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Adaptive Sampling in

Wireless Sensor Networks

by Eun Kyung Lee

Thesis Director: Professor Dario Pompili

Wireless Sensor Networks (WSNs) are networks characterized by a dense deployment

of sensor nodes. Because of the dense deployment, sensors can make interference when

exchanging data messages. Besides these data messages, in location-based routing that

uses geographical positions to route messages, there is a Neighborhood Discovery Pro-

tocol (NDP). It should periodically broadcast ”Hello” packets to discover neighboring

nodes and maintain routing tables updated. This is due to the uncertainty of the wire-

less environment such as varying radio interference and mobility. Due to the overhead

caused by these periodic broadcasts from many nodes in certain radio range, however,

NDP may heavily impact on the performance of the routing scheme itself, which in turn

could affect end-to-end performance. Although this is an important and challenging

problem in WSNs, this impact and the associated tradeoffs have not been fully explored

in the literature. Hence, in the first half of this thesis, an analytical and experimental

study is conducted to determine how parameters such as power and transmission fre-

quency of neighborhood discovery packets affect the communication process in static

and mobile environments.
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In addition, WSNs are used to monitor and reliably estimate a phenomenon from the

collective information provided by its constituent sensor nodes. Due to the high density

of the sensor nodes, the data obtained from them are usually correlated in both space

and time. Adaptive sampling is a method that employs this spatio-temporal correlation

inherent in WSNs to obtain an energy-efficient estimate of the field. In the second half

of this thesis, a distributed, hierarchical, cluster-based adaptive sampling framework is

proposed using multiple manifestations for field estimation in three-dimensional envi-

ronment. Nodes sensing highly correlated values in space are grouped to form clusters

and these clusters are modified based on variation in sensor data over time. Energy

efficiency is achieved through minimization of communication costs by restricting data

communication to the local domain (within clusters) and by applying sleep mode. More-

over, a phenomenon is more reliably captured by using multiple manifestations than

by using a single manifestation. It ensures joint optimization by adaptively varying the

sampling rates in both space and time domains.
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs) are composed of autonomous devices that coop-

eratively monitor physical or environmental conditions and track specific targets and

communicate with each other to route data back to the sink. There are many possible

applications of this technology, expected to be used in the military, private and busi-

ness sectors, among others. Based on some local decision processes, they can transmit

the sensed data to the user. Smart sensor nodes are equipped with multiple sensors

and processors with low power consumption. A variety of sensors such as biological,

thermal, chemical, optical, and mechanical sensors may be attached to the node to

measure environmental properties and send the data to the user. In order to utilize

such functionalities of WSNs, some constraints should be addressed. Unlike traditional

networks, a WSN has its characteristics such as a different network design (ad hoc)

and resource constraints. They provide research issues for making WSN reliable and

feasible.

1.1 Challenges in WSNs

In a cellular system (i.e., cell-phone infrastructure), the base stations form a wired

backbone. A mobile node is only a single hop away from the nearest base station. This

type of network is also referred to as infrastructure-based in literature. Unlike this

infrastructure-based networks, a WSN has its own architecture design in that hops are

randomly placed within the network. This is the so-called ad hoc network, illustrated

in Fig(1.1). Data from the sensors are collected by the sink nodes and transmitted to

the user via internet, satellite and unmanned arial vehicle (UAV) in ad hoc fashion.
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Internet Internet 

Satellite Satellite 

UAVUAV

Sink

Sink

Task
Manager
(USER)

Figure 1.1: Sensor network architecture

Therefore, WSNs have their own specific design. Design constraints arise from appli-

cation dependency and the need to adapt to differences in the monitored environment.

The environment plays a crucial role in deciding the size of the network, the number

of nodes to be deployed, the deployment scheme, mobility, and network topology. The

size of the network varies and also the number of nodes to be deployed varies with the

monitored environment. For indoor environments, fewer nodes are required to form a

network in a limited space, whereas outdoor environments may require more nodes to

cover a larger area. For mobility environments such as cars equipped with sensors, a

large number of nodes are required to capture their movement. Mobile nodes must have

the ability to reposition and organize themselves consistently while moving in order to

maintain network connectivity and hierarchy. An ad hoc deployment is preferred over

pre-planned deployment when the environment is inaccessible by humans or when the

network is composed of hundreds to thousands of nodes. Obstacles in the environment

can also confine the exchange of messages between nodes, which in turn affects the

network connectivity and performance (or topology).

Moreover, there are some resource constraints because of the imperfect capacity of

the sensors. Resource constraints include short communication range, limited amount
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of power, low bandwidth, and limited processing and storage in each node. Properly

allocating resources such as power and bandwidth maximizes utilization. In controlling

these resources, coverage, a state in which the monitored region is completely covered

with a high degree of reliability, can be achieved [1]. Coverage is important because it

affects the number of sensors to be deployed, the placement of these sensors, connec-

tivity, and energy.

Short communication range requires a number of sensor nodes working together to

cover a large region to obtain data about the environment. Because of the number

of nodes, interference increases. When excessive nodes are deployed, radio from one

node disturbs those from the others communicating with the same channel. On the

other hand, connection could be lost when not enough nodes are deployed to fulfill

the task requiring a larger number of nodes. Optimization of the number of nodes,

management of channels, and transmission scheduling issues arise here. Depending on

the application, a higher degree of coverage may be required to increase the accuracy

of the sensed data.

Table 1.1: Sensor node features

Feature Imote (2003) Mica2 (2003) Micaz (2004) Telos (2005) Imote2
CPU type@ [MHz] 32bit ARM @ 8bit Atmel @8 8bit Atmel @8 16bit TI @8 32b XS@13(104)

SRAM [KB] 34 4 4 10 256/32,000
FLASH [KB] 512 125+512 125+512 48/1024 32,000

Radio BT 300-900MHz 802.15.4 802.15.4 15.4 (BT/802.11)
Bandwidth [Kb/s] 720 15 250 250 250(720,11000)

Power(Rx/Tx) [mA] 24/24 10/27 20/18 20/18 20/18
Power sleep [uA] 1-250 19 27 6 1-100

OS support TinyOS TinyOS TinyOS TinyOS TinyOS

Conserving energy is a key objective in WSNs in order to increase the lifetime

of the network because of the limited amount of power in the nodes. Reliable wireless

communication protocols are proposed in the literatures to reduce retransmissions which

waste energy. Intelligent sensor placements are suggested to achieve adequate coverage,

security, and efficient storage management. Data aggregation and data compression are

proposed in order to save energy for the network by reducing data size delivered to the

user.
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Figure 1.2: Application tree

Low bandwidth is one of the constraints in WSNs. Table 1.1 shows bandwidth of

the current sensors. They all have limited bandwidth inadequate for sending large data

such as images, sounds and videos.

Limited processing and storage of a sensor require efficient protocol and extra ca-

pacity of the node. Since a wholesale replacement of the sensors would be too costly, a

revision of the hierarchy would be more cost-efficient. Cluster head, which aggregates

the data or may have extra functionality, helps to make up for the weakness of the

sensors. Regulating the process and storage load to the CH provides a simple solution

to the hardware constraints.

Management and control of these constraints in response to application requirements

play a key role in designing WSNs.

1.2 Applications for WSNs

Applications for WSNs have great potential in such scenarios as military target tracking

and surveillance, natural disaster relief, biomedical health monitoring, and hazardous
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environment exploration, and seismic sensing. WSNs are mainly divided into two cat-

egories: tracking and monitoring. Fig. 1.2 shows where detailed applications belong

between the two categories [1].

1.3 Thesis Overview

This thesis deals with two different, but related, topics: “On the Impact of Neighbor-

hood Discovery on Location-Based Routing in Wireless Sensor Networks” and “Adap-

tive Sampling in Wireless Sensor Networks Measuring Multiple Phenomenal Manifes-

tations.” The former explores the impact of neighborhood discovery protocol (NDP),

which is periodically needed to exchange control messages such as ”hello” packet. This

packet is mainly required to capture the uncertain wireless environment and the mo-

bility of the nodes for routing purposes. In order to verify the impact of NDP, the

following questions will be explored: How far should a node know about its neighbors?

How often should a node update the neighborhood information? And how much infor-

mation should a node require? Analytical and experimental study will be conducted

to determine how NDP parameters such as power, frequency, and packet size affect the

communication process.

The second topic builds on the first to optimize network performance. Data aggre-

gation in time and space is proposed to save overall energy consumption of the network.

Due to the high density of sensor deployment, the degree of ”similarity” among spa-

tially proximal sensor observations increases as the inter-node distance decreases. Also,

the degree of ”similarity” between consecutive sensor measurements varies according

to the temporal characteristics of the phenomenon’s manifestation. Energy-efficient

estimation of the phenomenon can be performed by leveraging the above mentioned

spatio-temporal correlation among the sensor data. In this research effort, adaptive

distributed field estimation techniques will be developed to prolong the lifetime of 3D

WSNs and/or to ensure effective utilization of resources, whereas existing solutions

perform spatial and temporal adaptive sampling separately. By grouping sensors in

clusters and electing cluster heads (CHs) that will report the data on behalf of the

nodes in their clusters, communication cost can be minimized. This overhead reduction
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occurs because cluster heads do not need to collect data from all the nodes in the cluster

as it is normally proposed in the literature when in-network processing is advocated.

Obviously, efficient distributed clustering and resizing algorithms need to be developed

so to assure data consistency as the phenomenon evolves in time and space. Chapter 3

discusses this issue in detail.
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Chapter 2

On the Impact of Neighborhood Discovery on

Location-based Routing in Wireless Sensor Networks

2.1 Introduction

It has been pointed out in [2] that energy efficiency in sensor networks can be improved

by designing algorithms following cross-layer approach, i.e., taking into account the

interaction between different layers of the communication process thereby minimizing

the energy consumption of the entire network. In addition, in order to achieve en-

ergy efficiency, network algorithms and protocols need to be scalable, i.e., they must

perform well for any arbitrary number of nodes. Scalable algorithms are normally lo-

calized/distributed and exchange information only with neighboring nodes. The notion

of scalability is related to that of localization. As a result, local routing decisions help

achieve minimum latency and energy consumption without having a global perspective

of the network.

It has been shown that geographical routing schemes (i.e., based on node physical

position) [3] are scalable. However, gathering only geographical position information

from the neighboring nodes may not improve the energy efficiency. With the avail-

ability of high sensitivity receivers and multi-faceted functionalities in the sensor nodes

currently available on the market, collecting more information such as channel quality

and residual energy information from the neighboring nodes might make the routing

tasks more energy efficient. However, the question lies in how much information should

be collected from the neighboring nodes without incurring in excessive overhead.

Each node collects the information using a Neighborhood Discovery Protocol (NDP),

which involves signaling of control packets between nodes. The more the information

collected from the neighboring nodes, the better can the routing decisions be, but at the
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cost of an increase in length of the signaling packets, which leads to higher overhead

in terms of energy, bandwidth used, and processing complexity. In fact, the higher

the transmission power used for sending the Neighborhood Discovery (ND) packet, the

higher would be the number of neighboring nodes perceived, but this would come at the

penalty of more collisions of signaling packets between nodes as well as higher energy

consumption. Moreover, the higher the frequency of ND packets being exchanged, the

more overhead induced in the network due to increase in signaling packets. Last but

not least, mobility of the sensor nodes can also affect the routing decisions. When

nodes move, they need to frequently update their routing table. In addition, even if the

sensor nodes do not move, the topology of the network can change because nodes may

die due to expended battery or any hardware failure. Therefore, selecting a suitable

NDP update time interval is crucial for selecting the best next hop, even if the nodes

are immobile.

Hence, through five routing schemes - Most Advance Routing [4], Energy-aware

Routing, Channel-aware Routing, Compass Routing [5] and Partial Topology Knowl-

edge Forwarding (PTKF) [2], and various parameters such as power and frequency of

NDP, this paper addresses the following questions: “How much information is required

from the neighboring sensor nodes?”, “How ‘far’ should a sensor node know about the

network?”, and “How often should a node collect the information from the neighbor-

hood?”. This paper also analyzes the effect of mobility on routing decisions.

The remainder of the Chapter is organized as follows. In Sect. 2.2, we review some

of the existing forwarding schemes and cross-layer approach proposed for WSNs. In

Sect. 2.3, we describe the neighborhood discovery protocol and the routing schemes

considered. In Sect. 2.4, we provide the performance evaluation, while in Sect. 2.5, we

conclude the paper and draw the main conclusions.

2.2 Related Work

In this section, we present some of the existing geographical forwarding strategies used

to find the best next hop as well as some of the existing cross-layer solutions that may
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Figure 2.1: Different Forwarding Strategies

help improve the geographical routing by using information from both physical layer as

well as data link layer.

2.2.1 Forwarding Strategies

There are several existing forwarding strategies to improve the performance of ge-

ographic routing. These forwarding strategies can be divided into two categories:

distance-based and reception-based [6]. In WSNs, a node communicates only with nodes

that are in its radio range. In this way, every node gets to know each other by signaling

and exchanging position information. For distance-based forwarding, a node only knows

the distance of its neighbors while in reception-based forwarding the packet reception

rate of its neighbors is also known [6]. With reference to Fig. 2.1, we introduce the

following definitions as given in [2]. Given a sender node S and a destination node D,

the progress of a generic node X is the orthogonal projection of the line connecting S

and X onto the line connecting S and D. Given a sender node S and a destination

node D, the advance of a generic node X is the distance between S and D minus the

distance between X and D.

In [4], Takagi and Kleinrock proposed a geographical routing strategy, using the

notion of progress. In their Most Forward within Radius (MFR) scheme [4], the message
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is forwarded to the maximum progress neighbor. With reference to Fig. 2.1, note

that, although node G is closer to the destination, MFR forwards the packet to M

because the progress of M is larger than that of G. Hou and Li [7] discuss the Nearest

Forward Progress (NFP) method, which selects the minimum progress neighbor within

the topology Knowledge Range (KR) of S, i.e., node N in Fig. 2.1. Knowledge range

is defined as how far from itself a node can perceive its neighboring nodes. Finn [8]

proposes the Greedy Routing Scheme (GRS) based on geographical distance in which

a node selects among its neighbors the one closest to the destination, i.e., node G in

Fig. 2.1. In the so-called compass routing method [5], the message is forwarded to a

neighbor, C in Fig. 2.1, such that the angle ∠CSD is minimum, i.e., the direction SC

is the ‘closest’ to the direction SD. Whereas, the Random Progress Forwarding (RPF)

method selects a random next hop among the neighbors.

The reception-based forwarding schemes are based on the idea that only distance

information is not enough for routing decision in realistic condition because of the un-

reliability of the wireless network. Previously proposed geographic routing protocols

perform poorly on lossy links. Packet Reception Rate (PRR) is considered for routing

decision in reception-based forwarding. In [9], the authors suggest blacklisting/link-

selection strategies. These strategies select next best hop by calculating the product

of the packet reception rate and the distance traversed towards destination. By black-

listing bad links or nodes, the number of disconnections is reduced thereby achieving

higher delivery rate. However, this scheme has an overhead of requiring low rate of

control traffic to calibrate link quality. While this approach can detect good links, it

adapts slowly to changes in link quality because reasonable number of packets need to

be sent to measure PRR.

2.2.2 Cross-layer Solutions

Cross-layer approaches have gained importance due to the limitations of layered pro-

tocols. In this section, we discuss some of the cross-layer information, such as received

signal strength (RSS), link quality indicator (LQI), residual energy and transmission

power and path gain, that can be effectively used in the routing process to improve
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end-to-end networking performance.

Received Signal Strength Indicator (RSSI)

Channel quality can be assessed by the received signal strength (RSS). In [10] [11],

each neighbor obtains channel quality by using periodic beacon signal. In [12], the

authors propose to use RSSI for calculating the Signal-to-Noise-Ratio (SNR) and Packet

Reception Rate (PRR). In [9], it has been shown that the product of PRR and distance

d traversed towards destination is the optimal forwarding metric in a lossy medium.

Link Quality Indicator (LQI)

In addition to RSSI, the radios such as CC2420 implement a parameter called Link

Quality Indicator (LQI). The conventional opinion in the wireless networking com-

munity is that compared to RSSI [13], LQI is a better indicator. This is due to the

existence of asymmetric links and external factors such as noise, multi-link interferences

and has been proved based on experimental works [14]. LQI is featured by CC2420 ra-

dios (TMote, TelosB, Micaz) based on chip error rate ranging from the value of 50 to

110 (Minimum and maximum quality respectively).

Residual Energy

Residual energy can be utilized to increase entire network lifetime and energy balance.

PAMAS protocol [15] is based on metrics to minimize energy consumed/packet (ej)

and cost/packet (cj). The metric for calculating cost/packet is done by assigning node

weights (fi) to each node and then computing the shortest path at the routing layer.

Generally, fi is tailored to reflect residual energy of the battery of intermediate nodes

using predefined characteristics.

Transmission Power and Path Gain

[16] implements a cross layer protocol between transport and physical layers to increase

end-to-end throughput and maintain energy efficiency in multi-hop networks. CDMA

based medium access is used. Jointly Optimal Congestion-Control and Power-Control
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Figure 2.2: Oneway Neighborhood Discovery Protocol

Algorithm (JOCP) updates weighted queueing delay (λ1) at each node at every time

slot, t in a synchronized network. In the second step, the delay (Ds) measured from TCP

protocol and TCP window size (Ws) is updated. As the third step, a parameter mj is

calculated based on locally measurable quantities at nodes such as signal to interference

ratio (SIR), transmit power (Pj) and path gain Gij . Finally, all the nodes update power

based on locally measurable quantities and received messages from neighbors.

2.3 Neighborhood Discovery and Routing

In this section, we first describe the basic neighborhood discovery schemes, which allows

each node to gather information from the neighboring nodes. Then, we introduce a

mathematical relationship between neighborhood discovery time period and data time

period. Further, we discuss about the mobility case. Finally, we discuss the various

routing strategies that are considered.

2.3.1 Handshake Neighborhood Discovery

We analyze a basic type of neighborhood discovery scheme: Handshake. In this scheme,

node S periodically sends Neighborhood Discovery (ND) packets to gather the infor-

mation from the neighboring nodes at a power level to be received by all the nodes
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Figure 2.3: Handshake Neighborhood Discovery Protocol

within its chosen Knowledge Range (KR), as shown in Fig. 2.3. As a result, nodes

N1, N2, and N3 receive the ND packet while the farther nodes do not. All the nodes

that receive the ND packet would reply with neighborhood discovery acknowledgement

packets (ND ACK packet) piggy-backed with information such as residual energy of

the node, packet error rate, etc. It is intuitive that increasing the KR or collecting

information more frequently from the neighboring nodes may result in better routing

decisions. However, this causes higher energy consumption as a result of more power

and exchange of signaling traffic.

2.3.2 Data Period vs NDP Period

Data and neighborhood discovery traffic are the major traffic sources of the sensor

network which has limited bandwidth. Therefore, we need to verify whether data

sending period (TD) and NDP sending period (TND) are strongly related rather than

considering them separate, before introducing the routing schemes. TD is the time

interval for sending data packets and TND is the time interval for sending NDP packets.

In order to find the relation between TD and TND, we use ∆, the average waiting time

to send data packets with latest information from the NDP. Hence, there are two cases

to be considered: one in which K = 1 (Fig. 2.4), and the other in which K ≥ 2 (Fig.
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Figure 2.4: ∆ when K = 1

Figure 2.5: ∆ when K = 2

2.5), where K is defined as, ⌈
TND

TD

⌉
= K, (2.1)

∆ = ∆1 +
TD

K
·

K−1∑

i=1

i =
TD

2
·
⌈

TND

TD

⌉
≤ ∆TH . (2.2)

The generalized equation (2.2) proves that the two values TD and TND are strongly

related and directly depends on K. Larger the value of K, larger would be the ∆.

Once the ∆ crosses the threshold ∆TH , the packet delivery ratio will drop drastically.

2.3.3 Mobility

In addition to the relation between TD and TND, we need to consider the effect of

mobility on routing decisions. Once the information of the neighboring nodes is known,

a node would adjust its radio range to a value RT so as to send data packets to reach

the best next hop, where RT ≤ RNDP and RNDP is the KR for the NDP.

In static case, when nodes do not move, the next best hop would be correct as

conveyed by the routing algorithm. However, in the case of mobility, things change

and the best next hop chosen by routing using the latest NDP information may not

be the best next hop while sending the data packets. For example, with reference to

Fig. 2.6 where nodes are mobile, routing would fail as node N3 has gone out of range
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Figure 2.6: Mobile nodes

of the sender S while it is sending the data packet. The following case can also occur:

sender S can route the packet as the radio range of S could capture the movement of

nodes as depicted by node N2. However, node N2 has moved to a new geographical

position still within the KR of sender S and it may be possible that another node N1′,

which is not yet in the routing table of S, has moved to previous position of node N2.

Moreover, if the routing is ID-driven, it will not be able to capture the effect of mobility

as compared to position-driven routing.

The faster the nodes move, the less possibility that that sender can capture the

mobility of the nodes. Hence, to capture the effect of mobility, the transmission power

of sender S has to be increased resulting in more wastage of energy compared to static

case just to capture the effect of mobility and to thereby increase the packet delivery

ratio.

2.3.4 Routing Schemes

In this section, we introduce five routing schemes based on the functionalities they

use for making the routing decisions. Each routing scheme needs different type of

information from the neighboring nodes to make routing decisions.
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Most Advance Routing

In this routing scheme, the next hop is decided based on geographical position of the

nodes only. The next hop node will be the one which has maximum progress towards

the destination node subject to the condition that it should be in positive advance

towards the destination node. Hence, node i will select node j∗ as the best next hop if

j∗ = argmaxjεNi∩Pd
i
[dij · Cos(θij)], (2.3)

subject to condition for positive advance

θid − 90◦ < θij < θid + 90◦, (2.4)

where

• Ni set of neighboring nodes of i;

• Pd
i set of neighboring nodes of i having positive advance towards destination node

d;

• dij [m] distance from node i to node j;

• θid [rad] angle of the line joining node i and destination node d;

• θij [rad] angle of the line joining node i and node j .

Energy-aware Routing

This routing scheme makes routing decisions not just based on the geographical position

but also on the available energy of the nodes. Hence, node i will select node j∗ as the

best next hop if

j∗ = argmaxjεNi∩Pd
i
[EAv

j − (ET
ij − ER

j − ET
jd) · LData], (2.5)

subject to the condition of positive advance given in (2.4), where

• Ni set of neighboring nodes of i;
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• Pd
i set of neighboring nodes of i having positive advance towards destination node

d;

• EAv
j [J] available energy at node j;

• ET
ij [J/bit] energy required to transmit one bit from i to j;

• ER
j [J/bit] energy required to receive one bit from i;

• ET
jd [J/bit] energy required to transmit one bit from j to destination node d;

• LData [bit] length of the Data packet.

Channel-aware Routing

This routing scheme takes into account the packet error rate (PER) [17] on the link

connecting the nodes and the geographical position of the neighboring nodes for making

the decisions. In this routing, node i will select node j as the best next hop if

j∗ = argmin[ET
ij · N̂T

ij · N̂Hop
ij ], (2.6)

subject to the condition of positive advance given in (2.4), where

• N̂T
ij = 1

1−PERij
,

• N̂Hop
ij = max( dij

<dij>id
, 1),

• PER = 1− (1− BER)LNDP ,

• BERij = ΦM(SNRij).

Specifically,

• ET
ij energy required to transmit one bit from i to j [J/bit];

• N̂T
ij average number of transmissions by node i such that the packet is correctly

decoded by node j;

• N̂Hop
ij estimated number of hops from node i to the destination node d when j is

selected as next hop;
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• PERij packet error rate associated with the link (i,j);

• BERij bit error rate associated with the link (i,j);

• SNRij signal to noise ratio associated with link (i,j);

• M is the modulation scheme;

• LNDP [bit] length of ND Packet;

• dij [m] distance between node i and node j;

• < dij >id projection of dij onto the line connecting node i with the destination

node d.

Compass Routing

In this routing scheme, the next hop is decided based on geographical position of the

nodes only. The next hop node will be the one which subtends minimum angle at the

source node, subject to the condition that it should have positive advance towards the

destination node. Hence, node i will select node j as the best next hop iff

j∗ = argminjεNi∩Pd
i
[|θij − θid|], (2.7)

subject to the condition of positive advance in (2.4), where

• Ni set of neighboring nodes of i;

• Pd
i set of neighboring nodes of i having positive advance towards destination node

d;

• θid [rad] angle of the line joining node i and destination node d;

• θij [rad] angle of the line joining node i and node j.

Partial Topology Knowledge Forwarding

This routing scheme [2] finds the next hop based on minimum energy path required to

reach the destination within its limited topology knowledge, i.e, shortest weighted path
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takes into account only nodes in its KR and destination, as other nodes are unknown

to it. Energy calculation is based on the link metric in [2], as

E = Eelec + βdα, (2.8)

where

• Eelec [J/bit] energy consumed by the electronic circuit;

• α path loss (2 ≤ α ≤ 5);

• β [J/(bit ·mα)] is a constant;

• βdα [J/bit] accounts for radiated power necessary to transmit over a distance d

between source and destination;

2.4 Performance Evaluation

2.4.1 Simulation Results

We implemented the forwarding schemes described in Sects. 2.2.1 and 2.3.4 and tested

them in both static and mobility cases. Simulations were done using TOSSIM 2.x,

a TinyOS simulator. TOSSIM 2.x currently supports only MicaZ radio components

(IEEE 802.15.4). We are interested in scenarios where the density of nodes is high.

However, due to the computational complexity of the problem and large amount of the

data to process, simulations have been done with at most 49 nodes in 100 by 100 m2 area

to reproduce a high-density environment. The radio propagation model described in [18]

was used for our simulation. In addition to the radio propagation model, TOSSIM also

simulates the RF noise and interference with other nodes. TOSSIM uses Closest Pattern

Matching (CPM) algorithm [19], which takes a noise trace as input and generates a

statistical model from it.

We present simulation results for the scenarios illustrated in Table 2.1 with five

routing schemes: Most Advance, Energy Aware, Channel Aware, Compass, and PTKF.

The sink node was placed at the corner of the grid to collect the data packets from each
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nodes at a data frequency of 2 Hz. Packet Delivery Ratio and Energy Drain have been

used as metrics with respect to NDP power as well as NDP frequency for the evaluation

of our results.

Table 2.1: Parameters of the Model Used for Simulations

Physical deployment parameters

Terrain dimension 100 X 100 [m2]
Topology Uniform random
Mobility (2, 4, 6 ,8) [m/s]
Number for nodes 25, 36, 49

Channel parameters

Path loss exponent 3.5
Shadowing standard deviation 3.2
Reference distance(D0) 1 m
Path loss at reference distance -30 [dBm]

Radio Parameters

Noise Thermal noise (stdev = 4)
Radio Noise floor -105 [dBm]

Hardware Variance (Highly Asymmetric)

covariance matrix S = [S11 S12 ; S21 S22]
S11 (variance of noise floor) 3.7
S12 (covariance btw S1 and S1) -3.3
S21 (same as S12) -3.3
S22 (variance of output power) 6.0

First, we answer the question “How far should a sensor node know about the

network?”To resolve this question, simulations were performed on power values of

(0,−1,−3,−5,−7,−10,−15,−25) dBm for each routing algorithms with NDP fre-

quency set to 1 Hz. In Fig. 2.7, 2.8, and 2.9, we show the packet delivery ratio at

various power values, as mentioned above, across three different number of nodes (25,

36, and 49). It can be inferred from the figures that, as the node densities increase

the packet delivery ratio drops and also a decrease in the optimal power value required

for NDP. From Fig. 2.7, 2.8, and 2.9, the optimal power value (power at which packet

delivery ratio is maximum or energy drain is minimum) for 25 nodes is 0 dBm, for 36

nodes it is −3 dBm while for 49 nodes it is −5 dBm. For the energy drain vs. NDP

power, in Fig. 2.10, 2.11, and 2.12, the optimal power turns out to be −5 dBm for

25 nodes, −7 dBm for 36 nodes while −10 dBm for 49 nodes. Therefore, as the node

density increases less power is required for NDP.

For the mobility case, all the nodes are moving with velocity as given in Table 2.1.
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Figure 2.7: Packet Delivery Ratio vs. NDP power of 25 Nodes
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Figure 2.8: Packet Delivery Ratio vs. NDP power of 36 Nodes
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Figure 2.9: Packet Delivery Ratio vs. NDP power of 49 Nodes
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Figure 2.10: Energy Drain vs. NDP power of 25 Nodes
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Figure 2.11: Energy Drain vs. NDP power of 36 Nodes
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Figure 2.12: Energy Drain vs. NDP power of 49 Nodes
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Figure 2.13: Packet Delivery Ratio in mobility (Most Advance Routing) for 25 nodes
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Figure 2.14: Packet Delivery Ratio in mobility (Most Advance Routing) for 36 nodes
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Figure 2.15: Packet Delivery Ratio in mobility (Most Advance Routing) for 49 nodes

It is intuitive that if mobility increases, the packet delivery ratio decreases because

nodes will not be getting the updated information from the neighbors because all the

nodes are moving around, even if they are receiving ND packets from the neighbors.

Therefore, routing algorithm cannot perform well. From Fig. 2.13, 2.14 and 2.15, we

can infer that, when the modes are moving faster, higher power is needed to capture

the mobility. Fig. 2.16 shows the optimal power value across various velocities. It can

be inferred from Fig. 2.16 that optimal power increases as velocity increases and also

as node density increase the power required to capture mobility decreases as nodes are

closer.

The second issue we faced is, “How often should a node collect the information

from the neighborhood?”This question is answered by varying NDP update frequencies

- (0.02, 0.42, 0.82, 1.22, 1.62, 2.02, 2.42) Hz. For static case, Fig. 2.18 shows that packet

delivery ratio decreases as NDP frequency increases because all the nodes frequently

send NDP packets, which increases the traffic in the network thereby causing congestion

around the sink. Again, this figure shows that higher power of the nodes does not

guarantee higher packet delivery ratio. The power (-5 dBm) is optimal power for the

network. For the mobility case, when the nodes are moving, a node needs information
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Figure 2.16: Optimal power with different velocity
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Figure 2.17: Packet delivery ratio vs. NDP (Most advance, 25 nodes)
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Figure 2.18: Packet delivery ratio vs. NDP Frequency for static nodes
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Figure 2.19: Packet delivery ratio vs. NDP Frequency for mobile nodes 2m/s
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Figure 2.20: Packet delivery ratio vs. NDP Frequency for mobile nodes 4m/s
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Figure 2.21: Packet delivery ratio vs. NDP Frequency for mobile nodes 6m/s
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more frequently. Figure 2.17 shows that overall the packet delivery ratio decreases

when NDP update frequency increases while the packet delivery ratio decreases as the

velocity increases. Moreover, Fig. 2.19, Fig. 2.20, and Fig. 2.21show packet delivery

ratio with specific power - (0571015) dBm. Nodes with high power show higher packet

delivery ratio, reducing routing failure illustrated in the Fig. 2.6. The figures also show

that if the NDP frequency is too low, there will be a decrease in the packet delivery as

the information about the nodes is not updated.

Finally, we answer the question “How much information is required from the neigh-

boring sensor nodes?”. Different routing schemes need different information for routing

packets and require some packet field to collect it. Most Advance, Compass, and

PTKF only need position information, which accounts to 17 bytes, including header

size of CC2420. Energy aware requires additional bytes for information on available

energy and Tx-Power required to reach destination node, which makes the packet size

to be 22 bytes. Also, Channel Aware needs 2 bytes in addition for sending bit error

rate calculated using RSSI, thereby making the total packet size as 19 bytes. The more

the information we use, the more efficient routing can be done, but this increases the

overhead and thereby decreases the available bandwidth. However, simulations results

show that whichever be the routing scheme there will not be a drastic change in the

performance as compared to the dependence on NDP power and NDP frequency.

In summary, Fig. 2.22 shows relation between optimal power vs. optimal NDP

frequency with mobility. When nodes move faster from 0m/s to 8m/s transmission

power and frequency should be adjusted properly. Nodes should increase not only the

transmission power increase NDP frequency if the nodes move faster in order to have

higher packet delivery ratio. Furthermore, in slow mobility, nodes should decrease

transmission power and NDP frequency.

2.4.2 Hardware Implementation

To substantiate our results in simulation we did hardware implementation in TelosB

(TPR2420) motes built on IEEE 802.15.4 compliant CC2420 radio (2.4 GHz), having

data rate of 250 kbps. Experiments were done on a grid size of 40 x 40 m2 with a
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total of 9 motes spaced approximately 20 m from each other. For assessing packet

delivery ratio and energy drain with respect to NDP power, we considered those power

values supported by TelosB (0,−1,−3,−5,−7,−10,−15,−25) dBm at NDP frequency

of 1 Hz. While for performance metrics against NDP frequency we took values of

(0.02, 0.42, 0.82, 1.22, 1.62, 2.02, 2.42, 2.82, 3.22) Hz at −5 dBm NDP power. The data

frequency chosen for the experiment was 2 Hz. The figures from the experiments are

as follows. Figures 2.23 and 2.25 show that there is an optimal power at which NDP

packets should be sent, which confers with our results in simulation. Figures 2.24 and

2.26 also show that there is an optimal NDP frequency at which NDP packets need to

be sent.

2.5 Conclusions

We analyzed how neighborhood discovery power and neighborhood discovery frequency

can affect packet delivery ratio and energy consumption, thereby stressing on the impact

of the neighborhood discovery protocol on routing schemes. We also verified how pa-

rameters such as power and frequency transmission of neighborhood discovery packets
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Figure 2.23: PDR vs. Power (TelosB)
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Figure 2.25: Energy drain vs. Power (TelosB)
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affect the communication process in both static and mobile environments. We con-

clude by saying that there is an optimal power and optimal frequency for neighborhood

discovery in attaining energy efficiency rather using highest power or higher frequency.
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Chapter 3

Adaptive Sampling in Wireless Sensor Networks

Measuring Multiple Phenomenal Manifestations

3.1 Introduction

Wireless Sensor Networks (WSNs) are composed of autonomous devices that co-operatively

monitor physical or environmental conditions with various manifestations such as tem-

perature, radiation, vibration, light, pressure and sound in Fig. 3.1 at different points

in space and time. The features that distinguish WSNs from classical wireless networks

are strict limitations on energy consumption, high density of nodes and limited pro-

cessing capability of the nodes. The reasons for dense deployment of sensor nodes can

be stated as follows:

1. The constraint on output power of the battery-operated sensor nodes precludes

them from using large transmission ranges [20].

2. The lack of apriori information about the terrain prevents pre-deployment opti-

mization on the number of sensors mainly due to multiple manifestations of the

phenomenon. For example, manifestations or functions of a nuclear explosion

would be temperature, pressure and levels of toxic gases in the affected region.

3. Low cost of individual sensor nodes.

Due to the high density of sensor nodes, the degree of correlation among spatially

proximal sensor observations increases with decrease in internode distance (Fig. 3.2)

Also, the degree of correlation between consecutive sensor measurements may vary
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Figure 3.1: Various manifestations

according to the temporal variation characteristics of the phenomenon. The former is

termed as spatial correlation and the latter is referred to as temporal correlation [21].

The main objective of monitoring environment using WSNs is to reliably estimate

the phenomenon from the collective information provided by these sensor nodes [22].

Usually, higher densities of sensors may imply more measurements, higher resolution

and better accuracy of estimation, but require more energy expenditure for commu-

nication and processing. However, energy-efficient estimation of the phenomenon can

be done by leveraging the above mentioned spatial, temporal correlation and multiple

measurement between the sensor data [23]. Thus, in order to increase the longevity

of WSNs and/or to ensure effective utilization of resources, adaptive field estimation

techniques have been developed.

Adaptive sampling is a method that employs the spatio-temporal correlation inher-

ent in WSNs to estimate the phenomenon efficiently with a desired level of accuracy.

Efficiency here refers to minimization of energy and/or delay by using only a subset of

the deployed sensor nodes. The field estimate obtained using adaptive sampling is use-

ful in developing energy-efficient MAC and routing protocols for sensor networks. Also,
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Figure 3.2: Voronoi diagram

they have been effectively employed in algorithms such as sleep mode scheduling and

data aggregation [21]. Sleep mode scheduling ensures longevity of the WSNs by using

different subset of nodes to observe the phenomenon in different time periods. The idea

behind data aggregation is to combine the data coming from different sources so as to

eliminate redundancy and minimize the number of transmissions. Thus, data aggre-

gation limits the communication to the local domain and transmits only the necessary

information to the whole network.

In addition, one sensor has a capability of sensing multiple manifestations using dif-

ferent types of sensors. This can help sensors to capture a phenomenon more accurately

than using a single sensor because they are interrelated to each other. For instance,

when fire occurs, temperature increases while humidity decreases. If only a temper-

ature measurement is used as a manifestation to sense fire, other high-temperature

but different phenomena would be misrepresented as fire (i.e., monsoon humid weather

or hardware overheating). Increasing temperature by itself can not indicate fire occur-

rence. As for energy efficient issues, using multiple sensors does not significantly impact

overall energy consumption because the energy required for activating sensing module

is negligible when the node are in active status (Fig. 3.3). Thus, by simultaneously
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using different sensors, accuracy of phenomena monitoring can be improved.

In this chapter, we propose a decentralized, hierarchial, cluster-based adaptive sam-

pling framework for estimating a three-dimension scalar field with multiple interacting

manifestations of the phenomenon that vary both in time and space. The sensor field

is partitioned into clusters of nodes sensing similar values within a given threshold.

Such clusters are aggregated at various levels based on similarity of sensed data and

this results in a hierarchy of clusters. The spatial correlation characteristics of the phe-

nomenon is leveraged to achieve this. The clusters are modified to ensure membership

consistency as the sensor readings change over time. This is referred to as cluster resiz-

ing and the temporal correlation characteristics of the phenomenon is used to achieve

this. This approach would minimize global communication and restrict data commu-

nication to the local domain (clusters), thus saving on communication cost as well as

saving energy by applying sleep mode where the nodes are not used as a part of the

network.

Our algorithm differs from most of the existing solutions [22] [24] [25] [23] in the

following ways:

• It does not assume any apriori knowledge about the characteristics of the phe-

nomenon and the topology of the WSN

• It ensures joint optimization by adaptively varying the sampling rates in both
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space and time domains. Existing solution [22] performs adaptive sampling sep-

arately (spatial, temporal)

• It performs in-network clustering in real time. Cluster aggregation and separation

are performed in real time

• It achieves accurate understanding of the phenomenon by analyzing cross-correlation

among manifestations

• It supports adaptive sampling in the three-dimension environment.

This paper is organized as follows. Sect. 3.2 addresses related work and compares

the existing adaptive sampling schemes for field estimation. In Sect. 3.3 we stress out

the motivations and goals for our work. In Sect. 3.4 we describe our algorithm in detail.

Sect. 3.5 shows the results of the simulations and evaluate the performance.

3.2 Related Work

Efforts to design efficient adaptive sampling policies fall under three different paradigms:

centralized, autonomous (distributed) and quasi autonomous.

3.2.1 Centralized

The centralized paradigm is characterized by the presence of a central server/sink that

has a global view of the network. All the sensor nodes report their data to a sink.

Based on the collected data the sink decides on the appropriate spatial sampling rate

(subset of sensor nodes to use) and the temporal sampling rates (the rates at which the

nodes collect data).

The backcasting adaptive sampling method [23] [26] operates by first activating

only a small subset of the wireless sensor nodes that communicate their information

to a base-station. This provides an initial estimate of the sensed environment and

guides the allocation of additional network resources. The base station then selectively

activates additional sensor nodes in order to achieve a desired level of accuracy (based
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upon this information). In [27], an algorithm for the selection of active sensors in

a WSN, whose application is to reconstruct the data image of spatially bandlimited

physical phenomenon, is proposed. The proposed selection method, which can be either

centralized or distributed, creates a sampling pattern based on blue noise masking

(spectral content with only high frequencies) and guarantees a near minimal number of

activated sensors for a given signal-to-noise ratio. The main limitation of the algorithm

is that it works under the assumption of single-hop communication between sensor

nodes and the sink.

The above mentioned algorithms [26] [23] [27] do not address the issue of adap-

tive sampling in the time domain. Moreover, even though the centralized framework

promises accurate field estimates, the cost of communication incurred will be very high

as the number of nodes in the WSN increases. Also the robustness of the system entirely

rests on the reliable communication between the sensor nodes and the sink.

Thus, the centralized approach has issues associated with scalability, robustness

and the dynamic nature of WSNs. This served as the motivation for the evolution of

autonomous and quasi autonomous approaches.

3.2.2 Autonomous

The autonomous framework aims to improve robustness of the system by eliminating

the dependence on global communication (between the sensors and the sink) in the

network.

Researchers have recently proposed a decentralized control mechanism for adaptive

sampling called Utility based Sensing And Communication (USAC) [25] [28]. The

USAC mechanism consists of two components namely, the sensing protocol and the

communication protocol. The sensing algorithm uses a linear regression method that

predicts the next observed data with some bounded error (termed as confidence interval,

CI). If the next observed data falls outside this CI, the node sets its sampling rate to

the maximum rate in order to incorporate this phase change. However, if data falls

within the CI, it implies that the node is allowed to reduce its sampling rate for energy

efficiency due to the lack of any new information. The main drawback of this paper is
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that it fails to take into account the spatial correlation present in the phenomenon.

In [29] and [30], a distributed sensor selection strategy is proposed to choose a subset

of sensors (spatial sampling) to achieve a desired fidelity in observing the physical

phenomenon in the field. Intuitively, if the noise level is low, a small number of sensors

is sufficient to achieve the desired fidelity; however, if the noise condition is severe,

more sensors should be activated for accurate estimation. They propose a sampling

and estimation framework based on linear minimum-variance-unbiased-estimator that

exploits a strategy called innovation diffusion. Innovation refers to the new information

that a sensor measurement contributes to the reduction of the estimation error, and

diffusion refers to the process by which the innovation is communicated across the

network. Moreover this method does not vary sampling rate based on the temporal

correlation present in the sensor data. The decentralized flavor of blue noise spatial

sampling algorithm [27] performs on par with its centralized counterpart.

3.2.3 Quasi Autonomous

The design of an efficient autonomous framework for adaptive sampling and estimation

is difficult as it introduces additional control issues related to interactions between

networks of interconnected nodes in the absence of a central co-ordinating server. The

quasi autonomous paradigm offers a balance in sharing the tasks between the server

and the individual sensor nodes.

Self Organizing Resource Allocation (SORA) is an approach for determining efficient

node resource allocations in WSN by using a market-based approach [31]. Rather than

manually tuning node resource usage, SORA defines a virtual market in which nodes sell

goods (such as data sampling, data relaying, data listening, and data aggregation) in

response to global price information that is established by the end-user. With SORA,

nodes independently determine their ideal behaviors by taking actions to maximize

their own utilities, subject to energy constraints (temporal sampling). However, prices

are determined and set by an external coordinator agent (sink) to induce a desired

network’s global behavior (spatial sampling).

In [32] and [33] the authors propose a new prediction-based environment monitoring.
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A spatio-temporal prediction model from historical sensor data is used to estimate the

current reading at each sensor node. Only when the actual reading differs from the

given prediction model above a specified threshold, it is transmitted over to the sink

thus effectively reducing the energy spent on communication. The disadvantage lies in

the inability to acquire accurate models for highly varying physical phenomenon.

In [24] a quasi autonomous Kalman Filter (KF) based adaptive sampling technique

is proposed. KF estimation error is used to adaptively adjust the temporal sampling

rate within a given range. If the desired sampling rate exceeds the allowable range

then the new sampling rate is requested from the sink. This technique has not yet

been validated for multi-hop sensor networks and in real life scenarios. This method

addresses adaptive sampling only in the time domain and not in space.

Finally, analytical results obtained in [34] characterize the tradeoffs among energy

usage, delay, temporal sampling rates and spatial sampling rates in WSNs. The authors

have derived a lower bound on the delay incurred in gathering one packet of samples

at a given spatial sampling rate and also the energy consumed in gathering data at a

given spatial sampling rate.

The autonomous or distributed approach, characterized by the absence of central

coordinating authority, promises scalability, robustness and support for a very high de-

gree of dynamism in WSNs. This motivates us to explore this design paradigm further,

to devise a novel, distributed, adaptive sampling scheme to estimate the phenomenon

with a desired level of accuracy, while ensuring efficient energy and resource utilization.

3.3 Problem Formulation

As we discussed in Sect. 3.1, adaptive sampling plays a crucial role in the dense de-

ployment of the sensors for energy efficiency. From this point of view, motivations of

this paper are summarized hereafter in more detail.

• Most of the existing algorithms for adaptive field estimation exploit either the

spatial or temporal correlation inherent in the sensor field. Very few ensure joint

optimization by adaptively modifying both the spatial and temporal sampling
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rates [33] [32] [31];

• Energy consumed for data communication is much higher than the energy con-

sumed for sensing and listening on the control channel combined. Hence, the

key to energy efficiency is reduction of global communication of sensor data. A

hierarchical clustering based approach to partition the sensor field would mini-

mize global communication and restrict data communication to the local domain

(clusters);

• Noise generated from multi hop communication due to the small radio range

of sensors creates packet loss. Minimizing global communication by clustering

reduces packet loss as well.

• The distributed adaptive sampling schemes unlike its centralized counterparts are

scalable to dense and highly dynamic sensor networks.

• Existing algorithms set up sampling rate manually, but in our algorithm, cluster

aggregation and separations are performed in real time

• More accurate understanding of the phenomenon could be achieved by analyzing

cross-correlation among manifestations

• Further applications require three-dimension sensor deployment with plenty of

data (i.e., data center monitoring and oil field monitoring)
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Our goal is to develop a decentralized, hierarchial, cluster-based adaptive sampling

framework, which will ensure joint optimization in both space and time domains in

three-dimension environment, using multiple interacting manifestations. Fig. 3.4 shows

dynamic optimization in space. Data in time change are leveraged and algorithm forms

Cluster head by aggregating data. It will be specifically explained in Sect. 3.4. It is a

generalized solution in the sense that it does not assume any apriori information about

the field being estimated.

The given sensor field is partitioned into clusters of nodes sensing similar values

within a given threshold. Such clusters are aggregated at various levels based on simi-

larity of sensed data and this results in a hierarchy of clusters. The spatial correlation

characteristics of the phenomenon is leveraged to achieve this. The temporal corre-

lation characteristics of the phenomenon are used for cluster resizing, which ensures

membership consistency as the sensor readings change over time. The mean of error,

described in Sect. 3.4 helps in forming the hierarchy of clusters and the simple first

order statistics. To achieve these aforementioned goals, we make the following basic

assumptions about the sensor network.

• Position: Each sensor node i is aware of its position pi in the sensor field and is

also capable of deriving its relative position with any other node j (whose position

is pj) in the field. This is necessary to spatially reconstruct the data at the sink.

• Synchronization: The computation of spatial correlation requires that the data

obtained from all the sensors be from a particular time instant. Also, to find

the temporal correlation we need sensor measurements from two different time

instants. Hence, we assume that a mechanism to ensure time synchronization

between the sensor nodes exists.

• Multi-hop communication: We assume that multi-hop communication between

any two sensor nodes in the field is possible through the use of an appropriate

routing protocol.
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While in the following sections, we focus on two-dimensional fields and sensor networks

to illustrate our ideas, extension of our theory and methods to three-dimensional fields

is straight forward. The next section presents the background and notations that will

be used in the rest of the paper.

3.4 Proposed Solution

The key concepts of adaptive sampling are data aggregation and energy conservation

for an entire network. In order to aggregate data for adaptive sampling, criteria for

data aggregation is introduced in Sect. 3.4.1. Brief notations for our algorithm will be

explained in Sect. 3.4.2. Our algorithms for clustering and cluster resizing, and joint

optimization will be explained in Sect. 3.4.3. Then, we expand the scope of criteria

in Sect. 3.4.1 to discrete time domain with multiple manifestations in three-dimension

space in Sect. 3.4.4. Finally, Illustrative example clarify our algorithms in Sect. 3.4.5.

3.4.1 Criteria for Adaptive Sampling

Adaptive sampling method achieves energy saving based on data aggregation. In this

section, we introduce criteria for data aggregation in deciding where data from a node

to be aggregated/clustered. Error (e) is a measure that helps in forming clusters,

and based on this error (e) between sensor data, CHs compute them and decide data

aggregation. CHs decide whether the data from a adjacent node is correlated or not

based on the criteria denoted as error term (e). In other words, degree of error (e)

affects degree of correlation, so that a node data which has high degree of error(e) will

not be associated CH because high error value represents low correlation between data.

This is spatial correlation.

Let dij = ‖pi − pj‖ denote the Euclidean distance between the sensor nodes at

locations pi and pj and n(h) represent the number of sensors within the radius h, where

{h : dij ∈ h ∀ i} from any node j. Also, ψi represents the data from manifestations
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Figure 3.5: Mean of error calculation for a manifestation (temperature) on a contour
temperature map

from node i. In spatial statistics, the error within h is defined as,

e(h) =
n(h)∑

i=1,i 6=j

|ψi − ψj |
n(h)

(3.1)

The error e(h) states the degree of spatial correlation among data from sensor nodes

distributed in radius space(h). Fig. 3.5 shows how clusterhead node (CH ) spatially

associates with other adjacent nodes in contour temperature field and shows calculated

error (e(h)) at the right. All the nodes having data within error e(h)+ margin will

associate with CH.

For temporal correlation, change in the sensor readings over time indicates random-

ness in the system. Cluster resizing needs to be done to keep membership consistency

among the nodes in a cluster. Let xi denote the i−th sample when temporal correlation

algorithm starts and N represent the number of sample data in the data sequence.

e(i) =
N∑

i=1

|xi − xi−1|
i

(3.2)

If the change ei from its previous values falls within a particular threshold, then the

cluster need not be resized. The threshold is determined by the manifestations of the

phenomenon being observed. The criteria described here help in estimating the amount

of correlation present in the phenomenon in space and time domain.
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Figure 3.6: (a) Sensor field with L0 CHs. (b) Sensor field with L1 partitioning (dotted
lines) and L1 CHs (solid triangle). (c) Sensor field with L2 partitioning (dashed lines)
and L2 CHs (solid plus). (d) Sensor field with L3 partitioning (solid lines) and L3 CHs
(rings)
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3.4.2 Notations

In the course of the algorithm, sensor nodes will be organized into clusters at many

levels and will have designated Cluster Heads (CHs). A Level k cluster is represented

as Lk and it is composed entirely of Lk−1 CHs. Levels Lk−2 and lesser are completely

abstracted from the view of Lk CHs, but every Lk CH knows all its higher level CHs

from Lk+1 to LK , where K is the maximum number of cluster levels. A Lk CH’s

ch list contains the details about all its Lk+1 to LK CHs. All the individual nodes

are considered L0 CHs for the sake of generality.

An example of a 2-dimensional sensor field is shown in Fig. 3.6(a). The L0 CHs

are represented by circles. A group of L0 CHs within the dotted line boundary form

the L1 and its CH is represented by a solid triangle as shown in Fig. 3.6(b). L1 CHs

within a dashed line boundary form the L2 with its CH represented by a solid plus sign

as shown in Fig. 3.6(c). Although the L0 CHs within this region form part of the L2,

the L2 CH is only aware of the L1 CHs and lower level CHs are completely abstracted

from its view. L3 is the region bounded by solid lines and L3 CHs are represented by

rings as shown in Fig. 3.6(d).

3.4.3 Algorithms for Clustering

The algorithm we propose consists of two separate processes: clustering and cluster

resizing. Clustering is implemented to form a cluster with nodes which have highly

correlated data in space. Cluster resizing runs to keep the consistency of membership

of this cluster in varying phenomenon in time.

We used four-way handshake control protocol in order to jointly optimize spatial

and temporal sampling rate. Fig. 3.7 shows the timeline diagram of the four-way

handshake protocol. The algorithm begins with the election of L1 CHs for clustering a

sensor field. Each L0 CH simultaneously picks a random number using the probability

function RAND GEN (count), where count represents the level for which the CHs

are being chosen. If the number falls within a particular threshold (that depends on

count) then the L0 CH elevates itself to be a L1 CH. Each of those newly elected L1
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Figure 3.7: Timeline diagram for spatio-temporal adaptive sampling

CHs advertises its election to the adjacent nodes within certain distances which vary

according to the level of CH using tx ad pkt(Lk − 1) as shown in Algorithm 1. The

sensor nodes reply to the advertisements with their position, sensed values from number

of manifestations and the corresponding time stamp. After particular time TSAMPLE ,

the L1 CH computes the mean of error of the data from nodes at different distances

using the function compute mean of error (L1). Hence, Spatial adaptive sampling

is achieved. Also, a number of samples from multiple manifestations are collected based

on the sampling period (TSAMPLE) with sampling rate of each node determined by

the L1 CH in the Fig.3.7. L1 CH decides sampling period (TSAMPLE) based on the

sampled data gathered from the previous cycle of the protocol. Initial sampling rate is

2 · FMAX + 1 because sufficient condition for exact constructability from samples is f ¿

2B where B is a bandwidth based on Nyquist-Shannon sampling theorem. calc ref()

calculate sampling rate based on the data collected from each node and decide sampling

rate. In this respect, temporal adaptive sampling is achieved.

If the data from a node is eligible for association in space and time domain, in turn,
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if all the nodes within a distance dth and within a time period TSAMPLE that satisfy

the threshold of error calculation (provided in Sect. 3.4.1) set by the CH, a node is

considered as one of the members in particular L1 CH. If the data is highly correlated

each other, the L1 CH send association packet (ASSOC) to the node (left-side node in

Fig. 3.7) which received AD packet. Conversely, the node (right-side node in Fig. 3.7)

which is not highly correlated with the data of CH cannot get be associated with CH.

In summary, Lk CHs are elected from the pool of Lk−1 CHs formed in the previous

iteration. The Lk CH then advertises for data from the Lk−1 CHs. After a sam-

pling period (TSAMPLE), which depends on the previous sampling rate, they compute

mean of error of the data from Lk−1 CHs at different distances and time. Associa-

tion packet is then sent to the Lk−1 CHs that fall within the error threshold. On the

reception of an associativity packet, each node updates its chlist which contains asso-

ciated nodes. If a Lk−1 CH does not receive an advertisement for data or association

details then it promotes itself to be a Lk CH by incrementing the level counter count.

This process repeats itself to form a hierarchy of clusters until the error threshold is

not satisfied.

Algorithm 1 Clustering Algorithm - Clusters nodes by computing mean of error

init cluster algo:
1: TSAMPLE = 2 · FMAX + 1
2: to = time out(L1)

cluster algo:
1: while (1) do
2: if (run cluster algo) then
3: tx ad pkt(Lk − 1)
4: wait T SAMPLE

5: eh = compute mean of error(Lk)+ margin
6: if eh then
7: tx assoc pkt(Lk − 1)
8: end if
9: wait to

10: if Lk = 1 then
11: T SAMPLE = calc ref()
12: start resize algo = 1
13: end if
14: run cluster algo = 0
15: end if
16: end while

The algorithm for resizing the clusters based on the temporal correlations among
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nodes runs as a separate background process. Cluster resizing algorithm plays an im-

portant role in maintaining memberships in cluster. The L1 CHs periodically request

for measured data from its members and compute the mean of error of the data pro-

posed in Sect. 3.4.1. If the mean error reflect an anomalous variation in sensor data

with respect to the space and time, then it propagates this information to all levels of

hierarchy in the sensor network to achieve effective cluster resizing.

The mean of error (3.2) is calculated in time during every cycle of four-way hand-

shake protocol during TSAMPLE in Fig. 3.7. Each L0 CHs which get AD packet from

L1 CHs periodically samples the field with sampling period ts in Fig. 3.7. Once this cal-

culation (3.2) faced on abnormal variation in sensor data, it propagate cluster resizing

message.

In summary, each Lk CH (where k varies from 2 to K) requests its Lk+1 CH to direct

all its Lk members to recompute and decide on their new cluster members. The request

to Lk+1 CH is made by broadcasting a resize message through tx resize pkt(Lk+1).

The Lk+1 send resize message to the Lk−1 member nodes on its chlist. Also it directs

all its Lk−1 members to recompute the mean of error by sending a resize message

through tx resize pkt(Lk − 1). On reception of this message, the Lk−1 CHs set

the run cluster algo flag that starts off the cluster algo. If the Lk+1 CH

does not exist, then the Lk directly requests all its counterparts to recompute mean

of error by sending the resize message through tx resize pkt(Lk) that sets the

run cluster algo flag resulting in recomputation of mean of error.

3.4.4 Spatio-temporal Adaptive Sampling with Multiple Manifesta-

tions

As we introduced in Sect. 3.1, we expect to have a more accurate reconstruction of

the phenomenon by using multiple manifestations than by using single manifestation.

Based on the criteria (3.1) (3.2), spatio-temporal adaptive sampling with multiple man-

ifestation is stated as following:

ψm,s∈[1,S] = [ψ1
m,s;ψ

2
m,s; ψ

3
m,s; . . . ψ

i
m,s . . . ; ψNs

m,s] (3.3)
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en,m
s =

∑Ns
i=1 |ψi

n,s − ψi
m,s|

Ns
(3.4)

en
s (h) =

∑N(h)
m=1,m6=n

∑Ns
i=1 |ψi

n,s − ψi
m,s|

N(h) ·Ns
where dn∀m ≤ h (3.5)

en(h) =
∑S

s=1 ws · en
s (h)∑S

s=1 ws

(3.6)

• Ns = bT SAMPLE

T s
S

c.

• TSAMPLE À TS
s .

Specifically,

• ψm,s vector of manifestation(s) with discrete time of node m;

• en,m
s error of different manifestations of a node(m) with a node (m) when time ti;

• en
s (h) error of different manifestations of nodes within a range(h) from m;

• en(h) error of manifestations with weight value(W);

• m a generic node;

• n a clusterhead node;

• s a manifestation;

• ψi
m,s sth manifestation of node m of time ti.

• S number of different manifestations of Phenomenon ψ;

• h advertisement range(distance);

• TSAMPLE period of starting sampling;

• TS
s sampling rate for manifestation(s);

• Ns number of sample during the period of TSAMPLE ;

• ws weigh on a manifestation(s);
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• dnm distance between nodes n and m;

We consider a list of manifestations with discrete time(3.3) for a temporal correla-

tion, and calculate the mean of errors of each manifestation by calculating difference

between cluster head node(n) and each adjacent node(3.4). In the same way, mean

of errors of manifestations of nodes within certain distance(h) can be calculated in

(3.5), and the spatial correlation can be implemented. Eventually, equation (3.5) states

overall spatial-temporal correlations of different manifestations using degree of error

en(h).

3.4.5 Illustrative Example

The following example would help understand the algorithms explained in the previous

section. Let the number of sensors in the field be N = 10. Let the observed phenomenon

be temperature. Fig. 3.8(a) shows the L0 CH i in the field and the temperature value

observed by it ψ(pi).

All the ten L0 CHs simultaneously participate in the RAND GEN algorithm and

only the nodes 1, 5, 8 and 10 get elected as L1 CHs. The newly elected L1 CHs send

AD packets to the L0 CHs within its transmission range as shown in Fig. 3.8(a). Here,

node 1 sends ad packets to nodes 2, 4, 6 and similarly nodes 5 and 8 send to both 3 and

9 and node 10 sends to node 7. The L0 CHs that receive the AD, then respond to the

corresponding advertiser with its DATA. The L1 CHs wait for a time to that depends

on the worst case communication delay between L1 and L0 CHs. The L1 CHs then

compute the mean of error(3.5) with the received data using equation 3.5 and send the

ASSOC packet to nodes within distance dth) that satisfy the error threshold as shown

in Fig. 3.8(b). In our example, node 1 sends ASSOC packets to 2, 4, 6; nodes 5 and 8

send to both 3 and 9 and node 10 sends to node 7. Since L0 CHs acknowledge only the

first associativity request, nodes 3 and 9 accept the request from node 8 only. Nodes 1

and 10 receive ACK from all the nodes that they sent an ASSOC request to. At this

stage the first level of clustering is complete in the sensor field (shown in Fig. 3.8(b))

and this triggers the resize algo.
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Figure 3.8: (a) Sensor field with L1 CHs sending ad and L0 CHs sending data. (b)
Sensor field with L1 CHs sending assoc and L0 CHs sending ack. (c) Sensor field with
L2 CHs sending ad and L1 CHs sending data. (d) Sensor field with L2 CHs sending
assoc and L1 CHs sending ack.
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Similar to the first stage, all the L1 CHs participate in the RAND GEN algorithm

and only the nodes 1 and 8 get elected as L2 CHs. The newly elected L2 CHs send ad

packets to the L1 CHs (shown in Fig. 3.8(c))made possible by multi-hop communica-

tion. Here, node 1 and 8 send AD packets to both 5 and 10. The L1 CHs that receive

the AD, then respond to the corresponding advertiser with its DATA. The L2 CHs

wait for a time to that depends on the worst case communication delay between L2 and

L1 CHs. The L2 CHs then compute the mean of error(3.5) with the received data using

equation 3.5 and send the ASSOC packet to nodes within distance dth) that satisfy

the mean of error(3.5) threshold. In our example, node 1 sends ASSOC packet to 10

and node 8 sends to node 5 who acknowledge the associativity request as shown in Fig.

3.8(d). At this stage the second level of clustering is complete in the sensor field.

Nodes 1 and 8 participate in RAND GEN to select the L3 CHs. One of the three

following scenarios might happen: both the nodes get elected as L3 CHs; one of the

nodes get elected as a L3 CH; neither of them get elected. In the first scenario, since no

L2 CHs are available to respond to AD, the spatial algorithm times out (i.e., converges)

and the maximum level in the field is reset to L2. In the second scenario, the mean

of error(3.5) threshold will not be satisfied and this terminates the spatial algorithm

resetting the maximum level in the field to L2. In the third scenario, the L2 CHs wait

for the AD from L3 CHs and time out resulting in the termination of spatial algorithm

with L2 as the maximum level of clusters.

The resize algo runs as a separate background process triggered immediately af-

ter the L1 CHs are formed. Node 1 periodically collects data every tc seconds from its

cluster members and computes the mean and variance of the data. The other L1 CHs

perform the same function. Whenever a L1 CH observes abnormal variation between

consecutive means and/or variances, it propagates the information to the various levels

of clusters so that cluster resizing can be performed. Assume there is a sudden variation

in temperature in node 10. Node 10, the corresponding L1 CH detects the change in

its cluster behavior and directs its L0 CH members to participate in the RAND GEN

algorithm to elect new L1 CHs by sending an ALARM packet. Here 7 and 10 partici-

pate in the RAND GEN and both get elected as L1 CHs. The newly formed L1 CHs
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Figure 3.9: Sensor field after resizing

report to their corresponding L2 CH by sending a RESIZE packet. Node 1, the L2 CH

in our example receives the resize packet and directs all its L1 CH members to collect

data recompute their mean of error(3.5). Since there is no L3, the L2 CH passes the

RESIZE message on to its peers and directs them to recompute mean of error(3.5).

During the recomputation at the second level, node 7 (now a L1 CH) is accepted as a

cluster member by node 1. Node 10, currently not part of any L2 elevates itself to be a

L2 CH after a particular timeout value. The sensor field after resizing is shown in Fig.

3.9

Thus, the above example clearly illustrates both the clustering and resizing algo-

rithms and how we are able to ensure joint optimization by leveraging the spatio-

temporal characteristics of the phenomenon.

3.5 Performance Evaluation

We implemented the adaptive sampling for two and three dimensional space described

in Sect. 3.4.3. Fig. 3.10 shows sensors deployed in 3-dimensional space with four

types of different data. Simulations were done using TOSSIM 2.x, a TinyOS simulator.

TOSSIM 2.x currently supports only MicaZ radio components (IEEE 802.15.4). Due

to the constraint that we do not have a real data with multiple manifestations for a

phenomenon, we did preliminary experiment based on the temperature. The radio

propagation model described in [18] was used for our simulation. In addition to the
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Figure 3.10: Sensor deployment in three dimensional area

radio propagation model, TOSSIM also simulates the RF noise and interference with

other nodes. TOSSIM uses Closest Pattern Matching (CPM) algorithm [19], which

takes a noise trace as input and generates a statistical model from it.

We are interested in scenario where a squared space is divided by four sections and

a cube space divided by eight sections of each corner. Sensors in a section of the square

or the cube have random temperatures which are different but highly correlated each

other. Temperatures in different sections, however, are less correlated, more than the

error e(h) stated in Sect. 3.4.4. In this case adaptive sampling algorithm should be

converged as four or eight representative CHs after some time elapsed because they

are spatially correlated. Converged CHs will represent their region. Fig. 3.11 shows

how two dimensional voronoi place is converged in four sections as an example. When

time elapse, the nodes are converged one by one until the CHs are converged as four.

Also, Fig. 3.12 shows measures of convergence time based on CH random-election

percentage[%]. This graph is not optimized but shows the tendency of relation between

the convergence time and CH random-election percentage. This graph shows that the

more CH elected in the network, the faster the network can be converged. However,
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Figure 3.11: Steps for convergence

this infers that because of the communication cost to broadcast CH election, energy

consumption will increase. This optimization issues can be solved as a future work.

Finally, a phenomenon can be reconstructed with around 75% ± 10% accuracy in

voronoi region with less energy consumption in Fig. 3.3. We measured the area of

reconstructed phenomenon in voronoi space and compared it with the real area of the

phenomenon. For energy consumption in Fig. 3.3, stepwise graphs shows periodic

energy drain of the network because of the data exchanges to form and reforming

CH. Regular sampling method shows significant energy consumption in time because

generally all the node report their data to the sink node, but for adaptive sampling,

less energy is consumed because only CH send data to the sink. Communication cost

is much less than regular sampling method for adaptive sampling.
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3.6 Conclusions

Energy efficiency is mainly achieved in WSNs through minimization of communication

cost by applying adaptive sampling and data aggregation with Clustering. Moreover, we

proposed a phenomenon can be captured more reliably by using multiple manifestations

than by using a single manifestation.
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Chapter 4

Conclusion and Future Works

Location-based routing is a routing scheme that uses geographical positions in order to

sense data and route packets to the destination. It is widely utilized in WSNs because

i) sensor locations are needed to spatially reconstruct at the sink the phenomenon being

sensed by the WSN and ii) it is highly scalable. Through the research in Chapter 2,

we clarified that NDP heavily impact on the performance of the routing scheme itself,

which in turn could affect end-to-end performance because of the overhead caused by

the periodic broadcasts of NDP. In particular, through theoretical analysis, simulations,

and test-bed experiments we answered the following three issues: ”How far should a

node know about its neighbors?”, ”How often should a node update the neighborhood

information?”, and ”How much information should a node require?”. Analytical and

experimental study were conducted to determine how NDP parameters such as power,

frequency, and packet size affect the communication process. Specifically, we investi-

gated both static and mobile environments, as mobility of sensor nodes can drastically

affect the routing decisions and hence overall performance. These scenarios are thor-

oughly tested on Tiny-OS SIMulator (TOSSIM), and real experiments will be performed

on TelosB motes. Preliminary results showed that maximum NDP power, maximum

frequency or more information for neighborhood discovery in WSNs do not guarantee

optimal end-to-end performance. Conversely, there are optimal values for Tx-power,

frequency, and packet size of NDP, which depend on node velocity and density of the

network. We also proposed a protocol that aims at dynamically adjusting these param-

eters real time.

Based on the understanding of NDP and its impact, we conducted a research about

adaptive sampling which dynamically aggregate data in space and time. Due to the
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high density of sensor nodes, the degree of ”similarity” among spatially proximal sen-

sor observations increases as the inter-node distance decreases. Also, the degree of

”similarity” between consecutive sensor measurements varies according to the tempo-

ral characteristics of the phenomenon’s manifestation. The former is termed as spatial

correlation while the latter is referred to as temporal correlation. In this research effort,

adaptive distributed field estimation techniques were developed to prolong the lifetime

of 3D WSNs and/or to ensure effective utilization of resources, whereas existing solu-

tions perform spatial and temporal adaptive sampling only separately. By grouping

sensors in clusters and electing cluster heads (CHs) that will report the data on behalf

of the nodes in their clusters, communication cost can be minimized. This overhead

reduction occurs because cluster heads do not need to collect data from all the nodes

in the cluster as it is normally proposed in the literature when in-network processing

is advocated. Obviously, efficient distributed clustering and resizing algorithms need

to be developed so to assure data consistency as the phenomenon evolves in time and

space. Furthermore, because nodes are usually provided with many sensors on their

sensing board (e.g., light, temperature, humidity, accelerometer, etc.), in-network joint

optimization was achieved by adaptively modifying both spatial and temporal sampling

rates of these different sensors in such a way as to dynamically track the time and space

evolution of the phenomenon’s manifestations.

In future, performance evaluation of the proposed adaptive sampling with multiple

manifestation using real data needs to be carried out. Also, threshold optimization

for clustering can be determined based on application requirement. How to optimize

weigh value in(3.5) could be one of the future work when multiple manifestations are

measured. Moreover, CH election percentage(%) should be optimized according to the

network characteristics.
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