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ABSTRACT OF THE THESIS

A relationship between human shape categorization and

the statistics of natural shapes.

By JOHN WILDER

Thesis Director:

Dr. Jacob Feldman

We studied the classification of shapes into broad natural categories, such as“animal”

and “leaf”, into which many shapes can proceed without overt basic-level recognition.

Many shape representation models make implicit assumptions about what shape struc-

tures often occur in natural shapes, but such assumptions are not generally closely tied

to real-world measurements. In order to tune a model of shape classification to the

natural environment we collected statistics from a large database of real animal and

leaf shapes; first we calculated the MAP skeletons of these shapes, and then computed

several different statistical properties of the skeletons. These statistics allow for the

creation of an “ecologically-informed” shape classification model that can generalize of

many of the specific structures observed in the two classes. To investigate human shape

classification subjects were shown shapes created by taking a weighted average of an

animal and a leaf shape, resulting in a novel morphed shape. The task was to classify a

shape as animal or leaf. Subjects easily performed this task, and their responses were

strongly related to the weight used to averaged the shapes. Next, the classifier was used

to obtain the likelihoods that a given morphed shape belonged the each class. These

likelihood values are predictive of the subjects’ responses, suggesting a relationship

between human classification of shapes and the shapes’ skeletal structures.
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1. Introduction

One goal of vision is to help us categorize the objects in the world around us into

naturally and functionally relevant classes. One goal of vision science is to find the

object feature that will allow for the creation of a model that places an object in its

natural category. Many features of an object allow for distinguishing between similar

objects or identifying objects. For example, we can distinguish a baseball from a tennis

ball because one is white and the other yellow, or we can notice that one is leather and

the other is wool. Color and texture cannot, however, are not unambiguous cues and

thus cannot reliably classify an object as part of a group (Biederman, 1987). Knowing

that an object is yellow does not allow us to classify it as a tennis ball. Seeing something

blue does not inform us if we are looking at the sky, a book, or a bird. If our decision

rule was to use the feature “blue” to place an object in the category “book” we would

find ourselves misclassifying many other blue non-book objects.

Shape, on the other hand, is different. Humans are very good at seeing a shape

and using it to identify the object or to determine which category or class of objects

it belongs to (Landau, Smith, & Jones, 1988). Shape is also used to identify objects;

from only an outline, people are able to identify a rabbit, and even make the fine

discrimination between the cat and dog shown in Figure 1.1 (Biederman, 1987).

Figure 1.1: This dog and cat can be distinguished from their shape alone.

In the current study, we would like to investigate human shape classification of

shape and create a classifier to model the human behavior. If we are to study shape

we first need to answer the following question: If shape is used to categorize objects,

exactly how is it used? Objects of the same class frequently have similar shapes (Rosch,

Mervis, Gray, Johnson, & Boyes-Braem, 1976; Torralba & Oliva, 2003) so a process
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that categorizes shapes should place similar objects in one class, and dissimilar objects

in different classes. Presumably, each class of objects has a distribution (or several

distributions) of features that represents the possible shapes of that class, and this

distribution is distinct from that of another class. A key question to answer before

finding these distributions is what features need to be represented. For some features

this may be fairly intuitive process, but for shape, however, the properties to measure

are not obvious. There are many different ways to represent shape, and many different

manipulations can be performed on each representation, resulting in a large space of

parameters to consider when investigating the classification of shapes into their natural

categories.

When choosing a representation one has to consider whether to use representa-

tions based on various measures of the shapes outline (contour-based representations) or

representations based on larger areas of the shape (region-based representations). Then

we decide whether a global (highlighting relationships across the entire shape)approach

or a structural approach (highlighting local relationships) will be used. For example,

when a structural, contour-based representation is used a set of points from the contour

can be selected as the representation. However, it is hard to calculate similarity when

using this representation because there are many ways the points could be combined into

a single value before the distance between two shapes can be calculated. Alternatively,

possible global descriptors include simple shape descriptors, such as area, eccentricity,

or principle axis orientation. Using this method multiple descriptors would need to be

collected in order to calculate the similarity of two shapes (since two perceptually dif-

ferent shapes could have the same area, or the same axis orientation), but it is difficult

to choose which ones are relevant to human shape classification. Categorizing objects

could also be based on many other types of representations, including Fourier descrip-

tors (Chellappa & Bagdazian, 1984), boundary moments (M.Sonka, Hlavac, & Boyle,

1993; Gonzalez & Woods, 1992), chain code (Freeman, 1961), grammatical strings (Fu,

1974), shape matrices (Goshtasby, 1985), the convex hull-deficiency (M.Sonka et al.,

1993; Gonzalez & Woods, 1992), and shape skeletons (Blum, 1973).

With so many possible representations which should be used in the creation of
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a classifier? Some of the representations mentioned above, such as boundary moments,

do not have an obvious connection to the physical shape and so they will not be used.

Others, such as Fourier descriptors, do seem to be perceptually relevant but they have

problems when there is partial occlusion or they require a large amount of computation

due to high dimensionality (Zhang & Lu, 2004). The medial axis skeleton is a represen-

tation that overcomes several of these problems; it is accessible (it can be inexpensively

computed from the shape), it is unique for sets of shapes up to an affine transformation,

and is sensitive to shape perturbations (Blum, 1973; Marr & Nishihara, 1978). Of the

requirements of a good shape representation, as stated in Marr & Nishihara (1978),

the medial axis skeleton only lacks stability (small changes in the contour can often

drastically change the skeleton). Feldman & Singh (2006) propose a Bayesian method

for extracting the relevant skeletal axis, and thus increasing the medial axis’ robustness

to noise, the call the resulting skeleton the MAP skeleton. There is also a growing

set of studies finding psychophysical evidence for the importance of the shape skeleton

(Psotka, 1978; Kovacs & Julesz, 1994; Kovacs, Feher, & Julesz, 1998). Additionally, the

MAP skeleton highlights the part structure of a shape; the part structure of a shape

also has perceptual importance Hoffman & Richards (1984); Hoffman & Singh (1997).

For these reasons we chose to use the MAP skeleton as our method of representing the

shape when creating a classifier.

After choosing the representation (MAP skeleton) we now need to choose what

about the shape skeleton should be measured to create the distributions for different

categories. Our approach has its roots in research on natural image statistics.

1.1 Natural Image Statistics

A compelling argument has been made for taking into account the statistical structure

of the environment when modeling (Brunswik & Kamiya, 1953; Brunswik, 1956; Gibson,

1966). Including the world’s structure in a model provides constraints that can decreases

the complexity of that model (Marr, 1982). Using the statistics of the environment,

models can be created that do not need to consider all possible worlds, just the ones

that are possible for the given environment. This results in models that are more simple
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and that perform better.

Support for incorporating the structure of the environment in perceptual mod-

eling has been found in studies demonstrating relationships between the structure of

perceptual systems and the statistics of the environment (Field, 1987; Geisler, Perry,

Super, & Gallogly, 2001). Several studies suggest that these relationships are due to the

development of an individual’s perceptual system in a certain environment (Hubel &

Wiesel, 1970; Hirsch & Spinelli, 1970; Annis & Frost, 1973). The evolution of a species’

perceptual systems also seems to be related to the environment (Timney & Muir, 1976;

Geisler & Diehl, 2002, 2003). In principle, the structure of the environment could af-

fect both evolution and individual development, making a strong case for taking into

account natural statistics when developing a model of perception.

In this paper we will investigate the natural statistics of shape, creating a clas-

sifier that models human classification. Many shape perception theories are based on

expectations about the way natural shapes are formed (Hoffman & Richards, 1984;

Blum, 1973; Biederman, 1987; Leyton, 1989), however an empirical investigation of the

statistics of natural shapes has not been carried out. A large database of leaf and an-

imal shapes will be analyzed to obtain statistical summaries of those shapes so that a

model of shape classification that is tuned to natural shapes can be created. The goal is

a model of shape classification that will be compared to human performance in a shape

classification task. Natural categories are organized in such a way that membership

in a category varies along a continuum (Rosch, 1973). Human classification of objects

into natural categories should then follow a metric that will allow for graded member-

ship. We propose a method to do this using probabilistic classification, revealing the

probability that a shape belongs in a class instead of solely an absolute classification.

1.2 Rapid Natural Image Classification

Another motivation for this study comes from studies of humans rapidly classifying nat-

ural images. While the current study investigates the classification of natural shapes,
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previous studies focused on the classification of entire images without segmenting ob-

jects from the background. These studies have suggested that the classification of

natural scenes happens in a rapid, feed-forward manner (Fabre-Thorpe, Delorme, Mar-

lot, & Thorpe, 2001; VanRullen & Thorpe, 2001; Serre, Oliva, & Poggio, 2007). In

these studies the stimulus display time was limited to 20ms yet subjects were still able

to identify if a scene contained an animal or not. Thus, classification into animal versus

non-animal categories can be successful with only 20 ms exposure to stimuli; VanRullen

& Thorpe (2001) suggest that the time required for the visual processing to discrim-

inate between familiar categories takes 150 ms (of course visual processing continues,

but this is all that is required by the task). We would like to see if rapid classification

can be performed for shapes, as opposed to images of natural scenes.

Here two experiments are reported. In one experiment the participants will

examine shapes for as long as they need in order to classify the shape as animal or

leaf. In the second experiment the stimulus exposure time will be limited followed by

a mask, as in Serre et al. (2007). Finding a difference in the responses of subjects who

have limited exposure from those with unlimited exposure would suggest that there are

two processes of categorization that can be modeled. One feed-forward model, that is

used in cases of brief exposure, and a model of categorization during longer exposure

which accounts for feedback from later visual stages.



6

2. Experiment 1

Subjects were shown novel shapes constructed from natural animal and leaf images.

Their task was to decide if each shape was more like an animal or more like a leaf.

2.1 Method

2.1.1 Subjects

Subjects were 28 undergraduates at Rutgers University participating in research projects

for course credit. All subjects were naive to the purpose of the experiment.

2.1.2 Procedure and Stimuli

Stimuli were displayed on an iMac computer running Mac OS X 10.4 and Matlab 7.5,

using the Psychophysics toolbox (Brainard, 1997; Pelli, 1997).

The stimuli were created by averaging the contours of an animal shape and

a leaf shape. The averaging was done by taking each point of the contour with a

corresponding contour point of the other shape. First, the principle axes of the shapes

were aligned, and then 150 equally spaced points from the contours were sampled and

placed in a list. Points in the same position in the list were said to be the corresponding

points and a weighted average was computed. From a collection of 250 leaves and 250

animals each possible combination of leaf and animal (62,500 total shapes) was used

to create 5 new shapes, each created from a weighted average of the contours, with

weights of 30, 40, 50, 60, and 70 percent animal (see Figure 2.1).

Subjects were shown a random sequence of 500 shapes, one shape per trial, and

were required to decide whether they thought a shape was more likely an animal or a

leaf. A session began with a fixation mark. To start a trial subjects pressed and held

down the “A” key and the “L” key. The shape was then displayed and they responded

animal by lifting their finger from the “A” key, or leaf by lifting the “L” key. Following

a response the screen displayed their response to ensure that they would not forget

which key was mapped to each category. Since each shape was neither plant nor animal
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70 50 30

Figure 2.1: One animal shape and one leaf shape averaged into a single combined shape. The
contours of the shapes were averaged using the value beneath the shape as as the percentage
weighted toward the animal.
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there was no correct answer, so feedback informing them if there decision was correct

could not be used. The fixation mark was then displayed again so they could proceed

to the next trial. The goal was not to see if subjects could perform the task “correctly”,

but was to discover what shapes subjects perceived to be leaves or animals.

Trials in which the subject responded with both keys were thrown out, and

instead of receiving the normal feedback during the trial they were presented a message

asking them to only lift their finger from one of the keys. Of the 14000 totals trials 36

were removed.

2.2 Results and Discussion

Subject’s responses closely followed the weights used in created the averaged shapes.

Figure 2.2 shows the subject’s response patterns. There is a strong correlation (R2 =

0.64, p ≤ 5 × 10−32) between the proportion and the weight. When the stimulus was

weighted more toward one category, the responses strongly moved in the direction of

that category, resulting in a linear fit with a slope larger than one.

Analysis of reaction showed a significant correlation was found, animal responses

were correlated with reaction time (r = 0.7691, p = 0.00002). However, this high

correlation seems to be due to reaction times greater than 10 seconds (≈ 0.57 percent

of the trials). If these 80 trials (of the total 13964) are removed from consideration the

correlation disappears (r = 0.2947, p = 0.2352), suggesting that reaction time is not

related to the category of response.

An ANOVA confirmed that the distributions of reactions times were not signif-

icantly different across weights (F4,115 = 1.30487 × 10−06, p = 1). This is surprising,

because one might think that a shape that was weighted more strongly toward a leaf

or animal would be more obviously a leaf or an animal, allowing the subject to respond

without needing to spend time thinking. This result, however, suggests that it was not

more difficult for subjects to categorize shapes that were equally leaf and animal or the

reaction times have ceilinged.
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Figure 2.2: A graph showing the proportion of animal responses for each weight used in creating
the stimuli. For each subject a proportion was created for each weight. This value was then
used to find an average for all subjects, which corresponds to the square in each plot. The error
bars are one standard error
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3. Experiment 2

3.1 Method

3.1.1 Subjects

As in experiment one subjects were undergraduates from Rutgers who participated in

order to receive credit for a psychology course. All 21 subjects were naive to the purpose

of the experiment.

3.1.2 Procedure and Stimuli

The stimuli used were the same as in Exp. 1. Each trial began with a fixation mark.

Once ready, the subject pressed and held the “A” and “L” keys. The stimulus display

length was randomly selected from one of three exposure durations: short (50 ms),

medium (100 ms), or long (200 ms). Following the disappearance of the stimulus there

was a 12.5 ms blank screen, followed by a mask displayed for 100 ms. The mask was

created from shape pieces cut out from the stimulus set. Following the disappearance

of the mask the subject would release one of the keys to respond. Their response would

then appear on the screen and the next trial would start. A single subject participated

in a total of 500 trials.

3.2 Results and Discussion

The three exposure durations (small, medium, and long) did not result in significantly

different categorizations (F2,219 = 1.89 and p = 0.15). For this reason the data was

collapsed over the three conditions for the remainder of the analysis.

In this experiment we obtained similar results to Exp. 1. The subject’s re-

sponses closely followed the stimulus weight (Figure 3.1). We see a similar correlation

(R2 = 0.63). The main difference to note is the decrease in the slope of the regression

line. This reflects that the subjects were not as sensitive to the weight used to create the

stimulus (the range of the y-axis in Figure 2.2 is about 20-80, while the range in Figure

3.1 is about 20-65), possibly a sort of speed/accuracy trade-off because processing time
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Figure 3.1: The proportion of animal responses for each weight that was used in creating the
stimuli. For each subject a proportion was created for each weight. This value was then used
to find an average for all subjects, which corresponds to the square in each plot. The error bars
are one standard error.

being limited. Also, in Exp. 1 a shape with equal animal/leaf weight was classified

as a animal half of the time, but in Exp. 2 subjects only classified these shapes as an

animal 40 percent of the time. Overall, with limited stimulus exposure we find that

classifications are still strongly related to the manner in which the stimulus was created,

however stimuli that were created with an animal bias were less frequently classified as

an animal than in Exp. 1.
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4. Statistical Model

Many studies of natural image statistics have measured a single property of an image.

For example, Maloney (1986) measured the reflectance of objects, Field (1987) measured

spatial frequency, and Switkes et al. (1978); Coppola et al. (1998) measured orientation.

Shape does not as easily translate into a single measurable parameter as in the previous

studies. For reasons described earlier (physical relationship to shape, sensitivity and

stability, and psychophysical findings) we used a the MAP skeleton representation of the

shapes (Feldman & Singh, 2006) and measured several characteristics of the skeletons.

4.1 Skeleton Estimation

The analysis of the shapes is based on a skeletal representation. The skeleton that

maximizes the posterior, p(SKELETON)p(SHAPE|SKELETON), is chosen as the

skeleton for a given shape, as described in Feldman & Singh (2006). This results in a

skeleton with roughly one skeletal axis per shape part (see figure 4.1).

4.2 Distribution Estimation

After finding a shape’s MAP skeleton several characteristics were measured. All of the

measured characteristics from animals were used to create an “animal” distribution for

that characteristic. The same was done for leaves. After computing the skeleton for

each animal and leaf shape the densities, p(feature = x|animal) and p(feature = x|leaf),

were estimated using histograms.

The different skeletal characteristics measured were: (1) the number of skeletal

branches, (2) the depth of the skeleton (using the MAP skeleton’s tree structure), (3)

the average depth of the branches in the skeleton, (4) the average angle a new branch

stems from its parent, (5) the normalized distance along the parent that a child stems,

(6) the average branch length relative to the root branch, (7) the average curvature of

the skeletal branches (measured in absolute value), and (8) the average branch curvature

(taking into account the sign).

We chose to measure the number of skeletal branches in the hope of capturing
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Figure 4.1: A dog shape with its MAP skeleton. Each axis is a different color, and there is
roughly one axis per part of the dog

some of the part structure of the shape. The depth of the skeleton should also reveal

something about the shape’s part structure. The average depth of a skeletal branch

is slightly different than the total depth of the skeleton. All three of the statistics

mentioned so far together can reveal if a shape has very few branches at each level but

a high total depth, or if it has a low total depth but with many branches at each level.

We chose to look at the angle a child sprouts from its parent because we noted that

animals are able to articulate at joints and leaves do not; this statistics may capture this

idea if it is revealed that there is a higher variance in this distribution for animals than

plants. The distance along the parent axis that a child branch sprouts may discover if

plants and animals generally have their parts in different locations. Finding the average

branch length, normalized so the root branch is length 1, will look at if plant branches

are shorter or longer than the branches that result in animal appendages. Finally, the

last two statistics are the average branch curvatures. This was broken into two different

statistics so that a skinny circular shape can be said to be similar and also different

than a skinny wavy shape. We can think of two shapes: a snake that is attempting to

bite its own tail, and a long sinusoidal branch. They would both have high values when

using the absolute value of the angle of curvature, but only the snake would have a high

value when looking at the signed value of curvature. The branch would have almost no
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curvature when taking into account the sign, revealing the overall straightness of the

shape.

We can see from Figure 4.2 that there is a large difference between the number

of branches on an animal’s shape skeleton and a leaf’s skeleton. The leaves in our

database tend to have a single branch, and the animals more frequently have four or

five skeletal branches. This is intuitively correct since we know that animals tend to

have four appendages and many leaves are single part shapes, and one of the reasons

we chose the skeletal representation of Feldman & Singh (2006) was because this shape

skeleton yields roughly one branch per shape part. We also see that the no animal has

more than 20 skeletal branches, but there are leaves that have as many as 25. This is

due to leaves with many parts, such as a fern leaf.
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Number of Branches

Animals     n=424
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Figure 4.2: The distribution of number of skeletal branches for Leaves (blue) and Animals
(red). The x-axis show the number of branches, and the y-axis shows the probability.

Figure 4.3 reveals a smaller difference in the distributions of unsigned axis cur-

vatures than was found in the distributions for the number of skeletal branches, with

leaves tending to be slightly more straight than animals.
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Figure 4.3: The distribution of axis curvatures of shape skeletons for Leaves (blue) and Animals
(red). The x-axis show the curvature (in degrees), and the y-axis shows the probability.

4.3 Classifier

A Naive Bayes classifier was created using the distributions measuring the skeletal

characteristics as the features used as input. The classifier works as follows:

1. Calculate the skeleton of a new shape x;

2. The skeleton of x will have features x1, x2, . . . , x8; one feature from each of the

eight distributions;

3. Calculate the “weight of evidence” according to

y =
8∑

i=1

log
p(xi|animal)
p(xi|leaf)

4. If y is larger than the set criterion the shape should be classified as an animal
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4.3.1 Feature Selection

When creating the classifier only features that enhance the ability of the classifier to

distinguish between the two classes should be used. For this reason for each feature

was only used if a statistical test found a significant difference between the animal and

the leaf distribution. Since many of the distributions did not appear to be normally

distributed the Wilcoxon rank sum test (Mann-Whitney U) was used (as opposed to the

t-test). Three of the features (branch length, distance along parent branch of a child,

and the angle a child branches from its parent) failed to be significant using α = 0.01,

and were not used while creating the classifier.

4.3.2 Model Selection

The classifier was created and tested on the shapes in the training set. We ran the

classifier on the training set using each possible combination of distributions in order

to find the feature set that is important (we found eight distributions, after feature

selection 5 remaining, and there are 31 ways of combining those distributions for use

in the classifier). To test which combination of the distributions is best to use as our

model we used the Akaike Information Criterion (AIC), which finds the best model

while penalizing complexity in order to prevent over-fitting. We computed the AIC

according to the following:

AIC = 2k − ln(L)

where k is the number of distributions used and

L =
a∏

i=1

Lanimali

l∏

j=1

Lleafj

and a is the number of animal images, l is the number of leaf images, and for any given

animal shape

Lanimal =
k∏

i=1

p(xi|animal)p(animal)
p(xi|animal)p(animal) + p(xi|leaf)p(leaf)
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and for a given leaf shape

Lleaf =
k∏

i=1

p(xi|leaf)p(leaf)
p(xi|leaf)p(leaf) + p(xi|animal)p(animal)

Models with lower AIC values are the preferred models.

We found that the model only containing the distribution for the number of

skeletal branches (see the distributions in Figure 4.2) was the preferred model. This

model classifies the training set correctly about 79 percent of the time. However, the

model that takes into account the number of skeletal branches, the angle a child branch

sprouts from its parent, and the unsigned axis curvature, correctly classifies the shapes

from the training set about 83 percent of the time. Looking only at the percent correct

we may be led to believe that this second model should be chosen, but due to its

complexity AIC reveals that the first model should be used. The nine models with

the lowest AIC values had a large separated from the other models, but only small

difference between them. Since the AIC only shows very small differences between the

top nine models we pick the best performing model without fear of over-fitting. Our

final model then becomes a model using three features, which are the number of skeletal

branches, the unsigned axis curvature, and the angle a child branch grows out from the

parent branch.

The procedure was repeated using BIC instead of AIC. BIC gives a larger

penalty for increasing the number of free parameters, so it should be no surprise that

the computation of BIC suggests that the preferred classifier is the one which uses only

the distributions of the number of skeletal branches. However, we see, just as with

the AIC, the top nine models have very similar BIC values, so any of the model can

be chosen without fear of over-fitting. Finding agreement these two methods of model

selection we are confident that we are justified in choosing the three feature classifier

described at the end of the previous paragraph.
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4.4 Fit to the Data

The morphed shapes used in the experiments were used as input for the classifier. The

likelihood/probability values returned by the classifier we used to compare the model

to the data collected from the human subjects in Exps. 1 and 2. The likelihood values

were binned so that we could calculate the proportion of times the subjects classified

the shapes with similar likelihood values as an animal as opposed to a leaf. These

proportions were plotted versus the likelihood value the bin represents. A regression

line was then fit to the results. This was done for the data collected in Exp. 1 (Figure

4.4) and 2 (Figure 4.5).

For the data in Exp. 1 we find an R2 = 0.42, p = 0.003. So for the data collected

in Exp. 1 the models strength of belief that a given shape is an animal is a reasonable

predictor of the subject’s response.

We find the same trend when looking at the model versus the subject’s data

from Exp. 2, finding that our regression is very significant R2 = 0.78, p = 0.0000006.

For further confirmation that the model if performing similarly to the human,

the model’s prediction was plotted against the weight used in the stimulus creation

(Figures 4.6 and 4.7). We see that just as the subjects’ responses closely follow the

morphing weight, so do the predictions of the model.

4.5 Comparison to Alternative Model

In order to show that the fit to the data is not trivial, and that the skeleton is capturing

more than just simple low-level shape properties, we also found compared, as a baseline,

three other naive-Bayes classifiers to our classifier. One classifier uses the aspect ratio

of the shape as its input feature, one uses the ratio of the square of the perimeter to the

area, and the final one uses both. There are several reasons these features were chosen

for comparison. They are both easy to compute, if the performance of these classifiers

is successful there may be no need to spend time computing the skeleton. Also, a

large squared perimeter to area may capture information about the part structure of

the shape (as does the MAP skeleton); a circular leaf will have a low ratio, while a
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Figure 4.4: The strength of the model’s belief that the shape is an animal versus the proportion
of times the subjects classified a shape as an animal. This subject data is from Exp. 1 (unlimited
exposure duration)
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Figure 4.5: The strength of the model’s belief that the shape is an animal versus the proportion
of times the subjects classified a shape as an animal.The subject data is from Exp. 2 (limited
exposure)
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Figure 4.6: The stimulus morphing weight (% animal) versus the proportion of times the
classifier would respond “animal”. The shapes input to the classifier were the shapes shown to
subjects in the first experiment
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Figure 4.7: The stimulus morphing weight (% animal) versus the proportion of times the
classifier would respond “animal”. The shapes input to the classifier were the shapes shown to
subjects in the second experiment



23

dog (with area normalized to the leaf’s), because of its legs, will have a larger ratio.

The aspect ratio may also capture information that the MAP skeleton does, elongated

shapes tend to have elongated skeletal axes. A failure of this model (which is expected)

will suggest that the skeleton contains important information that is absent in a more

simple shape property.

As with the statistics based on the skeletal representation of the shapes, the

distributions of shapes for these two features were not normally distributed, so we use

the Wilcoxon rank-sum test to test to decide whether or not to use these features

in a naive-Bayes classifier. The rank-sum test for both features reveals a significant

difference (p ≤ 6.5 × 10−24 for perimeter2/area, and p ≤ 4.6 × 10−7 for the aspect

ratio), revealing that both features should be useful for inclusion in the classifier.
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Figure 4.8: The proportion of times the subjects classified a shape as an animal versus the
strength of the model’s belief that the shape is an animal, the model uses the simple shape
statistic Aspect Ratio as its only feature. The subject data is from Exp. 1.

From Figures 4.8, 4.9, and 4.10, we can see these models do not result in the

same quality of linear fit as the model based on shape skeleton statistics. These figures

were created in the same manner as Figures 4.4 and 4.5; similar likelihood ratios are

binned, and for each bin the proportion of times the subjects responded animal was
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Figure 4.9: The strength of the model’s belief that the shape is an animal versus the proportion
of times the subjects classified a shape as an animal, the model is using the simple shape statistic
Perimeter2/Area as its only feature.The subject data is from Exp. 1.
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Figure 4.10: The strength of the model’s belief that the shape is an animal versus the propor-
tion of times the subjects classified a shape as an animal, the model is using the aspect ratio
and the perimeter2 /area as features. The subject data is from Exp. 1.
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calculated. The error bars are one standard error; the points with no error bars too few

data points in the bin for a meaningful average and standard error to be calculated.

The correlation for the model using the shape’s aspect ratio fails to be significant (Fig.

4.8). The correlation for the model using the perimeter squared over area ratio does

result in significance, however from Fig. 4.9 it appears that the fit should not be

linear, and the correlation was negative. As the likelihood ratio returned by the model

increases the model is telling us it more strongly believes that the shape is an animal,

this negative regression would suggest that as a shape’s fit with the animal distribution

increases human subjects are more likely to say it is not an animal. Clearly this is not

being done by humans, since they can correctly classify shapes as animals and leaves.

Since the shape of the data appears non-linear we could try to perform a non-linear

regression, however it does not make sense to do so here, because this would suggest

that if the model strongly believes that the shape is an animal or if it strongly believes

it is a leaf a human subject would respond “leaf” and if the likelihood ratio does not

favor either class more a human would respond “animal”. This is also not what humans

are doing, since when a human is shown a shape that is obviously an animal (and so its

shape statistics suggest it is an animal) the human would not say it is a leaf. Putting

both simple statistics together (Fig. 4.10) reveals only a weak correlation that fails to

be significant. This suggests that these three simple models do not capture the shape

properties used by the human subjects.
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5. General Discussion

Initially we proposed Exp. 2 in order to find if a different strategy was used in order

to classify the shapes. If there was a different strategy, maybe the same model would

not fit the data from both experiments equally well. What we found was only a slight

bias for responding leaf in Exp. 2. Our classifier performed well on the data from both

Exps. 1 and 2 but we do see that the significance of the regression is weaker when using

the data from the first experiment. One obvious explanation for this is that when given

unlimited exposure to the stimulus there is no processing limit.

Another possible explanation is if we picked the classifier given the lowest AIC

value, classification would solely be based upon the number of skeletal branches of a

shape. If classification of a shape as leaf or animal is really (by our subjects) being

performed by counting the parts, the limited exposure time may have limited how many

parts could be counted, resulting in the slight bias toward leaf classifications that we

saw in Exp. 2.

Regardless of the differences in the data from Exps. 1 and 2, what we did see

what that just as in rapid natural image classification studies subjects were able to

rapidly classify shapes into two natural categories. Also, as in other studies of natural

image statistics, we found that the statistical properties of a shape (specifically the

statistical properties of the shape’s skeleton) can be used to predict or describe how

human subjects classify shapes that are presented to them.

The current study shows that a classifier based on the skeleton is consistent

with human classifications, adding to the body of work (Psotka, 1978; Kovacs & Julesz,

1994; Kovacs et al., 1998) that suggests the shape skeleton has a roll in the human

visual system. More work should be conducted using different classes of shapes and

also comparing other alternative models to this one. There are many other classification

models that can be created using statistics of the MAP skeleton as features, and future

work should investigate these models in order to find the classifier that best models

human shape classification.
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6. Conclusion

We have shown that humans are able to classify novel shapes into existing shape cate-

gories. The poor performance of the models built from simple shape statistics suggests

that these shape features are not the most important features that humans use in shape

classification, some of the information missing from these simple statistics is highlighted

by the MAP skeleton. Models based on the statistics of the shape skeleton are able to

better capture the properties of shape that are important for classification, suggesting

a roll for the shape skeleton in the human shape classification system.
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