
IMPROVING THE SPEED AND ACCURACY OF

INDOOR LOCALIZATION

BY KONSTANTINOS KLEISOURIS

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Richard P. Martin

and approved by

New Brunswick, New Jersey

January, 2009

c© 2009

Konstantinos Kleisouris

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Improving the Speed and Accuracy of Indoor Localization

by Konstantinos Kleisouris

Dissertation Director: Richard P. Martin

Advances in technology have enabled a large number of computing devices to communi-

cate wirelessly. In addition, radio waves, which are the primary means of transmitting

data in wireless communication, can be used to localize devices in the 2D and 3D

space. As a result there has been an increasing number of applications that rely on the

availability of device location. Many systems have been developed to provide location

estimates indoors, where Global Positioning System (GPS) devices do not work. How-

ever, localization indoors faces many challenges. First, a localization system should use

as little extra hardware as possible, should work on any wireless device with very little

or no modification, and localization latency should be small. Also, wireless signals in-

doors suffer from environmental effects like reflection, diffraction and scattering, making

signal characterization with respect to location difficult. Moreover, many algorithms

require detailed profiling of the environment, making the systems hard to deploy.

This thesis addresses some of the aforementioned issues for localization systems

that rely on radio properties like Received Signal Strength (RSS). The advantage of

these systems is that they reuse the existing communication infrastructure, rather than

necessitating the deployment of specialized hardware. Specifically, we improved the

latency of a particular localization method that relies on Bayesian Networks (BNs).

This method has the advantage of requiring a small size of training data, can localize

ii

many devices simultaneously, and some versions of BNs can localize without requir-

ing the knowledge of the locations where signal strength properties are collected. We

proposed Markov Chain Monte Carlo (MCMC) algorithms and evaluated their perfor-

mance by introducing a metric which we call relative accuracy. We reduced latency by

identifying MCMC methods that improve the relative accuracy to solutions returned

by existing statistical packages in as little time as possible. In addition, we parallelized

the MCMC process to improve latency when localizing devices whose number is on

the order of hundreds. Finally, since wireless transmission is heavily affected by the

physical environment indoors, we investigated the impact of using multiple antennas

on the performance of various localization algorithms. We showed that deploying low-

cost antennas at fixed locations can improve the accuracy and stability of localization

algorithms indoors.

iii

Acknowledgements

Foremost, I would like to thank my advisor, Professor Richard P. Martin. This thesis

would not have been possible without his help. I hope to make him proud of my current

and future endeavors.

I would also like to thank Kathleen Goelz for her invaluable support throughout

my graduate studies. She encouraged me to keep going, one step at a time, constantly

moving towards higher and greater goals.

I am also grateful to Professors Michael Littman, Ahmed Elgammal and Dr. Gio-

vanni Vannucci for being on my committee and providing valuable comments and in-

sight.

I would like to thank my family, to whom I owe the most. My parents, Aristotelis

and Maria, and my sister Panagiota, all stayed close to me despite the thousands of

miles separating us. They offered me encouragement and confidence during my studies.

Finally, I would like to express my appreciation to staff and other faculty and stu-

dents of the Department of Computer Science at Rutgers University who helped me

get through this experience.

iv

Dedication

To my dear parents, Aristotelis and Maria Kleisouris.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . ix

List of Figures . x

1. Introduction . 1

1.1. Communication and Localization in Wireless Networks 3

1.1.1. Wireless Communication . 3

1.1.2. Background on Localization . 5

1.2. Thesis Structure . 7

1.3. Contributions . 10

2. Reducing the Computational Cost of Bayesian Indoor Positioning Sys-

tems . 11

2.1. Introduction . 11

2.2. Background . 13

2.3. Markov Chain Monte Carlo . 14

2.3.1. Gibbs Sampling . 15

2.3.1.1. Conjugate Sampling . 15

2.3.1.2. Slice Sampling . 16

2.3.2. Metropolis Algorithm . 17

2.4. Localization Networks . 19

2.5. Experimental Results . 21

vi

2.5.1. Profiling a Gibbs Sampler . 21

2.5.2. MCMC Algorithms . 22

2.5.3. Comparing Algorithms . 23

2.5.4. No Location Information . 26

2.6. Analytic Model . 26

2.7. Importance Sampling . 31

2.8. Related Work . 33

2.9. Summary . 35

3. Parallel Algorithms for Bayesian Indoor Positioning Systems 42

3.1. Introduction . 42

3.2. Parallel Algorithms . 44

3.2.1. Inter-Chain Parallelism . 44

3.2.2. Intra-Chain Parallelism . 45

3.3. Experimental Results . 47

3.3.1. Inter-Chain Results . 49

3.3.2. Intra-Chain Results . 51

3.4. LogGP Analysis . 57

3.4.1. Modeling Communication and Computation 58

3.4.2. Measured vs. Predicted Results 62

3.5. Related Work . 65

3.6. Summary . 66

4. The Impact of Using Multiple Antennas on Wireless Localization . 73

4.1. Introduction . 73

4.2. Methodology . 75

4.2.1. Testbed Infrastructure . 76

4.2.2. Metrics . 78

4.2.3. Experiments . 79

4.3. Results . 81

vii

4.3.1. Impact on Free Space Models . 81

4.3.2. RADAR . 83

4.3.3. Area Based Probability . 85

4.3.4. Bayesian Networks . 88

4.4. Discussion . 95

4.5. Related Work . 96

4.6. Summary . 98

5. Conclusions . 100

References . 103

Vita . 107

viii

List of Tables

2.1. Variables of the networks M1, M2, M3, A1 depicted in Figure 2.3. 20

2.2. All MCMC algorithms. The text in the parentheses refers to A1. 22

3.1. LogP/LogGP model parameters on a 16-node SMP and a cluster of 4

quad-processor machines. 59

3.2. Sampling time of one iteration. 60

3.3. Local computation rates (in µsecs) for the 16-node SMP. 61

3.4. Local computation rates (in µsecs) for the cluster of 4 quad-processor

machines. 62

3.5. Time of the inter-chain and intra-chain algorithms on two platforms. . . 63

4.1. Coordinates x, y, z (in feet) of the 15 antennas in our testbed. Locations

A, B, C, D, E are depicted as red stars in Figure 4.1. 76

4.2. Placements of a mobile around a given location (x, y, z) (coordinates in

feet). Each location (x, y, z) is depicted as a green dot in Figure 4.1. . . 77

4.3. Localization antenna combinations for a given landmark position. 78

4.4. Variability antenna combinations for a given landmark position. 82

ix

List of Figures

1.1. Setup of a localization system that uses landmarks (or Access Points)

that record radio properties (e.g. signal strengths si) from a wireless

device. 6

1.2. Execution time of WinBugs for localizing 1 device and 10 devices on a

2.4-GHz machine with Bayesian Networks M1, M2, M3, A1. 7

2.1. Constructs used for MCMC sampling . 14

2.2. Metropolis algorithm . 18

2.3. Bayesian graphical networks using WinBugs plate notation. 19

2.4. Average number of evaluations per variable X and Y after 10000 iter-

ations of minus log the full conditional g(x) for M1 when we use 253

training points to localize 1. 25

2.5. Execution time comparison of “slice wd” against WinBugs for localizing

1 point and 10 points. The total number of iterations are 10000 and the

number of training points are 253 for M1, M2, M3, and 20 for A1. . . . 25

2.6. Relative accuracy and standard deviation vs. time for N=51 training

points with no location information after bounding the coefficients bi0 of

the linear regression model. 27

2.7. Comparison of the number of evaluations of minus log the full conditional

g(x) for the double exponential distribution from a slice sampler (1000000

iterations) and the analytic model. 30

2.8. Full conditionals of the (a) double exponential, (b) x-coordinate of a

point to be localized by M1, (c) angle aij in A1. (b), (c) also depict the

double exponential with λ=2 whose mean has been shifted to match the

mean of the latter two full conditionals. 31

x

2.9. Breakdown of the average execution time of Gibbs sampling when slice

sampling uses step out (a)-(d) and the whole domain (e)-(h). Graphs

(b), (d), (f), (h) depict phases as a percentage of the absolute whole

time shown in graphs (a), (c), (e), (g). The total number of iterations

are 10000, the number of training points are 253 for M1, M2, M3, and

20 for A1. 36

2.10. Relative accuracy and standard deviation vs. time for different MCMC

algorithms (see Table 2.2). N is the number of training points out of

which we localize NA points. The size of w is in feet for X, Y , and

radians for aij. 37

2.11. Relative accuracy vs. time for different algorithms (see Table 2.2). N is

the number of training points out of which we localize NA points. The

size of w is in feet for X, Y , and radians for aij 38

2.12. Relative accuracy and standard deviation vs. time for importance sam-

pling (is) and whole domain sampling (slice wd). The results are for

Bayesian network M1 when localizaing 1 and 10 points on a 550-MHz

CPU. 39

2.13. Absolute time (a), (c), (e) of importance sampling (is) and whole domain

sampling (slice wd) and percentage of time reduction (b), (d), (f) of “is”

over “slice wd” on a 550-MHz CPU when localizing 1 point with M1. . . 40

2.14. Absolute time (a), (c), (e) of importance sampling (is) and whole domain

sampling (slice wd) and percentage of time reduction (b), (d), (f) of “is”

over “slice wd” on a 550-MHz CPU when localizing 10 points with M1. 41

3.1. Sampling load distribution by our two parallel algorithms. 45

3.2. Speedups of the inter-chain parallelism using 16 threads (one per proces-

sor) on a 16-node SMP (a), (c), (e) and on a cluster of 4 quad-processor

machines (b), (d), (f). 50

3.3. Speedups of the inter-chain parallelism using 16 threads (a, b, c, d) and

8 threads (e, f) (one per processor) on a 16-node SMP (a), (c), (e) and

on a cluster of 4 quad-processor machines (b), (d), (f). 51

xi

3.4. Relative accuracy vs. time of the inter-chain parallelism on a 16-node

SMP (a), (c), (e) and on a cluster of 4 quad-processor machines (b), (d),

(f). 52

3.5. Speedups of the intra-chain parallelism using 16 threads (one per proces-

sor) on a 16-node SMP (a), (c), (e) and on a cluster of 4 quad-processor

machines (b), (d), (f). 54

3.6. Speedups of the intra-chain parallelism using 16 threads (a, b, c, d) and

8 threads (e, f) (one per processor) on a 16-node SMP (a), (c), (e) and

on a cluster of 4 quad-processor machines (b), (d), (f). 55

3.7. Relative accuracy vs. time of the intra-chain parallelism on a 16-node

SMP. 56

3.8. Relative accuracy vs. time of the intra-chain parallelism on a cluster of

4 quad-processor machines. 57

3.9. Speedups of the intra-chain parallelism using 16 threads (a, b, c, d, e)

and 8 threads (f) (one per processor) on a cluster of 16 machines. The

algorithm is essentially inter-chain on the cluster. 58

3.10. Performance of the inter-chain parallelism using 16 threads (one per pro-

cessor) on a 16-node SMP (a), (b) and on a cluster of 4 quad-processor

machines (c), (d). Graphs (b), (d) depict phases as a percentage of the

measured time shown in (a), (c) respectively. “M” is for measured and

“P” for predicted. 64

3.11. Performance of the intra-chain parallelism using 16 threads (one per

processor) on a 16-node SMP (a)-(d) and on a cluster of 4 quad-processor

machines (e), (f). Graphs (b), (d), (f) depict phases as a percentage of

the measured time shown in graphs (a), (c), (e) respectively. “M” is for

measured and “P” for predicted. 68

3.12. Performance of the inter-chain parallelism using 16 threads (one per pro-

cessor) on a 16-node SMP. Graphs (b), (d), (f), (h) depict phases as a

percentage of the measured time shown in (a), (c), (e), (g) respectively.

“M” is for measured and “P” for predicted. 69

xii

3.13. Performance of the inter-chain parallelism using 16 threads (one per pro-

cessor) on a cluster of 4 quad-processor machines. Graphs (b), (d), (f),

(h) depict phases as a percentage of the measured time shown in (a), (c),

(e), (g) respectively. “M” is for measured and “P” for predicted. 70

3.14. Performance of the intra-chain parallelism using 16 threads (one per pro-

cessor) on a 16-node SMP. Graphs (b), (d), (f) depict phases as a per-

centage of the measured time shown in graphs (a), (c), (e) respectively.

“M” is for measured and “P” for predicted. 71

3.15. Performance of the intra-chain parallelism using 16 threads (one per

processor) on a cluster of 4 quad-processor machines. Graphs (b), (d),

(f), (h) depict phases as a percentage of the measured time shown in

graphs (a), (c), (e), (g) respectively. “M” is for measured and “P” for

predicted. 72

4.1. WINLAB floor plan. 76

4.2. Gaussian and real RSS vs. distance . 81

4.3. Goodness of fit of real RSS to the free space model of Equation 4.1. . . 82

4.4. Localization error CDF using RADAR 83

4.5. Localization stability when using RADAR 85

4.6. Localization error CDF using ABP . 86

4.7. Localization stability when using ABP 87

4.8. Localization error CDFs using Bayesian network M2. 90

4.9. Localization error CDFs using Bayesian network M2 with no training

fingerprints. 91

4.10. Localization error CDFs using Bayesian networks M1, M3. 92

4.11. Gaussian approach: localization error CDFs using Bayesian networks

M1, M2, M3. 93

4.12. Localization stability of Bayesian network M2. 94

4.13. Localization stability of Bayesian networks M1, M3. 99

xiii

1

Chapter 1

Introduction

Recent advances in technology have embedded wireless transceivers in many computing

devices, such as laptops, personal digital assistants (PDAs), cellular phones. As a result

people nowadays have the flexibility to connect to various networks, like Wireless Lo-

cal Area Networks (Wireless LANs) and cellular networks, from many different places,

like an office building, cafeteria, vehicle. Also, sensors deployed in different areas can

measure environmental properties such as temperature, humidity, and transmit their

readings wirelessly. Radio waves are the primary way of transmitting data in wire-

less communication. Undoubtedly, wireless technology has made communication much

easier and convenient, since it moves away from the physical constraints of cables.

Recent years have seen tremendous efforts [9, 41, 43, 60, 65, 74] at building systems

that reuse the existing wireless communication infrastructure to localize devices; that is

to provide the coordinates of a device in the 2-dimensional (2D) or 3-dimensional (3D)

space. This is a new capability, since traditionally networks have been used for commu-

nication. The ability to localize has become very important nowadays. Typical appli-

cations include: (a) tracking of equipment and personnel in factories and hospitals, (b)

providing location-specific information in museums and libraries, (c) controlling access

to information and utilities based on users’ location, (d) monitoring and management

of wireless networks, (e) localizing sensors used for environmental monitoring.

A lot of localization systems have focused on providing location estimates indoors,

where Global Positioning System (GPS) [27] devices do not work. However, building

such systems faces a lot of challenges. First of all, these systems should be general

purpose, which means they should work on any wireless device with little/no modifica-

tion, and at the same time they should leverage as much of the existing communication

2

infrastructure of a wireless network. This is very significant, since the less extra hard-

ware needed the easier the deployment and use of the system, and also the smaller the

cost. Second, the process of localization should be done really fast, so that higher level

applications can track devices and people in real time. Third, a lot of these systems re-

quire extensive profiling of the buildings where they are deployed. The profiling might

require detailed maps of a particular site (e.g. wall/floor material) and also collect-

ing radio properties (like signal strength) at known locations, which is labor-intensive

and time-consuming. Environmental changes necessitate recollection of such properties

to maintain localization accuracy. At the same time radio signal propagation suffers

from reflection, diffraction and scattering indoors, making harder to infer location esti-

mates from its properties. Thus, a big challenge for localization systems is to minimize

the information needed to adequately profile a site and also they should be robust to

environmental impacts on radio properties.

We believe such challenges must be addressed in order to reach a point where any

wireless device can “know where it is” and to better service higher level applications.

This thesis thus tackles some of the aforementioned issues that we hope will make indoor

localization a more tractable problem. Particularly, we first focus on improving the

speed of providing location estimates of a specific method that uses Bayesian Networks

(BNs) [25,51]. Unlike other approaches, BNs require smaller number of radio properties

to be collected at some particular site, certain versions of them can localize without

the need to know the locations where the properties are collected and at the same

time they can localize many devices simultaneously. Since our BNs do not have closed-

form solutions we implemented several Markov Chain Monte Carlo (MCMC) [47, 73]

methods to provide location estimates. We evaluated the performance of an MCMC

method by introducing a metric which we call relative accuracy. The metric estimates

the Euclidean distance of the localization result returned by an MCMC method to the

result returned by a well-tested statistical package called WinBugs [49] after a long

run. Hence, in this work, we define the problem of reducing localization latency as

identifying MCMC methods that improve the relative accuracy in as small amount of

time as possible. Also, in order to minimize the localization latency when locating a

3

large number of devices (on the order of hundreds), we proposed schemes to parallelize

the MCMC process, achieving good speedups.

Having improved the relative accuracy of BNs indoors, we tried to improve the

absolute accuracy of different algorithms that use received signal strength (RSS) to

localize. Absolute accuracy is the Euclidean distance between the result returned by an

algorithm and the actual location of a mobile device. Since radio waves suffer indoors

from environmental effects like reflection, diffraction and scattering, inevitably absolute

accuracy is affected by them. Thus, we investigated the impact of using multiple anten-

nas on the absolute accuracy of different localization algorithms. Conclusively, in this

thesis we focused on improving relative and absolute accuracy for indoor localization.

In the remainder of this chapter, we first briefly introduce some basics of communi-

cation and localization in wireless networks in Section 1.1. We then provide a general

description of the methods we proposed to improve localization speed and accuracy in

Section 1.2, which defines an outline for the thesis. Finally, contributions of our work

are summarized in Section 1.3.

1.1 Communication and Localization in Wireless Networks

In this section, we first describe environmental effects that radio waves suffer from

indoors and also summarize a range of wireless technologies that concerns us. We

then give a brief background on localization algorithms and the categories they can be

divided into.

1.1.1 Wireless Communication

Wireless communication relies on radio signals to transmit data. Radio signals are elec-

tromagnetic waves, which are usually characterized by both wavelength and frequency.

Radio signal propagation in space is generally affected by the environment in three

ways: reflection, diffraction, and scattering [45,61]. Reflection refers to the bouncing of

radio signals from objects with larger dimensions than the signal wavelength. It may

occur on ground surfaces, buildings, and furniture. Diffraction refers to the bending

4

of radio waves around objects. It usually happens when the object’s surface has sharp

edges, for example, around buildings, hills, and trees. Scattering refers to the disper-

sion of radio waves due to collisions with objects of smaller dimensions than the signal

wavelength. In practice, it may happen around foliage, street signs or stairs within

buildings. Due to these complicated propagation mechanisms, the radio signals may

reach the destination through many different paths, and the final received signal is a

combination over all such traversals. This is commonly referred to as the multipath

effect.

Three wireless communication standards that are most commonly used to form net-

works indoors or in a relatively small area are Wi-Fi [2], Bluetooth [3], and ZigBee [4].

Wi-Fi [2] networks function according to the IEEE 802.11 standards, and are mostly

used to provide Internet access at home or in office buildings. When people refer to

Wireless LANs, most of the time they refer to networks based on Wi-Fi technology. The

normal infrastructure for a Wi-Fi network consists of one or more Access Points (APs)

or landmarks, which have the ability to communicate over the wireless medium. Wi-Fi

devices can thus connect to the Internet or talk to each other through the APs. Wi-Fi

devices can also connect to each other directly. Bluetooth [3] refers to the IEEE 802.15.1

communication standard. It is designed for lower power consumption than Wi-Fi, and

thus has a relatively shorter range (1, 10, or 100 meters). Hence, it is mostly used for

communication between devices located close to one another. Currently many devices

support Bluetooth, including cell phones, laptops, digital cameras, printers, mice, and

headsets. ZigBee [4] refers to the IEEE 802.15.4 communication standard. The main

target for the ZigBee protocol is embedded applications such as environmental moni-

toring, intruder detection and building automation. This standard is widely used for

communication within sensor networks. Since ZigBee applications are mostly embed-

ded, the corresponding devices are required to be small. The currently available ones

have already shrunk to be comparable to the size of a quarter [1, 5].

Although in this thesis we focus on the Wi-Fi protocol, the proposed solutions and

conclusions drawn here can be similarly extended to the other two (Bluetooth, ZigBee)

wireless communication standards.

5

1.1.2 Background on Localization

Over the past few years, many localization algorithms have been proposed to localize

wireless devices and sensors, and provide location information to new classes of location-

oriented applications. In general, localization algorithms can be categorized as: range-

based vs. range-free, scene matching (fingerprint matching), and aggregate or singular.

The range-based algorithms involve distance estimation to landmarks using the

measurement of various physical properties like Received Signal Strength (RSS) [35],

Time Of Arrival (TOA) [27] and Time Difference Of Arrival (TDOA) [59]. Rather than

use precise physical property measurements, range-free algorithms use coarser metrics

like connectivity [64] or hop-counts [55] to landmarks to place bounds on candidate

positions.

In scene matching approaches, a radio map of the environment is constructed by

measuring actual samples, or by using signal propagation models, or some combination

of the two. A node then measures a set of radio properties (often just the RSS of a set

of landmarks), the fingerprint, and attempts to match these to known location(s) on

the radio map. These approaches are almost always used in indoor environments be-

cause signal propagation is extensively affected by reflection, diffraction and scattering,

and thus ranging or simple distance bounds cannot be effectively employed. Matching

fingerprints to locations can be cast in statistical terms [60, 74], as a machine-learning

classifier problem [12], or as a clustering problem [9]. Figure 1.1 shows the setup on an

office floor of a system that uses scene matching. A number of landmarks, which record

signal strength readings si, have been deployed to assist in localization. In practice, the

si are averaged over a sufficiently large time window to remove statistical variability.

Finally, a third dimension of classification extends to aggregate or singular algo-

rithms. Aggregate approaches use collections of many nodes in the network in order

to localize (often by flooding), while localization of a node in singular methods only

requires it to communicate to a few landmarks. For example, algorithms using opti-

mization [23] or multidimensional scaling [64] require many estimates between nodes.

6

landmark

landmark

landmark

[x, y, s1, s2, s3]

s1

s2

s3

fingerprint

Figure 1.1. Setup of a localization system that uses landmarks (or Access Points) that record radio properties
(e.g. signal strengths si) from a wireless device.

We can further break down localization algorithms into two main categories: point-

based methods, and area-based methods. Point-based methods return an estimated

point as a localization result. A primary example of a point-based method is the

RADAR scheme [9]. On the other hand, area-based algorithms return a most likely

area in which the true location resides. One of the major advantages of area-based

compared to point-based methods is that they return a region, which has an increased

chance of capturing the transmitter’s true location. Examples of area-based algorithms

are Area Based Probability (ABP) [26] and Bayesian Networks (BNs) [51].

Algorithms that use RSS as the basis of localization are very attractive options,

because using RSS allows the localization system to reuse the existing communication

infrastructure rather than requiring the additional cost needed to deploy specialized

localization infrastructure, such as ceiling-based ultrasound, GPS, or infrared meth-

ods [33, 59, 62]. The wireless communication standards described in Section 1.1.1 (Wi-

Fi, Bluetooth, ZigBee) provide RSS values associated with packet reception, and thus

localization services can easily be built for such systems. Further, RSS-based local-

ization is attractive as the techniques are technology-independent: an algorithm can

be developed and applied across different platforms, whether 802.11 or Bluetooth. In

addition, it provides reasonable accuracy with median errors of 1 to 5 meters [26].

Most fingerprinting approaches utilize the RSS, e.g. [9, 12], and many multilateration

approaches [51] use it as well. In this thesis we thus focus on localization algorithms

7

Localize 1 Device

0

2

4

6

8

10

12

14

16

M1 M2 M3 A1

Networks

Ti
m

e
(s

ec
s)

Localize 10 Devices

0
10
20

30
40
50
60

70
80
90

M1 M2 M3 A1

Networks

Ti
m

e
(s

ec
s)

Figure 1.2. Execution time of WinBugs for localizing 1 device and 10 devices on a 2.4-GHz machine with
Bayesian Networks M1, M2, M3, A1.

that employ signal strength measurements.

1.2 Thesis Structure

As we have already mentioned, there are many challenges in wireless localization. In

this work, we try to minimize localization latency for a particular method and also

alleviate the impact of environmental effects on radio signal strength, hoping that this

will improve the localization performance of several algorithms.

In Chapter 2, we reduce the computational cost of four Bayesian Networks (BNs)

[25,51], namely M1, M2, M3, A1, used for localization. These networks are graphs that

represent the joint probability distribution of random variables (e.g. coordinates of a

device to be localized). Inferring values for the unknowns can be done using commercial

statistical packages, like WinBugs [49]. However, these packages are general-purpose

solvers and, hence, incur a lot of computational cost when used. The cost increases

drastically as the number of devices located simultaneously by the BNs gets large. For

instance, Figure 1.2 depicts the time needed to localize 1 and 10 devices using the four

BNs on a 2.4-GHz machine. We see that locating 1 device can take from 8 secs up to 15

secs, whereas locating 10 devices can take from 15 secs up to 83 secs. Clearly, this time

is prohibitive for a localization system. Hence, in order for the BNs to be practical,

it is imperative that they provide location estimates in as small amount of time as

possible. Since the BNs under study do not have closed-form solutions, we resort to

simulation methods. Specifically, we present a number of Markov Chain Monte Carlo

8

(MCMC) [47,73] algorithms that can solve these BNs in a smaller amount of time when

compared to existing solvers. These algorithms rely on statistical sampling to explore

the probability density function (PDFs) of the unknowns and build their histogram. We

show that by taking advantage of the flatness of the PDFs of the unknowns of interest

(e.g. coordinates of a device), we get an algorithm that has the best performance in

terms of convergence to the solution provided by WinBugs. At the same time the

algorithm, which we call “whole domain sampling”, requires no tuning, which means it

can be used as a black box for higher level applications. We also provide an analytic

model that shows how flat a distribution should be so that “whole domain sampling”

is more efficient than other methods.

In Chapter 3 we try to improve the localization latency when locating a large num-

ber of devices simultaneously. Although the MCMC methods proposed in Chapter 2

are computationally efficient, they still take a lot of time when localizing devices whose

number is on the order of hundreds. Reducing the latency in this case is important,

since, as technology advances, wireless networks will offer more benefits in the future,

and hence a large number of devices will be connected to them which a system should

be able to localize. Thus, in Chapter 3 we explore whether parallel computing methods

can help us reduce latency in this case. Since MCMC methods generate a Markov chain,

where every state of the chain corresponds to an instance of a BN with all random vari-

ables having values, we propose two schemes of parallelizing the MCMC process. The

first applies inter-chain parallelism, by running multiple independent chains on different

processors. The second, applies intra-chain parallelism, by dividing the formation of

a single Markov state across processors. The two schemes were implemented in the

Berkley Unified Parallel C (BUPC) [69] language and tested on different computing

platforms. Our experimental results show that the inter-chain parallelism gives good

speedups for long Markov chains, whereas the intra-chain can give good speedups for

short Markov chains. Since providing good location estimates with our Bayesian Net-

works does not require long Markov chains, intra-chain parallelism is the scheme that

can help up improve latency for localization. Also, we use the LogGP [20] model to

analyze and predict the performance of the two schemes. We show that the model is

9

a useful tool in understanding whether the algorithms have been parallelized enough

so that we get good speedups and whether there any pathological situations like load

imbalance or contention.

In Chapter 4 we investigate the impact of using multiple antennas at fixed known

locations on the localization performance of several algorithms that use different tech-

niques, ranging from neighbor matching in signal space, to maximum likelihood estima-

tion and to multilateration. These algorithms rely on the received signal strength (RSS)

transmitted by a wireless device to localize it. However, indoors, the signal strength

suffers from environmental effects, such as reflection, diffraction and scattering, mak-

ing it hard to localize objects. Our strategy is to see first whether multiple antennas

can average out environmental effects. We do so by showing that the RSS from mul-

tiple antennas can better fit a theoretical signal propagation model when compared to

the RSS from a single antenna. Next, we investigate the impact of multiple antennas

on the accuracy and stability of various localization algorithms. Accuracy refers to

the Euclidean distance between the estimated and real location. Stability refers to how

much an estimated location changes when there are small-scale movements of a wireless

device around its position. Our results show that multiple antennas help improve ac-

curacy and in some cases the improvement can be up to 70%. Similarly, we can achieve

up to 100% improvement in stability over the single antenna case. Hence, localization

systems can benefit from the deployment of low-cost antennas.

In summary, Chapter 2 presents MCMC methods that can solve Bayesian Net-

works (BNs) used for indoor localization with much smaller computational cost when

compared to statistical packages like WinBugs. One of the methods, “whole domain

sampling”, is shown to have the best performance. Chapter 3 proposes two schemes

to parallelize the MCMC process, and presents speedups for our BNs on different plat-

forms. It also shows how the LogGP model can be used to understand and predict

the performance of the two schemes. Chapter 4 shows that multiple antennas can re-

duce environmental effects in an indoor environment on the radio signal strength. It

also presents the impact of multiple antennas on accuracy and stability on different

localization algorithms. Finally, Chapter 5 concludes the thesis.

10

1.3 Contributions

Our contributions in this thesis include:

• We show that the probability distributions of random variables of interest (e.g.

x and y coordinates) in Bayesian Networks used for localization are flat. This

led us to implement an MCMC method, called “whole domain sampling”, that

is computationally fast and converges quickly to solutions provided by statistical

packages like WinBugs. The method is shown to be at least 10 times faster

than WinBugs and requires no tuning. We also present an analytic model that

determines how flat a distribution should be so that “whole domain sampling” is

faster than other methods.

• We propose two schemes to parallelize an MCMC method: (a) inter-chain al-

gorithm, (b) intra-chain algorithm. The schemes were implemented in Berkeley

UPC (BUPC) and tested on different computing platforms. The first algorithm

gives good speedups for applications that need long Markov chains, whereas the

second for applications that need short Markov chains. The intra-chain algorithm

can give a speedup of 12 on 16 processors for our Bayesian Networks when local-

izing 200 devices simultaneously. We found BUPC an effective tool in describing

the data layout needed by the two schemes. We use the LogGP model of parallel

computation to understand and predict the performance of the two algorithms on

different platforms.

• We show that multiple antennas can average out environmental effects on received

signal strength (RSS) indoors. We do so by demonstrating that RSS from multiple

antennas better fits a theoretical signal strength propagation model. We also show

that multiple antennas can improve localization accuracy and stability of several

algorithms.

11

Chapter 2

Reducing the Computational Cost of Bayesian
Indoor Positioning Systems

2.1 Introduction

There have been a lot of small- and medium-scale localization systems [33, 48, 55, 59,

62, 70] for 802.11, sensor networks, custom radios, and ones that use ultrasound or

infrared. In this chapter we focus on reducing the computational cost of a specific

approach that uses Bayesian networks [25, 26, 51] for indoor location estimation in

wireless networks. Bayesian networks can be used in a Wi-Fi (IEEE 802.11) setup

to track wireless devices such as laptop computers, handheld devices, and electronic

badges inside stores, hospitals and factories. The networks can also incorporate several

features of the medium, such as received signal strength (RSS) and angle of arrival of

the signal (AoA), to provide location estimates.

Although Bayesian networks are attractive compared to other approaches because

they provide similar performance with much less training data, the computational cost

of using these networks with standard statistical packages, such as WinBugs [49], is

quite large as we saw in Section 1.2. Figure 1.2 shows that localizing a few points can

take up to 10 seconds on a well-equipped machine. In addition, stock solvers do not

scale well when localizing points with no location information in the training data; in

this case localization can take well over a minute.

We are thus motivated to identify methods of solving Bayesian networks used for

indoor localization that are computationally efficient and simultaneously provide quick

convergence to the solution. Finding such methods not only tells us how fast we can

localize, but also what results we should expect when compared to “gold standard”

12

solutions provided by packages like WinBugs.

Our Bayesian networks have no closed-form solutions and, thus, we turn to Markov

Chain Monte Carlo (MCMC) simulation to solve these networks. This family of ap-

proaches uses statistical sampling to explore the probability density functions (PDFs)

of the variables in the network. Specifically, the MCMC methods we use are Gibbs

sampling and Metropolis-within-Gibbs sampling. Within these variants, there is a

large diversity of approaches to sampling individual variables. Thus, in this chapter we

investigate the tradeoffs of these techniques for localization.

We found that slice sampling is the method that dominates the entire execution time

in the Gibbs approach as we try to localize many points simultaneously. Specifically,

the number of evaluations of the full conditional is the prevailing factor that makes

slice sampling computationally expensive. Second, using real data, we found that the

full conditionals of the coordinates of an item we try to localize as well as the angle of

the received signal strength are relatively flat.

The flatness property led us to implement a variation of slice sampling that we call

whole domain sampling. Our method samples uniformly over the whole domain of a

variable, as opposed to carefully choosing only parts of the domain to sample from.

We found whole domain sampling is computationally fast and simultaneously mixes

rapidly, and thus provides fast convergence. Such a method requires no tuning, making

it an attractive approach since it constitutes a “black-box” sampler for our networks.

For other methods, such as Metropolis, tuning is critical to get reasonable results. We

also found the flatness of the full conditionals to be the key factor in determining the

effectiveness of our whole domain approach.

We show that whole domain sampling can localize 1 or 10 points to within 1ft of the

solution provided by WinBugs in less than half a second. Moreover, the execution time

of the method is 9 to 17 times faster than the standard WinBugs solver, depending on

the type of Bayesian network used and the size of the training set. Additionally, the

method scales well, localizing simultaneously 51 points with no location information in

the training set in 6 seconds.

In order to better understand why whole domain sampling converges faster than

13

other methods, we built an analytic model that estimates the number of evaluations

of the full conditional under slice sampling when using: (a) a whole domain approach,

and (b) a step out process. Our model can analytically determine how flat a double

exponential distribution should be in order for whole domain sampling to be faster

than a step out approach. Comparing the shape of this PDF to the actual PDFs in

our Bayesian networks shows qualitatively that these curves clearly fall in the regime

where whole domain sampling is desirable.

The rest of this chapter is organized as follows. In Section 2.2 we give a brief

background on Bayesian networks and in Section 2.3 we describe how some MCMC

methods work. In Section 2.4 we describe the Bayesian models used for localization,

while in Section 2.5 we evaluate our MCMC samplers with respect to computational

cost and accuracy vs. time. Section 2.6 presents our analytic model. In Section 2.7 we

present a Monte Carlo (MC) method, Importance Sampling, and compare it to whole

domain sampling. Section 2.8 gives related work, and in Section 2.9 we summarize our

work.

2.2 Background

A graphical model is a multivariate statistical model embodying a set of conditional

independence relationships. Here, we focus on acyclic digraphs (ADGs). The edges in

the graph encode the relationships. Each vertex corresponds to a random variable Xv,

v ∈ V , taking values in a sample space Xv. To simplify notation, we use v in place of

Xv in what follows. In an ADG, the parents of a vertex v, pa(v), are those vertices

from which edges point into v. The descendants of a vertex v are the vertices which

are reachable from v along a directed path. A vertex w is a child of v if there is an

edge from v to w. The parents of v are taken to be the only direct influences on v, so

that v is independent of its non-descendants given its parents. This property implies a

factorization of the joint density of all v, which we denote by p(V), given by

p(V) =
∏

v∈V

p(v|pa(v)) (2.1)

14

0x 1x 2x

y

Domain

s
f(x)

I

Figure 2.1. Constructs used for MCMC sampling

In the Bayesian framework, model parameters are random variables and, hence, ap-

pear as vertices in the graph. When some variables are discrete and others continuous,

or when some of the variables are latent or have missing values, a closed-form Bayesian

solution generally does not exist. Analysis then requires either analytic approximations

of some kind or simulation methods. One such simulation method is the Monte Carlo

method that has been used to compute the integral of some function f(x) over some

region D, by drawing independent and identically distributed (i.i.d.) random samples

uniformly from D. Figure 2.1 provides some intuition in this process. The curve repre-

sents the unknown PDF of a variable (e.g. the x-coordinate of an object to be localized).

Monte Carlo sampling methods approximate the PDF by building a histogram using

randomized draws. If the draws are generated by evolving a Markov chain, they are no

longer independent, and the process is called Markov Chain Monte Carlo (MCMC).

2.3 Markov Chain Monte Carlo

An MCMC method starts with some initial value for each stochastic variable v (e.g.

x-coordinate), and then cycles through the graph replacing the old value of each v

with a new value. The new value is drawn from some distribution that depends on

the MCMC method used. After sufficient iterations of the procedure one assumes the

Markov chain has reached its stationary distribution. Future simulated values are then

monitored. The monitoring process may record the entire histogram, or only measure

15

the median, mean, or the 95% interval.

Once a Markov chain has reached its stationary distribution, a delicate issue is

whether the chain moves fast around the space of the PDF of a stochastic variable. If it

does, then we say the chain “mixes” rapidly. Intuitively, in Figure 2.1, mixing describes

how much of the domain is explored as a function of time.

Below we give a brief overview of two MCMC methods that can be used for Bayesian

inference. More details and other methods can be found in [47, 53, 54, 67, 73].

2.3.1 Gibbs Sampling

A single-variable or univariate (updates one variable at a time) Gibbs sampler chooses

the new value of a stochastic variable v from its conditional probability distribution,

given all the other quantities, denoted V \v, are fixed at their current values (known as

the “full conditional”). The crucial connection between directed graphical models and

Gibbs sampling lies in expression (2.1). The full conditional distribution for any vertex

v is equal to:

p(v|V \v) ∝ p(v, V \v) (2.2)

∝ terms in p(V) containing v (2.3)

= p(v|pa(v))
∏

w∈child(v)

p(w|pa(w)) (2.4)

i.e., a prior term and a set of likelihood terms, one for each child of v. Thus, when

sampling from the full conditional for v, we need only consider vertices which are

parents, children, or parents of children of v, and we can perform local computations.

2.3.1.1 Conjugate Sampling

In many applications full conditional densities can be expressed in a closed form (con-

jugate) and thus drawing samples from it can be done using standard algorithms. For

instance, the full conditional could be a normal or a gamma distribution from which

sampling is straightforward.

16

2.3.1.2 Slice Sampling

In our networks, some full conditionals are complex and unavailable in closed form.

For instance, we cannot directly compute the PDF of a variable that represents the x-

coordinate of a point to be localized. In these situations, we can turn to slice sampling,

which is a general process that works to estimate arbitrary distributions.

Suppose f is the full conditional density of a variable. An issue in Gibbs sampling

is that each time we change the value of one variable, we have changed the underlying

f for that instance of the network. Thus, we cannot compute the true joint-density

of a variable by simply running through the domain in small increments and building

the curve directly, because the curve will change when we change the value of another

variable.

The strategy slice sampling follows is to draw randomized values of f(x) for each

variable, and follow a procedure to pick randomized values in the domain in a way

such that the number of times these occur (or fall into specific discrete ranges) will

approximate the PDF of the full conditional.

Suppose we have an initial value for the variable x, x0. Then, the method uses an

auxiliary variable y = kf(x0), where k is uniformly distributed in (0, 1), to define a

slice S, such that S = {x : y < f(x)} (see Figure 2.1). Assuming we know S, we would

like to pick a new value, x1, uniformly across the domain defined by the slice. However,

we can not always easily estimate the edges of S, and so must approximate it with an

interval I.

Several schemes are possible in order to find I:

• If the range of the variable is bounded, I can be the whole range. There is thus

no computational cost for I. We call this approach Whole Domain Sampling.

• We can start with an initial guess w of S that contains the current value of the

variable, and then perhaps expand it by a “stepping out” process. The process

expands w in steps of size w until both ends are outside the slice or a predeter-

mined limit is reached. For example, in Figure 2.1, if a predetermined limit is not

used and w is equal to the width of a bar in the histogram, I might by off from

17

S by at most one w on each side.

• Given a guess w of S, w can be expanded following a “doubling out” procedure.

Doubling produces a sequence of intervals, each twice the size of the previous one,

until an interval is found with both ends outside the slice or a predetermined limit

is reached. The idea here is that finding the edges of S should be much faster

even if we lose some precision in estimating the edges of I.

Both “step out” and “double out” start by positioning the estimate w randomly

around the current value x0. The predetermined limit they may apply to terminate the

expansion of w is an interval of size mw, for some specified integer m. Once an interval

I has been found, “step out” follows a shrinkage procedure that samples uniformly from

an interval that is initially equal to I and which shrinks each time a point is drawn that

is not in S ∩ I (e.g. point x2 in Figure 2.1 where f(x2) ≤ y). A point picked that is

outside S∩ I is used to shrink I in such a way that the current point x0 remains within

it. “Double out” follows the same shrinkage process with some additional constraints

(see [54]) for the point that is finally accepted. Depending on the shape of f(x), and

the quality of I’s approximation of S, we may reject many draws of x.

In practice, to avoid possible problems with floating-point underflow, it is safer

to compute g(x) = −ln(f(x)) rather than f(x) itself, and thus S = {x : g(x) <

−ln(k) + g(x0)}. We call g(x) “minus log the full conditional density”. Also, there are

several variations of slice sampling, like multivariate slice sampling, that updates many

stochastic variables simultaneously.

2.3.2 Metropolis Algorithm

A univariate Metropolis algorithm is an MCMC method that chooses the next value of

a stochastic variable v by first sampling a candidate point y from a proposal distribution

q. Practically, q is used to propose a random “unbiased perturbation” of the current

value of v. For example, q could be a normal distribution with mean the current value

of v and variance user defined. It then computes the “gain” in an objective function

resulting from this perturbation. A random number U , uniformly distributed in (0, 1),

18

f(x)

Domain

f(x)f(x)

Domain

Proposal distribution:
Normal with mean x0

Proposal distribution:
Normal with mean x0

y is accepted with
probability A(x0, y)

y

Candidate value

y

Candidate value

x0

Current value

x0

Current value

Figure 2.2. Metropolis algorithm

is generated and the candidate point y is accepted with probability A(v, y), otherwise

v retains its current value. In this work, the following Metropolis acceptance function

is used:

A(v, y) = min
(

1, e−(g(y)−g(v))/T
)

(2.5)

where g is minus the log full conditional density of v and T is some constant. Figure

2.2 depicts how the Metropolis algorithm works for a random variable x, if the proposal

distribution is normal with mean the current value of x.

Heuristically, the Metropolis algorithm is constructed based on a “trial-and-error”

strategy. The choice of the proposal distribution is critical for the efficiency of the

algorithm. On one hand, it could lead to a large number of candidates y being rejected,

and on the other hand it could result in accepting nearly all proposed candidates, but

the candidates could be close to each other in the space of the distibution of v. In both

cases the algorithm is inefficient as it does not “mix” rapidly.

Gibbs sampling can be seen as a special case of the Metropolis algorithm, since the

proposal function for Gibbs is the full conditional of a node and the acceptance function

is always one (the candidate point y in Gibbs sampling is always accepted). Finally,

there are times when we use the Metropolis algorithm for some nodes of a network

and Gibbs sampling for the remaining nodes. This is called Metropolis-within-Gibbs

sampling.

19

(a) Network M1 (b) Network M2 (c) Network M3 (d) Network A1

Figure 2.3. Bayesian graphical networks using WinBugs plate notation.

2.4 Localization Networks

Figure 2.3 presents a series of Bayesian networks of increasing complexity that embody

extant knowledge about Wi-Fi signals as well as physical constraints. The networks

are called M1, M2, M3, A1, and can be used for a two-dimensional location estimation

problem in a building with d access points. Each rectangle is a “plate”, and shows a

part of the network that is replicated; in our case, the nodes on each plate are replicated

for each one of the access points.

Vertices X and Y represent location, while vertex Di represents the Euclidean dis-

tance between the location specified by (X,Y) and the ith access point. X and Y are

bounded by the length L and the breadth B of a building respectively. Vertex Si (M1,

M2, M3) represents the signal strength measured at (X,Y) with respect to the ith ac-

cess point. All networks reflect the fact that the signal strength decays approximately

linearly with log distance. Specifically, the value of the signal strength, Si, with respect

to the ith access point follows a signal propagation model Si = b0i + b1i log Di, where

b0i, b1i are parameters specific to the ith access point. The networks capture noise and

outliers by modeling the Si as a Gaussian distribution around the above propagation

model with variance τi, as shown in expression 2.6:

Si ∼ N(bi0 + bi1 log Di, τi) (2.6)

20

Variable(s) Description

X, Y x- and y-coordinate of a location.

d Number of access points.

Di Euclidean distance between the location specified by (X, Y) and the ith access
point.

Ci A 0/1 variable that shows whether location (X, Y) shares a corridor with the ith
access point.

Si Signal strength measured at (X, Y) with respect to the ith access point.

Sij , θij , aij Sij is the jth signal strength measured at (X, Y) with respect to the ith access
point, when the antenna of the access point is at an angle θij and the signal is
received by the mobile at an angle aij .

m Number of signal strength readings that a mobile receives from an access point in
one rotation of the antenna (each reading corresponds to a different angle).

bij Coefficients of the linear regression model that describes how a signal degrades
linearly with log distance.

bi Parents of the coefficients of the linear regression model.

τi, τbj Precision in the Gaussian distribution that describes the variables Si (Sij) and bij

respectively.

Table 2.1. Variables of the networks M1, M2, M3, A1 depicted in Figure 2.3.

The hierarchical portion of M2 (vertices b0, b1, τb0, τb1) reflects prior knowledge that

the different access points behave similarly. This similarity is expressed in the network

by making the coefficients of the linear regression model have common parents. As was

shown in [51], the model can provide accurate location estimates without any location

information in the training data, leading to a truly adaptive, zero-profiling technique for

location estimation. Practically this is really significant, since the location measurement

process is slow and human-intensive.

Network M3 models the corridor effect. That is, when an access point is located in a

corridor, the signal strength tends to be substantially stronger along the entire corridor.

Variable Ci in M3 takes the value 1 if location (X,Y) shares a corridor with access point

i and 0 otherwise. We define “sharing a corridor” as having an x- or y-coordinate within

three feet of the corresponding access point coordinate. Since corridor width varies from

building to building, this definition should vary accordingly, although we do not pursue

this here.

Network A1 incorporates both the knowledge of angle-of-arrival of the signal (AoA)

and the knowledge of received signal strength (RSS). In A1 there are m signal strength

readings at a particular location (X,Y) with respect to the ith access point; each is

measured when the rotational directional antenna of the access point is at an angle

21

θij and the signal is received by the mobile at an angle aij. The ratio 360/m is called

granularity G and determines the angle intervals at which the signal strengths are

measured in a rotation of the antenna.

Table 2.1 summarizes the description of the variables used in our localization net-

works. More details about the networks can be found in [25, 51].

2.5 Experimental Results

In this section we present our experimental results that were all performed on a Pentium

4 PC with a 2.8-GHz CPU, 1 GB of RAM and running Microsoft Windows XP. Our

software was implemented in ANSI C. All of our networks use training data in the

learning process that maps signals to locations (M1, M2, M3, A1) and also to angles

(A1). For M1, M2, M3 we used the BR dataset from [51] that contains 253 training

points, was collected in a building that measures 255ft × 144ft and has 5 access points.

For A1 we used a dataset from [25] consisting of 20 training points collected in a building

that measures 200ft × 80ft and has 4 access points. We follow the leave-n-out method,

where n denotes the number of points to localize.

2.5.1 Profiling a Gibbs Sampler

We first implemented a Gibbs sampler for all our networks. The sampler uses slice

sampling for variables X, Y (M1, M2, M3, A1) and αij (A1). All the other stochastic

quantities are sampled using either a conjugate normal or a conjugate gamma method.

The solvers were implemented in such a way so that the values of deterministic nodes

(nodes that are a logical function of other nodes in the network) that do not change

in every iteration are calculated only once in the whole sampling process. Examples of

such cases are nodes Di and Ci for points in the training set with location information.

Figures 2.9(a)-2.9(d) depict the average execution time breakdown (over 30 runs)

of Gibbs sampling for our four networks, when the slice sampling method applies step

out with w=1ft and m=10 (mw is used as a limit to terminate the step out process;

see Section 2.3.1.2). For A1 the value of granularity is G = 120. We see that, as the

22

Algorithm Description

met wd Univariate Metropolis with proposal uniform over the whole domain of X,
Y (uniform over the whole domain for angle).

met sd=k (or sd=k, l) Univariate Metropolis with proposal Gaussian whose standard deviation
is k and mean the current value (the standard deviation is l for angle).

slice wd Univariate slice sampling over the whole domain of X, Y (univariate slice
sampling over the whole domain for angle).

slice so=k (or so=k,l) Univariate slice sampling for X, Y by doing step out with w=k and m=10
(w = l for angle).

slice do=k (or do=k,l) Univariate slice sampling for X, Y by doing double out with w=k and
m=10 (w = l for angle).

slice2d wd Two-dimensional (X and Y are updated together) slice sampling over the
whole domain of X, Y (univariate slice sampling over the whole domain
for angle).

Table 2.2. All MCMC algorithms. The text in the parentheses refers to A1.

number of points we localize increases from 1 (Figures 2.9(a), (b)) to 10 (Figures 2.9(c),

(d)), slice sampling dominates the total time of the sampler. There is also an increase

on the time of the conjugate methods and this is because when we localize 10 points,

there are more deterministic nodes whose values need to be estimated in every iteration.

Slice sampling takes considerably more time in A1 when compared to the other three

networks, because it is used not only for the X and Y coordinates, but also for the

angle αij .

2.5.2 MCMC Algorithms

To speed slice sampling we experimented with several variations as well as we tried

Metropolis-within-Gibbs sampling. Table 2.2 summarizes the MCMC methods we

used for Bayesian inference on our networks and can be categorized into Metropolis-

within-Gibbs sampling (met algorithms) and Gibbs sampling (slice algorithms). The

Metropolis-within-Gibbs samplers apply the Metropolis algorithm for X, Y , aij and

conjugate sampling for the remaining stochastic quantities. For our experiments we

used two forms for the proposal distribution of the Metropolis algorithm. A uniform

distribution over the whole domain of the variables X, Y , aij, since these variables are

bounded with domain (0 . . . L), (0 . . . B) and (0 . . . 2π) respectively, and also a Gaussian

centered on the current value and standard deviation k for X, Y and l for aij. On the

other hand, Gibbs samplers apply slice sampling for X, Y , aij and conjugate sampling

23

for the other variables. We have implemented four types of slice sampling. Specifically,

we did univariate slice sampling by: (a) sampling uniformly over the whole domain

of X, Y , aij , (b) doing step out, (c) doing double out. For the latter two cases we

used w=kft for X and Y , w=l radians for aij and m=10 to terminate the expanding

process. The fourth type we implemented was a two-dimensional slice sampling (mul-

tivariate approach) that updates X and Y simultaneously and samples uniformly over

the domain of X and Y , while for aij it follows univariate slice sampling over the whole

domain.

2.5.3 Comparing Algorithms

Figure 2.10 presents the average performance achieved by our algorithms expressed

as relative accuracy and standard deviation vs. time. We call relative accuracy the

Euclidean distance of the results of our solver compared to the ones from WinBugs after

running WinBugs for 10000 iterations as burnin, 100000 additional and having the over

relax option set (see [66]). Specifically, the Euclidean distance is estimated using the

mean of the variables X and Y . As was shown in [25, 51], this number of iterations

provides adequate convergence for the networks that we consider here, according to

standard WinBugs diagnostics. The samples of the burnin iterations are discarded and

only the samples of the burnin count in the estimation of analytic summaries for the

stochastic quantities. The idea here is that the per-variable statistics of long runs of

a well-tested, widely-used solver should converge to the true distribution as defined by

the combination of the model and data. All our results are thus compared against this

“gold standard”, as opposed to “ground truth” accuracy of the true location of the

object.

We ran our solvers with 100 iterations as burnin and the additional ranged from

1000 to 10000 with increments of 1000. In each case, the results are the average of

30 runs; in every run a different set of point(s) is chosen to be localized. We observe

that univariate slice sampling over the whole domain (“slice wd” in the graphs) has the

best ratio of relative accuracy vs. time for all networks; it can localize 1 or 10 points

with relative accuracy less than 1ft in less than half a second. Moreover, “met sd=1”

24

and “slice so=1” have the worst performance, since they converge very slowly to the

WinBugs solution as can be seen from Figure 2.10(e). Hence, they fail to mix rapidly.

Among the remaining algorithms, “slice do=1”, “met sd=20” and “slice so=10” are

not stable in providing a solution, as indicated by their standard deviation in Figures

2.10(f), 2.10(g), 2.10(h), which show that they need more than 10000 iterations so that

the standard deviation becomes small.

Furthermore, as can be seen in the graphs of Figure 2.10, some lines are shorter

than others. The reason is that the computational cost per iteration is different for

our algorithms and as a result some algorithms take less time to execute than others.

The factor that differentiates the computational cost among all these algorithms is the

number of evaluations of minus log the full conditional g of a stochastic variable (see

Section 2.3.1.2). Figure 2.11 shows some more results for different sizes of the training

set N . As can be seen, even for smaller sizes of N (e.g. 51, 101), “slice wd” has the

best performance.

Figure 2.4 depicts the average number of evaluations per variable X and Y for

network M1. We observe that the Metropolis algorithms perform fewer number of

evaluations when compared to the slice sampling algorithms. The reason is that slice

sampling algorithms that follow the step out and double out process (“slice so” and

“slice do” in the graphs) evaluate g several times until they get an estimate I of the

slice S (see Section 2.3.1.2). In addition, all slice sampling methods follow a shrinkage

procedure during which g could potentially be evaluated several times until the next

value to be accepted is found. On the other hand, Metropolis algorithms evaluate g

once before a candidate point y is proposed and once after. The number of evaluations

per variable X, Y are similar for the other Bayesian networks.

Among the slice sampling algorithms, we see that two-dimensional slice sampling

(“slice2d wd”) and univariate slice sampling (“slice wd”) over the whole domain of X

and Y have the fewest evaluations. The first of the two takes advantage of the fact that

X and Y have the same full conditional and as a result g is estimated once when X

and Y need to be updated, whereas the latter estimates g once for X and once for Y .

Since “slice wd” and “slice2d wd” take the whole domain as an estimate of the slice,

25

0

2

4

6

8

10

12

14

16

18

met wd met
sd=1

met
sd=20

met
sd=43

slice
wd

slice
so=1

slice
so=10

slice
do=1

slice2d
wd

A
v

g
. E

v
a

lu
a

ti
o

n
s

 o
f

g
(x

)

Figure 2.4. Average number of evaluations per variable X and Y after 10000 iterations of minus log the
full conditional g(x) for M1 when we use 253 training points to localize 1.

Localize 1 Point

0

2

4

6

8

10

12

14

16

M1 M2 M3 A1

Networks

Ti
m

e
(s

ec
s)

slice wd

WinBugs

Localize 10 Points

0

10

20
30

40

50

60
70

80

90

M1 M2 M3 A1

Networks

Ti
m

e
(s

ec
s)

slice wd

WinBugs

Figure 2.5. Execution time comparison of “slice wd” against WinBugs for localizing 1 point and 10 points.
The total number of iterations are 10000 and the number of training points are 253 for M1, M2, M3, and
20 for A1.

the only evaluations of g they perform is in the shrinkage process. Specifically, “slice

wd” performs 4.13 evaluations per variable on average in the shrinkage process, out of

which 2.13 are rejections. This is a clear indication that g is relatively flat, because the

method can find a point within the slice with only a few rejections.

Figures 2.9(e)-2.9(h) depict the average execution time breakdown of Gibbs sam-

pling, when slice sampling uses the “slice wd” method. We see that “slice wd” takes

less time when compared to “slice so=1” that is shown in Figures 2.9(a)-2.9(d). Partic-

ularly, slice sampling is 2.06 faster for M3 to 2.57 faster for A1 when we localize 1 point,

and is 2.13 times faster for M3 to 2.51 faster for A1 when we localize 10 points. Finally,

Figure 2.5 compares the average execution time (over 30 runs) of Gibbs sampling when

using “slice wd” to WinBugs (over relax option set). Our solver is faster than WinBugs

by a factor that ranges from 9.8 (M3) to 17.9 (A1) for localizing 1 point, and from 9.1

26

(M1) to 16.1 (A1) for 10 points.

2.5.4 No Location Information

Work [51] showed that M2 can localize devices with no location information in the

training set. However, when we ran our solver for 51 signal vectors and with 51 unknown

positions, the solver occasionally returned a solution different from WinBugs. Our

solver found an alternate, but incorrect, solution for the values of the coefficients of the

linear regression model that describes how a signal degrades linearly with log distance

(Equation 2.6). Specifically, although the parameters bi0 and bi1 are supposed to be

negative and positive respectively, our solver found a solution with inverted signs for

these parameters. When we have location information in the training set we never

get alternate solutions, because the location information restricts the sign of bi0 to be

negative. So, we bounded bi0 to be negative when there is no location information.

Figure 2.6 shows relative accuracy vs. time after bounding bi0. Specifically, Figures

2.6(a), 2.6(b) show the performance of seven out of nine MCMC algorithms that behave

similarly. We see that these algorithms can localize a device with relative accuracy less

than 3ft in six seconds with the exception of “slice do” that converges more slowly to the

WinBugs solution. On the other hand, Figures 2.6(c), 2.6(d) show that the remaining

two algorithms, “slice so=1” and “met sd=1”, perform poorly.

2.6 Analytic Model

In this section we describe an analytic model that gives us insight into when whole

domain sampling will be computational more efficient than other methods. To keep the

analysis tractable, we use a double exponential distribution and build its histrogram

by comparing whole domain sampling to a fix-sized step out process.

To quantify computational costs, our analysis compares the number of times uni-

variate slice sampling evaluates g(x) when using: (a) the whole domain as an initial

guess of the slice S, (b) the “step out” process. We assume that x follows a double

27

M2, N=51, NA=51

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

M2, N=51, NA=51

0

1

2

3

4

0 2 4 6 8 10 12

Time (secs)

S
d.

 D
ev

ia
tio

n
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

(a) (b)

M2, N=51, NA=51

0

20

40

60

80

100

0 4 8 12 16

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met sd=1
slice so=1

M2, N=51, NA=51

0

3

6

9

12

0 4 8 12 16

Time (secs)
S

d.
 D

ev
ia

tio
n

(f
t)

met sd=1
slice so=1

(c) (d)

Figure 2.6. Relative accuracy and standard deviation vs. time for N=51 training points with no location
information after bounding the coefficients bi0 of the linear regression model.

exponential distribution with probability density:

H(x;λ) =
λe−λ|x|

2
−∞ < x < ∞, λ > 0 (2.7)

Although x is not bounded, we assume that, for a specific λ, there exists an interval

(ad, bd) that contains 99% of the distribution and so consider x bounded within this

interval. Since the distribution is symmetric with respect to the y axis and has mean

zero, ad < 0 and bd > 0. For the variable x then:

g(x) = −ln(H(x;λ)) = −ln(λ/2) + λ|x| (2.8)

Recall slice sampling picks as a new value of x a point within S ∩ I. In our case g

is unimodal (i.e., has a single peak), and hence S consists of a single interval centered

around the point (0, 0). Using the whole domain as an initial guess of S, I = (ad, bd),

whereas if we use step out, I = (as, bs), for some interval (as, bs) returned by starting

28

with an initial guess w of the slice and then perhaps expanding it. However, since S

is a single interval (as mentioned earlier), I will contain the whole interval S in both

cases. The total number of evaluations E of g(x) for univariate slice sampling is:

E = Evaluations to define S +

Evaluations to estimate I +

Evaluations in the shrinkage process

Defining slice S requires one evaluation of g(x) so as to determine the value of

the auxiliary variable y (see Section 2.3.1.2). Estimating I entails zero evaluations of

g(x) using the whole domain, whereas using step out the number of evaluations will be

(bs − as)/w + 1. The size of (as, bs) is always a multiple of w and, since step out starts

by positioning w randomly around the current value of x, it is equal to:

i) 2w, if w > S and only one endpoint of w is outside S

ii) w, if w > S and both endpoints of w are outside S

iii) 2w or 3w, if w = S

iv) dS/wew or (dS/we + 1)w, if w < S and dS/we 6= S/w

v) (S/w + 1)w or (S/w + 2)w, if w < S and bS/wc = S/w

In order to approximate the average number of evaluations of g(x) required to

estimate I using step out, we simplify as follows. First, when w > S (cases i, ii) we

assume that the size of (as, bs) is w (case ii). Choosing (i) or (ii) depends on how w

is positioned around the current value of x which is determined the moment of actual

sampling. The number of evaluations (bs −as)/w +1 will differ only by one when using

case (i) vs. (ii) and hence the choice should not introduce a lot of error. Moreover,

for large values of w, we expect that choice (ii) will most likely occur in a real MCMC

simulation. For the same reasons, in case (iii) we assume that the size will be 2w and in

cases (iv), (v), the size will be dS/wew and (S/w+1)w respectively. Finally, in all cases

above, we use the mean value, S̄, of S which we estimate as follows. As explained in

29

Section 2.3.1.2, S is defined by using a random variable k that is uniformly distributed

in (0, 1) with probability density P (k). The size of S for function g in equation (2.8),

given a specific x and k, is S(x, k) = 2(|x| − ln(k)/λ). Thus, the mean size of S will be

S̄ =

∫ bd

ad

H(x;λ)

∫ 1

0
P (k)S(x, k) dk dx

=
4 + (λad − 2)eλad − (λbd + 2)e−λbd

λ

After estimating I, slice sampling follows a shrinkage procedure until it identifies a

new x. The number of evaluations of g(x) in the shrinkage process, either using the

whole domain or step out, will be equal to the number of rejections (for the proposed

points outside S ∩ I) plus one for the point that is finally accepted. As shown in the

discussion in [54], the interval I will shrink exponentially with rate 0.5. So, the size of

I at the nth trial will be In = Ie−0.5n. The probability of having n rejections in the

shrinkage procedure before finding a new x is:

pn =

n−1
∏

i=0

(

1 −
S̄

Ie−0.5i

)

S̄

Ie−0.5n

Since S consists of a single interval, the size of I at the nth trial is greater than S̄. So,

S̄

Ie−0.5n
≤ 1 ⇒ n ≤ 2ln

(

I

S̄

)

(2.9)

In our model we follow a conservative approach and assume that the number of

rejections in the shrinkage process is equal to the upper bound of n in equation (2.9).

Thus, the total number of evaluations for the whole domain Ewd and step out Eso is:

Ewd = 2ln

(

bd − ad

S̄

)

+ 2

Eso =
bs − as

w
+ 2ln

(

bs − as

S̄

)

+ 3

Figure 2.7 compares the number of evaluations of g(x) from a slice sampler and

our analytic model. We consider the domain of x to be the range (−20, 20) because

30

Whole Domain

0

1

2

3

4

5
6

7

8

9

10

0 1 2 3 4 5
Lambda

A
vg

. E
va

lu
at

io
ns

 o
f g

(x
)

Analytic Model
Slice Sampler

Slice Sampler (Step Out)

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16
w

A
vg

. E
va

lu
at

io
ns

 o
f g

(x
) 0.25

0.5
1
2
4

Analytic Model (Step Out)

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16
w

A
vg

. E
va

lu
at

io
ns

 o
f g

(x
) 0.25

0.5
1
2
4

Figure 2.7. Comparison of the number of evaluations of minus log the full conditional g(x) for the double
exponential distribution from a slice sampler (1000000 iterations) and the analytic model.

the values of the probability density outside this range are close to zero. The graphs

show the analysis predictions closely follow the results of the sampler for step out and

whole domain sampling, although due to the simplifications that we made the analytic

model sometimes underestimates the number of evaluations. The results also show that

as the width, w, increases, the number of evaluations of g(x) approaches the number

of evaluations of the whole domain (as expected). Most importantly, for λ=2 there

are sizes of w (≥2) that step out has fewer evaluations of g(x) than using the whole

domain, whereas for λ ≤ 1, using the whole domain gives fewer evaluations. Hence, a

distribution has to be at least as peaky as a double exponential distribution with λ=2,

in order to use step out, whereas for distributions with higher variance, using the whole

domain is more computationally efficient.

Figure 2.8 compares the shape of the full conditionals f of the double exponential

distribution for three values of λ, the x-coordinate of a point to be localized by M1

and one of the angles αij in A1. Comparing the shapes of the two distributions this

way is “fair”, because the double exponential distribution is the same as a single-node

Bayesian network whose prior term is given by equation (2.7) but has no likelihood

31

Double Exponential

0

0.2

0.4

0.6

0.8

1

1.2

-10 -5 0 5 10
x

f(x
)

 lambda=2
 lambda=1
 lambda=0.5

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300
x

f(x
)

x coordinate

 lambda=2

(a) (b)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7
x

f(x
)

angle

 lambda=2

(c)

Figure 2.8. Full conditionals of the (a) double exponential, (b) x-coordinate of a point to be localized by
M1, (c) angle aij in A1. (b), (c) also depict the double exponential with λ=2 whose mean has been shifted
to match the mean of the latter two full conditionals.

terms since it has no children. Our solvers for M1 and A1 generated values of the

full conditionals of the x-coordinate and the angle αij uniformly over their domain at

some specific iteration, once the Markov chain had reached its equilibrium. We see that

the latter two full conditionals are much more spread out than the double exponential

with λ=2. This is the reason that “slice wd” has fewer evaluations of g (hence shorter

execution time) than “slice so” in all four networks, when used to sample for the X, Y

and αij stochastic variables.

2.7 Importance Sampling

One major drawback of the MCMC methods is that some of the samples are discarded.

However, for every discarded sample, there is some computational cost that we pay.

These kind of samples are the ones in the burnin iterations, the ones that are rejected

in the shrinkage process of the slice sampling algorithm, and also the ones that do not

satisfy the Metropolis criterion (Equation 2.5) in the Metropolis algorithm. In an effort

32

to reduce the time we provide location estimates with our Bayesian networks, we tried

to identify methods that use every drawn sample, and hence no value is discarded.

One such method we experimented with was Importance Sampling (IS) [47]. The

method draws a value for a random variable from its prior distribution, regardless of

its current value. Thus, IS is a Monte Carlo (MC) method rather than an MCMC; the

new state does not depend on the previous. Also, IS does not have burnin iterations,

but all drawn values contribute to the estimation of the value of a random variable.

For every value that is drawn, the method estimates a weight w, which corresponds to

the likelihood of the variable the moment the value was drawn. So, for a variable x,

and for a number of iterations iter, IS estimates the mean of the variable as follows:

mean(x) =

iter
∑

i=1

valuei(x) ∗ wi(x)

iter
(2.10)

We applied IS to infer values for the x, y-coordinates in our Bayesian networks. So,

instead of applying slice sampling and the Metropolis algorithm for these two types of

variables, we used IS, whereas for the other unknowns in the networks we still used

conjugate sampling. Equation 2.4 shows that the full conditional f of a variable is

equal to prior × likelihood. As mentioned in Section 2.3.1.2, instead of f , we use

g(x) = −ln(f(x)) to avoid possible problems with floating-point underflow. Therefore:

g(x) = −ln(f(x)) = −ln(prior) − ln(likelihood) (2.11)

Since the prior of the x, y-coordinates in our Bayesian networks are uniform over

the length and breadth of a building, in Equation 2.11, −ln(prior) = 0 and hence

g(x) = −ln(likelihood). We estimate the value of w in Equation 2.10 as follows:

wi(x) =
egi(x)−maxi(gi(x))

iter
∑

i=1

egi(x)−maxi(gi(x))

iter

(2.12)

Equation 2.12 reveals that we have only one evaluation of g per iteration for a variable,

33

unlike slice sampling which has 4.13 and Metropolis which has 2 (Figure 2.4). Thus,

IS is computationally more efficient than these two MCMC methods. Moreover, the

closer the value of gi(x) to max(gi(x)), the higher the weight wi that is assigned to the

corresponding valuei(x) in Equation 2.10. This means that IS assigns a lot of weight

to drawn values with very high likelihood.

Figure 2.12 compares Importance Sampling to whole domain sampling with respect

to relative accuracy and standard deviation vs. time for BN M1, for different sizes of

the training set N and points to localize NA. The experiments were done on a 550-MHz

CPU, and the number of iterations ranged from 2000 to 10000 with increments of 1000

(out of these iterations, 1000 were burnin for whole domain sampling). The graphs show

that whole domain sampling achieves better relative accuracy and standard deviation

in all cases. When localizing one point, the difference in relative accuracy between the

two algorithm ranges from 6.1ft to 8.3ft for 2000 iterations, and from 2.4ft to 3.2ft for

10000 iteration. When localizing 10 points, the difference ranges from 6.6ft to 13.8ft

for 2000 iterations, and from 4.1ft to 13.7ft for 10000 iterations.

The graphs also reveal that IS is faster, since the IS lines are shorter than the lines

of whole domain sampling. More specifically Figures 2.13, 2.14 compare the absolute

execution time of the two algorithms, as well as the percentage of time reduction that

we achieve with IS with respect to whole domain sampling. For 10000 iterations, when

localizing one point the reduction can range from 10% to 20%, whereas for 10 points

the reduction ranges from 39% to 47%.

Overall, we conclude that, although IS can not outperform whole domain sampling,

it is a very simple and computationally efficient algorithm that can give decent local-

ization results for our Bayesian Networks.

2.8 Related Work

There are many active research efforts developing localization systems for wireless and

sensor networks. We cannot cover the entire body of work in this section. Rather, we

first give the reader a general sense of the approaches used and then cover the related

34

work on probabilistic inference using MCMC methods.

In general, RSS-based localization systems have been shown to have average accu-

racies of 6-15ft depending on the level of training data used in a specific environment,

for instance, a specific building floor [9,12,26]. The key advantage of these approaches

is that they can use the existing packet traffic to localize. The absolute accuracies of

the Bayesian networks explored here are on the higher end of these systems, with aver-

age accuracies of 15ft [51], but require much less training data, often 10 points or less,

compared with the 100 or more points needed for other approaches. Other positioning

strategies that use ultrasound [62] or generate specific radio waveforms can have higher

accuracies, often less than 1m, but require either additional infrastructure or custom

radios.

[26,51] are the first to propose Bayesian networks as a location estimation technique.

They exploit signal strength information from a collection of access points to localize

simultaneously a set of terminals. Additionally, one of their key findings is a model that

provides accurate location estimates without any location information in the training

data, leading to a truly adaptive, zero-profiling technique. The networks are shown to be

robust and competitive to the state of the art approaches for position estimation. [25]

extends the previous work, by incorporating the angle-of-arrival (AoA) of the signal

along with the received signal strength (RSS) for better position estimation. They

show that such a solution reduces the size of the training examples needed to reach

the same performance of Bayesian networks that rely solely on RSS. Moreover, [29]

proposes the use of Bayes filters in real-world location estimation tasks common in

pervasive computing. Specifically, they illustrate how particle filters, a variant of Bayes

filters, can be used to estimate a person’s location using multiple inaccurate ID sensors

such as MIT’s Cricket ultrasound tags and VersusTech infrared badge system.

[53,54] provide an extensive study on methods used for probabilistic inference using

MCMC methods, such as Gibbs sampling, slice sampling and the Metropolis algorithm.

Also, [6] describes a slice Gibbs sampler which is essentially off-the-shelf (i.e., requires

no tuning). Unlike slice sampling that slices the prior × likelihood, the algorithm in [6]

slices only the likelihood. In our work, we emphasize more on the computational cost

35

of MCMC methods as well as how easy it is to use them in an automatic way.

2.9 Summary

In this chapter we show how to reduce the computational cost of solving Bayesian

networks used for indoor localization. We introduced a novel approach to sampling

these networks that we call whole domain sampling. Our results show that the shape

of the full conditionals of the coordinates to be estimated as well as the angle of the

received signal strength are ideally suited for whole domain sampling. It achieved

the best convergence time when compared to other algorithms. Specifically, we can

converge to a value of less than 1ft of the position estimated by the WinBugs general-

purpose solver (given a very long run) within half a second if we try to localize 1 or 10

points. Also, our method results in execution times that are 9 to 17 times faster than

WinBugs. Moreover, we can localize 51 points with no location information to within

3ft of the WinBugs solution in six seconds. Such a method is very appealing because

it constitutes a “black-box” sampler (i.e., requires no tuning) for our networks.

Finally, to demonstrate a theoretical foundation on why our approach works, we

present an analytic model that tells us how flat a distribution of a stochastic variable

should be in order for whole domain sampling to be computationally more efficient than

other methods. We show that the actual distributions in our networks easily fall into

the regime where whole domain sampling is the best choice.

36

Step Out, Localize 1 Point

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M1 M2 M3 A1

Networks

S
am

pl
in

g
Ti

m
e

(s
ec

s)
Slice Sampling
Conjugate Gamma
Conjugate Normal

Step Out, Localize 1 Point

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

M1 M2 M3 A1

Networks

S
am

pl
in

g
Ti

m
e

Slice Sampling
Conjugate Gamma
Conjugate Normal

(a) (b)

Step Out, Localize 10 Points

0

2

4

6

8

10

12

M1 M2 M3 A1

Networks

S
am

pl
in

g
Ti

m
e

(s
ec

s)

Slice Sampling
Conjugate Gamma
Conjugate Normal

Step Out, Localize 10 Points

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

M1 M2 M3 A1

Networks

S
am

pl
in

g
Ti

m
e

Slice Sampling
Conjugate Gamma
Conjugate Normal

(c) (d)

Whole Domain, Localize 1 Point

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M1 M2 M3 A1

Networks

S
am

pl
in

g
Ti

m
e

(s
ec

s)

Slice Sampling
Conjugate Gamma
Conjugate Normal

Whole Domain, Localize 1 Point

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

M1 M2 M3 A1

Networks

S
am

pl
in

g
Ti

m
e

Slice Sampling
Conjugate Gamma
Conjugate Normal

(e) (f)

Whole Domain, Localize 10 Points

0

2

4

6

8

10

12

M1 M2 M3 A1

Networks

S
am

pl
in

g
Ti

m
e

(s
ec

s)

Slice Sampling
Conjugate Gamma
Conjugate Normal

Whole domain, Localize 10 Points

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

M1 M2 M3 A1

Networks

S
am

pl
in

g
Ti

m
e

Slice Sampling
Conjugate Gamma
Conjugate Normal

(g) (h)

Figure 2.9. Breakdown of the average execution time of Gibbs sampling when slice sampling uses step out
(a)-(d) and the whole domain (e)-(h). Graphs (b), (d), (f), (h) depict phases as a percentage of the absolute
whole time shown in graphs (a), (c), (e), (g). The total number of iterations are 10000, the number of
training points are 253 for M1, M2, M3, and 20 for A1.

37

M1, N=253, NA=1

0

0.5

1

1.5

2

2.5

3

3.5

0.05 0.15 0.25 0.35 0.45 0.55 0.65

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)
met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

M2, N=253, NA=10

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

(a) (b)

M3, N=253, NA=10

0

1

2

3

4

5

6

0 1 2 3 4

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

A1, N=20, NA=1, G=120

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met wd
met sd=10, 1
met sd=35, 2.7
slice wd
slice so=10, 1
slice do=1, 0.1
slice2d wd

(c) (d)

M1, N=253, NA=1

0

20

40

60

80

100

120

140

0.05 0.15 0.25 0.35 0.45 0.55 0.65

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met sd=1
slice so=1

M1, N=253, NA=1

0

1

2

3

4

5

6

7

0.05 0.15 0.25 0.35 0.45 0.55 0.65

Time (secs)

S
d.

 D
ev

ia
tio

n
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

(e) (f)

M3, N=253, NA=1

0

2

4

6

8

10

12

14

16

18

20

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

Time (secs)

S
d.

 D
ev

ia
tio

n
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

M3, N=253, NA=10

0

1

2

3

4

5

6

7

8

0 1 2 3 4

Time (secs)

S
d.

 D
ev

ia
tio

n
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

(g) (h)

Figure 2.10. Relative accuracy and standard deviation vs. time for different MCMC algorithms (see Table
2.2). N is the number of training points out of which we localize NA points. The size of w is in feet for
X, Y , and radians for aij .

38

M1, N=101, NA=1

0

0.5

1

1.5

2

2.5

3

3.5

0.05 0.15 0.25 0.35 0.45 0.55

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)
met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

M1, N=101, NA=10

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

(a) (b)

M2, N=51, NA=1

0

2

4

6

8

10

12

0.05 0.15 0.25 0.35 0.45 0.55

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

M2, N=51, NA=10

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

(c) (d)

M3, N=101, NA=10

0

1

2

3

4

5

6

7

8

0 1 2 3 4

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

M3, N=51, NA=10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met wd
met sd=20
met sd=43
slice wd
slice so=10
slice do=1
slice2d wd

(e) (f)

A1, N=20, NA=1, G=30

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met wd
met sd=10, 1
met sd=35, 2.7
slice wd
slice so=10, 1
slice do=1, 0.1
slice2d wd

A1, N=20, NA=1, G=60

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

met wd
met sd=10, 1
met sd=35, 2.7
slice wd
slice so=10, 1
slice do=1, 0.1
slice2d wd

(g) (h)

Figure 2.11. Relative accuracy vs. time for different algorithms (see Table 2.2). N is the number of training
points out of which we localize NA points. The size of w is in feet for X, Y , and radians for aij .

39

M1, N=253, NA=1

0

2

4

6

8

10

0.2 0.6 1 1.4 1.8 2.2

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)
is
slice wd

M1, N=253, NA=10

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

is
slice wd

(a) (b)

M1, N=101, NA=1

0

1

2

3

4

5

6

7

8

0.1 0.3 0.5 0.7 0.9 1.1 1.3

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

is
slice wd

M1, N=101, NA=10

0

2

4

6

8

10

12

0 1 2 3 4 5

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

is
slice wd

(c) (d)

M1, N=51, NA=1

0

1

2

3

4

5

6

7

8

0.1 0.3 0.5 0.7 0.9 1.1

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

is
slice wd

M1, N=51, NA=10

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5

Time (secs)

R
el

. A
cc

ur
ac

y
(f

t)

is
slice wd

(e) (f)

M1, N=101, NA=1

0

1

2

3

4

5

6

7

8

0.1 0.3 0.5 0.7 0.9 1.1 1.3

Time (secs)

S
d.

 D
ev

ia
tio

n
(f

t)

is
slice wd

M1, N=101, NA=10

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

Time (secs)

S
d.

 D
ev

ia
tio

n
(f

t)

is
slice wd

(g) (h)

Figure 2.12. Relative accuracy and standard deviation vs. time for importance sampling (is) and whole
domain sampling (slice wd). The results are for Bayesian network M1 when localizaing 1 and 10 points on
a 550-MHz CPU.

40

M1, N=253, NA=1

0

0.5

1

1.5

2

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
(s

ec
s)

is

slice wd

M1, N=253, NA=1

4%

5%

6%

7%

8%

9%

10%

11%

12%

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
R

ed
u

ct
io

n

(a) (b)

M1, N=101, NA=1

0

0.2

0.4

0.6

0.8

1

1.2

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
(s

ec
s)

is

slice wd

q

M1, N=101, NA=1

5%

7%

9%

11%

13%

15%

17%

19%

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
R

ed
u

ct
io

n

(c) (d)

M1, N=51, NA=1

0

0.2

0.4

0.6

0.8

1

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
(s

ec
s)

is

slice wd

M1, N=51, NA=1

11%
12%
13%
14%
15%
16%
17%
18%
19%
20%
21%

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
R

ed
u

ct
io

n

(e) (f)

Figure 2.13. Absolute time (a), (c), (e) of importance sampling (is) and whole domain sampling (slice wd)
and percentage of time reduction (b), (d), (f) of “is” over “slice wd” on a 550-MHz CPU when localizing
1 point with M1.

41

M1, N=253, NA=10

0

1

2

3

4

5

6

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
(s

ec
s)

is

slice wd

M1, N=253, NA=10

34%

35%

36%

37%

38%

39%

40%

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
R

ed
u

ct
io

n

(a) (b)

M1, N=101, NA=10

0

1

2

3

4

5

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
(s

ec
s)

is

slice wd

M1, N=101, NA=10

40%

41%

42%

43%

44%

45%

46%

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
R

ed
u

ct
io

n

(c) (d)

M1, N=51, NA=10

0

1

2

3

4

5

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
(s

ec
s)

is

slice wd

M1, N=51, NA=10

42%

43%

44%

45%

46%

47%

48%

2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

T
im

e
R

ed
u

ct
io

n

(e) (f)

Figure 2.14. Absolute time (a), (c), (e) of importance sampling (is) and whole domain sampling (slice wd)
and percentage of time reduction (b), (d), (f) of “is” over “slice wd” on a 550-MHz CPU when localizing
10 points with M1.

42

Chapter 3

Parallel Algorithms for Bayesian Indoor
Positioning Systems

3.1 Introduction

In the previous chapter we implemented several Bayesian inference methods for Bayesian

networks M1, M2, M3, A1 using Markov Chain Monte Carlo (MCMC) walks [47,53,54,

67, 73]. In MCMC methods, each instantiation of the network (i.e. with the variables

having values) forms a state in a Markov chain. As we saw, the MCMC is a sampling

procedure which generates a successive state, with new values for the variables. This

procedure is, in effect, generating a new node in a Markov chain, where each node is

an instance of the network. We call the process of drawing a random sample for all the

variables in the network an iteration; this corresponds to generating one state in the

Markov chain.

Although the MCMC methods proposed in the previous chapter are both computa-

tionally efficient and provide quick convergence, they can still take a lot of time when

many devices are localized simultaneously. For instance, they can take more than half

a minute on a 2.4-GHz machine to simultaneously localize 200 devices. We are thus

motivated to explore parallel computing methods for this problem.

In this chapter we describe two parallelization strategies. The first, inter-chain

parallelism, runs multiple independent chains on different processors. The observed

values are then aggregated to form the probability distributions of the variables. The

second approach, intra-chain parallelism, divides the work of a single chain between

processors. The division in effect partitions the formation of a single Markov state (i.e.

an iteration) across processors.

43

We implemented our two approaches using Berkeley Unified Parallel C (BUPC) [69],

which is a parallel language that adopts a Single Program Multiple Data (SPMD) model

using a global address space (GAS). Specifically, we applied these two approaches to the

most efficient MCMC inference method described in the previous chapter, which was

called “whole domain sampling”. We found UPC an effective language for describing

the data layout needed by our algorithms.

We evaluated our implementation on three platforms: a 16-node symmetric multi-

processor (SMP), a 4-node cluster comprising of quad processors, and a 16 single-CPU-

per-node cluster. Our results show that intra-chain parallelism gives speedups of 12

on 16 processors on the first two platforms, when the MCMC method has performed

a small number of iterations (at most 10,000). On the other hand, inter-chain paral-

lelism requires many more iterations (at least 40,000) on these two platforms in order

to achieve speedups of 12 and higher. We found the 16-way cluster, which could only

run the inter-chain algorithm, required at least 60,000 iterations to achieve a speedup

of 12.

For the Bayesian networks we study here, it was shown in the previous chapter

that only a small number of iterations (at most 10,000) is required in order to get

good localization results. Hence, intra-chain parallelism is a good candidate for apply-

ing parallelism to them, when run on platforms such as the first two. However, load

balancing is harder to achieve in the intra-chain parallelism, since it requires to split

evenly the computational cost of a single iteration of the MCMC method among pro-

cessors, which can be non-trivial. Additionally, it necessitates communication for every

iteration. In inter-chain parallelism it is easier to achieve load balancing, since it only

requires to divide evenly the number of iterations of the MCMC method among pro-

cessors. For Bayesian networks that need many iterations in order to give good results,

inter-chain parallelism is the algorithm to choose, as for large number of iterations it

can outperform intra-chain parallelism.

In order to analyze and predict the performance of our two algorithms we use the

LogP [20] model and its extension for large messages, LogGP [7]. The predictions of the

models are compared to the experimentally gathered data from the first two platforms.

44

The comparisons show that the predictions are within 5% of the observed execution time

for the inter-chain parallelism, whereas for the intra-chain they are 7%-25% less than

the actual time. The reason for the latter discrepancy is that there is load imbalance in

the intra-chain parallelism that the models fail to capture. Nevertheless, the models can

give us a good indication of the performance of our algorithms on different platforms.

The rest of this chapter is organized as follows. In Section 3.2 we describe the two

parallel algorithms applied to the Bayesian inference of our networks. In Section 3.3

we present our speedup results on different platforms, and in Section 3.4 we analyze

the performance of our algorithms using the LogP/LogGP models. Section 3.5 presents

related work. Finally, Section 3.6 summarizes our results.

3.2 Parallel Algorithms

Below, we describe two parallel algorithms we apply to the MCMC process that infers

values for the unknowns of the networks presented in Section 2.4. In both cases we

assume we apply parallelism to the generation of a single Markov chain that requires

B burnin iterations and A additional, and hence, the length of the chain is B + A.

3.2.1 Inter-Chain Parallelism

Inter-chain parallelism divides equally the additional iterations of the chain among all Q

processors that are available. In the case of a P -way SMP, Q = P , whereas in a cluster

of R P -way machines, Q = P ∗ R. Thus, it runs Q chains in parallel, each one using

a different starting seed for the Markov walk. Different seeds ensure that each Markov

walk will follow a different trajectory. Moreover, every chain needs to have B burnin

iterations in order to ensure that the values chosen in the additional iterations are from

the stationary distribution. Hence, the length of each chain is B + A/Q. Figure 3.1(a)

shows a pictorial representation of how the algorithm divides the computational cost.

Each row corresponds to a single iteration during which an MCMC method updates

variables v1, v2, . . . ,vk, whereas each column corresponds to the values generated by the

method for some variable after a number of iterations have been performed. Essentially,

45

1v

Iterations

Variables

v k−1

P

P

2

1P

P

...

P

P

2

1P

P

...

P

P

2

1P

P

...

2 3 4 5 6v v v v v v

SMP 2

1SMP

SMP

...

...

k

R

1v

Iterations

v k−1

Variables

2 3 4 5 6v v v v v v ...

...

k

SMP 2

1SMP

SMP

1P P P P 2 3

R

P

(a) Inter-chain parallelism (b) Intra-chain parallelism

Figure 3.1. Sampling load distribution by our two parallel algorithms.

the algorithm “slices” horizontally the number of additional iterations, forcing though

each chain to consist of B burnin iterations.

In order to generate statistics such as the median or the 95% interval, the samples of

all variables generated in the additional iterations need to be sorted. There are several

options that this can be done; through the use of some parallel sort (e.g. radix sort [24])

or processors can exchange the samples of the variables they control so that all samples

of a given variable are collected by a single processor that can in turn sort them locally.

After testing the performance of the two options, we decided that the latter is faster,

as the number of samples to be sorted per processor for our networks do not justify

the use of a parallel sort. So, if there are k variables in a Bayesian network, processors

divide them equally among them and each one sorts k/Q variables. Once sorting is

done, statistics are gathered by a single processor that outputs the results to a file.

The algorithm manages to easily balance the sampling load on all processors, as

each processor updates the same number of variables and generates chains of the same

length. Also, running the algorithm on a cluster of SMPs is trivial, since all processors

on the cluster are treated equally. The disadvantage of the algorithm though is that all

processors need to pay an overhead of B burnin iterations.

46

3.2.2 Intra-Chain Parallelism

Intra-chain parallelism ensures that each SMP generates only one Markov chain re-

gardless of the number of processors in it. Within an SMP the algorithm distributes

the variables to be updated to the processors of the SMP, and, therefore, each pro-

cessor updates only a subset of the variables of the Bayesian network. At the end of

each iteration, every processor gathers the new values of the variables generated by the

other processors of the SMP. The reason is that a processor requires the values of other

variables in the network during the update process, and in order for the Markov chain

to evolve, it is important that each processor has the latest value of the other variables.

For a single SMP, the algorithm generates only one chain of length B + A. For a

cluster of R SMPs, the additional iterations are divided equally among the SMPs, so

that there are R Markov chains that run in parallel, each of length B + A/R. Every

SMP uses a different seed to evolve the Markov walk. The assignment of variables to

processors is identical on all SMPs. Figure 3.1(b) depicts how the algorithm divides

the computational cost among the SMPs. In particular, it “slices” the cost vertically

within an SMP and horizontally across the SMPs of a cluster. It is interesting to note

that in the case of a cluster of single-processor SMPs the intra-chain algorithm becomes

inter-chain. There is no vertical “slicing” of the computational cost within an SMP;

the single processor of an SMP updates all variables of the Bayesian network.

To generate statistics, the samples of all processors need to be sorted. In the case of

only one SMP, each processor can sort locally the samples of the variables it has been

assigned to, as it has the samples of all the additional iterations of its variables. In

the case of a cluster of SMPs, processors that have been assigned the same variables in

the cluster can split the variables they have been assigned to amongst them, exchange

samples, and sort them locally. Applying a parallel sort (e.g. radix sort) is harder when

compared to inter-chain parallelism, as parallel sorts assume that all processors have

samples for all variables. For intra-chain parallelism this would require extra cost to

distribute the samples so that all processors have samples of all variables. Moreover,

as in the inter-chain case, the algorithm does not generate enough samples that would

47

justify the use of a parallel sort. Consequently, we chose to have processors sort samples

locally on both SMP and cluster. Once statistics are estimated, they are collected by

a single processor that outputs them to a file.

Unlike inter-chain parallelism, the cost of the B burnin iterations is paid only once

within each SMP. On the other hand, the algorithm necessitates an all-to-all exchange of

values within an SMP at the end of each iteration. Furthermore, balancing the sampling

load on the processors of a given SMP can be a non-trivial task, as the computational

cost of updating a variable varies among the variables of a Bayesian network. The

computational cost depends on the sampling method (e.g. slice sampling, conjugate

sampling [47,53,54,73]) used to update a variable, as well as on the size of the training

data given as input to the Bayesian network. A load imbalance will affect processors

when they communicate at the end of each iteration, as some processors might have to

wait for others to finish updating their variables.

Special consideration had to be taken when we implemented the intra-chain paral-

lelism for our Bayesian networks. Assigning random subsets of the variables to different

processors resulted in localization results that deviated from the results of a chain gen-

erated by a single processor that updates all variables together. The reason is that the

MCMC method we use for inference and we call “whole domain sampling” (see 2.3.1.2)

is a Gibbs sampling method. Applying parallelism to such a method by distributing

variables to different processors requires an algorithm like the one described in [56]. As

explained in Section 3.5, these kind of algorithms do not map efficiently onto different

interconnection structures, and thus we follow the vertical “slicing” described earlier.

Nevertheless, we realized that the intra-chain algorithm can give results similar to a

single chain, when applied to our Bayesian networks, by ensuring that certain groups

of variables are assigned to the same processor. Specifically, variables bi0, bi1 for the

same i in networks M1, M2, and bi0, bi1, bi2, bi3 for the same i in M3, A1, and X, Y of

a specific location have to be on the same processor.

48

3.3 Experimental Results

We have implemented the two algorithms described in Section 3.2 using the Berkeley

UPC (BUPC) [69] parallel language, which is an extension of C and provides a Global

Address Space (GAS) model. Programmers have full control over how their data is

laid out across processors, and can access this data via standard mechanisms such as

pointer dereferences, array indexing, or memcpy-style bulk copy calls. In our work we

used the 2.4.0 version of the BUPC compiler.

The algorithms were tested on three platforms. The first is an SMP with 16 proces-

sors running Linux. Each processor has a 2.4-GHz clock speed and 2 GBs of memory.

The second is a cluster of 4 Pentium 3 machines, each one having a quad processor and

running Linux. Each processor has a 550-MHz clock speed and 250 MBs of memory.

The nodes of the cluster are connected by a 100-Mbps switch. The third is a cluster

of 16 Pentium 4 machines with a dual processor, running Linux and connected by a

100-Mbps switch. Each processor has a 3.2-GHz clock speed and 500 MBs of memory.

In all our experiments we used only one of the two processors of every node in the

latter cluster. The training data sets we used for our Bayesian networks are the ones

presented in Section 2.5. Also, we followed the leave-n-out method, meaning that n

points were chosen from the training set to be localized.

The results shown next were generated by applying both algorithms to a specific

MCMC inference method, “whole domain sampling”, that was shown in Section 2.5.3

to be the fastest in terms of time and convergence for the networks that we study here.

However, they can be applied to other MCMC methods too. For the training data and

the MCMC method we use, we figured out that we needed 800 burnin iterations. All

our results are the average of 30 runs; in every run a different set of point(s) is chosen

to be localized. In the graphs we describe next, N is the number of training points out

of which we localize NA points. Also, Gran is the granularity (see Section 2.4) used to

take signal strength measurements in the A1 network.

The metric we have chosen to measure the performance of the algorithms is speedup,

49

which is defined as follows:

Speedup =
Tserial

Tparallel(P)
(3.1)

where Tserial is the running time of the serial algorithm on one processor, and Tparallel(P)

is the running time of the parallel version of the algorithm on P processors. We use the

time needed by a single-threaded BUPC program as Tserial, since we have managed to

make it run as fast as the single-threaded C solvers proposed in Section 2.5. In BUPC

there are two ways to run a single-threaded program by using the following options at

compile time: (a) -nopthreads, (b) -pthreads=1. However, in the latter case the com-

piler adds some overhead to the program rendering it a little slower than in case (a).

So, since strictly speaking Tserial is supposed to be as small as possible in equation 3.1,

we measure Tserial by compiling our algorithms with the -nopthreads option. There are

different possibilities for measuring time in these cases, such as user time, wall clock

time. We have chosen to measure wall clock time, that is the elapsed time between

the start and the end of a run. Wall clock time includes the cost of negative effects

like communication overhead, idle time caused by imbalance and synchronization. Fi-

nally, since speedups depend on the amount of computational cost that is distributed

to processors, we present results with increasing values of NA and decreasing of Gran.

By increasing the value of NA, we are able to see the benefits from the two types of

parallelism when we localize many devices at the same time.

3.3.1 Inter-Chain Results

Figure 3.2 shows the speedups we get for some of our Bayesian networks using 16

threads on the 16-node SMP and the 4-machine cluster. The number of iterations in

the graphs is the total number of iterations run by all threads together. As can be seen,

both platforms give approximately the same speedup with the SMP offering slightly

higher. The reason for the small improvement is that, in the cluster, threads need to

use the Ethernet network to exchange the variable samples in order to sort them and

produce statistics. Our results show that the inter-chain parallelism does not offer good

50

M2, N=253

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000

Iterations

S
pe

ed
up

NA=1
NA=10
NA=100
NA=150
NA=200

M2, N=253

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000

Iterations

S
pe

ed
up

NA=1
NA=10
NA=100
NA=150
NA=200

(a) (b)

M2, N=NA

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000

Iterations

S
pe

ed
up

NA=51
NA=101
NA=201

M2, N=NA

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000

Iterations
S

pe
ed

up

NA=51
NA=101
NA=201

(c) (d)

A1, N=20

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000

Iterations

S
pe

ed
up

Gran=30, NA=1
Gran=60, NA=1
Gran=120, NA=1
Gran=30, NA=10
Gran=60, NA=10
Gran=120, NA=10

A1, N=20

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000
Iterations

S
pe

ed
up

Gran=30, NA=1
Gran=60, NA=1
Gran=120, NA=1
Gran=30, NA=10
Gran=60, NA=10
Gran=120, NA=10

(e) (f)

Figure 3.2. Speedups of the inter-chain parallelism using 16 threads (one per processor) on a 16-node SMP
(a), (c), (e) and on a cluster of 4 quad-processor machines (b), (d), (f).

speedups as the number of iterations scale down to 2,000. The reason is that, although

the computational cost of the additional iterations is divided among all threads, the

cost of the burnin is not; it is a fixed overhead that all threads need to pay. We see the

algorithm needs at least 40,000 iterations in order to pay off the burnin computational

cost of 800 iterations and give speedups of 12. However, as was shown in Section 2.5.3,

for our networks we do not need more than 10,000 iterations to get good localization

results. Figure 3.3 presents the speedups for the other networks (M1, M3) as well as

when we use 8 threads (2 quad-processor SMPs in 3.3(f)). The figure shows that, when

51

M1, N=253

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000

Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

M1, N=253

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000

Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

(a) (b)

M3, N=253

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000

Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

M3, N=253

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000
Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

(c) (d)

M2, N=253

0

1

2

3

4

5

6

7

8

0 20000 40000 60000 80000
Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

M2, N=253

0

1

2

3

4

5

6

7

8

0 20000 40000 60000 80000

Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

(e) (f)

Figure 3.3. Speedups of the inter-chain parallelism using 16 threads (a, b, c, d) and 8 threads (e, f) (one
per processor) on a 16-node SMP (a), (c), (e) and on a cluster of 4 quad-processor machines (b), (d), (f).

using 16 threads, networks M1, M3 have performance similar to the ones shown in

graphs 3.2(a), 3.2(b). With 8 threads the algorithm gives a speedup of 7 after running

40,000 iterations on M2 (we get similar results for the other networks).

Finally, Figure 3.4 depicts the relative accuracy offered by a single-threaded solver

and the parallel version of the solver when the inter-chain scheme is used. As was

explained in Section 2.5.3, we call relative accuracy the Euclidean distance of the results

of our solver compared to the ones from WinBugs after running WinBugs for 10,000

iterations as burnin, 100,000 additional and having the over relax option set (see [66]).

52

M2, N=253, NA=200

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

M2, N=253, NA=200

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

(a) (b)

M2, N=NA=201

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 50 100 150
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

M2, N=NA=201

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 200 400 600 800
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Thread

8 Thread

16 Thread

(c) (d)

A1, N=20, NA=10, Gran=30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

A1, N=20, NA=10, Gran=30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

(e) (f)

Figure 3.4. Relative accuracy vs. time of the inter-chain parallelism on a 16-node SMP (a), (c), (e) and
on a cluster of 4 quad-processor machines (b), (d), (f).

In all graphs of the figure, the last point in every line corresponds to 60,000 iterations.

We see that the accuracy of the inter-chain parallelism is qualitatively similar to the

one of a single-threaded solver. Therefore, we do not loose accuracy with respect to a

single-threaded solver and at the same time we get the benefits of parallelism.

3.3.2 Intra-Chain Results

Figure 3.5 depicts the speedups of the intra-chain parallelism when running 16 threads

on the 16-node SMP and the 4-machine cluster. We see that on the 16-node SMP

53

speedups are very good (close to 12) even when the number of iterations scale down

to 2,000. On the cluster however, speedups are low for a small number of iterations

(2,000 to 5,000), but after that they reach the level of speedups offered by the 16-node

SMP. The reason is that on the 16-node SMP there is only one Markov chain and

hence the cost of the burnin iterations is paid only once. In the case of the cluster,

since it consists of 4 machines, the algorithm ran 4 chains in parallel and each one had

to pay the overhead of the burnin. The graphs show that after 5,000 iterations the

algorithm pays off the burnin cost giving higher speedups. The number of iterations

shown in graphs 3.5(b), 3.5(d), 3.5(f) is the total number of iterations run by all 4

chains together.

An important issue in this algorithm is balancing the load within an SMP. This

requires assigning variables to the processors in such a way so that in every iteration the

total time spent on each processor for updating variables is roughly equal. In the current

study, we used the computational cost required to update each variable of the network

to assign variables to processors at compile time under the restrictions explained in

Section 3.2.2. Since load balancing can be achieved more easily on 4 processors (each

machine in the cluster is a quad Pentium 3) rather than on 16, when the number of

iterations increase, the cluster can achieve better speedups than the 16-node SMP. This

can be clearly seen for M2 when N = NA = 201 (graphs 3.5(c), 3.5(d)), and for A1

when Gran = 30, NA = 10 (graphs 3.5(e), 3.5(f)) for 10,000 iterations, where the

cluster starts outperforming the SMP.

Graph 3.5(c) shows that when localizing all the points in the training set (N = NA)

we get speedups of up to 10, whereas in 3.5(a) the same network (M2) can give better

speedups (up to 12) when localizing NA < N points. As was shown in Section 2.5.4,

in the NA = N case we need to bound the bi0 parameters for all i, resulting in a

high computational cost when updating these variables. As a consequence, we were

not able to achieve good load balancing in this case on the 16 processors of the SMP.

Also, graphs 3.5(e), 3.5(f) show that we do not achieve as high speedups for A1 as for

the other networks. This is due to the fact that the training data for this network

consists of only 20 points and hence there is not enough workload to distribute to the

54

M2, N=253

0

2

4

6

8

10

12

14

0 3000 6000 9000 12000

Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

M2, N=253

0

2

4

6

8

10

12

14

0 3000 6000 9000 12000

Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

(a) (b)

M2, N=NA

0

2

4

6

8

10

12

14

0 3000 6000 9000 12000

Iterations

S
pe

ed
up

NA=51
NA=101
NA=201

M2, N=NA

0

2

4

6

8

10

12

14

0 3000 6000 9000 12000

Iterations
Sp

ee
du

p

NA=51
NA=101
NA=201

(c) (d)

A1, N=20

0

2

4

6

8

10

0 3000 6000 9000 12000

Iterations

S
pe

ed
up

Gran=30, NA=1
Gran=60, NA=1
Gran=120, NA=1
Gran=30, NA=10
Gran=60, NA=10
Gran=120, NA=10

A1, N=20

0

2

4

6

8

10

0 3000 6000 9000 12000

Iterations

S
pe

ed
up

Gran=30, NA=1
Gran=60, NA=1
Gran=120, NA=1
Gran=30, NA=10
Gran=60, NA=10
Gran=120, NA=10

(e) (f)

Figure 3.5. Speedups of the intra-chain parallelism using 16 threads (one per processor) on a 16-node SMP
(a), (c), (e) and on a cluster of 4 quad-processor machines (b), (d), (f).

processors that will offset the communication required at the end of each iteration and

thus achieve speedups comparable to the other networks. Moreover, the difference in

the speedup achieved between small NAs (1, 10) and large NAs (>=100) in graph

3.5(a) is larger when compared to the corresponding in 3.2(a). The discrepancy is

attributed again to the communication that intra-chain necessitates at the end of each

iteration. The speedups of networks M1, M3 are presented in Figure 3.6, which show

that their perfromance is similar to the ones shown in graphs 3.5(a), 3.5(b). Also, the

latter figure shows the speedups of M2 when using 8 threads (2 quad-processor SMPs

55

M1, N=253

0

2

4

6

8

10

12

14

0 3000 6000 9000 12000
Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

M1, N=253

0

2

4

6

8

10

12

14

0 3000 6000 9000 12000
Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

(a) (b)

M3, N=253

0

2

4

6

8

10

12

14

0 3000 6000 9000 12000

Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

M3, N=253

0

2

4

6

8

10

12

14

0 3000 6000 9000 12000

Iterations
S

pe
ed

up

NA=1
NA=10
NA=100
NA=150
NA=200

(c) (d)

M2, N=253

0

1

2

3

4

5

6

7

8

0 3000 6000 9000 12000
Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

M2, N=253

0

1

2

3

4

5

6

7

8

0 3000 6000 9000 12000
Iterations

S
pe

ed
up

NA=1
NA=10
NA=100
NA=150
NA=200

(e) (f)

Figure 3.6. Speedups of the intra-chain parallelism using 16 threads (a, b, c, d) and 8 threads (e, f) (one
per processor) on a 16-node SMP (a), (c), (e) and on a cluster of 4 quad-processor machines (b), (d), (f).

in 3.6(f)).

Figures 3.7, 3.8 present the relative accuracy of single-threaded solvers and the

intra-chain solvers. In these figures, the last point in every line corresponds to 10,000

iterations. We see that the intra-chain scheme provides us with accuracy that is similar

to the accuracy of a single-threaded solver, which proves that the way the algorithm

assigns variables to processors indeed helps so that the offered accuracy is not compro-

mised.

As was mentioned in Section 3.2.2, the algorithm behaves like the inter-chain when

56

M2, N=253, NA=200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

M2, N=NA=201

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

(a) (b)

A1, N=20, NA=10, Gran=30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

M1, N=253, NA=200

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

(c) (d)

M3, N=253, NA=200

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

M2, N=253, NA=150

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

(e) (f)

Figure 3.7. Relative accuracy vs. time of the intra-chain parallelism on a 16-node SMP.

run on a cluster with 1 thread per SMP. Figure 3.9 presents its performance when run

on our 16-node cluster. The curves are similar to the ones depicted in Figure 3.2, but

the speedups are smaller when compared to that figure. The reason for the decrease is

that each thread on the 16-node cluster uses the Ethernet network to exchange samples

with other threads, whereas in Figure 3.2 there is communication within an SMP on

the 4-machine cluster apart from across the Ethernet during the exchange, and on the

16-node SMP there is no usage of Ethernet at all. So, when compared to the 16-node

SMP and 4-machine cluster (with 16 threads), speedups are smaller by 1.8 and 1.5

respectively for M2 when NA = 200, 1.3 and 0.9 for M2 when N = NA = 201, 2.0

57

M2, N=253, NA=200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

M2, N=NA=201

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

(a) (b)

A1, N=20, NA=10, Gran=30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

M1, N=253, NA=200

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

(c) (d)

M3, N=253, NA=200

0

0.5

1

1.5

2

2.5

3

0 50 100 150
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

M2, N=253, NA=150

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80
Time (secs)

R
el

. A
cc

ur
ac

y
(ft

)

1 Thread

4 Threads

8 Threads

16 Threads

(e) (f)

Figure 3.8. Relative accuracy vs. time of the intra-chain parallelism on a cluster of 4 quad-processor
machines.

and 1.3 for A1 when Gran = 30 and NA = 10. For smaller NAs, the decrease is

higher, because there is not enough computation to offset the increased communication

overhead of the threads. Graphs 3.9(a), 3.9(b), 3.9(d), 3.9(e) show that for M1, M2,

M3 we need at least 60,000 iterations in order to get a speedup of 12, whereas for A1

(graph 3.9(c)) we need even more. Also, unlike graphs 3.3(e), 3.3(f) that show that on

a 16-node SMP and two quad-processor machines we can get speedups of 7 with 40,000

iteration, graph 3.9(f) shows that we need more than 60,000 iterations to achieve the

same speedup on a cluster of 8 single-processor machines.

58

M2, N=253

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000

Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

M2, N=NA

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000

Iterations

Sp
ee

du
p

NA=51
NA=101
NA=201

(a) (b)

A1, N=20

0

2

4

6

8

10

12

0 20000 40000 60000 80000

Iterations

Sp
ee

du
p

Gran=30, NA=1
Gran=60, NA=1
Gran=120, NA=1
Gran=30, NA=10
Gran=60, NA=10
Gran=120, NA=10

M1, N=253

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000
Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

(c) (d)

M3, N=253

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000
Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

M2, N=253

0

1

2

3

4

5

6

7

8

0 20000 40000 60000 80000

Iterations

Sp
ee

du
p

NA=1
NA=10
NA=100
NA=150
NA=200

(e) (f)

Figure 3.9. Speedups of the intra-chain parallelism using 16 threads (a, b, c, d, e) and 8 threads (f) (one
per processor) on a cluster of 16 machines. The algorithm is essentially inter-chain on the cluster.

3.4 LogGP Analysis

In this section we describe a way of modeling the behavior of our algorithms so that

we understand how much time each phase of the algorithms requires as well as we can

predict their performance on several platforms.

59

LogP/LogGP 16-node SMP Cluster SMP Cluster Net

Latency L 0.39870 µsec 0.51790 µsec 72.1308 µsec
Overhead o 0.04315 µsec 0.25655 µsec 24.2436 µsec
Gap g 0.10330 µsec 0.62310 µsec 50.2202 µsec
Gap-per-byte G 0.00263 µsec

byte
0.00977 µsec

byte
0.33447 µsec

byte

Table 3.1. LogP/LogGP model parameters on a 16-node SMP and a cluster of 4 quad-processor machines.

3.4.1 Modeling Communication and Computation

In order to describe the network performance of our algorithms we use the LogP [20]

model, which is a well-established approach to modeling small messages, and its exten-

sion, LogGP [7], for large messages. To analyze the performance of our algorithms on a

cluster, we use two types of LogGP parameters; one for communication within an SMP

of the cluster and one for communication between SMPs. To see why, remember that

in the intra-chain algorithm on the cluster, all processors of the SMP need to exchange

the newly-generated values of the variables they control at the end of each iteration.

For this kind of communication we need the LogGP parameters of the SMP. On the

other hand, in both algorithms, when the processors of the cluster need to exchange

samples in order to sort them, we need to use the LogGP parameters of the network that

connects the SMPs. Table 3.1 summarizes the parameter values of the LogP/LogGP

model on two platforms. Specifically, the second solumn presents the parameter val-

ues for communication within the 16-node SMP, the third column, for communication

within one of the quad-processor SMPs, and the fourth column, for communication

using the network that connects the quad-processor machines. The parameters were

measured as in [13,21], by writing BUPC benchmark programs. The value of G shown

in the table is the worst possible G measured from the benchmarks.

Local computation is captured by measuring time per variable per processor. Table

3.2 shows the formulas that estimate the sampling time of one iteration in our Bayesian

networks. In this table, d is the number of access points (see Section 2.4), and NA the

number of points we try to localize. In the formula that estimates the sampling time

of network M1, tbi01
represents the time needed to update either variable bi0 or bi1,

while tτi , tX , tY the time needed for variables τi, X, Y respectively (see Figure 2.3).

60

Network Time

M1

2∗d
X

j=1

tbi01
+

d
X

j=1

tτi
+

NA
X

j=1

tX +
NA
X

j=1

tY

M2 (NA < N)

2
X

j=1

tb01 +

2
X

j=1

tτ01
+

2∗d
X

j=1

tbi01
+

d
X

j=1

tτi
+

NA
X

j=1

tX +

NA
X

j=1

tY

M2 (NA = N)

2
X

j=1

tb01 +

2
X

j=1

tτ01
+

d
X

j=1

tbi0
+

d
X

j=1

tbi1
+

d
X

j=1

tτi
+

NA
X

j=1

tX +

NA
X

j=1

tY

M3

4
X

j=1

tb03 +
4

X

j=1

tτ03
+

4∗d
X

j=1

tbi03
+

d
X

j=1

tτi
+

NA
X

j=1

tX +
NA
X

j=1

tY

A1

4∗d
X

j=1

tbi01
+

d
X

j=1

tτi
+

360/Gran∗d∗NA
X

j=1

tα +

NA
X

j=1

tX +

NA
X

j=1

tY

Table 3.2. Sampling time of one iteration.

The formulas for the other networks are explained analogously. Table 3.3 presents the

local computation rates in our networks for the 16-node SMP. When possible, we use

a constant value for the time per variable; however, in the case of tbi01
/tbi03

, tτi , tbi0
,

tbi1
, we use time per variable per training size (N) per number of points to localize

(NA), because computation is dependent on these parameters. Additionally, there

is dependency on granularity in A1. Table 3.4 summarizes the values of the local

computation rates for the cluster of 4 quad-processor machines.

Moreover, Table 3.5 gives the time required by the algorithms on two platforms as

this is estimated by the LogGP models. The two platforms are a P -way SMP and a

cluster of R P -way machines. The formulas for Tintra,smp, Tintra,clu, Tinter,smp, Tinter,clu

capture the phases of the algorithms that take most of the time in the algorithms.

Specifically, these phases are the sampling process, generation of statistics (tgen stats),

moving samples to other processors so that they can be sorted (tmove samples), and

gathering values from all processors within an SMP at the end of each iteration in

the intra-chain parallelism (tgather values). We did not include in the formulas time

needed by the processors to read training data from input files, gather and write statis-

tics to output files, initialization of data structures and random generators. However,

these phases take very little time when compared to the total execution time of the

algorithms. We implemented the gathering-values phase (tgather values) by using bulk

memcpy calls and a tournament barrier [34], since BUPC does not provide us with

61

Variable M1 M2 (NA < N) M2 (NA = N)

tbi01
/tbi03

0.00045*N*NA 0.00045*N*NA

tτi
0.00044*N*NA 0.00045*N*NA 0.00044*N*NA

tX 3.14835 3.13906 3.38464

tY 2.61147 2.61531 2.80526

tgen stats 0.13406 0.13401 0.13370

tb01/tb03 0.00125 0.00157

tτ01
/tτ03

0.15044 0.15048

tbi0
0.00255*N*NA

tbi1
0.00044*N*NA

tα

Variable M3 A1

tbi01
/tbi03

0.00049*N*NA 0.00442*N*NA*360/Gran

tτi
0.00048*N*NA 0.00455*N*NA*360/Gran

tX 3.48992 20.4175

tY 3.08435 15.4654

tgen stats 0.13379 0.13468

tb01/tb03 0.25061

tτ01
/tτ03

0.35645

tbi0

tbi1

tα 0.57787

Table 3.3. Local computation rates (in µsecs) for the 16-node SMP.

collective operations, such as all-gather-all, that apply only within an SMP of a cluster

when threads run on all SMPs. The value of tgen stats (Tables 3.3, 3.4) corresponds to a

measured time per sample needed to generate statistics. This includes the time of local

quick sort, finding median, average, 2.5% and 97.5% interval, and standard deviation.

In the formulas we assume the algorithms try to parallelize the generation of a

Markov chain with length total iter that consists of burnin burnin iterations and

additional iter additional. Furthermore, the number of variables assigned by the intra-

chain algorithm to processors within an SMP as well as the number of variables sorted

by each processor in the inter-chain algorithm are approximated by network vars/P ,

where network vars is the total number of variables in the Bayesian network. The

approximation is good for the inter-chain parallelism as processors are assigned equal

number of variables to sort (see Section 3.2.1). On the other hand, it is rougher for

the intra-chain, as processors are assigned at compile time different number of variables

to update based on the computational cost required to generate a new sample for a

variable. As was explained in Section 3.3.2 the assignment tries to keep the load on

62

Variable M1 M2 (NA < N) M2 (NA = N)

tbi01
/tbi03

0.00196*N*NA 0.00196*N*NA

tτi
0.00194*N*NA 0.00193*N*NA 0.00192*N*NA

tX 15.6335 15.3928 16.0084

tY 13.1049 12.8384 13.2591

tgen stats 0.73306 0.73324 0.73306

tb01/tb03 1.51180 1.51138

tτ01
/tτ03

2.18680 2.17861

tbi0
0.01083*N*NA

tbi1
0.00195*N*NA

tα

Variable M3 A1

tbi01
/tbi03

0.00286*N*NA 0.01704*N*NA*360/Gran

tτi
0.00276*N*NA 0.01577*N*NA*360/Gran

tX 21.0373 92.5862

tY 18.7017 69.2865

tgen stats 0.73370 0.73454

tb01/tb03 1.51696

tτ01
/tτ03

2.29166

tbi0

tbi1

tα 2.97796

Table 3.4. Local computation rates (in µsecs) for the cluster of 4 quad-processor machines.

all processors within an SMP equally balanced. Additionally, since variables are rep-

resented in our implementation as floating point numbers, each sample of a variable

requires sizeof(float) bytes. The tournament barrier [34] as well as the BUPC bar-

rier require dlog2(P)e phases to complete and hence their running time is estimated as

dlog2(P)e ∗ (L + o + g).

Finally, in order to distinguish the LogGP parameters that refer to communication

within an SMP and communication using the network connecting SMPs, in Table 3.5

we use the L, o, g, G notation for the first case, and Lnet, onet, gnet, Gnet for the latter.

3.4.2 Measured vs. Predicted Results

Figure 3.10 displays the total measured time of the inter-chain algorithm as well as

its different phases, measured and predicted, for network M2 on the 16-node SMP and

the 4-machine cluster. We present only the phases that consume most of the time in

the running time of the algorithm; the rest of the measured time is captured in the

“Other” phase shown in the graphs, whereas the predicted time does not have “Other”

63

Algorithm Time

Tintra,smp =
`

Sampl. time of 1 iter

P
+ tgather values

´

∗ total iter + tgen stats ∗
additional iter ∗ vars per processor

Intra-chain (SMP) tgather values = (P−1)∗(L+o+(m−1)∗G+g)+2∗(dlog2(P)e ∗ (L + o + g))
vars per processor ≈ network vars/P
m ≈ vars per processor ∗ sizeof(float)

Tintra,clu =
`

Sampl. time of 1 iter

P
+ tgather values

´

∗
`

burnin + additional iter
R

´

+
tmove samples + tgen stats ∗ additional iter ∗ vars per processor

R

tgather values = (P−1)∗(L+o+(m−1)∗G+g)+2∗(dlog2(P)e ∗ (L + o + g))
Intra-chain (cluster) tmove samples = (R − 1) ∗ (Lnet + onet + (n − 1) ∗ Gnet + gnet) + 2 ∗

(dlog2(P ∗ R)e ∗ (Lnet + onet + gnet))
vars per processor ≈ network vars/P
m ≈ vars per processor ∗ sizeof(float)
n ≈ (vars per processor ∗ additional iter ∗ sizeof(float))/R2

Tinter,smp = (Sampl. time of 1 iter) ∗
`

burnin + additional iter
P

´

+
tmove samples + tgen stats ∗ additional iter ∗ vars per processor

Inter-chain (SMP) tmove samples = (P−1)∗(L+o+(m−1)∗G+g)+2∗(dlog2(P)e ∗ (L + o + g))
vars per processor ≈ network vars/P
m ≈ (network vars ∗ additional iter ∗ sizeof(float))/P 2

Tinter,clu = (Sampl. time of 1 iter) ∗
`

burnin + additional iter
P∗R

´

+
tmove samples + tgen stats ∗ additional iter ∗ vars per processor

Inter-chain (cluster) tmove samples = (P − 1) ∗ (L + o + (m− 1) ∗G + g) + ((R− 1) ∗ P) ∗ (Lnet +
onet + (m − 1) ∗ Gnet + gnet) + 2 ∗ (dlog2(P ∗ R)e ∗ (Lnet + onet + gnet))
vars per processor ≈ network vars/(P ∗ R)
m ≈ (network vars ∗ additional iter ∗ sizeof(float))/(P ∗ R)2

Table 3.5. Time of the inter-chain and intra-chain algorithms on two platforms.

phase. Formulas Tinter,smp and Tinter,clu (Table 3.5) were used for the predicted time

in graphs 3.10(b) and 3.10(d) respectively. We see that, on both platforms, the overall

predicted time by our models closely match the measured time, as it is within 5% of it.

From the breakup of the total time into phases, it is obvious that sampling dominates

execution time on both platforms; it accounts for at least 90% of the running time. The

“move samples” phase, is the phase where processors exchange samples to be sorted.

For the SMP this time is negligible, whereas for the cluster it is considerably greater

as the per-byte bandwidth (G in Table 3.1) is much larger on the network than within

an SMP.

Figure 3.11 displays the total measured time of the intra-chain algorithm as well as

its different phases, measured and predicted, for network M2. As in Figure 3.10, we

present only the phases that consume most of the running time of the algorithm. An

important phase of this algorithm is the “gather values” phase, during which processors

within an SMP exchange the newly-generated values of the variables they control at

64

M2, N=253, NA=200

0

1

2

3

4

5

6

7

8

18
00

28
00

48
00

78
00

10
80

0

20
80

0

40
80

0

60
80

0

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M2, N=253, NA=200

75%

80%

85%

90%

95%

100%

105%

1800 2800 4800 7800 10800 20800 40800 60800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P M P M P M P

Sampling
Gen Stats
Move Samples
Other

(a) (b)

M2, N=253, NA=200

0

5

10

15

20

25

30

35

40

18
00

28
00

48
00

78
00

10
80

0

20
80

0

40
80

0

60
80

0

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M2, N=253, NA=200

75%

80%

85%

90%

95%

100%

105%

1800 2800 4800 7800 10800 20800 40800 60800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P M P M P M P

Sampling
Gen Stats
Move Samples
Other

(c) (d)

Figure 3.10. Performance of the inter-chain parallelism using 16 threads (one per processor) on a 16-node
SMP (a), (b) and on a cluster of 4 quad-processor machines (c), (d). Graphs (b), (d) depict phases as a
percentage of the measured time shown in (a), (c) respectively. “M” is for measured and “P” for predicted.

the end of each iteration. The actual total time needed for this phase depends on how

equally-distributed the sampling load is among the processors of an SMP. If the load

is not equally balanced, then some processors will have to wait for others to finish

updating their variables in order to receive these new values. We see from the graphs

that the time this phase takes as a percentage of the total execution time can range

from 7.8% (graph 3.11(f)), to 19% (graph 3.11(b)) and up to 25% (graph 3.11(d)).

When we used formulas Tintra,smp, Tintra,clu (Table 3.5) to predict the running time

of the algorithm, we saw that the estimated time given by the models was away from

the measured; the difference ranged from 7% to 25%. There could be two reasons for

this: (a) load imbalance, (b) contention. Both these factors are not captured in our

models. We measured the load imbalance by subtracting the minimum time spent in the

“gather values” phase from the maximum time spent in the phase among all processors

within an SMP. The imbalance time was added as a percentage to the predicted time

in graphs 3.11(b), 3.11(d), 3.11(f). The latter graphs show that now the total predicted

65

time with the added imbalance is close to the actual running time, and imbalance

ranges from 6.4% (graph 3.11(f)), to 10.6% (graph 3.11(b)) and up to 21.7% (graph

3.11(d)). In addition, they show that imbalance is higher on the 16-node SMP (graphs

3.11(b), 3.11(d)) than on the cluster (graph 3.11(f)). The reason is that the SMP has

16 processors whereas each SMP on the cluster has 4 and distributing the load evenly,

under the restrictions explained in Section 3.2.2, can be done more easily on a 4-way

machine than on a 16-way.

The effect of not dividing the load evenly among processors is more intense for the

M2 network when N = NA (graph 3.11(d)). As was explained in Section 3.3.2, for this

case we had to bound the bi0 parameters (see Figure 2.3) for all i, resulting in not good

load balancing. Moreover, not having a good load balance affects the predicted sampling

time, because in the Tintra,smp, Tintra,clu formulas (Table 3.5) we divide the sampling

cost of one iteration by P . In general, dividing by P underestimates the sampling

cost of the intra-chain algorithm by a factor that depends on the load imbalance. For

instance, when NA < N in the M2 network (graph 3.11(b), 10800 iterations), our

model underestimates the sampling time by 3.1%, whereas in the N = NA case (graph

3.11(d), 10800 iterations), the sampling time is underestimated by 8%.

The results for the other Bayesian networks (for both algorithms) are qualitatively

similar to the ones explained above and are shown in Figures 3.12, 3.13, 3.14, 3.15.

3.5 Related Work

Several researchers have proposed parallel algorithms for Bayesian inference. Specifi-

cally, [56] describes an algorithm that assigns variables to processors which can com-

municate directly only with the processors for “nearby” variables, as determined by

the connections present in the Bayesian network. Using such local communication, it is

possible for the processors to coordinate in such a way that a number of processors can

simultaneously select new values for the variables they control, while being assured that

the other variables on which this selection is based are not being updated simultane-

ously. We believe that these kind of algorithms lack robustness, as they usually do not

66

map with equal efficiency onto interconnection structures different from those for which

they were designed. Moreover, it requires a lot of synchronization and communication

between processors. The algorithm can be used as an alternative to the intra-chain

algorithm presented here, but because of its inefficiency we follow a different approach

to introduce parallelism within a Markov chain.

Moreover, [39, 40] describe experimental results for a parallel version of a junction

tree algorithm, implemented on a Stanford DASH multi-processor and an SGI Challenge

XL. The algorithm transforms a Bayesian network into cliques and exploits parallelism

across cliques (topological parallelism) and in cliques. They demonstrate speedups

on random generated networks and on a medical diagnosis network. Basically, they

consider parallelizing only independent operations and speedups rely on the structure

of the network as well as the size of the cliques. Unlike them, we try to give good

speedups without exploiting the structure of the network. Also, we apply our techniques

on methods for approximate Bayesian inference (Monte Carlo simulation) whereas the

algorithm in [39, 40] is for exact inference.

[57] presents a parallel algorithm for exact Bayesian inference with improved (log-

arithmic) worst-time complexity, when compared to other methods (e.g. [22, 39, 40]),

regardless of the network topology. However, the author has no implementation results

on some specific parallel architecture.

[28] describes parallel algorithms and their MPI-based implementation for Bayesian

phylogenetic inference using MCMC, which are evaluated on a 32-node Beowulf cluster.

In this approach, processors are arranged in a 2D grid topology so that both chain-level

and subsequence-level parallelism can be used. The authors basically distribute either

entire chains or parts of a chain to different processors, but they do not try to exploit

intra-chain parallelism as we do. Moreover, they do not use some model of parallel

computation (such as LogP/LogGP [7,20]) to analyze the behavior of their algorithms.

Finally, [63] uses an algorithm by [58], which is a revision of [56] mentioned earlier,

to map Bayesian networks onto hypercube parallel architectures. The mapping scheme

maintains parent-child adjacency, is implemented and verified on a 64-node nCUBE.

However, the algorithm has the same drawbacks as the one in [56].

67

3.6 Summary

In this chapter we describe two parallel algorithms for MCMC-based Bayesian inference

in indoor positioning systems. The algorithms apply inter-chain and intra-chain par-

allelism on the Markov chain generation, were implemented using BUPC, and tested

on three platforms: a 16-node SMP, a 4-node cluster of quad processors, and a 16

single-processor-node cluster. Our results show that the intra-chain parallelism scales

well for short Markov chains achieving a speedup of 12 on the first two platforms, when

the number of iterations of the MCMC method is 10,000 or less. This fact makes the

algorithm particularly attractive for our positioning systems, since it was shown in the

previous chapter that they do not need more than 10,000 iterations to provide good

localization results. On the other hand, the inter-chain parallelism requires at least

40,000 iterations on the first two platforms and at least 60,000 iterations on the third

in order to give speedups of 12 or more. Hence, the latter algorithm is suitable for

applications that require long Markov chains.

We also use the LogP/LogGP model of parallel computation to analyze the behavior

of these algorithms and predict their performance on different platforms. Our analysis

shows that the predicted time of the model is within 5% of the measured for the inter-

chain parallelism, whereas for the intra-chain it is 7%-25% less due to load imbalance

that the algorithm suffers from.

As future work, we want to employ a more dynamic way to distribute the load in

the intra-chain parallelism, rather than distribute it statically at compile time.

68

M2, N=253, NA=200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1800 2800 4800 7800 10800

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M2, N=253, NA=200

30%

40%

50%

60%

70%

80%

90%

100%

1800 2800 4800 7800 10800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P

Sampling
Gather Values
Gen Stats
Other
Imbalance

(a) (b)

M2, N=201, NA=201

0

0.5

1

1.5

2

2.5

1800 2800 4800 7800 10800
Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M2, N=201, NA=201

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1800 2800 4800 7800 10800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P

Sampling
Gather Values
Gen Stats
Other
Imbalance

(c) (d)

M2, N=253, NA=200

0

1

2

3

4

5

6

7

8

1800 2800 4800 7800 10800

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M2, N=253, NA=200

40%

50%

60%

70%

80%

90%

100%

1800 2800 4800 7800 10800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P

Sampling
Gather Values
Gen Stats
Move Samples
Other
Imbalance

(e) (f)

Figure 3.11. Performance of the intra-chain parallelism using 16 threads (one per processor) on a 16-node
SMP (a)-(d) and on a cluster of 4 quad-processor machines (e), (f). Graphs (b), (d), (f) depict phases as
a percentage of the measured time shown in graphs (a), (c), (e) respectively. “M” is for measured and “P”
for predicted.

69

M1, N=253, NA=200

0
1
2
3
4
5
6
7
8
9

18
00

28
00

48
00

78
00

10
80

0

20
80

0

40
80

0

60
80

0

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M1, N=253, NA=200

75%

80%

85%

90%

95%

100%

1800 2800 4800 7800 10800 20800 40800 60800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P M P M P M P

Sampling

Gen Stats

Move Samples

Other

(a) (b)

M2, N=201, NA=201

0

2

4

6

8

10

12

18
00

28
00

48
00

78
00

10
80

0

20
80

0

40
80

0

60
80

0

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M2, N=201, NA=201

75%

80%

85%

90%

95%

100%

1800 2800 4800 7800 10800 20800 40800 60800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P M P M P M P

Sampling

Gen Stats

Move Samples

Other

(c) (d)

M3, N=253, NA=200

0
1
2
3
4
5
6
7
8
9

10

18
00

28
00

48
00

78
00

10
80

0

20
80

0

40
80

0

60
80

0

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M3, N=253, NA=200

75%

80%

85%

90%

95%

100%

1800 2800 4800 7800 10800 20800 40800 60800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P M P M P M P

Sampling

Gen Stats

Move Samples

Other

(e) (f)

A1, N=20, NA=10, Gran=30

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

18
00

28
00

48
00

78
00

10
80

0

20
80

0

40
80

0

60
80

0

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

A1, N=20, NA=10, Gran=30

55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

1800 2800 4800 7800 10800 20800 40800 60800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P M P M P M P

Sampling

Gen Stats

Move Samples

Other

(g) (h)

Figure 3.12. Performance of the inter-chain parallelism using 16 threads (one per processor) on a 16-node
SMP. Graphs (b), (d), (f), (h) depict phases as a percentage of the measured time shown in (a), (c), (e),
(g) respectively. “M” is for measured and “P” for predicted.

70

M1, N=253, NA=200

0

5

10

15

20

25

30

35

40

18
00

28
00

48
00

78
00

10
80

0

20
80

0

40
80

0

60
80

0

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M1, N=253, NA=200

75%

80%

85%

90%

95%

100%

105%

1800 2800 4800 7800 10800 20800 40800 60800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P M P M P M P

Sampling

Gen Stats

Move Samples

Other

(a) (b)

M2, N=201, NA=201

0

10

20

30

40

50

60

18
00

28
00

48
00

78
00

10
80

0

20
80

0

40
80

0

60
80

0

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M2, N=201, NA=201

75%

80%

85%

90%

95%

100%

1800 2800 4800 7800 10800 20800 40800 60800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P M P M P M P

Sampling

Gen Stats

Move Samples

Other

(c) (d)

M3, N=253, NA=200

0

10

20

30

40

50

60

70

18
00

28
00

48
00

78
00

10
80

0

20
80

0

40
80

0

60
80

0

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M3, N=253, NA=200

75%

80%

85%

90%

95%

100%

105%

1800 2800 4800 7800 10800 20800 40800 60800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P M P M P M P

Sampling

Gen Stats

Move Samples

Other

(e) (f)

A1, N=20, NA=10, Gran=30

0

5

10

15

20

25

18
00

28
00

48
00

78
00

10
80

0

20
80

0

40
80

0

60
80

0

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

A1, N=20, NA=10, Gran=30

55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

1800 2800 4800 7800 10800 20800 40800 60800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P M P M P M P

Sampling

Gen Stats

Move Samples

Other

(g) (h)

Figure 3.13. Performance of the inter-chain parallelism using 16 threads (one per processor) on a cluster of
4 quad-processor machines. Graphs (b), (d), (f), (h) depict phases as a percentage of the measured time
shown in (a), (c), (e), (g) respectively. “M” is for measured and “P” for predicted.

71

M1, N=253, NA=200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1800 2800 4800 7800 10800

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M1, N=253, NA=200

30%

40%

50%

60%

70%

80%

90%

100%

1800 2800 4800 7800 10800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P

Sampling
Gather Values
Gen Stats
Other
Imbalance

(a) (b)

M3, N=253, NA=200

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1800 2800 4800 7800 10800

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M3, N=253, NA=200

30%

40%

50%

60%

70%

80%

90%

100%

1800 2800 4800 7800 10800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P

Sampling
Gather Values
Gen Stats
Other
Imbalance

(c) (d)

A1, N=20, NA=10, Gran=30

0

0.2

0.4

0.6

0.8

1

1.2

1800 2800 4800 7800 10800

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

A1, N=20, NA=10, Gran=30

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1800 2800 4800 7800 10800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P

Sampling
Gather Values
Gen Stats
Other
Imbalance

(e) (f)

Figure 3.14. Performance of the intra-chain parallelism using 16 threads (one per processor) on a 16-node
SMP. Graphs (b), (d), (f) depict phases as a percentage of the measured time shown in graphs (a), (c), (e)
respectively. “M” is for measured and “P” for predicted.

72

M1, N=253, NA=200

0

1

2

3

4

5

6

7

8

1800 2800 4800 7800 10800

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M1, N=253, NA=200

40%

50%

60%

70%

80%

90%

100%

1800 2800 4800 7800 10800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P

Sampling
Gather Values
Gen Stats
Move Samples
Other
Imbalance

(a) (b)

M2, N=201, NA=201

0

2

4

6

8

10

12

1800 2800 4800 7800 10800

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M2, N=201, NA=201

40%

50%

60%

70%

80%

90%

100%

1800 2800 4800 7800 10800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P

Sampling
Gather Values
Gen Stats
Move Samples
Other
Imbalance

(c) (d)

M3, N=253, NA=200

0

2

4

6

8

10

12

1800 2800 4800 7800 10800

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

M3, N=253, NA=200

40%

50%

60%

70%

80%

90%

100%

1800 2800 4800 7800 10800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P

Sampling
Gather Values
Gen Stats
Move Samples
Other
Imbalance

(e) (f)

A1, N=20, NA=10, Gran=30

0

1

2

3

4

5

6

1800 2800 4800 7800 10800

Iterations

M
e

a
s

u
re

d
 T

im
e

 (
s

e
c

s
)

A1, N=20, NA=10, Gran=30

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1800 2800 4800 7800 10800
Iterations

P
er

c.
 o

f M
ea

su
re

d
 T

im
e

M P M P M P M P M P

Sampling
Gather Values
Gen Stats
Move Samples
Other
Imbalance

(g) (h)

Figure 3.15. Performance of the intra-chain parallelism using 16 threads (one per processor) on a cluster
of 4 quad-processor machines. Graphs (b), (d), (f), (h) depict phases as a percentage of the measured time
shown in graphs (a), (c), (e), (g) respectively. “M” is for measured and “P” for predicted.

73

Chapter 4

The Impact of Using Multiple Antennas
on Wireless Localization

4.1 Introduction

Indoor environments are particularly challenging for radio-based localization, because

effects such as reflection, diffraction and scattering make signal characterization with

respect to location difficult. This is one of the reasons that positioning of wireless

devices indoors remains an active research area.

To date, most wireless localization systems, based on commercially available compo-

nents, use received signal strength (RSS) as the base modality. However, a significant

problem with RSS is that small-scale multipath fading adds high frequency components

with large amplitudes to the signal at a given location. Thus, the RSS can vary by 5-10

dBm with small (a few wavelengths) changes in location. We confirm these results

in this chapter. However, because the small-scale fading effects occur at the level of

several wavelengths (about 12 cm at 2.4 GHz), and the granularity of the localization

system is typically much larger (2-3 meters), using multiple receivers spaced on the

order of a few wavelengths presents the opportunity to smooth out these effects, while

maintaining the same number of landmarks used by the localization system. In partic-

ular, multiple receivers can be realized by multiplexing between multiple antennas for

a given landmark.

In this chapter we investigate the impact on the localization system of using multiple

receivers spaced closely together. We performed a trace-driven study on an 802.11

wireless testbed in a real office building environment. Each landmark location supported

3 antennas spaced within 1-2 feet of each other. We first investigated signal variability,

74

and found that using multiple antennas resulted in signal-to-distance models with better

fits to a theoretical curve based on free-space models than when using a single antenna,

thus confirming that additional antennas help average out small-scale environmental

effects.

We then evaluated the effects of using multiple antennas on wireless localization. In

order to evaluate the generality of applying multiple antennas, we evaluated the impact

of multiple antennas on a diverse set of algorithms, which use an array of techniques

ranging from nearest neighbor matching in signal space, represented by RADAR [9],

to statistical maximum likelihood estimation, represented by the Area-Based Probabil-

ity (ABP) [26], and to multilateration, represented by Bayesian Networks (BNs) [51].

We found that all algorithms under study improved their absolute position accuracy

when using multiple antennas. Another key finding is that using multiple antennas

significantly reduces the fraction of poor localization results across almost all of the

algorithms. In one case, the median and the 90th percentile error were reduced up to

70%.

In addition to accuracy, we also investigated stability. We define stability as the

localization system’s ability to maintain a position in the face of small-scale movements

of a device. For example, if a device moves 1 foot, ideally the localization system should

return a result that is 1 foot away from the previous position. Instability is a common

anecdotal problem with localization systems, but has not received much attention by

the research community. We thus conducted a detailed evaluation of the impact of

multiple antennas on the localization stability. We quantified how much the localized

position of a device moves in the physical space as a function of small-scale movements

of the device around its current position. Our results show that multiple antennas

help improve localization stability significantly. Specifically, we can achieve up to 100%

improvement in stability over the single antenna case.

A third set of experiments examined how averaging or not averaging the data from

multiple antennas at a landmark position impacted the results. If averaging has no

measurable impact, then a host using multiple antennas could save bandwidth and

75

computational resources by averaging the RSS values at a single location before local-

ization occurred. However, we found that there is not a clear trend whether we should

average or not the data from multiple antennas.

The final set of experiments explored the algorithms’ sensitivity to the assumption

that RSS follows a Gaussian distribution. The main reason to make such an assump-

tion is that it makes the mathematics tractable, because the Gaussian distribution is

closed under summation, i.e., the sum of two Gaussians is a Gaussian. This property

also allows for averaging of multiple antenna streams to rest on a sound theoretical

foundation. We generated synthetic traces that followed a Gaussian distribution using

parameters from fitted measured data. Our results show that the performance behavior

on real data is consistent with the localization performance under Gaussian distribution

for RSS at each testing position.

The rest of this chapter is organized as follows. We present our testbed infrastruc-

ture, accuracy and stability metrics as well as our methodology for a series of investi-

gations in Section 4.2. In Section 4.3 we present our experimental results. Specifically,

we show the goodness of fit of RSS data to a theoretic model under multiple antennas,

and we describe the accuracy and stability performance of localization using RADAR,

ABP and BNs with real and Gaussian fingerprint sets. We provide a discussion in

Section 4.4. Section 4.5 presents previous research in localization and related antenna

work. Finally, we summarize in Section 4.6.

4.2 Methodology

In this section we describe our experimental methodology. We first describe the infras-

tructure we used, and then describe the metrics to quantify the localization accuracy

and stability. We also present our methodology for a series of investigations, which

include: a) the impact of small-scale movements on localization accuracy and stability,

b) the impact of averaging or not RSS data on a single landmark, c) the effects of

modeling RSS as a Gaussian distribution at a testing location.

76

Figure 4.1. WINLAB floor plan.

Location Landmark Antenna x y z

1 1 136 96 6.25
A 2 134 96 6.25

2
12 135 96 6.25

3 3 131 43 5
B 4 134 43 5

4
14 134 43 6

5 5 62 48.5 7.41
C 6 62 46.5 7.41

6
16 62 47.5 7.41

7 7 83 1 5.83
D 8 81 1 5.83

8
18 82 1 5.83

9 9 151 5 5.83
E 10 149 1 5.83

10
20 148 1 5.83

Table 4.1. Coordinates x, y, z (in feet) of the 15 antennas in our testbed. Locations A, B, C, D, E are
depicted as red stars in Figure 4.1.

4.2.1 Testbed Infrastructure

All data was collected using an 802.11 (Wi-Fi) network in the Wireless Network Lab-

oratory (WINLAB) at Rutgers University. Figure 4.1 depicts the floor plan of our ex-

perimental site, where the floor size is 219ft × 169ft. All experiments were conducted

in the yellow/shaded area, which is the WINLAB space. There are 10 landmarks (also

called access points, anchors, or base-stations) deployed at five different locations with

2 landmarks per location. The locations are shown as stars in Figure 4.1 and called

A, B, C, D, and E. Each landmark is a Linux machine with a 1-GHz CPU, 512 MBs

of RAM and a 20-GB disk. At each location, one landmark has two Atheros miniPCI

77

Placement Coordinates, Description

Floor (x, y, 0)

Center (x, y, 3)
East (x + 1, y, 3)
West (x − 1, y, 3)
North (x, y + 1, 3)

Desk South (x, y − 1, 3)
Vertical (x, y, 3), keyboard and monitor vertical to the floor with Orinoco card pointing

to the ceiling
Parallel (x, y, 3), keyboard vertical to the floor, monitor parallel to the floor

Shoulder (x, y, 5.16)

Table 4.2. Placements of a mobile around a given location (x, y, z) (coordinates in feet). Each location
(x, y, z) is depicted as a green dot in Figure 4.1.

802.11 wireless cards, whereas the other only one of the same type. Each card can

be connected to an external 7 dBi Omni directional antenna. Thus, there can be up

to 3 antennas per location or 15 antennas total. Table 4.1 presents the x, y and z

coordinates of all antennas along with their numerical IDs.

The green dots in Figure 4.1 are a total of 101 testing spots where we collected

RSS data for testing. For each testing spot (x, y, z), we collected measurements from

7 unique positions with 2 additional orientations, for a total of 9 unique placements.

Table 4.2 summarizes all the different placements of a mobile device around a given

testing spot. The mobile we consider here is a Dell laptop running Linux and equipped

with an Orinoco silver card. Along the height dimension, we call the placements at

0ft, 3ft and 5.16ft as floor, desk and shoulder respectively. At the desk level, we call

the small 1-foot movements around the main center placement the north, south, east

and west placements. Finally, we call the two orientations the vertical and parallel

placements.

For each placement i, we estimated an RSS vector Si = (si1, si2, . . . , sij , . . .). This

vector is called a fingerprint, where sij is the average RSS corresponding to antenna j

(the value of j is based on Table 4.1). Given the number of testing spots and placements

around each spot, the total number of fingerprints in our experimental data set is 101

× 9 = 909. To compute a fingerprint, our laptop would transmit packets. Every land-

mark would forward the packets observed from all the antennas to a centralized server.

The server would wait for at least 350 packets from each antenna before computing a

78

Combination Description

1-antenna Use the RSS of the landmarks with only one antenna (i.e., 1, 3, 5, 7, 9)

2-antenna-noavg - Use the RSS of the landmarks with only one antenna
- Use the RSS of the antenna with smaller ID from the landmarks with two
antennas
(i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

2-antenna-avg Average the RSS of the landmarks with two antennas (i.e., avg(2, 12), avg(4,
14), avg(6, 16), avg(8, 18), avg(10, 20))

2-antenna-avg-plus-1 - Use the RSS of the landmarks with only one antenna
- Average the RSS from the landmarks with two antennas
(i.e., 1, avg(2, 12), 3, avg(4, 14), 5, avg(6, 16), 7, avg(8, 18), 9, avg(10, 20))

3-antenna-noavg Use the RSS from the three antennas that exist at each landmark position
(i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20)

3-antenna-avg Average the RSS from the three antennas that exist at each landmark po-
sition
(i.e., avg(1, 2, 12), avg(3, 4, 14), avg(5, 6, 16), avg(7, 8, 18), avg(9, 10, 20))

Table 4.3. Localization antenna combinations for a given landmark position.

fingerprint. We used the GRAIL infrastructure [15] to collect the packets.

We examined the effect of the orientation of multiple antennas and found it had

little overall impact on the RSS from multiple antennas at one location. Specifically,

we collected fingerprints with all 3 antennas at each landmark location vertical to the

floor (the top of the antennas pointing to the ceiling), and another set with one of the

3 antennas being parallel to the floor. After analyzing the two data sets, we concluded

that there is no significant difference on the RSS in the two data sets, and thus the

results we present here are based on data collected with all landmark antennas being

vertical to the floor.

4.2.2 Metrics

In this section we formalize our two metrics that apply to all localization algorithms:

Accuracy: For a given localization attempt, accuracy is the Euclidean distance

between the location estimate obtained from the localization system and the actual

location of the mobile device in the physical space. We refer to this distance as local-

ization error. To capture the statistical characterization of the localization error, we

study the Cumulative Distribution Function (CDF) of the localization error for all the

testing placements.

Stability: Stability measures how much the location estimate moves in the physical

79

space in response to small-scale movements of a mobile device. We believe that stability

is a desirable property in localization systems, since a position should not move too far

in the physical space if there is a small-scale movement of a mobile device. For instance,

when someone works at his office desk and moves his laptop 1 foot away, the localized

position of the laptop should not change too much. Thus, we would like to know how

stability is affected by using multiple antennas at each landmark.

We define stability by taking the Euclidean distance between the location estimate,

p1, of a mobile device at its “original” position and the localization results p2, p3, . . . , pn

obtained when the mobile device is moved around its original location. In essence, if

p1 and pi (i 6= 1) are k feet apart, stability tells us whether the localization results of

these two positions are close to the actual distance (k feet). We characterize stability

by studying the CDF of the Euclidean distance between location p1, and p2, p3, . . . , pn.

4.2.3 Experiments

In this section we describe three types of experiments we conducted. In all cases, our

results are trace-driven. That is, we collected the fingerprints in a real environment,

and then performed the localization off-line by running different localization algorithms

using the collected fingerprints. When an algorithm required a training phase, e.g.,

training data for BNs or a signal map for RADAR, we always use the points from the

center placements. We use a leave-one-out methodology for computing the accuracy

and stability CDFs. That is, if applicable, we give an algorithm a training or signal

map with measured or interpolated fingerprints from the center locations and give it a

fingerprint from an unknown location to localize. Note that some versions of BNs do

not use fingerprints with known coordinates; we describe these later in Section 4.3.4.

Horizontal and Vertical Movements Experiments. The first set of experi-

ments we performed examined accuracy and stability as a function of small-scale move-

ments within a given testing spot. We tested both these metrics in the horizontal

plane, i.e., (x, y), using the desk-level fingerprints including the center, north, south,

east, west, vertical and parallel placements. In the vertical, i.e., z plane, we used the

floor, center and shoulder placements. In both cases, the center location serves as the

80

“original” p1, and the other positions are the additional small-scale movements.

Data Averaging and Non-averaging Experiments. An important open ques-

tion is if landmarks should aggregate the RSS readings from the different antennas at

a given landmark location or a localization algorithm should use directly the raw RSS

data. In our case, the simple aggregation scheme we examined was to perform an av-

eraging between the antennas at a given landmark; more complex schemes are left as

our future work.

We derived a systematic way to evaluate the localization performance under the

cases of a single antenna, two antennas, and three antennas by either using the raw

RSS readings from each individual antenna or averaging the RSS readings over two

or three antennas from a landmark position. Table 4.3 summarizes various antenna

combinations we consider here. In order to insure the generality of the results, we tried

different combinations of 1 and 2 antennas. Each combination is given a specific name

as shown in Table 4.3.

Distribution Experiments. A third class of experiments investigated the impact

of assuming that RSS data follows a Gaussian distribution. Such assumptions are

quite common among localization algorithms. For example, both the ABP and BNs

algorithms assume the data follows a Gaussian distribution.

In order to measure the impact of this assumption, we generated a data set of

fingerprints we call the Gaussian one. To generate this data set, we used the signal

propagation constants fitted to a simple propagation model described in Section 4.3.1.

The model defines the mean RSS that should be observed given the distance between

a mobile and a landmark. To compute the variance, we used the variance of the fitted

distribution. We then generated fingerprints using a Gaussian distribution for each one

of the 101 testing spots in our testbed for all 15 antennas.

Figure 4.2 depicts RSS vs. distance graphs of real and Gaussian data for antennas 1

and 3 (see Table 4.1). As can be seen, our Gaussian data follows closely the real data,

which means that our methodology of generating it is valid. Also, for all antennas in

our testbed, the values of the real RSS range from -30 dBm to -90 dBm.

81

0 20 40 60 80 100 120
−90

−80

−70

−60

−50

−40

−30

Distance (feet)

RS
S

(d
Bm

)

Gaussian RSS
Real RSS

0 20 40 60 80 100
−90

−80

−70

−60

−50

−40

−30

Distance (feet)

RS
S

(d
Bm

)

Gaussian RSS
Real RSS

(a) Antenna 1 (b) Antenna 3

Figure 4.2. Gaussian and real RSS vs. distance

4.3 Results

In order to get some intuition if multiple antennas do help average out small-scale

effects, we first describe a small experiment examining the goodness of fit of RSS data

to a theoretic model. We then present the accuracy and stability results for RADAR,

Area Based Probability (ABP), and Bayesian Networks (BNs). For each algorithm, we

show overall accuracy and stability results, small-scale movements, when averaging and

not averaging the antenna data, and when applying the Gaussian distribution.

4.3.1 Impact on Free Space Models

In this section we look for evidence on how multiple antennas “smooth out” the effects

of small-scale variations in signal strength. An intuitive definition of “smooth out” is

that the change in RSS does not vary much with a change in location. We experimented

with several metrics examining rates of change in signal space vs. location when using

multiple antennas. However, we did not find them grounded with sufficient theoretical

foundations to use them.

Our metric is to examine how well readings from multiple antennas fit a simple

propagation model. Recall that in free space, signal power decays approximately lin-

early with log distance. Specifically, signal strength S can be described by the following

propagation model:

S = b0 + b1 log(D) (4.1)

82

Antenna Combination Description

1-antenna-odd RSS from antenna with odd ID
(i.e., 1, 3, 5, 7, 9)

1-antenna-even-small RSS from antenna with small, even ID
(i.e., 2, 4, 6, 8, 10)

1-antenna-even-large RSS from antenna with large, even ID
(i.e., 12, 14, 16, 18, 20)

2-antenna-avg average RSS from antennas with even IDs
(i.e., avg(2, 12), avg(4, 14), avg(6, 16), avg(8, 18), avg(10, 20))

3-antenna-avg average RSS from all three antennas
(i.e., avg(1, 2, 12), avg(3, 4, 14), avg(5, 6, 16), avg(7, 8, 18), avg(9, 10,
20))

Table 4.4. Variability antenna combinations for a given landmark position.

A B C D E
0

0.2

0.4

0.6

0.8

1

Landmark Location

R−
sq

ua
re

1−antenna−odd
1−antenna−even−small
1−antenna−even−large
2−antenna−avg
3−antenna−avg

Figure 4.3. Goodness of fit of real RSS to the free space model of Equation 4.1.

where in equation (4.1), b0, b1 are propagation constants of the model and D is the

Euclidean distance between the transmitter and the receiver. We call such a log-linear

model a free space model.

Our approach is to add multiple antennas, and then observe the goodness of fit

of the data to a best fit free-space model. The goodness of fit is observable as the

coefficient of determination or R2. Recall that R2 can take values from 0 to 1, with

a value of 1 indicating a perfect fit to the model, and a value close to 0 indicating a

poor fit. Table 4.4 describes various cases of antenna combinations: a single antenna,

averaging on two antennas, and averaging on three antennas.

Figure 4.3 presents the R2 for the five landmark locations. For positions A, B, C,

D by averaging the RSS of all three antennas (3 − antenna − avg), the RSS data set

achieves the best fit, with R2 around 0.8. We also see that averaging (3 − antenna −

83

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) Center (b) Gaussian

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(c) Floor (d) Shoulder

Figure 4.4. Localization error CDF using RADAR

avg, 2 − antenna− avg) gives a better fit when compared to the fit of single antennas.

Thus, adding multiple antennas does improve the data fit to a simple free-space model,

although the effect is not very large.

4.3.2 RADAR

The RADAR algorithm is a classic scene-matching localization algorithm [9]. RADAR

requires a signal map, which is a set of fingerprints with known (x, y) locations. Given

a fingerprint with an unknown location, i.e., one to localize, RADAR returns the x,

y of the closest fingerprint in the signal map to the one to localize, where “closest” is

defined as the Euclidean distance of the fingerprints to each other in an N -dimensional

“signal space” with N landmarks [17]. That is, it views the fingerprints as points

in an N -dimensional space, where each landmark forms a dimension, and returns the

corresponding x, y of the closest point.

Accuracy. Figure 4.4 presents the localization error CDFs of RADAR for the

antenna combinations displayed in Table 4.3. Figure 4.4(a) shows the localization error

84

for the center position at the desk level. We see that using 3 antennas at a landmark

position results in better performance than using only 1 antenna or using 2 antennas.

Specifically, at the error of 10ft, the probability increases from 42% for the 1−antenna

case to 70% under the 3− anntena− avg case, and at the error of 20ft, the probability

increases from 77% for the 1 − antenna case to 90% for the 3 − antenna − avg case.

The overall improvement for the median error is 20%, moving from 12ft (1 − antenna)

to 9.6ft (3−antenna−avg), and for the 90th percentile error is 29%, moving from 30ft

(1 − antenna) to 21.2ft (3 − antenna − avg).

Figures 4.4(c) and 4.4(d) are the error CDFs for the floor and shoulder placements

respectively. We observe performance that is similar to that at the center placement.

Specifically, at the floor level, the median error improves by 10%, moving from 10.7ft

(1−antenna) to 9.6ft (3−antenna−avg), whereas the 90th percentile error improves by

28%, moving from 28ft (1−antenna) to 20ft (3−antenna−avg). At the shoulder level,

the median improves by 44%, moving from 18ft (1−antenna) to 10ft (3−antenna−avg),

whereas the 90th percentile error improves by 29%, moving from 30.6ft (1 − antenna)

to 21.7ft (3− antenna− avg). Further, the long CDF tails in Figure 4.4(c) indicate we

have larger maximum localization errors at the floor level, compared to the center and

shoulder placements. This is due to the fact that at the floor level the signal suffers

from shadowing.

We further studied the localization performance for RADAR when modeling the

RSS as a Gaussian distribution. The resulting localization errors are presented in

Figure 4.4(b). By comparing 4.4(a) to 4.4(b) we see that we have higher error with

Gaussian data, but the trends in the two figures are the same.

Stability. Figure 4.5 presents the localization stability for RADAR when using

multiple antennas. By examining the distance CDFs at the (x, y) plane in Figure

4.5(a), we see that the total percentage of the small-scale movements being localized

back to the center position increases from 13.7% for a single antenna to 26.7% when

averaging the RSS from 3 antennas at one landmark position. This means we have

a 100% improvement. Further, the stability at the 50th percentile moves from 19ft

(1−antenna) to 11ft (3−antenna−avg), indicating a 42% improvement, whereas the

85

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) (x, y) plane (b) z-axis

Figure 4.5. Localization stability when using RADAR

90th percentile achieves a 30% improvement by moving from 36.1ft (1 − antenna) to

25.2ft (3 − antenna − avg).

Moreover, as shown in Figure 4.5(b), the stability along the z-axis exhibits similar

behavior. Specifically, at the 50th percentile it improves by 44%, moving from 19ft

(1 − antenna) to 10.5ft (3 − antenna − avg), and at the 90th percentile it improves

by 30%, moving from 35.4ft (1 − antenna) to 24.7ft (3 − antenna − avg). This is

very encouraging as better localization stability strongly indicates that using multiple

low-cost antennas for improving localization performance is effective.

4.3.3 Area Based Probability

Area Based Probability (ABP) utilizes an Interpolated Map Grid (IMG) to interpolate

the signal map and cover the entire experimental floor. Specifically, the floor is divided

into a regular grid of equal-sized tiles. Since direct measurement of the fingerprint for

each tile is expensive and prohibitive for fine-grained tiles, it follows an interpolation

approach. The goal of using an IMG fitting is to derive an expected RSS fingerprint

for each tile from the data set that would be similar to an observed one.

ABP returns a set of tiles bounded by a probability that a mobile device is within

the returned tile set. The probability is called the confidence α and it is adjustable

by the user. We used a tile size of 10in × 5in, which is comparable to the distance

between antennas at a landmark location (1 or 2 feet). ABP assumes the distribution

of RSS for each landmark follows a Gaussian distribution with mean as the expected

86

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) Center (b) Gaussian

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(c) Floor (d) Shoulder

Figure 4.6. Localization error CDF using ABP

value of RSS reading vector s. The Gaussian random variable from each landmark is

independent. ABP then computes the probability of the mobile device being at each

tile Li, with i = 1...L, on the floor using Bayes’ rule:

P (Li|s) =
P (s|Li) × P (Li)

P (s)
(4.2)

Given that a mobile device must be at exactly one tile satisfying
∑L

i=1 P (Li|s) = 1, ABP

normalizes the probability and returns the most likely tiles/grids up to its confidence

α [26]. In order to normalize for accuracy and stability results, we select the tile with

the median localization error from the tile set. In all results we show next, the value of

the confidence level is α = 0.75.

Accuracy. Figure 4.6(a) shows the localization error CDFs of ABP at the center

placement when using multiple antennas. The 3 − antenna − noavg case has the best

performance. Comparing 3 − antenna − noavg to 1 − antenna, we observe that the

median error moves from 7ft to 2ft and the 90th percentile error moves from 16ft to

87

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) (x, y) plane (b) z-axis

Figure 4.7. Localization stability when using ABP

4ft. Thus, the location accuracy has an improvement over 70% for both the median as

well as the 90th percentile error when using 3 antennas at a given location.

The error CDFs for the floor and shoulder level in Figures 4.6(c) and 4.6(d) have

qualitatively similar performance to the center position. Specifically, by using the

RSS readings from each of the 3 antennas at a given landmark location we get the

best performance. Moreover, we notice that the CDFs at the floor level only have

slightly longer tails than those at the center and shoulder placement. This indicates

that interpolating the signal map across the experimental floor helps smooth out the

signal variability and thus reduces the maximum localization errors.

Finally, Figure 4.6(b) presents the localization errors using the Gaussian data set.

As with real data, we observe better performance under the cases of multiple antennas.

Moreover, the performance of the 3−antenna−noavg case with the Gaussian simulated

data is even better than with the real experimental data.

The results in location accuracy show that when using the approach of an interpo-

lated signal map with grid size smaller than the distance between 2 adjacent antennas

at a landmark location, by using multiple antennas we can achieve better location accu-

racy improvement than using solely the raw fingerprints in the signal map (as RADAR

does).

Stability. Figure 4.7 shows that using multiple antennas at a given location helps

improve localization stability, with the 3− antenna−noavg case providing the highest

88

stability improvement. Notably, the total percentage of testing points, under small-

scale movements, with stability distance zero increases from less than 5% for a single

antenna to over 14% for the case of 3 − antenna − noavg. Similar to RADAR, this

is an over 100% stability improvement. Further, examining Figure 4.7(a) the stability

distance at the 50th percentile moves from 8ft for the case of 1−antenna to 2ft for the

3−antenna−noavg case, resulting in a stability improvement of 75%. We also observe

over 73% improvement for the 90th percentile. In the z axis as shown in Figure 4.7(b),

employing multiple antennas at a given location again provides similar improvement in

localization stability.

One effect we observe is that when using signal map interpolation, the cases of

averaging the RSS readings from multiple antennas at a given location such as 2 −

antenna − avg and 3 − antenna − avg have the same localization performance as the

single antenna case. We believe that this is because for tiny grids (10in × 5in), averaging

RSS at a given location is just like placing a single landmark at a location, which is the

same as having a single antenna in a landmark.

4.3.4 Bayesian Networks

The Bayesian Networks we consider here are M1, M2, M3, were presented in Section 2.4,

and depicted in Figure 2.3. They encode the relationship between the RSS and a loca-

tion based on the signal-versus-distance propagation model shown in Equation 4.1. In

addition, they capture noise and outliers by modeling the signal strength as a Gaussian

distribution given by expression 2.6.

Network M1 is the simplest amongst the three, and requires a training set in order

to give good localization results. Network M2, as was shown in [51], can localize with

no training fingerprints, leading to a zero-profiling technique for location estimation.

The impact of multiple antennas on zero-profiling is a key effect we tested for, since

this approach has the benefit of not having to collect fingerprints at known locations.

Finally, network M3 extends M2 by incorporating the corridor effect. That is, when

a location (X,Y) shares a corridor with a landmark, then the signal strength tends

to be stronger along the entire corridor. We define “sharing a corridor” as having an

89

X- or Y -coordinate within three feet of the corresponding landmark coordinate. In all

graphs we present in this section, N denotes the size of the training set, out of which

we localize NA devices.

Accuracy. Figure 4.8 presents the localization error CDFs of M2 under multiple

antennas, when using a training set. Specifically, Figures 4.8(a), 4.8(c), 4.8(e), 4.8(g)

present the error CDFs, when localizing one device (NA=1) at the center, north, shoul-

der, floor placements respectively, whereas Figures 4.8(b), 4.8(d), 4.8(f), 4.8(h) the error

CDFs for the same placements when localizing 50 devices (NA=50).

When localizing one device at the center placement, we see that all curves have

similar performance, although using only one antenna, 1 − antenna case, has slightly

worse performance than the other cases. The curves for the north, shoulder, floor

placements exhibit similar trend, although at the floor level, we notice higher errors,

probably due to shadowing that the signal strength suffers from at this placement.

As the number of devices for localization increases from 1 to 50, we notice that

the error CDFs corresponding to multiple antennas are more clearly separated from

the single antenna case. The improvement is primarily on the 90th percentile. In

particular, when comparing 1−antenna to 3−antenna−noavg at the center placement,

the median error from 14ft (1 − antenna) reduces to 11ft (3 − antenna − noavg), and

the 90th percentile error reduces from 39ft (1 − antenna) to 27ft. The trends of the

curves at the other placements are similar, although at the floor level we notice higher

errors as was the case when localizing one device.

Figure 4.9 presents the error CDFs of M2 when localizing 51 devices simultaneously

with no training set at the center, north, shoulder, floor placements. Unlike when

using training set to localize, we see that now case 3 − antenna − noavg has the best

performance. The accuracy improvement on the median error between 1−antenna and

3−antenna−noavg is 40% (from 22ft to 13ft) at the center placement, 36% (from 22ft

to 14ft) at the north placement, 46% (from 26ft to 14ft) at the shoulder placement, and

33% (from 18ft to 12ft) at the floor placement. The improvement on the 90th percentile

for the same pairs of antenna combinations is from 54ft to 28ft (center), from 55ft to

33ft (north), from 54ft to 31ft (shoulder), and from 52ft to 34ft (floor). Conclusively,

90

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) Center: N=101, NA=1 (b) Center: N=101, NA=50

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y
1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(c) North: N=101, NA=1 (d) North: N=101, NA=50

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(e) Shoulder: N=101, NA=1 (f) Shoulder: N=101, NA=50

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(g) Floor: N=101, NA=1 (h) Floor: N=101, NA=50

Figure 4.8. Localization error CDFs using Bayesian network M2.

91

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) Center: N=NA=51 (b) North: N=NA=51

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(c) Shoulder: N=NA=51 (d) Floor: N=NA=51

Figure 4.9. Localization error CDFs using Bayesian network M2 with no training fingerprints.

our empirical results suggest that more antennas per landmark location primarily help

improve the localization accuracy of Bayesian networks when there is no training set.

Another important observation is that 3 antennas per landmark location, case 3 −

antenna − noavg, makes the localization error when locating multiple mobile devices

comparable to that when locating a single device. Specifically, from Figures 4.8(a),

4.8(b), 4.9(a), which present the error CDFs when localizing 1, 50, and 51 devices

respectively, we see that the median error for 3 − antenna − noavg is 11ft, 11ft and

13ft, whereas the 90th percentile error is 24ft, 27ft and 28ft. Thus, both the median

and the 90th percentile errors are of the same magnitude.

Figure 4.10 depicts the error CDFs at the center placement when localizing 1 and 50

devices for the other two BNs, namely M1, M3. The graphs show that these networks

perform similarly to M2 and this applies to the other placements too.

Figure 4.11 presents the localization accuracy of BNs M1, M2, M3 when using

the Gaussian simulated data set. We observe that in all figures the different antenna

combinations can be placed into three groups based on their performance: (a) 3 −

92

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) M1, Center: N=101, NA=1 (b) M1, Center: N=101, NA=50

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(c) M3, Center: N=101, NA=1 (d) M3, Center: N=101, NA=50

Figure 4.10. Localization error CDFs using Bayesian networks M1, M3.

antenna−noavg, 3−antenna−avg, 2−antenna−avg−plus−1, (b) 2−antenna−noavg,

2 − antenn − avg, and (c) 1 − antenna. The first group has the best performance,

whereas the last the worst. Intuitively, this kind of grouping should be expected, since

BNs assume that the RSS follows a Gaussian distribution, and thus the averaged RSS of

antennas that belong to the same landmark position is also Gaussian [14]. Furthermore,

the RSS measured at each antenna is close to the RSS of the other antennas at a given

landmark location (since the landmark antennas are close to each other), and thus

the averaged RSS should be close to the RSS of each antenna. Therefore, unlike with

real experimental data, BNs perform similarly either we average or not the RSS of the

multiple antennas at a given landmark location.

Stability. Figure 4.12 presents localization stability CDFs for Bayesian network

M2, on the (x, y) plane (desk placements) and the z-axis. Figures 4.12(a), 4.12(c) show

that when localizing 1 or 50 devices on the (x, y) plane, the more antennas per landmark

location, the better the stability. When locating 1 device, stability improves by 36% at

the 50th percentile, moving from 11ft (1−antenna) to 7ft (3−antenna−noavg), and by

93

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) M2, Center: N=101, NA=1 (b) M2, Center: N=101, NA=50

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(c) M2, Center: N=NA=51 (d) M1, Center: N=101, NA=1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Error (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(e) M3, Center: N=101, NA=1 (f) M3, Center: N=101, NA=50

Figure 4.11. Gaussian approach: localization error CDFs using Bayesian networks M1, M2, M3.

94

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) (x, y) plane: N=101, NA=1 (b) z-axis: N=101, NA=1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(c) (x, y) plane: N=101, NA=50 (d) z-axis: N=101, NA=50

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(e) (x, y) plane: N=NA=51 (f) z-axis: N=NA=51

Figure 4.12. Localization stability of Bayesian network M2.

33% at the 90th percentile, moving from 21ft (1−antenna) to 14ft (3−antenna−noavg).

When locating 50 devices, stability improves by 41% at the 50th percentile, moving

from 12ft (1− antenna) to 7ft (3− antenna− noavg), and 42% at the 90th percentile,

moving from 26ft (1−antenna) to 15ft (3−antenna−noavg). However, the difference

between the cases of 3 − antenna − noavg and 3 − antenna − avg is negligible. In

general, we noticed that when our networks use training data, averaging or not the

RSS from multiple antennas at a given location does not make any difference on the

localization stability on the (x, y) plane, regardless of the number of multiple devices

we localize simultaneously. Along the z-axis, Figures 4.12(b), 4.12(d) show that there

95

is not large improvement by using multiple antennas.

Figures 4.12(e) and 4.12(f) show that when no training data is used, case 3 −

antenna − noavg has the best performance. Moreover, the more antennas, the better

the performance, but 3−antenna−noavg gives better stability than 3−antenna−avg.

On the (x, y) plane, the median of stability improves by 43%, from 16ft (1 − antenna)

to 9ft (3− antenna−noavg), and the 90th percentile by 44%, from 36ft (1− antenna)

to 20ft (3 − antenna − noavg). Along the z-axis, there is an improvement of 40% at

the median, moving from 15ft (1− antenna) to 9ft (3− antenna−noavg), and 34% at

the 90th percentile, moving from 32ft (1 − antenna) to 21ft (3 − antenna − noavg).

Figure 4.13 presents stability CDFs for networks M1, M3 when locating 1 and 50

devices. The graphs show that the stability achieved by using multiple antennas in these

two networks is similar to the one of network M2 when using training data (Figures

4.12(a), 4.12(b), 4.12(c), 4.12(d)). Overall, we conclude that multiple antennas can

help BNs improve their localization stability.

4.4 Discussion

We believe that the distance between antennas at a landmark location and the distance

between points where training/testing fingerprints are collected can have a significant

impact on the results when averaging or not the RSS of multiple antennas. Figure 4.4

shows that the location accuracy of RADAR in the 3 − antenna − avg case is slightly

better than in the 3−antenna−noavg case. We suspect this is because in our study the

distance between two antennas is small, only 1 to 2 feet away from each other, whereas

the testing points are about 5-10 feet away from each other, which is a magnitude of 5

times larger. The fine-grained RSS differences between the 3 antennas will not affect

the coarse-grained fingerprint matching. Therefore, we believe the 3 separate antennas

at one landmark location will not be treated as 3 separate landmarks by the algorithm

when performing fingerprint matching in the signal space. On the other hand, averaging

the RSS from 3 antennas reduces the RSS variability and thus 3−antenna−avg provides

the best performance for RADAR.

96

ABP uses an interpolated signal map and a tile size of 10in × 5in, which is compara-

ble to the distance between two antennas at a landmark location. As a result we believe

each antenna will be treated as a separate landmark. We found that using the RSS

from each individual antenna (3−antenna−noavg), achieves the best improvement in

both location accuracy and stability as shown in Figures 4.6, 4.7.

A full characterization of the effect of distances between multiple antennas and

distances to collect fingerprints is left as future work.

4.5 Related Work

There have been active research efforts in positioning wireless devices indoors. Among

these, improving localization accuracy is the main focus, and range from algorithm

development, to landmark placement, and to increasing the landmark density. Various

localization schemes [9,26,48,51,59] utilizing different physical modalities, such as RSS

and Time-Different-Of-Arrival (TDOA), and different mapping functions, such as fin-

gerprint matching and statistical approaches, have been developed to more accurately

position mobile devices. [16] investigates the impact of landmark placement on localiza-

tion performance and proposes an optimal landmark deployment approach to improve

the performance without increasing the number of landmarks (about 1 landmark per

4000 square feet). On the other hand, [46] shows that by using the truncated singular

value decomposition technique and increasing the landmark density (about 1 landmark

per 1000 square feet) a better localization accuracy can be achieved. Similarly, [8] shows

that the greater the number of landmarks, the more accurate the location estimate is.

Also, [8, 71] demonstrate that by reducing the grid spacing, localization results im-

prove, but at the same time the computational cost (or delay) of the required position

increases. In this chapter, we take a different approach by exploring the impact on the

localization system when using multiple antennas at a given location.

Moreover, a lot of work has focused on landmark selection, since subsets of available

landmarks may report correlated readings, leading to needless redundancy and possible

biased estimates. The most commonly used selection methodology is to choose a subset

97

of landmarks with the highest observation RSS, as the strongest landmarks provide the

highest probability of coverage over time [74]. However, it is also known [38] that the

variance of measurements from a landmark increases with its mean power at a given

location. In cases where the measured RSS from a landmark exhibits a high degree

of variance, the RSS values of the training fingerprints may be very different than the

online measurement, degrading the accuracy of location estimation [37]. Recently, [18]

proposed a strategy where the landmarks that best discriminate the training fingerprint

points are the ones selected for positioning. In that work, landmark selection is carried

out offline, whereas in [42] the selection is performed during the online operation of the

system to introduce resiliency to loss of landmarks. Unlike all this work, we focus on

how to reduce the environmental effects on RSS and RSS-based localization algorithms.

Work that is closely related to ours is [32, 44, 50, 61]. [44] shows that by making

RSS measurements over many frequency channels, it is possible to isolate frequency

specific fades. A simple averaging operation on the bands, can reduce the multipath

effect on the RSS measurements leaving a much flatter fading response. [50] presents

a detailed characterization of signal strength behavior in an 802.15.4 network environ-

ment with monopole antennas. Their findings demonstrate that the relative antenna

orientation between receiver-transmitter pairs is a major factor in signal strength vari-

ability, even in the absence of multipath effects. Further, [32] reviews the principles

of radio propagation in indoor environments and also explores relevant concepts such

as spatial and temporal variations of the channel, large scale path losses and mean ex-

cess delay. Theoretical distributions of the sequences of arrival times, amplitudes and

phases are presented. Moreover, [61] provides a survey of various propagation models

for both indoor and outdoor environments. Our work is different in that in addition

to a signal variability study, we investigate the impact of using multiple antennas on

wireless localization including accuracy and stability.

Finally, there has been a wide range of research covering development of antennas

suitable for mobile communications systems, and many experimental results have been

98

reported to show the system requirements and feasibility. An application of phased-

array and adaptive antennas has been suggested in recent years for mobile communi-

cations to overcome the problems of single-antenna systems [10,11,19,30,31,52,68,72].

Specifically, these two types of antennas have been shown to help improve a mobile sys-

tem’s performance in several ways, such as by increasing channel capacity and spectrum

efficiency, extending range coverage, reducing co-channel interference and multipath

fading.

4.6 Summary

By employing multiple antennas spaced closely at a given location, we investigated

the impact on wireless localization. We performed a trace-driven study on an 802.11

testbed in a real office environment. First, through a signal variability study, we found

that adding additional antennas helps average out small-scale environmental effects.

We then studied the performance of a representative set of localization algorithms,

in accuracy and stability, when using multiple antennas. We found that all algorithms

under study improved their absolute accuracy by either averaging or not the RSS from

multiple antennas at a given location. Specifically, both the median error as well as the

90th percentile error can be reduced up to 70%. Our investigation of the localization

stability when there are small-scale movements of a mobile device shows that multiple

antennas help improve stability significantly; up to 100% improvement over the single

antenna case. In summary, we found that adding multiple antennas gives performance

benefits for localization that are worth the low cost of the antennas.

99

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(a) M1, (x, y) plane: N=101, NA=1 (b) M1, z-axis: N=101, NA=1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y
1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(c) M1, (x, y) plane: N=101, NA=50 (d) M1, z-axis: N=101, NA=50

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(e) M3, (x, y) plane: N=101, NA=1 (f) M3, z-axis: N=101, NA=1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Distance (feet)

Pr
ob

ab
ilit

y

1−antenna
2−antenna−noavg
2−antenna−avg
2−antenna−avg−plus−1
3−antenna−noavg
3−antenna−avg

(g) M3, (x, y) plane: N=101, NA=50 (h) M3, z-axis: N=101, NA=50

Figure 4.13. Localization stability of Bayesian networks M1, M3.

100

Chapter 5

Conclusions

In this thesis we focused on two issues related to indoor localization: (a) reducing

localization latency when using a particular method that relies on Bayesian Networks,

(b) improving the absolute accuracy of different localization algorithms by alleviating

the impact of environmental effects on radio signal strength.

First, since the Bayesian Networks (BNs) that we use for localization do not have

closed-form solutions, we resorted to simulation methods. Specifically, we implemented

various Markov Chain Monte Carlo (MCMC) algorithms to infer values for the coor-

dinates of wireless devices. We tackled the problem of reducing localization latency

by introducing a new metric called relative accuracy. The metric measures the Eu-

clidean distance of the result returned by an MCMC algorithm to a “gold standard”

solution returned by a well-tested statistical package like WinBugs. So, in this work

reducing latency means converging to the “gold standard” solution of WinBugs as fast

as possible. We realized that the probability distributions of the coordinates are flat,

and hence presented an algorithm, called “whole domain sampling”, that has the best

ratio of relative accuracy vs. time. In addition, the algorithm was characterized by

its simplicity, making it a very attractive approach for a localization system. Via an

analytic model we showed why this algorithm has better performance when compared

to more complex ones.

Second, since a large number of devices are connected to wireless networks, a lo-

calization system might have to localize hundreds of them. However, although BNs

have the capability of localizing multiple devices simultaneously, the MCMC methods

we proposed can still take a lot of time to localize that many devices even on a well-

equipped machine. Hence, we proposed two schemes to parallelize the MCMC process

101

and hence reduce latency in this case. By implementation in Berkeley UPC and evalua-

tion on different computing platforms, we showed that one scheme, inter-chain, is good

for long Markov chains, whereas the other, intra-chain, for short chains. The latter

scheme is a good candidate for our BNs, because they do not need long chains to give

good localization results. An important issue of the intra-chain is that in order to give

the same relative accuracy that we get from a single thread, certain groups of variables

need to be assigned to the same processor. Also, the inter-chain is not a good candidate

for our BNs, because the whole domain sampling algorithm converges fast to the gold

standard solution. However, for other applications, an MCMC process might not mix

rapidly, hence it will require a long Markov chain, in which case inter-chain might be

suitable. Moreover, we used the LogGP model of parallel computation to understand

and predict the performance of the two schemes on various platforms.

Having improved the relative accuracy of BNs vs. time, we then turned to improve

the absolute accuracy of various localization algorithms by alleviating the environmen-

tal effects, like reflection, diffraction and scattering, that signal strength suffers from

indoors. Specifically, we proposed the deployment of multiple antennas at fixed loca-

tions and by doing a trace-driven study on an 802.11 testbed we found out that the

received signal strength (RSS) from multiple antennas better fits a theoretical signal-

to-distance curve. That was a clear indication that multiple antennas help average out

environmental effects. We then evaluated the impact of using multiple antennas on the

performance of three algorithms, namely RADAR, ABP, BNs, that use different tech-

niques to localize. Our results showed that the accuracy and stability can be improved

for all algorithms, and in some cases, the improvement can be significant. In our work,

we define stability as the localization system’s ability to maintain a position in the face

of small-scale movements of a device. However, our results suggest, that due to the

diversity of the techniques that the algorithms use, there is no clear conclusion as to

whether averaging the RSS from different antennas is a preferred method or not.

In this thesis a lot of work was related to the MCMC process, which is primarily

used in fields like statistics. However, unlike statisticians, we focused mainly on the

computational aspect of the process rather than issues like how fast the process mixes.

102

Since we apply MCMC to provide location estimates, as computer scientists we want

the method to be efficient in order to be valuable to a localization system. The various

algorithms explored in Chapter 2 give a tradeoff of complexity and speed, and we saw

that “whole domain sampling” is a very attractive algorithm because of its simplicity

and the small computational cost it requires. Moreover, we realized that when solving

a particular problem, there are special properties, like the flatness of probability dis-

tributions, that could be taken into consideration, which general-purpose software, like

WinBugs, does not. In addition, general-purpose software might do extra work that

incurs additional computational cost.

Similarly, in Chapter 3, the key idea of parallelization is that we viewed the working

load of the MCMC process as a 2D array that should be distributed to the available

processors. This distinguishes our approach from previous works, where parallelizing

the inference process of a graphical model is seen as a problem of distributing the nodes

of a graph to available processors. We believe that the latter approaches can not give

good performance on different platforms.

As future work we would like to see whether the idea of “whole domain sampling” can

be applied to problems of physical estimation other than localization. Examples could

be estimating temperature and the volume of a convex body in d dimensions, and motion

tracking. We suspect that in many problems of this kind, the probability distributions

of the variables of interest will be flat, and hence the idea of “whole domain sampling”

will be applicable. We also believe that the schemes of parallelism we proposed can

be applied to the inference of graphical models other than BNs. So, we hope that

other applications can benefit from them. Furthermore, although the main reason for

using MCMC to infer location estimates from our BNs was that MCMC has provable

convergence, we would like to explore the computational cost and localization accuracy

of variational approximations [36] that can also estimate values for random variables

in a BN. Finally, although in Chapter 4 we experimented with 3 antennas at each

landmark location, we plan to study the improvements expected with the use of more

antennas and also what the limiting number of antennas is where the improvements

tail off.

103

References

[1] Crossbow Technology Inc. http://www.xbow.com.
[2] IEEE 802.11 Standards. http://standards.ieee.org/getieee802/802.11.html.
[3] IEEE 802.15.1 Standards. http://standards.ieee.org/getieee802/download/802.15.1-

2003.pdf.
[4] IEEE 802.15.4 Standards. http://standards.ieee.org/getieee802/download/802.15.4-

2003.pdf.
[5] Moteiv Corporation. http://www.moteiv.com.
[6] D. K. Agarwal and A. E. Gelfand. Slice Gibbs Sampling for Simulation Based Fitting of

Spatial Data Models. Statistics and Computing, 15:61–69, 2005.
[7] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: Incorporating

Long Messages into the LogP Model. Journal of Parallel and Distributed Computing,
44:71–79, 1997.

[8] O. Baala and A. Caminada. WLAN-based Indoor Positioning System: Experimental
Results for Stationary and Tracking MS. In Proceedings of the International Conference
on Communication Technology (ICCT), pages 1–4, Nov. 2006.

[9] P. Bahl and V. N. Padmanabhan. RADAR: An In-Building RF-Based User Location
and Tracking System. In Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM), March 2000.

[10] M. Barrett and R. Arnott. Adaptive Antennas for Mobile Communications. Electronics
and Communication Engineering Journal, 6, August 1994.

[11] V. A. N. Barroso, M. J. Rendas, and J. P. Gomes. Impact of Array Processing Tech-
niques on the Design of Mobile Communications Systems. In Proceedings of the IEEE 7th
Mediterranean Electrotechnical Conference, Antalya, Turkey, April 1994.

[12] R. Battiti, M. Brunato, and A. Villani. Statistical Learning Theory for Location Finger-
printing in Wireless LANs. Technical Report DIT-02-086, University of Trento, Informat-
ica e Telecomunicazioni, October 2002.

[13] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu, M. Welcome,
and K. Yelick. An Evaluation of Current High-Performance Networks. In Proceedings of
the 17th Parallel and Distributed Processing Symposium (IPDPS), October 2003.

[14] G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, Belmont, California,
1990.

[15] Y. Chen, E. Elnahraway, J.-A. Francisco, K. Kleisouris, X. Li, H. Xue, and R. P. Mar-
tin. Grail: General Real Time Adaptable Indoor Localization. In Proceedings of the 4th
ACM Conference on Embedded Networked Sensor Systems (SENSYS), Demo Abstract,
November 2006.

[16] Y. Chen, J. Francisco, W. Trappe, and R. P. Martin. A Practical Approach to Landmark
Deployment for Indoor Localization. In Proceedings of the Third Annual IEEE Communi-
cations Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), September 2006.

[17] Y. Chen, K. Kleisouris, X. Li, W. Trappe, and R. P. Martin. The Robustness of Localiza-
tion Algorithms to Signal Strength Attacks: A Comparative Study. In Proceedings of the
International Conference on Distributed Computing in Sensor Systems (DCOSS), pages
546–563, June 2006.

[18] Y. Chen, Q. Yang, J. Yin, and X. Chai. Power-Efficient Access-Point Selection for Indoor
Location Estimation. IEEE Transactions on Knowledge and Data Engineering, 18:877–
888, 2006.

104

[19] M. Chryssomallis. Smart Antennas. IEEE Antennas and Propagation Magazine, 42(3),
June 2000.

[20] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Sub-
ramonian, and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation.
In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 1–12, 1993.

[21] D. E. Culler, L. T. Liu, R. P. Martin, and C. O. Yoshikawa. LogP Performance Assessment
of Fast Network Interfaces. IEEE Micro, February 1996.

[22] B. D’Ambrosio, T. Fountain, and Z. Li. Parallelizing Probabilistic Inference: Some Early
Explorations. In Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 59–66, 1992.

[23] L. Doherty, K. S. J. Pister, and L. E. Ghaoui. Convex Position Estimation in Wireless
Sensor Networks. In Proceedings of the IEEE Conference on Computer Communications
(INFOCOM), Anchorage, AK, April 2001.

[24] A. C. Dusseau. Modeling Parallel Sorts with LogP on the CM-5. Technical Report
UCB//CSD-94-829, University of California, Berkeley, Department of Electrical Engineer-
ing and Computer Science, 1994.

[25] E. Elnahrawy, J.-A. Francisco, and R. P. Martin. Adding Angle of Arrival Modality
to Basic RSS Location Management Techniques. In Proceedings of IEEE International
Symposium on Wireless Pervasive Computing (ISWPC), February 2007.

[26] E. Elnahrawy, X. Li, and R. P. Martin. The Limits of Localization Using Signal Strength:
A Comparative Study. In Proceedings of IEEE International Conference on Sensor and
Ad hoc Communications and Networks (SECON), Santa Clara, CA, October 2004.

[27] P. Enge and P. Misra. Global Positioning System: Signals, Measurements and Perfor-
mance. Ganga-Jamuna Pr, 2001.

[28] X. Feng, D. A. Buell, J. R. Rose, and P. J. Waddell. Parallel Algorithms for Bayesian
Phylogenetic Inference. Journal of Parallel and Distributed Computing, 63:707–718, 2003.

[29] D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello. Bayesian Filters for Location
Estimation. In IEEE Pervasive Computing (special issue on Dealing with Uncertainty),
volume 2, pages 24–33, 2003.

[30] L. C. Godara. Applications of Antenna Arrays to Mobile Communications, Part I: Per-
formance Improvement, Feasibility, and System Considerations. Proceedings of the IEEE,
85(7), July 1997.

[31] M. Goldburg and R. H. Roy. The Impacts of SDMA on PCS System Design. In Proceedings
of the IEEE 3rd Annual International Conference on Universal Personal Communications,
San Diego, CA, 1994.

[32] H. Hashemi. The Indoor Radio Propagation Channel. Proceedings of the IEEE, 81(7),
July 1993.

[33] M. Hazas and A. Ward. A High Performance Privacy-Oriented Location System. In Pro-
ceedings of the First IEEE International Conference on Pervasive Computing and Com-
munications (PERCOM), Dallas, TX, March 2003.

[34] D. Hensgen, R. Finkel, and U. Manber. Two Algorithms for Barrier Synchronization.
International Journal of Parallel Programming, 17(1), 1998.

[35] J. Hightower, C. Vakili, G. Borriello, and R. Want. Design and Calibration of the SpotON
Ad-Hoc Location Sensing System, unpublished., 2001.

[36] T. S. Jaakkola and M. I. Jordan. Bayesian Parameter Estimation via Variational Methods.
Statistics and Computing, 10(1), January 2000.

[37] K. Kaemarungsi and P. Krishnamurthy. Modeling of Indoor Positioning Systems Based on
Location Fingerprinting. In Proceedings of the IEEE International Conference on Com-
puter Communications (INFOCOM), pages 1012–1022, March 2004.

[38] K. Kaemarungsi and P. Krishnamurthy. Properties of Indoor Received Signal Strength for
WLAN Location Fingerprinting. In Proceedings of the First Annual International Con-
ference on Mobile and Ubiquitous Systems: Networking and Services (MOBIQUITOUS),
pages 14–23, Aug. 2004.

105

[39] A. V. Kozlov and J. P. Singh. A Parallel Lauritzen-Spiegelhalter Algorithm for Proba-
bilistic Inference. In Proceedings of Supercomputing, November 1994.

[40] A. V. Kozlov and J. P. Singh. Parallel Implementations of Probabilistic Inference. Com-
puter, 29:33–40, 1996.

[41] P. Krishnan, A. S. Krishnakumar, W.-H. Ju, C. Mallows, and S. Ganu. A System for
LEASE: Location Estimation Assisted by Stationary Emitters for Indoor RF Wireless
Networks. In Proceedings of the IEEE Conference on Computer Communications (INFO-
COM), October 2004.

[42] A. Kushki, K. N. Plataniotis, and A. N. Venetsanopoulos. Kernel-Based Positioning in
Wireless Local Area Networks. IEEE Transactions on Mobile Computing, 6:689–705, 2007.

[43] A. M. Ladd, K. E. Bekris, A. Rudys, G. Marceau, L. E. Kavraki, and D. S. Wallach.
Robotics-Based Location Sensing using Wireless Ethernet. In Proceedings of The Eighth
ACM International Conference on Mobile Computing and Networking (MOBICOM), At-
lanta, GA, September 2002.

[44] C. Ladha, B. S. Sharif, and C. C. Tsimenidis. Mitigating Propagation Errors for Indoor
Positioning in Wireless Sensor Networks. In Proceedings of the IEEE International Con-
ference on Mobile Adhoc and Sensor Systems (MASS), pages 1–6, Oct. 2007.

[45] X. Li. Characterizing and Accommodating Spatial Aspects of Wireless Networks. PhD
thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ, 2006.

[46] H. Lim, L. Kung, J. Hou, and H. Luo. Zero-Configuration, Robust Indoor Localization:
Theory and Experimentation. In Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), March 2006.

[47] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics,
2001.

[48] K. Lorincz and M. Welsh. MoteTrack: A Robust, Decentralized Approach to RF-Based
Location Tracking. Springer Personal and Ubiquitous Computing, October 2006.

[49] D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. WinBUGS - A Bayesian Modelling
Framework: Concepts, Structure, and Extensibility. Statistics and Computing, 10:325–
337, 2000.

[50] D. Lymberopoulos, Q. Lindsey, and A. Savvides. An Empirical Analysis of Radio Signal
Strength Variability in IEEE 802.15.4 Networks using Monopole Antennas. Technical
Report 050501, Yale Univeristy, ENALAB, 2006.

[51] D. Madigan, E. Elnahrawy, R. Martin, W. Ju, P. Krishnan, and A. Krishnakumar.
Bayesian indoor positioning systems. In Proceedings of the 24th IEEE International Con-
ference on Computer Communications (INFOCOM), pages 324–331, March 2005.

[52] M. Mizuno and T. Ohgane. Application of Adaptive Array Antennas to Radio Commu-
nications. Electronics and Communications in Japan (Part I: Communications), 77(2),
1994.

[53] R. M. Neal. Probabilistic Inference Using Markov Chain Monte Carlo Methods. Technical
Report CRG-TR-93-1, Department of Computer Science, University of Toronto, Toronto,
Ontario, Canada, September 1993.

[54] R. M. Neal. Slice Sampling (with discussion). Annals of Statistics, 31:705–767, 2003.
[55] D. Niculescu and B. Nath. Ad Hoc Positioning System (APS). In GLOBECOM (1), pages

2926–2931, 2001.
[56] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, California, 1988.
[57] D. M. Pennock. Logarithmic Time Parallel Bayesian Inference. In Proceedings of the 14th

Conference on Uncertainty in Artificial Intelligence (UAI), pages 431–438, 1998.
[58] M. A. Peot and R. D. Shachter. Fusion and Propagation with Multiple Observations in

Belief Networks (Research Note). Artificial Intelligence, 48:299–318, 1991.
[59] N. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket Location-Support Sys-

tem. In ACM International Conference on Mobile Computing and Networking (MOBI-
COM), Boston, MA, August 2000.

[60] T. Roos, P. Myllymaki, and H.Tirri. A Statistical Modeling Approach to Location Esti-
mation. IEEE Transactions on Mobile Computing, 1(1), Jan-March 2002.

106

[61] T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma. A Survey of Various Prop-
agation Models for Mobile Communication. IEEE Antennas and Propagation Magazine,
45(3), June 2003.

[62] A. Savvides, C.-C. Han, and M. Srivastava. Dynamic Fine-Grained Localization in Ad-Hoc
Networks of Sensors. In Proceedings of the Seventh Annual ACM International Conference
on Mobile Computing and Networking (MOBICOM), Rome, Italy, July 2001.

[63] N. Saxena, S. Sarkar, and N. Ranganathan. Mapping and Parallel Implementation of
Bayesian Belief Networks. In Proceedings of the 8th IEEE Symposium on Parallel and
Distributed Processing (SPDP), 1996.

[64] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz. Localization from Mere Con-
nectivity. In Fourth ACM International Symposium on Mobile Ad-Hoc Networking and
Computing (MOBIHOC), Annapolis, MD, June 2003.

[65] A. Smailagic and D. Kogan. Location Sensing and Privacy in a Context Aware Computing
Environment. IEEE Wireless Communications, 9(5), October 2002.

[66] D. Spiegelhalter, A. Thomas, N. Best, and D. Lunn. WinBUGS Version 1.4 User Manual.
Technical report, MRC Biostatistics Unit, Institute of Public Health, UK, Department of
Epidemiology and Public Health, Imperial College School of Medicine, UK, January 2003.

[67] D. J. Spiegelhalter. Bayesian Graphical Modelling: A Case-Study in Monitoring Health
Outcomes. Applied Statistics, 47(1):115–133, 1998.

[68] S. C. Swales, M. A. Beach, D. J. Edwards, and J. P. McGeehan. The Performance En-
hancement of Multibeam Adaptive Base-Station Antennas for Cellular Land Mobile Radio
Systems. IEEE Transactions on Vehicular Technology, 39(1), February 1990.

[69] The Berkeley UPC Compiler, 2002. http://upc.lbl.gov.
[70] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge Location System.

ACM Transactions on Information Systems, 10(1):91–102, January 1992.
[71] G. I. Wassi, C. Despins, D. Grenier, and C. Nerguizian. Indoor Location Using Received

Signal Strength of IEEE 802.11b Access Point. In Proceedings of the IEEE Canadian
Conference on Electrical and Computer Engineering (CCECE), pages 1367–1370, May
2005.

[72] J. H. Winters, J. Salz, and R. D. Gitlin. The Impact of Antenna Diversity on the Capacity
of Wireless Communication Systems. IEEE Transactions on Communications, 42(234),
February 1994.

[73] W.R.Gilks, S. Richardson, and D. Spiegelhalter. Markov Chain Monte Carlo in Practice.
Chapman and Hall, London, 1996.

[74] M. Youssef, A. Agrawal, and A. U. Shankar. WLAN Location Determination via Clustering
and Probability Distributions. In Proceedings of the IEEE International Conference on
Pervasive Computing and Communications (PERCOM), Fort Worth, TX, March 2003.

107

Vita

Konstantinos Kleisouris

1996 B.S. in Computer Science,

University of Patras, Patras, Greece

1999 M.S. in Computer Science,

Rutgers University, New Brunswick, New Jersey, USA

2009 Ph.D. in Computer Science,

Rutgers University, New Brunswick, New Jersey, USA

Selected Publications

2006 “The Robustness of Localization Algorithms to Signal Strength At-
tacks: A Comparative Study”. Yingying Chen, Konstantinos Kleisouris,
Xiaoyan Li, Wade Trappe, Richard P. Martin. In Proceeding of the
International Conference on Distributed Computing in Sensor Sys-
tems (DCOSS), June, 2006.

2006 “Reducing the Computational Cost of Bayesian Indoor Positioning
Systems”. Konstantinos Kleisouris, Richard P. Martin. In Proceed-
ings of the Third IEEE International Conference on Sensor and Ad
Hoc Communications and Networks (SECON), September, 2006.

2007 “Parallel Algorithms for Bayesian Indoor Positioning Systems”. Kon-
stantinos Kleisouris, Richard P. Martin. In Proceedings of the 2007
International Conference on Parallel Processing (ICPP), September,
2007.

2008 “A Security and Robustness Performance Analysis of Localization
Algorithms to Signal Strength Attacks”. Yingying Chen, Konstanti-
nos Kleisouris, Xiaoyan Li, Wade Trappe, Richard P. Martin. In
ACM Transactions on Sensor Networks (TOSN), 2008.

2008 “The Impact of Using Multiple Antennas on Wireless Localization”.
Konstantinos Kleisouris, Yingying Chen, Jie Yang, Richard P. Mar-
tin. In Proceedings of the Fifth IEEE International Conference on
Sensor and Ad Hoc Communications and Networks (SECON), June,
2008.

