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ABSTRACT OF THE DISSERTATION

Coupled Embedding Of Sequential Processes Using Gaussian
Process Models

by Kooksang Moon

Dissertation Director: Prof. Vladimir Pavlovic

In this dissertation we consider the task of making predictions from high dimensional sequential

data. Problems of this type arise in many practical scenarios, such as the estimation of 3D

human figure motion from a sequence of images or the predictions of implied volatility trends

from sequences of option market indicators in financial time-series analysis. However, direct

predictions of this type are typically infeasible due to high dimensionality of both the input

and the output data, as well as the existence of temporal dependencies. To address this task we

present a novel approach to subspace modeling of dyadic high dimensional sequences which

have a co-occurrence or regression relationship. Statistical reasoning suggests that predictions

made through low dimensional subspaces may improve the performance of predictive models

if such subspaces are properly selected. We show that selection of such optimal predictive

subspaces can be made, and is largely analogous, to the task of designing a particular family of

Gaussian processes (GP). As a consequence, many of the models we consider here can be seen

as a generalization of the well-known GP regressors.

We first study the role of dynamics in subspace modeling of single sequence and propose a

new family of marginal auto-regressive (MAR) models which can describe the space of all sta-

ble auto-regressive sequences. We utilize the MAR priors in a Gaussian process latent variable

model (GPLVM) framework to represent the nonlinear dimensionality reduction process with
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a dynamic constraint. To model the low dimensional embedding in the prediction tasks, we

propose two alternative approaches: a generative model and direct predictive, discriminative

model. For the generative modeling approach, we extend the framework of probabilistic latent

semantic analysis (PLSA) models in a sequential setting. This dynamic PLSA approach re-

sults in a new generative model which learns a pair of mapping functions between the subspace

and the two data sequences with a dynamic prior. For the discriminative modeling approach,

we address the problem of learning optimal regressors that maximally reduce the dimension

of the input while preserving the information necessary to predict the target values based on

the sufficient dimensionality reduction concept. Instead of the iterative solutions of previous

approaches, we show how a globally optimal solution in closed form can be obtained by for-

mulating a related problem in a setting reminiscent of the GP regression. In the set of experi-

ments on various vision and financial time-series prediction problems, the proposed two models

achieve significant gains in accuracy of prediction as well as interpretability, compared to other

dimension reduction and regression schemes.
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Chapter 1

Introduction

1.1 Motivation

The objective of this thesis is to propose a general framework that utilizes the dimensionality

reduction or subspace embedding to model the matching between sequences. We are in par-

ticular interested in the prediction tasks with two high dimensional sequences. Our intuition is

that in these tasks, predictions made through low dimensional subspaces are able to improve

the prediction accuracies if such subspaces are properly selected.

In many machine learning problems, we often deal with high dimension data sets, and this

high dimensionality can be a significant obstacle to problem solving. Theoretically, the curse

of dimensionality implies that the number of data points needed to model the structure of a high

dimensional data set increases exponentially with the number of dimensions in the data space.

However, in practice we found that the intrinsic representation of the data lies in a much smaller

dimensional space, which enables us to do well with much smaller data sets. For example,

in human motion modeling, the human body pose can be represented as a 62 dimensional

vector (translation and joint angles) measured by the motion capture system. Despite the high

dimensionality of body configuration space, it is well known that various human activities lie

intrinsically on low dimensional manifold when considering the body kinematics.

Dimensionality reduction / subspace embedding methods such as Principal Components

Analysis (PCA) play an important role in many data modeling tasks by selecting and inferring

those features that lead to an intrinsic representation of the data. General purposes of dimen-

sionality in machine learning includes the prediction performance improvements by filtering

out redundant features and the improvements of learning efficiency by exploiting the models

with fewer parameters and better generalization. As such, they have attracted significant at-

tention in a number of machine learning areas, such as computer vision, where they have been
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used to represent intrinsic spaces of shape, appearance, and motion. However, it is common that

subspace projection methods applied in different contexts do not leverage the inherent proper-

ties of those contexts. For instance, the dynamic nature of sequential data or the intrinsic data

structure of input in supervised learning is often ignored in the subspace learning process.

As for modeling the matching between two high dimensional sequences, learning the di-

rect mapping between them results in complex models with poor generalization properties.

Therefore, many previous approaches in computer vision and machine learning utilized the

dimensionality reduction. However, most of them learn the two mappings between the two

observations and the embedding subspace independently and in result the correlation between

the two observations is weakened.

1.2 Single Sequence Modeling and Dimensionality Reduction

We first investigate the utility of the dimensionality reduction in a single sequence modeling

procedure such as a human motion modeling. Modeling the dynamics of human figure motion

is essential to many applications such as realistic motion synthesis in animation and human

activity classification. Because the human pose is typically represented by more than 30 pa-

rameters (e.g. 59 joint angles in the marker-based motion capture system), modeling human

motion is a complex task; dependent upon a sequence of high dimensional data. Suppose yt is

a M -dimensional vector consisting of joint angles at time t. Modeling human motion can be

formulated as learning a dynamic system:

yt = h(y0,y1, ...,yt−1) + ut

where ut is a (Gaussian) noise process.

A common approach to modeling linear motion dynamics would be to assume a T -th order

linear auto-regressive (AR) model:

yt =

T∑
i=1

Aiyt−i + ut (1.1)

where Ai is the auto-regression coefficient matrix. For instance, second order AR models

are sufficient for modeling of periodic motion and higher order models lead to more complex

motion dynamics. However, as the order of the model increases the number of parameters
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grows asM2 · T + M2 (transition and covariance parameters). Learning this set of parameters

may require large training sets and can be prone to overfitting.

Armed with the intuition that correlation between the limbs such as arms and legs always

exists for a certain motion, many researchers have exploited the dynamics in the lower dimen-

sional projected space rather than learning the dynamics in the high-dimensional pose space

for human motion modeling. By inducing a hidden state xt of dimension N (M � N) satis-

fying the first-order Markovian condition, modeling human motion is cast in the framework of

dynamic Bayesian networks (DBNs) depicted in Figure 1.1:

xt = f(xt−1) + wt

yt = g(xt) + vt

where f(·) is a transition function, g(·) represents any dimensional reduction operation, andwt

and vt are (Gaussian) noise processes.

.....

.....

x1

y1 y2

x2

yt

xt

y0

x0

Figure 1.1: A graphical model for human motion modeling with subspace modeling.

The above DBN formalism implies that predicting the future observation yt+1 based on the

past observation data Yt
0 = {y0, . . . ,yt} can be stated as the following inference problem:

P (yt+1|Y
t
0) =

P (Yt+1
0 )

P (Yt
0)

=

∑
xt+1

· · ·
∑

x0
P (x0)

∏t
i=0 P (xi+1|xi)

∏t+1
i=0 P (yi|xi)∑

xt
· · ·

∑
x0

P (x0)
∏t−1

i=0 P (xi+1|xi)
∏t

i=0 P (yi|xi)
.

This suggests that the dynamics of the observation (pose) sequence Y possesses a more

complicated form. Namely, the pose yt at time t becomes dependent on all previous poses

yt−1,yt−2, ... effectively resulting in an infinite order AR model. However, such a model

can use a smaller set of parameters than the AR model of Equation (1.1) in the pose space.

Assuming a first order linear dynamic system (LDS) xt = Fxt−1 + w and the linear di-

mensionality reduction process yt = Gxt + v where F is the transition matrix and G is

the inverse of the dimensionality reduction matrix, the number of parameters to be learned is
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N2 +N2 +N ·M +M2 = 2N2 +M · (N +M) (N2 in F ,NM inG andN2 +M2 in the two

noise covariance matrices for w and v). When N � M the number of parameters of the LDS

representation becomes significantly smaller than that of the “equivalent” AR model. That is,

by learning both the dynamics in the embedded space and the subspace embedding model, we

can effectively estimate yt given all Yt−1
0 at any time t using a small set of parameters.

To illustrate the benefit of using the dynamics in the embedded space for human motion

modeling, we take 12 walking sequences of one subject from CMU Graphics Lab Motion

Capture Database [1] where the pose is represented by 59 joint angles. The poses are projected

into a 3D subspace. Assume that the dynamics in the pose space and in the embedded space are

modeled using the second order linear dynamics. We perform leave-one-out cross-validation

for these 12 sequences - 11 sequences are selected as a training set and the one remaining

sequence is reserved for a testing set. Let Mpose be the AR model in the pose space learned

from this training set and Membed be the LDS model in the latent space. Figure 1.2 shows the

summary statistics of the two negative log-likelihoods of P (Yn|Mpose) and P (Yn|Membed),

where Yn is a sequence reserved for testing.

LDS (embed) AR (pose)

11

12

13

14

15

16

17

18

19

20

lo
g 

(−
lo

g 
P

(Y
|M

))

Dynamic Models

Figure 1.2: Comparison of generalization abilities of AR (“pose”) and LDS (“embed”) models.
Shown are the medians, upper and lower quartiles (boxes) of the negative log likelihoods (in
log space) under the two models. The whiskers depict the total range of the values. Note that
lower values suggest better generalization properties (fit to test data) of a model.
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The experiment indicates that with the same training data, the learned dynamics in the em-

bedded space models the unseen sequences better than the dynamic model in the pose space.

The large variance of P (Yn|Mpose) for different training sets also indicates the overfitting prob-

lem that is generally observed in a statistical model that has too many parameters.

As shown in Figure 1.1, there are two processes in modeling human motion using a sub-

space embedding. One is learning the embedding model P (yt|xt) and the other is learning the

dynamic model P (xt+1|xt). The problem of the previous approaches using the dimensionality

reduction in human motion modeling is that these two precesses are decoupled into two separate

stages in learning. However, coupling the two learning processes results in a better embedded

space that preserves the dynamic nature of original data. For example, if the prediction by

the dynamics suggests that the next state will be near a certain point we can learn a projection

that retains the temporal information better than a naive projection, which disregards this prior

knowledge. Our proposed framework formulates this coupling of the two learning processes in

a probabilistic manner.

1.3 Nonlinear Dimensionality Reduction Using Gaussian Process

As briefly mentioned in Section 1.2, the subspace embedding process can be cast into the

inverse problem of data generation problem. Let g(·) be a data generation process. Then the

general formulation of data generation can be modeled as

y = g(x) + v (1.2)

where x ∈ R
p can be any intrinsic low dimensional vector, y ∈ R

d is any observation

vector and vt is the random noise vector. The dimensionality relationship should be d > p.

Based on this formulation, the subspace embedding process can be represented as the inverse

function, g(·)−1. And the task of dimensionality reduction becomes to infer the function, g or

g−1, explicitly or implicitly.

Depending on the selection of g, the approaches of dimensionality reduction can be catego-

rized into two: linear and nonlinear methods. In linear methods, the original observation data is

projected into a linear subspace. Principal Component Analysis (PCA) is the most well-known

approach in this category. Nonlinear dimensional reduction methods are all other approaches
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including the methods based on geometrical relationship of data points, extended nonlinear

kernel PCA, and probabilistic nonlinear PCA using Gaussian Process. Our choice in the thesis

is the probabilistic nonlinear dimensionality reduction using Gaussian Process. This approach

is called Gaussian Process Latent Variable Model (GPLVM) and provides a nice probabilistic

framework for dimensionality reduction modeling.

1.3.1 Gaussian Process

Here, we briefly review the concept of Gaussian process in the context of dimensionality reduc-

tion, based on [2,3]. Suppose that we are given a training datasetD = {(xi,yi)}, i = 1, . . . , N

for dimensionality reduction modeling. To learn the data generation function g which can de-

fine the new data point from an arbitrary point (e.g. testing data point) in the latent space X,

one needs to make assumptions about the characteristics of g. Depending on these assumptions,

there have been two common approaches in learning the function g. The first approach restricts

the class of functions in some parametric form and the second one considers the probability

distribution over function space. When the first approach is selected in the learning, one has

the obvious problem of the richness in class selection at the beginning. That is, the given data

may not fit well into the selected class of function. And even when the function is modeled

well by a certain class, there is a chance of overfitting which causes poor predictions for testing

data. The second approach appears to have a similar problem because one should compute the

probability distribution on infinite set of possible functions. However, Gaussian process makes

it possible to place a prior over the entire function space. The Gaussian process is the general-

ization of a Gaussian distribution to a function space. As a Gaussian distribution is defined on

all possible scalar values with its mean and covariance matrix, a Gaussian process is specified

over infinite function space by a mean and a covariance function.

For simplicity, assume the conditional independency of individual dimension in y, and

then consider the function f(·) that fits into only a certain dimension of y. Then the problem

of learning this function f becomes a training problem of the regression model, y = f(x) + ε

in which the covariate is a vector x and the target is a scalar value y with additive noise ε. Let

f = {fi}
N
i=1 ∈ R

N×1 be the vector of function values instantiated from a function f(·). If

we assume a Gaussian prior on these values with zero mean and covariance matrixK, then we
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have

p(f) = N (0,K)

= (2π)−
N
2 |K|−

1
2 exp

(
−

1

2
f ′K−1f

)
(1.3)

Note that the covariance is built using the covariate xi. Now we want to utilize this knowledge

about the function distribution in predicting the targets from a number of new input points

X∗. Assuming additive i.i.d. Gaussian noise ε ∼ N (0, σ2
n) we can easily combine a Gaussian

process prior with a noise model to estimate a posterior over function. That is, when f∗ is

a vector of function values corresponding to X∗, the conditional predictive distribution for

Gaussian process regression also becomes Gaussian, p(f∗|X,y,X∗) ∼ N (f̄∗,Σ), where

f̄∗ = K∗,f (Kf ,f + σ2
nI)

−1y (1.4)

Σ = K∗,∗ −K′
f ,∗(Kf ,f + σ2

nI)
−1Kf ,∗. (1.5)

Then, one can also compute the marginal likelihood p(y|X) over the function value f by

observing that y ∼ N (0,K + σ2I),

p(y|X) =

∫
p(y|f ,X)p(f |X)df

= (2π)−
N
2 |K + σ2I|−

1

2 exp

{
−

1

2
y′(K + σ2I)−1y

}
(1.6)

The GP models has been applied to various machine learning problems because of their

1.3.2 Gaussian Process Latent Variable Model

Gaussian Process Latent Variable Model (GPLVM) is induced from probabilistic PCA as a

dual representation of it [4]. Probabilistic PCA is a probabilistic extension of PCA and models

a linear mapping between the p-dimensional latent space, X = [x1, . . . ,xN ] and the centered

data set, Y = [y1, . . . ,yN ] inD-dimensional space,

yn = Wxn + ηn (1.7)

where ηn is a vector of noise termwhich is taken to be Gaussian distributed: p(η) ∼ N (0, β−1I).

By assuming yn is i.i.d. and marginalizing the conditional probability given the latent space



8

(p(yn|xn,W, β) = N (yn|Wxn, β−1I)), one can found the solution for W by maximizing

the likelihood,

p(Y|W, β) =

N∏
n=1

N (yn|0,WW′ + β−1I). (1.8)

Instead of marginalizing the latent variables, one can marginalize the mapping W. This

marginalization results

p(Y|X, β) =

∫ N∏
n=1

p(yn|xn,W, β)p(W)dW

= (2π)−
DN
2 |K|−

D
2 exp

{
−

1

2
tr(K−1YY′)

}
(1.9)

whereK = XX′ + β−1I.

The GPLVM estimates the joint density of the data points (Y) and their latent space repre-

sentations (X). The MAP estimates ofX are used to represent a learned subspace.

1.4 Dyadic Sequences Modeling and Dimensionality Reduction

Modeling the matching between the two sequences is an important task in various signal and

image processing problems such as object tracking, object pose estimation, image and signal

denoising, and illumination direction estimation. The goal of modeling in these tasks is to make

the accurate predictions given new inputs. The simplest approach to this problem is to learn

the direct mapping between them. However, when the two sequences are high dimensional

vectors, the direct mapping may result in a complex model with poor generalization. Therefore,

many researchers in the machine learning community exploited the dimensionality reduction

to learn the better models. The statistical reasoning about this approach is that given the proper

subspace embedding, we can learn the simpler model with better generalization and make better

predictions through it.

Our main interest in the thesis is how to learn the proper subspace embedding from a pair

of sequences X and Y for the prediction tasks. We propose two ways to model the sub-

space embedding based on the relationship between them: generative way and discriminative

way [5]. When we model the subspace in the generative way, we assume the co-occurrence

of two sequences. In this approach, we are more interested in modeling the joint probability

P (X,Y) given the subspace Z. In general, the model in the generative approach describes the
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casual dependencies and when the model assumption is correct the learning is easier than the

discriminative approach with better generalization. In contrast, when we model the subspace

embedding Z in the discriminative way, we focus on the regression between the input sequence

X and the output sequence Y. Therefore, the learning objective is to model the conditional

likelihood P (Y|X) to optimize the prediction accuracy. The general advantage of the discrim-

inative approach is that when the model assumption is incorrect, the learned model can lead to

better prediction than the generative learning. Figure 1.3 depicts the graphical models of these

two approaches.

.....

.....

.....z1

y1

x1 x2 x3

zT

yT

xT

y2 y3

z2 z3

.....

.....

.....z1

y1

x1 x2 x3

zT

yT

xT

y2 y3

z2 z3

(a) (b)

Figure 1.3: Graphical model for our approaches: (a) generative way (b) discriminative way.

1.5 Contribution

The main contributions of the thesis are:

• Nonlinear Dynamic System using a Marginal Autoregression Model (MAR): we present

a new approach to subspace embedding of sequential data that explicitly accounts for

their dynamic nature. We first model the space of sequences using a novel Marginal

Auto-Regressive (MAR) formalism. A MAR model describes the space of sequences

generated from all possible AR models. In the limit case, MAR describes all stable

AR models. As such, the MAR model is weakly-parametric and can be used as a prior

for an arbitrary sequence, without requiring the typical AR parameters such as the state

transition matrix to be known. The embedding model is then defined using a probabilistic

Gaussian Process Latent Variable (GPLVM) framework [9] with MAR as its prior. A

GPLVM framework is particularly well suited for this task because of its probabilistic

generative interpretation. The new hybrid GPLVM and MAR framework results in a
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general model of the space of all nonlinear dynamic systems (NDS). It therefore has the

potential to model nonlinear embeddings of a large family of sequences in theoretically

sound manner. We empirically prove the advantage of our approach by applying the

NDS model to modeling and tracking of the 3D human figure motion from a sequence of

monocular images.

• Dynamic Probabilistic Latent Semantic Analysis (DPLSA): We propose a generative

statistical approach to modeling sequential dyadic data that utilizes probabilistic latent

semantic (PLSA) models. PLSA model has been successfully used to model the co-

occurrence of dyadic data on problems such as image annotation where image features

are mapped to word categories via latent variable semantics. We apply the PLSA ap-

proach to human motion tracking by extending it to a sequential setting where the latent

variables describe intrinsic motion semantics linking human figure appearance to 3D

pose estimates. This dynamic PLSA (DPLSA) approach is in contrast to many current

methods that directly learn the often high-dimensional image-to-pose mappings and uti-

lize subspace projections as a constraint on the pose space alone. As a consequence,

such mappings may often exhibit increased computational complexity and insufficient

generalization performance. We demonstrate the utility of the proposed model on a syn-

thetic dataset and the task of 3D human motion tracking in monocular image sequences

with arbitrary camera views. Our experiments show that the dynamic PLSA approach

can produce accurate pose estimates at a fraction of the computational cost of alternative

subspace tracking methods.

• Gaussian Process Manifold Kernel Dimensionality Reduction (GPMKDR):We addresses

the problem of learning a low dimensional manifold that preserves information relevant

for a general nonlinear regression. Instead of iterative solutions proposed in approaches

to sufficient dimension reduction and its generalizations to kernel settings, such as the

manifold kernel dimension reduction (mKDR), we show how a globally optimal solution

in closed form can be obtained by formulating a related problem in a setting reminiscent

of Gaussian Process (GP) regression. We then propose a generalization of the solution to

arbitrary input points which is not usually mentioned in the previous literature. In a set of
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experiments on various real world problems we show that the proposed GPMKDR can

achieve significant gains in accuracy of prediction as well as interpretability, compared

to other dimension reduction and regression schemes.
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Chapter 2

Related Work

2.1 Subspace Embedding in Human Motion Modeling

Manifold learning approaches to motion modeling have attracted significant interest in the last

several years. Brand [6] proposed nonlinear manifold learning that maps sequences of the input

to paths of the learned manifold. Rosales and Sclaroff [7] proposed the Specialized Mapping

Architecture (SMA) that utilizes forward mapping for the pose estimation task. Agarwal and

Triggs [8] directly learned a mapping from image measurement to 3D pose using Relevance

Vector Machine (RVM).

However, with high-dimensional data, it is often advantageous to consider a subspace

e.g. the joint angles space that contains a compact representation of the actual figure mo-

tion. Principal Component Analysis (PCA) [9] is the most well-known linear dimensionality

reduction technique. Although PCA has been applied to human tracking and other vision appli-

cations [10–12], it is insufficient to handle the non-linear behavior inherent to human motion.

Non-linear manifold embedding of the training data in low dimensional spaces using isometric

feature mapping (Isomap), Local linear (LLE) and spectral embedding [13–16], have shown

success in recent approaches [17,18]. While these techniques provide point-based embeddings

implicitly modeling the nonlinear manifold through exemplars, they lack a fully probabilistic

interpretation of the embedding process.

The GPLVM, a Gaussian Processes [19] model, produces a continuous mapping between

the latent space and the high-dimensional data in a probabilistic manner [20]. Grochow et

al. [21] use a Scaled GPLVM (SGPLVM) to model inverse kinematics for interactive computer

animation. Tian et al. [22] use a GPLVM to estimate the 2D upper body pose from 2D silhou-

ette features. However these approaches utilize simple temporal constraints in pose space that

often introduce “curse of dimensionality” to nonlinear tracking methods such as particle filters.
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Moreover, such methods fail to explicitly consider motion dynamics during the embedding pro-

cess. Our work addresses both of these issues through the use of a novel marginal NDS model.

Wang et al. [23] introduced Gaussian Process Dynamical Models (GPDM) that utilize dynamic

priors for embedding. Our work extends the idea to tracking and investigates the impact of

dynamics in the embedded space on tracking in real sequences.

2.2 Shared Subspace with Dyadic Data

Dyadic data refers to a domain with two sets of objects in which data is measured on pairs of

units. One of the popular approaches for learning from this kind of data is the latent seman-

tic analysis (LSA) that was devised for document indexing. Deerwester et al. [24] considered

the term-document association data and used singular-value decomposition to decompose doc-

ument matrix into a set of orthogonal matrices. LSA has been applied to a wide range of

problems such as information retrieval and natural language processing [25, 26].

Probabilistic Latent Semantic Analysis (PLSA) [27] is a generalization of LSA to proba-

bilistic settings. The main purpose of LSA and PLSA is to reveal semantic relations between

the data entities by mapping the high dimensional data such text documents to a lower dimen-

sional representation called latent semantic space. Some exemplary application areas of PLSA

in computer vision include image annotation [28] and image category recognition [29, 30].

Human motion tracking is another application which model the matching between dyadic

sequences. Recently, a GPLVM that produces a continuous mapping between the latent space

and the high dimensional data in a probabilistic manner [20] was used for human motion track-

ing. Tian et al. [22] use a GPLVM to estimate the 2D upper body pose from 2D silhouette

features. Urtasun et al. [31] exploit the SGPLVM for 3D people tracking. The GPDM [23] uti-

lizing the dynamic priors for embedding is effectively used for 3D human motion tracking [32].

In [33], a marginal AR prior for GPLVM embedding is proposed and utilized for 3D human

pose estimation from synthetic and real image sequences. Lawrence and Moore [34] propose

the extension of GPLVM using a hierarchical model in which the conditional independency

between human body parts is exploited with low dimensional non-linear manifolds. However,
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these approaches utilize only the pose in latent space estimation and as a consequence, the op-

timized latent space cannot guarantee the proper dependency between the poses and the image

observations in a regression setting.

Shon et al. [35] propose a shared latent structure model that utilizes the latent space that

links corresponding pairs of observations from the multiple different spaces, and apply their

model to image synthesis and robotic imitation of human actions. Although their model also

utilizes GPLVM as the embedding model, their applications are limited to non-sequential cases

and the linkage between two observations is explicit (e.g. image-image or pose-pose). The

shared latent structure model using GPLVM is employed for pose estimation in [36]. This

work focuses on the semi-supervised regression learning and makes use of unlabeled data (only

pose or image) to regularize the regression model. In contrast, our work, using a statistical

foundation of PLSA, focuses on the computational advantages of the shared latent space. In

addition, it explicitly considers the latent dynamics and the multi-view setting ignored in [36].

2.3 Subspace Embedding with Regression

The problem of dimensionality reduction has been studied in many contexts including visual-

ization of high dimensional data, noise reduction, and discovery of intrinsic data structure. Yan

et al. [37] present a general framework called graph embedding that offers a unified view of

linear and nonlinear dimensionality reduction methods. The original GPLVM produces a con-

tinuous manifold guided by one source of data (e.g. targets) in a probabilistic manner and can

be extended to a shared latent variable model [35, 36] that deals with problems whose ultimate

solution would best be represented by building a regressor between two domains (e.g. covariate

and target). However, this extension does not explicitly postulate such a regressor and rather

considers a generative model where both the covariate X and the target Y have a common but

latent cause Z .

Li [38] first suggested to approach SDR as an inverse regression problem: if the distri-

bution P (Y |X) concentrates on a subspace of the input X space, then the inverse regression

E(X|Y ) should lie in the same subspace. A technique known as the sliced inverse regression

(SIR) was proposed, based on the idea that the sample mean of X is computed within each
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slice of Y and PCA is used to aggregate these means into an estimate of effective subspace

in regression. Since then many approaches such as Principal Hessian directions (PHd) [39],

sliced average variance estimation (SAVE) [40], and contour regression [41] have been de-

veloped from the same methodological foundation. However, these methods, from an inverse

regression perspective, have to impose the restrictive assumptions on the probability ofX such

as the elliptical symmetry of the marginal distribution. In addition, PHd and contour regression

are applicable only to a one-dimensional response and the maximum dimension of a subspace

of SIR is p− 1 when the output Y takes its value in a finite set of p elements.

Kernel Dimension Reduction (KDR) was recently proposed as another methodology for

SDR [42, 43] in which no assumption regarding the marginal distribution of X is made. KDR

treats the problem of dimensionality reduction as the one of finding a low-dimensional effective

subspace for X and provides the contrast function for estimation of this space using reproduc-

ing kernel Hilbert spaces (RKHS). Alternatively, Sajama et al. [44] proposed a supervised di-

mensionality method using mixture models for a classification problem in which the subspace

retaining the maximum possible mutual information between feature vectors and class labels

is selected. However, it is limited only to classification and restricted to a Gaussian distribu-

tion. Yang et al. [45] proposed a way of modifying basic nonlinear dimensionality reduction

methods (e.g. LLE) by taking into consideration prior information that exactly maps certain

data points. The approach does not consider SDR and the side information for embedding is

the prior knowledge of a correct embedding instead of the responses in regression.



16

Chapter 3

Marginal Nonlinear Dynamic System

Before we present our two approaches to the subspace embedding of dyadic sequences, We

develop a framework incorporating dynamics into the process of learning low-dimensional rep-

resentations of sequences. The chapter is organized as follows. We first define the family of

MAR models and study some properties of the space of sequences modeled by MAR. Next, we

show that MAR and GPLVM result in a model of the space of all NDS sequences and discuss

its properties. The utility of the new framework is examined through a set of experiments with

synthetic and real data. In particular, we apply the new framework to modeling and tracking of

3D human figure motion from a sequence of monocular images.

3.1 Marginal Auto-Regressive Model

In this section, a novel marginal dynamic model describing the space of all stable auto-regressive

sequences is proposed to model the dynamics of an unknown subspace.

3.1.1 Definition

Consider a sequenceX of length T ofN -dimensional real-valued vectors xt = [xt,0xt,1...xt,N−1] ∈

�1×N . Suppose sequence X is generated by the first order AR model AR(A):

xt = xt−1A + wt, t = 0, ..., T − 1 (3.1)

where A is a specific N ×N state transition matrix and wt is a white iid Gaussian noise with

precision, α: wt ∼ N (0, α−1I). Assume that, without loss of generality, the initial condition

x−1 has normal multivariate distribution with zero mean and unit precision: x−1 ∼ N (0, I).

We adopt a convenient representation of sequenceX as a T×N matrixX = [x′0x
′
1...x

′
T−1]

′

whose rows are the vector samples from the sequence. Using this notation Equation (3.1) can
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be written as

X = XΔA + W

whereW = [w′0w
′
1...w

′
T−1]

′ andXΔ is a shifted/delayed version ofX,XΔ = [x′−1x
′
0...x

′
T−2]

′.

Given the state transition matrixA and the initial condition, the AR sequence samples have the

joint density function

P (X|A,x−1) = (2π)−
NT
2 exp

{
−

1

2
tr

{
(X−XΔA)(X−XΔA)′

}}
. (3.2)

The density in Equation (3.2) describes the distribution of samples in a T -long sequence

for a particular instance of the state transition matrix A. However, we are interested in the

distribution of all AR sequences, regardless of the value ofA. In other words, we are interested

in the marginal distribution of AR sequences, over all possible parameters A.

Assume that all elements aij of A are iid Gaussian with zero mean and unit precision,

aij ∼ N (0, 1). Under this assumption, it can be shown [46] that the marginal distribution of

the AR model becomes

P (X|x−1, α) =

∫
A

P (X|A,x−1)P (A|α)dA

= (2π)−
NT
2 |Kxx(X,X)|−

N
2 exp

{
−

1

2
tr{Kxx(X,X)−1XX′}

}
(3.3)

where

Kxx(X,X) = XΔX′
Δ + α−1I. (3.4)

We call this density the Marginal AR or MAR density. α is the hyperparameter of this class

of models, MAR(α). Intuitively, Equation (3.3) favors those samples in X that do not change

significantly from t to t + 1 and t − 1. The graphical representation of the MAR model is

depicted in Figure 3.1. Different treatments of the nodes are represented by different shades.

.....

.....

x−1 x2x1 xT−1

A

x0

Figure 3.1: Graphical representation of MAR model. White shaded nodes are optimized while
the grey shaded node is marginalized.
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The MAR density models the distribution of all (AR) sequences of length T in the space

X = �T×N . Note that while the error process of an AR model has a Gaussian distribution,

the MAR density is not Gaussian. We illustrate this in Figure 3.2. The figure shows joint

pdf values for four different densities: MAR, periodic MAR (see Section 3.1.2), AR(2), and a

circular Gaussian, in the space of length-two scalar-valued sequences [x0x1]
′. In all four cases

we assume zero-mean, unit precision Gaussian distribution of the initial condition. All models

have the mode at (0, 0). The distribution of the AR model is multivariate Gaussian with the

principal variance direction determined by the state transition matrix A. However, the MAR

models define non-Gaussian distributions with no circular symmetry and with directional bias.

This property of MAR densities is important when viewed in the context of sequence subspace

embeddings, which we discuss in Section 3.2.
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Figure 3.2: Distribution of length-two sequences of 1D samples under MAR, periodic MAR,
AR, and independent Gaussian models.

3.1.2 Higher-Order Dynamics

The above definition of MAR models can be easily extended to families of arbitrary D-th order

AR sequences. In that case the state transition matrix A is replaced by an ND × N matrix

A = [A′
1A

′
2...A

′
D]′ and XΔ by [XΔX1Δ...XDΔ]. Hence, a MAR(α,D) model describes

a general space of all D-th order AR sequences. Using this formulation one can also model

specific classes of dynamic models. For instance, a class of all periodic models can be formed

by setting A = [A′
1 − I]′, where I is an identity matrix.

3.1.3 Nonlinear Dynamics

In Equation (3.1) and Equation (3.3) we assumed linear families of dynamic systems. One can

generalize this approach to nonlinear dynamics of the form xt = g(xt−1|ζ)A, where g(·|ζ) is a
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nonlinear mapping to an L-dimensional subspace andA is a L×N linear mapping. In that case

Kxx becomes a nonlinear kernel using justification similar to e.g. [20]. While nonlinear kernels

often have potential benefits, such as robustness, they also preclude closed-form solutions of

linear models. In our preliminary experiments we have not observed significant differences

between MAR and nonlinear MAR.

3.1.4 Justification of MARModels

The choice of the prior distribution of the AR model’s state transition matrix leads to the MAR

density in Equation (3.3). One may wonder, however, if the choice of iid N (0, 1) results in

a physically meaningful space of sequences. We suggest that, indeed, such choice may be

justified.

Namely, Girko’s circular law [47] states that if 1
N A is a randomN×N matrix withN (0, 1)

iid entries, then in the limit case of large N(> 20) all real and complex eigenvalues of A are

uniformly distributed on the unit disk. For small N , the distribution shows a concentration

along the real line. Consequently, the resulting space of sequences described by the MAR

model is that of all stable AR systems.

3.2 Nonlinear Dynamic System Models

In this section we develop a Nonlinear Dynamic System view of the sequence subspace recon-

struction problem that relies on the MAR representation of the previous section. In particular,

we use the MAR model to describe the structure of the subspace of sequences to which the

extrinsic representation will be mapped using the GPLVM framework of [20].

3.2.1 Definition

Let Y be an extrinsic or measurement sequence of duration T of M -dimensional samples.

Define Y as the T × M matrix representation of this sequence, similar to the definition in

Section 3.1.1, Y = [y′0y
′
1...y

′
T−1]

′. We assume that Y is a result of the process X in a lower-

dimensional MAR subspace X , defined by a nonlinear generative or forward mapping

Y = f(X|θ)C + V.
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f(·) is a nonlinear �N → �L mapping, C is a linear L ×M mapping, and V is a Gaussian

noise with zero-mean and precision β.

To recover the intrinsic sequence X in the embedded space from sequence Y it is conve-

nient not to focus, at first, on the recovery of the specific mapping C. Hence, we consider

the family of mappings where C is a stochastic matrix whose elements are iid cij ∼ N (0, 1).

Marginalizing over all possible mappings C yields a marginal Gaussian Process [19] mapping:

P (Y|X, β, θ) =

∫
C

P (Y|X,C, θ)P (C|β)dC

= (2π)−
MT
2 |Kyx(X,X)|−

M
2 exp

{
−

1

2
tr{Kyx(X,X)−1YY′}

}

where

Kyx(X,X) = f(X|θ)f(X|θ)′ + β−1I.

Notice that in this formulation theX→ Ymapping depends on the inner product 〈f(X), f(X)〉.

The knowledge on the actual mapping f is not necessary; a mapping is uniquely defined by

specifying a positive-definite kernel Kyx(X,X|θ) with entries Kyx(i, j) = k(xi,xj) param-

eterized by the hyperparameter θ. A variety of linear and non-linear kernels (RBF, square

exponential, various robust kernels) can be used asKyx. Hence, our likelihood model is a non-

linear Gaussian process model, as suggested by [20]. Figure 3.3 shows the graphical model of

NDS.

.....

.....

.....

yy1y0 yT−1

C

x2x10 xx T−1

2

Figure 3.3: Graphical model of NDS. White shaded nodes are optimized while the grey shaded
node is marginalized and the black shaded nodes are observed variables.

By joining the MARmodel and the NDS model, we have constructed a Marginal Nonlinear

Dynamic System (MNDS) model that describes the joint distribution of all measurement and

all intrinsic sequences in a Y × X space:

P (X,Y|α, β, θ) = P (X|α)P (Y|X, β, θ). (3.5)
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The MNDSmodel has a MAR prior P (X|α), and a Gaussian process likelihood P (Y|X, β, θ).

Thus it places the intrinsic sequences X in the space of all AR sequences. Given an intrinsic

sequenceX, the measurement sequence Y is zero-mean normally distributed with the variance

determined by the nonlinear kernel Kyx andX.

3.2.2 Inference

Given a sequence of measurements Y one would like to infer its subspace representation X in

the MAR space, without needing to first determine a particular family of AR models AR(A),

nor the mapping C. Equation (3.5) shows that this task can be, in principle, achieved using the

Bayes rule P (X|Y, α, β, θ) ∝ P (X|α)P (Y|X,β, θ).

However, this posterior is non-Gaussian because of the nonlinear mapping f and the MAR

prior. One can instead attempt to estimate the modeX∗

X∗ = arg max
X
{log P (X|α) + log P (Y|X, β, θ)}

using nonlinear optimization such as the Scaled Conjugate Gradient in [20].

To effectively use a gradient-based approach, one needs to obtain expressions for gradients

of the log-likelihood and the log-MAR prior. Note that the expressions for MAR gradients

are more complex than those of e.g. GP due to a linear dependency between X and XΔ (see

Appendix A).

3.2.3 Learning

The MNDS space of sequences is parameterized using a set of hyperparameters (α, β, θ) and

the choice of the nonlinear kernel Kyx. Given a set of sequences {Y(i)}, i = 1, .., S the

learning task can be formulated as a ML/MAP estimation problem

(α∗, β∗, θ∗)|Kyx
= arg max

α,β,θ

S∏
i=1

P (Y(i)|α, β, θ).

One can use a generalized EM algorithm to obtained the ML parameter estimates recursively

from two fixed-point equations:
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E-step:

X(i)∗ = arg maxX P (Y,X(i)|α∗, β∗, θ∗)

M-step:

(α∗, β∗, θ∗) = arg max(β,α,θ)

∏K
i=1 P (Y (i),X(i)∗|α, β, θ)

3.2.4 Learning of Explicit NDS Model

Inference and learning of MNDSmodels results in the embedding of the measurement sequence

Y into the space of all NDS/AR models. Given Y, the embedded sequences X estimated in

Section 3.2.3 and MNDS parameters α, β, θ, the explicit AR model can be easily reconstructed

using the ML estimation of sequence X, e.g.:

A∗ = (X′
ΔXΔ)−1X′

ΔX.

Because the embedding was defined as a GP, the likelihood function P (yt|xt, β, θ) follows a

well-known result from GP theory: yt|xt ∼ N (μ, σ2I) where

μ = Y′Kyx(X,X)−1Kyx(X,xt) (3.6)

σ2 = Kyx(xt,xt)−Kyx(X,xt)
′Kyx(X,X)−1Kyx(X,xt). (3.7)

The two components fully define the explicit NDS.

In summary, a complete sequence modeling algorithm consists of the following set of steps.

Input : Measurement sequence Y and kernel familyKyx

Output:NDS(A, β, θ)

1) Learn subspace embedding MNDS(α, β, θ) model of training sequences Y

as described in Section 3.2.3.

2) Learn explicit subspace and projection model NDS(A, β, θ) ofY as

described in Section 3.2.4.

Algorithm 1: NDS learning.

3.2.5 Inference in Explicit NDS Model

The choice of the nonlinear kernelKyx results in a nonlinear dynamic system model of training

sequences Y. The learned model can then be used to infer subspace projections of a new
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sequence from the same family. Because of the nonlinearity of the embedding, one cannot apply

the linear forward-backward or Kalman filtering/smoothing inference. Rather, it is necessary

to use nonlinear inference methods such as (I)EKF or particle filtering/smoothing.

It is interesting to note that one can often use a relatively simple sequential nonlinear opti-

mization in place of the above two inference methods:

x∗t = arg max
xt

P (yt|xt, β
∗, θ∗)P (xt|x

∗
t−1,A

∗).

Such sequential optimization yields local modes of the true posterior P (X|Y). While one

would expect such approximation to be valid in situations with few ambiguities in the measure-

ment space and models learned from representative training data, our experiments show the

method to be robust across a set of situations. However, dynamics seem to play a crucial role

in the inference process.

3.2.6 Example

We illustrate the concept of MNDS on a simple synthetic example. Consider the AR model

AR(2) from Section 3.1. Sequence X, generated by the model, is projected to the space

Y = �2×3 using a linear conditional Gaussian model N (XC, I). Figure 3.4 shows negative

likelihood over the space X of the MNDS, a marginal model (GP) with independent Gaussian

priors, a GP with the exact AR(2) prior, and a full LDS with exact parameters. All likelihoods

are computed for the fixed Y. Note that the GP with Gaussian prior assumes no temporal

structure in the data. This example shows that, as expected, the maximum likelihood subspace
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Figure 3.4: Negative log-likelihood of length-two sequences of 1D samples under MNDS, GP
with independent Gaussian priors, GP with exact AR prior and LDS with the true process
parameters. “o” mark represents the optimal estimate X∗ inferred from the true LDS model.
“+” shows optimal estimates derived using the three marginal models.
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estimates of the MNDS model fall closer to the “true” LDS estimates than those of the non-

sequential model. This property holds in general. Figure 3.5 shows the distribution of optimal

negative log likelihood scores, computed at corresponding X∗, of the four models over a 10000

sample of Y sequences generated from the true LDS model. Again, one notices that MNDS
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Figure 3.5: Normalized histogram of optimal negative log-likelihood scores for MNDS, a GP
model with a Gaussian prior, a GPmodel with exact AR prior and LDSwith the true parameters.

has a lower mean and mode than the non-sequential model, GP+Gauss, indicating MNDS’s

better fit to the data. This suggests that MNDS may result in better subspace embeddings than

the traditional GP model with independent Gaussian priors.

3.3 Human Motion Modeling using MNDS

When the dimension of image feature vector zt is much smaller than the dimension of pose

vector yt (e.g. 10-dimensional vector of alt Moments vs. 59-dimensional joint angle vector of

motion capture data), estimating the pose given the feature becomes the problem of predicting

a higher dimensional projection in the model P (Z|Y, θzy). It is an undetermined problem. In

this case, we can utilize the practical approximation by modeling P (Y|Z) rather than P (Z|Y)

- It yielded better results and still allowed a fully GP-based framework. That is to say, the

mapping into the 3D pose space from the feature space is given by a Gaussian process model

P (Y|Z, θyz) with a parametric kernel Kyz(zt, zt|θyz).

As a result, the joint conditional model of the pose sequence Y and intrinsic motion X,

given the sequence of image features Z is approximated by

P (X,Y|Z,A, β, θyz , θyx) ≈ P (Y|Z, θyz)P (X|A)P (Y|X, β, θyx).
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3.3.1 Learning

In the training phase, both the image features Z and the corresponding poses Y are known.

Hence, the learning of GP and NDS models becomes decoupled and can be accomplished

using the NDS learning formalism presented in the previous section and a standard GP learning

approach [19].

Input : Image sequence Z and joint angle sequence Y

Output: Human motion model.

1) Learn Gaussian Process model P (Y|Z, θyz) using e.g. [19].

2) Learn NDS model P (X,Y|A, β, θyx) as described in Section 3.2.

Algorithm 2: Human motion model learning.

3.3.2 Inference and Tracking

Once the models are learned they can be used for tracking of the human figure in video. Because

both NDS and GP are nonlinear mappings, estimating current pose yt given a previous pose

and intrinsic motion space estimates P (xt−1,yt−1|Z0..t) will involve nonlinear optimization

or linearizion, as suggested in Section 3.2.5. In particular, optimal point estimates x∗t and y∗t

are the result of the following nonlinear optimization problem:

(x∗t ,y
∗
t ) = arg max

xt,yt

P (xt|xt−1,A)P (yt|xt, β, θyx)P (yt|zt, θyz). (3.8)

The point estimation approach is particularly well suited for a particle-based tracker. Unlike

some traditional approaches that only consider the pose space representation, tracking in the

low dimensional intrinsic space has the potential to avoid problems associated with sampling

in high-dimensional spaces.

A sketch of the human motion tracking algorithm using a particle filter with NP particles

and weights (w(i), i = 1, ..., NP ) is shown below. We apply this algorithm to a set of tracking

problems described in Section 3.4.2.
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Input : Image zt, Human motion model (GP+NDS) and prior point estimates

(w
(i)
t−1,x

(i)
t−1,y

(i)
t−1)|Z0..t−1, i = 1, ..., NP .

Output: Current pose/intrinsic state estimates

(w
(i)
t ,x

(i)
t ,y

(i)
t )|Z0..t, i = 1, ..., NP

1) Draw the initial estimates x(i)
t ∼ p(xt|x

(i)
t−1,A).

2) Compute the initial poses y(i)
t from the initial x(i)

t and NDS model.

3) Find optimal estimates (x
(i)
t ,y

(i)
t ) using nonlinear optimization in

Equation (3.8). 4) Find point weights

w
(i)
t ∼ P (x

(i)
t |xt−1,A)P (y

(i)
t |x

(i)
t , β, θyx)P (y

(i)
t |zt, θyz).

Algorithm 3: Particel filter in human motion tracking.

3.4 Experiments

3.4.1 Synthetic Data

In our first experiment we examine the utility of MAR priors in a subspace selection prob-

lem. A second order AR model is used to generate sequences in a �T×2 space; the sequences

are then mapped to a higher dimensional nonlinear measurement space. An example of the

measurement sequence, a periodic curve on the Swiss-roll surface, is depicted in Figure 3.6.
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Figure 3.6: A periodic sequence in the intrinsic subspace and the measured sequence on the
Swiss-roll surface.

We apply two different methods to recover the intrinsic sequence subspace: MNDS with an
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RBF kernel and a GPLVM with the same kernel and independent Gaussian priors. Estimated

embedded sequences are shown in Figure 3.7. The intrinsic motion sequence inferred by the
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Figure 3.7: Recovered embedded sequences. Left: MNDS. Right: GPLVM with iid Gaussian
priors.

MNDS model more closely resembles the “true” sequence in Figure 3.6. Note that one dimen-

sion (blue/dark) is reflected about the horizontal axis, because the embeddings are unique up

to an arbitrary rotation. These results confirm that proper dynamic priors may have crucial role

in learning of embedded sequence subspaces. We study the role of dynamics in tracking in the

following section.

3.4.2 Human Motion Data

We conducted experiments using a database of motion capture data for a 59 d.o.f. body model

from the CMU Graphics Lab Motion Capture Database [1]. Figure 3.8 shows the latent space

resulting from the original GPLVM and our MNDS model. Note that there are breaks in the

intrinsic sequence of the original GPLVM. On the other hand, the trajectory in the embedded

space of MNDS model is smoother, without sudden breaks. Note that the precision for the

points corresponding to the training poses is also higher in our MNDS model.

For the experiments on human motion tracking, we utilize synthetic images as our training

data similar to [8,22]. Our database consists of seven walking sequences of around 2000 frames

total. The data was generated using software (3D human model and Maya binaries) generously

provided by the authors of [48, 49]. We train our GP and NDS models with one sequence

of 250 frames and test on the remaining sequences. In our experiments, we exclude 15 joint

angles that exhibit small movement during walking (e.g. clavicle and figures joint) and use
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Figure 3.8: Latent space with the grayscale map of log precision. Left: pure GPLVM. Right:
MNDS.

the remaining 44 joints. Our choice of image features are the silhouette-based Alt moments

used in [7,22]. The scale and translational invariance of Alt moments makes them suitable to a

motion modeling task with little or no image-plane rotation.

In the model learning phase we utilize the approach proposed in Section 3.2. Once the

model is learned, we apply the two tracking/inference approaches in Section 3.3 to infer motion

states and poses from sequences of silhouette images. The pose estimation results with the two

different models show little difference. The big difference between two models is the speed,

which we discuss in the following Section 4.4.2.

Figure 3.9 depicts a sequence of estimated poses. The initial estimates for gradient search

are determined by the nearest neighborhood matching in the Alt moments space alone. To eval-

uate our NDS model, we estimate the same input sequence with the original GPLVM tracking

in [22]. Although the silhouette features are informative for human pose estimation, they are

also prone to ambiguities such as the left/right side changes. Without proper dynamics model-

ing, the original GPLVM fails to estimate the correct poses because of this ambiguity.

The accuracy of our tracking method is evaluated using the mean RMS error between the

true and the estimated joint angles [8], D(y,y′) = 1
44

∑44
i=1 |(yi − y′i)mod ± 180o|. The first

column of Figure 3.10 displays the mean RMS errors over the 44 joint angles, estimated using

three different models. The testing sequence consists of 320 frames. The mean error for the

NDSmodel is in the range 3o ∼ 6o. The inversion of right and left legs causes significant errors

in the original GPLVMmodel. Introduction of simple dynamics in the pose space similar to [31]

was not sufficient to rectify the “static” GPLVM problem. The second column of Figure 3.10
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Figure 3.9: Tracking results. First row: input image silhouettes. Remaining rows show recon-
structed poses. Second row: GPLVM model. Third row: NDS model.

shows examples of trajectories in the embedded space corresponding to the pose estimates with

the three different models. The points inferred from our NDS model follow the path defined

by the MAR model, making them temporally consistent. The other two methods produced

less-than-smooth embeddings.

We applied the algorithm to tracking of various real monocular image sequences. The data

used in these experiments was the sideview sequence in CMU mobo database made publicly

available under the HumanID project [50]. Figure 3.11 shows one example of our tracking

result. This testing sequence consists of 340 frames. Because a slight mismatch in motion

dynamics between the training and the test sequences, reconstructed poses are not geometrically

perfect. However the overall result sequence depicts a plausible walking motion that agrees

with the observed images.

It is also interesting to note that in a number of tracking experiments, it was sufficient to

carry a very small number of particles (∼ 1) in the point-based tracker of Algorithm 3. In most

cases all particles clustered in a small portion of the motion subspace X , even in ambiguous

situations induced by silhouette-based features. This indicates that the presence of dynamics

had an important role in disambiguating statically similar poses.
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Figure 3.10: Mean angular pose RMS errors and 2D latent space trajectories. First row: track-
ing using our NDS model. Second row: original GPLVM tracking. Third row: tracking using
simple dynamics in the pose space.
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Figure 3.11: Tracking results. First row: input real walking images. Second row: image
silhouettes. Third row: images of the reconstructed 3D pose.

3.5 Summary and Contribution

We proposed a novel method for embedding of sequences into subspaces of dynamic models.

In particular, we propose a family of marginal AR (MAR) subspaces that describe all stable

AR models. We show that a generative nonlinear dynamic system (NDS) can then be learned

from a hybrid of Gaussian (latent) process models and MAR priors, a marginal NDS (MNDS).

As a consequence, learning of NDS models and state estimation/tracking can be formulated

in this new context. Several synthetic examples demonstrate the potential utility of the NDS

framework and display its advantages over traditional static methods in dynamic domains. We

also test the proposed approach on the problem of the 3D human figure tracking in sequences

of monocular images. Our results indicate that dynamically constructed embeddings using

NDS can resolve tracking ambiguities that may plague static as well as less principled dynamic

approaches.
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Chapter 4

Dynamic Probabilistic Latent Semantic Analysis

In this chapter, we present our generative way to model the subspace embedding of dyadic se-

quences. In particular, we focus on the human motion tracking task where we utilize the latent

space to model the matching between the input image features, x and the poses, y. Although

we suggested one possible way to model the human motion tracking using our MNDSmodel in

Section 3.3, the model is not appropriate for the real video tracking with a few restrictions such

as a high computational cost. Therefore, we propose the novel DPLSA model that utilizes the

marginal dynamic prior to learn the latent space of dyadic sequential data. We then propose the

new framework for human motion modeling based on the DPLSA model and suggest learning

and inference methods in this specific modeling context. The framework can be directly ex-

tended for multiple viewpoints by using the mixture model in the space of the latent variables

and the image features. The utility of the the new framework is examined thorough a set of

experiments of tracking 3D human figure motion from synthetic and real image sequences.

4.1 Motivation

Estimating 3D body pose from 2D monocular images is a fundamental problem for many appli-

cations ranging from surveillance to advanced human-machine interfaces. However, the shape

variation of 2D images caused by changes in pose, camera setting, and viewpoints makes this

a challenging problem. Computational approaches to pose estimation in these settings are of-

ten characterized by complex algorithms and a tradeoff between the estimation accuracy and

computational efficiency. In this chapter we propose low-dimensional embedding method for

3D pose estimation that exhibits both high accuracy, tractable estimation, and invariance to

viewing direction.

3D human pose estimation from monocular 2D images can be formulated as the task of
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matching an image of the tracked subject to the most likely 3D pose. To learn such a mapping

one needs to deal with a dyadic set of high dimensional objects - the poses, y and the image

features, x. Because of the high dimensionality of the two spaces, learning a direct mapping

x → y often results in complex models with poor generalization properties. One way to solve

this problem is to map the two high dimensional vectors to a lower dimensional subspace z:

z → x and z → y [17,51]. However, in these approaches, the correlation between the pose and

the image feature is weakened by learning the two mappings independently and the temporal

relationship is ignored during the embedding procedure.

4.2 Dynamic PLSA with GPLVM

The starting point of our framework design is the symmetric parameterization of Probabilistic

Latent Semantic Analysis [27]. In this setting the co-occurrence data x ∈ X and y ∈ Y are

associated via an unobserved latent variable z ∈ Z:

P (x, y) =
∑
z∈Z

P (z)P (x|z)P (y|z). (4.1)

With a conditional independence assumption, the joint probability over data can be easily com-

puted by marginalizing over the latent variable. We extend the idea to the case in which the two

sets of objects, X and Y are sequences and the latent variable zt is only associated with the

dyadic pair (xt, yt) at time t. And we solve the dual problem by marginalizing the parameters

in the conditional probability models instead of marginaling of Z.

Consider the sequence of length T of M -dimensional vectors, Y = [y1y2...yT ], where yt

is a human pose (e.g. joint angles) at time t. The corresponding sequence X = [x1x2...xT ]

represents the sequence of N -dimensional image features observed for the given poses. The

key idea of our Dynamic Probabilistic Latent Semantic Analysis (DPLSA) model is that the

correlation between the pose Y and the image featureX can be modeled using a latent-variable

model where two mappings between the latent variable Z and X and between Z and Y are

defined using a Gaussian Process latent variable model of [20]. In other words, Z can be

regarded as the intrinsic subspace that X and Y jointly share. The graphical representation of

DPLSA for human motion modeling is depicted in Figure 4.1.
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Figure 4.1: Graphical model of DPLSA.

We assume that sequence Z ∈ �D×T of length T is generated by possibly nonlinear dy-

namics modeled as a known mapping φ parameterized by parameter γx [23, 32] such as

zt = A1φt−1(zt−1|γz,t−1) + A2φt−2(zt−2|γz,t−2) + . . . + wt. (4.2)

Then the first order nonlinear dynamics are characterized by the kernel matrix

Kzz = φ(ZΔ|γz)φ(ZΔ|γz)
T + α−1I. (4.3)

The model can further be generalized to higher order dynamics.

The mapping from Z to Y is a generative model defined using a GPLVM [20]. We assume

that the relationship between the latent variable and the pose is nonlinear with additive noise,

vt a zero-mean Gaussian noise with covariance β−1
y I:

yt = Cf(zt|γy) + vt. (4.4)

C represents a linear mapping matrix and f(·) is a nonlinear mapping function with a hyperpa-

rameter γy . By choosing the simple prior of a unit covariance , zero mean Gaussian distribution

on the element cij in C and zt, marginalization of C results in a mapping:

P (Y |Z, βy) ∼ |Kyz|
−M/2 exp

{
−

1

2
tr{K−1

yz Y Y T }

}
(4.5)

where

Kyz(Z,Z) = f(Z|γy)f(Z|γy)
T + β−1

y I. (4.6)

Similarly, the mapping from the latent variable Z into the image feature X can be defined

by

xt = Dg(zt|γx) + ut. (4.7)
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The marginal distribution of this mapping becomes

P (X|Z, βx) ∼ |Kxz|
−N/2 exp

{
−

1

2
tr{K−1

xz XXT }

}
(4.8)

where

Kxz(Z,Z) = g(Z|γx)g(Z|γx)T + β−1
x I. (4.9)

Notice that the kernel functions and parameters are different in the two mappings from the

common latent variable sequence Z to X and to Y .

The joint distribution of all co-occurrence data and all intrinsic sequence in a X × Y × Z

space is finally modeled as

P (X,Y,Z|θx, θy, θz) = P (Z|θz)P (X|Z, θx)P (Y |Z, θy) (4.10)

where θx ≡ {βx, γx} and θy ≡ {βy, γy} represent the sets of hyperparameters in the two

mapping functions from Z toX and from Z to Y . θz represents a set of hyperparameters in the

dynamic model (e.g. α for a linear model and α, γz for a nonlinear model).

4.2.1 Human Motion Modeling Using Dynamic PLSA

In human motion modeling, one’s goal is to recover two important aspects of human motion

from image features: (1) 3D posture of the human figure in each image and (2) an intrinsic

representation of the motion. Given a sequence of image features X, the joint conditional

model of the pose sequence Y and the corresponding embedded sequence Z can be expressed

as

P (Y,Z|X, θz, θy, θx) ∝ P (Z|θz)P (Y |Z, θy)P (X|Z, θx). (4.11)

Notice that the twomapping processes P (X|Z) and P (Y |Z) have different noise models which

can account for different factors (e.g. motion capture noise for the pose and camera noise for

the image) that influence one but not the other process.

4.2.2 Learning

The human motion model is parameterized by a set of hyperparameters θx, θy and θz, and the

choice of kernel functions, Kyz and Kxz . Given both the sequence of poses and the corre-

sponding image features, the learning task is to infer the subspace sequence Z in the marginal
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dynamics space and the hyperparameters. Using the Bayes rule and (Equation 4.11) the joint

likelihood is in the form

P (X,Y,Z, θx, θy, θz) = P (Z|θz)P (Y |Z, θy)P (X|Z, θx)P (θx)P (θy)P (θz). (4.12)

To mitigate the overfitting problem, we utilize priors over the hyperparameters [23,32,35] such

as P (θz) ∝ α−1 (or α−1γ−1
z ), P (θx) ∝ β−1

x γ−1
x and P (θy) ∝ β−1

y γ−1
y .

The task of estimating the mode Z∗ and the hyperparameters, {θ∗x, θ∗y, θ
∗
z} can then be

formulated as the ML/MAP estimation problem

{Z∗, θ∗x, θ∗y, θ
∗
z} =

arg max
Z,θx,θy,θz

{log P (Z|θz) + log P (Y |Z, θy) + log P (X|Z, θx)} (4.13)

which can be achieved using a generalized gradient optimization such as CG, SCG or BFG. The

task’s nonconvex objective can give rise to point-based estimates of the posterior P (Z|X,Y )

that can be obtained by starting the optimization process from different initial points.

4.2.3 Inference and Tracking

Having learned the DPLSA on training dataX and Y , the motion model can be used effectively

in inference and tracking. Because we have two conditionally independent GPs, estimating

current pose (distribution) yt and estimating current point zt in the embedded space can be

decoupled. Given image features xt in frame t, the optimal point estimate z∗t is the result of the

following nonlinear optimization

z∗t = arg max
zt

P (zt|zt−1, θz)P (xt|zt, θx). (4.14)

Due to the GP nature of the dependencies, the second term assumes conditional Gaussian form,

however its dependency on zt is nonlinear [20] even with linear motion models in z. As a

result, the tracking posterior P (zt|xt, xt−1, . . .) may become highly multimodal. We utilize

a particle-based tracker for our final pose estimation during tracking. However, because the

search space is the low dimensional embedding space, only a small number of particles (< 20,

empirical result) is sufficient for tracking allowing us to effectively avoid the computational

problems associated with sampling in high dimensional spaces.
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A sketch of this procedure using a particle filter based on the sequential importance sam-

pling algorithm with NP particles and weights (w(i), i = 1, ..., NP ) is shown below.

Input : Image xt, Human motion model e.g. (Equation 4.10) and prior point

estimates (w
(i)
t−1, z

(i)
t−1, y

(i)
t−1)|X0..t−1, i = 1, ..., NP .

Output: Current intrinsic state estimates (w
(i)
t , z

(i)
t )|X0..t, i = 1, ..., NP

1) Draw the initial estimates z
(i)
t ∼ p(zt|z

(i)
t−1, θx).

2) Find optimal estimates z
(i)
t using nonlinear optimization in (Equation 4.14).

3) Find point weights w
(i)
t ∼ P (z

(i)
t |z

(i)
t−1, θz)P (x

(i)
t |z

(i)
t , θz).

Algorithm 4: Particle filter in human motion tracking.

Finally, because the mapping from Z to Y is a GP function, we can easily compute the

distribution of poses yt for each particle z
(i)
t by using the well known result from GP theory:

P (yt|z
(i)
t ) ∼ N (μ(i), σ(i)2I).

μ(i) = μY + Y T Kyz(Z,Z)−1Kyz(Z, z
(i)
t ) (4.15)

σ(i)2 = Kyz(z
(i)
t , z

(i)
t )−Kyz(Z, z

(i)
t )T Kyz(Z,Z)−1Kyz(Z, z

(i)
t ) (4.16)

where μY is the mean of training set. The distribution of poses at time t is thus approximated

by a Gaussian mixture model. The mode of this distribution can be selected as the final pose

estimate.

4.3 Mixture Models for Unknown View

The image feature for a specific pose can vary according to a camera viewpoint and orientation

of the person with respect to the imaging plane. In a dynamic PLSA framework, the view point

factor R can be easily combined into the generative model P (X|Z) that represents the image

formation process.

P (X,Y,Z,R|θx) = P (Z|θz)P (Y |Z)P (X|Z,R)P (R). (4.17)

While the continuous representation of R is possible, learning such a representation from a

finite set of view samples may be infeasible in practice. As an alternative, we use a quantized
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set of view points and suggest a mixture model,

P (X|Z, βx, γx) =

S∑
r=1

P (X|Z,R = r, βr
x, γr

x)P (R = r) (4.18)

where S denotes the number of views. Note that all the kernel parameters (βr
x, γr

x) can be

potentially different for different r.

4.3.1 Learning

Collecting enough training data for a large set of view points can be a tedious task. Instead, by

using realistic synthetic data generated by 3D rendering software which allows us to simulate a

realistic humanoid model and render textured images from a desired point of view, one can build

a large training set for multi-view human motion model. In this setting one can simultaneously

use all views to jointly estimate a complete set of DPLSA parameters as well as the latent space

Z . Given the pairs of the pose and the corresponding image features with viewpoint, learning

the complete mixture models reduces to joint optimization of

P (Y,Z,X1,X2, ...,XS , R1, ..., RS) =

P (Z)P (Y |Z)
∏
s

P (Xs|Z,Rs = s)P (Rs = s). (4.19)

where S is the number of quantized views. The optimization of Z and model parameters is a

straightforward generalization of the method described in Section 4.2.2.

4.3.2 Inference and Tracking

The presence of an unknown viewing direction during tracking necessitates its estimation in

addition to that of the latent state zt. This joint estimation of zt and R can be accomplished by

directly extending the particle tracking method of Section 4.2.3. This approach is reminiscent

of [17] in that it maintains the multiple view-based manifolds representing the various mappings

caused from different view points.
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4.4 Experiments

4.4.1 Synthetic Data

In our first experiment we demonstrate the advantage of our DPLSA framework on the subspace

selection problem. We also compare the predictive ability of DPLSA when estimating the

sequence Y from the observation X.

We generate a set of synthetic sequences using the following model: intrinsic motion Z

is generated with two periodic functions in �T×2 space. The sequences are then mapped to

a higher dimensional space of Y (in �T×7) through a mapping which is a linear combination

of nonlinear features z1
2, z1, z2, z2

2. X (in �T×3) is finally generated by mapping Y into a

non-linear lower observation space in a similar manner. Examples of the three sequences are

depicted in Figure 4.2. This model is reminiscent of the generative process that may reasonably
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Figure 4.2: A example of synthetic sequences. Left: Z in the intrinsic subspace. Middle: Y
generated from Z Right: X generated from Y

model the mapping from intrinsic human motion to image appearance/features.

We apply three different motion modeling approaches to model the relationship between

the intrinsic motion Z , the 3D "pose" space Y and the "image feature" space X. The first

method (Model 1) is the manifold mapping of [17] which learns the embedding space using

LLE or Isomap based on the observation X and optimizes the mapping between Z and Y using

Generalized RBF interpolation. The second approach (Model 2) is the human motion modeling

using Marginal Nonlinear Dynamic System (MNDS) in Section 3.3, a model that attempts to

closely approximate the data generation process. Model 3 is our proposed DPLSA approach

described in Section 4.2.1. During the learning process, the initial embedding is estimated

using probabilistic PCA. Initial kernel hyperparameter values were typically set to 1, except for

the dynamic models where the variances were initially assigned values of 0.01.
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We evaluate predictive accuracy of the models in inferring Y from X. We generate 25 se-

quences using the procedure described above. We generate the testing sequence X by adding

white noise to the training sequence and infer Y from this X. Table 4.1 shows individual mean

square error (MSE) rates of predicting all 7 dimensions in Y . All values are normalized with

respect to the total variance in the true Y . The results demonstrate that the DPLSA model out-

performs both the LLE-based model as well as the MNDS. We attribute the somewhat surpris-

ing result when compared to Model 2 to the sensitivity of this model to estimates of the initial

parameters ofX → Y mapping. This problem can be mitigated by careful manual selection of

the initial parameters, a typically burdensome task. However, another crucial advantage of our

DPLSA model over Model 2 is the computational cost in inferring Y . For instance, the mean

number of iterations of scaled CG optimization is 72.09 for Model 3 and 431.82 for Model 2.

This advantage will be further exemplified in the next set of experiments.

Table 4.1: MSE rates of predicting Y from X.
Model ēy1

ēy2
ēy3

ēy4
ēy5

ēy6
ēy7

∑
ēyi

LLE+GRBF 0.06 0.14 0.08 0.06 0.27 0.16 0.04 0.81
MNDS 0.02 0.06 0.06 0.06 0.13 0.10 0.04 0.47
DPLSA 0.03 0.06 0.03 0.03 0.10 0.08 0.02 0.34

4.4.2 Synthetic Human Motion Data

Single view point

In a controlled study, we conducted experiments using a database of motion capture data for a

59 d.o.f. body model from the CMU Graphics Lab Motion Capture Database [1] and synthetic

video sequences. We used five walking sequences from three different subjects and four running

sequences from two different subjects. The models were trained and tested on different subjects

to emphasize the robustness of the approach to changes in the motion style. Initial model

values, prior to learning updates, were set in the manner described in Section 4.4.1. We exclude

six joint angles that exhibit very small variances but are very noisy (e.g. clavicle and finger).

The human figure images are rendered using Maya using the software generously provided by

the authors of [48, 49]. Following this, we extract the silhouette images to compute the 10-

dimensional Alt moment image features as in [22]. Also the 3D latent space is employed for
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all motion tracking experiments. Figure 4.3 depicts the log precision of P (Y |Z) and P (X|Z)

on the 2D projection of the latent space learned from one cycle of walking sequence. Note

that the precisions around the embedded Z is different in the two spaces even though Z is

commonly shared by both GPLVM models. To evaluate our DPLSA model in human motion
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Figure 4.3: Latent spaces with the grayscale map of log precision. Left: P (Y |Z). Right:
P (X|Z).

tracking, we again compare it to the MNDS model in [33] that utilizes the direct mapping

between the poses and the image features. The models are learned from one specific motion

sequence and tested on different sequences. Figure 4.4 shows the mean error in the 3D joint

position estimation and the number of iterations in SCG per frame during tracking. We use an

error metric similar to the one in [52]. The error between estimated pose Ŷ and the ground truth

pose Y from motion capture is E(Y, Ŷ ) =
∑J

j=1 ‖ ŷj − yj ‖ /J where yj is the 3D location

of a specific joint and J is the number of joints considered in the error metric. We choose 9

joints which have a wide motion range (e.g. throx and right & left wrist, humerus, femur and

tibia). The height of human figure in this virtual space is 28 and the error unit can be computed

relatively (e.g. when the height of man is 175cm, the error unit is 175/28 ≈ 6.25cm). When

the model was learned from one walking sequence and tested on four other sequences, the

average error was 1.91 for MNDS tracking and 1.85 for DPLSA tracking. Results of full pose

estimation for one running sequence are depicted in Figure 4.5. The models achieve similarly

a good accuracy in pose estimation. A distinct difference between the two models, however,

is exhibited in the computational complexity of the learning and inference stages as shown in

Figure 4.4. The DPLSA model, on average, requires 1/5th of the iterations to achieve the same

level of accuracy as the competing model. This can be explained by the presence of complex
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direct interaction between high dimensional features and pose states in the competing model.

In DPLSA such interactions are summarized via the low dimensional subspace. As a result, the

DPLSA representation is potentially more suitable for real-time tracking.
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Figure 4.4: Tracking performance comparison. Left: pose estimation accuracy. Right: mean
number of iterations of SCG.

Figure 4.5: Input silhouettes and 3D reconstructions from a known viewpoint of π

2
. First row: true

poses. Second rows: silhouette images. Third row: estimated poses.

Comparison between MNDS and DPLSA

The distinctive difference between the human motion model using MNDS in Section 3.3 and

DPLSA is the complexity in the learning and inference stages. The complexity in computing

the objective function in the GPLVM is proportional to the dimension of a observation (pose)

space. For the approximation of MNDS, a 44 dimensional pose is the observation for the two

GP models, P (Y|Z) and P (Y|X). However, for DPLSA the pose is the observation for only

one GP model P (Y|Z) and the observation of the other GP model P (X|Z) (Alt Moments) has

only 10 dimensions. This makes learning of DPLSA less complex than learning of MNDS. In
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addition, in inference only the latent variable (e.g. 3-dimension) is optimized in DPLSA while

the optimization in MNDS deals with both the latent variable and the pose (3-dimensions + 44-

dimension in our experiments). As a result, DPLSA requires significantly fewer iterations of

the nonlinear optimization search, leading to a potentially more suitable algorithm for real-time

tracking.

Multiple view points

We used a one person sequence to learn the mixture models of the 8 different views (view angles

= π
4 i, i = 1, 2, . . . , 8 in clockwise direction, 0 for frontal view) and human motion model. We

made testing sequences by picking different motion capture sequences and rendering the images

from eight viewpoints. Figure 4.6 shows one example of 3D tracking results from two different

viewpoints. In the experiment, the viewpoint of input images is unknown and inferred frame by

frame during tracking with pose estimation. Although the pose estimation for some ambiguous

silhouettes is erroneous, our system can track the pose until the end of sequence with the proper

viewpoint estimation. Furthermore, the 3D reconstructions are matched well to the true poses.

Notice that the last two rows depict poses viewed from 3π/4, i.e. the subject walking in the

direction of the top left corner.

Figure 4.6: Input images with unknown view point and 3D reconstructions using DPLSA tracking.
First row: true pose. Second and third rows: π

4
view angle. Fourth and fifth rows: 3π

4
view angle.
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4.4.3 Real Video Sequence

We applied our method to tracking of real monocular image sequences with a fixed viewpoint.

We used the sideview sequences from CMU Mobo database [50]. The DPLSA model was

trained on walking sequences from the Mocap data and tested on the motion sequences from

the Mobo set. Figure 4.7 shows two example sequences of our tracking result. The lengths of

the testing sequence are 300 and 340 frames. Although the frame rates and the walking style

are different and there exists noise in the silhouette images, the reconstructed pose sequence

depicts a plausible walking motion that agrees with the observed images.

Figure 4.7: Tracking results. First row: input real walking images of subject 22. Second row:
image silhouettes. Third row: images of the reconstructed 3D poses. Fourth row: input real
walking images of subject 15. Fifth row: images of the reconstructed 3D poses.

4.5 Summary and Contribution

We have reformulated the shared latent space approach for learning models from sequential

dyadic data. The reformulated generative statistical model is called the Dynamic Probabilistic

Latent Semantic Analysis (DPLSA), which extends the successful PLSA formalism to a con-

tinuous state estimation problem of mapping sequences of human figure appearances in images
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to estimates of the 3D figure pose. Our experimental results indicate that the DPLSA formalism

can result in highly accurate trackers that exhibit a fractional computational cost of the tradi-

tional subspace tracking methods. Moreover, the method is easily amenable to extensions to

unknown or multi-view camera tracking tasks.
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Chapter 5

Gaussian Process Manifold Kernel Dimensionality Reduction

In this chapter we consider the discriminative modeling of the subspace embedding which

preserves information relevant for a general nonlinear regression. This chapter is organized as

follows. We first suggest an approximate approach to our full discriminative model and then

introduce KDR and mKDR models. And we describe the reformulation of mKDR and show

that the solution of mKDR becomes an eigen-decomposition task. We also relate this solution

to the Gaussian Process regression models. Next, we propose a way to extend the model so

that it is defined everywhere in the covariate space rather than only on the training data points.

On a few examples, we illustrate the benefits of our approach, contrasted with the original

mKDR optimization problem. The utility of the new method is further examined through a set

of experiments with real data.

5.1 Approximation

Our ultimate goal of modeling subspace embedding in the discriminative way is making pre-

dictions in the full sequence level by utilizing the dynamic constraints as described in Fig-

ure 1.3(b). However, in this full discriminative model, it is not easy to model the dynamics

in the unknown embedding space explicitly due to the dependency between x and z. That is,

we should model the conditional probability p(zt|zt−1, xt−1) to represent the dynamics in the

embedding space, which may be difficult to learn. Therefore, we assume the i.i.d. condition on

each instance and treat slices as depicted in Figure 5.1.
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Figure 5.1: Graphical model of our approximation to the full discriminative model.

5.2 Motivation

The goal of dimensionality reduction in statistical learning problems is mainly feature selection

in which we seek linear or nonlinear combinations of the original set of variables from the data.

The setting for the learning mechanism for this purpose can be divided into two: unsupervised

and supervised learning. In unsupervised learning, only a set of random vectors X is observed

and we aim to learn the mapping from these observations to the low dimensional manifold

as in Section 3.2. On the other hand, in supervised learning, desired responses or label Y

corresponding to the input observation X is also available. The task of subspace embedding

for regression is to find a low dimensional subspace embedding Z of the input X for regressing

the output Y in the supervised learning framework. The dimensionality reduction for regressor

can be beneficial for efficient regressor design with a reduced input dimension by filtering out

noise in the original inputX or discovering the essential information (e.g. Z) for predicting the

output Y .

The goal of information-preserving manifold regression is to find a manifold that separates,

in terms of probabilistic dependency, the target Y ∈ R
q from the covariate X ∈ R

p. The basic

idea of Sufficient Dimensionality Regression (SDR) is to reduce the dimension of X without

losing information on the regression model, P (Y |X). Specifically, the aim is to discover a

low-dimensional projection satisfying the following conditional independence

Y ⊥⊥ X|ΦsX, (5.1)

where Φs is the orthogonal projection of R
p onto the dimension-reduction subspace (DRS),

S . There exist several S for most regressions and one instead considers the subspace obtained

by intersecting all the DRS’s. If this subspace satisfies (Equation 5.1), it is called the central
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subspace (central DRS) [53].

The previous approaches in the supervised setting have mainly focused on reduction to a

linear manifold to avoid complexity [38, 42, 54]. Due to this limitation, the formulations in

many approaches are based on the strong assumption on the linear manifold representation

of covariate data. However, it is obvious that in many practical situations, this assumption

can be too restrictive and render the approach unable to fully utilize the role of supervised

data in manifold learning. To overcome this limitation, Nilsson et al. [55] recently proposed

a method called manifold Kernel Dimension Reduction (mKDR) that finds nonlinear central

spaces, which resort to a nonconvex gradient optimization in finding the space. We propose

that instead of this iterative solution, there exists a closed-form solution to a related problem

that results in a central subspace. Moreover, we show how this process relates to and extends

the well-known Gaussian Process regression [56].

5.3 KDR and Manifold KDR

The idea of manifold KDR (mKDR) is to construct the dimension-reduction subspace in a

regression which incorporates the intrinsic manifold structure of covariates. We briefly review

this idea following [42, 43, 55].

5.3.1 KDR

The core idea of KDR is to characterize conditional independence in terms of cross-covariance

operators on reproducing kernel Hilbert spaces (RKHS). Because the conditional independence

assertion in (Equation 5.1) is equivalent to finding a low-dimensional projection Φs which

makes (I −Φs)X and Y conditionally independent given ΦsX, the dimension reduction prob-

lem can be formulated as an optimization problem expressed in terms of covariance operators.

When (HX , kX ) and (HY , kY ) are RKHS’s of functions on X and Y , respectively, with

the kernels kX and kY , the cross-covariance operator of (X,Y ) is defined for all f ∈ HX and

g ∈ HY as follows:

〈g,ΣY Xf〉HY
= EXY [(f(X)− EX [f(X)])(g(Y )− EY [g(Y )])] (5.2)
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The conditional covariance operator ΣY Y |X is defined using covariance operators:

ΣY Y |X = ΣY Y − ΣY XΣ−1
XXΣXY . (5.3)

When Z = F TX ∈ S where F is a projection matrix such that F TF = I , it is proved

in [43] that S is the central subspace if and only if ΣY Y |X = ΣY Y |Z . And for empirical

samples, F , characterizing the central subspace, is the matrix that minimizes Tr[Σ̂Y Y |Z ] where

Σ̂Y Y |Z is the empirical version of the conditional covariance operator (Equation 5.2).

Let {xi, yi}
N
i=1 be a set of N data samples drawn from the joint distribution P (X,Y ) of

targets Y and covariates X and {zi = F Txi}. Furthermore, let Kyy and Kzz denote the Gram

matrices computed over {yi} and {zi}. [43] shows that finding the central space is equivalent

to solving the following optimization problem:

minF Tr
[
Kc

yy (Kc
zz + NεI)−1

]
s.t. F TF = I (5.4)

where ε is a regularization coefficient andKc
yy andKc

zz are the centralized versions ofKyy and

Kzz
1.

5.3.2 Manifold KDR

The mKDR approaches the central subspace estimation problem by combining the manifold

preserving topological and geometrical properties of the data space into the KDR framework.

In [55] the method of normalized Laplacian eigenmaps is first utilized for the unsupervised

manifold learning. Given N data points {xi ∈ R
p}Ni=1 and the weighted graph matrix W

linking the data points, the normalized graph Laplacian matrix, L is defined as

L = D−1/2(D −W )D−1/2. (5.5)

where D is the diagonal matrix of the row sums ofW , D = W1. Let {vm ∈ R
N}N−1

m=0 be the

eigenvectors of L, ordered to their eigenvalues with v0 having the smallest eigenvalue (= 0).

Then the projection of the data to the lower dimensional manifold of dimension M is given by

[u1, u2, . . . , uN ] = [v1, v2, . . . , vM ]T.

1The centralized kernel matrix of size N ×N can be computed asK
c = (I − 1

N
11

T)K(I − 1

N
11

T) where 1

is the vector with all elements equal to 1.
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Given a M -dimensional nonlinear manifold U of covariates X, the central subspace is

parameterized as a low dimensional linear transformation of this embedding, as in the KDR

framework. This parameterization can be achieved by constructing the following explicit map-

ping:

K(·, F Txi) ≈ ΦTui (5.6)

where K is a kernel function to map a point F Txi in the central subspace to the RKHS. With

this smooth mapping Φ, we can approximate the Gram matrix on the RKHS as

〈K(·, F Txi),K(·, F Txi)〉 ≈ uTi ΦΦTui. (5.7)

The original optimization problem (Equation 5.4) is modified using the approximated Gram

matrix:

minΦ Tr
[
Kc

yy

(
UTΦΦTU + NεI

)−1
]

s.t. ΦΦT ≥ 0 (5.8)

Tr(ΦΦT) = 1.

Note that unit trace: Tr(ΦΦT) = 1 is introduced as a convenience constraint that does not

impact the centrality, but prevents unbounded Φ.

5.4 Reformulated Manifold KDR

Instead of solving the optimization problem (Equation 5.8) of manifold mKDR, we solve a

related problem

minΦ J(Φ) = Tr
[
Kc

yyK(Φ)−1
]
+ M log |K(Φ)|

s.t. ΦΦT = Λ ≥ 0, (5.9)

where K(Φ) = UTΦΦTU + NεI , M is the dimension of the manifold of X, Λ is a diagonal

matrix and | · | denotes the determinant of the matrix. Our objective J is the objective function

of original mKDR with a regularization term which plays the same role of Tr(ΦΦT) = 1

in (Equation 5.8). The optimal solution, Φ∗, then satisfies the condition:

∇J(Φ∗) = 0. (5.10)
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After taking the gradient with respect to Φ (and leaving out the superscript "*" for brevity),

(Equation 5.10) leads to

UK(Φ)−1Kc
yyK(Φ)−1UTΦ = MUK(Φ)−1UTΦ. (5.11)

Let Φ = ALBT be the SVD of Φ. Then, one can show (see Appendix B) that (Equation 5.11)

can be written as
1

M
UKc

yyU
TA = A(NεI + L2) (5.12)

Hence, an optimal solution for Φ can be found from the solution of the eigenvalue prob-

lem (Equation 5.12) as

Φ∗ = AL, (5.13)

where A is the matrix of eigenvectors of S = 1
M UKc

yyU
T and the entries of L are li =

(λi −Nε)1/2 where λi are the eigenvalues of S2. Note that λi − Nε > 0 guarantees positive

definiteness of the constraint.

To find an optimal embedding of the training data one retains the columns of A that cor-

respond to M largest values of the entries L. The embedded points in the central space are

then

Z = LATU. (5.14)

The regressor X → Y can now be constructed by learning a regressor from the central space

points Z to the targets Y . Learning such a regressor is typically easier than the direct X → Y

regression, and is additionally less prone to adverse influence of noise or irrelevant features in

the input. One reason for this is that Z can be viewed as those (filtered) features of the input

that are most relevant for predicting the target.

5.4.1 Gaussian Process mKDR

The cost function we consider in (Equation 5.9) draws direct similarity to the Gaussian Process

(GP) [56] and the Gaussian Process Latent Variable model (GPLVM) [57]. A GP objective

typically assumes a linear kernel in the target y and a nonlinear kernel in its covariate. In our

2Φ∗ is independent of B, an arbitrary rotation factor.
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case, Z could be viewed as a (linear) covariate of the nonlinear GP Z → Y . However, Z is

additionally constrained to lie on the nonlinear subspace of X, Z = ΦTU , ΦΦT = Λ, unlike

the typical Gaussian iid assumption of traditional GPs. Therefore, the problem of finding a

central subspace-based manifold regression is equivalent to that of finding a Gaussian Process

latent central subspace manifold. As we showed above, the stated problem has an optimal

solution and reduces to eigensolution. This solution is reminiscent to the one of finding the

latent covariate in a general GPLVM [57]. Thus we call our method Gaussian Process Manifold

KDR (GPMKDR) in contrast to the original mKDR. However, note that our model is different

from a shared latent model using GPLVM [35,36]. In contrast to our SDR approach, this shared

latent variable extension considers the two generative mappings from the latent cause Z to X

and Y , which relies on the joint iid Gaussian assumption of Z as well as the GP assumption

in P (Y |Z) and P (X|Z). We specifically make no such assumption on P (X|Z). This is the

difference between direct discriminative models such as ours and the discriminative models

induced by the generative ones. The algorithm for a general GPMKDR embedding is shown

below.

Input : Covariate X = {xi}
N
i=1 and response Y = {yi}

N
i=1

Output: Linear mapping Φ∗

1) Compute theM -dimensional embedding U of Laplacian eigenmaps from X.

2) Compute the eigenvalues, {λi}
M
i=1 and the eigenvectors {ei}

M
i=1 of the

following matrix S

S =
1

M
UKc

yyU
T

where λi are sorted and ei are ordered to their eigenvalues with e1 having the

largest eigenvalue λ1.

3) Compute the diagonal matrix L where lii = (λi −Nε)1/2, i = 1, . . . , d and

build the matrix A = [e1, . . . , ed] where d is the dimension of central subspace.

4) Compute Φ∗ = AL.

Algorithm 5: Gaussian Process mKDR Algorithm.
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5.5 Extended Mapping for Arbitrary Covariates

Original derivation of mKDR [55] and our GPMKDR formulation in the previous section are

based on embedding of a fixed set of training points. One way to generalize this to arbitrary

points in the covariate space is via a functional mapping from X → U .

To accomplish this, we consider Z to be a general mapping from the RKHS of X, Z =

αKxx; each Z is a linear combination of the rows of Gram matrix Kxx of covariate X. Know-

ing an optimal Z we have

α = ZK−1
xx . (5.15)

Consequently, any new test point x can be projected onto Z as

z(x) =
N∑

i=1

αiKxx(xi, x) . (5.16)

where αi is the i-th column of the matrix α.

5.6 Experiments

We first demonstrate the effectiveness of our solution by carrying out a set of experiments

suggested originally in [55]. We then consider three vision-related problems: illumination

estimation, human pose estimation, and digit subspace visualization. Parameters of all methods

presented in this section are selected for best performance. Unless noted otherwise, we employ

Gaussian RBF kernels.

5.6.1 Comparison with mKDR

The first experiment focuses on analyzing data points that lie on a torus surface. The 3D co-

ordinate of points on the torus is given by x1 = (2 + cos θr) cos θp, x2 = (2 + cos θr) sin θp,

and x3 = sin θr where θr is the rotation angle and θp is the polar angle. This space is aug-

mented to a 10D covariate space by adding 7-dimensional random noise vectors {xi}
10
i=4,

xi ∼ N (0, 0.1). The response is y = σ[−1.7(
√

(θr − π)2 + (θp − π)2 − 0.6π)] where σ[·] is

the sigmoid function. The resulting torus whose surface is colored according to the target value

y is shown in Figure 5.2(a). 950 data points are generated by randomly sampling θr and θp over

[0, 2π]× [0, 2π]. The target is further corrupted by noise. We compute the 1D central subspace
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Figure 5.2: 3D torus and central subspace of data randomly sampled on the torus.

from M = 50 bottom eigenvectors in the graph Laplacian. The resulting central subspace is

shown in Figure 5.2(b).

Using the hyperparameter setting of [55], the iterative solution converges after 349 itera-

tions. However, monotonic convergence to a global optima is not guaranteed. Figure 5.3(a)

shows the objective function for the first 25 iterations oscillating around the limit value which

is higher than the values attained in early iteration steps. This behavior can be remedied by re-

ducingM , the dimension of the initial covariate embedding (e.g. LE), but can affect the quality

of the induced central space. The original iterative solution is sensitive to the setting of param-

eters (e.g. tolerance) and the simple gradient descent method is typically inappropriate. It may

be possible, but not always trivial, to find parameters that improve convergence properties of

the algorithm or employ a more complex nonlinear search solution. Also note that the iterative

algorithm requires inversion of an N × N matrix at each step, unlike our GPMKDR solution

that follows from a single eigen-problem.

Figure 5.3(b) shows the Frobenius-distances between two Ωs (Ω = ΦTΦ) computed from

our closed-form solution and the iterative solution. The two matrices are first normalized using

Forbenius norm and the distance is computed between these two normalized matrices at each

iteration. It shows that our closed-form solution is the optimal solution of the iterative solution.
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Figure 5.3: Comparison of two solutions. (a) Objective function values of the iterative solution
during iterations, (b) Frobenius-distances between the closed-form solution and the iterative
solutions.

We also test our method on the global temperature prediction task used in [55]. The re-

sponses of this regression problem are 3168 satellite measurements of temperatures in Decem-

ber 2004 extracted from the MSU (Microwave Sounding Units) channel of the TMT (Tempera-

ture Middle Troposphere) [58] while the covariates are the latitude and longitude. Figure 5.4(a)

is the color coded world map displaying the trend of this channel. While there are only two

covariates, their domain is not Euclidean. It is therefore nontrivial to learn a proper model for

this regression problem.

In [55] it is shown that the relationship between the central space projection and the temper-

atures is largely linear. Figure 5.4(c) shows that our GPMKDR solution captures this relation-

ship usingM = 100 eigenvectors in LE. We next use a linear regression model and predict the

temperatures from the projection. Figure 5.4(b) and Figure 5.4(e) display the predicted temper-

atures and the prediction error respectively. The prediction from the central subspace matches

the temperature patterns well, even across local regions such as the Antarctic, with average

error of 0.6750. The only exceptions are few areas of extreme climate (e.g. Himalayas).

Using the sameM = 100, the original mKDR method displays oscillations and converges

to a local minimum with an error of 3.0848. Figure 5.4(d) shows the scatter plot of the projec-

tion against the temperatures for this estimate of Φ. The target-central space relationship fails

to be linear and results in large prediction errors as in Figure 5.4(f). Improved performance, as
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demonstrated in [55], may be achieved by carefully adjusting the mKRD parameters, a step not

necessary in our proposed solution.
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Figure 5.4: Comparison between solutions to global temperature regression analysis: (a) Map
of the global temperature in Dec. 2004, (b) prediction with from closed-form solution, (c)(d)
central subspaces, and (e)(f) prediction errors.

5.6.2 Illumination Estimation

We consider the task of estimating illumination direction from images. The illumination es-

timation becomes a regression problem where covariates are image pixel intensities and the

response is the illuminant direction.

Our experiments are based on the extended Yale Face Database B with 2432 face images of

38 subjects under 64 illumination conditions [59, 60]. The illumination directions are defined

by two angles with respect to the camera axis: azimuth and elevation. We resized the images
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Figure 5.5: Sample images from extended Yale Face Database B: (a) various azimuth angles
and (b) various elevation angles.

to 96 × 84 pixels leading to 8064-dimensional covariates. Figure 5.5 shows several exemplar

images of faces illuminated from different directions.

Our dataset consists of 20 randomly selected subjects. We remove images with very low

contrast and randomly select 925 images for training and 300 images for testing. We then

applied the GPMKDR algorithm to this data set.
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Figure 5.6: First and second dimension of central subspace for Yale face database B; (a) Scatter
plot of first dimension against azimuth angle; (b) Scatter plot of second dimension against
elevation angle.

As seen in Figure 5.6 (a)(b), the first and second dimension of the central subspace have a

largely linear relationship with the azimuth and elevation. As a result, we can build the linear

regression model from the 2D central subspace to the illumination direction represented by the

two angles. Using this linear regression model, we estimate the direction of illumination from

input images in the training set. We compare the performance of GPMKDR to a Nadaraya-

Watson kernel (NWK) regression where the covariates are the images and the responses are two

illumination angles3. Figure 5.7 and Figure 5.8 shows the scatter plot of two estimated angles.

The average error of GPMKDR+Linear regression in predicting azimuth is 5.15◦±7.82, similar

to that of NWK, 5.77◦± 8.50. However, the GPMKDR+Linear performs significantly better in

3Application of SIR to this and other similar domains is challenged due to the high dimensionality of covariates.
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Figure 5.7: Azimuth angle estimation results: (a) GPMKDR+Linear regression and (b) NWK
regression.

estimating the elevation, shown in Figure 5.8. Its average error is 2.71◦ ± 2.63, whereas NWK

regression results in 7.22◦ ± 5.61.
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Figure 5.8: Elevation angle estimation results: (a) GPMKDR+Linear regression and (b) NWK
regression.

The Yale database is typically used for estimating the accuracy of face recognition under

diverse illumination conditions. The ability to accurately estimate the illumination direction,

as shown in Figure 5.7 and Figure 5.8, may be used in such a setting (e.g. , 3D face model-

based approaches) to improve the recognition results without the need for explicit physical

illumination models such as [60].
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5.6.3 Human Motion Estimation

Our approach is also evaluated on the problem of human motion embedding and 3D figure

pose estimation. In applications such as the human motion tracking, finding pose and motion

embedding manifolds can be beneficial for improving the tracker’s robustness or interpreting

the motion properties. Typical embedding approaches, c.f. [17], consider manifolds of the pose

or image space without regard to each other or the ultimate goal of estimating the pose from

images. Nonlinear methods such as the Isomap or LLE are often employed for that purpose.

Our experiments use a database of motion capture data from CMU [1] and synthetic image

sequences. The human figure images are rendered from the captured pose data using a 3D

human model, and then binary silhouette images are extracted. In this regression problem, the

covariates are the silhouette images of size 160 × 100 and the responses are the 3D pose joint

angles represented by a 59 dimensional vector.

We first compare the quality of embedding produced by the central space to a 3D subspace

of an image-based method, typically used in motion analysis. Figure 5.9 shows the manifolds

computed by our GPMKDR and Isomap for one walking sequence (trial 03, subject 7). When

the embedding is determined solely by the locality of covariates, one can observe crossing

points induced by the intrinsic left/right side ambiguity of a silhouette image. Such points

typically result in tracking failures unless additional information is used. GPMKDR, on the

other hand, restructures the manifold with the pose information, removing the crossing points.
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Figure 5.9: Dimensionality Reductions for walking sequence, (a) GPMKDR and (b) Isomap.

We next apply the GPMKDR coupled with a Gaussian Process (GP) regression to model

the mapping from the 3D central subspace to the pose space. Every third frame of 03 walking
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sequence from subject 35 is used for training. We test the model on ten different sequences

of the same subject. We compare the pose prediction performance of our GPMKDR+GP re-

gressor to the GP regression model that maps directly from the silhouette images to the poses,

without an intermediate subspace. The error is computed for 19 major joint angles with largest

variance. The average test error is 0.8571o for our GPMKDR+GP regression model, compared

to 0.8991o for the GP regression model. Despite the small average difference, certain poses re-

main predicted more accurately by our model, as illustrated in Figure 5.10. Moreover, the cost

of learning a GP model with a 16000-dimensional input significantly exceeds that of a GP with

a 3D input. Such high dimensionality may also lead to adverse numerical precision effects.
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Figure 5.10: Comparison of two models. (a) True walking poses, (b) estimated poses using
GPMKDR+GP regression model and (c) estimated pose using GP regression on image inputs.

5.6.4 Digit Visualization

We evaluate our GPMKDRmethod with three other dimension reduction methods on the prob-

lem of digit subspace visualization. The goal is to induce, from images of handwritten digits

and possibly their labels, low dimensional subspaces that reflect a structure (e.g. digit identity)

in this data. While predicting digit labels is not a regression task, central space methods can

still be used in this setting for the purpose of subspace visualization.
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In our experiments we contrasted GPMKDR to one supervised method, SIR, and two un-

supervised methods, Laplacian Eigenmaps and Kernel PCA. All four models allow eigensolu-

tions to the embedding problem. We report experiments on two handwritten digit databases:

ORHD [61], MNIST [62] and and USPS [63]. Image data contains variations in appearance,

style, and orientation and is used in the experiments without preprocessing (e.g. rotation cor-

rection).

For the first set, a 32 × 32 binary digit image is divided into nonoverlapping 4 × 4 blocks

and the number of "1" pixels are counted in each block. Thus, the input covariate is represented

lexicographically as a 16 dimensional vector. We randomly sampled 300 images for each digit.

The 2D projections obtained by the four methods are illustrated in Figure 5.11.

−1.5 −1 −0.5 0 0.5 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

(a) (b)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

2

3

4

(c) (d)

Figure 5.11: Embedding space for ORHD: (a) GPMKDR, (b) LE, (c) KPCA, and (d) SIR.

The MNIST database consists of 70,000 sample images of size 28×28 and the image has a

8-bit grayscale pixel value. The input vector of length 784 is projected to the low-dimensional

spaces by four different methods. 400 random samples are selected for each digit. Figure 5.12

shows the projections to a 3D subspace of the MNIST dataset.

The USPS database contains 1,100 examples of 8-bit grayscale images for each digit. The

size of images is 16× 16. We randomly sample 400 images per digit. The projection results to
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Figure 5.12: Embedding space for MNIST: (a) GPMKDR, (b) NPE, (c) KPCA, and (d) SIR.

the 3D embedding spaces are depicted in Figure 5.13. Observe that the classes are well sepa-

rated in the central subspace of GPMKDR in all databases. The central subspace of GPMKDR

is clearly distinguishable from the projections of LE even though the former is created from an

LE manifold.

To quantify the quality of the low-dimensional embedding, we estimate the kNN classifi-

cation error in the projected subspaces. We report results from five different random samplings

of the data and report the average error rates. We also display energy compactness of the em-

beddings (normalized sum of the retained eigenvalues). Figure 5.14 and Figure 5.15 show the

scores as a function of the subspace dimension. Because the maximum dimension for SIR is

# classes − 1, we investigate only 2 to 9 dimensions. GPMKDR-based central space display

anticipated grouping of data points according to the digit labels. The advantage of GPMKDR

over competing methods is especially significant for lower dimensional embeddings. Most of

GPMKDR energy is concentrated in few eigenvalues that rapidly lead to good separation in the

subspace, as measured by the error rates. SIR produces inferior structure. We have observed

significant variation in its performance as a function of the number of slices, but none leads to

performance better than GPMKDR. Unsupervised LE and KPCA recovered, as expected, less



63

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

−0.04
−0.02

0
0.02

0.04
0.06

−0.06

−0.04

−0.02

0

0.02

0.04
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(a) (b)

−0.06
−0.04

−0.02
0

0.02
0.04

0.06
0.08

−0.05

0

0.05
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−4
−3

−2
−1

0
1

2
3

−4

−2

0

2

4
−4

−3

−2

−1

0

1

2

3

4

(c) (d)

Figure 5.13: Embedding space for USPS: (a) GPMKDR, (b) LE, (c) KPCA, and (d) SIR.

structure than GPMKDR. KPCA showed consistently unsatisfactory performance when fewer

than 9 dimension is used. Surprisingly, LE appeared to consistently outperform SIR on both

sets even though 3D visualization results for SIR seem structurally more appealing. Poor SIR

performance may be attributed to, among other factors, the underlying covariate distribution

assumptions.
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Figure 5.14: Error rate: (a) ORHD, (b) MNIST, and (c) USPS.
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Figure 5.15: Energy concentration: (a) ORHD, (b) MNIST, and (c) USPS.

5.7 Summary and Contribution

We have proposed a novel dimension reduction approach called Gaussian Process Manifold

Kernel Dimensional Reduction, induced by reformulating the manifold kernel dimensional re-

duction (mKDR) in the Gaussian Process (GP) framework. In this framework, a closed-form

solution for mKDR is given by the maximum eigenvalue-eigenvector solution to a kernelized

problem. We also suggest a way to generalize the approach to arbitrary points in the covari-

ate space. The new algorithm has been applied to several synthetic and real-world datasets.

The closed-form solution eliminates the need for parameter settings of iterative mKDR and can

significantly reduce its complexity. Our preliminary results on vision applications such as the

illumination and 3D human pose estimation indicate that our approach can result in a regressors

with high accuracy and reduced computational requirements.
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Chapter 6

Application in Financial Data

6.1 Preliminaries

In this chapter we apply our GPMKDRmodel to financial data, especially to solve the problem

of implied volatility surface (IVS) prediction in the option market. An option in the stock

market is a contract which conveys the right to buy or to sell a particular stock at a certain price

(i.e. strike) at some time on or before a certain day (i.e. expiration). There are two kinds of

options: call and put options. Buying a call option gives the buyer to right to buy a specific

quantity of a stock at a certain strike price at some time or before expiration and buying a put

option gives the right to sell. The theoretical value of an option can be evaluated according to

several models (e.g. Black-Scholes model [64] and binomial options pricing model [65]) which

utilize the quantitative techniques based on the concept of risk neutral pricing and stochastic

calculus. Among the various factors affect the option price, volatility represents the measure

of uncertainty or risk about the size of changes in an asset’s value. A higher volatility means

that the price of asset can change dramatically over a short time period in either direction while

a lower volatility means that the price fluctuates at a steady pace. The Implied volatilities of a

option is the volatility directly derived from the market price of the option based on an option

pricing model. The level or behavior of implied volatility represents the state of the option

market and is used as a market risk indicator [66].

From a specific pricing model, one can derive the IVS by applying the model to a set

of options across different strikes and expirations. This volatility surface is utilized as a key

financial variable for trading, hedging, and the risk management of various equity portfolios

in the financial market. Because the IVS is a stochastic variable which indicates the current

market move and risk [67], it is a key financial variable for market makers at option trading

desks who keep monitoring and updating the volatility surface they trade on. Risk managers
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also estimate the impact of large market movements by analyzing implied volatility shifts or

other deformations of the IVS. Therefore, it is a very important task to model the IVS dynamics

properly and predict the future volatility surface from the current market condition.

Next, we briefly introduce the mathematical concept of IVS in option pricing and the diffi-

culties in IVS modeling. We then specify our problem in IVS prediction with high frequency

tick data.

6.1.1 Implied Volatility Surface

The factors that determine the value of an option include the current stock price, the strike,

time to expiration, interest rates, volatility, and cash dividends paid. For simplicity, assume a

option for a non-dividend paying stock with the current stock price, St with expiration date T

and strike priceK. When the fixed interest rate is given, the price of option is a function which

depends on the option pricing model,M :

PM : (St,K, T, σ) → PM (St,K, T, σ) ∈ R ≥ 0 (6.1)

where σ is the volatility, which is a statistical measure that shows how much the return of

stock underlying the asset will fluctuate between now and the expiration. Let us now consider

the option price is known from a market, which is denoted by Pmarket(K,T ). Then the im-

plied volatility σI(K,T ) of the option is defined as the value of the volatility parameter which

equates the market price with the price determined by the modelM :

PM (St,K, T, σI(K,T )) = Pmarket(K,T ). (6.2)

With a fixed stock price at the current time, we then have the unique implied volatility that

represents the characteristics of option depending on the expiration T and the strike K . And

the collection of these values results in a parametric surface which is called the implied volatility

surface:

σI : (K,T ) → σI(K,T ). (6.3)

Figure 6.1(a) depicts the IVS graph. Note that the surface is built by using the IVS collected

in 15 minutes and these real data points are marked using a small red dot (black in gray print).

The way to build this IV surface will be fully described in Section 6.3 again.
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Figure 6.1: 3D implied volatility surface example (based on the option trade between 9:36AM
and 9:41AM on Sep. 30, 2008).

6.1.2 Difficulties in IVS Prediction

Modeling the IVS with high frequency tick data is a challenging task. First, as observed in

Figure 6.2(a), the instances of implied volatilities can be very sparse and can be missing on

the sub-regions over the moneyness axis. For example, the implied volatilities for the options

belonging to the first closest expiration are observed only near-the-money (where the strike is

close to the current stock price, around 0 in the graph). However, in order to use the surface

as a variable in the application, we need the observations on the every desired grid. The pop-

ular methods to this problem are to utilize a non-parametric approximation such as Nadaraya-

Watson estimator [68,69] or to model the IVS in a parametric form [70–72]. In our experiment,

we utilize the parametric fitting for an individual curve that can represent the detail movements

of IVS over the different expirations.

The movement of IVS is affected by various factors such as underlying stock price move-

ments for bid/ask/trade, the trading volume ratio between the different segments over money-

ness axis, and the volume change in stock trade. In addition, the IVS itself has its own view

represented from the its price inputs (bid/ask/high/low/open/close price, volume-weighted-

average-price(VWAP)). Therefore, it is not an easy task to consider all these factors in pre-

dicting the future IVS. As a result, none of the previous approaches attempt to take advantage

of these factors.
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Figure 6.2: Implied Volatility Surface Analysis: (a) IVS as seen from top (b) volatility sur-
face level evolution using the implied volatility curve of second closest expiration in the days
between Sep. 29 and Oct. 3.

6.1.3 Previous Approaches

The motivation to the study of IVS as a foundation for a market-based approach is well de-

scribed in [68]. Before this work, the main stream of implied volatility time series analysis

focuses on curves (e.g. at the money implied volatility smiles), not surface. The smoothed

volatility surface is obtained using a non-parametric Nadaraya-Watson estimator. Then they

apply the Karhunen-Loeve decomposition (a generalization of PCA to higher dimensional ran-

dom fields) on the surface generated from the daily variations of the logarithm of implied

volatility. The dynamics of individual eigenvalue sequences are modeled separately and the

analysis focuses on the correlation between the principal component and the time. Fengler et

al. [69] extend the volatility curve model to the surface by utilizing common principal com-

ponents analysis (CPC). They exploit a small number of factors common to several maturity

groups to represent a group structure given by the option surface data. The various parametric

modeling of surface is also studied for IVS. Goncalves et al. [70] fit the volatility surface into

the following parametric model by ordinary least squares (OLS):

ln σi = β0 + β1Mi + β1M
2
i + β3τi + β4(Mi × τi) + εi (6.4)

where Mi is the time-adjusted measure of moneyness, τi is the maturity and εi is the random

error term for i = 1, . . . , N (N is the number of options available across the surface). A vector

AR model has been also utilized to model the dynamics of the coefficient vector β = {βj}
4
j=0.
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However, this type of parametric fitting seems insufficient to represent the subtle changes in

the surface. Fengler et al. [71] considered the sparsity of IVS data with respect to the time-to-

maturity axis. For the previous studies using the nonparametric approximations (e.g. Nadaraya-

Watson estimator), the bandwidth in the time-to-maturity dimension must be very large to cover

the large gaps between the expirations. Therefore it causes an estimation bias with severe

irregular observations across the moneyness. A semiparametric factor model (SFM) as an

solution to this problem is also proposed and the dynamic structure of the IVS is represented

by the movement of basis functions in a finite dimensional function space. When Yi,j is the

log-implied volatility, Xi,j is the the vector of moneyness and time-to-maturity, i is an index of

time, and j is the index of the strikes. In this approach, the IVS is fitted to the following model:

Yi,j ≈ m0(Xi,j) +

L∑
l=1

βi,lml(Xi,j) (6.5)

where mi are smooth basis functions and βi are weights depending on time i. After fitting,

the dynamics of βi is analyzed by applying the classical vector autoregressive model. Because

of the iterative process in fitting, this method can be computational demanding and the predic-

tion performance is also limited. To overcome this shortfall, Audrino et al. [72] propose the

semi-parametric factor model utilizing an additive expansion of simple fitted regression trees

estimated by boosting techniques. Beginning from a initial model, a tree-boosting algorithm

sequentially minimizes the residuals of observed and estimated implied volatilities. A cross-

validation strategy is utilized to find an optimal stopping value for the tree boosting. They

propose to use the split variables in a tree as factors. However, instead of using these factors

alone, the authors add the factors from Heston-Nandi-GARCH model, which are very high di-

mensional factors. In the experiments of measuring the prediction accuracy for out-of-sample

data, the method is compared to other standard approaches such as sticky-moneyness model

and PCA with ARMA-GARCH model.

All the previous works utilized the stock index (e.g. S&P500 and DAX) based on daily

historical data. There are no works for the intraday prediction of the IVS of individual stock

option and no previous study considers both stock and option as the input factors. However, our

purpose is to predict the volatility surface from all available high-frequency tick data recorded

for every trade and quote in both stock and option market. In particular, we do not limit the
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option selection to the index option.

6.2 Problem Formulation

We formulate the problem of predicting future IVS from the current market data as a regression

problem. In this regression problem, the input is the observed data representing the current

market condition (e.g. underlying stock price change, bid/ask volume ratio, the current IVS

from bid/ask prices for the options etc.) and the output is the future IVS at the certain time.

Figure 6.2(b) shows that the level of volatility surface keeps changing according to the various

market conditions and time. The observation that shifts in the level of implied volatility are

highly correlated across strikes and maturities suggests that their joint dynamics is driven by a

small number of factors. It also indicates the usability of intrinsically low dimensional features

which are directly linked to the movements of the IVS.

6.3 Data

Although all the previous approaches to model the implied volatilities surface are based on daily

data, our dataset is obtained from the intraday high frequency tick data. The implied volatility

surface is computed from call and put option prices with different strikes and expirations on

a few stock symbols. To build the dataset, we first collect the time-bucket data from the raw

tick data file. The time-bucket data is a formatted collection of tick data which represents the

tendency of orders and trades made in a certain time frame window (e.g. 5 or 15 minutes). For

example, the time-bucket data includes the open/close/high/low prices, the total sizes (volume),

and the volume weighted average prices (VWAP) of all traded or quoted stocks and options

in a specified time segment. After collecting the time-bucket data, we can easily compute

the implied volatilities from all available option prices. To construct the IVS, only out-of-the-

money options are used: put options are used for moneynessm < 0, call options for moneyness

m > 0. As form, we use the log moneyness m = log(K/F ) (where F = St exp{r(T − t)} is

the forward price of the stock at the expiration time T when the stock price is St at the current

time T and the risk-free interest rate is r) instead of the strike, which describes the intrinsic

value of an option with regarding to its current stock price. To get the smoothed volatility
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surface on the fixed grid, we utilized the following quadratic fitting for the implied volatility

curve for an individual expiration:

σI(m) = γ1(1 + γ2m + γ3m
2) (6.6)

where γ1 is the level of IV curve and γ2 and γ3 represent the skewness and the kurtosis (or

smileness) of the curve respectively. From this curve fitting, we estimate implied volatilities

over the fixed grid in the moneyness and expiration space.

The variables used in the experiment are defined in Table 6.1. The target of the regression

is the parameters {γi
1, γ

i
2, γ

i
3}

n
i=1 (n is the number of expirations) of IVS at time t + 1.

Table 6.1: Variables included in the input.
Variable Name dim. Description

stockQuotePriceRatiot 1 Fraction that expresses the ratio of ask VWAP
to bid VWAP of underlying stock trading at
time t

stockQuoteV olumeRatiot 1 Fraction that expresses the ratio of ask vol-
ume to bid volume of underlying stock trad-
ing at time t

stockPriceChanget 1 Fraction that expresses the ratio of stock trad-
ing price at time t to price at time t− 1

QuadBidParamst−1,t d× n× 2 Parameters for IVS from the quoted option
bid price at time t−1 and t (d is the number of
parameters and n is the number of expirations
in the option data)

QuadAskParamst−1,t d× n× 2 Parameters for IVS from the quoted option
ask price at time t− 1 and t

volumeBidRatiot 3× n Ratio of three volumes of quoted bid options
for out-of-money put, in-the-money, and out-
of-money call at time t

volumeAskRatiot 3× n Ratio of three volumes of quoted ask options
for out-of-money put, in-the-money, and out-
of-money call at time t

6.4 Results

To investigate the usefulness of our GPMKDR framework in this IVS prediction problem, we

compare the predictive accuracy of various regression models. We apply four regression mod-

els: Linear, Nadaraya-Watson, GP, and our GPMKDR. The model parameters which should be

manually set are tuned through cross-validation.
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The accuracy of the prediction is measured using mean error after we normalize the scale of

the output dimensions. In the real market, the key parameter which the most market participants

is more interested in are the level (γ1) and skewness (γ2) of IVS, especially for short term

options which are far more actively traded than long term options. If the level or skewness of

the volatility surface are accurately predicted, it is quite straightforward to develop profitable

trading strategies from them. However, as for the kurtosis, unless the prediction is highly

accurate, it is relatively difficult to trade it. Therefore, it is practically reasonable for us to

be more interested in these two parameters. We report the prediction accuracy on the level,

γ1, and the skewness, γ2 of the implied volatility curves of two closest expirations. Table 6.2

shows the mean errors in predicting these outputs by four regression methods. The models are

trained using the option data (240 time-bucket samples) of Google (symbol: GOOG) collected

from September and October in 2008. Then we test the models on the option data of the

same stock collected in 4 days (100 time-bucket samples) of November, 2008. Using the same

settings, we test the methods on the options for another stock and sector Exchange-Traded Fund

(ETF): Apple (symbol: AAPL) and Financial Select Sector (symbol: XLF). The mean errors

in predicting four output parameters are shown respectively in Table 6.3 and Table 6.4. For all

symbols, the accuracy of GPMKDR in predicting the level of the implied curve for the closest

expiration (γ1 of first expiration) is better than any other regressors. Note that the options on

this curve are usually traded heavier (more liquid) than the other options. For the other output

parameters, though our GPMKDR performs very well for the index option XLF, the prediction

accuracy of GPMKDR of this stock option is lower than the other three regression methods.

It is because some information in the original input related to these output parameters is lost

while we select the limited number of dimensions in the latent space. We are able to improve

the prediction accuracies for these outputs by learning the central subspace only from them.

Table 6.2: Prediction error mean and variance for GOOG.
Key Output Linear NW GP GPMKDR

γ1 of 1st Exp. 0.528 ± 0.065 0.653 ± 0.110 0.709 ± 0.106 0.423 ± 0.060
γ2 of 1st Exp. 0.434 ± 0.148 0.387 ± 0.125 0.260 ± 0.087 0.506 ± 0.094
γ1 of 2nd Exp. 0.408 ± 0.049 0.335 ± 0.041 0.344 ± 0.032 0.214 ± 0.016
γ2 of 2nd Exp. 0.404 ± 0.230 0.472 ± 0.336 0.490 ± 0.281 0.813 ± 0.244

Table 6.5 shows p-value from the statistical hypothesis tests between GPMKDR and the
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Table 6.3: Prediction error mean and variance for AAPL.
Key Output Linear NW GP GPMKDR

γ1 of 1st Exp. 0.971 ± 0.400 0.820 ± 0.225 0.402 ± 0.067 0.369 ± 0.104
γ2 of 1st Exp. 0.406 ± 0.102 0.391 ± 0.094 0.512 ± 0.124 0.566 ± 0.129
γ1 of 2nd Exp. 0.309 ± 0.065 0.110 ± 0.013 0.300 ± 0.060 0.379 ± 0.157
γ2 of 2nd Exp. 0.283 ± 0.064 0.354 ± 0.069 0.297 ± 0.054 0.314 ± 0.071

Table 6.4: Prediction error mean and variance for XLF.
Key Output Linear NW GP GPMKDR

γ1 of 1st Exp. 2.132 ± 3.562 1.258 ± 0.562 1.385 ± 0.350 0.683 ± 0.128
γ2 of 1st Exp. 1.808 ± 6.921 0.795 ± 0.479 0.540 ± 0.146 0.521 ± 0.126
γ1 of 2nd Exp. 1.139 ± 0.727 0.879 ± 0.344 0.931 ± 0.258 0.373 ± 0.071
γ2 of 2nd Exp. 3.400 ± 36.441 1.025 ± 0.867 0.751 ± 0.264 1.325 ± 0.961

other regressors by using t-test and Willcox Signed Rank test. For these tests we focus on the

task of predicting the level (γ1) of the implied volatility curve for the closest expiration. For

GOOG dataset, GPMKDR shows a similar sampling distribution to the linear regressor and for

AAPL dataset, GPMKDR and GP have a significant similarity. The statistical test results show

that our GPMKDR has a unique advantage on the task of predicting the IVS of index options

that fluctuate in a wide range.

Table 6.5: Statistical model comparison.
T-test Wilcoxon signed-rank testSymbol

Linear NW GP Linear NW GP
GOOG 0.571 0.00331 5.83e-5 0.34 3.42e-10 2.32e-13
AAPL 8.44e-15 1.15e-13 0.41 1.1e-16 1.82e-16 0.0642
XLF 6.14e-10 1.32e-6 4.8e-13 1.06e-7 0.0011 2e-13
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Chapter 7

Conclusion

In this dissertation we have studied extensions of nonlinear dimensionality reduction applied

to various contexts. Our focus is on a coupled subspace embedding induced from a pair of

sequences, and takes account of the intrinsic structures of both sequences and characterizes the

relationship. By utilizing this subspace, we improve the prediction accuracy in the prediction

tasks with high dimensional input data.

In Chapter 3 we introduced the Marginal Autoregression (MAR) model and Marginal Non-

linear Dynamic System (MNDS) to model the dimensionality reduction process of single se-

quence. In contrast to the other subspace embedding models, our MNDS is the dimension

reduction process which exploits the dynamic nature of the data sequence by utilizing MAR

as a dynamic prior. MAR is the dynamic model representing all stable AR models, which

marginalizes out the model parameters using Gaussian process (GP) prior. We test the utility

of MNDS framework on the problem of 3D human figure tracking in sequence of monocular

silhouette images. The results show that a dynamically constrained subspace using MNDS

can effectively resolve the ambiguities in silhouette images and result in more accurate pose

estimates than using the general static embedding without a dynamic approach.

In Chapter 4 we proposed Dynamic Probabilistic Latent Semantic (DPLSA) models which

represent the embedding process taking account to the co-occurrence of dyadic sequences in the

generative way. The experimental results on 3D pose estimation indicate that the our DPLSA

formalism can achieve high accuracies with factional computation cost of the traditional track-

ing methods utilizing the subspace embedding. Therefore, the proposed model has the potential

to handle complex classes of tracking problems, such as challenging rapidly changing motions,

when coupled with multiple model frameworks such as switching dynamic models. Future

work can address these new directions as well as focus on continuing extensive evaluation of
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DPLSA on additional motion datasets. As we noted in our experiments on 3D human figure

tracking, the style problem should be also resolved for improved automatic human tracking.

In Chapter 5 we proposed the novel dimension reduction approach called Gaussian Pro-

cess Manifold Kernel Dimension Reduction (GPMKDR) to use the dimensionality reduction

to make predictions in the discriminative way. Our GPMKDR model is the reformulation of

the previous manifold Kernel Dimension Reduction (mKDR) approach which discovers a sub-

space embedding that best preserves information relevant to a nonlinear regression. Instead of

an iterative solution without a convergence guarantee, our model provides a globally optimal

solution in a closed form which is given by the eigen-decomposition. This framework elimi-

nates the need for parameter setting of an iterative process and reduces the computational cost

for learning. The results on various real datasets indicates the our GPMKDR can achieve high

accuracy in prediction of regression with small computational costs. Our future work focus on

the full discriminative dynamic model exploiting the temporal information in our GPMKDR

framework.

In Chapter 6 we apply our GPMKDR regression framework to real financial data. We for-

mulated the problem of predicting the implied volatility surface (IVS) from the current market

data inputs as a regression problem. The high dimensionality of input including all available

market data and the existence of small hidden factors inducing the IVS movements indicates

that our GPMKDR model can be an ideal fit to this problem. And the experimental results also

show that our approach results in more accurate predictions when compared to other general

regression methods.

In the appendices we have gathered additional details relevant for the computations per-

formed in the previous chapters.
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Appendix A

MAR Gradient

Log-likelihood of the MAR model is, using Equation (3.3) and leaving out the constant term,

L =
N

2
log |Kxx|+

1

2
tr

{
K−1

xx XX ′
}

(A.1)

withKxx = Kxx(X,X) defined in Equation (3.4). The gradient of L with respect to X is

∂L

∂X
=

∂XΔ

∂X

∂L

∂Kxx

∂Kxx

∂XΔ
+

∂L

∂X

∣∣∣∣
XΔ

. (A.2)

XΔ can be written as a linear operator on X,

XΔ = Δ ·X, Δ =

⎡
⎣ 0(T−1)×1 I(T−1)×(T−1)

0 01×(T−1)

⎤
⎦ , (A.3)

where 0 and I denote zero vectors and identity matrices of sizes specified in the subscripts. It

is now easily follows that

∂L

∂X
= Δ′

(
NK−1

xx −K−1
xx XX ′K−1

xx

)
Δ ·X + K−1

xx X. (A.4)
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Appendix B

GPMKDR Derivation

To derive (Equation 5.12) we follow steps similar to those outlined in [57]. Given the objective

J as (Equation 5.9), it can be shown that the gradient of the objective can be written as

1

2
∇J(Φ) = −UK(Φ)−1Kc

yyK(Φ)−1UTΦ + MUK(Φ)−1UTΦ.

Hence, the solution Φ has to satisfy

UK(Φ)−1Kc
yyK(Φ)−1UTΦ = MUK(Φ)−1UTΦ. (B.1)

IfALBT is the SVD decomposition ofΦ, using the Woodbury matrix inversion lemma the term

K(Φ)−1 becomes

K(Φ)−1 =
1

Nε

[
I − UTAL

(
NεI + L2

)−1
LATU

]
, (B.2)

where we used the fact that UUT = I and ATA = I . We now substitute (B.2) into (5.11). Note

that the following holds

K(Φ)−1UTΦ =
1

Nε

[
I − UTAL

(
NεI + L2

)−1
LATU

]
UTAL

=
1

Nε
UTAL

[
I −

(
NεI + L2

)−1
L2

]
= UTAL

(
NεI + L2

)−1
. (B.3)

Similarly,

UK(Φ)−1 =
1

Nε
U

[
I − UTAL

(
NεI + L2

)−1
LATU

]
=

1

Nε

[
I −AL

(
NεI + L2

)−1
LAT

]
U. (B.4)

Substituting (B.3) and (B.4) into (5.11) results in
[
I −AL

(
NεI + L2

)−1
LAT

]
UKc

yyU
TAL(NεI + L2)−1

= M
[
I −AL

(
NεI + L2

)−1
LAT

]
AL. (B.5)
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Premultiplying1 both sides by
[
I −AL

(
NεI + L2

)−1
LAT

]−1
and postmultiplying by (NεI+

L2)L−1 finally yields
1

M
UKc

yyU
TA = A(NεI + L2). (B.6)

1TheM ×M matrix is nonsingular as it can be written in the form Nε
(
NεI + AL

2
A
T)−1.
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