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ABSTRACT OF THE DISSERTATION

Saddle Point Approximation

by Jixin Li

Dissertation Director: John Kolassa

We extend known saddlepoint tail probability approximations to multivariate cases, in-

cluding multivariate conditional cases. Our first approximation applies to both contin-

uous and lattice variables, and requires the existence of a cumulant generating function.

The method is applied to some examples, including a real data set from a case-control

study of endometrial cancer. The method contains less terms, is easier to implement

than existing methods, and shows an accuracy comparable to that of existing methods.

The drawback of the first method is that the coefficient for the main term is not 1,

and therefore it may be hard to show the reflexivity property which in general does

not hold, because the route of path of the integral used in the saddlepoint method has

to have positive real part. Our second method uses a different approach for the main

term. We show that in the bivariate case, the reflexivity property holds. We applies the

method to a three dimensional example, and our method demonstrates better accuracy

than the normal approximation.

ii



Acknowledgements

I would like to express my deepest gratitude to my advisor, Professor John Kolassa.

The thesis could not have been written without his enduring patience, enlightening

advice and warm encouragement. He not only provides me with helpful insights into

our research subject, but also teaches me the spirit to overcome difficulties and how to

face challenges arising from life. I would like to express my cordial thanks to Professor

Donald Hoover, who had great influence on my choice of statistics as my PhD area,

and help me gain hands-on experience through external projects. I thank Professor

Minge Xie and Professor Pamela Ohman Strickland, together with Professor Hoover

and Professor Kolassa for serving as my committee members.

I would also like to thank my wife, Minya, for her wholehearted support and care,

in research and in life.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Representations of tail probabilities as multiple complex integrals, and

integral decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. Bivariate distribution approximations . . . . . . . . . . . . . . . . . . . 9

3.1. Continuous distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. An example for continuous case . . . . . . . . . . . . . . . . . . . . . . . 14

3.3. Unit lattice distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4. An example for lattice case . . . . . . . . . . . . . . . . . . . . . . . . . 18

4. Multivariate conditional distribution approximations . . . . . . . . . 21

4.1. Conditional continuous distributions . . . . . . . . . . . . . . . . . . . . 21

4.2. An example of arising from continuous distributions . . . . . . . . . . . 25

4.3. Unit lattice distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4. An example arising from variables confined to unit lattice . . . . . . . . 32

5. An alternative multivariate saddlepoint approximation . . . . . . . . 36

5.1. Theoretical development . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2. Reflexivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3. An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4. Higher dimensional extension . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5. A three-dimensional example . . . . . . . . . . . . . . . . . . . . . . . . 47

iv



6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



1

Chapter 1

Introduction

Let X1,X2, . . . ,Xn be independent and identically distributed random vectors from a

density fX(·) on Rd. We construct two accurate multivariate saddlepoint approximation

to the tail probability of the mean random vector X̄ = (X1 + X2 + · · · + Xn)/n.

We also develop similar approximations to conditional tail probabilities. The first

approximation has a relative error of O(n−1) uniformly over a compact set of x̄, a

realization of X̄, under some general conditions. The second approximation removes

the leading coefficient of the main term and therefore has the reflexive property. Our

methods utilizes the likelihood ratio statistic, routinely calculated by standard software,

which makes the approximation easy to implement. I will also investigate applications

of this approximation.

The Edgeworth expansion is a natural competitor to the saddlepoint approximation.

This expansion has a uniformly bounded absolute error and works well in the center

of the distribution being approximated. However, the approximation deteriorates at

the far tail of the distribution, where it can sometimes even attain negative values.

[Daniels 1954] first applied saddlepoint techniques to the approximation of a probability

density function. Saddlepoint approximation addresses the problem of degradation

outside a region of radius O(n−
1
2 ) about E(Xi), by bounding the relative error, rather

than the absolute error of the approximation over the admissible range.

Daniels ([Daniels 1954]) discussed approximating the density of X̄ when the dimen-

sion d = 1, i.e. the univariate case. The approximation achieved a relative error of

O(n−1) uniformly over the whole admissible range of the variable, under some condi-

tions. The method uses the Fourier inversion formula, which involves moment gener-

ating or characteristic functions, and complex integration. In this approach, the path
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of integration is shifted, so that it passes through the saddlepoint of the integrand

and follows the steepest descent curve at the neighborhood of the saddlepoint. The

asymptotic property is proved by the lemma due to [Watson 1948].

Extensions of univariate saddlepoint approximation to tail probabilities P (X̄ > x̄)

for the mean of independent random variables have also been studied. This calculation

is more difficult in that, unlike the density function case, the integrand of the Fourier

inversion integral for tail probabilities has a pole at zero.

Robinson ([Robinson 1982]) presented a general saddlepoint approximation tech-

nique that can be applied to tail probability approximation, based on Laplace approx-

imation to the integrated saddlepoint density, with an error of O(n−1). Robinson used

an argument involving an conjugate exponentially shifted distribution family and the

Edgeworth expansion. The terms of the expansion then can be integrated termwise.

There is no direct explicit formula for the integration of each term, but the terms may

be computed recursively. This method applies when x̄ ≥ E(X). When x̄ < E(X),

Boole’s law and reflection of the distribution must be used.

Lugannani and Rice ([Lugannani and Rice 1980]) provided an alternative approxi-

mation. Daniels ([Daniels 1987]) derived this technique, using a transformation of vari-

ables to directly address the local quadratic behavior of the numerator. The integral

then is split into two parts, one that contains a pole but can be integrated exactly and

explicitly, and the other one that only has removable singularities and can be expanded

and approximated accurately. The virtue of this method is that the approximation is

compact and can be computed without recursion, and the formula is valid over the

whole range of admissible x̄.

Reid ([Reid 1988]) thoroughly discussed the usefulness of saddlepoint method, in

a review of the saddlepoint method focusing on a variety of applications to statistical

inference.

Kolassa ([Kolassa 2003]) generalized the univariate Robinson approach under the

Daniels framework and achieved an error of size O(n−1). The method uses integral

expressions for the tail probability in the multivariate case and presents a multivariate

expansion of the numerator of the integrand and a termwise multivariate integration
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using recursion. This approach shares the drawback of Robinson’s approach in that it

required a positivity constraint on the ordinate.

Wang ([Wang 1991]) generalized Lugannani & Rice’s method to the case of bivariate

probability distribution function using variable transformations. As summarized in

[Kolassa 2003], he used a different method of proof, and showed that the error term is

of order O(n−1). His method is limited to d = 2. Furthermore, Wang’s development

involves an inversion integral in which the pole of one variable depends on the values

of other variables, and in general the problem can not be solved by a simple linear

transformation.

Wang’s proof of the error rate in the neighborhood of the pole is incomplete. In this

paper, a way of effectively extending the Lugannani & Rice’s method to multivariate

case, which uses a different transformation formula from Wang’s and can be used in the

case d > 2, is proposed. The method uses fewer terms and is extended to multivariate

conditional cases.

My saddlepoint approximation may be used to test null and alternative hypothesis

concerning a multivariate parameter, when the hypotheses are specified by systems of

linear inequalities. Kolassa ([Kolassa 2004]) applied the method of [Kolassa 2003], in

conjunction with the adjusted profile likelihood, in such a case. For instance, Kolassa

([Kolassa 2004]) refers to data presented by [Stokes et al. 1995] on 63 case-control pairs

of women with endometrial cancer. The occurrence of endometrial cancer is influenced

by explanatory variables including gall bladder disease, hypertension and non-estrogen

drug use. The test of whether hypertension or non-estrogen drug use is associated

with an increase in endometrial cancer will be performed conditional on the sufficient

statistic value associated with gall bladder disease. This type of inferential problem

will be discussed in this thesis.

The remainder of the paper is organized as follows. Section 2 provides the unified

framework, under which both unconditional and conditional tail probability approxi-

mations are considered. Section 3 derives formulas for unconditional bivariate distribu-

tions. Section 4 focuses on conditional distributions. Section 5 presents an alternative

multivariate saddlepoint approximation.
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Chapter 2

Representations of tail probabilities as multiple complex

integrals, and integral decompositions

The unconditional and conditional tail probability approximation share some common

characteristics. I derive them in a unified way. Applying the Fourier inversion theorem

and Fubini’s theorem as in [Kolassa 2003], we find that both the unconditional and

conditional tail probability approximations require the evaluation of an integral of form

nd−d0

(2πi)d

∫ c+iK

c−iK

exp(n[K(τ )− τT t∗])∏d0
j=1 ρ(τj)

dτ , (2.0.1)

where K is the cumulant generating function, which is the natural logarithm of the

moment generating function, and c is any positive d dimensional vector. In the un-

conditional case, for continuous variables, K is a vector of length d, with every entry

infinity, t∗ = t, ρ(τ) = τ , and for variables confined to unit lattice, K is a vector of

length d, with every entry π, t∗ is t corrected for continuity, ρ(τ) = 2 sinh(τ/2), and

d = d0. In the conditional case, the setting is same, except that d0 equals d minus the

dimension of the conditioning variables.

Daniels ([Daniels 1987]) recast a great deal of the saddlepoint literature in terms of

inversion integrals of form (2.0.1), rescaled so that the exponent is exactly quadratic.

This rescaling includes the multiplier for the linear term in the exponent; this linear

term is the signed root of the likelihood ratio statistic. Kolassa ([Kolassa 1997]) defines

a multivariate version of this reparameterization, and also defines the multiplier for the

linear terms; again these are signed roots of likelihood ratio statistics, but this time for

a sequence of nested models.

−1
2
ŵT ŵ = min

γ
(K(γ)− γT t∗)
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and

−1
2
(w − ŵ)T (w − ŵ) = K(τ )− τT t∗ −min

γ
(K(γ)− γT t∗).

Further specification of ŵ and w is needed. For any vector v of length d, let vj

be the vector consisting of the first j elements, i.e., (v1, v2, · · · , vd)T . For instance,

γj = (γ1, γ2, · · · , γj)T , τj = (τ1, τ2, · · · , τj)T and 0j is the zero vector (0, 0, · · · , 0)T

with dimension j. Let v−j be the vector consisting all but the first j elements of v, i.e.,

(vj+1, vj+2, · · · , vd)T . [Kolassa 1997], Chapter 6 defines ŵ and w using:

− 1
2
ŵ2

j = min
γ,γj−1=0j−1

(K(γ)− γT t∗)− min
γ,γj=0j

(K(γ)− γT t∗) (2.0.2a)

− 1
2
(wj − ŵj)2 = min

γ,γj−1=τj−1

(K(γ)− γT t∗)− min
γ,γj=τj

(K(γ)− γT t∗). (2.0.2b)

This definition is not symmetric with regard to the order of the coordinates. Also

note that wj is a function of only τj , but not of any element of τ−j , ∀j. The same holds

true for τj as a function of w.

We now construct more explicit formulas for ŵ and w. Let

τ̃j(γj) = (γ1, γ2, · · · , γj , τ̃j+1(γj), τ̃j+2(γj), · · · , τ̃d(γj))

be the minimizer of (K(γ) − γT t∗) when the first j variables are fixed. The function

τ̃k(γj) above is the minimizer for variable k when the first j variables are fixed, for

k > j.

Using the notation above, the definition of ŵ and w can be rewritten as

− 1
2
ŵ2

j = K(τ̃j−1(0j−1))− τ̃j−1(0j−1)T t∗ − (K(τ̃j(0j))− τ̃j(0j)T t∗) (2.0.3a)

− 1
2
(wj − ŵj)2 = K(τ̃j−1(τj−1))− τ̃j−1(τj−1)T t∗ − (K(τ̃j(τj))− τ̃j(τj)T t∗),

(2.0.3b)

where τ̃j−1(·) is set to τ̂ when j = 1 for expression succinctness.

By choosing a sign to make ŵ and w increasing functions of τ̂ and τ respectively,
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we can further specify them as below:

ŵj =sign(τ̃j(0j−1))· (2.0.4a)
√
−2[K(τ̃j−1(0j−1))− τ̃j−1(0j−1)T t∗ − (K(τ̃j(0j))− τ̃j(0j)T t∗)]

wj =ŵj + sign(τj − τ̃j(τj−1))· (2.0.4b)
√
−2[K(τ̃j−1(τj−1))− τ̃j−1(τj−1)T t∗ − (K(τ̃j(τj))− τ̃j(τj)T t∗)].

The derivation of the [Lugannani and Rice 1980] approximation provided by Daniels

([Daniels 1987]) requires identification of the simple pole in the inversion integrand. We

need to match zeros in the denominator of the multivariate integrand with functions

of the variables in the new parameterization; the points at which this matching occurs

will be denoted by a tilde. The quantities above, such as τ̂ , ŵ, τ̃j(τj−1) and functional

relationships between τ and w, etc., can be solved numerically by Newton-Raphson

methods, or even analytically in some cases. Finally, we define a function w̃j(wj−1),

such that τj(w1, w2, · · · , w̃j(wj−1)) = 0, for j > 1.

It can be verified that the following properties hold:

τj = 0 if and only if wj = 0, (2.0.5a)

w̃j(0j−1) = 0, for j > 1, (2.0.5b)

τj = τ̃j(τj−1) if and only if wj = ŵj , for j > 1, (2.0.5c)

τj = τ̂j if and only if wj = ŵj . (2.0.5d)

Below a superscript of a function denotes differentiation with respect to the correspond-

ing argument of the function. T denotes transpose of matrix. In other cases, we will

follow the same use of superscripts in the subsequent text of the paper except that

when the superscript is a set, it denotes difference as defined at the end of this section.

Furthermore, let w̌j = w̃j(ŵj−1) and w̌k
j = w̃k

j (ŵj−1). Substitute wj = w̌j , τj = 0,

τj−1 = τ̂j−1 and τj = (τ̂1, τ̂2, · · · , τ̂j−1, 0)T = (τ̂j−1, 0)T into (2.0.4b), to obtain

w̌j = ŵj + sign(0− τ̂j)
√
−2[K(τ̂ )− τ̂T t∗ − (K(τ̃j(τ̂j−1, 0))− (τ̂j−1, 0)T t∗)]. (2.0.6)
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Differentiate (2.0.3b) with respect to wk, and rearrange terms, to obtain

w̌k
j =

j−1∑
l=k

(K l(τ̃j(τ̂j−1, 0)) · dτl
dwk

∣∣∣
ŵl

− t∗l )

w̌j − ŵj
, (2.0.7)

for k < j. The derivatives dτl
dwk

evaluated at point wl can be obtained by differentiating

(2.0.3b) with respect to wk once or twice depending on whether wj = ŵj or not, and

solving the resulting equation system. In particular,

dτj

dwj

∣∣∣∣
wj

=





√
1∑d

l=j Kjl(τ̃j−1(τj−1))τj
l ([τ̃j−1(τj−1)]j)

if wj = ŵj

wj−ŵj

Kj(τ̃j(τj))−t∗j
if wj 6= ŵj ,

(2.0.8)

for j ≤ d0, where [·]j denotes the first j elements, τ j
l ([τ̃j−1(τj−1)]j) is the partial

derivative with respect to the jth argument of τl(·), and

d∏

j=d0+1

dτj

dwj

∣∣∣∣∣∣
(wd0

,ŵ−d0
)

=
d∏

j=d0+1

√
1∑d

l=j Kjl(τ̃d0(τd0))τ
j
l ([τ̃d0(τd0)]j))

, (2.0.9)

where for expression succinctness, we define τ j
l (·) to be one when l = j. For l > j, we

obtain τ j
l (·) by differentiating both sides of the definition of τ j

l (·), i.e. K l(·) = t∗l with

respect to τj ∀l > j, and solving the equation system.

Under this variable transformation from τ to w, the Jacobian is just the product of

the diagonal terms of the Jacobian matrix, and (2.0.1) can be expressed as

nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])∏d0

j=1 ρ(τj(wj))

d∏

j=1

dτj

dwj
dw

=
nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])∏d0

j=1 (wj − w̃j(wj−1))
·

d∏

j=1

dτj

dwj

∏d0
j=1 (wj − w̃j(wj−1))∏d0

j=1 ρ(τj(wj))
dw

∼ nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])∏d0

j=1 (wj − w̃j(wj−1))
G(τ ) dw,

(2.0.10)

where G(τ ) =
∏d0

j=1

(
dτj

dwj

wj−w̃j(wj−1)
ρ(τj(wj))

)
·∏d

j=d0+1
dτj

dwj

∣∣∣
(wd0

,ŵ−d0
)
, and for notational suc-

cinctness, set w̃j(wj−1) to zero for j = 1. The product
∏d

j=d0+1
dτj

dwj

∣∣∣
(wd0

,ŵ−d0
)

can be

ignored for unconditional case, where d = d0. For convenience later, we write G(τ ) as a

function τ instead of w. The relation ∼ in the last step indicates exact equality in un-

conditional case, where d = d0, but holds with a relative error of O(n−1) in conditional
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case, which we will discuss in Section 4. Hereafter, we use ∼ to denote approximation

with a relative error of O(n−
1
2 ) to both the left hand side and the tail probability, and

we use ∼̇ (∼ with a dot on it) in the case that the right hand side is an approximation

with a relative error of O(n−
1
2 ) to the left hand side.

The last integral in (2.0.10) will be evaluated by splitting it into rather simple

terms involving poles, and more complicated terms involving analytic functions. We

can decompose (2.0.10) into 2n terms. Let U = {1, 2, · · · , d0} be the index set from

integer 1 to d0. For set s ⊂ U , define Gs(τ ) = G(τ s), where the vector τ s is defined by

τ s
j =





τj if j ∈ s

0 if j /∈ s.

For example, suppose d0 = 3. Then G{1,2}(τ ) = G(τ1, τ2, 0). Now for t ⊂ U , define

Ht =
∑

s⊂t(−1)|t−s|Gs(τ ), where |·| denotes the cardinality, i.e. the number of elements

of a set. For example, H{1,2} = G{1,2}(τ )−G{1}(τ )−G{2}(τ ) + G∅(τ ) = G(τ1, τ2, 0)−
G(τ1, 0, 0) − G(0, τ2, 0) + G(0, 0, 0), where ∅ denotes empty set. We conclude that

G(τ ) =
∑

t⊂U Ht. This decomposition holds by induction on d0. Noting that ∀s ⊂ U

and a ∈ s, Hs(τ {a}) = 0, we see that

Ht(τ )∏
j∈t (wj − w̃j(wj−1))

is analytic. In other words, |t| product terms in the denominator of the integrand in

(2.0.10) are “absorbed” by Ht(τ ), leaving the rest (d0−|t|) product terms unabsorbed.

As explained in [Kolassa 2003], each term that is absorbed contributes a relative error

of O(n
1
2 ). Therefore, if we let It be the integral corresponding to Ht, we obtain

nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])∏d0

j=1 (wj − w̃j(wj−1))
G(τ ) dw ∼

∑

|t|≤1,t⊂U

It. (2.0.11)

Now we have an approximation as the sum of d0+1 integrals as shown above. In the

next chapter, we will examine each of the integrals in detail for bivariate distribution

approximation and provide two examples.
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Chapter 3

Bivariate distribution approximations

In the bivariate case, we consider three terms I∅, I{1} and I{2}, where I∅ is the main

term and I{1} and I{2} are terms of relative error O(n−
1
2 ). These terms in general can

not be computed exactly, and Watson’s lemma can not be applied directly. We use some

techniques to circumvent the problem. We will start with continuous distributions,

and then the derivation for variables confined to unit lattice are similar. We give

two examples, one for continuous case, and the other for unit lattice case. In both

examples, our approximation shows superior results than normal approximation and

the approximation presented in [Kolassa 2003].

3.1 Continuous distributions

In the continuous bivariate case, i.e. the approximation of P (X̄ ≥ x̄), we let T = X̄,

t = x̄ and let K be the vector with d components, all of them infinity, t∗ = t, ρ(τ) = τ

and d = d0 = 2 in (2.0.1). Then (2.0.1) becomes

1
(2πi)2

∫ c+i∞

c−i∞

exp(n[K(τ1, τ2)− τ1x̄1 − τ2x̄2])
τ1τ2

dτ . (3.1.1)

The definition of ŵ and w becomes

− 1
2
ŵ2

1 = min
γ1,γ2

(K(γ1, γ2)− γ1x̄1 − γ2x̄2)−min
γ2

(K(0, γ2)− γ2x̄2), (3.1.2a)

− 1
2
ŵ2

2 = min
γ2

(K(0, γ2)− γ2x̄2), (3.1.2b)

− 1
2
(w1 − ŵ1)2 = min

γ1,γ2

(K(γ1, γ2)− γ1x̄1 − γ2x̄2)−min
γ2

(K(τ1, γ2)− τ1x̄1 − γ2x̄2),

(3.1.2c)

− 1
2
(w2 − ŵ2)2 = min

γ2

(K(τ1, γ2)− τ1x̄1 − γ2x̄2)− (K(τ1, τ2)− τ1x̄1 − τ2x̄2), (3.1.2d)



10

which, as in (2.0.3a) and (2.0.3b), can be rewritten as

− 1
2
ŵ2

1 = K(τ̂1, τ̂2)− τ̂1x̄1 − τ̂2x̄2 − (K(0, τ̃2(0))− τ̃2(0)x̄2), (3.1.3a)

− 1
2
ŵ2

2 = K(0, τ̃2(0))− τ̃2(0)x̄2, (3.1.3b)

− 1
2
(w1 − ŵ1)2 = K(τ̂1, τ̂2)− τ̂1x̄1 − τ̂2x̄2 − (K(τ1, τ̃2(τ1))− τ1x̄1 − τ̃2(τ1)x̄2),

(3.1.3c)

− 1
2
(w2 − ŵ2)2 = K(τ1, τ̃2(τ1))− τ1x̄1 − τ̃2(τ1)x̄2 − (K(τ1, τ2)− τ1x̄1 − τ2x̄2),

(3.1.3d)

or more specifically, as in (2.0.4a) and (2.0.4b)

ŵ1 =sign(τ̂1)
√
−2[K(τ̂1, τ̂2)− τ̂1x̄1 − τ̂2x̄2 − (K(0, τ̃2(0))− τ̃2(0)x̄2)], (3.1.4a)

ŵ2 =sign(τ̂2)
√
−2[K(0, τ̃2(0))− τ̃2(0)x̄2], (3.1.4b)

w1 =ŵ1+

sign(τ1 − τ̂1)
√
−2[K(τ̂1, τ̂2)− τ̂1x̄1 − τ̂2x̄2 − (K(τ1, τ̃2(τ1))− τ1x̄1 − τ̃2(τ1)x̄2)],

(3.1.4c)

w2 =ŵ2+

sign(τ2 − τ̃2(τ1))
√
−2[K(τ1, τ̃2(τ1))− τ1x̄1 − τ̃2(τ1)x̄2 − (K(τ1, τ2)− τ1x̄1 − τ2x̄2)].

(3.1.4d)

Properties of (2.0.5a)–(2.0.5d) in the two dimensional case as listed below hold:

τ1 = 0 if and only if w1 = 0 (3.1.5a)

w̃2(0) = 0 (3.1.5b)

τ2 = τ̃2(τ1) if and only if w2 = ŵ2 (3.1.5c)

τ1 = τ̂1 if and only if w1 = ŵ1. (3.1.5d)

We also have

G(τ ) =
(

w1

τ1

dτ1

dw1

)(
w2 − w̃2(w1)

τ2

dτ2

dw2

)
. (3.1.6)

First of all, G(0, 0) = lim
τ1→0,τ2→0

(
w1
τ1

dτ1
dw1

) (
w2−w̃2(w1)

τ2
dτ2
dw2

)
= 1 , and

I∅ =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − ŵ1w1 − ŵ2w2])

(2πi)2w1(w2 − w̃2(w1))
dw. (3.1.7)
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Because of the presence of w̃2(w1) in the denominator, I∅ does not have a closed-form

expression. Let u1 = w1 and u2 = w2 − w̃2(w1). By changing variables, with Jacobian

equal to 1, we have

I∅ =
∫ û+i∞

û−i∞

exp(n[12u2
1 + 1

2(u2 + w̃2(u1))2 − ŵ1u1 − ŵ2(u2 + w̃2(u1))])
(2πi)2u1u2

du

=
∫ û+i∞

û−i∞

exp(n[g(u1, u2)])
(2πi)2u1u2

du,

(3.1.8)

where g(u1, u2) = 1
2u2

1 + 1
2(u2 + w̃2(u1))2 − ŵ1u1 − ŵ2(u2 + w̃2(u1)).

The integration in (3.1.7) can not be performed exactly in general; however, using

the same argument as in [Kolassa 2003], we approximate it by expanding g(u1, u2) about

(û1, û2) up to the third degree; after termwise integration, the resulting approximation

to I∅ has relative error O(n−1). So I∅ can be approximated by

I∅ =
∫ û+i∞

û−i∞

1
(2πi)2u1u2

exp(n[ĝ + ĝ1(u1 − û1) + ĝ2(u2 − û2)+

1
2
ĝ11(u1 − û1)2 +

1
2
ĝ22(u2 − û2)2 + ĝ12(u1 − û1)(u2 − û2)])·


1 +

n

6

∑

i,j,k∈{1,2}
ĝijk(ui − ûi)(uj − ûj)(uk − ûk)


 du

= exp(n[−1
2
ŵ2

1 −
1
2
ŵ2

2])
∫ û+i∞

û−i∞

1
(2πi)2u1u2

exp(n[
1
2
(1 + (w̌′2)

2)(u1 − û1)2+

1
2
(u2 − û2)2 + w̌′2(u1 − û1)(u2 − û2)]) du+

∫ û+i∞

û−i∞

1
(2πi)2u1u2

exp(n[ĝ + ĝ1(u1 − û1) + ĝ2(u2 − û2)+

1
2
ĝ11(u1 − û1)2 +

1
2
ĝ22(u2 − û2)2 + ĝ12(u1 − û1)(u2 − û2)])·

n

6

∑

i,j,k∈{1,2}
ĝijk(ui − ûi)(uj − ûj)(uk − ûk) du,

(3.1.9)

where, for brevity, we write ĝr for gr(û1, û2). The computation of the second integral

is addressed in [Kolassa 2003]. The details involve partial derivatives of some functions

up to the second or third degree, which are algebraically complicated and therefore

omitted here. For the first integral, rearrange the terms in the numerator in the order
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of degree of u. Expansion (3.1.9) can be written as

C

∫ û+i∞

û−i∞

1
(2πi)2u1u2

exp(n[
1
2
(1 + (w̌′2)

2)u2
1 +

1
2
u2

2 + w̌′2u1u2−

((1 + (w̌′2)
2)û1 + w̌′2û2)u1 − (w̌′2û1 + û2)u2]) du

= CΦ̄(
√

n[(1 + (w̌′2)
2)ŵ1 + w̌′2(ŵ2 − w̌2)]√
1 + (w̌′2)2

,
√

n[w̌′2ŵ1 + ŵ2 − w̌2],
w̌′2

1 + (w̌′2)2
),

(3.1.10)

where

C = exp(n[(w̌2 − w̌′2ŵ1)(
1
2
w̌2 − 1

2
w̌′2ŵ1 − ŵ2)]), (3.1.11)

and Φ̄(·, ·, ρ) is the tail probability of a bivariate normal distribution with means 0,

variances 1 and correlation coefficient ρ. The quantity ŵ, w̌2, w̌′2 can be computed

using (2.0.4a), (2.0.4b), (2.0.6), (2.0.7) and (2.0.8).

From (2.0.11) we have

I{2} =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − w1ŵ1 − w2ŵ2])

(2πi)2w1

(
G(0, τ2)−G(0, 0)

w2 − w̃2(w1)

)
dw.

(3.1.12)

The function H(w1, w2) = G(0,τ2)−G(0,0)
w2−w̃2(w1) is analytic, since H(w1, w2) = G(0,τ2)−G(0,0)

τ2
×

τ2
w2−w̃2(w1) and τ2 → 0 ⇔ w2 − w̃2(w1) → 0 by definition. However, H(w1,w2)

w1
is not

analytic, and we can not use Watson’s Lemma directly. We decompose H(w1, w2)/w1

as following,
H(w1, w2)

w1
=

H(0, w2)
w1

+
H(w1, w2)−H(0, w2)

w1
(3.1.13)

The second term in the equation is now analytic, and

I{2}∼̇
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − ŵ1w1 − ŵ2w2])

(2πi)2w1
H(0, w2) dw

=
∫ ŵ1+i∞

ŵ1−i∞

exp(n[12w2
1 − ŵ1w1])

(2πi)w1
dw1×

∫ ŵ2+i∞

ŵ2−i∞

exp(n[12w2
2 − ŵ2w2])

2πi
H(0, w2) dw2

∼̇ 1√
n

H(0, ŵ2)Φ̄(
√

nŵ1)φ(
√

nŵ2),

(3.1.14)

where, by the definition of G(τ1, τ2), (2.0.5b), (2.0.5c) and (2.0.8),

H(0, ŵ2) =
G(0, τ2(0, ŵ2))−G(0, 0)

ŵ2 − w̃2(0)
=

[ w1
τ1

dτ1
dw1

]
∣∣∣
0
· ŵ2

τ2(0,ŵ2) · dτ2
dw2

∣∣∣
(0,ŵ2)

− 1

ŵ2

=
1

τ̃2(0)
√

K22(0, τ̃2(0))
− 1

ŵ2
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If EX2 = x̄2, then both τ̃2(0) = 0 and ŵ2 = 0. The treatment of this special case

follows the discussion in [Yang and Kolassa 2002] and [Zhang and Kolassa 2008]. Since

the handling of this special case is not theoretically difficult, but algebraically messy,

we omit it here. In all other cases, we have

I{2}∼̇ 1√
n

(
1

τ̃2(0)
√

K22(0, τ̃2(0)
− 1

ŵ2

)
Φ̄(
√

nŵ1)φ(
√

nŵ2). (3.1.15)

Now we evaluate I{1}. From (2.0.11), we have

I{1} =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − ŵ1w1 − ŵ2w2])

(2πi)2(w2 − w̃2(w1))

(
G(τ1, 0)−G(0, 0)

w1

)
dw

=
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − ŵ1w1 − ŵ2w2])

(2πi)2(w2 − w̃2(w1))

(
1

τ1(w1)
dτ1

dw1
− 1

w1

)
dw.

(3.1.16)

Let u1 = w1 and u2 = w2 − w̃2(w1). By change of variables, (3.1.16) transforms to

I{1} =
∫ û+i∞

û−i∞

1
(2πi)2u2

exp(n[
1
2
u2

1 +
1
2
(u2 + w̃2(u1))2 − ŵ1u1−

ŵ2(u2 + w̃2(u1))])
(

1
τ1(u1)

dτ1

du1
− 1

u1

)
du

(3.1.17)

Noting that

h(u1) =
(

1
τ1(u1)

dτ1

du1
− 1

u1

)
(3.1.18)

is analytic since G(τ1,0)−G(0,0)
w1

= G(τ1,0)−G(0,0)
τ1

τ1
w1

is analytic, again we can use the same

technique and reasoning presented in [Kolassa 2003] to obtain

I{1}∼̇C

∫ û+i∞

û−i∞

1
(2πi)2u2

exp(n[
1
2
(1 + (w̌′2)

2)u2
1 +

1
2
u2

2 + w̌′2u1u2−

((1 + (w̌′2)
2)û1 + w̃′2(û1)û2)u1 − (w̌′2û1 + û2)u2])h(u1) du,

(3.1.19)

where C is defined in (3.1.11). Here the third degree terms contribute an error of

O(n−
1
2 ) to I{1}, which is itself I∅O(n−

1
2 ), and therefore can be omitted.

Integrals of the general form
∫ û+i∞

û−i∞

exp(n[a1
2 u2

1 + a2
2 u2

2 + cu1u2 − b1u1 − b2u2])
(2πi)2u2

h(u1) du (3.1.20)

can be computed. Using the transformation, v1 =
√

a1(u1+ c
a1

u2) and v2 =
√

a2 − c2

a1
u2,

we have:

∫ v̂+i∞

v̂−i∞

exp(n[12v2
1 + 1

2v2
2 − b1√

a1
v1 −

b2− b1c
a1√

a2− c2

a1

v2])

(2πi)2v2
√

a1
h(

v1√
a1
− cv2

a1

√
a2 − c2

a1

) dv (3.1.21)
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Applying the same trick as in (3.1.13) to h( v1√
a1
− cv2

a1

√
a2− c2

a1

), the integral (3.1.20) may

be approximated, with relative error O(n−
1
2 ), by

1√
a1

φ(
b1√
a1

)Φ̄(
b2 − b1c

a1√
a2 − c2

a1

)h(û1). (3.1.22)

Here again, we omit the special case that ŵ1 = 0.

Now come back to I{1}. Compare the coefficients of (3.1.19) and (3.1.20), and

substitute the corresponding quantities into the equivalence of (3.1.20) and (3.1.22), to

obtain

I{1}∼̇C
h(ŵ1)√

n
√

1 + (w̌′2)2
φ(
√

n((1 + (w̌′2)
2)ŵ1 + w̌′2(ŵ2 − w̌2))√
1 + (w̌′2)2

)Φ̄(
√

n(ŵ2 − w̌2)√
1 + (w̌′2)2

).

(3.1.23)

3.2 An example for continuous case

We consider the bivariate random vector (Y1, Y2), with Y1 = X1+X2 and Y2 = X2+X3,

where X1, X2 and X3 are independent and identically distributed random variables

following the exponential distribution, which has a density function f(x) = e−x for

x > 0. The moment generating function of (Y1, Y2) is

M(Y1,Y2)(τ1, τ2) =Eeτ1Y1+τ2Y2

=Eeτ1(X1+X2)+τ2(X2+X3)

=Eeτ1X1Ee(τ1+τ2)X2Eeτ2X3

=MX1(τ1)MX2(τ1 + τ2)MX3(τ2)

=
1

(1− τ1)(1− τ1 − τ2)(1− τ2)
,

(3.2.1)

for τ1 < 1, τ2 < 1 and τ1 + τ2 < 1. The cumulative generating function is, therefore,

K(τ1, τ2) = log(M(Y1,Y2)(τ1, τ2)) = − log(1 − τ1) − log(1 − τ1 − τ2) − log(1 − τ2). The

global minimum of K(τ1, τ2)− τ1x̄− τ2ȳ can be solve with the equation system




K1(τ1, τ2) = 1
1−τ1

+ 1
1−τ2−τ2

= ȳ1

K2(τ1, τ2) = 1
1−τ2

+ 1
1−τ2−τ2

= ȳ2

. (3.2.2)
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From the first equation, we have

τ2 = (1− τ1)− 1
ȳ1 − 1

1−τ1

Substitute it into the second equation and simplify to obtain

(ȳ2−ȳ1)ȳ1τ
3
1 +[(ȳ2−ȳ1)(2−2ȳ1)−2ȳ1]τ2

1 +[(ȳ2−ȳ1)(ȳ1−3)+3ȳ1−3]τ1+(ȳ2−2ȳ1+2) = 0.

The polynomial equation with a degree of 3, and can be solved numerically using the

Newton-Raphson method.

Given τ1, the τ̃2(τ1) that minimize K(·, ·) is obtained by solving K2(τ1, τ2) = 1
1−τ2

+

1
1−τ1−τ2

= ȳ2 for τ2. Combining the constraint that τ1 < 1, τ2 < 1 and τ1 + τ2 < 1, we

have

τ̃2(τ1) = 1− ȳ2τ1 + 2 +
√

ȳ2
2τ

2
1 + 4

2ȳ2
,

and in particular, τ̃2(0) = 1 − 2
y2

. With τ̂1 and τ̂2, we can use (3.1.4a) and (3.1.4b) to

obtain ŵ1 and ŵ2.

By (2.0.6), we have

w̌2 = ŵ2 + sign(0− τ̂2)
√
−2[K(τ̂1, τ̂2)− τ̂2ȳ2 −K(τ̂1, 0)]. (3.2.3)

To obtain w̌′2, by (2.0.7) we have

w̌′2 =
[K1(τ̂1, 0)− ȳ1] dτ1

dw1

∣∣∣
ŵ1

w̌2 − ŵ2
, (3.2.4)

where dτ1
dw1

∣∣∣
ŵ1

can be computed by (2.0.8), i.e.,

dτ1

dw1

∣∣∣∣
ŵ1

=

√
1

K11(τ̂1, τ̂2) + K12(τ̂1, τ̂2)τ̃ ′2(τ̂1)
, (3.2.5)

where the second derivatives of K(·, ·) can be calculated by the following formula:




K11(τ1, τ2) = 1
(1−τ1)2

+ 1
(1−τ1−τ2)2

K22(τ1, τ2) = 1
(1−τ2)2

+ 1
(1−τ1−τ2)2

K12(τ1, τ2) = 1
(1−τ1−τ2)2

. (3.2.6)

The last thing that we need to compute is h(ŵ1) = 1
τ̂1

dτ1
dw1

∣∣∣
ŵ1

− 1
ŵ1

, which is readily

available.
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The results for approximating P (Ȳ1 ≥ ȳ1, Ȳ2 ≥ ȳ2) when n = 5 are listed in Table 3.1

below, where “P. approx.” stands for saddlepoint approximation proposed in this paper,

“K. approx.” stands for saddlepoint approximation presented at [Kolassa 2003], and

“N. approx” stands for bivariate normal approximation. The “Exact” column shows

the exact tail probability values computed by [Mathematica 5.0 2005]. “Relative Error”

column shows the relative error of “P. approx”. The case that (ȳ1 = 2.5, ȳ2 = 3.0) and

(ȳ1 = 3.0, ȳ2 = 4.0) is the special case that ŵ1 = 0 and is omitted here. The normal

approximation deteriorates at the far tail, while both saddlepoint approximations show

much better and more stable relative errors. In almost all cases, the new method shows

smaller relative errors than that in [Kolassa 2003].

Table 3.1: Results of saddlepoint approximation compared with other approximations
in the continuous case.

ȳ1 ȳ2 P. approx. K. approx N. approx. Exact Relative Error
2.5 2.5 9.12× 10−2 8.98× 10−2 9.65× 10−2 9.22× 10−2 −1.08%
2.5 3.5 1.41× 10−2 1.41× 10−2 6.54× 10−3 1.41× 10−2 0.00%
2.5 4.0 3.90× 10−3 3.99× 10−3 6.69× 10−3 3.93× 10−3 −0.76%
3.0 3.0 2.20× 10−2 2.14× 10−2 1.46× 10−2 2.22× 10−2 −0.90%
3.0 3.5 8.96× 10−3 8.73× 10−3 3.52× 10−3 8.96× 10−3 0.00%
3.5 3.5 4.40× 10−3 4.25× 10−3 1.09× 10−3 4.40× 10−3 0.00%
3.5 4.0 1.67× 10−3 1.61× 10−3 1.78× 10−4 1.66× 10−3 0.60%
4.0 4.0 7.67× 10−4 7.34× 10−4 3.88× 10−5 7.58× 10−4 1.19%

3.3 Unit lattice distributions

Bivariate tail probability approximations for unit lattice variables follow the same route.

In unit lattice case, we consider the inversion integral for P (x̄ ≤ X̄ < x̄0). We deform

the path of integration to run through c for some c > 0, then one can pass the limit as

x̄0 →∞. The integral (3.1.1) becomes

1
(2πi)2

∫ c+iπ

c−iπ

exp(n[K(τ1, τ2)− τ1(x̄− 1
2n)− τ2(ȳ − 1

2n)])
2 sinh( τ1

2 )2 sinh( τ2
2 )

dτ

=
1

(2πi)2

∫ c+iπ

c−iπ

exp(n[K(τ1, τ2)− τ1x̄
∗ − τ2ȳ

∗])
2 sinh( τ1

2 )2 sinh( τ2
2 )

dτ ,

(3.3.1)
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where x̄∗ = x̄ − 1
2n , ȳ∗ = ȳ − 1

2n , and sinh(x) is the hyperbolic sin function defined as

ex−e−x

2 . The definitions (3.1.3a)-(3.1.3d) becomes

− 1
2
ŵ2

1 = K(τ̂1, τ̂2)− τ̂1x̄
∗
1 − τ̂2x̄

∗
2 − (K(0, τ̃2(0))− τ̃2(0)x̄∗2), (3.3.2a)

− 1
2
ŵ2

2 = K(0, τ̃2(0))− τ̃2(0)x̄∗2, (3.3.2b)

− 1
2
(w1 − ŵ1)2 = K(τ̂1, τ̂2)− τ̂1x̄

∗
1 − τ̂2x̄

∗
2 − (K(τ1, τ̃2(τ1))− τ1x̄

∗
1 − τ̃2(τ1)x̄∗2),

(3.3.2c)

− 1
2
(w2 − ŵ2)2 = K(τ1, τ̃2(τ1))− τ1x̄

∗
1 − τ̃2(τ1)x̄∗2 − (K(τ1, τ2)− τ1x̄

∗
1 − τ2x̄

∗
2),

(3.3.2d)

The definition (3.1.4a)-(3.1.4d) becomes

ŵ1 =sign(τ̂1)
√
−2[K(τ̂1, τ̂2)− τ̂1x̄∗1 − τ̂2x̄∗2 − (K(0, τ̃2(0))− τ̃2(0)x̄∗2)], (3.3.3a)

ŵ2 =sign(τ̂2)
√
−2[K(0, τ̃2(0))− τ̃2(0)x̄∗2], (3.3.3b)

w1 =ŵ1+

sign(τ1 − τ̂1)
√
−2[K(τ̂1, τ̂2)− τ̂1x̄∗1 − τ̂2x̄∗2 − (K(τ1, τ̃2(τ1))− τ1x̄∗1 − τ̃2(τ1)x̄∗2)],

(3.3.3c)

w2 =ŵ2+

sign(τ2 − τ̃2(τ1))
√
−2[K(τ1, τ̃2(τ1))− τ1x̄∗1 − τ̃2(τ1)x̄∗2 − (K(τ1, τ2)− τ1x̄∗1 − τ2x̄∗2)].

(3.3.3d)

And (3.1.6) becomes

G(τ ) =
(

w1

2 sinh(τ1/2)
dτ1

dw1

)(
w2 − w̃2(w1)
2 sinh(τ2/2)

dτ2

dw2

)
. (3.3.4)

Since lim
x→0

(2 sinh(x/2)/x) = 1, any analytic property in continuous case still holds in

lattice case. With this in mind, we obtain the exactly same formula for I∅ as in (3.1.9)

and (3.1.10),

I{2}∼̇ 1√
n

(
1

2 sinh(τ̃2(0)/2)
√

K22(0, τ̃2(0)
− 1

ŵ2

)
Φ̄(
√

nŵ1)φ(
√

nŵ2) (3.3.5)

and

I{1}∼̇C
h(ŵ1)√

n
√

1 + (w̌′2)2
·

φ(
√

n((1 + (w̌′2)
2)ŵ1 + w̌′2(ŵ2 − w̌2))√
1 + (w̌′2)2

)Φ̄(
√

n(ŵ2 − w̌2)√
1 + (w̌′2)2

),
(3.3.6)
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where here h(z) = 1
2 sinh(τ1(z)/2)

dτ1
dw1

∣∣∣
z
− 1

z .

In summary, we have

Theorem 3.3.1.

P (T ≥ t) ∼ I∅ + I{2} + I{1},

which can be computed as in (3.1.9), (3.1.10), (3.1.15) and (3.1.23) for continuous

variables and (3.1.9), (3.1.10), (3.3.5) and (3.3.6) for unit lattice variables.

3.4 An example for lattice case

In the second example, we consider the bivariate random vector (Y1, Y2), with Y1 =

X1 + X2 and Y2 = X2 + X3, where X1, X2 and X3 are independent and identically

distributed random variables following binomial distribution, which has a mass function
(
N
x

)
px(1 − p)N−x for 0 ≤ x ≤ N and a moment generating function (1 − p + peτ )N .

Using the same technique, the moment generating function of (Y1, Y2) is:

MX1(τ1)MX2(τ1 + τ2)MX3(τ2) = [(1− p + peτ1)(1− p + peτ1+τ2)(1− p + peτ2)]N .

The cumulative generating function is, therefore, K(τ1, τ2) = N [log(1 − p + peτ1) +

log(1− p+ peτ1+τ2)+ log(1− p+ peτ2)]. The global minimum of K(τ1, τ2)− τ1ȳ
∗
1 − τ2ȳ

∗
2

can be solve with the equation system




K1(τ1, τ2) = N [ peτ1

1−p+peτ1 + peτ1+τ2

1−p+peτ1+τ2
] = ȳ∗1

K2(τ1, τ2) = N [ peτ2

1−p+peτ2 + peτ1+τ2

1−p+peτ1+τ2
] = ȳ∗2

(3.4.1)

To simplify notation, let a = ȳ∗1/N , b = ȳ∗2/N , z1 = eτ1 and z2 = eτ2 . From the first

equation, we have

z2 =
(1− p)(a− pz1

1−p+pz1
)

pz1(1− a + pz1

1−p+pz1
)
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Substitute it into the second equation and simplify, we have

p2(2− a)(−a + b + 1)z3
1

+p[(1− p)(1− a)− (1− p)(a− b)(2− a)− (1− p)(a− b)(1− a) + p(a− b)(1− a)]z2
1

+(1− p)[p(1− a)− (1− p)(a− b)(1− a) + p(a− b)(1− a)− p(a− b)a]z1

−a(1− p)2(a− b + 1) = 0.

(3.4.2)

It is a polynomial equation with a degree of 3, and can be solved numerically using

Newton-Raphson method.

Given τ1, the τ̃2(τ1) that minimize K(·, ·) is obtained by solving:

K2(τ1, τ2) = N [
peτ2

1− p + peτ2
+

peτ1+τ2

1− p + peτ1+τ2
] = ȳ∗2

for τ2. The solution is

τ̃2(τ1) = log

(
1− p

p

√
(z1 + 1)2(1− b)2 + 4(2− b)bz1 − (z1 + 1)(1− b)

2(2− b)z1

)
, (3.4.3)

and in particular,

τ̃2(0) = log
(

1− p

p

b

2− b

)
.

Similar to the continuous case, with τ̂1 and τ̂2, we can use (3.3.3a) and (3.3.3b) to

obtain ŵ1 and ŵ2.

By (2.0.6), we have

w̌2 = ŵ2 + sign(0− τ̂2)
√
−2[K(τ̂1, τ̂2)− τ̂2ȳ∗2 −K(τ̂1, 0)].

To obtain w̌′2, by (2.0.7) we have

w̌′2 =
[K1(τ̂1, 0)− ȳ∗1]

dτ1
dw1

∣∣∣
ŵ1

w̌2 − ŵ2
,

where again dτ1
dw1

∣∣∣
ŵ1

can be computed by (2.0.8), i.e.,

dτ1

dw1

∣∣∣∣
ŵ1

=

√
1

K11(τ̂1, τ̃2(τ̂1)) + K12(τ̂1, τ̃2(τ̂1))τ̃ ′2(τ̂1)
,
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where the second derivatives of K(·, ·) can be calculated by the following formula:




K11(τ1, τ2) = Np(1− p)( z1
1−p+pz1

+ z1z2
1−p+pz1z2

)

K12(τ1, τ2) = Np(1− p)( z1z2
1−p+pz1z2

)

K22(τ1, τ2) = Np(1− p)( z2
1−p+pz2

+ z1z2
1−p+pz1z2

)

(3.4.4)

The last thing that we need to compute is h(ŵ1) = 1

2 sinh(
τ̂1
2

)

dτ1
dw1

∣∣∣
ŵ1

− 1
ŵ1

,

The results for approximating P (Ȳ1 ≥ ȳ1, Ȳ2 ≥ ȳ2) when N = 10, p = 0.2 and

n = 8 are listed in Table 3.2 below, We can again see from the table that the normal

approximation (with adjustment for continuity) deteriorates at the far tail, while the

saddlepoint approximations show much better and more stable relative errors. In most

cases, the new approximation shows better accuracy than that of [Kolassa 2003].

Table 3.2: Results of saddlepoint approximation compared with other approximations
in the unit lattice case.

ȳ1 ȳ2 P. approx. K. approx. N. approx. Exact Relative Error
4.5 4.5 1.15× 10−1 1.16× 10−1 1.16× 10−1 1.15× 10−1 0.00%
4.5 5.0 4.43× 10−2 4.51× 10−2 4.28× 10−2 4.44× 10−2 −0.23%
4.5 5.5 1.04× 10−2 1.05× 10−2 8.73× 10−3 1.04× 10−2 0.00%
4.5 6.0 1.46× 10−3 1.45× 10−3 9.50× 10−4 1.46× 10−3 0.00%
5.0 5.0 2.07× 10−2 2.12× 10−2 1.92× 10−2 2.08× 10−2 −0.48%
5.0 5.5 5.89× 10−3 6.04× 10−3 4.85× 10−3 5.91× 10−3 −0.34%
5.0 6.0 9.91× 10−4 1.01× 10−3 6.40× 10−4 9.94× 10−4 −0.30%
5.5 5.5 2.11× 10−3 2.16× 10−3 1.57× 10−3 2.11× 10−3 0.00%
5.5 6.0 4.45× 10−4 4.56× 10−4 2.69× 10−4 4.47× 10−4 -0.45%
6.0 6.0 1.21× 10−4 1.24× 10−4 6.14× 10−5 1.21× 10−4 0.00%
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Chapter 4

Multivariate conditional distribution approximations

4.1 Conditional continuous distributions

Consider a multivariate canonical exponential family. In practice, we are often inter-

ested in only a subset of the parameters in a given statistical model, with the other

model parameters usually treated as nuisance parameters. The distribution of the suf-

ficient statistics associated with parameters of interest, conditional on the sufficient

statistics associated with the nuisance parameters, depends on the parameters of inter-

est and not the nuisance parameters. We can therefore use the conditional distributions

instead of the original distributions for inference. For instance, in testing equality of

proportions for a 2× 2 contingency table, we condition on the row or column margins;

another example is logistic regression, where inference on some regression parameters

is often performed conditionally on sufficient statistics associated with nuisance param-

eters.

Certain hypotheses involving parameters of interest, particularly order-restricted

hypotheses, may be tested by computing the tail probabilities for the conditional dis-

tribution P (Td0 ≥ td0 |T−d0 = t−d0). Skovgaard ([Skovgaard 1987]) applies double

saddlepoint approximation to the problem in the case that d0 = 1, d > 1 and T is the

mean of independent and identically distributed random vectors. Here we propose a

method that extends the results to d0 > 1 and d > d0, using the idea in the previous

sections.

First, consider T, the mean of independent and identically distributed continuous

random vectors. Then

P (Td0 ≥ td0 |T−d0 = t−d0) =

∫∞
td0

fT(y1, · · · , yd0 , td0+1, · · · , td) dyd0

fT−d0
(t−d0)

,
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where fT(·) is the joint density and fT−d0
(·) is the marginal density of T−d0 . Again,

we use the Fourier inversion formula to obtain:

P (Td0 ≥ td0 |T−d0 = t−d0) =

nd−d0

(2πi)d

∫ c+i∞
c−i∞

exp(n[K(τ )−τT t])∏d0
j=1 τj

dτ

fT−d0
(t−d0)

, (4.1.1)

where K(τ ) is the cumulant generating function of the random vector T. The numer-

ator is just a special case of (2.0.1).

Approximation (2.0.10) holds because of the following lemma, which will allow us to

apply previous unconditional results, by substituting components of ŵ for components

of w, when the components correspond to variables in the conditioning event.

Lemma 4.1.1.

nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])∏d0

j=1 (wj − w̃j(wj−1))
·

d∏

j=1

dτj

dwj

∏d0
j=1 (wj − w̃j(wj−1))∏d0

j=1 ρ(τj(wj))
dw

=
nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])∏d0

j=1 (wj − w̃j(wj−1))
G(τ ) dw(1 + O(n−1)),

(4.1.2)

where G(τ ) =
∏d0

j=1 (wj−w̃j(wj−1))
∏d0

j=1 ρ(τj(wj))
· ∏d

j=1
dτj

dwj

∣∣∣
(wd0

,ŵ−d0
)
.

Proof. By Watson’s lemma, given fixed wd0 , we have

∫ ŵ−d0
+iK

ŵ−d0
−iK

exp(n[
1
2
wT
−d0

w−d0 − ŵT
−d0

w−d0 ])
d∏

j=d0+1

dτj

dwj
dw−d0

=
∫ ŵ−d0

+iK

ŵ−d0
−iK

exp(n[
1
2
wT
−d0

w−d0 − ŵT
−d0

w−d0 ])
d∏

j=d0+1

dτj

dwj

∣∣∣∣∣∣
(wd0

,ŵ−d0
)

·

(
1 +

En(wd0)
n

)
dw−d0 ,

for some analytic function En(wd0) of O(1). Therefore,

LHS =
nd−d0

(2πi)d

∫ ŵd0
+iK

ŵd0
−iK

exp(n[12w
T
d0

wd0 − ŵT
d0

wd0 ])∏d0
j=1 ρ(τj(wj))

d0∏

j=1

dτj

dwj
·

∫ ŵ−d0
+iK

ŵ−d0
−iK

exp(n[
1
2
wT
−d0

w−d0 − ŵT
−d0

w−d0 ])
d∏

j=d0+1

dτj

dwj

∣∣∣∣∣∣
(wd0

,ŵ−d0
)

·

(
1 +

E(wd0)
n

)
dw−d0 · dwd0

=A(1 +
1
n

B

A
),
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where

A =
nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])∏d0

j=1 (wj − w̃j(wj−1))
G(τ ) dw

and

B =
nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])∏d0

j=1 (wj − w̃j(wj−1))
G(τ )E(wd0)dw

If A and B are expanded according to [Kolassa 2003], each integral is approximated by a

tilting term times a normal multivariate tail probability, up to relative order O(1/
√

n).

The expression for B is also multiplied by the leading term of E. Hence A/B = O(1),

and therefore, LHS = A(1 + O(n−1)).

To deal with the denominator in (4.1.1), we have the following lemma:

Lemma 4.1.2.

( n

2πi

)d−d0
∫ ŵ−d0

+i∞

ŵ−d0
−i∞

exp(n[
1
2
wT
−d0

w−d0 − ŵT
−d0

w−d0 ])
d∏

j=d0+1

dτj

dwj

∣∣∣∣∣∣
(0d0

,ŵ−d0
)

dw−d0

=fT−d0
(t−d0)(1 + O(n−1))

(4.1.3)

Proof. This development is similar to that of [Kolassa 1997], p. 147. Substitute wd =

0d, and by property (2.0.5a), τd = 0d, into (2.0.2a) and (2.0.2b) to obtain

− 1
2
ŵ2

j = min
γ−d0

,γj−1=0j−1

(K−d0(γ−d0)− γT
−d0

t∗−d0
)−

min
γ−d0

,γj=0j

(K−d0(γ−d0)− γT
−d0

t∗−d0
) (4.1.4a)

− 1
2
(wj − ŵj)2 = min

γ−d0
,γj−1=τj−1

(K−d0(γ−d0)− γT
−d0

t∗−d0
)−

min
γ−d0

,γj=τj

(K−d0(γ−d0)− γT
−d0

t∗−d0
), (4.1.4b)

where K−d0(·) is the cumulant generating function of the random variable T−d0 . Change

variables from w−d0 to τ−d0 to obtain

( n

2πi

)d−d0
∫ ŵ−d0

+i∞

ŵ−d0
−i∞

exp(n[
1
2
wT
−d0

w−d0 − ŵT
−d0

w−d0 ])
d∏

j=d0+1

dτj

dwj

∣∣∣∣∣∣
(0d0

,w−d0
)

dw−d0

=fT−d0
(t−d0).
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By Watson’s lemma, the left hand side is just the density approximation of fT−d0
(t−d0)

up to O(n−1).

With a continuous distribution, we can decompose A according to (2.0.11), with

G(τ ) =
d0∏

j=1

(
wj − w̃j(wj−1)

τj

dτj

dwj

) d∏

j=d0+1

dτj

dwj

∣∣∣∣∣∣
(wd0

,ŵ−d0
)

. (4.1.5)

Denote the left hand side of (4.1.3) as J−d0 . Note that G(0) =
∏d

j=d0+1
dτj

dwj

∣∣∣
(0d0

,ŵ−d0
)
.

Now, consider the case with d0 = 2. Then the main term is

I∅ =
nd−2

(2πi)d

∫ ŵ+i∞

ŵ−i∞

exp(n[12w
Tw − ŵT ŵ])

(2πi)2w1(w2 − w̃2(w1))

d∏

j=3

dτj

dwj

∣∣∣∣∣∣
(0,0,ŵ−2)

dw

=
∫ ŵ2+i∞

ŵ2−i∞

exp(n[12w2
1 + 1

2w2
2 − ŵ1w1 − ŵ2w2])

(2πi)2w1(w2 − w̃2(w1))
dw2 · J−2

∼
∫ ŵ2+i∞

ŵ2−i∞

exp(n[12w2
1 + 1

2w2
2 − ŵ1w1 − ŵ2w2])

(2πi)2w1(w2 − w̃2(w1))
dw2 · fT−2(t−2),

(4.1.6)

where ∫ ŵ2+i∞

ŵ2−i∞

exp(n[12w2
1 + 1

2w2
2 − ŵ1w1 − ŵ2w2])

(2πi)2w1(w2 − w̃2(w1))
dw2 (4.1.7)

can be obtained by formula (3.1.9) and (3.1.10).

Using the same technique as in (3.1.12)-(3.1.15), we have

I{2}∼̇ nd−2

(2πd)d

∫ ŵ+i∞

ŵ−i∞

exp(n[12w
Tw − ŵT ŵ])
w1

H(0, w2) dw

=
1

n
∏d

j=3
dτj

dwj

∣∣∣
(0,0,ŵ−2)

∫ ŵ1+i∞

ŵ1−i∞

exp(n[12w2
1 − ŵ1w1])

(2πi)w1
dw1·

n

2πi

∫ ŵ2+i∞

ŵ2−i∞
exp(n[

1
2
w2

2 − ŵ2w2])H(0, w2) dw2 · J−2

∼̇ H(0, ŵ2)√
n

∏d
j=3

dτj

dwj

∣∣∣
(0,0,ŵ−2)

Φ̄(
√

nŵ1)φ(
√

nŵ2)fT−2(t−2),

(4.1.8)

at O(n−1), where

H(0, ŵ2) =
G(0, τ2(0, ŵ2))−G(0, 0)

ŵ2 − w̃2(0)

=
1

τ̃2(0)
dτ2

dw2

∣∣∣∣
0,ŵ2

d∏

j=3

dτj

dwj

∣∣∣∣∣∣
(0,ŵ2,ŵ−2)

− 1
ŵ2

d∏

j=3

dτj

dwj

∣∣∣∣∣∣
(0,0,ŵ−2)

(4.1.9)
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and
∏d

j=3
dτj

dwj

∣∣∣
(w1,w2,ŵ−2)

can be obtained using (2.0.9).

Using the argument as in (3.1.16)-(3.1.23), we have

I{1}∼̇ nd−2

(2πd)d

∫ ŵ+i∞

ŵ−i∞

exp(n[12w
Tw − ŵT ŵ])

w2 − w̃2(w1)

(
G(τ1, 0)−G(0, 0)

w1

)
dw

=
1

n
∏d

j=3
dτj

dwj

∣∣∣
(0,0,ŵ−2)

·

n

(2πi)2

∫ ŵ2+i∞

ŵ2−i∞

exp(n[12w2
1 + 1

2w2
2 − ŵ1w1 − ŵ2w2])

(2πi)w1
· h(w1) dw2 · J−2

∼̇ C
∏d

j=3
dτj

dwj

∣∣∣
0,0,ŵ−2

h(ŵ1)√
n
√

1 + (w̌′2)2
·

φ(
√

n((1 + (w̌′2)
2)ŵ1 + w̌′2(ŵ2 − w̌2))√
1 + (w̌′2)2

)Φ̄(
√

n(ŵ2 − w̌2)√
1 + (w̌′2)2

) · fT−2(t−2),

(4.1.10)

where

h(z) =
1

τ1(z)
dτ1

dw1

∣∣∣∣
z

d∏

j=3

dτj

dwj

∣∣∣∣∣∣
(z,w̃2(z),ŵ−2)

− 1
z

d∏

j=3

dτj

dwj

∣∣∣∣∣∣
(0,0,ŵ−2)

. (4.1.11)

4.2 An example of arising from continuous distributions

In the case of d = 3 and d0 = 2, we rewrite (2.0.2a)-(2.0.2b) as

−1
2
ŵ2

1 = min
γ1,γ2,γ3

(K(γ1, γ2, γ3)− γ1x̄1 − γ2x̄2 − γ3x̄3)− (4.2.1a)

min
γ2,γ3

(K(0, γ2, γ3)− γ2x̄2 − γ3x̄3)

−1
2
ŵ2

2 = min
γ2,γ3

(K(0, γ2, γ3)− γ2x̄2 − γ3x̄3)−min
γ3

(K(0, 0, γ3)− γ3x̄3) (4.2.1b)

−1
2
ŵ2

3 =min
γ3

(K(0, 0, γ3)− γ3x̄3) (4.2.1c)

−1
2
(w1−ŵ1)2 = min

γ1,γ2,γ3

(K(γ1, γ2, γ3)− γ1x̄1 − γ2x̄2 − γ3x̄3)− (4.2.1d)

min
γ2,γ3

(K(τ1, γ2, γ3)− τ1x̄1 − γ2x̄2 − γ3x̄3)

−1
2
(w2−ŵ2)2 = min

γ2,γ3

(K(τ1, γ2, γ3)− τ1x̄1 − γ2x̄2 − γ3x̄3)− (4.2.1e)

min
γ3

(K(τ1, τ2, γ3)− τ1x̄1 − τ2x̄2 − γ3x̄3)

−1
2
(w3−ŵ3)2 = min

γ3

(K(τ1, τ2, γ3)− τ1x̄1 − τ2x̄2 − γ3x̄3)− (4.2.1f)

(K(τ1, τ2, τ3)− τ1x̄1 − τ2x̄2 − τ3x̄3)
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We can also rewrite (2.0.3a),(2.0.3b) and (2.0.4a), (2.0.4b) as

− 1
2
ŵ2

1 = K(τ̂1, τ̂2, τ̂3)− τ̂1x̄1 − τ̂2x̄2 − τ̂3x̄3− (4.2.2a)

(K(0, τ̃2(0), τ̃3(0))− τ̃2(0)x̄2 − τ̃3(0)x̄3)

− 1
2
ŵ2

2 = K(0, τ̃2(0), τ̃3(0))− τ̃2(0)x̄2 − τ̃3(0)x̄3− (4.2.2b)

(K(0, 0, τ̃3(0, 0))− τ̃3(0, 0)x̄3)

− 1
2
ŵ2

3 = K(0, 0, τ̃3(0, 0))− τ̃3(0, 0)x̄3 (4.2.2c)

− 1
2
(w1 − ŵ1)2 = K(τ̂1, τ̂2, τ̂3)− τ̂1x̄1 − τ̂2x̄2 − τ̂3x̄3− (4.2.2d)

(K(τ1, τ̃2(τ1), τ̃3(τ1))− τ1x̄1 − τ̃2(τ1)x̄2 − τ̃3(τ1)x̄3)

− 1
2
(w2 − ŵ2)2 = K(τ1, τ̃2(τ1), τ̃3(τ1))− τ̃2(τ1)x̄2 − τ̃3(τ1)x̄3− (4.2.2e)

(K(τ1, τ2, τ̃3(τ1, τ2))− τ2x̄2 − τ̃3(τ1, τ2)x̄3)

− 1
2
(w3 − ŵ3)2 = K(τ1, τ2, τ̃3(τ1, τ2))− τ̃3(τ1, τ2)x̄3− (4.2.2f)

(K(τ1, τ2, τ3)− τ3x̄3),

where τ̃3(0) is the minimizer of K(0, τ2, τ3)− τ2x̄2 − τ3x̄3 and τ̃3(0, 0) is the minimizer

of K(0, 0, τ3)− τ3x̄3, and

ŵ1 = sign(τ̂1)· (4.2.3a)
√

2[K(τ̂1, τ̂2, τ̂3)− τ̂1x̄1 − τ̂2x̄2 − τ̂3x̄3 − (K(0, τ̃2(0), τ̃3(0))− τ̃2(0)x̄2 − τ̃3(0)x̄3)]

ŵ2 = sign(τ̃2(0))· (4.2.3b)
√

2[K(0, τ̃2(0), τ̃3(0))− τ̃2(0)x̄2 − τ̃3(0)x̄3 − (K(0, 0, τ̃3(0, 0))− τ̃3(0, 0)x̄3)]

ŵ3 = sign(τ̃3(0, 0))
√

2[K(0, 0, τ̃3(0, 0))− τ̃3(0, 0)x̄3] (4.2.3c)

w1 = ŵ1 + sign(τ1 − τ̂1)· (4.2.3d)
√

2[K(τ̂1, τ̂2, τ̂3)− τ̂1x̄1 − τ̂2x̄2 − τ̂3x̄3 − (K(τ1, τ̃2(τ1), τ̃3(τ1))− τ1x̄1 − τ̃2(τ1)x̄2 − τ̃3(τ1)x̄3)]

w2 = ŵ2 + sign(τ2 − τ̃2(τ1))· (4.2.3e)
√

2[K(τ1, τ̃2(τ1), τ̃3(τ1))− τ̃2(τ1)x̄2 − τ̃3(τ1)x̄3 − (K(τ1, τ2, τ̃3(τ1, τ2))− τ2x̄2 − τ̃3(τ1, τ2)x̄3)]

w3 = ŵ3 + sign(τ3 − τ̃3(τ1, τ2))· (4.2.3f)
√

2[K(τ1, τ2, τ̃3(τ1, τ2))− τ̃3(τ1, τ2)x̄3 − (K(τ1, τ2, τ3)− τ3x̄3)]

respectively.
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Let Xi, i = 1, 2, 3 be independent and identically distributed random variables

following the exponential distribution, as in the first example. Consider the random

vector (Y1, Y2, Y3) with Y1 = X2, Y2 = X3 and Y3 = X1 + X2 + X3. The moment

generating function of (Y1, Y2, Y3) is

M(Y1,Y2,Y3)(τ1, τ2, τ3) =Eeτ1Y1+τ2Y2+τ3Y3

=Eeτ3X1+(τ1+τ3)X2+(τ2+τ3)X3

=Eeτ3X1Ee(τ1+τ3)X2Ee(τ2+τ3)X3

=MX1(τ3)MX2(τ1 + τ3)MX3(τ2 + τ3)

=
1

(1− τ3)(1− τ1 − τ3)(1− τ2 − τ3)
,

for τ1+τ3 < 1, τ2+τ3 < 1 and τ3 < 1. The cumulative generating function is, therefore,

K(τ1, τ2, τ3) = − log(1− τ3)− log(1− τ1 − τ3)− log(1− τ2 − τ3).

The global minimum of K(τ1, τ2, τ3)− τ1ȳ1− τ2ȳ2− τ3ȳ3 can be obtained by solving




K1(τ1, τ2, τ3) = 1
1−τ1−τ3

= ȳ1

K2(τ1, τ2, τ3) = 1
1−τ2−τ3

= ȳ2

K3(τ1, τ2, τ3) = 1
1−τ3

+ 1
1−τ1−τ3

+ 1
1−τ2−τ3

= ȳ3

(4.2.4)

The solution is 



τ̂1 = 1
ȳ3−ȳ1−ȳ2

− 1
ȳ1

τ̂2 = 1
ȳ3−ȳ1−ȳ2

− 1
ȳ2

τ̂3 = 1− 1
ȳ3−ȳ1−ȳ2

(4.2.5)

Given τ1 and τ2, the τ̃3(τ1, τ2) is obtained by solving K3(τ1, τ2, τ3) = 1
1−τ3

+ 1
1−τ1−τ3

+

1
1−τ2−τ3

= ȳ3 for τ3, or equivalently

ȳ3(1− τ3)3− (ȳ3(τ1 + τ2)+3)(1− τ3)2 +(ȳ3τ1τ2 +2(τ1 + τ2))(1− τ3)− τ1τ2 = 0 (4.2.6)

This is a polynomial equation with degree 3, but when τ2 = 0 it reduces to

ȳ3(1− τ3)2 − (ȳ3τ1 + 3)(1− τ3) + 2τ1 = 0

Noting the constraint that τ3 < 1, we have

τ̃3(τ1, 0) = 1− ȳ3τ1 + 3 +
√

(ȳ3τ1 + 3)2 − 8ȳ3τ1

2ȳ3
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The other root 1 − ȳ3τ1+3−
√

(ȳ3τ1+3)2−8ȳ3τ1
2ȳ3

either does not satisfy τ3 < 1 in the case

that τ1 ≤ 0 or does not satisfy τ1 + τ3 < 1 in the case that τ1 > 0. By symmetry, we

also have

τ̃3(0, τ2) = 1− ȳ3τ2 + 3 +
√

(ȳ3τ2 + 3)2 − 8ȳ3τ2

2ȳ3
.

We also need τ̃2
3 (0, τ2). Take derivative of (4.2.6) with respect to τ2, to obtain

− 3ȳ3(1− τ̃3(τ1, τ2))2 · τ̃2
3 (τ1, τ2)− ȳ3(1− τ̃3(τ1, τ2))2+

2(ȳ3(τ1 + τ2) + 3)(1− τ̃3(τ1, τ2)) · τ̃2
3 (τ1, τ2) + (ȳ3τ1 + 2)(1− τ̃3(τ1, τ2))−

(ȳ3τ1τ2 + 2(τ1 + τ2)) · τ̃2
3 (τ1, τ2)− τ1 = 0

Substitute τ1 = 0 and reorganize the terms to obtain

τ̃2
3 (0, τ2) =

−ȳ3(1− τ̃3(0, τ2))2 + 2(1− τ̃3(0, τ2))
3ȳ3(1− τ̃3(0, τ2))2 − 2(ȳ3τ2 + 3)(1− τ̃3(0, τ2)) + 2τ2

We also need to compute τ̃2(τ1) and τ̃3(τ1). They are obtained by solving the

following equation system in terms of τ1





K2(τ1, τ2, τ3) = 1
1−τ2−τ3

= ȳ2

K3(τ1, τ2, τ3) = 1
1−τ3

+ 1
1−τ1−τ3

+ 1
1−τ2−τ3

= ȳ3

Substitute the first equation into the second and simplify, to obtain

(ȳ3 − ȳ2)(1− τ3)2 − (τ1(ȳ3 − ȳ2) + 2)(1− τ3) + τ1 = 0

With the restriction that τ3 < 1, τ1 + τ3 < 1 and τ2 + τ3 < 1, we can solve the equation

to get τ̃2(τ1). The solution is




τ̃2(τ1) = (τ1(ȳ3−ȳ2)+2)+
√

τ2
1 (ȳ3−ȳ2)2+4

2(ȳ3−ȳ2) − 1
ȳ2

τ̃3(τ1) = 1− (τ1(ȳ3−ȳ2)+2)+
√

τ2
1 (ȳ3−ȳ2)2+4

2(ȳ3−ȳ2)

(4.2.7)

From the above equations we can obtain τ̃ ′2(τ1) and τ̃ ′3(τ1) shown below




τ̃ ′2(τ1) = 1
2(1 + τ1(ȳ3−ȳ2)√

τ2
1 (ȳ3−ȳ2)2+4

)

τ̃ ′3(τ1) = −1
2(1 + τ1(ȳ3−ȳ2)√

τ2
1 (ȳ3−ȳ2)2+4

)
(4.2.8)
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We will need the second derivatives of K(·, ·, ·), which can be easily calculated by

the following formula:




K11(τ1, τ2, τ3) = 1
(1−τ1−τ3)2

K12(τ1, τ2, τ3) = 0

K13(τ1, τ2, τ3) = 1
(1−τ1−τ3)2

K22(τ1, τ2, τ3) = 1
(1−τ2−τ3)2

K23(τ1, τ2, τ3) = 1
(1−τ2−τ3)2

K33(τ1, τ2, τ3) = 1
(1−τ3)2

+ 1
(1−τ1−τ3)2

+ 1
(1−τ2−τ3)2

(4.2.9)

Again, we need to compute τ1(w1). Substitute the previous results into (4.2.2d) and

rearrange the terms. The resulting equation can then be solved by Newton-Raphson

method.

The quantities ŵ can be obtained by (4.2.3a)-(4.2.3c). Using (2.0.9), we have

dτ3

dw3

∣∣∣∣
w3=ŵ3

=

√
1

K33(τ1, τ2, τ̃3(τ1, τ2))
.

In particular, we have

dτ3

dw3

∣∣∣∣
0,0,ŵ3

=

√
1

K33(0, 0, τ̃3(0, 0))
,

dτ3

dw3

∣∣∣∣
0,ŵ2,ŵ3

=

√
1

K33(0, τ̃2(0), τ̃3(0))
,

and
dτ3

dw3

∣∣∣∣
w1,w̃2(w1),ŵ3

=

√
1

K33(τ1, 0, τ̃3(τ1, 0))
.

Obtain w̌2 using (4.2.3e). By (2.0.7), we have

w̌′2 =
[K1(τ̂1, 0, τ̃3(τ1, 0))− x̄] dτ1

dw1

∣∣∣
ŵ1

w̌2 − ŵ2
,

where

dτ1

dw1

∣∣∣∣
ŵ1

=
1√

K11(τ̂1, τ̂2, τ̂3) + K12(τ̂1, τ̂2, τ̂3)τ̃ ′2(τ̂1) + K13(τ̂1, τ̂2, τ̂3)τ̃ ′3(τ̂1)
,

by (2.0.8). Similarly,

dτ2

dw2

∣∣∣∣
0,ŵ2

=

√
1

K22(0, τ̃2(0), τ̃3(0)) + K23(0, τ̃2(0), τ̃3(0))τ̃2
3 (0, τ̃2(0))

.
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We want to compare the approximation results with normal approximation. The

mean vector (E[Ȳ1|Ȳ3 = ȳ3], E[Ȳ2|Ȳ3 = ȳ3]) for multivariate normal distribution is

( ȳ3

3 , ȳ3

3 ) by symmetry. The covariance matrix of (Ȳ1, Ȳ2, Ȳ3) can be calculated and the

result is

V =




1
n 0 1

n

0 1
n

1
n

1
n

1
n

3
n




It can be verified that for normal approximation, the covariance matrix for Ȳ1|Ȳ3 = ȳ3

and Ȳ2|Ȳ3 = ȳ3 is

(V −1
[(1,2),(1,2)])

−1 =




2n n −n

n 2n −n

−n −n n




−1

[(1,2),(1,2)]

=


 2n n

n 2n



−1

=




2
3n − 1

3n

− 1
3n

2
3n


 ,

where [(1, 2), (1, 2)] denotes the submatrix containing the first two rows and first two

columns.

The results for approximating P (Ȳ1 ≥ ȳ1, Ȳ2 ≥ ȳ2|Ȳ3 = ȳ3), when n = 10, are shown

below in Table 3. The case that ȳ1 = 2.0, ȳ2 = 2.5 and ȳ3 = 7.0 is the special case

that τ̃2(0) = 0, and hence ŵ2 = 0, as we discussed in Section 3, and is omitted here.

The cases that ȳ1 = 2.0, ȳ2 = 3.0 and ȳ3 = 7.0, and ȳ1 = 2.0, ȳ2 = 2.5 and ȳ3 = 6.5,

are the cases that ŵ1 = 0 and are also omitted. The exact values are computed by

[Mathematica 5.0 2005].

Table 4.1: Results of saddlepoint approximation compared with bivariate normal ap-
proximation in the conditional continuous case.

ȳ1 ȳ2 ȳ3 P. approx. N. approx. Exact Relative Error
2.0 2.0 7.0 4.42× 10−1 8.04× 10−2 4.38× 10−1 0.91%
2.5 2.5 7.0 6.25× 10−2 2.04× 10−2 6.32× 10−2 −1.11%
2.5 3.0 7.0 8.00× 10−3 4.14× 10−5 8.54× 10−3 −6.32%
3.0 3.0 7.0 3.02× 10−4 1.00× 10−8 3.46× 10−4 −12.7%
2.0 2.0 6.5 2.93× 10−1 1.16× 10−1 2.91× 10−1 0.69%
2.0 3.0 6.5 1.09× 10−2 6.48× 10−5 1.14× 10−2 −4.39%
2.5 2.5 6.5 1.49× 10−2 6.96× 10−4 1.56× 10−2 −4.49%
2.5 3.0 6.5 5.25× 10−4 1.57× 10−7 6.09× 10−4 −13.8%
3.0 3.0 6.5 9.63× 10−7 3.67× 10−12 1.10× 10−6 12.5%
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4.3 Unit lattice distributions

As in the unconditional case, when (X1, X2, X3) is integer lattice random variable, using

the Fourier inversion formula and using summation instead of integration, we have the

following:

n

(2πi)3

∫ c+i∞

c−i∞

exp(n[K(τ1, τ2, τ3)− τ1x̄
∗
1 − τ2x̄

∗
2 − τ3x̄

∗
3])

2 sinh( τ1
2 )2 sinh( τ2

2 )
dτ/fX̄3

(x̄3), (4.3.1)

where x̄∗1 = x̄1 − 1
2n , x̄∗2 = x̄2 − 1

2n , x̄∗3 = x̄3 − 1
2n . Again, the definitions of w and τ are

same as defined in Section 4.2, except that x̄1, x̄2 and x̄3 should be replaced by x̄∗1, x̄∗2

and x̄∗3.

A counterpart of Lemma 4.1.1 for discrete case also exists.

Lemma 4.3.1.

n

(2πi)3

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w2 − ŵ2w2 − ŵ3w3])

2 sinh( τ1(w1)
2 )2 sinh( τ2(w1,w2)

2 )

dτ1

dw1

dτ2

dw2

dτ3

dw3
dw

=A ·
(

1 + O(
1
n

)
)

,

(4.3.2)

where

A =
n

(2πi)3

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w2 − ŵ2w2 − ŵ3w3])

2 sinh( τ1(w1)
2 )2 sinh( τ2(w1,w2)

2 )
·

dτ1

dw1

dτ2

dw2

dτ3

dw3

∣∣∣∣
w1,w2,ŵ3

dw

(4.3.3)

Again, we can decompose A into 4 parts of the same form as in Section 4.1 with the

only difference that

G(τ ) =
(

w1

2 sinh(τ1/2)
dτ1

dw1

)(
w2 − w̃2(w1)
2 sinh(τ2/2)

dτ2

dw2

) d∏

j=3

dτj

dwj

∣∣∣∣∣∣
(w1,w2,ŵ−2)

. (4.3.4)

Formula (4.1.6), (4.1.8) and (4.1.10) still hold, but here

H(0, ŵ2) =
1

2 sinh(τ̃2(0)/2)
dτ2

dw2

∣∣∣∣
0,ŵ2

d∏

j=3

dτj

dwj

∣∣∣∣∣∣
(0,ŵ2,ŵ−2)

− 1
ŵ2

d∏

j=3

dτj

dwj

∣∣∣∣∣∣
(0,0,ŵ−2)

, (4.3.5)

and

h(z) =
1

2 sinh(τ1(z)/2)
dτ1

dw1

∣∣∣∣
z

d∏

j=3

dτj

dwj

∣∣∣∣∣∣
(w1,w̃2(w1),ŵ−2)

− 1
z

d∏

j=3

dτj

dwj

∣∣∣∣∣∣
(0,0,ŵ−2)

(4.3.6)

From (4.1.1), Lemma 4.1.1 and Lemma 4.3.1, we conclude that
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Theorem 4.3.1.

P (T2 ≥ t2|T−2 = t−2) ∼ (I∅ + I{2} + I{1})/fT−2(t−2), (4.3.7)

where I∅, I{2} and I{1} can be obtained by (4.1.6), (4.1.8), (4.1.9), (4.1.10) and (4.1.11)

for continuous variables and (4.1.6), (4.1.8), (4.1.10), (4.3.5)and (4.3.6) for unit lattice

variables.

4.4 An example arising from variables confined to unit lattice

This example was used in [Kolassa 2003] and [Kolassa 2004], which refers to data pre-

sented by [Stokes et al. 1995]. The data consist of 63 case-control pairs of women with

endometrial cancer. The relationship between the occurrence of endometrial cancer and

explanatory variables including gall bladder disease, hypertension, and non-estrogen

drug use, is modeled with logistic regression. Stokes ([Stokes et al. 1995]) noted that

the likelihood for these data is equivalent to that of a logistic regression in which the

units of observation are the matched pairs, the explanatory variables are those of the

case member minus those of the control member, and the response variable is 1.

The number of pairs with each configuration of differences of the three variables are

shown in Table 4. Let zj , j = 1, 2, . . . , 63 denote the differences of covariates between

Table 4.2: Differences between cases and controls for endometrial cancer data.
Gall bladder disease -1 -1 -1 0 0 0 0 0
Hypertension -1 0 1 -1 -1 0 0 1
Non-estrogen drug use 0 -1 0 -1 0 0 1 0
Number of pairs 1 1 1 2 6 14 10 12
Gall bladder disease 0 1 1 1 1 1 1 1
Hypertension 1 -1 -1 0 0 0 1 1
Non-estrogen drug use 1 0 1 -1 0 1 0 1
Number of pairs 4 3 1 1 4 1 1 1

cases and controls as listed in Table 4. Consider the situation under null hypothesis,

where the linear coefficients are zero. Let Zj , j = 1, 2, · · · , 63 be the random vectors

that take value zj with a probability of 1
2 and 0 with a probability of 1

2 . Let Z be ma-

trix whose rows are Zj and T = Z′1, for 1 a column vector with dimension 63. Then
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K(τ ) =
∑

j mj [log(1+exp(zjτ )
2 )]. Kolassa ([Kolassa 2004]) tested association of hyper-

tension or non-estrogen drug use with an increase in endometrial cancer, conditional

on the sufficient statistic value associated with gall bladder disease, or more formally

H0 :β2 = β3 = 0

Ha :β2 > 0 or β3 > 0,

where β are regression coefficients corresponding to the three covariates. The test

statistic was S = min(P (T2 ≥ t2|T1 = t1, T3 = t3), P (T3 ≥ t3|T1 = t1, T2 = t2)).

We could then compute the level α, and the corresponding rectangular critical region.

After that, we could compute the multivariate probability of the region, which required

evaluating the quantity P (T2 ≥ 10 or T3 ≥ 13|T1 = 9) for T = (T1, T2, T3), By Boole’s

law, this probability can be computed by

P (T2 ≥ 10|T1 = 9) + P (T3 ≥ 13|T1 = 9)− P (T2 ≥ 10, T3 ≥ 13|T1 = 9).

The global minimum of K(τ1, τ2, τ3)− τ1t̄
∗
1 − τ2t̄

∗
2 − τ3t̄

∗
3 can be obtained by solving





K1(τ1, τ2, τ3) =
∑

j mjzj1
exp(zjτ )

1+exp(zjτ ) = t̄∗1

K2(τ1, τ2, τ3) =
∑

j mjzj2
exp(zjτ )

1+exp(zjτ ) = t̄∗2

K3(τ1, τ2, τ3) =
∑

j mjzj3
exp(zjτ )

1+exp(zjτ ) = t̄∗3

, (4.4.1)

which has to be solved using the multivariate Newton-Raphson method. Given τ1

and τ2, τ̃3(τ1, τ2) is obtained by solving K3(τ1, τ2, τ3) =
∑

j mjzj3
exp(zjτ )

1+exp(zjτ ) = t̄∗3 for

τ3, which can be solved using the Newton-Raphson method. We also need τ̃2
3 (τ1, τ2).

Taking the derivative of the above equation with respect to τ2, we have

K23(τ1, τ2, τ̃3(τ1, τ2)) + K33(τ1, τ2, τ̃3(τ1, τ2))τ2
3 (τ1, τ2) = 0,

by which we know that τ2
3 (τ1, τ2) = −K23(τ1, τ2, τ̃3(τ1, τ2))/K33(τ1, τ2, τ̃3(τ1, τ2)). We

also need to compute τ̃2(τ1) and τ̃3(τ1). They are obtained by solving the following

equation system in terms of τ1





K2(τ1, τ2, τ3) =
∑

j mjzj2
exp(zjτ )

1+exp(zjτ ) = t̄∗2

K3(τ1, τ2, τ3) =
∑

j mjzj3
exp(zjτ )

1+exp(zjτ ) = t̄∗3,
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which can be calculated by the Newton-Raphson method. Differentiate the above equa-

tions with respect to τ1 and use the results τ̃2 = τ̃2(τ1), τ̃3 = τ̃3(τ1) we computed above,

to obtain




K12(τ1, τ̃2, τ̃3) + K22(τ1, τ̃2, τ̃3)τ̃ ′2(τ1) + K23(τ1, τ̃2, τ̃3)τ̃ ′3(τ1) = 0

K13(τ1, τ̃2, τ̃3) + K23(τ1, τ̃2, τ̃3)τ̃ ′2(τ1) + K33(τ1, τ̃2, τ̃3)τ̃ ′3(τ1) = 0
. (4.4.2)

This is a linear equation system and can be solved easily.

The second derivatives of K(·, ·, ·) can be calculated by the following formula:




K11(τ1, τ2, τ3) =
∑

j mjz
2
j1

exp(zjτ )

(1+exp(zjτ ))2

K12(τ1, τ2, τ3) =
∑

j mjzj1zj2
exp(zjτ )

(1+exp(zjτ ))2

K13(τ1, τ2, τ3) =
∑

j mjzj1zj3
exp(zjτ )

(1+exp(zjτ ))2

K22(τ1, τ2, τ3) =
∑

j mjz
2
j2

exp(zjτ )

(1+exp(zjτ ))2

K23(τ1, τ2, τ3) =
∑

j mjzj2zj3
exp(zjτ )

(1+exp(zjτ ))2

K33(τ1, τ2, τ3) =
∑

j mjz
2
j3

exp(zjτ )

(1+exp(zjτ ))2

. (4.4.3)

Again, we need to compute τ1(w1). Substitute the previous results into

−1
2
(w1 − ŵ1)2 =K(τ̂1, τ̂2, τ̂3)− τ̂1t̄

∗
1 − τ̂2t̄

∗
2 − τ̂3t̄

∗
3−

[K(τ1, τ̃2(τ1), τ̃3(τ1))− τ1t̄
∗
1 − τ̃2(τ1)t̄∗2 − τ̃3(τ1)t̄∗3]

and rearrange the terms, the resulting equation can then be solved by the Newton-

Raphson method.

The results for approximating P (T2 ≥ 10, T3 ≥ 13|T1 = 9) compared to those

listed in [Kolassa 2004] are shown in Table 5, where “N. app.” stands for normal

approximation, “E. app.” stands for Edgeworth approximation, “K. app” stands for the

approximation presented in [Kolassa 2004] and “P. app” is the proposed approximation.

Approximation results of P (T2 ≥ t2, T3 ≥ t3|T1 = 9) for other values of t2 and t3 are also

listed in the table. We can see that the proposed method achieves better results than

other methods, except for the [Kolassa 2004] method, which is far more complicated

computationally.
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Table 4.3: Endometrial cancer results for some (t2, t3) instances
Method (10, 13) (9, 12) (8, 11) (7, 10) (6, 9)
N. app. 3.50× 10−4 1.78× 10−3 7.26× 10−3 2.39× 10−2 6.39× 10−2

E. app. 3.31× 10−4 1.72× 10−3 7.13× 10−3 2.37× 10−2 6.37× 10−2

K. app. 1.51× 10−4 1.07× 10−3 5.37× 10−3 2.01× 10−2 5.84× 10−2

P. app. 1.62× 10−4 1.13× 10−3 5.60× 10−3 2.08× 10−2 6.00× 10−2

Exact 1.52× 10−4 1.09× 10−3 5.48× 10−3 2.05× 10−2 5.95× 10−2
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Chapter 5

An alternative multivariate saddlepoint approximation

5.1 Theoretical development

The drawback of the method introduced in Section 3is that the coefficient C of the

leading term I∅ is not equal to 1. We propose another method that solves the problem.

From (2.0.5b), we know that w̃2(ŵ1)/w1 is analytic, and we denote it by a(w1).

Equation (3.1.7) can then be rewritten as

I∅ =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − w1ŵ1 − w2ŵ2])

(2πi)2w1(w2 − a(w1)w1)
dw (5.1.1)

We can approximate a(w1) by a(w1) ∼ b0 + b1(w1− ŵ1), where b0 = a(ŵ1)− 1
2a′′(ŵ1)ŵ2

1

and b1 = a′(ŵ1) + 1
2a′′(ŵ1)ŵ1. The approximation is justified by the following theorem

Theorem 5.1.1.

I∅ =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − w1ŵ1 − w2ŵ2])

(2πi)2w1(w2 − b0w1 − b1w1(w1 − ŵ1))
dw(1 + O(

1
n

)) (5.1.2)

Proof. First we do the same change of variables as in (2.12). We have

I∅ =
∫ û+i∞

û−i∞

exp(ng1(u1, u2))
(2πi)2u1u2

du,

where g1(u1, u2) = 1
2u2

1 + 1
2(u2 + w̃2(u1))2− ŵ1u1− ŵ2(u2 + w̃2(u1)). Expand g1(u1, u2)

around (û1, û2) up to the third degree, where û1 = ŵ1 and û2 = ŵ2− w̃2(ŵ1). We have

g1(u1, u2) =ĝ1 +
1
2
ĝ11
1 (u1 − û1)2 +

1
2
ĝ22
1 (u2 − û2)2 + ĝ12

1 (u1 − û1)(u2 − û2)+

1
6

∑

i,j,k

ĝijk
1 (ui − ûi)(uj − ûj)(uk − ûk)+

1
24

∑

i,j,k,l

gijkl
1 (ξ)((ui − ûi)(uj − ûj)(uk − ûk)(ul − ûl),

where ξ lies between u and û.
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We use the same technique to expand the integrals in (5.1.1) and (5.1.2), and show

that they yield the same result to relative order O(n−1). Expression (5.1.1) represents

the more general case, in which a(w1) is restricted only to be analytic; (5.1.2) repre-

sents the special case in which a(w1) is linear: b0 + b1(w1 − ŵ1) = a(ŵ1)− a′(ŵ1)ŵ1 +

1
2a′′(ŵ1)ŵ2

1 + (a′(ŵ1) + 1
2a′′(ŵ1))w1. Let the corresponding quadratic terms in the ex-

ponent be g2(v1, v2), where v1 = w1 and v2 = w2− (b0 + b1(w1− ŵ1)w1. The proof then

follows the argument of [Kolassa 2003]. We only need to prove that the coefficients ĝ1,

ĝij
1 and ĝijk

1 coincide with ĝ2, ĝij
2 and ĝijk

2 . This is true, since ĝ1 = ĝ2 = −1
2 ŵ2

1 − 1
2 ŵ2

2,

ĝ11
1 = ĝ11

2 = 1 + (w̌′2)
2, ĝ12

1 = ĝ12
2 = w̌′2, ĝ22

1 = ĝ22
2 = 1, ĝ111

1 = ĝ111
2 = 3w̌′2w̌

′′
2 ,

ĝ112
1 = ĝ112

2 = w̌′′2 and ĝ122
1 = ĝ122

2 = ĝ222
1 = ĝ222

2 = 0.

Let

f(b1) =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − w1ŵ1 − w2ŵ2])

(2πi)2w1(w2 − b0w1 − b1w1(w1 − ŵ1))
dw.

Expand f(b1) using Taylor’s theorem, for two terms, i.e.,

f(b1) =f(0) + f ′(0)b1 +
f ′′(b∗1)

2
b2
1

=
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − w1ŵ1 − w2ŵ2])

(2πi)2w1(w2 − b0w1)
dw

+b1

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − w1ŵ1 − w2ŵ2])(w1 − ŵ1)

(2πi)2(w2 − b0w1)2
dw

+
b2
1

2

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − w1ŵ1 − w2ŵ2])w1(w1 − ŵ1)2

(2πi)2(w2 − b0w1 − b∗1w1(w1 − ŵ1))3
dw,

where b∗1 ∈ (0, b1). Change variables to u1 =
√

nw1, u2 =
√

nw2 and û1 =
√

nŵ1,

û2 =
√

nŵ2 to obtain

f(b1) =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − w1ŵ1 − w2ŵ2])

(2πi)2w1(w2 − b0w1)
dw

+b1

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 − w1ŵ1 − w2ŵ2])(w1 − ŵ1)

(2πi)2(w2 − b0w1)2
dw

+
b2
1

2n

∫ û+i∞

û−i∞

exp(1
2u2

1 + 1
2u2

2 − u1û1 − u2û2)(u1 − û1)3

(2πi)2(u2 − b0u1 − b∗1u1(u1 − û1)/
√

n)3
du

+
b2
1

2n

∫ û+i∞

û−i∞

exp(1
2u2

1 + 1
2u2

2 − u1û1 − u2û2)û1(u1 − û1)2

(2πi)2(u2 − b0u1 − b∗1u1(u1 − û1)/
√

n)3
du

=I0 + I1 + I2 + I3.
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To obtain I0, we can now do a change of variables. Let s1 = w1 and s2 = w2− b0w1,

then w1 = s1 and w2 = s2 + b0s1, and the Jacobian is 1. So we obtain

I0 =
∫ ŝ+i∞

ŝ−i∞

exp(n[12s2
1 + 1

2(s2 + b0s1)2 − s1ŵ1 − (s2 + b0s1)ŵ2])
(2πi)2s1s2

ds

=
∫ ŝ+i∞

ŝ−i∞

exp(n[12(1 + a2
0)s

2
1 + 1

2s2
2 + b0s1s2 − (ŵ1 + b0ŵ2)s1 − ŵ2s2])
(2πi)2s1s2

ds.

(5.1.3)

To further simplify the formula, let t1 =
√

n
√

1 + b2
0s1 and t2 =

√
ns2. Then s1 =

1√
1+b20

√
n
t1 and s2 = t2/

√
n. Then

I0 =
∫ t̂+i∞

t̂−i∞

exp(1
2 t21 + 1

2 t22 + b0√
1+b20

t1t2 −
√

n ŵ1+b0ŵ2√
1+b20

t1 −
√

nŵ2t2)

(2πi)2t1t2
dt

=Φ̄(
√

n
ŵ1 + b0ŵ2√

1 + b2
0

,
√

nŵ2,
b0√

1 + b2
0

).

(5.1.4)

Do the same change of variable to I1, to obtain

I1 =
b1√

n(1 + b2
0)

∫ t̂+i∞

t̂−i∞

exp(1
2 t21 + 1

2 t22 + b0√
1+b20

t1t2 −
√

n ŵ1+b0ŵ2√
1+b20

t1 −
√

nŵ2t2)

(2πi)2t22
·

(t1 −
√

n
√

1 + b2
0ŵ1) dt

=
b1√

n(1 + b2
0)

∫ t̂+i∞

t̂−i∞

exp(1
2 t21 + 1

2 t22 + ρt1t2 − xt1 − yt2)(t1 − t̂1)
(2πi)2t22

dt

=
b1√

n(1 + b2
0)

∫ t̂+i∞

t̂−i∞

exp(1
2 t21 + 1

2 t22 + ρt1t2 − xt1 − yt2)t1
(2πi)2t22

dt

− t̂1b1√
n(1 + b2

0)

∫ t̂+i∞

t̂−i∞

exp(1
2 t21 + 1

2 t22 + ρt1t2 − xt1 − yt2)
(2πi)2t22

dt

=I10 − I11,

(5.1.5)

where x =
√

n ŵ1+b0ŵ2√
1+b20

, y =
√

nŵ2 ρ = b0√
1+b20

and t̂1 =
√

n
√

1 + b2
0ŵ1. To calculate I10

and I11, we use the following technique. Consider I10 = I10(x, y, ρ) and I11 = I11(x, y, ρ)

as a function of x, y and ρ. We then have

I22
10 = − b1√

n(1 + b2
0)

φ1(x, y, ρ)

and

I22
11 =

t̂1b1√
n(1 + b2

0)
φ(x, y, ρ).
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Integrate twice, to obtain

I11 =
t̂1b1√

n(1 + b2
0)

φ(x)[
√

1− ρ2φ

(
y − ρx√
1− ρ2

)

−(y − ρx)Φ̄(
y − ρx√
1− ρ2

)]

(5.1.6)

and

I10 =
b1√

n(1 + b2
0)

φ(x)[
√

1− ρ2φ

(
y − ρx√
1− ρ2

)
x

−(ρ + xy − ρx2)Φ̄(
y − ρx√
1− ρ2

))].

(5.1.7)

Therefore,

I1 =I10 − I11

=
b1φ(x)√
n(1 + b2

0)
[
√

1− ρ2φ

(
y − ρx√
1− ρ2

)
(x− t̂1)

−(ρ− t̂1y − ρx2 + t̂1ρx + xy)Φ̄(
y − ρx√
1− ρ2

))].

(5.1.8)

To compute I0 and I1, we need x, y, ρ, b0, b1 and t̂. We have

b0 = a(ŵ1)− 1
2
a′′(ŵ1)ŵ2

1 = w̌′2 −
1
2
w̌′′2ŵ1

b1 = a′(ŵ1) +
1
2
a′′(ŵ1)ŵ1 =

1
2
w̌′′2 ,

where we can use (3.1.3d) to obtain

w̌′′2 =[(K11(τ̂1, 0)−K11(τ̂1, τ̂2)−K12(τ̂1, τ̂2)τ̃ ′2(τ̂1))

(
dτ1

dw1

∣∣∣∣
ŵ1

)2

+

(K1(τ̂1, 0)− x̄1)
d2τ1

dw2
1

∣∣∣∣
ŵ1

− (w̌′2)
2]/(w̌2 − ŵ2),

(5.1.9)

use (3.1.3c) to obtain

d2τ1

dw2
1

∣∣∣∣
ŵ1

=− [(K111(τ̂1, τ̂2) + 2K112(τ̂1, τ̂2)τ̃ ′2(τ̂1) + K122(τ̂1, τ̂2)τ̃ ′2(τ̂1)2+

K12(τ̂1, τ̂2)τ̃ ′′2 (τ̂1))(
dτ1

dw1

∣∣∣∣
ŵ1

)2]/(3(K11(τ̂1, τ̂2) + K12(τ̂1, τ̂2)τ̃ ′2(τ̂1))),
(5.1.10)

and use equation K2(τ1, τ̃2(τ1)) = x̄2 to obtain

τ̃ ′′2 (τ̂1) = −[K112(τ̂1, τ̂2) + 2K122(τ̂1, τ̂2)τ̃ ′2(τ̂1) + K222(τ̂1, τ̂2)τ̃ ′2(τ̂1)2]/K22(τ̂1, τ̂2).

(5.1.11)
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The special case that ŵ1 = 0 also involves partial derivatives of some functions up to

the second or third degree, which are algebraically complicated and therefore omitted

here. Other quantities can be obtained accordingly.

The remaining terms I2 and I3 are of O(n−1) as shown and can be omitted. This

error is relative, times a linear term in ŵ1, as can be seen by the same reparameterization

and use of Kolassa (2003), as before.

5.2 Reflexivity

In (2.0.1), one of the restrictions is that c in the route of path should be greater than

zero. In general this restriction require us to have τ̂ > 0. Suppose in a bivariate setting,

τ̂1 < 0 and τ̂2 > 0. Noting that, for continuous distribution,

P (X̄1 ≥ x̄1, X̄2 ≥ x̄2) = P (X̄2 ≥ x̄2)− P ((−X̄1) ≥ (−x̄1), X̄2 ≥ x̄2),

we can circumvent the problem with P (X̄1 ≥ x̄1, X̄2 ≥ x̄2) by approximating P (X̄2 ≥
x̄2) and P ((−X̄1) ≥ (−x̄1), X̄2 ≥ x̄2). It can be easily checked that the latter bivariate

approximation satisfies the positivity restriction. Similarly, in the case of both τ̂1 < 0

and τ̂2 < 0, we have to apply the previous detour twice. We now show that we can

ignore this restriction for this approximation method and apply the method directly by

the following theorem.

Theorem 5.2.1. Let SA1(X̄2 ≥ x̄2) be the approximation of Lugannani and Rice. Let

SA2(X̄1 ≥ x̄1, X̄2 ≥ x̄2) be the saddlepoint approximation in this chapter. Then

SA2(X̄1 ≥ x̄1, X̄2 ≥ x̄2) = SA1(X̄2 ≥ x̄2)− SA2((−X̄1) ≥ (−x̄1), X̄2 ≥ x̄2),

Proof. Consider two random vectors, i.e., (X̄1, X̄2) and (−X̄1, X̄2), respectively. To

distinguish them, we append a subscript (1) for the former and (2) for the latter to other

notation, when necessary. For instance, we use X̄1(1) and x̄1(1) for X̄1 and x̄1, and
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X̄1(2) and x̄1(2) for −X̄1 and −x̄1. Then, directly,

K(2)(τ1, τ2) = K(1)(−τ1, τ2), (5.2.1a)

K1
(2)(τ1, τ2) = −K1

(1)(−τ1, τ2),K2
(2)(τ1, τ2) = K2

(1)(−τ1, τ2)

K11
(2)(τ1, τ2) = K11

(1)(−τ1, τ2),K12
(2)(τ1, τ2) = −K12

(1)(−τ1, τ2),K22
(2)(τ1, τ2) = K22

(1)(−τ1, τ2)

Kijk
(2) (τ1, τ2) = −Kijk

(1) (−τ1, τ2), if the number of 1’s in index ijk is odd

Kijk
(2) (τ1, τ2) = Kijk

(1) (−τ1, τ2), if the number of 1’s in index ijk is even

τ̂1(2) = −τ̂1(1), τ̂2(2) = τ̂2(1), so we let τ̂2 be the common value, (5.2.1b)

τ̃2(2)(τ1) = τ̃2(1)(−τ1), (5.2.1c)

ŵ1(2) = −ŵ1(1), ŵ2(2) = ŵ2(1), and we ŵ2 denote the common value, (5.2.1d)

w̌2(2) = w̌2(1), w̌
′
2(2) = −w̌′2(1), w̌

′′
2(2) = w̌′′2(1), (5.2.1e)

b0(2) = −b0(1), b1(2) = b1(1), (5.2.1f)

x(2) = −x(1), y(2) = y(1), ρ(2) = −ρ(1) and we still use the notation y, (5.2.1g)

t̂1(2) = −t̂2(1), (5.2.1h)

τ1(2)(w1) = −τ1(2)(−w1). (5.2.1i)

Relation (5.2.1a) is true, since

K(2)(τ1, τ2) = E exp(τ1X1(2) + τ2X2) = E exp((−τ1)X1(1) + τ2X2) = K(1)(−τ1, τ2),

and the rest follows easily. Relation (5.2.1b) is true because of (5.2.1a),




K1
(1)(τ̂1(1), τ̂2(2)) = x̄1(1)

K2
(1)(τ̂1(1), τ̂2(2)) = x̄2,

and 



K1
(2)(−̂τ1(1), τ̂2(2)) = x̄1(2)

K2
(2)(−̂τ1(1), τ̂2(2)) = x̄2.

By definition and (5.2.1a),

x̄2 = K2
(2)(τ1, τ̃2(2)(τ1)) = K2

(1)(−τ1, τ̃2(2)(τ1)),

and therefore (5.2.1c) holds. Relation (5.2.1d) follows from definition (3.1.4a), (3.1.4b)

and (5.2.1a), (5.2.1b). The first equation of (5.2.1e) follows from (3.2.3), (5.2.1a),
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(5.2.1b) and (5.2.1d). The second comes from (3.2.4), (3.2.5) and (5.2.1a). The third

comes from (5.1.9)-(5.1.11). (5.2.1f) follows directly from the definition, (5.2.1d) and

(5.2.1e). Using this result, relation (5.2.1g) and (5.2.1h) are obvious. To show that

(5.2.1i) is true, first use (3.1.3c) but instead of w1, we use −w1 to obtain

−1
2
(−w1 − ŵ1(1))

2 = K(1)(τ̂1(1), τ̂2)− τ̂1(1)x̄1(1) − τ̂2x̄2−

(K(1)(τ1(1)(−w1), τ̃2(1)(τ1(1)(−w1)))− τ1(1)(−w1)x̄1(1) − τ̃2(1)(τ1(1)(−w1))x̄2).

Substitute facts (5.2.1a)–(5.2.1d) into the above equation to obtain

−1
2
(w1 − ŵ1(2))

2 = K(2)(τ̂1(2), τ̂2)− τ̂1(2)x̄1(2) − τ̂2x̄2−

(K(2)(−τ1(1)(−w1), τ̃2(2)(−τ1(1)(−w1)))− (−τ1(1)(−w1)x̄1(2))− τ̃2(1)(−τ1(2)(−w1))x̄2),

which shows that (5.2.1i) is true.

To prove the theorem, we will show that

Φ̄(
√

nŵ) +
φ(
√

nŵ)√
n

(
1

τ̂
√

K ′′(τ̂)
− 1

ŵ

)
= (I∅(1) + I

{1}
(1) + I

{2}
(1) ) + (I∅(2) + I

{1}
(2) + I

{2}
(2) ),

where the left hand side is SA1(X̄2 ≥ x̄2), and the right hand side is the sum of the two

bivariate saddlepoint approximations. Here, τ̂ and ŵ are quantities from the univariate

saddlepoint approximation SA1(X̄2 ≥ x̄2). We can see that the cumulant generating

function for X2 is just K(1)(0, τ2). Then, by definition of τ̃(·), we have τ̂ = τ̃(1)(0), and

therefore by (3.1.3b), ŵ = ŵ2. Thus, we can rewrite the above equation as

Φ̄(
√

nŵ2)+
φ(
√

nŵ2)√
n

(
1

τ̃(1)(0)
√

K22
(1)(0, τ̃(1)(0))

− 1
ŵ2

) =

(I∅(1) + I∅(2)) + (I{1}(1) + I
{1}
(2) ) + (I{2}(1) + I

{2}
(2) ).

First, we have Φ̄(
√

nŵ2) = I∅(1) + I∅(2). As shown in the last section, I∅(1) + I∅(2) =

(I0(1) + I0(2)) + (I10(1) + I10(2))− (I11(1) + I11(2)). Using the facts (5.2.1f)–(5.2.1h) and
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the simple fact φ(x) = φ(−x), we have I10(1) + I10(2) = I11(1) + I11(2) = 0. And

I0(1) + I0(2)

=Φ̄(x(1), y, ρ(1)) + Φ̄(x(2), y, ρ(2)) = Φ̄(x(1), y, ρ(1)) + Φ̄(−x(1), y,−ρ(1))

=
∫ ∞

y

φ(u2)√
1− ρ2

(∫ ∞

x(1)

φ(
u1 − ρu2√

1− ρ
) du1 +

∫ ∞

−x(1)

φ(
u1 + ρu2√

1− ρ
) du1

)
du2

=
∫ ∞

y

φ(u2)√
1− ρ2

(∫ ∞

x(1)

φ(
u1 − ρu2√

1− ρ
) du1 +

∫ x(1)

−∞
φ(

u1 − ρu2√
1− ρ

) du1

)
du2

=
∫ ∞

y
φ(u2)

∫ ∞

−∞
φ(

u1 − ρu2√
1− ρ

)/
√

1− ρ2 du1 du2

=
∫ ∞

y
φ(u2) du2 = Φ̄(y),

and y =
√

nŵ2 as defined. Next we show that

φ(
√

nŵ2)√
n

(
1

τ̃(1)(0)
√

K22
(1)(0, τ̃(1)(0))

− 1
ŵ2

) = I
{2}
(1) + I

{2}
(2) .

By (3.1.15), we have

I
{2}
(1) + I

{2}
(2) =

φ(
√

nŵ2)√
n

(
1

τ̃(1)(0)
√

K22
(1)(0, τ̃(1)(0))

− 1
ŵ2

)Φ̄(
√

nŵ1(1))+

φ(
√

nŵ2)√
n

(
1

τ̃(2)(0)
√

K22
(2)(0, τ̃(2)(0))

− 1
ŵ2

)Φ̄(
√

nŵ1(2))

=
φ(
√

nŵ2)√
n

(
1

τ̃(1)(0)
√

K22
(1)(0, τ̃(1)(0))

− 1
ŵ2

)Φ̄(
√

nŵ1(1))+

φ(
√

nŵ2)√
n

(
1

τ̃(1)(0)
√

K22
(1)(0, τ̃(1)(0))

− 1
ŵ2

)Φ̄(−√nŵ1(1))

=
φ(
√

nŵ2)√
n

(
1

τ̃(1)(0)
√

K22
(1)(0, τ̃(1)(0))

− 1
ŵ2

)(Φ̄(
√

nŵ1(1)) + Φ̄(−√nŵ1(1)))

=
φ(
√

nŵ2)√
n

(
1

τ̃(1)(0)
√

K22
(1)(0, τ̃(1)(0))

− 1
ŵ2

)

Last we show that I
{1}
(1) + I

{1}
(2) = 0. We can check (3.1.11), (3.1.18) and (3.1.23) using

facts (5.2.1a), (5.2.1d),(5.2.1e) and (5.2.1i).
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5.3 An example

We revisit the unconditional continuous example of Section 3.2. The results are shown

in the table below. The results for the cases (ȳ1, ȳ2) = (2.5, 3.0) and (ȳ1, ȳ2) = (3.0, 4.0)

are the special cases that ŵ1 = 0 we mentioned above and omitted here. The relative

error of the proposed method, i.e., ”P. approx.” are listed. We can see that the results

are better than normal approximation and the approximation in [Kolassa 2003].

Table 5.1: Results of saddlepoint approximation compared with other approximations
in the continuous case.

ȳ1 ȳ2 P. approx. K. approx N. approx. Exact Relative Error
2.5 2.5 9.12× 10−2 8.98× 10−2 9.65× 10−2 9.22× 10−2 −1.08%
2.5 3.5 1.41× 10−2 1.41× 10−2 6.54× 10−3 1.41× 10−2 0.00%
2.5 4.0 3.91× 10−3 3.99× 10−3 6.69× 10−3 3.93× 10−3 −0.51%
3.0 3.0 2.20× 10−2 2.14× 10−2 1.46× 10−2 2.22× 10−2 −0.90%
3.0 3.5 8.97× 10−3 8.73× 10−3 3.52× 10−3 8.96× 10−3 0.11%
3.5 3.5 4.40× 10−3 4.25× 10−3 1.09× 10−3 4.40× 10−3 0.00%
3.5 4.0 1.67× 10−3 1.61× 10−3 1.78× 10−4 1.66× 10−3 0.60%
4.0 4.0 7.69× 10−4 7.34× 10−4 3.88× 10−5 7.58× 10−4 1.45%

5.4 Higher dimensional extension

Now we extend the method to higher dimensions. In this section, we will use the tensor

notation. As shown in (2.0.11), we have

nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])∏d0

j=1 (wj − w̃j(wj−1))
G(τ ) dw ∼

∑

|t|≤1,t⊂U

It.

The first term is

I∅ =
nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])∏d0

j=1 (wj − w̃j(wj−1))
dw. (5.4.1)

Let ak
j (wk) = w̃j(wk,0−k)−w̃j(wk−1,0−(k−1))

wk
, for k < j. The function ak

j (wk) is analytic,

and w̃j(wj−1) =
j−1∑
k=1

ak
j (wk)wk. For instance, w̃3(w1, w2) = a1

3(w1)w1 + a2
3(w1, w2)w2,

where a1
3(w1) = w̃3(w1,0)

w1
and a2

3(w1, w2) = w̃3(w1,w2)−w̃3(w1,0)
w2

. Here the superscripts do

not represent derivatives, but represent the result of a finite differencing operation. We

will use a semicolon to separate such indices and derivatives, e.g., a2;1
3 is the partial



45

derivative of a2
3(w1, w2) with respect to its first argument. We now extend Theorem

(5.1.1) to higher dimension in the following theorem:

Theorem 5.4.1.

I∅ =
nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])

∏d0
j=1 (wj −

j−1∑
k=1

bk
j wk −

∑
l≤k<j

bkl
j wk(wl − ŵl))

dw
(

1 + O(
1
n

)
)

,

(5.4.2)

for bkl
j = âk;l

j +
j−1∑
m=k

αklâ
m;kl
j wm, l ≤ k, bk

j = âk
j −

∑
l≤k≤m<j

αklâ
m;kl
j wmwl, where the

notation â represents a function a evaluated at ŵ, and

αkl =





1, k > l

1
2 , k = l

0, k < l

.

Proof. We follow the same idea as in the proof of Theorem (5.1.1). By the argument

in [Kolassa 2003], we only need to prove that the coefficients of the first three degrees

of Taylor expansions of the exponents of both sides agree.

Choose a reparameterization w(u), such that w(û) = ŵ. Let g(u) = 1
2w

Tw−ŵTw.

Then g(û) = −1
2ŵ

T ŵ, gr(u) = (w − ŵ)Twr, and gr(û) = 0. Furthermore, grs(u) =

(w − ŵ)Twrs + (ws)Twr, and grs(û) = (ŵs)T ŵr. Also, grst(u) = (w − ŵ)Twrst +

(wr)Twst + (ws)Twrt + (wt)Twrs, and grst(û) = (ŵr)T ŵst + (ŵs)T ŵrt + (ŵt)T ŵrs.

The superscripts on w denotes derivatives with respect to u. In the following, the

superscripts on u denotes derivatives with respect to w.

For the left hand side, if uj = wj −
j−1∑
k=1

ak
j (wk)wk, then uj

j = 1, and also, ur
j =

−ar
j(wr) −

j−1∑
k=r

ak;r
j (wk)wk, for r < j, and ûr

j = −âr
j −

j−1∑
k=r

âk;r
j ŵk. Furthermore, urs

j =

−ar;s
j (wr)−as;r

j (ws)−
j−1∑

k=max(r,s)

ak;rs
j (wk)wk, and ûrs

j = −âr;s
j − âs;r

j −
j−1∑

k=max(r,s)

âk;rs
j ŵk.

Note that ar;s
j (wr) = 0 if r < s, so either ar;s

j (wr) = 0 or ar;s
j (wr) = 0 unless r = s.

For the right hand side, if uj = wj −
j−1∑
k=1

bk
j wk−

∑
1≤l≤k<j

bkl
j wk(wl− ŵl), then uj

j = 1,

and also ur
j = −br

j −
r∑

l=1

brl
j (wl − ŵl) −

j−1∑
l=r

bkr
j wk, for r < j, and ûr

j = −br
j −

j−1∑
k=r

bkr
j ŵk.

Furthermore, urs
j = −brs

j − bsr
j , and ûrs

j = −brs
j − bsr

j . Also note that only one of brs
j

and bsr
j is valid unless r = s.
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The approximation is valid if −brs
j − bsr

j = −âr;s
j − âs;r

j −
j−1∑

k=max(r,s)

âk;rs
j ŵk, which

is satisfied if brs
j = âr;s

j +
j−1∑
k=r

αrsâ
k;rs
j ŵk, for r ≥ s, and if −br

j −
r∑

l=1

brl
j (wl − ŵl) −

j−1∑
l=r

bkr
j wk = −âr

j −
j−1∑
k=r

âk;r
j ŵk, which is satisfied if br

j = âr
j +

j−1∑
m=r

(âm;r
j − bmr

j )ŵm =

âr
j −

∑
r≤m≤k<j

αmrâ
k;mr
j ŵkŵm.

Next we change variables to sj = wj−
j−1∑
k=1

bk
j wk. Then (wj−

j−1∑
k=1

bk
j wk−

∑
l≤k<j

bkl
j wk(wl−

ŵl)) = sj −
∑

l<j,k<j

ckl
j sk(sl − ŝl)), for some ckl

j computable from bk
j and bkl

j , where ŝl is

the value of sl corresponding to wl = ŵl. We denote the new integral by

f(ckl
j , k < j, l < j) =

nd−d0

(2πi)d

∫ ŝ+iK

ŝ−iK

exp(n[12w(s)Tw(s)− ŵTw(s)])∏d0
j=1 (sj −

∑
l≤j,k<j

ckl
j sk(sl − ŝl))

ds, (5.4.3)

so that we view it as a function of all ckl
j , for k < j, l < j. We use Taylor expansion to

obtain

f(ckl
j , k < j, l < j) =f(0) +

∑

l<j,k<j

ckl
j fkl

j (0) +
∑

k,l,m,n<j

ckl
j cmn

j

2
fkl,mn

j (crs∗
j , r < j, s < j)

=I0 +
∑

l<j,k<j

Ikl
j + E,

(5.4.4)

where fkl
j denotes the partial derivative of f with respect to ckl

j , fkl,mn
j denotes the

double partial derivative of f with respect to ckl
j and cmn

j , and crs∗
j are some values

between 0 and crs
j .

The first integral

I0 =
nd−d0

(2πi)d

∫ ŝ+iK

ŝ−iK

exp(n[12w(s)Tw(s)− ŵTw(s)])∏d0
j=1 sj

ds (5.4.5)

is a multivariate normal tail probability and easy to compute. Next we consider Ikl
j .

We have

Ikl
j = ckl

j

nd−d0

(2πi)d

∫ ŝ+iK

ŝ−iK

exp(n[12w(s)Tw(s)− ŵTw(s)])(sl − ŝl)

sj/sk
∏d0

m=1 sm

ds, (5.4.6)
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which is of relative error O(n−
1
2 ) by [Kolassa 2003]. Ikl

j can be integrated out analyti-

cally. First, we have

Ikl
j =ckl

j

nd−d0

(2πi)d

∫ ŝ+iK

ŝ−iK

exp(n[12w(s)Tw(s)− ŵTw(s)])slsk

sj
∏d0

m=1 sm

ds−

ckl
j ŝl

nd−d0

(2πi)d

∫ ŝ+iK

ŝ−iK

exp(n[12w(s)Tw(s)− ŵTw(s)])sk

sj
∏d0

m=1 sm

ds

=Ikl
j1 − Ikl

j2

(5.4.7)

Since the transformation from w to s is linear, 1
2w(s)Tw(s)−ŵTw(s) is still quadratic.

Both Ikl
j1 and Ikl

j2 can be viewed as integration or differentiation of multivariate tail

probabilities with respect to covariates l, j and k, times some constants, and, while

algebraically complex, are not hard to obtain. And finally we consider the error terms.

For some constant C and C ′,

fkl,mn
j =C

∫ ŝ+iK

ŝ−iK

exp(n[12w(s)Tw(s)− ŵTw(s)])sksm(sl − ŝl)(sn − ŝn)

(sj −
∑

l<j,k<j

ckl∗
j sk(sl − ŝl))2

∏d0
p=1 (sp −

∑
l<p,k<p

ckl∗
p sk(sl − ŝl))

ds

=
C ′

n

∫ t̂+iK

t̂−iK

exp(Qn(t))tktm(tl − t̂l)(tn − t̂n)

(tj −
∑

l<j,k<j

ckl∗
j√
n

tk(tl − t̂l))2
∏d0

p=1 (tp −
∑

l<p,k<p

ckl∗
p√
n

tk(tl − t̂l))
dt,

(5.4.8)

where tj =
√

nsj , Qn(t) is a quadratic function of t, and the coefficients of t2j do not

contain n. Therefore, though may not be strictly relative, the error term diminish at

the rate of n−1.

5.5 A three-dimensional example

The definition of ŵ and w follows that of Section 4.2. First of all, we have

I∅ =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w1 − ŵ2w2 − ŵ3w3])

(2πi)3w1(w2 − w̃2(w1))(w3 − w̃3(w1, w2))
dw

∼f(c11
2 , c11

3 , c21
3 , c12

3 , c22
3 ).

(5.5.1)

First of all, we need to compute â1
2, â1;1

2 , â1;11
2 , â1

3, â1;1
3 , â1;11

3 , â2
3, â2;1

3 , â2;2
3 , â2;11

3 ,â2;21
3

and â2;22
3 . Terms â1

2, â1;1
2 and â1;11

2 are coefficients of Taylor expansion of w̃2(w1)/w1.

Terms â1
3, â1;1

3 and â1;11
3 are coefficients of Taylor expansion of w̃3(w1, 0)/w1. The rest
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are coefficients of Taylor expansion of (w̃3(w1, w2)− w̃3(w1, 0))/w2. More specifically,

â1
2 =

w̃2(ŵ1)
ŵ1

â1;1
2 =

w̌′2ŵ1 − w̌2

ŵ2
1

â1;11
2 =

w̌′′2ŵ2
1 − 2w̌′2ŵ1 + 2w̌2

ŵ3
1

â1
3 =

w̃3(ŵ1, 0)
ŵ1

â1;1
3 =

w̃1
3(ŵ1, 0)ŵ1 − w̃3(ŵ1, 0)

ŵ2
1

â1;11
3 =

w̃11
3 (ŵ1, 0)− 2w̃1

3(ŵ1, 0)ŵ1 + 2w̃3(ŵ1, 0)
ŵ3

1

â2
3 =

w̌3 − w̃3(ŵ1, 0)
ŵ2

â2;1
3 =

w̌1
3 − w̃1

3(ŵ1, 0)
ŵ2

â2;2
3 =

w̌2
3ŵ2 − w̌3 + w̃3(ŵ1, 0)

ŵ2
2

â2;11
3 =

w̌11
3 − w̃11

3 (ŵ1, 0)
ŵ2

â2;21
3 =

w̌12
3 ŵ2 − w̌1

3 + w̃3(ŵ1, 0)
ŵ2

2

â2;22
3 =

w̌22
3 ŵ2

2 − 2w̌2
3ŵ2 + 2w̌3 − 2w̃3(ŵ1, 0)

ŵ3
2

.

(5.5.2)

Then

b̂1
2 = â1

2 −
1
2
â1;11

2 ŵ2
1 = w̌′2 −

1
2
w̌′′2ŵ1

b̂1;1
2 = â1;1

2 +
1
2
â1;11

2 ŵ1 =
1
2
w̌′′2

b̂1
3 = â1

3 −
1
2
â1;11

3 ŵ2
1 −

1
2
â2;11

3 ŵ1ŵ2 − 1
2
â2;21

3 ŵ2
2 = w̌1

3 −
1
2
w̌11

3 ŵ1 − w̌12
3 ŵ2

b̂11
3 = â1;1

3 +
1
2
â1;11

3 ŵ1 +
1
2
â2;11

3 ŵ2 =
1
2
w̌11

3

b̂2
3 = â2

3 −
1
2
â2;22

3 ŵ2
2 = w̌2

3 −
1
2
w̌22

3 ŵ2

b̂21
3 = â2;1

3 + â2;21
3 ŵ2 = w̌12

3

b̂22
3 = â2;2

3 +
1
2
â2;22

3 ŵ2 =
1
2
w̌22

3 .

(5.5.3)

Note that br
j and brs

j no longer involve w̃3(ŵ1, 0) and the corresponding derivatives.

Next we need to compute ckl
j .
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Let s1 = w1, s2 = w2 − b1
2w1 and s3 = w3 − b1

3w1 − b2
3w2. We have

w1(w2 − b1
2w1 − b11

2 w1(w1 − ŵ1))·

(w3 − b1
3w1 − b2

3w2 − b11
3 (w1 − ŵ1)w1 − b21

3 w2(w1 − ŵ1)− b22
3 w2(w2 − ŵ2))

=s1(s2 − b11
2 s1(s1 − ŝ1))·

(s3 − b11
3 s1(s1 − ŝ1)− b21

3 (s2 + b1
2s1)(s1 − ŝ1)− b22

3 (s2 + b1
2s1 − ŝ2 − b1

2ŝ1)(s2 + b1
2s1))

=s1(s2 − c11
2 s1(s1 − ŝ1))·

(s3 − c11
3 s1(s1 − ŝ1)− c21

3 s2(s1 − ŝ1)− c22
3 s2(s2 − ŝ2)− c12

3 s1(s2 − ŝ2)).

Compare coefficients to obtain c11
2 = b11

2 , c11
3 = b11

3 + b21
3 b1

2 + b22
3 (b1

2)
2, c21

3 = b21
3 + b22

3 b1
2,

c22
3 = b22

3 and c12
3 = b22

3 b1
2. Then

f(c11
2 , c11

3 , c11
3 , c22

3 , c12
3 )

=f(0, 0, 0, 0, 0) + c11
2 f11

2 (0, 0, 0, 0, 0) + c11
3 f11

3 (0, 0, 0, 0, 0) + c21
3 f21

3 (0, 0, 0, 0, 0)+

c22
3 f22

3 (0, 0, 0, 0, 0) + c12
3 f12

3 (0, 0, 0, 0, 0) + E

=I0 + I11
2 + I11

3 + I11
3 + I22

3 + I12
3 + E.

(5.5.4)

For the main term, we have

I0 =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w1 − ŵ2w2 − ŵ3w3])

(2πi)3w1(w2 − b1
2w1)(w3 − b1

3w1 − b2
3w2)

dw

=Φ̄(x, y, z,ρ),

(5.5.5)

where x =
√

n√
1+(b12)2+(b13+b12b23)2

(ŵ1 + b1
2ŵ2 + (b1

3 + b1
2b

2
3)ŵ3), y =

√
n√

1+(b23)2
(ŵ2 + b2

3ŵ3),

z =
√

nŵ3, and ρ is the covariance matrix with ρ12 = b12+b13b23+b12(b23)2√
1+(b12)2+(b13+b12b23)2

√
1+(b23)2

,

ρ13 = b13+b12b23√
1+(b12)2+(b13+b12b23)2

and ρ23 = b23√
1+(b23)2

.
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Similarly,

I11
2 =c11

2

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w1 − ŵ2w2 − ŵ3w3])(w1 − ŵ1)

(2πi)3(w2 − b1
2w1)2(w3 − b1

3w1 − b2
3w2)

dw

=
c11
2

√
1 + (b2

3)2√
n(1 + (b1

2)2 + (b1
3 + b1

2b
2
3)2)

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)(v1 − v̂1)
(2πi)3v2

2v3
dv

=
c11
2

√
1 + (b2

3)2√
n(1 + (b1

2)2 + (b1
3 + b1

2b
2
3)2)

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)v1

(2πi)3v2
2v3

dv−

c11
2

√
1 + (b2

3)2v̂1√
n(1 + (b1

2)2 + (b1
3 + b1

2b
2
3)2)

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)
(2πi)3v2

2v3
dv

=I11
21 − I11

22 ,

(5.5.6)

where v̂1 =
√

n
√

1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2ŵ1. We can obtain I11

21 and I11
22 by considering

them as functions of (x, y, z,ρ) and solving the differential equations I11;223
21 (x, y, z,ρ) =

c112
√

1+(b23)2√
n(1+(b12)2+(b13+b12b23)2)

φ1(x, y, z,ρ) and I11;223
22 (x, y, z,ρ) = c112

√
1+(b23)2v̂1√

n(1+(b12)2+(b13+b12b23)2)
φ(x, y, z,ρ).

Likewise,

I11
3 =c11

3

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w1 − ŵ2w2 − ŵ3w3])(w1 − ŵ1)

(2πi)3(w2 − b1
2w1)(w3 − b1

3w1 − b2
3w2)2

dw

=
c11
3√

n(1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2)

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)(v1 − v̂1)
(2πi)3v2v2

3

dv

=
c11
3√

n(1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2)

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)v1

(2πi)3v2v2
3

dv−

c11
3 v̂1√

n(1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2)

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)
(2πi)3v2v2

3

dv

=I11
31 − I11

32 ,

(5.5.7)

Again, we can obtain I11
31 and I11

32 by considering them as functions of (x, y, z,ρ) and

solving I11;233
31 (x, y, z,ρ) = c113√

n(1+(b12)2+(b13+b12b23)2)
φ1(x, y, z,ρ) and I11;233

32 (x, y, z,ρ) =
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c113 v̂1√
n(1+(b12)2+(b13+b12b23)2)

· φ(x, y, z,ρ). We also have

I21
3 =c21

3

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w1 − ŵ2w2 − ŵ3w3])(w1 − ŵ1)

(2πi)3w1(w3 − b1
3w1 − b2

3w2)2
dw

=
c21
3√

n
√

1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2

√
1 + (b2

3)2
·

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)(v1 − v̂1)
(2πi)3v1v2

3

dv

=
c21
3√

n
√

1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2

√
1 + (b2

3)2
·

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)v1

(2πi)3v1v2
3

dv−

c21
3 v̂1√

n
√

1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2

√
1 + (b2

3)2
·

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)
(2πi)3v1v2

3

dv

=I21
31 − I21

32 ,

(5.5.8)

and we can obtain I21
31 and I21

32 by considering them as functions of (x, y, z,ρ) and solving

I21;133
31 (x, y, z,ρ) =

c21
3√

n
√

1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2

√
1 + (b2

3)2
φ1(x, y, z,ρ)

and

I21;133
32 (x, y, z,ρ) =

c21
3 v̂1√

n
√

1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2

√
1 + (b2

3)2
φ(x, y, z,ρ).

Next, we have

I22
3 =c22

3

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w1 − ŵ2w2 − ŵ3w3])(s2 − ŝ2)

(2πi)3w1(w3 − b1
3w1 − b2

3w2)2
dw

=
c22
3√

n(1 + (b2
3)2)

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)(v2 − v̂2)
(2πi)3v1v2

3

dv

=
c22
3√

n(1 + (b2
3)2)

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)v2

(2πi)3v1v2
3

dv−

c22
3 v̂2√

n(1 + (b2
3)2)

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)
(2πi)3v1v2

3

dv

=I22
31 − I22

31 ,

(5.5.9)
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and we can obtain I22
31 and I22

31 by considering them as functions of (x, y, z,ρ) and solving

I22;133
31 (x, y, z,ρ) = c223√

n(1+(b23)2)
φ2(x, y, z,ρ) and I22;133

32 (x, y, z,ρ) = c223 v̂2√
n(1+(b23)2)

φ(x, y, z,ρ).

And finally we obtain We also have

I12
3 =c12

3

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w1 − ŵ2w2 − ŵ3w3])(s2 − ŝ2)

(2πi)3(w2 − b1
2w1)(w3 − b1

3w1 − b2
3w2)2

dw

=
c12
3√

n
√

1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2

√
1 + (b2

3)2
·

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)(v2 − v̂2)
(2πi)3v2v2

3

dv

=
c12
3√

n
√

1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2

√
1 + (b2

3)2
·

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)v2

(2πi)3v2v2
3

dv−

c12
3 v̂2√

n
√

1 + (b1
2)2 + (b1

3 + b1
2b

2
3)2

√
1 + (b2

3)2
·

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρv − xv1 − yv2 − zv3)
(2πi)3v2v2

3

dv

=I12
31 − I12

31 ,

(5.5.10)

and we can obtain I12
31 and I12

31 by considering them as functions of (x, y, z,ρ) and solving

I12;233
31 (x, y, z,ρ) = c223√

n
√

1+(b12)2+(b13+b12b23)2
√

1+(b23)2
φ2(x, y, z,ρ) and I12;233

32 (x, y, z,ρ) =

c223 v̂2√
n
√

1+(b12)2+(b13+b12b23)2
√

1+(b23)2
φ(x, y, z,ρ).

Next, we deal with I{1},I{2} and I{3}. By definition,

I{1} =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w1 − ŵ2w2 − ŵ3w3])

(2πi)3(w2 − w̃2(w1)))(w3 − w̃3(w1, w2))
·

G(τ1, 0, 0)−G(0, 0, 0)
w1

dw

=
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w1 − ŵ2w2 − ŵ3w3])

(2πi)3(w2 − w̃2(w1)))(w3 − w̃3(w1, w2))
h{1}(w1) dw,

(5.5.11)

where h{1}(w1) = 1
τ1

dτ1
dw1

− 1
w1

is analytic. Now we can do a change of variables similar

to the one done in the two dimensional case. First of all, let u1 = w1, u2 = w2− w̃2(w1)

and u3 = w3 − w̃3(w1, w2); let û1 = ŵ1, û2 = ŵ2 − w̃2(ŵ1) and û3 = ŵ3 − w̃3(ŵ1, ŵ2).
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Then

I{1} =
∫ û+i∞

û−i∞

exp(n[g{1}(u1, u2, u3)])
(2πi)3u2u3

h{1}(u1) du

∼̇
∫ û+i∞

û−i∞

exp(n[c{1}00 + 1
2(u− û)Tcc{1}(u− û)− c{1}(u− û)])

(2πi)3u2u3
h{1}(u1) du,

(5.5.12)

where g{1}(u1, u2, u3) is the exponent as a function of u after the change of variable,

c
{1}
00 = g{1}(û), cc{1} is the matrix such that its element cc

{1}
ij = [g{1}]ij(û) and c{1}

is the vector such that c
{1}
i = [g{1}]i(û). We can do a further change of variables

v1 =
√

n

√
c
{1}
11 u1, v2 =

√
n

√
c
{1}
22 u2, v3 =

√
n

√
c
{1}
33 u3, such that

I{1}∼̇ C{1}

√
n

√
c
{1}
11

∫ v̂+i∞

v̂−i∞

exp(1
2v

T ρ{1}v − x{1}v1 − y{1}v2 − z{1}v3)
(2πi)3v2v3

h∗(v1) dv, (5.5.13)

where C{1} = exp(n[c{1}00 + 1
2 û

Tcc{1}û]), ρ{1} is the covariance matrix with ρ
{1}
ij =

c
{1}
ij /

√
c
{1}
ii c

{1}
jj and x{1} =

√
n(c

{1}
11 û1+c

{1}
12 û2+c

{1}
13 û3)√

c
{1}
11

, y{1} =
√

n(c
{1}
12 û1+c

{1}
22 û2+c

{1}
23 û3)√

c
{1}
22

, z{1} =
√

n(c
{1}
13 û1+c

{1}
23 û2+c

{1}
33 û3)√

c
{1}
33

. We can not apply Watson’s lemma directly but can use the

same technique as in the two dimensional case. Let t1 = v1 + ρ
{1}
12 v2 + ρ

{1}
13 v3, t2 =√

1− (ρ{1}12 )2v2 and t3 =
√

1− (ρ{1}13 )2v3. Do a change of variables to obtain

I{1}∼̇ C{1}

√
n

√
c
{1}
11

∫ t̂+i∞

t̂−i∞

exp(Q(t))
(2πi)3t2t3

h∗∗(t1, t2, t3) dt, (5.5.14)

where Q(t) = 1
2t

T t + ρ
{1}
23 −ρ

{1}
12 ρ

{1}
13√

ρ
{1}
12

√
ρ
{1}
13

t2t3 − x{1}t1 − y{1}−ρ
{1}
12 x{1}√

1−(ρ
{1}
12 )2

t2 − z{1}−ρ
{1}
13 x{1}√

1−(ρ
{1}
13 )2

t3. We
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then obtain

I{1}∼̇ C{1}

√
n

√
c
{1}
11

∫ t̂+i∞

t̂−i∞

exp(Q(t))
(2πi)3t2t3

h∗∗(t1, 0, 0) dt+

C{1}

√
n

√
c
{1}
11

∫ t̂+i∞

t̂−i∞

exp(Q(t))
(2πi)3t3

h∗∗(t1, t2, 0)− h∗∗(t1, 0, 0)
t2

dt+

C{1}

√
n

√
c
{1}
11

∫ t̂+i∞

t̂−i∞

exp(Q(t))
(2πi)3t2

h∗∗(t1, 0, t3)− h∗∗(t1, 0, 0)
t3

dt+

C{1}

√
n

√
c
{1}
11

∫ t̂+i∞

t̂−i∞

exp(Q(t))
(2πi)3

·

h∗∗(t1, t2, t3)− h∗∗(t1, t2, 0)− h∗∗(t1, 0, t3) + h∗∗(t1, 0, 0)
t2t3

dt

=I
{1}
00 + I

{1}
10 + I

{1}
01 + I

{1}
11 .

(5.5.15)

First consider I
{1}
11 . The expression h∗∗(t1,t2,t3)−h∗∗(t1,t2,0)−h∗∗(t1,0,t3)+h∗∗(t1,0,0)

t2t3
is ana-

lytic, which absorbs both t2 and t3 in the denominator, and by Watson’s lemma, I
{1}
11

has an error of O(n−1) with regard to I{1} and therefore can be omitted. For I
{1}
01 ,

since h∗∗(t1,0,t3)−h∗∗(t1,0,0)
t3

is analytic, t3 is absorbed, but t2 is still in the denominator

and we still can not apply Watson’s lemma. However, we can recursive apply the above

technique of change of variables and decomposition. Since only t3 is absorbed, this

term has an error of O(n−
1
2 ) with regard to I{1}, and therefore can be omitted. The

same arguments holds for I
{1}
10 . And finally since t1 is not correlated with t2 and t3, it

can be separated and by Watson’s lemma, we have

I{1}∼̇I
{1}
00 = C{1}

∫ t̂+i∞

t̂−i∞

exp(Q(t))
(2πi)3t2t3

h∗∗(t1, 0, 0) dt

∼̇C{1}h{1}(ŵ1)√
nc
{1}
11

φ(x{1})·

Φ̄


y{1} − ρ

{1}
12 x{1}√

1− (ρ{1}12 )2
,
z{1} − ρ

{1}
13 x{1}√

1− (ρ{1}13 )2
,

ρ
{1}
23 − ρ

{1}
12 ρ

{1}
13√

1− (ρ{1}12 )2
√

1− (ρ{1}13 )2


 .

(5.5.16)
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Similarly, we have

I{2} =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w1 − ŵ2w2 − ŵ3w3])

(2πi)3w1(w3 − w̃3(w1, w2))
·

G(0, τ2, 0)−G(0, 0, 0)
w2 − w̃2(w1)

dw

∼̇C{2}h{2}(ŵ2)√
nc
{2}
22

φ(y{2})·

Φ̄


x{2} − ρ

{1}
12 y{2}√

1− (ρ{2}12 )2
,
z{2} − ρ

{2}
23 y{2}√

1− (ρ{2}23 )2
,

ρ
{2}
13 − ρ

{2}
12 ρ

{2}
23√

1− (ρ{2}12 )2
√

1− (ρ{2}23 )2


 ,

(5.5.17)

where now we have g{2}(u1, u2, u3), the exponent as a function of u with the change

of variable u1 = w1 u2 = w2 and u3 = w3 − w̃3(w1, w2). c
{2}
00 = g{2}(û), cc{2} is the

matrix such that its element cc
{2}
ij = [g{2}]ij(û), c{2} is the vector such that c

{2}
i =

[g{2}]i(û), C{2} = exp(n[c{2}00 + 1
2 û

Tcc{2}û]), ρ{2} is the covariance matrix with ρ
{2}
ij =

c
{2}
ij /

√
c
{2}
ii c

{2}
jj and x{2} =

√
n(c

{2}
11 û1+c

{2}
12 û2+c

{2}
13 û3)√

c
{2}
11

, y{2} =
√

n(c
{2}
12 û1+c

{2}
22 û2+c

{2}
23 û3)√

c
{2}
22

, z{2} =
√

n(c
{2}
13 û1+c

{2}
23 û2+c

{2}
33 û3)√

c
{2}
33

and

h{2}(ŵ2) =
(

1
τ2

dτ2

dw2
− 1

w2 − w̃2(w1)

)∣∣∣∣
(0,ŵ2)

=
1

τ̃2(0)
dτ2

dw2

∣∣∣∣
(0,ŵ2)

− 1
ŵ2

=
1

τ̃2(0)
√

K22(0, τ̃2(0), τ̃3(0)) + K23(0, τ̃2(0), τ̃3(0))τ̃2
3 (0, τ̃2(0))

− 1
ŵ2

.

And lastly, we obtain

I{3} =
∫ ŵ+i∞

ŵ−i∞

exp(n[12w2
1 + 1

2w2
2 + 1

2w2
3 − ŵ1w1 − ŵ2w2 − ŵ3w3])

(2πi)3w1(w2 − w̃2(w1))
·

G(0, 0, τ3)−G(0, 0, 0)
w3 − w̃3(w1, w2)

dw

∼̇C{3}h{3}(ŵ3)√
nc
{3}
33

φ(z{3})·

Φ̄


x{3} − ρ

{3}
13 z{3}√

1− (ρ{3}13 )2
,
y{3} − ρ

{3}
23 z{3}√

1− (ρ{3}23 )2
,

ρ
{3}
12 − ρ

{3}
13 ρ

{3}
23√

1− (ρ{3}13 )2
√

1− (ρ{3}23 )2


 ,

(5.5.18)

where again we have g{3}(u1, u2, u3), the quadratic form of w substituted by u with

the change of variable u1 = w1 u2 = w2 − w̃2(w1) and u3 = w3. c
{3}
00 = g{3}(û), cc{3} is

the matrix such that its element cc
{3}
ij = [g{3}]ij(û), c{3} is the vector such that c

{3}
i =

[g{3}]i(û), C{3} = exp(n[c{3}00 + 1
2 û

Tcc{3}û]), ρ{3} is the covariance matrix with ρ
{3}
ij =
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c
{3}
ij /

√
c
{3}
ii c

{3}
jj and x{3} =

√
n(c

{3}
11 û1+c

{3}
12 û2+c

{3}
13 û3)√

c
{3}
11

, y{3} =
√

n(c
{3}
12 û1+c

{3}
22 û2+c

{3}
23 û3)√

c
{3}
22

, z{3} =
√

n(c
{3}
13 û1+c

{3}
23 û2+c

{3}
33 û3)√

c
{3}
33

and

h{3}(ŵ2) =
(

1
τ3

dτ3

dw3
− 1

w3 − w̃3(w1, w2)

)∣∣∣∣
(0,0,ŵ3)

=
1

τ̃3(0, 0)
dτ3

dw3

∣∣∣∣
(0,0,ŵ3)

− 1
ŵ3

=
1

τ̃3(0, 0)
√

K33(0, 0, τ̃3(0, 0))
− 1

ŵ3
.

Let Xi, i = 1, 2, 3, 4 be independent and identically distributed random variables

following the exponential distribution as in the first example. Consider the random

vector (Y1, Y2, Y3) with Y1 = X0 + X1, Y2 = X0 + X2, Y3 = X0 + X3. We can cal-

culate the cumulant generating function K(τ1, τ2, τ3), Kj(τ1, τ2, τ3), Kjk(τ1, τ2, τ3) and

Kjkl(τ1, τ2, τ3). These then can be used to calculate τ̃2(τ1), τ̃3(τ1), τ̃3(τ1, τ2), τ̃ ′2(τ1),

τ̃ ′3(τ1), τ̃1
3 (τ1, τ2), τ̃2

3 (τ1, τ2), τ̃ ′′2 (τ1), τ̃ ′′3 (τ1), τ̃11
3 (τ1, τ2), τ̃12

3 (τ1, τ2) and τ̃22
3 (τ1, τ2). All

the above quantities can then be used to calculate dτ1
dw1

∣∣∣
ŵ1

, d2τ1
dw2

1

∣∣∣
ŵ1

, dτ2
dw1

∣∣∣
ŵ1,ŵ2

, dτ2
dw2

∣∣∣
ŵ1,ŵ2

,

d2τ2
dw2

1

∣∣∣
ŵ1,ŵ2

, d2τ2
dw2

2

∣∣∣
ŵ1,ŵ2

and d2τ2
dw1dw2

∣∣∣
ŵ1,ŵ2

. And then w̌2, w̌′2, w̌′′2 , w̌3, w̌1
3, w̌2

3, w̌11
3 , w̌12

3

and w̌22
3 can be calculated to obtain br

j , brs
j and crs

j . The results of approximation of

P (Ȳ1 ≥ ȳ1, Ȳ2 ≥ ȳ2, Ȳ3 ≥ ȳ3) for n = 4 are shown in the table below. Here, ”P. approx”

stands for the results of the new method. ”N. approx” stands for the results of the

normal approximation. The relative error of the new method are calculated. We can

see from the table that the normal approximation deteriorate at the far tail, while the

saddlepoint approximation is quite stable over the range we considered.

Table 5.2: Results of saddlepoint approximation compared with normal approximations
in the three dimensional case.

ȳ1 ȳ2 ȳ3 P. approx N. approx. Exact Relative Error
2.5 2.6 2.7 5.51× 10−2 4.83× 10−2 5.49× 10−2 0.36%

3 3.1 3.2 1.44× 10−2 6.51× 10−3 1.44× 10−2 0.00%
3.5 3.6 3.7 3.39× 10−3 4.66× 10−4 3.38× 10−3 0.30%

4 4.1 4.2 7.32× 10−4 1.71× 10−5 7.30× 10−4 0.27%
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Chapter 6

Conclusion

Hypothesis testing requires the computation of the tail probability of sufficient statistics

or sufficient statistics conditioned on others. Therefore, we would like to approximate

the tail probability of a sufficient statistics, in particular, the mean of independent

identically distributed random variables, for both conditional and unconditional distri-

butions. The Edgeworth approximations, and the normal approximations as a special

case, bound absolution error rather than relative error. The Edgeworth approximations

may not work well in the tail area, and in the extreme case, can even be negative. The

saddlepoint approximations bound the relative error. [Daniels 1987] summarizes two

univariate tail probability methods, one of which is the Lugannai and Rice approxima-

tion. In the thesis, we extend the method to multivariate distributions.

In univariate case, the Lugannani and Rice approximation works as follows. It splits

the inverse integral
1

2πi

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2 − ŵw])
τ(w)

dτ

dw
dw

into two parts. The main term, i.e.,

1
2πi

∫ ŵ+i∞

ŵ−i∞

exp(n[12w2 − ŵw])
w

dw,

contains an integrant that has the singularity, but has explicit formula, i.e., the normal

tail probability. The other, i.e.,

1
2πi

∫ ŵ+i∞

ŵ−i∞
exp(n[

1
2
w2 − ŵw])

(
1
τ

dτ

dw
− 1

w

)
dw,

contains an integrant that’s analytic (removable singularity), which can be approxi-

mated by applying Watson’s Lemma. The extension of the idea to multivariate approx-

imation turns out not so easy.
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First, we define an appropriate mapping between the variables τ and w. The

definition we use as in (2.0.2a) and (2.0.2b) utilizes the log likelihood ratio statistics.

In the definition, τj is only a function of wj and vise versa, and therefore the Jacobian

matrix is simplified to a product
∏d

j=1
dτj

dwj
.

Second, except for the first variable w1, the singular points for other variables depend

on all previous results. The singular point corresponding to τj = 0, in general is

not wj = 0, but wj = w̃j(wj−1), for some function w̃j that depends on all previous

variables wj−1. Unlike the main term in the Lugannani and Rice approximation, where

the denominator is simply w, in the multivariate scenario, the denominator becomes
∏d0

j=1(wj − w̃j(wj−1))), rather than simplify
∏d0

j=1 wj . Therefore, the main term, in

general, would not be exact multivariate normal tail probability. In our first method,

we use a change of variables and the main terms becomes a multivariate normal tail

probability, times a coefficient. In the second method, we removed the coefficient by first

reducing the function w̃j to the form
j−1∑
l=1

al
j(wl)wl, and then further to

∑
k,l

ckl
j wk(wl−ŵl),

and lastly viewing the integral as a function ckl
j and expanding around 0.

The approximation for variables taking unit lattice values is similar. We need to

take care of the continuity correct, which is straightforward. We also have 2 sinh(τ/2)

in the denominator of the integrant rather than τ , but this is not an issue since both

have the same singularity property. The approximation for conditional distribution

requires us to do some additional work for the conditioning variables. However, the

above method is still valid with the introduction of the conditioning variables. And we

incorporate the conditional case into the same framework.

An important property of the Lugannani and Rice’s approximation is the reflexivity

property. In saddlepoint approximation, the path of integral from c − iK to c + iK

has to have positive real part, i.e., c > 0. This positivity restriction in general require

the saddlepoints τ to be also positive. In case they do not satisfy the requirement, the

Bool’s law must be used. The reflexivity property enable us to apply the approximation

formula directly even if the positivity restriction is violated. We proved the bivariate

version of the reflexivity property for our second method.
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The approximation constructed in my thesis is a multivariate analog of the approx-

imation of Lugannani and Rice (1980). One possible future work is to construct an

alternative approximation, which incorporates adjustments of O(n−
1
2 ) as corrections to

the likelihood ratio statistic, in analogy with the work of [Jensen 1992]. I will start

with a variation of the integral in (2.0.10) as the following:

nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw])∏d0

j=1 ρ(τj(wj))

d∏

j=1

dτj

dwj
dw

=
nd−d0

(2πi)d

∫ ŵ+iK

ŵ−iK

exp(n[12w
Tw − ŵTw − 1

n log
∏d0

j=1
dwj

dτj

ρ(τj(wj))
wj

])
∏d0

j=1 wj

G(τ ) dw,

(6.0.1)

If we could derive a saddlepoint approximation in the form of Φ̄(w∗1, w
∗
2) in the bivariate

case, for instance, then w∗1 and w∗2 can be viewed as adjusted likelihood ratio statis-

tics and be used directly as test statistics for a group of hypothesis testing problems.

Another advantage of Barndorff and Nielsen’s method is that it is more compact.

The second topic involves integration within the curved angle. Take, for example,

the bivariate case. It is relatively easy to obtain P (X̄1 ≥ x̄1, X̄2 ≥ x̄2), a rectangle on

the (X̄1, X̄2) space, through integration over the rectangular area. It is also relatively

east to obtain P (X̄1 ≥ x̄1, aX̄1 + bX̄2 ≥ x̄2), an angular area, since we can do a linear

transformation of variables to turn it into a rectangular area for the new variables.

However, it remains a question in the (w∗1, w
∗
2) space, where and transformation is

nonlinear, and the integration area become curve-angular. It then would be interesting

to study the approximation over this integration and its properties.



60

References

[Daniels 1954] H.E. Daniels. Saddlepoint approximations in statistics. Ann. Math.
Statist.. 25, 631-645, 1954.

[Daniels 1987] H.E. Daniels. Tail probability approximations. Internat. Statisti. Rev.
55, 37-46, 1987.

[Jensen 1992] J.L. Jensen. The modified signed likelihood statistic and saddlepoint ap-
proximations. Biometrika. 79, 693–703.

[Kolassa 1997] J.E. Kolassa. Series Approximation Methods in Statistics, Lecture Notes
in Statistics, 88, Springer, 2006.

[Kolassa 2003] J.E. Kolassa. Multivariate Saddlepoint Tail Probability Approxima-
tions. Ann. Statist. 31 274-286, 2003

[Kolassa 2004] J.E. Kolassa. Approximate Multivariate Conditional Inference Using the
Adjusted Profile Likelihood. The Canadian J. of Statist. 32 5-14, 2004.

[Lugannani and Rice 1980] R. Lugannani and S. Rice. Saddle point approximation for
the distribution of the sum of indepednent random variables. Adv. in Appl. Probab.
12 475-490, 1980.

[Mathematica 5.0 2005] Wolfram Research, Inc. Mathematica. Version 5.0. Champaign,
IL, 2003

[Reid 1988] N. Reid. Saddlepoint methods and statistical inference (with discussion).
Statistical Sci. 3 213-238, 1988.

[Robinson 1982] J. Robinson. Saddlepoint approximation for permutation tests and
confidence intervals. J. Roy. Statist. Soc. Ser. B. 44 91-101, 1982.

[Stokes et al. 1995] M.E. Stokes, C.S. David and G.G. Koch. Categorical Data Analysis
using the SAS System. SAS Institute, Cary, North Carolina.

[Skovgaard 1987] I.M. Skovgaard. Saddlepoint Expansions for Conditional Distribu-
tions. J. Appl. Probab. 24 875-887

[Wang 1991] S. Wang. Saddlepoint approximation for bivariate distribution. J. Appl.
Probab. 27 586-597, 1991.

[Watson 1948] Watson, G.N. Theory of Bessel Functions. Cambridge University Press.

[Yang and Kolassa 2002] Yang, B. and Kolassa, J.E. Saddlepoint approximation for the
distribution function near the mean. Ann. Inst. Statist. Math. 54 743-747, 2002



61

[Zhang and Kolassa 2008] Zhang, J. and Kolassa, J.E. Saddlepoint Approximation for
the distribution of the modified signed root of likelihood ratio statistics near the
mean. Comm. Statist. Theory Methods. 37 194-203, 2008



62

Vita

Jixin Li

2009 Ph. D. in Statistics, Rutgers University

2002 M. Sc. in Computer Science, Rutgers University

2000 B. Eng. in Computer Science and Engineering, Zhejiang University

2005-08 Graduate assistant, Department of Statistics, Rutgers University

2000-05 Teaching assistant, Department of Computer Science, Rutgers University

2009 Kolassa, J.E. and Li, J. Multivariate Saddlepoint Approximations in Tail Prob-
ability and Conditional Inference. Submitted.

2008 Gunter, M.J., Hoover, D. R., Yu, H., Wassertheil-Smoller, S., Rohan, T.E., Man-
son, J.E., Li, J., Ho, G.Y.F., Xue, X., Anderson, G.L., Kaplan, R.C., Harris, T.G.,
Howard, B.V., Wylie-Rosett, J., Burk, R.D. and Strickler, H.D. Insulin, Insulin-Like
Growth Factor-I, and Risk of Breast Cancer in Postmenopausal Women. J. Natl.
Can-cer Inst., Accepted.

2008 Gunter, M.J., Hoover, D. R., Yu, H., Wassertheil-Smoller, S., Manson, J.E., Li, J.,
Har-ris, T.G., Rohan, T.E., Xue, X., Ho, G.Y.F., Einstein, M.H., Kaplan, R.C., Burk,
R.D., Wylie-Rosett, J., Pollak, M.N., Anderson, G., Howard, B.V. and Strickler, H.D.
A Prospective Evaluation of Insulin and Insulin-like Growth Factor-I as Risk Factors
for Endometrial Cancer. Cancer Epidemiology Biomarkers and Prevention, 17, 921-
929.

2008 Gunter, M.J., Hoover, D. R., Yu, H., Wassertheil-Smoller, S., Rohan, T.E., Man-
son, J.E., Howard, B.V., Wylie-Rosett, J., Anderson, G.L., Ho, G.Y.F., Kaplan, R.C.,
Li, J., Xue, X., Harris, T.G., Burk, R.D. and Strickler, H.D. Insulin, Insulin-Like
Growth Factor-I, Endogenous Estradiol and Risk of Colorectal Cancer in Postmeno-
pausal Women. Cancer Research, 68, 329-337.

2006 J. Li, I. Muchnik and D. Schneider, Influences on Breast Cancer Survival via SVM
Classification in the SEER Database, Discrete Methods in Epidemiology, volume 70 of
DIMACS. AMS


