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ABSTRACT OF THE DISSERTATION

Simplified Models for simulating replica exchange

simulations and recovering kinetics of protein folding

by Weihua Zheng

Dissertation Director: Dr. Ronald M. Levy

Protein folding is a fundamental problem in modern structural biology. The nature of the

problem poses challenges to the understanding of the process via computer simulations.

One of the challenges in the computer simulation of proteins at the atomic level is the ef-

ficiency of sampling conformational space. Replica exchange (RE) methods are widely

employed to alleviate the difficulty. To study how to best employ RE to protein folding

and binding problems, We constructed a kinetic network model for RE studies of protein

folding and used this simplified model to carry out ”simulations of simulations” to analyze

how the underlying temperature dependence of the conformational kinetics and the basic

parameters of RE all interact to affect the number of folding transitions observed. When

protein folding follows anti-Arrhenius kinetics, we observe a speed limit for the number

of folding transitions observed at the low temperature of interest, which depends on the

maximum of the harmonic mean of the folding and unfolding transition rates at high tem-

perature. The efficiency of temperature RE was also studied on a more complicated and

realistic continuous two-dimensional potential. Comparison of the efficiencies obtained

ii



using the continuous and discrete models makes it possible to identify non-Markovian ef-

fects which slow down equilibration of the RE ensemble on the more complex continuous

potential. In particular, the efficiency of RE is limited by the timescale of conformational

relaxation within free energy basins. The other challenges we are facing in all-atom simu-

lations is to obtain meaningful information on the slow kinetics and pathways of folding.

We present a kinetic network model which recover the kinetics using RE-generated states

as the nodes of a kinetic network. Choosing the appropriate neighbors and the microscopic

rates between the neighbors, the correct kinetics of the system can be recovered by running

a simulation on the network.
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Chapter 1

Introduction—-Two challenges posed to computer
simulations of protein folding

Protein folding is a fundamental problem in modern structural biology, and is an example

of a slow process occurring via rare events in a high-dimensional configuration space[1].

The nature of the problem poses two major challenges to the understanding of the folding

process via computer simulations. One of the challenges in the computer simulation of pro-

teins at the atomic level is the efficiency of sampling conformational space. The efficiency

of many common sampling protocols, such as Monte Carlo (MC) and molecular dynam-

ics (MD) is limited by the need to cross high free-energy barriers between conformational

states and rugged energy landscapes. One general class of methods for overcoming this

problem involves the use of generalized ensembles[2] which distorts the energy landscape

in a way that allows for increased efficiency but which can be ”undone” by appropriate

reweighting to recover the canonical ensemble. The most well-known of these approaches

is umbrella sampling[3], in which biasing potentials are used to allow for more efficient

sampling in regions of high free energy connecting minima of interest. A series of sim-

ulations with a set of biasing potentials spanning the reaction coordinate of interest can

then be combined using the WHAM method to obtain a potential of mean force along that

coordinate[4]. Umbrella sampling has been used extensively in many areas of computa-

tional chemistry and physics, including the study of folding [5] and allosteric transitions[6]

in proteins. Multicanonical simulation[7, 8] is another generalized ensemble method that

can be viewed as an extreme form of umbrella sampling[9], in which a biasing potential
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is added in order to make the resulting energy distribution uniform. This allows the sys-

tem to undergo free diffusive motion in energy space, allowing barriers to be surmounted.

Alternatively, the temperature could be made a dynamical variable and a biasing potential

could be applied to make the temperature distribution uniform, leading to the simulated

tempering algorithm[10]. All of these methods require substantial prior knowledge about

the system being studied: a good choice of reaction coordinate must be determined or an

appropriate biasing function must be found (often at significant computational cost).

Another class of methods for studying equilibrium properties of quasi-ergodic sys-

tems that has received a great deal of recent attention is based on the Replica Exchange

(RE)[11, 12] algorithm (also known as parallel tempering). To accomplish barrier cross-

ings, RE methods simulate a series of replicas over a range of temperatures. Periodically,

coordinates are exchanged using a Metropolis criterion[13] that ensures that at any given

temperature a canonical distribution is realized. RE methods, particularly Replica Ex-

change Molecular Dynamics (REMD)[14], have become very popular for the study of pro-

tein biophysics, including peptide and protein folding[15, 16], aggregation[17, 18, 19], and

protein-ligand interactions[20, 21]. Previous studies of protein folding appear to show a

significant increase in the number of reversible folding events in REMD simulations versus

conventional MD[22, 23]. Given the wide use of REMD, a better understanding of the RE

algorithm and how it can be utilized most effectively for the study of protein folding and

binding is of considerable interest.

The effectiveness of RE methods is determined by a complex of correlated factors, in-

cluding the number of temperatures (replicas) that are simulated, their range and spacing,

the rate at which exchanges are attempted and the kinetics of the system at each temper-

ature. While the determination of “optimal” Metropolis acceptance rates and temperature

spacings has been the subject of a variety of studies[12, 24, 25, 26, 27, 28, 29], the role

played by the intrinsic temperature-dependent conformational kinetics which is central to
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understanding RE has not received much attention. Recent work [30, 31, 29, 32] recog-

nizes the importance of exploration of conformational space and the crossing of barriers

between conformational states as the key limiting factor for the RE algorithm. Molecular

kinetics can have a strong effect on RE beyond the entropic effects that have been dis-

cussed [30, 32], particularly if the kinetics does not have simple temperature dependence.

It is known from experimental and computational studies that the folding rates of proteins

and peptides can exhibit anti-Arrhenius behavior, where the folding ratedecreaseswith

increasing temperature[33, 34, 35, 36, 37, 38]. Different models have been proposed to

explain the physical origin of this effect[39, 40]. To study the efficiency of RE under the

context of anti-Arrhenius behavior is of considerable interest.

In chapter 2 and chapter 3, I will introduce two simplified models we built to simu-

late RE simulations of protein folding. These two models gave us great insight into the

understanding of the mechanism of RE and will guide us to use RE in a more efficient way.

The other key challenge lies in the difficulty for an all-atom simulation to obtain mean-

ingful information on the kinetics and pathways of the folding process. The typical timescale

for a protein to fold is in magnitude of microseconds, which is much longer than the

timescale of a conventional all-atom Molecular Dynamic(MD) simulation can reach in a

reasonable computational time and have good statistics. A number of strategies for ad-

dressing this problem have been proposed over the years that involve focusing on the im-

portant slow processes while neglecting the less interesting rapid kinetics by simplification

of the state space, reduction of dimensionality, or other methods [41, 42, 43] If the process

in question is activated, then most of the time is spent by the system within free energy

basins, while the crossings between basins are relatively rapid but rare. This fact was ex-

ploited by Chandler and co-workers in their transition path sampling approach, where an

MC procedure is used to sample entire time-ordered paths connecting reactant and prod-

uct wells in a well-defined manner[44]. While this approach is based on solid statistical-

mechanical theory and can yield quantitative estimates of the reaction rate, in practice it
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remains challenging for large molecular systems with multiple transition states.

A popular alternative takes advantage of heterogeneous distributed computing [45, 46]

to enhance sampling by combining information from a large number of short molecular

dynamics (MD) trajectories steered by rare events ( Folding@Home). In a similar spirit,

the ”milestoning” technique makes use of many short simulations that span two predefined

critical points along a given reaction path [47]. While both approaches are powerful strate-

gies, the former can introduce a bias towards fast events in the ensemble average of the

reactive trajectories [48], while the latter is limited to a single reaction path that must be

specified in advance. Thus, neither of these approaches can be used to effectively study

systems that may have multiple pathways and transition states.

A related set of methods for obtaining kinetic information are based on the use of

stochastic dynamics on a free energy landscape [49, 50, 51, 52, 53, 54]. They are based on

the premise that if one can find a good reaction pathway for the system, then microscopic

all-atom dynamics can be used to obtain effective diffusion and drift coefficients along that

pathway, allowing to study the kinetics of the system by low-dimensionality Langevin sim-

ulations. While various strategies have been proposed to discover good reaction coordinates

in complex systems [55, 56, 57] , the fact that the details of the kinetics are projected onto

few reaction coordinates can lead to a loss of kinetic information, particularly for systems

with multiple transition states.

An additional strategy for improving computational efficiency consists of discretizing

the state space and constructing rules for moving among those states. The resulting scheme

can be represented as a graph or network [58], and the kinetics on this graph is often

assumed to have Markovian behavior [59, 60, 61, 62, 63]. This approach is particularly

well suited for reduced lattice models, and was first introduced in that context [59]. For

systems with a continuous state space, some form of discretization is required. This can be

done by clustering based on chosen reduced coordinate [58, 61], though the clusters must be

chosen carefully so as to satisfy the Markovian condition [62, 63, 64, 65]. Alternatively, the
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discretization can be based on an analysis of the minima and/or saddle points of the energy

surface [60, 66, 67], which can be used to build a tree-like representation of the potential-

or free-energy surface (the ”disconnectivity graph”) or to perform a discretized version of

transition path sampling [68]. The location of all minima or saddle points, however, can be

a serious challenge for high-dimensional systems, though it has shown that this is possible

for peptide systems [67, 69]. A hybrid approach has also been proposed that makes use of

molecular dynamics to infer local transition regions to build disconnectivity graphs [70].

While discretization methods based on the clustering of microstates are very powerful,

in that they can greatly increase the computational efficiency and allow for the possibility

of studying multiple pathways (to the degree that the discretization allows it), they do suffer

from some disadvantages. As previously noted [51, 56], a careless choice of reduced coor-

dinate can lead to incorrect kinetics. Furthermore, although a properly constructed kinetic

network model will preserve the correct populations of the chosen macrostates, the correct-

ness of populations and potentials of mean force (PMFs) for other reduced coordinates is

not guaranteed.

Powerful generalized ensemble methods [71] such as replica exchange molecular dy-

namics (REMD) [72] have been developed which enhance the ability to obtain accurate

canonical populations in complex systems by increasing sampling efficiency. However,

since REMD involves temperature swaps between MD trajectories, it is not straightfor-

ward to obtain kinetic information from such simulations. [63, 73, 54]. Our laboratory has

made use of a kinetic network model [74] in which the nodes correspond to molecular con-

formations from REMD simulation trajectories, and the edges are derived from an ansatz

based on structural similarity. While this model was shown to yield physically plausible

kinetics [74] , the scheme which was used to weight nodes arising from different simula-

tion temperatures was such that thermodynamic parameters of the system were not exactly

preserved.

We are going to present an improved version of that kinetic network model which is
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guaranteed to reproduce PMFs with respect to any chosen reduced coordinate, while al-

lowing the kinetic behavior to be calibrated so as to reproduce the kinetics of the target

system. As before, we discretize the multi-dimensional configurational space of the system

by running RE simulations of the system and collect snapshots which become the nodes

of the network. These nodes are then weighted using a scheme based on the Temperature-

Weighted Histogram Analysis Method (T-WHAM) [75], allowing us to obtain correct ther-

modynamic averages from the RE samples over all simulation temperatures. We then use

short-time local dynamics to derive drift velocities and diffusion coefficients on a suitably

chosen reduced coordinate. The network topology and microscopic rate parameters can

then be adjusted recursively to match the drift velocities and diffusion coefficients derived

from the network simulations to those derived from local dynamics simulations. Since the

network is a discretized representation of the system and does not require additional en-

ergy and force evaluations, there is a considerable gain in efficiency, allowing us to study

slower kinetic processes than would be accessible using conventional MD. In chapter 4, I

will demonstrate our approach using the folding like two-dimensional potential constructed

in chapter3 and discuss generalizations to the more complex energy landscapes of atomic-

level protein simulations.
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Chapter 2

Simulating Replica Exchange Simulations of protein
folding with a kinetic network model

To understand to what extent the efficiency of replica exchange will be affected by the

kinetics of the biomolecular system and the replica exchange parameter set, simplified

model is a good choice based on two reasons: first, it will take a much shorter time for

the system to converge so that we can run it for a large ensemble of different instances to

obtain good statistics for the data; second, we have much more freedom in controlling the

parameters of the system and of the replica exchange setup and we can observe the system’s

behavior under extreme conditions which could separate the effect of different parameters.

In this chapter, we investigate the impact of simulation parameters and anti-Arrhenius

kinetics on the RE method. Because RE simulations of protein systems that display anti-

Arrhenius behavior are difficult to converge, we developed a kinetic network RE (NRE)

model that allows us to simulate the RE algorithm of two-state protein folding. This net-

work model reduces the atomic complexity of the system to a set of discrete conformational

states that evolve in continuous time according to Markovian kinetics for both conforma-

tional transitions and exchange between replicas.

Kinetic network model has been used to improve computational efficiency by discretiz-

ing the state space and constructing rules for moving among those states. The resulting

scheme can be represented as a graph or network[76]. The kinetics on this graph is assumed

to be stochastic, leading to a Markovian model for the time dependence of the populations

of the various states[77, 78, 79, 80, 81, 82]. Similar schemes have been constructed based

on the output of more conventional MD simulations (often after clustering and choosing a
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reaction coordinate)[76, 79, 80, 81, 83] or based on an analysis of the minima and/or saddle

points of the energy surface[82, 84, 85].

The NRE model studied here does not capture many of the complexities of the ”real”

molecular simulation. For example, it does not have finite-width energy distributions,

and the kinetics of atomic-level simulations are likely to exhibit various kinds of non-

Markovian behavior. However, it does capture many of the essential features of RE and

allows us to study these fundamental aspects of the algorithm at low computational cost

and in a controlled setting. This allows us to separate the interacting parameters and study

their effects on the simulation individually. Given that NRE is an idealized version of RE,

many of the limitations in the convergence rates and efficiency observed with NRE will

likely also be present in full atomic-level RE simulations (in addition to further limita-

tions created by the complexities of the atomic-level simulations), allowing us to identify

promising avenues of inquiry for future atomic-level simulations.

2.1 Introduction to Replica Exchange Method

Let us consider an original system ofN atoms with HamiltonianH(X), whereX is a state

of the system, i.e. a point in the phase space. In the canonical ensemble at temperatureT ,

the equilibrium probability of stateX follows Boltzmann distribution:

Peq(X, T ) =
exp[−βH(X, T )]

Z(T )
,

whereβ = (kBT )−1 is the inverse temperature, andZ(T ) is the partition function of the

system. If we simulate this system using the conventional Monte Carlo method (MC), in

order for the simulation to converge to the equilibrium distribution, it is sufficient to impose

the detailed balance condition on the transition probabilityw(X → X ′):

Peq(X, T )w(X → X ′) = Peq(X
′, T )w(X ′ → X).
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By the Metropolis criterion,

w(X → X ′) =





1 ∆0 ≤ 0

exp(−∆0) ∆0 > 0

,

where∆ = β[H(X ′, T ) −H(X,T )]. If X is a local-minimum-energy state, at the neigh-

borhood ofX, H(X ′) > H(X). At low temperature, the transition probabilityw(X →
X ′) ¿ 1, but the probability of pulling the new sampling state back to the local-minimum

stateX is w(X ′ → X) ≈ 1. In this case, the sampling state has a negligibly small prob-

ability to leave the neighborhood of stateX. This is an example of the simulation being

trapped in a local energy minimum. Suppose we have a combined system which consists

of M non-interacting replicas, each replica is the original system contacting with different

heat bath of temperatureTm (T1 < T2 < . . . < TM). A state of this extended ensemble is

specified by a joint configuration ofM replicas{X(1)
m(1), X

(2)
m(2), . . . , X

(M)
m(M)}, whereX

(i)
m(i)

stands for the configuration of replicai at temperatureTm(i) andm(i) is a permutation of

replica labeli = 1, 2, . . . , M .

If M replicas are distinguishable and non-interacting, the equilibrium distribution of

the extended state{X(1)
m(1), X

(2)
m(2), . . . , X

(M)
m(M)} is

Peq({X(1)
m(1), X

(2)
m(2), . . . , X

(M)
m(M)}) =

1

M !

M∏
i=1

Peq(X
(i), Tm(i))

=
1

M !

M∏
i=1

exp(−βm(i)H(X(i), Tm(i))

Z(Tm(i))
,

whereM ! is the normalizing constant (because of the permutation of M configurations of

each replica) , and

Peq(X,T ) =
exp(−βH(X,T ))

Z(T )

is the canonical equilibrium distribution of the original system (single replica).

To simulate the extended ensemble, in addition to the local MC move within each

replica, we introduce a temperature exchange between two replicas. e.g., we exchange
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the temperatures of replicai and j: {X} = {. . . , X(i)
m(i), . . . , X

(j)
m(j), . . .} → {X ′} =

{. . . , X(j)
m(j), . . . , X

(i)
m(i), . . .}. The detailed balance condition will bePeq({X})w({X} →

{X ′}) = Peq({X ′})w({X ′} → {X}). The equation can be simplified when the Hamil-

tonian of each replica is independent of temperature, i.e.H(X, T ) = H(X). By using

Metropolis criterion, we have

w({X} → {X ′}) =





1 ∆ ≤ 0

exp(−∆) ∆ > 0

,

where∆ = (βm(j) − βm(i))(H(X(i))−H(X(j))).

As shown in Fig. 2.1, rough energy landscape of a protein trap simulations in a local

minimum when conventional sampling methods are used, like Monte Carlo methods or

Molecular Dynamics methods. When using Replica Exchange method, low temperature

replica borrows fast kinetics from high temperature replica and speeds up the equilibration

of the system at low temperature. This is in principle the fundamental mechanism of how

and why replica exchange works in enhancing the sampling efficiency. When applied in

real molecular systems, however, the efficiency of RE will be affected by at least two fac-

tors: the values of RE parameters(e.g. Frequency of attempting replica exchange, number

of replicas, the temperature range and distribution for the replicas, etc.) and the kinetic

property of the system. Especially for the latter, if a system does not have fast kinetics at

high temperature, it is not going to do any good using replica exchange in the first place.

In chapter 2 and chapter 3, we constructed a discrete network model and a continuous two-

dimensional potential to simulate Replica Exchange simulation and show in great details

why and how these two factors affect the efficiency of RE.

2.2 Construction of the network model

In order to isolate some of the essential features of the RE algorithm, we construct a kinetic

network model of RE (NRE) which we can use to study the effects of the parameters of the
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Figure 2.1:Rough energy landscapes of protein folding trap simulations in a local minimum when
conventional sampling methods are used(e.g. Monte Carlo or Molecular Dynamics). Using Replica
Exchange method, the low temperature replica borrows fast kinetics from high temperature replica
to help escaping the local minimum at low temperature.
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model on efficiency and convergence. We consider a system in which the configurational

space can be partitioned into two macrostates of interest separated by a free energy bar-

rier that makes transitions between the conformations an activated process. Motivated by

protein folding, we call these macrostatesF andU (for “Folded” and “Unfolded”). Transi-

tions betweenF andU in a (non-RE) MD or kinetic MC simulation can be approximated

by a Poisson process in which the waiting times between folding and unfolding transition

events are exponentially distributed random variables with mean equal to the reciprocal of

the folding or unfolding rates, respectively.

If the transition events are Markovian, then we can represent the simultaneous behavior

of two non-interacting replicas in terms of the four composite states{F1F2, F1U2, U1F2, U1U2}.
In each symbol, the first letter is the configuration of replica 1, the second letter is the con-

figuration of replica 2, and the subscripts are the temperature of each replica. Therefore

F1U2 represents the composite state that replica 1 at temperatureT1 is folded, while replica

2 at temperatureT2 is unfolded. The kinetics in the composite state space can be repre-

sented as a continuous-time Markov process with discrete states[86].

The four-state composite system corresponding to non-interacting replicas can be ex-

tended to create a discrete-state model of replica exchange by introducing temperature ex-

changes between replicas. For example, suppose the current state isF1U2. After a success-

ful temperature exchange, replica 1 is atT2 and replica 2 is atT1 and the new state can be

represented asF2U1. The introduction of temperature exchange therefore creates four addi-

tional states, leading to the 8-state system{F1F2, F1U2, U1F2, U1U2, F2F1, F2U1, U2F1, U2U1}.
These states are arranged into two sub-networks defined by the “horizontal” folding and

unfolding transitions, which are connected to each other by “vertical” temperature ex-

change transitions, forming a cubic network (Figure 2.2). In general, the network for an

N -replica system consists ofN ! sub-networks, each of which has2N states connected by

folding/unfolding transitions. The model description in this section will focus primarily on

the 2-replica case; all of the details can be easily generalized to the case ofN replicas.
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F1F2

F2F1

F2U1 U2U1

U1U2F1U2

U1F2

U2F1

Figure 2.2: The kinetic network of the composite states corresponding to the simplified replica
exchange model with two replicas. The state labels represent the conformation (letter) and tempera-
ture (subscript) for each replica. For example,F2U1 represents the state in which replica 1 is folded
and at temperatureT2, while replica 2 is unfolded and at temperatureT1. Red and black arrows
correspond to folding and unfolding transitions, respectively, while the temperature at which the
transition occurs is indicated by the solid and dashed lines (forT2 andT1, respectively). The cyan
arrows correspond to temperature exchange transitions, with the solid and dashed lines denoting
transitions with rate parametersα andwα, respectively.
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We require that the equilibrium populations of the states be such that the canonical

ensemble is recovered at each temperature. This is the case if the equilibrium populations

are proportional to the product of the equilibrium populations for the two-state systems,

e.g.

Peq(F1U2) =
1

2
Peq(F1)Peq(U2) =

1

2

kf1ku2

(kf1 + ku1)(kf2 + ku2)
,

where the factor of1/2 accounts for the presence of the two equivalent manifolds. For

these probabilities to be preserved under temperature exchanges, it is sufficient that detailed

balance is satisfied, e.g. the transition probabilitiesw(F1U2 → F2U1) and w(F2U1 →
F1U2) satisfyPeq(F1U2)w(F1U2 → F2U1) = Peq(F2U1)w(F2U1 → F1U2), or

w(F1U2 → F2U1)

w(F2U1 → F1U2)
=

kf2ku1

kf1ku2

≡ w. (2.1)

If the equilibrium favors the folded state atT1 and the unfolded state atT2, thenw < 1.

The ratios of forward and reverse transition probabilities forF1F2 ⇀↽ F2F1 andU1U2 ⇀↽

U2U1 are equal to one, as interchange of temperatures does not change the equilibrium

populations.

In atomic-level RE simulations, temperature exchange attempts are usually made peri-

odically in time, i.e. the MC or MD evolution is interrupted, temperature swap proposal(s)

are made, and the proposals are either accepted or rejected[14, 16]. In keeping with the

continuous-time nature of our network model, we simulate the effect of temperature ex-

changes by introducing an additional rate parameterα which controls the overall scaling

of the temperature exchange rate relative to the folding and unfolding rates. We set the

forward and reverse rates of theF1F2 ⇀↽ F2F1 andU1U2 ⇀↽ U2U1 “reactions” equal toα,

while the other rates are set toα or wα (Figure 2.2) as required by detailed balance (Eq.

2.1), and where we choosew < 1. For example, the statesU1F2 andU2F1 differ in popu-

lation, withU2F1 being more populated if the equilibrium favors the folded state atT1 and

the unfolded state atT2. We therefore set theU1F2 → U2F1 “reaction rate” equal toα, and

the reverse rate equal towα, wherew is defined in Eq. 2.1.
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The NRE model can be simulated using a standard method for continuous time Markov

processes with discrete states[86], also known as the “Gillespie algorithm”. The algorithm

remains efficient even when the number of replicas is large (e.g. 20 replicas, corresponding

to 1024 states) due to the fact that each state is connected to a small number of neighboring

states (those connected by single temperature exchanges involving neighboring tempera-

tures and folding/unfolding transitions of each replica).

The convergence or efficiency of a simulation is monitored by measuringNTE(τ |T1),

the number of “round-trip” transitions between theU and F states, conditional on the

temperature of interestT1 that occur in a given observation timeτ . In the context of the

network model, suppose that we follow replica 1, and at a given time the system is in a

state where that replica is folded at temperatureT1 (e.g.F1F2). We then wait for the first

occurrence of a state in which replica 1 is unfolded atT1 (e.g.U1F2), and then for the first

occurrence of a state in which that replica is folded again atT1 (e.g.F1F2). At this point,

we say that a transition event has occurred. Conceptually, a transition event is a transit of

a given replica from one conformation at low temperature to the other conformation at low

temperature and back again regardless of route, i.e. whether it was the result of a direct

barrier crossing atT1 or indirectly via a barrier crossing atT2 combined with temperature

exchanges. The number of transitions as defined corresponds to the number of “reversible

folding” events studied in all-atom simulations of peptide systems[22, 23].

2.2.1 Thermodynamic model for anti-Arrhenius behavior

The Arrhenius equation relates a reaction ratek to the temperature:

k(T ) = Ae−∆G†(T )/kBT = Ae−(∆E†(T )−T∆S†(T ))/kBT , (2.2)

where∆G†(T ) is the free energy of activation. The temperature dependence of the reac-

tion rate is customarily described by means of the Arrhenius plot, the plot ofln k(T ) with

respect to1/T . The slope ofln k(T ) in the Arrhenius plot is proportional to the activation
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energy,∆E†(T ), at temperatureT . When the activation energy is temperature independent

the Arrhenius plot appears as a line of constant slope. Moreover, if the activation energy is

positive, the reaction rate increases with increasing temperature. This behavior is referred

to as normal Arrhenius behavior. When the activation energy is negative, however, increas-

ing the temperature causes the rate to decrease. This non-intuitive phenomenon sometimes

observed in protein folding kinetics[33, 34, 35, 36, 37, 38] is referred to as anti-Arrhenius

behavior. In these circumstances the transition state is energetically favored but entropi-

cally disfavored with respect to the reactants.

Often protein folding rates follow normal Arrhenius behavior at low temperatures,

switching to anti-Arrhenius behavior at higher temperatures. This mixed behavior can

be understood in terms of a constant activation heat capacity model in which the activa-

tion energy and entropy vary linearly with respect to the temperature and its logarithm,

respectively[87, 34] :

∆E†(T ) = ∆E†(T0) + (T − T0)∆C†
p (2.3)

∆S†(T ) = ∆S†(T0) + ln(T/T0)∆C†
p (2.4)

where∆C†
p < 0 is the activation heat capacity which is assumed here to be independent

of temperature. Summing Eqs. 2.3 and 2.4, we obtain the expression for∆G†(T ) corre-

sponding to this model. The Arrhenius plots for the unfolding and folding rates,ku(T )

andkf (T ) used in this work, that result from inserting this expression in Eq. 2.2, set-

ting ln A/s−1 = 22, T0 = 300K, and ∆E†(T0), ∆S†(T0), and∆C†
p to be 2 kcal/mol,

−0.01 kcal/mol/K, and−0.025 kcal/mol/K for folding, and 8.5 kcal/mol, 0.008 kcal/mol/K,

and 0 kcal/mol/K for unfolding, respectively, are shown in Figure 2.3. For the case of Ar-

rhenius folding (Figure 2.3 dashed line), the parameters are identical with the exception

that∆C†
p for folding is zero. The unfolding rate follows normal linear Arrhenius behav-

ior, whereas the anti-Arrhenius folding rate decreases with increasing temperature above

T ∗ = 380 K (the temperature at which the activation energy for folding is zero and the
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Figure 2.3:Arrhenius plot of the folding and unfolding rates from a thermodynamic model for the
temperature dependence of protein folding rate constants. Black line corresponds to unfolding rate,
while red lines correspond to the folding rates. The solid line is for the∆C†

p 6= 0 case displaying
anti-Arrhenius behavior, while the dashed line corresponds to the same parameters with∆C†

p = 0.
The arrow indicates the temperatureT ∗ at which the folding rate is maximal (≈ 380 K).



18

folding rate is maximal). The general behavior ofku(T ) andkf (T ) shown in Figure 2.3 is

typical for experimentally determined peptide folding kinetic rates[33, 35, 38].

2.3 Results and Discussion

2.3.1 Convergence efficiency of non-RE simulations

When considering questions of efficiency, it is often useful to compare results to that of a

well-understood reference. In the case of RE simulations, we choose a single-temperature

uncoupled MD or kinetic MC simulation as the reference. If we assume (as in NRE) that

kinetics over a discretized state space is Poisson, then the convergence behavior of the

single-temperature simulation can be determined analytically. Let us consider a system

with rates

F
ku⇀↽
kf

U

and suppose that we are interested in estimating the equilibrium population in theF state

(the “fraction folded”). In molecular simulations, this is typically estimated by allowing

the system to evolve for a certain amount of timeτ and calculating the fraction of time

spent in the F state:

S(τ) =
1

τ

∫ τ

0

δF (t)dt, (2.5)

whereδF (t) is an indicator function that is 0 if the system is in stateU at timet and 1 if it is

in stateF . If the system is Poisson, thenS(τ) is the random variable corresponding to the

normalized time integral of the “telegraph process”, which is the Markov process in which

the system alternates between states 0 and 1 with exponential residence times[86]. The

moments of the time integral of the telegraph process can be determined analytically[86],

and can be normalized by1/τ to obtain the moments ofS(τ). In particular, the mean of

S(τ) is given by

〈S(τ)〉F =
kf

ku + kf

+
ku

τ(ku + kf )2

(
1− e−(ku+kf )τ

)
(2.6)
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or

〈S(τ)〉U =
kf

ku + kf

− kf

τ(ku + kf )2

(
1− e−(ku+kf )τ

)
(2.7)

depending on whether the system began in stateF or U at timet = 0, respectively. These

are of interest because they tells us how quickly the system equilibrates.

Equations 2.6 and 2.7 show that the mean ofS(τ) approaches the true fractional pop-

ulation asτ → ∞, and the second term in each equation represents the mean deviation

from the correct value. The magnitude of this bias depends strongly on the starting state:

e.g. beginning inF leads to much smaller bias if the system’s equilibrium strongly favors

F . In a molecular simulations, one normally does not knowa priori where the equilibrium

lies, and therefore which is the more favorable starting state. One can account for this

uncertainty using the average absolute bias

1

2

(
〈S(τ)〉F − 〈S(τ)〉U − 2kf

ku + kf

)
=

1

τ(ku + kf )

(
1− e−(ku+kf )τ

)
(2.8)

corresponding to the average over choosing the starting state to beU or F with equal

probability. The average absolute bias depends inversely on the rates only via their sum,

and becomes negligible ifτ is large relative to(ku+kf )
−1. Therefore, the bias is dominated

by the fastest rate, in the sense that ifku andkf are of different magnitudes, changes in the

smaller of the two will have very little effect on the convergence compared to changes in

the larger rate. The origin of this can be most easily seen in the limit wherekf À ku. If

we begin inF , then even if no transition events occur we will have little bias, since the

true value of the fraction folded is very close to 1. Alternatively, if we begin inU , then we

will be very likely to quickly see a folding event (provided thatτ is not too small), again

leading to small bias. The key observation is that, for a non-RE simulation, the convergence

is dominated by the fastest rate, and in some circumstances it is not necessary to have many

“round-trip” transitions between the states in order to obtain converged results.
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2.3.2 Convergence efficiency of the kinetic network model for largeα

limit

We first examine the behavior of NRE for the simplest possible case: two replicas where

the rate of temperature exchanges is large compared to the folding/unfolding kinetics. The

condition thatα be very large relative to the “molecular” kinetic rates simplifies the prob-

lem, since in that limit the behavior will be independent of the precise choice ofα and will

depend only on the (temperature-dependent) folding and unfolding rates. Since the energy

distributions in NRE are temperature independentδ-functions, there is no intrinsic penalty

for having the temperature difference between the replicas be very large. Therefore, we fix

T1 at 300K, and sweepT2 over the range 300K to 700K. We wish to see if there is a specific

T2 which gives optimal convergence. In Figure 2.4 we show the estimates of the “fraction

folded” S1(τ) averaged over many independent simulations. The fraction foldedS1(τ) is

defined as the fraction of time spent in theF state at low temperature:

S1(τ) =
1

τ

∫ τ

0

δF1(t)dt, (2.9)

whereδF1(t) is an indicator function that is 1 if the system is in one of the four composite

states in which the replica atT1 is folded (F1F2, F1U2, F2F1, or U2F1), and 0 otherwise.

Since the timeτ used for these simulations is not large relative to the equilibration time of

the system, there is a significant deviation of〈S1(τ)〉 from the correct value (indicated by

the horizontal dotted line), and the distance from the curves to the dotted line represents the

bias. In the Arrhenius (∆C†
p = 0) case, the bias decreases monotonically withT2. For the

protein folding model having anti-Arrhenius behavior (∆C†
p 6= 0), there is a clear minimum

in the bias atT2 ≈ 440 K. Thus, unlike the purely Arrhenius case, there is an unambiguous

optimal high temperature.

In order to investigate the origin of this optimal temperature, We have measured the

number of conformational transitions for the NRE model using both Arrhenius and anti-

Arrhenius models for the folding and unfolding rates with various choices of the number
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Figure 2.4:Estimates of the relative population of theF conformation at temperatureT1 = 300 K
for a finite simulation time. The temperature of replica 1 was held fixed at 300 K, whileT2 (of
replica 2) is swept from 300 K to 700 K. The temperature exchange parameterα was set to 2ns−1.
For each individualT2, the system was simulated forτ = 1.25 µs beginning in the stateF1F2 at
time t = 0 and the fraction folded atT1 S1(τ) was calculated. This was repeated 50,000 times,
and the resultingS1(τ) values were averaged and the results are plotted. The solid line corresponds
to the anti-Arrhenius folding rates (∆C†

p 6= 0), while the dashed line corresponds to the Arrhenius
rates (∆C†

p = 0) (Figure 2.3). The true fraction folded atT1 = 300 K is the same for both the
Arrhenius and anti-Arrhenius models and is indicated by the dotted line. The temperature at which
the bias is minimized for the anti-Arrhenius model (≈ 440 K) is indicated by the arrow.
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of replicas, their temperatures, and the temperature exchange rate parameterα. The goal of

these calculations is to study factors that affect the increased efficiency that RE can provide.

We define the efficiency in the context of NRE to be the total number of transition events

divided by the number of replicasNTE(τ |T1)/N . We make several general observations.

First of all, increasing the total temperature range for a given number of replicas can de-

grade the efficiency of reversible folding if the kinetics is anti-Arrhenius (Figure 2.5A). On

the contrary, for the purely Arrhenius case, both the folding and unfolding rates increases

as temperature goes up, results in no optimum temperature for the efficiency(dashed line).

In order to understand this behavior, we first examine the behavior of NRE for the

simple case of two replicas (N = 2), where the rate of temperature exchanges is large

compared to the folding/unfolding kinetics. The condition thatα be very large relative to

the conformational kinetic rates simplifies the problem, since in that limit the behavior is

independent of the precise choice ofα and depends on the (temperature-dependent) folding

and unfolding rates. We fixT1 at 300K, and sweepT2 over the range 300K to 700K.

In Figure 2.6A we show the dependence ofNTE(τ |T1)/N normalized by the number of

replicas as a function ofT2 for the anti-Arrhenius kinetic model (∆C†
p 6= 0).NTE(τ |T1)/N

indicates the convergence efficiency of the system. We see that, for the two-replica system,

NTE(τ |T1)/N is small at low and highT2, and reaches a maximum near 440 K (dashed

black line).

The number of transition events for an uncoupled, non-RE simulation is easy to predict.

If the kinetics is Poisson, then the mean lifetime in each basin isk−1, wherek is the rate

for leaving the basin. In order to make a round-trip starting fromF , for example, we must

wait on averagek−1
u before jumping toU , and then anotherk−1

f before jumping back to

F . Therefore the rate of transition events is given by the harmonic mean of the folding

and unfolding rates(k−1
u + k−1

f )−1, and the number of transitions is that rate multiplied by

the total observation time. The harmonic mean is dominated by the smallest rate, agreeing



23

300 400 500 600 700

Tmax (K)

0

1000

2000

3000

4000

5000

6000

N
T

E
(

| T
1) 

/N

2 4 6 8 10 12 14 16 18 20

N

0

500

1000

1500

2000

2500

A B

Figure 2.5:Number of transition events in NRE simulations (normalized by the number of replicas)
for various temperature ranges, exchange ratesα, and number of replicasN . In all cases, the system
was simulated forτ = 4 µs. For the simulations in (A),α was set to 1000µs−1, the dashed and
solid lines correspond to Arrhenius and anti-Arrhenius kinetics, respectively, and six replicas were
exponentially distributed between 300 K andTmax. The simulations in (B) were performed with
anti-Arrhenius rates,N replicas exponentially distributed from 300 K to 700 K, andα values of
10000 µs−1 (black),1000 µs−1 (red),100 µs−1(green),10 µs−1(blue) and1 µs−1(cyan).
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with our intuition that the number of transitions is determined by the rate limiting step.

In the case of coupled trajectories such as in the NRE model, the dependence of the

number of transitions on the rates is not as obvious, however it can be easily estimated by

simulation. In Figure 2.6A we show the dependence ofNTE(τ |T1)/N as a function ofT2

for the anti-Arrhenius kinetic model. We see thatNTE(τ |T1)/N is small at low and high

T2, and reaches a maximum near 440 K (Figure solid black line). In fact, theNTE(τ |T1)/N

obtained by simulation in the largeα limit is very well approximated by the “arithmetic

mean of harmonic means”

NTE(τ |T1)/N ≈ τ

N

[
(k−1

f1 + k−1
u1 )−1 + (k−1

f2 + k−1
u2 )−1

]

(Figure 2.6 black dashed line). These results suggest that the convergence of NRE is lim-

ited by the rate at which round-trips between basins occur, and that the convergence rate

is therefore strongly dependent on the slowest rates. This is very different from the un-

coupled, non-RE case discussed above, which is dominated by the fastest rate. The system

must sample all basins more than once in order to accurately estimate populations, and the

convergence atT1 will be limited by the number of transitionsNTE(τ |T1)/N .

Next, we examine how the number of replicas affects the convergence as monitored by

the number of transition events. In Figure 2.6A we examine whether a third replica results

in an improvement over the optimum behavior with two replicas. To do this, we fixT1 at

300 K,T3 at 440 K (the two-replica optimum), and scanT2 from 300 K to 700 K (i.e. we

do not requireT1 < T2 < T3). We see in Figure 2.6A (solid green line) that the number

of transitions per replica again reaches a maximum nearT2 ≈ 440 K, corresponding to the

case where one replica is at the temperature of interest (300 K), while the other two are both

placed at the “optimal” temperature of 440 K. As in the two-replica case,NTE(τ |T1)/N is

very well-approximated by the average of the harmonic means of the rates at all three tem-

peratures (Figure 2.6A dashed green line). The relevant question is whether the addition of

the third replica is an improvement over two. It is important in this regard to distinguish

the convergence rate from the computational efficiency of the simulation. In the cases seen
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Figure 2.6:Number of transition events per replica in NRE simulations using the anti-Arrhenius
folding rates for a simulation timeτ = 4 ms conditional on temperatureT1 = 300 K, while T2 is
scanned from 300 K to 700 K. (A) Black and green solid lines: simulation results for two-replica
and three replica systems (withT3 = 440 K), respectively. Black and green dashed lines: number
of transition events predicted using the average of harmonic means for two and three replicas, re-
spectively. All simulations were performed withα = 10 ns−1. (B) Results fortwo-replica NRE
simulations using the anti-Arrhenius folding rates andα values of 10ns−1 (black solid), 1ns−1

(red), 100µs−1 (green), 10µs−1 (blue), and 1µs−1 (cyan). The black dashed line corresponds to
the predicted number of transitions for a single, uncoupled simulation atT1.
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in Figure 2.6A, the total number of transition events (not normalized by the number of

replicas) is larger for three replicas than the maximum total number of transition events for

two replicas, and therefore we expect the convergence to be better. In general, adding an

additional replica will always improve overall convergence, since the additional transition

pathways opened up will always have a positive contribution to the total number of transi-

tion events. However, the computational efficiency of NRE as measured byNTE(τ |T1)/N

of the three-replica simulation is improved relative to the two-replica simulation only if the

additional temperatureT2 has values between 350 and 550 K (Figure 2.6A black dotted

line). While the addition of a replica always improves convergence, it improves efficiency

only if the harmonic mean of the rates at the additional temperature is large relative to the

harmonic means of the other replicas. If not, then the presence of the additional slow paths

will reduce the efficiency. For the general case of NRE withN replicas, we expect that, in

the largeα limit, optimal efficiency (and convergence) will be obtained when one replica

is at the temperature of interest, and all of the other replicas are placed at the temperature

which maximizes the harmonic mean of the folding and unfolding rates. Thus, the replica

with the largest harmonic mean sets a “speed limit” for the amount of efficiency improve-

ment that an RE simulation can have over an uncoupled simulation run for the same amount

of CPU time. The addition of replicaN + 1 will increase the efficiency only if the har-

monic mean at the new temperature is greater than the average of the harmonic means of

the originalN replicas.

2.3.3 Convergence efficiency of the kinetic network for finiteα

In the results described above, the rate of temperature exchanges is so large that conver-

gence is limited only by the rates of conformational transitions at each temperature. When

α is comparable to or smaller than the rates of conformational transitions, the waiting time

for a temperature exchange to occur becomes comparable to or even larger than the time

scale of configuration changes within each replica. Therefore, there can be multiple folding
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or unfolding events at higher temperatures before any of these events are transmitted to the

temperature of interest. These events are “lost” and make no contribution to the number of

transition events at low temperature. Therefore, in the NRE model (where conformational

transitions are instantaneous and strictly Markovian), the optimal convergence (and effi-

ciency) is achieved in the limit whereα overwhelms the kinetic rates, and smaller values

of α only degrade the performance of the algorithm. It should be noted that, because of

non-Markovian effects present in real molecular systems, it may not be possible to achieve

the largeα limit in molecular RE simulations.

In Figure 2.6B we show the effect ofα on the number of transition events per replica

for two replicas as a function of the high temperatureT2. As expected, the number of

transition events becomes smaller asα decreases. The drop in the number of events is most

dramatic whenα approaches the magnitude of the conformational transition rate constants

(10–100µs−1). If we compareNTE(τ |T1)/N with the expected number of transitions

for a single-temperature simulation atT1 (Figure 2.6B dashed line), we see that for some

combinations ofα andT2 the efficiency of two-replica NRE is less than a uncoupled non-

RE simulation, while for others the efficiency is improved.

The value ofT2 which maximizes the number of transition events also decreases asα

decreases. This arises due to a competition between the increase in the number of transition

events at high temperature asT2 approaches 440 K (the temperature at which the harmonic

mean rate is maximized) and the decrease in the efficiency in transfer of those transitions

to the low temperature by temperature exchanges due to the decrease ofw with increasing

temperature gap. Thus, there is a temperature for which there is an optimal balance be-

tween the increasing number of conformational transition events at high temperature and

the decreasing efficiency of transfer to low temperature. This optimum occurs when the

two competing effects are of comparable magnitude, leading to a decrease in the optimum

temperature asα decreases.

The finite-α behavior of NRE for many replicas is more complex, as issues related to
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the size of the state space become important. While in the limit of infiniteα, any conforma-

tional transition in a replica at any temperature is “communicated” via rapid temperature

exchanges toT1 before the replica has had a chance to move back, this is not the case for

finite α. The most apparent symptom of this is that a simulation with more replicas can be

less efficient than one with fewer. This can be seen in Figure 2.5B, where the insertion of

additional replicas into a fixed temperature range can lead to a decrease inNTE(τ |T1)/N .

This is related to the rapid increase in the combinatoric size of the NRE state space asN in-

creases. As defined previously, a transition event is counted only when the system evolves

from a state where the replica of interest isU atT1 to one in which it isF (also atT1) and

back. For example, when the system leaves a composite state of the formU1XX . . . X,

it must find its way to a state of the formF1XX . . . X and back for a transition event to

occur for replica 1. However, the number of states of the formF1XX . . . X for N replicas

is 2N−1(N − 1)!, and the ratio of the size of this “target set” of states to the total number of

accessible states2NN ! decreases asN−1 whenN increases. The more replicas there are in

the NRE simulation, the longer any excursion in temperature space away fromT1 will last,

and we expect the number of transition events to reflect this.

2.3.4 Convergence efficiency of the kinetic network under special con-

ditions

In order to study the effect of increasing the number of replicas on the efficiency of NRE in

isolation, we studied the NRE model for the case in which the folding and unfolding rate

constants are independent of temperature. The effect of different temperature distributions

and changing temperature exchange rates with different numbers of replicas are thereby

excluded, and the efficiency of NRE will only be affected by the size of the combinatorial

state space. This temperature-independent system is equivalent to one in which all of the

replicas are starting at the same temperature, but where each temperature is distinguishable
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by a virtual label. We define a transition event as before, i.e. a round-trip change in confor-

mational state of a replica conditional on a temperature label. We will refer to this special

temperature label as “the temperature of interest”.

Since all replicas are equivalent in terms of their kinetic properties and there is no

increased rate of conformational interconversion at high temperature that the replica at the

temperature of interest can “borrow from”, we expect that the number of transitions per

replica will at best match that of a single-processor simulation. Specifically, we expect

that the number of transition events per replica to be small for smallα, and that it will

increase monotonically as a function ofα, approaching the number of transitions for a

single-processor simulation asα → ∞. If we examine the behavior of the total number

of transition events at the temperature of interest as a function ofα for various numbers of

replicasN (Figure 2.7), we see that this is indeed the case. However, the value ofα needed

to give a value for the number of transition events close to the asymptotic limit depends

strongly onN : for N = 2, α ≈ 100 µs−1 is sufficiently large to approximate the infinite

limit, while α ≈ 10 ns−1 is required whenN = 10. ForN = 40, even larger values ofα

are required. This is a direct consequence of the increase in the combinatoric complexity of

the search space, in that increasingly larger temperature interconversion rates are required

to propagate a conformational change at a distant temperature to the temperature of interest

in a time that is short compared to the conformational transition rates.

This increase in combinatoric complexity is also seen in the behavior of the number of

transitions per replica as the number of replicas increases (Figure 2.8). This is similar to

the effect seen in Figure 3 of the main paper, however here all possible contributions of

the temperature dependence of the rate constants have been eliminated. Again, we see a

strong decrease in the efficiency as the number of replicas increases, reflecting the increased

possibility of a replica becoming “lost” in the combinatoric state space.

The origin of these phenomena originate fundamentally from the increase in the size

of the state space, and consequently, from the increase in the average time a given replica
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Figure 2.7: Number of transition events per replica as a function ofα for a temperature-
independent rate system in a total simulation time of 4 ms. The folding and unfolding rates were
those of the anti-Arrhenius model at 440 K (i.e.ku = 12.06 µs−1 andkf = 1.052 µs−1). The
predicted number of transition events for an uncoupled, non-RE simulation with the same rates and
simulation time is shown as a black dashed line and corresponds to theα → ∞ limit. The black,
red and green data correspond toN = 2, 10, and 40, respectively.
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Figure 2.8:Number of transition events per replica as a function of the number of replicasN for a
temperature-independent rate system in a total simulation time of 4 ms. The folding and unfolding
rates were those of the anti-Arrhenius model at 440 K (i.e.ku = 12.06 µs−1 andkf = 1.052 µs−1).
The curves correspond toα = 5, 10, 20, 40, 60, 100, and 200µs−1 from bottom to top, respectively.
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spends in a single excursion away from the temperature of interest. Since for a given replica

there are on the order ofN states in which that replica is not at the temperature of interest

for every state in which that replica is at the temperature of interest, on average, the time a

given replica spends in a single excursion away from the temperature of interest increases

linearly withN (Figure 2.9).

It should be noted that although the efficiency is degraded whenα is small and the

number of replicas is large, the correct fraction folded at low temperature can nonetheless

be obtained with the NRE model for anti-Arrhenius folding rates for as many as 20 replicas

(data not shown). This is despite the fact that for 20 replicas there are220 20! ≈ 1024

composite states, and therefore it is not possible for any NRE simulation to visit each

state once, much less reach equilibrium. This demonstrates that it is possible to achieve

convergence of average quantities without the convergence of the full replica exchange

ensemble. This is not unreasonable, since the convergence of any one of theN ! symmetry-

related sub-networks is sufficient to obtain correct macrostate populations. Therefore, even

a local exploration of the full kinetic network is sufficient to obtain converged results.

2.4 Conclusions

In this chapter we have used a kinetic network model of replica exchange to explore the

effects of anti-Arrhenius behavior of the conformational kinetics on the convergence of

replica exchange protein folding simulations. We have constructed a network model for

replica exchange inspired by protein folding and have studied its convergence behavior as

a function of the number of replicas, their temperatures, the kinetics at each temperature,

and the rate of temperature exchange. The number of folding transitions is used as an

indicator for convergence. The results demonstrate that the convergence of NRE for a two

replica system in the limit of very rapid temperature exchanges is fastest when the high

temperature is chosen to maximize the harmonic mean of the folding and unfolding rates.
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number of replicasN . The folding and unfolding rates were those of the anti-Arrhenius model at
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fit.
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Additional replicas improve the efficiency in the NRE model only if the harmonic mean of

the kinetic rates at the temperature of the additional replica is larger than the average of the

harmonic means of the original set of replicas. Both the convergence rate and efficiency

are reduced if the temperature exchange rate is finite, and the optimal temperature of the

high-temperature is reduced.

The conclusions obtained here are based on the behavior of a simplified network model

of replica exchange which is completely Markovian. More of the characteristics of molec-

ular RE could be incorporated into the NRE model to enhance its realism. For example,

continuous energy distributions could be used to simulate the effects of energy distribution

overlaps. Non-Markovian effects, such as non-exponential waiting time distributions could

also be modeled, either directly or by dividing theF andU macrostates into “hidden” mi-

crostates. Even though many proteins are observed to follow simple two state kinetics for

folding under some conditions, the underlying free energy landscape is undoubtedly more

complex. The NRE model can also be extended to simulate more complex landscapes rep-

resented by three or many more macrostates. It could turn out that the best strategies for

optimizing RE simulations are different for such cases as compared with those where the

kinetics is described by two state anti-Arrhenius behavior as has been observed for some

peptides[35, 38].

The results shown here for the NRE model are nevertheless likely to be relevant for

atomic-level RE simulations, and suggest that more extensive “training” simulations to

explore the temperature dependence of the kinetics will be useful for optimizing the effi-

ciency of RE. Training simulations have been used to construct asynchronous variants of

RE[88] and to find the optimum temperature ladder by maximizing the diffusion in temper-

ature space[16, 29]. However, maximizing the diffusion of replicas in temperature space

regardless of the actual kinetics at each temperature does not necessarily optimize the RE

simulation. If the rate constants have anti-Arrhenius behavior, then there exists an optimal

temperature with the fastest kinetics. Additional replicas beyond that temperature decrease
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the efficiency of the simulation relative to the case where the same number of replicas were

used, but where the additional replicas are placed close to the optimum temperature. This

is because in the anti-Arrhenius case the optimum temperature has more favorable kinetic

properties than any higher temperature, and can contribute more to the convergence of the

low temperature of interest. In this context, finding the optimum high temperature should

take priority, and the remaining replicas can then be distributed to optimize temperature

diffusion and efficiency. On the other hand, in the context of Arrhenius-like rates, there is

no optimum high temperature, and the focus on the optimization of diffusion to the highest

temperature is justified.

The possibility that an arbitrary choice of highest temperature may be too high is fur-

ther increased by the observation that finite temperature exchange rates lower the optimal

highest temperature significantly below that predicted by the harmonic mean of the for-

ward and reverse rates at high temperature. Superficially, it could be argued that this result

is not relevant to atomic-level simulations, which are already conducted in the “large-α”

limit, given that the folding and unfolding timescales of peptides and small proteins are on

the order of tens to hundreds of nanoseconds while temperature exchanges are typically

done on a picosecond timescale. However, unlike the NRE model, for which temperature

exchanges of any magnitude can freely occur, in a molecular simulation the rate of temper-

ature exchanges is limited by the rate of diffusion in energy space. For example, a replica

must first find low-energy configurations to be able to exchange temperature with a replica

at a lower temperature. Therefore, the rate of conformational transitions places an upper

limit on the effective value ofα that can be achieved in a molecular simulation.

NRE also provides some insights into the choice of the number of replicas and their

temperature distribution. In molecular RE simulations, the temperature spacing is dictated

primarily by the overlap of energy distributions at different temperatures. However, if we

wish to add additional replicas beyond those required to obtain sufficient energy overlap

(for example, in a large-scale cluster or grid computing environment), the NRE results
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indicate that additional replicas will be most beneficial to efficiency if they are placed

at temperatures such that the average of the harmonic means is increased. Additionally,

it may be possible to use re-weighting methods such as T-WHAM[89], which generate

estimates of thermodynamic quantities based on data from more than one temperature,

to further accelerate convergence properties, since folding transitions are not required to

occur between identical temperatures to be “productive”. RE methods which are based on

the exchange of energy function parameters[90] may also have more favorable convergence

properties for some systems.

The replica exchange technique is a powerful conformational sampling method for the

study of quasi-ergodic systems while preserving canonical thermodynamic properties. For

these reasons, it has become a very popular tool in computational biophysics research. This

study identifies some characteristics of the method that are key for the effective use of RE to

study processes with anti-Arrhenius kinetic behavior, such as protein folding and binding.

2.5 Appendix I: Closed form analysis for theα → ∞ limit of the net-

work model

In the largeα limit, the network model can be greatly simplified and some neat analyt-

ical treatment can be done to get meaningful results that can also be verified via sim-

ulations. We begin with the full cubic model of Figure 2.2. Asα becomes large, the

“up-and-down” transitions become very fast relative to the transitions along the top and

bottom faces of the cube. Therefore, we can assume that the pairs of states connected by

the vertical transitions (corresponding to temperature exchanges) experience instantaneous

equilibration, and can be considered as single states. This reduces the number of effective

states from 8 to 4:FF ≡ {F1F2, F2F1}, FU ≡ {F1U2, F2U1}, UF ≡ {U1F2, U2F1}, and

UU ≡ {U1U2, U2U1}. We can imagine that each of these 4 composite states has “inside of

it” the two temperature-labeled states with their respective equilibrium probabilities. For
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example, the stateFF has “inside”F1F2 andF2F1 each with population1/2 (since they

have equal populations at equilibrium), whileFU has “inside”F1U2 andF2U1 with popu-

lations1/(1 + w) andw/(1 + w), respectively. In terms of kinetics, the rate to exit a given

state is simply the population-weighted sum of the rates corresponding to the “internal”

sub-states. For example, the rate corresponding to theFU → UU transition will be the

rate forF1U2 → U1U2 weighted by1/(1 + w) (the relative population ofF1U2 “inside”

FU ) plus the rate forF2U1 → U2U1 weighted byw/(1 + w) (the relative population of

F2U1 “inside” FU ). Working through these sums, we end up with the square network of

Figure 2.10 with rates

kA =
1

2
(ku1 + ku2)

kB =
kf1kf2(ku1 + ku2)

kf1ku2 + ku1kf2

kC =
ku1ku2(kf1 + kf2)

kf1ku2 + ku1kf2

and

kD =
1

2
(kf1 + kf2).

The kinetic matrix for the network in Figure 2.10 has three non-zero eigenvalues, given by

λ1 = kB + kC and

λ± =
1

2

[
η ±

√
η2 − 8(kAkC + 2kAkD + kBkD)

]
,

whereη = 2kA +kB +kC +2kD. I have shown that these rates give the correct equilibrium

probabilities (proof omitted) and have numerically confirmed that the eigenvalues are the

same as those obtained for the8× 8 kinetic matrix corresponding to the full network with

a very large value ofα.

The distribution of temperature-unconditional first passage times is related to the kinet-

ics of the network where the destination states have been replaced by a single absorbing

state (Figure 2.11). The two non-zero eigenvalues of the corresponding kinetic matrix are

λ± =
1

2
(2kA + kB + kC ± ρ),
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whereρ =
√

4kA(kA − kC) + (kB + kC)2. These eigenvalues are clearly distinct, and

will in general lead to a bi-exponential first passage time distribution. Solving for the first

passage time distribution (by solving the master equation forP (U, t) and differentiating

with respect tot) we find that

P (tFP ) =
1

2ρ
[2kA(1−p0

FF )+kC(2p0
FF−1)+kB](λ−e−λ−t−λ+e−λ+t)+

1

2
(λ−e−λ−t+λ+e−λ+t),

where the initial populations areP (FF, 0) = p0
FF andP (FU, 0) = 1 − p0

FF . The mean

first passage time can be obtained analytically by integration:

〈tFP 〉 =

∫ ∞

0

tFP P (tFP ) dtFP

=
2kA + kB + p0

FF (kC − kA)

kAkB + 2kAkC

.

For the specific case of the rates used in our simulations (kf1 = 0.818, ku1 = 0.13,

kf2 = 1.05, ku2 = 12.06), the collapsed rates arekA = 6.095, kB = 1.0468, and

kC = 0.2928, and the non-zero eigenvalues areλ+ = 12.7492 andλ− = 0.7804, with cor-

responding eigenvectorse+ = (−2.14685, 1.14685, 1) ande− = (−0.08404,−0.91596, 1).

Since the equilibrium populations(0, 0, 1) minuse− is (0.08404, 0.91596, 0), choosing ini-

tial populations in whichp0
FF = 0.08404 will lead to a single exponential first passage time

distribution with rateλ− = 0.7804. On the other hand, because of the pattern of signs in

e+, it is impossible to find initial conditions for which the first passage time distribution is a

single exponential with rateλ+. The mean first passage time is 1.2449, close in magnitude

to 1/λ− = 1.281, but considerably longer than1/λ+ = 0.078. Our simulations results

confirmed that the two eigenvaluesλ+ andλ− match with the double exponential curve-fit

parameters from the plot of the mean first passage time.

The eigenvalue or master equation approach inherently cannot give information about

the paths taken to reach equilibrium. In the simple system of Figure 2.11, however, it

is possible to make some analytical statements about the paths. Suppose, for example,

that we begin from stateFF at time 0. There are three types of paths by whichFF can
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reachU : FF → U (1-step path of type 1),[FF → FU ]n → U (2n-step path of type 2,

n = 1, 2, . . .), and[FF → FU ]n → FF → U (2n + 1-step path of type 3,n = 1, 2, . . .).

The probability of the type 1 path occurring iskA/(kA +kA) = 1/2, while the probabilities

of paths of type 2 and 3 are

P2(n) =
kn−1

B kC

2n(kB + kC)n

and

P3(n) =
kn

B

2n+1(kB + kC)n

respectively. These probabilities are normalized, since

∞∑
n=1

P2(n) =
kC

2(kB + kC)

∞∑
n=0

(
kB

2(kB + kC)

)n

=
kC

2(kB + kC)

(
1− kB

2(kB + kC)

)−1

=
kC

2kC + kB

,

∞∑
n=1

P3(n) =
1

2

∞∑
n=1

(
kB

2(kB + kC)

)n

=
1

2

[(
1− kB

2(kB + kC)

)−1

− 1

]

=
kB

2(2kC + kB)
,

and
1

2
+

kC

2kC + kB

+
kB

2(2kC + kB)
= 1.

If we use the rates of our simulation, the fraction of paths starting atFF that are absorbed

via type 1, 2, and 3 paths are 0.5, 0.18, and 0.32, respectively. Thus, approximately 68%

of the paths are paths in which the final transition to reachU is from FF , nearly3/4’s

of which occur directly as the first transition after timet = 0 . (Thanks for Dr. Andrec

providing me this derivation.)
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2.6 Appendix II: Publication attached

Part of the contents of this chapter was published inProc. Natl. Acad. Sci. USA, 104,

15340-15345 (2007).
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Figure 2.10:The collapsed 4-state kinetic network model.
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Figure 2.11:The collapsed kinetic network model with an absorbing state corresponding to walker
1 unfolded.
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Replica exchange (RE) is a generalized ensemble simulation
method for accelerating the exploration of free-energy landscapes,
which define many challenging problems in computational bio-
physics, including protein folding and binding. Although temper-
ature RE (T-RE) is a parallel simulation technique whose implemen-
tation is relatively straightforward, kinetics and the approach to
equilibrium in the T-RE ensemble are very complicated; there is
much to learn about how to best employ T-RE to protein folding
and binding problems. We have constructed a kinetic network
model for RE studies of protein folding and used this reduced
model to carry out ‘‘simulations of simulations’’ to analyze how the
underlying temperature dependence of the conformational kinet-
ics and the basic parameters of RE (e.g., the number of replicas, the
RE rate, and the temperature spacing) all interact to affect the
number of folding transitions observed. When protein folding
follows anti-Arrhenius kinetics, we observe a speed limit for the
number of folding transitions observed at the low temperature of
interest, which depends on the maximum of the harmonic mean of
the folding and unfolding transition rates at high temperature. The
results shown here for the network RE model suggest ways to
improve atomic-level RE simulations such as the use of ‘‘training’’
simulations to explore some aspects of the temperature depen-
dence for folding of the atomic-level models before performing RE
studies.

anti-Arrhenius � Markov process � parallel tempering

One of the key challenges in the computer simulation of
proteins at the atomic level is the sampling of conforma-

tional space. The efficiency of many common sampling proto-
cols, such as Monte Carlo (MC) and molecular dynamics (MD),
is limited by the need to cross high free-energy barriers between
conformational states and rugged energy landscapes. One class
of methods for studying equilibrium properties of quasi-ergodic
systems that has received a great deal of recent attention is based
on the replica exchange (RE) algorithm (1, 2) (also known as
parallel tempering). To accomplish barrier crossings, RE meth-
ods simulate a series of replicas over a range of temperatures.
Periodically, coordinates are exchanged by using a Metropolis
criterion (3) that ensures that at any given temperature a
canonical distribution is realized. RE methods, particularly
REMD (4), have become very popular for the study of protein
biophysics, including peptide and protein folding (5, 6), aggre-
gation (7–9), and protein–ligand interactions (10, 11). Previous
studies of protein folding appear to show a significant increase
in the number of reversible folding events in REMD simulations
versus conventional MD (12, 13). Given the wide use of REMD,
a better understanding of the RE algorithm and how it can be
used most effectively for the study of protein folding and binding
is of considerable interest.

The effectiveness of RE methods is determined by the number
of temperatures (replicas) that are simulated, their range and
spacing, the rate at which exchanges are attempted, and the
kinetics of the system at each temperature. Although the deter-
mination of ‘‘optimal’’ Metropolis acceptance rates and temper-

ature spacings has been the subject of various studies (2, 14–19),
the role played by the intrinsic temperature-dependent confor-
mational kinetics that is central to understanding RE has not
received much attention. Recent work (19–22) recognizes the
importance of exploration of conformational space and the
crossing of barriers between conformational states as the key
limiting factor for the RE algorithm. Molecular kinetics can have
a strong effect on RE beyond the entropic effects that have been
discussed (20, 22), particularly if the kinetics does not have
simple temperature dependence. It is known from experimental
and computational studies that the folding rates of proteins and
peptides can exhibit anti-Arrhenius behavior, where the folding
rate decreases with increasing temperature (23–28). Different
models have been proposed to explain the physical origin of this
effect (29, 30).

In this paper, we investigate the impact of simulation param-
eters and anti-Arrhenius kinetics on the RE method. Because
RE simulations of protein systems that display anti-Arrhenius
behavior are difficult to converge, we developed a network RE
(NRE) model that allows us to simulate the RE algorithm of
two-state protein folding. This network model reduces the
atomic complexity of the system to a set of discrete conforma-
tional states that evolve in continuous time according to Mark-
ovian kinetics for both conformational transitions and exchange
between replicas.

The NRE model studied here does not capture all of the
complexities of the ‘‘real’’ molecular simulation because various
kinds of non-Markovian behavior are not captured in the
network model. However, it does capture some of the essential
features of RE and allows us to study these fundamental aspects
of the algorithm in a controlled setting and at low computational
cost, which allows us to separate some of the interacting param-
eters and study their effects on the simulation individually. Many
of the limitations in the convergence rates and efficiency ob-
served with NRE also will be present in full atomic-level RE
simulations, allowing us to identify promising avenues of inquiry
for future atomic-level simulations.

Theory
The RE Method and the NRE Model. In a standard RE simulation
with M replicas corresponding to M inverse temperatures �i �
(kBTi)�1 (�1 � �2 � . . . � �M), the state of the extended
ensemble is specified by a joint configuration of M replicas X �
{x1, x2, . . . , xM}, where xi stands for the configuration of replica
i. To simulate the extended ensemble, a propagation algorithm
such as MC or constant-temperature MD is used to locally
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sample the conformational space within each replica, and ex-
changes of configurations between pairs of replicas, e.g., X �
{. . . , xi, . . . , xj, . . .}3 X� � {. . . , xj, . . . , xi, . . .} are attempted
periodically with an acceptance probability w(X3 X�). For the
equilibrium distribution to remain invariant with respect to these
exchanges, it is sufficient to impose a detailed balance condition
on the transition probability. For the potential energy function
U(x), the appropriate transition probability is given by (4)

w�X3 X�� � min�1, exp� � �� j � � i��U�xi� � U�xj��	
 . [1]

To isolate some of the essential features of the RE algorithm,
we construct a kinetic NRE model, which we can use to study the
effects of the parameters of the model on efficiency and con-
vergence. We consider a system in which the configurational
space can be partitioned into two macrostates of interest sepa-
rated by a free-energy barrier that makes transitions between the
conformations an activated process. Motivated by protein fold-
ing, we call these macrostates F and U (for ‘‘folded’’ and
‘‘unfolded’’). Transitions between F and U in a (non-RE) MD or
kinetic MC simulation can be approximated by a Poisson process
in which the waiting times between folding and unfolding
transition events are exponentially distributed random variables
with means equal to the reciprocal of the folding or unfolding
rates, respectively.

If the transition events are Markovian, then we can represent
the simultaneous behavior of two noninteracting replicas in
terms of the four composite states {F1F2, F1U2, U1F2, U1U2}. In
each symbol, the first letter is the configuration of replica 1, the
second letter is the configuration of replica 2, and the subscripts
are the temperatures of each replica. Therefore, F1U2 represents
the composite state that replica 1 at temperature T1 is folded,
while replica 2 at temperature T2 is unfolded. The kinetics in the
composite state space can be represented as a continuous-time
Markov process with discrete states (31).

The four-state composite system corresponding to noninteract-
ing replicas can be extended to create a discrete-state model of RE
by introducing temperature exchanges between replicas. For ex-
ample, suppose the current state is F1U2. After a successful tem-
perature exchange, replica 1 is at T2 and replica 2 is at T1, thus the
new state can be represented as F2U1. The introduction of temper-
ature exchange therefore creates four additional states, leading to
the eight-state system {F1F2, F1U2, U1F2, U1U2, F2F1, F2U1, U2F1,
U2U1}. These states are arranged into two subnetworks defined by
the ‘‘horizontal’’ folding and unfolding transitions, which are con-
nected to each other by ‘‘vertical’’ temperature-exchange transi-
tions, forming a cubic network (Fig. 1). In general, the network for
an N-replica system consists of N! subnetworks, each of which has
2N states connected by folding/unfolding transitions. The model
description in this section will focus primarily on the two-replica
case; all of the details can be generalized easily to the case of N
replicas.

We require that the equilibrium populations of the states be
such that the canonical ensemble is recovered at each temper-
ature. This is the case if the equilibrium populations are pro-
portional to the product of the equilibrium populations for the
two-state systems, e.g.,

Peq�F1U2� �
1
2

Peq�F1�Peq�U2� �
1
2

kf1ku2

�kf1 � ku1��kf2 � ku2�
,

where the factor of 1/2 accounts for the presence of the two
equivalent manifolds. For these probabilities to be preserved
under temperature exchanges, it is sufficient that detailed bal-
ance is satisfied, e.g., the transition probabilities w(F1U23 F2U1)
and w(F2U1 3 F1U2) satisfy Peq(F1U2)w(F1U2 3 F2U1) �
Peq(F2U1)w(F2U1 3 F1U2) or

w�F1U23 F2U1�

w�F2U13 F1U2�
�

kf 2ku1

kf 1ku2
� w. [2]

If the equilibrium favors the folded state at T1 and the unfolded
state at T2, then w � 1. The ratios of forward and reverse
transition probabilities for F1F2 º F2F1 and U1U2 º U2U1 are
equal to one because interchange of temperatures does not
change the equilibrium populations.

In atomic-level RE simulations, temperature-exchange at-
tempts usually are made periodically in time, i.e., the MC or MD
evolution is interrupted, temperature swap proposal(s) are
made, and the proposals are either accepted or rejected (4, 6).
In keeping with the continuous-time nature of our network
model, we simulate the effect of temperature exchanges by
introducing an additional rate parameter �, which controls the
overall scaling of the temperature-exchange rate relative to the
folding and unfolding rates. We set the forward and reverse rates
of the F1F2 º F2F1 and U1U2 º U2U1 ‘‘reactions’’ equal to �,
while the other rates are set to � or w� (Fig. 1) as required by
detailed balance (Eq. 2), and where we choose w � 1. For
example, the states U1F2 and U2F1 differ in population, with U2F1
being more populated if the equilibrium favors the folded state
at T1 and the unfolded state at T2. We therefore set the U1F23
U2F1 ‘‘reaction rate’’ equal to � and the reverse rate equal to w�,
where w is defined in Eq. 2.

The NRE model can be simulated by using a standard method
for continuous-time Markov processes with discrete states (31),
also known as the ‘‘Gillespie algorithm.’’ The algorithm remains
efficient even when the number of replicas is large (e.g., 20
replicas, corresponding to 1024 states) because of the fact that
each state is connected to a small number of neighboring states
(those connected by single temperature exchanges involving
neighboring temperatures and folding/unfolding transitions of
each replica).

The convergence or efficiency of a simulation is monitored by
measuring NTE(� T1), the number of ‘‘round-trip’’ transitions
between the U and F states, conditional on the temperature of
interest T1 that occurs in a given observation time �. In the
context of the network model, suppose that we follow replica 1,
and at a given time the system is in a state where that replica is
folded at temperature T1 (e.g., F1F2). We then wait for the first
occurrence of a state in which replica 1 is unfolded at T1 (e.g.,
U1F2) and then for the first occurrence of a state in which that

F1F2

F2F1

F2U1 U2U1

U1U2F1U2

U1F2

U2F1

Fig. 1. The kinetic network of the composite states corresponding to the
simplified RE model with two replicas. The state labels represent the confor-
mation (letter) and temperature (subscript) for each replica. For example, F2U1

represents the state in which replica 1 is folded and at temperature T2 while
replica 2 is unfolded and at temperature T1. Red and black arrows correspond
to folding and unfolding transitions, respectively, and the temperature at
which the transition occurs is indicated by the solid and dashed lines (for T2 and
T1, respectively). The cyan arrows correspond to temperature-exchange tran-
sitions, with the solid and dashed cyan lines denoting transitions with rate
parameters � and w�, respectively.
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replica is folded again at T1 (e.g., F1F2). At this point, we say that
a transition event has occurred. Conceptually, a transition event
is a transit of a given replica from one conformation at low
temperature to the other conformation at low temperature and
back again regardless of route, i.e., whether it was the result of
a direct barrier crossing at T1 or indirectly via a barrier crossing
at T2 combined with temperature exchanges. The number of
transitions as defined corresponds to the number of ‘‘reversible
folding’’ events studied in all-atom simulations of peptide sys-
tems (12, 13).

Thermodynamic Model for Anti-Arrhenius Behavior. The Arrhenius
equation relates a reaction rate k to the temperature:

k�T� � Ae��G†�T��kBT � Ae���E†�T��T�S†�T���kBT, [3]

where �G†(T) is the free energy of activation. The temperature
dependence of the reaction rate customarily is described by
means of the Arrhenius plot, the plot of ln k(T) with respect to
1/T. The slope of ln k(T) in the Arrhenius plot is proportional to
the activation energy, �E†(T), at temperature T. When the
activation energy is temperature-independent, the Arrhenius
plot appears as a line of constant slope. Moreover, if the
activation energy is positive, the reaction rate increases with
increasing temperature. This behavior is referred to as normal
Arrhenius behavior. When the activation energy is negative,
however, increasing the temperature causes the rate to decrease.
This nonintuitive phenomenon sometimes observed in protein
folding kinetics (23–28) is referred to as anti-Arrhenius behav-
ior. In these circumstances, the transition state is energetically
favored but entropically disfavored with respect to the reactants.

Often protein folding rates follow normal Arrhenius behavior
at low temperatures, switching to anti-Arrhenius behavior at
higher temperatures. This mixed behavior can be understood in
terms of a constant activation heat-capacity model in which the
activation energy and entropy vary linearly with respect to the
temperature and its logarithm, respectively (24, 32):

�E†�T� � �E†�T0� � �T � T0��Cp
† [4]

�S†�T� � �S†�T0� � ln�T�T0��Cp
†, [5]

where �Cp
† � 0 is the activation heat capacity, which is assumed

here to be independent of temperature. Summing Eqs. 4 and 5,
we obtain the expression for �G†(T) corresponding to this
model. Shown in Fig. 2 are the Arrhenius plots for the unfolding
and folding rates, ku(T) and kf (T), used in this work that result
from inserting this expression in Eq. 3, setting ln A/s�1 � 22, T0 �
300 K, and �E†(T0), �S†(T0), and �Cp

† to be 2 kcal/mol, �0.01
kcal/mol�K, and �0.025 kcal/mol�K for folding, and 8.5 kcal/mol,
0.008 kcal/mol�K, and 0 kcal/mol�K for unfolding, respectively.
For the case of Arrhenius folding (Fig. 2, dashed line), the
parameters are identical with the exception that �Cp

† for folding
is zero. The unfolding rate follows normal linear Arrhenius
behavior, whereas the anti-Arrhenius folding rate decreases with
increasing temperature above T* � 380 K (the temperature at
which the activation energy for folding is zero and the folding
rate is maximal). The general behavior of ku(T) and kf (T) shown
in Fig. 2 is typical for experimentally determined peptide folding
kinetic rates (23, 25, 28).

Results
We have measured the number of conformational transitions for
the NRE model by using both Arrhenius and anti-Arrhenius
models for the folding and unfolding rates with various choices
of the number of replicas, their temperatures, and the temper-
ature-exchange rate parameter �. The goal of these calculations
is to study factors that affect the increased efficiency that RE can

provide. We define the efficiency in the context of NRE to be
the total number of transitions divided by the number of replicas
NTE(� T1)/N. We make several general observations. First,
increasing the total temperature range for a given number of
replicas can degrade the efficiency of reversible folding if the
kinetics is anti-Arrhenius (Fig. 3A). To understand this behavior,
we first examine the behavior of NRE for the simple case of two
replicas (N � 2), where the rate of temperature exchanges is
large compared with the folding/unfolding kinetics. The condi-
tion that � be very large relative to the conformational kinetic
rates simplifies the problem because in that limit the behavior is
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Fig. 2. Arrhenius plot of the folding and unfolding rates from a thermody-
namic model for the temperature dependence of protein folding rate con-
stants. The black line corresponds to the unfolding rate, and the red lines
correspond to the folding rates. The solid line is for the �C †

p 
 0 case displaying
anti-Arrhenius behavior, whereas the dashed line corresponds to the same
parameters with �C †

p � 0. The arrow indicates the temperature T* at which the
folding rate is maximal (�380 K).
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Fig. 3. Number of transition events in NRE simulations (normalized by the
number of replicas) for various temperature ranges, exchange rates �, and
number of replicas N. In all cases, the system was simulated for � � 4 ms. For
the simulations in A, � was set to 1,000 �s�1, the dashed and solid lines
correspond to Arrhenius and anti-Arrhenius kinetics, respectively, and six
replicas were exponentially distributed between 300 K and Tmax. The simula-
tions in B were performed with anti-Arrhenius rates, N replicas exponentially
distributed from 300 K to 700 K, and � values of 10,000 �s�1 (black), 1,000 �s�1

(red), 100 �s�1 (green), 10 �s�1 (blue), and 1 �s�1 (cyan).
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independent of the precise choice of � and depends on the
(temperature-dependent) folding and unfolding rates. We fix T1
at 300 K and sweep T2 over the range 300 K to 700 K. In Fig. 4A,
we show the dependence of NTE(� T1) normalized by the number
of replicas as a function of T2 for the anti-Arrhenius kinetic
model. We see that NTE(� T1)/N is small at low and high T2 and
reaches a maximum near 440 K (Fig. 4A, solid black line).

The number of transition events at the low temperature T1
obtained by simulation in the large � limit is very well approx-
imated by the average of the harmonic means of the folding and
unfolding rates at both temperatures:

NTE���T1�/N �
�

N
��kf 1

�1 � ku1
�1��1 � �kf 2

�1 � ku2
�1��1	 [6]

(Fig. 4A, dashed black line). For the uncoupled, non-RE case,
the rate of transition events at each temperature is simply the
harmonic mean of the rate constants. Therefore, our observa-
tion (Eq. 6) suggests that the number of transition events
observed at the lowest temperature in the coupled RE case can
be no larger than the number of transitions at an ‘‘optimum’’
temperature defined as that temperature for which the number
of folding/unfolding transitions for the uncoupled system is
maximized. Because the number of transitions for the uncoupled
system is a harmonic mean of the rate constants, the overall
convergence of NRE at low temperature is limited by the
smallest rate at this optimum (higher) temperature.

Next, we examine how the number of replicas affects the
convergence as monitored by the number of transition events. In
Fig. 4A, we examine whether a third replica results in an
improvement over the optimum behavior with two replicas by
fixing T1 at 300 K and T3 at 440 K (the two-replica optimum) and
scanning T2 from 300 K to 700 K (i.e., we do not require T1 �
T2 � T3). We see in Fig. 4A (solid green line) that the number
of transitions per replica again reaches a maximum near T2 � 440
K, corresponding to the case in which one replica is at the
temperature of interest (300 K) and the other two are both
placed at the ‘‘optimal’’ temperature of 440 K. As in the

two-replica case, NTE(� T1)/N is very well approximated by the
average of the harmonic means of the rates at all three temper-
atures (Fig. 4A, dashed green line).

The relevant question is whether the addition of the third
replica is an improvement over having two. It is important in this
regard to distinguish the convergence rate from the computa-
tional efficiency of the simulation. In the cases seen in Fig. 4A,
the total number of transition events (not normalized by the
number of walkers) is larger for three replicas than the maximum
total number of transition events for two replicas, and therefore
we expect the convergence to be better. In general, adding an
additional replica always will improve overall convergence,
because the additional transition pathways opened up always will
have a positive contribution to the total number of transition
events. However, the computational efficiency of NRE as mea-
sured by NTE(� T1)/N of the three-replica simulation is improved
relative to the two-replica simulation only if the additional
temperature T2 has values between 350 K and 550 K (Fig. 4A,
dotted black line). Although the addition of a replica always
improves convergence, it improves efficiency only if the har-
monic mean of the rates at the additional temperature is large
relative to the harmonic means of the other replicas. If not, then
the presence of the additional slow paths will reduce the
efficiency. For the general case of NRE with N replicas, we
expect that, in the large � limit, optimal efficiency (and conver-
gence) will be obtained when one replica is at the temperature
of interest and all of the other replicas are placed at the
temperature that maximizes the harmonic mean of the folding
and unfolding rates. Thus, the replica with the largest harmonic
mean sets a ‘‘speed limit’’ for the amount of efficiency improve-
ment that an RE simulation can have over an uncoupled
simulation run for the same amount of CPU time. The addition
of replica N � 1 will increase the efficiency only if the harmonic
mean at the new temperature is greater than the average of the
harmonic means of the original N replicas.

In the results described above, the rate of temperature ex-
changes is so large that convergence is limited only by the rates
of conformational transitions at each temperature. When � is
comparable to or smaller than the rates of conformational
transitions, the waiting time for a temperature exchange to occur
becomes comparable to or even larger than the timescale of
configuration changes within each replica. Therefore, there can
be multiple folding or unfolding events at higher temperatures
before any of these events are transmitted to the temperature of
interest. These events are ‘‘lost’’ and make no contribution to the
number of transition events at low temperature. Therefore, in
the NRE model (where conformational transitions are instan-
taneous and strictly Markovian), the optimal convergence (and
efficiency) is achieved in the limit where � overwhelms the
kinetic rates, and smaller values of � only degrade the perfor-
mance of the algorithm. It should be noted that, because of
non-Markovian effects present in real molecular systems, it may
not be possible to achieve the large � limit in molecular RE
simulations.

In Fig. 4B, we show the effect of � on the number of transition
events per replica for two replicas as a function of the high
temperature T2. As expected, the number of transition events
becomes smaller as � decreases. The drop in the number of
events is most dramatic when � approaches the magnitude of the
conformational transition rate constants (10–100 �s�1). If we
compare NTE(� T1)/N with the expected number of transitions
for a single-temperature simulation at T1 (Fig. 4B, dashed line),
we see that for some combinations of � and T2 the efficiency of
two-replica NRE is less than an uncoupled non-RE simulation,
whereas for others the efficiency is improved.

The value of T2 that maximizes the number of transition events
also decreases as � decreases. This result arises because of a
competition between the increase in the number of transition
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Fig. 4. Number of transition events per replica in NRE simulations using the
anti-Arrhenius folding rates for a simulation time � � 4 ms conditional on
temperature T1 � 300 K, while T2 is scanned from 300 K to 700 K. (A) Solid black
and green lines show simulation results for two-replica and three-replica
systems (with T3 � 440 K), respectively. Dashed black and green lines show the
number of transition events predicted by using the average of harmonic
means for two and three replicas, respectively. All simulations were per-
formed with � � 10 ns�1. (B) Results for two-replica NRE simulations using the
anti-Arrhenius folding rates and � values of 10 ns�1 (solid black), 1 ns�1 (red),
100 �s�1 (green), 10 �s�1 (blue), and 1 �s�1 (cyan). The dashed black line
corresponds to the predicted number of transitions for a single uncoupled
simulation at T1.
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events at high temperature as T2 approaches 440 K (the tem-
perature at which the harmonic mean rate is maximized) and the
decrease in the efficiency in transfer of those transitions to the
low temperature by temperature exchanges caused by the de-
crease of w with increasing temperature gap. Thus, there is a
temperature for which there is an optimal balance between the
increasing number of conformational transition events at high
temperature and the decreasing efficiency of transfer to low
temperature. This optimum occurs when the two competing
effects are of comparable magnitude, leading to a decrease in the
optimum temperature as � decreases.

The finite-� behavior of NRE for many replicas is more
complex because issues related to the size of the state space
become important. Although in the limit of infinite �, any
conformational transition in a replica at any temperature is
‘‘communicated’’ via rapid temperature exchanges to T1 before
the replica has had a chance to move back, this is not the case
for finite �. The most apparent symptom of this is that a
simulation with more replicas can be less efficient than one with
fewer, which can be seen in Fig. 3B, where the insertion of
additional replicas into a fixed temperature range can lead to a
decrease in NTE(� T1)/N. This result is related to the rapid
increase in the combinatoric size of the NRE state space as N
increases.

Conclusions
In this paper, we have used a kinetic NRE model to explore
the effects of anti-Arrhenius behavior of the conformational
kinetics on the convergence of RE protein folding simulations.
We have constructed a NRE model inspired by protein folding
and have studied its convergence behavior as a function of the
number of replicas, their temperatures, the kinetics at each
temperature, and the rate of temperature exchange. The
number of folding transitions is used as an indicator for
convergence. The results demonstrate that the convergence of
NRE for a two-replica system in the limit of very rapid
temperature exchanges is fastest when the high temperature is
chosen to maximize the harmonic mean of the folding and
unfolding rates. Additional replicas improve the efficiency in
the NRE model only if the harmonic mean of the kinetic rates
at the temperature of the additional replica is larger than the
average of the harmonic means of the original set of replicas.
Both the convergence rate and efficiency are reduced if the
temperature-exchange rate is finite, and the optimal temper-
ature of the high temperature is reduced.

The conclusions obtained here are based on the behavior of
a simplified NRE model, which is completely Markovian. More
of the characteristics of molecular RE could be incorporated
into the NRE model to enhance its realism. For example,
continuous energy distributions could be used to simulate the
effects of energy-distribution overlaps. Non-Markovian effects,
such as nonexponential waiting time distributions also could be
modeled, either directly or by dividing the F and U macrostates
into ‘‘hidden’’ microstates. Even though many proteins are
observed to follow simple two-state kinetics for folding under
some conditions, the underlying free-energy landscape is un-
doubtedly more complex. The NRE model also can be extended
to simulate more complex landscapes represented by three or
many more macrostates. It could turn out that the best strategies
for optimizing RE simulations are different for such cases as
compared with those in which the kinetics is described by
two-state anti-Arrhenius behavior as has been observed for
some peptides (25, 28).

The results shown here for the NRE model nevertheless are
likely to be relevant for atomic-level RE simulations, and they
suggest that more extensive ‘‘training’’ simulations to explore the
temperature dependence of the kinetics will be useful for
optimizing the efficiency of RE. Training simulations have been

used to construct asynchronous variants of RE (33) and to find
the optimum temperature ladder by maximizing the diffusion in
temperature space (6, 19). However, maximizing the diffusion of
replicas in temperature space regardless of the actual kinetics at
each temperature does not necessarily optimize the RE simu-
lation. If the rate constants have anti-Arrhenius behavior, then
there exists an optimal temperature with the fastest kinetics.
Additional replicas beyond that temperature decrease the effi-
ciency of the simulation relative to the case in which the same
number of replicas are used but the additional replicas are placed
close to the optimum temperature. The reason for this is because
in the anti-Arrhenius case the optimum temperature has more
favorable kinetic properties than any higher temperature and can
contribute more to the convergence of the low temperature of
interest. In this context, finding the optimum high temperature
should take priority, and the remaining replicas then can be
distributed to optimize temperature diffusion and efficiency. On
the other hand, in the context of Arrhenius-like rates, there is no
optimum high temperature, and the focus on the optimization of
diffusion to the highest temperature is justified.

The possibility that an arbitrary choice of highest temperature
may be too high is increased further by the observation that finite
temperature-exchange rates lower the optimal highest temper-
ature significantly below that predicted by the harmonic mean of
the forward and reverse rates at high temperature. Superficially,
it could be argued that this result is not relevant to atomic-level
simulations, which already are conducted in the ‘‘large-�’’ limit,
given that the folding and unfolding timescales of peptides and
small proteins are on the order of tens to hundreds of nanosec-
onds, whereas temperature exchanges typically are done on a
picosecond timescale. However, unlike the NRE model, for
which temperature exchanges of any magnitude can occur freely,
in a molecular simulation the rate of temperature exchanges is
limited by the rate of diffusion in energy space. For example, a
replica must first find low-energy configurations to be able to
exchange temperature with a replica at a lower temperature.
Therefore, the rate of conformational transitions places an
upper limit on the effective value of � that can be achieved in a
molecular simulation.

NRE also provides some insights into the choice of the
number of replicas and their temperature distribution. In mo-
lecular RE simulations, the temperature spacing is dictated
primarily by the overlap of energy distributions at different
temperatures. However, if we wish to add additional replicas
beyond those required to obtain sufficient energy overlap (for
example, in a large-scale cluster or grid computing environ-
ment), the NRE results indicate that additional replicas will be
most beneficial to efficiency if they are placed at temperatures
such that the average of the harmonic means is increased.
Additionally, it may be possible to use reweighting methods such
as T-WHAM (34), which generate estimates of thermodynamic
quantities based on data from more than one temperature, to
further accelerate convergence properties because folding tran-
sitions are not required to occur between identical temperatures
to be ‘‘productive.’’ RE methods that are based on the exchange
of energy function parameters (35) also may have more favorable
convergence properties for some systems.

The RE technique is a powerful conformational sampling
method for the study of quasi-ergodic systems while preserving
canonical thermodynamic properties. For these reasons, it has
become a very popular tool in computational biophysics re-
search. This study identifies some characteristics of the method
that are key for the effective use of RE to study processes with
anti-Arrhenius kinetic behavior, such as protein folding and
binding.

We thank Attila Szabo for helpful discussions. This work was supported
in part by National Institutes of Health Grant GM 30580.
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Chapter 3

Simulating Replica Exchange simulation of Protein
Folding with a continuous two-dimensional potential

model

3.1 Introduction

Replica exchange (RE) methods [11, 91, 12, 92, 14] are widely employed to enhance the

conformational sampling efficiency of biomolecular simulations for the study of protein

biophysics, including peptide and protein folding[15, 16] and aggregation[17, 18, 19],

and protein-ligand interactions[20, 21]. To accomplish barrier crossings, RE methods

simulate a series of replicas over a range of potential parameters[93, 94, 95, 96, 97] or

temperatures[14]. In the latter, replicas exchange temperatures following a Metropolis cri-

terion designed to preserve canonical distributions. This scheme allows conformations at

physiological temperatures, where conformational interconversions are rare, to switch to

higher temperatures where transitions to other conformations are more likely. In a sense,

therefore, the enhancement of conformational sampling at low temperatures is achieved by

“borrowing” the faster kinetics at higher temperatures.

The popularity of RE methods is due to their ease of implementation and their ability

to enhance conformational sampling while preserving canonical distributions at the ther-

modynamic conditions of each replica. The properties of the RE algorithm and how it

can be utilized most effectively for the study of protein folding and binding has received

attention recently[30, 32, 98]. The determination of the temperature assignment and num-

ber of replicas to achieve optimal temperature mixing has been the subject of a variety of
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studies[12, 24, 25, 26, 27, 28, 29, 99]. Recent work has also recognized the importance

of conformational relaxation as a key limiting factor which can affect the efficiency of

the RE algorithm [30, 31, 29, 32]. While temperature RE is relatively straightforward to

implement, kinetics in the RE ensemble is complicated and does not correspond in any sim-

ple way to the molecular kinetics (necessitating additional methods for the reconstruction

of molecular kinetics from RE samples[79, 80, 100, 73]). Molecular kinetics, however,

can have a strong effect on RE, especially when the kinetics has complex temperature

dependence. The anti-Arrhenius behavior typical of protein folding kinetics, where the

folding rate above a critical threshold temperature decreases with increasing temperature

[34, 36, 37, 38], is understood to occur when the transition state is energetically favored but

entropically disfavored with respect to the reactants. Anti-Arrhenius behavior represents a

challenge for temperature RE because when folding exhibits anti-Arrhenius behavior there

exists a temperature (generally unknown) at which the folding and unfolding rates are opti-

mal. If even higher temperatures beyond the optimal are included in the RE ensemble, this

may degrade performance[98].

Although some comparative studies aimed at determining the benefits of RE over con-

ventional MD for peptide folding have been conducted[101, 32, 102], it is far from straight-

forward to systematically explore the convergence properties of RE by brute force molec-

ular simulations, since RE simulations of protein folding are very difficult to converge. To

understand some of the basic mechanisms that determine the efficiency of RE it is useful

to study simplified low dimensionality systems that share some of the key characteristics

of molecular systems. In chapter2 we investigated a discrete two-state network model for

replica exchange (NRE), containing two conformational states (Folded and Unfolded) at

each of several temperatures[98]. We found that the efficiency of RE for this system varies

non-monotonically with respect to the temperature distribution of the replicas when the

folding rate displays anti-Arrhenius behavior. The model showed that the rate of fold-

ing/unfolding events in RE is maximal when high temperature replicas are placed near the
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temperature at which the harmonic mean of the folding and unfolding rates for the uncou-

pled system (kf andku) is maximal. This result suggested that in molecular simulations

adding high temperature replicas does not necessarily lead to increased efficiency of explo-

ration of conformational space, and that, instead, optimal efficiency could be obtained by

placing replicas at specific temperatures determined by the temperature dependence of key

kinetic rates of the system.

In this chapter we extend this analysis by studying a continuous two-dimensional sys-

tem designed to reproduce the anti-Arrhenius kinetics of a conformational equilibrium,

such as a protein folding equilibrium, mediated by an entropic bottleneck. The two-

dimensional system studied here is an extension of the potential model we originally used

to study the convergence of the weighted histogram analysis method,[89] and is very simi-

lar in spirit to to the funnel-like golf course model for protein folding studied by Szabo and

co-workers[103]. This two-dimensional system is sufficiently simple to be amenable to ac-

curate analytical and numerical solution, while including some characteristics of molecular

systems that were absent from the discrete NRE model. The present model is self-contained

in that the kinetic rates are determined by the potential and the move set rather than being

imposed, as in the NRE model of reference [98]. Furthermore, and most importantly, the

unfolded and folded macrostates have, like real molecular systems, microscopic internal

structure. The new model makes it possible to follow the joint microscopic evolution of

the system in conformational and temperature space. It incorporates the same discrete tem-

perature exchange scheme commonly adopted in replica exchange molecular simulations,

and it allows us to study the effects of non-Markovian processes likely present in replica

exchange simulations of molecular systems.

In the next section we present the potential model and the kinetic scheme we have

employed. We review the replica exchange method and the network model for replica

exchange we previously developed. We then summarize the thermodynamic and kinetic

properties of the two-dimensional system and present results showing how these determine
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the efficiency of the replica exchange method. This chapter is then concluded by discussing

the implications of these findings for replica exchange simulations of molecular systems.

3.2 Methods

3.2.1 The two-dimensional continuous potential

A two-dimensional potential was constructed to mimic the anti-Arrhenius temperature de-

pendence of the folding rate seen in proteins. We designed this potential to have an ener-

getic barrier when going from the “folded” to the “unfolded” region, and an entropic barrier

in the reverse direction. The entropic barrier is achieved by imposing a hard wall constraint

that limits the space accessible to the folded region. Specifically, the particle can only move

in the region−1 ≤ x ≤ 1, 0 ≤ y ≤ B(x), where the boundary functionB(x) is a small

constant forx ≤ 0 and an increasing function ofx for x > 0 (Figure 3.1):

B(x) =





δ, −1 ≤ x ≤ 0

bxn1 + δ, 0 < x ≤ 1
. (3.1)

The use of a boundary of this form is based on a two-dimensional potential first used in

our laboratory to study the convergence of the weighted histogram analysis method[89],

and is very similar in spirit to simplified models for protein folding studied by Bicout

and Szabo[103] and the model of an entropic barrier by Zhou and Zwanzig [104]. The

specific parametersδ, b, andn1 were chosen together with the parameters of the potential

function discussed below by trial and error to achieve a sufficiently strong temperature

dependence to illustrate some of the possible consequences of anti-Arrhenius behavior on

RE simulations. It is natural to choose thex axis to be the reaction coordinate, with−1 ≤
x ≤ 0 corresponding to the folded macrostate and0 < x ≤ 1 to the unfolded macrostate.

The move set was chosen to be compatible with this reaction coordinate (see below). In

order for folding and unfolding to be activated processes, however, it is necessary to add a

potential energy function which has an energetic well as a function ofx in the folded region,
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Figure 3.1: A schematic representation of the two-dimensional potential function used in this
work. The colored area corresponds to the accessible region of the(x, y) plane, with the colors
representing the magnitude of the potential energy at that(x, y) point (scale bar in kcal/mol). The
potential energy is infinite in the non-colored region and fory < 0, x < −1, andx > 1. The inset
is an enlarged view of the folded macrostate and transition region.
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and increases withx in the unfolded region. Specifically, we use the potential function

U(x, y) =





a1(x + x0)
2, −1 ≤ x < −x1 0 ≤ y ≤ B(x)

−a2x
2 + c0, −x1 ≤ x ≤ 0, 0 ≤ y ≤ B(x)

a3x
n2 + c0, 0 < x < x2, 0 ≤ y ≤ B(x)

a4x
n3 + c1 x2 ≤ x ≤ 1, 0 ≤ y ≤ B(x)

∞ otherwise

, (3.2)

wherea1 = 23.53 kcal/mol, a2 = 235.3 kcal/mol, a3 = 376.5 kcal/mol, a4 = 11.29

kcal/mol,c0 = 7.059 kcal/mol,b = 5, n1 = 4.55, n2 = 2, n3 = 0.5, andδ = 2 × 10−7.

The constantsx0 =
√

c0(a1 + a2)/a1a2, x1 = a1x0/(a1 + a2), x2 = (a4n3/a3n2)
1

n2−n3 ,

c1 = c0− (a4x
n3
2 − a3x

n2
2 ) were chosen so that the first derivative ofU(x, y) is continuous.

A graphical representation of the two-dimensional system studied here is shown in Figure

3.1.

3.2.2 Kinetics on the two-dimensional continuous potential

We use Metropolis Monte Carlo (MC) sampling to simulate the movement of a particle

in this two-dimensional potential. Kinetic MC has a long history in the study of protein

folding using simplified models[105, 106, 107]. To ensure rapid equilibration along the

y coordinate consistent with the choice ofx as the reaction coordinate and because of

the large size difference of the accessible region in they direction between the folded

and unfolded regions, we adopted an asymmetric MC proposal scheme,[108, 89] in which

the step size in they direction is proportional tob(x), i.e. a proposed move(x′, y′) is

generated uniformly in the regionx − ∆ < x′ < x + ∆, y − b(x)∆ < y′ < y + b(x)∆.

The displacement parameter∆ was chosen such that the barrier crossing is slow but not

prohibitively expensive and follows a linear regime (i.e. doubling∆ causes approximately

a doubling in the number of barrier crossings). To correct for the asymmetric MC proposal

distribution, the factorθ(|y′ − y| /b(x′)∆) was included to satisfy detailed balance, where

θ(z) equals 1 ifz < 1 and0 otherwise.
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Rate constants in units of MC steps were obtained via MC simulation by calculating the

mean first passage times between the two macrostates. The same displacement parameter

∆ = 0.05 was used for all temperatures. A “buffer region”−0.1 < x < 0.0437 was

defined as not belonging to either the folded or unfolded state to reduce artefactual rapid

re-crossings of the barrier[109, 110]. For comparison, the temperature dependence of the

folding and unfolding rate constants were also estimated from the PMF using the Arrhenius

equationk = A exp(−∆G†/kBT ) , where∆G† is the free energy difference between the

transition state and the appropriate macrostate. Free energies were extracted from the PMF

along thex axis by averaging the PMF over the macrostates and transition region using

numerical integration.

3.2.3 RE simulation on the two-dimensional continuous potential

Replica exchange simulations were performed by runningN MC simulations atN inverse

temperaturesβi = (kBTi)
−1 (β1 > β2 > . . . > βN ) in parallel. The state of the ex-

tended ensemble is specified by a joint configuration ofN replicasX = {q1, q2, . . . , qN},
whereqi is the configuration of replicai. Exchanges of configurations were attempted ev-

ery NX MC steps between pairs of replicas adjacent in temperature, and the attempted

exchangeX = {. . . , qi, qj, . . .} → X ′ = {. . . , qj, qi, . . .} was accepted with proba-

bility w(X → X ′). Given the potential energy functionU(q), the transition probabil-

ity which satisfies detailed balance and reproduces the canonical ensemble is given by

w(X → X ′) = min{1, exp[−(βj − βi)(U(qi)− U(qj))]}[14].

The efficiency of RE conformational sampling was monitored by measuringNTE(τ |T0),

the number round-trip transitions in the conformational state of a replica, conditional on the

temperature of interestT0, that occur in a given observation timeτ . A transition event is a

transit of a given replica from one conformation atT0 to the other conformation atT0 and

back againregardless of route, i.e. whether it was the result of a direct barrier crossing atT0

or indirectly via a barrier crossing at some other temperature combined with temperature
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exchanges. Conceptually, this measure reflects the potential of RE to achieve rapid equi-

libration at the temperature of interest by means of conformational transitions at tempera-

tures other than the temperature of interest. The transition events as defined correspond to

the “reversible folding” events studied in all-atom simulations of peptide systems[22, 23].

We will use the symbolNTE as a shorthand notation forNTE(τ |T0), whereT0 will gener-

ally be the lowest temperature in the simulation. For an uncoupled simulation, the number

of transition events is simply the number of round trips between macrostates.

3.2.4 Review of the discrete Network Replica Exchange (NRE)

We review here the discrete kinetic network model which we devised in our previous study

of replica exchange efficiency [98] in chapter2. In this model (unlike the continuous poten-

tial model above), the macrostatesF andU (for “folded” and “unfolded”) do not possess

any internal structure. Instead, it is assumed that the system evolves in time as a Poisson

process, in which instantaneous transitions betweenF andU occur after waiting periods

given by exponentially distributed random variables with means equal to the reciprocals of

the folding or unfolding rates. The result (for a single replica) is an example of a “random

telegraph” Markov process[86].

If the transition events are Markovian, then the simultaneous behavior of two uncoupled

non-interacting replicas can be represented by the four composite states{F1F2, F1U2, U1F2, U1U2}.
In each symbol, the first letter represents the configuration of replica 1, the second letter

the configuration of replica 2, and the subscripts denote the temperature of each replica.

Only transitions corresponding to a single conformational change (e.g.F1F2 → U1F2) are

allowed, assuming that the probability of two simultaneous changes (e.g.F1U2 → U1F2) in

an infinitesimal intervaldt can be neglected[86]. The four-state composite system for two

non-interacting replicas can be extended to create a network model of replica exchange by

introducing temperature exchanges between replicas, i.e. by allowing transitions such as
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F1F2

F2F1

F2U1 U2U1

U1U2F1U2

U1F2

U2F1

Figure 3.2: The kinetic network model for the discrete NRE model used in chapter 2. The
state labels represent the conformation (letter) and temperature (subscript) for each replica. For
example,F2U1 represents the state in which replica 1 is folded and at temperatureT2, while replica
2 is unfolded and at temperatureT1. Red and black arrows correspond to folding and unfolding
transitions, respectively, while the temperature at which the transition occurs is indicated by the
solid and dashed lines (forT2 andT1, respectively). The cyan arrows correspond to temperature
exchange transitions, with the solid and dashed lines denoting transitions with rate parametersα

andwα, respectively.
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F1U2 → F2U1. This leads to a system with 8 states arranged in a cubic network with “hor-

izontal” folding and unfolding transitions and “vertical” temperature exchange transitions

(Figure 3.2). For canonical equilibrium probabilities to be preserved under temperature

exchanges, it is sufficient that detailed balance is satisfied, e.g. the transition probabili-

ties w(F1U2 → F2U1) and w(F2U1 → F1U2) satisfy Peq(F1U2)w(F1U2 → F2U1) =

Peq(F2U1)w(F2U1 → F1U2). The ratios of forward and reverse transition probabilities for

F1F2 ⇀↽ F2F1 andU1U2 ⇀↽ U2U1 are equal to one, as interchange of temperatures does not

change the equilibrium populations.

The effect of the rate of temperature exchanges in included by introducing the rate

parameterα, which controls the overall scaling of the temperature exchange rate relative

to the folding and unfolding rates. The forward and reverse rates of theF1F2 ⇀↽ F2F1

andU1U2 ⇀↽ U2U1 transitions are set equal toα, while the other rates are set toα or wα as

required by detailed balance, where in this casew = Peq(F2U1)/Peq(F1U2) or its reciprocal

such thatw < 1 (see Figure 3.2). The overall average rate at which temperature exchanges

occur (kex ) is the probability of jumping in any instantdt from the upper to the lower face

(or vice versa) of the cubic network, and is given by the equilibrium population weighted

sum of the temperature exchange rates over all states:

kex =
kf1kf2 + 2ku1kf2 + ku1ku2

(kf1 + ku1)(kf2 + ku2)
α. (3.3)

The NRE model was simulated using a standard method for continuous time Markov

processes with discrete states[86], also known as the “Gillespie algorithm”. Given a cur-

rent stateX0, we identify itsm neighboring statesX1, X2, . . . , Xm and the transition rates

k1, k2, . . . , km from X0 to each of the neighboring states. We generate a waiting time

in stateX0 by drawing a random number from an exponential distribution with mean

(k1 + k2 + · · · + km)−1, and select a destination stateXi from amongX1, X2, . . . , Xm

with probabilityki/(k1 + k2 + · · · + km). This procedure is then repeated with the new

state as the current state.
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3.3 Results and Discussion

3.3.1 Thermodynamics and kinetics of the continuous model system

a. Thermodynamics

In Figure 3.3 we show the potentials of mean force (PMF) corresponding to the two-

dimensional potential along thex coordinate at several temperatures. PMFs calculated

by MC sampling and numerical integration of the canonical distribution function agree to

within statistical accuracy. The PMFs show two free energy minima corresponding to the

folded (F,x ≤ 0) and unfolded (U,x > 0) conformational states, separated by a free energy

barrier nearx = 0. The free energy minimum of the unfolded state and the free energy bar-

rier have no counterparts in the potential, which is monotonically varying in both of these

regions (Figure 3.1). These features of the PMF originate from the interplay between op-

posing entropic and enthalpic driving forces. The free energy minimum of the unfolded

state corresponds to the optimal balance between entropy, which drives the system towards

large values ofx (where the accessible space along they coordinate is greatest), and en-

thalpy, which drives the system towards small values ofx (where the potential energy is

smallest). The free energy barrier that separates the unfolded and folded state is entropic

in origin. Forx near 0, the entropy is significantly reduced compared to the unfolded state,

and assumes a value similar to that of the folded state (compare in Figure 3.1 the size of

the accessible space alongy at x = 0 and forx > 0 andx < 0). In contrast, the potential

energy atx = 0, although smaller than in the unfolded state, is still substantially larger than

in the folded state. This imbalance between entropy and potential energy causes the free

energy maximum atx = 0.

From the point of view of folding, the free energy maximum constitutes an entropic

bottleneck. In order to make a transition to the folded state, the system needs to cross the

free energy barrier region atx = 0, where the system has lost all of the entropy required
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Figure 3.3: The potential of mean force (PMF) at three different temperatures: 296 K (solid),
474 K (dashed) and 789 K (dotted). The PMF was calculated using numerical integration. To more
clearly illustrate the change in the barrier height as a function of temperature, the three curves have
been superimposed to coincide atx = 0.
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for folding without having gained all of the folding enthalpy. Similar transition bottlenecks

have been described in simplified models for protein folding.[36, 103, 111] After crossing

this barrier the system enters the folded state by going downhill in potential energy without

further reduction in conformational entropy, since the accessible space along they direction

is the same for all pointsx in the folded space. Because the conformational entropy is

constant forx < 0, the potential of mean force in this region coincides with the potential

energy. From the point of view of unfolding, the free energy maximum atx = 0 constitutes

an enthalpic barrier. Relative to the folded state, points in the region nearx = 0 have

similar conformational entropy but larger potential energy. To reach the barrier region from

the folded state therefore the system needs to gain potential energy (enthalpy) without the

help of a concomitant increase in conformational entropy. Beyond the barrier region there

is a free energy gain for moving towards the unfolded state since the gain in conformational

entropy outweighs the increase in potential energy.

As shown below, the barrier region close tox = 0 constitutes the transition state for the

folding/unfolding equilibrium. The free energy difference between the unfolded and folded

states and the transition state corresponds to the free energies of activation, which deter-

mine the rate of folding and unfolding respectively. Due to their different thermodynamic

origins (entropic vs enthalpic), the free energies of activation for folding and unfolding

display the opposite dependence on temperature. As Figure 3.3 shows, the free energy

of activation for folding increases with increasing temperature relative to thermal energy

(kT ), where the free energy of activation for unfolding decreases with increasing temper-

ature. This anti-Arrhenius behavior is the signature of an entropically activated process.

The conformational entropy difference between the unfolded state and the transition state

increases as the temperature is increased, leading to an increase in the height of the free

energy barrier for folding with increasing temperature.

Figure 3.4 shows the temperature dependence of the population,PF (T ), of the folded

state, often referred to as the melting curve. The shape of the melting curve is typical of
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Figure 3.4:The temperature dependence of the fractional population folded (solid line) calculated
by numerical integration of the potential of mean force. The temperature dependence of the fraction
folded corresponding to a system with a smaller average potential energy difference between the
folded and unfolded states (see Appendix I) is shown for comparison (dashed line). The fraction
folded derived from the folding and unfolding rates obtained by MC simulation (Figure 3.6) are
shown as circles. The melting temperatureTM = 463 K (corresponding to 50% folded population)
is indicated.
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two-state protein thermal denaturation experiments. At300K the system is nearly com-

pletely folded, and the fraction folded decreases with increasing temperature in favor of the

unfolded state which is entropically favored. The melting temperatureTM (corresponding

to equal populations of the folded and unfolded state) is approximately 460 K. At this tem-

perature the folded and unfolded states have equal free energy. The slope of the melting

curve at the melting temperature is

(
dPF

dT

)

T=TM

=
1

4

ŪF − ŪU

kT 2
,

which is proportional to the difference of the average potential energies,UF andUU , of

the folded and unfolded states. Thus, a decrease of the average potential energy difference

between the two states leads to a less steep melting curve. To illustrate this, we show in Fig-

ure 3.4 the melting curve corresponding to an alternative parametrization of the potential

for which the average potential energy difference between the folded, unfolded, and tran-

sition states was decreased, while approximately preserving the same value of the melting

temperature (see Appendix I). As expected, the alternative parametrization leads to a more

gradual conversion from the folded state to the unfolded state with increasing temperature

(Figure 3.4, dashed line). The heat capacity as a function of temperature is approximately

Gaussian and is peaked nearTM .

b. Kinetics

With the MC move set described in the Methods Section above, the kinetics of fold-

ing/unfolding is two-state as measured by the distribution of first passage times, which

is exponential (Figure 3.5). The Arrhenius plots of the folding and unfolding reaction rates

are shown in Figure 3.6. The temperature dependence of the reaction rates using the Arrhe-

nius equation with activation free energies extracted from the PMFs (Figure 3.3) agree well

with the simulation results, and is a further indication that the kinetics is two-state and that

the reaction coordinate is well represented by thex coordinate. This is a consequence of
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Figure 3.5:The distributions of first passage times for folding (black) and unfolding (red) observed
during a2.7 × 1010-step kinetic MC at 475 K. Approximately 4700 folding and unfolding events
were observed. A folding first passage time is defined as the time elapsed from when the particle
enters the unfolded region from the buffer region (having previously been in the folded region), until
it re-enters the folded region. The unfolding first passage time is defined similarly. The semi-log
plot of the histograms of the first passage times is shown as circles, while the lines represent the
best-fit exponential curve.
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Figure 3.6:The temperature dependence of the folding and unfolding rate constants (solid lines
and symbols). Folding and unfolding rates are indicated by red and green color, respectively. The
folding and unfolding rates corresponding to a system with a smaller activation energy for folding
(Appendix I) are shown for comparison (dashed lines). The rate constants plotted in symbols were
derived from kinetic MC simulations run at different temperatures. The solid lines represent the
rates calculated using the Arrhenius equation based on activation energies derived from the PMF
alongx (Figure 3.3). Rate constants are expressed in units of10−6 per MC step.
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choosing a move set for which equilibration along they coordinate is faster than along thex

coordinate. The alternative potential parametrization in Appendix I, which is characterized

by a smaller average potential energy of the unfolded state relative to the folded and the

transition states, leads to a weaker temperature dependence of the folding rate (Figure 3.6,

dashed lines). Since the slope of the Arrhenius curve is proportional to the activation en-

ergy, this difference of the rates is consistent with the smaller energy of activation obtained

with the alternative parametrization.

The folding rates decrease with increasing temperature, a phenomenon which has been

observed in the kinetics of protein folding[34, 105, 36, 37, 38]. Processes displaying anti-

Arrhenius behavior are said to be characterized by a negative effective activation energy,

whereby the enthalpy of the unfolded state is larger than that of the transition state. The

free energy of activation of these processes, however, remains positive due to the activa-

tion entropy favoring the unfolded state. The negative activation entropy is associated with

the smaller number of accessible conformations at the transition state relative to the un-

folded state; that is, the transition state constitutes an entropic “bottleneck” that needs to

be traversed for the transition to the folded state to occur. These elements clearly exist

in the simplified two-dimensional system under investigation. Since the potential energy

decreases monotonically from the unfolded state to the folded state, the average potential

energy at the transition state (x = 0) is smaller than the average potential energy of the

unfolded state, leading to the observed anti-Arrhenius behavior of the rate of folding. De-

spite the enthalpic driving force favoring the transition state, the free energy of activation

for folding remains positive at all temperatures examined (as the calculated PMF along

thex coordinate shows). This is because the entropy of the transition state is smaller than

the entropy of the unfolded state due to the larger accessible configuration space along

the y coordinate (Figure 3.1). The entropic destabilization of the transition state, which

(as in protein folding) can be described as acting as a “bottleneck”, more than offsets the

enthalpic stabilization, leading to the observed positive activation free energy for folding.
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Often the observed folding rates of proteins show non-monotonic behavior with re-

spect to the temperature; the folding rate increases with temperature at low temperatures as

in normal Arrhenius behavior, switching to anti-Arrhenius behavior at higher temperatures,

when the folding rate decreases with increasing temperature. This phenomenon is rational-

ized in terms of a negative activation heat capacity. The activation heat capacity is defined

as the temperature derivative of the activation energy, and a negative value of the activation

heat capacity indicates that the unfolded state has a larger heat capacity than the transition

state. The observed negative heat capacity of activation of protein folding has been var-

iously interpreted as being due to the hydrophobic effect[34, 105] or to the difference of

the distribution of energies of the molecular conformations experienced as a function of

temperature[40, 36]. The curvature of the Arrhenius plot is related to the activation heat

capacity. The present simplified two-dimensional system does not have a large enough heat

capacity of activation to reproduce this turnover from Arrhenius to anti-Arrhenius behavior

within the temperature range we have investigated. Thus, the results extracted from this

model are applicable only to the anti-Arrhenius temperature regime of the protein folding

process.

Figure 3.7 shows the number of direct round trip transition eventsNdirect observed dur-

ing MC simulations ofNMC = 5 × 109 steps as a function of temperature. We use the

number of transitions as a measure of the efficiency of conformational sampling, which

determines the rate of convergence of thermodynamic quantities extracted from the sim-

ulations. The results of Figure 3.7 show that conformational sampling efficiency of the

uncoupled simulation varies non-monotonically with the temperature. There is a 40-fold

increase in transitions from 300 K to 474 K, the temperature at which the maximum is

observed. This decreases for temperatures higher than 474 K, reaching a 10-fold reduction

at 800 K (relative to the maximum). As the results in Figure 3.7 show, this behavior mir-

rors almost exactly the behavior of the harmonic mean(k−1
f + k−1

u )−1 of the folding and

unfolding rates (from Figure 3.6) as a function of temperature (we note that our use of the
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Figure 3.7:Number of direct round trip transition eventsNdirect in single temperature uncoupled
simulations over the temperature range296 − −789 K in 5 × 109 MC steps. The curve plotted
as a solid line was calculated from the harmonic mean of the folding and unfolding rates estimated
from the mean of the folding and unfolding first passage time distribution (Figure 3.5) obtained
by MC simulations at each temperature, while the number of events counted directly from the MC
simulations at individual temperatures are plotted as circles. The high level of agreement indicates
that the system is very well approximated as a two-state activated process.
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term “harmonic mean” differs from standard usage by a factor of 2, which is natural given

that we are considering a round-trip, i.e. a single “transition event” involves two conforma-

tional transitions). The agreement between the harmonic mean of the rates and the number

of direct round trip transitions is expected for a two-state activated equilibrium, since the

average time of a round-trip excursion from the folded to the unfolded state and back is

the sum of the average folding and unfolding timesτf = k−1
f andτu = k−1

u , respectively:

Ndirect = NMC/(τf + τu).

3.3.2 RE simulations using MC on the continuous potential

In chapter2, we analyzed the convergence and efficiency of replica exchange using a dis-

crete model for folding and unfolding. We found that when the physical kinetics shows

anti-Arrhenius temperature dependence, there exists an optimal maximal temperature be-

yond which the efficiency of the replica exchange method is degraded. Similar behavior is

expected from RE simulations using the continuous two-dimensional potential, with pos-

sible differences arising from the more complex nature of the present model, where the

folded and unfolded states have internal structure. We performed replica exchange simu-

lations on the continuous two-dimensional potential with MC as the dynamic propagator,

and replica exchange proposals made periodically between adjacent temperatures every

NX MC steps. The efficiency of conformational sampling was monitored by counting the

number of temperature-conditional transition eventsNTE defined in section 3.2.3 above.

In order to directly compare with the results obtained previously, we first performed

replica exchange using two replicas. Although such a simulation would not be realistic in

general for a protein system due to poor energy overlap and very inefficient temperature

exchange, it is feasible in the two-dimensional potential. The result for a2 × 109-step

simulation where the lower temperature is held fixed at 296 K and the upper temperature

varies from 296 to 789 K is shown in Figure 3.8 (green, red and blue dots). We see behavior
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Figure 3.8:The dependence of the number of temperature-conditional transition eventsNTE (sec-
tion 3.2.3) on the temperature of the high-temperature replica for a two-replica simulation on the
continuous potential (circles), and comparison with predicted transition events using discrete NRE
model (Figure 3.2) (curves). For all simulations, one replica was fixed at 296 K and the other replica
was scanned from 296 K to 789 K. The black dashed line corresponds to the discrete model pre-
diction in the large-α limit. The solid curves are the predictedNTE using the NRE model with
temperature dependent folding and unfolding rates taken from the kinetic MC simulations on the
continuous potential (shown in Figure 3.6) and using anα corresponding to an attempted tempera-
ture exchange. The circles are theNTE values observed in2× 109 MC step RE simulations on the
continuous potential. The green, red, and blue data correspond toNX values of 1 000, 200, and 20,
respectively.
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similar to that seen for the discrete model studied previously: the number of temperature-

conditional transitionsNTE has non-monotonic behavior and exhibits a maximum at an

optimal high temperature given by the maximal harmonic mean of the folding and unfold-

ing rates (474 K). This maximum point is approximately independent of the rate at which

attempted temperature exchanges occur. While the location of the maximum is in agree-

ment with our previous results[98], the magnitude of the number of transition events is

not. We have shown that for NRE simulations employing a two-state model (folded and

unfolded states), the number of transition events is given by the average over all temper-

atures of the harmonic means of the folding and unfolding rates, provided that the rate of

temperature exchanges is sufficiently fast[98]. In the continuous model, we find that the

number of transitions is significantly lower than that predicted from the average of the har-

monic means of the rates (Figure 3.8, black dashed line). This may be due to the finite rate

of temperature exchanges, deviations from the pure Markovian kinetics of the two-state

discrete model, or a combination of these effects.

To test whether this reduced number of transitions is due to insufficiently fast temper-

ature exchange attempts, we performed several simulations in which we variedNX (the

number of MC steps between attempted temperature exchanges). We see in Table 3.1 that

NTE is approximately constant provided that the attempted exchange rate is faster than a

critical value ofNX ≈ 500. For less frequent exchange attempts, we see a substantial de-

crease in the number of transitions. Thus, the number of unfolding and refolding transitions

cannot be increased simply by increasing the rate of attempted exchanges.

3.3.3 Non-Markovian effects revealed by comparison of continuous

and discrete RE simulations

To explore causes for the observed transition deficit, we performed simulations using the

discrete NRE model (Figure 3.2) using kinetic parameters derived from the two-dimensional
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continuous potential (Figure 3.6). To map the rates determined using the continuous po-

tential to the discrete model, we used the folding and unfolding rates directly, expressed

in units of10−6 per MC step. Different values ofα were used for theF1F2 ⇀↽ F2F1 and

U1U2 ⇀↽ U2U1, and were set to106/NX multiplied by the empirical acceptance rate when

both replicas are in the folded or unfolded state (0.853 and 0.395, respectively).

If we compare the observed number of transitions seen in the continuous model with

the number predicted by the NRE model with the same rate parameters (Table 3.1) we see

that there is good agreement when the attempted exchange rate is small, but substantial

disagreement when it becomes larger. In particular, while the number of transitions using

the continuous model reaches a plateau value atNX ≈ 1 000, the predicted number of

transitions in the NRE model continues to increase, asymptotically approaching the value

predicted by the average of harmonic means. Similarly, comparison of the predicted and

observed number of transitions as a function of temperature (Figure 3.8) show a significant

overestimation of the transition rate by the NRE model, and that this overestimation is

much more severe when the rate of attempted temperature exchanges is fast. For example,

while theNTE predicted from the NRE model has essentially reached the asymptotic limit

whenNX = 20 (blue curve), the observedNTE values are essentially unchanged relative

to those obtained whenNX = 200 (compare blue and red circles). The continuous two-

dimensional model thus appears to contain an inherent “speed limit” which prevents it from

achieving the transition rates expected for a fully Markovian system, even if the temperature

exchanges are attempted frequently.

One possible origin of this speed limit is that the average effective rates are different

in the coupled and uncoupled systems. To test this, we analyzed the kinetics of the con-

tinuous RE simulation by using the NRE model to “reverse-engineer” the apparent rates

by estimating the mean residence times and branching ratios for various RE macrostates.

If the system is Markovian, then the ratektot given by the inverse of the mean residence

time is the sum of the rates exiting that state. The rate corresponding to a given edge can
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Table 3.1:Number of temperature-conditional transition events in2×109 MC steps for two replicas
(with temperatures of 296 K and 474 K) as a function of the number of MC steps between attempted
temperature exchanges (NX ), and observed temperature-conditional mean first passage times (in
units of106 MC steps, see text for details).

NX NTE per replica Temperature-conditional MFPTs
observed (continuous)predicted (NRE) F1 → U1 U1 → F1

10 000 22 24 91.8 5.6
2 000 52 73 31.6 5.7
1 000 80 105 23.1 5.7
500 93 134 19.1 5.8
200 102 162 16.0 5.7
100 99 168 14.3 5.9
80 98 172 14.6 5.8
50 98 176 14.8 5.7
20 96 177 14.9 6.1
0a — 178 — —

a PredictedNTE based on the harmonic mean relationship for theα →∞ limit.

Table 3.2:Empirical “reverse-engineered” rates at temperaturesT1 = 296 K andT2 = 474 K (in
units of10−6 MC step) from continuous potential simulation data assuming the network topology
of Figure 3.2 .

uncoupled reverse-engineered rates
rates NX = 10 000 Nx = 2 000 NX = 200 NX = 100

kf1 6.08 5.66 6.10 5.27 6.33
ku1 0.0036 0.0038 0.0036 0.0037 0.0037
kf2 0.279 0.288 0.299 0.290 0.306
ku2 0.420 0.420 0.419 0.427 0.425
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then be estimated by multiplyingktot by the fraction of residences that exit via that edge

(the branching ratio). The results are shown in Table 3.2. The reverse-engineered rates

generally agree with the uncoupled folding and unfolding rates estimated from kinetic MC,

and this is true both for rapid and slow attempted temperature exchange rates. Therefore,

the temperature exchanges do not perturb the average kinetics of the system, and cannot be

a cause of the limit on the transition rates at rapid temperature exchange rates.

In order to further investigate the origin of the observed speed limit, we calculated

the mean first passage times (MFPTs) for temperature conditional folding and unfolding,

i.e. the average time for a replica unfolded at low temperature to become folded at low

temperature (regardless of path), orvice versa. The resulting MFPTs for the continuous

potential are shown in Table 3.1. We see there that theNTE speed limit arises exclusively

from a limitation in the fastest achievable unfolding rate, since the folding process is inde-

pendent ofNX and is not rate limiting. This can be understood by noting that the values

of α corresponding to theNX values used are at least two orders of magnitude larger than

the folding and unfolding rates. To unfold, the system need only make use of temperature

exchange transitions that correspond toα (i.e. the solid cyan arrows of Figure 3.2). Since

α is already much larger than the other rates, changes to it due to changes inNX will not

significantly change the MFPT for folding.

On the other hand, the unfolding process (if it occurs via an indirect route, which is

likely given the very small value ofku1) requires the system to use a “wα edge” (i.e. a

dashed cyan arrow in Figure 3.2). Sincew ≈ 10−4 for the temperatures used here,wα is

now slower than or comparable to the folding and unfolding rates, and therefore changes

in NX can make a substantial impact on the unfolding MFPT. Thus, theNTE speed limit

can be traced to the kinetics of temperature conditional unfolding, and must arise from

some difference between the unfolding kinetics in the continuous potential and the fully

Markovian NRE model.

One obvious way in which the continuous and NRE models differ is that the macrostates
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in the continuous potential have spatial extent, unlike the NRE states which lack inter-

nal structure. This means that a finite time is required for the particle to transit the non-

equivalent microstates that make up the two wells. In fact, we observe that the correlation

time for diffusion in thex directionin the unfolded wellat 474 K is approximately 1 400

MC steps. This timescale is of the same magnitude as theNX value at which the speed

limit effect of Table 3.1 begins to occur, suggesting that there may in fact be a connection

between the observedNTE speed limit and conformational diffusion within the free energy

wells. Such dependence of the kinetics on the internal structure of the macrostate can lead

to non-Markovian behavior.

Formally, a process is Markovian if and only if the observed propagators (Green’s func-

tions) do not depend on the history of the trajectory prior to the current state, i.e.

P (x3, t3|x1, t1; x2, t2) = P (x3, t3|x2, t2) (3.4)

for all statesx1, x2, x3 and all timest1 < t2 < t3. Although equation 3.4 could be used to

directly detect deviations from Markovian behavior, previous work has typically used other

analysis methods to detect such deviations[79, 112, 113]. For example, in a Markovian

process the rate matrixK determines the propagators via the master equation

ṗ(t) = Kp(t), (3.5)

wherep(t) is the vector of propagators at timet. The formal solution of Equation 3.5 is

given byp(t) = eKtp(0), and thereforeeKτ can be thought of as a transition matrixT(τ),

i.e. the matrix of probabilities of being in statexj at timeτ given that the system was in

statexi at time 0. If we denote the eigenvalues ofK by λ1 > λ2 > · · · and the eigenvalues

of T(τ) by µ1(τ) > µ2(τ) > · · · , thenµi(τ) = eλiτ . This can be used as a test of

Markovian behavior, sinceT(τ) can be empirically estimated from a trajectory. Different

values of the lag timeτ will yield different values ofµi(τ), howeverτ/ ln µi(τ) should be

independent ofτ if the kinetics is Markovian[79, 113]. Alternatively, the Markov property
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can be tested by analyzing the transition probabilities as a function of lag time using an

information theoretic measure based on Shannon’s entropy[112].

We have chosen to detect deviations from Markovian kinetics by examining the ob-

served residence time distributions and branching ratios, which provides insights into the

physical origin and the mechanism by which the non-Markovian effects enter into the

stochastic process. In our simulations on the continuous potential, we have found that

the residence time distributions in the macrostates are exponential to within statistical un-

certainty (data not shown), and thus by themselves are consistent with Markovian kinet-

ics. The branching probabilities, however, are significantly dependent on the preceding

macrostate. We focused on transitions entering and leaving the thermodynamically favored

U2F1 macrostate (or its symmetry-related stateF1U2). We ran a several trajectories us-

ing different rates of attempted temperature exchange and tallied the number of times each

macrostate sequence(X,U2F1, Y ) was observed in each (whereX, Y ∈ {F2F1, U2U1, U1F2}).
These counts were transformed into normalized branching probabilities, whereP (X|Y )

denotes the history-independent branching probability of next visiting macrostateX given

that the system is currently in macrostateY , andP (X|Z, Y ) denotes the history-dependent

branching probability of next visiting macrostateX given that the system is currently in

macrostateY and had been in macrostateZ immediately prior (Table 3.3).

If the kinetics is Markovian, then the history-dependent and the corresponding history-

independent branching probabilities will be equal:

P (X|Z, Y ) = P (X|Y ),

from which it follows that history-dependent branching probabilities that differ only in the

history condition will also be equal:

P (X|Z, Y ) = P (X|W,Y ).

This is clearly not the case for the data in Table 3.3. For example, we see that the history-

dependent branching probabilitiesP (U1F2|F2F1, U2F1), andP (F2F1|F2F1, U2F1) differ



70

significantly from their corresponding history-independent branching probabilitiesP (U1F2|U2F1)

and P (F2F1|U2F1), and the branching probabilityP (U1F2|F2F1, U2F1) is significantly

smaller thanP (U1F2|U1F2, U2F1). This is most pronounced when the rate of attempted

temperature exchanges is fast.

Examination of the kinetic scheme of Figure 3.2 indicates that the deviations from

Markovian behavior seen in Table 3.3 are consistent with a reduction in the number of

temperature-conditional round-trip conformational transition events. If the unfolding rate

at low temperature is negligible, then a low-temperature folded conformation unfolds pre-

dominantly via indirect paths of the formF1F2 → F2F1 → U2F1 → U1F2 or F1U2 →
F2U1 → U2U1 → U1U2. In the former case, theF2F1 → U2F1 step is more likely to be

reversed when the temperature exchange rate is rapid (Table 3.3), as is theF1U2 → F2U1

step in the latter case (which follows by symmetry from theU2F1 → U1F2 results of

Table 3.3). Thus, increasing the rate of attempted temperature exchanges increases the

probability of counterproductive backtracking relative to the Markovian case, resulting in

a decrease in the rate of temperature-conditional unfolding events, and therefore at corre-

sponding decrease inNTE (since temperature-conditional unfolding was shown above to

be rate-limiting).

Although the results presented here do not identify the physical origin of the non-

Markovian kinetics, we hypothesize that it is due to the finite time required for diffusion

of the particle within the macrostates. This effect does not arise in the NRE model, since

in there the macrostates have no internal structure, and the probability of making a transi-

tion to a given macrostate at any instantdt is the same, regardless of which macrostate the

system was in previously or how long it has been in the current macrostate. The behavior

of the continuous system within the wells is not Markovian, since the system has mem-

ory that is mediated by conformational diffusion within the macrostate. This correlation in

time of the particle’s position (and energy) implies that there is a maximal effective value

of the rate of statistically independent temperature exchanges, which is limited by the time
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required for conformational relaxationwithin the folded and unfolded macrostates.

3.3.4 Dependence of RE efficiency on the number of replicas

The above results were obtained with two replicas, which is not typical for replica exchange

simulations that would be carried out for peptides and proteins. To investigate the effect of

adding additional replicas, we performed a series of simulations of2× 109 MC steps with

2 to 15 replicas distributed uniformly inT−1 from 296 to 789 K. The results are shown

in Figure 3.9. One important issue that arises when considering such a set of results is

the appropriate measure of conformational sampling efficiency of RE. If we consider the

total number of transition eventsNTE (direct and indirect) in all replicas, then we would

see for the most part a monotonic increase of efficiency as a function of the number of

replicasN simply because the number of indirect “channels” for transitions is linearly

increasing. This measure of efficiency, however, implicitly assumes that computer power is

inexpensive and that the convergence rate of the simulation is the important limiting factor.

If both computer resources and the convergence rate are limiting factors, a more appropriate

measure is the computational efficiency calculated as the number of transition events per

replica (NTE/N ). According to this measure, a replica exchange simulation withN + 1

replicas is considered more efficient than one withN replicas only if the introduction of the

additional replica provides more than a proportional increase in the number of transition

events at the temperature of interest.

We find that the efficiency increases strongly as a function ofN when N is small,

reaches a maximum, and decreases withN for largerN (Figure 3.9). This pattern is un-

changed as a function of the rate of attempted temperature exchanges, showing a scaling

approximately consistent with the results in Table 3.1. The trends seen here are qualita-

tively similar to that seen previously in the NRE two-state discrete model[98] with finite

α. In that work, we attributed the decrease with increasing number of replicas beyond an
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Figure 3.9:Number of transition eventsNTE (section 3.2.3) normalized by the number of replicas
in 2×109 MC steps for 2 to 15 replicas exponentially distributed in temperature from 296 to 789 K.
Temperature exchanges were attempted every 10 000 (solid), 1 000 (dashed), and 200 (dotted) MC
steps.
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optimum value in part to a combinatoric effect that decreases the relative size of the “tar-

get” space of configurations in which a replica is at the temperature of interest relative to

the total temperature/configuration space. It is reasonable to assume that a similar effect is

occurring here as well. We will address this in a future communication.

The results in Figure 3.9 were obtained with a relatively uniform distribution of tem-

peratures. It is of interest to consider the effect on efficiency of changing that temperature

distribution. In our previous work[98], we concluded that in the context of the discrete

network model in the “largeα” limit, the optimal temperature distribution is one replica

at the temperature of interest, and the rest at the temperature which maximizes the har-

monic mean of the folding and unfolding rates. That model, however, was limited in its

realism in that it did not have explicit energy distribution functions. Furthermore, it is clear

from the results presented in the previous section that very large effective values ofα may

not be achievable in real systems. The continuous two-dimensional potential studied here

provides a better test system for studying these questions.

In Figure 3.10 we show the relative number of temperature-conditional transition events

in 2 × 109 MC steps for three different temperature distributions of 11 replicas: (A) uni-

formly distributed inT−1 from 296 to 789 K, (B) 6 replicas uniformly distributed inT−1

from 296 to 474 K (the optimal temperature) and the remaining 5 “bunched up” at the

optimal temperature, and (C) 5 replicas bunched up at the optimal temperature with the

remaining distributed in the 296 to 474 K range but strongly skewed toward the optimal

temperature. Temperature distribution B provides more than a 50% increase in efficiency

relative to the uniform distribution over the large temperature range. This is consistent with

our discrete model results, and indicates that it is possible to include temperatures that are

“too high” when the system exhibits anti-Arrhenius kinetics. However, we can increase the

efficiency even further (to more than a factor of 2.5 over the baseline result) by skewing the

temperature distribution to increase the number of replicas in the vicinity of the transition

temperature (distribution C). Previous work by Hansmann et al. has suggested that such
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Figure 3.10:Number of transition eventsNTE (section 3.2.3) observed in2 × 109 MC steps for
three different 11-replica RE simulations performed using the continuous potential withNX = 200.
The temperature distributions for the three simulations are shown in the inset. Transition counts have
been normalized by theNTE of simulation A.
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concentration of the temperatures near a bottleneck can improve temperature mixing[29].

However, the improved efficiency may simply be due to the increased number of replicas

near the optimal temperature. The clarification of the relative contributions from these two

effects will also be addressed in a future communication.

3.4 Conclusions

One of the challenges of studying the computational efficiency of replica exchange has

been the difficulty in running molecular simulations sufficiently long to obtain full conver-

gence and meaningful statistics. This is particularly daunting if such simulations must be

run multiple times to assess the effect of differences in simulation protocols and parame-

ters. The use of simplified model systems allows for thorough theoretical, conceptual, and

computational analysis of the problem that can provide insights into the factors that limit

the efficiency of replica exchange in more realistic molecular systems.

Our previous work made use of a highly simplified discrete model for protein folding

with two conformational states at several temperatures[98]. While this system did provide

useful insights, it was limited in a number of ways, and in particular was fully Markovian.

Here we have described a two-dimensional continuous potential function and an associated

move set that allows us to perform MC and replica exchange MC simulations in a system

that is small enough to quickly converge but yet is rich in complexity that is reminiscent

of molecular systems. While many of the results are consistent with those observed pre-

viously, novel effects are also seen. In particular, we have confirmed that the efficiency

of replica exchange in more complex systems is fundamentally limited by the timescale

of conformational diffusion within basins, as we had anticipated[98]. We expect that such

behavior will also be present (perhaps even more strongly) in molecular systems.

There are many unresolved questions raised by this work. One question for which our

two-dimensional system would be a good model is for studying the relationship between



76

conformational and thermal diffusion. Optimization of the diffusion of replicas in temper-

ature space has been a major focus of recent theoretical and computational study of the

replica exchange method[12, 24, 25, 26, 27, 28, 29, 99]. However, the convergence of

thermodynamic quantities is not limited by thermal diffusionper se, but by the exploration

of the conformational space of the system. While very poor thermal diffusion obviously

defeats the purpose of replica exchange by effectively reducing it to a set of parallel un-

coupled simulations, it is not clear that further optimization of thermal diffusion that is

already “reasonably good” will automatically improve convergence. Some recent work has

begun to address the role of basin-to-basin transitions[30, 31]. Similarly, some work on the

optimization of thermal diffusion has emphasized the role of temperature bottlenecks[29],

which may turn out to be fundamentally conformational in nature. The exact relationship

between thermal and conformational diffusion remains to be fully clarified, and we look

forward to studying this and other questions using simplified continuous and discrete mod-

els of replica exchange.

3.5 Appendix I —-The alternative potential function

The alternative potential with decreased average potential energy differences between folded,

unfolded and transition states is of the same general form as the primary potential described

in the Methods section and Figure 3.1, but with the boundary function parametersδ = 10−5,

b = 1, andn1 = 3.5 and potential energy

U(x, y) =





a1(x + x0)
2 + b1y

2, −1 ≤ x < −x1 0 ≤ y ≤ B(x)

−a2x
2 + b1y

2 + c0, −x1 ≤ x ≤ 0, 0 ≤ y ≤ B(x)

a3x
2 + b1y

2 + c0, 0 < x ≤ 1, 0 ≤ y ≤ B(x)

∞ otherwise

,

with a1 = 25 kcal/mol,a2 = 250 kcal/mol,a3 = 10 kcal/mol,b1 = 1000 kcal/mol,c0 = 6

kcal/mol. The constantsx0 andx1 were the same as for the primary potential. curves of
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these two potentials, the alternative one is much less steep than the other.

3.6 Appendix II: Publication attached

Part of the contents of this chapter was published inJ. Phys. Chem. B, 112, 6083-

6093(2008).
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Table 3.3:History dependent and independent branching probabilities from stateU2F1.

maximum likelihood estimatea (and 95% credible intervalb)
conditional probability NX = 200 NX = 10 000
P (U1F2|U1F2, U2F1) 0.906 (0.904, 0.908) 0.168 (0.144, 0.195)
P (U1F2|F1F2, U2F1) 0.521 (0.153, 0.530) 0.094 (0.088, 0.101)

P (U1F2|U2F1) 0.849 (0.846, 0.851) 0.103 (0.096, 0.110)

P (F2F1|F2F1, U2F1) 0.477 (0.469, 0.486) 0.895 (0.888, 0.902)
P (F2F1|U1F2, U2F1) 0.092 (0.090, 0.094) 0.816 (0.788, 0.841)

P (F2F1|U2F1) 0.150 (0.147, 0.152) 0.886 (0.878, 0.893)

a Maximum likelihood estimates determined usingP (a1|b, c) = #(b, c, a1)/
∑

i #(b, c, ai)
andP (a1|b) =

∑
i #(ci, b, a1)/

∑
jk #(cj, b, ak), where#(i, j, k) is the number of occur-

rences of the ordered triple(i, j, k).
b Bayesian credible intervals under a uniform prior given by the 0.025 and 0.975 quantiles
of the distributionP (p) ∝ pn(1 − p)N−n, wheren andN are the numerator and denomi-
nator, respectively, of the fraction used to calculate the maximum likelihood estimate.
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The efficiency of temperature replica exchange (RE) simulations hinge on their ability to enhance
conformational sampling at physiological temperatures by taking advantage of more rapid conformational
interconversions at higher temperatures. While temperature RE is a parallel simulation technique that is relatively
straightforward to implement, kinetics in the RE ensemble is complicated, and there is much to learn about
how best to employ RE simulations in computational biophysics. Protein folding rates often slow down above
a certain temperature due to entropic bottlenecks. This “anti-Arrhenius” behavior represents a challenge for
RE. However, it is far from straightforward to systematically explore the impact of this on RE by brute force
molecular simulations, since RE simulations of protein folding are very difficult to converge. To understand
some of the basic mechanisms that determine the efficiency of RE, it is useful to study simplified low
dimensionality systems that share some of the key characteristics of molecular systems. Results are presented
concerning the efficiency of temperature RE on a continuous two-dimensional potential that contains an entropic
bottleneck. Optimal efficiency was obtained when the temperatures of the replicas did not exceed the
temperature at which the harmonic mean of the folding and unfolding rates is maximized. This confirms a
result we previously obtained using a discrete network model of RE. Comparison of the efficiencies obtained
using the continuous and discrete models makes it possible to identify non-Markovian effects, which slow
down equilibration of the RE ensemble on the more complex continuous potential. In particular, the rate of
temperature diffusion and also the efficiency of RE is limited by the time scale of conformational rearrangements
within free energy basins.

1. Introduction

One of the key challenges in the computer simulation of
proteins at the atomic level is the sampling of conformational
space. The efficiency of many common sampling protocols, such
as Monte Carlo (MC) and molecular dynamics (MD), is limited
by the lack of apparent ergodicity caused by high free energy
barriers between conformational states and rugged energy
landscapes. Replica exchange (RE) methods1-5 are widely
employed to enhance the conformational sampling efficiency
of biomolecular simulations for the study of protein biophysics,
including peptide and protein folding6,7 and aggregation,8-10 and
protein-ligand interactions.11,12To accomplish barrier crossings,
RE methods simulate a series of replicas over a range of
potential parameters13-17 or temperatures.5 In the latter, replicas
exchange temperatures following a Metropolis criterion designed
to preserve canonical distributions. This scheme allows con-
formations at physiological temperatures, where conformational
interconversions are rare, to switch to higher temperatures where
transitions to other conformations are more likely. In a sense,
therefore, the enhancement of conformational sampling at low

temperatures is achieved by “borrowing’’ the faster kinetics at
higher temperatures.

The popularity of RE methods is due to their ease of
implementation and their ability to enhance conformational
sampling while preserving canonical distributions at the ther-
modynamic conditions of each replica. The properties of the
RE algorithm and how it can be utilized most effectively for
the study of protein folding and binding has received attention
recently.18-20 The determination of the temperature assignment
and number of replicas to achieve optimal temperature mixing
has been the subject of a variety of studies.3,21-27 Recent work
has also recognized the importance of conformational relaxation
as a key limiting factor that can affect the efficiency of the RE
algorithm.18,19,26,28While temperature RE is relatively straight-
forward to implement, kinetics in the RE ensemble is compli-
cated and does not correspond in any simple way to the
molecular kinetics (necessitating additional methods for the
reconstruction of molecular kinetics from RE samples29-32).
Molecular kinetics, however, can have a strong effect on RE,
especially when the kinetics has complex temperature depen-
dence. The anti-Arrhenius behavior typical of protein folding
kinetics, where the folding rate above a critical threshold
temperature decreases with increasing temperature,33-36 is
understood to occur when the transition state is energetically
favored but entropically disfavored with respect to the reactants.
Anti-Arrhenius behavior represents a challenge for temperature
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RE because, when folding exhibits anti-Arrhenius behavior,
there exists a temperature (generally unknown) at which the
folding and unfolding rates are optimal. If even higher temper-
atures beyond the optimal are included in the RE ensemble,
this may degrade performance.20

Although some comparative studies aimed at determining the
benefits of RE over conventional MD for peptide folding have
been conducted,19,37,38it is far from straightforward to systemati-
cally explore the convergence properties of RE by brute force
molecular simulations, since RE simulations of protein folding
are very difficult to converge. To understand some of the basic
mechanisms that determine the efficiency of RE, it is useful to
study simplified low dimensionality systems that share some
of the key characteristics of molecular systems. We recently
investigated a discrete two-state network model for replica
exchange (NRE), containing two conformational states (folded
and unfolded) at each of several temperatures.20 We found that
the efficiency of RE for this system varies non-monotonically
with respect to the temperature distribution of the replicas when
the folding rate displays anti-Arrhenius behavior. The model
showed that the rate of folding/unfolding events in RE is
maximal when high-temperature replicas are placed near the
temperature at which the harmonic mean of the folding and
unfolding rates for the uncoupled system (kf andku) is maximal.
This result suggested that, in molecular simulations, adding high-
temperature replicas does not necessarily lead to increased
efficiency of exploration of conformational space, and that,
instead, optimal efficiency could be obtained by placing replicas
at specific temperatures determined by the temperature depen-
dence of key kinetic rates of the system.

In this paper we extend this analysis by studying a continuous
two-dimensional system designed to reproduce the anti-Arrhe-
nius kinetics of a conformational equilibrium, such as a protein
folding equilibrium, mediated by an entropic bottleneck. The
two-dimensional system studied here is an extension of the
potential model we originally used to study the convergence of
the weighted histogram analysis method,39 and is very similar
in spirit to to the funnel-like golf course model for protein
folding studied by Szabo and co-workers.40 This two-dimen-
sional system is sufficiently simple to be amenable to accurate
analytical and numerical solution, while including some char-
acteristics of molecular systems that were absent from the
discrete NRE model. The present model is self-contained in that
the kinetic rates are determined by the potential and the move
set rather than being imposed, as in the NRE model of reference
20. Furthermore, and most importantly, the unfolded and folded
macrostates have, like real molecular systems, microscopic
internal structure. The new model makes it possible to follow
the joint microscopic evolution of the system in conformational
and temperature space. It incorporates the same discrete
temperature exchange scheme commonly adopted in RE mo-
lecular simulations, and it allows us to study the effects of non-
Markovian processes likely present in RE simulations of
molecular systems.

In the next section we present the potential model and the
kinetic scheme we have employed. We review the RE method
and the NRE model we previously developed. We then
summarize the thermodynamic and kinetic properties of the two-
dimensional system and present results showing how these
determine the efficiency of the RE method. The paper is then
concluded by discussing the implications of these findings for
RE simulations of molecular systems.

2. Methods

2.1. The Two-Dimensional Continuous Potential.A two-
dimensional potential was constructed to mimic the anti-
Arrhenius temperature dependence of the folding rate seen in
proteins. We designed this potential to have an energetic barrier
when going from the “folded” to the “unfolded” region, and an
entropic barrier in the reverse direction. The entropic barrier is
achieved by imposing a hard wall constraint that limits the space
accessible to the folded region. Specifically, the particle can
only move in the region-1 e x e 1, 0 e y e B(x), where the
boundary functionB(x) is a small constant forx e 0 and an
increasing function ofx for x > 0 (Figure 1):

The use of a boundary of this form is based on a two-
dimensional potential first used in our laboratory to study the
convergence of the weighted histogram analysis method,39 and
is very similar in spirit to simplified models for protein folding
studied by Bicout and Szabo40 and the model of an entropic
barrier by Zhou and Zwanzig.41 The specific parametersδ, b,
andn1 were chosen together with the parameters of the potential
function discussed below by trial and error to achieve a
sufficiently strong temperature dependence to illustrate some
of the possible consequences of anti-Arrhenius behavior on RE
simulations. It is natural to choose thex axis to be the reaction
coordinate, with-1 e x e 0 corresponding to the folded
macrostate and 0< x e 1 corresponding to the unfolded
macrostate. The move set was chosen to be compatible with
this reaction coordinate (see below). In order for folding and
unfolding to be activated processes, however, it is necessary to
add a potential energy function that has an energetic well as a
function of x in the folded region, and increases withx in the
unfolded region. Specifically, we use the potential function

Figure 1. A schematic representation of the two-dimensional potential
function used in this work. The colored area corresponds to the
accessible region of the (x,y) plane, with the colors representing the
magnitude of the potential energy at that (x,y) point (scale bar in kcal/
mol). The potential energy is infinite in the non-colored region and for
y < 0, x < -1, andx > 1. The inset is an enlarged view of the folded
macrostate and transition region.

B(x) ) {δ -1 e x e 0

bxn1 + δ 0 < x e 1
(1)

U(x,y) ) {a1(x + x0)
2 -1 e x < - x1 0 e y e B(x)

-a2x
2 + c0

-x1 e x e 0 0 ey e B(x)

a3x
n2 + c0

0 < x < x2 0 e y e B(x)

a4x
n3 + c1

x2 e x e 1 0 e y e B(x)
∞ otherwise

(2)
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wherea1 ) 23.53 kcal/mol,a2 ) 235.3 kcal/mol,a3 ) 376.5
kcal/mol,a4 ) 11.29 kcal/mol,c0 ) 7.059 kcal/mol,b ) 5, n1

) 4.55,n2 ) 2, n3 ) 0.5, andδ ) 2 × 10-7. The constantsx0

) xc0(a1+a2)/a1a2, x1 ) a1x0/(a1 + a2), x2 ) (a4n3/a3n2)1/(n2-n3),
and c1 ) c0 - (a4x2

n3 - a3x2
n2) were chosen so that the first

derivative ofU(x,y) is continuous. A graphical representation
of the two-dimensional system studied here is shown in Figure
1.

2.2. Kinetics on the Two-Dimensional Continuous Poten-
tial. We use Metropolis MC sampling to simulate the movement
of a particle in this two-dimensional potential. Kinetic MC has
a long history in the study of protein folding using simplified
models.42-44 To ensure rapid equilibration along they coordinate
consistent with the choice ofx as the reaction coordinate and
because of the large size difference of the accessible region in
the y direction between the folded and unfolded regions, we
adopted an asymmetric MC proposal scheme,39,45 in which the
step size in they direction is proportional toB(x), i.e., a proposed
move (x′,y′) is generated uniformly in the regionx - ∆ < x′ <
x + ∆, y - B(x)∆ < y′ < y + B(x)∆. The displacement
parameter∆ was chosen such that the barrier crossing is slow
but not prohibitively expensive and follows a linear regime (i.e.,
doubling∆ causes an approximate doubling in the number of
barrier crossings). To correct for the asymmetric MC proposal
distribution, the factorθ(|y′ - y|/B(x′)∆) was included to satisfy
detailed balance, whereθ(z) equals 1 ifz < 1 and 0 otherwise.

Rate constants in units of MC steps were obtained via MC
simulation by calculating the mean first passage times (MFPTs)
between the two macrostates. The same displacement parameter
∆ ) 0.05 was used for all temperatures. A “buffer region’’-0.1
< x < 0.0437 was defined as not belonging to either the folded
or unfolded state to reduce artifactual rapid recrossings of the
barrier.46,47For comparison, the temperature dependence of the
folding and unfolding rate constants were also estimated from
the potential of mean force (PMF) using the Arrhenius equation
k ) A exp(- ∆G†/kBT), where∆G† is the free energy difference
between the transition state and the appropriate macrostate. Free
energies were extracted from the PMF along thex axis by
averaging the PMF over the macrostates and transition region
using numerical integration.

2.3. RE Simulation on the Two-Dimensional Continuous
Potential. RE simulations were performed by runningN MC
simulations atN inverse temperaturesâi ) (kBTi)-1 (â1 > â2 >
... > âN) in parallel. The state of the extended ensemble is
specified by a joint configuration ofN replicasX ) {q1,q2,...,qN},
where qi is the configuration of replicai. Exchanges of
configurations were attempted everyNX MC steps between pairs
of replicas adjacent in temperature, and the attempted exchange
X ) {...,qi,qj,...} f X′ ) {...,qj,qi,...} was accepted with
probabilityw(X f X′). Given the potential energy functionU(q),
the transition probability that satisfies detailed balance and
reproduces the canonical ensemble is given byw(X f X′) )
min{1, exp[-(âj - âi)(U(qi) - U(qj))]}.5

The efficiency of RE conformational sampling was monitored
by measuringNTE(τ|T0), the number of round-trip transitions
in the conformational state of a replica, conditional on the
temperature of interestT0, that occur in a given observation
time τ. A transition event is a transit of a given replica from
one conformation atT0 to the other conformation atT0 and back
again regardless of route, i.e., whether it was the result of a
direct barrier crossing atT0 or indirectly via a barrier crossing
at some other temperature combined with temperature ex-
changes. Conceptually, this measure reflects the potential of RE
to achieve rapid equilibration at the temperature of interest by

means of conformational transitions at temperatures other than
the temperature of interest. The transition events as defined
correspond to the “reversible folding” events studied in all-atom
simulations of peptide systems.48,49We will use the symbolNTE

as a shorthand notation forNTE(τ|T0), whereT0 will generally
be the lowest temperature in the simulation. For an uncoupled
simulation, the number of transition events is simply the number
of round trips between macrostates.

2.4. Discrete NRE.We review here the discrete kinetic
network model which we devised in our recent study of RE
efficiency.20 In this model (unlike the continuous potential model
above), the macrostatesF andU (for “folded” and “unfolded”)
do not possess any internal structure. Instead, it is assumed that
the system evolves in time as a Poisson process, in which
instantaneous transitions betweenF andU occur after waiting
periods given by exponentially distributed random variables with
means equal to the reciprocals of the folding or unfolding rates.
The result (for a single replica) is an example of a “random
telegraph” Markov process.50

If the transition events are Markovian, then the simultaneous
behavior of two uncoupled non-interacting replicas can be
represented by the four composite states{F1F2, F1U2, U1F2,
U1U2} . In each symbol, the first letter represents the config-
uration of replica 1, the second letter represents the configuration
of replica 2, and the subscripts denote the temperature of each
replica. Only transitions corresponding to a single conforma-
tional change (e.g.,F1F2 f U1F2) are allowed, assuming that
the probability of two simultaneous changes (e.g.,F1U2 f U1F2)
in an infinitesimal intervaldt can be neglected.50 The four-state
composite system for two non-interacting replicas can be
extended to create a network model of RE by introducing
temperature exchanges between replicas, i.e., by allowing
transitions such asF1U2 f F2U1. This leads to a system with
eight states arranged in a cubic network with “horizontal”
folding and unfolding transitions and “vertical” temperature
exchange transitions (Figure 2). For canonical equilibrium
probabilities to be preserved under temperature exchanges, it
is sufficient that detailed balance is satisfied, e.g., the transition
probabilitiesw(F1U2 f F2U1) and w(F2U1 f F1U2) satisfy
Peq(F1U2)w(F1U2 f F2U1) ) Peq(F2U1)w(F2U1 f F1U2). The
ratios of forward and reverse transition probabilities forF1F2

h F2F1 and U1U2 h U2U1 are equal to 1, as interchange of
temperatures does not change the equilibrium populations.

Figure 2. The kinetic network model for the discrete NRE model used
by Zheng, et al.20 The state labels represent the conformation (letter)
and temperature (subscript) for each replica. For example,F2U1

represents the state in which replica 1 is folded and at temperatureT2,
while replica 2 is unfolded and at temperatureT1. Red and black arrows
correspond to folding and unfolding transitions, respectively, while the
temperature at which the transition occurs is indicated by the solid and
dashed lines (forT2 andT1, respectively). The cyan arrows correspond
to temperature exchange transitions, with the solid and dashed lines
denoting transitions with rate parametersR andwR, respectively.
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The effect of the rate of temperature exchanges is included
by introducing the rate parameterR, which controls the overall
scaling of the temperature exchange rate relative to the folding
and unfolding rates. The forward and reverse rates of theF1F2

h F2F1 andU1U2 h U2U1 transitions are set equal toR, while
the other rates are set toR or wR as required by detailed balance,
where, in this case,w ) Peq(F2U1)/Peq(F1U2) or its reciprocal
such thatw < 1 (see Figure 2). The overall average rate at which
temperature exchanges occur (kex) is the probability of jumping
in any instantdt from the upper to the lower face (or vice versa)
of the cubic network, and is given by the equilibrium popula-
tion weighted sum of the temperature exchange rates over all
states:

The NRE model was simulated using a standard method for
continuous time Markov processes with discrete states,50 also
known as the “Gillespie algorithm”. Given a current stateX0,
we identify its m neighboring statesX1, X2, ..., Xm and the
transition ratesk1, k2, ...,km from X0 to each of the neighboring
states. We generate a waiting time in stateX0 by drawing a
random number from an exponential distribution with mean (k1

+ k2 + ‚‚‚ + km)-1, and select a destination stateXi from among
X1, X2, ..., Xm with probability ki/(k1 + k2 + ‚‚‚ + km). This
procedure is then repeated with the new state as the current
state.

3. Results and Discussion

3.1. Thermodynamics and Kinetics of the Continuous
Model System.3.1.1. Thermodynamics.In Figure 3 we show
the PMFs corresponding to the two-dimensional potential along
the x coordinate at several temperatures. PMFs calculated by
MC sampling and numerical integration of the canonical
distribution function agree to within statistical accuracy. The
PMFs show two free energy minima corresponding to the folded
(F, x e0) and unfolded (U, x > 0) conformational states,
separated by a free energy barrier nearx ) 0. The free energy
minimum of the unfolded state and the free energy barrier have
no counterparts in the potential, which is monotonically varying
in both of these regions (Figure 1). These features of the PMF
originate from the interplay between opposing entropic and

enthalpic driving forces. The free energy minimum of the
unfolded state corresponds to the optimal balance between
entropy, which drives the system toward large values ofx (where
the accessible space along they coordinate is greatest), and
enthalpy, which drives the system toward small values ofx
(where the potential energy is smallest). The free energy barrier
that separates the unfolded and folded state is entropic in origin.
For x near 0, the entropy is significantly reduced compared to
the unfolded state, and assumes a value similar to that of the
folded state (compare in Figure 1 the size of the accessible space
along y at x ) 0 and forx > 0 andx < 0). In contrast, the
potential energy atx ) 0, although smaller than in the unfolded
state, is still substantially larger than in the folded state. This
imbalance between entropy and potential energy causes the free
energy maximum atx ) 0.

From the point of view of folding, the free energy maximum
constitutes an entropic bottleneck. In order to make a transition
to the folded state, the system needs to cross the free energy
barrier region atx ) 0, where the system has lost all of the
entropy required for folding without having gained all of the
folding enthalpy. Similar transition bottlenecks have been
described in simplified models for protein folding.34,40,51After
crossing this barrier, the system enters the folded state by going
downhill in potential energy without further reduction in
conformational entropy, since the accessible space along they
direction is the same for all pointsx in the folded space. Because
the conformational entropy is constant forx < 0, the PMF in
this region coincides with the potential energy. From the point
of view of unfolding, the free energy maximum atx ) 0
constitutes an enthalpic barrier. Relative to the folded state,
points in the region nearx ) 0 have similar conformational
entropy but larger potential energy. To reach the barrier region
from the folded state, therefore, the system needs to gain
potential energy (enthalpy) without the help of a concomitant
increase in conformational entropy. Beyond the barrier region
there is a free energy gain for moving toward the unfolded state
since the gain in conformational entropy outweighs the increase
in potential energy.

As shown below, the barrier region close tox ) 0 constitutes
the transition state for the folding/unfolding equilibrium. The
free energy difference between the unfolded and folded states
and the transition state corresponds to the free energies of
activation, which determine the rate of folding and unfolding,
respectively. Because of their different thermodynamic origins
(entropic vs enthalpic), the free energies of activation for folding
and unfolding display the opposite dependence on temperature.
As Figure 3 shows, the free energy of activation for folding
increases with increasing temperature relative to thermal energy
(kT), where the free energy of activation for unfolding decreases
with increasing temperature. This anti-Arrhenius behavior is the
signature of an entropically activated process. The conforma-
tional entropy difference between the unfolded state and the
transition state increases as the temperature is increased, leading
to an increase in the height of the free energy barrier for folding
with increasing temperature.

Figure 4 shows the temperature dependence of the population,
PF(T), of the folded state, often referred to as the melting curve.
The shape of the melting curve is typical of two-state protein
thermal denaturation experiments. At 300 K, the system is nearly
completely folded, and the fraction folded decreases with
increasing temperature in favor of the unfolded state which is
entropically favored. The melting temperatureTM (corresponding
to equal populations of the folded and unfolded state) is
approximately 460 K. At this temperature, the folded and

Figure 3. The PMF at three different temperatures: 296 K (solid line),
474 K (dashed line) and 789 K (dotted line). The PMF was calculated
using numerical integration. To more clearly illustrate the change in
the barrier height as a function of temperature, the three curves have
been superimposed to coincide atx ) 0.

kex )
kf1kf2 + 2ku1kf2 + ku1ku2

(kf1 + ku1)(kf2 + ku2)
R (3)
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unfolded states have equal free energy. The slope of the melting
curve at the melting temperature is

which is proportional to the difference of the average potential
energies,UF andUU, of the folded and unfolded states. Thus, a
decrease of the average potential energy difference between the
two states leads to a less steep melting curve. To illustrate this,
we show in Figure 4 the melting curve corresponding to an
alternative parametrization of the potential for which the average
potential energy difference between the folded, unfolded, and
transition states was decreased, while approximately preserving
the same value of the melting temperature (see Appendix). As
expected, the alternative parametrization leads to a more gradual
conversion from the folded state to the unfolded state with
increasing temperature (Figure 4, dashed line). The heat capacity
as a function of temperature is approximately Gaussian and is
peaked nearTM.

3.1.2. Kinetics.With the MC move set described in the
Methods section above, the kinetics of folding/unfolding is two-
state as measured by the distribution of first passage times,
which is exponential (Figure 5). The Arrhenius plots of the
folding and unfolding reaction rates are shown in Figure 6. The
temperature dependence of the reaction rates using the Arrhenius
equation with activation free energies extracted from the PMFs
(Figure 3) agree well with the simulation results, and is a further
indication that the kinetics is two-state and that the reaction
coordinate is well represented by thex coordinate. This is a
consequence of choosing a move set for which equilibration
along they coordinate is faster than that along thex coordinate.
The alternative potential parametrization in the Appendix, which
is characterized by a smaller average potential energy of the
unfolded state relative to the folded and the transition states,
leads to a weaker temperature dependence of the folding rate
(Figure 6, dashed lines). Since the slope of the Arrhenius curve
is proportional to the activation energy, this difference of the
rates is consistent with the smaller energy of activation obtained
with the alternative parametrization.

The folding rates decrease with increasing temperature, a
phenomenon that has been observed in the kinetics of protein

folding.33-36,42Processes displaying anti-Arrhenius behavior are
said to be characterized by a negative effective activation energy,
whereby the enthalpy of the unfolded state is larger than that
of the transition state. The free energy of activation of these
processes, however, remains positive as a result of the activation
entropy favoring the unfolded state. The negative activation
entropy is associated with the smaller number of accessible
conformations at the transition state relative to the unfolded state;
that is, the transition state constitutes an entropic “bottleneck’’
that needs to be traversed for the transition to the folded state
to occur. These elements clearly exist in the simplified two-
dimensional system under investigation. Since the potential
energy decreases monotonically from the unfolded state to the
folded state, the average potential energy at the transition state
(x ) 0) is smaller than the average potential energy of the
unfolded state, leading to the observed anti-Arrhenius behavior

Figure 4. The temperature dependence of the fractional population
folded (solid line) calculated by numerical integration of the PMF. The
temperature dependence of the fraction folded corresponding to a system
with a smaller average potential energy difference between the folded
and unfolded states (see Appendix) is shown for comparison (dashed
line). The fraction folded derived from the folding and unfolding rates
obtained by MC simulation (Figure 6) is shown as circles. The melting
temperatureTM ) 463 K (corresponding to 50% folded population) is
indicated.

(dPF

dT )
T)TM

) 1
4

Uh F - Uh U

kT2

Figure 5. The distributions of first passage times for folding (black)
and unfolding (red) observed during a 2.7× 1010-step kinetic MC at
475 K. Approximately 4700 folding and unfolding events were
observed. A folding first passage time is defined as the time elapsed
from when the particle enters the unfolded region from the buffer region
(having previously been in the folded region), until it re-enters the folded
region. The unfolding first passage time is defined similarly. The
semilog plot of the histograms of the first passage times is shown as
circles, while the lines represent the best-fit exponential curve.

Figure 6. The temperature dependence of the folding and unfolding
rate constants (solid lines and symbols). Folding and unfolding rates
are indicated by red and green color, respectively. The folding and
unfolding rates corresponding to a system with a smaller activation
energy for folding (Appendix) are shown for comparison (dashed lines).
The rate constants plotted in symbols were derived from kinetic MC
simulations run at different temperatures. The solid lines represent the
rates calculated using the Arrhenius equation based on activation
energies derived from the PMF alongx (Figure 3). Rate constants are
expressed in units of 10-6 per MC step.
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of the rate of folding. Despite the enthalpic driving force
favoring the transition state, the free energy of activation for
folding remains positive at all temperatures examined (as the
calculated PMF along thex coordinate shows). This is because
the entropy of the transition state is smaller than the entropy of
the unfolded state because of the larger accessible configuration
space along they coordinate (Figure 1). The entropic destabi-
lization of the transition state, which (as in protein folding) can
be described as acting as a “bottleneck”, more than offsets the
enthalpic stabilization, leading to the observed positive activation
free energy for folding.

Often the observed folding rates of proteins show non-
monotonic behavior with respect to the temperature; the folding
rate increases with temperature at low temperatures as in normal
Arrhenius behavior, switching to anti-Arrhenius behavior at
higher temperatures, when the folding rate decreases with
increasing temperature. This phenomenon is rationalized in
terms of a negative activation heat capacity. The activation heat
capacity is defined as the temperature derivative of the activation
energy, and a negative value of the activation heat capacity
indicates that the unfolded state has a larger heat capacity than
the transition state. The observed negative heat capacity of
activation of protein folding has been variously interpreted as
being due to the hydrophobic effect33,42 or to the difference of
the distribution of energies of the molecular conformations
experienced as a function of temperature.34,52The curvature of
the Arrhenius plot is related to the activation heat capacity. The
present simplified two-dimensional system does not have a large
enough heat capacity of activation to reproduce this turnover
from Arrhenius to anti-Arrhenius behavior within the temper-
ature range we have investigated. Thus, the results extracted
from this model are applicable only to the anti-Arrhenius
temperature regime of the protein folding process.

Figure 7 shows the number of direct round-trip transition
eventsNdirect observed during MC simulations ofNMC ) 5 ×
109 steps as a function of temperature. We use the number of
transitions as a measure of the efficiency of conformational
sampling, which determines the rate of convergence of ther-
modynamic quantities extracted from the simulations. The
results of Figure 7 show that the conformational sampling

efficiency of the uncoupled simulation varies non-monotonically
with the temperature. There is a 40-fold increase in transitions
from 300 to 474 K, the temperature at which the maximum is
observed. This decreases for temperatures higher than 474 K,
reaching a 10-fold reduction at 800 K (relative to the maximum).
As the results in Figure 7 show, this behavior mirrors almost
exactly the behavior of the harmonic mean (kf

-1 + ku
-1)-1 of

the folding and unfolding rates (from Figure 6) as a function of
temperature (we note that our use of the term “harmonic mean”
differs from standard usage by a factor of 2, which is natural
given that we are considering a round trip, i.e., a single
“transition event” involves two conformational transitions). The
agreement between the harmonic mean of the rates and the
number of direct round trip transitions is expected for a two-
state activated equilibrium, since the average time of a round-
trip excursion from the folded to the unfolded state and back is
the sum of the average folding and unfolding timesτf ) kf

-1

andτu ) ku
-1, respectively:Ndirect ) NMC/(τf + τu).

3.2. RE Simulations Using MC on the Continuous Poten-
tial. In a recent paper,20 we analyzed the convergence and
efficiency of RE using a discrete model for folding and
unfolding. We found that when the physical kinetics shows anti-
Arrhenius temperature dependence, there exists an optimal
maximal temperature beyond which the efficiency of the RE
method is degraded. Similar behavior is expected from RE
simulations using the continuous two-dimensional potential, with
possible differences arising from the more complex nature of
the present model, where the folded and unfolded states have
internal structure. We performed RE simulations on the continu-
ous two-dimensional potential with MC as the dynamic propa-
gator and RE proposals made periodically between adjacent
temperatures everyNX MC steps. The efficiency of conforma-
tional sampling was monitored by counting the number of
temperature-conditional transition eventsNTE defined in section
2.3 above.

In order to directly compare with the results obtained
previously, we first performed RE using two replicas. Although
such a simulation would not be realistic in general for a protein
system due to poor energy overlap and very inefficient tem-
perature exchange, it is feasible in the two-dimensional potential.
The result for a 2× 109-step simulation where the lower
temperature is held fixed at 296 K and the upper temperature
varies from 296 to 789 K is shown in Figure 8 (green, red, and
blue dots). We see behavior similar to that seen for the discrete
model studied previously: the number of temperature-condi-
tional transitionsNTE has non-monotonic behavior and exhibits
a maximum at an optimal high temperature given by the
maximal harmonic mean of the folding and unfolding rates (474
K). This maximum point is approximately independent of the
rate at which attempted temperature exchanges occur. While
the location of the maximum is in agreement with our previous
results,20 the magnitude of the number of transition events is
not. We have shown that, for NRE simulations employing a
two-state model (folded and unfolded states), the number of
transition events is given by the average over all temperatures
of the harmonic means of the folding and unfolding rates,
provided that the rate of temperature exchanges is sufficiently
fast.20 In the continuous model, we find that the number of
transitions is significantly lower than that predicted from the
average of the harmonic means of the rates (Figure 8, black
dashed line). This may be due to the finite rate of temperature
exchanges, deviations from the pure Markovian kinetics of the
two-state discrete model, or a combination of these effects.

Figure 7. Number of direct round-trip transition eventsNdirect in single-
temperature uncoupled simulations over the temperature range 296-
789 K in 5 × 109 MC steps. The curve plotted as a solid line was
calculated from the harmonic mean of the folding and unfolding rates
estimated from the mean of the folding and unfolding first passage
time distribution (Figure 5) obtained by MC simulations at each
temperature, while the number of events counted directly from the MC
simulations at individual temperatures is plotted as circles. The high
level of agreement indicates that the system is very well approximated
as a two-state activated process.
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To test whether this reduced number of transitions is due to
insufficiently fast temperature exchange attempts, we performed
several simulations in which we variedNX (the number of MC
steps between attempted temperature exchanges). We see in
Table 1 thatNTE is approximately constant provided that the
attempted exchange rate is faster than a critical value ofNX ≈
500. For less frequent exchange attempts, we see a substantial
decrease in the number of transitions. Thus, the number of
unfolding and refolding transitions cannot be increased simply
by increasing the rate of attempted exchanges.

3.3. Non-Markovian Effects Revealed by Comparison of
Continuous and Discrete RE Simulations.To explore causes
for the observed transition deficit, we performed simulations
using the discrete NRE model (Figure 2) using kinetic param-
eters derived from the two-dimensional continuous potential
(Figure 6). To map the rates determined using the continuous

potential to the discrete model, we used the folding and
unfolding rates directly, expressed in units of 10-6 per MC step.
Different values ofR were used for theF1F2 h F2F1 andU1U2

h U2U1, and were set to 106/NX multiplied by the empirical
acceptance rate when both replicas are in the folded or unfolded
state (0.853 and 0.395, respectively).

If we compare the observed number of transitions seen in
the continuous model with the number predicted by the NRE
model with the same rate parameters (Table 1), we see that there
is good agreement when the attempted exchange rate is small,
but substantial disagreement when it becomes larger. In
particular, while the number of transitions using the continuous
model reaches a plateau value atNX ≈ 1000, the predicted
number of transitions in the NRE model continues to increase,
asymptotically approaching the value predicted by the average
of harmonic means. Similarly, comparison of the predicted and
observed number of transitions as a function of temperature
(Figure 8) shows a significant overestimation of the transition
rate by the NRE model, and shows that this overestimation is
much more severe when the rate of attempted temperature
exchanges is fast. For example, while theNTE predicted from
the NRE model has essentially reached the asymptotic limit
when NX ) 20 (blue curve), the observedNTE values are
essentially unchanged relative to those obtained whenNX ) 200
(compare blue and red circles). The continuous two-dimensional
model thus appears to contain an inherent “speed limit”, which
prevents it from achieving the transition rates expected for a
fully Markovian system, even if the temperature exchanges are
attempted frequently.

One possible origin of this speed limit is that the average
effective rates are different in the coupled and uncoupled
systems. To test this, we analyzed the kinetics of the continuous
RE simulation by using the NRE model to “reverse-engineer”
the apparent rates by estimating the mean residence times and
branching ratios for various RE macrostates. If the system is
Markovian, then the ratektot given by the inverse of the mean
residence time is the sum of the rates exiting that state. The
rate corresponding to a given edge can then be estimated by
multiplying ktot by the fraction of residences that exit via that
edge (the branching ratio). The results are shown in Table 2.
The reverse-engineered rates generally agree with the uncoupled
folding and unfolding rates estimated from kinetic MC, and this
is true for both rapid and slow attempted temperature exchange
rates. Therefore, the temperature exchanges do not perturb the
average kinetics of the system, and cannot be a cause of the
limit on the transition rates at rapid temperature exchange rates.

In order to further investigate the origin of the observed speed
limit, we calculated the MFPTs for temperature conditional
folding and unfolding, i.e., the average time for a replica
unfolded at low temperature to become folded at low temper-
ature (regardless of path), or vice versa. The resulting MFPTs
for the continuous potential are shown in Table 1. We see there
that theNTE speed limit arises exclusively from a limitation in
the fastest achievable unfolding rate, since the folding process

Figure 8. The dependence of the number of temperature-conditional
transition eventsNTE (section 2.3) on the temperature of the high-
temperature replica for a two-replica simulation on the continuous
potential (circles), and comparison with predicted transition events using
the discrete NRE model (Figure 2) (curves). For all simulations, one
replica was fixed at 296 K and the other replica was scanned from 296
to 789 K. The black dashed line corresponds to the discrete model
prediction in the large-R limit. The solid curves are the predictedNTE

using the NRE model with temperature-dependent folding and unfolding
rates taken from the kinetic MC simulations on the continuous potential
(shown in Figure 6) and using anR corresponding to an attempted
temperature exchange. The circles are theNTE values observed in 2×
109 MC step RE simulations on the continuous potential. The green,
red, and blue data correspond toNX values of 1 000, 200, and 20,
respectively.

TABLE 1: Number of Temperature-Conditional Transition
Events in 2 × 109 MC Steps for Two Replicasa as a Function
of the Number of MC Steps between Attempted
Temperature Exchanges (NX), and Observed
Temperature-Conditional MFPTsb

NTE per replica temperature-conditional MFPTs

NX

observed
(continuous)

predicted
(NRE) F1 f U1 U1 f F1

10 000 22 24 91.8 5.6
2 000 52 73 31.6 5.7
1 000 80 105 23.1 5.7

500 93 134 19.1 5.8
200 102 162 16.0 5.7
100 99 168 14.3 5.9
80 98 172 14.6 5.8
50 98 176 14.8 5.7
20 96 177 14.9 6.1
0c 178

a With temperatures of 296 and 474 K.b In units of 106 MC steps;
see text for details.c PredictedNTE based on the harmonic mean
relationship for theR f ∞ limit.

TABLE 2: Empirical “Reverse-Engineered” Rates at
Temperatures T1 ) 296 K and T2 ) 474 K (in Units of 10-6

MC Step) from Continuous Potential Simulation Data
Assuming the Network Topology of Figure 2

reverse-engineered ratesuncoupled
rates NX ) 10 000 NX ) 2 000 NX ) 200 NX ) 100

kf1 6.08 5.66 6.10 5.27 6.33
ku1 0.0036 0.0038 0.0036 0.0037 0.0037
kf2 0.297 0.288 0.299 0.290 0.306
ku2 0.420 0.420 0.419 0.427 0.425
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is independent ofNX and is not rate limiting. This can be
understood by noting that the values ofR corresponding to the
NX values used are at least 2 orders of magnitude larger than
the folding and unfolding rates. To unfold, the system need only
make use of temperature exchange transitions that correspond
to R (i.e., the solid cyan arrows of Figure 2). SinceR is already
much larger than the other rates, changes to it due to changes
in NX will not significantly change the MFPT for folding.

On the other hand, the unfolding process (if it occurs via an
indirect route, which is likely given the very small value of
ku1) requires the system to use a “wR edge” (i.e., a dashed cyan
arrow in Figure 2). Sincew ≈ 10-4 for the temperatures used
here,wR is now slower than or comparable to the folding and
unfolding rates, and therefore changes inNX can make a
substantial impact on the unfolding MFPT. Thus, theNTE speed
limit can be traced to the kinetics of temperature conditional
unfolding, and must arise from some difference between the
unfolding kinetics in the continuous potential and the fully
Markovian NRE model.

One obvious way in which the continuous and NRE models
differ is that the macrostates in the continuous potential have
spatial extent, unlike the NRE states which lack internal
structure. This means that a finite time is required for the particle
to transit the nonequivalent microstates that make up the two
wells. In fact, we observe that the correlation time for diffusion
in thex directionin the unfolded wellat 474 K is approximately
1 400 MC steps. This time scale is of the same magnitude as
the NX value at which the speed limit effect of Table 1 begins
to occur, suggesting that there may in fact be a connection
between the observedNTE speed limit and conformational
diffusion within the free energy wells. Such dependence of the
kinetics on the internal structure of the macrostate can lead to
non-Markovian behavior.

Formally, a process is Markovian if and only if the observed
propagators (Green’s functions) do not depend on the history
of the trajectory prior to the current state, i.e.,

for all statesx1, x2, x3 and all timest1 < t2 < t3. Although eq 4
could be used to directly detect deviations from Markovian
behavior, previous work has typically used other analysis
methods to detect such deviations.29,53,54 For example, in a
Markovian process, the rate matrixK determines the propagators
via the master equation

wherep(t) is the vector of propagators at timet. The formal
solution of eq 5 is given byp(t) ) eK tp(0), and therefore eKτ

can be thought of as a transition matrixT(τ), i.e., the matrix of
probabilities of being in statexj at timeτ given that the system
was in statexi at time 0. If we denote the eigenvalues ofK by
λ1 > λ2 > ‚‚‚ and the eigenvalues ofT(τ) by µ1(τ) > µ2(τ) >
‚‚‚, thenµi(τ) ) eλiτ. This can be used as a test of Markovian
behavior, sinceT(τ) can be empirically estimated from a
trajectory. Different values of the lag timeτ will yield different
values ofµi(τ); however,τ/ln µi(τ) should be independent ofτ
if the kinetics is Markovian.29,54 Alternatively, the Markov
property can be tested by analyzing the transition probabilities
as a function of lag time using an information theoretic measure
based on Shannon’s entropy.53

We have chosen to detect deviations from Markovian kinetics
by examining the observed residence time distributions and
branching ratios, which provides insights into the physical origin

and the mechanism by which the non-Markovian effects enter
into the stochastic process. In our simulations on the continuous
potential, we have found that the residence time distributions
in the macrostates are exponential to within statistical uncertainty
(data not shown), and thus by themselves are consistent with
Markovian kinetics. The branching probabilities, however, are
significantly dependent on the preceding macrostate. We focused
on transitions entering and leaving the thermodynamically
favoredU2F1 macrostate (or its symmetry-related stateF1U2).
We ran several trajectories using different rates of attempted
temperature exchange and tallied the number of times each
macrostate sequence (X,U2F1,Y) was observed in each (where
X,Y∈ {F2F1,U2U1,U1F2}). These counts were transformed into
normalized branching probabilities, whereP(X|Y) denotes the
history-independent branching probability of next visiting
macrostateX given that the system is currently in macrostate
Y, and P(X|Z,Y) denotes the history-dependent branching
probability of next visiting macrostateX given that the system
is currently in macrostateY and had been in macrostateZ
immediately prior (Table 3).

If the kinetics is Markovian, then the history-dependent and
corresponding history-independent branching probabilities will
be equal:

from which it follows that history-dependent branching prob-
abilities that differ only in the history condition will also be
equal:

This is clearly not the case for the data in Table 3. For example,
we see that the history-dependent branching probabilities
P(U1F2|F2F1,U2F1) andP(F2F1|F2F1,U2F1) differ significantly
from their corresponding history-independent branching prob-
abilities P(U1F2|U2F1) and P(F2F1|U2F1), and the branching
probability P(U1F2|F2F1,U2F1) is significantly smaller than
P(U1F2|U1F2,U2F1). This is most pronounced when the rate of
attempted temperature exchanges is fast.

Examination of the kinetic scheme of Figure 2 indicates that
the deviations from Markovian behavior seen in Table 3 are
consistent with a reduction in the number of temperature-
conditional round-trip conformational transition events. If the
unfolding rate at low temperature is negligible, then a low-
temperature folded conformation unfolds predominantly via
indirect paths of the formF1F2 f F2F1 f U2F1 f U1F2 or
F1U2 f F2U1 f U2U1 f U1U2. In the former case, theF2F1

P(x3,t3|x1,t1;x2,t2) ) P(x3,t3|x2,t2) (4)

p3 (t) ) Kp (t) (5)

TABLE 3: History Dependent and Independent Branching
Probabilities from State U2F1

maximum likelihood estimatea

(and 95% credible intervalb)

conditional probability NX ) 200 NX ) 10 000

P(U1F2|U1F2,U2F1) 0.906 (0.904, 0.908) 0.168 (0.144, 0.195)
P(U1F2|F1F2,U2F1) 0.521 (0.153, 0.530) 0.094 (0.088, 0.101)
P(U1F2|U2F1) 0.849 (0.846, 0.851) 0.103 (0.096, 0.110)
P(F2F1|F2F1,U2F1) 0.477 (0.469, 0.486) 0.895 (0.888, 0.902)
P(F2F1|U1F2,U2F1) 0.092 (0.090, 0.094) 0.816 (0.788, 0.841)
P(F2F1|U2F1) 0.150 (0.147, 0.152) 0.886 (0.878, 0.893)

a Maximum likelihood estimates determined usingP(a1|b,c) )
#(b,c,a1)/∑i #(b,c,ai) and P(a1|b) ) ∑i #(ci,b,a1)/∑jk #(cj,b,ak), where
#(i,j,k) is the number of occurrences of the ordered triple (i,j,k).
b Bayesian credible intervals under a uniform prior given by the 0.025
and 0.975 quantiles of the distributionP(p) ∝ pn(1 - p)N-n, wheren
andN are the numerator and denominator, respectively, of the fraction
used to calculate the maximum likelihood estimate.

P(X|Z,Y) ) P(X|Y)

P(X|Z,Y) ) P(X|W,Y)
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f U2F1 step is more likely to be reversed when the temperature
exchange rate is rapid (Table 3), as is theF1U2 f F2U1 step in
the latter case (which follows by symmetry from theU2F1 f
U1F2 results of Table 3). Thus, increasing the rate of attempted
temperature exchanges increases the probability of counterpro-
ductive backtracking relative to the Markovian case, resulting
in a decrease in the rate of temperature-conditional unfolding
events, and therefore a corresponding decrease inNTE (since
temperature-conditional unfolding was shown above to be rate-
limiting).

Although the results presented here do not identify the
physical origin of the non-Markovian kinetics, we hypothesize
that it is due to the finite time required for diffusion of the
particle within the macrostates. This effect does not arise in
the NRE model, since, in there, the macrostates have no internal
structure, and the probability of making a transition to a given
macrostate at any instantdt is the same, regardless of which
macrostate the system was in previously or how long it has
been in the current macrostate. The behavior of the continuous
system within the wells is not Markovian, since the system has
memory that is mediated by conformational diffusion within
the macrostate. This correlation in time of the particle’s position
(and energy) implies that there is a maximal effective value of
the rate of statistically independent temperature exchanges,
which is limited by the time required for conformational
relaxationwithin the folded and unfolded macrostates.

3.4. Dependence of RE Efficiency on the Number of
Replicas.The above results were obtained with two replicas,
which is not typical for RE simulations that would be carried
out for peptides and proteins. To investigate the effect of adding
additional replicas, we performed a series of simulations of 2
× 109 MC steps with 2 to 15 replicas distributed uniformly in
T-1 from 296 to 789 K. The results are shown in Figure 9. One
important issue that arises when considering such a set of results
is the appropriate measure of conformational sampling efficiency
of RE. If we consider the total number of transition eventsNTE

(direct and indirect) in all replicas, then we would see for the
most part a monotonic increase of efficiency as a function of
the number of replicasN simply because the number of indirect
“channels” for transitions is linearly increasing. This measure
of efficiency, however, implicitly assumes that computer power
is inexpensive and that the convergence rate of the simulation
is the important limiting factor. If both computer resources and
the convergence rate are limiting factors, a more appropriate

measure is the computational efficiency calculated as the number
of transition events per replica (NTE/N). According to this
measure, a RE simulation withN + 1 replicas is considered
more efficient than one withN replicas only if the introduction
of the additional replica provides more than a proportional
increase in the number of transition events at the temperature
of interest.

We find that the efficiency increases strongly as a function
of N whenN is small, reaches a maximum, and then decreases
with N for largerN (Figure 9). This pattern is unchanged as a
function of the rate of attempted temperature exchanges,
showing a scaling approximately consistent with the results in
Table 1. The trends seen here are qualitatively similar to that
seen previously in the NRE two-state discrete model20 with finite
R. In that work, we attributed the decrease with increasing
number of replicas beyond an optimum value in part to a
combinatoric effect that decreases the relative size of the “target”
space of configurations in which a replica is at the temperature
of interest relative to the total temperature/configuration space.
It is reasonable to assume that a similar effect is occurring here
as well. We will address this in a future communication.

The results in Figure 9 were obtained with a relatively
uniform distribution of temperatures. It is of interest to consider
the effect on efficiency of changing that temperature distribution.
In our previous work,20 we concluded that, in the context of
the discrete network model in the “largeR” limit, the optimal
temperature distribution is one replica at the temperature of
interest, and the rest at the temperature that maximizes the
harmonic mean of the folding and unfolding rates. That model,
however, was limited in its realism in that it did not have explicit
energy distribution functions. Furthermore, it is clear from the
results presented in the previous section that very large effective
values of R may not be achievable in real systems. The
continuous two-dimensional potential studied here provides a
better test system for studying these questions.

In Figure 10 we show the relative number of temperature-
conditional transition events in 2× 109 MC steps for three
different temperature distributions of 11 replicas: (A) uniformly
distributed inT-1 from 296 to 789 K, (B) 6 replicas uniformly
distributed inT-1 from 296 to 474 K (the optimal temperature)
and the remaining 5 “bunched up” at the optimal temperature,
and (C) 5 replicas bunched up at the optimal temperature with
the remaining distributed in the 296 to 474 K range but strongly
skewed toward the optimal temperature. Temperature distribu-
tion B provides more than a 50% increase in efficiency relative

Figure 9. Number of transition eventsNTE (section 2.3) normalized
by the number of replicas in 2× 109 MC steps for 2 to 15 replicas
exponentially distributed in temperature from 296 to 789 K. Temper-
ature exchanges were attempted every 10 000 (solid line), 1 000 (dashed
line), and 200 (dotted line) MC steps.

Figure 10. Number of transition eventsNTE (section 2.3) observed in
2 × 109 MC steps for three different 11-replica RE simulations
performed using the continuous potential withNX ) 200. The
temperature distributions for the three simulations are shown in the
inset. Transition counts have been normalized by theNTE of simulation
A.
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to the uniform distribution over the large temperature range.
This is consistent with our discrete model results, and indicates
that it is possible to include temperatures that are “too high”
when the system exhibits anti-Arrhenius kinetics. However, we
can increase the efficiency even further (to more than a factor
of 2.5 over the baseline result) by skewing the temperature
distribution to increase the number of replicas in the vicinity
of the transition temperature (distribution C). Previous work
by Hansmann et al. has suggested that such concentration of
the temperatures near a bottleneck can improve temperature
mixing.26 However, the improved efficiency may simply be due
to the increased number of replicas near the optimal temperature.
The clarification of the relative contributions from these two
effects will also be addressed in a future communication.

4. Conclusions
One of the challenges of studying the computational ef-

ficiency of RE has been the difficulty in running molecular
simulations sufficiently long to obtain full convergence and
meaningful statistics. This is particularly daunting if such
simulations must be run multiple times to assess the effect of
differences in simulation protocols and parameters. The use of
simplified model systems allows for thorough theoretical,
conceptual, and computational analysis of the problem that can
provide insights into the factors that limit the efficiency of RE
in more realistic molecular systems.

Our previous work made use of a highly simplified discrete
model for protein folding with two conformational states at
several temperatures.20 While this system did provide useful
insights, it was limited in a number of ways, and, in particular,
was fully Markovian. Here we have described a two-dimensional
continuous potential function and an associated move set that
allows us to perform MC and RE MC simulations in a system
that is small enough to quickly converge but yet is rich in a
complexity that is reminiscent of molecular systems. While
many of the results are consistent with those observed previ-
ously, novel effects are also seen. In particular, we have
confirmed that the efficiency of RE in more complex systems
is fundamentally limited by the time scale of conformational
diffusion within basins, as we had anticipated.20 We expect that
such behavior will also be present (perhaps even more strongly)
in molecular systems.

There are many unresolved questions raised by this work.
One question for which our two-dimensional system would be
a good model is for studying the relationship between confor-
mational and thermal diffusion. Optimization of the diffusion
of replicas in temperature space has been a major focus of recent
theoretical and computational study of the RE method.3,21-27

However, the convergence of thermodynamic quantities is not
limited by thermal diffusionper se, but by the exploration of
the conformational space of the system. While very poor thermal
diffusion obviously defeats the purpose of RE by effectively
reducing it to a set of parallel uncoupled simulations, it is not
clear that further optimization of thermal diffusion that is already
“reasonably good” will automatically improve convergence.
Some recent work has begun to address the role of basin-to-
basin transitions.18,28Similarly, some work on the optimization
of thermal diffusion has emphasized the role of temperature
bottlenecks,26 which may turn out to be fundamentally confor-
mational in nature. The exact relationship between thermal and
conformational diffusion remains to be fully clarified, and we
look forward to studying this and other questions using
simplified continuous and discrete models of RE.
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5. Appendix

The alternative potential with decreased average potential
energy differences between folded, unfolded, and transition
states is of the same general form as the primary potential
described in the Methods section and Figure 1, but with the
boundary function parametersδ ) 10-5, b ) 1, andn1 ) 3.5
and potential energy

with a1 ) 25 kcal/mol,a2 ) 250 kcal/mol,a3 ) 10 kcal/mol,
b1 ) 1000 kcal/mol, andc0 ) 6 kcal/mol. The constantsx0 and
x1 were the same as for the primary potential.
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Chapter 4

Recovering Folding Kinetics From Replica Exchange
Simulations With a Kinetic Network Calibrated Using

Local Dynamics

4.1 Introduction

Protein folding is a fundamental problem in modern structural biology, and is an example

of a slow process occurring via rare events in a high-dimensional configurational space[1].

For this reason, it is difficult for an all-atom simulation to obtain meaningful information

on the kinetics and pathways of such processes. A number of strategies for addressing this

problem have been proposed over the years that involve focusing on the important slow

processes while neglecting the less interesting rapid kinetics by simplification of the state

space, reduction of dimensionality, or other methods[41, 42, 43].

If the process in question is activated, then most of the time is spent by the system within

free energy basins, while the crossings between basins are relatively rapid but rare. This

fact was exploited by Chandler and co-workers in their transition path sampling approach,

where an MC procedure is used to sample entire time-ordered paths connecting reactant

and product wells in a well-defined manner [44]. While this approach is based on solid

statistical-mechanical theory and can yield quantitative estimates of the reaction rate, in

practice it remains challenging for large molecular systems with multiple transition states.

A popular alternative takes advantage of heterogeneous distributed computing [45, 46]

to enhance sampling by combining information from a large number of short molecular

dynamics (MD) trajectories steered by rare events (“Folding@Home”). In a similar spirit,
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the “milestoning” technique makes use of many short simulations that span two predefined

critical points along a given reaction path[47]. While both approaches are powerful strate-

gies, the former can introduce a bias towards fast events in the ensemble average of the

reactive trajectories [48], while the latter is limited to a single reaction path that must be

specified in advance.

A related set of methods for obtaining kinetic information is based on the use of stochas-

tic dynamics on a free energy landscape [49, 50, 51, 52, 53, 54]. They rely on the premise

that if one can find a good reaction pathway for the system, then microscopic all-atom dy-

namics can be used to obtain effective diffusion and drift coefficients along that pathway,

allowing the study of the kinetics of the system by low-dimensionality Langevin simula-

tions. While various strategies have been proposed to discover good reaction coordinates

in complex systems[55, 56, 57], the fact that the details of the kinetics are projected onto

few reaction coordinates can lead to a loss of kinetic information, particularly for systems

with multiple transition states.

Another strategy for improving computational efficiency consists of discretizing the

state space and constructing rules for moving among those states. The resulting scheme

can be represented as a graph or network[58], and the kinetics on this graph is often as-

sumed to have Markovian behavior[59, 60, 61, 62, 63]. This approach is particularly well

suited for reduced lattice models, and was first introduced in that context[59]. For systems

with a continuous state space, some form of discretization is required. This can be done

by clustering based on chosen reduced coordinates[58, 61], though the clusters must be

chosen carefully so as to satisfy the Markovian condition[62, 63, 64, 65]. Alternatively, the

discretization can be based on an analysis of the minima and/or saddle points of the energy

surface[60, 66, 67], which can be used to build a tree-like representation of the potential-

or free-energy surface (the “disconnectivity graph”) or to perform a discretized version of

transition path sampling[68]. The location of all minima or saddle points, however, can

be a serious challenge for high-dimensional systems, though it has been shown that this
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is possible for peptide systems[67, 69]. A hybrid approach has also been proposed that

makes use of molecular dynamics to infer local transition regions to build disconnectivity

graphs[70].

While discretization methods based on the clustering of microstates are very powerful,

in that they can greatly increase the computational efficiency and allow for the possibility

of studying multiple pathways (to the degree that the discretization allows it), they do suffer

from some disadvantages. As previously noted[51, 56], a careless choice of reduced coor-

dinate can lead to incorrect kinetics. Furthermore, although a properly constructed kinetic

network model will preserve the correct populations of the chosen macrostates, the correct-

ness of populations and potentials of mean force (PMFs) for other reduced coordinates is

not guaranteed.

Powerful generalized ensemble methods[71] such as replica exchange molecular dy-

namics (REMD) [72] have been developed which enhance the ability to obtain accurate

canonical populations in complex systems by increasing sampling efficiency. However,

since REMD involves temperature swaps between MD trajectories, it is not straightfor-

ward to obtain kinetic information from such simulations.[63, 73, 54]. Our laboratory has

made use of a kinetic network model[74] in which the nodes correspond to molecular con-

formations from REMD simulation trajectories, and the edges are derived from an ansatz

based on structural similarity. While this model was shown to yield physically plausible

kinetics[74], the scheme which was used to weight nodes arising from different simula-

tion temperatures was such that thermodynamic parameters of the system were not exactly

preserved.

Here we present an improved version of that kinetic network model which is guaran-

teed to reproduce PMFs with respect to any chosen reduced coordinate, while allowing the

kinetic behavior to be calibrated so as to reproduce the kinetics of the target system. As

before, we discretize the multi-dimensional configurational space of the system by running
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RE simulations of the system and collect snapshots which become the nodes of the net-

work. These nodes are then weighted using a scheme based on the Temperature-Weighted

Histogram Analysis Method (T-WHAM)[75], allowing us to obtain correct thermodynamic

averages from the RE samples over all simulation temperatures. We then carry out short-

time dynamics simulations to derive local drift velocities and diffusion coefficients on suit-

ably chosen reduced coordinates. The network topology and microscopic rate parameters

can be adjusted recursively until agreement is obtained between the drift velocities and dif-

fusion coefficients derived from simulations on the network with those derived from the

local dynamics simulations. Since the network is a discretized representation of the sys-

tem and does not require additional energy and force evaluations, there is a considerable

gain in efficiency, allowing us to study slower kinetic processes than would be accessible

using conventional MD. Furthermore, while our local dynamic parameters are estimated

on reduced coordinates, the actual kinetic simulation does not occur on those reduced co-

ordinates, but rather on the full network. Since the network topology is constructed based

on virtually all degrees of freedom, this allows for multiple pathways and transition states.

We demonstrate our approach using a folding-like two-dimensional potential, and discuss

generalizations to the more complex energy landscapes of atomic-level protein simulations.

4.2 Methods

4.2.1 Kinetics of the two-dimensional potential and the representation

of drift velocity and diffusion coefficient

We use a two-dimensional potential (Fig. 4.1) constructed to mimic the anti-Arrhenius

temperature dependence of the folding rates seen in proteins[114]. This potential was de-

signed to have an energetic barrier when going from the “folded” (x < 0) to the “unfolded”

(x ≥ 0) region, and an entropic barrier in the reverse direction. The entropic barrier is

achieved by imposing a hard wall constraint that limits the space accessible to the folded
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Figure 4.1:A schematic representation of the two-dimensional potential function used in previous
chapter. The colored area corresponds to the accessible region of the(x, y) plane, with the colors
representing the magnitude of the potential energy at that(x, y) point (scale bar in kcal/mol). The
potential energy is infinite in the non-colored region and fory < 0, x < −1, andx > 1. The inset
is an enlarged view of the folded macrostate and transition region.
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region. Specifically the particle can only move in the region−1 ≤ x ≤ 1, 0 ≤ y ≤ B(x),

where the boundary functionB(x) is a small constant forx ≤ 0 and an increasing function

of x for x > 0

B(x) =





δ 1 ≤ x ≤ 0

bxn1 + δ 0 < x ≤ 1
(4.1)

whereδ = 2× 10−7, b = 5 andn1 = 4.55. Within this region, the potential energy is given

by

U(x, y) =





a1(x + x0)
2, −1 ≤ x < −x1 0 ≤ y ≤ B(x)

−a2x
2 + c0, −x1 ≤ x ≤ 0, 0 ≤ y ≤ B(x)

a3x
2 + c0, 0 < x < x2, 0 ≤ y ≤ B(x)

a4x
1/2 + c1 x2 ≤ x ≤ 1, 0 ≤ y ≤ B(x)

∞ otherwise

wherea1 = 23.53 kcal/mol,a2 = 235.3 kcal/mol,a3 = 376.5 kcal/mol,a4 = 11.29 kcal/mol,

and c0 = 7.059 kcal/mol. The dimensionless constantsx0 = 0.5745, x1 = 0.05222,

x2 = 0.03830, and the energy offsetc1 = 5.402 kcal/mol were chosen so thatU(x, y) and

its first derivative are continuous.

We use Metropolis MC sampling to simulate the movement of a particle in the potential.

Because of the large size difference of the accessible region in they direction between the

folded and unfolded regions, we adopted an asymmetric MC proposal scheme[108, 75].

The step size in they direction varies withB(x), i.e. a proposed move(∆x′, ∆y′) is

generated uniformly in the region−∆ < ∆x′ < ∆, −B(x)∆ < ∆y′ < B(x)∆, where

∆ = 0.01 is a constant for all temperatures. To correct for the asymmetric MC proposal

distribution, the Metropolis acceptance probability was multiplied byθ(|y′ − y|/B(x)∆)

to satisfy detailed balance, whereθ(z) equals1 if z < 1 and0 otherwise.
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Rate constants were obtained via MC simulation by calculating the mean first pas-

sage times (MFPTs) in units of MC steps between the two macrostates. A “buffer re-

gion” −0.1 < x < 0.0437 was defined as not belonging to either the folded or un-

folded macrostate to reduce artefactual rapid recrossings of the barrier. As discussed

previously[114], the folding rate has “anti-Arrhenius” behavior, i.e. it decreases as temper-

ature increases, as shown in Fig. 4.2. Our goal is to reproduce this temperature dependence

of the folding and unfolding rate using a kinetic network model.

If the system moves diffusively along a reaction coordinatex, the Fokker-Plan equation

can be used to describe this stochastic motion superimposed with deterministic drift[115],

∂P (x, t)

∂t
= − ∂

∂x
[v(x)P − ∂

∂x
D(x)P ]

whereP (x, t) is the probability density function of the system,v(x) is the drift velocity,

D(x) is the diffusion coefficient. The drift and diffusion coefficient can be fully recon-

structed from short-time simulation, and in turn, if a network is imposed with the same

drift and diffusion coefficient along the reaction coordinate, it should return the same ki-

netics as that of the system.

In order to reproduce the kinetic characteristics of the 2-D system with the discrete

network model we make use of the local drift velocity and diffusion coefficients. Multiple

short-time MC trajectories were run at different starting points along the reaction coordi-

natex; the drift velocityv(x0) and diffusion coefficientD(x0) were evaluated using[51]

v(x0) =
∂ 〈x(t, x0)〉

∂t

and

D(x0) =
1

2

∂σ2(t, x0)

∂t
.

In practice, the derivatives are computed by fitting a straight line to〈x(t, x0)〉 andσ2(t, x0)

as a function oft. Our goal is to build up a network with the same local drift velocity and
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diffusion coefficients as the MC simulation of the system, with the expectation that such a

network will reproduce the kinetics of the system.

4.2.2 Discretization of the state space

The nodes of the kinetic network are a discretized approximation of the original state space

of the system. We ran a replica exchange Monte Carlo (REMC) simulation of the two-

dimensional potential withS = 8 replicas at temperatures ranging from 296 K to 789 K

for 109 MC steps. Every 1000 MC steps, transitions between two adjacent temperatures

were attempted. Immediately before attempting temperature exchanges, the configuration

of each replica was stored, obtainingN = 50, 000 configurations at each temperature, and

N×S = 400, 000 configurations at all temperatures. This ensemble of conformations con-

stitutes the discretized state space of the system, which, as described below, approximates

well the equilibrium thermodynamics of the system for any temperature not too far from

the simulated temperatures.

Traditionally, equilibrium thermodynamic properties of the system at temperatureT0

are obtained by performing canonical sampling atT0 for a long enough time to obtain

convergence. We have shown[75] that improved convergence can be achieved by employ-

ing T-WHAM on RE trajectories over a range of temperatures (which need not include

T0). This yields canonical ensemble averages with greater efficiency than traditional sam-

pling methods because it combines data from high temperature replicas, which sample

high energy and high entropy regions, and data from low temperature replicas, which pref-

erentially sample low energy, low entropy regions. The T-WHAM approach is based on a

re-weighting scheme designed to minimize statistical error.[75] The T-WHAM canonical

average〈A(T0)〉 of a quantityA at temperatureT0 is

〈A(T0)〉 =
N∑

i=1

wi(T0)Ai, (4.2)

where the summation runs over theN RE conformations from all temperatures,Ai is the
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Figure 4.2:The temperature dependence of the folding and unfolding rate constants. Folding and
unfolding rates are indicated by red and green, respectively. The rate constants indicated by circles
were derived from kinetic MC simulation run at different temperatures. The lines represent the rates
calculated using the Arrhenius equation based on activation energies derived from the PMF along
x. Rate constants are expressed in units of10−6 per MC step.
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value ofA for conformationi, and the weight factorwi(T0) is given by

wi(T0) =

{
S∑

k=1

Nkfk exp

[(
1

kbT0

− 1

kbTk

)
Ei

]}−1

, (4.3)

whereNk is the number of samples at each of theS different replica exchange temperatures

Tk, andkb is the Boltzmann constant. The constantsfk in Eq. 4.3 correspond to the relative

Helmholtz free energy of each replicak such thatfk/fk′ = Qk/Qk′ , whereQk is the

canonical partition function of the system at temperatureTk. In T-WHAM the fk’s are

determined by iteratively solving a system of non-linear equations known as the WHAM

equations [75, 116]. Thus, each samplei has a weight factor associated with it (Eq. 4.3) that

depends only on its energyEi and the temperature of interestT0, andnotat the temperature

the sample was originally collected. To calculate the PMF of the system as a function ofx

at temperatureT0 using the discretized state space, it is sufficient to employ Eq. 4.2 withA

being an indicator function which is non-zero if thex-coordinate of the sample is near the

designated value ofx. This can be done for any temperatureT0, which needs not be one of

the temperatures used in the RE simulation. In Fig. 4.3, the potential of mean force (PMF)

calculated using the weight factors matches perfectly with that evaluated directly from the

function form.

4.2.3 Thermodynamics of the network model

To complete the specification of the kinetic network model, we must provide a network

topology in the form of edges which connect the nodes and microscopic rates associated

with each edge. The choices made for these parameters will determine the kinetics of the

network, however, they will not affect the equilibrium thermodynamics of the network as

long as detailed balance is satisfied (see Eq. 4.4 below) and the network topology is ergodic

(i.e. any node is accessible from any other in a finite number of edge traversals). How well

the equilibrium properties of the network approximate the real equilibrium thermodynam-

ics of the system depends on the quality of the ergodicity and discretization of the state
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space using RE.

We connect two nodes with an edge if they are ”close” in Euclidean space. Specifically,

we join nodes corresponding to coordinates(x, y) and(x′, y′) if |x′−x| < ∆x and|y′−y| <
∆y. We have chosen the cut-off lengths∆x and∆y to be much smaller than the dimensions

of the system so as to appropriately mimic the local nature of the continuous MC kinetics

(see below). We then assign forward and reverse rates to each edge so that detailed balance

is satisfied. For example, if nodesi andj are connected by an edge, then we choose rates

kij(T ) andkji(T ) such that
kij(T )

kji(T )
=

wi(T )

wj(T )
, (4.4)

wherewi(T ) andwj(T ) are the weight factors of the two nodes at temperatureT , kij(T ) is

the rate going from nodei to nodej, kji(T ) is the reverse rate. If this detailed balance con-

dition is satisfied, the asymptotic thermodynamics produced by the network model will be

the same as that of the original system (subject to the aforementioned ergodicity criterion).

We simulate the kinetics on this network as a continuous time Markov process with

discrete states using the Gillespie Algorithm[117]. During the simulation, the population

histogram along thex coordinate (the reaction coordinate for our two-dimensional system)

was accumulated. When a node is visited, its residence time is added to the corresponding

bin in the histogram and at the end of the simulation, the histogram is used to calculate the

PMF along thex coordinate.

4.2.4 Calibration of the kinetic properties of the network model

Although the network design strategy described above guarantees that the correct thermo-

dynamic properties are reproduced, the ability to reproduce the correct kinetics requires

additional considerations. Information about the local dynamics of the system in some

form is required to obtain a kinetically realistic network. In this section we illustrate how

this can be done for the case of a two-dimensional potential system, where we reproduce
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y axes, respectively,
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the kinetics of a MC simulation on the continuous potential with a network model.

For kinetic MC simulations, the “time” unit is the MC step. The kinetics depends

on the move set, which in our case was the box defined by the intervals[−∆, ∆] and

[−10B(x)∆, 10B(x)∆] for x and y, respectively, and where∆ = 0.01. Note that the

magnitude of the allowed moves in they direction is not constant, but depends onx and

varies with the sizeB(x) of the accessible region in they direction. To recover the kinetics

of the MC simulation on the continuous potential, we choose a network topology that

mimics the MC move set, as described in the Appendix.

To assign microscopic rates to the edges that satisfy detailed balance, we could choose

kij(T ) =
wj(T )

wi(T )
µij

and

kji(T ) = µij

whereµij = µji is a base rate to be determined for each pair of nodesi andj to obtain

the best agreement with the observed MC kinetics. To find the appropriate base ratesµij

to match the drift velocity and diffusion coefficients of the network simulation with that of

the kinetic MC, we ran 10,000 short trajectories (5-10 MC steps) starting at different values

of x with both the kinetic MC simulations on the continuous potential and Gillespie simu-

lations on the discretized network model to evaluate the local drift velocities and diffusion

coefficients as a function ofx. The results are shown in Fig. 4.6.

For the two-dimensional test case studied here, the appropriate values ofµij are those

which allow the network simulation to most closely replicate kinetic MC. In other words,

we would like a “time unit” in the Gillespie algorithm to correspond to an MC step in

the kinetic MC. In the latter case, each transition between microstates corresponds to an

elapsed “time” of 1 unit. Since the edges of the network which join microstates have

already been chosen to mimic the kinetic MC move set, it remains only to ensure that

the average time between microstate transitions in the discrete network simulation also
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corresponds to 1 time unit.

In the Gillespie algorithm, the average waiting time in a node is inversely proportional

to the sum of the microscopic rates exiting the node. If all of these outgoing rates are

similar, then the waiting time in a given node will be approximately proportional to the

inverse of the number of neighbors of that node. As seen in Fig. 4.7, the average number

of neighbors for a node increases withx due to the bigger cut-off length iny direction

used to define network edges. Thus, the average waiting time between transitions among

microstates will shorter for nodes with largex. The proportionality between MC steps and

Gillespie time units can be maintained by settingµij = c0/nij, wherec0 is an adjustable

coefficient, andnij is the average number of neighbors for the connected nodesi andj. The

1/nij factor in the rate ensures that the waiting times in all nodes are of similar magnitude.

We use theaverageof the number of neighbors for the two connected nodes and not the

number of neighbors of the current node, since the latter would violate detailed balance if

the current and successor nodes have different numbers of neighbors. It should be noted

that this strategy for determiningµij is specific to the use of kinetic MC as a reference

dynamical simulation method on the continuous potential, and will likely not generalize to

Newtonian dynamics on a high-dimensional potential.

4.3 Results and Discussion

To confirm that the400, 000 configurations generated using replica exchange MC on the

two-dimensional continuous potential give the correct thermodynamic behavior, we com-

pared the PMFs along thex coordinate at several temperatures calculated from the dis-

cretized state space and the weight factors of Eq. 4.3 with the one calculated by numerical

integration of the canonical distribution function of this system. The agreement is excel-

lent at all temperatures examined (only the highest and lowest temperatures are shown in

Fig. 3.3 for clarity). This indicates that the correctly weighted discretized state space is a
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good approximation to the PMF on the continuous potential at all the temperatures studied.

Excellent agreement for the PMF is also obtained from Gillespie simulations using the net-

work model with a generic network topology and rate parameters (∆ = 0.01, andµij = 1

for all i, j), as shown in Fig. 4.4. This validates the implementation of the network model

algorithm, and indicates that the ergodicity condition is satisfied.

We ran a series of short time trajectories using both kinetic MC on the continuous

potential and Gillespie dynamics on the discretized network model, and evaluated the drift

velocities and diffusion coefficients along the reaction coordinate at differentx positions.

By varying the parameters of the network in order to match the drift and diffusion on the

network with that of the kinetic MC simulation on the the conditional potential, we obtained

optimized rate parameters for the network model. We found that the choice ofµij described

above withc0 = 0.85 atT0 = 298 K (for all x) gives good agreement, as shown in Fig. 4.6.

Furthermore, the folding rates at different temperature obtained from MC simulations on

the continuous potential and from the discretized kinetic network simulation agree very

well, as shown in Fig. 4.8.

We have previously shown that for the two-dimensional model system for protein fold-

ing studied here, it is possible to reconstruct the folding kinetics on a continuous potential

using a discrete network model of the type used by Andrec, et al.[74] to model peptide

folding using an all-atom potential function with hundreds of degrees of freedom, while re-

taining the correct thermodynamic behavior. The network model of Andrec, et al. employed

anad hocmethod for assigning weights to nodes from different simulation temperatures,

while the present model uses weights based on the firm statistical mechanical footing of the

T-WHAM method.[75] In fact, the present formulation yields correct PMFs with respect to

any choice of reduced coordinate. This is because thefk factors which appear in Eq. 4.3

are free energies associated with a given replica, and are in principle independent of the

choice of reduced coordinate. While the WHAM equations themselves require a choice of

reduced coordinate which one uses to construct the histograms, the resultingfk factors do
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not depend on that choice. While our local dynamic parameters are estimated on a reduced

coordinate, the actual kinetic simulation does not occur on that reduced coordinate, but

rather on the full network, which, by including virtually all degrees of freedom, allows for

multiple pathways and transition states.

The model system studied here is sufficiently simple that we can fully confirm the

validity of our approach, but is of course much simpler than any atomic-level molecular

model. There is then the question of the applicability of this methodology to such systems.

Previous studies[49, 50, 51, 52, 53, 54] have shown that it is possible to capture the lo-

cal kinetics of complex molecular systems using a limited number of degrees of freedom.

Concomitantly, we have shown that discrete network models[74] can yield physically plau-

sible global kinetics of molecular systems. Taken together, these observations indicate that

the methodology described here will be useful to model the kinetics of complex molecular

systems.

Nonetheless, the practical implementation of this methodology will require a careful

consideration of the additional complexities involved. For example, the large dimensional-

ity of molecular systems may make it difficult to find good reduced coordinates with respect

to which drift and diffusion parameters could be obtained. In general, this can lead to lo-

cal dynamics which is heterogeneous. This issue could be overcome by the partitioning

of nodes into clusters, which could be done based on local dynamical parameters, or more

simply, on structural considerations. Drift and diffusion parameters could then be estimated

separately for each cluster along the reduced coordinate, accounting for the heterogeneity

without the need for approximating kinetics in a multidimensional space. Furthermore, the

drift and diffusion can be calculated using generalized coordinates, or the calibration of the

network model parameters could be done using kinetic properties that do not depend on

a reaction coordinate. A second layer of complexity that will be involved in application

of this methodology to larger systems arises in the adjustment of the network in order to

reproduce local dynamics. In the model described above, the choice of network topology
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(the number of edges and which nodes which they connect) was straightforwardly dictated

by the move set of the kinetic scheme MC we were trying to reproduce. Furthermore, be-

cause this structure was independent of target temperature, we assumed that the parameter

c0 could be taken to be a constant for all nodes and all temperatures. In a molecular system,

these parameters will likely need to be varied, and the determination of the optimal network

parameters will require a multidimensional search over topology and rate parametersµij.

4.4 Conclusions

In this paper we have presented a novel kinetic network strategy for the study of slow

time scale processes that extends and improves our previous approach[74]. Our network

model can be viewed as combining the advantages of other methods for the study of slow

kinetics, while providing mechanisms for avoiding some of their pitfalls. As in previous

methods[49, 50, 51, 52, 53, 54], we compute local stochastic dynamical quantities on a one-

dimensional reaction coordinate, but only as a benchmark to calibrate the rate parameters of

a network model constructed from the full discretized state space of the system. However,

the manner in which this calibration is performed can be tailored to the specific demands

of the system being studied, and the quantities used for calibration need not be structural

coordinates. The kinetic simulations are performed not on a reduced low-dimensional land-

scape, but on a network that can allow for multiple reaction pathways. This gives us the

flexibility to visualize the dynamics on reaction coordinates of our choosing. The network

model is a Markovian model, like that of other previous approaches[60, 61, 62, 63, 65],

but instead of using artificially defined macrostates, we use a large number of microstates

collected from an RE simulation of the system. This increases the chances of constructing a

realistic picture of the kinetics, at the cost of a larger and more complex network. Nonethe-

less, since all configurations are precalculated, there is a much lower computational bur-

den than for a comparable all-atom simulation, since (for example) potential energies and
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forces do not need to be evaluated. If necessary, methods for accelerating Gillespie-type

simulations that have been developed in the context of chemical reaction and systems biol-

ogy simulations could be used to mitigate the computational burden[118]. We believe that

the kinetic network method demonstrated here will be a useful addition to the arsenal of

computational methods for the study of slow processes in complex molecular systems.

4.5 Appendix

The goal of designing the kinetic network model is to provide the best possible agreement

with the kinetic MC simulation on the two-dimensional continuous potential. This goal

is more likely to be met if the structure of the network closely mimics the structure of

the move set which underlies the kinetic MC. One key choice in the design of the kinetic

network is its topology, i.e. which pairs of nodes are to be connected by edges. In previous

work[74], we used a simple “box” rule that placed an edge if two nodes were sufficiently

close in configuration space. In the case of the MC kinetic scheme used for the two-

dimensional potential here, a better choice would more closely mimic the non-reversibility

of the particular move set used in the MC simulation. In Fig. 4.5 we show the region that

a particle starting from a point(x, y) can access and return in two successive MC steps. It

consists of the square region excluding the two corners on the left: although the particle

could reach the left corners in one step, it is impossible for it to come back to(x, y) in one

step. Therefore in the network model, we also exclude the corresponding node pairs and

construct edges only between nodes that satisfy either of the two conditions

x−∆ < x′ < x and |y − y′| < 10B(x′)∆

x < x′ < x + ∆ and |y′ − y| < 10B(x)∆ . (4.5)
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