
INFRASTRUCTURES FOR DATA DISSEMINATION AND
IN-NETWORK STORAGE IN LOCATION-UNAWARE

WIRELESS SENSOR NETWORKS

BY SILVIJA KOKALJ-FILIPOVIĆ

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor Roy D. Yates and Professor Predrag Spasojević

and approved by

New Brunswick, New Jersey

Jan, 2009

c© 2009

Silvija Kokalj-Filipović

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

Infrastructures for Data Dissemination and In-Network Storage in
Location-Unaware Wireless Sensor Networks

by Silvija Kokalj-Filipović

Dissertation Directors: Professor Roy D. Yates and Professor Predrag Spasojević

For wireless sensor networks with many location-unaware nodes, we propose mechanisms to

organize nodes in an infrastructure of intersecting paths, suitable for efficient data dissemination

and event localization. As an underpinning for such an infrastructure, we propose a protocol,

dubbed BeSpoken, that steers data transmissions along a straight path called a spoke. The Be-

Spoken protocol implements a simple, spatially recursive process, where a basic set of control

packets and a data packet are exchanged repeatedly among daisy-chained relays that constitute

the spoke. The protocol directs data transmissions by randomly selecting relays to retransmit

data packets from crescent-shaped areas along the spoke axis. The resulting random walk of

the spoke hop sequence may be modeled as a two dimensional Markov process. Analysis of

this model results in design rules for protocol parameters that minimize energy consumption

while ensuring that spokes propagate far enough and have a limited wobble with respect to the

axis.

Finally we show how the spokes serve as the building block of an infrastructure that can be

used for source localization and data search and dissemination. In particular, we demonstrate

how to increase data availability and persistence through the application of distributed coding

techniques over concentric circular subnetworks forming the infrastructure. The goal is to allow

for a reduced delay collection by a data collector who accesses the circular network at a random

ii

position and random time. The storage nodes within the transmission range of the network’s

relays linearly combine and store overheard relay transmissions using random decentralized

strategies. A data collector first collects a minimum set of coded packets from a subset of

storage nodes in its proximity and, by using a message-passing decoder, attempts recovering

all source packets from this set. Whenever the decoder stalls, a source packet which restarts

decoding is polled/doped from its original source node. The random-walk-based analysis of

the decoding/doping process furnishes the collection delay analysis with a prediction on the

number of required doped packets. The number of doped packets can be surprisingly small

when employed with an Ideal Soliton code degree distribution.

iii

Acknowledgements

My thanks go first to my advisors, Roy Yates and Predrag Spasojević, for their consistent

support. I learned a lot from both.

Professor Yates relentlessly demanded quality effort and results, in both research method-

ology, and its presentational aspects, yet he was patient enough to allow me to get used to

his criteria, and to adjust my engineering background to the requirements of academia. I am

grateful to him for sharing his great research experience, for instilling in me an appreciation for

rigorous scientific writing, and for every piece of advice he gave me.

It is a privilege being a student of Professor Spasojevic whose unassuming manner and am-

icable disposition belies his extraordinary intellect, his elegant yet inclusive teaching methods

and his research perseverance and enthusiasm. Under his direction, I learned how to distill the

essence of a complex research problem. He also gave me a chance to practice teaching. His

guidance and understanding meant a lot to me; I was fortunate to have such an advisor whom I

now regard as both a friend and a consummate professional authority.

In chronological order, I would like to thank people who first encouraged me in the pursuit

of this dissertation: Dr. Zoran Miljanić, whose commitment to engineering excellence inspired

me to continue my education, Ivan Seskar who introduced me to Winlab, and assisted me

throughout, Professor Zoran Gajić for being forthcoming and helpful in administrative issues,

and Professor Raychaudhuri who was always supportive and accommodating. I also thank

him for valuable advice, which had a special impact on me because of the unique blend of his

industry experience and his academic acumen, and for being a member of my PhD committee.

I have been fortunate to come across many interesting and inspiring people during my

stay in Winlab. It has been a rare privilege working alongside distinguished researchers and

technologists like Dick Frenkiel and Prof. Larry Greenstein, from whom I have received great

advice and many valuable suggestions. I thank Professor Marco Gruteser for serving as a

iv

member of my committee.

I wish to thank Dr. Emina Soljanin, also a member of my committee, with whom I worked

on my coding-related research, for helping me recognize potentials of my work and structure

my efforts. It was a pleasure working with Dr. Soljanin, not only because she is an experienced

researcher but also because of her commendable interpersonal and mentoring skills, precise

articulation of ideas, and very insightful and applicable criticism.

Thanks to all WINLAB graduates and students for their help and friendship, including

Ivana Marić, Haris Kremo, Joydeep Acharya, Ruoheng Liu, Chandrasekharan Raman, Jing

Lei, Hithesh Nama, Jasvinder Singh, Goran Ivković, Xiaojun Tang, Manik Raina, Yao Li, and

many others. I am grateful to James for being who he is; I will miss him a lot.

It was difficult to juggle my family obligations with my work, and occasionally to literally

squeeze in time to do research. I would not have succeeded without ongoing support of my

family. Thanks especially go to my husband for bearing with me through times of doubt and

despair, and through many reincarnations of my identity crisis that admittedly accompanied

this beautiful journey.

v

Dedication

To my daughter Isidora

and my son Filip

�
I know you inherited a passion for learning, and I only hope that your sharp minds will always

be inspired by the poetry in your hearts

�

vi

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . vi

List of Figures . x

1. Introduction . 1

1.1. Motivation/ Introduction to Location-Unaware Wireless Sensor Networks . . . 1

1.2. Problem Formulation: Minimum-Delay Data Collection in WSNs 5

1.2.1. Problem Statement . 5

1.2.2. Problem Solution Framework . 7

BeSpoken Dissemination Protocol . 7

BeSpoken Infrastructure . 8

BeSpoken Infrastructure Bootstrap . 9

1.2.3. Problem Solution: Coding for Collection 11

1.3. Thesis Organization . 11

2. BeSpoken: Directional Data Propagation Without Location Information 13

2.1. System Model . 13

2.1.1. BeSpoken Protocol . 14

2.1.2. Problem Formulation . 15

2.2. Spoke Modeling . 16

2.2.1. BeSpoken Geometry . 16

2.2.2. Markov Process Model for Hop Length Evolution 17

2.2.3. Ergodic Finite State Markov Chain Model 18

vii

Uniform Quantization Model . 20

Non-Uniform Quantization Model . 21

2.2.4. The Spoke Direction Process . 21

2.3. Outage Constraint . 23

2.4. Wobbliness Constraint . 26

2.4.1. Expected Threshold Crossing Time 27

2.4.2. Probability of Threshold Crossing Before Time Tϕo 30

2.5. Results and Conclusion . 34

3. Adaptive BeSpoken: A Step Toward Real Networks 36

3.1. BeSpoken Backward Repair Mechanisms . 36

3.2. One-Step Backward Repair Model . 37

3.2.1. Adaptive Outage Constraint . 42

3.3. Conclusion: Numerical Analysis and Simulation Results 43

4. Data Collection in WSNs Based on Distributed Networked Storage: an Overview 46

4.1. Encoding Schemes for Networked Storage in WSNs 46

4.1.1. Connection to Data Persistent Storage 46

4.1.2. Coding Models . 47

4.1.3. Connections to Random Network Coding 49

4.1.4. Hallmarks of Random Codes in Distributed Networked Storage 50

4.2. Existing Solutions to Coding for Persistent Data Storage in WSNs 51

4.2.1. How many replicas should a source send away? 51

4.2.2. Pre-Routing: Distributed Algoritms for Random Sampling 53

4.2.3. Data Recovery . 56

4.3. Critical Discussion of the Existing Solutions 57

5. BeSpoken Network Infrastructure for Data Collecting 60

5.1. Event Localization . 61

5.2. Isometric Networks . 62

viii

5.3. Push-Pull Model of Data Collecting Based on BeSpoken Infrastructure 63

5.4. Heuristic Storage Methods Along Isometric Networks 65

5.4.1. BeSpoken Light Isometric Networks: Random Linear Coding 67

5.4.2. BeSpoken Heavy Isometric Networks: Distributed Fountain Coding . . 68

5.5. Conclusions . 70

6. Doped Fountain Coding for Minimum Delay Data Collection 72

6.1. Introduction . 72

6.2. System Model and Problem Formulation . 73

6.3. Data Dissemination . 77

6.4. Decentralized Squad-Based Storage Encoding 79

6.5. Collection and Decoding . 81

6.5.1. Belief Propagation Decoding . 81

6.5.2. Symbol Degree Evolution . 83

6.5.3. Doped Ripple Evolution: Random Walk Model 84

6.6. Comparative Cost Analysis . 91

Appendix A. Outage Constraint Derivations . 98

Appendix B. Wobbliness Constraint Derivations 105

B.1. MMRW Overshoot Analysis . 112

Appendix C. Adaptive Mechanism Derivations . 114

Appendix D. RandomWalk Ripple Evolution: The Stopping Time Probability . . . 121

References . 124

ix

List of Figures

1.1. The meaning of the name BeSpoken is twofold: the radial lines extending from

the source form a pattern that resembles spokes of a wheel and, furthermore,

spoke relays bespeak the source message. The relative direction of spokes al-

lowing for the wheel pattern is controlled by an extension of the BeSpoken. In

this simulation snapshot, source spokes are shown as a sequence of relay trans-

mission ranges, to illustrate the fact that each spoke is an ensemble of possible

data routes. The sequence of wireless transmission relays forming a productive

sink spoke is denoted by tiny circles (see the boxed spoke in the closeup). Un-

productive sink spokes are represented by dots. The search success is marked

by a∇ with an inscribed ∗. 8

1.2. (a) Before any event happens, the infrastructure is built around one central

node (preset landmark), with the assistance of one or more (over time) ex-

ternal (frequently mobile) data collectors. It consists of equally spaced back-

bone spokes, and a perimeter route, which partition network area into spoke-

delineated wedges. (b) The two shortest paths from a source (S2) to adjacent

backbone spokes are the transversal spokes, which most likely form a 120o

angle due to the geometry of the infrastructure 10

2.1. BeSpoken Protocol: At each protocol stage, the current transmission range is

denoted with the full circle while the previous range is denoted with a dashed

circle. 14

x

2.2. (a) At hop k + 1, node k + 1 is distance Lk+1 from node k and the current

spoke direction is Θk+1 = Θk + Φk+1. (b) Given Lk = l and Lk+1 = ρ, the

angular hop displacement Φk+1 is constrained to the interval −β ≤ Φk+1 ≤ β

where the maximum angular displacement at hop k + 1 is β = β(l, ρ). The

shaded area denotes the interior crescent of area SIC(l, ρ). 16

2.3. Ergodic Finite State Markov Chain: quantization example for a four-state chain

(m = 4): L̂k = h4 = r results in the first crescent Ĉk of area c4 partitioned

into four strips of total area c4 = d41 +d42 +d43 +d44; Lk+1 ∈ I42, quantized

to L̂k+1 = h2, is followed by a crescent Ĉk+1 of area c2 and a hop span I2 =

[R − h2, r] which is (uniformly) quantized into a crescent of area d23 = c23

(shaded region) and a crescent strip d24 = c2 − c23 (the unshaded area). 19

2.4. Spring-coil analogy . 24

2.5. Outage probability curves . 26

2.6. Sample of spokes directed eastward - ”constraint in the mean” vs.”probability

constraint” design. 30

2.7. Geometric Interpretation of the bound for Pr {Tϕo ≤ 2} (probability to go
off-course in two or less steps) The upper subplot corresponds to a BeSpoken

design where the targeted spoke length ds ≈ 50m; this design implies a certain

maximum subtending angle of the spoke crescents. The lower plot corresponds

to a design where the desired spoke length dl ≈ 1500m, corresponding to

smaller maximum subtending angle than the design for ds - Consequently, note

that the off-course probability after two hops should be smaller for dl design;

the probability bounds relate in the same way: exp(−2δl) < exp(−2δs),

where δs = 0.5 is the maximum distance (at ω = ω
′ as shown in the plot)

between the line ωϕo/n and Λ(ω) = log σ (ω), which is exactly (2.49) with

x = ϕo/n, evaluated for ds design and for n = 2. Similarly, δl > 50 is the

equivalent for dl design. 32

2.8. Comparison of the LDT-based CDF bound and CDF obtained by ”sampling”

the underlying m-state Markov Chain. 33

xi

3.1. The triptych represents a single transition of the Markov process modeling the

adaptive spoke: in the first step a new relay is selected by the pivot that becomes

the Current Leading Relay (CLR); in the second step the CLR becomes aware

that its induced crescent is empty, when it does not receive any RTS in due time;

in the third step the CLR solicits its own replacement by sending the request

intended for all the nodes in its own crescent - we show one such peer node that

replaces the CLR and, having a non-empty induced crescent, repairs the spoke. 37

3.2. Transitions of the adaptive mechanism contributing to the transition probability

PA
12; here E denotes the empty crescent in state 2, and T denotes the trapping

state, when the repair attempt fails. 40

3.3. Transitions of the adaptive mechanism contributing to the transition probabil-

ities PA
21 and PA

22; here E1 denotes the empty crescent in state 1, E2 denotes

the empty crescent in state 2, and T denotes the trapping state, when the repair

attempt fails. 41

3.4. Percentage of spokes dying at each hop based on two-state uniformly quantized

Markov Chain model: adaptive mechanism decreases the probability of spokes

dying prematurely . 43

3.5. Two samples of spokes directed eastward in a thinning network where the den-

sity of nodes is decreased to one half of the initial density due to random node

dying: thin-line spokes are created by the adaptive BeSpoken and asterix-

marked spokes created by the basic BeSpoken; One-Step Backward adaptive

protocol demonstrates better performance than the basic BeSpoken i.e. more

spokes survive in the thin-line cloud that in the cloud of asterix-marked spokes. 44

3.6. Two samples of spokes directed eastward in a network where a hole has been

created due to node destruction: thin-line spokes are created by the adaptive

BeSpoken and asterix-marked spokes created by the basic BeSpoken; Two-Step

Backward adaptive protocol demonstrates better performance than the basic

BeSpoken. 45

xii

4.1. Copies of each source packet are stored at O(lnn) random nodes out of n

network nodes; the figure shows how the sets of nodes that sources 1 and k

(circled nodes on the left) select to store copies of their packets correspond

to non-zero entries (dark dots) in the corresponding rows (1st and kth) of the

generator matrixG; non-zero entries are random coefficients from fieldGF (q).

X is the vector of distinct k packets, and Y denotes the vector of n code symbols. 48

4.2. Relaxation of MDS requirement due to random (and distributed) construction

results in requiring a generator matrix G whose all square submatrices are full-

rank with high probability. Hence, the random square submatrix G‘ illustrated

in this figure, representing a random collection of storage nodes (and their lin-

ear combinations), is expected to be full-rank, thus promising full data recovery

from this random set of nodes. 52

5.1. A complete set of source spokes during infrastructure-building phase. Both

source localization and infrastructure mapping are illustrated here: Backbone

spokes S01 and S02 are already known (directions and lengths). Sk infers that

out of three spokes intersecting the backbone spoke S01, σ1
k1 is likely perpen-

dicular to S01, based on the length of the spokes. With that premise, Sk can es-

timate the direction of σk2, based on geometry arguments. Knowing the lengths

and directions of σk1 and σk2, Sk estimates its location. 61

5.2. (a) Transversal spokes form associations at the common intersecting backbone

spoke creating the ordered routes, according to some measure of distance from

the center (b) The number of sources associated with a particular isometric

route is proportional to the area of the annulus outlined by this isometric route

and the adjacent one, closer to the centre . 62

5.3. (a) For each source belonging to the isometric network Ni, the expected num-

ber of packet replicas stored in a hub Hxi, where x denotes a backbone spoke,

is ln ki (b) An example of the coding graph for the light isometric networkN1,

with the associated isometric route I1, whose hub H11 is shown in (a) 68

xiii

6.1. Collection of coded symbols: pull phase brings the three squads of coded pack-

ets to the decoder, and then, whenever the decoder gets stalled, an original

symbol is pulled off the network. 73

6.2. Close-Up of a Circular Squad Network of k relays. Each relay is overheard by

nodes in its transmission range, referred to as squad nodes. 74

6.3. Circular Squad Network: the storage graph. 75

6.4. Dissemination procedure brings all network data to each relay in half as many

hops as it would be needed with simple forwarding scheme: example for k = 7

follows the exchanges of node 1where the black circle on the bottom represents

the node’s receiver while each gray circle above it represents the transmitter at

the corresponding dissemination round . 77

6.5. Degree-two Dissemination Algorithm . 78

6.6. In the graphGt, representing the stalled decoding process at time t,we identify

nodes on the left side (input symbols corresponding to rows of the incidence

matrix) connected to right-hand-side nodes of degree two (output nodes corre-

sponding to columns of weight two, represented by black nodes, and pointed to

by black arrows), and then uniformly at random select one such input symbol

to unlock the decoder. The set of symbols we are selecting from is represented

by red nodes, indicated by red arrows. 81

6.7. Density Evolution of IS distribution due to uniform doping. First graph is the

distribution of the output symbols after m = 500 decodings, for k = 1000,

second is the IS with support set {1, · · · , (1000−m)} as if we are starting
with the matrix of the same size as the doped matrix. 85

6.8. Calculation of the expected doping percentage pd based on the number of up-

front collected symbols . 91

6.9. Proposed dissemination, storage, and doping collection 92

xiv

6.10. Overhead (doping) percentage: we define kT as the number of symbols col-

lected in both collection phases, and the collection overhead ratio as (kT−k)/k,

which allows us to compare the overhead for the LT decoding of k original

symbols and IG, the degree-two doped belief-propagation decoding of k coded

symbols with IS degree distribution. 93

6.11. Doping percentage with IS degree distribution vs RS. 94

6.12. The encoding process emulates supersquads with fixed squad size h and the

degree-two input symbols overheard within the superquad: the resulting doping

percentage for IS degree distribution of stored code symbols. 95

6.13. For a fixed number of upfront collected symbols ks = 1000, encoded by

degree-two IS method, the squad size (node density) is changed, so that the su-

persquad contains 1, 2, 5, and 10 squads. The more squads there are, the more

intense is the data mixing, decreasing the probability of non-covered original

symbols. 95

6.14. Doping percentage for different values of δ = ks/k − 1. Emulation results are

obtained based on our analytical model and algorithm in Figure 6.8 96

6.15. Collection delay (hop count) above minimum per input symbol for different

values of coverage redundancy h as a function of δ. Note that there is an optimal

δ for each h in which the delay is minimized: for h = 10 δ is one percent, for

h = 15 it is 3% percent, for h = 30 δ = 4% 96

6.16. Collection Delay for various collection techniques, normalized with respect to

the polling cost . 97

A.1. Given Lk = hi and Lk+1 = hj , the angular hop displacement Φk+1 is con-

strained to the interval −β ≤ Φk+1 ≤ β where the maximum angular dis-

placement at hop k + 1 is β = β(hi, hj). The shaded area denotes the interior

crescent of area SIC(hi, hj). 102

C.1. Adaptive Envelopes for Pivot State 1: Large envelope, large failed crescent (replacement must

stay in state 2, failed CLR in state 2). The pointers indicate the length of the envelope �E and the length of

the failed crescent �c. 115

xv

C.2. Small Adaptive Envelopes for Pivot State 2 (Replacement Relay in State 1):

(a)Small envelope, small crescent (failed CLR also in state 1). (b) Small envelope, large crescent (failed

CLR in state 2). 116

C.3. Large Adaptive Envelopes for Pivot State 2 (Replacement Relay in State 2): (a)

Large envelope, large failed crescent (failed CLR in state 2). (b) Large envelope, small failed crescent (failed

CLR in state 1). 120

xvi

1

Chapter 1

Introduction

1.1 Motivation/ Introduction to Location-Unaware Wireless Sensor Networks

Wireless sensor networks (WSN) have emerged as an approach to instrumenting the physical en-

vironment. These networks pose a number of unique technical challenges due to the following

factors:

Scarce resources: Sensor nodes are simple, battery-run devices with limited data processing,

storage and transmission capabilities. It is imperative that they are operated in a man-

ner that conserves battery energy and ensures network longevity [1]. This requires new

routing and data dissemination protocols that run on low-power.

Localization: The collected data needs to be related to the location of the event occurrence.

WSNs are typically static; however, nodes are typically assumed to be location unaware,

randomly scattered over the monitored area, or displaced by environmental factors [2].

The usefulness of sensed data without spatial coordinates may be highly reduced. On the

other hand, installing a global positioning system (GPS) receiver on each sensor node

may not be a practical solution for most applications, because of the constraints in size

and cost of construction of sensor networks. GPS is also a significant power consumer,

and infeasible in environments with dense foliage or other clear-sky impediments [3].

This requires developing new energy-aware localization methods.

Unknown data sinks: In WSN, nodes that make observations, known as data sources, are fre-

quently unaware of which data sinks have interest in their observations. Sinks may be

scattered across the network, or located in particular geographic regions. In the geocast-

ing problem [4] data needs to be routed to a geographic region instead of a destination

node specified by an address. Flooding the whole network is a trivial form of geocasting

2

when sources are completely unaware of sink locations. In this case, the information

propagation from the sources to the sinks is referred to as data dissemination, not data

routing.

Large network size: WSNs are expected to contain a large number of nodes, several orders

of magnitude larger than the existing wireless networks. Scalability is one of the key

issues in wireless sensor networks both during deployment as well as during protocol

and algorithm development [5]. Unfortunately, it is both expensive and time consuming

to deploy large networks solely for the purpose of building a model or testing a protocol

for scalability. Simulating and analyzing systems with a large number of sensor nodes

scattered randomly is a computational problem. Therefore, there is a need to develop a

methodology that creates and validates networks of an arbitrary size.

Communication framework based on collective identity: WSN-specific forms of commu-

nication and data processing are largely based on nodes’ cooperation and collective be-

havior. For energy efficiency reasons, the main model of data propagation is hop-by-hop,

where nodes are relaying other nodes’ data. Another compelling reason for cooperation

stems from the wireless multicast advantage [6], the fact that a wireless transmission can

be received by all nodes in the transmission range. The concept of using the energy of the

overheard transmissions [6] is further extended to accumulative broadcast which allows

nodes outside of the transmission range to collect the energy of the unreliably received

signal [7], and other applications, such as opportunistic network coding [8].

There is a substantial body of work studying various WSN problems, ranging from capac-

ity issues tackled by information-theoretic approaches [9, 10], energy-efficient routing algo-

rithms [11,12], localization [2], topology control [13,14] and connectivity [15], analyzed using

spatial-stochastic, computational-geometric, graph-theoretic, experimental and heuristic meth-

ods. However, models and communication frameworks that are accepted and recognized across

all those research communities are needed for comparison of results, knowledge sharing, and

ultimately better understanding of WSNs.

We next offer a brief review of the existing results related to the outlined problems, and

then present a sketch of a holistic approach to solving these problems, which we propose in this

3

dissertation work.

Localization in location-unaware, randomly deployed networks with scarce resources is a

difficult problem. Most research on sensor localization exploits distance or angle measure-

ments from anchor nodes (with GPS or preset location), landmarks or neighbors. This is often

labeled as computing the virtual coordinates of the nodes, instead of the real ones. These virtual

coordinates need not be accurate representations of the underlying geography but, in order to

serve as the basis of routing, must capture the underlying relative connectivity between nodes.

Several virtual coordinate routing systems are landmark based [16], [17], [18], where a subset

of the nodes are selected as landmarks, and every node records its hop-count distances to these

landmarks. The landmark distances are then used to generate virtual coordinates for the nodes.

The unknown position of data sinks in WSNs is another important location-related prob-

lem that we mentioned. Due to scarce resources and limited processing power of WSN nodes,

the unknown position of a data sink makes the task of delivering data especially challenging.

Several new communication paradigms, like geocasting, data dissemination and data search,

emerged from this problem [5]. We mentioned that geocasting routes data to a geographic

region instead of a destination node specified by an address. A trivial form of geocasting is un-

restricted flooding, a simple dissemination method that leads to a broadcast storm of redundant

transmissions [19], and consumes more resources than necessary [20].

However, there are several dissemination techniques that use flooding selectively. In a push

approach [21], a publishing process plants pointers in the network that can be used by the inter-

ested sinks to establish a path to the correct source. Publishing mechanisms are largely based

on flooding and consequent path endorsement. In the alternative pull approach [22], widely

used if the number of sources is much larger then the number of interested sinks, the sinks

flood their interests, so that a source can endorse a path toward the sink. Intanagonwiwat et

al [22] introduced a data-centric mechanism called directed diffusion in which interest requests

(queries) are flooded into the network leaving gradient paths back to the sink.

An alternative to flooding is the use of state information stored in selected nodes (possibly

along a path) to direct search toward the correct source. In the combined push-pull approach,

it is the intersection of a dissemination path and a search path that guarantees the success

of a search [23]. In [24] the authors propose a push-pull model of data dissemination and

4

gathering, called the “comb-needle.” They analyze the energy consumption of the proposed

model, assuming the availability of node position information. Rumor Routing [23] introduces

the concept of agents, packets that advertise a source’s data along a random walk path that

resembles a fairly straight trajectory. The query packet follows a similar random walk path,

and the success of the search is based on the high probability that the two sufficiently long lines

in a bounded rectangle intersect.

Disseminating data along straight trajectories, studied here, is conceptually closest to geo-

graphic greedy forwarding schemes [25,26] used for routing to known geographic destinations,

in the sense that instead of greedily approaching the sink, in our approach the data is greedily

directed away from the source. The idea of geographic forwarding is so compelling in WSNs

that a number of authors have tried to use this approach even when actual node locations are

not available, by using virtual instead of geographic coordinates [27, 28]. Greedy forwarding,

as a simple, efficient and scalable strategy, became a promising routing scheme for large sen-

sor networks. In a geographic greedy forwarding scheme, a source node knows the location

of the destination node, either by acquiring it from a location service [29], or by computing it

using a hash function in a datacentric storage scheme [30]. A packet is forwarded to a one-hop

neighbor which is closer to the destination than the current node. This process is repeated un-

til the packet reaches the destination. Geographic forwarding suffers from the so-called local

minimum phenomenon, when all neighbors of the current packet recipient are farther away

from the destination than the node itself. To help packets get out of the local minimum, Karp

and Kung [25], and independently Bose et al [31], proposed the idea of combining the greedy

forwarding and the perimeter routing on a planar graph which describes the connectivity of the

original network. Within the data dissemination framework studied here, we also propose a

solution for the local minimum problem arising from our forwarding method.

For nodes that are location-aware, either virtually or literally, data dissemination and search

algorithms based on likely intersection of message paths could reuse many of the greedy rout-

ing mechanisms. For randomly deployed WSNs, without location awareness, and with no

infrastructure or landmarks, efficient data search is an unsolved problem. Efficient solutions

for data dissemination and search require a good connectivity model, which is a problem by

5

itself, arising from the sheer size of WSNs, randomness of deployment and wireless propaga-

tion issues. Two typical models for connectivity have been in widespread use in the sensor

network community: unit disk modeling [32] (or Random Geometric Graph) and empirical

data traces. It is NP-hard to determine whether a graph, given without geometry, can be rep-

resented as a unit disk graph [33]. Thus, results based on empirically obtained connectivity

graphs for the location-unaware WSNs cannot be readily compared with results based on unit

disk graph models. The approach of using empirical data traces is also difficult and expen-

sive when creating sufficient number of large networks that are properly characterized. New

statistical model of lossy links in Wireless Sensor Networks is given recently in [34]. In re-

ality, connectivity is both spatial and temporal random process. Our approach is based on the

intuition that stochastic models of WSN connectivity should be used to design dissemination

algorithms, while small-scale irregularities (where a specific network realization diverges from

the applied stochastic model) should be overcome through heuristic methods.

1.2 Problem Formulation: Minimum-Delay Data Collection in WSNs

The broad motivation for this work arises from the need to create models that describe WSNs,

while abstracting the inherent complexity, which would benefit both experimental and theoreti-

cal research. Our idea is to create distributed mechanisms that would insert some infrastructure

within the WSN, hence making both modeling and controlling/optimizing data collection much

easier.

1.2.1 Problem Statement

We consider a randomly-deployed wireless sensor network with location-unaware nodes. Here,

sources are network nodes that have some data about observed events. Each source is producing

a packet of independent data. Data sources are unaware, ahead of time, of which data sinks have

interest in their observations. Moreover, we do not envision sinks to be regular WSN nodes.

Regular WSN nodes could be temporary data sinks, if located at the network perimeter or other

network segments easily accessible by external data collectors. In this case, we refer to them as

storage nodes, assisting (frequently-mobile) data collectors that are the actual data sinks. We

6

primarily study such data collection. The goal is to design distributed mechanisms that would

cultivate the network of n nodes to support efficient collection of data from a set of k randomly

positioned sources.

A more formal problem definition involves a a data sink (a collector) that appears at a ran-

dom position, at random time, and aims to collect all the k source data packets. The network’s

goal is to ensure that the data packets be efficiently disseminated and stored in a manner which

allows for a low collection delay upon collector’s arrival. This study requires one to address

some canonical WSN problems, such as dissemination and localization of data, and distributed

data storage. Several papers have recently appeared that propose coding-based solutions for

distributed data storage in WSNs [35–40]. Inspired by these approaches, while trying to avoid

complexity issues attributed to classical WSN models that they utilize, we first aim to depict

and model a self-organized network infrastructure, and then to develop data-collecting solu-

tions based on this model. Inspired by forward-progress routing [26, 41–43], we envisioned

the infrastructure as an overlay dissemination network within the WSN, composed of straight

propagation paths. Such a propagation path is possible even with location-unaware nodes if the

selection of the next forwarding relay is controlled by a protocol, so that the relay always gets

picked from an ”innovation” set of the most recently covered nodes. We here introduce a dis-

tributed mechanism that organizes sequences of relays in described manner. We consider this

mechanism as both a dissemination protocol, and a tool to build an infrastructure of relatively

straight paths referred to as (spokes) whose direction and length can be learned with moderate

effort.

In summary, we intend to create a WSN infrastructure, based on intersecting spokes, that

would satisfy several requirements:

• search for particular instances of data, distinguished either by specific data attributes or
by the location of the event that produces data; this search is modeled by an intersection

of advertising and query spokes, where the intersection refers equally to respective data

trajectories crossing each other, and advertising and query designators matching each

other,

• event (data source) localization, using the relative hop distances from the set of nearby

7

spokes, and

• data storage in easily accessible parts of the infrastructure, that guarantees data persis-
tence until a mobile data collector arrives to collect all the data produced by the network

sources; for the purpose of distributed data storage, we intend to create such an infras-

tructure from simple graph structures, to which we could efficiently apply decentralized

coding.

1.2.2 Problem Solution Framework

BeSpoken Dissemination Protocol

A wireless dissemination protocol uses a sequence of wireless transmissions that propagate

information from the source to the sinks. However, sinks in WSNs are frequently unknown

in advance, and information is typically geocasted to a certain network region. We propose

a push-pull dissemination model in which sources push data away along straight propagation

paths, referred to as source spokes, and similar paths, initiated from the sinks and called sink

spokes, are used to propagate queries until a matching source spoke is intersected.

Existing models for forward-progress routing do not hold for location-unaware wireless

networks; the locations are considered known, either through real, or through virtual coordi-

nates [44]. We show that creation of straight propagation paths is possible even for location un-

aware nodes. Motivated by the radial symmetry of isotropic wireless transmission, we propose

to achieve this directional propagation by utilizing the geometry of overlapping transmission

ranges centered around two most recent relays. Based on this geometry, we propose a protocol,

dubbed BeSpoken, which identifies the ”innovation” set of the most recently covered nodes and

selects the next forwarding relay from that set. The innovation set area is designed so that the

dissemination always attempts making a forward progress with respect to a direction set by the

first two relays. We will show that, when some adaptive heuristics are applied, the proposed

protocol should exhibit satisfactory performance under anisotropic propagation as well.

As illustrated in Figure 1.1, a source disseminates data advertisements along the source

spokes, and a data collector sends a query along its spokes that may intersect the source spokes.

Each intersection represents a successful search. The first data collector spoke to reach one of

8

0 50 100 150 200 250 300

50

100

150

200

250

300��

��

��
��

�
�� � ��

�� �

�� ���
��

����
��
��

��
�

������������
������������

���������������

���
��

��
��

��
��

�

��
��
��

��
��

��
����� � ���

��
�

�� ��������

��
�� �

� � � �∇

�

∗

��
��
��
��∇∗

��
��
��
��
��

��
��
��
��
��

∇∗

� � � �∇∗� �����∇∗ ��
��

��

��
��

��

� �� � � ��

������∇∗

0

sink 0 sink 1

sink 1: not interested in advertised data
sink 0: having one productive sink spoke,
selects (reinforces) data dissemination route
from the ensemble of routes within that spoke
and within the intersecting source spoke 1

�

source spoke 1

source������������������� � � � �∇∗ �

��
��

�
�

��

�
��

�
�
��

Figure 1.1: The meaning of the name BeSpoken is twofold: the radial lines extending from the
source form a pattern that resembles spokes of a wheel and, furthermore, spoke relays bespeak
the source message. The relative direction of spokes allowing for the wheel pattern is controlled
by an extension of the BeSpoken. In this simulation snapshot, source spokes are shown as a
sequence of relay transmission ranges, to illustrate the fact that each spoke is an ensemble of
possible data routes. The sequence of wireless transmission relays forming a productive sink
spoke is denoted by tiny circles (see the boxed spoke in the closeup). Unproductive sink spokes
are represented by dots. The search success is marked by a ∇ with an inscribed ∗.

the source spokes is called productive. Successful search is to be followed by the endorsement

of a route along the intersecting spokes and subsequent data dissemination.

Several papers consider spatial properties of the dissemination route. Different forms

of spatially constrained random walks are discussed in [23], [45], [46], while the idea of

a trajectory-based dissemination is presented in [47], [48]. None of these dissemination

approaches enable unknown source localization. We propose a scheme where application-

cognizant data collectors, equipped with GPS and direction-of-arrival (DoA) estimation ca-

pabilities, can determine the positions of the nodes along the productive sink spoke, and let

them know of their positions. The other part of the endorsed route can be learned based on

the known position of the intersection nodes, provided that the direction of the source spoke is

known. This enables gradual source localization, as described in Chapter 5.

BeSpoken Infrastructure

Source spokes, utilized to convey the information of an event from the source to the areas

where a sink is likely to appear, may remain active for a relatively long time period. Following

9

a bootstrap period whose duration depends on the frequency and spatial density of the events in

the network, the spoke infrastructure emerges as a system of intersecting paths that completely

tessellate the sensor network space. This fairly regular infrastructure provides a way to map

subsequent events to areas between the known paths, and to aid efficient navigation toward the

associated sources. In this manner, network connectivity graph is compressed into a finite num-

ber of intersecting paths obtained by constraining the connectivity conditions. Hence, we could

model the network behavior through a simpler graph corresponding to such an infrastructure.

We will show in Chapter 5 how a BeSpoken-enabled WSN can be partitioned into simple

circular graphs connected by so-called backbone spokes. This allows easy adaptation of various

techniques and models developed for regular graphs and network grids. It is not hard to envision

how this framework may bootstrap a number of mechanisms for energy-efficient dissemination,

load balancing and rapid data propagation in desired directions. However, in this work we

only concentrate on one potential usage model of the BeSpoken infrastructure - efficient data

collection by a randomly positioned external collector.

BeSpoken Infrastructure Bootstrap

We assume that there exists a central node (manually placed/ preset landmark, as in [16], [17])

that is responsible for the network infrastructure bootstrapping. The central node extends its

equally spaced spokes to the network perimeter, thus swiping the whole network area, as illus-

trated in Fig. 1.2. We have developed and simulated an extension to the basic BeSpoken that

let us create six equally spaced spokes with high probability. The BeSpoken design parameters

are preprogrammed for this node to create spokes of sufficient length and straightness, accord-

ing to the estimated area and network size. We call the spokes of the central node backbone

spokes. We refer to the areas between the adjacent backbone spokes as wedges. The mobile

data collectors are located around the network perimeter (the network area may not be accessi-

ble, such as in disaster recovery applications). We further assume that data collectors are more

capable in terms of direction-of-arrival estimation, and in being location-aware and application-

cognizant. During the infrastructure bootstrap phase they employ their DoA capabilities to infer

the direction of the backbone spokes, and hence facilitate the mapping of the infrastructure to

geographic coordinates. During the bootstrap phase, the data collectors first create spokes that

10

I
II

III

IVV

VI

Perimeter Nodes

Data

Collector

S2

S1

(a) (b)

Figure 1.2: (a) Before any event happens, the infrastructure is built around one central node
(preset landmark), with the assistance of one or more (over time) external (frequently mobile)
data collectors. It consists of equally spaced backbone spokes, and a perimeter route, which
partition network area into spoke-delineated wedges. (b) The two shortest paths from a source
(S2) to adjacent backbone spokes are the transversal spokes, which most likely form a 120o

angle due to the geometry of the infrastructure

propagate a query for any backbone node. Once the query intersects the backbone spoke, the

data collector localizes the intersection, then either employs its own mobility or requests the

cooperation of the nearby data collectors to poll the nodes along the backbone spoke and es-

timate the DoA of the response packets. Assuming sufficient density of data collectors along

the perimeter, we claim that at the end of the bootstrap phase the directions and lengths of all

the backbone spokes are known by all the nodes within the spokes. Alternatively (or jointly),

estimating directions of the backbone spokes can be the task of the central node. In addition,

the last relay in each backbone spoke extends two spokes in the directions 60o off the backbone

spoke direction. These lateral spokes form the perimeter route of the infrastructure, as shown

in Fig. 1.2 (a).

The mobility models of data collectors and data collection frequency ultimately define the

usage model of the created infrastructure. We here primarily concentrate on a model where data

collectors might be unavailable for long periods of time, but when they do appear, the accent

11

is on collecting data off the closest network perimeter spokes, as opposed to either traversing

the network area, or moving around it in order to obtain the data from within the network.

Also, this work concentrates on the aspects of the infrastructure that allow collecting all data

produced by the network sources.

We assume that there are k independent sources out of n nodes, producing one packet of

data each, as in [35–40]. However, this does not preclude supporting other data source models,

such as spatially and temporally correlated data. For all practical purposes, correlated data

sources can be treated identically assuming some Slepian-Wolf [49] based pre-coding is used.

1.2.3 Problem Solution: Coding for Collection

Given this infrastructure of intersecting spokes, for scalability reasons we partition the net-

work into autonomous parts, or subnetworks, to which we apply coding-based methods for dis-

tributed data storage. The applied storage protocol should make the entire (possibly encoded)

data set available in any collection of k (1 + ε) storage nodes, accessible by a data collector

who approaches the network perimeter at an unknown location (see Figure 1.2). As nodes are

unaware of each other, and uncoordinated, a distributed solution for the storage usually requires

developing efficient and scalable methods of data dissemination from the k sources to randomly

sampled network nodes (with constrained storage space) [36–40]. Here, simple subnetwork

graphs, emerged as a result of infrastructure partitioning, allow us to apply network-coding

based dissemination that relies on deterministic packet trajectories, and, hence, allows us to

better control communication cost. In addition, the existence of the BeSpoken infrastructure,

combined with decentralized data encoding which is congruous to message-passing decoding,

allows for a two-phase data collecting strategy that further reduces communication cost.

1.3 Thesis Organization

In the next two chapters we focus on the mathematical model of the BeSpoken and its analysis

for the purpose of spoke design. We quantify and illustrate the performance of both the basic

and the adaptive protocol variant in terms of their capability to produce sufficiently long and

straight enough spokes.

12

The existing approaches to distributed storage in WSN, and major issues related to it, are

discussed in Chapter 4. The scalable data collection architecture and the supporting infrastruc-

ture partitioning are described in Chapter 5. The analysis of the proposed collection methods

(based on decentralized fountain data encoding in subnetworks) is the subject of Chapter (6).

Because of the simplicity and universality of the subnetwork graphs, the techniques analyzed

in Chapter 6 can be applied to data collection problems outside of BeSpoken infrastructure.

13

Chapter 2

BeSpoken: Directional Data Propagation Without Location
Information

2.1 System Model

We consider a large wireless sensor network with location-unaware nodes randomly scattered

over a disk-shaped area. Uniform spatial distribution of nodes is assumed. We also assume that

the physical layer modulation and coding are designed to compensate for short-scale fading

effects and, thus, our transmit power requirements depend only on distance-dependent propa-

gation path loss. Even though in a sensor network environment data rates are low relative to

the available bandwidth and interference is not a primary issue, still, our protocol mitigates

the interference as it always selects only one node to retransmit. We choose simple isotropic

propagation model, in order to make the analysis more tractable.

With isotropic propagation, the received power at node v, given that node u is transmitting

with power Pt, is

pr(u, v) = Kpts(u, v)−α, (2.1)

where s(u, v) denotes Euclidean distance between the two nodes,K is a constant, and α ≥ 2 is

the propagation loss coefficient. We define the transmission range r as the maximum distance

from the source (transmitter) u at which node v can reliably receive a packet, and the received

power at distance r is called receiver sensitivity, denoted

ps
r = ptr

−α. (2.2)

For this propagation model, the area in which the transmitted packet is reliably received is a

14

0 1

R

10

(a) (b)

r

0 1

C2

1
2

(c) (d)

Figure 2.1: BeSpoken Protocol: At each protocol stage, the current transmission range is
denoted with the full circle while the previous range is denoted with a dashed circle.

disk of radius r.

In such a WSN, data sources are regular network nodes that make observations. Hence,

we assume that data sources are uniformly distributed. The BeSpoken protocol organizes a

sequence of fixed-power relay transmissions that propagate the source message hop-by-hop,

without positional or directional information. The hop relays form a spoke which may deviate

from the radial spoke axis. Each spoke hop is organized using a sequence of two control

message transmissions followed by the hop data transmission. We use the same transmission

power for both data and control packets, but different coding rate and/or modulation format, so

that the communication rate for control messages is lower and translates to a longer range.

2.1.1 BeSpoken Protocol

The BeSpoken protocol implements a recursive process illustrated in Figure 2.1 in the following

way:

(a) The leading relay (node 1) sends an RTS (request to send) control packet with range

15

R = rq where q = 2− ε, for small ε.

(b) The pivot (node 0) sends a BTS (block to send) control packet with range R.

(c) The leading relay transmits the data packet with range r and becomes the new pivot.

The region in which nodes receive this data packet but do not receive the preceding BTS

packet forms the 1-st hop crescent C2.

(d) A random node from the crescent C2 becomes the new leading relay by transmitting a

new RTS. The process returns to (a) with node 1 as the pivot and node 2 as the leading

relay.

This recursive process is initialized by assigning the role of the pivot to the source node which

transmits the data packet with a range r. The first node which receives the data packet and gets

access to the medium becomes the first leading relay. The underlying ALOHA-type Carrier

Sense Multiple Access protocol would resolve any collisions; hence, after a possible additional

delay, only one random node from the crescent would transmit the RTS packet.

2.1.2 Problem Formulation

To describe the effects of the data and control ranges r and R, we evaluate the spoke behavior

with respect to the constraints:

• Outage: the probability that a spoke dies before reaching a distance d is small,

• Wobbliness: the deviation of the instantaneous spoke direction with respect to the spoke
axis is within defined limits.

The vector from node 0 to node 1 in Figure 2.1 defines the spoke axis. The crescent subtending

angle determines how much the spoke may deviate from the spoke axis direction. The param-

eter q = R/r determines the maximum crescent subtending angle. A large subtending angle

fosters wobbliness, yet it implies a larger crescent, which increases chances that a relay will be

found to retransmit data. Fixing q to a small value that limits wobbliness requires increasing r

to generate a large enough crescent and decrease the outage probability. Note that the energy

per hop grows as rα, where α ≥ 2 is the propagation loss coefficient, so that the total energy

16

Lk

Lk+1

k-1

k

k+1 Ck + 1

r

r
�k+1�k

�k+1R

L =lk

L =k+1 �

�

k-1

k

k+1

S l ,IC(��

R�

�

�k+1

(a) (b)

Figure 2.2: (a) At hop k + 1, node k + 1 is distance Lk+1 from node k and the current
spoke direction is Θk+1 = Θk + Φk+1. (b) Given Lk = l and Lk+1 = ρ, the angular hop
displacement Φk+1 is constrained to the interval−β ≤ Φk+1 ≤ β where the maximum angular
displacement at hop k + 1 is β = β(l, ρ). The shaded area denotes the interior crescent of area
SIC(l, ρ).

per spoke of length d grows as drα−1. Hence, minimizing the transmission range r corresponds

to a minimum energy objective.

These contending tendencies illustrate the importance of the protocol parameters design. In

our analysis, we show that outage and wobbliness constraints can be decoupled. Consequently,

as a result of the outage constraint analysis, we give the design guidelines for the parameter r.

We demonstrate that satisfying the wobbliness constraint requires one to find the minimum q

so that the spoke direction is within the limits after η hops, where η is a sufficient number of

hops to reach the target distance d, given r.We develop closed-form expressions that serve as

bounds for the values of q, ensuring that the wobbliness constraint is satisfied.

2.2 Spoke Modeling

2.2.1 BeSpoken Geometry

Figure 2.2(a) depicts hops k and k + 1. At the completion of hop k, the length Lk denotes the

current hop length and the angle Θk denotes the current spoke direction.

From Figure 2.2(b) we observe that given Lk = l and Lk+1 = ρ the control circle of radius

17

R centered at node k− 1 and the circle of radius ρ centered at node k specify a radius ρ arc for

the possible positions of node k+1. The endpoints of this radius ρ arc constrain the angular hop

displacement Φk+1 to the interval −β ≤ Φk+1 ≤ β where the maximum angular displacement

is β = β(l, ρ). Applying the law of cosines to the complementary angle π − β(l, ρ) yields

cos β(l, ρ) =
R2 − ρ2 − l2

2lρ
. (2.3)

We also observe that the region between the radius R control circle and the radius ρ arc defines

an interior crescent, shown as the shaded area in Figure 2.2(b). From geometric arguments, it

can be verified that the area of this interior crescent is

SIC(l, ρ) = 2ρ2β(l, ρ)− 2R2α(l, ρ) + Rl sinα(l, ρ) (2.4)

where α(l, ρ) is found from the law of cosines to satisfy

cos α(l, ρ) = (R2 − ρ2 + l2)/(2lR). (2.5)

Note that Lk+1 can vary from a minimum value of R − Lk to a maximum value of r. The

induced interior crescent Ck+1 in Figure 2.2(a) has an area Sc(Lk) = SIC(Lk, r). We note that

Ck+1, termed the current crescent, is the set of all possible positions of the node k + 1.

2.2.2 Markov Process Model for Hop Length Evolution

For design purposes we assume that the spatial distribution of network nodes is a planar Poisson

point process of intensity λ = 1. Thus, a current crescent forms a candidate set for node k + 1

with cardinality Zk that is, conditionally, a Poisson random variable with conditional expected

value

E[Zk|Lk = lk] = Sc(lk). (2.6)

A spoke stops at stage k when the crescent Ck is empty and thus spoke generation is a transient

process. The outage constraint depends only on the crescent sizes Sc(Lk) but not on the hop

18

direction processΘk. On the other hand, the spoke wobbliness depends on theΘk but is mean-

ingful only as long as each current crescent Ck is non-empty. Thus, we separate the analysis

of the outage and wobbliness constraints by formally defining [Lk] as a fictitious process that

never encounters an empty crescent.

Under the fictitious process model, the position of node k + 1 will be uniformly distributed

over the crescent Ck+1. From Figure 2.2 (b) we see that, given the current hop length Lk = lk,

the arc of radius ρ has length 2ρβ(lk, ρ). The conditional probability that we find node k + 1

in the annular segment of width dρ along the arc of radius ρ is 2ρβ(lk, ρ)dρ/Sc(lk). It follows

that the conditional pdf of the next hop length Lk+1 given Lk = lk is

fLk+1|Lk
(ρ|lk) = 2ρβ(lk,ρ)

Sc(lk) R− lk ≤ ρ ≤ r, (2.7)

and zero otherwise. We note that (2.7) provides a complete characterization of the fictitious

process [Lk].

2.2.3 Ergodic Finite State Markov Chain Model

Here, we develop a Markov Chain model that approximates the Markov process described

above. We start by quantizing the Lk process, yielding the m-state Markov chain L̂k. We

first select a chain state set that quantizes the process state space [R − r, r], then describe a

mapping from the process state space to the chain state set and, last, describe the resulting

chain probability transition matrix. We define {h1, . . . , hm} ⊆ [R − r, r] to be the chain state

set. Without loss of generality, we assume that h0 = R − r < h1 < h2 < . . . < hm =

r. As illustrated in Figure 2.3, whenever the kth hop Markov chain state is L̂k = hi, the

corresponding next process hop length is Lk+1 ∈ Ii = [R − hi, r], where Ii is the next hop

span and its length |Ii| is also the width of the corresponding quantized crescent Ĉk of area

ci = Sc(hi). Lk+1 is quantized to state hj whenever L̂k+1 ∈ Iij where

Iij = Ii ∩ (hj−1, hj]. (2.8)

19

^
l =hk+1 2^

l =hk 4

c4

d24

h3

h1

lk+1

c =c24 2d23=c23

d44

d42

I 44

I 4

h4

h =r4

R

Figure 2.3: Ergodic Finite State Markov Chain: quantization example for a four-state chain
(m = 4): L̂k = h4 = r results in the first crescent Ĉk of area c4 partitioned into four strips of
total area c4 = d41 + d42 + d43 + d44; Lk+1 ∈ I42, quantized to L̂k+1 = h2, is followed by a
crescent Ĉk+1 of area c2 and a hop span I2 = [R − h2, r] which is (uniformly) quantized into
a crescent of area d23 = c23 (shaded region) and a crescent strip d24 = c2 − c23 (the unshaded
area).

Note that the set [Iij : j = 1, . . . , m] partitions Ii and serves as a set of quantization intervals for

Lk+1 when L̂k = hi. This quantization mapping is illustrated in Figure 2.3 where Lk+1 ∈ I42

is extended to reach the quantized node position marked with a gray circle at L̂k+1 = h2. The

chain proceeds by declaring a fictitious node at the quantized position as the new leading relay.

As depicted in Figure 2.3, a quantization interval Iij corresponds to the strip of area

dij =

⎧⎪⎪⎨⎪⎪⎩
∫ hj

R−hi
2ρβ(hi, ρ) dρ, j = j∗(i),∫ hj

hj−Δ 2ρβ(hi, ρ) dρ, j > j∗(i),
(2.9)

(and zero otherwise), and of width |Iij | within the crescent Ĉk of area ci =
∑

j dij . Here

j∗(i) = min{j : hj > R − hi} is the index of the leftmost non-empty quantization interval
within Ii.

As shown in Figure 2.3, cij = SIC(hi, hj) is the quantized interior crescent area formed by

20

the control circle (of radiusR) centered at the kth hop relay and a circle of radius hj centered at

node k +1 at distance L̂k = hi. Note that cij < ci(j+1) · · · < cim, where cij = 0 for j < j∗(i),

cim = ci, and dij = cij − ci(j−1). The hop-length transition probabilities

Pij = Pr{L̂k+1 = hj |L̂k = hi}

= Pr {Lk+1 ∈ Iij |Lk = hi} = dij/ci (2.10)

follow from the uniformity of Poisson spatial distribution of nodes and since the fictitious

process assumes that the crescent Ĉk is not empty. Intuitively, when m is sufficiently large,

the ergodic Markov chain will approximate well the ergodic Markov process. Driven by the

modeling criteria of simplicity and efficiency, we consider Markov chain models with both

uniform and non-uniform quantization of [R − r, r]. With only m = 2 levels, the uniform

quantization lacks accuracy. However, a carefully chosen two-state chain provides a useful

non-uniform quantization model. The transition matrix for both two-state systems is

P =

⎡⎣ 0 1

c21/c2 (c2 − c21)/c2

⎤⎦ , (2.11)

since c12 = c1 and c22 = c2.

Uniform Quantization Model

In this model, the hop-length states {hi} uniformly quantize the process state space [R − r, r]

so that hi = R − r + iΔ, where Δ = (2r − R)/m is the quantization interval. Furthermore,

j∗(i) = m − i so that the next-hop quantization intervals Iij satisfy Iij = (hj −Δ, hj] for

j > m− i and are empty for j ≤ m− i. The transition probabilities are now

Pij =
cij − ci(j−1)

ci
, i + j > m, (2.12)

and Pij = 0 whenever i + j ≤ m follows since, in that case, (hj−1, hj] and Ii = [R − hi, r]

intersect in at most one point. For example, the uniformly quantizedm = 2Markov chain has

Δ = r − R/2, h1 = R − r + Δ = R/2 and h2 = r, and, accordingly, c1 = Sc(R/2) and

21

c2 = Sc(r).

Non-Uniform Quantization Model

Non-uniform quantization, being inherently more complex than uniform, qualifies only if its

application renders a simple two-state model possible. The proposed non-uniform quantization,

two-state Markov chain model has a simpler definition with c1 = 1, and c2 = Sc(r). The

corresponding set of hop length states includes h2 = r and h1, which is a solution of c1 =

1 = Sc(h1). Hence, the next hop partition mapping satisfies d21 = c21, and d22 = c2 − c21.

Let R/2 > h1 = S−1
c (1) > R − r, and, in this case, we have that j∗(1) = 2, d11 = 0, and

d12 = c1 = 1. The non-uniform partitioning differs from the uniform in that c2 � c1 and

c22 � c21 for large enough r. The rationale behind such a design follows in the next section.

2.2.4 The Spoke Direction Process

Figure 2.2 (a) indicates that the angular hop displacementΦk+1 at hop k+1 changes the current

spoke direction in that

Θk+1 = Θk + Φk+1 =

k+1∑
i=1

Φi. (2.13)

We observe that all points along the radius ρ arc in Figure 2.2 (b) are equiprobable locations for

node k+1. Thus, given the sequence [Lk], the angular hop displacements [Φk] form a sequence

of conditionally independent uniform random variables with the conditional pdf

fΦk+1|Lk,Lk+1
(φ|lk, lk+1) =

1

2β(lk, lk+1)
, (2.14)

for |φ| ≤ β(lk, lk+1), and zero otherwise. This probability distribution does not change when

the conditioning sequence contains quantized values {L̂k}. The current angle sequence {Θk}
is a random walk process modulated by the Markov chain {L̂k}, completely described by
equations (2.10) and (2.14).

The transform domain analysis of a Markov Modulated Random Walk (MMRW) [50] dic-

tates that we first define the conditional moment generating functions of the incremental angular

22

displacement Φk+1 from (2.13)

gij(ω) = E
[
exp (Φk+1ω) |L̂k = hi, L̂k+1 = hj

]
=

1

2ϕij

∫ ϕi,j

−ϕi,j

exp (φω) dφ

= � (ϕijω) , (2.15)

for ω in a convergence region (ω , ω+), where

� (x) =
sinhx

x
, (2.16)

and

ϕij = β(hi, hj). (2.17)

We create a matrix Γ(ω) with elements

Γij (ω) = Pijgij(ω). (2.18)

The Perron-Frobenius theorem (see e.g., [51]) dictates that its largest eigenvalue σ (ω) is real

and positive. The elements of the corresponding right eigenvector ν (ω) = [ν1 (ω) · · · νm (ω)]T

are also real and positive.

Next, we define the product martingale [50]

Mk (ω) =
exp (ω Θk) νi(k) (ω)

σk (ω) νi(0) (ω)
(2.19)

where i(k) is the random state index of the chain at time k, and the random variable νi(k) (ω)

is the i(k)-th element of the right eigenvector. This martingale is the key to our analysis of the

wobbliness process in 2.4, since it captures its Markov-modulated random walk properties, and

allows an elegant application of the random-walk stopping time theory [50].

23

2.3 Outage Constraint

Here we evaluate the outage probability for given q = R/r, in order to evaluate the associated

outage constraint (2.22). With respect to outage, a spoke stops at hop k when the crescent Ck

is empty, i.e., Zk = 0. Since the nodes obey a planar Poisson process, it follows from (2.6) that

the conditional probability the crescent Ck of area Sc(lk) is empty is

Pr {Zk = 0|Lk = lk} = e−Sc(lk). (2.20)

We define

D = min {n : Zn = 0} (2.21)

as the first time the process encounters an empty crescent.

For analytical tractability, instead of requiring the spoke to travel distance d with high

probability, we require it to travel η hops with high probability. In particular, we define η =

d/r� as the number of hops corresponding to an idealized straight-line spoke extending to the
distance d. The design outage constraint can be formalized as

Pr {D ≤ η} ≤ p. (2.22)

However, the analysis of (2.22) is challenging due to the complex way in which the hop length

process [Lk] evolves with time. In particular, a small Lk will create a small crescent; this

induces a support set [R − Lk, r] for Lk+1 that excludes small hop lengths in the interval

[R − r, R − Lk). As illustrated in Figure 2.4, an imaginary coil is attached between a fixed

pivot and a moving leading relay: when contracted, it pulls the leading relay’s data circle inside

the blocking control circle, exposing only a tiny area with possible relays. Note that the next

hop length has to be long (close to r), if the relay is found in this tiny area. At the other

extreme, when the coil is completely relaxed to length r, it exposes the largest possible area.

This reduces the likelihood of an empty crescent yet it increases the likelihood of the next hop

length being small. This oscillatory effect illustrates the importance of the Markov property for

the hop length evolution model (2.7).

For the m-state Markov chain, let us denote the event that the first η crescents Ĉk, k =

24

R-r

r

Figure 2.4: Spring-coil analogy

1, · · · , η, are not empty as

Aη =

{
min
k≤η

Zk > 0

}
. (2.23)

The probability that the crescents Ĉ1, . . . , Ĉη are not empty, and that the system is in state j at

time η is denoted

κ
(η)
j = Pr

{
L̂η = hj , Aη

}
. (2.24)

Using Markovity of L̂k and conditional independence of Zk given L̂k, it is straightforward to

show that

κ
(η)
j =

m∑
i=1

ejPijκ
(η−1)
i (2.25)

where ej = 1− exp(−λcj) is the probability of a non-empty crescent while in state j.

Let us define them×m matrix P̆ where

P̆ij = Pijej (2.26)

25

is the conditional probability to transition from state i to state j, and that the resulting crescent

of area cj is not empty. Note that (2.11) implies P11 = P̆11 = 0. In addition, by defining the

vector κ(η) = [κ
(η)
1 , · · · , κ(η)

m], (2.25) becomes

κ(η) = κ(η−1)
P̆. (2.27)

Recursively, we obtain

κ(η) = κ(1)
P̆

η−1. (2.28)

Given the initial statem, we see that κ(1)
i = 0 for i < m and κ

(1)
m = em. Thus,

κ(η) = [0 · · · em] P̆η−1. (2.29)

As

Pr {Aη} =
m∑

i=1

κ
(η)
i = κ(η) [1 · · · 1]T , (2.30)

the probability that the spoke will stop at or before hop η (assuming that the chain always starts

in state hm) becomes

Pr {D ≤ η} = 1− Pr {Aη}

= 1− [0 · · · em] P̆(η−1) [1 · · · 1]T . (2.31)

The following asymptotic (large r) analysis of the outage probability (2.31) is based on the

two state non-uniform quantization model (2.11). Let λ1 > λ2 be the two eigenvalues of P̆ in

(2.31) based on (2.11). The eigenvalue λ1 describes the rate at which the outage probability

increases with the number of hops, while the negative eigenvalue λ2 describes the oscillatory,

self-recovery mechanism depicted in Figure 2.4. Let r � 1 and q be close to two. Then c22 =

c2 � c1 = 1 in (2.11). Now, λ1 is close to one, while λ2 one is close to zero. Furthermore,

by combining (2.31) and (2.22), while expressing the two-state P̆ through its singular value

decomposition, and truncating the Taylor expansions of λ1 and λ2 to their significant terms, we

26

4 6 8 10 12
0

0.1

0.2

0.3

0.4

number of hops η

P
r{

D
≤η

}
simulation
analysis
large r

Figure 2.5: Outage probability curves

show that, for a spoke to reach η hops with probability p, given q, the range is required to be

r ≥ 1/

√
exp(1)

(
1− (1− p)

1
η−1

)
f(q), (2.32)

where f(q) = Sc(r)/r2. Details of derivation of this very important closed-form expression

for r are given in the appendix.

Figure 2.5 illustrates how well (2.32) matches the simulation results for a large r. We fix q,

and evaluate (2.31) for a sufficiently large r, resulting in the asterix-marked outage probability

curve, then plot the simulation statistics for the same pair of q and r (circle-marked curve), and

finally, from (2.32), we express the outage probability bound p as a function of η parametrized

by the same values of the design parameters (square-marked curve).

2.4 Wobbliness Constraint

The spoke goes off-course at hop k whenever the current angle Θk in (2.13) exceeds one of the

following two thresholds φo and −φo. To describe spoke wobbliness, we define

Tϕo = min [k : |Θk| ≥ ϕo] . (2.33)

to be the first time that the spoke goes off-course. As we model the angle process evolution

only up to that point, Tϕo is the stopping time of the random walkΘk modulated by the ergodic

27

Markov chain L̂k. Following [50, Chapter 7.7], Tϕo is also a stopping rule for the martingale

Mk (ω) relative to the joint process {Mk (ω) , Lk; }

Mk (ω) =
exp (ωΘk)νi(k)

(ω)

σ(ω)kν
i(0)

(ω)
. (2.34)

Hence, following [50, Lemma 6] and the optional sampling theorem [50, Theorem 6] we have

E
[
MTϕo

(ω)
]

= E

[
exp (ωΘTϕo

)ν
i(Tϕo)

(ω)

σ(ω)Tϕo νi(0) (ω)

]
= 1, (2.35)

for ω ∈ (ω , ω+) . Since the stopping time Tϕo is a random variable of unknown probability

distribution, elaborate mathematical methods must be used to model it. Our methods utilize

(2.35), which is an extension of the Wald identity to Markov modulated random walks. The

first wobbliness constraint is based on the first moment of Tϕo , as

E [Tϕo] ≥ η. (2.36)

The second wobbliness constraint is based on the cumulative distribution function (CDF) of

Tϕo , as follows

Pr {Tϕo ≤ η} ≤ pt. (2.37)

In subsection 2.4.1 we demonstrate how to compute the mean E [Tϕo]. Subsection 2.4.2 de-

scribes a bound on the CDF of the stopping time. These two approaches together provide a

good description of the stopping time, based on which a range of q values can be found for

each ϕo.

2.4.1 Expected Threshold Crossing Time

The random variableΘTϕo
is either−ϕo or ϕo, assuming that there is no overshoot. We address

the problem of overshoot later. By symmetry arguments, first and second moments ofΘTϕo
are

E
[
ΘTϕo

]
= 0,

var
[
ΘTϕo

]
= E

[
Θ2

Tϕo

]
= ϕ2

o. (2.38)

28

We evaluate the second derivative of (2.35) with respect to ω at ω = 0, and denote

μi(ω) = ν ′′i (ω)/νi (ω) , (2.39)

to obtain the expected number of hops until the hop angle hits the threshold as

E [Tϕo] =
var

[
ΘTϕo

]
+ E

[
μi(Tϕo)(ω)

]∣∣
ω=0

− μi(0)(ω)
∣∣
ω=0

σ′′(ω)
σ(ω)

∣∣∣
ω=0

. (2.40)

All the derivations leading to (2.40) are presented in the appendix. We also show that, for

m = 2, the denominator of (2.40) is

σ′′ (ω)

σ (ω)

∣∣∣∣
ω=0

=
1

3

(
π2P22ϕ

2
22 + π1P11ϕ

2
11 + π1P12ϕ

2
12 + π2P21ϕ

2
21

)
, (2.41)

where πi, i = 1, 2 are the elements of the vector of stationary state probabilities π = [πi](1×m) .

Note that terms ϕ2
ij/3 are transition-specific variances (for uniform angular displacement).

Direct generalization of (2.41) to an m state model has a form of a stationary average of

transition-specific variances overm2 transitions

σ′′ (ω)

σ (ω)

∣∣∣∣
ω=0

= var [θ]p = πP (v)uT ,

where, P (v) =
[
P

(v)
ij

]
(m×m)

with elements P
(v)
ij =

(
Pijϕ

2
ij

)
/3, and u = [1...1](1×m) . Now,

it can be shown that, for small crescent subtending angles relative to the threshold ϕo, we can

ignore the terms E
[
μi(Tϕo)

]
and μi(0) in (2.40), thus

E [Tϕo] =
var

[
ΘTϕo

]
var [θ]p

. (2.42)

Since (2.40) neglects the overshoot, we now seek to include the overshoot impact. We start

with the overshoot analysis of the simple random walkΘn =
∑n

i=1 Φi,modulated by one-state

Markov Chain, i.e. Φi ∼ U (−ϕ11, ϕ11). Based on the derivation presented in the appendix,

which assumes that undershoot and overshoot have the same uniform distribution, we obtain

29

the overshoot-inclusive form of var
[
ΘTϕo

]
for a one-state MMRW model

var
[
ΘTϕo

]
= ϕ2

o + (2/3)ϕoϕ11 + ϕ2
11/6. (2.43)

Hence, the overshoot-inclusive form of the numerator of (2.42) contains two additional terms,

resulting, for this simple model, in a corrected value of the expected threshold crossing time.

We now inductively derive the analytical forms of these terms that are applicable to a m-state

Markov-modulated random walk model.

Note in the second term of (2.43) that ϕ11 represents the half-span of the uniform pdf

characterizing the angular deviation in each hop. For a m-state Markov-modulated random

walk, we replace ϕ11 with a weighted sum of transition-specific angle spans
∑n

i,j=1 wijϕij ,

where wij = πiPij . Hence, the angular deviation span associated with the trivial transition of

the one-state MC is now replaced with a stationary average taken over angle-spans associated

withm2 transitions of them-state MMRW.

Note now that the third term of (2.43) represents one half of the variance for the one-hop

angular deviation described by Φi ∼ U (−ϕ11, ϕ11). For the m-state MMRW, we replace this

term with another weighted sumwhere (wij/2)-weighted terms are transition specific variances

ϕ2
ij/3. Hence, using matrix notation, the extended form of (2.43) becomes

var
[
ΘTϕo

]
= ϕ2

o + 2ϕo

(
πP (a)uT

)
+ 1/2

(
πP (v)uT

)
, (2.44)

where

P (a) =
[
P

(a)
ij

]
(m×m)

(2.45)

and

P
(a)
ij = Pijϕij/3. (2.46)

The overshoot-inclusive variant of (2.42) for a multi-state chain (2.44) yields values that

match the simulation results closely and consistently. Figure 3.5 (a) illustrates the achieved

wobbliness in a sample of 500 spokes directed eastward, designed to propagate 160 length

units with the wobble threshold of π/4. It is evident that a large number of spokes exceed the

targeted propagation distance, while the straightness needs to be improved. Such a behavior

30

0 50 100 150 200 250 300 350 400 450
100

200

300

400

500

600

700

800

900

(a)

0 50 100 150 200 250 300 350 400
100

200

300

400

500

600

700

800

(b)

Figure 2.6: Sample of spokes directed eastward - ”constraint in the mean” vs.”probability
constraint” design.

is due to the fact that the outage constraint is a constraint in probability, while (2.36) is a

constraint in the mean, where the pertinent pdf is long-tailed.

2.4.2 Probability of Threshold Crossing Before Time Tϕo

Motivated by the observations illustrated by Figure 3.5 (a), we here analyze the wobbliness

model, as defined in (2.37), from the point of view of Large Deviation Theory (LDT). We de-

termine a bound for Pr {Tϕo ≤ η} based on the Gärtner-Ellis theorem [51, Thm 2.3.6] and its
application to an empirical measure of finite Markov Chains, in particular [51, Exercise 3.1.4].

31

Let ℘P
i(0) denote the Markov probability measure associated with the transition probability ma-

trix (2.10), and with the initial state L̂0 = i(0). Precisely,

℘P
i(0)

(
L̂1 = y1, · · · , L̂n = yn

)
= Pi(0)y1

n−1∏
i=1

Pyiyi+1 (2.47)

is the probability of a specific Markov chain path, starting at i(0), and transitioning through the

sequence of states [yi]
n
i=1. Now, let us denote ψij = U (ϕij , ϕij), and thus, the conditional law

of [Φk] for each realization [Lk = yk]
n
k=1 is

∏n
i=1 ψyk−1yk

.

Denoting withEP
i(0) [.] the expected value with respect to ℘P

i(0),we further defineΛn(nω) =

log EP
i(0)

[
eω

∑n
k=1 Φk

]
. Following a derivation analogous to [51, Thm 3.1.2], we find that the

logarithmic moment generating function of the current angle is related to the largest eigenvalue

σ(ω) of (2.18) as

Λ(ω)
Δ
= lim

n→∞
1

n
Λn(nω) = log σ (ω) . (2.48)

According to [51, Thm 3.1.2], the empirical mean of the sum of angle deviations modulated

by ℘P
i(0) has a rate function, which is a conjugate function of Λ(ω), i.e the Fenchel-Legendre

transform

Λ
(x) = sup
ω

[ωx− Λ(ω)] . (2.49)

A geometric interpretation of Λ
(x) is given in Figure 2.7. Using the fact that Λ(ω) is a convex

function, and Λ(ω) ≥ 0 for ω ∈ (ω , ω+) , and applying the total probability formula over the

event space

E1 =
{
Tϕo ≤ η,ΘTϕo

≥ ϕo

}
,

E2 =
{
Tϕo ≤ η,ΘTϕo

≤ −ϕo

}
,

E3 =
{
Tϕo > η,ΘTϕo

≥ ϕo

}
,

E4 =
{
Tϕo > η,ΘTϕo

≤ −ϕo

}

32

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

n=2 hops

ω

−1 0 1 2 3 4 5 6 7
−0.5

0

0.5

1

1.5

2

2.5

3

ω

log(σ) for prop. distance 50m
φo / n ω

log(σ) for prop. dist. 1500m
φo / n ω

ω/

Figure 2.7: Geometric Interpretation of the bound for Pr {Tϕo ≤ 2} (probability to go off-
course in two or less steps) The upper subplot corresponds to a BeSpoken design where the
targeted spoke length ds ≈ 50m; this design implies a certain maximum subtending angle of
the spoke crescents. The lower plot corresponds to a design where the desired spoke length
dl ≈ 1500m, corresponding to smaller maximum subtending angle than the design for ds

- Consequently, note that the off-course probability after two hops should be smaller for dl

design; the probability bounds relate in the same way: exp(−2δl) < exp(−2δs), where
δs = 0.5 is the maximum distance (at ω = ω

′ as shown in the plot) between the line ωϕo/n
and Λ(ω) = log σ (ω), which is exactly (2.49) with x = ϕo/n, evaluated for ds design and for
n = 2. Similarly, δl > 50 is the equivalent for dl design.

to (2.35), assuming ω > 0, we obtain:

1 =
4∑

k=1

E

[
exp (ωΘTϕo

)ν
i(Tϕo)

(ω)

σTϕo (ω)νi(0) (ω)
|Ek

]
Pr {Ek}

≥ E

[
exp (ωΘTϕo

− Tϕo log σ(ω))
ν

i(Tϕo)
(ω)

νi(0) (ω)
|E1

]
Pr {E1}

≥ exp (ωϕo − η log σ(ω))
minj νj (ω)

νi(0) (ω)
Pr {E1} . (2.50)

Note that Pr {E1} = Pr {E2} , due to the random walk and the threshold symmetries. Hence,

33

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

n

simulated cdf of Tφ
o

cdf bound for Tφ
o

Figure 2.8: Comparison of the LDT-based CDF bound and CDF obtained by ”sampling” the
underlying m-state Markov Chain.

by combining the two bounds we have

Pr {Tϕo ≤ η} = Pr {E1}+ Pr {E2} = 2Pr {E1}

≤ 2 exp

(
−η(ω

ϕo

η
− log σ(ω))

)
νi(0) (ω)

minj νj (ω)
, (2.51)

where ω ∈ (ω , ω+) . We base (2.51) on the largest eigenvalue σ(ω) of an m-state Markov

Chain, for sufficiently large m. We apply numerical methods to obtain σ(ω) and observe

that (2.51) (with νi(0) (ω) / minj νj (ω) = 1) bounds the CDF obtained from the simulations,

as shown by Figure 2.8. The expression (2.51) evaluated for some desired Pr {Tϕo ≤ η} =

pt provides an upper bound for q, as opposed to the lower bound obtained through (2.42).

Figure 3.5 (b) illustrates the achieved wobbliness in another sample of 500 spokes directed

eastward, designed according to (2.51).

34

2.5 Results and Conclusion

We propose a protocol that generates spokes, relatively straight-line data dissemination trajec-

tories, without requiring the nodes to have navigational information. The BeSpoken protocol

implements a simple, spatially recursive process, where a basic set of control packets and a data

packet are being exchanged repeatedly among daisy-chained relays that constitute the spoke.

Despite the simplicity of the protocol engine, modeling the spoke process is a significant chal-

lenge, primarily because it is both a spatial and a temporal random process. The analysis of

a Markov-modulated random walk model for the spoke process results in a design conditions

which protocol parameters, need to satisfy to produce sufficiently long and straight trajectories.

We here summarize the iterative design algorithm for BeSpoken parameters.

Given the desired distance d, and the angle threshold ϕo

n = 1, . . .∞
(a) Calculate q∗ assuming n = E [Tϕo] from (2.42)
(b) Given q = q∗ from (a), calculate r∗ from (2.32)
(c) If d/r∗ < n, goto (a) else BREAK.

Note that (2.42) expresses the expected stopping time as a function of q only. We support our

analysis with simulation results. We simulate a stationary network of unit-density, with uni-

formly distributed nodes deployed over a square region. Simulation statistics are generated by

extending a large number of spokes to follow the same direction (as in Figure 3.5), over several

network realizations. The collected averages for the spokes going off-course confirm the valid-

ity of the design with respect to the imposed constraint ”in the mean” (2.42). By imposing the

second wobbliness constraint (2.51), we obtain statistics that show a better control of the spoke

direction at the expense of a slightly increased rate of prematurely stopped spokes due to out-

age (Figure 3.5 (b)). We have also evaluated BeSpoken in its capacity of a spoke-infrastructure

building tool, by performing extensive simulations in which several equally spaced spokes are

spawned radially from the source. To create this wheel-like pattern of source spokes, we use

BeSpoken bootstrap mechanisms, also based on an intersection of two different transmission

ranges. In addition, ”randomly placed events” initiate creation of sink-spokes, thus tessellating

the simulated plane . An example of such an experiment is given by Figure 1.1, hence putting

a face on the proposed design, and illustrating its potential for network applications, other than

35

data dissemination.

36

Chapter 3

Adaptive BeSpoken: A Step Toward Real Networks

In sensor network deployments, spatial distributions of sensors are frequently far from being

uniform [52]. Such networks often contain regions without enough sensor nodes, which we re-

fer to as holes. In routing, holes are communication voids that cause greedy forwarding [25,26]

to fail, and the basic BeSpoken protocol, described in Chapter 2, suffers from the same vulnera-

bility. The BeSpoken design parameters were optimized for network nodes scattered as a planar

Poisson point process of known uniform intensity. It was essential to match the protocol pa-

rameters to the density of network nodes. Whenever the node distribution in the network differs

from the assumed Poisson point process, the BeSpoken performance fails to satisfy the design

constraints with high probability. We propose to extend the basic BeSpoken protocol with

adaptive mechanisms to alleviate problems with small-scale network discontinuities (network

thinning caused by random node dying, holes, voids). In this chapter, an adaptive BeSpoken

protocol is proposed and its model is analyzed in order to establish a quantitative measure of

the protocol performance. Its improvement over the non-adaptive version is evaluated in terms

of the gain in the likelihood to achieve a given propagation distance when employing the same

protocol parameters.

3.1 BeSpoken Backward Repair Mechanisms

In the following, the crescent to which the relay belongs is the own crescent, and the crescent

which is formed as a result of relay’s transmission is referred to as the induced crescent. The

Current Leading Relay (CLR) activates the BeSpoken adaptive mechanism, since it has the

ability to detect an empty candidate set by observing the absence of the RTS request within a

time-out period. Upon encountering an empty crescent Sc(lk) without candidate relays, CLR

node k can solicit another pivot from a previous crescent, while keeping its leading-relay status,

37

Pivot
CLR

Empty

Failed

good replacement

relay

Figure 3.1: The triptych represents a single transition of the Markov process modeling the
adaptive spoke: in the first step a new relay is selected by the pivot that becomes the Current
Leading Relay (CLR); in the second step the CLR becomes aware that its induced crescent is
empty, when it does not receive any RTS in due time; in the third step the CLR solicits its own
replacement by sending the request intended for all the nodes in its own crescent - we show
one such peer node that replaces the CLR and, having a non-empty induced crescent, repairs
the spoke.

which would effectively change the current spoke angle. Another backward-repair technique

requires the CRL to solicit its own replacement from its own crescent Sc(lk−1), i.e., among the

peer candidate relays. The latter approach is termed the one-step backward repair protocol. The

example shown in Figure 3.1 illustrates one possible scenario for the recovery attempt. Here, a

replacement relay has been found that creates a large non-empty crescent, hence repairing the

spoke. We can envision that even if another replacement relay was selected with an induced

crescent smaller than the failed one, but at a sufficient distance from the empty crescent to result

in a large enough disjoint area, the chances of repairing the spoke are worth performing this

step back.

There is a whole spectrum of alike adaptive algorithms, nevertheless, for the sake of sim-

plicity and without loss of generality, we only consider the one-step backward repair protocol.

3.2 One-Step Backward Repair Model

We here analyze the adaptive mechanism introduced in 3.1, where the current leading relay (kth

node) runs into an empty set of relay candidate nodes, and solicits a single own replacement

from its own crescent. The spoke stops when the replacement results in a non-empty relay

38

candidate set. Extensions to the cases with multiple replacement trials are straightforward.

To model the adaptive mechanism, we use the uniform quantization model illustrated in

Figure 2.3, with only two quantization levels, again, for simplicity and without loss of gener-

alization. Hence, the BeSpoken hop-length evolution is modeled by a two-state Markov Chain

L̂k. Following the notation from subsection 2.2.3 , the states 1 and 2 correspond to quantized

hop lengths h1 = R − r + Δ = R/2 and h2 = r, where Δ = r − R/2. The corresponding

quantized areas are c1 = Sc(R/2) and c2 = Sc(r). To make a better distinction between cres-

cents pertaining to different states, in the present work we will use the notation sL = Sc(h2)

and sS = Sc(h1), to denote the large and the small crescent areas, respectively.

To establish a unifying model for both the hops that are completed without utilizing the

adaptive mechanism, and those that are completed in the second attempt, through the adaptive

algorithm, we redefine the conditions under which the underlying Markov Chain transitions to

a new state. Now the chain does not transition into another state always when the next relay

is found, but, as an additional condition, the induced crescent of the selected relay must not be

empty. The new definition incorporates a lookahead element with each “hop-length” state to

make sure that at least one subsequent hop is possible. This is necessary to seamlessly inte-

grate the adaptive mechanism into the two-state model. This effectively adds a third trapping

state T when the subsequent hop is not possible. The transition probabilities that (partially)

characterize this redefined Markov Chain form the reduced matrix

Pad =

⎡⎣ 0 PA
12

PA
21 PA

22

⎤⎦ , (3.1)

since, as described in (2.11), the chain can not transition to the same state from the state cor-

responding to the small crescent. The reduced matrix Pad does not include the transitions to

trapping state T. In order to formally define transition probabilities PA
ij , we require additional

notation. The data propagation will stop if both the induced crescent of the CLR and of its

replacement are empty. Trivially, if there are no replacements in the current crescent, it is suf-

ficient that the first induced crescent is empty. Let us denote the cardinality of the union of

the two candidate relay sets (in these two induced crescents) with Z2
k . Now, it follows that the

39

transition probability (with lookahead) can be expressed as

PA
ij = Pr

{
Lk = hj , Z

2
k > 0|Lk−1 = hi, Zk−1 > 0

}
. (3.2)

Note that Pad is the adaptive counterpart (for the One-Step Backward Repair BeSpoken Proto-

col) of the transition matrix P̆ whose elements are given in (2.26).

The envelope of all possible replacing crescents created from state p = 1 is shown in

Figure C.1. The envelopes for the large current crescent are presented in Figures C.2 and C.3.

Figure C.2 fixes the replacement relay’s state to state 1, and illustrates two general cases of

the relative position of the failed CLR and its replacement. Their relative position determines

the intersection of the induced crescents, where the support set of the replacement crescent is

approximated with so-called small envelope. Figure C.3 fixes the replacement relay’s state to

state 2, which brings forth so-called large envelope. In the following we evaluate Pad for a

Poisson node distribution and using area linearization when approximations are necessary.

The probability of repair for the two-state Markov chain model, given that the failed leading

relay was in state n ∈ [1, 2], and that the pivot was in the state p ∈ [1, 2], depends on the

position of the replacement relay, more precisely, on its quantization level, and on how much

of its induced crescent area is disjoint from the crescent formed by the failed relay. We refer to

this induced disjoint areas as the innovation area. The average innovation area, denoted with

Sp,n
in , is calculated as the average difference

Δn,m =
(
Sn

c

⋃
Sm

c

)
− Sn

c ,

between the first (failed) crescent area Sn
c (k +1) and the crescent area Sm

c (k +1) formed with

the replacement relay. Here,m denotes the quantization state of the replacement relay.Hence,

Sp,n
in =

∑
m

PpmE [Δn,m]Ξ(pm),

where the average is taken first over the envelope of possible crescents induced by replacement

relays in statem, denoted with Ξ (pm) .

40

1

2

E

T

L
e

Le

22
S

in
LS eee �

in
LS ee

2

Figure 3.2: Transitions of the adaptive mechanism contributing to the transition probability
PA

12; here E denotes the empty crescent in state 2, and T denotes the trapping state, when the
repair attempt fails.

The average probability of finding a non-empty set of candidate relays for the next hop is

ein
p,m,n = E

[
(1− e−Sm,n

in (k+1))
]
Ξ(pm)

,

given that the pivot was at the state p, the failed relay was at the state n, and that a replace-

ment relay was found corresponding to the MC transition from state p to some state m. Here,

the averaging was done over the possible relative positions of the crescents (of respective areas)

Sm
c (k+1) and Sn

c (k+1), the relative position being a random variable whose support set is de-

termined by n and p, and ultimately by Ξ (pm). In the appendix we calculate an approximation

for ein
p,m,n by linearizing both the envelope area and the area of the crescent.

Let eL = e−sL and eS = e−sS denote the probabilities of large and small crescent

being empty, respectively; eL = (1− e−sL) and eS = (1− e−sS) denote the probabili-

ties of large and small crescent having at least one node; eL,2 = (1− e−sL (1 + sL)) and

eS,2 = (1− e−sS (1 + sS)) , denote the probabilities that at least two nodes will be found

within the crescent of area sL and sS .

The introduced notation is used to represent probabilities of different repair paths contribut-

ing to a particular adaptive BeSpoken transition, as illustrated in Figures 3.2 and 3.3, when pivot

is in state 1 and 2, respectively. For example, Figure 3.2 states that to transition from state 1

to state 2 one can transition directly if CLR’s induced crescent is not empty. If it is empty,

its replacement exists, and its replacement’s induced crescent is not empty, it will transition to

41

2

1

2

in

L

L

ee
S

S
2212,

1

in
L

L

ee
S

S
2112,

1

in
L

L

ee
S

S
2122,

2

in
L

L

ee
S

S
2222,

2

L

L

e
S

S2

L

L

e
S

S2

S

L

e
S

S1

S

L

e
S

S1

E1

E2

T

Figure 3.3: Transitions of the adaptive mechanism contributing to the transition probabilities
PA

21 and PA
22; here E1 denotes the empty crescent in state 1, E2 denotes the empty crescent in

state 2, and T denotes the trapping state, when the repair attempt fails.

state 2 in the second attempt. Otherwise, it will transition to state T and the spoke will stop.

Similarly for Figure 3.3 which describes the repair paths for transitions from state 2. The edges

of state diagrams are denoted with probabilities for each corresponding transition event. Hence,

by summing the probabilities of the contributing transition repair paths, we obtain the elements

PA
ij of the matrix Pad as follows:

PA
11 = 0 (3.3)

PA
12 = eL + eLeS,2ein

122 (3.4)

PA
21 =

s1

sL

[
eS + eL,2

(
s1

sL
eSein

211 +
s2

sL
eLein

221

)]
(3.5)

PA
22 =

s2

sL

[
eL + eL,2

(
s1

sL
eSein

212 +
s2

sL
eLein

222

)]
. (3.6)

The derivation details are given in the appendix.

42

3.2.1 Adaptive Outage Constraint

In order to formalize the Outage constraint for the One-Step Backward Repair protocol, we

now define

DA = min
{
n : Z2

n = 0
}

(3.7)

as the first time the process fails to repair the spoke if it encounters an empty crescent. Hence,

the adaptive outage constraint can be expressed as

Pr
{
DA ≤ η

} ≤ p. (3.8)

Let us denote the event that the spoke does not stop in the first η hops as

AA
η =

{
min
k≤η

Z2
k > 0

}
.

The probability that the spoke does not stop in the first η hops, and that the system is in state j

at time η is

μ
(η)
j = Pr

{
L̂η = hj , A

A
η

}
.

Using Markovity of L̂k and conditional independence of Z2
k given L̂k−1, it is straightforward

to show that for the adaptive BeSpoken the expression (2.25) becomes

μ
(η)
j =

m∑
i=1

PA
ij μ

(η−1)
i . (3.9)

By defining the vector μ(η) = [μ
(η)
1 , · · · , μ(η)

m], (3.9) becomes μ(η) = μ(η−1)
Pad. Recursively,

we obtain μ(η) = μ(1) (Pad)η−1 .Given the initial statem, and μ
(1)
i = 0 for i < m, μ

(1)
m = em,

we obtain μ(η) = [0 · · · em] (Pad)η−1 .

As Pr
{
AA

η

}
=
∑

i=1,··· ,m μ
(η)
i = μ(η) [1 · · · 1]T , the probability that the spoke will stop

at or before hop η (assuming that the chain always starts in state hm) becomes

Pr
{
DA ≤ η

}
= 1− Pr{AA

η

}
= 1− [0 · · · em] (Pad)(η−1) [1 · · · 1]T . (3.10)

43

0 5 10 15 20 25
0

10

20

30

hop number

non−adaptive, network size=5K
adaptive, network size=5K

0 5 10 15 20 25
0

5

10

15

20

hop number

non−adaptive, network size=125K
adaptive, network size=125K

Figure 3.4: Percentage of spokes dying at each hop based on two-state uniformly quantized
Markov Chain model: adaptive mechanism decreases the probability of spokes dying prema-
turely

3.3 Conclusion: Numerical Analysis and Simulation Results

We have numerically evaluated the outage probability based on the two-state uniformly quan-

tized Markov Chain model, both for the basic BeSpoken (2.31) and the presented adaptive

version (3.10). We are aware that the small number of quantization levels introduces an er-

ror, but the evaluation is comparative, and we expect that the error is unbiased. In both cases

Markov Chain transition probabilities were calculated using the same design parameters (based

on (2.32) and 2.5). The results presented in Figure 3.4 for two different network sizes show that

the adaptive algorithm works better. We also support our analysis with simulation results. For

the same random network instances, we ran simulations of basic and adaptive versions of the

protocol whose design parameters are based on the guidelines in [53] ((2.32) and the algorithm

in 2.5), given a network of uniformly distributed nodes with unit density and known size.

The first experiment was designed to compare the performance of the two protocols for a

thinned network whose node density is lower than the one used for the protocol parameter (r

and q) design. Hence, the network nodes were deployed in a uniform manner over a square

region ensuring a half-unit density. Spoke traces are generated as by extending a large number

44

0 50 100 150 200 250 300 350 400
200

300

400

500

600

700

800

900

Figure 3.5: Two samples of spokes directed eastward in a thinning network where the density
of nodes is decreased to one half of the initial density due to random node dying: thin-line
spokes are created by the adaptive BeSpoken and asterix-marked spokes created by the basic
BeSpoken; One-Step Backward adaptive protocol demonstrates better performance than the
basic BeSpoken i.e. more spokes survive in the thin-line cloud that in the cloud of asterix-
marked spokes.

of spokes to follow the same direction. The adaptive mechanism used here is the analyzed One-

Step Backward adaptive protocol. The overlapping traces of both protocol variants are shown

in Figure 3.5. The presented result clearly illustrates that the adaptive BeSpoken performs

better in cases where the applied protocol parameters have been underdesigned for the current

network density. This is an important observation as any WSN can become scarcely populated

due to random nodes dying.

The second simulation experiment was designed to evaluate the expected better perfor-

mance of the adaptive BeSpoken for a network with a hole (small unpopulated network area).

For established design parameters (r and q), we simulated a stationary network of unit den-

sity, with uniformly distributed nodes deployed over a square region, where all nodes in the

bounded region highlighted in Figure 3.6, have been removed. Again, spoke traces are gener-

ated as we extended a large number of spokes to follow the same direction. The overlapping

traces of both protocol variants are shown in Figure 3.6. The adaptive mechanism used here is

Two-Step Backward adaptive protocol, as we expected that once the hole is encountered, the

45

0 50 100 150 200 250 300 350 400
100

200

300

400

500

600

700

800

Figure 3.6: Two samples of spokes directed eastward in a network where a hole has been
created due to node destruction: thin-line spokes are created by the adaptive BeSpoken and
asterix-marked spokes created by the basic BeSpoken; Two-Step Backward adaptive protocol
demonstrates better performance than the basic BeSpoken.

spoke needs to significantly change its direction in order to avoid the void. The presented result

illustrates that this adaptive BeSpoken performs better in the presence of holes. We suggest that

each WSN application can be associated with higher probability of irregularities of a particular

type. Hence, the appropriate adaptive protocol can be selected according to the application.

For example, a WSN deployed for environmental monitoring over long time periods is likelier

to suffer from network thinning, while a WSN deployed in disaster areas has higher chances to

experience network holes as sensors can be systematically destroyed by hazardous events.

46

Chapter 4

Data Collection in WSNs Based on Distributed Networked Storage:
an Overview

Thematically, the following chapters represent the second part of the dissertation. This chapter

provides an overview of the existing work and key problems in WSN distributed networked

storage while, practically, serving as an introduction to the second part of the dissertation.

In order to motivate our approach to the problem, in this chapter, we first characterize

general coding approaches for distributed networked storage, and, next, describe in detail and

quantify the complexity and performance of some widespread distributed coding schemes em-

ployed for data dissemination and storage. Note here that we use the term distributed net-

worked storage, to distinguish between this paradigm of storing data from multiple sources

across multiple storage destinations (within a network) and the framework commonly referred

to as distributed storage where single source data is stored across multiple (distributed) disks,

as suggested in [54]. Finally, we provide a critical discussion of the existing approaches, and

motivate the alternative solutions that we propose in the following chapters.

4.1 Encoding Schemes for Networked Storage in WSNs

4.1.1 Connection to Data Persistent Storage

Several papers have recently appeared that analyze distributed coding for data persistent storage

in WSNs [35–40]. This body of work is closest to our proposed approach in that the encoding

methods are the same and, hence, also provide data ”at the fingertips” of a mobile data collector

and, in addition, ensure robustness against failures by storing encoded pieces at a large number

of nodes.

A general description of the problem of coding for data persistence in WSNs [38] can be

47

given using the already introduced system model of a WSN with n nodes and k sources at

any given moment. Considering that all sensors are inherently unreliable and vulnerable to

failures, and, also, compelled to colaborate by relaying each other’s data, the question of data

persistence naturally arises: how do we complement these features in order to reliably store

(and retrieve) all k independent data packets that the sensors have gathered, even after a subset

of sensors has failed.

Note that data persistence in WSNs has a spatio-temporal character since it implies some

changes over time, and it concerns the whole network area. In addition, it has a random charac-

ter by virtue of its unreliable storage. Both properties are also associated with the data collection

scenario we study here, as the data collector appears at a random position, at random time, and

aims to collect all the k source data packets. The common solution to this problem and the data

persistence problem is the storage redundancy. Regardless of where the data collector appears,

redundant storage should allow for efficient data collection from a compact collection area at

its fingertips, i.e., at a set of connected (through multiple hops) wireless nodes in its proximity.

Redundant data storage across the network may mean simply storing source packet replicas,

or random linear combinations thereof, and resulting respectively in a repetition code, or other

linear code, implemented across a network.

In conclusion, storing encoded pieces at a large number of nodes provides the diversity of

available information needed to achieve the robustness against failures. This diversity is also

needed because the location of a potential data collector is unpredictable, and the goal is to

make the data available in its proximity. In both applications, such storage is referred to as data

persistent storage.

4.1.2 Coding Models

We now address recently introduced random encoding schemes used for storage over wireless

sensor networks. The two general classes of packet combining (coding) techniques discussed

there are: Fountain-type decentralized erasure codes [37–40, 55], and decentralized erasure

codes [36] - a variant of random linear network codes [56, 57], and a distributed version of

Maximum Distance Separable codes [58]. Note that both code classes are linear, where the

linear combining of source packets is performed over a finite field GF (q). Both classes can be

48

0 0 0 0 0

0 00 0

00 0 0

0

1

k

1 2 5 i

5

2

i

n

n

n-1

n-2

1

1

k

x

x G=y
T

G=

Figure 4.1: Copies of each source packet are stored at O(lnn) random nodes out of n network
nodes; the figure shows how the sets of nodes that sources 1 and k (circled nodes on the left)
select to store copies of their packets correspond to non-zero entries (dark dots) in the corre-
sponding rows (1st and kth) of the generator matrixG; non-zero entries are random coefficients
from field GF (q). X is the vector of distinct k packets, and Y denotes the vector of n code
symbols.

represented by a bipartite coding graph whose vertices correspond to k sources and n storage

nodes, as shown in Figure 4.1. The mapping from k source packets to n encoded packets can

be also represented by a random generator matrix G whose elements are coefficients randomly

selected by storage nodes from GF (q), also illustrated in Figure 4.1. Here, Y = GX, X being

the vector [x1, · · · , xk]
T of source packets, and Y, the vector [y1, · · · , yn]T of encoded packets.

Precisely, we view the k packets as elements in GF s(q), i.e., vectors composed of s chunks

in a field of size q. Thus, if we denote the chunks by cj , j = 1, 2, · · · k, then each storage

node stores random linear combinations of the cjs. More specifically, if the linear combination

stored with a node i is denoted fi, then

fi =
k∑

j=1

cjβj

where (4.1)

Pr {βj = β} =
1

q
, β ∈ GF (q).

49

4.1.3 Connections to Random Network Coding

Traditionally, the information flow in networks has been modeled as multi-commodity flow,

where the underlying network consists of error-free links of finite capacity, and where the

only operation that can be performed on data is routing (i.e. storing and forwarding packets

without modifying their contents). By Mengers theorem, the maximum information that can

flow is upper bounded by the value of the minimum cut between the source and the destination;

this well-known result from classical graph theory is generalized by the Max-flow Min-Cut

theorem [59,60].

When nodes are allowed to send messages created by combining two or more incoming

messages (making linear combinations of packets over some finite field) the situation is much

less clear, although the rate dependancy on the network graph is well understood for wired net-

works. There are examples of directed graphs where a higher communication rate is achievable

through these network coding solutions than by routing, some of them presented in the seminal

paper by Ahlswede et al. [61].

Most of the work to date on network coding focuses on multicast. Now, an equivalent

way of thinking of the data collection problem is that of expanding the random bipartite graph

connecting the k data nodes with the n storage nodes by adding a data collector for every

possible subset of size k of the n storage nodes. Then the problem of multicasting the k data

packets to all the
(n
k
)
data collectors is equivalent to making sure that every collection of k

storage nodes can reconstruct the original packets. This connection of storage and multicasting

was proposed in [36], and reiterated in [54]. It is known that random linear network codes

[62] are sufficient for multicasting problems as long as the underlying network can support

the required throughput. Decentralized erasure codes can therefore be seen as random linear

network codes [62] on the (random) bipartite graph connecting the data and the storage nodes,

where each edge corresponds to one routed packet. Note that the communication graph in

distributed storage does not correspond to physical links but to virtual routing paths that are

made by the randomized algorithm. Therefore, we can design rules for selecting some of the

graphs from such a large ensemble of graphs, in order to minimize communication cost.

As already mentioned, several papers have recently offered solutions for data storage in

50

WSNs, based on various forms of random network coding [35–40]. Except for [37], where the

authors provide an interesting analysis of an algorithm for random sampling of WSN nodes,

based on random walks with traps, but consider only location-aware network nodes arranged

in a grid topology, we here present detailed description of these approaches.

We next outline several important common characteristics of these distributed storage tech-

niques, which are later used as criteria in comparative evaluation of solutions exhibited by each

particular approach.

4.1.4 Hallmarks of Random Codes in Distributed Networked Storage

Decentralized Encoding: The information is sensed in multiple locations and global coordi-

nation is unavailable. Hence, the code construction should be distributed and based on

local knowledge. In particular, each data source chooses where to route its packet in-

dependently, and furthermore the storage nodes select their coefficients independently.

Algebraically, this corresponds to having a code where every row of the generator matrix

G is created independently (as illustrated in Figure 4.1). A code with this row indepen-

dence property is called decentralized [36]. This property calls for stateless randomized

network algorithms to generate the encoded information. Note that, in addition, Fountain

type decentralized erasure codes require the number of nonzero elements of the matrix

columns (or code symbol degree) to have desired statistics. This results in the most ap-

pealing feature of Fountain type coding - the linear complexity of decoding which, here,

corresponds to linear original data reconstruction time.

Maximum Distance Separable property: Ideally, the data collector would like to reconstruct

all k source packets from linear combinations gathered from any set of k storage nodes.

The collector must invert a k × k submatrix G‘ of G (as in Figure 4.2), corresponding to

a set of k nodes. The key property required for successful decoding is that any selection

of k nodes (sub-matrix of G) forms a full rank matrix. When this is the case, decod-

ing corresponds to solving a system of linear equations (using for example, Gaussian

elimination) over a finite field the random coefficients have been selected from. A ma-

trix that has that property corresponds to a Maximum Distance Separable (MDS) code.

51

Let us point out that such combinatorial constructions are quite difficult to achieve in a

distributed manner.

Number of Packet Replicas - Sparcity of code’s generator matrix: Both random linear codes

and MDS codes have dense generator matrices, which is not desirable for codes con-

structed in a distributed manner, such as decentralized erasure codes, as significant com-

munication is required to construct such non-sparse matrices. Algebraically, the question

is how sparse can a matrix with independent rows be made, and still have the property

that square sub-matrices are full rank with high probability. Practically, in most dis-

tributed implementations, this question is about how many packet replicas should each

souce send to storage nodes.

Network Algorithms for random sampling: All these methods rely on a packet routing layer

that can route packets to uniformly random locations in the WSN. This is sometimes

referred to as pre-routing [36]. Constructing such random sampling algorithms which are

distributed and localized is key for the construction of codes in networks. For Fountain

coding based storage, the key difficulty is in devising efficient techniques to disseminate

data from multiple sources to network storage nodes in a manner which ensures that the

required statistics of created linear combinations is accomplished. Achieving this goal is

particularly difficult when employed with the classic random geometric graph network

models [38–40].

4.2 Existing Solutions to Coding for Persistent Data Storage in WSNs

4.2.1 How many replicas should a source send away?

The following toy example provides more insight into the above stated question. It is based

on the distributed version of the coupon collector model [63] (uniform sampling with replace-

ment). The Coupon Collector Problem concerns a shopper who tries, in several attempts, to col-

lect a complete set of k different coupons. Each attempt provides the collector with a coupon

randomly chosen from k known kinds, and there is an unlimited supply of coupons of each

52

0 0 0 0 0

0 00 0

G’G=

k nx

Figure 4.2: Relaxation of MDS requirement due to random (and distributed) construction re-
sults in requiring a generator matrix G whose all square submatrices are full-rank with high
probability. Hence, the random square submatrix G‘ illustrated in this figure, representing a
random collection of storage nodes (and their linear combinations), is expected to be full-rank,
thus promising full data recovery from this random set of nodes.

kind. The expected time E[Tk] to collect all k coupons is

E[Tk] = 1 +
k

k − 1
+

k

k − 2
+ · · ·+ k = k(ln k + O(1/k)).

Imagine now a centralized entity that has an access to a repository of packets produced by

k sources. Its goal is to draw k different packets from the repository and to store them at k dif-

ferent nodes. There is infinite number of copies of each packet type. So, the centralized entity

is expected to access the repository O(k ln k) times in order to accomplish the goal. This gives

us an insight on how many copies of a packet (O(ln k)) each source should distribute indepen-

dently across the network for sets of k storage nodes to be able to collect enough independent

linear combinations of their packets for decoding.

We now explain in detail the variations of this basic approach. In the scheme proposed

in [36], the authors consider a large-scale wireless sensor network where the ratio of k and n

is held constant as the network grows. They introduce a class of erasure codes mechanized by

independent data dissemination from each source node to a randomly selected subset of storage

nodes, storage node being any other node in the network. Linear packet combinations stored at

each node are determined by random pre-routing. Specifically, following an extension of the

coupon collector problem, the authors suggest that the data should be diffused by pre-routing

O(lnn) replicas of one source packet node to randomly selected storage nodes. The require-

ment thatO(lnn) packets be randomly prerouted is based on the requirement that the decoding

53

of the k packets can be performed based on the linear combinations stored at k randomly se-

lected storage nodes in a manner akin to MDS codes. Recall [58] that a linear code [n, k, d]

belongs to the class of MDS codes if it has the largest possible minimum distance d = n−k+1.

In distributed networked storage, the combinatorial constructions in which every set of k

linear combinations results in a full rank matrix are quite difficult to achieve. To better assess

the involved complexity, let us imagine a centralized entity that has an access to a repository of

packets produced by k sources, and has agents connected to every random subset of k storage

nodes (following MDS requirement), then each such subset is in fact a coupon collector. How

many times each agent needs to access the repository, or, equivalently, how many replicas

should each source send to satisfy each agent, is solved using theory of perfect matching of

bipartite graphs, and the related Edmunds and Erdosz theorems on matrix rank.

The result is formalized by Theorem 1 in [36]: if each source disseminate c ln k packet

copies, the probability that a combination matrix is not full rank is smaller than k/q + o(1)

for any c > 5n/k, where q is the number of elements in the field. Apart from using perfect

matching, the proof also uses Schwartz-Zippel theorem on the probability that a determinant of

a matrix with finite field elements is equal to zero (i.e., that the randomly selected coefficients

in linear combinations are the roots of the polynomial).

4.2.2 Pre-Routing: Distributed Algoritms for Random Sampling

As mentioned previously, pre-routing encompasses selecting uniformly at random a destination

node from the network and providing a route (in a distributed manner) for a data packet to

follow, in order to reach that destination. The key problem is that sources are not aware of the

nodes in the network, except for those in their immediate neighborhood. If a source had a list

of all nodes and their locations, it would draw a node from the list uniformly at random, and

insert its location in the packet’s header to be routed by some geographic forwarding protocol

toward the selected node. Since this is not the case, energy-efficient solution for a distributed

pre-routing mechanism is a significant challenge.

The algorithms and techniques for distributed pre-routing to find a random node using only

local information are not discussed in [36]. One possible way to achieve it is through a random

walk: start the random walk from the source node and hop randomly for a number of steps

54

where each step corresponds to selecting a new node from the neighborhood as the new data

packet relay. When the number of steps is sufficiently large the random walk will stop at a node

uniformly selected from the network [64]. The uniform distribution here is a result of selecting

the next hop uniformly from the set of the current node’s neighbors. This is often referred

to as normal random walk. Other forwarding rules result in other stopping distributions (not

uniform). When the random walk is modeling a Markov Chain whose states are network nodes,

the sufficiently large number of steps corresponds to the so-calledmixing time of this chain, and

the probability of stopping at a particular node (state) corresponds to its stationary probability.

In the next coding approach [38] that we analyze, the authors do propose a random-walk

based distributed mechanism for random pre-routing in a network of location-unaware nodes, in

order to achieve Fountain type storage, i.e. to ensure that the required statistics of created linear

combinations of packets are achieved. The network fountain code proposed in the paper can

be also represented by a bipartite graph which consists of sources as variable nodes, encoding

sensor nodes as check nodes, and the edges of the graph represent the mapping between the

sources and the check nodes. Note that we use the terminology related to decoding graphs used

in belief-propagation decoding.

Dissemination path is a random walk trajectory a packet follows from a source until it gets

stored at a check node. The authors propose a variant of Markov Chain Monte-Carlo simulation

methods [65] to accomplish fast-mixing random walks over the network graph, which should

ultimately converge to a desired distribution (e.g., Robust Soliton [66]) of check node degrees.

The check node degree d is the number of independent packets that are received by the node

after following properly constrained and sufficiently long random walk trajectories. The net-

work connectivity graph considered here is the random geometric graph. Recall that random

geometric graphs (RGG) with parameters n and r are constructed by throwing n points (nodes)

randomly uniformly into the unit square and adding edges to connect any two points which are

at distance at most r from each other [67].

In essence, on the network graph level, carefully designed probabilistic forwarding tables at

each node result in a transition probability matrix describing Markov Chain whose stationary

distribution is related to the desired code symbol degree distribution μ(d). Hence, after a

sufficiently long (mixing) time, the randomwalks, each carrying a packet from one of k network

55

sources, could drop the packets at random nodes, and this random process would eventually

result in linear combinations of packets stored at individual nodes, and whose code symbol

degree adheres to the designed distribution. The length of the random walk is proportional to

the transmission cost of disseminating a source block, which must be minimized.

There is a family of Markov Chain transition probability matrices that converges to a given

stationary distribution, and the fastest converging one is obtained by minimizing the second

largest eigenvalue modulus, accoring to the spectral theory of matrices. For a topology modeled

by random geometric graph, the length of the random walk can be approximated with the

mixing time of the graph, which is O(n log n) [39].

Although in [38] the Markov Chain transition probability matrix emulated by the random

walk based on a heuristic method (Metropolis-Hastings algorithm) does not induce a minimum

mixing time, the algorithm is distributed and hence appropriate for large sensor networks. The

transmission cost of such a dissemination, based on decentralized fountain codes, is the product

of the number of random walks and the length of random walks, where the latter now only

depends on the network topology. With b copies per source, and Robust Soliton code symbol

degree distribution μ(d), balancing supply and demand implies that the number of random

walks is

bk ≥ n
k∑

d=1

dμ(d), (4.2)

since a node may need to receive more than d packets in order to store d distinct ones. Alterna-

tively,

bk = n
k∑

d=1

xddμ(d) > n ln
k

δ
, (4.3)

where xd > 1 are slack variables that can be calculated from the constraints on how much the

probability of degree d can diverge from Robust Soliton.

Recall that in [36] each source disseminates independently, with the relaxed MDS require-

ment that the probability of decoding from any set of k codewords is high enough. Even

though this scheme does not aim to satisfy a given code symbol degree distribution, it provides

56

a tighter bound on the number of per-source replicas b needed for the scheme in [38], than the

one given by (4.3). Hence, if linear decoding complexity is desired, and we decide to pursue

approach given in [38], loosely bounding b by the number of copies per source required by

[36] (b > 5n ln k/k), then, for a network of n = 104 nodes, and where at any time 10% of

nodes are sources, more than 200 random walks per source are needed. Obviously, a stricter

requirement imposed on implementations of decentralized Fountain codes than just high prob-

ability of decoding from any set of k codewords (in terms of satisfying code symbol degree

statistics) makes the above bound very loose.

Another recent work on distributed storage based on decentralized Fountain codes [39, 40]

avoids sending multiple replicas from each source in order to satisfy code symbol degree statis-

tics by using additional processing of received packets. Yet, in order to properly mix the data

across the network, sufficiently long random walks allow packets to reach all nodes. Each

network node needs to maintain k bits to keep track if it was already visited by a particular ran-

dom walk. The stored linear combination of packets may or may not be modified by a first-time

passing packet, as a result of a Bernoulli experiment performed with success probability p = d
k .

Here, d is the node’s desired code symbol degree drawn from Robust Soliton. Despite the fact

that only one random walk per source is initiated, the length of random walksO(n log n) incurs

high communication cost.

4.2.3 Data Recovery

On a positive note, the higher dissemination cost in decentralized Fountain schemes [39, 40,

68] results in a better control of the degree distribution, which allows for belief propagation

decoding of the stored packet combinations. With belief propagation, decoding complexity for

Fountain codes is O(k ln k). Any erasure code can be decoded using Gaussian elimination in

(O(k3)). Hence, decentralized erasure codes, such as the variant described in [36], as well as

random linear coding, have decoding complexity (O(k3)). Exploiting the sparsity of the linear

equations can result in faster decoding: with the Wiedemann algorithm [69] one can decode

decentralized erasure codes in O(k2 log(k)) time on average.

The issue of decoding complexity is associated with the partial recovery problem, where

one is interested in querying fewer than k nodes and recovering partial information. So far we

57

have been addressing the problem of recovering all k data packets by querying k storage nodes.

With a rapidly failing sensor network, the queries need to be adjusted to network dynamics

since some nodes are sensing information that needs to reach the data collectors as soon as

possible. Sanghavi [70] investigated the optimal degree distribution for fountain codes when

one is satisfied by recovering less than k data packets. Upper bounds on the performance of

any degree distribution and lower bounds achieved by optimized distributions are presented for

different fractions of k. To an extent, although in a different setup, the results of Sanghavi’s

paper are confirmed by a practical distributed storage scheme proposed in [35].

This paper [35] introduces Growth Codes with a dynamically varying degree distribution.

Here, we have a classical network coding mechanism where nodes exchange code symbols

with their neighbors and combine received code symbols with the existing local information

before storing it. As a node initializes the memory with its own symbol and randomly picks

code symbols to be transmitted frommemory, the probability of transmitting own information is

initially very high and then gradually decreases as the memory is filled with other code symbols.

Hence, the code symbol degree gradually increase with time, as data from different sources gets

mixed in the network. This varying code symbol degree distribution optimizes sensor network

data persistence under node failure, as it allows, with high probability, for partial recovery of

the information corresponding to any subset of nodes. Intuitively, a high degree increases the

probability that code symbol transmissions are innovative, while a low degree increases the

probability that the information can be decoded immediately upon reception.

4.3 Critical Discussion of the Existing Solutions

In conclusion of this review, let us point out to two common features of the presented encoding

solutions for in-network distributed data storage:

Costly Random Uniform Sampling of Network Nodes: Every source node performs this sam-

pling of nodes when selecting a node to store its packet at. Such uniformly-random stor-

age selection is needed to make the data available for collection everywhere (i.e. from a

random subset of nodes), and imposes a dissemination method that would properly ”mix”

data around the network graph. Note that this is a slightly different issue than achieving

58

a particular desired distribution of packet loads stored accross the network (in terms of

the number of distinct packets encoded per node, i.e. code symbol degrees), such as

in [38]. In fact, if the desired distribution of the codeword degrees were uniform (and we

only send one packet replica from each source), it would represent the same requirement.

Then, we would have equal chances to decode k original packets from a set of storage

nodes in any part of the network, but this set would have to be much larger than k.

As we already pointed out, dissemination methods to properly mix data across the net-

work are based on random walks, one alternative being simple flooding, which we do not

consider for obvious reasons. Minimum mixing time of random walks [71] provides a

measure of optimality for the lengths of the dissemination paths. The minimum mixing

time depends on the network topology graph, and unfortunately, for realistic sensor net-

work topologies (modeled by random geometric graphs), this mixing time is very large

(O (n lnn)). We find this observation very important, as it implies that the transmis-

sion cost might be further decreased, if the network graph is modified through topology

control, or established by building an infrastructure of spokes. In fact, in the proposed

approach, we rely on the symmetry of the circular subgraphs within the infrastructure

of spokes to create deterministic, yet distributed, dissemination mechanisms, resulting in

decreased communication cost.

Note that data mixing mechanisms are not required for Growth Codes, as these codes are

based on the assumption of an extremely dynamic network topology (with mobile nodes,

for example). Nodes encounter other nodes with uniform probability, i.e., the neighbor-

hood of a node when transmitting a code symbol is uncorrelated with the neighborhood

during previous transmissions. In less random scenarios, coding performance will be

sub-optimal. We conjecture that an overlay network (e.g. based on BeSpoken infrastruc-

ture) which can be utilized to forward data not only to nodes in the geographic proximity,

but also along long-haul paths, can provide the effect of a dynamic network topology.

Ignoring Broadcast Nature of the Wireless Medium: Let us first broadly comment on ran-

dom network coding in the context of the broadcast nature of the wireless medium. Here,

the links cause packets to be spread about in probabilistic manner, which is often referred

59

to as wireless multicast advantage. Consequently, there is no reason to restrict informa-

tion flow to a path as in wireline networks, because every node in the network can poten-

tially act as a relay, encoding packets it receives and sending out these encoded packets.

A significant observation is that none of the presented dissemination mechanisms (used

to mechanize decentralized encoding) leverage the wireless multicast advantage. Ran-

dom walk prerouting relies on forwarding a packet to one of the neighbors in the net-

work graph, while the fact that all the neighbors are overhearing the same transmission

is not considered. In contrast, the decentralized storage that we propose next is aiming to

incorporate the wireless multicast advantage into the dissemination model.

60

Chapter 5

BeSpoken Network Infrastructure for Data Collecting

In this chapter, we discuss a BeSpoken network infrastructure for data collecting, and propose

new strategies to collect Fountain-encoded data stored within such infrastructure. To illustrate

the scalability of data collecting facilitated by the existence of such infrastructure, we also

provide several heuristic methods for coding-based data storage, while a detailed description of

an architecture for distributed storage and data collection, based on a BeSpoken subnetwork,

is given in the next chapter, followed by a thorough analysis and a discussion of performance

gains.

As discussed in Chapter 1, the BeSpoken infrastructure provides a set of data paths for

dissemination, and a virtual coordinate system for data querying and localization. We propose

to employ distributed coding and decoding methods to enable scalable data dissemination and

storage within the proposed infrastructure. The BeSpoken-based solution is motivated by the

fact that the classical dissemination methods suffer from excessive complexity that cannot be

sustained by simple sensor nodes: conventional shortest-path routing algorithms are not scal-

able as they require each sensor to maintain a routing table with a size proportional to the total

number of sensors in the network, while geographic routing protocols [12, 25], although more

scalable, assume that sensors know their respective locations. Next, proposed dissemination

methods suggest network-wide storage of linear combinations of data from the source nodes,

hence making it possible for the data collector to visit only a sufficiently large random (and

local) subset of network nodes to collect all the data. Data collecting efficiency is measured

through the resources required to distribute the data from the source nodes, the number of stor-

age nodes that the data collector needs to visit and the effort (number of operations) required

for both encoding and decoding of data. In the previous chapter, we argued that the existing

distributed coding methods are not efficient and, in this and the following chapter, study how a

61

S0

S01 S02

���

1

���

2

Sk

���

3

���

Figure 5.1: A complete set of source spokes during infrastructure-building phase. Both source
localization and infrastructure mapping are illustrated here: Backbone spokes S01 and S02 are
already known (directions and lengths). Sk infers that out of three spokes intersecting the
backbone spoke S01, σ1

k1 is likely perpendicular to S01, based on the length of the spokes. With
that premise, Sk can estimate the direction of σk2, based on geometry arguments. Knowing the
lengths and directions of σk1 and σk2, Sk estimates its location.

BeSpoken-based infrastructure allows for significantly improving their efficiency.

5.1 Event Localization

The events in the network are observed by the source nodes at any time after the creation of

the backbone spokes. During the infrastructure building phase, the events are advertised along

the source spokes, designed to be shorter than backbone spokes. Thus the transmission range

of source spoke leading relays rs is smaller than r, i.e. rs = gr, g < 1. These source spokes

are equally spaced around the source and incrementally grown until the two closest adjacent

backbone spokes are intersected, as shown in Fig. 5.1. Each spoke is extended by a fixed

number of hops at a time. If an intersection occurs due to this incremental extension, the nodes

of the intersecting spoke relay the alert back to the source. Upon the first intersection event,

the source stops the growth of the pertaining spoke only, while the subsequent intersection with

the adjacent backbone spoke is signaled to all other spokes from the same source set, to stop

further propagation. If the intersection has not been announced, the spokes get extended by the

next round of hops. The resulting set of source spokes is shown in Fig. 5.1. We here focus

62

Isometric route II

Isometric route I

S1

S2

R2 R1

(a) (b)

Figure 5.2: (a) Transversal spokes form associations at the common intersecting backbone
spoke creating the ordered routes, according to some measure of distance from the center (b)
The number of sources associated with a particular isometric route is proportional to the area
of the annulus outlined by this isometric route and the adjacent one, closer to the centre

on the two spokes intersecting the adjacent backbone spokes, which we refer to as transversal

spokes (Fig. 1.2 (b)). Other source spokes are important for source localization (Figure 5.1),

and may be used to enhance the impact of various infrastructure-based WSN solutions, but we

do not analyze their contribution here.

5.2 Isometric Networks

Let us assume there is a sufficiently large number k of source nodes. Two transversal spokes

from adjacent wedges, that are on a similar distance from the network center, associate with

each other to form an isometric circular route. The following procedure is exercised: at each

backbone spoke intersection, the source whose spoke is forming the intersection looks for the

adjacent wedge spoke that forms the next upstream (closer to the central node) intersection with

this backbone. If such an intersection is not available, then it looks for the next downstream

intersection. In either case, the initiating source makes an association with the source of the

63

pertinent intersecting spoke, forming a route that goes through its own transversal spokes, part

of the backbone spoke and the transversal spokes of the associated source. The process con-

tinues from wedge to wedge, and closes into a circular route that we call an isometric route

(Fig. 5.2 (a)).

We assume that there are six wedges, and the same number of sources instantiating each

isometric route. However, there may be more sources in a wedge per isometric route, as sources

that are one (or a limited number) hop away from the existing source spokes do not create

their own spokes but utilize the closest isometric route to distribute their packets. Thus, each

isometric route Ii creates a ”one-dimensional network” Ni in itself. Assuming that isometric

routes are perfect circles of radius Ri, and considering uniform distribution of events λs < 1

(for unit density of nodes) , the number of sources associated with a particular isometric route

is proportional to the area of the annulus outlined by this isometric route and the adjacent one,

closer to the centre, as shown in Fig. 5.2 (b). Thus, the expected number of sources in Ni is

K̄i =
(
R2

i −R2
i−1

)
πλs, (5.1)

where i ≥ 1 and R0 = 0, while the expected number of nodes in this network is approximately

equal to the area of the annulus 2πRirs, assuming the unit density of nodes. We allow for the

possibility of an open isometric route, since it does not change the logic of our model. The

isometric routes are ordered by their proximity to the central node. The last isometric route is

created differently, and it is identical with the perimeter route.

5.3 Push-Pull Model of Data Collecting Based on BeSpoken Infrastructure

In the previous chapter we studied distributed solutions for the storage protocol that makes

the entire data set of k source packets available in any collection of k (1 + ε) storage nodes,

accessible by a data collector who approaches the network perimeter at an unknown location

(see Figure 1.2). Here, we introduce a data collection architecture which assumes that such

storage schemes are available in a network whose nodes implement BeSpoken protocol.

There is a fundamental tradeoff between network storage capacity and the collection delay.

If each node across the network can store all the packets, the data can be collected in a single

64

hop. On the other extreme, if each node has own data destined for the collector and no capacity

to store other packets, the collector has to reach out to all the network nodes to collect the data,

which would incur an extreme delay. The canonical model considered here is when the number

of source nodes k is smaller than the number of network nodes and where each network node

can both relay and store one (possibly encoded) packet.

More efficient storage codes than the simplest repetition code require that the collector not

only collects the linear combinations but also is capable of decoding/recovering the original

packets. A well known codes that are suited for belief propagation decoding, characterized by

linear decoding complexity, are LT codes [66].

Given BeSpoken infrastructure, we now propose a data collecting approach which relaxes

the decoding requirement based on the asymptotic analysis of LT codes [66], which demands

that k +
√

k log2(k/δ) code symbols be collected to decode (1 − δ)k original symbols. Here,

δ is a sufficiently small constant. In the proposed strategy, the collector decides to collect only

k linear combinations before it starts the decoding.

We assume that random linear combinations are created along the infrastructure that can be

forwarded down the backbone spokes to the perimeter nodes in the proximity of an intelligent

collector, as soon as the collector announces itself by sending a query along the same backbone

spokes. Hence, the encoded data, with the code symbol degree statistics that are congruous

with belief-propagation decoding, can be gathered from the perimeter nodes in the collector’s

vicinity. Then, as the belief propagation decoding stops, possibly with a couple of packets left

undecoded (as we collected less than demanded by the bound in [66]), the collector can query

the nearby infrastructure elements for the original pieces or independent combinations that are

missing. This is possible since each coded packet contains a header with d source packet IDs,

where d is the code symbol degree.

In this manner, a push approach, resulting in in-network storage, and facilitated by net-

work coding, is combined with a pull approach (searching for particular data pieces). The push

element allows for the data availability (low access delay) and persistence, while, hopefully,

also decreasing communication cost of data collection. The lower energy expenditure due to

65

decreased communication is made possible by the subsequent pull element of data dissemina-

tion, which heavily relies on the BeSpoken infrastructure properties, and the nature of belief-

propagation decoding. We devote majority of the remaining chapter to study energy/collection-

delay efficiency of the presented model.

5.4 Heuristic Storage Methods Along Isometric Networks

We here identify simple subgraphs within the infrastructure, namely one-dimensional, circu-

lar graphs of isometric networks Ni, each with Ki sources, and devise useful heuristics for

distributed coding over associated subnetworks. We are motivated by the outlined deficien-

cies of the existing decentralized methods for encoded storage, and by the observation that the

BeSpoken infrastructure represents a graph overlaid on top of the sensor network graph, and

amenable to further topology control. This potentially allows for producing a graph with a

minimum mixing time that is much shorter than the mixing time of a random geometric graph

(unit graph) [72], typically used to model the WSN topology.

Before presenting some examples of how the infrastructure can be utilized for distributed

coding over simple subgraphs, let us first introduce some terminology. We have already asso-

ciated one-dimensional isometric networksNi with isometric routes Ii, and now we define two

classes of isometric networks, based on the number of sources K̄i expected to be supported by

such a network. If K̄i (5.1) is larger than a given threshold, the isometric network is considered

heavy, and in the opposite case we refer to it as light. For large number of sources, it is com-

putationally more efficient for data collector to decode fountain encoded stored data. Hence,

heavy networks will be properly parametrized to store data by following a distributed protocol

that is expected to result in such a decentralized fountain code. Conversely, light isometric net-

works will employ a variant of decentralized erasure codes to store data generated by smaller

number of sources.

Now, to be able to describe the notion of hubs, let us recall that backbone spokes are not

only sequences of leading relays; all nodes in the transmission range of a leading relay are

aware of belonging to the spoke. In other words, a spoke is a strip of certain width, not a

line. As an isometric route intersects a backbone spoke, it creates an implicit route to the set

66

of nodes in data transmission range (disk of radius r) of the leading relay belonging to this

intersection. This set of nodes is referred to as storage hub (see Figure 5.3(a)). Storage hub

Hij is indexed by the backbone spoke index i and the isometric route index j. Sources in

the isometric network Nj advertise and store packets with the pertaining storage hubs. More

accurately, light isometric networks use hubs for storing data, which we describe soon, while

both heavy and light ones use it as an advertising hub, in the following manner.

Let us first point out that in all distributed networked storage examples presented in Chap-

ter 4, except for a variant in [39], the number of sources k is known ahead of time. In [39],

a heuristic method is used to estimate k and n, although its communication cost may be pro-

hibitive, as it requires additional random walks of length n log n during the pre-coding phase.

With BeSpoken architecture, these numbers do not have to be fixed. Once all the sources are

connected to the backbone through isometric routes, at any moment we have a population ofK

active sources, whereK is a random number, andK =
∑

i Ki. A hub can periodically request

from active sources to announce themselves, or the sources could be propagating unsolicited

data advertisements around their isometric route. Either way, the storage hubs act as counting

hubs. Each hub should update the count of sources as a new ad is encountered. At some point,

the hub broadcasts a confirmation to all the sources associated with the isometric route and they

start sending data.

We currently assume there is one dedicated hub per isometric network at a time. The hub is

aware, by the estimated distance of the isometric route from the centre, if its isometric network

is likely to be light, and prepares itself to store encoded network data, if that’s the case. The

hub can always switch the network to a different class, if the reported number of data is higher

than the threshold. Threshold is established not only based on the number of sources, but also

on the number of nodes h in the hub. For fountain codes, this number would need to be large

enough compared to the current number of sources Ki = ki, to guarantee that sampling from

the Robust Soliton will result in an empirical distribution of codeword degrees that is close to

Robust Soliton. The leading relay inside the hub transmits the count Ki message to the hub

nodes. The hub members know how many of them are in the hub (based on previously send

”Hello” messages to the leading relay). Based on (5.1), while assuming that, on average, there

will be one-to-one mapping between each leading relay in a backbone spoke and an isometric

67

route, which (on average) is equivalent to ith isometric route having radius Ri = ir, we obtain

the following law

K̄i = r2
(
i2 − (i− 1)2

)
πλs

= r2πλs (2i− 1) , (5.2)

describing the expected number of sources in isometric networkNi as a function of its distance

from the central node. As the expected number of nodes in each hub h̄ = r2π, we can find the

percentage of network nodes that are likely to use a hub for storing its encoded data.

5.4.1 BeSpoken Light Isometric Networks: Random Linear Coding

Before the leading relay of a hub sends a query for data along its isometric route, each hub node

sets the probability parameter p = c lnKi/h, where c = 5h/Ki by Theorem 1 in [36], given

that the isometric network is light. The parameter p is smaller than one, with high probability,

as 5 lnKi < Ki for Ki > 12, while, for the network sizes that we consider, the expected

number of nodes in the ith hub h̄ (based on 2.5) is significantly larger than 12 and calls for

repetition coding of such small number of source packets. The repetition code here means that

each hub node will choose to store one of the Ki packets with probability 1/Ki, so that each

source packet gets stored in h/Ki nodes in average. Note that the variance of h is not large, by

the virtue of the spoke building process that ”avoids” network holes.

Let us now go back to typical light isometric networks with Ki > 12. The probability

parameter is chosen so that, if each of h nodes stored a packet with this probability, after ki

packets the hub will have stored cki ln ki packets in average, which is enough to claim that

there will be ki independent linear combinations inside the hub, based on the result in [36].

The packets are forwarded along the isometric route. They reach the hub’s leading relay af-

ter ni/4 hops in average, and the relay retransmits it to the hub members, with the transmission

range r (note that previous hops along the isometric route were of different range).

Now, each node flips the coin with probability p whether to store the packet, or to drop

it. Here, we assume that each node has unit memory, and if a node’s memory is m units,

we count it as m nodes. If the node chooses to store a packet while it already has a packet

68

S01

S02

H11

I1H12

I2

Source 1

Source 1 Ii

Ii

Source ki

Source ki

Hub: h nodes

C ln()ki

C ln()ki

(a) (b)

Figure 5.3: (a) For each source belonging to the isometric networkNi, the expected number of
packet replicas stored in a hubHxi, where x denotes a backbone spoke, is ln ki (b) An example
of the coding graph for the light isometric network N1, with the associated isometric route I1,
whose hub H11 is shown in (a)

stored, it creates a linear combination of the two over a GF (q), with coefficients randomly

selected from the same field. Based on Coupon Collector model, after all Ki packet types

are stored in the hub, and the expected cKi ln Ki packets have been combined, we expect to

have Ki independent linear combinations of the packets which is enough to decode with high

probability. This dissemination and coding method is illustrated in Figure 5.3. As soon as the

data collector appears and sends a data request along the backbone spoke, the hub nodes start

sending code symbols down the spoke for the collector to decode.

Since this is a variety of random linear codes, the decoding complexity for the light iso-

metric network Ni is O(K3
i). If there are K sources in the network, and all the isometric

subnetworks were light, the decoding complexity of O(
∑

i K
3
i) is already better than O(K3),

which would be the complexity for the same coding approach applied to the whole sensor

network.

5.4.2 BeSpoken Heavy Isometric Networks: Distributed Fountain Coding

In case of heavy isometric networks, the idea is to implement a variant of distributed fountain

codes, since the number of sourcesKi supported by such a network (indexed by i) is expected

69

to be large, and random linear coding as applied to light isometric networks would result in

high-complexity decoding (O(K3
i)). The approach for delivering encoded data is the same as

with light networks: upon the data collector’s query, certain isometric network storage nodes

deliver encoded data by sending them down the backbone spoke. The optimal distribution of

storage nodes along the isometric route is one of the key questions so that the O(Ki) storage

nodes can be in the ”sensitivity range” around the affected backbone spoke and respond to the

query efficiently. Another key question is the coding method.

To each heavy isometric network Ni we associate an one-dimensional (circular) dissemi-

nation graph whose ni nodes are leading relays of the composing source spokes. Thus, as the

perimeter of the ith isometric route is 2πri, and the (maximum) hop length between the lead-

ing relays of the source spokes is rs = gr, g < 1, the number of nodes in the graph is about

ni = (2πi)/g > 2πi. As we envision to have isometric networks that are farther away from

the central node configured as heavy, let us assume that i > 10. By 2.5, the spoke hop length

designed for networks of relevant sizes indicates that for networks larger than 10000 nodes we

will have more than ten isometric routes (i.e. more than ten hops allong a backbone spoke),

with high probability. Each node in the one-dimensional graph is connected to one node to the

right and one node to the left.

Let us assume that packets are passed from one leading relay to another, following a simple

random walk, where the probability of choosing the next hop on either side of the current node

is one half. According to [72], the mixing time of a random walk over one-dimensional graph

of ni nodes, where each node is connected to f nodes to the right and f nodes to the left, and

f ≤ ni/4, should be of order O(lnni/(1 − cos(2πf/ni))). For i = 10 and f = 1, this gives

the mixing time Ti of order

Ti = O(
ln(2πi)

1− cos(2π/(2πi))
)

= O(
ln(2πi)

1/i2
)

= O(i2 ln i), (5.3)

where we replaced cos(x) with the Taylor expansion cos(x) = 1− x2/2 + O(x4).

70

Now, such a random walk is too costly to be used as a pre-routing mechanism employed

in distributed Fountain encoding akin to [38–40]. Moreover, the circular graph used here as a

model of the isometric network does not reflect the multicast nature of the wireless medium.

In the next chapter, (Figure 6.3) we introduce another model of the isometric network that

does incorporate wireless multicast advantage, and also design a pre-routing protocol that uti-

lizes the symmetry of this graph instead of letting source packets follow random walk trajecto-

ries.

More precisely, a detailed model of data gathering in heavy isometric networks, which

includes all aspects of data dissemination and distributed storage, is the subject of the following

chapter.

5.5 Conclusions

In the previous two chapters we discussed the existing decentralized coding-based storage

methods, and analyzed the potential of the BeSpoken-based infrastructure to mitigate some

of the drawbacks these methods have. We started from the fact that we have the BeSpoken in-

frastructure ”for free”, assuming that it has been built for the purpose of searching for particular

data instances, by using the model of intersecting source and sink spokes, and, in addition, for

localization of network events, through a virtual coordinate system, based on the hop-distance

from the backbone spokes. As we highlighted in the subsection 4.3, the observed deficiencies

of the current approaches to network coding for data persistence and in-network data storage

in WSNs are a great deal due to the topology of the dissemination graph, typically modeled

as random geometric graph. The BeSpoken infrastructure offers a flexibility in terms of parti-

tioning the network into regular subgraphs over which we can achieve better coding efficiency.

This efficiency is measured by several parameters:

• communication cost of data dissemination paths, which affects the total energy con-
sumed by the network to store easily collectable data. Here, we plan to express the

energy savings as a result of both partitioning (as
∑

i ki ln ki < k ln k, for k =
∑

i ki),

and a tradeoff of decoding requirements, achieved through the push-pull model of data

collecting.

71

• decoding complexity, which affects the delay in reconstructing network data at the
data collector. Here, we use partitioning to achieve shorter decoding time for light net-

woks (as
∑

i k
3
i < k3 for k =

∑
i ki), and we use push-pull method for heavy networks,

to combine partial decoding with specific data queries. We next present a detailed com-

plexity analysis of the proposed decoding model.

• amenability to a distributed and ad-hoc implementation (e.g. the number of sources
does not need to be known ahead of time).

• scalability. A good practice in treating scalabilty issues is to introduce network hierar-
chy, or network partitioning. Here, network is partitioned into subnetworks that are cus-

tomized to handle network coding task according to number of the associated sources. In

the next section, we attempt to establish specific measures of scalability for both the com-

munication and the decoding-complexity aspect of the proposed data collecting strategy.

We address many of these aspects of efficiency in the discussion of our Fountain-based storage

and collection strategy, presented in the next chapter.

72

Chapter 6

Doped Fountain Coding for Minimum Delay Data Collection

6.1 Introduction

In this chapter we analyze decentralized Fountain-type network coding strategies for facilitat-

ing a reduced delay data collection and network coding schemes for efficient data dissemination

for a planar donut-shaped sensor network, introduced in previous chapter (see also Figure 6.1),

whose nodes lie between two concentric circles. The network backbone is a circular route of

relay nodes which disseminate data. All network nodes within its transmission range overhear

relay’s transmissions and serve as potential storage nodes. The storage nodes within a relay’s

transmission range form a squad. The squad size determines the relay’s one-hop storage capac-

ity. Squad’s storage capacity together with the source node density and the coding/collection

strategy determine the data collection delay measured in terms of the number of communication

hops required for the collector to collect and recover all k source data packets. In the proposed

polling (packet doping) scheme, an intelligent data collector (IDC) first collects a minimum set

of coded packets from a subset of storage squads in its proximity, which might be sufficient for

recovering the original packets and, by using a message-passing decoder, attempts recovering

all original source packets from this set. Whenever the decoder stalls, the source packet which

restarts decoding is polled/doped from its original source node (at an increased delay since

this packet is likely not to be close to the collector). The random-walk-based analysis of the

decoding/doping process represents the key contribution of this chapter. It furnishes the col-

lection delay analysis with a prediction on the number of required doped packets. The number

of required packet dopings is surprisingly small and, hence, to reduce the number of collection

hops required to collect and recover the source data one should employ the doping collection

scheme. The delay gain due to doping is more significant when the relay squad storage capacity

is smaller. Furthermore, employing network coding makes dissemination more efficient at the

73

s=3

Doping

Figure 6.1: Collection of coded symbols: pull phase brings the three squads of coded packets
to the decoder, and then, whenever the decoder gets stalled, an original symbol is pulled off the
network.

expense of a larger collection delay. Not surprisingly, a circular network allows for a signifi-

cantly more (analytically) tractable strategies relative to a network whose model is a random

geometric graph [38–40].

6.2 System Model and Problem Formulation

We consider an inaccessible static wireless sensor network (e.g., a disaster recovery network)

with network nodes that are capable of sensing, relaying, and storing data. As described pre-

viously, nodes are randomly scattered in a plane according to a Poisson point process of some

intensity μ. The nodes have constrained memory resources. Without loss of generality, we as-

sume that most nodes have a unit-size buffer. Each node that senses an event creates a unit-size

description data packet. We refer to such a node as a data source. We assume that events are

74

1k

32

source2

source1

k 1 2 3

O ={2 h ,h ,h ,h ,h
1 2 3 4 5}

S12

h
1

h
2

h
3 h

4

h
5

Figure 6.2: Close-Up of a Circular Squad Network of k relays. Each relay is overheard by
nodes in its transmission range, referred to as squad nodes.

distributed as a Poisson point process of intensity μs < μ. We define the transmission range

as the maximum distance r from the transmitter at which nodes can reliably receive a packet.

Assuming radially symmetric attenuation (isotropic propagation), the transmitted packet is re-

liably received in a disk of area πr2, illustrated in Figure 6.2. The expected number of network

nodes in the disk is πμr2 and the expected number of source nodes is πμsr
2. Within the sensor

network, we consider a circular route, composed of k nodes referred to as relays. The distance

between adjacent relays is equal to the transmission range r. Without a loss of generality and

for simplicity, we assume that r is selected so that only a single data source node is (expected

to be) within the transmission range of a relay. That is, πμsr
2 = 1. Source node observes an

event and sends its data packet to the relay, making it a virtual source (see Figure 6.2). Thus, k

relays form a linear network (route) with data packet i assigned to relay i, i ∈ [1, . . . , k] . Each

sensor node within the range of a relay is associated with the route via a one-hop connection

to a relay. We refer to the set of nodes within the range of a relay as a squad, and to a node as

squad-node. Squad nodes can hear transmissions either from only relay i or from, also relay

75

k 1 2 3

Figure 6.3: Circular Squad Network: the storage graph.

i + 1 and, thus, belong to either the own set of squad-nodes Oi, or to the shared set of squad-

nodes, denoted Si(i+1), where, hereafter, any addition operation will be assumed to be mod k,

i.e., (i + 1) mod k, as shown in Figure 6.2. By means of associations, the relays in the circular

route together with the squad nodes form a donut-shaped circular squad network. The expected

number of nodes in the squad, is denoted with h = μr2π, while the expected area of each

shared set is E
[
Si(i+1)

]
= hs = 0.4h.We primarily focus on shared squad nodes. In the rest

of the paper, whenever we refer to squad-nodes, we mean shared nodes, and for simplicity we

assume h = hs. The goal is to disseminate data from all sources and store them at squad nodes

so that a collector can recover all k original packets with minimum delay. An IDC collects data

via a collection relay. The data is collected from kT storage nodes of which most ks < kT

reside in a set of s adjacent squads, including the collection relay squad. These s squads form

a supersquad (See Figure 6.1). The number of packets not collected from the supersquad is

denoted kd.

Note that the density of sources μs is dependent on the spatial characteristics of the moni-

tored physical process, i.e., the spatial density of events. A well designed sensor network will

ensure that the spatial density of nodes μ is designed to properly cover this process. When r is

selected to ensure r2πμs = 1 then h = μ/μs is the coverage redundancy factor. Furthermore,

for a given received signal-to-noise ratio, the one-hop transmission energy E1 and the single

hop delay τ1 are inversely proportional to μs. Given this relationship, we will use the number

of relay hops to quantify the collection cost per source symbol, both in terms of consumed

transmission energy and in terms of incurred delay.

76

For a given circular route radius R, the (expected) number of relays is k = R/r. Hence, for

a given transmission range r (or μs), the only degree of freedom is the coverage redundancy

factor h (squad size), i.e, the network density μ.By reducing μ,we decrease the average number

of nodes in a squad h. This has implications to the collection (delay and energy) cost. The

supersquad consists of s =
ks/h� squads, and the average number of hops a packet makes
until it is collected by the IDC is (s−1)/4+1. Hence, the smaller the μ, the larger the average

collection delay τs = ks((s−1)/4+1)τ1 and the energyEs = ks ((s− 1)/4 + 1)E1 from the

supersquad. Henceforth, we will, without loss of generality, normalize τ1 = 1 andE1 = 1. The

key collection performance measure will be the average number of collection hops per source

packet c, where c = ks [1 + (s− 1)/4] /k when all collected packets are from the supersquad,

i.e., kT = ks.

We will comparatively consider two classes of storage/encoding strategies: in the first,

the IDC collects the original packets, while in the second one the collected packets are linear

combinations of the original packets and, hence, the IDC needs to decode them to recover

source packets. When combining is employed, constrained by the collection delay, we consider

only storage strategies which allow for decoding methods of linear complexity, i.e., the use of

belief propagation (BP) iterative decoders. Based on the asymptotic analysis of LT codes [66],

in case when original packets are encoded into linear combinations whose degrees follow the

Robust Soliton distribution, as in [38], the expected number of collected code symbols required

to decode (1− ε)k original symbols, where ε is a sufficiently small constant, is

kT = ks = k +
√

k log2(k/ε). (6.1)

Here the number of collected packets is significantly larger than k for small to medium k-s.

Hence, collection of this many packets can be expensive, in particular when the event coverage

redundancy factor h is small. Collecting a smaller number of packets upfront would result in

a stalled decoding process. Here, we take advantage of the availability of additional replicas

of source packets along the circular network, to pull one such packet off the network in order

to continue the stalled decoding process. See Figure 6.1. The pull phase is meant to assist

the decoding process using a technique that we refer to as doping. In the following, encoding

77

7 1 2

7' 1' 2'

p1

7' 1' 2'

7' 1' 2'

p1
p1p7 p2p7 p2

p1+p6

p2+p5

p1+p3

p7+p4

7' 1' 2'

p2+p7

p3+p6

p1+p3

p7+p4

p1+p6

p2+p5

p2+p7

p
3+p

6
1

2

3

0

e
n

d

p1p1 p2 p7

p3 p6p1p1 p2 p7

p4p5 p2 p7p3 p6

p1

Node 1’s

buffer content

D
is

se
m

in
a

ti
o

n
ro

u
n

d
s

Figure 6.4: Dissemination procedure brings all network data to each relay in half as many
hops as it would be needed with simple forwarding scheme: example for k = 7 follows the
exchanges of node 1 where the black circle on the bottom represents the node’s receiver while
each gray circle above it represents the transmitter at the corresponding dissemination round

describes the mapping on the source packets employed both while disseminating and while

storing. It is a mapping from the original k packets to the collected kT = ks + kd encoded

packets.

6.3 Data Dissemination

The nodes within the transmission range of the route relays together with the relays themselves

form a dissemination network. The dissemination connectivity graph is a simple circular graph

with k nodes. This graph models connections between relays, which are bidirectional. The

connectivity graph used in the storage model is expanded with storage nodes, representing

shared squad nodes. In this graph, every storage node is adjacent to two neighboring relay

nodes. Also, edges between storage and relay nodes are directed, as illustrated in Figure 6.3.

Every edge in the dissemination graph is of unit capacity. A single transmission reaches two

neighboring relays. We consider two dissemination methods: no combining in which each

relay sends its own packet and forwards each received packet until it has seen all k network

packets, and degree-two combining, which we describe in detail next. For the degree-two com-

bining dissemination, a relay node combines the packet received from its left with the packet

78

Initialization:

k=1: Relay i sends its own packet pi, and subsequently receives the packets p(i−1) and p(i+1)

originating from its first-hop neighbors.

k=2: Relay i sends a linear combination (XOR) of the received packets p(i−1) and p(i+1), and
subsequently receives the packets containing pi XOR-ed with the packets p(i−2) and p(i+2)

originating from its second-hop neighbors, respectively. Relay i recovers p(i−2) and p(i+2) by
XOR-in the received linear combinations with pi.

For (k = 3, k < (n + 1)/2, k + +)

Online Decoding

The packets received by relay i in the (k − 1)th round contain linear combination of packets p(i−k+2)

and p(i+k−2) and packets p(i−k+1) and p(i+k−1), originating from its (k − 1)th hop neighbors.
XOR-ing the received packets with the matching packets p(i−k+2) and p(i+k−2), the relays
recover the packets p(i−k+1) and p(i+k−1).

Storing

The buffer space is updated with the recovered original packets p(i−k+1) and p(i+k−1). For k > 3 the
buffer space is updated by overwriting packets p(i−k+4) and p(i+k−4).

Encoding

In the kth round, relay i linearly combines packets p(i−k+1) and p(i+k−1), and transmits the linear
combination.

Figure 6.5: Degree-two Dissemination Algorithm

received from its right into a single packet by XOR-ing respective bits, to provide innovative in-

formation to both neighboring relays for the cost of one transmission [73]. Consequently, each

relay performs a total of
(k − 1)/2� first-hop exchanges, as described in Figure 6.4 and in
[74]. The medium access protocol which ensures decentralized interference-free transmissions

is CSMA/CA based. CSMA/CA with RTS/CTS capability ensures that if one relay obtains

access to the medium, two neighboring relays on its left side, and two on its right side will

not be able to transmit. Every third relay can transmit simultaneously. Thus, it takes three

transmission rounds for each relay to receive their first neighbors’ packets when collisions are

neglected. We define these three transmission rounds as one dissemination round.

The data dissemination process starts with each relay sending its own source packet. The

packets obtained from the first neighbors are stored in the relay’s buffer. In the subsequent dis-

semination rounds, each relay creates a linear combination over GF(2) of the received packets

by simply XOR-ing matching bits, and transmits the generated packet. Figure 6.4 illustrates

79

storage requirements together with dissemination graph showing transmissions between relay

1 and its first-hop neighbors, according to the algorithm 6.5, with k = 7 relay nodes. The

darker nodes of the dissemination graph i ∈ [1, 2, 7] , correspond to relay reception and the

lighter nodes i′ ∈ [1, 2, 7] correspond to relay’s transmission for each of the (k − 1)/2 = 3

dissemination rounds. At dissemination round k, a relay decodes its k-th neighbor packets and

transmits a linear combination of its (k − 1)st neighbor packets. Six units of relay memory

space are sufficient to enable this algorithm.

Note that here storage nodes overhear degree-two packet transmissions. They either ran-

domly combine those with previously received degree-two packets, or they first apply the on-

line decoding of the packets (see Figure 6.4), and then combine obtained degree-one packets

with previously stored linear combinations of degree-one packets.

6.4 Decentralized Squad-Based Storage Encoding

Under a centralized storage mechanism that would allow coordination between squad nodes, a

unique packet could be assigned to each of k nodes located within a supersquad of an approx-

imate size k/h, and the same procedure repeated around the circular network for each set of k

adjacent squad nodes. This periodic encoding procedure would allow a randomly positioned

IDC to collect k original packets from the set of closest nodes. However, our focus are scal-

able designs where centralized solutions are not possible. We resort to stochastic protocols for

storing packet replicas, and apply random coding to store linear combinations of the packets.

For each dissemination method we distinguish: combining and non-combining decentralized

storage techniques. In both we assume that the storage squad nodes can hear (receive) any of

the k dissemination transmissions from the neighboring relay nodes. Hence, either a common

timing clock or/and regular transmission listening is necessary.

The reference example of non-combining methods is coupon collection storage, in which

each squad node randomly selects one of k packets to store ahead of time. As the coupon

collector is completely random, it requires on average k log k storage nodes to cover all the

original packets. In order to decrease the probability of many packets not being covered, we

80

apply combining storage techniques in which one storage node’s encoded packet contains in-

formation that covers many original packets. The higher this code symbol degree is, the lower

is the likelihood that a packet will stay uncovered. We consider combining either degree-two or

degree-one packets. Each squad node samples a desired code symbol degree d from distribution

ω(d), d ∈ [1, · · · , k] . The squad node decides ahead of time which subset of d transmissions it

will combine to generate the stored encoded packet. Choosing a good distribution ω(d) is not

easy, since it needs to satisfy many contradicting requirements. The high-degree code symbols

are good for decreasing the probability of uncovered packets. However, other requirements are

more important for proper behavior of the BP decoding process, especially the right amount of

degree one and degree two code symbols. It is well known that the expected behavior of the

Ideal Soliton (IS) distribution, defined as

ρ(d) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
k , d = 1,

1
d(d−1) d = 2, · · · , k,

0 o.w.

, (6.2)

is close to ideal for Fountain codes decoded by a BP decoder [66]. However, the BP process

can be frequently stalled due to the absence of degree-one symbols (the ripple) in the collected

sample of code symbols since the size of the ripple is a random variable of large variance and

the expected value equal to one. This is the reason why Robust Soliton (RS), defined as

μ(d) =
ρ(d) + τ(d)∑
i ρ(i) + τ(i)

, (6.3)

where R = c ln (k/δ)
√

k, for some positive c, and small positive δ < 1, and

τ(d) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R
dk , d = 1, · · · , k/R− 1

R ln(R/δ)
k , d = k/R,

0 d = k/R + 1, · · · , k

, (6.4)

is used as a choice degree distribution for rateless erasure codes. For RS, the probability of

degree-one symbols is overdesigned in order to prevent stalling. However, redistribution of

81

G
t

0 000 0 00 1 1

1000 0

0

0

0

0

0

0

1

n

1 n

m-1

m
m-1

m

Figure 6.6: In the graph Gt, representing the stalled decoding process at time t, we identify
nodes on the left side (input symbols corresponding to rows of the incidence matrix) connected
to right-hand-side nodes of degree two (output nodes corresponding to columns of weight two,
represented by black nodes, and pointed to by black arrows), and then uniformly at random
select one such input symbol to unlock the decoder. The set of symbols we are selecting from
is represented by red nodes, indicated by red arrows.

the probability mass from higher degrees to degree-one increases the likelihood of uncovered

packets. In the next section, we present an analysis of why IS turns out to be better than RS

when BP doping is used.

6.5 Collection and Decoding

The collection problem with the coupon collector (and with similar non-combining storage

methods) is straightforward as it excludes decoding. The focus is simply on providing coverage

redundancy h that minimizes the size of supersquad containing k log k packets required to

recover k source packets. For the Fountain-based combining methods, the collection problem

is more elaborate, and intricately tied to decoding strategy, which we study in the following

subsections.

6.5.1 Belief Propagation Decoding

Suppose that we have a set of ks code symbols that are linear combinations of k unique input

symbols, indexed by the set {1, · · · , k}. Let the degrees of linear combinations be random
numbers that follow distribution ω(d) with support d ∈ {1, · · · , k}. Here, we equivalently use
ω(d) and its generating polynomial Ω(x) =

∑k
d=1 Ωdx

d, where Ωd = ω(d). Let us denote the

82

graph describing the (BP) decoding process at time t by Gt (see Figure 6.6). We start with

a decoding matrix S0 = [sij]k×ks
, where code symbols are described using columns, so that

sij = 1 iff the jth code symbol contains the ith input symbol. The number of ones in the

column corresponds to the degree of the associated code symbol. Input symbols covered by the

code symbols with degree one constitute the ripple. In the first step of the decoding process, one

input symbol in the ripple is processed by being removed from all neighboring code symbols

in the associated graphG0. If the index of the input symbol ism, this effectively removes the

mth row of the matrix, thus creating the new decoding matrix S1 = [sij](k−1)×ks
.We refer to

the code symbols modified by the removal of the processed input symbol as output symbols.

Output symbols of degree one may cover additional input symbols and thus modify the ripple.

Hence, the distribution of output symbol degrees changes to Ω1(x). At each subsequent step

of the decoding process one input symbol in the ripple is processed by being removed from

all neighboring output symbols and all such output symbols that subsequently have exactly

one remaining neighbor are released to cover that neighbor. Consequently, the support of the

output symbol degrees after � input symbols have been processed is d ∈ {1, · · · , k − �} , and

the resulting output degree distribution is denoted by Ω�(x). Our analysis of the presented BP

decoding process is based on the assumption that the ripple size relative to the number of higher

degree symbols is small enough throughout the process. Consequently, we can ignore the

presence of defected ripple symbols (redundant degree-one symbols) [75]. Hence, the number

of decoded symbols is increased by one with each processed ripple symbol. Now, let us assume

that input symbols to be processed are not taken from the ripple, but instead provided to the

decoder as side information. We refer to this mechanism of processing input symbols obtained

as side information as doping. Doping for improved decoding was first described in [76] as

a technique that enables iterative decoding of serially concatenated codes. [77] reports a two-

stage scheme where a code is sent in the first stage, while in the second stage the encoder

maintains a dialog with belief-propagation decoder, enhanced by a doping algorithm. Here,

to unlock the belief propagation process stalled at time (iteration) t, the degree-two doping

strategy selects the doping symbol from the set of input symbols connected to the degree-

two output symbols in graph Gt, as illustrated in Figure 6.6. Hence, the ripple evolution is

affected in a different manner, i.e. with doping-enhanced decoding process the ripple size does

83

not necessarily decrease by one with each processed input symbol.

The following subsections study the behavior of both varieties of the BP decoding process,

first through the evolution of symbol degrees higher than one, and in particular by demonstrat-

ing the ergodicity of the Ideal Soliton degree distribution, then by modeling and analyzing the

ripple process, resulting in an unified model for both classical and doping-enhanced decoding.

Based on that model, we analyze the collection cost of the presented decoding strategies, when

the starting ω(d) is Ideal Soliton.

6.5.2 Symbol Degree Evolution

In this subsection, we focus on the evolution of symbol degrees higher than one (unreleased

symbols), and then analyze ripple evolution separately in the next subsection. The analysis

of the evolution of unreleased output symbols is the same for both classical BP decoding case

(without doping), and the doped BP decoding. We now present the model of the doping (decod-

ing) process through the column degree distribution at each decoding/doping round. We model

the (� + 1)th step of the decoding/doping process by selecting a row uniformly at random from

the set of (k− �) rows in the current (k− �)×ks decoding matrix S�, and removing it from the

matrix S� to create the matrix S�+1. After � rounds or, equivalently, when there are k − � rows

in the decoding matrix, the number of ones in a column of S� is denoted by Ak−�. The proba-

bility that the column of S�+1 is of degree d (when its length is k− �− 1, � ∈ {1, · · · , k − 3})
is described iteratively

P (Ak−�−1 = d) = P (Ak−� = d)

(
1− d

k − �

)
+ P (Ak−� = d + 1)

d + 1

k − �
(6.5)

for 2 ≤ d < k − �, and P (Ak−�−1 = k − �) = 0. Here, the first term corresponds to the

probability that the degree of the column in the previous decoding round (i.e. for the matrix

S�) was d and that the random row removed in the (� + 1)th step did not contribute to the

linear combination represented by that column. Similarly, the second term corresponds to the

probability that the degree of the column in the previous decoding round was d + 1 and that

the row removed in the (� + 1)th step contributed to the linear combination represented by that

column.

84

Let the starting distribution of the column degrees (for the decoding matrix S0 = [sij]k×ks
)

be Ideal Soliton, as defined in (6.2). By construction, for l = 0, P (Ak = d) = ρ(d), which,

together with (6.5), completely defines the dynamics of the doping process when the Fountain

code is based on the Ideal Soliton. After rearanging and canceling appropriate terms, we obtain,

for d ≥ 2,

P (Ak−l = d) =

⎧⎪⎪⎨⎪⎪⎩
k−l
k ρ(d) d = 2, · · · , k − l,

0 d > k − �.

(6.6)

We assume that ks ≈ k as, by design, we desire to have the set of upfront collected symbols ks

as small as the set of source symbols. The probability of degree-d symbols among unreleased

symbols n
(�)
u = ks − � can be approximated with

P (Ak−� = d) ks

ks − �
≈ P (Ak−� = d) k

k − �
. (6.7)

Hence, the probability distribution ω�(d) of the unreleased output node degrees at any time �

remains the Ideal Soliton

ω�(d) =
k

k − �
P (Ak−� = d) = ρ(d) for d = 2, · · · , k − �. (6.8)

6.5.3 Doped Ripple Evolution: RandomWalk Model

There exist comprehensive and thorough analytical models for the ripple evolution, charac-

terizing the decoding of LT codes [78, 79]. However, their comprehensive nature results in

complex models that are difficult to evaluate. For describing the dynamics of a doped decoder,

we consider a simpler model, which attempts to capture the ripple evolution for the Ideal Soli-

ton. Figure 6.7 and the code symbol degree evolution analysis illustrate how the Ideal Soliton

distribution maintains its shape with decoding/doping. This fact, which results in a tractable

ripple analysis and, more importantly, in an outstanding performance as illustrated in the last

subsection, is our main motivator for selecting Ideal Soliton Fountain codes for our doping

scheme. We study the number of symbols decoded between two dopings and, consequently,

characterize the sequence of interdoping yields. The time at which the ith doping occurs (or,

85

5 10 15 20 25 30
10−3

10−2

10−1

100
Ideal Soliton for 500 input symbols (1000−"decoded" symbols)

5 10 15 20 25 30
10−3

10−2

10−1

100
Modified distribution without decoded symbols (500) and the ripple (degree 0 and 1)

Figure 6.7: Density Evolution of IS distribution due to uniform doping. First graph is the
distribution of the output symbols after m = 500 decodings, for k = 1000, second is the IS
with support set {1, · · · , (1000−m)} as if we are starting with the matrix of the same size as
the doped matrix.

equivalently, the decoding stalls for the ith time) is a random variable Ti, and so is the inter-

doping yield Yi = Ti − Ti−1. Our goal is to obtain the expected number of times the doping

will occur by studying the ripple evolution. This goal is closely related to (a generalization of)

the traditional studies of the fountain code decoding which attempt to determine the number of

collected symbols ks required for the decoding to be achieved without a single doping iteration,

i.e., when T1 ≥ k.

Let the number of upfront collected coded symbols be ks = k (1 + δ) , where δ is a small

positive value. At time �, the total number of decoded and doped symbols is �, and the number

of (unreleased) output symbols is

n = ks − � = λδ
� (k − �) . (6.9)

Here,

λδ
� = 1 +

k

k − �
δ (6.10)

is an increasing function of �. The unreleased output symbol degree distribution polynomial at

time � is Ω�(x) =
∑

Ωd,�x
d, where d = 2, · · · , k − �, and Ωd,� = ω�(d). In order to describe

86

the ripple process evolution, in the following we first characterize the ripple increment when �

corresponds to the decoding and, next, when it corresponds to a doping iteration.

Each decoding iteration processes a random symbol of degree-one from the ripple. Since

the encoded symbols are constructed by independently combining random input symbols, we

can assume that the input symbol covered by the degree-one symbol is selected uniformly

at random from the set of undecoded symbols. Released output symbols are its coded sym-

bol neighbors whose output degree is two. Releasing output symbols by processing a ripple

symbol corresponds to performing, in average, n2 = nΩ2,� independent Bernoulli experi-

ments with probability of success p2 = 2/(k − �). Hence, the number of released symbols

at any decoding step � is modeled by a discrete random variable Δ
(δ)
� with Binomial distribu-

tion B (nΩ2,�, 2/(k − �)) , which for large n can be approximated with a (truncated) Poisson

distribution of intensity 2Ω2,�λ
(δ)
�

Pr
{

Δ
(δ)
� = r

}
=

(
n2

r

)
(p2)

r (1− p2)
n2−r

≥ (n2)
r

r!
(p2)

r (1− p2)
n2−r

≈ (2Ω2,�λ
(δ)
�)r

r!
e−2Ω2,�λ

(δ)
� , r = 0, · · · , n2, (6.11)

where we have first applied the Stirling approximation to the Binomial coefficient and, also,

assumed that the probabilities in (6.11) can be neglected unless n2 is much larger than r.

According to (6.8), the fraction of degree-two output symbols for Ideal Soliton based Fountain

code is expected to be n2/n ≈ Ω2,� = ρ(2) = 1/2, for any decoding iteration �. Hence,

Pr
{

Δ
(δ)
� = r

}
= η(r) =

(
λ

(δ)
�

)r
e−λ

(δ)
�

r!
, r = 0, · · · , n/2, (6.12)

or, equivalently,

Δ
(δ)
� ∼ ℘

(
λ

(δ)
�

)
, (6.13)

where ℘ (·) denotes Poisson distribution. For each decoding iteration, one symbol is taken
from the ripple andΔ

(δ)
� symbols are added, so that the increments of the ripple process can be

87

described by random variables

X� = Δ
(δ)
� − 1, (6.14)

with the probability distribution η(r + 1) (forX� = r) characterized by the generating polyno-

mial

I(x) =

n/2∑
d=0

η(d)xd−1 (6.15)

and an expected value λ
(δ)
� − 1. Next we describe the ripple increment for the doping iteration,

where a carefully selected input symbol is revealed at time Ti = ti when the ripple is empty

(random degree-two doping). The number of degree-two output symbols at time Ti = ti is

n2 = ρ(2)n = n/2, where, n = λ
(δ)
ti

(k − ti) .

Degree-two doping selects uniformly at random a row in the decoding matrix Sti
that has

one or more non-zero elements in columns of degree two. This is equivalent to randomly

selecting a column of degree two to be released, and restarting the ripple (i.e., same as decoding)

with any of its two input symbols from the decoding matrix whose number of degree-two

columns is now n2−1 ≈ n2, for large n2. Hence, the doping ripple increment can be described

by unit increase in addition to an increase equivalent to the one obtained through decoding but

without the ripple decrement of 1. That is, statistically, the doping ripple increment XD
ti is a

random variable described by

ID(x) =
∑

η(d)xd+1, (6.16)

corresponding to the shifted distribution η(r − 1) for XD
ti = r.

Now if, for the doping instant t = ti−1, we define Xti−1 = XD
ti−1

− 2, the ripple size for

t ∈ [ti−1, ti] can be described in a unified manner with St,i + 2 where

St,i =

t∑
j=ti−1

Xj (6.17)

is a random walk modeling the ripple evolution. Note that the ripple increments X� are not

IID random variables, since the intensity of η(d) changes with each iteration �. However, for

analytical tractability, we study the interdoping time using the random walk model in (6.17), by

88

assuming that λ(δ) changes from doping to doping, but remains constant within the interdoping

interval. Under this assumption, the ripple size St,i +2 is a partial sum of IID random variables

Xj , of the expected value λ
(δ)
ti−1

− 1. Note that, when δ = 0, i.e. when ks = k, St,i is a

zero mean random walk. In this special case, we treat the doping-enhanced BP process as an

approximate renewal process, where the process starts all over after each doping. Modeling

and analyzing this particular case is much easier, resulting in a closed-form expression for the

expected number of dopings. We later refer to this case to provide some intuition. The expected

interdoping yield is the expected time it takes for the ripple random walk St,i + 2 to become

zero. Using random walk terminology, we are interested in the statistics of the random-walk

stopping time. The stopping time is the time at which the decoding process stalls, counting

from the previous doping time, where the first decoding round starts with the 0th doping which

occurs at T0 = 0. Hence, the i-th stopping time (doping) Ti is defined as

Ti = min {min {ti : St,i + 2 ≤ 0} , k} . (6.18)

We study the Markov Chain model of the random walk St,i. Each possible value of the random

walk represents a state of the Markov Chain (MC) described by the probability transition matrix

Pi. State v, v ∈ {1, · · · , k} corresponds to the ripple of size v− 1. State 1 is the trapping state,

with the (auto)transition probability Pi,11 = 1 and models the stopped random walk. Hence,

based on (6.12), we have the state transition probabilities

Pi,v(v+b) = η(1 + b), v = 2, · · · , k, b = −1, · · · , min (
n/2� , k − v)

Pi,11 = 1

Pi,vw = 0, otherwise, (6.19)

89

resulting in a transition probability matrix of the following almost Toeplitz form

Pi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

η(0) η(1) η(2) · · · 0

0 η(0) η(1) · · · 0

...
...

...
...

...

0 0 · · · η(0) η(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k×k

, (6.20)

where η (·) represents a pdf from a family of Poisson distributions ℘
(
λ

(δ)
ti

)
, ti ∈ [0, · · · , k) .

The start of the decoding process is modeled by the MC being in the initial state v = 3 (equiv-

alent to the ripple of size two). Based on that, the probability of being in the trapping state,

while at time t > Ti, is

p
(Ti)
t = [0 0 1 0 · · · 0]P

(t−Ti)
i [1 0 0 · · · 0]T . (6.21)

Hence, the probability of entering the trapping state at time t is

pTi(u) = p
(Ti)
Ti+u − p

(Ti)
Ti+u−1

= [0 0 1 0 · · · 0]
(
P

u
i −P

(u−1)
i

)
[1 0 0 · · · 0]T , (6.22)

where u = t − Ti. {Ti} is a sequence of stopping-time random variables where index i iden-

tifies a doping round. Yi = Ti − Ti−1, i > 1 is a stopping time interval of a random walk

of (truncated) Poisson IID random variables of intensity λ
(δ)
Ti−1

= 1 + δ k
k−Ti−1

, and can be

evaluated using the following recursive probability expression

Pr {Yi = 0} = 0 (6.23)

Pr {Yi = 1} = 0

Pr {Yi = t + 1} = η(0)

(
ℵ(t)(t− 1)−

t−1∑
i=1

Pr {Yi = t− i}ℵ(i)(1 + i)

)
1 ≤ t < k,

obtained from (6.22) after a series of matrix transformations. Here, η(0) is a Poisson pdf of

intensity λ
(δ)
Ti−1

evaluated at 0, and ℵ(s)(d) is the s-tuple convolution of η(·) evaluated at d,

90

resulting in a Poisson pdf of intensity sλ
(δ)
Ti−1

evaluated at d. The complete derivation of (6.23)

is given in the Appendix. Note that the intensity sλ
(δ)
Ti−1

is, in general, a random variable and

that the sequence of doping times Ti is a Markov chain. Hence, the number of decoded symbols

after hth doping, a partial sum

Dh =
h∑

i=1

Yi (6.24)

of interdoping yields, is a Markov-modulated random walk. The expected number of dop-

ings sufficient for complete decoding is the stopping time of the random walk Dh, where the

stopping threshold is k − uδ
k. Here, based on the coupon collection model, u

δ
k is the expected

number of uncovered symbols (which, necessarily, have to be doped) when ks coded symbols

are collected

uδ
k = k

(
1− 1

k

)[k(1+δ) log k]

≈ ke−(1+δ) log k. (6.25)

The total number of dopings is the stopping time random variable

D = min
{

h : Dh + uδ
k ≥ k

}
. (6.26)

Our model can further be simplified by replacing Ti−1 with li =
∑i−1

t=1 E [Yt|Tt−1 = lt] in the

intensity λ
(δ)
Ti−1

(6.23) and thus allowing for a direct recursive computation in (6.23). Hence,

E [Yi|Ti−1 = li] ≈∑k−li
t=1 tPr {Yi = t}+

(
1−∑k−li

t=1 Pr {Yi = t}
)

(k − li) . (6.27)

Furthermore, we can approximateDh with the sum of expected values lh+1 =
∑h

i=1 E [Yi|Ti−1 = li]

and use an algorithm in Figure 6.8 (based on (6.26)) to calculate expected number of dopings.

In special case when δ = 0, further simplifying assumptions lead to the approximation that

all interdoping yields are described by a single random variable Y whose pdf is given by the

following recursive expression, based on (6.23),

Pr {Y = t + 1} = η(0)

(
℘(t)(t− 1)−

t−1∑
i=1

Pr {t− i}℘(i)(1 + i)

)
, (6.28)

where ℘(s)(d) denotes Poisson distribution of intensity s, evaluated at d, and t ∈ [0, k − 1].

91

Initialization:

li = 0, D = 0

For (i = 1, D < k, i + +)

Calculate λ(δ) (li)

Using (6.23), calculate Pr {Yi = t} for t ≤ k − li

Using (6.27), calculate E [Yi]

D = D + E [Yi]

li = D

kd = i, pd = 100kd/k

Figure 6.8: Calculation of the expected doping percentage pd based on the number of upfront
collected symbols

The range of t varies from doping to doping, i.e. if Ti−1 = li, then Yi would have support

t ∈ [li, k − 1], and, hence, this single variable approximation is accurate for the case when

both the ripple size is small and when li � k.We now approximate the expected value of the

interdoping yield Y as

E [Y] ≈
k∑

t=1

tPr {Y = t} −
(

1−
k∑

t=1

Pr {Y = t}
)

k. (6.29)

Now, the doping processDh is a renewal process, and thus, the Wald Equality [50] implies that

the mean stopping time is E [D] = k/E [Y] .

6.6 Comparative Cost Analysis

The summary of the proposed approach to dissemination, storage, and collection with doping,

based on IS combining for storage, and a random degree-two doping for collection strategy,

is given in Figure 6.9. We here analyze the performance of this approach in terms of data

collection cost. The cost of the upfront collection from the nearby nodes in the super squad

1 + (s− 1)/4 is significantly smaller than the collection cost when the packets are polled from

their original source relays, which is in average k/4. Nevertheless, in this section, we show

that the number of doped packets kd will be sufficiently smaller than the residual number of

92

Dissemination and Storage:

degree-one/two dissemination of k source packets; each storage node stores a random linear
combination of d disseminated packets; d is drawn from IS ρ(d).

Upfront collection:

IDC collects ks encoded packets from s closest storage squads.

Belief propagation decoding and doping-collection:

l = 0: number of processed source packets

kr,l: number of packets in the ripple

kd = 0: number of doped packets.

For (l = 0, l ≤ k, l + +)

while kr,l = 0

Collect(from the source relay) and dope the decoder with a source packet contributing to a randomly
selected degree-two (or larger) output packet.

kd + +; l + +;

endwhile

Process a symbol from the ripple; kr,l −−;

endfor

Figure 6.9: Proposed dissemination, storage, and doping collection

undecoded symbols when the belief propagation process first stalls, so that their collection cost

is offset, and the overall collection cost is reduced relative to the original strategy. We quantify

the performance of the decoding process through the doping ratio kd/k. Figure 6.10 illustrates

the dramatic overhead (kT − k)/k reduction when employing doping with an IS distribution

relative to the overhead of RS encoding without doping. Figure 6.11 demonstrates that RS

with doping performs markedly worse than IS encoding. And, in particular, it illustrates that IS

with doping demonstrates a very low variance, which is surprisingly different from the results

without doping. Figure 6.13 illustrates the importance of considering coverage redundancy

when selecting storage/ collection strategy: in the case of degree-two dissemination, when the

size of the supersquad s increases the fountain code strategy improves (in terms of a reduced

doping kd/k required for decoding) due to an increase in mixing. This dependency is not

present in the case of degree-one dissemination. Figure 6.12 gives the corresponding required

93

500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

k: number of symbols to decode

Overhead for IG (Ideal Soliton with Greedy degree−2 doping) and L (LT emulation)

IG doping percentage
L overhead percentage
LT overhead bound

Figure 6.10: Overhead (doping) percentage: we define kT as the number of symbols collected
in both collection phases, and the collection overhead ratio as (kT − k)/k, which allows us to
compare the overhead for the LT decoding of k original symbols and IG, the degree-two doped
belief-propagation decoding of k coded symbols with IS degree distribution.

doping kd/k as a function k for a fixed squad size h = 200. The cost minimization problem for

any encoding scheme with (and without) doping is described as follows. Let, the pair (ks, kd)

be the feasible number of encoded and doped packets when sufficient for decoding the original

k packets. The per-source packet collection cost for this pair is

cT (h) = [cs(h)ks + cdkd] /k (6.30)

where cs(h) = 1 + (s(h) + 1)/4 is the average collection cost from the supersquad of size

s(h) =
ks/h� and cd =
k/4� is the average collection doping cost when polling doped
packets from the original source relays. Examples of (ks, kd) pairs are (0, k) for the pure

polling mechanism with cost cT (h) = cd =
k/4� and (ks = k +
√

(k) log2(k/δ), 0) in

average for degree-one dissemination and RS fountain encoding with average per-packet cost

cT = cs(h)ks/k. For any given encoding mechanism and the set of feasible pairs (ks, kd), the

minimum per-packet collection cost is cmin(h) = min(ks,kd) cT (h). The effect on the doping

percentage of increasing the number of upfront collected symbols ks above k (described by our

general model of interdoping times) is illustrated in Figure 6.14. Figure 6.15 illustrates per-

packet collection cost above minimum, based on (6.30), as a function of the number of packets

94

500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

16

18

20

n: number of symbols to decode

Robust Soliton min
Robust Soliton mean
Robust Soliton max
Ideal min
Ideal mean
Ideal max

Figure 6.11: Doping percentage with IS degree distribution vs RS.

(ks − k)/k collected from the supersquad in excess of k, for different values of coverage re-

dundancy h, and IS encoding. For the range of coverage redundancies that may be of practical

value (up to 50), the minimum collection cost is obtained for ks,min/k ∈ (1, 1.05). Figure 6.16

illustrates the per-packet cost cT (h)/(k/4) normalized to the reference polling cost as a func-

tion of λs/λ = 1/h, the relative density of source nodes for a network with k = 2000 source

packets. Four strategies are included all based on degree-1 packet dissemination: reference

polling, degree-1 coupon collection, RS with no doping, and the IS encoding with a feasible

doping pair (ks, kd).

In conclusion, in this paper we showed that, for the circular squad network, the total collec-

tion cost could be reduced by applying a packet combining degree distribution that is congruous

to doping, applying a good doping mechanism, and by balancing the cost of upfront collection

and doping, given coverage redundancy factor.

95

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

6

8

10

12

14

16

18

20

22

n: number of symbols to decode

Ideal Soliton with degree−two input symbols

min doping percentage
mean doping percentage
max doping percentage

Figure 6.12: The encoding process emulates supersquads with fixed squad size h and the
degree-two input symbols overheard within the superquad: the resulting doping percentage
for IS degree distribution of stored code symbols.

0 1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

s: number of squads in the supersquad of size 1000

minimum doping
mean doping
max doping

Figure 6.13: For a fixed number of upfront collected symbols ks = 1000, encoded by degree-
two IS method, the squad size (node density) is changed, so that the supersquad contains 1, 2, 5,
and 10 squads. The more squads there are, the more intense is the data mixing, decreasing the
probability of non-covered original symbols.

96

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

δ=ks/k−1 (in percents)

do
pi

ng
 p

er
ce

nt
ag

e

emulation
simulation

Figure 6.14: Doping percentage for different values of δ = ks/k − 1. Emulation results are
obtained based on our analytical model and algorithm in Figure 6.8

0 1 2 3 4 5
0

1

2

3

4

5

δ in percents

h=10
h=15
h=30

Figure 6.15: Collection delay (hop count) above minimum per input symbol for different values
of coverage redundancy h as a function of δ. Note that there is an optimal δ for each h in which
the delay is minimized: for h = 10 δ is one percent, for h = 15 it is 3% percent, for h = 30
δ = 4%

97

10−3 10−2 10−1 100

10−2

10−1

100

number of source nodes/number of network nodes

robust soliton
doping − δ=0.05
polling
coupon collector

Figure 6.16: Collection Delay for various collection techniques, normalized with respect to the
polling cost

98

Appendix A

Outage Constraint Derivations

Given (2.23), we expand (2.24) as

κ
(η)
j =

m∑
i=1

Pr
{(

L̂η−1 = hi, Aη−1

)
, L̂η = hj , Zη > 0

}
=

m∑
i=1

Pr
{

L̂η = hj , Zη > 0|L̂η−1 = hi, Aη−1

}
Pr
{

L̂η−1 = hi, Aη−1

}
=

m∑
i=1

Pr
{

L̂η = hj , Zη > 0|L̂η−1 = hi

}
κ

(η−1)
i . (A.1)

Let us now expand Pr
{

L̂η = hj , Zη > 0|L̂η−1 = hi

}

= Pr
{

Zη > 0|L̂η = hj , L̂η−1 = hi

}
Pr
{

L̂η = hj |L̂η−1 = hi

}
= Pr

{
Zη > 0|L̂η = hj

}
Pr
{

L̂η = hj |L̂η−1 = hi

}
, (A.2)

where in the first term, invoking Markovity, we drop the second condition since Zη does not

depend on L̂η−1, given L̂η. We recognize the term Pr
{

L̂η = hj |L̂η−1 = hi

}
as Pij . We also

note that given the spoke is in state L̂k = hj at time η, thus inducing a crescent Ck of area cj ,

the crescent Ck is empty with probability

ej = Pr {Zk > 0|Lk = hj} = 1− exp(−λcj). (A.3)

It follows from (A.1), (A.2) and (A.3) that κ
(η)
j =

∑m
i=1 ejPijκ

(η−1)
i , which, following the

definition P̆ij = Pijej in (2.26), results in (2.27) and (2.28), and eventually in the formalization

of the Outage Constraint given by (2.31).

99

For the MC model with m = 2 states, performing singular value decomposition (SVD) of

the two-state P̆ and applying it to (2.31) yields

Pr {D ≤ η} = U1λ
η−1
1 + U2λ

η−1
2 (A.4)

where for i = 1, 2 the eigenvalues of P̆ are

λi =
P̆22

2

(
1 + (−1)i+1

√
1 +

4P̆12P̆21

P̆ 2
22

)
(A.5)

and the coefficients are

Ui = (−1)ie2
P̆21 + λi

λ2 − λ1
. (A.6)

In the following, we provide closed form approximation of (A.4) for the non-uniform quanti-

zation model and c22 = c2 � c1 = 1, or equivalently r � 1 and q close to two (or δ close to

zero).

Next, we introduce P̃ij = Pijei, which is convenient for the interpretation of the derived

expressions. We observe that P̃ij is the probability of transitioning to state j from state i, and

that the corresponding initial crescent Ck of area ci is not empty. In addition, P̃ie = 1 − ei is

the probability that the crescent of area ci is empty. Since P̆ijP̆ji = P̃ijP̃ji, and P̆ii = P̃ii, the

eigenvalues (A.5) have the same form expressed in terms of P̃ij , Next, let us show that λ1 can

be approximated as follows

λ1 ≈ 1− εo where

εo =
P̃21P̃1e + P̃2e

2− P̃22

. (A.7)

100

Starting from

λ1 = 1−
⎛⎝2− P̃22

2
−
√

P̃ 2
22

4
+ P̃12P̃21

⎞⎠ (A.8)

= 1− 2− P̃22

2

⎛⎜⎜⎝1−
√√√√√ P̃ 2

22 + 4P̃12P̃21(
2− P̃22

)2

⎞⎟⎟⎠ (A.9)

= 1− ε, (A.10)

and further simplifying ε,

ε =
2− P̃22

2

⎛⎜⎜⎝1−

√√√√√√ P̃ 2
22 + 4

(
1− P̃1e

)(
1− P̃22 − P̃2e

)
(
2− P̃22

)2

⎞⎟⎟⎠ (A.11)

=
2− P̃22

2

⎛⎜⎜⎝1−

√√√√√√
(
2− P̃22

)2
− 4

(
P̃21P̃1e + P̃2e

)
(
2− P̃22

)2

⎞⎟⎟⎠ (A.12)

=
2− P̃22

2

⎛⎜⎜⎝1−

√√√√√√1−
4
(
P̃21P̃1e + P̃2e

)
(
2− P̃22

)2

⎞⎟⎟⎠ , (A.13)

we obtained an expression in which γ = 4 P̃21P̃1e+P̃2e

(2−P̃22)
2 is a small value for the design in which

we seek to minimize the probability of encountering an empty crescent. Now, we will expand

the value of ε in (A.13) around this small value γ as follows

ε =
2− P̃22

2

(
1−

(
1− 1

2
γ + R2(γ)

))
. (A.14)

Finally, including (A.14) in (A.10), we obtain the approximated formula (A.7), as follows

λ1 = 1− 2− P̃22

2

(
1−

(
1− 1

2
γ + R2(γ)

))
≈ P̃22

2
+

2− P̃22

2

(
1− 1

2
γ

)
= 1− P̃21P̃1e + P̃2e

2− P̃22

.

101

Note also that

λ2 = P̃22 − λ1. (A.15)

We observe that λ1 is close to one if εo is small, and εo should be small for the design in which

we seek to make small the probability of encountering an empty crescent Pie, as the numerator

of εo in (A.7) represents the probability of encountering an empty crescent either in state 2

(P̃2e), or after transitioning from state 2 to state 1 (P̃21P̃1e). Note that for c2� 1, P2e is small.

We also have that

P̃22 = 1−
(
P̃21 + P̃2e

)
= 1− e2

c2
− (1− e2) =

(c2 − 1) (1− e−c2)

c2
≈ 1. (A.16)

Note that here we assumed that c21 = c12 = c1 = 1 for large enough r, where the details of

derivation follow soon. Hence, since 1 > λ1 > P̃22, then, from (A.15) and (A.16), λ2 is a

small negative value.

From (A.6), since e2P̃21 is close to zero, we see that the coefficient U1 is close to one, while

U2 is close to zero. Hence, we can neglect the second term in (A.4). We see now that the larger

eigenvalue λ1 describes the rate at which outage probability increases with the number of hops,

while the negative eigenvalue λ2 describes the oscillatory, self-recovery mechanism depicted

in Figure 2.4.

Thus, following (A.7), the equality (A.4) can be now approximated with

Pr {D ≤ η} ≈ (1− εo)
η−1. (A.17)

Finally, replacing (A.17) in (2.22), we obtain

p ≥ 1− (1− εo)
η−1. (A.18)

102

L =hk i

L =hk+1 j

hj

k-1

k

k+1

S ,IC(�h hi j

R�

	
�ij

A

B

O

C

Figure A.1: Given Lk = hi and Lk+1 = hj , the angular hop displacement Φk+1 is constrained
to the interval −β ≤ Φk+1 ≤ β where the maximum angular displacement at hop k + 1 is
β = β(hi, hj). The shaded area denotes the interior crescent of area SIC(hi, hj).

Also, as from (A.16) P̃22 ≈ 1, and P̃2e is small enough to be safely ignored,

εo =
P̃21P̃1e + P̃2e

2− P̃22

=
c21e

−1

c2
=

e−1

c2
, (A.19)

since P̃1e = e−1, and P̃21 = c21
c2

= 1
c2

.

Next, we explain the approximations used in our asymptotic analysis for the crescent areas,

leading to the expression for c2. For any interior crescent, cij , the width of the crescent is

Δij = hi + hj − R = Δji. From Figure A.1 we approximate the interior crescent angle

β(hi, hj) with the value of its sinus function, calculated using similarity of the triangles CBk

and BOk:

β(hi, hj) = ϕij =
OB

hj
(A.20)

≈ BC√
h2

j −OB
2
+ Δij

,

from which we first approximateOB
2

= 2Δijhj ,whereΔ2
ij is considered small and neglected,

103

and then, from (A.20),

ϕ2
ij = 2

Δij

hj
. (A.21)

We approximate the crescent area cij with the area of the circular segment (of subtending

angle 2β(hi, hj)), which is the area of circular sector less the area of the triangle ∠AkB

cij = h2
jϕij − (hj −Δij)

√
2Δijhj

= Δij

√
2Δijhj

=
√

hj

√
2Δ

3/2
ij . (A.22)

Since for uniformly quantizedm-state MC

Δij

hj
=

hi + hj −R

hj

= 1 +
q (m− i) + 2i−m− qm

q (m− j) + 2j −m

= 1 +
i (2− q)−m

q (m− j) + 2j −m
, (A.23)

we have

cij = h2
j

√
2
Δij

hj

3/2

=
√

2r2 (q (m− j) + 2j −m)2

m2

(
1 +

i (2− q)−m

q (m− j) + 2j −m

)3/2

. (A.24)

Hence,

c2 = cmm =
√

2r2

(
1 +

m (2− q)−m

m

)3/2

= r2f(q), (A.25)

where

f(q) =
√

2 (2− q)3/2 . (A.26)

104

is the area of largest crescent c2 formed for unit range r.

105

Appendix B

Wobbliness Constraint Derivations

Form = 2 and P11 = 0, the matrix we introduced in (2.18) can be expressed as

Γ =

⎡⎣ 0 � (ϕ12ω)

� (ϕ21ω) c1
c2

� (ϕ22ω) c2−c21
c2

,

⎤⎦ (B.1)

where the definition of � (aω) is given in (2.16). Some algebra will verify that its largest

eigenvalue has the following value

σ (ω) =
� (ϕ22ω) P22

2

+

√
[� (ϕ22ω) P22]

2 + 4�2 (ϕ12ω) P12P21

2
, (B.2)

and that a scaled eigenvector ν(ω) has components

ν1 (ω) =
Γ12 (ω)

σ (ω)
, ν2(ω) = 1. (B.3)

106

Let us first highlight a couple of facts we have used to find values of second derivatives of terms

in (2.40).

lim
ω→0

� (aω) = 1 (B.4)

∂

∂ ω
� (aω) = �

′ (aω) =
coshaω

ω
− � (aω)

ω
(B.5)

lim
ω→0

∂

∂ ω
� (aω) = 0 (B.6)

∂2

∂ ω2
� (aω) = �

′′ (aω) = a2
� (aω)− cosh aω + ω ∂ �(aω)

∂ ω − � (aω)

ω2
(B.7)

lim
ω→0

∂2

∂ ω2
� (aω) =

a2

3
(B.8)

u1 (ω) = P22� (ϕ22ω)− P11� (ϕ11ω)

+

√
(P22� (ϕ22ω)− P11� (ϕ11ω))2 + 4 (� (ϕ12ω))2 P12P21. (B.9)

Based on (B.3), the right eigenvector elements evaluated for ω = 0 are:

ν1 (ω)|ω=0 = K (B.10)

ν2 (ω)|ω=0 = K. (B.11)

The first derivative of the eigenvalue evaluated for ω = 0 gives

∂

∂ ω
σ (ω)

∣∣∣∣
ω=0

=
1

2

(
P11 �

′ (ϕ11ω) + P22 �
′ (ϕ22ω)

)
+

σσ(ω)

2
√

(� (ϕ22ω) P22 − � (ϕ11ω) P11)
2 + 4� (ϕ12ω)2 P12P21

= 0, (B.12)

where

σσ(ω) = (P22� (ϕ22ω)− P11� (ϕ11ω))
(
P22 �

′ (ϕ22ω)− P11 �
′ (ϕ11ω)

)
+ 4P12P21� (ϕ12ω) �

′ (ϕ12ω) . (B.13)

107

Introducing notation

f1 (ω) = P22� (ϕ22ω)− P11� (ϕ11ω) (B.14)

f2 (ω) = P11� (ϕ11ω) + P22� (ϕ22ω) , (B.15)

and calculating derivatives of interest

f ′1 (ω) = P22 �
′ (ϕ22ω)− P11 �

′ (ϕ11ω) (B.16)

f ′′1 (ω) = P22�
′′ (ϕ22ω)− P11�

′′ (ϕ11ω) (B.17)

f ′′2 (ω) = P22�
′′ (ϕ22ω) + P11�

′′ (ϕ11ω) , (B.18)

the second derivative of the eigenvalue becomes

∂2

∂ ω2
σ (ω) =

1

2
f ′′2 (ω)

+
1

2

(f ′1 (ω))2 + f1 (ω) f ′′1 (ω)√
(f1 (ω))2 + 4� (ϕ12ω)2 P12P21

+ 2P12P21
(�′ (ϕ12ω))2 + � (ϕ12ω) �

′′ (ϕ12ω)√
(f1 (ω))2 + 4� (ϕ12ω)2 P12P21

− 1

2

(f1 (ω) f ′1 (ω) + 4P12P21� (ϕ12ω) �
′ (ϕ12ω))2(

(f1 (ω))2 + 4� (ϕ12ω)2 P12P21

)3/2
. (B.19)

As the denominator of the expression (2.40) calls for evaluating (B.19) for ω = 0, and as

f1 (0) = P22 − P11 (B.20)

f2 (0) = P11 + P22 (B.21)

f ′1 (0) = 0 (B.22)

f ′′1 (0) = P22
ϕ2

22

3
− P11

ϕ2
11

3
(B.23)

f ′′2 (0) = P22
ϕ2

22

3
+ P11

ϕ2
11

3
, (B.24)

108

we obtain

∂2

∂ ω2
σ (ω)

∣∣∣∣
ω=0

=
1

3 (P12 + P21)

(
P12P22ϕ

2
22 + P21P11ϕ

2
11 + 2P12P21ϕ

2
12

)
. (B.25)

Defining

w1 (ω) =(
P22�

(
ϕ22ω

)− P11�
(
ϕ11ω

)) (
P22 �

′ (ϕ22ω
)− P11 �

′ (ϕ11ω
))

+ 4
(
�
(
ϕ12ω

)) (
�
′ (ϕ12ω

))
P12P21, (B.26)

and

u′1 (ω) = f ′1 (ω) +
w1 (ω)√

(P22� (ϕ22ω)− P11� (ϕ11ω))2 + 4 (� (ϕ12ω))2 P12P21

, (B.27)

the first derivatives of the eigenvector are

∂

∂ ω
ν1 (ω) = 2P12K

�
′ (ϕ12ω

)
u1 (ω)− (

�
(
ϕ12ω

))
u′1 (ω)

(u1 (ω))2
(B.28)

∂

∂ ω
ν2 (ω) = 0. (B.29)

The first derivatives of the eigenvector evaluated for ω = 0,

lim
ω→0

∂

∂ ω
ν1 (ω) = 0 (B.30)

lim
ω→0

∂

∂ ω
ν2 (ω) = 0 (B.31)

lim
ω→0

u′1 (ω) = 0. (B.32)

109

Introducing

w′1 (ω) =
(
P22 �

′ (ϕ22ω
)− P11 �

′ (ϕ11ω
))2

+
(
P22�

(
ϕ22ω

)− P11�
(
ϕ11ω

)) (
P22�

′′ (ϕ22ω
)− P11�

′′ (ϕ11ω
))

+ 4
(
�
′ (ϕ12ω

))2
P12P21 + 4

(
�
(
ϕ12ω

)) (
�
′′ (ϕ12ω

))
P12P21, (B.33)

sq (ω) =

√
(P22� (ϕ22ω)− P11� (ϕ11ω))2 + 4 (� (ϕ12ω))2 P12P21,

and

u′′1 (ω) =
d2

dω2
u1 (ω)

= f ′′1 (ω) +
w′1 (ω) sq (ω)− w1 (ω) w1(ω)

sq(ω)

(sq (ω))2
(B.34)

the second derivatives of the eigenvector elements are

d2

dω2
ν1 (ω) = 2KP12

(
�
′′ (ϕ12ω

)
u1 (ω)− (

�
(
ϕ12ω

))
u′′1 (ω)

)
(u1 (ω))2

(u1 (ω))4
(B.35)

− 2KP12

(
�
′ (ϕ12ω

)
u1 (ω)− (

�
(
ϕ12ω

))
u′1 (ω)

)
2u1 (ω) u′1 (ω)

(u1 (ω))4
(B.36)

d2

dω2
ν2 (ω) = 0, (B.37)

and as (2.40) calls for the second derivatives evaluated for ω = 0:

lim
ω→0

d2

dω2
ν2 (ω) = 0 (B.38)

lim
ω→0

d2

dω2
ν1 (ω) =

K

3 (P12 + P21)

(
P11ϕ

2
11 − P22ϕ

2
22 + (P12 − P21) ϕ2

12

)
. (B.39)

110

Inserting those values, as well as (2.38), in (2.40) we obtain

E [Tϕo |t = 1] =
3 (P12 + P21)ϕ2

o + (π1 − 1)
(
P11ϕ

2
11 − P22ϕ

2
22 + (P12 − P21) ϕ2

12

)
P12P22ϕ2

22 + P21P11ϕ2
11 + 2P12P21ϕ2

12

(B.40)

E [Tϕo |t = 2] =
3 (P12 + P21)ϕ2

o + π1

(
P11ϕ

2
11 − P22ϕ

2
22 + (P12 − P21)ϕ2

12

)
P12P22ϕ2

22 + P21P11ϕ2
11 + 2P12P21ϕ2

12

, (B.41)

where π1 is the stationary probability of the state 1, andE [Tϕo |t = 1],E [Tϕo |t = 2] denote the

expected number of hops before the spoke goes off course given the initial state of the Markov

Chain is 1 and 2, respectively.

Replacing from (2.11) P11 = 0 and P12 = 1 we obtain the following

E [Tϕo |t = 1] =
3(1+2P21/P22)ϕ2

o− 1+P21/P22
1+2P21/P22

(ϕ2
12−ϕ2

22)
ϕ2

22+2P21/P22ϕ2
12

(B.42)

E [Tϕo |t = 2] =
3(1+2P21/P22)ϕ2

o+
P21/P22

1+2P21/P22
(ϕ2

12−ϕ2
22)

ϕ2
22+2P21/P22ϕ2

12
, (B.43)

Note that both (B.42) and (B.43) are functions of the terms P21/P22 and ϕ2
i2, where i = 1, 2. In

the following we expand and approximate those terms, and illustrate that the expected number

of hops until angular deviation hits the threshold depends on q only. We approximate the

interior crescent angle with the following expression

ϕ2
i2 = 2

Δi

r
, (B.44)

where Δi = r + hi − R. For two-state MC, applying (A.21), for h1 = R/2 and h2 = r, we

obtain

ϕ2
i2 = i (2− q) (B.45)

Δi/r = i
2− q

2
, for i = 1, 2. (B.46)

For such small angles we can approximate the crescent areas c1 = c21 and c2 = c22 with

111

expressions based on (A.24)

c1 =
√

2
R

2

2 ((2− q)

q

)3/2

=
r2

f
(q)

√
q

4
,

c2 =
√

2r2 (2− q)3/2 = r2f(q). (B.47)

Applying (2.10) to expand the expressions for P21 and P22 defined in (2.11), we obtain that

P21

P22
=

c1

c2 − c1
=

√
q

4

1−
√

q
4

. (B.48)

Replacing (B.48) and (B.44) in (B.42) and (B.43), we obtain that the expected number of hops

depends on q only.

Now we show that the terms related to the initial state of the Markov Chain in (2.40) can be

ignored. For a two-state Markov Chain we consider,

μ1 = E
[
μi(Tϕo)(ω)

]∣∣
ω=0

− μ1(ω)|ω=0 , (B.49)

and

μ2 = E
[
μi(Tϕo)(ω)

]∣∣
ω=0

− μ2(ω)|ω=0 , (B.50)

for initial states 1 and 2, respectively. Starting from

E
[
μi(Tϕo)(ω)

]∣∣
ω=0

= π1μ1(0) + (1− π1) μ2(0),

and as μ2(0) = limω→0
d2

d ω2 ν2 (ω) = 0, we obtain

μ1 = (π1 − 1)
ν ′′1 (ω)

ν1 (ω)

∣∣∣∣
ω=0

, (B.51)

and

μ2 =π1
ν ′′1 (ω)

ν1 (ω)

∣∣∣∣
ω=0

. (B.52)

112

Further, we replace the transition probabilities P11 and P12 in (B.39) with the values defined in

(2.11), and obtain

ν ′′1 (ω)

ν1 (ω)

∣∣∣∣
ω=0

=
P22

3 (1 + P21)

(
ϕ2

12 − ϕ2
22

)
. (B.53)

With stationary probability of state 1 defined as

π1 =
P21

1 + P21
, (B.54)

we have

μ1 =
P22

3 (2− P22)
2

(
ϕ2

22 − ϕ2
12

)
(B.55)

μ2 =
P22

2 − P22

3 (2− P22)
2

(
ϕ2

22 − ϕ2
12

)
= (P22 − 1)μ1. (B.56)

We claim that, for large enough r, P22 is close to one. This makes μ2 almost zero, if μ1 is small

as well. As the subtending angles ϕi2 are both small, as shown in (B.45), and P22

3(2−P22)2
≈ 1/3,

the term μ1 can be considered small ((2− q) /3), especially with respect to var
[
ΘTϕo

]
in the

denominator of (B.57).

E [Tϕo] =
var

[
ΘTϕo

]
+ μ1

1
3

(
π2P22ϕ2

22 + π1P11ϕ2
11 + π1P12ϕ2

12 + π2P21ϕ2
21

) . (B.57)

B.1 MMRWOvershoot Analysis

We now approximate the Markov Process which modulates the MMRW discussed in 2.4 with

a one-state Markov Chain. In this case, the modulated random walk Θn =
∑n

i=1 Φi is in fact

the IID random walk. This random walk stops if the condition in (6.18) is satisfied.

We define the undershoot as X = ϕo − ΘTϕo−1, while the overshoot is defined as Y =

ΘTϕo
− ϕo. As the IID Φi is uniform over [−ϕ11, ϕ11] , and as at Tϕo Φi assumes a positive

value, we conjecture that random variablesX and Y have the same pdfs fX(x) = fY (x) (or at

least the first two moments), both uniform, with support set [0, ϕ11] .We define random variable

113

Z = X + Y s.t. Z|Y ∼ U (Y, ϕ11).

As

E [Z] = E [Y] + E [X] = 2E [Y] = 2m

and

E [Z] = EY {E [Z|Y]} = EY {(Y + ϕ11)/2} = (m + ϕ11)/2,

we obtain the first moment of the overshoot as E [Y] = m = ϕ11/3. Further, we establish

E
[
Y 2

]
= m2, E

[
Z2

]
= 2m2 + 2E [XY] = m2 + mϕ11

E
[
Z2

]
= EY E

[
Z2|Y] = (1/3)(m2 + mϕ11 + ϕ2

11) (B.58)

Solving the system of equations (B.58) we obtain the secondmoment of the overshootE
[
Y 2

]
=

ϕ2
11/6. For symmetry reasons the variance of the random walk at overshoot is equal at both ϕo

and −ϕo. Thus, as both overshoot occurrences are equiprobable,

var
[
ΘTϕo

]
= 0.5

(
2E

[
(ϕo + Y)2

])
= ϕ2

o + (2/3)ϕoϕ11 + ϕ2
11/6. (B.59)

114

Appendix C

Adaptive Mechanism Derivations

When calculating the average probability of a hop in One-Step Backward Repair Model, we

approximate the crescent areas with the appropriate rectangular areas. The area of the envelope

over which the average is taken, is calculated as the length of its lower boundary times its

width, which equals (r − R/2) for m = 1, and (2r − R) for m = 2. The same stands

for the ”‘inserted”’ (failed) crescent: the area is the product of its lower boundary and the

width. We distinguish between two distinct areas, sS ≈ lcs (r −R/2), and sL ≈ lcl (2r −R),

approximating the small and the large crescent area, respectively. Here, lcs and lcl are the lower

boundaries of the respective crescents.

From Figure C.1, for p = 1,m = 2, n = 2, we observe that the envelope length is

lE = R(cos−1
(
R2 − 2r2

)
/
(
2r2

)
+ 2 cos−1

(
3R2 − 4r2

)
/ (4rR))

and the crescent length is

lcl = R cos−1
(
R2 − 2r2

)
/
(
2r2

)
.

In order to provide a universal representation of all the different cases of envelopes and

relative positions of the failed relay, we now introduce the following notation

lE = lc (2 + ξ) , (C.1)

115

REPAIR SET
EMPTY

Failed

�
E

�
C

Figure C.1: Adaptive Envelopes for Pivot State 1: Large envelope, large failed crescent (replacement must stay
in state 2, failed CLR in state 2). The pointers indicate the length of the envelope �E and the length of the failed crescent �c.

where, for p = 1,m = 2 and n = 2,

ξ = 2
(
cos−1

(
3R2 − 4r2

)
/ (4rR)

)
/
(
cos−1

(
R2 − 2r2

)
/
(
2r2

))− 1

and lc = lcl.

Note the pointers in Figure C.1 showing the envelope length lE as the length of the large

circular segment at the bottom of the envelope, and lc as the length of the smaller circular

segment. For other envelope cases, lE and lc refer to the analogous circular segments.

Next, in Figure C.2 (a), for p = 2,m = 1, n = 1, the envelope length is

lE = R(2 cos−1
(
5R2 − 4r2

)
/
(
4R2

)
+ 2 cos−1

(
3R2 − 4r2

)
/ (4rR))

and the crescent length is

lcs = 2R cos−1
(
5R2 − 4r2

)
/
(
4R2

)

116

REPAIR SET

EMPTY

Failed

(a)
REPAIR SET

EMPTY

Failed

(b)

Figure C.2: Small Adaptive Envelopes for Pivot State 2 (Replacement Relay in State 1): (a)Small
envelope, small crescent (failed CLR also in state 1). (b) Small envelope, large crescent (failed CLR in state 2).

117

; hence,

lE = lc (2 + ξ) , (C.2)

where now

ξ =
cos−1 3R2−4r2

4rR − cos−1 5R2−4r2

4R2

cos−1 5R2−4r2

4R2

(C.3)

and lc = lcs.

In Figure C.3 (a), for p = 2,m = 2, n = 2, the envelope length is

lE = 3R cos−1
(
R2 − 2r2

)
/
(
2r2

)
= 3lc

and the crescent length is

lcl = R cos−1
(
R2 − 2r2

)
/
(
2r2

)
. Hence, we have

lE = lc (2 + ξ) , ξ = 1 and lc = lcl. (C.4)

Figure C.2 (b) and Figure C.3 (b) respectively illustrate cases when the failed relay was from

state n = 2, and the relay attempting to repair is from state m = 1, and vice versa. The

probability of the repair success, for the case presented in Figure C.2 (b), can be approximated

with the probability of success when both relays are from statem = n = 1 (Figure C.2 (a)).

For the case presented in Figure C.3 (b), i.e. n = 1, m = 2, note that the probability of

repair success is larger than the probability of success when both relays (i.e. m and n) are in

state 2 (Figure C.3 (a)), as the innovation area is larger by a constant factor s̃ = sL − sS .

Having introduced the universal notation, we calculate the average probability of repair

success according to the following formula

118

ein
p,m,n = E

[
(1− e−Sm,n

in (k+1))
]
Ξ(pm)

=
1

(1 + ξ)2lc
2(∫ lc

0

∫ y

0

(
1− e

−
(

y−x
lc

s1+s̃
))

d x d y

+

∫ (1+ξ)lc

lc

∫ y

y−lc

(
1− e

−
(

y−x
lc

s1+s̃
))

d x d y

+

∫ (1+ξ)lc

lc

∫ y−lc

0

(
1− e−s2

)
d x d y

)

+
1

(1 + ξ)2lc
2(∫ ξlc

0

∫ y+lc

y

(
1− e

−
(

x−y
lc

s1+s̃
))

d x d y

+

∫ (1+ξ)lc

ξlc

∫ (1+ξ)lc

y

(
1− e

−
(

x−y
lc

s1+s̃
))

d x d y

)

+
1

(1 + ξ)2lc
2(∫ ξlc

0

∫ (1+ξ)lc

y+lc

(
1− e−s2

)
d x d y

)
, (C.5)

where

ξ = 2ϕ12

ϕ22 − 1 for p = 1, m = 2

ξ =
ϕ12−cos−1

(
5R2

−4r2

4R2

)
cos−1

(
5R2

−4r2

4R2

) for p = 2, m = 1

ξ = 1 for p = 2, m = 2

s1 = sL and s2 = sL for p = 1, m = 2

s1 = sS and s2 = sS for p = 2, m = 1

s1 = sL and s2 = sL for p = 2, m = 2, n = 2

s1 = sS and s2 = sL for p = 2, m = 2, n = 1.

Here, ϕij = β(hi, hj), denotes the angular displacement associated with transition from state i

to state j (when the previous hop length is hi, and the current length is hj); Also, s̃ = s2 − s1.

119

Solving the integrals in (C.5) results in a closed-form expression for the probability of repair

ein
p,m,n =

ξ2

(1 + ξ)2
(
1− e−s2

)
+

2

(1 + ξ)2

(
0.5− e−s̃

s1
+

e−s̃

s2
1

(
1− e−s1

)
(C.6)

+ξ − ξ
e−s̃

s1
(1− e−s1)

)
.

The following algorithm calculates the transition probabilities of the Markov Chain that models

the BeSpoken enhanced with One-Step Backward Repair mechanism.

PA
pm = PB

pm

for n = (1, 2)

{

PA
pm+ = ST (p, n)e−Sc(2,n)(1− e−(Sc(2,p)−1))ST (p, m)ein

p,m,n

} (C.7)

PA
11 = 0, (C.8)

where PB
pm = P̆pm are the following transition probabilities, related to the first attempt to find

the next relay, i.e. without utilizing the adaptive mechanism:

PB
11 = 0

PB
12 = eL

PB
21 =

s1

sL
eS

PB
22 =

s2

sL
eL, (C.9)

and coefficients ST (p, n) and Sc(p, n) are the elements of two matrices associated with the

two-state adaptive Markov Chain where the two-level uniform quantization approximation is

120

REPAIR SET
EMPTY

Failed

(a)
REPAIR SET

EMPTY

Failed

(b)

Figure C.3: Large Adaptive Envelopes for Pivot State 2 (Replacement Relay in State 2): (a) Large
envelope, large failed crescent (failed CLR in state 2). (b) Large envelope, small failed crescent (failed CLR in state 1).

applied, in that s1 = sS , and s2 = sL − sS

SC =

⎡⎣ 0 sL − sS

sS sL − sS

⎤⎦ , (C.10)

ST =

⎡⎣ 1 1

sS/sL 1− sS/sL

⎤⎦ . (C.11)

121

Appendix D

RandomWalk Ripple Evolution: The Stopping Time Probability

Recall that for the Markov Chain model of the ripple evolution, described by (6.19) and (6.20),

its trapping state corresponds to the empty ripple. The probability of entering the trapping state

at time t, where t > Ti, is given in (6.22), where u = t − Ti. The probability of being in the

trapping state at Ti+u can also be expressed as p(Ti)
Ti+u = [0 0 1 0 · · · 0]P

(u−1)
i [1 η(0) 0 · · · 0]T .

Hence, we can reformulate (6.22) as

pTi(u) = [0 0 1 0 · · · 0]Pu−1
i [0 η(0) 0 · · · 0]T . (D.1)

Note that both [0 0 1 0 · · · 0] and [0 η(0) 0 · · · 0]T have zero-valued first elements, which means

that the first row and the first column of the transition probability matrix Pi do not contribute

to the value of (D.1). Hence, we introduce a new matrix P̃i which contains the significant

elements of Pi as

P̃� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η(1) η(2) η(3) · · · 0

η(0) η(1) η(2) · · · 0

0 η(0) η(1) · · · 0

...
...

...
...

...

0 0 · · · η(0) η(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
k−1×k−1

, (D.2)

with η (·) ≡ ℘
(
λ

(δ)
�

)
. Now,

pTi(u) = η(0) [0 1 0 · · · 0] P̃
(u−1)
i [1 0 0 · · · 0]T . (D.3)

Assuming n is large, we can approximately express the uth power of the matrix P̃i through a

matrix that contains elements ℵ(u)() of the uth convolution of the pdf array η = [η(0) η(1) · · ·] .

122

Let us define η as degree-one convolution. For order-two convolution, we convolve η with it-

self, and uth convolution of η is obtained by recursively convolving (u− 1)th convolution with

η. By multiplying the matrix

P̃
C
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

η(0) η(1) η(2) · · ·
0 η(0) η(1) · · ·
...

...
...

...

0 · · · η(0) η(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (D.4)

which was obtained by adding the column [η(0) 0 0 · · ·]T in front of P̃i, and another matrix

P̃
R
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η(2) η(3) η(4) · · ·
η(1) η(2) η(3) · · ·
η(0) η(1) η(2) · · ·
0 η(0) · · · · · ·
...

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (D.5)

which was obtained by adding the row [η(2) η(3) η(4) · · ·] above P̃i, we obtain

P̃
C
i P̃

R
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ℵ(2)(2) ℵ(2)(3) · · ·
ℵ(2)(1) ℵ(2)(2) · · ·
ℵ(2)(0) ℵ(2)(2) · · ·
· · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(D.6)

= D̃
(2), (D.7)

where ℵ(s)(d) is the s-th convolution of η(·) evaluated at d, and D̃
(2) is what we refer to as

second convolution matrix of η, for η (·) ≡ ℘
(
λ

(δ)
ti

)
. Hence,

P̃
2
i = D̃

(2) − η(0)

⎡⎢⎢⎢⎢⎣
η(2) η(3) · · ·
0 0 · · ·
...

...
...

⎤⎥⎥⎥⎥⎦ (D.8)

= D̃
(2) − [η(0) 0 0 · · ·]T

[
ℵ(1)(2) ℵ(1)(3) ℵ(1)(4) · · ·

]
. (D.9)

123

By induction,

P̃
3
i = D̃

(3) − [η(0) 0 0 · · ·]T
[
ℵ(2)(3) ℵ(2)(4) ℵ(2)(5) · · ·

]
(D.10)

− P̃i [η(0) 0 · · ·]T
[
ℵ(1)(2) ℵ(1)(3) ℵ(1)(4) · · ·

]
,

P̃
u
i = D̃

(u) −
u∑

z=2

P̃
(u−z)
i [η(0) 0 · · ·]T

[
ℵ(z−1)(z) ℵ(z−1)(z + 1) ℵ(z−1)(z + 2) · · ·

]
.

Replacing (D.8) in (D.3), we obtain (6.23).

124

References

[1] Akyildiz I.F., Su W., Sankarasubramaniam Y., and Cayirci E. A survey on sensor net-
works. IEEE Communications Magazine, 40:102–116, 2002.

[2] N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low cost outdoor localization for very
small devices. Personal Communications, Special Issue on ”Smart Spaces and Environ-
ments”, 7, Oct 2000.

[3] Darren Griffin. How does the global positioning system work ?
http://www.pocketgpsworld.com/howgpsworks.php, 2008.

[4] J. C. Navas and T. Imielinski. Geocast - geographic addressing and routing. In ACM/IEEE
Int. Conf. on Mobile Computing and Networking (MobiCom), Sep 1997.

[5] Andreas Willig Holger Karl. Protocols and Architectures for Wireless Sensor Networks.
J. Wiley, 2005.

[6] J. Wieselthier, G. Nguyen, and A. Ephremides. On the construction of energy-efficient
broadcast and multicast trees in wireless networks. In IEEE INFOCOM00, Mar 2000.

[7] I. Maric and R. D. Yates. Cooperative multihop broadcast for wireless networks. IEEE
JSAC Special Issue on Fundamental Performance Limits of WSNs, 22, Aug 2004.

[8] S. Katti, Dina Katabi, W. Hu, H. Rahul, and M. Medard. The importance of being op-
portunistic: Practical network coding for wireless environments. In 43nd Annual Allerton
Conference, Sep 2005.

[9] G. Barrenechea, B. Beferull-Lozano, and M. Vetterli. Lattice sensor networks: capacity
limits, optimal routing and robustness to failures. In IPSN 2004, Apr 2004.

[10] L. Sankaranarayanan, G. Kramer, and N. Mandayam. Hierarchical sensor networks:
Capacity bounds and cooperative strategies using the multiple-access relays. In IEEE
SECON 2004, October 2004.

[11] R. C. Shah and J. Rabaey. Energy aware routing for low energy ad hoc sensor networks.
In IEEE Wireless Communications and Networking Conference 2002, 2002.

[12] Y. Yu, D. Estrin, and R. Govindan. Geographical and energy-aware routing: A recur-
sive data dissemination protocol for wireless sensor networks. Technical report, UCLA
Computer Science Department, 2001.

[13] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-efficient coordi-
nation algorithm for topology maintenance in ad hoc wireless networks. In Proceedings
of 7th Annual International Conference on Mobile Computing and Networking, pages
85–96, July 2001.

125

[14] A. Cerpa and D. Estrin. Ascent: Adaptive self-configuring sensor network topologies. In
Proceedings of INFOCOM 2002, June 2002.

[15] S. Funke and C. Klein. Hole detection or: how much geometry hides in connectivity? In
The 22nd annual symposium on Computational geometry, 2006.

[16] Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang. Glider:gradient landmark-based
distributed routing for sensor networks. In Proc. of the 24th Conference of the IEEE
Communication Society (INFOCOM), Mar 2005.

[17] R. Fonesca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and I. Stoica. Beacon
vector routing: Scalable point-to-point routing in wireless sensornets. In Proc. of the 2nd
Symposium on Networked Systems Design and Implementation, 2005.

[18] A. Caruso, A. Urpi, S. Chessa, and S. De. Gps free coordinate assignment and routing in
wireless sensor networks. In Proc. of the 24th INFOCOM, Mar 2005.

[19] S. Ni, Y. Tseng, Y. Chen, and J. Sheu. The broadcast storm problem in a mobile ad hoc
network. In Proc. 5th ACM/IEEE MOBICOM, 1999.

[20] F. Bai and A. Helmy. Comparative analysis of algorithms for tree structure restoration in
sensor networks. In Proc. of 23rd IEEE ICPCC, pages 385–391, 2004.

[21] John Heidemann, Fabio Silva, and Deborah Estrin. Matching data dissemination algo-
rithms to application requirements. In ACM SenSys Conference, Los Angeles, California,
USA, pages 218–229, Nov 2003.

[22] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed dif-
fusion for wireless sensor networking. IEEE/ACM Transactions on Networking (TON),
11(1):2–16, 2003.

[23] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In Proc. 1st
ACM Int’l. Wksp. Wireless Sensor Nets and Apps., 2002.

[24] X. Liu, Qingfeng Huang, and Ying Zhang. Combs, needles, haystacks: Balancing push
and pull for discovery in large-scale sensor networks. In ACM Sensys 2004, November
2004.

[25] B. Karp and H. Kung. Gpsr: Greedy perimeter stateless routing for wireless networks. In
Proc. of the 6th MOBICOM, 2000.

[26] H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly distributed packet
radio terminals. IEEE Trans. on Comms., 1984.

[27] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing
without location information. In Proc. of IEEE MobiCom 2003, 2003.

[28] B. Leong, B. Liskov, and R. Morris. Greedy virtual coordinates for geographic routing.
In Proc. of ICNP 2007, 2007.

[29] J. Li, J. Jannotti, D. DeCouto, D. Karger, and R. Morris. A scalable location service for
geographic ad-hoc routing. In Proc. of the 6th MOBICOM, 2000.

126

[30] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. Ght: A
geographic hash table for data-centric storage in sensornets. In 1st ACM International
Workshop on Wireless Sensor Networks and Applications (WSNA), 2002.

[31] P. Bose, P. Morin, I. Stojmenovic, , and J. Urrutia. Routing with guaranteed delivery in
ad hoc wireless networks. In Proc. of the 3rd Int. Workshop on Discrete Algorithms and
methods for mobile computing and communications (DialM), 1999.

[32] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics,
86, 1990.

[33] H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is np-hard. Computational
Geometry Theory and Applications, 9, 1998.

[34] A. Cerpa, J. L. Wong, L. Kuang, M. Potkonjak, and D. Estrin. Statistical model of lossy
links in wireless sensor networks. In Proceedings of the 4th IPSN, 2005.

[35] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein. Growth codes: Maximizing sensor
network data persistence. In ACM SIGCOMM 2006, 2006.

[36] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Decentralized erasure codes for
distributed networked storage. IEEE/ACM Transactions on Networking, 14, 2006.

[37] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Distributed fountain codes for
networked storage. In ICASSP 2006, 2006.

[38] Y. Liu, B. Liang, and B. Li. Data persistence in large-scale sensor networks with decen-
tralized fountain codes. In IEEE Infocom, May 2007.

[39] S. Aly, Z. Kong, and E. Soljanin. Fountain codes based distributed storage algorithms for
large-scale wireless sensor networks. In IPSN 2008. IEEE, April 2008.

[40] S. Aly, Z. Kong, and E. Soljanin. Raptor codes based distributed storage algorithms for
wireless sensor networks. In ISIT 2008. IEEE, July 2008.

[41] R. Nelson and L. Kleinrock. The spatial capacity of a slotted aloha multihop packet radio
network with capture. IEEE Trans. on Comms., 1984.

[42] T.C. Hou and V.O.K. Li. Transmission range control in multihop packet radio networks.
IEEE Trans. on Comms., 1986.

[43] A. Busson, G. Chelius, and E. Fleury. Energy aware unicast geographic routing. In
SpaSWIN 2006 workshop. IEEE, April 2006.

[44] M. Mauve, J.Widmer, and H. Hartenstein. A survey on position-based routing in mobile
ad-hoc networks. IEEE Network, Nov 2001.

[45] B. Hajek. Minimum mean hitting times of brownian motion with constrained drift. In
Proc. 27th Conf. on Stochastic Processes and Their Applications, 2000.

[46] S. Shakkottai. Asymptotics of query strategies over a sensor network. In Proceedings
23rd IEEE Infocom, Hong Kong, 2004.

127

[47] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk. Enhancing source-location privacy in
sensor network routing. In Proc. of the 25th Annual IEEE ICDCS, pages 599–608, 2005.

[48] D. Niculescu and B. Nath. Trajectory based forwarding and its applications. In Proc. 9th
ACM/IEEE MOBICOM, pages 260–272, 2003.

[49] D. Slepian and J. K. Wolf. Noiseless coding of correlated information sources. IEEE
Trans. on Information Theory, 19, 1973.

[50] R.Gallager. Discrete Stochastic Processes. Kluwer Academic Publishers, 1995.

[51] A. Dembo and O. Zeitouni. Large Deviation Techniques and Applications. Springer,
1998.

[52] N. Ahmed, S. S. Kanhere, and S. Jha. The holes problem in wireless sensor networks: a
survey. ACM SIGMOBILEMobile Computing and Communications Review, 9:418, 2005.

[53] S. Kokalj-Filipovic, P. Spasojevic, and R. Yates. Bespoken protocol for data dissemina-
tion in wireless sensor networks. In SpaSWIN 2007 workshop. IEEE, April 2007.

[54] A. Dimakis and K. Ramchandran. Networked Sensing Information and Control, chapter
Network Coding for Distributed Storage in Wireless Networks. Springer US, 2008.

[55] S. Kokalj-Filipovic, P. Spasojevic, R. Yates, and E. Soljanin. Decentralized fountain
codes for minimum-delay data collection. In CISS 2008. IEEE, March 2008.

[56] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros. The benefits of coding over
routing in a randomized setting. In IEEE International Symposium on Info. Theory, Jun
2003.

[57] T. Ho, M. Medard, J. Shi, M. Effros, and D. R. Karger. On randomized network coding.
In 41st Annual Allerton Conference, Oct 2003.

[58] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-
Holland, 1977.

[59] P. Elias, A. Feinstein, and C.E. Shannon. A note on the maximum flow through a network.
IRE Transactions on Information Theory, pages 117–119, 1956.

[60] L.R. Ford, Jr., and D.R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics 8, pages 399–404, 1956.

[61] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information flow. IEEE
Trans. on Information Theory, 46, 2000.

[62] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong. A random
linear network coding approach to multicast. IEEE Transactions on Information Theory,
Oct 2006.

[63] W. Feller. An Introduction to Probability Theory and Its Applications vol. 1. John Willey
and Sons, 1968.

[64] L. Lovasz. Random walks on graphs: a survey. Combinatorics, 2, 1993.

128

[65] W.K. Hastings. Monte carlo sampling methods using markov chains and their applica-
tions. Biometrica, 57, 1970.

[66] M. Luby. L t codes. In The 43rd Annual IEEE Symposium on Foundations of Computer
Science, 2002.

[67] M. Penrose. Random Geometric Graphs. Oxford University Press, 2003.

[68] Z. Li and B. Li. Improving throughput in multihop wireless networks. IEEE TRANSAC-
TIONS ON VEHICULAR TECHNOLOGY, 55, May 2006.

[69] D. H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Transactions
on Information Theory, 1986.

[70] S. Sanghavi. Intermediate performance of rateless codes. In Information Theory Work-
shop, 2007. ITW ’07, 2007.

[71] Venkatesan Guruswami. Rapidly mixing markov chains: A comparison of techniques,
2000.

[72] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Mixing times for random walks on
geometric random graphs. In SIAM ANALCO 2005, 2005.

[73] Y.Wu, P.A.Chou, and S.-Y.Kung. Information exchange in wireless networks with net-
work coding and physical-layer broadcast. In CISS 2005, 2005.

[74] J. Widmer, C. Fragouli, and J.-Y. Le Boudec. Low-complexity energy-efficient broadcast-
ing in wireless ad-hoc networks using network coding. In 1st Network Coding Workshop
(NetCod), April 2005.

[75] B. Hajek. Connections between network coding and stochastic network theory. In
Stochastic Networks Conference, 2006.

[76] S. ten Brink. Code doping for triggering iterative decoding convergence. In International
Symposium on Information Theory, 2001.

[77] G. Caire, S. Shamai, and S. Verdu. Feedback and belief propagation. In 4th Int. Symp. on
Turbo Codes and Related Topics, 2006.

[78] R. Karp, M. Luby, and A.Shokrollahi. Finite length analysis of lt codes. In ISIT 2004,
2004.

[79] E.Maneva and A.Shokrollahi. New model for rigorous analysis of lt-codes. In ISIT 2006,
2006.

129

Curriculum Vitae

Silvija Kokalj-Filipović

Education:

PhD Electrical and Computer Engineering

January 2009

MS Electrical and Computer Engineering

October 1995

Dipl. Ing. Electrical Engineering

June 1989

Work History:

January 2004 till present

Graduate Assistant at Winlab, Rutgers University

September 2002 till December 2003

Part-time Research Engineer at Winlab, Rutgers University

Summer 2002

Contract job with Digital5 , West Windsor, NJ

from March 2001 till March 2002

Senior Software Engineer at Wiscom Technologhies, Clark NJ

from April 2000 till February 2001

Senior Software Engineer at Eulix Networks, Princeton NJ

April 1999-April 2000

Senior Software Engineer at Ariel Corporation, Cranbury, NJ

January 1997 - October 1998

Senior Network Software Engineer/System Support Engineer - Geotek, Montvale, NJ

130

January 1996 - October 1996

Technical Staff Member at Formation, Inc., Moorestown, NJ

1989-1995

Research and Project Engineer at Informatika d.d., Belgrade, Yugoslavia

Journal Papers:

1. S. Kokalj-Filipović, P. Spasojević, and E. Soljanin. Doped fountain coding for minimum delay

data collection in circular networks. Submitted to IEEE JSAC - Special Issue on Network Coding

for Wireless Communication Networks, 2008.

2. S. Kokalj-Filipović, P. Spasojević, and R. Yates. Random walk models in protocol design for

geographic data propagation in location-unaware wireless sensor networks. Submitted to IEEE

JSAC - Special Issue on Stochastic Geometry and Random Graphs for Wireless Networks, 2008.

Conference Publications:

1. S. Kokalj-Filipović, P. Spasojević, E. Soljanin, and R. Yates. ARQ with doped fountain decoding.

In International Symposium on Spread Spectrum Techniques and Applications (ISSSTA) 2008.

IEEE, Bologna, August 2008.

2. S. Kokalj-Filipović, P. Spasojević, R. Yates, and E. Soljanin. Decentralized fountain codes for

minimum-delay data collection. In Conference on Information Sciences and Systems (CISS)

2008. IEEE, Princeton, March 2008.

3. S. Kokalj-Filipović, P. Spasojević, and R. Yates. Bespoken protocol for data dissemination in

wireless sensor networks. In Third Workshop on Spatial Stochastic Models for Wireless Networks

(SpaSWIN) 2007. IEEE, Limassol, Cyprus, April 2007.

4. S. Kokalj-Filipović, R. Yates, and P. Spasojević. Random walk models for geographic data

propagation in wireless sensor networks. In Conference on Information Sciences and Systems

(CISS) 2007. IEEE, Baltimore, March 2007.

Conference Submissions:

1. S. Kokalj-Filipović, P. Spasojević, and R. Yates. Adaptive BeSpoken: Can a Packet Walk Straight

Through a Field of Randomly Dying Location-Unaware Wireless Nodes? Submitted to IPSN

2009. ACM/IEEE , April 2009.

