled and raw data and incorporates both global consistency

(points in the same cluster are likely to have the same label) and local smoothness

(nearby points are likely to have the same label). There are a number of vision tasks

that can be solved efficiently and accurately using SSL. SSL has been applied exten-

sively in clustering and image segmentation. In this dissertation, we will show that it

is also suitable for stereo matching, optical flow and tracking problems.

Our novel algorithm has converted the stereo matching problem into a multi-label

semi-supervised learning one. It is similar to a diffusion process, and we will show

our approach has a closed-form solution for the multi-label problem. It sparks a new

direction from the traditional energy minimization approach, such as Graph Cut or

Belief Propagation. The occlusion area is detected using the matching confidence level,

and solved with local fitting. Our results have been applied in the Middlebury Stereo
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database, and are within the top 20 best results in terms of accuracy and is considerably

faster than the competing approaches.

We have also adapted our algorithm, and demonstrated its performance on optical

flow problems. Again, our results are compared with the ground truth and state of the

art on the Middlebury Flow database, and its advantages in accuracy as well as speed

are demonstrated.

The above algorithm is also being used in our current NSF sponsored project, an

Automated, Real-Time Identification and Monitoring Instrument for Reef Fish Com-

munities, whose goal is to track and recognize tropical fish, initially in an aquarium

and ultimately on a coral reef. Our approach, which combines background subtraction

and optical flow, automatically finds the correct outline of multiple fish species in the

field of view, and tracks the contour reliably over consecutive frames. Currently, near

real-time results are being achieved, with a processing frame rate of 3-5 fps.

The recent progress in semi-supervised learning applied to image segmentation is

also briefly reviewed.

iii



Acknowledgements

First of all, I would really like to thank my advisor, Prof. Joseph Wilder for supervising

my dissertation and endless help. I can not have finished this degree without his

continuous help and support.

Eight years have passed since I began my graduate study here at Rutgers. I would

like to thank the many friends who have made my life and my study here more enjoy-

able. Among others, Jingsheng, Lixia, Hongjun, Zhen, Alex, Xifan, Min, Ruoheng, Qi,

Li, Sekhar, Kevin, Brian, Xiang, Hui, Kai, Ke, Lin, Danxi, Cathy, Hang, Jun, Jian,

Beizhong.

Moreover, I like to thank Shen, Hong who has brought me in his group in Siemens

as an intern to gain industrial experience as well as more insight into medical imaging

and computer vision in general.

iv



Dedication

To my parents, my sister and Daisy,

without whom I would not have been able to get to where I am today

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. A Brief Review of Semi-Supervised Learning . . . . . . . . . . . . . . . . 2

1.3. Semi-Supervised Learning in Computer Vision . . . . . . . . . . . . . . 5

1.4. Organization and Contributions . . . . . . . . . . . . . . . . . . . . . . . 6

2. Graph-Based Semi-Supervised Learning in Image Segmentation . . 7

3. Stereo Matching Using Semi-Supervised Learning . . . . . . . . . . . 12

3.1. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2. Diffusion Process and Closed-Form Solution . . . . . . . . . . . . . . . . 15

3.2.1. Diffusion Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2. Derivation of the Closed-Form Solution . . . . . . . . . . . . . . 16

3.2.3. Alternative Derivation . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3. Global Constraint by Segmentation . . . . . . . . . . . . . . . . . . . . . 18

3.3.1. Plane Fitting Approach . . . . . . . . . . . . . . . . . . . . . . . 18

3.4. Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1. Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2. Ambiguities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.3. Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vi



3.5. Local Confidence Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6. Iterative Updating of Disparities and Outliers . . . . . . . . . . . . . . . 21

3.7. Results and Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7.1. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. Optical Flow Using Semi-Supervised Learning . . . . . . . . . . . . . . 25

4.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2. Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1. Diffusion Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2. Noise and Outlier Removal . . . . . . . . . . . . . . . . . . . . . 29

Confidence Measurements . . . . . . . . . . . . . . . . . . . . . . 29

Outliers Removal by Iterative Propagations . . . . . . . . . . . . 30

4.2.3. From Discrete to Continuous Flow Vectors . . . . . . . . . . . . 31

4.3. Hierarchical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1. Label Smooth Vs. Flow Field Smooth . . . . . . . . . . . . . . . 33

4.5.2. Advantages of Our Approach . . . . . . . . . . . . . . . . . . . . 33

5. Tracking with Semisupervised Learning and Sparse Feature Matching 37

5.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1. Feature Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.2. Video Object Tracking and Segmentation . . . . . . . . . . . . . 38

5.2. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1. Energy Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2. Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.3. Iteration of Propagations . . . . . . . . . . . . . . . . . . . . . . 41

5.2.4. Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3. Combined Tracking and Segmentation . . . . . . . . . . . . . . . . . . . 43

vii



5.3.1. Iterative Segmentation and Optic Flow Computation . . . . . . . 43

5.3.2. Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.3. Probability Propagation . . . . . . . . . . . . . . . . . . . . . . . 45

5.4. Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6. Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1.1. Computational Complexity . . . . . . . . . . . . . . . . . . . . . 50

6.2. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

viii



List of Figures

2.1. 3D data points lie on a warped 2D surface, the so called Swiss Roll, an

example of how the high dimensional data actually lie on a low dimen-

sional space. It can be thought of as a 2D plane warped into a 3D roll,

thus it is a 2D manifold in a 3D space. . . . . . . . . . . . . . . . . . . . 9

2.2. Image segmentation via user interaction. On the left, image of a kid, with

white and black dots as seeds points for foreground and background. On

the right, image segmentation results using random walk. . . . . . . . . 11

3.1. The high-level flow chart of the proposed approach on stereo matching

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2. Results of the proposed algorithm on Tsubuka pair. (a) left image (b)

right image (c) ground truth, (d) brute-force approach using MAP, (e)

after the closed form solution of diffusion (f) after cross check and plane

fitting (g) after first iteration (h) error of the first iteration (i) after

second iteration (j) error of the second iteration . . . . . . . . . . . . . . 22

3.3. Results on all 4 pairs in Middlebury dataset, from left to right, left image,

right image, results using our algorithm and the error maps. From top

to bottom, Tsukuba, Venus, Teddy and Cone pairs. Error rates: 1.36,

0.67, 7.98, 5.76 respectively. Note: for Teddy and Cone pairs, the errors

come mostly from the left-right view occlusion. . . . . . . . . . . . . . . 23

4.1. Army Sequence, (a) frame 10 (b) frame 11 (c) Ground truth flow en-

coded in (d)Color Wheel, which different colors represent different flow

orientations, and saturations represent flow magnitude. . . . . . . . . . 26

ix



4.2. Results of Optical Flow sequences Army, Mequon, Schefflera and Wooden.

From left to right, first frame, next frame, our result. From top to

bottom, Army sequences, Mequon Sequences, Schefflera sequences and

Wooden Sequences. Bottom, the color wheel, the flow encoding schema

which color indicates flow orientation and saturations represent flow mag-

nitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3. Results of Optical Flow sequences Grove, Urban, Yosemite and Teddy.

From left to right, first frame, next frame, our result. From top to bot-

tom, Grove sequences, Urban Sequences, Yosemite sequences and Teddy

Sequences. Bottom, the color wheel, the flow encoding schema which

color indicates flow orientation and saturations represent flow magnitudes. 35

5.1. Results of stereo of Teddy. 1st row: from left to right, left image, ground

truth, right image. 2nd row: initial points, iter 10000 , iter 20000. 3rd

row: iter 40000, iter 60000, iter 80000. 4th row: iter 100000, result after

final iter, result after postprocessing . . . . . . . . . . . . . . . . . . . . 46

5.2. Results of Optic flow of MiniCooper sequence [1]. from left to right, top

to bottom: first frame, last frame (8th). optic flow field in frames 1, 3,

5, 7 (only X field are shown) . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3. Results of Combined segmentation and tracking of a fish. The red lines

on top the original image marks the boundary of the fish as well as

different composing parts. The gray image on the middle column shows

the segmentation label of each part and the gray image in the middle

column shows the sum probability of the object. The 1st through 6th

row show frame 25, 45, 65, 85, 105, 125 in the video sequence. . . . . . . 48

x



1

Chapter 1

Introduction

1.1 Motivation

Machine learning from previous examples or knowledge is a key element in many image

processing and pattern recognition tasks, e.g. clustering, segmentation, stereo match-

ing, optical flow, tracking and object recognition. Acquiring that knowledge frequently

requires human labeling of large data sets, which can be difficult and time-consuming

to obtain. One way to ameliorate this task is to use Semi-supervised Learning (SSL),

which combines both labeled and raw data and incorporates both global consistency

(points in the same cluster are likely to have the same label) and local smoothness

(nearby points are likely to have the same label).

There are a number of vision tasks that can be solved efficiently and accurately

using SSL, such as image segmentation and object recognition. In this dissertation, we

will show that it is also suitable for stereo matching, optical flow and tracking problems.

Our novel algorithm has converted the stereo matching problem into a multi-label

semi-supervised learning one. It is similar to a diffusion process, and we will show

our approach has a closed-form solution for the multi-label problem. It sparks a new

direction from the traditional energy minimization approaches, such as Graph Cut or

Belief Propagation. The occlusion area is detected using the matching confidence level,

and solved with local fitting. Our results have been applied in the Middlebury Stereo

database, and are within the top 20 best results in terms of accuracy and is considerably

faster than the competing approaches.

We have also adapted our algorithm, and demonstrated its performance on optical

flow problems. Again, our results are compared with the ground truth and state of the
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art on the Middlebury Flow database, and its advantages in accuracy as well as speed

are demonstrated.

The above algorithm will also be used in our current NSF sponsored project, an

Automated, Real-Time Identification and Monitoring Instrument for Reef Fish Com-

munities, whose goal is to track and recognize tropical fish, initially in an aquarium and

ultimately on a coral reef. Our approach, which combines background subtraction and

optical flow, automatically finds the correct outline of multiple fish species in the field of

view, and tracks the contour reliably over consecutive frames. Currently, near real-time

results are being achieved, with a processing frame rate of 3-5 fps. The recent progress

in semi-supervised learning applied to image segmentation is also briefly reviewed.

1.2 A Brief Review of Semi-Supervised Learning

In recent years, machine learning algorithms, especially semi-supervised learning algo-

rithms, have flourished in data clustering, graph partitioning and nonlinear dimension

reduction as well as computer vision.

Learning can be classified roughly, into unsupervised learning, supervised learning

and semi-supervised learning.

In supervised learning, the training instances are provided with correct labels,

which give feedback about the learning result. It is applied extensively in speech recog-

nition, hand-digit recognition and many other applications where training can provide

significant improvements in performance.

In unsupervised learning, no labels or classifications are provided, and the prob-

lem becomes much harder since no prior examples are available from which to learn.

Thus, it gives less accuracy than supervised learning.

Labeled points are more expensive to get than unlabeled points for various reasons.

Most importantly, labeled points need human or even experts’ annotations or interac-

tions, which is time-consuming. Meanwhile unlabeled data may be relatively easy to

collect, but they do not give feedback information about the leaning results and are

seldom used in training.
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Semi-supervised learning (SSL) addresses this dilemma by using a small amount

of labeled data, together with largely unlabeled data, for better learning. Because semi-

supervised learning requires less prior knowledge about data and gives competitive

accuracy, it is of great interest both in theory and in practice. Knowledge can be

propagated from labeled to unlabeled points, given the neighborhood structure of the

data. Thus, limited labeled data can be enough to get good learning results.

In mathematical terms, assume there are n data points, with l labeled points Xl :=

x1, x2, ..., xl, and u = n − l unlabeled points Xu := xl+1, ..., xn, typically l << u. And

Y := yi i = 1...l are the labels of the l labeled points xi. We are interested to infer the

learning function f which best predicts f(x) = y for all x ∈ X.

In some cases, Semi-Supervised Learning will yield better results than Supervised

learning, which requires the unlabeled data Xu carry enough information to infer the

unknown labels Yu. To generalize a finite training set to a much larger test cases, two

underlying assumptions are made normally, [30] [4] .

The first is the Local Smoothness assumption, if two points x1 and x2 are close

and lie in a high-density region, then the corresponding outputs y1 and y2 should be

similar as well. Or in short, nearby points are likely to have the same label.

The second one is the Global Consistency assumption, if x1 and x2 are in the

same cluster or on the same manifold, they are likely to have the same labels y. Note:

points on the same cluster are not necessarily close. The second assumption could also

be stated in another way as, the decision boundary between clusters should lie in a

low-density region.

An alternative assumption which has used in several SSL, manifold learning and

dimension reduction methods, is the Manifold Assumption, which states,

The high dimensional data lie on a low-dimensional manifold.

There are many semi-supervised learning methods, some frequently used methods

include: Expectation Maximization (EM), self-training, co-training, transductive sup-

port vector machines and graph-based methods. A survey on Semi-supervised learning

could be found on [31] .

For computer vision applications, we are focusing on graph-based methods. The
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graph is composed data nodes, either labeled or unlabeled, and connected by edges.

Nodes connected by heavy-weighted edges are likely to have the same label according

the local smoothness assumption.

Formally, a connected graph G = (V, W ) can be built with vertex V corresponding

to the n data points, and W the edge weight matrix. The n ∗ n symmetric definite

weight matrix W is provided, usually using a Gaussian kernel

Wij = exp(−
||Ii − Ij ||

2

2σ2
) (1.1)

where i and j are adjacent nodes.

The learning function f can be built by relaxing discrete labels to continuous values,

which satisfies

f(xi) = yi for i = 1...l (1.2)

To satisfy the local smoothness and global consistency assumptions, we seek to

minimize the energy

E =
∑

i∈Nj

wij(f(xi) − f(xj))
2 (1.3)

It is closely related to the graph Laplacian ∆,

∆ = D − W

Sometimes the normalized Laplacian is used interchangeably

L = D− 1

2 (D − W )D− 1

2

where W is the weight matrix, and D is the diagonal degree matrix,

Dii =

n
∑

j=1

Wij

And the energy could be rewritten as

E =
∑

i∈Nj

wij(f(xi) − f(xj))
2 = f t∆f (1.4)



5

still under constraint of Equation (1.2). So the non-smoothness along the edges of

a weighted graph are penalized, the more the edge weight, the higher the penalty.

Let f = [fl fu]t, where fl denotes the values on labeled points, and fu denotes the

values on the unlabeled points, and divide the graph Laplacian into 4 blocks after the

lth row and column, according to labeled and unlabeled points, where ∆ll is the graph

Laplacian within labeled points, ∆uu is the graph Laplacian within unlabeled points,

and ∆lu = (∆ul)
T are the graph Laplacian between labeled and unlabeled points.

∆ =





∆ll ∆lu

∆ul ∆uu



 (1.5)

the solution is given by Zhu[8]

fu = −∆−1
uu∆ulYl (1.6)

where Yl = [yi], i = 1, ..., l, are the labels of the labeled points, (interested readers

can refer to [32] for details of proof)

In Chapter 2, we will show see the above equations can be applied directly in image

segmentation, and give useful results.

Semi-supervised learning is also related to many other areas, including among others,

manifold learning, nonlinear dimension reduction, community structure.

1.3 Semi-Supervised Learning in Computer Vision

Grady [10] has proposed a random walk algorithm, which is a general interactive image

segmentation algorithm. The supervised labels (or seed) are provided by the users. The

probabilities are computed analytically using a sparse, symmetric, semi-definite set of

linear equations. The approach is related to the graph Laplacian matrix ∆.

In Grady’s follow-on work [9], he also develops the solution in the same problem,

but with real-valued node-wise prior probabilities.

In [6], image segmentation with user-supplied seeds is viewed as a transduction

problem. Segmentation is modeled as the task of finding the matting coefficients for
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unlabeled points given matting coefficients on labeled points. It is based on the Lapla-

cian graph regularization, and is thus essentially a semi-supervised learning method.

1.4 Organization and Contributions

The layout of this dissertation is as follows:

Chapter 2 gives an overview of Semi-supervised learning applied to image segmen-

tation.

In Chapter 3, we give our semi-supervised learning framework, and apply it to dense

stereo matching. Additional stereo matching postprocessing techniques are presented,

which have been adapted to our SSL framework and data types. The results are pre-

sented at each step, and evaluated with the Middlebury Stereo database [24] and

compared with the state of art.

In chapter 4, semi-supervised learning is applied in optical flow problems. The

algorithm has been adapted to the spatial-temporal problem. Sparse feature matching

algorithms have been combined into the framework, to solve the possible large flow

fields. And a hierarchical approach is proposed to solve the problem efficiently. Again,

the results are evaluated using the Middlebury Flow Database [1].

In chapter 5, an heuristic algorithm to solve the general MRF problem is proposed.

It gives a boost to the computation of traditionally computationally expensive MRF

problem and it is applied to real time tracking problems.

In chapter 6, I will present my conclusion, and discuss the advantages of my algo-

rithms, especially the computational efficiency. Possible directions of future work are

also outlined.
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Chapter 2

Graph-Based Semi-Supervised Learning in Image

Segmentation

The graph-based semi-supvervised learning and related spectral methods view the image

segmentation problem as a clustering algorithm. Each segment in an image corresponds

to a cluster in a point cloud.

Recall the graph construction and Graph Laplacian ∆ introduced in the last chapter.

A connected graph G = (V, W ) can be built with vertex V corresponding to the

n data points, and W the edge weight matrix. The n ∗ n symmetric definite weight

matrix W is provided, usually using a Gaussian kernel

Wij = exp(−
||Ii − Ij ||

2

2σ2
) (2.1)

The graph Laplacian ∆ is given by,

∆ = D − W

where W is the affinity weight matrix, and D is the diagonal degree matrix,

Dii =
n

∑

j=1

Wij

W as well as ∆ encodes the pairwise relationship between all pairs of pixels, and

it is not so obvious how we can use that relationship directly to infer the clustering of

pixels, so as to accomplish image segmentation.

One way to do that is to use spectral methods, which utilize the eigenvalue decom-

position of the Graph Laplacian. A milestone in this direction is the normalized cut

work proposed by Shi and Malik [26].
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The normalized cut (NCut) is defined as

Ncut(A, B) =
cut(A, B)

assoc(A, V )
+

cut(A, B)

assoc(B, V )
(2.2)

where cut(A, B) is the total dissimilarity between two parts A and B, which is the

sum of edge weights from A to B

cut(A, B) =
∑

u∈A,v∈B

w(u, v) (2.3)

assoc(A, V ) is the total connections from nodes in A to all nodes in the graph V. NCut

computes the total costs as a fraction of the total edge connections to all the nodes in

the graph.

In minimizing the NCut, it converts into solving an eigenvalue problem, and is

formulated to use the second smallest eigenvector to bipartition the graph.

In Ng et al’s work [22], the normalized framework has been expanded into general

spectral space, and instead of bipartitioning the graph, the points are clustered into k

clusters. The steps are as below,

(1) build the affinity weight matrix W

(2) compute degree matrix D, and the normalized Laplacian matrix L = D
1

2 WD
1

2
t

(The Laplacian matrix and the normalized Laplacian are similar matrices, and they

have the same eigenvectors)

(3) Find the k largest eigenvectors v1, v2, ..., vkof L, orthogonal to each other, and

stack them column-wise to form the matrix V . (Optionally, you can normalize X row-

wise, i.e., make row sum to 1)

(4) Now essentially we have converted the original clustering problem into a clus-

tering problem in its spectral space. Treat each row of X as a point in spectral space,

they can be grouped into k clusters using K-means or any other algorithm.

The spectral space is a lower dimensional manifold compared with the original

space to cluster. According to the Manifold Assumption in Chapter One, “The high

dimensional data lie on a low-dimensional manifold”, it is more insightful to cluster

data in the low manifold space, where they form tighter clusters which yield better

clustering results.
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Figure 2.1: 3D data points lie on a warped 2D surface, the so called Swiss Roll, an
example of how the high dimensional data actually lie on a low dimensional space. It
can be thought of as a 2D plane warped into a 3D roll, thus it is a 2D manifold in a
3D space.

An typical example is in 2.1, which shows the high dimensional data actually lie on

a low dimensional space, in this case, a swiss-roll like warped surface.

Both normalized cut [26] and spectral clustering [22] make assumptions on the

number of clusters. Normalized cut assumes binary cut, and in spectral clustering,

the cluster number k is given in advance (So does K-means). [27] is another spectral

method which studies the eigenvalues and tries to determine the best cluster number

automatically, by comparing the successive ratios of eigenvalues. Edge separators of

a graph are produced by iteratively reweighting the edges until the graph disconnects

into the prescribed number of clusters.

All those methods try to convert the original clustering algorithm into a clustering

problem in a low dimensional space, i.e., spectral space. Normally, eigenvector decom-

position methods are used. Thus they are, in general, spectral clustering algorithms.
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Other algorithms try to divide the square edge weight affinity matrix into blocks. The

unknown number of clusters and lack of knowledge of either cluster centers or must-links

and cannot-links make the problem hard to get satisfactory results.

On the other hand, Graph-Based semi-supervised learning methods generally pro-

vide some labels via user interactions. The edge weight affinity matrix could be viewed

as the transition probability matrix from one pixel to the other. And the image seg-

mentation problem can be formulated as a random walk problem. Each point is free

to walk to neighboring points with the probability of the edge weights. Each point is

assigned the same label as the most likely seed it is going to reach.

Grady [10] pioneered in using the Semisupervised learning framework in image

segmentation, where the seed points are supervised labels. Again, the connected graph

G = (V, W ) is built with vertex V corresponding to the n data points, and W the edge

weight matrix. A set of labeled nodes is provided for each segment.

Independently, Grady finds a similar solution to the Semisupervised learning prob-

lem in Zhu et al’s work [33],

First the graph Laplacian is decomposed into labeled and unlabeled parts,

∆ =





∆ll ∆lu

∆ul ∆uu



 (2.4)

fu = −∆−1
uu∆ulYl

In Zhu’s work, Yl = [yi], i = 1, ..., l, are the binary labels of the labeled points, e.g.

yi ∈ 0, 1. To make it suitable for a multilabel segmentation problem, Grady makes Yl

is a l ∗ k matrix, where k is the number of all possible labels, and

Yij =







1 if yi = j

0 if yi 6= j

The figure 2.2 below shows an image segmented using random walk with seed points

provided by the user.
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Figure 2.2: Image segmentation via user interaction. On the left, image of a kid, with
white and black dots as seeds points for foreground and background. On the right,
image segmentation results using random walk.

Graph cut [3] is similar in viewing the whole image as a graph, and using graph

algorithms, especially max-flow, min-cut algorithms to find the best graph partition of

the image. But graph cut computes the minimum cut that separates two regions, and

for multi-label problems, it has to convert into sequential binary cut problems.

Recently, Duchenne and Audibert reformulated the problem and gave more insight

into the semi-supervised learning applied to image segmentation in [6].

All approaches need user interaction to provide the labeled nodes for different seg-

ments. So it is truly semi-supervised for image segmentation problems. This is in direct

comparison with our approach in stereo matching and optical flow in the following chap-

ters. Although they are also based on the semi-supervised learning framework, no user

interaction is ever needed.
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Chapter 3

Stereo Matching Using Semi-Supervised Learning

A novel algorithm for stereo matching and optical flow problems is proposed, which

uses a multi-label semi-supervised learning approach. It reformulates the common

energy minimization problem into a diffusion process, which we show has a closed-form

solution. With global consistency and local smoothness in disparity, disparity field or

optic flow can be solved with less computation.

Experimental results demonstrate the efficiency, robustness and accuracy of this

algorithm.

The structure of this chapter is as follows:

In Section 3.1, we will give the formal formulation of the stereo problem. In Section

3.2, the diffusion algorithm will be presented with a closed-form solution. In Section 3.3,

3.4 and 3.5, some post-processing technique will be introduced to further improve our

results. Section 3.3 integrates global knowledge using image segmentation information.

Section 3.4 introduces noise detection. Section 3.5 presents noise removal and outlier

handling by local information. Section 3.6 summarizes the framework. Finally, section

3.7 demonstrates the results and gives a conclusion.

A high level sketch of the overall framework is shown in Figure 3.1,

The details are presented in the various sections outlined above.

3.1 Problem Formulation

Assume we are given two input images I and I ′, which could be left and right images

in stereo or two consecutive frames in optic flow and tracking.

The traditional Markov Random Field (MRF) approach tries to find optic flow or

disparity fields on image I, by energy minimization. The total energy to minimize in



13

 

 
 
 

(1) Compute Initial Disparity Likelihood Matrix )0(
nNF ×  

(2) Compute the Graph Similarity Matrix NNW × , Degree Matrix D, and 

random walk  matrix S according to Eq. 3.5, 3.6 & 3.7 

(3) Update the closed-form Disparity Likelihood Matrix F 

      F
∗ = (1− αS)−1F 0(1− α)F∗ = (1− αS)−1F 0(1− α)  

(5) Plane fitting using RANSAC 

(4) Mean Shift Segmentation 

(6) Repeat the above process for the right view,  
Cross-check left and right views to detect occlusions, 
find ambiguities using the confidence level in Eq. 3.15 

(7) Use a local window around each outlier to fit in the best guesses 
as well as update F, with Eq. 3.16 

(8) (Optional) Repeat steps (5)-(7) to update depth field as well as 
outliers iteratively, until changes are less than a threshold 

Figure 3.1: The high-level flow chart of the proposed approach on stereo matching
problem.
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MRF is as follows:

E(f) =
∑

p

Dp(fp) +
∑

p,q∈N

Vpq(fp, fq) (3.1)

Where fp is the flow vector at node p, Dp(fp) is the data term, and Vpq(fp, fq) is the

smoothness term, between neighboring nodes p and q. E(f) is composed of the sum of

all data terms and smoothness terms.

A different, novel approach is proposed to convert the energy minimization problem

in MRF into a semi-supervised Maximum A Posteriori (MAP) problem, by making the

posterior probability maximum.

Consider all of the pixels in image I as a point set X = x1, x2, ..., xN , and make all

of the possible disparities between I and I ′, as a label set L = 1, 2, ..., n, where N is

the total number of pixels, and n is total number of disparity labels.

An initial disparity likelihood matrix F0, for pixel i ∈ X, with a depth value d ∈ L

is given by the inverse exponential of the Sum of Squared Distances (SSD)

F0(i, d) = exp(−

∑

j∈Ni
wij |I(j) − I ′(j + d)|2

2σ2
∑

j∈Ni
wij

) (3.2)

where SSD is computed in the neighborhood of point i including i itself, j are

the neighbors of i, which could be 4-neighborhood, or k Nearest Neighbors (kNN).

wij is the edge weight between i and j. This form works like an adaptive support,

which assigns strong weights on similar pixels with i in the local neighborhood. The

inverse exponential converts the SSD into a similarity measure as well as regulates the

disparity field F between 0 and 1. σ is a regularization factor. F0 is a matrix of size

N ∗ n computed on all points in X, with every possible label d ∈ L.

The disparity likelihood matrix F0 is then converted into a soft assigned probability

matrix by normalization

F 0(i, d) =
F0(i, d)

∑

d F0(i, d)
(3.3)

where each element F 0(i, d) represents the initial probability of point i to be given a

disparity vector d. F 0 is then a non-negative matrix and its row sum is 1.0. Intuitively,
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the bigger F 0(i, d) of a given point i, the higher the probability that point i is assigned

with disparity d. The maximum likelihood disparity field R could be computed as

R(i) = max
d∈L

F 0(i, d) (3.4)

for any i ∈ X. Of course lots of noise and errors could be expected as shown in

Figure 3.2 (d).

3.2 Diffusion Process and Closed-Form Solution

In what follows, we will show how a diffusion process could solve the problem of noise

and errors. The local consistency assumption is made here, where the disparity like-

lihood matrix F (i) at a given point i should be affected by all its neighbor points

j ∈ Ni.

3.2.1 Diffusion Process

An edge weight matrix W, which measures the similarities between neighboring nodes,

is constructed by

Wij =







exp(−
|Ii−Ij |

2

2σ2 ) i, j ∈ N

0 otherwise
(3.5)

And the random walk matrix is given by S, which is the weight matrix W normalized

by its column sums D. S could be thought of as a probabilistic transition matrix, with

each element Sij indicating the transition probabilities from node i to j.

S = D−1 · W (3.6)

where D is the degree matrix (column sum) of W

Dik =







∑

j Wij if i = k

0 if i 6= k
(3.7)

The diffusion process is given by
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F t+1 = αSF t + (1 − α)F 0 (3.8)

where F t+1 is the next disparity field and F t is the current disparity field. α ∈ [0, 1]

is a weighting coefficient. The first term gives a one-step diffusion (or random walk)

from the current disparity, while the 2nd term accounts for that the new disparity field

should be similar with the initial disparity field F 0.

The underlining reason to use the sparse n ∗ n matrix S is that the label of a given

point i is affected by all its neighbors j ∈ Ni, the stronger their edge weights wij , the

more similar should be label at i with the label at j. Coefficient (1 − α) determines

how similar the final solution is to the initial disparity field F 0. 0.95 is chosen for α in

our experiments, which gives the best empirical results.

3.2.2 Derivation of the Closed-Form Solution

Below we will show that the series, F t converges.

From Equation (6.1.1)

F 1 = αSF 0 + (1 − α)F 0

F 2 = αS(αSF 0 + (1 − α)F 0) + (1 − α)F 0

by substituting F iteratively, we get

F t = (αS)tF 0 + (1 − α)

t−1
∑

i=0

(αS)iF 0

since 0 < α < 1 and eigenvalues of S are between −1 and 1

lim
t→∞

(αS)t = 0, lim
t→∞

t−1
∑

i=0

(αS)t = (1 − αS)−1 (3.9)

hence

F ∗ = lim
t→∞

F t = (1 − α)(1 − αS)−1F 0

or simply
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F ∗ = (1 − αS)−1F 0(1 − α) (3.10)

The Max A Posterior estimate of the disparity D after the diffusion process is

di = arg max
d

F (i, d), (3.11)

and the confidence on the given pixel i.

Ci = maxdF (i, d) (3.12)

The diffusion end result F , has taken care of the matching costs of neighboring

pixels for every individual pixel, and drastically improves over the initial matching cost

volume F 0, which is shown in Figure 3.2.

3.2.3 Alternative Derivation

From a regularized energy minimization point of view, we are trying to minimize the

following cost function

E(F ) = El(F ) + µEs(F )

where

El(F ) =
∑

i∈L

(fi − yi)
2

is the fitting term, which poses the constraints that a good classifying function should

not change too much from the initial label assignment.

And

Es(F ) =
∑

i∈Nj

wij(f(xi) − f(xj))
2

is the smoothness term, µ is a weighting coefficient.

Differentiating E(F ) with respect to F , we get

∂E

∂F
= F − SF + µ(F − F 0) = 0
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and could be transformed into

((1 + µ)I − S)F = µY

or equivalently

(I −
1

1 + µ
S)F =

µ

1 + µ
Y

let α = 1

1+µ
, we get

(I − αS)F = (1 − α)Y

and exactly the same equations as in (3.10) is derived.

3.3 Global Constraint by Segmentation

In this section, a global constraint is posed to better regularize the diffusion process,

using image segmentation results. This is especially helpful in stereo matching, where

similar or close disparities are expected for each individual object.

The mean shift algorithm, proposed by Comaniciu and Meer [5], are used for our

image segmentation purposes, because it is an unsupervised algorithm with good results.

Image I is over-segmented into M different segments using mean shift. Each segment

Sk will be assigned a segment number k, where k ∈ 1...M . Each segment is likely to

lie on the same surface with no discontinuity, either on a frontal-parallel plane, or on a

piece-wise smooth surface.

An RANSAC (RANdom SAmple Consensus) [2] plane fitting approach has been

taken to boost the results obtained in the previous section. It uses the assumption that

each segment should lie on a piece-wise smooth plane.

3.3.1 Plane Fitting Approach

Points on a segment lie on the same surface without discontinuity. Most of the time,

the surface is a piece-wise smooth plane. Once we have the initial disparities, we can

use RANSAC to fit that plane.
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RANSAC fits a plane by randomly selecting 3 points, then it checks how many

observed points lies within a small distance to the plane (which are called inliers). It

continues to pick the plane randomly until it finds the one which has the most number

of inliers or it reaches a maximum number of iterations.

The plane fitting disparity Dpf is given by RANSAC Plane fitting on D, the disparity

field after the diffusion process.

As we are having a disparity probability volume, FN∗n, we can increase the prob-

ability values associated or close to Dpf , and decrease the probability values far away

from Dpf , as opposed to taking directly D = Dpf .

3.4 Outlier Detection

After the global boosting by mean shift segmentation, the results are still not perfect

due to occlusion in the left and right view. Outliers exist due to occlusions, ambiguities

in homogeneous area and sometimes bad segmentation.

3.4.1 Occlusion

The right disparity field from the right image to the left image could be obtained using

the same approach, just switch I and I’, and change the range of disparity. To address

occlusion explicitly, the left and right disparity fields are cross checked. The error at a

given pixel x is

Error(x) = |dl(x) − dr(x + dl(x))| (3.13)

where dl(x) and dr(x) are the disparities of the left and right view, respectively, x

is a point in the left view, and x + dl(x) is its corresponding point in the right view.

If there is no occlusion, there should be a unique match on left and right view. The

disparity from left to right should be the same with the disparity from right to left

and Error(x) = 0. On the other hand, if x is occluded in the right view, the match

point found on the other view, x + dl(x) is incorrect, and it could not be matched back

to the same point of x in general. Thus, a potential occlusion is detected whenever
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Error(x) > 0.

3.4.2 Ambiguities

To find possible low confidence disparities and ambiguities, we checked the confidence

values C (defined in Eqn. 3.12)in the left disparity fields and Fr in the right disparity

field. And we define total confidence T at a given point x as

T (x) = C(x) ∗ Fr(x + dl(x), dl(x)) (3.14)

where Fr(x + dl(x), dl(x)) is the likelihood of the corresponding point of x in the right

view, to match x. If a match is unique, both C(x) and Fr(x + dl(x), dl(x)) are expected

to have a big value, and their product is big as well. When ambiguities exists, our

confidence of the match becomes low because both terms are small. It measures the

distinctness of the match.

3.4.3 Outlier Detection

Combining the Occlusion term and the ambiguity term, the outliers are defined as,

U(x) =







1 if Error(x) > δ1 or T (x) > δ2

0 Otherwise
(3.15)

where δ1 is set to 1 and δ2 is set to 0.25.

3.5 Local Confidence Fitting

For those outliers, defined by U(x) = 1, the disparity fields between two views does

not give satisfying results due to either occlusion or ambiguities. The local smoothness

within the same view will be used instead.

A local window of size 33*33 is used, an outlier centered at the window should

have consistent depth value as those both close in distance and similar in color (which

indicates they come from the same part or object). So we use the sum of all inliers

within that window, weighted by color and spatial proximity.

Mathematically,
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F (i, ∗) =
∑

j∈Wi

wij ∗ F (j, ∗) (3.16)

where wij = exp(−
|i−j|·|Ii−Ij |

σ2

2

), depending on both the spatial distances |i − j| and

color similarities |Ii − Ij | within the window Wi, and * represents all possible disparity

values.

Then the Maximum likelihood of F is used to retrieve the disparity field after outlier

fitting. The result after local fitting is shown in Figure 3.2(f).

3.6 Iterative Updating of Disparities and Outliers

We achieve very good results using the steps above. In Tsukuba pairs, we get an initial

error percentage of 1.71%. This result on disparity can be further used to update

the outlier fitting, and the disparity could be cross-checked and updated again in an

Expectation-Maximization framework. The error rate of Tsukuba pairs improves to

1.36% on the 2nd iteration, which is within the state of art on the Middlebury dataset

citeMiddleburyStereo.

The final result of the disparity field after global constraint is given in Figure 3.2.

3.7 Results and Further Work

3.7.1 Results

Results on the Tsukuba pair, including all the intermediate steps explained in the

previous sections are shown in Figure 3.2.

The other image pairs in the Middlebury stereo database are given in Figure 3.3.

The computation of the stereo pairs are very efficient. The closed-form solution

only takes O(nN) computations, where N is the number of pixels, and n is the number

of labels. S in (3.10) is an N ∗ N sparse matrix, and similar as a penta-diagonal

matrix, which could be solved in O(N). The running time of our algorithm takes about

2 minutes.
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Figure 3.2: Results of the proposed algorithm on Tsubuka pair. (a) left image (b) right
image (c) ground truth, (d) brute-force approach using MAP, (e) after the closed form
solution of diffusion (f) after cross check and plane fitting (g) after first iteration (h)
error of the first iteration (i) after second iteration (j) error of the second iteration
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Figure 3.3: Results on all 4 pairs in Middlebury dataset, from left to right, left image,
right image, results using our algorithm and the error maps. From top to bottom,
Tsukuba, Venus, Teddy and Cone pairs. Error rates: 1.36, 0.67, 7.98, 5.76 respec-
tively. Note: for Teddy and Cone pairs, the errors come mostly from the left-right view
occlusion.
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3.7.2 Future Work

To improve the results and integrate the post-processing implicitly into the closed-form

solution, we may want to update the weight matrix W dynamically. For example, the

mean shift segmentation results could be combined with the weight matrix computation,

where edges eij across two different segments are assigned a much lower weight wij , than

pixels on the same segment.

In the same manner, when occlusion map are estimated, the information can be put

into the weight matrix computation again to improve the results.
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Chapter 4

Optical Flow Using Semi-Supervised Learning

Optical Flow is one of the most challenging problems in computer vision. The motion

vectors between consecutive frames are being estimated. It is an ill-posed problem

because it is seriously under constrained. And, normally two common constraints are

posed: constant brightness and spatial smoothness.

The major challenge of the optical flow problem is (a) illumination variation across

different frames and (b) lack of information in untextured regions.

The figure below shows two consecutive frames of the “Army” sequence. The dis-

placements between the frames vary according to the pixel location on the image. The

Ground truth is given in 4.1(c), where different colors encode different flow directions

and the saturation of color gives the magnitude of the flow at a given pixel. The codec

for the flow encoding color can be read in a “color wheel” shown in 4.1(d).

4.1 Related Work

Lukas and Kanade [18], Horn and Schunck [11], have been the early pioneers on Optical

Flow. Recent approaches include variational methods, MRF-based energy minimization

approaches, learning and statistical techniques.

Lukas and Kanade [18] makes the brightness constancy constraint, and for each

pixel (x, y) at time t,

I(x, y, t) = I(x + dx, y + dy, t + dt) (4.1)

For the equation at each pixel, there are two unknowns. The ill-posed problem (the so-

called aperture problem) is solved by the additional assumption that the flow (dx, dy)

is constant within a small window.
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Figure 4.1: Army Sequence, (a) frame 10 (b) frame 11 (c) Ground truth flow encoded
in (d)Color Wheel, which different colors represent different flow orientations, and sat-
urations represent flow magnitude.
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Horn and Schunck formulate the optical flow problem into a variational problem

[11] A global energy function f is sought to be minimized,

f =

∫

(∇I · V + It)
2 + α(|Vx|

2 + |Vy|
2)dxdy (4.2)

where ∇I = [IxIy]
t is the spatial derivatives of the image I in the x and y dimensions.

It is the derivative in time. The equation is solved with Gauss-Seidel method using an

iterative schema.

Additional constraints like gradient constancy and affine transformation can be

posed to further refine the early approaches.

Because of the existence of some image sequences with ground truth flow fields,

training and learning using those ground truth flow fields can dramatically improve the

results. For example, using spatial statistics as in [23], and learning methods as in

[16].

MRF methods such as graph cuts and belief propagation have also been introduced

to optical flow computations due to their success in stereo matching. Such as in [7].

4.2 Our Approach

A similar approach as in our stereo matching algorithm is adapted and applied to optical

flow computations.

Consider all of the pixels in image I as a point set X = x1, x2, ..., xN , and make all

of the possible disparities as a label set L = 1, 2, ..., n, where N is the total number of

pixels, and n is total number of disparity labels.

An initial disparity likelihood matrix F0, for pixel i ∈ X, with a flow vector d ∈ L

is given by the inverse exponential of the Sum of Squared Distances (SSD)

F0(i, d) = exp(−

∑

j∈Ni
wij |I(j) − I ′(j + d)|2

2σ2
∑

j∈Ni
wij

) (4.3)

where SSD is computed in the neighborhood of point i including i itself, j are

the neighbors of i, which could be 4-neighborhood, or k Nearest Neighbors (kNN).

wij is the edge weight between i and j. This form works like an adaptive support,
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which assigns strong weights on similar pixels with i in the local neighborhood. The

inverse exponential converts the SSD into a similarity measure as well as regulates the

disparity field F between 0 and 1. σ is a regularization factor. F0 is a matrix of size

N ∗ n computed on all points in X, with every possible label d ∈ L.

The disparity likelihood matrix F 0 is then normalized into a soft assigned probability

matrix

F 0(i, d) =
F0(i, d)

∑

d F0(i, d)
(4.4)

where each element F 0(i, d) represents the initial probability of point i to be given a

disparity vector d. F 0 is then a non-negative matrix and its row sum is 1.0. Intuitively,

the bigger F 0(i, d) of a given point i, the higher the probability that point i is assigned

with disparity d.

As illustrated in Chapter 3, without further constraint, the MAP results using

directly the initial flow cost volume F yields very noisy results.

4.2.1 Diffusion Process

A similarity matrix W is constructed by

Wij =







exp(−
|Ii−Ij |

2

2σ2 ) i, j ∈ N

0 otherwise
(4.5)

And the random walk matrix is given by

S = D−1 · W (4.6)

where D is the degree matrix of W

Dik =







∑

j Wij if i = k

0 if i 6= k
(4.7)

Similar to Chapter 3, the closed-form solution of the diffusion process is given by

F ∗ = (1 − αS)−1F 0(1 − α) (4.8)
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The maximum likelihood disparity field T using the cost volume F can be computed

as

T (i) = max
d∈L

F (i, d) (4.9)

The diffusion end result F , has taken care of the matching costs of neighboring

pixels for every individual pixel. As shown in later sections, the resulting flow fields

become much smoother and are improved significantly.

4.2.2 Noise and Outlier Removal

Noise exists in optical flow computations for various reasons. First of all, optic flow

estimation itself is an ill-posed problem because it is seriously under constrained. Both

the brightness constancy constraint and the piece-wise smoothness constraint are not

necessarily correct in every circumstance. Among other reasons, the most significant

ones are occlusions, ambiguities in homogeneous areas and illumination variations in

different frames.

So first, we need to detect those noises and outliers. Then we need some algorithms

to find out the real underlying flow fields of those outliers.

For the first problem, that of noise detection, a confidence measurement is intro-

duced to reflect our confidence in whether the computed flow fields are correct or not.

For the second problem, that of outliers fitting, the flow fields with high confidence will

be deemed to be ground truth and outliers will be solved in a semi-supervised fashion.

Confidence Measurements

Currently, there are several clues we can use to detect outliers and noise. First, the

normalized maximum likelihood T on each pixel is an important measurement of the

confidence. The N ∗ n cost volume F is normalized so that the row sum is 1. The

higher T, the higher our confidence that the current label is correct.

As in stereo matching, cross checking optical flow fields back and forth gives an

important clue for errors. Due to the speed concern, it is not used in the current
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framework.

Another clue is that pixels with labels quite different from their neighboring pixels

(esp. those not at edges) can be an outlier.

Outliers Removal by Iterative Propagations

A small portion of the pixels are recognized as outliers using the confidence measures

introduced above. Our next problem is how to use the labels of the “good” pixels, to

induce the true label of those outliers.

For this purpose, an heuristic approach similar to the algorithm in Chapter 5 is

introduced, and we will present it briefly before the formal introduction in next chapter.

The traditional approach of Markov Random Field is to minimize the sum energy

E of a data term Ed and a smoothness term Es

E(f) =
∑

p

Dp(fp) +
∑

p,q∈N

Vpq(fp, fq) (4.10)

Where fp is the flow vector at node p, Dp(fp) is the data term,, and Vpq(fp, fq) is the

smoothness term, between neighboring nodes p and q. E(f) is composed of the sum of

all data terms and smoothness terms.

In our work, we decompose the total energy into energy at individual pixels.

E(f) =
∑

p

Ep (4.11)

where Ep is the energy at pixel p,

Within Ep, the data term Dpfp is associated with each pixel, and the smoothness

term Vpq(fp, fq) corresponds to the edge weight of two neighboring pixels, p and q. We

split the smoothness term equally into two parts,

Vpq(fp, fq) =
1

2
Vpq(fp, fq) +

1

2
Vqp(fp, fq)

and let the first part solely belong to pixel p, and similarly, make the second part

fully belong to the pixel q.

And now, Ep becomes,
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Ep = Dp(fp) +
1

2

∑

q∈Np

Vpq(fp, fq) (4.12)

Assume the labels are updated in a given sequence, and for the time being, l labels

yi i = 1...l, at Xl := xi i = 1..l are known. The next label to choose should be selected

so that Ep is minimized. A potential candidate xl+1 is chosen from all neighbors of the

l known points Xl, of which we have some knowledge, due to smoothness constraint

imposed on its neighborhood.

A possible problem is that, not all neighbors of a potential candidate xl+1 are known

at this time, so only the current knowledge about this pixel is used, and the equation

is changed slightly to:

Ep = Dp(fp) +
1

2

∑

q∈KNp
wpqVpq(fp, fq)

∑

q∈KNp
wpq

(4.13)

where KNp represents the known neighbors of pixel p, and the smoothness terms be-

tween p and all its KNOWN neighbor are weighted by wpq.

The beauty of this approach is that first only a small proportion of the labels need

to change. Most labels have high confidence and are set to inlier, only those labels that

have been classified as outliers need to be updated. Second, we can update the best

labels dynamically considering both the data term and the smoothness term, without

the need for multiple iterations for each pixel. The above two points make the dynamic

algorithm used in optical flow very fast as well as makeing the result much better and

smoother in the flow field. (The diffusion process makes the probability field smooth,

and not the field of labels in all circumstances). The possible drawback of this approach

is the same as with any heuristic algorithm, which depends on the order of operations,

and is an approximation instead the exact solution. (So is graph cut and message

passing algorithm).

4.2.3 From Discrete to Continuous Flow Vectors

To give a solution with sub-pixel accuracy, a quadratic polynomial interpolation method

is employed.
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The constructed cost volume is discrete, so the flow fields are discontinuous. Quadratic

polynomial interpolation is used to approximate a continuous cost function in 2D, from

three discrete depth values, d, d− and d+, at pixels x0, x0 − 1 and x0 + 1 separately.

Assume the underlying quadratic function is f(x) = ax2+bx+c, with the maximum

at xmin = −b
2a

, for a < 0.

we have

d = ax2
0 + bx0 + c

d− = a(x0 − 1)2 + b(x0 − 1) + c

d+ = a(x0 + 1)2 + b(x0 + 1) + c

(4.14)

we can get,

a =
d+ + d− − 2d

2

b =
d+ + d− − 4ax0

2

hence,

xmin =
−b

2a
= x0 −

d+ − d

2(d+ + d− − 2d)

4.3 Hierarchical Approach

Because of the possibly large motion between consecutive frames, the matrices F or B

could cost a huge amount of memory and computations. To solve this problem, we use

a hierarchical approach, dividing both the image and labels into different levels from

coarse to fine.

A pyramid approach is applied from coarse to fine. The bottom level is the original

image. Each level is one fourth the size in each dimension of a lower level. A global

motion, which is estimated at the coarser level, is refined and corrected at the finer

level. Successively finer flow fields get their F by interpolating the predecessors and

matching in the local neighborhoods, which have more details now.
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4.4 Results

Experimental results for the Middlebury evaluation image sequences [1] are shown in

4.2. There are 8 image sequences to evaluate, in which Army, Mequon, Schefflera and

Wooden are real sequences captured with a color camera. Grove, Urban and Yosemite

are synthetic sequences, among which, Grove and Urban are color image sequences,

and Yosemite is a gray image sequence. And Teddy is stereo image pair (which have a

different ground truth flow field from the pair in Stereo evaluation).

The numerical results is given in the web address below. Our average error in end

points is 0.83 across all 8 image sequences and is ranked the 10th on the flow evaluation

table in

http://vision.middlebury.edu/flow/eval/results-huang/results-e1.html.

4.5 Discussion

4.5.1 Label Smooth Vs. Flow Field Smooth

In the popular energy minimization framework, such as Graph Cut or Belief Propaga-

tion, the underlining constraint is that the final label of the motion vector field should

be smooth. We further enrich the concept by making the similarity flow field associated

with each label smooth. In many cases, it could be observed that the label associated

with the best cost field at a given pixel could be wrong, instead the 2nd or 3rd best

label are the same with the ground truth. Thus, updating the whole flow fields is more

meaningful and contains more information than updating only the best labels.

4.5.2 Advantages of Our Approach

The advantages of this approach are two-fold. First, the smoothness term is implicit,

and can be computed easily with sparse matrix operations. Second, it allows for the

motion vector field discontinuity in a small neighborhood, if the relative cost is big

enough. Thus, finer details can be kept without too much smoothing. On the other

hand, in the homogeneous untextured regions, the original costs inside could be close
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Figure 4.2: Results of Optical Flow sequences Army, Mequon, Schefflera and Wooden.
From left to right, first frame, next frame, our result. From top to bottom, Army
sequences, Mequon Sequences, Schefflera sequences and Wooden Sequences. Bottom,
the color wheel, the flow encoding schema which color indicates flow orientation and
saturations represent flow magnitudes.
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Figure 4.3: Results of Optical Flow sequences Grove, Urban, Yosemite and Teddy.
From left to right, first frame, next frame, our result. From top to bottom, Grove
sequences, Urban Sequences, Yosemite sequences and Teddy Sequences. Bottom, the
color wheel, the flow encoding schema which color indicates flow orientation and satu-
rations represent flow magnitudes.
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for each label, distinctive points only reside at feature points or boundaries. But the

higher similarity measure could be propagated to the similarity field to the relevant

labels, and cause the cost field at other regions to be higher as well.

Using the confidence level of the matching scores, the scores of high confidence

data are transductively propagated to low confidence ones. The best part of that is,

no explicit learning is needed, and interactions like human labeling are not necessary.

Thus it could be called unsupervised learning in a semi-supervised learning framework.
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Chapter 5

Tracking with Semisupervised Learning and Sparse

Feature Matching

The approaches in Chapter 3 and 4 are suitable for dense matching problems, such as

stereo matching and dense optic flow estimation. They are substantially faster than

existing graph cut and belief propagation algorithms. For problems like object tracking

in image sequences, speed is an important factor and sometimes a sparse set of pixels

is sufficient and can give reasonable results.

In this chapter, we combine sparse feature matching with dense optic flow, and a

heuristic algorithm is proposed for computing optic flow, and object tracking in video

sequences. The method is both computationally effective and fast. It is based on

a good initialization by feature points matching, such as SIFT [17]. The matching

is then propagated to neighbors of the initial points, which have the lowest energy,

maintained by a Heap and extracted one at a time. Results are presented in optic flow,

tracking and video object segmentation in video sequences.

The key observation of this work is that good initialization could ease the problem

dramatically. Once some anchor points are fixed, all their neighbors should keep smooth

with the anchors, as well as maintain their energy low. The consistent neighbors with

the lowest energy will be added into the anchor points, and the process will continue

until all points are added. The anchor points could be initialized by feature point

detection and matching.

Both initialization and the order of propagation can introduce errors into the final

result. Upon completion of propagation, the final result is used to update earlier points

which do not have enough knowledge at that time, and this is carried out using harmonic

functions [33].
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In joint segmentation and tracking, the object of interest will be represented by a

compositional model of different segments. Shape priors for each segment will be kept,

updated and warped in each new frame, and combined with the optic flow field to make

the results accurate and robust.

5.1 Related Work

5.1.1 Feature Tracking

Scale-invariant feature transform (SIFT) [17] is a scale-space extrema detection and

description algorithm, and because of its invariance to scale and rotation, it is a very

robust method to find the keypoints, the feature points on an image. Other methods

includes the famous Kanade-Lucas-Tomasi tracker (KLT) [19] [28], and GLOH [20],

which uses a spatial histogram scheme. A good review of feature descriptors could

be found in [21]. SIFT is used in this work, but any other method could be used

interchangeably.

Zhu et al. [33] gives an approach for the semi-supervised learning or classification

problem, by relaxing the discrete label field into a continuous one, and a point is labeled

as the nearest labeled example in a random walk sense. A similar approach has been

used in random walk, an interactive image segmentation technique by Grady [9]. The

details can be found in Chapter One of this dissertation.

5.1.2 Video Object Tracking and Segmentation

Video object cutout by Wang et al. [29] is an interactive video segmentation method.

First, the whole video sequence is hierarchically decomposed using mean-shift. The

user has to provide labels in different frames and locations, then the video object is

segmented by min-cut optimization. This is very useful in post processing of video, but

not in real time when not all frames are known in advance. Zitnick et al. [34] proposed

a method for computing optical flow by finding the consistent segments in video using

mean shift. The final result of optic flow and segmentation is on the segment level,

depending on over-segmentation by mean shift, and is less accurate on the pixel level.
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The updating procedures of the algorithm is also similar to the framework of fast

marching [25] or Dijkstra’s method [13]. Both have some Starting points, and itera-

tively add Neighbors with the minimum values into the Starting points.

5.2 Algorithm

Assume we are given two input images I and I ′, which are two consecutive frames in

optic flow or tracking. We are trying to find Optic flow or disparity field at all nodes

on image I, by energy minimization.

5.2.1 Energy Terms

The total energy to minimize in MRF is as follows:

E(f) =
∑

p

Dp(fp) + α
∑

p,q∈N

Vpq(fp, fq) (5.1)

Where fp is the flow vector at node p, Dp(fp) is the data term,, and Vpq(fp, fq) is the

smoothness term, between neighboring nodes p and q. E(f) is composed of the sum of

all data terms and smoothness terms, with α as a mixing factor for the Data term Dp

and the Smoothness term Vpq.

In our work, we decompose the total energy into energy in individual nodes.

E(f) =
∑

p

Ep (5.2)

and

Ep = Dp(fp) +
1

2
α

∑

q∈Np

Vpq(fp, fq) (5.3)

(without loss of generality, 1

2
before α

∑

q∈Np
Vpq(fp, fq) could be omitted)

Intensity and gradient constancy are assumed for data term Dp(fp)

Dp(fp) = |Ip − I ′p+fp
| + |Gp − G′

p+fp
| (5.4)

which is defined as the absolute difference between intensity Ip and the shifted

intensity I ′p+fp
in the other image, plus absolute gradient difference between Gp and

G′
p+fp

.
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The simplest form of Vpq(fp, fq) between neighboring flow vectors fp and fq is,

Vpq(fp, fq) = min(|fp − fq|, k) (5.5)

for some constant k

Note label smoothness should be kept in homogeneous regions, but not necessarily

at edges, where discrepancies are likely to happen. So neighboring pixels with similar

intensities or dramatically different intensities should be assigned different smoothness

terms, even if the flow vectors fp and fq are the same.

For this purpose, we choose the normalized edge weight function ppq between p and

q to weight the smoothness term. ppq also defines the probability that flow fq from

node q will propagate to node p

ppq =
wpq

∑

q∈Np
Wpq

(5.6)

where edge weight

wpq = exp(−
|Ip − Iq|

2

2σ2
) (5.7)

and σ is user defined.

This term suggests that the smoothness term between neighboring pixels depends on

the similarity of their intensities. This ensures that pixels need to be smooth with only

neighbors of similar intensities. For neighboring pixels across edges, large difference in

flow vectors is allowed. This is also in accordance with the random walk sense, where

labels propagate into neighbors according to the probability of label propagation.

So finally, the smoothness term becomes

Vpq(fp, fq) = min(|fp − fq|, K) ∗ Ppq (5.8)

5.2.2 Initialization

First, feature detection is applied and matches are found in both input images. The

flow vectors of all matches will be sorted and those with a large standard deviation will

be discarded as outliers. The range of flow will be determined by the matches and the

flow is computed for the feature points.
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There are three types of labels marking the status of every node, KNOWN, NEIGH-

BOR and FARAWAY. Nodes of KNOWN are ones in which their labels fp are known

so far. NEIGHBOR nodes are neighbors of KNOWN, the rest of the nodes are marked

with FARAWAY. A heap structure is used to hold NEIGHBOR nodes, to increase the

speed of sorting in finding the nodes with the minimum value.

Those detected feature points are labeled as initial points, and are added into

KNOWN We will assume it is accurate for the time being, and it will be refined in

post-processing steps. The neighbors of the initial points are marked as NEIGHBOR,

and added into a Heap. All other pixels are initialized as FARAWAY.

5.2.3 Iteration of Propagations

The basic iteration steps are as follows

[1] Select a node p from NEIGHBOR, which has the lowest energy Ep

[2] Add p to KNOWN

[3] a. Add all p’s neighbors in FARAWAY to NEIGHBOR, compute their energy

b. Update p’s neighbors which are already in NEIGHBOR

[4] return to step [1] until no points are left in NEIGHBOR

If the flow fields of all neighbors of point p are known already, fp could be decided

deterministically. In many cases, we only know some of its neighbor’s flow field f . We

would like a node of which we have a better knowledge as well as with lower energy, to

be selected first to minimize the overall error.

An easier way to define our knowledge of a node p is to count the current known

neighbors of p. The more neighbors in KNOWN it has, the better we can determine

its label lp.

For the same reason we mentioned in the previous section, the normalized edge

weight funtion wpq in equation (5.7) has to be considered to take neighborhood node

similarities into account. The normalized sum of edge weights between p and all its

known neighbors is used to define our knowledge of p,
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Kp =

∑

q∈KNp
wpqVpq(fp, fq)

∑

q∈KNp
wpq

(5.9)

So for the time being, the energy at a neighboring node p is defined as

Ep = Dp(fp) + Kp (5.10)

which is composed of a data term Dp(fp) at p, plus the weighted sum of the smoothness

terms to its known neighbors. (Since only neighbors of p in KNOWN is available when

p is being accessed), and the knowledge term Kp in (5.9). The knowledge term also

makes the boundaries of KNOWN points smooth, as the propagation tends to first go

over all familiar regions before marching into unknown territories. So this also makes

an effective curvature term.

The general principle of Propagation is to choose the best easiest node for label

assignment with the lowest energy Ep first, and leave the harder nodes with the highest

energy last, to minimize the overall energy E. The nodes with lowest energy and better

knowledge tend to have lower errors, since they have a combined lower data term, which

indicates they have both a good fit and a lower smoothness term, which means they

are similar to their neighbors.

In iteration step[3], if q is in FARAWAY, its energy Eq will be generated as in

equation (5.10). If q is already in neighbor, we will update its energy Eq , since p is just

added to known, the smoothness term will have additional wpq normalized Vpq(fp, fq),

as in (5.9) as well. The energy is updated for all possible fq.

The iterations will continue until there are no more points in the neighbor Heap.

5.2.4 Post-Processing

The iteration is heuristic, and the final result could be determined by the initialization

and updating order, so postprocessing is necessary. A harmonic function is employed

for this purpose.

A harmonic function f satisfies

f(xi) = yi (5.11)
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And it minimize
∑

ij

wij(fi − fj)
2 (5.12)

where ij are all pairs of i and j that are neighbors, and the average of neighbors i is

fi =

∑

j∈Ni
wijfj

∑

j∈Ni
wij

(5.13)

where the sum is over all j which are neighbors of i. If some prior labels are known and

fixed, there exists a closed form solution for harmonic function. The harmonic function

could also be interpreted as random walk and is related to the graph Laplacian matrix.

The x and y field of the flow vector will be extracted and each will be averaged with

the harmonic function for a few iterations, to ensure spatial consistency of labels.

5.3 Combined Tracking and Segmentation

In this section, we will show that the above algorithm could be adapted and applied to

accurately track and segment an object simultaneously in real time.

5.3.1 Iterative Segmentation and Optic Flow Computation

Assume an initial mask of the object of interest is either given or computed previously

(for example, using optic flow). In this case, in addition to the disparity or flow vector

fp, segment labels li are introduced. li could be set to binary label i = 0, 1, where l1

are foreground pixels, and l0 are background pixels. Or we could make a compositional

model of M different parts, where i = 0, 1...M . i = 0 stands for background, and

i = 1...M stands for different parts of the object or different objects. The compositional

model could be retrieved with a Gaussian Mixture Model or Mean Shift [5].

The introduction of the segment label l solves the segmentation problem in conjunc-

tion with the optical flow field. We will show that both the flow vector f and segment

label l could be processed properly using the iterative propagation framework in Section

2.

The energy model has been modified slightly, to incorporate energy from segmen-

tation and the smoothness of segment labels between neighbors,
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E(f) =
∑

p

Dp(fp) +
∑

q∈Np

Vpq(fp, fq) +
∑

p

P (l′p+fp
− lp) +

∑

q∈Np

Upq(lp+fp
, lq+fp

) (5.14)

For the last two terms, P (l′p+fp
− lp) accounts for the segment label at p + fp in

the next frame being mapped to the same segment at p in previous frame, given the

flow vector fp. lp is the label in the previous frame, fp is the flow vector, and l′p+fp
is

label of p in next frame. We will impose a penalty term P (l′p+fp
− lp), if p is mapped

to another segment after the optic flow between consecutive frames.

Upq(lp+fp
, lq+fp

) is the smoothness term for the neighboring nodes which remain in

the same segment on the new frame.

The same iterative schema in Section 3 will be used to update the segment label

and optic flow field simultaneously.

5.3.2 Postprocessing

Instead of using the labels lp for segmentation directly, information from previous frames

will also be considered. Knowledge of all previous frames is giving us important prior

shape information for each part and the whole object being tracked. The flow field fp

could determine a rigid or non-rigid transform Φi for each segment i. Previous shape

priors could be warped into the new frame given the individual transform of each part.

The warped shape prior and the label computed in the last section could be combined

by a weighted sum, to give the probability at the current frame.

Since this is a multi-label segmentation problem, a probability matrix Ψi
p will be

given to describe the likelihood for p to be assigned with segment label i. Where Ψi

will be 1 at the maximum of the sign distance function of li, and 0 when far away from

label li.

Ψ̂i
p = αT i(Φi

p) + (1 − α)Ψi
p (5.15)

Where α is the learning factor, Φi
p is the previous shape prior for segment part i,

T i is the transform of component i, and Ψ̂i
p is the new estimation.
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The probability matrix Ψi will be updated at the end after probability propagation,

using the past history and result in this frame, again weighted by α.

5.3.3 Probability Propagation

Now instead of optic flow field, we are now more interested in the probability function of

different segments. So the probability function of each segment is individually averaged

by the harmonic function (5.13). The final label will be taken as the maximum across

all possible labels.

5.4 Result

In this section, the result of stereo, optic flow and combined tracking and segmentation

will be shown.

Figure 5.1 shows an example of stereo matching for illustration purpose. The top

row shows the original stereo pair of Teddy and the ground truth of disparity. The initial

points as well as some intermediate iterations steps have been shown to illustrate the

iteration process. Notice in iter. 100000 (bottom left), the propagation seems to stops

at image edges, because all edge points have larger energy term Ep than homogeneous

regions.

The final iteration is shown in the bottom middle, the disparity result looks fairly

good. The result after post-processing is shown in bottom right. The image size is

450 ∗ 375, and the disparity field is large, from 0 to 60. Yet, the computation takes

only a few seconds, e.g. 1.2 seconds for SIFT feature matching, 2.2 seconds for the

iteration process, and 0.17 second for the post-processing (10 iterations). This result is

comparable with other MRF methods, but takes significantly less computation time.

Another example is shown for optical flow in Figure 5.2. The optic flow in all frames

shows great accuracy and the boundary of the moving human body and back of trunk

could be clearly seen. The image size is 640 ∗ 480, with 7 frames in total. The starting

and ending frame as well as every other frame of the optic flow are shown in Figure 5.2.

The next example Figure 5.3 demonstrates the results for combined segmentation
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Figure 5.1: Results of stereo of Teddy. 1st row: from left to right, left image, ground
truth, right image. 2nd row: initial points, iter 10000 , iter 20000. 3rd row: iter
40000, iter 60000, iter 80000. 4th row: iter 100000, result after final iter, result after
postprocessing
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Figure 5.2: Results of Optic flow of MiniCooper sequence [1]. from left to right, top to
bottom: first frame, last frame (8th). optic flow field in frames 1, 3, 5, 7 (only X field
are shown)

and tracking a tropical fish with a moving camera. The video size is 320*240, with

190 frames and the fish undergoes non-rigid transform as it changes its direction in

the water. The red lines on top the original image marks the boundarys of the fish

as well as different composing parts. The binary gray in the middle column shows the

sum probability to be the object, and the gray image on the right column shows the

segmentation label of each part. An roughly initial mask is given for frame 1 (not shown

here). The SIFT matching is only computed inside the fish to save computation. Mean

shift is applied to compute initial segments in the first frame only. The probability

matrix for each segment are updated as the tracking moves on, and mapped to the new

frame using affine warping.

5.4.1 Discussion

The computation of the Heap is O(NlogN), where N is the number of pixels, logN

comes from the heap operation, insertion and extractMin. It is much smaller in practice,

since not only a portion of the N nodes are in the heap at the same time. Postprocessing

will take O(N) time, and could be negligible. O(NlogN) is already much inexpensive

in computation than the polynominal computation time of graph cut.

In the accurate object tracking and segmentation case, only a small area inside and
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Figure 5.3: Results of Combined segmentation and tracking of a fish. The red lines on
top the original image marks the boundary of the fish as well as different composing
parts. The gray image on the middle column shows the segmentation label of each part
and the gray image in the middle column shows the sum probability of the object. The
1st through 6th row show frame 25, 45, 65, 85, 105, 125 in the video sequence.
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around the object of interest is needed for computation. Thus only 0.23 secord is needed

per frame in average. And Near-real time tracking could be achieved.

Our approach requires little or none user interaction for segmentation of video, and

achieves accurate and reliable results.
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Chapter 6

Discussion and Conclusions

6.1 Discussion

6.1.1 Computational Complexity

In the diffusion equation for stereo or optical flow,

F t+1 = αSF t + (1 − α)F 0

the random walk matrix S is a sparse N∗N matrix, which only involves the neighbors

of a given point (4-neighborhood is used), thus each iteration is of O(N) in computation.

For the closed form solution,

F ∗ = (1 − αS)−1F 0(1 − α)

it involves the inverse of the sparse matrix S. At first, it looks daunting. But in

Matlab, Backslash or matrix left division are used to solve equation Ax = B, where A

is a square matrix, B is a matrix with several column vectors. Usually it is computed

by Gaussian elimination where computation is O(n3) in general, but for sparse matrix,

especially tridiagonal matrix and penta-diagonal matrix, algorithms with O(N) com-

putations exists [8] [12]. The sparse random walk matrix S is not pentadiagonal, but

it could be rearranged into a pentadiagonal-like matrix. In reality, the computation

also increases linearly with the number of labels n, where n << N .

The computation of our algorithm is in general O(N) instead of the polynomial

approach in Graph cut and Message Passing algorithms. The most recent logCut algo-

rithm [15] is still several times slower than our approach even though it is supposedly

an O(NlogN) algorithm.
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There are additional overheads for the post-processing of stereo matching and optical

flow, but the computational time is less than or of the same order as the closed-form

diffusion process.

Our computation time on the Tsukuba pair in stereo, with an image size 352 ∗ 288

and labels ranging from 0 to 15, takes about 2 min using Matlab. A less accurate

implementation of the same algorithm using C++ only takes 4 seconds. Our algorithm

is much faster than other algorithms which have posted their computational time.

For optical flow, the computation time of one of the most computationally intensive

image pairs, Urban, takes about 3 min using Matlab with C++ mex function. The

image is bigger, with a size of 640 ∗ 480, and has a much bigger range of possible flow

fields, with approximately an X flow field from -32 to 3, and a Y flow field from -1 to

9, and thus a label range of 432. The optical flow is faster in general than stereo since

there will be no cross-checking and we do not make the same assumption that each

segment lies on a piece-wise smooth plane.

6.2 Conclusions

A novel algorithm to solve the general image matching problem using graph theoretic

semi-supervised learning is presented in this dissertation. The algorithms have been

adapted and applied in different applications, such as stereo matching, optical flow and

object tracking. State of art results using this approach have been demonstrated in all

of these research areas.

The main contribution of this dissertation is to apply graph based semi-supervised

learning in stereo, optic flow and tracking, in a manner which has not been proposed

before so far as the author knows. In fact, the supervised labels are obtained auto-

matically using high confidence points (as in Stereo or Optic Flow), or a sparse feature

matching method (like SIFT). Hence, no human interaction is needed for the matching

process, and it is essentially an unsupervised method. Only in terms of theory, is it

based on the semi-supervised learning algorithm.
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Graph based Semi-supervised learning has been used in interactive image segmenta-

tion, as in random walk [9], and more recently, in object recognition, [14]. The scope

has been broadened to dense image matching in this work.

The results show the advantages of our approach, it is robust, accurate and com-

putationally efficient. In comparison with the state of art, in the standard Middlebury

database evaluation of stereo and optical flow, our results are comparable in accuracy

with the top algorithms, and are generally more computationally efficient.

6.3 Future Work

We integrated sparse feature matching and dense image matching using semi-supervised

learning, to some extent, in Chapter 4, the optical flow part of this work. But there is

still a lot more to exploit in this area.

To further improve the numerical accuracy of our algorithms, we can dynamically

update the weights matrix and make it more discriminative for different labels. The

fixed edge weight matrix is one of the bottlenecks where we could not improve at a

certain point.

This framework could also be easily transfered to medical image registration or

tracking. For example, registration across MR and CT images. A very suitable area in

tracking is on ultra-sound heart image sequences, where the chamber could be tracked

across frames. An underlying transformation, affine or even non-rigid, could be as-

sumed between source image and target image to register. The transformation will

be incorporated implicitly in the semi-supervised graph diffusion framework using our

current approach.

The other area is unsupervised image segmentation. The graph cut and random

walk algorithms both need user interactions, and user-provided seeds are used. In a

semi-supervised diffusion framework, we could ease the necessities of user interactions

by semi-supervised clustering of the distance of pixels, and update the edge weight

dynamically.
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For the continuation of our NSF funded project, Real time Identification and Moni-

toring for Reef Fish Communities, the color and shape model inside the fish contour will

be retrieved and compared with previous stored models, and recognized as the fish with

the most similar pattern. If this pattern has not appeared before, it will be saved as a

new model. A database for different types of fish, at difference poses or illuminations

will be stored and sorted in a database.
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