SIMPLIFIED MODELS FOR SIMULATING REPLICA
EXCHANGE SIMULATIONS AND RECOVERING
KINETICS OF PROTEIN FOLDING

BY WEIHUA ZHENG

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Graduate Program in Physics and Astronomy

Written under the direction of
Dr. Ronald M. Levy
and approved by

New Brunswick, New Jersey

January, 2009



ABSTRACT OF THE DISSERTATION

Simplified Models for simulating replica exchange

simulations and recovering kinetics of protein folding

by Weihua Zheng

Dissertation Director: Dr. Ronald M. Levy

Protein folding is a fundamental problem in modern structural biology. The nature of the
problem poses challenges to the understanding of the process via computer simulations.
One of the challenges in the computer simulation of proteins at the atomic level is the ef-
ficiency of sampling conformational space. Replica exchange (RE) methods are widely
employed to alleviate the difficulty. To study how to best employ RE to protein folding
and binding problems, We constructed a kinetic network model for RE studies of protein
folding and used this simplified model to carry out "simulations of simulations” to analyze
how the underlying temperature dependence of the conformational kinetics and the basic
parameters of RE all interact to affect the number of folding transitions observed. When
protein folding follows anti-Arrhenius kinetics, we observe a speed limit for the number
of folding transitions observed at the low temperature of interest, which depends on the
maximum of the harmonic mean of the folding and unfolding transition rates at high tem-
perature. The efficiency of temperature RE was also studied on a more complicated and

realistic continuous two-dimensional potential. Comparison of the efficiencies obtained



using the continuous and discrete models makes it possible to identify non-Markovian ef-
fects which slow down equilibration of the RE ensemble on the more complex continuous
potential. In particular, the efficiency of RE is limited by the timescale of conformational
relaxation within free energy basins. The other challenges we are facing in all-atom simu-
lations is to obtain meaningful information on the slow kinetics and pathways of folding.
We present a kinetic network model which recover the kinetics using RE-generated states
as the nodes of a kinetic network. Choosing the appropriate neighbors and the microscopic
rates between the neighbors, the correct kinetics of the system can be recovered by running

a simulation on the network.
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Chapter 1

Introduction—-Two challenges posed to computer
simulations of protein folding

Protein folding is a fundamental problem in modern structural biology, and is an example
of a slow process occurring via rare events in a high-dimensional configuration space[1].
The nature of the problem poses two major challenges to the understanding of the folding
process via computer simulations. One of the challenges in the computer simulation of pro-
teins at the atomic level is the efficiency of sampling conformational space. The efficiency
of many common sampling protocols, such as Monte Carlo (MC) and molecular dynam-
ics (MD) is limited by the need to cross high free-energy barriers between conformational
states and rugged energy landscapes. One general class of methods for overcoming this
problem involves the use of generalized ensembles[2] which distorts the energy landscape
in a way that allows for increased efficiency but which can be "undone” by appropriate
reweighting to recover the canonical ensemble. The most well-known of these approaches
is umbrella sampling[3], in which biasing potentials are used to allow for more efficient
sampling in regions of high free energy connecting minima of interest. A series of sim-
ulations with a set of biasing potentials spanning the reaction coordinate of interest can
then be combined using the WHAM method to obtain a potential of mean force along that
coordinate[4]. Umbrella sampling has been used extensively in many areas of computa-
tional chemistry and physics, including the study of folding [5] and allosteric transitions[6]

in proteins. Multicanonical simulation[7, 8] is another generalized ensemble method that

can be viewed as an extreme form of umbrella sampling[9], in which a biasing potential



is added in order to make the resulting energy distribution uniform. This allows the sys-
tem to undergo free diffusive motion in energy space, allowing barriers to be surmounted.
Alternatively, the temperature could be made a dynamical variable and a biasing potential
could be applied to make the temperature distribution uniform, leading to the simulated
tempering algorithm[10]. All of these methods require substantial prior knowledge about
the system being studied: a good choice of reaction coordinate must be determined or an
appropriate biasing function must be found (often at significant computational cost).

Another class of methods for studying equilibrium properties of quasi-ergodic sys-
tems that has received a great deal of recent attention is based on the Replica Exchange
(RE)[11, 12] algorithm (also known as parallel tempering). To accomplish barrier cross-
ings, RE methods simulate a series of replicas over a range of temperatures. Periodically,
coordinates are exchanged using a Metropolis criterion[13] that ensures that at any given
temperature a canonical distribution is realized. RE methods, particularly Replica Ex-
change Molecular Dynamics (REMD)[14], have become very popular for the study of pro-
tein biophysics, including peptide and protein folding[15, 16], aggregation[17, 18, 19], and
protein-ligand interactions[20, 21]. Previous studies of protein folding appear to show a
significant increase in the number of reversible folding events in REMD simulations versus
conventional MD[22, 23]. Given the wide use of REMD, a better understanding of the RE
algorithm and how it can be utilized most effectively for the study of protein folding and
binding is of considerable interest.

The effectiveness of RE methods is determined by a complex of correlated factors, in-
cluding the number of temperatures (replicas) that are simulated, their range and spacing,
the rate at which exchanges are attempted and the kinetics of the system at each temper-
ature. While the determination of “optimal” Metropolis acceptance rates and temperature
spacings has been the subject of a variety of studies[12, 24, 25, 26, 27, 28, 29], the role

played by the intrinsic temperature-dependent conformational kinetics which is central to



understanding RE has not received much attention. Recent work [30, 31, 29, 32] recog-
nizes the importance of exploration of conformational space and the crossing of barriers
between conformational states as the key limiting factor for the RE algorithm. Molecular
kinetics can have a strong effect on RE beyond the entropic effects that have been dis-
cussed [30, 32], particularly if the kinetics does not have simple temperature dependence.
It is known from experimental and computational studies that the folding rates of proteins
and peptides can exhibit anti-Arrhenius behavior, where the foldingdetesasesvith
increasing temperature[33, 34, 35, 36, 37, 38]. Different models have been proposed to
explain the physical origin of this effect[39, 40]. To study the efficiency of RE under the
context of anti-Arrhenius behavior is of considerable interest.

In chapter 2 and chapter 3, | will introduce two simplified models we built to simu-
late RE simulations of protein folding. These two models gave us great insight into the
understanding of the mechanism of RE and will guide us to use RE in a more efficient way.

The other key challenge lies in the difficulty for an all-atom simulation to obtain mean-
ingful information on the kinetics and pathways of the folding process. The typical timescale
for a protein to fold is in magnitude of microseconds, which is much longer than the
timescale of a conventional all-atom Molecular Dynamic(MD) simulation can reach in a
reasonable computational time and have good statistics. A number of strategies for ad-
dressing this problem have been proposed over the years that involve focusing on the im-
portant slow processes while neglecting the less interesting rapid kinetics by simplification
of the state space, reduction of dimensionality, or other methods [41, 42, 43] If the process
in question is activated, then most of the time is spent by the system within free energy
basins, while the crossings between basins are relatively rapid but rare. This fact was ex-
ploited by Chandler and co-workers in their transition path sampling approach, where an
MC procedure is used to sample entire time-ordered paths connecting reactant and prod-
uct wells in a well-defined manner[44]. While this approach is based on solid statistical-

mechanical theory and can yield quantitative estimates of the reaction rate, in practice it



remains challenging for large molecular systems with multiple transition states.

A popular alternative takes advantage of heterogeneous distributed computing [45, 46]
to enhance sampling by combining information from a large number of short molecular
dynamics (MD) trajectories steered by rare events ( Folding@Home). In a similar spirit,
the "milestoning” technique makes use of many short simulations that span two predefined
critical points along a given reaction path [47]. While both approaches are powerful strate-
gies, the former can introduce a bias towards fast events in the ensemble average of the
reactive trajectories [48], while the latter is limited to a single reaction path that must be
specified in advance. Thus, neither of these approaches can be used to effectively study
systems that may have multiple pathways and transition states.

A related set of methods for obtaining kinetic information are based on the use of
stochastic dynamics on a free energy landscape [49, 50, 51, 52, 53, 54]. They are based on
the premise that if one can find a good reaction pathway for the system, then microscopic
all-atom dynamics can be used to obtain effective diffusion and drift coefficients along that
pathway, allowing to study the kinetics of the system by low-dimensionality Langevin sim-
ulations. While various strategies have been proposed to discover good reaction coordinates
in complex systems [55, 56, 57] , the fact that the details of the kinetics are projected onto
few reaction coordinates can lead to a loss of kinetic information, particularly for systems
with multiple transition states.

An additional strategy for improving computational efficiency consists of discretizing
the state space and constructing rules for moving among those states. The resulting scheme
can be represented as a graph or network [58], and the kinetics on this graph is often
assumed to have Markovian behavior [59, 60, 61, 62, 63]. This approach is particularly
well suited for reduced lattice models, and was first introduced in that context [59]. For
systems with a continuous state space, some form of discretization is required. This can be
done by clustering based on chosen reduced coordinate [58, 61], though the clusters must be

chosen carefully so as to satisfy the Markovian condition [62, 63, 64, 65]. Alternatively, the



discretization can be based on an analysis of the minima and/or saddle points of the energy
surface [60, 66, 67], which can be used to build a tree-like representation of the potential-
or free-energy surface (the "disconnectivity graph”) or to perform a discretized version of
transition path sampling [68]. The location of all minima or saddle points, however, can be

a serious challenge for high-dimensional systems, though it has shown that this is possible
for peptide systems [67, 69]. A hybrid approach has also been proposed that makes use of
molecular dynamics to infer local transition regions to build disconnectivity graphs [70].

While discretization methods based on the clustering of microstates are very powerful,
in that they can greatly increase the computational efficiency and allow for the possibility
of studying multiple pathways (to the degree that the discretization allows it), they do suffer
from some disadvantages. As previously noted [51, 56], a careless choice of reduced coor-
dinate can lead to incorrect kinetics. Furthermore, although a properly constructed kinetic
network model will preserve the correct populations of the chosen macrostates, the correct-
ness of populations and potentials of mean force (PMFs) for other reduced coordinates is
not guaranteed.

Powerful generalized ensemble methods [71] such as replica exchange molecular dy-
namics (REMD) [72] have been developed which enhance the ability to obtain accurate
canonical populations in complex systems by increasing sampling efficiency. However,
since REMD involves temperature swaps between MD trajectories, it is not straightfor-
ward to obtain kinetic information from such simulations. [63, 73, 54]. Our laboratory has
made use of a kinetic network model [74] in which the nodes correspond to molecular con-
formations from REMD simulation trajectories, and the edges are derived from an ansatz
based on structural similarity. While this model was shown to yield physically plausible
kinetics [74] , the scheme which was used to weight nodes arising from different simula-
tion temperatures was such that thermodynamic parameters of the system were not exactly
preserved.

We are going to present an improved version of that kinetic network model which is



guaranteed to reproduce PMFs with respect to any chosen reduced coordinate, while al-
lowing the kinetic behavior to be calibrated so as to reproduce the kinetics of the target
system. As before, we discretize the multi-dimensional configurational space of the system
by running RE simulations of the system and collect snapshots which become the nodes
of the network. These nodes are then weighted using a scheme based on the Temperature-
Weighted Histogram Analysis Method (T-WHAM) [75], allowing us to obtain correct ther-
modynamic averages from the RE samples over all simulation temperatures. We then use
short-time local dynamics to derive drift velocities and diffusion coefficients on a suitably
chosen reduced coordinate. The network topology and microscopic rate parameters can
then be adjusted recursively to match the drift velocities and diffusion coefficients derived
from the network simulations to those derived from local dynamics simulations. Since the
network is a discretized representation of the system and does not require additional en-
ergy and force evaluations, there is a considerable gain in efficiency, allowing us to study
slower kinetic processes than would be accessible using conventional MD. In chapter 4, |
will demonstrate our approach using the folding like two-dimensional potential constructed
in chapter3 and discuss generalizations to the more complex energy landscapes of atomic-

level protein simulations.



Chapter 2

Simulating Replica Exchange Simulations of protein
folding with a kinetic network model

To understand to what extent the efficiency of replica exchange will be affected by the
kinetics of the biomolecular system and the replica exchange parameter set, simplified
model is a good choice based on two reasons: first, it will take a much shorter time for
the system to converge so that we can run it for a large ensemble of different instances to
obtain good statistics for the data; second, we have much more freedom in controlling the
parameters of the system and of the replica exchange setup and we can observe the system’s
behavior under extreme conditions which could separate the effect of different parameters.

In this chapter, we investigate the impact of simulation parameters and anti-Arrhenius
kinetics on the RE method. Because RE simulations of protein systems that display anti-
Arrhenius behavior are difficult to converge, we developed a kinetic network RE (NRE)
model that allows us to simulate the RE algorithm of two-state protein folding. This net-
work model reduces the atomic complexity of the system to a set of discrete conformational
states that evolve in continuous time according to Markovian kinetics for both conforma-
tional transitions and exchange between replicas.

Kinetic network model has been used to improve computational efficiency by discretiz-
ing the state space and constructing rules for moving among those states. The resulting
scheme can be represented as a graph or network[76]. The kinetics on this graph is assumed
to be stochastic, leading to a Markovian model for the time dependence of the populations
of the various states[77, 78, 79, 80, 81, 82]. Similar schemes have been constructed based

on the output of more conventional MD simulations (often after clustering and choosing a



reaction coordinate)[76, 79, 80, 81, 83] or based on an analysis of the minima and/or saddle
points of the energy surface[82, 84, 85].

The NRE model studied here does not capture many of the complexities of the "real”
molecular simulation. For example, it does not have finite-width energy distributions,
and the kinetics of atomic-level simulations are likely to exhibit various kinds of non-
Markovian behavior. However, it does capture many of the essential features of RE and
allows us to study these fundamental aspects of the algorithm at low computational cost
and in a controlled setting. This allows us to separate the interacting parameters and study
their effects on the simulation individually. Given that NRE is an idealized version of RE,
many of the limitations in the convergence rates and efficiency observed with NRE will
likely also be present in full atomic-level RE simulations (in addition to further limita-
tions created by the complexities of the atomic-level simulations), allowing us to identify

promising avenues of inquiry for future atomic-level simulations.

2.1 Introduction to Replica Exchange Method

Let us consider an original system &fatoms with Hamiltoniarf? (X'), whereX is a state
of the system, i.e. a point in the phase space. In the canonical ensemble at temfiérature

the equilibrium probability of stat& follows Boltzmann distribution:

exp[—AH (X, T)]

PetJ(X?T) = Z(T) )

where3 = (kgT)~! is the inverse temperature, aidT’) is the partition function of the
system. If we simulate this system using the conventional Monte Carlo method (MC), in
order for the simulation to converge to the equilibrium distribution, it is sufficient to impose

the detailed balance condition on the transition probabititx’ — X'):

Poy(X, T)w(X — X') = Poy(X', T)w(X' — X).



By the Metropolis criterion,

w(X — X') =
exp(—Ag) Ay >0

whereA = g[H(X',T) — H(X,T)]. If X is a local-minimum-energy state, at the neigh-
borhood ofX, H(X') > H(X). Atlow temperature, the transition probability( X —
X') < 1, but the probability of pulling the new sampling state back to the local-minimum
stateX isw(X’ — X) =~ 1. In this case, the sampling state has a negligibly small prob-
ability to leave the neighborhood of stale This is an example of the simulation being
trapped in a local energy minimum. Suppose we have a combined system which consists
of M non-interacting replicas, each replica is the original system contacting with different
heat bath of temperatuig, (7} < Ty < ... < T)). A state of this extended ensemble is
specified by a joint configuration dff replicas{anl()l), ij()Q), . er(nA&)}’ WhereXn?(i)
stands for the configuration of repli¢at temperaturd’,,;) andm(i) is a permutation of
replica label = 1,2,..., M.

If M replicas are distinguishable and non-interacting, the equilibrium distribution of

 x @

the extended stat@Xr(i()l), X m(ar)} 1S

m(2)? "

M
1 2 M 1 ;
Peq({Xr(n()l)7 X,,(n()g), s aXy(n(]e@}) = M Hpeq(X( )7 Tm(z))
Ti=1

_ 1 ﬁ exp(=Omo (X", Tnis)
oM Z(Toniy) ’

whereM! is the normalizing constant (because of the permutation of M configurations of

each replica) , and
exp(—BH(X,T))

P (X, T) = 2(7)

is the canonical equilibrium distribution of the original system (single replica).
To simulate the extended ensemble, in addition to the local MC move within each

replica, we introduce a temperature exchange between two replicas. e.g., we exchange
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the temperatures of replicaand j: {X} = {..., X{l,...., X9 .} — {X'} =

) i)
XU XD

..}. The detailed balance condition will b&,({X })w({X} —
{X'}) = P.,,({X'H)w({X'} — {X}). The equation can be simplified when the Hamil-
tonian of each replica is independent of temperature, HeX,7) = H(X). By using

Metropolis criterion, we have

1 A <0
w({X} = {X'}) = :
exp(—A) A>0
whereA = (B — Bn) (H(XY) — H(XD)).

As shown in Fig. 2.1, rough energy landscape of a protein trap simulations in a local
minimum when conventional sampling methods are used, like Monte Carlo methods or
Molecular Dynamics methods. When using Replica Exchange method, low temperature
replica borrows fast kinetics from high temperature replica and speeds up the equilibration
of the system at low temperature. This is in principle the fundamental mechanism of how
and why replica exchange works in enhancing the sampling efficiency. When applied in
real molecular systems, however, the efficiency of RE will be affected by at least two fac-
tors: the values of RE parameters(e.g. Frequency of attempting replica exchange, number
of replicas, the temperature range and distribution for the replicas, etc.) and the kinetic
property of the system. Especially for the latter, if a system does not have fast kinetics at
high temperature, it is not going to do any good using replica exchange in the first place.
In chapter 2 and chapter 3, we constructed a discrete network model and a continuous two-
dimensional potential to simulate Replica Exchange simulation and show in great details

why and how these two factors affect the efficiency of RE.

2.2 Construction of the network model

In order to isolate some of the essential features of the RE algorithm, we construct a kinetic

network model of RE (NRE) which we can use to study the effects of the parameters of the
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Figure 2.1:Rough energy landscapes of protein folding trap simulations in a local minimum when
conventional sampling methods are used(e.g. Monte Carlo or Molecular Dynamics). Using Replica

Exchange method, the low temperature replica borrows fast kinetics from high temperature replica
to help escaping the local minimum at low temperature.
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model on efficiency and convergence. We consider a system in which the configurational
space can be partitioned into two macrostates of interest separated by a free energy bar-
rier that makes transitions between the conformations an activated process. Motivated by
protein folding, we call these macrostatésndU (for “Folded” and “Unfolded”). Transi-

tions betweerf’ andU in a (non-RE) MD or kinetic MC simulation can be approximated

by a Poisson process in which the waiting times between folding and unfolding transition
events are exponentially distributed random variables with mean equal to the reciprocal of
the folding or unfolding rates, respectively.

If the transition events are Markovian, then we can represent the simultaneous behavior
of two non-interacting replicas in terms of the four composite stgkes,, F1Us, Uy Fy, U1Us }.

In each symbol, the first letter is the configuration of replica 1, the second letter is the con-
figuration of replica 2, and the subscripts are the temperature of each replica. Therefore
F1U, represents the composite state that replica 1 at tempef&atiséolded, while replica

2 at temperaturd’ is unfolded. The kinetics in the composite state space can be repre-
sented as a continuous-time Markov process with discrete states[86].

The four-state composite system corresponding to non-interacting replicas can be ex-
tended to create a discrete-state model of replica exchange by introducing temperature ex-
changes between replicas. For example, suppose the current gtdtg.ig\fter a success-
ful temperature exchange, replica 1 is/atand replica 2 is af; and the new state can be
represented ak,U;. The introduction of temperature exchange therefore creates four addi-
tional states, leading to the 8-state sys{diF,, F1Us, Uy Fy, Uy Us, Fo Iy, Uy, Us Fy, Uy Uy b
These states are arranged into two sub-networks defined by the “horizontal” folding and
unfolding transitions, which are connected to each other by “vertical” temperature ex-
change transitions, forming a cubic network (Figure 2.2). In general, the network for an
N-replica system consists @f! sub-networks, each of which ha§ states connected by
folding/unfolding transitions. The model description in this section will focus primarily on

the 2-replica case; all of the details can be easily generalized to the cAseepficas.
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Figure 2.2: The kinetic network of the composite states corresponding to the simplified replica
exchange model with two replicas. The state labels represent the conformation (letter) and tempera-
ture (subscript) for each replica. For examigl/; represents the state in which replica 1 is folded

and at temperatur#,, while replica 2 is unfolded and at temperatlie Red and black arrows
correspond to folding and unfolding transitions, respectively, while the temperature at which the
transition occurs is indicated by the solid and dashed linesiff@nd7, respectively). The cyan
arrows correspond to temperature exchange transitions, with the solid and dashed lines denoting
transitions with rate parametatisandwa, respectively.



14

We require that the equilibrium populations of the states be such that the canonical
ensemble is recovered at each temperature. This is the case if the equilibrium populations

are proportional to the product of the equilibrium populations for the two-state systems,

e.g.

1

k+k,
Pey(F1Us) = §Peq(F1)Peq(U2) ki

1
2 (kg1 + k) (kg + u2)’

where the factor ol /2 accounts for the presence of the two equivalent manifolds. For

these probabilities to be preserved under temperature exchanges, it is sufficient that detailed
balance is satisfied, e.g. the transition probabiliti€d U, — F,U;) andw(FU; —
FlUQ) SatiSfyPeq(FlUQ)w(FlUg — FQUl) = Peq(FQUl)w(FQUl — FlUQ), or

w(FlUg — F2U1) - kffgk?ul

= = w. 2.1
w(F2U1—>F1U2) k?f1k3u2 v ( )

If the equilibrium favors the folded state @ and the unfolded state dt, thenw < 1.

The ratios of forward and reverse transition probabilitiesfof; = F,F; andU,U; =

U,U, are equal to one, as interchange of temperatures does not change the equilibrium
populations.

In atomic-level RE simulations, temperature exchange attempts are usually made peri-
odically in time, i.e. the MC or MD evolution is interrupted, temperature swap proposal(s)
are made, and the proposals are either accepted or rejected[14, 16]. In keeping with the
continuous-time nature of our network model, we simulate the effect of temperature ex-
changes by introducing an additional rate parametaich controls the overall scaling
of the temperature exchange rate relative to the folding and unfolding rates. We set the
forward and reverse rates of thg¢F, = FyFy andU,U; = UsU; “reactions” equal tay,
while the other rates are set door wa (Figure 2.2) as required by detailed balance (Eq.
2.1), and where we choose < 1. For example, the statés§ F, andU, F; differ in popu-
lation, with U, F; being more populated if the equilibrium favors the folded statg a@nd
the unfolded state &f,. We therefore set th€; [, — U, F} “reaction rate” equal ter, and

the reverse rate equal tay, wherew is defined in Eq. 2.1.
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The NRE model can be simulated using a standard method for continuous time Markov
processes with discrete states[86], also known as the “Gillespie algorithm”. The algorithm
remains efficient even when the number of replicas is large (e.g. 20 replicas, corresponding
to 10% states) due to the fact that each state is connected to a small number of neighboring
states (those connected by single temperature exchanges involving neighboring tempera-
tures and folding/unfolding transitions of each replica).

The convergence or efficiency of a simulation is monitored by measwingd|7}),
the number of “round-trip” transitions between theand £’ states, conditional on the
temperature of interedf; that occur in a given observation time In the context of the
network model, suppose that we follow replica 1, and at a given time the system is in a
state where that replica is folded at temperaflirée.g. F; F>). We then wait for the first
occurrence of a state in which replica 1 is unfolded’afe.g.U, F5), and then for the first
occurrence of a state in which that replica is folded agaify de.g. F; F3). At this point,
we say that a transition event has occurred. Conceptually, a transition event is a transit of
a given replica from one conformation at low temperature to the other conformation at low
temperature and back again regardless of route, i.e. whether it was the result of a direct
barrier crossing at’ or indirectly via a barrier crossing & combined with temperature
exchanges. The number of transitions as defined corresponds to the number of “reversible

folding” events studied in all-atom simulations of peptide systems[22, 23].

2.2.1 Thermodynamic model for anti-Arrhenius behavior
The Arrhenius equation relates a reaction vate the temperature:

k(T) = A AGHT)/kpT _ Ae—(AET(T)—TAST(T))/kBT7 (2.2)
where AG'(T) is the free energy of activation. The temperature dependence of the reac-

tion rate is customarily described by means of the Arrhenius plot, the platigf’) with

respect tal /7. The slope ofn k(T) in the Arrhenius plot is proportional to the activation
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energyAET(T), at temperatur@. When the activation energy is temperature independent

the Arrhenius plot appears as a line of constant slope. Moreover, if the activation energy is
positive, the reaction rate increases with increasing temperature. This behavior is referred
to as normal Arrhenius behavior. When the activation energy is negative, however, increas-
ing the temperature causes the rate to decrease. This non-intuitive phenomenon sometimes
observed in protein folding kinetics[33, 34, 35, 36, 37, 38] is referred to as anti-Arrhenius
behavior. In these circumstances the transition state is energetically favored but entropi-
cally disfavored with respect to the reactants.

Often protein folding rates follow normal Arrhenius behavior at low temperatures,
switching to anti-Arrhenius behavior at higher temperatures. This mixed behavior can
be understood in terms of a constant activation heat capacity model in which the activa-
tion energy and entropy vary linearly with respect to the temperature and its logarithm,

respectively[87, 34] :

AENT) = AEYT,) + (T — Ty)AC] (2.3)

ASYT) = ASYTy) + In(T/Ty)AC] (2.4)

WhereAC; < 0is the activation heat capacity which is assumed here to be independent
of temperature. Summing Egs. 2.3 and 2.4, we obtain the expressian#oiT’) corre-
sponding to this model. The Arrhenius plots for the unfolding and folding ratgq;)
and k¢(T") used in this work, that result from inserting this expression in Eq. 2.2, set-
tingInA/s™' = 22, T, = 300K, and AE'(Tp), AST(T;), and AC] to be 2 kcal/mol,

—0.01 kcal/mol/K, and—0.025 kcal/mol/K for folding, and 8.5 kcal/mol, 0.008 kcal/mol/K,

and 0 kcal/mol/K for unfolding, respectively, are shown in Figure 2.3. For the case of Ar-
rhenius folding (Figure 2.3 dashed line), the parameters are identical with the exception
that Acg for folding is zero. The unfolding rate follows normal linear Arrhenius behav-
ior, whereas the anti-Arrhenius folding rate decreases with increasing temperature above

T* = 380 K (the temperature at which the activation energy for folding is zero and the
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Figure 2.3:Arrhenius plot of the folding and unfolding rates from a thermodynamic model for the
temperature dependence of protein folding rate constants. Black line corresponds to unfolding rate,
while red lines correspond to the folding rates. The solid line is forﬁtlﬁlg # 0 case displaying
anti-Arrhenius behavior, while the dashed line corresponds to the same parametemﬁlith 0.

The arrow indicates the temperatdré at which the folding rate is maximad{ 380 K).
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folding rate is maximal). The general behaviorkgf") andk(7") shown in Figure 2.3 is

typical for experimentally determined peptide folding kinetic rates[33, 35, 38].

2.3 Results and Discussion

2.3.1 Convergence efficiency of non-RE simulations

When considering questions of efficiency, it is often useful to compare results to that of a
well-understood reference. In the case of RE simulations, we choose a single-temperature
uncoupled MD or kinetic MC simulation as the reference. If we assume (as in NRE) that
kinetics over a discretized state space is Poisson, then the convergence behavior of the
single-temperature simulation can be determined analytically. Let us consider a system
with rates

Fey

kg

and suppose that we are interested in estimating the equilibrium population ihstate
(the “fraction folded”). In molecular simulations, this is typically estimated by allowing

the system to evolve for a certain amount of timand calculating the fraction of time

spent in the F state:

S(r) = /0 Sp(t)dt, (2.5)

-
wheredr(t) is an indicator function that is O if the system is in stétat timet and 1 if it is

in stateF'. If the system is Poisson, théf{r) is the random variable corresponding to the
normalized time integral of the “telegraph process”, which is the Markov process in which
the system alternates between states 0 and 1 with exponential residence times[86]. The
moments of the time integral of the telegraph process can be determined analytically[86],
and can be normalized bly/ 7 to obtain the moments &f(7). In particular, the mean of

S(r) is given by

E (1 — e~ thuthr)m) (2.6)
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or

ks kg
N ]{fu +]{7f T(l{?u + k?f)Q

depending on whether the system began in dtate U at timet = 0, respectively. These

(S(1)v

(1 o e—(ku+kf)T) (2_7)

are of interest because they tells us how quickly the system equilibrates.

Equations 2.6 and 2.7 show that the meary 6f) approaches the true fractional pop-
ulation ast — oo, and the second term in each equation represents the mean deviation
from the correct value. The magnitude of this bias depends strongly on the starting state:
e.g. beginning inF’ leads to much smaller bias if the system’s equilibrium strongly favors
F. In a molecular simulations, one normally does not krzopriori where the equilibrium
lies, and therefore which is the more favorable starting state. One can account for this

uncertainty using the average absolute bias

1

2k 1 —(ku+kp)r
5 ((80De (80 - 20 ) = s (-t 2a)

corresponding to the average over choosing the starting state &b dreF” with equal
probability. The average absolute bias depends inversely on the rates only via their sum,
and becomes negligibleifis large relative tdk, +%;)~*. Therefore, the bias is dominated

by the fastest rate, in the sense that,fandk, are of different magnitudes, changes in the
smaller of the two will have very little effect on the convergence compared to changes in
the larger rate. The origin of this can be most easily seen in the limit where k. If

we begin inF', then even if no transition events occur we will have little bias, since the
true value of the fraction folded is very close to 1. Alternatively, if we begifi jithen we

will be very likely to quickly see a folding event (provided thats not too small), again
leading to small bias. The key observation is that, for a non-RE simulation, the convergence
is dominated by the fastest rate, and in some circumstances it is not necessary to have many

“round-trip” transitions between the states in order to obtain converged results.
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2.3.2 Convergence efficiency of the kinetic network model for large

limit
We first examine the behavior of NRE for the simplest possible case: two replicas where
the rate of temperature exchanges is large compared to the folding/unfolding kinetics. The
condition thatw be very large relative to the “molecular” kinetic rates simplifies the prob-
lem, since in that limit the behavior will be independent of the precise choiaeaof will
depend only on the (temperature-dependent) folding and unfolding rates. Since the energy
distributions in NRE are temperature independefunctions, there is no intrinsic penalty
for having the temperature difference between the replicas be very large. Therefore, we fix
T, at 300K, and sweep, over the range 300K to 700K. We wish to see if there is a specific
T, which gives optimal convergence. In Figure 2.4 we show the estimates of the “fraction

folded” S, (7) averaged over many independent simulations. The fraction fdgded is

defined as the fraction of time spent in tRestate at low temperature:

Si(r) = = / S (1)t (2.9)
T Jo

wheredr (t) is an indicator function that is 1 if the system is in one of the four composite
states in which the replica &t is folded (1 Fy, F1Us, F>Fy, or UsFy), and O otherwise.
Since the time- used for these simulations is not large relative to the equilibration time of
the system, there is a significant deviation{ 8f(7)) from the correct value (indicated by
the horizontal dotted line), and the distance from the curves to the dotted line represents the
bias. In the ArrheniusACg = 0) case, the bias decreases monotonically WithFor the
protein folding model having anti-Arrhenius behavim@ # 0), there is a clear minimum
in the bias afl;, ~ 440 K. Thus, unlike the purely Arrhenius case, there is an unambiguous
optimal high temperature.

In order to investigate the origin of this optimal temperature, We have measured the
number of conformational transitions for the NRE model using both Arrhenius and anti-

Arrhenius models for the folding and unfolding rates with various choices of the number
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Figure 2.4:Estimates of the relative population of theconformation at temperatufl@ = 300 K

for a finite simulation time. The temperature of replica 1 was held fixed at 300 K, @hilef

replica 2) is swept from 300 K to 700 K. The temperature exchange paramatas set to 215~ .

For each individuall;, the system was simulated for= 1.25 us beginning in the statéy F» at

time ¢t = 0 and the fraction folded &f; S;(7) was calculated. This was repeated 50,000 times,
and the resulting; (7) values were averaged and the results are plotted. The solid line corresponds
to the anti-Arrhenius folding rates&((]é = 0), while the dashed line corresponds to the Arrhenius
rates AC’,T, = 0) (Figure 2.3). The true fraction folded @ = 300 K is the same for both the
Arrhenius and anti-Arrhenius models and is indicated by the dotted line. The temperature at which
the bias is minimized for the anti-Arrhenius model 440 K) is indicated by the arrow.
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of replicas, their temperatures, and the temperature exchange rate paranidteigoal of

these calculations is to study factors that affect the increased efficiency that RE can provide.

We define the efficiency in the context of NRE to be the total number of transition events
divided by the number of replicaSrtg(7|71)/N. We make several general observations.
First of all, increasing the total temperature range for a given number of replicas can de-
grade the efficiency of reversible folding if the kinetics is anti-Arrhenius (Figure 2.5A). On
the contrary, for the purely Arrhenius case, both the folding and unfolding rates increases
as temperature goes up, results in no optimum temperature for the efficiency(dashed line).

In order to understand this behavior, we first examine the behavior of NRE for the
simple case of two replicas\( = 2), where the rate of temperature exchanges is large
compared to the folding/unfolding kinetics. The condition thdie very large relative to
the conformational kinetic rates simplifies the problem, since in that limit the behavior is
independent of the precise choicenchnd depends on the (temperature-dependent) folding
and unfolding rates. We fi¥; at 300K, and sweefi, over the range 300K to 700K.

In Figure 2.6A we show the dependence/fy(7|77)/N normalized by the number of
replicas as a function df, for the anti-Arrhenius kinetic modelﬁ((]; # 0).Nrg(T|Th)/N
indicates the convergence efficiency of the system. We see that, for the two-replica system,
Nrg(7|T1)/N is small at low and high’, and reaches a maximum near 440 K (dashed
black line).

The number of transition events for an uncoupled, non-RE simulation is easy to predict.
If the kinetics is Poisson, then the mean lifetime in each basiriswherek is the rate
for leaving the basin. In order to make a round-trip starting fiopfor example, we must
wait on averagé, ' before jumping to/, and then anothelr;1 before jumping back to
F. Therefore the rate of transition events is given by the harmonic mean of the folding
and unfolding rate¢k, ' + k;l)*l, and the number of transitions is that rate multiplied by

the total observation time. The harmonic mean is dominated by the smallest rate, agreeing
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Figure 2.5:Number of transition events in NRE simulations (normalized by the number of replicas)
for various temperature ranges, exchange ratesd number of replicad’. In all cases, the system

was simulated for = 4 pus. For the simulations in (A)y was set to 100Qs—!, the dashed and

solid lines correspond to Arrhenius and anti-Arrhenius kinetics, respectively, and six replicas were
exponentially distributed between 300 K afg,.. The simulations in (B) were performed with
anti-Arrhenius rates)N replicas exponentially distributed from 300 K to 700 K, amdialues of

10000 ps~! (black),1000 ps~t (red),100 ps~1(green),10 us—!(blue) andl us—!(cyan).
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with our intuition that the number of transitions is determined by the rate limiting step.

In the case of coupled trajectories such as in the NRE model, the dependence of the
number of transitions on the rates is not as obvious, however it can be easily estimated by
simulation. In Figure 2.6A we show the dependencé&ef;(7|7;)/N as a function off;
for the anti-Arrhenius kinetic model. We see thétg(7|77)/N is small at low and high
T», and reaches a maximum near 440 K (Figure solid black line). In factythé¢r|7:)/N
obtained by simulation in the large limit is very well approximated by the “arithmetic

mean of harmonic means”

Nos(r[T)/N = 50 [k + k)™ + (kg + ki)
(Figure 2.6 black dashed line). These results suggest that the convergence of NRE is lim-
ited by the rate at which round-trips between basins occur, and that the convergence rate
is therefore strongly dependent on the slowest rates. This is very different from the un-
coupled, non-RE case discussed above, which is dominated by the fastest rate. The system
must sample all basins more than once in order to accurately estimate populations, and the
convergence df; will be limited by the number of transitionStg(7|77)/N.

Next, we examine how the number of replicas affects the convergence as monitored by
the number of transition events. In Figure 2.6A we examine whether a third replica results
in an improvement over the optimum behavior with two replicas. To do this, wWE fat
300 K, T3 at 440 K (the two-replica optimum), and scanfrom 300 K to 700 K (i.e. we
do not requirel; < Ty < T3). We see in Figure 2.6A (solid green line) that the number
of transitions per replica again reaches a maximum fgar 440 K, corresponding to the
case where one replica is at the temperature of interest (300 K), while the other two are both
placed at the “optimal” temperature of 440 K. As in the two-replica cage,r|11)/N is
very well-approximated by the average of the harmonic means of the rates at all three tem-
peratures (Figure 2.6A dashed green line). The relevant question is whether the addition of

the third replica is an improvement over two. It is important in this regard to distinguish

the convergence rate from the computational efficiency of the simulation. In the cases seen
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Figure 2.6:Number of transition events per replica in NRE simulations using the anti-Arrhenius
folding rates for a simulation time = 4 ms conditional on temperaturg, = 300 K, while Ty is
scanned from 300 K to 700 K. (A) Black and green solid lines: simulation results for two-replica
and three replica systems (wiify = 440 K), respectively. Black and green dashed lines: number

of transition events predicted using the average of harmonic means for two and three replicas, re-
spectively. All simulations were performed with= 10 ns~!. (B) Results fortwo-replica NRE
simulations using the anti-Arrhenius folding rates anstalues of 10ns~—! (black solid), 1ns—!

(red), 100us~! (green), 1Qus—! (blue), and 1us~! (cyan). The black dashed line corresponds to

the predicted number of transitions for a single, uncoupled simulatidn at
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in Figure 2.6A, the total number of transition evem®t(normalized by the number of
replicas) is larger for three replicas than the maximum total number of transition events for
two replicas, and therefore we expect the convergence to be better. In general, adding an
additional replica will always improve overall convergence, since the additional transition
pathways opened up will always have a positive contribution to the total number of transi-
tion events. However, the computational efficiency of NRE as measuré&-pir|17)/N

of the three-replica simulation is improved relative to the two-replica simulation only if the
additional temperaturé; has values between 350 and 550 K (Figure 2.6A black dotted
line). While the addition of a replica always improves convergence, it improves efficiency
only if the harmonic mean of the rates at the additional temperature is large relative to the
harmonic means of the other replicas. If not, then the presence of the additional slow paths
will reduce the efficiency. For the general case of NRE utheplicas, we expect that, in

the largea limit, optimal efficiency (and convergence) will be obtained when one replica

is at the temperature of interest, and all of the other replicas are placed at the temperature
which maximizes the harmonic mean of the folding and unfolding rates. Thus, the replica
with the largest harmonic mean sets a “speed limit” for the amount of efficiency improve-
ment that an RE simulation can have over an uncoupled simulation run for the same amount
of CPU time. The addition of replicd + 1 will increase the efficiency only if the har-
monic mean at the new temperature is greater than the average of the harmonic means of

the original NV replicas.

2.3.3 Convergence efficiency of the kinetic network for finitex

In the results described above, the rate of temperature exchanges is so large that conver-
gence is limited only by the rates of conformational transitions at each temperature. When
« is comparable to or smaller than the rates of conformational transitions, the waiting time
for a temperature exchange to occur becomes comparable to or even larger than the time

scale of configuration changes within each replica. Therefore, there can be multiple folding
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or unfolding events at higher temperatures before any of these events are transmitted to the
temperature of interest. These events are “lost” and make no contribution to the number of
transition events at low temperature. Therefore, in the NRE model (where conformational
transitions are instantaneous and strictly Markovian), the optimal convergence (and effi-
ciency) is achieved in the limit wheke overwhelms the kinetic rates, and smaller values

of o only degrade the performance of the algorithm. It should be noted that, because of
non-Markovian effects present in real molecular systems, it may not be possible to achieve
the largex limit in molecular RE simulations.

In Figure 2.6B we show the effect of on the number of transition events per replica
for two replicas as a function of the high temperatiike As expected, the number of
transition events becomes smallenagecreases. The drop in the number of events is most
dramatic wheny approaches the magnitude of the conformational transition rate constants
(10-100us~1). If we compareNtg(7|T})/N with the expected number of transitions
for a single-temperature simulation’gt (Figure 2.6B dashed line), we see that for some
combinations ofxr andT; the efficiency of two-replica NRE is less than a uncoupled non-
RE simulation, while for others the efficiency is improved.

The value ofl; which maximizes the number of transition events also decreases as
decreases. This arises due to a competition between the increase in the number of transition
events at high temperature Bsapproaches 440 K (the temperature at which the harmonic
mean rate is maximized) and the decrease in the efficiency in transfer of those transitions
to the low temperature by temperature exchanges due to the decreasétbfincreasing
temperature gap. Thus, there is a temperature for which there is an optimal balance be-
tween the increasing number of conformational transition events at high temperature and
the decreasing efficiency of transfer to low temperature. This optimum occurs when the
two competing effects are of comparable magnitude, leading to a decrease in the optimum
temperature as decreases.

The finite«x behavior of NRE for many replicas is more complex, as issues related to
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the size of the state space become important. While in the limit of infiniggy conforma-

tional transition in a replica at any temperature is “communicated” via rapid temperature
exchanges t@; before the replica has had a chance to move back, this is not the case for
finite . The most apparent symptom of this is that a simulation with more replicas can be
less efficient than one with fewer. This can be seen in Figure 2.5B, where the insertion of
additional replicas into a fixed temperature range can lead to a decredse(in/7;)/N.

This is related to the rapid increase in the combinatoric size of the NRE state spdde-as
creases. As defined previously, a transition event is counted only when the system evolves
from a state where the replica of interestiat 7; to one in which it isF" (also at7}) and

back. For example, when the system leaves a composite state of thé/fofti . .. X,

it must find its way to a state of the for#, X X ... X and back for a transition event to
occur for replica 1. However, the number of states of the féid X ... X for N replicas
is2V=1(N —1)!, and the ratio of the size of this “target set” of states to the total number of
accessible states’ N! decreases a§ ~! whenN increases. The more replicas there are in
the NRE simulation, the longer any excursion in temperature space away froii last,

and we expect the number of transition events to reflect this.

2.3.4 Convergence efficiency of the kinetic network under special con-
ditions

In order to study the effect of increasing the number of replicas on the efficiency of NRE in
isolation, we studied the NRE model for the case in which the folding and unfolding rate
constants are independent of temperature. The effect of different temperature distributions
and changing temperature exchange rates with different numbers of replicas are thereby
excluded, and the efficiency of NRE will only be affected by the size of the combinatorial
state space. This temperature-independent system is equivalent to one in which all of the

replicas are starting at the same temperature, but where each temperature is distinguishable
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by a virtual label. We define a transition event as before, i.e. a round-trip change in confor-
mational state of a replica conditional on a temperature label. We will refer to this special
temperature label as “the temperature of interest”.

Since all replicas are equivalent in terms of their kinetic properties and there is no
increased rate of conformational interconversion at high temperature that the replica at the
temperature of interest can “borrow from”, we expect that the number of transitions per
replica will at best match that of a single-processor simulation. Specifically, we expect
that the number of transition events per replica to be small for smadind that it will
increase monotonically as a function @f approaching the number of transitions for a
single-processor simulation as— oo. If we examine the behavior of the total number
of transition events at the temperature of interest as a functiarfaf various numbers of
replicasN (Figure 2.7), we see that this is indeed the case. However, the valueasdded
to give a value for the number of transition events close to the asymptotic limit depends
strongly onN: for N = 2, o ~ 100 ps~! is sufficiently large to approximate the infinite
limit, while « ~ 10 ns™! is required whenV = 10. For N = 40, even larger values af
are required. This is a direct consequence of the increase in the combinatoric complexity of
the search space, in that increasingly larger temperature interconversion rates are required
to propagate a conformational change at a distant temperature to the temperature of interest
in a time that is short compared to the conformational transition rates.

This increase in combinatoric complexity is also seen in the behavior of the number of
transitions per replica as the number of replicas increases (Figure 2.8). This is similar to
the effect seen in Figure 3 of the main paper, however here all possible contributions of
the temperature dependence of the rate constants have been eliminated. Again, we see a
strong decrease in the efficiency as the number of replicas increases, reflecting the increased
possibility of a replica becoming “lost” in the combinatoric state space.

The origin of these phenomena originate fundamentally from the increase in the size

of the state space, and consequently, from the increase in the average time a given replica
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Figure 2.7: Number of transition events per replica as a functionaofor a temperature-
independent rate system in a total simulation time of 4 ms. The folding and unfolding rates were
those of the anti-Arrhenius model at 440 K (ilg, = 12.06 us~! andky = 1.052 us™t). The
predicted number of transition events for an uncoupled, non-RE simulation with the same rates and
simulation time is shown as a black dashed line and corresponds to-thex limit. The black,

red and green data correspond\o= 2, 10, and 40, respectively.
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spends in a single excursion away from the temperature of interest. Since for a given replica
there are on the order of states in which that replica is not at the temperature of interest
for every state in which that replica is at the temperature of interest, on average, the time a
given replica spends in a single excursion away from the temperature of interest increases
linearly with N (Figure 2.9).

It should be noted that although the efficiency is degraded whensmall and the
number of replicas is large, the correct fraction folded at low temperature can nonetheless
be obtained with the NRE model for anti-Arrhenius folding rates for as many as 20 replicas
(data not shown). This is despite the fact that for 20 replicas theré*ar®! ~ 10*
composite states, and therefore it is not possible for any NRE simulation to visit each
state once, much less reach equilibrium. This demonstrates that it is possible to achieve
convergence of average quantities without the convergence of the full replica exchange
ensemble. This is not unreasonable, since the convergence of any onédftyir@metry-
related sub-networks is sufficient to obtain correct macrostate populations. Therefore, even

a local exploration of the full kinetic network is sufficient to obtain converged results.

2.4 Conclusions

In this chapter we have used a kinetic network model of replica exchange to explore the
effects of anti-Arrhenius behavior of the conformational kinetics on the convergence of

replica exchange protein folding simulations. We have constructed a network model for

replica exchange inspired by protein folding and have studied its convergence behavior as
a function of the number of replicas, their temperatures, the kinetics at each temperature,
and the rate of temperature exchange. The number of folding transitions is used as an
indicator for convergence. The results demonstrate that the convergence of NRE for a two
replica system in the limit of very rapid temperature exchanges is fastest when the high

temperature is chosen to maximize the harmonic mean of the folding and unfolding rates.
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Figure 2.9:The average amount of timespent in a given excursion in temperature space away
from the temperature of interest for a temperature-independent rate system as a function of the
number of replicasV. The folding and unfolding rates were those of the anti-Arrhenius model at
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fit.
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Additional replicas improve the efficiency in the NRE model only if the harmonic mean of
the kinetic rates at the temperature of the additional replica is larger than the average of the
harmonic means of the original set of replicas. Both the convergence rate and efficiency
are reduced if the temperature exchange rate is finite, and the optimal temperature of the
high-temperature is reduced.

The conclusions obtained here are based on the behavior of a simplified network model
of replica exchange which is completely Markovian. More of the characteristics of molec-
ular RE could be incorporated into the NRE model to enhance its realism. For example,
continuous energy distributions could be used to simulate the effects of energy distribution
overlaps. Non-Markovian effects, such as non-exponential waiting time distributions could
also be modeled, either directly or by dividing tReandU macrostates into “hidden” mi-
crostates. Even though many proteins are observed to follow simple two state kinetics for
folding under some conditions, the underlying free energy landscape is undoubtedly more
complex. The NRE model can also be extended to simulate more complex landscapes rep-
resented by three or many more macrostates. It could turn out that the best strategies for
optimizing RE simulations are different for such cases as compared with those where the
kinetics is described by two state anti-Arrhenius behavior as has been observed for some
peptides[35, 38].

The results shown here for the NRE model are nevertheless likely to be relevant for
atomic-level RE simulations, and suggest that more extensive “training” simulations to
explore the temperature dependence of the kinetics will be useful for optimizing the effi-
ciency of RE. Training simulations have been used to construct asynchronous variants of
RE[88] and to find the optimum temperature ladder by maximizing the diffusion in temper-
ature space[16, 29]. However, maximizing the diffusion of replicas in temperature space
regardless of the actual kinetics at each temperature does not necessarily optimize the RE
simulation. If the rate constants have anti-Arrhenius behavior, then there exists an optimal

temperature with the fastest kinetics. Additional replicas beyond that temperature decrease
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the efficiency of the simulation relative to the case where the same number of replicas were
used, but where the additional replicas are placed close to the optimum temperature. This
is because in the anti-Arrhenius case the optimum temperature has more favorable kinetic
properties than any higher temperature, and can contribute more to the convergence of the
low temperature of interest. In this context, finding the optimum high temperature should
take priority, and the remaining replicas can then be distributed to optimize temperature
diffusion and efficiency. On the other hand, in the context of Arrhenius-like rates, there is
no optimum high temperature, and the focus on the optimization of diffusion to the highest
temperature is justified.

The possibility that an arbitrary choice of highest temperature may be too high is fur-
ther increased by the observation that finite temperature exchange rates lower the optimal
highest temperature significantly below that predicted by the harmonic mean of the for-
ward and reverse rates at high temperature. Superficially, it could be argued that this result
is not relevant to atomic-level simulations, which are already conducted in the ‘dérge-
limit, given that the folding and unfolding timescales of peptides and small proteins are on
the order of tens to hundreds of nanoseconds while temperature exchanges are typically
done on a picosecond timescale. However, unlike the NRE model, for which temperature
exchanges of any magnitude can freely occur, in a molecular simulation the rate of temper-
ature exchanges is limited by the rate of diffusion in energy space. For example, a replica
must first find low-energy configurations to be able to exchange temperature with a replica
at a lower temperature. Therefore, the rate of conformational transitions places an upper
limit on the effective value of that can be achieved in a molecular simulation.

NRE also provides some insights into the choice of the number of replicas and their
temperature distribution. In molecular RE simulations, the temperature spacing is dictated
primarily by the overlap of energy distributions at different temperatures. However, if we
wish to add additional replicas beyond those required to obtain sufficient energy overlap

(for example, in a large-scale cluster or grid computing environment), the NRE results
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indicate that additional replicas will be most beneficial to efficiency if they are placed

at temperatures such that the average of the harmonic means is increased. Additionally,
it may be possible to use re-weighting methods such as T-WHAM[89], which generate
estimates of thermodynamic quantities based on data from more than one temperature,
to further accelerate convergence properties, since folding transitions are not required to
occur between identical temperatures to be “productive”. RE methods which are based on
the exchange of energy function parameters[90] may also have more favorable convergence
properties for some systems.

The replica exchange technique is a powerful conformational sampling method for the
study of quasi-ergodic systems while preserving canonical thermodynamic properties. For
these reasons, it has become a very popular tool in computational biophysics research. This
study identifies some characteristics of the method that are key for the effective use of RE to

study processes with anti-Arrhenius kinetic behavior, such as protein folding and binding.

2.5 Appendix I: Closed form analysis for thea: — oo limit of the net-

work model

In the largea limit, the network model can be greatly simplified and some neat analyt-
ical treatment can be done to get meaningful results that can also be verified via sim-
ulations. We begin with the full cubic model of Figure 2.2. Asbecomes large, the
“up-and-down” transitions become very fast relative to the transitions along the top and
bottom faces of the cube. Therefore, we can assume that the pairs of states connected by
the vertical transitions (corresponding to temperature exchanges) experience instantaneous
equilibration, and can be considered as single states. This reduces the number of effective
states from 8 to 4F'F = {F\ I, FyFy }, FU = {F1Us, FUy }, UF = {Uy Fy, Uy Fy }, and

UU = {U Uy, UsU, }. We can imagine that each of these 4 composite states has “inside of

it” the two temperature-labeled states with their respective equilibrium probabilities. For
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example, the staté'F' has “inside” F F;, and F» F; each with populatiori /2 (since they
have equal populations at equilibrium), whiig/ has “inside” F}, U, and F,U; with popu-
lations1/(1 + w) andw/(1 4+ w), respectively. In terms of kinetics, the rate to exit a given
state is simply the population-weighted sum of the rates corresponding to the “internal”
sub-states. For example, the rate corresponding td'tlhe— UU transition will be the
rate for /U, — U,U, weighted byl/(1 + w) (the relative population of; U, “inside”
FU) plus the rate forF,U; — UsU; weighted byw/(1 + w) (the relative population of
FyU; “inside” FU). Working through these sums, we end up with the square network of
Figure 2.10 with rates

ka= %(km + ku2)

kp — kpikpo(kur + Ekuz2)
kpkus + kuikyo

kuikus (kg1 + kg2)
kpikua + kuikyo

ke =

and

1
k‘D - §<kf1 —|— k’fg)

The kinetic matrix for the network in Figure 2.10 has three non-zero eigenvalues, given by
M = kg + kc and

1
A =3 [77 + V/n? = 8(kakc + 2kakp + kpkp) | ,

wheren = 2k + kg + ko + 2kp. | have shown that these rates give the correct equilibrium
probabilities (proof omitted) and have numerically confirmed that the eigenvalues are the
same as those obtained for thex 8 kinetic matrix corresponding to the full network with
a very large value of.

The distribution of temperature-unconditional first passage times is related to the kinet-
ics of the network where the destination states have been replaced by a single absorbing

state (Figure 2.11). The two non-zero eigenvalues of the corresponding kinetic matrix are

1
/\:I: = 5(2]{3,4 + /{ZB + kC’ :|:p),
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wherep = \/4ka(ka — kc) + (kg + kc)2. These eigenvalues are clearly distinct, and
will in general lead to a bi-exponential first passage time distribution. Solving for the first
passage time distribution (by solving the master equatiornPf@r, t) and differentiating

with respect ta) we find that
1 1
P(trp) = 2—p[QkA(l—p%F)JrkC(QP%F—1)+/<B](/\—e_A’t—A+€_Mt)+§(>\—€_A’t+A+6_A+t),

where the initial populations arB(FF,0) = p% and P(FU,0) = 1 — p%.. The mean

first passage time can be obtained analytically by integration:

(trp) = / tppP(tpp) dtrp
0

QkA + k}B —i—p%F(k:c — ]CA)
kakp + 2kakc '

For the specific case of the rates used in our simulatibps € 0.818, k,; = 0.13,
kpp = 1.05, ko = 12.06), the collapsed rates arey, = 6.095, kg = 1.0468, and
ke = 0.2928, and the non-zero eigenvalues are= 12.7492 and\_ = (0.7804, with cor-
responding eigenvectors = (—2.14685,1.14685, 1) ande_ = (—0.08404, —0.91596, 1).
Since the equilibrium populatior{s, 0, 1) minuse_ is (0.08404, 0.91596, 0), choosing ini-
tial populations in which!. . = 0.08404 will lead to a single exponential first passage time
distribution with rate\_ = 0.7804. On the other hand, because of the pattern of signs in
e, itisimpossible to find initial conditions for which the first passage time distribution is a
single exponential with rat®, . The mean first passage time is 1.2449, close in magnitude
to 1/A_ = 1.281, but considerably longer thaty A\, = 0.078. Our simulations results
confirmed that the two eigenvalugs and\_ match with the double exponential curve-fit
parameters from the plot of the mean first passage time.

The eigenvalue or master equation approach inherently cannot give information about
the paths taken to reach equilibrium. In the simple system of Figure 2.11, however, it
is possible to make some analytical statements about the paths. Suppose, for example,

that we begin from staté' F' at time 0. There are three types of paths by whith can
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reachU: FF — U (1-step path of type 1)F'FF — FU], — U (2n-step path of type 2,
n=12..),and[FF — FU|, — FF — U (2n + 1-step path of type 3 = 1,2,...).
The probability of the type 1 path occurringkis/(ka + k) = 1/2, while the probabilities

of paths of type 2 and 3 are

knflk_c
Py(n)= —=2B "=
Q(n) 2”(163 + kc)"
and
k?’b
P3(n) = £

on+l (kB + ko)"

respectively. These probabilities are normalized, since

P S __fB
2P = 5o 2 (2(1@ n kc>>
_ ke 1— k—3>1
2(k’3—|-/£c) 2<k3+kc)
- 2ke+ kg’

2 Fulm) = %i( k3+kc )”

(G

kg
2(2kc + kg)’

and
1 ko kg
=+ +
2kc + kg 2(2k0 + kB)

If we use the rates of our simulation, the fraction of paths startinfgfathat are absorbed

=1.

via type 1, 2, and 3 paths are 0.5, 0.18, and 0.32, respectively. Thus, approximately 68%
of the paths are paths in which the final transition to reécis from F'F’, nearly3/4’s
of which occur directly as the first transition after time= 0 . (Thanks for Dr. Andrec

providing me this derivation.)
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2.6 Appendix Il: Publication attached

Part of the contents of this chapter was publishe@ioc. Natl. Acad. Sci. USALO4,
15340-15345 (2007).
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Figure 2.10:The collapsed 4-state kinetic network model.

Figure 2.11:The collapsed kinetic network model with an absorbing state corresponding to walker
1 unfolded.
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Replica exchange (RE) is a generalized ensemble simulation
method for accelerating the exploration of free-energy landscapes,
which define many challenging problems in computational bio-
physics, including protein folding and binding. Although temper-
ature RE (T-RE) is a parallel simulation technique whose implemen-
tation is relatively straightforward, kinetics and the approach to
equilibrium in the T-RE ensemble are very complicated; there is
much to learn about how to best employ T-RE to protein folding
and binding problems. We have constructed a kinetic network
model for RE studies of protein folding and used this reduced
model to carry out “simulations of simulations” to analyze how the
underlying temperature dependence of the conformational kinet-
ics and the basic parameters of RE (e.g., the number of replicas, the
RE rate, and the temperature spacing) all interact to affect the
number of folding transitions observed. When protein folding
follows anti-Arrhenius kinetics, we observe a speed limit for the
number of folding transitions observed at the low temperature of
interest, which depends on the maximum of the harmonic mean of
the folding and unfolding transition rates at high temperature. The
results shown here for the network RE model suggest ways to
improve atomic-level RE simulations such as the use of ““training”
simulations to explore some aspects of the temperature depen-
dence for folding of the atomic-level models before performing RE
studies.

anti-Arrhenius | Markov process | parallel tempering

One of the key challenges in the computer simulation of
proteins at the atomic level is the sampling of conforma-
tional space. The efficiency of many common sampling proto-
cols, such as Monte Carlo (MC) and molecular dynamics (MD),
is limited by the need to cross high free-energy barriers between
conformational states and rugged energy landscapes. One class
of methods for studying equilibrium properties of quasi-ergodic
systems that has received a great deal of recent attention is based
on the replica exchange (RE) algorithm (1, 2) (also known as
parallel tempering). To accomplish barrier crossings, RE meth-
ods simulate a series of replicas over a range of temperatures.
Periodically, coordinates are exchanged by using a Metropolis
criterion (3) that ensures that at any given temperature a
canonical distribution is realized. RE methods, particularly
REMD (4), have become very popular for the study of protein
biophysics, including peptide and protein folding (5, 6), aggre-
gation (7-9), and protein-ligand interactions (10, 11). Previous
studies of protein folding appear to show a significant increase
in the number of reversible folding events in REMD simulations
versus conventional MD (12, 13). Given the wide use of REMD,
a better understanding of the RE algorithm and how it can be
used most effectively for the study of protein folding and binding
is of considerable interest.

The effectiveness of RE methods is determined by the number
of temperatures (replicas) that are simulated, their range and
spacing, the rate at which exchanges are attempted, and the
kinetics of the system at each temperature. Although the deter-
mination of “optimal” Metropolis acceptance rates and temper-

15340-15345 | PNAS | September 25,2007 | vol. 104 | no.39

ature spacings has been the subject of various studies (2, 14-19),
the role played by the intrinsic temperature-dependent confor-
mational kinetics that is central to understanding RE has not
received much attention. Recent work (19-22) recognizes the
importance of exploration of conformational space and the
crossing of barriers between conformational states as the key
limiting factor for the RE algorithm. Molecular kinetics can have
a strong effect on RE beyond the entropic effects that have been
discussed (20, 22), particularly if the kinetics does not have
simple temperature dependence. It is known from experimental
and computational studies that the folding rates of proteins and
peptides can exhibit anti-Arrhenius behavior, where the folding
rate decreases with increasing temperature (23-28). Different
models have been proposed to explain the physical origin of this
effect (29, 30).

In this paper, we investigate the impact of simulation param-
eters and anti-Arrhenius kinetics on the RE method. Because
RE simulations of protein systems that display anti-Arrhenius
behavior are difficult to converge, we developed a network RE
(NRE) model that allows us to simulate the RE algorithm of
two-state protein folding. This network model reduces the
atomic complexity of the system to a set of discrete conforma-
tional states that evolve in continuous time according to Mark-
ovian kinetics for both conformational transitions and exchange
between replicas.

The NRE model studied here does not capture all of the
complexities of the “real” molecular simulation because various
kinds of non-Markovian behavior are not captured in the
network model. However, it does capture some of the essential
features of RE and allows us to study these fundamental aspects
of the algorithm in a controlled setting and at low computational
cost, which allows us to separate some of the interacting param-
eters and study their effects on the simulation individually. Many
of the limitations in the convergence rates and efficiency ob-
served with NRE also will be present in full atomic-level RE
simulations, allowing us to identify promising avenues of inquiry
for future atomic-level simulations.

Theory

The RE Method and the NRE Model. In a standard RE simulation
with M replicas corresponding to M inverse temperatures 3; =
(ksT))™' (B1 > B2 > ... > Bu), the state of the extended
ensemble is specified by a joint configuration of M replicas X =
{x1,x2, . . ., xpm}, Where x; stands for the configuration of replica
i. To simulate the extended ensemble, a propagation algorithm
such as MC or constant-temperature MD is used to locally
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sample the conformational space within each replica, and ex-
changes of configurations between pairs of replicas, e.g., X =
{. X x> =X ={..,x,...,x,...} are attempted
periodically with an acceptance probability w(X — X"). For the
equilibrium distribution to remain invariant with respect to these
exchanges, it is sufficient to impose a detailed balance condition
on the transition probability. For the potential energy function
U(x), the appropriate transition probability is given by (4)

w(X = X') = min{1, exp[ — (B; = B)(U(x) — Ulx)]}. [1]

To isolate some of the essential features of the RE algorithm,
we construct a kinetic NRE model, which we can use to study the
effects of the parameters of the model on efficiency and con-
vergence. We consider a system in which the configurational
space can be partitioned into two macrostates of interest sepa-
rated by a free-energy barrier that makes transitions between the
conformations an activated process. Motivated by protein fold-
ing, we call these macrostates F and U (for “folded” and
“unfolded”). Transitions between F and U in a (non-RE) MD or
kinetic MC simulation can be approximated by a Poisson process
in which the waiting times between folding and unfolding
transition events are exponentially distributed random variables
with means equal to the reciprocal of the folding or unfolding
rates, respectively.

If the transition events are Markovian, then we can represent
the simultaneous behavior of two noninteracting replicas in
terms of the four composite states {FF», F1U,, UiF,, U;U,}. In
each symbol, the first letter is the configuration of replica 1, the
second letter is the configuration of replica 2, and the subscripts
are the temperatures of each replica. Therefore, F1U, represents
the composite state that replica 1 at temperature 77 is folded,
while replica 2 at temperature 75 is unfolded. The kinetics in the
composite state space can be represented as a continuous-time
Markov process with discrete states (31).

The four-state composite system corresponding to noninteract-
ing replicas can be extended to create a discrete-state model of RE
by introducing temperature exchanges between replicas. For ex-
ample, suppose the current state is F'1Us. After a successful tem-
perature exchange, replica 1 is at 7, and replica 2 is at 77, thus the
new state can be represented as F,U;. The introduction of temper-
ature exchange therefore creates four additional states, leading to
the eight-state system {F1F2, F1Us,, UiF>, U Us, F2F1, F2Uy, UoFy,
U,U,; }. These states are arranged into two subnetworks defined by
the “horizontal” folding and unfolding transitions, which are con-
nected to each other by “vertical” temperature-exchange transi-
tions, forming a cubic network (Fig. 1). In general, the network for
an N-replica system consists of N! subnetworks, each of which has
2N states connected by folding/unfolding transitions. The model
description in this section will focus primarily on the two-replica
case; all of the details can be generalized easily to the case of N
replicas.

We require that the equilibrium populations of the states be
such that the canonical ensemble is recovered at each temper-
ature. This is the case if the equilibrium populations are pro-
portional to the product of the equilibrium populations for the
two-state systems, e.g.,

1 kpikyo
2 (kpy + ki) kg + kyo)’

1
Peq(FlUZ) = EPeq(Fl)Peq(U2) =

where the factor of 1/2 accounts for the presence of the two
equivalent manifolds. For these probabilities to be preserved
under temperature exchanges, it is sufficient that detailed bal-
ance is satisfied, e.g., the transition probabilities w(F1U, — F,Uy)
and W(F2U| — F]Uz) satisfy Peq(F]Uz)W(F]UZ — F2U]) =
Peq(FzUl)W(FzUl %Fle) or
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Fig. 1. The kinetic network of the composite states corresponding to the
simplified RE model with two replicas. The state labels represent the confor-
mation (letter) and temperature (subscript) for each replica. For example, F,U;
represents the state in which replica 1 is folded and at temperature T, while
replica 2 is unfolded and at temperature T;. Red and black arrows correspond
to folding and unfolding transitions, respectively, and the temperature at
which the transition occursis indicated by the solid and dashed lines (for T, and
T, respectively). The cyan arrows correspond to temperature-exchange tran-
sitions, with the solid and dashed cyan lines denoting transitions with rate
parameters « and wa, respectively.

w(F U, — FLUy) _ kukul
w(F,Uy — F,U,) kflku2

=w. [2]

If the equilibrium favors the folded state at 7'y and the unfolded
state at 7>, then w < 1. The ratios of forward and reverse
transition probabilities for FiF, = F>F; and U U, = UyU; are
equal to one because interchange of temperatures does not
change the equilibrium populations.

In atomic-level RE simulations, temperature-exchange at-
tempts usually are made periodically in time, i.e., the MC or MD
evolution is interrupted, temperature swap proposal(s) are
made, and the proposals are either accepted or rejected (4, 6).
In keeping with the continuous-time nature of our network
model, we simulate the effect of temperature exchanges by
introducing an additional rate parameter «, which controls the
overall scaling of the temperature-exchange rate relative to the
folding and unfolding rates. We set the forward and reverse rates
of the F1F, = F>F, and U,U, = U,U; “reactions” equal to «,
while the other rates are set to a or wa (Fig. 1) as required by
detailed balance (Eq. 2), and where we choose w < 1. For
example, the states U1F; and U,F; differ in population, with U,F;
being more populated if the equilibrium favors the folded state
at 77 and the unfolded state at 7,. We therefore set the U F, —
U,F, “reaction rate” equal to « and the reverse rate equal to we,
where w is defined in Eq. 2.

The NRE model can be simulated by using a standard method
for continuous-time Markov processes with discrete states (31),
also known as the “Gillespie algorithm.” The algorithm remains
efficient even when the number of replicas is large (e.g., 20
replicas, corresponding to 10%* states) because of the fact that
each state is connected to a small number of neighboring states
(those connected by single temperature exchanges involving
neighboring temperatures and folding/unfolding transitions of
each replica).

The convergence or efficiency of a simulation is monitored by
measuring Nyg(70,), the number of “round-trip” transitions
between the U and F states, conditional on the temperature of
interest 7' that occurs in a given observation time 7. In the
context of the network model, suppose that we follow replica 1,
and at a given time the system is in a state where that replica is
folded at temperature 7 (e.g., F1F>,). We then wait for the first
occurrence of a state in which replica 1 is unfolded at 7 (e.g.,
U,F,) and then for the first occurrence of a state in which that
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replica is folded again at T} (e.g., F1F>). At this point, we say that
a transition event has occurred. Conceptually, a transition event
is a transit of a given replica from one conformation at low
temperature to the other conformation at low temperature and
back again regardless of route, i.e., whether it was the result of
a direct barrier crossing at 7 or indirectly via a barrier crossing
at 7, combined with temperature exchanges. The number of
transitions as defined corresponds to the number of “reversible
folding” events studied in all-atom simulations of peptide sys-
tems (12, 13).

Thermodynamic Model for Anti-Arrhenius Behavior. The Arrhenius
equation relates a reaction rate k to the temperature:

k(T) = Ae AGHD/ksT — Ae—(AEf(T)—TAsfm)/kBT, [3]

where AGT(T) is the free energy of activation. The temperature
dependence of the reaction rate customarily is described by
means of the Arrhenius plot, the plot of In k(7)) with respect to
1/T. The slope of In k(T in the Arrhenius plot is proportional to
the activation energy, AET(T), at temperature 7. When the
activation energy is temperature-independent, the Arrhenius
plot appears as a line of constant slope. Moreover, if the
activation energy is positive, the reaction rate increases with
increasing temperature. This behavior is referred to as normal
Arrhenius behavior. When the activation energy is negative,
however, increasing the temperature causes the rate to decrease.
This nonintuitive phenomenon sometimes observed in protein
folding kinetics (23-28) is referred to as anti-Arrhenius behav-
ior. In these circumstances, the transition state is energetically
favored but entropically disfavored with respect to the reactants.
Often protein folding rates follow normal Arrhenius behavior
at low temperatures, switching to anti-Arrhenius behavior at
higher temperatures. This mixed behavior can be understood in
terms of a constant activation heat-capacity model in which the
activation energy and entropy vary linearly with respect to the
temperature and its logarithm, respectively (24, 32):

AE(T) = AET(Ty) + (T — To)AC] [4]
AS(T) = AST(Ty) + In(T/To) AC}, [5]

where AC’T < 0 is the activation heat capacity, which is assumed
here to be independent of temperature. Summing Eqs. 4 and 5,
we obtain the expression for AGT(T) corresponding to this
model. Shown in Fig. 2 are the Arrhenius plots for the unfolding
and folding rates, k,(T) and ky(T), used in this work that result
from inserting this expression in Eq. 3, setting In A/s~! = 22, T; =
300 K, and AET(Ty), AS*(T,), and AC; to be 2 keal/mol, —0.01
kcal/mol-K, and —0.025 kcal/mol-K for folding, and 8.5 kcal/mol,
0.008 kcal/mol'K, and 0 kcal/mol'K for unfolding, respectively.
For the case of Arrhenius folding (Fig. 2, dashed line), the
parameters are identical with the exception that AC; for folding
is zero. The unfolding rate follows normal linear Arrhenius
behavior, whereas the anti-Arrhenius folding rate decreases with
increasing temperature above 7% = 380 K (the temperature at
which the activation energy for folding is zero and the folding
rate is maximal). The general behavior of k,,(T) and k¢(T)) shown
in Fig. 2 is typical for experimentally determined peptide folding
kinetic rates (23, 25, 28).

Results

We have measured the number of conformational transitions for
the NRE model by using both Arrhenius and anti-Arrhenius
models for the folding and unfolding rates with various choices
of the number of replicas, their temperatures, and the temper-
ature-exchange rate parameter «. The goal of these calculations
is to study factors that affect the increased efficiency that RE can

15342 | www.pnas.org/cgi/doi/10.1073/pnas.0704418104
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Fig. 2. Arrhenius plot of the folding and unfolding rates from a thermody-
namic model for the temperature dependence of protein folding rate con-
stants. The black line corresponds to the unfolding rate, and the red lines
correspond to the folding rates. The solid line is for the ACJ # 0 case displaying
anti-Arrhenius behavior, whereas the dashed line corresponds to the same
parameters with ACJ = 0. The arrow indicates the temperature T* at which the
folding rate is maximal (~380 K).

provide. We define the efficiency in the context of NRE to be
the total number of transitions divided by the number of replicas
Nre(tO0)/N. We make several general observations. First,
increasing the total temperature range for a given number of
replicas can degrade the efficiency of reversible folding if the
kinetics is anti-Arrhenius (Fig. 34). To understand this behavior,
we first examine the behavior of NRE for the simple case of two
replicas (N = 2), where the rate of temperature exchanges is
large compared with the folding/unfolding kinetics. The condi-
tion that « be very large relative to the conformational kinetic
rates simplifies the problem because in that limit the behavior is

6000 T T T 25001 T T T T T T T
5000
2000
z 4000
= 1500
': 3000
r
F 1000
Z 2000

1000 500

0 1 1 1
300 400 500 600 700

I TP T |
2 4 6 8 10 12 14 16 18 20

Tmax (K) N

0

Fig. 3. Number of transition events in NRE simulations (normalized by the
number of replicas) for various temperature ranges, exchange rates «, and
number of replicas N. In all cases, the system was simulated for r = 4 ms. For
the simulations in A, « was set to 1,000 us~'!, the dashed and solid lines
correspond to Arrhenius and anti-Arrhenius kinetics, respectively, and six
replicas were exponentially distributed between 300 K and Tmax. The simula-
tions in B were performed with anti-Arrhenius rates, N replicas exponentially
distributed from 300 K to 700 K, and « values of 10,000 us~' (black), 1,000 pus
(red), 100 us~' (green), 10 us~' (blue), and 1 us~' (cyan).
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Fig.4. Number of transition events per replica in NRE simulations using the
anti-Arrhenius folding rates for a simulation time = = 4 ms conditional on
temperature T; = 300 K, while T is scanned from 300 K to 700 K. (A) Solid black
and green lines show simulation results for two-replica and three-replica
systems (with T3 = 440 K), respectively. Dashed black and green lines show the
number of transition events predicted by using the average of harmonic
means for two and three replicas, respectively. All simulations were per-
formed with a = 10 ns~". (B) Results for two-replica NRE simulations using the
anti-Arrhenius folding rates and a values of 10 ns~' (solid black), 1 ns~" (red),
100 us~' (green), 10 us~' (blue), and 1 ps~' (cyan). The dashed black line
corresponds to the predicted number of transitions for a single uncoupled
simulation at T;.

independent of the precise choice of a and depends on the
(temperature-dependent) folding and unfolding rates. We fix T}
at 300 K and sweep T over the range 300 K to 700 K. In Fig. 44,
we show the dependence of N7z(7I'1) normalized by the number
of replicas as a function of 7, for the anti-Arrhenius kinetic
model. We see that N7z(7C01)/N is small at low and high 75 and
reaches a maximum near 440 K (Fig. 44, solid black line).

The number of transition events at the low temperature 7}
obtained by simulation in the large « limit is very well approx-
imated by the average of the harmonic means of the folding and
unfolding rates at both temperatures:

T =1 11 1, 11
Nrg(r|Ty)/N = N Lk + k) '+ (kpy + k)] [6]

(Fig. 44, dashed black line). For the uncoupled, non-RE case,
the rate of transition events at each temperature is simply the
harmonic mean of the rate constants. Therefore, our observa-
tion (Eq. 6) suggests that the number of transition events
observed at the lowest temperature in the coupled RE case can
be no larger than the number of transitions at an “optimum”
temperature defined as that temperature for which the number
of folding/unfolding transitions for the uncoupled system is
maximized. Because the number of transitions for the uncoupled
system is a harmonic mean of the rate constants, the overall
convergence of NRE at low temperature is limited by the
smallest rate at this optimum (higher) temperature.

Next, we examine how the number of replicas affects the
convergence as monitored by the number of transition events. In
Fig. 44, we examine whether a third replica results in an
improvement over the optimum behavior with two replicas by
fixing 74 at 300 K and T3 at 440 K (the two-replica optimum) and
scanning 7> from 300 K to 700 K (i.e., we do not require 77 <
T, < T3). We see in Fig. 44 (solid green line) that the number
of transitions per replica again reaches a maximum near 7> =~ 440
K, corresponding to the case in which one replica is at the
temperature of interest (300 K) and the other two are both
placed at the “optimal” temperature of 440 K. As in the
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two-replica case, N7x(7[I')/N is very well approximated by the
average of the harmonic means of the rates at all three temper-
atures (Fig. 44, dashed green line).

The relevant question is whether the addition of the third
replica is an improvement over having two. It is important in this
regard to distinguish the convergence rate from the computa-
tional efficiency of the simulation. In the cases seen in Fig. 44,
the total number of transition events (not normalized by the
number of walkers) is larger for three replicas than the maximum
total number of transition events for two replicas, and therefore
we expect the convergence to be better. In general, adding an
additional replica always will improve overall convergence,
because the additional transition pathways opened up always will
have a positive contribution to the total number of transition
events. However, the computational efficiency of NRE as mea-
sured by N7g(7CT")/N of the three-replica simulation is improved
relative to the two-replica simulation only if the additional
temperature 75 has values between 350 K and 550 K (Fig. 44,
dotted black line). Although the addition of a replica always
improves convergence, it improves efficiency only if the har-
monic mean of the rates at the additional temperature is large
relative to the harmonic means of the other replicas. If not, then
the presence of the additional slow paths will reduce the
efficiency. For the general case of NRE with N replicas, we
expect that, in the large « limit, optimal efficiency (and conver-
gence) will be obtained when one replica is at the temperature
of interest and all of the other replicas are placed at the
temperature that maximizes the harmonic mean of the folding
and unfolding rates. Thus, the replica with the largest harmonic
mean sets a “speed limit” for the amount of efficiency improve-
ment that an RE simulation can have over an uncoupled
simulation run for the same amount of CPU time. The addition
of replica N + 1 will increase the efficiency only if the harmonic
mean at the new temperature is greater than the average of the
harmonic means of the original N replicas.

In the results described above, the rate of temperature ex-
changes is so large that convergence is limited only by the rates
of conformational transitions at each temperature. When « is
comparable to or smaller than the rates of conformational
transitions, the waiting time for a temperature exchange to occur
becomes comparable to or even larger than the timescale of
configuration changes within each replica. Therefore, there can
be multiple folding or unfolding events at higher temperatures
before any of these events are transmitted to the temperature of
interest. These events are “lost” and make no contribution to the
number of transition events at low temperature. Therefore, in
the NRE model (where conformational transitions are instan-
taneous and strictly Markovian), the optimal convergence (and
efficiency) is achieved in the limit where « overwhelms the
kinetic rates, and smaller values of « only degrade the perfor-
mance of the algorithm. It should be noted that, because of
non-Markovian effects present in real molecular systems, it may
not be possible to achieve the large « limit in molecular RE
simulations.

In Fig. 4B, we show the effect of « on the number of transition
events per replica for two replicas as a function of the high
temperature T>. As expected, the number of transition events
becomes smaller as « decreases. The drop in the number of
events is most dramatic when a approaches the magnitude of the
conformational transition rate constants (10-100 us™'). If we
compare Nyg(70)/N with the expected number of transitions
for a single-temperature simulation at 7' (Fig. 4B, dashed line),
we see that for some combinations of « and T the efficiency of
two-replica NRE is less than an uncoupled non-RE simulation,
whereas for others the efficiency is improved.

The value of T, that maximizes the number of transition events
also decreases as « decreases. This result arises because of a
competition between the increase in the number of transition
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events at high temperature as T, approaches 440 K (the tem-
perature at which the harmonic mean rate is maximized) and the
decrease in the efficiency in transfer of those transitions to the
low temperature by temperature exchanges caused by the de-
crease of w with increasing temperature gap. Thus, there is a
temperature for which there is an optimal balance between the
increasing number of conformational transition events at high
temperature and the decreasing efficiency of transfer to low
temperature. This optimum occurs when the two competing
effects are of comparable magnitude, leading to a decrease in the
optimum temperature as «a decreases.

The finite-a behavior of NRE for many replicas is more
complex because issues related to the size of the state space
become important. Although in the limit of infinite «, any
conformational transition in a replica at any temperature is
“communicated” via rapid temperature exchanges to 7; before
the replica has had a chance to move back, this is not the case
for finite «. The most apparent symptom of this is that a
simulation with more replicas can be less efficient than one with
fewer, which can be seen in Fig. 3B, where the insertion of
additional replicas into a fixed temperature range can lead to a
decrease in Nyg(70I)/N. This result is related to the rapid
increase in the combinatoric size of the NRE state space as N
increases.

Conclusions

In this paper, we have used a kinetic NRE model to explore
the effects of anti-Arrhenius behavior of the conformational
kinetics on the convergence of RE protein folding simulations.
We have constructed a NRE model inspired by protein folding
and have studied its convergence behavior as a function of the
number of replicas, their temperatures, the kinetics at each
temperature, and the rate of temperature exchange. The
number of folding transitions is used as an indicator for
convergence. The results demonstrate that the convergence of
NRE for a two-replica system in the limit of very rapid
temperature exchanges is fastest when the high temperature is
chosen to maximize the harmonic mean of the folding and
unfolding rates. Additional replicas improve the efficiency in
the NRE model only if the harmonic mean of the kinetic rates
at the temperature of the additional replica is larger than the
average of the harmonic means of the original set of replicas.
Both the convergence rate and efficiency are reduced if the
temperature-exchange rate is finite, and the optimal temper-
ature of the high temperature is reduced.

The conclusions obtained here are based on the behavior of
a simplified NRE model, which is completely Markovian. More
of the characteristics of molecular RE could be incorporated
into the NRE model to enhance its realism. For example,
continuous energy distributions could be used to simulate the
effects of energy-distribution overlaps. Non-Markovian effects,
such as nonexponential waiting time distributions also could be
modeled, either directly or by dividing the F and U macrostates
into “hidden” microstates. Even though many proteins are
observed to follow simple two-state kinetics for folding under
some conditions, the underlying free-energy landscape is un-
doubtedly more complex. The NRE model also can be extended
to simulate more complex landscapes represented by three or
many more macrostates. It could turn out that the best strategies
for optimizing RE simulations are different for such cases as
compared with those in which the kinetics is described by
two-state anti-Arrhenius behavior as has been observed for
some peptides (25, 28).

The results shown here for the NRE model nevertheless are
likely to be relevant for atomic-level RE simulations, and they
suggest that more extensive “training” simulations to explore the
temperature dependence of the kinetics will be useful for
optimizing the efficiency of RE. Training simulations have been
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used to construct asynchronous variants of RE (33) and to find
the optimum temperature ladder by maximizing the diffusion in
temperature space (6, 19). However, maximizing the diffusion of
replicas in temperature space regardless of the actual kinetics at
each temperature does not necessarily optimize the RE simu-
lation. If the rate constants have anti-Arrhenius behavior, then
there exists an optimal temperature with the fastest kinetics.
Additional replicas beyond that temperature decrease the effi-
ciency of the simulation relative to the case in which the same
number of replicas are used but the additional replicas are placed
close to the optimum temperature. The reason for this is because
in the anti-Arrhenius case the optimum temperature has more
favorable kinetic properties than any higher temperature and can
contribute more to the convergence of the low temperature of
interest. In this context, finding the optimum high temperature
should take priority, and the remaining replicas then can be
distributed to optimize temperature diffusion and efficiency. On
the other hand, in the context of Arrhenius-like rates, there is no
optimum high temperature, and the focus on the optimization of
diffusion to the highest temperature is justified.

The possibility that an arbitrary choice of highest temperature
may be too high is increased further by the observation that finite
temperature-exchange rates lower the optimal highest temper-
ature significantly below that predicted by the harmonic mean of
the forward and reverse rates at high temperature. Superficially,
it could be argued that this result is not relevant to atomic-level
simulations, which already are conducted in the “large-c” limit,
given that the folding and unfolding timescales of peptides and
small proteins are on the order of tens to hundreds of nanosec-
onds, whereas temperature exchanges typically are done on a
picosecond timescale. However, unlike the NRE model, for
which temperature exchanges of any magnitude can occur freely,
in a molecular simulation the rate of temperature exchanges is
limited by the rate of diffusion in energy space. For example, a
replica must first find low-energy configurations to be able to
exchange temperature with a replica at a lower temperature.
Therefore, the rate of conformational transitions places an
upper limit on the effective value of « that can be achieved in a
molecular simulation.

NRE also provides some insights into the choice of the
number of replicas and their temperature distribution. In mo-
lecular RE simulations, the temperature spacing is dictated
primarily by the overlap of energy distributions at different
temperatures. However, if we wish to add additional replicas
beyond those required to obtain sufficient energy overlap (for
example, in a large-scale cluster or grid computing environ-
ment), the NRE results indicate that additional replicas will be
most beneficial to efficiency if they are placed at temperatures
such that the average of the harmonic means is increased.
Additionally, it may be possible to use reweighting methods such
as T-WHAM (34), which generate estimates of thermodynamic
quantities based on data from more than one temperature, to
further accelerate convergence properties because folding tran-
sitions are not required to occur between identical temperatures
to be “productive.” RE methods that are based on the exchange
of energy function parameters (35) also may have more favorable
convergence properties for some systems.

The RE technique is a powerful conformational sampling
method for the study of quasi-ergodic systems while preserving
canonical thermodynamic properties. For these reasons, it has
become a very popular tool in computational biophysics re-
search. This study identifies some characteristics of the method
that are key for the effective use of RE to study processes with
anti-Arrhenius kinetic behavior, such as protein folding and
binding.
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Chapter 3

Simulating Replica Exchange simulation of Protein
Folding with a continuous two-dimensional potential
model

3.1 Introduction

Replica exchange (RE) methods [11, 91, 12, 92, 14] are widely employed to enhance the
conformational sampling efficiency of biomolecular simulations for the study of protein
biophysics, including peptide and protein folding[15, 16] and aggregation[17, 18, 19],
and protein-ligand interactions[20, 21]. To accomplish barrier crossings, RE methods
simulate a series of replicas over a range of potential parameters[93, 94, 95, 96, 97] or
temperatures[14]. In the latter, replicas exchange temperatures following a Metropolis cri-
terion designed to preserve canonical distributions. This scheme allows conformations at
physiological temperatures, where conformational interconversions are rare, to switch to
higher temperatures where transitions to other conformations are more likely. In a sense,
therefore, the enhancement of conformational sampling at low temperatures is achieved by
“borrowing” the faster kinetics at higher temperatures.

The popularity of RE methods is due to their ease of implementation and their ability
to enhance conformational sampling while preserving canonical distributions at the ther-
modynamic conditions of each replica. The properties of the RE algorithm and how it
can be utilized most effectively for the study of protein folding and binding has received
attention recently[30, 32, 98]. The determination of the temperature assignment and num-

ber of replicas to achieve optimal temperature mixing has been the subject of a variety of



43

studies[12, 24, 25, 26, 27, 28, 29, 99]. Recent work has also recognized the importance
of conformational relaxation as a key limiting factor which can affect the efficiency of
the RE algorithm [30, 31, 29, 32]. While temperature RE is relatively straightforward to
implement, kinetics in the RE ensemble is complicated and does not correspond in any sim-
ple way to the molecular kinetics (necessitating additional methods for the reconstruction
of molecular kinetics from RE samples[79, 80, 100, 73]). Molecular kinetics, however,
can have a strong effect on RE, especially when the kinetics has complex temperature
dependence. The anti-Arrhenius behavior typical of protein folding kinetics, where the
folding rate above a critical threshold temperature decreases with increasing temperature
[34, 36, 37, 38], is understood to occur when the transition state is energetically favored but
entropically disfavored with respect to the reactants. Anti-Arrhenius behavior represents a
challenge for temperature RE because when folding exhibits anti-Arrhenius behavior there
exists a temperature (generally unknown) at which the folding and unfolding rates are opti-
mal. If even higher temperatures beyond the optimal are included in the RE ensemble, this
may degrade performance[98].

Although some comparative studies aimed at determining the benefits of RE over con-
ventional MD for peptide folding have been conducted[101, 32, 102], it is far from straight-
forward to systematically explore the convergence properties of RE by brute force molec-
ular simulations, since RE simulations of protein folding are very difficult to converge. To
understand some of the basic mechanisms that determine the efficiency of RE it is useful
to study simplified low dimensionality systems that share some of the key characteristics
of molecular systems. In chapter2 we investigated a discrete two-state network model for
replica exchange (NRE), containing two conformational states (Folded and Unfolded) at
each of several temperatures[98]. We found that the efficiency of RE for this system varies
non-monotonically with respect to the temperature distribution of the replicas when the
folding rate displays anti-Arrhenius behavior. The model showed that the rate of fold-

ing/unfolding events in RE is maximal when high temperature replicas are placed near the
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temperature at which the harmonic mean of the folding and unfolding rates for the uncou-
pled systemK; andk,) is maximal. This result suggested that in molecular simulations
adding high temperature replicas does not necessarily lead to increased efficiency of explo-
ration of conformational space, and that, instead, optimal efficiency could be obtained by
placing replicas at specific temperatures determined by the temperature dependence of key
kinetic rates of the system.

In this chapter we extend this analysis by studying a continuous two-dimensional sys-
tem designed to reproduce the anti-Arrhenius kinetics of a conformational equilibrium,
such as a protein folding equilibrium, mediated by an entropic bottleneck. The two-
dimensional system studied here is an extension of the potential model we originally used
to study the convergence of the weighted histogram analysis method,[89] and is very simi-
lar in spirit to to the funnel-like golf course model for protein folding studied by Szabo and
co-workers[103]. This two-dimensional system is sufficiently simple to be amenable to ac-
curate analytical and numerical solution, while including some characteristics of molecular
systems that were absent from the discrete NRE model. The present model is self-contained
in that the kinetic rates are determined by the potential and the move set rather than being
imposed, as in the NRE model of reference [98]. Furthermore, and most importantly, the
unfolded and folded macrostates have, like real molecular systems, microscopic internal
structure. The new model makes it possible to follow the joint microscopic evolution of
the system in conformational and temperature space. It incorporates the same discrete tem-
perature exchange scheme commonly adopted in replica exchange molecular simulations,
and it allows us to study the effects of non-Markovian processes likely present in replica
exchange simulations of molecular systems.

In the next section we present the potential model and the kinetic scheme we have
employed. We review the replica exchange method and the network model for replica
exchange we previously developed. We then summarize the thermodynamic and kinetic

properties of the two-dimensional system and present results showing how these determine
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the efficiency of the replica exchange method. This chapter is then concluded by discussing

the implications of these findings for replica exchange simulations of molecular systems.

3.2 Methods

3.2.1 The two-dimensional continuous potential

A two-dimensional potential was constructed to mimic the anti-Arrhenius temperature de-
pendence of the folding rate seen in proteins. We designed this potential to have an ener-
getic barrier when going from the “folded” to the “unfolded” region, and an entropic barrier

in the reverse direction. The entropic barrier is achieved by imposing a hard wall constraint
that limits the space accessible to the folded region. Specifically, the particle can only move
in the region—1 < = < 1,0 < y < B(x), where the boundary functioB(z) is a small

constant forr < 0 and an increasing function affor x > 0 (Figure 3.1):

B(z) = g SlEest (3.1)
bx™ 4+, 0<zx<1

The use of a boundary of this form is based on a two-dimensional potential first used in
our laboratory to study the convergence of the weighted histogram analysis method[89],
and is very similar in spirit to simplified models for protein folding studied by Bicout
and Szabo[103] and the model of an entropic barrier by Zhou and Zwanzig [104]. The
specific parameters b, andn, were chosen together with the parameters of the potential
function discussed below by trial and error to achieve a sufficiently strong temperature
dependence to illustrate some of the possible consequences of anti-Arrhenius behavior on
RE simulations. It is natural to choose thexis to be the reaction coordinate, with <
x < 0 corresponding to the folded macrostate and = < 1 to the unfolded macrostate.
The move set was chosen to be compatible with this reaction coordinate (see below). In

order for folding and unfolding to be activated processes, however, it is necessary to add a

potential energy function which has an energetic well as a functienrothe folded region,
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Figure 3.1: A schematic representation of the two-dimensional potential function used in this
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work. The colored area corresponds to the accessible region ¢fthé plane, with the colors
representing the magnitude of the potential energy at(that) point (scale bar in kcal/mol). The
potential energy is infinite in the non-colored region andifat 0, x < —1, andz > 1. The inset

is an enlarged view of the folded macrostate and transition region.
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and increases with in the unfolded region. Specifically, we use the potential function

( ar(z + )%, —-1<x<-r; 0<y< B
—agx® + ¢y, -1 <x<0, 0<y<B(x)
Ux,y) = asz" + co, O0<z <z, 0<y<B(z), (3.2)
asx™ + o <zx<1l 0<y<B(x)
| otherwise

wherea; = 23.53 kcal/mol, a; = 235.3 kcal/mol, a; = 376.5 kcal/mol, as, = 11.29

kcal/mol, ¢, = 7.059 kcal/mol,b = 5, ny = 4.55, ny = 2, n5 = 0.5, andd = 2 x 1077,

1

The constantg, = \/Co(a1 + ag)/alag, xr = all‘o/(al + a2), Ty = (a4n3/a3n2)n2*"3,

c1 = ¢y — (a4xy® — azxy?) were chosen so that the first derivativelgfr, v) is continuous.
A graphical representation of the two-dimensional system studied here is shown in Figure

3.1.

3.2.2 Kinetics on the two-dimensional continuous potential

We use Metropolis Monte Carlo (MC) sampling to simulate the movement of a particle
in this two-dimensional potential. Kinetic MC has a long history in the study of protein
folding using simplified models[105, 106, 107]. To ensure rapid equilibration along the
y coordinate consistent with the choice :ofas the reaction coordinate and because of
the large size difference of the accessible region injttdérection between the folded
and unfolded regions, we adopted an asymmetric MC proposal scheme,[108, 89] in which
the step size in theg direction is proportional td(z), i.e. a proposed movér’,y') is
generated uniformly in the region— A < 2’ < x + A,y — b(z)A <y <y + b(z)A.

The displacement paramet&rwas chosen such that the barrier crossing is slow but not
prohibitively expensive and follows a linear regime (i.e. doublingauses approximately

a doubling in the number of barrier crossings). To correct for the asymmetric MC proposal
distribution, the factof(|y’ — y| /b(z')A) was included to satisfy detailed balance, where

6(z) equals 1 ifz < 1 and0 otherwise.
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Rate constants in units of MC steps were obtained via MC simulation by calculating the
mean first passage times between the two macrostates. The same displacement parameter
A = 0.05 was used for all temperatures. A “buffer regior0.1 < =z < 0.0437 was
defined as not belonging to either the folded or unfolded state to reduce artefactual rapid
re-crossings of the barrier[109, 110]. For comparison, the temperature dependence of the
folding and unfolding rate constants were also estimated from the PMF using the Arrhenius
equationk = Aexp(—AGT/kpT) , whereAGT is the free energy difference between the
transition state and the appropriate macrostate. Free energies were extracted from the PMF
along ther axis by averaging the PMF over the macrostates and transition region using

numerical integration.

3.2.3 RE simulation on the two-dimensional continuous potential

Replica exchange simulations were performed by runNngC simulations atV inverse
temperaturesd; = (kgT;)~' (61 > B2 > ... > [By) in parallel. The state of the ex-
tended ensemble is specified by a joint configuratioWakplicasX = {¢1,q2,...,qn},
whereg; is the configuration of replica Exchanges of configurations were attempted ev-
ery Nx MC steps between pairs of replicas adjacent in temperature, and the attempted
exchangeX = {...,q¢q;,...} — X' = {...,q;,q,...} was accepted with proba-
bility w(X — X’). Given the potential energy functidri(q), the transition probabil-
ity which satisfies detailed balance and reproduces the canonical ensemble is given by
w(X — X') = min{1, exp[—(8; — B)(U(g:) — Ulg;))]}[14]

The efficiency of RE conformational sampling was monitored by measwingd7|1y),
the number round-trip transitions in the conformational state of a replica, conditional on the
temperature of intere§f,, that occur in a given observation time A transition event is a
transit of a given replica from one conformationigtto the other conformation &f, and
back agairregardless of route, i.e. whether it was the result of a direct barrier crossihg at

or indirectly via a barrier crossing at some other temperature combined with temperature
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exchanges. Conceptually, this measure reflects the potential of RE to achieve rapid equi-
libration at the temperature of interest by means of conformational transitions at tempera-
tures other than the temperature of interest. The transition events as defined correspond to
the “reversible folding” events studied in all-atom simulations of peptide systems[22, 23].
We will use the symboN+g as a shorthand notation ¥,z (7|75), whereT; will gener-

ally be the lowest temperature in the simulation. For an uncoupled simulation, the number

of transition events is simply the number of round trips between macrostates.

3.2.4 Review of the discrete Network Replica Exchange (NRE)

We review here the discrete kinetic network model which we devised in our previous study
of replica exchange efficiency [98] in chapter2. In this model (unlike the continuous poten-
tial model above), the macrostatesandU (for “folded” and “unfolded”) do not possess

any internal structure. Instead, it is assumed that the system evolves in time as a Poisson
process, in which instantaneous transitions betwéemd U occur after waiting periods

given by exponentially distributed random variables with means equal to the reciprocals of
the folding or unfolding rates. The result (for a single replica) is an example of a “random
telegraph” Markov process|[86].

If the transition events are Markovian, then the simultaneous behavior of two uncoupled
non-interacting replicas can be represented by the four composite{gtatés F, U, U, Fy, U1 Us }.
In each symbol, the first letter represents the configuration of replica 1, the second letter
the configuration of replica 2, and the subscripts denote the temperature of each replica.
Only transitions corresponding to a single conformational changeKefg. — U, F5) are
allowed, assuming that the probability of two simultaneous changed{gi/g.— U, [F3) in
an infinitesimal intervallt can be neglected[86]. The four-state composite system for two
non-interacting replicas can be extended to create a network model of replica exchange by

introducing temperature exchanges between replicas, i.e. by allowing transitions such as
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Figure 3.2: The kinetic network model for the discrete NRE model used in chapter 2. The
state labels represent the conformation (letter) and temperature (subscript) for each replica. For
example F,U; represents the state in which replica 1 is folded and at tempefBfpweéhile replica

2 is unfolded and at temperatufg. Red and black arrows correspond to folding and unfolding
transitions, respectively, while the temperature at which the transition occurs is indicated by the
solid and dashed lines (fdf, and T3, respectively). The cyan arrows correspond to temperature
exchange transitions, with the solid and dashed lines denoting transitions with rate parameters
andwa, respectively.
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F1U, — FyU;. This leads to a system with 8 states arranged in a cubic network with “hor-
izontal” folding and unfolding transitions and “vertical” temperature exchange transitions
(Figure 3.2). For canonical equilibrium probabilities to be preserved under temperature
exchanges, it is sufficient that detailed balance is satisfied, e.g. the transition probabili-
ties w(F Uy — FyU,) andw(FrU, — FiUs,) satisty P, (FiUs)w(FiUy — FyUp) =
P.,(F>Uy ) w(FUy — F1Us). The ratios of forward and reverse transition probabilities for

W F, = F>Fy andU,U; = U,U, are equal to one, as interchange of temperatures does not
change the equilibrium populations.

The effect of the rate of temperature exchanges in included by introducing the rate
parametery, which controls the overall scaling of the temperature exchange rate relative
to the folding and unfolding rates. The forward and reverse rates of'the = F,F};
andU,U, = U,U, transitions are set equal ¢ while the other rates are setdor wa as
required by detailed balance, where in this case F,,(FxU,)/P.,(F1U,) or its reciprocal
such thatv < 1 (see Figure 3.2). The overall average rate at which temperature exchanges
occur ..) is the probability of jumping in any instaat from the upper to the lower face
(or vice versa of the cubic network, and is given by the equilibrium population weighted

sum of the temperature exchange rates over all states:

. kpikypo + 2kuik o + kyikuo
“ (kfl + kul)(kﬁ + ku2)

(3.3)

The NRE model was simulated using a standard method for continuous time Markov
processes with discrete states[86], also known as the “Gillespie algorithm”. Given a cur-
rent stateX,, we identify itsm neighboring stateX;, X5, ..., X,, and the transition rates
ki, ko, ...k, from X, to each of the neighboring states. We generate a waiting time
in state X, by drawing a random number from an exponential distribution with mean
(k1 + ko + -+ + k) ~', and select a destination statg from amongXi, Xs,..., X,,
with probability k; /(k; + ko + - - - + k,,). This procedure is then repeated with the new

state as the current state.
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3.3 Results and Discussion

3.3.1 Thermodynamics and kinetics of the continuous model system
a. Thermodynamics

In Figure 3.3 we show the potentials of mean force (PMF) corresponding to the two-
dimensional potential along the coordinate at several temperatures. PMFs calculated
by MC sampling and numerical integration of the canonical distribution function agree to
within statistical accuracy. The PMFs show two free energy minima corresponding to the
folded (F,x < 0) and unfolded (Uz > 0) conformational states, separated by a free energy
barrier near: = 0. The free energy minimum of the unfolded state and the free energy bar-
rier have no counterparts in the potential, which is monotonically varying in both of these
regions (Figure 3.1). These features of the PMF originate from the interplay between op-
posing entropic and enthalpic driving forces. The free energy minimum of the unfolded
state corresponds to the optimal balance between entropy, which drives the system towards
large values of: (where the accessible space along gheoordinate is greatest), and en-
thalpy, which drives the system towards small values ¢ivhere the potential energy is
smallest). The free energy barrier that separates the unfolded and folded state is entropic
in origin. Forz near 0, the entropy is significantly reduced compared to the unfolded state,
and assumes a value similar to that of the folded state (compare in Figure 3.1 the size of
the accessible space alopgtz = 0 and forx > 0 andz < 0). In contrast, the potential
energy atr = 0, although smaller than in the unfolded state, is still substantially larger than
in the folded state. This imbalance between entropy and potential energy causes the free
energy maximum at = 0.

From the point of view of folding, the free energy maximum constitutes an entropic
bottleneck. In order to make a transition to the folded state, the system needs to cross the

free energy barrier region at = 0, where the system has lost all of the entropy required
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Figure 3.3: The potential of mean force (PMF) at three different temperatures: 296 K (solid),
474 K (dashed) and 789 K (dotted). The PMF was calculated using numerical integration. To more
clearly illustrate the change in the barrier height as a function of temperature, the three curves have
been superimposed to coinciderat 0.
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for folding without having gained all of the folding enthalpy. Similar transition bottlenecks
have been described in simplified models for protein folding.[36, 103, 111] After crossing
this barrier the system enters the folded state by going downhill in potential energy without
further reduction in conformational entropy, since the accessible space alonditbetion

is the same for all points in the folded space. Because the conformational entropy is
constant forr < 0, the potential of mean force in this region coincides with the potential
energy. From the point of view of unfolding, the free energy maximum:-at0 constitutes

an enthalpic barrier. Relative to the folded state, points in the regionanear0 have
similar conformational entropy but larger potential energy. To reach the barrier region from
the folded state therefore the system needs to gain potential energy (enthalpy) without the
help of a concomitant increase in conformational entropy. Beyond the barrier region there
is a free energy gain for moving towards the unfolded state since the gain in conformational
entropy outweighs the increase in potential energy.

As shown below, the barrier region closerte= 0 constitutes the transition state for the
folding/unfolding equilibrium. The free energy difference between the unfolded and folded
states and the transition state corresponds to the free energies of activation, which deter-
mine the rate of folding and unfolding respectively. Due to their different thermodynamic
origins (entropic vs enthalpic), the free energies of activation for folding and unfolding
display the opposite dependence on temperature. As Figure 3.3 shows, the free energy
of activation for folding increases with increasing temperature relative to thermal energy
(kT), where the free energy of activation for unfolding decreases with increasing temper-
ature. This anti-Arrhenius behavior is the signature of an entropically activated process.
The conformational entropy difference between the unfolded state and the transition state
increases as the temperature is increased, leading to an increase in the height of the free
energy barrier for folding with increasing temperature.

Figure 3.4 shows the temperature dependence of the popul&}ioh,), of the folded

state, often referred to as the melting curve. The shape of the melting curve is typical of
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Figure 3.4:The temperature dependence of the fractional population folded (solid line) calculated
by numerical integration of the potential of mean force. The temperature dependence of the fraction
folded corresponding to a system with a smaller average potential energy difference between the
folded and unfolded states (see Appendix 1) is shown for comparison (dashed line). The fraction
folded derived from the folding and unfolding rates obtained by MC simulation (Figure 3.6) are
shown as circles. The melting temperatillig = 463 K (corresponding to 50% folded population)

is indicated.



56

two-state protein thermal denaturation experiments.308tK" the system is nearly com-
pletely folded, and the fraction folded decreases with increasing temperature in favor of the
unfolded state which is entropically favored. The melting temperatyrécorresponding

to equal populations of the folded and unfolded state) is approximately 460 K. At this tem-
perature the folded and unfolded states have equal free energy. The slope of the melting

curve at the melting temperature is

abr _1Ur—Uy
dT )y g, 4 KT%

which is proportional to the difference of the average potential enerfieand U, of

the folded and unfolded states. Thus, a decrease of the average potential energy difference
between the two states leads to a less steep melting curve. To illustrate this, we show in Fig-
ure 3.4 the melting curve corresponding to an alternative parametrization of the potential
for which the average potential energy difference between the folded, unfolded, and tran-
sition states was decreased, while approximately preserving the same value of the melting
temperature (see Appendix I). As expected, the alternative parametrization leads to a more
gradual conversion from the folded state to the unfolded state with increasing temperature
(Figure 3.4, dashed line). The heat capacity as a function of temperature is approximately

Gaussian and is peaked néay.

b. Kinetics

With the MC move set described in the Methods Section above, the kinetics of fold-
ing/unfolding is two-state as measured by the distribution of first passage times, which
is exponential (Figure 3.5). The Arrhenius plots of the folding and unfolding reaction rates
are shown in Figure 3.6. The temperature dependence of the reaction rates using the Arrhe-
nius equation with activation free energies extracted from the PMFs (Figure 3.3) agree well
with the simulation results, and is a further indication that the kinetics is two-state and that

the reaction coordinate is well represented byth@ordinate. This is a consequence of
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Figure 3.5:The distributions of first passage times for folding (black) and unfolding (red) observed
during a2.7 x 10'°-step kinetic MC at 475 K. Approximately 4700 folding and unfolding events
were observed. A folding first passage time is defined as the time elapsed from when the patrticle
enters the unfolded region from the buffer region (having previously been in the folded region), until
it re-enters the folded region. The unfolding first passage time is defined similarly. The semi-log
plot of the histograms of the first passage times is shown as circles, while the lines represent the
best-fit exponential curve.
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Figure 3.6:The temperature dependence of the folding and unfolding rate constants (solid lines
and symbols). Folding and unfolding rates are indicated by red and green color, respectively. The
folding and unfolding rates corresponding to a system with a smaller activation energy for folding
(Appendix 1) are shown for comparison (dashed lines). The rate constants plotted in symbols were
derived from kinetic MC simulations run at different temperatures. The solid lines represent the
rates calculated using the Arrhenius equation based on activation energies derived from the PMF
alongz (Figure 3.3). Rate constants are expressed in unit§ of per MC step.
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choosing a move set for which equilibration along #fe@ordinate is faster than along the
coordinate. The alternative potential parametrization in Appendix I, which is characterized
by a smaller average potential energy of the unfolded state relative to the folded and the
transition states, leads to a weaker temperature dependence of the folding rate (Figure 3.6,
dashed lines). Since the slope of the Arrhenius curve is proportional to the activation en-
ergy, this difference of the rates is consistent with the smaller energy of activation obtained
with the alternative parametrization.

The folding rates decrease with increasing temperature, a phenomenon which has been
observed in the kinetics of protein folding[34, 105, 36, 37, 38]. Processes displaying anti-
Arrhenius behavior are said to be characterized by a negative effective activation energy,
whereby the enthalpy of the unfolded state is larger than that of the transition state. The
free energy of activation of these processes, however, remains positive due to the activa-
tion entropy favoring the unfolded state. The negative activation entropy is associated with
the smaller number of accessible conformations at the transition state relative to the un-
folded state; that is, the transition state constitutes an entropic “bottleneck” that needs to
be traversed for the transition to the folded state to occur. These elements clearly exist
in the simplified two-dimensional system under investigation. Since the potential energy
decreases monotonically from the unfolded state to the folded state, the average potential
energy at the transition state & 0) is smaller than the average potential energy of the
unfolded state, leading to the observed anti-Arrhenius behavior of the rate of folding. De-
spite the enthalpic driving force favoring the transition state, the free energy of activation
for folding remains positive at all temperatures examined (as the calculated PMF along
thex coordinate shows). This is because the entropy of the transition state is smaller than
the entropy of the unfolded state due to the larger accessible configuration space along
the y coordinate (Figure 3.1). The entropic destabilization of the transition state, which
(as in protein folding) can be described as acting as a “bottleneck”, more than offsets the

enthalpic stabilization, leading to the observed positive activation free energy for folding.
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Often the observed folding rates of proteins show non-monotonic behavior with re-
spect to the temperature; the folding rate increases with temperature at low temperatures as
in normal Arrhenius behavior, switching to anti-Arrhenius behavior at higher temperatures,
when the folding rate decreases with increasing temperature. This phenomenon is rational-
ized in terms of a negative activation heat capacity. The activation heat capacity is defined
as the temperature derivative of the activation energy, and a negative value of the activation
heat capacity indicates that the unfolded state has a larger heat capacity than the transition
state. The observed negative heat capacity of activation of protein folding has been var-
iously interpreted as being due to the hydrophobic effect[34, 105] or to the difference of
the distribution of energies of the molecular conformations experienced as a function of
temperature[40, 36]. The curvature of the Arrhenius plot is related to the activation heat
capacity. The present simplified two-dimensional system does not have a large enough heat
capacity of activation to reproduce this turnover from Arrhenius to anti-Arrhenius behavior
within the temperature range we have investigated. Thus, the results extracted from this
model are applicable only to the anti-Arrhenius temperature regime of the protein folding
process.

Figure 3.7 shows the number of direct round trip transition evAqis.. observed dur-
ing MC simulations ofN,;c = 5 x 10° steps as a function of temperature. We use the
number of transitions as a measure of the efficiency of conformational sampling, which
determines the rate of convergence of thermodynamic quantities extracted from the sim-
ulations. The results of Figure 3.7 show that conformational sampling efficiency of the
uncoupled simulation varies non-monotonically with the temperature. There is a 40-fold
increase in transitions from 300 K to 474 K, the temperature at which the maximum is
observed. This decreases for temperatures higher than 474 K, reaching a 10-fold reduction
at 800 K (relative to the maximum). As the results in Figure 3.7 show, this behavior mir-
rors almost exactly the behavior of the harmonic mé@ﬁ + k;')~! of the folding and

unfolding rates (from Figure 3.6) as a function of temperature (we note that our use of the
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Figure 3.7:Number of direct round trip transition evem&;,.; in single temperature uncoupled
simulations over the temperature rar2f§ — —789 K in 5 x 10° MC steps. The curve plotted

as a solid line was calculated from the harmonic mean of the folding and unfolding rates estimated
from the mean of the folding and unfolding first passage time distribution (Figure 3.5) obtained
by MC simulations at each temperature, while the number of events counted directly from the MC
simulations at individual temperatures are plotted as circles. The high level of agreement indicates
that the system is very well approximated as a two-state activated process.
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term “harmonic mean” differs from standard usage by a factor of 2, which is natural given
that we are considering a round-trip, i.e. a single “transition event” involves two conforma-
tional transitions). The agreement between the harmonic mean of the rates and the number
of direct round trip transitions is expected for a two-state activated equilibrium, since the
average time of a round-trip excursion from the folded to the unfolded state and back is
the sum of the average folding and unfolding times= k;l andr, = k; !, respectively:

Ndirect = NMC’/(Tf + Tu)'

3.3.2 RE simulations using MC on the continuous potential

In chapter2, we analyzed the convergence and efficiency of replica exchange using a dis-
crete model for folding and unfolding. We found that when the physical kinetics shows
anti-Arrhenius temperature dependence, there exists an optimal maximal temperature be-
yond which the efficiency of the replica exchange method is degraded. Similar behavior is
expected from RE simulations using the continuous two-dimensional potential, with pos-
sible differences arising from the more complex nature of the present model, where the
folded and unfolded states have internal structure. We performed replica exchange simu-
lations on the continuous two-dimensional potential with MC as the dynamic propagator,
and replica exchange proposals made periodically between adjacent temperatures every
Nx MC steps. The efficiency of conformational sampling was monitored by counting the
number of temperature-conditional transition eve¥is defined in section 3.2.3 above.

In order to directly compare with the results obtained previously, we first performed
replica exchange using two replicas. Although such a simulation would not be realistic in
general for a protein system due to poor energy overlap and very inefficient temperature
exchange, it is feasible in the two-dimensional potential. The result fbixal(0°-step
simulation where the lower temperature is held fixed at 296 K and the upper temperature

varies from 296 to 789 K is shown in Figure 3.8 (green, red and blue dots). We see behavior
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Figure 3.8:The dependence of the number of temperature-conditional transition eveptsec-

tion 3.2.3) on the temperature of the high-temperature replica for a two-replica simulation on the
continuous potential (circles), and comparison with predicted transition events using discrete NRE
model (Figure 3.2) (curves). For all simulations, one replica was fixed at 296 K and the other replica
was scanned from 296 K to 789 K. The black dashed line corresponds to the discrete model pre-
diction in the large= limit. The solid curves are the predictédrg using the NRE model with
temperature dependent folding and unfolding rates taken from the kinetic MC simulations on the
continuous potential (shown in Figure 3.6) and usingvaorresponding to an attempted tempera-
ture exchange. The circles are tNeg, values observed i x 10° MC step RE simulations on the
continuous potential. The green, red, and blue data correspa¥ig t@lues of 1 000, 200, and 20,
respectively.
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similar to that seen for the discrete model studied previously: the number of temperature-
conditional transitionsVrr has non-monotonic behavior and exhibits a maximum at an
optimal high temperature given by the maximal harmonic mean of the folding and unfold-
ing rates (474 K). This maximum point is approximately independent of the rate at which
attempted temperature exchanges occur. While the location of the maximum is in agree-
ment with our previous results[98], the magnitude of the number of transition events is
not. We have shown that for NRE simulations employing a two-state model (folded and
unfolded states), the number of transition events is given by the average over all temper-
atures of the harmonic means of the folding and unfolding rates, provided that the rate of
temperature exchanges is sufficiently fast[98]. In the continuous model, we find that the
number of transitions is significantly lower than that predicted from the average of the har-
monic means of the rates (Figure 3.8, black dashed line). This may be due to the finite rate
of temperature exchanges, deviations from the pure Markovian kinetics of the two-state
discrete model, or a combination of these effects.

To test whether this reduced number of transitions is due to insufficiently fast temper-
ature exchange attempts, we performed several simulations in which we vagi€the
number of MC steps between attempted temperature exchanges). We see in Table 3.1 that
Nrg is approximately constant provided that the attempted exchange rate is faster than a
critical value of Nx ~ 500. For less frequent exchange attempts, we see a substantial de-
crease in the number of transitions. Thus, the number of unfolding and refolding transitions

cannot be increased simply by increasing the rate of attempted exchanges.

3.3.3 Non-Markovian effects revealed by comparison of continuous

and discrete RE simulations

To explore causes for the observed transition deficit, we performed simulations using the

discrete NRE model (Figure 3.2) using kinetic parameters derived from the two-dimensional
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continuous potential (Figure 3.6). To map the rates determined using the continuous po-
tential to the discrete model, we used the folding and unfolding rates directly, expressed
in units of 10~ per MC step. Different values af were used for thé", F, = F,F, and

U,U, = U,Uy, and were set t@0°/Nx multiplied by the empirical acceptance rate when
both replicas are in the folded or unfolded state (0.853 and 0.395, respectively).

If we compare the observed number of transitions seen in the continuous model with
the number predicted by the NRE model with the same rate parameters (Table 3.1) we see
that there is good agreement when the attempted exchange rate is small, but substantial
disagreement when it becomes larger. In particular, while the number of transitions using
the continuous model reaches a plateau valu&at~ 1 000, the predicted number of
transitions in the NRE model continues to increase, asymptotically approaching the value
predicted by the average of harmonic means. Similarly, comparison of the predicted and
observed number of transitions as a function of temperature (Figure 3.8) show a significant
overestimation of the transition rate by the NRE model, and that this overestimation is
much more severe when the rate of attempted temperature exchanges is fast. For example,
while the N5 predicted from the NRE model has essentially reached the asymptotic limit
when Ny = 20 (blue curve), the observedl; 5 values are essentially unchanged relative
to those obtained whelNxy = 200 (compare blue and red circles). The continuous two-
dimensional model thus appears to contain an inherent “speed limit” which prevents it from
achieving the transition rates expected for a fully Markovian system, even if the temperature
exchanges are attempted frequently.

One possible origin of this speed limit is that the average effective rates are different
in the coupled and uncoupled systems. To test this, we analyzed the kinetics of the con-
tinuous RE simulation by using the NRE model to “reverse-engineer” the apparent rates
by estimating the mean residence times and branching ratios for various RE macrostates.
If the system is Markovian, then the ratg; given by the inverse of the mean residence

time is the sum of the rates exiting that state. The rate corresponding to a given edge can



66

Table 3.1:Number of temperature-conditional transition eventri0? MC steps for two replicas

(with temperatures of 296 K and 474 K) as a function of the number of MC steps between attempted
temperature exchanged’{), and observed temperature-conditional mean first passage times (in
units of 10° MC steps, see text for details).

Nx N per replica Temperature-conditional MFPTs
observed (continuous)predicted (NRE)| F} — U; U — Fy

10 000 22 24 91.8 5.6

2 000 52 73 31.6 5.7

1000 80 105 23.1 5.7
500 93 134 19.1 5.8
200 102 162 16.0 5.7
100 99 168 14.3 5.9
80 98 172 14.6 5.8
50 98 176 14.8 5.7
20 96 177 14.9 6.1
0 — 178 — _

® PredictedV7x based on the harmonic mean relationship fordhe oo limit.

Table 3.2:Empirical “reverse-engineered” rates at temperatifies: 296 K and 7, = 474 K (in
units of 10~ MC step) from continuous potential simulation data assuming the network topology
of Figure 3.2.

uncoupled reverse-engineered rates
rates Nx =10000 | N, =2000 | Nx =200 | Nx = 100
ki 6.08 5.66 6.10 5.27 6.33
k1 0.0036 0.0038 0.0036 0.0037 0.0037
ko 0.279 0.288 0.299 0.290 0.306
Eyo 0.420 0.420 0.419 0.427 0.425
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then be estimated by multiplyink,; by the fraction of residences that exit via that edge

(the branching ratio). The results are shown in Table 3.2. The reverse-engineered rates
generally agree with the uncoupled folding and unfolding rates estimated from kinetic MC,
and this is true both for rapid and slow attempted temperature exchange rates. Therefore,
the temperature exchanges do not perturb the average kinetics of the system, and cannot be
a cause of the limit on the transition rates at rapid temperature exchange rates.

In order to further investigate the origin of the observed speed limit, we calculated
the mean first passage times (MFPTSs) for temperature conditional folding and unfolding,
i.e. the average time for a replica unfolded at low temperature to become folded at low
temperature (regardless of path),uice versa The resulting MFPTSs for the continuous
potential are shown in Table 3.1. We see there thaiMhg speed limit arises exclusively
from a limitation in the fastest achievable unfolding rate, since the folding process is inde-
pendent ofNx and is not rate limiting. This can be understood by noting that the values
of a corresponding to thé/x values used are at least two orders of magnitude larger than
the folding and unfolding rates. To unfold, the system need only make use of temperature
exchange transitions that correspondit@.e. the solid cyan arrows of Figure 3.2). Since
« is already much larger than the other rates, changes to it due to chanygswil not
significantly change the MFPT for folding.

On the other hand, the unfolding process (if it occurs via an indirect route, which is
likely given the very small value of,,) requires the system to use ad edge” (i.e. a
dashed cyan arrow in Figure 3.2). Since~ 10~ for the temperatures used hetey is
now slower than or comparable to the folding and unfolding rates, and therefore changes
in Nx can make a substantial impact on the unfolding MFPT. Thus)Mhe speed limit
can be traced to the kinetics of temperature conditional unfolding, and must arise from
some difference between the unfolding kinetics in the continuous potential and the fully
Markovian NRE model.

One obvious way in which the continuous and NRE models differ is that the macrostates
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in the continuous potential have spatial extent, unlike the NRE states which lack inter-
nal structure. This means that a finite time is required for the particle to transit the non-
equivalent microstates that make up the two wells. In fact, we observe that the correlation
time for diffusion in thex directionin the unfolded welat 474 K is approximately 1 400
MC steps. This timescale is of the same magnitude as\thevalue at which the speed
limit effect of Table 3.1 begins to occur, suggesting that there may in fact be a connection
between the observed, speed limit and conformational diffusion within the free energy
wells. Such dependence of the kinetics on the internal structure of the macrostate can lead
to non-Markovian behavior.

Formally, a process is Markovian if and only if the observed propagators (Green'’s func-

tions) do not depend on the history of the trajectory prior to the current state, i.e.
P(x3,ts|z1, t1; 2, 12) = P(x3,t3]22, t2) (3.4)

for all statesr, =2, 3 and all timeg; < ¢, < t3. Although equation 3.4 could be used to
directly detect deviations from Markovian behavior, previous work has typically used other
analysis methods to detect such deviations[79, 112, 113]. For example, in a Markovian

process the rate matriX determines the propagators via the master equation

p(t) = Kp(?), (3.5)

wherep(t) is the vector of propagators at time The formal solution of Equation 3.5 is
given byp(t) = e¥'p(0), and therefore®™ can be thought of as a transition matfiXr),

i.e. the matrix of probabilities of being in state at timer given that the system was in
stater; at time 0. If we denote the eigenvalueskoby \; > X\, > --- and the eigenvalues
of T(7) by p1(7) > pe(r) > ---, theny;(r) = e*". This can be used as a test of
Markovian behavior, sinc&(7) can be empirically estimated from a trajectory. Different
values of the lag time will yield different values ofu;(7), howeverr/In p;(7) should be

independent of if the kinetics is Markovian[79, 113]. Alternatively, the Markov property
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can be tested by analyzing the transition probabilities as a function of lag time using an
information theoretic measure based on Shannon’s entropy[112].

We have chosen to detect deviations from Markovian kinetics by examining the ob-
served residence time distributions and branching ratios, which provides insights into the
physical origin and the mechanism by which the non-Markovian effects enter into the
stochastic process. In our simulations on the continuous potential, we have found that
the residence time distributions in the macrostates are exponential to within statistical un-
certainty (data not shown), and thus by themselves are consistent with Markovian kinet-
ics. The branching probabilities, however, are significantly dependent on the preceding
macrostate. We focused on transitions entering and leaving the thermodynamically favored
Uy Fy macrostate (or its symmetry-related stétd/,). We ran a several trajectories us-
ing different rates of attempted temperature exchange and tallied the number of times each
macrostate sequent®, U, F, Y) was observed in each (wheke Y € {Fy Fy, Uy Uy, U F3 }).
These counts were transformed into normalized branching probabilities, itiefe”)
denotes the history-independent branching probability of next visiting macrostgieen
that the system is currently in macrostateandP(X |7, Y) denotes the history-dependent
branching probability of next visiting macrostaké given that the system is currently in
macrostaté” and had been in macrostatemmediately prior (Table 3.3).

If the kinetics is Markovian, then the history-dependent and the corresponding history-

independent branching probabilities will be equal:
P(X|2,Y) = P(X]Y),

from which it follows that history-dependent branching probabilities that differ only in the

history condition will also be equal:
P(X|Z,Y)=P(X|W,Y).

This is clearly not the case for the data in Table 3.3. For example, we see that the history-

dependent branching probabilitiéy U, F5| Fy Fy, Us Fy ), and P(FyFy|Fo Fy, Uy Fy) differ
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significantly from their corresponding history-independent branching probabiti€srs| U, F} )
and P(FyF|UsF), and the branching probability? (U, Fy| Fy Fy, Us Fy) is significantly
smaller thanP (U, F5|U, F,, U Fy). This is most pronounced when the rate of attempted
temperature exchanges is fast.

Examination of the kinetic scheme of Figure 3.2 indicates that the deviations from
Markovian behavior seen in Table 3.3 are consistent with a reduction in the number of
temperature-conditional round-trip conformational transition events. If the unfolding rate
at low temperature is negligible, then a low-temperature folded conformation unfolds pre-
dominantly via indirect paths of the ford F, — FoFy, — UsFy — U Fy or FiU; —

U, — UsUp — UiUs. In the former case, thé, Fy — UsF; step is more likely to be
reversed when the temperature exchange rate is rapid (Table 3.3), agi¢/the> F,U,

step in the latter case (which follows by symmetry from thg; — U, F; results of

Table 3.3). Thus, increasing the rate of attempted temperature exchanges increases the
probability of counterproductive backtracking relative to the Markovian case, resulting in

a decrease in the rate of temperature-conditional unfolding events, and therefore at corre-
sponding decrease N7y (since temperature-conditional unfolding was shown above to

be rate-limiting).

Although the results presented here do not identify the physical origin of the non-
Markovian kinetics, we hypothesize that it is due to the finite time required for diffusion
of the particle within the macrostates. This effect does not arise in the NRE model, since
in there the macrostates have no internal structure, and the probability of making a transi-
tion to a given macrostate at any instdhis the same, regardless of which macrostate the
system was in previously or how long it has been in the current macrostate. The behavior
of the continuous system within the wells is not Markovian, since the system has mem-
ory that is mediated by conformational diffusion within the macrostate. This correlation in
time of the particle’s position (and energy) implies that there is a maximal effective value

of the rate of statistically independent temperature exchanges, which is limited by the time
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required for conformational relaxatiomthin the folded and unfolded macrostates.

3.3.4 Dependence of RE efficiency on the number of replicas

The above results were obtained with two replicas, which is not typical for replica exchange
simulations that would be carried out for peptides and proteins. To investigate the effect of
adding additional replicas, we performed a series of simulatioBs«of(0? MC steps with

2 to 15 replicas distributed uniformly i —! from 296 to 789 K. The results are shown

in Figure 3.9. One important issue that arises when considering such a set of results is
the appropriate measure of conformational sampling efficiency of RE. If we consider the
total number of transition eventSg (direct and indirect) in all replicas, then we would

see for the most part a monotonic increase of efficiency as a function of the number of
replicas N simply because the number of indirect “channels” for transitions is linearly
increasing. This measure of efficiency, however, implicitly assumes that computer power is
inexpensive and that the convergence rate of the simulation is the important limiting factor.
If both computer resources and the convergence rate are limiting factors, a more appropriate
measure is the computational efficiency calculated as the number of transition events per
replica (Nt /N). According to this measure, a replica exchange simulation Witl 1
replicas is considered more efficient than one WNtheplicas only if the introduction of the
additional replica provides more than a proportional increase in the number of transition
events at the temperature of interest.

We find that the efficiency increases strongly as a functiooivhen NV is small,
reaches a maximum, and decreases wWitfor larger N (Figure 3.9). This pattern is un-
changed as a function of the rate of attempted temperature exchanges, showing a scaling
approximately consistent with the results in Table 3.1. The trends seen here are qualita-
tively similar to that seen previously in the NRE two-state discrete model[98] with finite

«. In that work, we attributed the decrease with increasing number of replicas beyond an



72

60 -

45

N7g/N

15

PRI
.t
P .

10 12 14

16

N (number of replicas)

Figure 3.9:Number of transition event¥ 5 (section 3.2.3) normalized by the number of replicas
in 2 x 109 MC steps for 2 to 15 replicas exponentially distributed in temperature from 296 to 789 K.
Temperature exchanges were attempted every 10 000 (solid), 1 000 (dashed), and 200 (dotted) MC

steps.
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optimum value in part to a combinatoric effect that decreases the relative size of the “tar-
get” space of configurations in which a replica is at the temperature of interest relative to
the total temperature/configuration space. It is reasonable to assume that a similar effect is
occurring here as well. We will address this in a future communication.

The results in Figure 3.9 were obtained with a relatively uniform distribution of tem-
peratures. It is of interest to consider the effect on efficiency of changing that temperature
distribution. In our previous work[98], we concluded that in the context of the discrete
network model in the “large” limit, the optimal temperature distribution is one replica
at the temperature of interest, and the rest at the temperature which maximizes the har-
monic mean of the folding and unfolding rates. That model, however, was limited in its
realism in that it did not have explicit energy distribution functions. Furthermore, itis clear
from the results presented in the previous section that very large effective valuasaf
not be achievable in real systems. The continuous two-dimensional potential studied here
provides a better test system for studying these questions.

In Figure 3.10 we show the relative number of temperature-conditional transition events
in 2 x 10° MC steps for three different temperature distributions of 11 replicas: (A) uni-
formly distributed in7—! from 296 to 789 K, (B) 6 replicas uniformly distributed 7!
from 296 to 474 K (the optimal temperature) and the remaining 5 “bunched up” at the
optimal temperature, and (C) 5 replicas bunched up at the optimal temperature with the
remaining distributed in the 296 to 474 K range but strongly skewed toward the optimal
temperature. Temperature distribution B provides more than a 50% increase in efficiency
relative to the uniform distribution over the large temperature range. This is consistent with
our discrete model results, and indicates that it is possible to include temperatures that are
“too high” when the system exhibits anti-Arrhenius kinetics. However, we can increase the
efficiency even further (to more than a factor of 2.5 over the baseline result) by skewing the
temperature distribution to increase the number of replicas in the vicinity of the transition

temperature (distribution C). Previous work by Hansmann et al. has suggested that such



74

3_ 5 C—. 04 - —]
&
= B—oooooo -
-2 | ]
n
Al ececce o o o . o]
LLt 300 400 500 600 700 800
Z T(K)
~~ - .
Ll
—
Z
1_ —
0
A B
Simulation

Figure 3.10:Number of transition eventd'rg, (section 3.2.3) observed ihx 10° MC steps for

three different 11-replica RE simulations performed using the continuous potentiaVwith 200.

The temperature distributions for the three simulations are shown in the inset. Transition counts have
been normalized by th& - of simulation A.
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concentration of the temperatures near a bottleneck can improve temperature mixing[29].
However, the improved efficiency may simply be due to the increased number of replicas
near the optimal temperature. The clarification of the relative contributions from these two

effects will also be addressed in a future communication.

3.4 Conclusions

One of the challenges of studying the computational efficiency of replica exchange has
been the difficulty in running molecular simulations sufficiently long to obtain full conver-
gence and meaningful statistics. This is particularly daunting if such simulations must be
run multiple times to assess the effect of differences in simulation protocols and parame-
ters. The use of simplified model systems allows for thorough theoretical, conceptual, and
computational analysis of the problem that can provide insights into the factors that limit
the efficiency of replica exchange in more realistic molecular systems.

Our previous work made use of a highly simplified discrete model for protein folding
with two conformational states at several temperatures[98]. While this system did provide
useful insights, it was limited in a number of ways, and in particular was fully Markovian.
Here we have described a two-dimensional continuous potential function and an associated
move set that allows us to perform MC and replica exchange MC simulations in a system
that is small enough to quickly converge but yet is rich in complexity that is reminiscent
of molecular systems. While many of the results are consistent with those observed pre-
viously, novel effects are also seen. In particular, we have confirmed that the efficiency
of replica exchange in more complex systems is fundamentally limited by the timescale
of conformational diffusion within basins, as we had anticipated[98]. We expect that such
behavior will also be present (perhaps even more strongly) in molecular systems.

There are many unresolved questions raised by this work. One question for which our

two-dimensional system would be a good model is for studying the relationship between



76

conformational and thermal diffusion. Optimization of the diffusion of replicas in temper-
ature space has been a major focus of recent theoretical and computational study of the
replica exchange method[12, 24, 25, 26, 27, 28, 29, 99]. However, the convergence of
thermodynamic quantities is not limited by thermal diffusper se but by the exploration

of the conformational space of the system. While very poor thermal diffusion obviously
defeats the purpose of replica exchange by effectively reducing it to a set of parallel un-
coupled simulations, it is not clear that further optimization of thermal diffusion that is
already “reasonably good” will automatically improve convergence. Some recent work has
begun to address the role of basin-to-basin transitions[30, 31]. Similarly, some work on the
optimization of thermal diffusion has emphasized the role of temperature bottlenecks[29],
which may turn out to be fundamentally conformational in nature. The exact relationship
between thermal and conformational diffusion remains to be fully clarified, and we look
forward to studying this and other questions using simplified continuous and discrete mod-

els of replica exchange.

3.5 Appendix | —-The alternative potential function

The alternative potential with decreased average potential energy differences between folded,
unfolded and transition states is of the same general form as the primary potential described
in the Methods section and Figure 3.1, but with the boundary function paranietet8—2,

b =1, andn; = 3.5 and potential energy

ar(z +z0)> +by?, —1<z<-z; 0<y<B(2)
—ax? +biy* +cy, -1 <x<0, 0<y<B(x)

Ulz,y) = ,
asx® + byy? + co, 0<x<1, 0<y<B(@)
o0 otherwise

\

with a; = 25 kcal/mol,ay = 250 kcal/mol,a; = 10 kcal/mol,b; = 1000 kcal/mol,c, = 6

kcal/mol. The constants, andz; were the same as for the primary potential. curves of



77

these two potentials, the alternative one is much less steep than the other.

3.6 Appendix Il: Publication attached

Part of the contents of this chapter was published.ifPhys. Chem. B112, 6083-
6093(2008).
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Table 3.3:History dependent and independent branching probabilities fromigtdte

maximum likelihood estimate(and 95% credible intervil

conditional probability Nx =200 Nx =10 000

P(U,F|U Fy, Uo Fy)

0.906 (0.904, 0.908

0.168 (0.144, 0.195)

P(U,Fy|FyFy, Uy Fy)

0.521 (0.153, 0.530

0.094 (0.088, 0.101)

P(ULF|UsF)

0.849 (0.846, 0.851

0.103 (0.096, 0.110)

P(FFy | Fy, UsFY)

0.477 (0.469, 0.486

0.895 (0.888, 0.902)

PRl |U Fy, U Fh)

0.092 (0.090, 0.094

0.816 (0.788, 0.841)

P(RLF UL F)

0.150 (0.147, 0.152

0.886 (0.878, 0.893)

¢ Maximum likelihood estimates determined usifgu: (b, c) = #(b,c,a1)/ >, #(b, ¢, a;)

and P(a1|b) = >, #(ci, b,ar)/ 35, #(cj, b, ar,), where#(i, j, k) is the number of occur-
rences of the ordered triple, j, k).

b Bayesian credible intervals under a uniform prior given by the 0.025 and 0.975 quantiles
of the distributionP(p) oc p"(1 — p)¥ =", wheren and N are the numerator and denomi-
nator, respectively, of the fraction used to calculate the maximum likelihood estimate.
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The efficiency of temperature replica exchange (RE) simulations hinge on their ability to enhance
conformational sampling at physiological temperatures by taking advantage of more rapid conformational
interconversions at higher temperatures. While temperature RE is a parallel simulation technique that is relatively
straightforward to implement, kinetics in the RE ensemble is complicated, and there is much to learn about
how best to employ RE simulations in computational biophysics. Protein folding rates often slow down above
a certain temperature due to entropic bottlenecks. This “anti-Arrhenius” behavior represents a challenge for
RE. However, it is far from straightforward to systematically explore the impact of this on RE by brute force
molecular simulations, since RE simulations of protein folding are very difficult to converge. To understand
some of the basic mechanisms that determine the efficiency of RE, it is useful to study simplified low
dimensionality systems that share some of the key characteristics of molecular systems. Results are presented
concerning the efficiency of temperature RE on a continuous two-dimensional potential that contains an entropic
bottleneck. Optimal efficiency was obtained when the temperatures of the replicas did not exceed the
temperature at which the harmonic mean of the folding and unfolding rates is maximized. This confirms a
result we previously obtained using a discrete network model of RE. Comparison of the efficiencies obtained
using the continuous and discrete models makes it possible to identify non-Markovian effects, which slow
down equilibration of the RE ensemble on the more complex continuous potential. In particular, the rate of
temperature diffusion and also the efficiency of RE is limited by the time scale of conformational rearrangements

within free energy basins.

1. Introduction temperatures is achieved by “borrowing” the faster kinetics at

One of the key challenges in the computer simulation of higher temperatures.
proteins at the atomic level is the sampling of conformational . The popullarlty of RE. mthOdS is due to their case of
space. The efficiency of many common sampling protocols, such mplementaﬂ_on and thqr ability .to en.ha.nce. conformational
as Monte Carlo (MC) and molecular dynamics (MD), is limited sampling \_Nh'le preserving canonlca_l distributions at_ the ther-
by the lack of apparent ergodicity caused by high free energy modynarr_nc conditions (_)f each rep!lpa. The propertl_es of the
barriers between conformational states and rugged energyXE @lgorithm and how it can be utilized most effectively for
landscapes. Replica exchange (RE) methddsre widely the studéf)zfoproteln foIdmg gnd binding has received a}ttentlon
employed to enhance the conformational sampling efficiency "€cently:**> The determination of the temperature assignment
of biomolecular simulations for the study of protein biophysics, and number of replicas to achieve optimal temperature mixing
including peptide and protein foldif§and aggregatiofr; 0 and has been the subject of a variety of studigs?’ Recent work
protein-ligand interactiond12To accomplish barrier crossings, has also rgcpgnlzed the importance of conformgtlonal relaxation
RE methods simulate a series of replicas over a range 0fasal_<ey limiting factqr that can affect thg efﬂugncy of th.e RE
potential parametet& 17 or temperaturein the latter, replicas algorithm18.19.26.28/hile temperature RE is relatively straight-
exchange temperatures following a Metropolis criterion designed forward to implement, kinetics in the RE ensemble is compli-
to preserve canonical distributions. This scheme allows con- cated and does not correspond in any simple way to the
formations at physiological temperatures, where conformational molecular kinetics (necessitating additional methods for the
interconversions are rare, to switch to higher temperatures wherereéconstruction of molecular kinetics from RE sampte¥).
transitions to other conformations are more likely. In a sense, Molecular kinetics, however, can have a strong effect on RE,

therefore, the enhancement of conformational sampling at low especially when the kinetics has complex temperature depen-
dence. The anti-Arrhenius behavior typical of protein folding

T Part of the “Attila Szabo Festschrift”. kinetics, where the folding rate above a critical threshold
* Corresponding author. E-mail: ronlevy@lutece.rutgers.edu. Phone: temperature decreases with increasing temper&tute,is
732-445-3947. Fax: 732-445-5958, understood to occur when the transition state is energetically
Department of Physics and Astronomy. . . .
s Department of Chemistry and Chemical Biology and BioMaPsS Institute favqred but _entroplcal_ly disfavored with respect to the reactants.
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RE because, when folding exhibits anti-Arrhenius behavior, 5 . . . . - . .

there exists a temperature (generally unknown) at which the

folding and unfolding rates are optimal. If even higher temper- 4 .

atures beyond the optimal are included in the RE ensemble,

this may degrade performané®. 3t 12
Although some comparative studies aimed at determining the > 8

benefits of RE over conventional MD for peptide folding have 2 02 4

been conducte¥;3"38it is far from straightforward to systemati- 0

cally explore the convergence properties of RE by brute force 1

molecular simulations, since RE simulations of protein folding

are very difficult to converge. To understand some of the basic 01_1 ' _S . : {'} - 0'5 ’

mechanisms that determine the efficiency of RE, it is useful to ' X ’

study simplified low _(ilmenSIOHallty systems that share some Figure 1. A schematic representation of the two-dimensional potential
of the key characteristics of molecular systems. We recently function used in this work. The colored area corresponds to the

investigated a discrete two-state network model for replica accessible region of thes,) plane, with the colors representing the

exchange (NRE), containing two conformational states (folded magnitude of the potential energy at thay) point (scale bar in kcal/

and unfolded) at each of several temperaté?&¥e found that mol). The potential energy is |nf|n|te_ in the non-coloyed region and for

the efficiency of RE for this system varies non-monotonically y =0,x < —1 andx > 1. The insetis an enlarged view of the folded
A A . A macrostate and transition region.

with respect to the temperature distribution of the replicas when

the folding rate displays anti-Arrhenius behavior. The model

showed that the rate of folding/unfolding events in RE is 2. Methods

maximal when high-temperature replicas are placed near the

temperature at which the harmonic mean of the folding and

unfolding rates for the uncoupled systekngndk,) is maximal.

This result suggested that, in molecular simulations, adding high

temperature replicas does not necessarily lead to increase

efficiency of exploration of conformational space, and that,

instead, optimal efficiency could be obtained by placing replicas

at specific temperatures determined by the temperature OIeIOen?’;lccessible to the folded region. Specifically, the particle can

dence .Of key kinetic rates (?f the sy;tem. ] ] only move in the region-1 < x < 1, 0 < y < B(x), where the
In this paper we extend this analysis by studying a continuous houndary functiorB(x) is a small constant fox < 0 and an
two-dimensional system designed to reproduce the anti-Arrhe-increasing function ok for x > 0 (Figure 1):

nius kinetics of a conformational equilibrium, such as a protein
folding equilibrium, mediated by an entropic bottleneck. The o —-1<x<0
two-dimensional system studied here is an extension of the B(X) ={b)€q1 1)

: o +06 0O0=<x=1
potential model we originally used to study the convergence of
the weighted histogram analysis mettf8dnd is very similar The use of a boundary of this form is based on a two-
in spirit to to the funnel-like golf course model for protein dimensional potential first used in our laboratory to study the
folding studied by Szabo and co-workéfsThis two-dimen- convergence of the weighted histogram analysis methadd
sional system is sufficiently simple to be amenable to accurate is very similar in spirit to simplified models for protein folding
analytical and numerical solution, while including some char- studied by Bicout and Sza#fband the model of an entropic
acteristics of molecular systems that were absent from the barrier by Zhou and Zwanzit}. The specific parametei b,
discrete NRE model. The present model is self-contained in thatandn, were chosen together with the parameters of the potential
the kinetic rates are determined by the potential and the movefunction discussed below by trial and error to achieve a
set rather than being imposed, as in the NRE model of referencesufficiently strong temperature dependence to illustrate some
20. Furthermore, and most importantly, the unfolded and folded ©Of the possible consequences of anti-Arrhenius behavior on RE
macrostates have, like real molecular systems, microscopicSimU|§‘ti°nS- It.is natural to choose thexis to be the reaction
internal structure. The new model makes it possible to follow coordinate, with—1 < x < 0 corresponding to the folded
the joint microscopic evolution of the system in conformational Macrostate and 0= x =< 1 corresponding to the unfolded
and temperature space. It incorporates the same discretdnacrostate. The move set was chosen to be compatible with

temperature exchange scheme commonly adopted in RE mo_this re'action coordjnate (see below). In order .fo.r folding and
lecular simulations, and it allows us to study the effects of non- unfolding to k_)e activated Processes, however, it is necessary to
Markovian processes likely present in RE simulations of add a potent!al energy functhn that h?‘s an energetic wellas a
molecular systems. function of x in the folded region, and increases wikfin the

_ ) unfolded region. Specifically, we use the potential function
In the next section we present the potential model and the

kinetic scheme we have employed. We review the RE method
and the NRE model we previously developed. We then

2.1. The Two-Dimensional Continuous PotentialA two-
dimensional potential was constructed to mimic the anti-
_Arrhenius temperature dependence of the folding rate seen in
Goroteins. We designed this potential to have an energetic barrier

when going from the “folded” to the “unfolded” region, and an
entropic barrier in the reverse direction. The entropic barrier is
achieved by imposing a hard wall constraint that limits the space

’al(XJFXo)Z —1=x<-x 0=y=<B(X

summarize the thermodynamic and kinetic properties of the two- —a)’+¢ X =X=0 0=y=B(x
dimensional system and present results showing how theseU(xy) = ax™ + ¢, 0<x<X, 0<y=<B(X
determine the e_fficien_cy of th_e RE m_ethod. The paper is then ax™+ c, X, <x<1 0<y=<BX
concluded by discussing the implications of these findings for

RE simulations of molecular systems. \oo otherwise

)
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wherea; = 23.53 kcal/mol,a, = 235.3 kcal/molas = 376.5 » FY Uy
kcal/mol,a, = 11.29 kcal/molco = 7.059 kcal/molp = 5, n; IS _-x
= 4.55,m; = 2,3 = 0.5, andd = 2 x 107". The constantg, FF, o UF %
= \Jc(ata)/a,a,, X1 = arxo/ (a1 + ap), X2 = (aung/agny) M=), [ ,
andc; = co — (aux® — asxy) were chosen so that the first : !
derivative ofU(x,y) is continuous. A graphical representation : !
of the two-dimensional system studied here is shown in Figure g :
1. |
2.2. Kinetics on the Two-Dimensional Continuous Poten- /' File =4 ; --= Ui
tial. We use Metropolis MC sampling to simulate the movement
of a particle in this two-dimensional potential. Kinetic MC has FiFy ~ooos =" UFR

a long history in the study of protein folding using simplified  Figure 2. The kinetic network model for the discrete NRE model used
models*>~#4 To ensure rapid equilibration along theoordinate by Zheng, et af° The state labels represent the conformation (letter)
consistent with the choice of as the reaction coordinate and and temperature (subscript) for each replica. For examipel,
because of the large size difference of the accessible region infePresents the state in which replica 1 is folded and at temperBiure

. . . while replica 2 is unfolded and at temperatlifeRed and black arrows
the y direction hetween the folded and unfalded regions, we correspond to folding and unfolding transitions, respectively, while the

adopted an asymmetric MC proposal schéftféjn which the temperature at which the transition occurs is indicated by the solid and
step size in thg direction is proportional t&(x), i.e., a proposed  dashed lines (fof, and Ty, respectively). The cyan arrows correspond
move ',y') is generated uniformly in the region— A < X' < to temperature exchange transitions, with the solid and dashed lines
X+ A,y — BXA <y <y+ BXA. The displacement denoting transitions with rate parameters&indwo., respectively.
parameteA was chosen such that the barrier crossing is slow
but not prohibitively expensive and follows a linear regime (i.e., means of conformational transitions at temperatures other than
doubling A causes an approximate doubling in the number of the temperature of interest. The transition events as defined
barrier crossings). To correct for the asymmetric MC proposal correspond to the “reversible folding” events studied in all-atom
distribution, the factof(ly — y|/B(xX)A) was included to satisfy ~ simulations of peptide systerf&!°We will use the symbadNre
detailed balance, whef{z) equals 1 ifz < 1 and 0 otherwise.  as a shorthand notation fd\re(z| To), whereTo will generally
Rate constants in units of MC steps were obtained via MC be the lowest temperature in the simulation. For an uncoupled
simulation by calculating the mean first passage times (MFPTSs) simulation,.the number of transition events is simply the number
between the two macrostates. The same displacement parameté} round trips between macrostates.
A = 0.05 was used for all temperatures. A “buffer region0.1 2.4. Discrete NRE.We review here the discrete kinetic
< x < 0.0437 was defined as not belonging to either the folded network model which we devised in our recent study of RE
or unfolded state to reduce artifactual rapid recrossings of the efficiency?° In this model (unlike the continuous potential model
barrier4647 For comparison, the temperature dependence of the above), the macrostat&sandU (for “folded” and “unfolded”)
folding and unfolding rate constants were also estimated from do not possess any internal structure. Instead, it is assumed that
the potential of mean force (PMF) using the Arrhenius equation the system evolves in time as a Poisson process, in which
k= Aexp(— AG'/kgT), whereAG' is the free energy difference  instantaneous transitions betweermndU occur after waiting
between the transition state and the appropriate macrostate. Freperiods given by exponentially distributed random variables with

energies were extracted from the PMF along theaxis by means equal to the reciprocals of the folding or unfolding rates.
averaging the PMF over the macrostates and transition regionThe result (for a single replica) is an example of a “random
using numerical integration. telegraph” Markov proces¥.

2.3. RE Simulation on the Two-Dimensional Continuous If the transition events are Markovian, then the simultaneous
Potential. RE simulations were performed by runnihgMC behavior of two uncoupled non-interacting replicas can be
simulations aN inverse temperaturg® = (ksT)) ™1 (81 > 52 > represented by the four composite staf€sk,, F1U,, UiF>,

.. > Bn) in parallel. The state of the extended ensemble is U;Uj} . In each symbol, the first letter represents the config-
specified by a joint configuration & replicasX = { 1,0, .. On} , uration of replica 1, the second letter represents the configuration

where ¢ is the configuration of replica. Exchanges of  of replica 2, and the subscripts denote the temperature of each
configurations were attempted eveMy MC steps between pairs  replica. Only transitions corresponding to a single conforma-
of replicas adjacent in temperature, and the attempted exchangeional change (e.gF:F, — U;F,) are allowed, assuming that

X = {..0.0..+ — X = {...0.0..} was accepted with  the probability of two simultaneous changes (eFgl, — U1F2)

probabilityw(X — X'). Given the potential energy functids(q), in an infinitesimal intervatlt can be neglecte¥. The four-state

the transition probability that satisfies detailed balance and composite system for two non-interacting replicas can be
reproduces the canonical ensemble is giveny — X') = extended to create a network model of RE by introducing
min{ 1, exp=(6; — A)(U(a) — U(g)]} .5 temperature exchanges between replicas, i.e., by allowing

The efficiency of RE conformational sampling was monitored transitions such as,U, — F,U;. This leads to a system with
by measuringNte(z|To), the number of round-trip transitions  eight states arranged in a cubic network with “horizontal”
in the conformational state of a replica, conditional on the folding and unfolding transitions and “vertical” temperature
temperature of interesky, that occur in a given observation exchange transitions (Figure 2). For canonical equilibrium
time 7. A transition event is a transit of a given replica from probabilities to be preserved under temperature exchanges, it
one conformation afy to the other conformation &p and back is sufficient that detailed balance is satisfied, e.g., the transition
again regardless of route, i.e., whether it was the result of a probabilitiesw(FiU, — FoU;) and w(F.U; — FiUy) satisfy
direct barrier crossing & or indirectly via a barrier crossing  Peq(F1U2)W(F1Uz — FoU1) = PeF2U)W(F2U; — FiUy). The
at some other temperature combined with temperature ex-ratios of forward and reverse transition probabilities FaF,
changes. Conceptually, this measure reflects the potential of RE= F,F; and U;U, = U,U; are equal to 1, as interchange of
to achieve rapid equilibration at the temperature of interest by temperatures does not change the equilibrium populations.
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enthalpic driving forces. The free energy minimum of the
unfolded state corresponds to the optimal balance between
entropy, which drives the system toward large values(@fhere

the accessible space along theoordinate is greatest), and
enthalpy, which drives the system toward small values< of
(where the potential energy is smallest). The free energy barrier
that separates the unfolded and folded state is entropic in origin.
For x near 0, the entropy is significantly reduced compared to
the unfolded state, and assumes a value similar to that of the
folded state (compare in Figure 1 the size of the accessible space
: alongy atx = 0 and forx > 0 andx < 0). In contrast, the

. ! . i . | \ potential energy at = 0, although smaller than in the unfolded

-1 0.5 0 0.5 1 state, is still substantially larger than in the folded state. This

imbalance between entropy and potential energy causes the free
Figure 3. The PMF at three different temperatures: 296 K (solid line), energy maximum ax = 0.

474 K (dashed line) and 789 K (dotted line). The PMF was calculated . . . .
using numerical integration. To more clearly illustrate the change in ' 1OM the point of view of folding, the free energy maximum
the barrier height as a function of temperature, the three curves haveConstitutes an entropic bottleneck. In order to make a transition
been superimposed to coincidexat= 0. to the folded state, the system needs to cross the free energy
barrier region atx = 0, where the system has lost all of the
entropy required for folding without having gained all of the
The effect of the rate of temperature exchanges is included folding enthalpy. Similar transition bottlenecks have been
by introducing the rate parametey which controls the overall ~ described in simplified models for protein foldif¢y**-5After
scaling of the temperature exchange rate relative to the folding crossing this barrier, the system enters the folded state by going
and unfolding rates. The forward and reverse rates ofife downhill in potential energy without further reduction in
= FoF; andU;U; = UoU; transitions are set equal tq while conformational entropy, since the accessible space along the
the other rates are setdoor wo. as required by detailed balance, direction is the same for all pointsin the folded space. Because
where, in this casey = PeF2U1)/PefF1U>) or its reciprocal the conformational entropy is constant for< 0, the PMF in
such thatv < 1 (see Figure 2). The overall average rate at which this region coincides with the potential energy. From the point
temperature exchanges occkyy is the probability of jumping of view of unfolding, the free energy maximum at= 0
in any instandt from the upper to the lower face (or vice versa) constitutes an enthalpic barrier. Relative to the folded state,
of the cubic network, and is given by the equilibrium popula- points in the region neax = 0 have similar conformational
tion weighted sum of the temperature exchange rates over allentropy but larger potential energy. To reach the barrier region

W(x)/KT

states: from the folded state, therefore, the system needs to gain
potential energy (enthalpy) without the help of a concomitant

ki ke, + 2K, 1Keo 1 KyKyo increase in conformational entropy. Beyond the barrier region

X (ky + ko) (ko + ko) a (3) there is a free energy gain for moving toward the unfolded state

since the gain in conformational entropy outweighs the increase
in potential energy.

As shown below, the barrier region closextes O constitutes
the transition state for the folding/unfolding equilibrium. The
free energy difference between the unfolded and folded states
and the transition state corresponds to the free energies of
activation, which determine the rate of folding and unfolding,
respectively. Because of their different thermodynamic origins
(entropic vs enthalpic), the free energies of activation for folding
and unfolding display the opposite dependence on temperature.
‘]As Figure 3 shows, the free energy of activation for folding
increases with increasing temperature relative to thermal energy
(kT), where the free energy of activation for unfolding decreases
with increasing temperature. This anti-Arrhenius behavior is the
signature of an entropically activated process. The conforma-

3.1. Thermodynamics and Kinetics of the Continuous tional entropy difference between the unfolded state and the
Model System.3.1.1. Thermodynamicn Figure 3 we show  transition state increases as the temperature is increased, leading
the PMFs corresponding to the two-dimensional potential along t0 an increase in the height of the free energy barrier for folding
the x coordinate at several temperatures. PMFs calculated byWith increasing temperature.
MC sampling and numerical integration of the canonical Figure 4 shows the temperature dependence of the population,
distribution function agree to within statistical accuracy. The Pg(T), of the folded state, often referred to as the melting curve.
PMFs show two free energy minima corresponding to the folded The shape of the melting curve is typical of two-state protein
(F, x =0) and unfolded iy, x > 0) conformational states, thermal denaturation experiments. At 300 K, the system is nearly
separated by a free energy barrier near 0. The free energy ~ completely folded, and the fraction folded decreases with
minimum of the unfolded state and the free energy barrier have increasing temperature in favor of the unfolded state which is
no counterparts in the potential, which is monotonically varying entropically favored. The melting temperatdig (corresponding
in both of these regions (Figure 1). These features of the PMFto equal populations of the folded and unfolded state) is
originate from the interplay between opposing entropic and approximately 460 K. At this temperature, the folded and

The NRE model was simulated using a standard method for
continuous time Markov processes with discrete st&tasso
known as the “Gillespie algorithm”. Given a current stXig
we identify its m neighboring statex;, X, ..., Xm and the
transition rates, ko, ..., km from Xo to each of the neighboring
states. We generate a waiting time in stteby drawing a
random number from an exponential distribution with mdan (

+ ko + +++ + k)7L, and select a destination stagefrom among

X1, X2, ..., Xm With probability ki/(ky + ko + «== + kmy). This
procedure is then repeated with the new state as the curren
state.

3. Results and Discussion
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Figure 4. The temperature dependence of the fractional population

S Cal ; Figure 5. The distributions of first passage times for folding (black)
folded (solid line) calculated by numerical integration of the PMF. The . h S
temperature dependence of the fraction folded corresponding to a systenf"d u;fo}lac\img (red) o?sei\;g% dfurlldr)g a 2"7(11010'?? dp kinetic MC at
with a smaller average potential energy difference between the folded - Approximately olding and unfolding events were
and unfolded states (see Appendix) is shown for comparison (dashedPServed. A folding first passage time is defined as the time elapsed
line). The fraction folded derived from the folding and unfolding rates from_when the particle enters the unfoldgd region f_rom the buffer region
obtained by MC simulation (Figure 6) is shown as circles. The melting (having previously been in the folded region), until it re-enters the folded

— ; 0 PR region. The unfolding first passage time is defined similarly. The
?ﬁa?g:t?égrm" 463 K (corresponding to 50% folded population) is semilog plot of the histograms of the first passage times is shown as

circles, while the lines represent the best-fit exponential curve.
unfolded states have equal free energy. The slope of the melting
curve at the melting temperature is

6 T .

(dPF) 1 U — Uy
T=T,,

aT 4 3

4 kT
which is proportional to the difference of the average potential
energiesUr andUy, of the folded and unfolded states. Thus, a
decrease of the average potential energy difference between the
two states leads to a less steep melting curve. To illustrate this,
we show in Figure 4 the melting curve corresponding to an
alternative parametrization of the potential for which the average
potential energy difference between the folded, unfolded, and
transition states was decreased, while approximately preserving . | . | . |
the same value of the melting temperature (see Appendix). As 0.0008 0.0016 0.0024 0.0032
expected, the alternative parametrization leads to a more gradual T (K'1 )

conversion from the folded state to the unfolded state with igure 6. The temperature dependence of the folding and unfolding
increasing temperature (Figure 4, dashed line). The heat CapaCItJr:ate constants (solid lines and symbols). Folding and unfolding rates

as a function of temperature is approximately Gaussian and is 5re indicated by red and green color, respectively. The folding and
peaked neally. unfolding rates corresponding to a system with a smaller activation

3.1.2. Kinetics.With the MC move set described in the energy for folding (Appendix) are shown for comparison (dashed lines).
Methods section above, the kinetics of folding/unfolding is two- The rate constants plotted in symbols were derived from kinetic MC
state as measured by the distribution of first passage times,simulations run atdifferent tempera@ures. The_ solid lines represgnt Fhe
which is exponential (Figure 5). The Arrhenius plots of the rates .calcula}ted using the Arrhenius ‘equation based on activation
folding and unfolding reaction rates are shown in Figure 6. The energies derived from the PMF alorgFigure 3). Rate constants are

i i - expressed in units of 10 per MC step.

temperature dependence of the reaction rates using the Arrhenius
equation with activation free energies extracted from the PMFs folding.33-36-42Processes displaying anti-Arrhenius behavior are
(Figure 3) agree well with the simulation results, and is a further said to be characterized by a negative effective activation energy,
indication that the kinetics is two-state and that the reaction whereby the enthalpy of the unfolded state is larger than that
coordinate is well represented by tRecoordinate. This is a  of the transition state. The free energy of activation of these
consequence of choosing a move set for which equilibration processes, however, remains positive as a result of the activation
along they coordinate is faster than that along theoordinate. entropy favoring the unfolded state. The negative activation
The alternative potential parametrization in the Appendix, which entropy is associated with the smaller number of accessible
is characterized by a smaller average potential energy of theconformations at the transition state relative to the unfolded state;
unfolded state relative to the folded and the transition states, that is, the transition state constitutes an entropic “bottleneck”
leads to a weaker temperature dependence of the folding ratethat needs to be traversed for the transition to the folded state
(Figure 6, dashed lines). Since the slope of the Arrhenius curveto occur. These elements clearly exist in the simplified two-
is proportional to the activation energy, this difference of the dimensional system under investigation. Since the potential
rates is consistent with the smaller energy of activation obtained energy decreases monotonically from the unfolded state to the
with the alternative parametrization. folded state, the average potential energy at the transition state

The folding rates decrease with increasing temperature, a(x = 0) is smaller than the average potential energy of the
phenomenon that has been observed in the kinetics of proteinunfolded state, leading to the observed anti-Arrhenius behavior

In k
o
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200 T T T T efficiency of the uncoupled simulation varies non-monotonically
with the temperature. There is a 40-fold increase in transitions
from 300 to 474 K, the temperature at which the maximum is
observed. This decreases for temperatures higher than 474 K,
reaching a 10-fold reduction at 800 K (relative to the maximum).
As the results in Figure 7 show, this behavior mirrors almost
exactly the behavior of the harmonic med@ '(+ k")~ of
the folding and unfolding rates (from Figure 6) as a function of
temperature (we note that our use of the term “harmonic mean”
differs from standard usage by a factor of 2, which is natural
given that we are considering a round trip, i.e., a single
“transition event” involves two conformational transitions). The
300 400 500 800 700 800 agreement between the harmonic mean of the rates and the
T (K) number of direct round trip transitions is expected for a two-

. . . . o state activated equilibrium, since the average time of a round-
Figure 7. Number of direct round-trip transition everlgecin single- trip excursion from the folded to the unfolded state and back is
temperature uncoupled simulations over the temperature range 296

789 K in 5 x 10° MC steps. The curve plotted as a solid line was the sum of the average folding and unfolding times= ke
calculated from the harmonic mean of the folding and unfolding rates andz, = k;l, respectively: Ngirect = Nuc/(z + 70).

estimated from the mean of the folding and unfolding first passage . . . . }
time distribution (Figure 5) obtained by MC simulations at each 3.2. RE Simulations Using MC on the Continuous Poten

temperature, while the number of events counted directly from the MC tial- In a recent papet) we analyzed the convergence and
simulations at individual temperatures is plotted as circles. The high efficiency of RE using a discrete model for folding and
level of agreement indicates that the system is very well approximated unfolding. We found that when the physical kinetics shows anti-
as a two-state activated process. Arrhenius temperature dependence, there exists an optimal
maximal temperature beyond which the efficiency of the RE
of the rate of folding. Despite the enthalpic driving force method is degraded. Similar behavior is expected from RE
favoring the transition state, the free energy of activation for sjmylations using the continuous two-dimensional potential, with
folding remains positive at all temperatures examined (as the possible differences arising from the more complex nature of
calculated PMF along thecoordinate shows). This is because the present model, where the folded and unfolded states have
the entropy of the transition state is smaller than the entropy of jyernal structure. We performed RE simulations on the continu-
the unfolded state because of the larger accessible configuration,, ;5 wwo-dimensional potential with MC as the dynamic propa-
space along thg coordinate (Figure 1). The entropic destabi- 45i0r and RE proposals made periodically between adjacent

lization of the transition state, which (as in protein folding) can temperatures evetyly MC steps. The efficiency of conforma-
be described as acting as a “bottleneck”, more than offsets thetional sampling was monitored by counting the number of

enthalpic stablllzatlo_n, leading to the observed positive activation temperature-conditional transition evehts: defined in section
free energy for folding. 2.3 above
Often the observed folding rates of proteins show non- In order to directly compare with the results obtained

monotonic behavior with respect to the temperature; the folding iousl first perf d RE using t i Althouah
rate increases with temperature at low temperatures as in normaf€VIOUSly, We Tirst pertorme using two replicas. ougr
Arrhenius behavior, switching to anti-Arrhenius behavior at such a simulation would not be realistic in general for a protein

higher temperatures, when the folding rate decreases withSYStem due to poor energy overlap and very inefficient tem-
increasing temperature. This phenomenon is rationalized in perature exchange, it is feasible |n_the tvyo-dlmen3|onal potential.
terms of a negative activation heat capacity. The activation heat ' "€ result for a 2x 10f-step simulation where the lower
capacity is defined as the temperature derivative of the activation t€mMperature is held fixed at 296 K and the upper temperature
energy, and a negative value of the activation heat capacity Varies from 296 to 789 K is shown in Figure 8 (green, red, and
indicates that the unfolded state has a larger heat capacity tharPlue dots). We see behavior similar to that seen for the discrete
the transition state. The observed negative heat capacity ofModel studied previously: the number of temperature-condi-
activation of protein folding has been variously interpreted as tional transitiondNre has non-monotonic behavior and exhibits
being due to the hydrophobic effé&f2or to the difference of @ Maximum at an optimal high temperature given by the
the distribution of energies of the molecular conformations Maximal harmonic mean of the folding and unfolding rates (474
experienced as a function of temperatéf®2 The curvature of ~ K). This maximum point is approximately independent of the
the Arrhenius plot is related to the activation heat capacity. The rate at which attempted temperature exchanges occur. While
present simplified two-dimensional system does not have a largethe location of the maximum is in agreement with our previous
enough heat capacity of activation to reproduce this turnover results?® the magnitude of the number of transition events is
from Arrhenius to anti-Arrhenius behavior within the temper- not. We have shown that, for NRE simulations employing a
ature range we have investigated. Thus, the results extractedwo-state model (folded and unfolded states), the number of
from this model are applicable only to the anti-Arrhenius transition events is given by the average over all temperatures

160

120

Ngirect (PET 109 MC steps)

temperature regime of the protein folding process. of the harmonic means of the folding and unfolding rates,
Figure 7 shows the number of direct round-trip transition provided that the rate of temperature exchanges is sufficiently
eventsNgirect Observed during MC simulations dfuc = 5 x fast2 In the continuous model, we find that the number of

1(° steps as a function of temperature. We use the number oftransitions is significantly lower than that predicted from the
transitions as a measure of the efficiency of conformational average of the harmonic means of the rates (Figure 8, black
sampling, which determines the rate of convergence of ther- dashed line). This may be due to the finite rate of temperature
modynamic quantities extracted from the simulations. The exchanges, deviations from the pure Markovian kinetics of the
results of Figure 7 show that the conformational sampling two-state discrete model, or a combination of these effects.
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200 — - . - I - ] - TABLE 2: Empirical “Reverse-Engineered” Rates at
Temperatures T; = 296 K and T, = 474 K (in Units of 10°®
MC Step) from Continuous Potential Simulation Data
Assuming the Network Topology of Figure 2

@ 150 |-

§ uncoupled reverse-engineered rates

é rates Nx=10000 Nx=2000 Nx=200 Nx=100
=, 100 - ki1 6.08 5.66 6.10 5.27 6.33

= ki 0.0036 0.0038 0.0036 0.0037 0.0037
a ke 0.297 0.288 0.299 0.290 0.306
o kiz  0.420 0.420 0.419 0.427 0.425
= 50

potential to the discrete model, we used the folding and
_ unfolding rates directly, expressed in units of $per MC step.
300 a0 500 800 700 Different values oftx were used for th&i1F> = F2F; andU;U»

T(K) = UpUy, and were set to PINy multiplied by the empirical
Figure 8. The dependence of the number of temperature-conditional acceptance rate when both rep“(,:as are in the folded or unfolded
transition eventsNre (section 2.3) on the temperature of the high- State (0.853 and 0.395, respectively).
temperature replica for a two-replica simulation on the continuous  If we compare the observed number of transitions seen in
poten_tial (circles), and comp_arison with predicted transit_ion events using the continuous model with the number predicted by the NRE
the _dlscrete 'NRE model (Figure 2) (curves)_. For all simulations, one \,odel with the same rate parameters (Table 1), we see that there
replica was fixed at 296 K and the other replica was scanned from 296 is good agreement when the attempted exchange rate is small,

to 789 K. The black dashed line corresponds to the discrete model : . .
prediction in the largex limit. The solid curves are the predictéte but substantial disagreement when it becomes larger. In

using the NRE model with temperature-dependent folding and unfolding Particular, while the number of transitions using the continuous
rates taken from the kinetic MC simulations on the continuous potential model reaches a plateau value Nt ~ 1000, the predicted
(shown in Figure 6) and using am corresponding to an attempted  number of transitions in the NRE model continues to increase,
temperature exchange. The circles areNhevalues observed in 2 asymptotically approaching the value predicted by the average
10° MC step RE simulations on the continuous potential. The green, of harmonic means. Similarly, comparison of the predicted and
red, and blue data correspond Ny values of 1 000, 200, and 20, ’ 2 .

observed number of transitions as a function of temperature

respectively.
P Y (Figure 8) shows a significant overestimation of the transition

TABLE 1: Number of Temperature-Conditional Transition rate by the NRE model, and shows that this overestimation is
Efvehnts in 2b>< 10: MC Steps kf)Of Two Replicas 35 a Function much more severe when the rate of attempted temperature
of the Number of MC Steps between Attempte exchanges is fast. For example, while fiég: predicted from

Temperature Exchanges x), and Observed

Temperature-Conditional MFPTsP the NRE model has essentially reached the asymptotic limit

when Nx = 20 (blue curve), the observedre values are

Nre per replica temperature-conditional MFPTSs essentially unchanged relative to those obtained vhen 200
observed predicted (compare blue and red circles). The continuous two-dimensional
Nx _ (continuous) (NRE) Fi—Us Ui—h model thus appears to contain an inherent “speed limit”, which
10 000 22 24 91.8 5.6 prevents it from achieving the transition rates expected for a
2000 52 73 316 5.7 fully Markovian system, even if the temperature exchanges are
g @ BL M aemedieqeny.
200 102 162 16.0 5.7 One possible origin of this speed limit is that the average
100 99 168 14.3 5.9 effective rates are different in the coupled and uncoupled
80 98 172 14.6 5.8 systems. To test this, we analyzed the kinetics of the continuous
50 98 176 14.8 5.7 RE simulation by using the NRE model to “reverse-engineer”
ch 96 117787 149 6.1 the apparent rates by estimating the mean residence times and

_ _ branching ratios for various RE macrostates. If the system is
2 With temperatures of 296 and 474 Kin units of 16 MC steps; Markovian, then the ratk; given by the inverse of the mean
see text for details: PredictedNre based on the harmonic mean  ogiqence time is the sum of the rates exiting that state. The
relationship for thex = e limit. rate corresponding to a given edge can then be estimated by

To test whether this reduced number of transitions is due to multiplying ki by the fraction of residences that exit via that
insufficiently fast temperature exchange attempts, we performededge (the branching ratio). The results are shown in Table 2.
several simulations in which we vari@tk (the number of MC The reverse-engineered rates generally agree with the uncoupled
steps between attempted temperature exchanges). We see ifolding and unfolding rates estimated from kinetic MC, and this
Table 1 thatNtg is approximately constant provided that the is true for both rapid and slow attempted temperature exchange
attempted exchange rate is faster than a critical valudyoE rates. Therefore, the temperature exchanges do not perturb the
500. For less frequent exchange attempts, we see a substanti@dverage kinetics of the system, and cannot be a cause of the
decrease in the number of transitions. Thus, the number oflimit on the transition rates at rapid temperature exchange rates.
unfolding and refolding transitions cannot be increased simply  In order to further investigate the origin of the observed speed
by increasing the rate of attempted exchanges. limit, we calculated the MFPTs for temperature conditional

3.3. Non-Markovian Effects Revealed by Comparison of folding and unfolding, i.e., the average time for a replica
Continuous and Discrete RE SimulationsTo explore causes  unfolded at low temperature to become folded at low temper-
for the observed transition deficit, we performed simulations ature (regardless of path), or vice versa. The resulting MFPTs
using the discrete NRE model (Figure 2) using kinetic param- for the continuous potential are shown in Table 1. We see there
eters derived from the two-dimensional continuous potential that theNre speed limit arises exclusively from a limitation in
(Figure 6). To map the rates determined using the continuousthe fastest achievable unfolding rate, since the folding process
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is independent olNx and is not rate limiting. This can be
understood by noting that the valuescotorresponding to the

Zheng et al.

TABLE 3: History Dependent and Independent Branching
Probabilities from State U,F;

Nx values used are at least 2 orders of magnitude larger than

the folding and unfolding rates. To unfold, the system need only

make use of temperature exchange transitions that correspondconditional probability
P(U1F2|U1F2,UoFy)

to o (i.e., the solid cyan arrows of Figure 2). Singés already

much larger than the other rates, changes to it due to changes

in Nx will not significantly change the MFPT for folding.

On the other hand, the unfolding process (if it occurs via an
indirect route, which is likely given the very small value of
k1) requires the system to usewad edge” (i.e., a dashed cyan
arrow in Figure 2). Sincev ~ 10~* for the temperatures used
here,wo. is now slower than or comparable to the folding and

maximum likelihood estimate
(and 95% credible intervl

Nx= 200

Nx= 10 000

P(U1F2|F1F2,U2F1)
P(U1F2|U2Fy)
P(F2F1|F2F1,UzF7)
P(F2F1|U1F2,UoF1)
P(F2F1|U2Fy)

0.906 (0.904, 0.908)
0.521 (0.153, 0.530)
0.849 (0.846, 0.851)
0.477 (0.469, 0.486)
0.092 (0.090, 0.094)
0.150 (0.147, 0.152)

0.168 (0.144, 0.195)
0.094 (0.088, 0.101)
0.103 (0.096, 0.110)
0.895 (0.888, 0.902)
0.816 (0.788, 0.841)
0.886 (0.878, 0.893)

aMaximum likelihood estimates determined usiffai|b,c) =
#(b,c,a))/y; #(b,c,a) andP(aslb) = 3 #(ci,b,ar)/>jk #(cj,b,a), where

#(,j,k) is the number of occurrences of the ordered triglgk].

unfolding rates, and therefore changesNR can make a - umb ) orael
b Bayesian credible intervals under a uniform prior given by the 0.025

s e Mo o o e 700573 e o e sty |1 0 wheten
‘ . . andN are the numerator and denominator, respectively, of the fraction

unfolding, and must arise from some difference between the \;seq to calculate the maximum likelihood estimate.
unfolding kinetics in the continuous potential and the fully
Markovian NRE model. and the mechanism by which the non-Markovian effects enter

One obvious way in which the continuous and NRE models into the stochastic process. In our simulations on the continuous
differ is that the macrostates in the continuous potential have potential, we have found that the residence time distributions
spatial extent, unlike the NRE states which lack internal inthe macrostates are exponential to within statistical uncertainty
structure. This means that a finite time is required for the particle (data not shown), and thus by themselves are consistent with
to transit the nonequivalent microstates that make up the two Markovian kinetics. The branching probabilities, however, are
wells. In fact, we observe that the correlation time for diffusion significantly dependent on the preceding macrostate. We focused
in thex directionin the unfolded welht 474 K is approximately ~ on transitions entering and leaving the thermodynamically
1 400 MC steps. This time scale is of the same magnitude asfavoredUzF; macrostate (or its symmetry-related st&ie)o).
the Nx value at which the speed limit effect of Table 1 begins We ran several trajectories using different rates of attempted
to occur, suggesting that there may in fact be a connection temperature exchange and tallied the number of times each
between the observebire speed limit and conformational —macrostate sequenck,(J2F1,Y) was observed in each (where
diffusion within the free energy wells. Such dependence of the X,Y € {F2F1,U2U1,UiF2}). These counts were transformed into
kinetics on the internal structure of the macrostate can lead tonormalized branching probabilities, wheP¢X|Y) denotes the
non-Markovian behavior. history-independent branching probability of next visiting

Formally, a process is Markovian if and only if the observed macrostateX given that the system is currently in macrostate
propagators (Green’s functions) do not depend on the history Y, and P(X|ZY) denotes the history-dependent branching
of the trajectory prior to the current state, i.e., probability of next visiting macrostate given that the system
is currently in macrostat& and had been in macrostaze
immediately prior (Table 3).

If the kinetics is Markovian, then the history-dependent and
corresponding history-independent branching probabilities will
be equal:

PG tlX0t%ot) = P(Xg t51%o,t) (4)

for all statesq, xo, x3 and all timed; < t, < t3. Although eq 4
could be used to directly detect deviations from Markovian
behavior, previous work has typically used other analysis
methods to detect such deviaticii$3>* For example, in a
Markovian process, the rate matkxdetermines the propagators
via the master equation

P =Kp(®) (®)

wherep(t) is the vector of propagators at timeThe formal
solution of eq 5 is given byp(t) = p(0), and therefore'e
can be thought of as a transition matfikr), i.e., the matrix of
probabilities of being in statg at timez given that the system
was in state at time 0. If we denote the eigenvalueskoty
A1 > A2 > --- and the eigenvalues df(z) by ui(t) > uo(r) >
.-+, thenu;(z) = e*". This can be used as a test of Markovian
behavior, sinceT(r) can be empirically estimated from a
trajectory. Different values of the lag timewill yield different
values ofui(r); however,t/In ui(r) should be independent of Examination of the kinetic scheme of Figure 2 indicates that
if the kinetics is Markoviar#®%* Alternatively, the Markov the deviations from Markovian behavior seen in Table 3 are
property can be tested by analyzing the transition probabilities consistent with a reduction in the number of temperature-
as a function of lag time using an information theoretic measure conditional round-trip conformational transition events. If the
based on Shannon’s entropy. unfolding rate at low temperature is negligible, then a low-
We have chosen to detect deviations from Markovian kinetics temperature folded conformation unfolds predominantly via
by examining the observed residence time distributions and indirect paths of the fornkiF, — FoF1 — UsF1 — UjF; or
branching ratios, which provides insights into the physical origin F,U, — F,U; — U,U; — UiUs. In the former case, thEoF;

P(XIZ,Y) = P(X]Y)

from which it follows that history-dependent branching prob-
abilities that differ only in the history condition will also be
equal:

P(XIZY) = P(XIW,Y)

This is clearly not the case for the data in Table 3. For example,
we see that the history-dependent branching probabilities
P(U1F2|F2F1,U2F1) and P(F2F1|F2F1,U2Fl) differ significantly
from their corresponding history-independent branching prob-
abilities P(U1F,|UoF;) and P(F2F1|U2F1), and the branching
probability P(UiF2|F2F1,UoF1) is significantly smaller than
P(U1F;|U1F2,UzF1). This is most pronounced when the rate of
attempted temperature exchanges is fast.
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2 x 10 MC steps for three different 11-replica RE simulations
. . . . performed using the continuous potential witk = 200. The
Figure 9. Number of transition eventiire (Section 2.3) normalized o) ho 4t e distributions for the three simulations are shown in the

by the number of replicas in 2 10° MC steps for 2 to 15 replicas - " - . .
exponentially distributed in temperature from 296 to 789 K. Temper- dlgset. Transition counts have been normalized byNfeof simulation

ature exchanges were attempted every 10 000 (solid line), 1 000 (dashe

line), and 200 (dotted line) MC steps. measure is the computational efficiency calculated as the number
— U,F; step is more likely to be reversed when the temperature of transition events per replicaN{g/N). According to this
exchange rate is rapid (Table 3), as is i&J, — F,U; step in measure, a RE simulation with + 1 replicas is considered
the latter case (which follows by symmetry from tblgF; — more efficient than one witN replicas only if the introduction
U1F; results of Table 3). Thus, increasing the rate of attempted of the additional replica provides more than a proportional
temperature exchanges increases the probability of counterproincrease in the number of transition events at the temperature
ductive backtracking relative to the Markovian case, resulting of interest.

in a decrease in the rate of temperature-conditional unfolding We find that the efficiency increases strongly as a function

N (number of replicas)

events, and therefore a corresponding decreasérgn(since of N whenN is small, reaches a maximum, and then decreases
temperature-conditional unfolding was shown above to be rate-with N for largerN (Figure 9). This pattern is unchanged as a
limiting). function of the rate of attempted temperature exchanges,

Although the results presented here do not identify the showing a scaling approximately consistent with the results in
physical origin of the non-Markovian kinetics, we hypothesize Table 1. The trends seen here are qualitatively similar to that
that it is due to the finite time required for diffusion of the seen previously in the NRE two-state discrete m&deith finite
particle within the macrostates. This effect does not arise in o. In that work, we attributed the decrease with increasing
the NRE model, since, in there, the macrostates have no internalnumber of replicas beyond an optimum value in part to a
structure, and the probability of making a transition to a given combinatoric effect that decreases the relative size of the “target”
macrostate at any instadt is the same, regardless of which space of configurations in which a replica is at the temperature
macrostate the system was in previously or how long it has of interest relative to the total temperature/configuration space.
been in the current macrostate. The behavior of the continuouslt is reasonable to assume that a similar effect is occurring here
system within the wells is not Markovian, since the system has as well. We will address this in a future communication.
memory that is mediated by conformational diffusion within The results in Figure 9 were obtained with a relatively
the macrostate. This correlation in time of the particle’s position uniform distribution of temperatures. It is of interest to consider
(and energy) implies that there is a maximal effective value of the effect on efficiency of changing that temperature distribution.
the rate of statistically independent temperature exchanges,In our previous work® we concluded that, in the context of
which is limited by the time required for conformational the discrete network model in the “large limit, the optimal
relaxationwithin the folded and unfolded macrostates. temperature distribution is one replica at the temperature of

3.4. Dependence of RE Efficiency on the Number of interest, and the rest at the temperature that maximizes the
Replicas. The above results were obtained with two replicas, harmonic mean of the folding and unfolding rates. That model,
which is not typical for RE simulations that would be carried however, was limited in its realism in that it did not have explicit
out for peptides and proteins. To investigate the effect of adding energy distribution functions. Furthermore, it is clear from the
additional replicas, we performed a series of simulations of 2 results presented in the previous section that very large effective
x 10° MC steps with 2 to 15 replicas distributed uniformly in  values of oc may not be achievable in real systems. The
T~1from 296 to 789 K. The results are shown in Figure 9. One continuous two-dimensional potential studied here provides a
important issue that arises when considering such a set of resultdetter test system for studying these questions.
is the appropriate measure of conformational sampling efficiency In Figure 10 we show the relative number of temperature-
of RE. If we consider the total number of transition evaxis conditional transition events in 2 10° MC steps for three
(direct and indirect) in all replicas, then we would see for the different temperature distributions of 11 replicas: (A) uniformly
most part a monotonic increase of efficiency as a function of distributed inT~* from 296 to 789 K, (B) 6 replicas uniformly
the number of replicall simply because the number of indirect  distributed inT~* from 296 to 474 K (the optimal temperature)
“channels” for transitions is linearly increasing. This measure and the remaining 5 “bunched up” at the optimal temperature,
of efficiency, however, implicitly assumes that computer power and (C) 5 replicas bunched up at the optimal temperature with
is inexpensive and that the convergence rate of the simulationthe remaining distributed in the 296 to 474 K range but strongly
is the important limiting factor. If both computer resources and skewed toward the optimal temperature. Temperature distribu-
the convergence rate are limiting factors, a more appropriate tion B provides more than a 50% increase in efficiency relative
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to the uniform distribution over the large temperature range. being fortunate enough to have known Attila for 30 years and
This is consistent with our discrete model results, and indicates his admiration for Attila’s intellectual honesty and style of doing
that it is possible to include temperatures that are “too high” science. We are very glad to participate in this special issue of
when the system exhibits anti-Arrhenius kinetics. However, we the Journal of Physical Chemistry which honors Attila Szabo
can increase the efficiency even further (to more than a factor on his 60th birthday. This work has been supported by a grant
of 2.5 over the baseline result) by skewing the temperature from the National Institutes of Health (GM30580).

distribution to increase the number of replicas in the vicinity

of the transition temperature (distribution C). Previous work 5. Appendix

by Hansmann et al. has suggested that such concentration of the aiterative potential with decreased average potential
the temperatures near a bottleneck can improve temperatureenergy differences between folded, unfolded, and transition
mixing 2 However, the improved efficiency may simply be due 7165 is of the same general form as the p’rimary potential

to the increased number of replicas near the optimal temperature yoscribed in the Methods section and Figure 1, but with the
The clarification of the relative contributions from these two boundary function parameteds= 1075, b = 1 andnl — 135

effects will also be addressed in a future communication.

4. Conclusions

One of the challenges of studying the computational ef- U(Xy) =
fi_cier}ci/_ of REﬁIja_s t:leeln thetdifﬁt(;tu"ty ]i(n”running molecula(r]I a,(x+ x0)2 + b1y2 —l=x<-X 0=<y=<B(
simulations sufficiently long to obtain full convergence an 2 _
meaningful statistics. This is particularly daunting if such &t b1y2 t G =x=0 0=y=B()
simulations must be run multiple times to assess the effect of agxz + bl)’2 + G 0<x=1, 0=y=B(x
differences in simulation protocols and parameters. The use of 00 otherwise
simplified model systems allows for thorough theoretical,
conceptual, and computational analysis of the problem that canwith & = 25 kcal/mol,a; = 250 kcal/mol,az = 10 kcal/mol,
provide insights into the factors that limit the efficiency of RE b1 = 1000 kcal/mol, ana, = 6 kcal/mol. The constantg and
in more realistic molecular systems. X, were the same as for the primary potential.
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Chapter 4

Recovering Folding Kinetics From Replica Exchange
Simulations With a Kinetic Network Calibrated Using
Local Dynamics

4.1 Introduction

Protein folding is a fundamental problem in modern structural biology, and is an example
of a slow process occurring via rare events in a high-dimensional configurational space[1].
For this reason, it is difficult for an all-atom simulation to obtain meaningful information

on the kinetics and pathways of such processes. A number of strategies for addressing this
problem have been proposed over the years that involve focusing on the important slow
processes while neglecting the less interesting rapid kinetics by simplification of the state
space, reduction of dimensionality, or other methods[41, 42, 43].

If the process in question is activated, then most of the time is spent by the system within
free energy basins, while the crossings between basins are relatively rapid but rare. This
fact was exploited by Chandler and co-workers in their transition path sampling approach,
where an MC procedure is used to sample entire time-ordered paths connecting reactant
and product wells in a well-defined manner [44]. While this approach is based on solid
statistical-mechanical theory and can yield quantitative estimates of the reaction rate, in
practice it remains challenging for large molecular systems with multiple transition states.

A popular alternative takes advantage of heterogeneous distributed computing [45, 46]
to enhance sampling by combining information from a large number of short molecular

dynamics (MD) trajectories steered by rare events (“Folding@Home”). In a similar spirit,
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the “milestoning” technique makes use of many short simulations that span two predefined
critical points along a given reaction path[47]. While both approaches are powerful strate-
gies, the former can introduce a bias towards fast events in the ensemble average of the
reactive trajectories [48], while the latter is limited to a single reaction path that must be
specified in advance.

A related set of methods for obtaining kinetic information is based on the use of stochas-
tic dynamics on a free energy landscape [49, 50, 51, 52, 53, 54]. They rely on the premise
that if one can find a good reaction pathway for the system, then microscopic all-atom dy-
namics can be used to obtain effective diffusion and drift coefficients along that pathway,
allowing the study of the kinetics of the system by low-dimensionality Langevin simula-
tions. While various strategies have been proposed to discover good reaction coordinates
in complex systems[55, 56, 57], the fact that the details of the kinetics are projected onto
few reaction coordinates can lead to a loss of kinetic information, particularly for systems
with multiple transition states.

Another strategy for improving computational efficiency consists of discretizing the
state space and constructing rules for moving among those states. The resulting scheme
can be represented as a graph or network[58], and the kinetics on this graph is often as-
sumed to have Markovian behavior[59, 60, 61, 62, 63]. This approach is particularly well
suited for reduced lattice models, and was first introduced in that context[59]. For systems
with a continuous state space, some form of discretization is required. This can be done
by clustering based on chosen reduced coordinates[58, 61], though the clusters must be
chosen carefully so as to satisfy the Markovian condition[62, 63, 64, 65]. Alternatively, the
discretization can be based on an analysis of the minima and/or saddle points of the energy
surface[60, 66, 67], which can be used to build a tree-like representation of the potential-
or free-energy surface (the “disconnectivity graph”) or to perform a discretized version of
transition path sampling[68]. The location of all minima or saddle points, however, can

be a serious challenge for high-dimensional systems, though it has been shown that this
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is possible for peptide systems[67, 69]. A hybrid approach has also been proposed that
makes use of molecular dynamics to infer local transition regions to build disconnectivity
graphs[70].

While discretization methods based on the clustering of microstates are very powerful,
in that they can greatly increase the computational efficiency and allow for the possibility
of studying multiple pathways (to the degree that the discretization allows it), they do suffer
from some disadvantages. As previously noted[51, 56], a careless choice of reduced coor-
dinate can lead to incorrect kinetics. Furthermore, although a properly constructed kinetic
network model will preserve the correct populations of the chosen macrostates, the correct-
ness of populations and potentials of mean force (PMFs) for other reduced coordinates is
not guaranteed.

Powerful generalized ensemble methods[71] such as replica exchange molecular dy-
namics (REMD) [72] have been developed which enhance the ability to obtain accurate
canonical populations in complex systems by increasing sampling efficiency. However,
since REMD involves temperature swaps between MD trajectories, it is not straightfor-
ward to obtain kinetic information from such simulations.[63, 73, 54]. Our laboratory has
made use of a kinetic network model[74] in which the nodes correspond to molecular con-
formations from REMD simulation trajectories, and the edges are derived from an ansatz
based on structural similarity. While this model was shown to yield physically plausible
kinetics[74], the scheme which was used to weight nodes arising from different simula-
tion temperatures was such that thermodynamic parameters of the system were not exactly
preserved.

Here we present an improved version of that kinetic network model which is guaran-
teed to reproduce PMFs with respect to any chosen reduced coordinate, while allowing the
kinetic behavior to be calibrated so as to reproduce the kinetics of the target system. As

before, we discretize the multi-dimensional configurational space of the system by running
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RE simulations of the system and collect snapshots which become the nodes of the net-
work. These nodes are then weighted using a scheme based on the Temperature-Weighted
Histogram Analysis Method (T-WHAM)[75], allowing us to obtain correct thermodynamic
averages from the RE samples over all simulation temperatures. We then carry out short-
time dynamics simulations to derive local drift velocities and diffusion coefficients on suit-
ably chosen reduced coordinates. The network topology and microscopic rate parameters
can be adjusted recursively until agreement is obtained between the drift velocities and dif-
fusion coefficients derived from simulations on the network with those derived from the
local dynamics simulations. Since the network is a discretized representation of the sys-
tem and does not require additional energy and force evaluations, there is a considerable
gain in efficiency, allowing us to study slower kinetic processes than would be accessible
using conventional MD. Furthermore, while our local dynamic parameters are estimated
on reduced coordinates, the actual kinetic simulation does not occur on those reduced co-
ordinates, but rather on the full network. Since the network topology is constructed based
on virtually all degrees of freedom, this allows for multiple pathways and transition states.
We demonstrate our approach using a folding-like two-dimensional potential, and discuss

generalizations to the more complex energy landscapes of atomic-level protein simulations.

4.2 Methods

4.2.1 Kinetics of the two-dimensional potential and the representation

of drift velocity and diffusion coefficient

We use a two-dimensional potential (Fig. 4.1) constructed to mimic the anti-Arrhenius
temperature dependence of the folding rates seen in proteins[114]. This potential was de-
signed to have an energetic barrier when going from the “folded” () to the “unfolded”

(r > 0) region, and an entropic barrier in the reverse direction. The entropic barrier is

achieved by imposing a hard wall constraint that limits the space accessible to the folded
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Figure 4.1:A schematic representation of the two-dimensional potential function used in previous
chapter. The colored area corresponds to the accessible region(ef theplane, with the colors
representing the magnitude of the potential energy at(that) point (scale bar in kcal/mol). The
potential energy is infinite in the non-colored region andifat 0, x < —1, andz > 1. The inset

is an enlarged view of the folded macrostate and transition region.
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region. Specifically the particle can only move in the region< = < 1,0 < y < B(xz),
where the boundary functioBi(z) is a small constant for < 0 and an increasing function

ofxforz >0

Ba) — o 1<z<0 4.1
bxm 4+ O0<x<1

whered = 2 x 1077, b = 5 andn; = 4.55. Within this region, the potential energy is given
by

ar(r+mx0)% —-1<z<-x; 0<y<B(x)

—ayt e, —m <2 <0, 0<y<B)
Ur,y) = asz? + co, 0<x<mx9, 0<y<B(x)

asxt’? + ¢ n<z<1, 0<y< B

00 otherwise

\
wherea; = 23.53 kcal/mol,a, = 235.3 kcal/mol,a; = 376.5 kcal/mol,a, = 11.29 kcal/mol,

andc¢, = 7.059 kcal/mol. The dimensionless constanis = 0.5745, ;7 = 0.05222,
xo = 0.03830, and the energy offse{ = 5.402 kcal/mol were chosen so th&t(z, y) and
its first derivative are continuous.

We use Metropolis MC sampling to simulate the movement of a particle in the potential.
Because of the large size difference of the accessible region indhrection between the
folded and unfolded regions, we adopted an asymmetric MC proposal scheme[108, 75].
The step size in the direction varies withB(z), i.e. a proposed moveAz’, Ay') is
generated uniformly in the regionA < Az’ < A, —B(z)A < Ay’ < B(x)A, where
A = 0.01 is a constant for all temperatures. To correct for the asymmetric MC proposal
distribution, the Metropolis acceptance probability was multipliedQy’ — y|/B(x)A)

to satisfy detailed balance, wheter) equalsl if z < 1 and0 otherwise.
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Rate constants were obtained via MC simulation by calculating the mean first pas-
sage times (MFPTSs) in units of MC steps between the two macrostates. A “buffer re-
gion” —0.1 < x < 0.0437 was defined as not belonging to either the folded or un-
folded macrostate to reduce artefactual rapid recrossings of the barrier. As discussed
previously[114], the folding rate has “anti-Arrhenius” behavior, i.e. it decreases as temper-
ature increases, as shown in Fig. 4.2. Our goal is to reproduce this temperature dependence
of the folding and unfolding rate using a kinetic network model.

If the system moves diffusively along a reaction coordinatine Fokker-Plan equation

can be used to describe this stochastic motion superimposed with deterministic drift[115],

OP(xt) 0 9
o - _8_x[v($)P - %D(l’)P]

where P(z, t) is the probability density function of the systeni;x) is the drift velocity,
D(x) is the diffusion coefficient. The drift and diffusion coefficient can be fully recon-
structed from short-time simulation, and in turn, if a network is imposed with the same
drift and diffusion coefficient along the reaction coordinate, it should return the same ki-
netics as that of the system.

In order to reproduce the kinetic characteristics of the 2-D system with the discrete
network model we make use of the local drift velocity and diffusion coefficients. Multiple
short-time MC trajectories were run at different starting points along the reaction coordi-

natez; the drift velocityv(z() and diffusion coefficienD(z() were evaluated using[51]

oo = 2oz
and
D(xg) = %—80 gz; xo).

In practice, the derivatives are computed by fitting a straight line tq x,)) ando?(¢, x)

as a function ot. Our goal is to build up a network with the same local drift velocity and
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diffusion coefficients as the MC simulation of the system, with the expectation that such a

network will reproduce the kinetics of the system.

4.2.2 Discretization of the state space

The nodes of the kinetic network are a discretized approximation of the original state space
of the system. We ran a replica exchange Monte Carlo (REMC) simulation of the two-
dimensional potential witty = 8 replicas at temperatures ranging from 296 K to 789 K
for 10° MC steps. Every 1000 MC steps, transitions between two adjacent temperatures
were attempted. Immediately before attempting temperature exchanges, the configuration
of each replica was stored, obtaining= 50, 000 configurations at each temperature, and
N xS = 400,000 configurations at all temperatures. This ensemble of conformations con-
stitutes the discretized state space of the system, which, as described below, approximates
well the equilibrium thermodynamics of the system for any temperature not too far from
the simulated temperatures.

Traditionally, equilibrium thermodynamic properties of the system at temperature
are obtained by performing canonical sampling/gtfor a long enough time to obtain
convergence. We have shown[75] that improved convergence can be achieved by employ-
ing T-WHAM on RE trajectories over a range of temperatures (which need not include
Ty). This yields canonical ensemble averages with greater efficiency than traditional sam-
pling methods because it combines data from high temperature replicas, which sample
high energy and high entropy regions, and data from low temperature replicas, which pref-
erentially sample low energy, low entropy regions. The T-WHAM approach is based on a
re-weighting scheme designed to minimize statistical error.[75] The T-WHAM canonical

average A(Ty)) of a quantityA at temperaturdy is

(A(Tp)) = Zwi(TO)Ai7 (4.2)

where the summation runs over theRE conformations from all temperatures; is the
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Figure 4.2:The temperature dependence of the folding and unfolding rate constants. Folding and
unfolding rates are indicated by red and green, respectively. The rate constants indicated by circles
were derived from kinetic MC simulation run at different temperatures. The lines represent the rates

calculated using the Arrhenius equation based on activation energies derived from the PMF along
x. Rate constants are expressed in unitsof® per MC step.
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value of A for conformationi, and the weight factow;(7;) is given by

> 1 1 B

whereN is the number of samples at each of thdifferent replica exchange temperatures
T}, andk, is the Boltzmann constant. The constafitén Eq. 4.3 correspond to the relative
Helmholtz free energy of each replidasuch thatf,/fi = Qi/Qr, WhereQy is the
canonical partition function of the system at temperatfijye In T-WHAM the f,’s are
determined by iteratively solving a system of non-linear equations known as the WHAM
equations [75, 116]. Thus, each samihas a weight factor associated with it (Eq. 4.3) that
depends only on its enerdy; and the temperature of interés, andnotat the temperature

the sample was originally collected. To calculate the PMF of the system as a function of
at temperaturdj using the discretized state space, it is sufficient to employ Eq. 4.24vith
being an indicator function which is non-zero if thecoordinate of the sample is near the
designated value af. This can be done for any temperatlgg which needs not be one of

the temperatures used in the RE simulation. In Fig. 4.3, the potential of mean force (PMF)
calculated using the weight factors matches perfectly with that evaluated directly from the

function form.

4.2.3 Thermodynamics of the network model

To complete the specification of the kinetic network model, we must provide a network
topology in the form of edges which connect the nodes and microscopic rates associated
with each edge. The choices made for these parameters will determine the kinetics of the
network, however, they will not affect the equilibrium thermodynamics of the network as
long as detailed balance is satisfied (see Eq. 4.4 below) and the network topology is ergodic
(i.e. any node is accessible from any other in a finite number of edge traversals). How well
the equilibrium properties of the network approximate the real equilibrium thermodynam-

ics of the system depends on the quality of the ergodicity and discretization of the state
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space using RE.

We connect two nodes with an edge if they are "close” in Euclidean space. Specifically,
we join nodes corresponding to coordinatesy) and(z’, /) if |2’ —z| < A, and|y’ —y| <
A,. We have chosen the cut-off lengths andA, to be much smaller than the dimensions
of the system so as to appropriately mimic the local nature of the continuous MC kinetics
(see below). We then assign forward and reverse rates to each edge so that detailed balance
is satisfied. For example, if nodésind;j are connected by an edge, then we choose rates

ki;(T) andk;;(T) such that
ki (T) _ wi(T)
kji(T)  wi(T)

(4.4)

wherew;(T") andw;(1") are the weight factors of the two nodes at temperéiuyre;(T) is
the rate going from nodgto nodej, k;;(T') is the reverse rate. If this detailed balance con-
dition is satisfied, the asymptotic thermodynamics produced by the network model will be
the same as that of the original system (subject to the aforementioned ergodicity criterion).
We simulate the kinetics on this network as a continuous time Markov process with
discrete states using the Gillespie Algorithm[117]. During the simulation, the population
histogram along the coordinate (the reaction coordinate for our two-dimensional system)
was accumulated. When a node is visited, its residence time is added to the corresponding
bin in the histogram and at the end of the simulation, the histogram is used to calculate the

PMF along ther coordinate.

4.2.4 Calibration of the kinetic properties of the network model

Although the network design strategy described above guarantees that the correct thermo-
dynamic properties are reproduced, the ability to reproduce the correct kinetics requires
additional considerations. Information about the local dynamics of the system in some
form is required to obtain a kinetically realistic network. In this section we illustrate how

this can be done for the case of a two-dimensional potential system, where we reproduce
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Figure 4.3:The PMF at two different temperature 296 K and 789 K. Solid lines are the exact value
calculated by numerical integration of the potential. Circles are derived from the full ensemble of 8
temperatures combined using WHAM.
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Figure 4.4:The PMF along ther coordinate at the three temperatures 395 K, 431 K, and 526 K
(blue, green, and red, respectively). Solid lines are the exact PMFs calculated by numerical in-
tegration of the potential, while the circles are derived from kinetic network simulations at each
temperature.
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Figure 4.5:Diagram illustrating the neighboring pair rule for the network model, showing the locus

of points (region within the solid line) that can be reversibly visited from a given reference point
(z,y). B(x) is the function that defines the accessible region of the systei,the maximum

MC step sizeg1, y1, x2, y2 correspond to the coordinates of the most distant points reachable from
(z,y) in one MC step. The dashed-dotted line encloses the area accessible in one MC move from
(z,y). The dashed line is a rectangle arondy) of dimensionsA and10B(x)A along ther and

y axes, respectively,
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the kinetics of a MC simulation on the continuous potential with a network model.

For kinetic MC simulations, the “time” unit is the MC step. The kinetics depends
on the move set, which in our case was the box defined by the intgrvalsA] and
[—10B(z)A, 10B(z)A] for  andy, respectively, and wherd = 0.01. Note that the
magnitude of the allowed moves in thedirection is not constant, but dependsoand
varies with the sizé3(z) of the accessible region in thedirection. To recover the kinetics
of the MC simulation on the continuous potential, we choose a network topology that
mimics the MC move set, as described in the Appendix.

To assign microscopic rates to the edges that satisfy detailed balance, we could choose

kij(T) = Zzgi [1ij
and
kji(T') = pij

where,;; = ;; is a base rate to be determined for each pair of nédesl j to obtain

the best agreement with the observed MC kinetics. To find the appropriate basg,yates
to match the drift velocity and diffusion coefficients of the network simulation with that of
the kinetic MC, we ran 10,000 short trajectories (5-10 MC steps) starting at different values
of = with both the kinetic MC simulations on the continuous potential and Gillespie simu-
lations on the discretized network model to evaluate the local drift velocities and diffusion
coefficients as a function af. The results are shown in Fig. 4.6.

For the two-dimensional test case studied here, the appropriate valugsaoé those
which allow the network simulation to most closely replicate kinetic MC. In other words,
we would like a “time unit” in the Gillespie algorithm to correspond to an MC step in
the kinetic MC. In the latter case, each transition between microstates corresponds to an
elapsed “time” of 1 unit. Since the edges of the network which join microstates have
already been chosen to mimic the kinetic MC move set, it remains only to ensure that

the average time between microstate transitions in the discrete network simulation also
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corresponds to 1 time unit.

In the Gillespie algorithm, the average waiting time in a node is inversely proportional
to the sum of the microscopic rates exiting the node. If all of these outgoing rates are
similar, then the waiting time in a given node will be approximately proportional to the
inverse of the number of neighbors of that node. As seen in Fig. 4.7, the average number
of neighbors for a node increases withdue to the bigger cut-off length in direction
used to define network edges. Thus, the average waiting time between transitions among
microstates will shorter for nodes with large The proportionality between MC steps and
Gillespie time units can be maintained by setting = ¢,/n,;, wherec, is an adjustable
coefficient, andh,; is the average number of neighbors for the connected nades;. The
1/n,; factor in the rate ensures that the waiting times in all nodes are of similar magnitude.
We use theaverageof the number of neighbors for the two connected nodes and not the
number of neighbors of the current node, since the latter would violate detailed balance if
the current and successor nodes have different numbers of neighbors. It should be noted
that this strategy for determining;; is specific to the use of kinetic MC as a reference
dynamical simulation method on the continuous potential, and will likely not generalize to

Newtonian dynamics on a high-dimensional potential.

4.3 Results and Discussion

To confirm that thet00, 000 configurations generated using replica exchange MC on the
two-dimensional continuous potential give the correct thermodynamic behavior, we com-
pared the PMFs along the coordinate at several temperatures calculated from the dis-
cretized state space and the weight factors of Eq. 4.3 with the one calculated by numerical
integration of the canonical distribution function of this system. The agreement is excel-
lent at all temperatures examined (only the highest and lowest temperatures are shown in

Fig. 3.3 for clarity). This indicates that the correctly weighted discretized state space is a
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good approximation to the PMF on the continuous potential at all the temperatures studied.
Excellent agreement for the PMF is also obtained from Gillespie simulations using the net-
work model with a generic network topology and rate parameters-(0.01, and,;; = 1

for all 4, j), as shown in Fig. 4.4. This validates the implementation of the network model
algorithm, and indicates that the ergodicity condition is satisfied.

We ran a series of short time trajectories using both kinetic MC on the continuous
potential and Gillespie dynamics on the discretized network model, and evaluated the drift
velocities and diffusion coefficients along the reaction coordinate at differgositions.

By varying the parameters of the network in order to match the drift and diffusion on the
network with that of the kinetic MC simulation on the the conditional potential, we obtained
optimized rate parameters for the network model. We found that the choiged#scribed
above withey = 0.85 atTy = 298 K (for all ) gives good agreement, as shown in Fig. 4.6.
Furthermore, the folding rates at different temperature obtained from MC simulations on
the continuous potential and from the discretized kinetic network simulation agree very
well, as shown in Fig. 4.8.

We have previously shown that for the two-dimensional model system for protein fold-
ing studied here, it is possible to reconstruct the folding kinetics on a continuous potential
using a discrete network model of the type used by Andrec, et al.[74] to model peptide
folding using an all-atom potential function with hundreds of degrees of freedom, while re-
taining the correct thermodynamic behavior. The network model of Andrec, et al. employed
anad hocmethod for assigning weights to nodes from different simulation temperatures,
while the present model uses weights based on the firm statistical mechanical footing of the
T-WHAM method.[75] In fact, the present formulation yields correct PMFs with respect to
any choice of reduced coordinate. This is becausefitfactors which appear in Eq. 4.3
are free energies associated with a given replica, and are in principle independent of the
choice of reduced coordinate. While the WHAM equations themselves require a choice of

reduced coordinate which one uses to construct the histograms, the regufators do
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not depend on that choice. While our local dynamic parameters are estimated on a reduced
coordinate, the actual kinetic simulation does not occur on that reduced coordinate, but
rather on the full network, which, by including virtually all degrees of freedom, allows for
multiple pathways and transition states.

The model system studied here is sufficiently simple that we can fully confirm the
validity of our approach, but is of course much simpler than any atomic-level molecular
model. There is then the question of the applicability of this methodology to such systems.
Previous studies[49, 50, 51, 52, 53, 54] have shown that it is possible to capture the lo-
cal kinetics of complex molecular systems using a limited number of degrees of freedom.
Concomitantly, we have shown that discrete network models[74] can yield physically plau-
sible global kinetics of molecular systems. Taken together, these observations indicate that
the methodology described here will be useful to model the kinetics of complex molecular
systems.

Nonetheless, the practical implementation of this methodology will require a careful
consideration of the additional complexities involved. For example, the large dimensional-
ity of molecular systems may make it difficult to find good reduced coordinates with respect
to which drift and diffusion parameters could be obtained. In general, this can lead to lo-
cal dynamics which is heterogeneous. This issue could be overcome by the partitioning
of nodes into clusters, which could be done based on local dynamical parameters, or more
simply, on structural considerations. Drift and diffusion parameters could then be estimated
separately for each cluster along the reduced coordinate, accounting for the heterogeneity
without the need for approximating kinetics in a multidimensional space. Furthermore, the
drift and diffusion can be calculated using generalized coordinates, or the calibration of the
network model parameters could be done using kinetic properties that do not depend on
a reaction coordinate. A second layer of complexity that will be involved in application
of this methodology to larger systems arises in the adjustment of the network in order to

reproduce local dynamics. In the model described above, the choice of network topology
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(the number of edges and which nodes which they connect) was straightforwardly dictated
by the move set of the kinetic scheme MC we were trying to reproduce. Furthermore, be-
cause this structure was independent of target temperature, we assumed that the parameter
¢ could be taken to be a constant for all nodes and all temperatures. In a molecular system,
these parameters will likely need to be varied, and the determination of the optimal network

parameters will require a multidimensional search over topology and rate parameters

4.4 Conclusions

In this paper we have presented a novel kinetic network strategy for the study of slow
time scale processes that extends and improves our previous approach[74]. Our network
model can be viewed as combining the advantages of other methods for the study of slow
kinetics, while providing mechanisms for avoiding some of their pitfalls. As in previous
methods[49, 50, 51, 52, 53, 54], we compute local stochastic dynamical quantities on a one-
dimensional reaction coordinate, but only as a benchmark to calibrate the rate parameters of
a network model constructed from the full discretized state space of the system. However,
the manner in which this calibration is performed can be tailored to the specific demands
of the system being studied, and the quantities used for calibration need not be structural
coordinates. The kinetic simulations are performed not on a reduced low-dimensional land-
scape, but on a network that can allow for multiple reaction pathways. This gives us the
flexibility to visualize the dynamics on reaction coordinates of our choosing. The network
model is a Markovian model, like that of other previous approaches[60, 61, 62, 63, 65],
but instead of using artificially defined macrostates, we use a large number of microstates
collected from an RE simulation of the system. This increases the chances of constructing a
realistic picture of the kinetics, at the cost of a larger and more complex network. Nonethe-
less, since all configurations are precalculated, there is a much lower computational bur-

den than for a comparable all-atom simulation, since (for example) potential energies and
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Figure 4.6:The drift velocityv () and diffusion coefficienD(z) along the reaction coordinateat
298 K. The lines represent the drift velocity and diffusion coefficient of the kinetic MC simulation,
while the circles are the results from the kinetic network model after calibration of
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the reaction coordinate.
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Figure 4.8:Arrhenius plot of the folding rates of the model system. The line represents the folding

rate from kinetic MC simulation in unit of0—% per MC step. The circles represent the rates from
simulation of the kinetic network model.
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forces do not need to be evaluated. If necessary, methods for accelerating Gillespie-type
simulations that have been developed in the context of chemical reaction and systems biol-
ogy simulations could be used to mitigate the computational burden[118]. We believe that
the kinetic network method demonstrated here will be a useful addition to the arsenal of

computational methods for the study of slow processes in complex molecular systems.

4.5 Appendix

The goal of designing the kinetic network model is to provide the best possible agreement
with the kinetic MC simulation on the two-dimensional continuous potential. This goal
is more likely to be met if the structure of the network closely mimics the structure of
the move set which underlies the kinetic MC. One key choice in the design of the kinetic
network is its topology, i.e. which pairs of nodes are to be connected by edges. In previous
work[74], we used a simple “box” rule that placed an edge if two nodes were sufficiently
close in configuration space. In the case of the MC kinetic scheme used for the two-
dimensional potential here, a better choice would more closely mimic the non-reversibility
of the particular move set used in the MC simulation. In Fig. 4.5 we show the region that
a particle starting from a poiritz, y) can access and return in two successive MC steps. It
consists of the square region excluding the two corners on the left: although the particle
could reach the left corners in one step, it is impossible for it to come balgk t0 in one

step. Therefore in the network model, we also exclude the corresponding node pairs and

construct edges only between nodes that satisfy either of the two conditions

r—A<2' <z and |y—19|<10B(z")A

r<z <zr+A and |y —y| <10B(z)A. (4.5)



100

References

[1] J.N. Onuchic and P.G. Wolynes. Theory of protein foldi@yrr. Opin. Struct. Biol.
14:70-75, 2004.

[2] Yuko Okamoto. Generalized-ensemble algorithms: enhanced sampling techniques
for monte carlo and molecular dynamics simulatiodaurnal of Molecular Graph-
ics and Modelling22:425-439, 2004.

[3] G. Torrie and J. Valleau. Nonphysical sampling distributions in monte carlo free-
energy estimation: Umbrella samplingl. Comp. Phys23:187, 1977.

[4] A. M. Ferrenberg and R. H. Swendsen. Optimized monte carlo data and®sis.
Rev. Lett.63:1195, 1989.

[5] Joan-Emma Shea and Charles L. Brooks Ill. From folding theories to folding pro-
teins: A review and assessment of simulation studies of protein folding and unfold-
ing. Annu. Rev. Phys. Chens2:499-535, 2001.

[6] Krishna Pratap Ravindranathan, Emilio Gallicchio, and Ronald M. Levy. Confor-
mational equilibria and free energy profiles for the allosteric transition of the ribose-
binding protein.J. Mol. Biol,, 353:196-210, 2005.

[7] Bernd A. Berg and Thomas Neuhaus. Multicanonical algorithms for first order phase
transitions.Phys. Lett. B267:249-253, 1991.

[8] Ulrich H. E. Hansmann and Yuko Okamoto. Prediction of peptide conformation
by multicanonical algorithm: New approach to the multiple-minimum problém.
Comp. Chem.14:1333-1338, 1993.

[9] C. Bartels and M. Karplus. Probability distributions for complex systems: Adaptive
umbrella sampling of the potential energly.Phys. Chem. B102:865, 1998.

[10] E. Marinari and G. Parisi. Simulated tempering: a new Monte Carlo schEare-
phys. Lett.19:451-458, 1992.

[11] Robert H. Swendsen and Jian-Sheng Wang. Replica Monte Carlo simulation of
spin-glasseskPhys. Rev. Lett57:2607-2609, 1986.

[12] Koji Hukushima and Koji Nemoto. Exchange Monte Carlo method and application
to spin glass simulationg. Phys. Soc. Jpn65:1604-1608, 1996.



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

101

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculation by fast computing machide€hem. Phys21:1087—
1091, 1953.

Yuji Sugita and Yuko Okamoto. Replica-exchange molecular dynamics method for
protein folding.Chem. Phys. Le{t314:141-151, 1999.

Young Min Rhee and Vijay S. Pande. Multiplexed-replica exchange molecular dy-
namics method for protein folding simulatior8iophys. J.84.775-786, 2003.

Hugh Nymeyer, S. Gnanakaran, and Angel E. Garétomic simulations of protein
folding, using the replica exchange algorithmeth. Enzymo}.383:119-149, 2004.

M. Cecchini, F. Rao, M. Seeber, and A. Caflisch. Replica exchange molecular dy-
namics simulations of amyloid peptide aggregatiah.Chem. Phys.121:10748,
2004.

Hui-Hsu (Gavin) Tsai, Meital Reches, Chung-Jung Tsai, Kannan Gunasekaran,
Ehud Gazit, and Ruth Nussinov. Energy landscape of amyloidogenic peptide
oligomerization by parallel-tempering molecular dynamics simulation: Significant
role of Asn ladderProc. Natl. Acad. Sci. USA02:8174-8179, 2005.

A. Baumketner and J.-E. Shea. Free energy landscapes for amylodogenic tetrapep-
tides dimerizationBiophys. J.89:1493-1503, 2005.

Gennady M. Verkhivker, Paulo A. Rejto, Djamal Bouzida, Sandra Arthurs, An-
thony B. Colson, Stephan T. Freer, Daniel K. Gehlhaar, Veda Larson, Brock A.
Luty, Tami Marrone, and Peter W. Rose. Parallel simulated tempering dynamics of
ligand-protein binding with ensembles of protein conformatiddisem. Phys. Lett.
337:181-189, 2001.

Krishna Pratap Ravindranathan, Emilio Gallicchio, Richard A. Friesner, Ann E. Mc-
Dermott, and Ronald M. Levy. Conformational equilibrium of cytochrome P450
BM-3 complexed with/NV-palmitoylglycine: A replica exchange molecular dynam-
ics study.J. Am. Chem. Socl28:5786-5791, 2006.

Francesco Rao and Amadeo Caflisch. Replica exchange molecular dynamics simu-
lations of reversible foldingJ. Chem. Phys119:4035-4042, 2003.

M. Marvin Seibert, Alexandra Patriksson, Berk Hess, and David van der Spoel. Re-
producible polypeptide folding and structure prediction using molecular dynamics
simulations.J. Mol. Biol,, 354:173-183, 2005.

David A. Kofke. On the acceptance probability of replica-exchange Monte Carlo
trials. J. Chem. Phys117:6911-6914, 2002.

Aminata Kone and David A. Kofke. Selection of temperature intervals for parallel-
tempering simulations]. Chem. Phys122:206101, 2005.



102

[26] Cristian Predescu, Mihaela Predescu, and Cristian V. Ciobanu. The incomplete
beta function law for parallel tempering sampling of classical canonical systems.
J. Chem. Phys120:4119-4128, 2004.

[27] Cristian Predescu, Mihaela Predescu, and Cristian V. Ciobanu. On the efficiency
of exchange in parallel tempering Monte Carlo simulationk. Phys. Chem. B
109:4189-4196, 2005.

[28] Nitin Rathore, Manan Chopra, and Juan J. de Pablo. Optimal allocation of replicas
in parallel tempering simulations. Chem. Phys122:024111, 2005.

[29] Simon Trebst, Matthias Troyer, and Ulrich H. E. Hansmann. Optimized parallel
tempering simulations of proteind. Chem. Phys124:174903, 2006.

[30] Daniel M. Zuckerman and Edward Lyman. A second look at canonical sampling of
biomolecules using replica exchange simulatidrChem. Theory Compuf:1200—
1202, 2006.

[31] Daniel M. Zuckerman. Erratum to “A second look at canonical sampling of
biomolecules uisng replica exchange simulation”. 2006.

[32] David A. C. Beck, George W. N. White, and Valerie Daggett. Exploring the energy
landscape of protein folding using replica-exchange and conventional molecular dy-
namics simulationsJ. Struct. Biol, 157:514-523, 2007.

[33] Shin-Ichi Segawa and Mitsuru Sugihara. Characterization of the transition state of
lysozyme unfolding. I. Effect of protein-solvent interactions on the transition state.
Biopolymers23:2473-2488, 1984.

[34] Mikael Oliveberg, Yee-Joo Tan, and Alan R. Fersht. Negative activation enthalpies
in the kinetics of protein foldingProc. Natl. Acad. Sci. USA2:8926—-8929, 1995.

[35] V. Mufioz, P. A. Thompson, J. Hofrichter, and W. A. Eaton. Folding dynamics and
mechanism of}-hairpin formation.Nature 390:196-199, 1997.

[36] Martin Karplus. Aspects of protein reaction dynamics: Deviations from simple be-
havior. J. Phys. Chem. BL04:11-27, 2000.

[37] Philippe Ferrara, Joannis Apostolakis, and Amadeo Caflisch. Thermodynamics and
kinetics of folding of two model peptides investigated by molecular dynamics simu-
lations. J. Phys. Chem. BL04:5000-5010, 2000.

[38] Wei Yuan Yang and Martin Gruebele. Rate—temperature relationships in
repressor fragment;_g5 folding. Biochemistry43:13018-13025, 2004.

[39] Scalley ML and Baker D. Protein folding kinetics exhibit an arrhenius tempera-
ture dependence when corrected for the temperature dependence of protein stability.
Proc. Natl. Acad. Sci. USA4:10636-10640, 1997.



103

[40] J.D . Bryngelson and P.G. Wolynes. Intermediates and barrier crossing in a ran-
domenergymodel (with applications to protein foldingJ.Phys.Chem.93:6902,
1989.

[41] Ron Elber. Long-timescale simulation method<Curr. Opinion Struct. Biol.
15:151-156, 2005.

[42] Christopher D. Snow, Eric J. Sorin, Young Min Rhee, and Vijay S. Pande. How
well can simulation predict protein folding kinetics and thermodynamisf. Rev.
Biophys. Biomol. Struct34:43—-69, 2005.

[43] Markus Christen and Wilfred F. van Gunsteren. On searching in, sampling of, and
dynamically moving through conformational space of biomolecular systems: A re-
view. J. Comput. Chem29:157-166, 2007.

[44] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler. Transition path sampling:
Throwing ropes over rough mountain passes, in the darkau. Rev. Phys. Chem.
53:291-318, 2002.

[45] B. Zagrovic, E. J. Sorin, and V. Pandg-hairpin folding simulations in atomistic
detail using an implicit solvent model. Mol. Biol,, 313:151-169, 2001.

[46] V. S. Pande, |. Baker, J. Chapman, S. P. Elmer, S. Khalig, S. M. Larson, Y. M.
Rhee, M. R. Shirts, C. D. Snow, E. J. Sorin, and B. Zagrovic. Atomistic protein
folding simulations on the submillisecond time scale using worldwide distributed
computing.Biopolymers68:91-109, 2003.

[47] Anton K. Faradjian and Ron Elber. Computing time scales from reaction coordinates
by milestoning.J. Chem. Phys120:10880, 2004.

[48] A. R. Fersht. On the simulation of protein folding by short time scale molecular
dynamics and distributed computingroc. Natl. Acad. Sci. USA9:14122-14125,
2002.

[49] Mark F. Schumaker, &jis Pones, and BeridRoux. A combined molecular dynam-
ics and diffusion model of single proton conduction through gramaciBiophys.
J.,, 79:2840-2857, 2000.

[50] Gerhard Hummer and loannis G. Kevrekidis. Coarse molecular dynamics of a pep-
tide fragment: Free energy, kinetics and long-time dynamics computatloGsem.
Phys, 118:10762, 2003.

[51] Dmitry I. Kopelevich, Athanassios Z. Panagiotopoulos, and loannis G. Kevrekidis.
Coarse-grained kinetic computations of rare events: Application to micelle forma-
tion. J. Chem. Phys122:044908, 2005.

[52] Robert B. Best and Gerhard Hummer. Diffusive model of protein folding dynamics
with Kramers turnover in ratePhys. Rev. Lett96:228104, 2006.



104

[53] Sichun Yang, JasN. Onuchic, and Herbert Levine. Effective stochastic dynamics
on a protein folding energy landscapke.Chem. Phys125:054910, 2006.

[54] Sichun Yang, JasN. Onuchic, Angel E. Gaia, and Herbert Levine. Folding time
predictions from all-atom replica exchange simulatiahsMol. Biol,, 372:756—-763,
2007.

[55] Ao Ma and Aaron R. Dinner. Automatic method for identifying reaction coordinates
in complex systems]. Phys. Chem. BL09:6769-6779, 2005.

[56] Sergei V. Krivov and Martin Karplus. One-dimensional free-energy profiles of
complex systems: Progress variables that preserve barrigr&hys. Chem. B
110:12689-12698, 2006.

[57] Sergei V. Krivov, Stefanie Muff, Amadeo Caflisch, and Martin Karplus. One-
dimensional barrier-preserving free-energy projections gi-gheet miniprotein:
New insights into the folding process. Phys. Chem. BL12:8701-8714, 2008.

[58] F. Rao and A. Caflisch. The protein folding network.Mol. Biol,, 342:299-306,
2004.

[59] S.B. Ozkan, K. A. Dill, and I. Bahar. Fast-folding protein kinetics, hidden interme-
diates, and the sequential stabilization modRbtein Sci, 11:1958-1970, 2002.

[60] Y.-J. Ye, D. R. Ripoll, and H. A. Scheraga. Kinetics of cooperative protein folding
involving two separate conformational familie€Somp. Theor. Polymer S¢B:359—
370, 1999.

[61] N. Singhal, C. D. Snow, and V. S. Pande. Using path sampling to build better Marko-
vian state models: Predicting the folding rate and mechanism of a tryptophan zipper
beta hairpin.J. Chem. Phys121:415-425, 2004.

[62] W. C. Swope, J. W. Pitera, and F. Suits. Describing protein folding kinetics by
molecular dynamics simulations. 1. Theory. Phys. Chem. B108:6571-6581,
2004.

[63] W. C. Swope, J. W. Pitera, F. Suits, M. Pitman, M. Eleftheriou, B. G. Fitch, R. S.
Germain, A. Rayshubski, T. J. C. Ward, Y. Zhestkov, and R. Zhou. Describing
protein folding kinetics by molecular dynamics simulations. 2. Example applications
to alanine dipeptide and @-hairpin peptide. J. Phys. Chem. B108:6582—6594,
2004.

[64] D.S. Chekmarey, T. Ishida, and R. M. Levy. Long time conformational transitions of
alanine dipeptide in aqueous solution: Continuous and discrete state kinetic models.
J. Phys. Chem108:19487-19495, 2004.

[65] Nicolae-Viorel Buchete and Gerhard Hummer. Peptide folding kinetics from replica
exchange molecular dynamid3hys. Rev. E77:030902, 2008.



105

[66] G. Wei, N. Mousseau, and P. Derreumaux. Complex folding pathways in a simple
(G-hairpin. Proteins 56:464-474, 2004.

[67] D. A. Evans and D. J. Wales. Folding of the GB1 hairpin peptide from discrete path
sampling.J. Chem. Phys121:1080-1090, 2004.

[68] David J. Wales. Discrete path samplirigol. Phys, 100:3285-3305, 2002.

[69] Joanne M. Carr and David J. Wales. Folding pathways and rates for the three-
strandeds-sheet peptide Beta3s using discrete path samplihg?hys. Chem. B
112:8760-8769, 2008.

[70] Sergei V. Krivov and Martin Karplus. Hidden complexity of free energy surfaces for
peptide (protein) foldingProc. Natl. Acad. Sci. USA01(41):14766—-14770, 2004.

[71] A. Mitsutake, Y. Sugita, and Y. Okamoto. Generalized-ensemble algorithms for
molecular simulations of biopolymerBiopolymers60:96-123, 2001.

[72] Y. Sugita and Y. Okamoto. Replica-exchange molecular dynamics method for pro-
tein folding. Chem. Phys. Lett314:141-151, 1999.

[73] D. van der Spoel and M.M. Seibert. Protein folding kinetics and thermodynamics
from atomistic simulationsPhys.Rev.Lett96:238102, 2006.

[74] M. Andrec, A. K. Felts, E. Gallicchio, and R. M. Levy. Protein folding pathways
from replica exchange simulations and a kinetic network moBebc. Natl. Acad.
Sci. USA102:6801-6806, 2005.

[75] E. Gallicchio, M. Andrec, A. K. Felts, and R. M. Levy. Temperature weighted
histogram analysis method, replica exchange and transition patRkys. Chem. B
109:6722—6731, 2005.

[76] F.Rao and A.Caflisch. The protein folding networ&. Mol. Biol., 342:299-306,
2004.

[77] K.A.Dill S.B.Ozkan and I.Bahar. Fast-folding protein kinetics, hidden intermedi-
ates, and the sequential stabilization modRbtein Sci, 11:1958-1970, 2002.

[78] K.A.Dill S.B.Ozkan and |.Bahar. Computing the transition state populations in sim-
ple protein modelsBiopolymers68:35—-46, 2003.

[79] W. C . Swope, J. W. Pitera, and F. Suits. Describing protein folding kinetics by
molecular dynamics simulations. 1. theodyPhys.Chem BL08:6571-6581, 2004.

[80] W. C . Swope, J. W. Pitera, and F. etal. Suits. Describing protein folding kinetics by
molecular dynamics simulations. 2. example applications to alanine dipeptide and a
-hairpin peptideJ.Phys.Chem BL08:6582—-6594, 2004.



106

[81] Nina Singhal, Christopher D. Snow, and Vijay Pande. Using path sampling to build
better Markovian state models: Predicting the folding rate and mechanism of a tryp-
tophan zipper beta hairpid.Chem.Phys121:415-425, 2004.

[82] Y.-J. Ye, D.R. Ripoll, and H.A. Scheraga. Kinetics of cooperative protein folding
involving two separate conformational familie€omp.Theor.Polymer S¢:359—
370, 1999.

[83] D.S.Chekmarey, T. Ishida, and R.M. Levy. Long-time conformational transitions of
alanine dipeptide in aqueous solution: Continuous and discrete-state kinetic models.
J.Phys.Chem BL08:19487-19495, 2004.

[84] G . Wei, N. Mousseau, and P. Derreumaux. Complex folding pathways in a simple
beta-hairpin.Proteing 56:464—-474, 2004.

[85] D.A. Evans and D.J. Wales. Folding of the gbl1 hairpin peptide from discrete path
sampling.J.Chem.Phys121:1080-1090, 2004.

[86] D.T.Gillespie.Markov Process: An Introduction to Physicall Scientigt892.
[87] D.A. McQuarrie and JD SimorPhysical Chemistry: A Molecular Approach997.

[88] Morten Hagen, Byungchan Kim, Pu Liu, Richard A. Friesner, and B. J. Berne. Serial
replica exchangel. Phys. Chem. Bl11:1416-1423, 2007.

[89] E . Gallicchio, M . Andrec, A.K. Felts, and R.M. Levy. Temperature weighted
histogram analysis method, replica exchange, and transition paiisys.Chem.B
109:6722—-6731, 2005.

[90] Pu Liu, Byungchan Kim, Richard A. Friesner, and B. J. Berne. Replica exchange
with solute tempering: A method for sampling biological systems in explicit water.
Proc. Natl. Acad. Sci. USA02:13749-13754, 2005.

[91] Charles J. Geyer and Elizabeth A. Thompson. Annealing Markov chain Monte Carlo
with application to ancestral inferencé.Am. Stat. Assac90:909-920, 1995.

[92] Ulrich H. E. Hansmann. Parallel tempering algorithm for conformational studies of
biological moleculesChem. Phys. Lett281:140-150, 1997.

[93] Yuji Sugita, Akio Kitao, and Yuko Okamoto. Multidimensional replica-exchange
method for free-energy calculationk.Chem. Phys113:6042-6051, 2000.

[94] H . Fukunishi, O. Watanabe, and S. Takad&hem.Physl16:9058-9067, 2002.

[95] W . Kwak and U.H.E. Hansmann. Efficient sampling of protein structures by model
hopping.Phys.Rev.Lett95:138102, 2005.

[96] Liu P ., X . Huang, R. Zhou, and B.J. Berne. Hydrophobic aided replica ex-
change: an efficient algorithm for protein folding in explicit solvehPhys.Chem.B
110:19018-19022, 2006.



107

[97] D . Min, H . Li, G . Li, R. Bitetti-Putzer, and W. Yang. Dual-topology hamiltonian-
replica-exchange overlap histogramming method to calculate relative free energy
difference in rough energy landsca@eXiv:physics 060500%2006.

[98] Weihua Zheng, Michael Andrec, Emilio Gallicchio, and Ronald M. Levy. Simulat-
ing Replica Exchange simulations of protein folding using a kinetic network model.
Proc. Natl. Acad. Sci. USA04:15340-15345, 2007.

[99] W. Nadler and U.H.E. Hansmann. On dynamics and optimal number of replicas in
paralle tempering simulationsrXiv:0709.3289v12008.

[100] Michael Andrec, Anthony K. Felts, Emilio Gallicchio, and Ronald M. Levy. Protein
folding pathways from replica exchange simulations and a kinetic network model.
Proc. Natl. Acad. Sci. USA02:6801-6806, 2005.

[101] W . Zhang, C. Wu, and Y. Duan. Convergence of replica exchange molecular dy-
namics.J.Chem.Phys123:154105, 2005.

[102] X. Periole and A.E. Mark. Convergence and sampling efficiency in replica exchange
simulations of peptide folding in explicit solvent.Chem.Phys126:014903, 2007.

[103] B.Bicoutand A. Szabo. Entropic barriers, transition states, funnels, and exponential
protein folding kinetics: a simple moddProtein Sci, 9:452-465, 2000.

[104] H.-X Zhou and R. Zwanzig. A rate process with an entropy bard&€hem.Phys.
94:6147, 1991.

[105] H.S . Chan and K.A. Dill. Protein folding in the landscape perspective:chevron plots
and non-arrhenius kinetic®roteins 30:2, 1998.

[106] A . Kolinski and J. SkolnickPolymer 45:511, 2004.

[107] G. Tiana, L.Sutto, and R.A. Broglia. Use of the Metropolis algorithm to simulate
the dynamics of protein chainBhysica A 380:241-249, 2007.

[108] M.P . Allen and D.J. TildesleyComputer Simulation of Liquigd®xford, 1987.

[109] D. Chandler. Statistical mechanics of isomerization dynamics in liquids and the
transition state approximatiod.Chem.Phys68:2959-2970, 1978.

[110] R.M . Levy, M . Karplus, and J.A. McCammon. Diffusive langevin dynamics of
model alkanesChem.Phys.Lett65:4-11, 1979.

[111] J. Borreguero, N . Dokholyan, S . Buldyrev, E . Shakhnovich, and H. Stanley. Ther-
modynamics and folding kinetics analysis of the sh3 domain form discrete molecular
dynamics.J.Mol.Biol,, 318:863-876, 2002.

[112] S.ParkandV.S. Pande. Validation of markov state models using shannon’s entropy.
J.Chem.Phys124:054118, 2006.



108

[113] F.Ncg, | . Horenko, C . Sditte, and J.C. Smith].Chem.Phys126:155102, 2007.

[114] Weihua Zheng, Michael Andrec, Emilio Gallicchio, and Ronald M. Levy. Simple
continuous and discrete models for simulating replica exchange simulations of pro-
tein folding. J. Phys. Chem. BL12:6083-6093, 2008.

[115] C.W.GardinerHandbook of Stochastic Methqqimges 3rd ed. (Springer, New York,
2004).

[116] Shankar Kumar, Djamal Bouzida, Robert H. Swendsen, Peter A. Kollman, and
John M. Rosenberg. The weighted histogram analysis method for free-energy cal-
culations on biomolecules. i. the methad.Comp. Chem13:1011-1021, 1992.

[117] D. T. Gillespie. Markov Processes: An Introduction for Physical Scienti#sa-
demic Press, Boston, 1992.

[118] Daniel T. Gillespie. Stochastic simulation of chemical kinetiésinu. Rev. Phys.
Chem, 58:35-55, 2007.



109

Vita

Weihua Zheng

2002-2009Ph.D. in Biophysics, Rutgers University, Piscataway, NJ, USA
1999-2002MS in Condensed Matter Physics, Univ. of Sci.&Tech. of China, Hefei, P.R.China
1994-1999BS in Physics, Univ. of Sci.&Tech. of China, Hefei, P.R.China

Publications
In Dr. Levy’s group:

Zheng W., M. Andrec, E. Gallicchio and R. M. Levy, Simple Continuous and Discrete
Models for Simulating Replica Exchange Simulations of Protein Foldinghys.
Chem. B2008 112, 6083-6093.

Zheng W., M. Andrec, E. Gallicchio and R. M. Levy, Simulating Replica Exchange
Simulations of Protein Folding Using a Kinetic Network Modefpc. Natl. Acad.
Sci. USA2007, 104, 15340.

Previous ones:

Gao H.P.,, Wu B.M., Wei Y.Y., Li B. and Zheng W., Lattice effects related to metal-
insulator and charge-ordered transitions ig t@a, sMng ¢Cry 103 and
Lao.7ca]'3Mn0_99C|'0'0103, PhyS Lett. &007, 368, 125.

Wu B. M., M. Ausloos, Du Y. L., Zheng, W., etc., Spin Glass Behavior and Spin-
Dependent Scattering in b.aCa)sMng¢Cry 103 Perovskites,Chin. Phys. Lett.
2005 22, 686.

Wu B. M., Li, B., Zheng, W., etc., Spin-cluster effect and lattice-deformation-induced
Kondo effect, Spin-glass freezing, and strong phonon scattering in La0.7Ca0.3Mn1-
XCrx03,J. Appl. Phys2005 97, 103908.

Wu B. M., M. Ausloos, Du Y. L., Zheng, W. etc., Spin Glass Behavior and Spin-
Dependent Scattering in baCa sMny4Cry ;03 Perovskites,Chin. Phys. Leti.
2005 22, 686.



110

Li S. Y., Mo W. Q., Zheng, W., etc., Thermopower and thermal conductivity of
superconducting perovskite MgCj\lPhys. Rev. B2002 65, 064534.

Zheng, W., Wu B. M., Li B., Yang D. S. and Cao L. Z., Thermal conductivity in
La,,Ca

0.3Mn;_,Cr,O5 at low TemperatureChin. J. Low. Temp. Phy2002 24, 230.

Li B., Yang D. S., Zheng, W., Wu B. M. and Jin H., Electronic Transport Properties
in Ce Doped Bi-2212 at Low Temperatui€hin. J. Low. Temp. Phys2002 24,
193.

Zheng, W., WuB. M., Yang D. S., LiJ. Y., Liu X. R. and Li B., Thermal Conductivity
and Electrical Conductivity in La,Ca,MnOs, Chin. J. Low. Temp. Phys2001,
23, 216.

Yang D. S., Wu B. M., Zheng W., Yang H., Li B. and Cao L., Thermal Conductivity
of Excess-Oxygen-Doped L@uQ,, Chin. J. Low. Temp. Phy2001, 23, 44.



